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Preface

In 2010 the number of computers finally exceeded the number of human users,
and the current trend will result in approximately 14 machines per on-line user by
20201. This computing power is primarily concentrated in huge server farms and
other data centers that, world-wide, consume roughly 300 TWh of electricity2.
Even though the efficiency of each IT service is increasing, the overall trend in
energy consumption is inexorably heading in one direction: upwards!

As one of the major energy consumer groups, data centers must therefore
contribute significantly to the goal of reducing global CO2 emissions by a factor
of 10 by 2050 in order to avoid drastic climate changes. This can be accom-
plished through innovative technologies and processes either within the data
center itself or in collaboration with end-users and/or the electricity supply sys-
tem. To promote such solutions, we continued the E2DC workshop series started
in 2013 with the Second International Workshop on Energy-Efficient Data Cen-
ters, E2DC 2013, focusing both on energy-aware data center technologies and the
role of data centers in the global energy system. The workshop was collocated
with the ACM SIGCOMM e-Energy 2013 conference in Berkeley, California, on
May 21, 2013, and organized by the EU FP7 project All4Green3.

These proceedings of the workshop cover a wide range of relevant technolo-
gies from information and communication technologies for green data centers
to business models and GreenSLAs, as well as the collaboration between data
centers and energy providers in order to avoid costly power peaks and/or to
integrate renewable energy sources.

The first part of the proceedings contains three papers in the context of energy
and workload measurement. Z. Abbasi et al. evaluated the impact of workload
and renewable prediction on geographical workload and energy buffering man-
agement. They showed through a simulation study, using realistic traces, that
the proposed method, with and without prediction error, is effective in reducing
average energy cost and increasing sustainability of data centers. The problem
of controlling the applications’ workload in renewable energy-aware data cen-
ters was challenged by C. Dupont in a second contribution, aimed at fostering a
better utilization of renewable energy in data centers. The next presentation by
M.T. Beck et al. tackled the estimation of photo-voltaic power supply without
smart metering infrastructure, by means of models suited for small-scale areas
in a small-scale power grid. These models can be used by energy providers to

1 George Slessman, “End of Life – Data Centre 1.0.”, talk at Data Centres Europe,
2013

2 http://www.tech-pundit.com/wp-content/uploads/2013/07/Cloud_Begins_

With_Coal.pdf?c761ac
3 www.all4green-project.eu
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determine the power available from photovoltaic power plants (state estimation)
that are not directly connected to the communication infrastructure.

In the second part, dealing with energy management issues, a proposal for an
energy-aware database management was presented by C. Bunse et al., showing
that software has a significant impact on the energy consumption of a system and
demonstrating that high-performance algorithms often require more energy than
slower ones. In the last talk of this session, J. F. Botero et al. proposed a novel
data center control architecture for power consumption reduction, providing a
high-level view of the modules and functionalities required for achieving the
collaboration between the actors of the eco-system.

The third session analyzed simulators and control approaches. M.V. Berge et
al. suggested a model for data center efficiency building blocks used in energy-
efficiency and thermal simulations, showing how these models are affected by spe-
cific architectures of modeled hardware and differences between various classes
of applications. T. Bostoen et al. introduced a simulator to assess energy-saving
techniques in content distribution networks, targeting energy savings in these
networks, including the analysis of the HTTP-adaptive-streaming workload from
an operational content distribution network delivering IPTV. In the last paper,
S. Janacek showed results from a data center smart grid integration study con-
sidering renewable energies and waste heat usage, to obtain the best possible
synergy effects between the data center and the smart grid in terms of energy
exchange and infrastructure usage.

There were 38 attendees, nearly half of whom came from the USA, China,
and India and half from Europe: Finland, Belgium, Poland, Germany, Italy, and
Spain. The workshop also included four additional presentations: The keynote
was given by Mary Ann Piette (Lawrence Berkeley National Laboratory) who
spoke about the automation of demand response and communication systems.
Maria Perez Ortega (GFI) and Sonja Klingert (University of Mannheim) ex-
plained the common approach of the EU projects FIT4Green and All4Green:
FIT4Green aimed at learning to control the energy consumption in data cen-
ters through an energy-aware plug-in to the data center management system;
All4Green now uses this control for demand response schemes with energy
providers. The management of energy data was the focus of the talk by Audrey
Lee (California Public Utilities Commission); and finally the presentation by
Christos Kolias (Orange Silicon Valley) addressed software-defined networking
and network function virtualization in energy-efficient data centers. G. Ghatikar
gave further insights into how to expand data center energy efficiency objectives
through integration into the smart grid by using demand response approaches.

The final item on the agenda was a discussion panel: Chaired by Hermann
de Meer (University of Passau) and Jorjeta Jetcheva (Fujitsu Labs of America),
Rolf Bienert (OpenADR Alliance), Nada Golmie (NIST), Tedd Sheffer (CAISO),
Bernhard Thies (VDE/VDI), Girish Ghatikar (LBNL), and Dennis Symanski
(EPRI) conducted a lively discussion on “Data Center Challenges, Standards
landscape, and the Future Requirements.”
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Impact of Workload and Renewable Prediction
on the Value of Geographical Workload Management*

Zahra Abbasi, Madhurima Pore, and Sandeep K.S. Gupta

Impact Laboratory,
School of Computing, Informatics and Decision Systems Engineering,

Arizona State University
Firstname.Lastname@asu.edu

Abstract. There has been increasing demand for energy sustainable and low-
cost operation in cloud computing. This paper proposes dynamic Geographical
Load Balancing and energy buffering management (GLB) to achieve these goals
which (i) shifts workload (particularly peak workload demand) toward Data cen-
ters that offer low utility rate or green energy at a time, and (ii) banks excess
green and low-cost energy to shift peak workload demand away from high utility
rate. Such a scheme needs to be aware of the workload intensity and the available
renewable power of the cloud in future (over a relatively long prediction window
such as a day). Existing solutions mainly focus on developing algorithms and
demonstrating the cost efficiency of GLB, disregarding the prediction accuracy
of the workload and the renewable power. However, erroneous information de-
creases the efficiency of GLB. This paper studies the performance of the online
GLB solution when using time-series based prediction techniques (e.g., ARIMA
) for the workload and the renewable power (i.e., solar and wind). The results of
the simulation study using realistic traces highlight that GLB with and without
prediction error is effective in reducing average energy cost and increasing sus-
tainability of data centers. Further, GLB is shown to be significantly effective in
shaving peak power draw from the grid (e.g., reducing peak power upto 100%),
however the erroneous information due to the prediction error adversely affects
its performance. Furthermore, the simulation study indicates that the optimal mix
of the renewable power (i.e., wind and solar) to be leveraged by GLB, is achieved
when data centers are powered from both the solar and the wind power.

Keywords: Cloud computing, Data Centers, Workload Prediction, Renewable
power, electricity cost, Energy Storage, Energy Management.

1 Introduction

Data center power consumption is raising concerns to both operators and society due
to its huge electricity cost, scalability and detrimental impact on the environment. Par-
ticularly, there has been increasing push toward using renewable power in data cen-
ters from environmental activist [1, 2]. Large-scale Internet service providers, such as

* This work has been partly funded by NSF CRI grant #0855527, CNS grant #0834797, CNS
grant #1218505 and Intel Corp.

S. Klingert et al. (Eds.): E2DC 2013, LNCS 8343, pp. 1–15, 2014.
© Springer-Verlag Berlin Heidelberg 2014
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Google, Microsoft and Yahoo! and other modern data centers have begun to partially
power their data centers using on-site and other offline forms of the renewable energy
resources [3, 4].

Recent works propose that dynamic Global/Geographical Workload Balancing (GLB)
can potentially be a significant aid in maximizing renewable energy utilization and re-
ducing energy cost without need for large scale Energy Storage Devices (ESDs) [5–12].
The idea is to leverage spatio-temporal variation of the workload, the renewable power
and the electricity power to match the demand with low-cost and green power supply.
However, the potential benefits of such a scheme have been a point of debate in the com-
munity [10,11,13]. On one hand, it is clear that, due to spatio-temporal variation of power
supply and demand across data centers, GLB creates many energy management possibil-
ities to lower electricity price, lower energy consumption, and efficiently manage the re-
newables [5–12]. On the other hand, there are also significant costs for its implementation
in practice. These costs come in terms of the engineering challenges in implementing and
designing efficient and automated algorithms. Fortunately, cloud computing, facilitat-
ing a dynamic, demand-driven allocation of computation, allows workload distribution
across data centers. Additionally, the algorithmic challenges, in terms of time-efficiency,
and making online decisions on workload distributions and energy buffering without re-
quiring the knowledge of the future workload has been studied in literature [8, 12, 14].
Despite this body of the work, the question of characterizing the potential benefits of
GLB has still not been properly addressed. Particularly, the proposed online algorithms,
are based on simplification assumptions on the data center workload type [12], energy
supply models and energy management objectives [8, 12, 14]. Also, it is shown that the
efficiency of some of online solutions compared to the optimal offline solution depends
on the prediction window length [13]. However, the existing solutions mainly rely on the
predictability of data and ignore the possible impact of the prediction error on the per-
formance of the algorithm. The predictability of input data is partially true, since some
of the information, i.e., workload, electricity price, solar energy are shown to have nice
cyclic behavior, and are thusly predictable. However, wind energy does not exhibit cyclic
behavior and is thusly hard to predict. Also, generally, the prediction accuracy decreases
with increasing the prediction window length. This raises concern that prediction er-
ror might be a significant downgrading factor on the efficiency of the global workload
management.

Further, recent literature propose to utilize ESDs to shave the peak power draw
from the grid, as it significantly contributes in the total electricity price of data cen-
ters [15, 16]. The idea is to use ESDs to smooth out the power draw from the grid. In
this paper, we propose a comprehensive solution to integrate GLB with energy buffering
management in order to shave peak power draw from the grid. Spatio-temporal varia-
tion of workload allows GLB to further smoothen the power draw from the grid. This
necessitates an online workload management scheme with forecasting knowledge over
a relatively long time in future [17].

Furthermore, recent works demonstrate that the wind energy is more valuable than
the solar energy for Internet-scale systems, to be leveraged by global workload manage-
ment [10, 18]. The reason is that the wind energy has little correlation across locations,
and is available during both night and day. This suggests that the optimal renewable



Global Workload Management 3

DC1 

DC2 

DC3 

Front end 
1 

Front end 
2  

Front end 
3 

Front end 
4  

Energy  
Storage 
 devices 

Server farms 

Energy flow 
Control Policy  
Workload flow 

GLB 

DC

D

D

3 

Front end 
4

2 

Front end 
3

1 

Front end 
2

Front end 
1

Grid 

Wind 

Solar 

Fig. 1. GLB system model

energy mix of the wind and the solar leveraged by GLB is dominated by the wind
power. However, such a result is only true if we assume that the wind and the solar
energy are perfectly predictable. We study such an effect in this paper.

In summary our main contribution is to study a workload management that that co-
ordinately manages the workload, energy buffering, and peak power draw of a cloud
though an analytical model and illustrate its efficiency in presence of erroneous infor-
mation of the workload, and the available renewable energy due to their prediction error.
Our trace-based simulation study show that:

– GLB with and without prediction error yields higher renewable energy utilization
(up to 20% for GLB with zero prediction error and up to 10% for GLB with pre-
diction error) and consequently lower energy cost (up to 60% for GLB with zero
prediction error and up to 50% for GLB with prediction error) compared to a con-
ventional performance oriented load balancing scheme.

– The optimal renewable energy mix of the solar and the wind energy for GLB: (i)
to increase the renewable utilization is achieved when both the wind and the solar
energy contribute in the total renewable energy, (ii) to increase the GLB cost saving
by reducing the impact of prediction error is achieved when there is more solar
energy than wind energy.

– GLB when using forecast data increases the peak power draw from AC up to two
times compared to when it accesses accurate data. These results are pessimistic
since the values are compared to a baseline load balancing scheme which (i) man-
ages local ESDs within data centers to shave peak power draw, and (ii) relies on the
perfect knowledge of the workload and the renewables.

2 GLB System Model and Formal Definition

Our simulation experiments combine analytical models with real traces for workload
and renewable availability, to allow controlled experimentation but provide realistic
findings. We now explain the system model and formulation of online GLB which ex-
tends the model presented in [6] to include energy buffering and to account the elec-
tricity cost per peak power draw from the grid.
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GLB for interactive jobs can be generally modeled as a network flow optimization
model on a bipartite graph (see Fig. 1). End users’ requests arrive from |A| geograph-
ically distributed front-ends (i.e., the sources) where A = {a1 . . .a j . . .a|A|} denotes the
set of front-ends. The geographical front-ends may be network prefixes, or even geo-
graphic groupings (states and cities).

The workload must be distributed among the |S| available data centers in the cloud
(i.e., sink), where S = {si}, i = 1, . . . , |S| denotes the set of available data centers in the
cloud, and each si represents the total number of available servers in data center i. Also
data centers may be provided with an energy storage of limited size, Bsize, to smoothen
renewable as much as possible.

There are many possible energy optimizations that can be developed considering
various combination of factors such as workload split of data centers, power state of
servers, migration of user state data, energy buffering level and performance level of
applications. For simplicity, we only focus on the workload split, a two power state for
servers (active and off), renewable harvesting and energy buffering. The goal is to per-
form workload consolidation over minimal number of servers in the most cost-efficient
data center at a time. Extra servers are assumed to be turned off. GLB performs the
optimization in a time-stepped system where the time is discretized into intervals, slots,
and over a window of time intervals, denoted by T . We consider one hour slots for a
window of a day. At the start we present mathematical modeling of GLB consisting en-
ergy consumption, cost, performance, workload, ESDs, and renewable energy models.

Table 1. Symbols and Definitions

Symbol Definition
t slot index
i index of data centers
j index of areas
S set of data centers
A set of front ends (areas)
T Prediction window length
τ length of slots (in second)
pESD

i,t charging (for a positive value) and
discharging (for a negative value)

pmax,discharge maximum discharging rate
pmax,charge maximum charging rate
pAC power draw from grid
ptotal i, t total power consumption
rtotal

i,t average available green power
ri,t renewable harvesting

Symbol Definition
γi cost per charging/discharging
Bsize

i energy storage capacity
ρi energy loss coefficient
αi,t cost per average power draw from the grid
βi cost per peak power draw from the grid
η carbon footprint cap
fi function of DC’s power consumption
yi,t number of active servers
μi service rate
λ j,t workload arrival rate
d′

i data center delay
d′′

i, j,t delay between areas and
data centers

dre f total reference delay
d′re f service delay

Performance Modeling. We assume that delay experienced by a user, denoted by d
should not exceed a reference delay, denoted by dre f . Total delay, d, consists of the
service delay d′, i.e., data center delay, and the network delay d′′, i.e., the delay between
the front-end and the data center. As a result, the delay can be written as d = d′+ d′′.
We model data center as a M/M/n queuing system and use its result to model service
delay. We assume a time-varying delay between every front-end j and data center i to
model the network delay.
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Workload Modeling. We model workload through its statistical parameters, i.e., aver-
age arrival rate and service time over every slot. Let λ j,t denote the mean arrival rate
from front-end j at time t. To provide realistic estimates, we use real-world traces to
denote λ j,t . We consider four front-ends, corresponding to four time-zones in USA. We
generate the workload of each front-end using NASA workload Internet data center
trace (July and August, 1995) [19], such that it is shifted in time to account for time
zone of each front-end, and scaled proportionally to the number of Internet users in the
corresponding area (see Fig 2).
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Fig. 2. (a)NASA workload [19] scaled and shifted according to time zone for each front end, and
(b) Hourly electricity price data for three locations on May 2nd, 2009 (data source [5])

Energy Consumption Modeling. We assume the total power consumption of the data
center can be obtained by multiplying the total number of active servers (denoted by y)
and power consumption value for each server (denoted by p). To keep the optimization
framework linear, we set p as the power consumption of servers when they are utilized
at their peak utilization.

ESD Modeling. We assume ESDs are associated with physical limitations on their size,
Bsize, measured in Joule, maximum charging discharging rate denoted by pmax,discharge,
and pmax,charge, and energy efficiency (due to conversion) denoted by ρ . To account for
the ESD cost we account the limits of the discharging cycles and state the capital cost
of an ESD in terms of every discharge cycle. We denote such a cost as γ which incurs
every discharging cycle. To model energy storage, we denote the energy storage level
at time t by Bt with initial value B0 and the charge/discharge at time t by pESD

i , where
positive or negative values mean charge or discharge, respectively.

Renewable Energy Modeling. We assume wind and solar energy as sources of renew-
able energy located on-site in a data center. To capture the availability of wind and solar
energy, we use traces of [20]. We use wind speed and the rated power to calculate the
wind power, and Global Horizontal Irradiance (GHI) and the ambient temperature to
calculate the solar power using models described in [9]. The traces of three states for
three days are illustrated in Fig 3. We scale the traces to study the efficiency of GLB
under various configuration of the available renewable power.

GLB Cost Model. We consider an electricity pricing model to account for both the
electricity cost per average energy consumption, αi,t (see Fig. 2(b)), and βi per excess
peak power draw from stipulated power (denoted by p0) over a month. The later is used
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Fig. 3. Data traces showing variation of renewable energy generated at the three data center loca-
tions [20]: (a) Trace for solar energy, and (b) Trace for Wind energy

Minimize ∑|S|
i=1

(
∑T

t=1

(
pAC

i,t ταi,t +bi,t γi

)
+max1≤t≤T (pAC

i,t − p0)
+β ′

i

)
,

subject to:
[ESD const.] ,∀ t, i : ri,t + pAC

i,t = ptotal
i,t + pESD

i,t ,

Bi,t+1 = min(η1(Bi,t +ρ1 pESD
i,t τ),Bmax

i ),

−b1,t pmax,discharge
i ≤ pESD

1,t ,

0 ≤ bi,t ≤ 1,ri,t ≤ rtotal
i,t ,

pESD
i,t ≤ pmax,discharge

i ,

−pESD
i,t ≤ pmax,discharge

1 .

[Capacity const.] ,∀ t, i : ptotal
i,t = piyi,t , yi,t ≤ si.

[Service const.] ,∀ t, j, : ∑|S|
i=1 λi, j,t = λ j,t .

[Queuing const.] ,∀ t, i : yi,t μt ≥ ∑|A|
j=1 λi, j,t .

[Delay const.] ,∀ t, i : d′re f ≤ 1
μ + 1

yt μ−λt
,di, j,t = d′ref

i +d′′
i, j,t , (d

ref −di, j,t )λi, j,t ≥ 0.

Fig. 4. Linear Programming (LP) formulation of GLB problem

to penalize the peak power draw from the utility. Note that we consider a prediction
window of length T for GLB problem that is less than a month. However, to use GLB
to smooth the peak power, we incur a fraction of β , i.e., β ′=Tβ /number of slots in a
month per excess peak power during T, to penalize peak power draw. A solution to
this problem would specify, at each slot, how many servers in each data center should
be assigned to the workload (i.e., yi,t ), what portion of each front-end’s traffic should
be assigned to which data center (i.e., λi, j,t), and how much is average power draw
from AC, (i.e., pAC

i,t ), renewable (i.e., ri,t ), and energy storage (i.e., pESD
i,t , and Bi,t). We

approximate yi,t as a real and solve this problem as a linear programming model. Cost
minimization is subject to the following constraints:

– ESD constraint which asserts the power demand and supply balance, energy level
of ESDs over time which is affected by its charging/discharging (pESD), its energy
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efficiency, ρ , and its self-discharge ratio, η , and battery cost that is incurred per
each discharging cycle using a linear approximation equation.

– Service constraint which asserts that all workload should be assigned to the data
centers.

– Capacity constraint i.e., the number of assigned active servers in a data center
should not exceed the available servers (denoted by si) in that data center. Further,
each data center should supply power required for all of its active servers.

– Queuing stability constraint which asserts the M/M/n stability condition.
– Delay constraint i.e., the traffic of end users should be split among data centers

whose network and service delay is less than the users’ delay requirement.

3 GLB Solution Using Prediction

In our solution, we evaluate the efficiency of the schemes by forecasting workload and
renewable using time-series prediction methods (i.e., SARIMA and moving average)
and the well known Rolling Horizon Control (RHC) technique. Consider a window of
length T , RHC obtains GLB solutions at time t by solving the cost optimization over the
window (t,t +T ), given the GLB solution at time t − 1. The following sections discuss
the workload and the renewable energy prediction (i.e., predicting λi,t , and rtotal

i,t over
the window t + T ) and their results. Note that the electricity price, i.e. α is usually
known a day ahead [11], further electricity price, workload, and solar energy have daily
variations. For that we choose the prediction window of a day (24 slots), and assume
the actual electricity price is given for the entire window.

3.1 Workload Prediction

We analyze NASA workload using different time series based prediction techniques and
observe that Seasonal ARIMA (Auto Regressive Integrated Moving Average) captures
the seasonal behavior of workload (see Fig. 2) with reasonable accuracy (compared
to non-seasonal schemes). We use the workload data for the month of July of NASA
trace for learning the SARIMA model, and use the trace of August in our numerical
analysis. For every time slot, using workload information known up to that time slot,
we forecast for the next 24 hours using the prediction model. For time slot of 1 hour we
observe prediction error of 25.8% that increases up to 42.6% for higher lags as shown
in Fig. 5(a).

3.2 Renewable Power Prediction

We use sample traces from the solar and wind energy sites in Georgia (GA), Texas (TX)
and California (CA) for the months of February and March [20].

3.2.1 Solar Energy Prediction
The variation in solar power shows a daily seasonal behavior as seen in Fig. 3(a). This
pattern is captured by SARIMA. For learning SARIMA model we use one month trace
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Fig. 5. Prediction error plots for different lags as obtained for 24 hours of forecast window (a)
Workload, (b) Solar power, and (c) Wind power

of February. The model is fitted by changing the parameters to minimize the error ob-
served in the residual plots and the ACF and PACF (Auto Correlation and Partial Auto
Correlation) plots. Predicted solar energy for one week is shown in Fig. 3. The error for
different lags is almost constant starting with 23% for TX, and up to 25% for GA. The
error obtained for different lags for prediction is shown in Fig. 5(b).

3.2.2 Wind Energy Prediction
The wind power shows a highly varying nature which depends on different factors, such
as temperature, pressure, wind directions(see Fig. 3(b)). Hence prediction of wind using
seasonal time series prediction is not so effective. We use the moving average technique
to predict the wind energy. We observe that the average error for a given forecast win-
dow increases rapidly with increasing the prediction window length, starting with 30%
for window of length one (hour) and increasing up to 80% for a window of length 24
(a day). Comparing Figs. 5(b) and (c), demonstrating the prediction error of solar and
wind energy for different lags, we observe that the wind energy incurs much higher
prediction error for lags greater than one than that of the solar energy.

4 Simulation Study

4.1 Data Center Setup

We simulate a cloud consisting of three data centers as depicted in Fig. 1. The electric-
ity pricing and physical characteristics, such as server power profiles, battery of data
centers are set according to realistic data. To this end, we assume data centers are lo-
cated at the following three locations: Atlanta, GA; Houston, TX; and Mountain View,
CA, namely DC1, DC2 and DC3, respectively. These locations correspond to the loca-
tion of three major Google data centers. We used the historical electricity prices for the
above locations [5] (see Fig. 2(b)) as example in our setup. We perform experiments for
both homogeneous and heterogeneous setting of data centers in terms of their servers’
power efficiency as depicted in Table. 2. We assume each server can handle upto 2000
requests and that there is no network delay. The data sheet of Fload Lead Acidic (FLA)
batteries used in data centers is used for simulation study (see Table 3). We also assume
each data center have 500 servers, and the workload intensity in our experiment is such
that 600 active servers are needed on average. Our simulation environment is developed
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Table 2. Data center characteristics

DC Elec. price model peak power(W)

DC1 Mountain View, CA. 395
DC2 Houston, TX 300
DC3 Atlanta, GA 450

Table 3. Specification of ESD parameters

Parameters FLA

Capacity (KW) 115
Cost per discharge ($) 0.65
Cycle life of one cell (cycles) 1200
Discharge rate (W) 5387.5
Discharge-to-charge ratio 10
Efficiency (%) 80
Number of cells 53

using MATLAB 2009. We use GNU Linear Programming Kit (GLPK) to solve GLB
(i.e., optimization problem in Fig. 4).

4.2 Experiments Performed

We design Performance-oriented Load Balancing (PLB) as a baseline scheme, which
distributes workload equally across all data centers. For fair comparison, we assume
PLB utilizes ESDs and determines number of active servers to optimize cost within
each data center independently (i.e., solving problem in Fig. 4 for each data center). To
evaluate the impact of prediction error on the efficiency of GLB we compare GLB when
using Perfect Prediction (GLB+PP) with GLB when using our prediction technique
(GLB+P). Note that GLB+PP accesses actual data over every prediction window of T .
Similarly, to characterize the maximum impact of the prediction error we assume that
PLB accesses the actual data over every prediction window to perform energy buffering
management in each individual data center, in reality PLB also needs to predict the
data, though. We evaluate the above schemes in terms of energy and ESD cost (i.e. the
two first items in the objective function of Eq. 4), excess peak power draw from the grid,
total energy consumption and renewable utilization with various cloud configuration
(e.g., ESD size, and available renewable energy). To calculates peak power draw over
a month, the stipulated power is set to 80KW, (p0 = 80kW ) a value that is 60% more
than average power consumption of our simulated data center.

Available Renewable Energy. We set the original renewable (wind+solar) traces such
that the solar and the wind power contribute equally in the total renewable energy of
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Fig. 6. Efficiency of GLB compared to PLB versus renewable power increase; (a) energy and
ESD cost saving, (b) Peak power draw decrease, and (c) Total energy consumption decrease
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data centers. Further, the renewable energy contributes 10% of the cloud total energy
consumption. Then we scale the renewable traces from 1-16 as depicted in Fig. 6 to
evaluate the efficiency of GLB with increasing availability of the renewable energy. We
also set the ESD capacity to 12MJ for each data center, a value that is equivalent to
the energy consumption of data centers for one minute when operating at their peak.
Finally, we use a heterogeneous setting of data centers (see Table 2).

Fig. 6(a) shows that both GLB+PP and GLB+P outperform PLB in terms of energy
and ESD cost. However, prediction error negatively affects the GLB cost saving, caus-
ing a decrease in cost saving from 60% for GLB+PP, down to 45% for GLB+P. Further,
while the cost saving of GLB+PP increases with increase in the available renewable
energy, this is not the case for GLB+P.
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Fig. 7. (a) Renewable energy percentage of total energy versus increase in available renewable
energy, and (b) Renewable energy percentage of total energy versus increase in ESD size

The results of Fig. 6(b) imply that the effect of prediction error is huge for peak
power draw, as GLB+P increases the peak power draw from the grid up to 2 times
compared to PLB that accesses a perfect prediction scheme. In reality, both PLB and
GLB need to predict data. GLB+PP, however, significantly decreases the peak power
compared to PLB. Particularly, it decreases the peak power (compared to PLB) from
10% up to 40% with increasing renewable energy.

Fig. 6(c), shows that both GLB+PP and GLB+P decrease the total energy consump-
tion of the cloud compared to PLB, that is due to shifting workload to DC2 which has
lesser peak power per server (see Table. 2). The figure shows that GLB+P has higher
energy consumption saving than that of GLB+PP, this is because GLB+PP does not
highly utilize DC2 to decrease its peak power. The energy saving decreases with in-
creasing the available renewable, since GLB schemes shift the workload towards data
centers that have more available renewable energy instead of shifting the workload to
data centers that have more power efficient servers.

Finally, Fig. 7 (a) shows that both GLB+PP and GLB+P increase the utilization of
the renewable energy compared to PLB.

ESD Capacity. In this experiment we scale the renewable power by the factor of eight,
use heterogeneous setting of data centers (see Table 2), and vary ESD capacity from 0
up to 1500MJ, where 1500MJ is equivalent to the energy consumption of data centers
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for two hours when operating at their peak. Fig. 8(a) shows that both GLB schemes,
i.e., with and without prediction error, induce lesser cost than PLB for zero size ESD
capacity. The cost saving of GLB+P decreases with increasing ESD size, since PLB
can leverage ESD to utilize low-utility rate electricity. This implies that by decreasing
the opportunities for GLB to leverage spatio-temporal variation of renewable and low-
cost electricity compared to workload management within data centers (in this case due
to deploying large scale ESD in each data center), the impact of prediction error on
downgrading the performance of GLB becomes higher.

Similar to Fig. 6(b), Fig. 8(b) shows that GLB+P increases the peak power up to 2
times compared to PLB. This is because PLB by using accurate data can shave the peak
power using local ESD. However, the same figure shows that GLB+PP can decrease
the peak power up to almost two times depending on the ESD size, compared to PLB.
This result shows the value of GLB in shaving peak power draw from the grid when it
uses an accurate prediction technique. Finally, Fig. 7 (b) shows that both GLB+PP and
GLB+P increase the utilization of the renewable energy compared to PLB. However,
the renewable utilization of GLB+PP increases with increasing ESD size, that is not the
case for GLB+P.
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Fig. 8. Efficiency of GLB compared to PLB versus ESD capacity increase; (a) energy and ESD
cost saving, (b) Peak power decrease, and (c) Total energy consumption decrease
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Fig. 9. Efficiency of GLB compared to PLB versus various mix of wind and solar; (a) Energy and
ESD cost saving, (b) Peak power decrease, and (c) Total energy consumption decrease

Wind and Solar Energy Mix. In this experiment, we fix the renewable scale to the
factor of 8, ESD capacity to 360MJ (an energy storage for each data center to work for
30 minutes with server working at peak utilization), and use a heterogeneous setting of
data centers. We vary the contribution of the wind power from 100% down to 0%.

The results shown in Fig. 9 indicate that the cost saving and energy saving of GLB
schemes increase with increasing solar energy contribution. This means that PLB can
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not highly utilize excess solar energy with a relative high ESD size, since the solar
energy is only available during the days. However GLB schemes, can leverage the
spatio-temporal variation of the available renewable energy and efficiently utilize it.
Interestingly, the cost saving of GLB+P increases with increasing the solar energy con-
tribution, that is partly due to less prediction error of the solar energy compared to the
wind energy (compare Fig. 5(b) and (c)). Finally, Fig. 10 (a) shows that the highest uti-
lization of renewable for all schemes is achieved when there is a mix of both the wind
and the solar (70-50% wind power), since with this mix, renewable power is almost
available at all the time.
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Fig. 10. (a) Renewable energy percentage of total energy consumption versus various mix of
wind and solar energy, and (b) Renewable energy percentage of total energy for homogeneous
DCs versus increase in available renewable

1 2 4 8 160

20

40

Renewable power scale

C
os

t (
A

C
 e

ne
rg

y
+E

S
D

) s
av

in
g 

(%
)

 

 

GLB+PP GLB+P

(a)

1 2 4 8 16

-100
50
0

50
100

Renewable power scale

Pe
ak

 p
ow

er
 d

ec
re

as
e 

(%
)

 

 

GLB+PP GLB+P

(b)

1 2 4 8 16

0

0.05

0.1

Renewable power scale

En
er

gy
 C

on
su

m
pt

io
n

 s
av

in
g 

(%
)  

   
  

 

 

GLB+PP GLB+P

(c)

Fig. 11. Efficiency of GLB compared to PLB for homogeneous setting of data centers (a) energy
and ESD cost saving, (b) Peak power draw decrease, and (c) Total energy consumption decrease

Homogeneous Data Centers. We repeat the first experiment for the homogeneous set-
ting of data centers where all data center consume 300W at peak per each server. Fig. 11
shows that for the homogeneous setting of data centers, GLB schemes can significantly
save cost due to leveraging electricity price variation and available renewable across
the cloud. Peak power draw plot (i.e., Fig.11(b)) has the same trend as that of (i.e.,
Fig.6(b)). Fig.11(c) shows that GLB schemes slightly (around 0.0005%) increase the
energy consumption compared to PLB, that is because the GLB schemes increase ESD
utilization and consequently its energy loss. Comparing Fig. 10(b), with Fig. 7(a) indi-
cates that the renewable utilization trend of GLB+PP and PLB is the same. However,
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GLB+P does not always incur higher renewable utilization than that of PLB, confirm-
ing the previous results that when there is lower opportunity to leverage power and cost
efficiency (in this case homogeneous setup of data centers), the impact of prediction
error in decreasing the performance of GLB worsens.

4.3 Discussion

In summary, the above results show that, with the presence of erroneous information, the
GLB scheme is still more effective in maximizing the utilization of renewable energy
compared to the conventional performance oriented load balancing scheme (i.e., PLB).
Particularly, it leverages spatio-temporal variation of power efficiency, power cost, and
renewable in reducing energy cost, and increasing the renewable utilization without
requiring a large-scale energy storage. However, pessimistically GLB with prediction
error (GLB+P) increases the peak power drawn from AC compared to PLB with zero
prediction error. Since peak power cost may be significant in some data centers, these
results necessitate the need for developing: (i) online algorithms that can shave the
peak power without having knowledge about the future, and (ii) prediction techniques
to predict workload and renewable energy with very low prediction error.

The above results, however, heavily depend on the prediction accuracy. Although we
do not claim superior performance of SARIMA over the other prediction techniques, it
is a fairly stable and frequently used in the literature, particularly, for Internet workload
prediction [7,18,21]. Further, we observe a prediction error that is very similar to what
is reported by the previous works (for lag one prediction) [18,22]. The prediction of re-
newable energy particularly for small window length and relatively short time intervals
(e.g., one hour) can be improved using weather forecast data, however such approaches
tend to be inaccurate at medium time scales (e.g., three hours to one week) [23].

5 Related Work

Similar to our results, related works highlight that global workload management can
significantly reduce the electricity bill [5, 6, 8, 11, 12], and can potentially reduce the
carbon footprint of data centers without requiring large-scale ESDs [7, 9, 10, 24, 25].
However, the focus of the above work are either demonstrating the efficiency of such a
scheme using numerical study, or developing efficient algorithms. Particularly, Qureshi
et al perform numerical analysis to show the efficiency of GLB on reducing the elec-
tricity price [11]. Le et al. demonstrate the carbon footprint reduction of the cloud using
global workload management [7]. Akoush et al. and Stewart et al. show that workload
management across data centers can increase the utilization of renewable [24, 25].

The algorithmic issues of GLB are studied in some recent literatures [5, 6, 8]. These
literature assume a proactive and a time-stepped system for the scheme, where the work-
load intensity is assumed to be predicted ahead of time. However, the impact of the pre-
diction error is not sufficiently studied. As such [18] proposes a cooling and renewable
aware workload management within data centers. The authors use a regression based
predictor and k-nearest classification to predict workload and solar power, respectively.
Similar to our result, they report an average error of 20% for both workload and solar
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power (for lag one). The authors show that the prediction error of data has negligible
effect on the optimality of the solution. However, we show that when using a large
prediction window, the impact of prediction error on shaving peak power is huge.

GLB when integrated with energy buffering management [14], workload migration
overhead [6, 12], or server switching cost [13] can only be optimally solved using an
offline algorithm. Accordingly, some online algorithms with guaranteed competitive ra-
tio are proposed [12–14]. Particularly, Lin et al., derive a competitive ratio (i.e., online
optimal solution over the offline optimal solution) and prove that the competitive ra-
tio decreases with increasing the prediction window length. However, our results show
that the prediction error increases with increasing the prediction window length (see
Fig. 5). [14] proposes an online algorithm to utilize ESDs in order to leverage temporal
variation of energy cost in data centers. However, more recent work propose to shave
peak power draw using ESDs, since it is a big contributor of total electricity cost in data
centers [15,16]. Shaving peak power draw from grid requires an online workload man-
agement algorithm which uses forecast data for a relatively long window length [17].
Our results show that GLB is very effective in shaving peak power draw when it uses
accurate data. However, erroneous information adversely affects its performance.

6 Conclusion

This paper proposed global workload management (GLB) integrated with energy buffer-
ing to increase renewable utilization, reduce average energy and peak power cost across
data centers. The paper studied online GLB solution using SARIMA technique to pre-
dict the workload and the renewable energy over a window (i.e., 24 hours). The trace-
based simulation study, shows that GLB with and without prediction error (i.e., GLB+P
and GLB+PP) outperform over the performance oriented-load balancing, PLB, in in-
creasing renewable energy utilization and reducing energy cost. The results are pes-
simistic since PLB is assumed to access accurate data as opposed to GLB+P. Results
also highlight that GLB needs an accurate predictor to enable shaving peak power draw
from the grid. Such prediction accuracy is not achieved using SARIMA based predic-
tion, necessitating future work to design accurate prediction techniques.
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Abstract. Data centres are powerful facilities which aim at hosting ICT 
services. They have huge needs in term of power supply; furthermore the 
current trend is to prioritize the utilization of renewable energies over brown 
energies. Renewable energies tend to be very variable in time (e.g. solar 
energy), and thus renewable energy aware algorithms tries to schedule the 
applications running in the data centres accordingly. However, one of the main 
problems is that most of the time very little information is known about the 
applications running in data centres. More specifically, we need to have more 
information about the current and planned workload of an application, and the 
tolerance of that application to have its workload rescheduled. In this paper, we 
will first survey the problem of understanding, building information about and 
finally controlling the load generated by applications. Secondly we will propose 
hints of solutions for that problem. 

Keywords: Data Centre, Renewable Energy, Application Profile, Resource 
Management, Job Scheduling. 

1 Introduction 

In the last decade, energy-awareness has been of great concern for researchers. 
Indeed, the prices for electricity are constantly getting higher and carbon emissions to 
the environment are increasing every year1. Users try to switch off the lights or put the 
ICT devices in sleep mode when not needed. This straightforward approach works 
fine for domestic appliances but more complicated ICT facilities like data centres 
(DCs) require, however, more sophisticated approaches to achieve the energy savings 
while preserving the performance. Data centres are large facilities which purpose is to 
host information processing and telecommunication services for scientific and/or 
business applications. Until recently, research on data centres has been focused only 
on improving metrics like performance, reliability, and availability. However, due to 
the rise in service demands together with energy costs, the energy efficiency has now 
been added as a new key metric for data centres. Energy-aware strategies are 
beginning to be integrated inside the data centre resource manager. In practice, a 
                                                           
1 Green Grid Consortium, http://www.thegreengrid.org 
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Virtual Machine (VM) placement algorithm considers the data centre and the 
workload characteristics to place the VMs among the servers in the most efficient 
way, considering performance and energy consumption. This placement must be done 
respecting the requirements of the Service Level Agreement (SLA) existing between 
the data centre and its clients.  

In parallel to reducing the overall energy consumption, the current trend is to foster 
the use of renewable energies. Renewable energies have the problem to be very 
variable and time-dependent: for example solar power is available only during the 
day, and is subject to variations due to the meteorological conditions. Thus, renewable 
energy aware algorithms in data centres must try to shift the workload of running 
applications in time, to match it with the availability (or forecasted availability) of 
renewable energy. This is however difficult because generally very little information 
is known about a running application. It is thus necessary to augment this “meta” 
knowledge about applications running in data centres, to allow better match-making 
between green energy availability and the requirement of the applications in term of 
energy. Secondly, having provided this meta-data, the applications must provide a 
way for the data centre management framework to control, at least partially, the 
workload to be run. In this paper we survey the problem of understanding and 
controlling the workload of applications, with the final objective to allow energy 
aware algorithms to perform better energy savings.  

In the remainder of this paper, we will first perform a survey of the related works 
in section 2 and define the problem that need to be solved in Section 3. We will then 
propose a possible solution architecture and technologies in Section 4 and finally 
conclude in Section 5. 

2 State of the Art 

The problem described is transversal: it is spanning several domains such as energy 
aware algorithms, data centre management systems, application profiling and static 
property derivation from applications. We review the related works in two sub-
sections: the optimization algorithms frequently used in Data Centres and how they 
are embedded in data centre management frameworks in a first part, and then we will 
survey existing techniques on automatic program property derivation, and specifically 
of the application profile. 

2.1 Energy Aware Optimization Algorithms in DC Management Frameworks 

Virtualization was and still is the main feature for saving energy in data centres. It 
allows to right-size the largest culprits of energy over-consumption which are 
underutilized servers. In typical environments these machines sit idle almost all of the 
time and consume a significant amount of energy that is not needed in practice to 
satisfy the requirements of the applications. In a virtualized data centre, applications 
are embedded into virtual machines (VMs) that are consolidated on a reduced amount 
to servers to increase their utilization then lower the overall energy utilization. In 
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addition, live migration allows re-arranging the VMs placement without significant 
disruption to the underlying services, to be able to react to fluctuating resources 
requirements. There is an abundant literature on energy aware algorithms for data 
centres. To lower the energy consumption while fulfilling performance requirements, 
the authors of [1] propose a flexible and energy-aware framework for the 
(re)allocation of virtual machines (VMs) in a data centre. The framework, being 
independent from the data centre management system, computes and enacts an energy 
aware placement of virtual machines based on constraints expressed through service 
level agreements (SLA). This problem is known to be NP-hard [2] with a large 
solution space. The framework’s flexibility is achieved by decoupling the expressed 
constraints from the algorithms using the Constraint Programming paradigm and 
programming language. The problem of consolidating and rearranging the allocation 
of virtual machines in a data centre in an energy efficient manner is described in [3]. 
In the heuristic proposed in [3], the algorithm computes, for each VM to be moved, 
the appropriate hosting server that leads to minimizing the current overall power 
consumption of a data centre. This is similar to the First Fit Decreasing (FFD) 
algorithm which has been used in previous works [4][5], with the addition of power-
awareness for choosing the server. The limitation of these frameworks comes from 
the fact that it has only a macroscopic view of the “size” of the workloads, which is 
often mapped to the reserved size of the VMs. For example, Amazon EC3 defines 
only a few VM size (i.e. M1 small, M1 medium...). This prevents a fine consolidation 
of the VMs, as resources have to be reserved for each instance. 

2.2 Advanced Distributed Computing Paradigms 

Hadoop2 is a very popular open source solution for distributing workload across 
multiple nodes, implementing the MapReduce [6] paradigm. In this paradigm, a 
computation over a set of data is broken into a “map” function and a “reduce” 
function. The map function can be performed simultaneously and independently over 
different sub-sets of data. This independence of the computations allows for massive 
distribution of the computation on many computers. In a second step, the result of the 
map functions is collected and the final result is computed by the reduce function. 
GreenHadoop [7] uses Hadoop as a data-processing framework, and makes prediction 
about the availability of solar power. These predictions are used to schedule time-
bound computations in order to maximize the green energy consumption of the data 
centre. However, Hadoop and the solutions based on it have an inherent limitation: 
the computations must be expressed in term of a map and a reduce functions, which is 
a great constraint. This is a very restrictive programming paradigm and furthermore 
not every computation can be expressed in such a way. GreenSlot [8] tries to schedule 
jobs in Supercomputing data centres in order to maximize the use of renewable 
energy. It uses historical data and weather forecasts to determine the best moment of 
day to run a particular job. However, GreenHadoop and GreenSlot suffer from the 
fact that, in both case, the user have to describe the workload/job characteristics 

                                                           
2 Hadoop: http://hadoop.apache.org/ 
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(notably its time-bound constraints). This information is at best very coarse grained, 
and sometime not available at all. 

Still in the domain of distributed computing, the newly introduced serializable 
delimited continuations of Scala may allow to overcome the limitations of 
MapReduce. Scala is a general purpose programming language designed to express 
common programming patterns in a concise, elegant, and type-safe way. It smoothly 
integrates features of object-oriented and functional languages. Swarm3 is a 
framework for Scala allowing the creation of applications which can scale 
transparently through the continuation-based approach mentioned before. Like Map-
Reduce, Swarm follows the maxim "move the computation, not the data". Swarm 
takes the concept much further, allowing it to be applied to almost any computation, 
not just those that can be broken down into map and reduce operations. However, 
Swarm is still at a very early stage. A “GreenSwarm”, taking into account renewable 
energy availability in a way akin to that of GreenHadoop, would undoubtedly be an 
interesting development for this technology. In the same line of thinking, Cloud 
Haskell [9] is a domain-specific language (DSL) for distributed computing developed 
in Haskell (a purely functional general purpose language). It also uses serialized 
function closures for transmitting computations across the network. 

As already mentioned before, Amazon Elastic Compute Cloud (EC2) is defining 
several sizes of VMs that their clients can pick up. However this level of granularity 
does not allow a fine consolidation of the VMs, and does not give a lot of information 
on the profile of the applications running, and specifically their planned variation of 
load in time. The building of an application (or workload) profile is addressed briefly 
in [10]. Historical values are used to consolidate a profile for the workload. However, 
no standard is described allowing the transmission and reuse of this profile. It would 
be of course very interesting to build this application profile automatically or semi-
automatically, for example by analysing the source code of the application. Property 
derivation from programs and property proving is very close to theorem checking in 
mathematics: there is a one to one correspondence between a program and a proof 
(called the Curry-Howard correspondence).  In [11], the authors implement a tool 
called HipSpec able to automatically derive and prove properties of functional 
programs.  

3 The Problem: How to Understand the Load of Applications? 

A great challenge of using efficiently renewable energies in data centres is to be able 
to schedule correctly the applications workload. Indeed, as shown on Figure 1, the 
availability of renewable energy can have a great variation in time, with comparison 
to brown energies. To increase the use of renewable energies with respect to brown 
energies, it is necessary to shift in time the workload of some applications in the data 
centre. This shows the importance of being able to know the workload an application 
will have to run at a certain point of time, to understand under what conditions it can 
be shifted or delayed, and in fine to schedule it correctly. 

 
                                                           
3 Swarm: http://www.scala-lang.org/node/3485 
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Fig. 1. Matching the application workload with the availability of the renewable energies 

Yet, currently most of the applications running in data centres are unaware of their 
self workload: they are unable to predict how much computing power they will 
require and when. Furthermore, the time scale at which computational workload in 
data centres vary can be very different from the time scale at which renewable energy 
may vary. For example, renewable energies may have seasonal variations, like solar 
energy availability, while load in data centres can have short timed variations, like 
hourly or daily variations.  

It is of crucial importance for many ICT domains to be able to know what an 
algorithm contained in an application will need in term of computing resources, and 
yet there are little developments in this field. In data centres, the knowledge of the 
requirements of an application in terms of resources is still “meta-knowledge”, i.e. the 
knowledge of the data centre operators. It is the role of the data centre operator to 
provision sufficient resources for an application, and this provision is often done in a 
static way. For example, in data centres, database indexing maintenance operations 
are usually performed at night, to minimize the impact on the overall performance. 
However, in a data centre using primarily solar power, it would be interesting to shift 
this task during the lunch break, when the sun is shining. The knowledge that this 
particular task, “database indexing”, can cope with a 12 hour shift, and that it takes 
approximately half an hour, belongs to the operator’s knowledge. It is very coarse 
grained and subjective knowledge.  

The optimization algorithms used in data centres typically needs to know the 
profile of applications in order to minimize a utility function (for example the energy 
consumption). A heuristic widely used for data centre VM management is bin-
repacking, and among meta-heuristics we can count Constraint Programming, Genetic 
Algorithm or Simulated Annealing. For example a multi-dimensional bin-repacking 
will help consolidate the VMs on a part of the servers and permit switching off 
another part of the servers, thus saving energy. However this algorithm needs to know 
the profile of the applications in term of memory consumption and CPU demand in 
order to map those parameters to the abstract dimensions of the objects to be packed.  

This advocate the need for: 
1) a standardized format and protocol for applications to advertise in real-

time their own needs in term of resources, including possible performance 
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trade-offs and uncertainty ranges (this format is part of the so-called 
“application profile”), 

2) a library and programming methodology to ease the extraction of 
application profiles from the application source code itself, at run-time or 
compile-time, 

3) a data centre management framework and algorithms able to read the 
application profiles and use them to consolidate and schedule the 
applications on the servers in the appropriate way, in order to minimize a 
given utility function, 

4) a library and programming methodology to allow an external process to 
control the application load to some extent. 

 
The problem of deriving an application profile is very accurate in many load 

optimization and prediction problems. More generally, automatic derivation of 
program macroscopic properties is a topic that has a great number of applications in 
the ICT field, especially with the emergence of Cloud computing. For example, a 
smart phone application might want to “off-load” part of its workload to the Cloud, or 
on the contrary, a service running in the Cloud might be relocated in the local device 
for performance reasons. These application or service migrations must be controlled 
by a decision framework, which must know the exact applications profile in order to 
take the right migrations decisions.  

We need to research and develop the algorithms, methodologies and tools to make 
applications “self aware” to a certain extent. In practice very seldom applications are 
able to know “what” workload they have to perform and when it needs to be done. 
They just “do it”, in some sense. There is no internal representation of this workload, 
or when there is one (like in Hadoop or some database management framework), it is 
not general enough and standardized. 

4 A Possible Architecture 

We present an architecture for the communication between the different actors of a 
data centre producing and using the application profile. 

In Figure 2, the DC authority can force the DC management framework to respect 
some energy consumption limitations and give possible trade-offs in term of 
performance. At the same time the renewable energy producer will give details on the 
energy mix available, and the forecasts for the next days. The DC management 
framework will then collect the application profiles from the running applications. 
The DC management framework will ask to the applications, according to the 
information contained in these profiles, to respect some load conditions and time 
restrictions in order to globally match the workload of the data centre with current and 
forecasted renewable energy availability. Additionally, at a more macroscopic level 
the traditional VM and server management can happen: VMs can be migrated in order 
to consolidate them on a part of the servers and the freed off servers can be switched 
off to save energy. 
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Fig. 2. Architecture overview 

4.1 Representing the Application Workload 

Applications running on desktop operating systems (for ex. Linux, Windows or Mac 
OS) typically communicate very few to no information to their host operating system 
when launched. For example, a multi-threaded application will ask the creation of its 
threads to the operating system, thus letting it know the number of threads. The idea is 
to increase this amount of information in the case of applications running in data 
centres, to let the operating system and subsequently the data centre management 
framework build an appropriate and up to date application profile. Based on this 
profile, the load balancer and scheduling system of the data centre will be able to 
make better optimizations of the workload. 

The granularity of the virtualization in a Cloud data centre is at the level of the 
Operating System: the Virtual Machines are containing one OS, and this is what is 
benchmarked and possibly moved. This level is still macroscopic: usually a server 
contains around 10 VMs. However, the hosted OS may contain many applications. 
Better energy savings could possibly be achieved if this level of granularity was 
lower. We also need a way to let the application externalize some of its workload. A 
bit like in Hadoop, the application could let to an external process the task to 
distribute and run a part of its workload. Recent advances in parallel processing may 
let us perform efficient workload allocation (see Section 2). If the application embeds 
its own scheduler and doesn’t externalize its workload, it should nevertheless be able 
to receive orders or advises on the best moments to run its workload from the DC 
management framework. In that respect, currently, the applications offer very little 
cooperation with the operating system. In multi-task systems, the application will let 
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the OS pre-empt it. But it will not let the OS know if a computationally intensive 
activity needs to be done mandatorily in the next hour, for example. 

The applications need to be more “self-aware”: they need to have an internal 
representation of their own processes and workload. In other terms, they need to know 
“what” they have to do, and not just “how” to do it. As already mentioned before, 
applications are usually working in a “procedural” way: they describe a step by step 
method to solve a problem, but do not have a more macroscopic representation of this 
problem. The idea is to include in the application profile what the applications need to 
do and when, to a certain extend and with a certain granularity. For example, in the 
case of the application indexing a database, the application needs to “know” that this 
process can be delayed, and needs to transmit that to the DC Management System. 

4.2 Extracting the Application Profiles 

To extract automatically the application profile, a possibility is to perform static 
analysis of the application source code itself in order to infer the complexity of the 
algorithms. This is in the general case impossible to perform mechanically, because of 
theoretical limitations (namely the indecidability of the halting problem [12]). 
However, the general idea would be to provide a library to allow the programmer to 
“instrument” the code with meta-data about the various algorithms complexity. This 
meta-data would be composable, in the same way that simple algorithms may be 
composed to build a more complex algorithm. This would allow retrieving, at a higher 
level, the complexity of algorithms and giving hints on the maximum and average 
resources needed by the application. This information will be collected by the 
management framework of the data centre and allow fine-grained allocation and 
optimization, using the optimization algorithms mentioned before. 

A second way one could establish dynamic properties of programs, is to use a 
theorem prover. With such a tool, a programmer could bundle his program with the 
proof that certain properties such as a maximum load hold true. Proving properties of 
programs is much easier in functional programming because it is semantically simpler 
than imperative programming and thus, easier to reason about. 

5 Conclusion 

In this paper we presented the problem that faces the algorithms aiming at fostering a 
better utilization of renewable energy in data centres: the lack of information about 
the running applications at a macroscopic level. We need a way to automatically or 
semi-automatically derive an application profile, to collect it and exploit it at data 
centre level, with the aim to allow renewable energy algorithms to perform better. 
Indeed those application profiles are necessary as an input for optimization methods 
typically used in data centres. The information contained in the application profile 
will be used to compute the allocation and scheduling of the applications. We 
presented a possible architecture and technologies able to create this application 
profile, to transmit it to the data centre management framework, and finally to control 
accordingly the applications workload in order to better utilize renewable energies. 
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Abstract. Due to the lack of appropriate grid communication infras-
tructure, many energy providers can only measure a very limited subset
of their PV plants and therefore have only limited knowledge of the power
flow inside their grid. Existing approaches to estimate the total amount
of PV energy produced at present time (“nowcasting”) require external
data such as sun radiation or temperature that are often not available on-
line. Using approximate computational algebra, we construct polynomial
models to derive grid-specific formulae estimating the PV power provi-
sioning without the need of additional data. We evaluate our approach
based on real data from a German energy provider and demonstrate the
accuracy of the derived models. Besides nowcasting, two additional ap-
plication scenarios, snapshot provisioning and simulation of power flow,
are discussed.

1 Introduction

Recently, many European countries integrate huge amounts of renewable based
power sources into the grid. They intend to reduce dependencies on fossil sources
like coal, oil, and nuclear resources. Some countries like Germany, Italy, and Bel-
gium even aim at completely eliminating these dependencies on nuclear power.
In many other European countries political ambitions are similar, since many
countries now bolster the integration and utilization of renewables and debate
nuclear power phase-outs.

Mainly driven by political objectives, the amount of renewable energy sources
that are fed into the power grid heavily increased in Germany lately. The Ger-
man government advocates the integration of renewable based power generation
in favor of reducing dependencies on nuclear power sources. In 2011, the German
government announced their objective to shut down all German nuclear power
stations by 2022. For this reason, large arrays of wind turbines and solar panels
have been installed. In addition to that, the German government assured mon-
etary incentives to citizens that install photo-voltaic panels on their residence’s
roof. Most of these private power plants are rather small in size and only pro-
duce a limited amount of power. However, many citizens decided to participate

S. Klingert et al. (Eds.): E2DC 2013, LNCS 8343, pp. 25–39, 2014.
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in the initiative due to monetary incentives granted. So in total, across Germany,
photo-voltaic power production rapidly increased (and is still continuously in-
creasing) within the power grid.

Traditionally, the power grid was not intended to cope with the integration of
large amounts of highly fluctuating energy sources. Therefore, the main challenge
with power plants that are based on renewables like wind or solar radiation is
that power production is highly fluctuating and, in general, hard to predict.
Fluctuations, however, directly influence and destabilize the frequency in the
grid, if the energy provider can not cope with them in terms of adapting its
other power plants in-time or (with respect to demand/response mechanisms)
negotiating with flexible customers. In this case, the energy provider has to
fall back to (negative or positive) balancing reserve power which comes with
very high costs. For these reasons, precise prediction of energy that is expected
to be available in the (near) future is essential for the energy provider due to
economical and ecological reasons.

Photo-voltaic power generation is drastically increasing in Germany. During
the year 2010, approximately 7 GWpeak of solar power plants were installed,
which, at that time, rapidly increased the total available capacity by 70%. Power
generated by these new photo-voltaic power plants was often underestimated
by the distribution system operators (DSOs). In Germany, this became most
conspicuous in September 2010, where an unexpected imbalance of +7 GW
occurred for several hours. The German DSOs were not able to predict this
rapidly increasing amount of positive imbalance, as they underestimated the
impact of the newly installed panels. Thus, adaption of their power plants could
not be performed in time. Since overproduction exceeded all of the available
negative balancing reserve power (4300 MW), a huge amount (∼2800 MW) had
to be paid to other countries. This resulted in high costs and almost in a break
down of the grid [1] [2].

The reason for these kinds of underestimations lies in the current infrastruc-
ture of the grid. Energy providers just have started to upgrade grid infrastructure.
This includes, but is not limited to additional power lines and communication
channels. In almost every part of Germany (and also in many other European
countries), smart metering devices have not yet been deployed due to excessive
additional expenses and efforts. This also means that most of the photo-voltaic
panels can not be measured directly. In fact, approximately 75% of a total of
900.000 photo-voltaic power plants can not be measured directly due to technical
limitations [2].

Therefore, in the age of renewable energy sources, energy providers have to
monitor grid stability, e.g., by estimating the amount of power provided by the
photo-voltaic plants that can not be measured directly. Being able to obtain more
accurate information, energy providers can react more precisely to discrepancies,
which leads to an increase in overall, trans-regional grid stability.

In this paper, we introduce a novel nowcasting methodology to estimate the
total available photo-voltaic power by mathematically analyzing correlations of
power provisioning characteristics. In contrast to others, our approach does not
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depend on external information like solar radiation or additional information
on the type and alignment of panels. Therefore, our approach is expected to
be more accurate, especially in regional contexts. Furthermore, we are confident
that accuracy of existing forecasting algorithms can be significantly improved
by also taking into account the hidden interdependencies of PV plants. This
is especially interesting for demand/response mechanisms that are subject of
current research: Instead of just tailoring energy provisioning to the demand,
demand/response mechanisms are currently also integrated into grid infrastruc-
tures: In case of power shortages/surplus, energy demand of flexible customers
can be reduced by notifying them to adapt power consumption accordingly. Up
to now, demand/response mechanisms have been deployed for major customers
like big factories only, since they show the most potential of power adaption
capabilities.

However, current research also focuses on integrating mid-size consumers like
data centres into the grid (or even small customers like private homes)[3]1. Since
data centres are expected to be able to adapt power demand much more fine-
grained than factories, more accurate information of power surplus/shortage is
becoming more and more important. Using nowcasting techniques, a snapshot of
the current state of the grid can be derived, which is a valuable input for these
adaption mechanisms.

We run our evaluation on data provided by an energy provider located in
Bavaria, Germany. First results show that the approach seems to be quite promis-
ing, even for small-scale grids and small geographical distances between power
plants.

2 Background

The integration of renewable power sources into traditional power grids comes
with several difficulties and challenges, since they notably differ from traditional,
fossil based power sources. During the day, power quality needs to be maintained
in the grid continuously for the grid to remain stable. High power quality means
that voltage and frequency do not (or only within very tight boundaries) vary
from specific values. Disruptions and disturbances caused by unforeseen effects
have to be avoided by all means to ensure that power provisioning is working
properly and to avoid grid failure [4]. Traditionally, this has to be ensured by the
responsible energy provider by switching off unneeded power plants in time in
case there is additional power fed into the grid by renewable power sources. Sim-
ilarly, the energy provider has to react timely if these additional power sources
disappear. A major challenge in this respect is that adapting these ”’traditional”‘
power sources has to be done quickly, i.e., as fast as the renewables appear or

1 The All4Green project, which is funded by the European Union, aims at inte-
grating data centres into the smart grid. It introduces new service level agree-
ments for data centres (and also for its end users) to define the degree of
flexibility in terms of quality of service. For further information, please refer to
http://www.all4green-project.eu

http://www.all4green-project.eu
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disappear. Therefore, energy providers have to carefully plan ahead hours of
operation of their power plants, since provisioned power has to match demands.

For this reason, energy providers have to take weather forecasts into account,
which introduce uncertainties in terms of predictability. Predictability, however,
is of significant importance for the energy provider for operating economically
and ecologically. Power that is provided by various kinds of power plants always
relies on constraints that come with these differing power plants and the power
sources they use. For example, due to technical reasons, several models of diesel
generators can only be used for a limited number of times a year; nuclear power
plants can not provide power immediately after they are switched on. Thus, in
general, there are four types of power plants that distinguish in reactiveness,
ecologic footprint, and economic costs:

1. Base Load Power Plants:
Power plants delivering high amounts of inflexible energy. They are inflexi-
ble in terms of reactiveness, but power provisioning in general is relatively
cheap. These power plants can not be used to cover Medium Load, nor can
they compensate quickly fluctuating power sources.
Examples: nuclear power plants, coal power plants

2. Medium Load Power Plants:
These power plants can react quicker than Base Load Power Plants to chang-
ing demands. I.e., they can cover the lack of energy that was forecasted to
be provided by a photo-voltaic plant if the changed weather conditions were
predicted hours or several minutes before. However, Medium Load Power
Plants can not be used to cover on-demand events.
Examples: combined gas and steam energy generators

3. Peak Load Power Plants:
Peak Load Power Plants react quickly and almost in-time to unforeseen
changes. However, the usage of these plants is costly and in general also
involves high CO2 emissions.
Examples: diesel generators and gas turbines

4. Plants relying on uncontrollable power sources:
Power plants that are not controllable in terms of power provisioning times.
These power plants depend on renewable energy sources like sun or wind.
Since these sources are highly fluctuating and their local availability and
disappearance are hard to predict, huge amounts of additional power might
rapidly disappear in the grid, so the energy provider has to adapt power
provisioning of its other plants in-time. Weather forecasting techniques are
an essential tool for reasonable, economically arrangement.

Thus, grid stability is a complex task, and power demands and power supply
have to be planned carefully. For this reason, the European grid is not just a col-
lection of individual, national (or even local) grids, but is highly interconnected.
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This allows to transfer cheap energy (that is currently available in the south of
Europe, for example) to the north, if it is not needed. In general, this also helps
to stabilize the grid, since partners can help compensating local instabilities. I.e.,
a local energy provider is connected to its preceded energy provider. The pre-
ceded provider might also provide a major contribution to the energy supplied
locally, usually within stipulated bounds.

As a consequence of integrating fluctuating renewable sources like solar power
plants and wind turbines, energy providers have to cope with two main chal-
lenges: Power Shortage and Power Surplus.

1. Power Shortage
Power shortage is often caused by special mainstream events (e.g., football
matches), changing weather conditions (sudden drop of renewable energy
due to upcoming, sky-covering clouds or reduced wind), or due to seasonal
conditions (e.g., heating in winter, usage of air-conditioning during summer
months). To cover power shortages, economically and ecologically expensive
peak load power generation has to be activated, or additional power needs
to be bought from third-party suppliers (that might even reside in a foreign
country). Otherwise, the grid will become unstable and break down.
Basically, there are two reasons for a power shortage: Failures or forecast
deviations. In case of a power plant’s breakdown, power supply suddenly
drops within the grid and other plants have to compensate the lack of power
generation. The same happens if there are forecast deviations, i.e., if fore-
casted reneable based energy generation differs significantly from their real
power supply. Figure 1a depicts a shortage at 12pm. The maximum amount
of power supplied from the preceded energy provider exceeds the stipulated
bounds and the lack of power can not be compensated by own power plants.

2. Power Surplus
If more power is available than demanded, the energy provider has to deal
with power surplus. This can be caused by sudden increases of uncontrollable

(a) power shortage (b) power surplus

Fig. 1. Deviations of power supply and power demand



30 M.T. Beck et al.

power plants (e.g., wind and no clouds) or the fact that power demand is de-
creasing (e.g., on sunny Sundays or holidays, where industrial production is
paused and people go outside). In this case, power plants have to be switched
off (either completely or partly). Sometimes, unneeded power resources even
have to be sold to third party suppliers/foreign countries, mostly with neg-
ative prices. Otherwise, a power surplus will lead to grid instability.
Reasons for a power surplus are similar to the ones described for power
shortages: One reason is that there are failures, i.e., on the side of a (big)
customer. In this case, power demand suddenly decreases and power plants
have to be adapted accordingly. Another reason is that there might be devi-
ations from forecasts so that power plants could not be arranged accordingly
in time. Figure 1b depicts a surplus of energy: At around 4pm, there is more
energy generated by, e.g., solar power plants than needed.

3 Related Work

Up to now, research has investigated in two closely related, but still different
areas in this field: Forecasting and Nowcasting techniques. Forecasting aims at
predicting the available amount of power provisioning that will be available in
the future. Based on weather forecasts, energy providers can estimate how much
energy will probably be available within the next couple of hours (or even days).
Then, based on this information, they can derive how much additional energy
they have to buy from third party suppliers or on the stock market – or, in case
of a power surplus, how much energy they have to sell.

Therefore, prediction methods are used for estimating the demanded amount
of power. In this case, forecasting mostly focuses on inter-day predictions, i.e.,
on expected weather conditions for the next day, or even on intra-day to predict
weather changes within the next few hours. However, from the energy provider’s
perspective, short-term forecasting techniques are getting more and more attrac-
tive. This is mainly due to the rapid integration of photo-voltaic panels in several
parts of Europe. Weather forecasting is highly complex and, therefore, prediction
of available energy is very error prone in this case. Especially, forecasting of di-
rect sunlight beam is much more inaccurately to perform than global irradiance.
Several approaches have been proposed to predict future weather conditions.
Also, based on weather forecasting, several methods have been introduced to
estimate the actual amount of power that will be provided by solar panels or
wind turbines. [5] evaluates and compares several of them.

In general, since both forecasting approaches (weather forecasting, and, based
on this, power forecasting) are highly unreliable, the real amount of power pro-
vided by renewable sources can differ significantly from the predicted values.
Several Demand/Response protocols like OpenADR guarantee incentives to the
customers that are willing to support the energy provider by adapting their
power consumption accordingly. These incentives should be based on the current
state of the grid, i.e., power consumption that needs to be decreased/increased.
However, in many European countries like Germany, grid infrastructure is not
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ready for the integration of a more complex communication system, i.e., Smart
Metering. Therefore, the real amount of currently available photo-voltaic power
can not be determined exactly, since measurement data can not be sent to the
energy provider. Therefore, Saint-Drenan et al. propose a novel approach to
estimate the amount of photo-voltaic power based on sattelite data [2].

In this paper, we propose another nowcasting approach to detect hidden de-
pendencies derived solely from a subset of photo-voltaic power plants. We aim
to provide a methodology to derive models that are accurate even for small-scale
grids and small geographical distances.

4 Estimating Available Photo-Voltaic Supply in the Grid

We aim at deriving grid-specific formulae to estimate the amount of power fed
into the grid by power plants that can not be measured continuously. The ap-
proach currently used by German energy providers to estimate this amount
assumes a linear relation to the amount of energy which is produced by a small
number of directly measured PV plants [6]. However, as discussed in [2], the
situation is more complicated: Due to certain characteristics of PV plants (e.g.,
module orientation) the correlation of produced PV energy between different
PV plants is in general rather low. Assuming not linear but more generally
polynomial relations between PV plants, we therefore suggest in the following
an approach based on ideas coming from algebraic geometry and evaluate it
against data obtained by a real power grid, located in Bavaria, Germany. After
discussing the results we describe possible application scenarios.

4.1 Mathematical Background

Our modeling approach is based on the so called extended ABM algorithm (see
[7]), an advancement of a group of algorithms that were developed to obtain
polynomial descriptions of physical systems (see [8], [9]) The common assump-
tion hereby is, that a certain set of measured data contains polynomial relations
that describe the system under consideration. The goal is to exhibit these re-
lations. The approach is purely data driven since only the data itself and no
further assumptions are used to construct the desired models.

To make this idea precise, let X = {p1, . . . , ps} ⊂ R
n be a finite set of s mea-

sured data points, e.g., the power production of n different PV plants, measured
at s points in time. The relations in question are polynomials f ∈ R[x1, . . . , xn]
which vanish ε-approximately on X for a given ε ≥ 0, i.e., (f/||f ||)(p) ≈ε 0 for
each p ∈ X. Here, || · || denotes the Euclidean norm of the coefficient vector of
f and a ≈ε b holds for two real numbers a and b iff |a − b| ≤ ε. The threshold
number ε thereby reflects the noise present in the data. Consider for instance
the set

X = {(0, 0), (1, 0.98), (2, 4.01), (3, 8.9), (4, 16.02)} ⊂ R
2 (1)

of 5 data points in the plane. Then the polynomial f = y−x2 ∈ R[x, y] vanishes
0.1-approximately on X.



32 M.T. Beck et al.

To construct polynomials as desired, Limbeck [7] suggests the Approximate
Buchberger-Möller (ABM) algorithm, a new combination of the Buchberger-
Möller algorithm for border bases (cf. [9], [10]) and the singular value decompo-
sition, to compute the ε-approximate kernel of certain evaluation matrices: Given
a set of data points p1, . . . , ps ∈ R

n and a threshold number ε ≥ 0, the ABM
algorithm constructs a finite set G = {f1, . . . , ft} ⊂ R[x1, . . . , xn] of polynomials
that vanish ε-approximately on X. The Buchberger-Möller algorithm reduces the
problem of finding polynomials that evaluate the given points exactly to zero to
the problem of computing the kernel of linear mappings that come from evalu-
ating just terms at every given point. In the approximate setting the question
to compute the approximate kernel of those evaluation matrices is answered by
the well organized exploitation of singular value decompositions.

The situation just described is homogeneous in the sense that we ask for poly-
nomial equations with right-hand side ≈ε 0. If we allow a non-zero right-hand
side, we accordingly ask a more general question, which we can regard as the
inhomogeneous case. To this end, consider the tuple Ξ = (p1, . . . , ps) of s data
points pi ∈ R

n and assume that Q = (q1, . . . , qs) ∈ R
s is a tuple of further data

points. The goal is now to construct polynomials f ∈ R[x1, . . . , xn] such that
f(pi) ≈ε qi for all i = 1, . . . , s, or in other words, such that each f evaluates
ε-approximately to Q on Ξ. An algorithmic solution to this problem is given
by the extended approximate Buchberger-Möller algorithm (extended ABM, [7]).
Given data points p1, . . . , ps ∈ R

n combined in the tuple Ξ = (p1, . . . , ps),
a threshold number ε and a tuple Q = (q1, . . . , qs) ∈ R

s, the algorithm con-
structs a finite set G ⊂ R[x1, . . . , xn] of polynomials such that each f ∈ G
evaluates ε-approximately to Q on Ξ. To modify our example from above,
we consider the tuple Ξ = (0, 1, 2, 3, 4) of the points 0, . . . , 4 ∈ R together
with Q = (0, 0.98, 4.01, 8.9, 16.02) ∈ R

5. Then, for instance, the polynomial
f = x2 ∈ R[x] vanishes 0.1-approximately to Q on Ξ.

An important feature of all algorithms we previously mentioned, and the ex-
tended ABM in particular, is that they compute in general more than just one
model polynomial. Secondly, since the extended ABM proceeds degree by degree,
the constructed polynomials are of lowest degree among all ε-approximately van-
ishing polynomials. As a third feature we note, that the constructed polynomials
are numerically stable with respect to perturbations in the input data set X.

4.2 Modeling

For evaluating this mathematical approach in the context of photo-voltaic power
supply, we build our investigation on real data obtained from a power grid oper-
ated by a German energy provider, Stadtwerke Passau GmbH (SWP). SWP is a
local energy provider in Bavaria, Germany. More than 50% of energy generated
by SWP’s power plants is based on solar resources. This is why SWP seems to
be a good choice for evaluating our approach. The size of the grid is 7 square
kilometers large. This grid connects around 800 small scale photo-voltaic plants,
which have a capacity of about 23 MWp. Most of these photo-voltaic power



Estimating Photo-Voltaic Power Supply 33

plants can not be measured directly: only 8 power plants are directly accessible
by SWP.

Based on measurement results, we observed huge impacts of local weather
effects on the amount of provided solar energy. However, no direct linear corre-
lations between individual photo-voltaic power plants can be defined, due to the
nature of photo-voltaic power generation. Since characteristics of power plants
differ significantly, their relations are not expressible by linear models. These
characteristics, e.g., efficiency, age, size, etc., have a high impact on the power
provisioning, but there might also be other factors (e.g., local conditions) that
are not obvious. Nonetheless, we assume that there might be some “hidden” non-
linear correlations between power plants’ generation patterns. This assumption
might be realistic, since weather conditions for these plants are expected to be
similar and sun irradiance does not differ significantly between their geograph-
ical locations. But instead of introducing a complex model that covers all of
these parameters, we propose a methodology to derive such correlations based
on mathematical analysis of power provisioning data. The analysis is purely
based on power provisioning patterns obtained from photo-voltaic power plants
of SWP and does not depend on any other, additional data. This means that
no assumptions on weather conditions, irradiation, geographical positions and
so on are being made for the evaluation. For our analysis, we use the extended
ABM algorithm which detects dependencies that are approximately polynomial.
If there are any correlations between power provisioning data obtained from
power plants, these are detected by the algorithm.

Using the extended ABM algorithm, we aim to answer the following questions:

1. Is it, in principle, possible to model some of the photo-voltaic plants in terms
of the others?

2. How many different PVs do we need to express the others?

3. How good are the approximations, especially with respect to the number of
omitted PVs?

4. Can we observe local effects? Can we explain why some models are in par-
ticular good, by looking at the closeness of some PVs?

For this purpose, we observed local weather conditions and traced power sup-
ply patterns of all eight directly measured photo-voltaic power plants of SWP
for three consecutive days: The first two days are characterized by a highly fluc-
tuating solar irradiation, the third day had a continuously clear sky except early
morning and evening hours, see Figure 2. To build models using the extended
ABM, we proceed as follows.

1. Data selection:
Divide the data into two sets, a training set and a validation set. In our case,
we took the data of one day for training and the other two days for evaluation.
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Fig. 2. Normalized measured data of eight PV power plants, taken on three consecutive
days from 29 October, 2012 to 31 October, 2012
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2. Target selection:
For both the training and validation sets, divide the set of PV plants into
two groups, a group of source data that will provide the input data X and
a group of target data each of which serves as the right-hand side Q in the
input of the extended ABM.

3. Preprocessing:
Typical preprocessing steps consist, e.g., of removing invalid data, filtering
and normalization. For the present three days, we removed the values for
those times, where the PV plants did not produce any energy and normal-
ized the remaining data series.

4. Model building:
Use the training data as input for the extended ABM and obtain a set of
polynomials G, the set of model candidates.

5. Model selection:
Using the validation source data from the two selection steps above, evaluate
each polynomial and compute its residual error with respect to the validation
target. Select the polynomial with the least residual error.

4.3 Results

We applied the method described in the previous section to the data provided by
eight directly measured PV systems between 29 October, 2012 and 31 October,
2012. For further reference, we name these eight plants by the letters A to H .
The data is measured in intervals of 15 minutes. Since we considere only the
time between 7:30 and 15:45, omitting early morning and evening hours where
the stations did not produce energy, we receive for each day and each plant 34
data points, measuring the current power production.

Due to the structural similarity of the 8 data series of 31 October, which was
a clear day, we did not use that data for training but instead made two different
runs: Run 1 using the data from 29 October and Run 2 using the data from 30
October as training set. Table 3 gives an overview of Run 2. We denote by m

Table 3. Error statistics for Run 2, standard deviation in parenthesis

m Avg. # models Avg. best error Avg. mean error Best error

1 56.0 (20.8) 1.7 (3.7) 4.4 (8.0) 0.21
2 47.6 (15.0) 2.8 (6.0) 11.7 (32.3) 0.89
3 36.6 (10.6) 4.5 (10.7) 30.3 (140.4) 1.54
4 25.1 (6.2) 12.5 (59.9) 105.4 (901.0) 2.28
5 15.8 (3.3) 161.8 (1456.6) 1354.7 (13767.4) 4.77
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Table 4. Target PV plants for which best residual errors were obtained

m 1 2 3 4

Run 1 C E,F D,E,F C,D,E,H
Run 2 C D, F B,E, F B,C,D, F

the number of PV plants that we use as target data, i.e., that we try to model
in terms of the remaining 8−m PV plants. There are sm :=

(
8
m

)
possible ways

to select those PV plants and in each run we built models for all sm possible
selections. Thereby, m ranged from 1 to 7, since we need at least one source data
set. For m = 6 and m = 7 we did not get any reasonable model, the results are
therefore omitted.

Fixing m and one of the sm selections, we get three numbers that we use to
characterize the models of the given selection: (1) the number of models returned
by the AVI, (2) the least (i.e., best) residual error of these models and (3) the
mean residual error of these models. Averaging those three values over all sm
selections gives the results of the second, third and fourth column of Table 3.
The respective standard deviations are given in parenthesis. The last column
shows the overall best error among all selections.

To make the computations comparable, we used a value of ε = 0.1 throughout
all computations. It is important to note that the value of ε must not be confused
with the residual errors discussed above. The value of ε guarantees bounds within
the training data while the residual error is a measure to compare validation data.
It is also not surprising that the number of models decreases with increasing m.
The reason is that the polynomials are constructed within R[xi1 , . . . , xi8−m ] (with
ik ∈ {A, . . . , H}) and therefore the number of terms per degree also decreases.

Table 4 shows the selection of target PV stations for the best model of Run
1 and Run 2, respectively. The PV stations B, C, E, F and H are all located
within a radius of 1 km. Together with D they lie within a radius of 2 km.
Further away are plants A and G, a radius of 3.5 km is required to surround
all 8 PV plants. The results meet out expectation that close-by plants can more
easily be modeled by each other.

The question how good the constructed models are depends on the demands
of a concrete application and their particular requirements. We consider the
models for m = 1, . . . , 4 as good both with respect to the overall residual error
as well as with respect to the coverage of the dynamics of the system. Figure 5
shows that the two quite distinct dynamics of 30 October and 31 October are
covered equally well.

All computations were executed on a 2.26 GHz Intel Core 2 Duo laptop using
the computer algebra system ApCoCoA [11]. On average, a call of the extended
ABM on a 34× 4 input matrix took 0.021 seconds.
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fF = −1.04xAxB + 0.62x2
C + 0.40x2

G − 1.2xBxG − 1.38xCxH − 0.81xGxH + 3.31x2
H

+ 0.37xA + 1.43xB + 0.81xC − 0.06xG − 1.52xH + 0.02 ∈ R[xA, xB, xC , xG, xH ]

Fig. 5. Best model for PV plant F in Run 1, m = 3 and its evaluation for the validation
sets
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4.4 Application Scenarios

We consider two application scenarios for the modeling approach described in
the last section: Snapshot provisioning and simulation.

1. Snapshot provisioning
A snapshot of the amount of power available in the grid or smaller sub-areas
can help power providers or large consumers such as data centers to adapt
feed or consumption parameters, thereby improving load balancing or opti-
mizing economical goals. In this scenario, a small number of PV plants is
directly measured and this data is available on-line. The data of PV plants
that are not measured on-line is derived by their corresponding model poly-
nomials. To compute these polynomials, an initial calibration phase is nec-
essary: Over a certain period of time, data for every PV station in question
is collected. From this data, the model polynomials are constructed.

2. Simulation of power flow
As a straight forward variation of the first scenario, model polynomials once
constructed can be used to simulate certain aspects of the grid: Varying the
data used as input, one explores the behavior of the grid under different
circumstances. Power flow analysis is a substantial tool for grid operators to
ensure grid stability. By taking into account these interdependencies, simu-
lation results are expected to become more accurate.

5 Conclusion and Future Work

We introduced a methodology to build models of the production of photo-voltaic
power plants. In contrast to other approaches, these models also aim to be suited
for small-scale areas in a small scale power grid, in addition to larger-scale sce-
narios. Furthermore, no external data like sun radiation or justification of the PV
panels are required. The models can be used by energy providers to determine
available power generated by photo-voltaic power plants (state estimation) that
are not directly connected to the communication infrastructure. This snapshot
of the grid’s status can be used for monitoring purposes.

The resulting models met our expectation with respect in two directions:

– According to evaluation results, the approach seems to be quite promising
with respect to geographically close-by PV plants.

– The selection of the model plants is sufficiently independent on the choice of
training data.

We are confident that there is still great potential to further enhance the
approach. Future work is dedicated to enhance the model by considering geo-
graphical locations of power plants. Since our evaluation results imply that mod-
eling results for close-by PV plants lead to more precise results, this additional,
domain-specific knowledge could lead to accuracy improvements. Furthermore,
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we think that our methodology leads to improvements in accuracy of power fore-
cast methods. Current models do not analyze hidden interdependencies of PV
plants and do not consider them for forecasting available power. This will be
subject of future work.
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Abstract. Data center and cloud providers are responsible for provid-
ing services such as storage or retrieval for large amounts of (customer
owned) data by using databsae management systems (DBMS). Service
provision implies a specific quality of service regarding performance or
security. Another factor of increasing importance is energy consumption.
Although not a top priority for most customers, the cost of energy and
thus (indirectly) the cost of service provision is key for both, customer
and provider. Typically, energy consumption is viewed as a hardware
related issue. Only recently, research has proved that software has a sig-
nificant impact onto the energy consumption of a system too. Database
management systems comprise various algorithms for efficiently retriev-
ing and managing data. Typically, algorithm efficiency or performance is
correlated with execution speed. This paper reports our results concern-
ing the energy consumption of different implementations of sorting and
join algorithms. We demonstrate that high performance algorithms often
require more energy than slower ones. Furthermore, we show that dynam-
ically exchanging algorithms at runtime results in a better throughput.

1 Introduction and Motivation

Database management systems (DBMS) are software systems that are in
widespread use for managing data independently of applications and underlying
hardware. Hence, application developers can utilize DBMS in order to efficiently
store and retrieve data without knowing their exact implementation (aka. black-
box view). This is especially important when it comes to hosted DBMS or cloud
services.

DBMS provide various access strategies (indexes) and retrieval algorithms
for handling and manipulating data. Typically DBMS are designed to run on
desktop computers and powerful servers. Thus, execution performance or size
(memory and harddiscs) are standard optimization factors. However, due to
rapid growth in computing power and new technologies such as cloud services,
modern DBMS stretch from desktops and servers to data centers. Services such as
Dropbox, iCloud, CloudDrive or WindowsLive moved data storage and handling
to the net. Due to the large amount of data hosted by a cloud provider, the succes
of a cloud service is related to the providers’ quality of service and the efficient
usage of the resource energy. Thus, reducing energy consumption will become
an optimization factor, equal to performance an size, too.

S. Klingert et al. (Eds.): E2DC 2013, LNCS 8343, pp. 40–53, 2014.
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Whereas energy optimization regarding hardware (sleep mode, speed reduc-
tion, etc.) is state of the art, only little research has been performed regarding the
energy consumption of software. Especially data centers and cloud providers are
using virtualization as a means for reducing energy needs. Only recently (Bunse
& Höpfner 2012) it was shown that the implementation of a software system
as well as the choice of algorithms and components is significantly correlated to
energy consumption. In this paper we present first ideas on how to minimize the
energy consumption of DBMS. Since DBMS are complex software systems, as a
starting point we focus on the energy consumption of basic algorithms such as
sort and join operations.

The results presented in this paper were investigated by isolated experiments
using standard devices. Thus, the results can only be generalized to a certain
degree and we want to point out, that more general findings need additional
research with other platforms.

The remainder of the paper is structured as follows: Section 2 discusses the
related work. Section 3 introduces the examined algorithms. Section 4 discusses
the need for a energy related complexity metric that allows to classify and later
select energy-efficient algorithms. Section 5 briefly presents the evaluation envi-
ronment and discusses the underlying measurement theory. Section 6 discusses
the results obtained in various empirical studies. Section 7 contains first ideas
on how to adapt algorithm usage to reduce energy consumptions. Section 8 con-
cludes the paper and gives an outlook on future research.

2 Definition and Related Work

Currently, there is no commonly accepted definition for the research field of en-
ergy aware and energy efficient software or data management. Viewed from the
perspective of sustainability one can distinguish and explicitly separate to do-
mains: (1) Green IT comprises methods and techniques for ranking, analyzing
and improving the efficiency of IT-Systems by using low-power hardware, virtu-
alization, and software optimization. (2) In contrast, Green by IT or IT2Green
comprises IT solutions that help to improve energy efficiency and sustainability
in other domains. Typical examples are algorithms for optimizing truck routes.

Energy efficient clearly belongs to the area of Green IT. Beneath standard
benchmarks on cycle time, CPU and memory usage this explicitly addresses
software induced energy consumption too. Typically, the energy consumption
induced by a software artifact is directly related to usage scenarios and its in-
teraction with its hardware and software environment.

Several research projects have been conducted regarding the topic of soft-
ware related energy consumption. Published ideas fall into one of the categories
(1) Hardware, or (2) Software (Jain, Molnar & Ramzan 2005). Research that
belongs to the hardware category, attempts to optimize the energy consump-
tion by investigating the hardware usage, such as (Chen & Thiele 2008, Liveris,
Zhou & Banerjee 2008), and innovating new hardware devices and techniques,
such as (Tuan, Kao, Rahman, Das & Trimberger 2006, Wang, French, Davoodi
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& Agarwal 2006). Research in second category attempts to understand how
the different methods and techniques of software affect energy consumption.
Research in this category can be further classified according to the main fac-
tors affecting energy consumption: networking, communication, application na-
ture, memory management, and algorithms. Concerning networking work such
as (Feeney 2001, Senouci & Naimi 2005), provide new routing techniques that
are aware of energy consumption. Other efforts of this category focus on pro-
viding energy-aware protocols for transmitting data (Seddik-Ghaleb, Ghamri-
Doudane & Senouci 2006, Singh & Singh 2002, ?). Memory consumption is
an important factor concerning a system’s energy consumption. In this regard
work such as (Koc, Ozturk, Kandemir, Narayanan & Ercanli 2006, Ozturk &
Kandemir 2005) have provided energy-aware memory management techniques.
In battery-powered systems, it is not sufficient to analyze algorithms based only
on time and space complexity. Energy-aware algorithms such as (Jain et al. 2005)
supporting randomness, (Potlapally, Ravi, Raghunathan & Jha 2006) focusing
on cryptographic, and (Sun, Gao, Chi & Huang 2008) investigating into wireless
sensor networks were published.

In networking, different research efforts, such as (Feeney 2001, Senouci &
Naimi 2005), provide new routing techniques that are aware of the energy con-
sumed during routing packets. Others efforts of this category focus on provid-
ing energy-aware protocols for transmitting data in wireless networks generally,
such as (Seddik-Ghaleb et al. 2006, Singh & Singh 2002), and ad-hoc networks,
such as (Gurun, Nagpurkar & Zhao 2006). One of the fundamental techniques
proposed to reduce communication is caching technique. The efforts belonging
to the communication category introduced several energy-aware caching tech-
niques, such as (Shen, Kumar, Das & Wang 2005, Bardine, Foglia, Gabrielli &
Prete 2007, Zhang, Chang & Zhang 2007).

Due to Java platform independence, many applications are Java-based. In
application nature, we consider the research efforts investigating into the topic
of energy consumption for the java-applications and java virtual machine, such
as (Seo, Malek & Medvidovic 2007, Lafond & Lilius 2007, Badea, Nicolau &
Veidenbaum 2008, Farkas, Flinn, Back, Grunwald & Anderson 2000). Memory
energy is one of the major energy, which is to be saved. In memory management,
several research efforts, such as (Koc et al. 2006, Ozturk & Kandemir 2005), have
provided energy-aware memory management.

3 Sorting Algorithms

Already in the first days of computing, sorting data (numbers, names, etc.) was
in the focus of research. One reason might be that although sorting appears to
be ”easy” its efficient execution by machines is inherently complex. Even today,
sorting algorithms are still being optimized or even newly invented. When it
comes to data management and information retrieval efficient sorting is a major
concern concerning performance and energy consumption. In the following we
describe the set of sorting algorithms that were used in the context of this
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study. This set was defined to comprise the major algorithms that are either
used in form of library functions (e.g., quicksort), are easily programmable (e.g.,
bubblesort) or that are regularly taught to IT students. In other words, our goal
was to cover those algorithms that are in widespread use. More details on them
can be found in standard text books on algorithms and data structures such as
(Lafore 2002).

Bubblesort is a simple sorting algorithm that belongs to the family of comparison
sorting. It works by repeatedly stepping through the list to be sorted, comparing
two items at a time and swapping them if they are in the wrong order. Bubble-
sort has a worst-case complexity O(n2) and in the best case O(n). Its memory
complexity is O(1).

Heapsort is a comparison-based sorting algorithm, and is part of the selection
sort family. Although somewhat slower in practice on most machines than a
good implementation of quicksort, it has the advantage of a worst-caseO(n log n)
runtime.

Insertionsort is a naive sorting algorithm that belongs to the family of com-
parison sorting. In general insertion sort has a time complexity of O(n2) but
is known to be efficient on data sets which are already substantially sorted. Its
average complexity is n2/4 and linear in the best case. Furthermore insertion
sort is an In-place algorithm that requires a constant amount O(1) of memory
space.

Mergesort , invented by John von Neumann, is a sorting algorithm that belongs
to the family of comparison-based sorting. Mergesort merge sort has an aver-
age and worst-case performance of O(n log n). Unfortunately, mergesort requires
three times the memory of in-place algorithms such as insertion sort.

Quicksort is a sorting algorithm, developed by Sir Charles Antony Richard Hoare
(Hoare 1962), belongs to the family of exchange sorting. On average, quicksort
makes O(n log n) comparisons to sort n items, but in its worst case it requires
O(n2) comparisons. Typically, quicksort is regarded as one of the most efficient
algorithms and is therefore typically used for all sorting tasks. Quicksort’s mem-
ory usage depends on factors such as choosing the right Pivot-Element, etc.
On average, having a recursion depth of O(log n), the memory complexity of
quicksort is O(log n) as well.

Selectionsort. Selection sort is a sorting algorithm that belongs to the family
of in-place comparison sorting. It typically searches for the minimum value,
exchanges it with the value in the first position and repeats the first two steps for
the remaining list. On average selectionsort has a O(n2) complexity that makes
it inefficient on large lists. Selectionsort typically outperforms bubble sort but is
generally outperformed by insertion sort.
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Shakersort (Brejová 2001) is a variant of shellsort that compares each adjacent
pair of items in a list in turn, swapping them if necessary, and alternately passes
through the list from the beginning to the end then from the end to the begin-
ning. It stops when a pass does no swaps. Its complexity is O(n2) for arbitrary
data, but approaches O(n) if the list is nearly in order at the beginning.

Shellsort is a generalization of insertion sort, named after its inventor, Donald
Shell. The algorithm belongs to the family of in-place sorting but is regarded
to be unstable. The algorithm performs O(n2) comparisons and exchanges in
the worst case, but can be improved to O(n log2 n). This is worse than the
optimal comparison sorts, which are O(n log n). Shellsort improves insertion sort
by comparing elements separated by a gap of several positions. This lets an
element take “bigger steps” toward its expected position. Multiple passes over
the data are taken with smaller and smaller gap sizes. The last step of Shell
sort is a plain insertion sort, but by then, the array of data is guaranteed to be
almost sorted.

4 Energy Complexity Classification

Following (Höpfner & Bunse 2010b) complexity measures are one means for clas-
sifying software artifacts regarding their energy needs. In general, a complexity
class is a set of problems of related resource-based complexity and is defined by
the set of problems that can be solved by an abstract machine M using O(f(n))
of resource R, where n is the size of the input. In the context of this paper we
are interested in the usage of resources. This is typically covered by the big-O
notation that describes the limiting behavior of a function. It allows to simplify
functions in order to concentrate on growth rates. Thus, big-O can be used to
describe an algorithm’s usage of computational resources (e.g., the worst case or
average case running time or memory usage of an algorithm is often expressed as
a function of the length of its input). This allows algorithm designers to predict
the behavior of algorithms and to choose the best fitting algorithm (regarding
its complexity class), in a way that is (nearly) independent of the computer ar-
chitecture or clock rate. Regarding the definition of complexity class for energy
we have to consider the resources involved in the computation. Therefore, we
have to distinguish and explicitly separate four sub-components: Oc(fc(n)) is
the complexity for the CPU which is equivalent to the well known running time,
since the energy consumption of a CPU is related to the number of instructions
which, in turn depends on the size of the input. Similarly one can say that the
complexity Op(fp(n)) corresponds to memory-usage complexity, since the energy
consumption of primary memory depends on the number of read/write opera-
tions, which are derived or based on the input size. We have to point out that
memory-usage complexity is not equivalent to the memory complexity known
from theoretical computer science. The memory complexity describes the re-
quired amount of memory but does not include the memory accesses. Obviously,
an algorithm could use only a constant amount of memory but read/write it
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several times. The same holds for the complexity Os(fs(n)) class characterizing
the energy consumption of secondary memory. As the number of data transmis-
sions is a function over the input size, too, On(fn(n)) might express the energy
complexity for the network resource. We learned from the previous chapter that
energy consumptions of resources vary. Hence, we have to use the energy charac-
teristics of the resources as scaling factors. For simplification we assume that Ec

is the energy required for processing one input element, Ep and Es for storing
and retrieving one input element to/from main memory or secondary storage,
respectively, and En for sending/receiving one input element via the network.
Therefore, the energy complexity of an algorithms is given as sum:

OE(fe(n)) = Oc(Ec · fc(n)) +Op(Ep · fp(n)) +Os(Es · fs(n))
+On(En · fn(n))

Finding the energy complexity (sub)functions As mentioned earlier, the overall
energy complexity class can be notated as the sum of the class functions of the
involved resource. Obviously, it is possible to analyze the program code in order
to find the respective (sub)functions. However, the running time complexity for
most algorithms is known. Considering only CPU and RAM usage one can find
the memory-access complexity by analyzing energy measurements. We described
the measurement approach used in the following in (Bunse, Höpfner, Mansour &
Roychoudhury 2009). Hence, Ec ·fc(n) is the function of the runtime complexity
multiplied with the energy required for one operation. For example, for Mergesort
fc(n) = n · log(n) holds. We measured the energy for one operation Ec (in
this case for one value comparison) as well as the energy E(n) required by the
algorithm for various n. We know, that E(n) = Ec · fc(n) + Ep · fp(n) holds.
Hence, we can use model fitting techniques and tools like Eureqa1 for finding
fp(n).

Example: Given the running time complexity O(n · log(n)) of Mergesort, the
energy of 5.33 · 10−6J consumed for one comparison and the normalized
overall energy E(n) (E(10) = 0.00006042J . . .E(1000) = 0.0100312J con-
sumed by executing the algorithm for various n (?), we can find the memory-
access complexity fp(n) by using the target function E(n) = 5.33 · 10−6 · (n ·
log(n)) + fp(n). To simplify the task for the model fitter we first calculated
E(n) − 5.33 · 10−6 · (n · log(n)) = fp(n), copied the data to Eureqa, and
searched for fp(n). The tool found various functions, e.g. 1.02553 · 10−5 ·n−
5.1406 · 10−5 · log(0.0033665 · n − 0.0236113)− 0.000269206. Almost all of
them have shown an n− log(n) structure. As we know that each comparison
requires reading the comparison partners from memory, the memory access
complexity of our Mergesort implementation is O(n · log(n) + n − log(n)),
which equals O((n − 1) · log(n) + n).

For analyzing the secondary storage complexity and the network complexity
one could use monitoring tools for file systems and network traffic in combination
with model fitting techniques.

1 http://ccsl.mae.cornell.edu/eureqa

http://ccsl.mae.cornell.edu/eureqa
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5 Measurement Environment

Based on (Höpfner & Bunse 2010a), energy requirements can be measured via
examining voltage drops at sense resistors captured during the execution of a
service or application. Energy can then be calculated, following Ohm’s and Kirch-
hoff’s law, by evaluating the integral of the curve defined by the data. In contrast
to performance or execution time that can be measured at specific (local) points,
energy is a “delocalized” property. The energy required by or for a service is the
sum of the energy required by all involved components (CPU, memory, etc).
Exact measures require multiple measurement points resulting in massive data
sizes given that each component provides a measurement opportunity. A typical
solution regarding this problem is to examine the energy demanded by a com-
ponent in isolation in order to either provide a fixed value (e.g., line losses) or
by defining a function (e.g., correlation to load). Energy may then be measured
at a central interface. Unfortunately, it is not trivial to insert a sense resistor
between, e.g., a CPU and the power supply since modern CPUs have multi-
ple power lines. To avoid such problems we decided to use a board that offers
dedicated measurement points for most components. Modern CPUs using mul-
tiple cores embedded in one chip cause another problem. A parallel execution of
processes would lead to errors if energy is measured at one core only. Our first
solution was to configure the system in a way that only one core is used, but we
are revising our approach to address this problem.

We used a specific evaluation platform (Bunse, Klingert & Schulze 2011) In
detail, the algorithms where executed on single board machine. Every program
(algorithm) sent a TTL level signal (Lancaster 1974) at the start and end of
its run in order to trigger measurement and logging by a digital oscilloscope.
The collected data was externally processed in order to calculate the consumed
energy values and stored.

6 Experimental Results

To practically evaluate the energy consumption of base energy complexity of
sorting and join algorithms or queries a number of test run have been performed.
All figures in this section use accumulated, non-normalized values. The following
results are sums of measurement results of random, sorted and reverse-sorted
data and are accumulated for 1,000 cycles.

We first examined whether software energy consumption, as widely believed,
is strongly correlated to software performance. Therefore, we executed the al-
gorithms on platforms using varying processor types. During these runs the
consumed energy, execution time, and the number of cycles were recorded (data
has been published in (Höpfner & Bunse 2010a)) . Results regarding the en-
ergy consumption reveal that, in contrast to the initial assumption, sorting
algorithms such as Insertionsort (O(n2)) require significant less energy than
high performance algorithms such as Quicksort (O(n log n)). I

Based on these finding a second series was started to examine the correla-
tion between energy consumption and data size. Therefore, we concentrated on
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Fig. 1. Experimental Results – 2nd Measurement Series

Quicksort (standard and refined), Mergesort (standard and refined), and Inser-
tionsort with respect to random, sorted and reverse sorted data and for increasing
lengths of data (0 to 1,000 elements). The obtained measurement results (Fig-
ure 1(a)) in general confirm the results of the previous experiment series by show-
ing that Insertionsort consumes significantly less energy than other algorithms,
although it is slower. In fact, sorting 1,000 randomized elements with Insertion-
sort took 71.3 ms, whereas Quicksort needed 8.8 ms. Regarding the second goal,
we extended the platforms SRAM memory. While comparing Figure 2 and Fig-
ure 1 it becomes obvious that using external memory requires significantly more
energy. For Insertionsort, e.g., the energy consumption for sorting 1,000 random
elements raised from 0.03 to 4.11 Joule. The difference cannot be explained by
the standard energy the additional memory requires since the differences be-
tween both curves strongly diverge with a growing data size. We assume that
this is caused by moving data to/from external memory and addressing/manag-
ing these additional memory cells. The differences between algorithms become
clearer by watching the interpolated trend functions in Figures 1(b) and 1(c).
Here, n is the number of processed data items and the R2 value that represents
the goodness of fit was 1.

The final series investigated the energy consumption of standard join oper-
ations (see Figure 2(a)). For a small input size NLJ is most efficient, but the
complexity rapidly increases as input gets bigger. By contrast, the number of HJ
cycles takes grow only almost linearly, making it five times faster for input size
of 300. The SMJ algorithms has two facets: for presorted data it is by far the
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Fig. 2. Energy consumption comparison – normalized to one execution

fastest algorithm of the three, regardless of the input size. If the data has to be
sorted first, the performance of the overall operation is highly slowed down by
the sorting algorithm. Hence, HJ seems to be the most efficient join algorithm
for unsorted input data.

From our sorting algorithm experiments we learned, that memory usage is
important for energy consumptions. Whereas NLJ and SMJ (depending on the
sorting algorithm used) need almost no additional memory space, HJ uses a
considerable amount of memory to store the hash table. Thus, it is justifiable to
assume that if considering the energy consumption instead of the performance,
the outcome will be appreciably different. In order to determine the amount of
energy in Joule, we measured the SMJ algorithm using Insertionsort and Quick-
sort. The results in Figure 2(b) conform to our previous finding that Insertionsort
consumes much less energy in comparison to Quicksort. The energy consump-
tion of a NLJ see Figure 2(c) grows quadratic. Thus, although NLJ require less
execution cycles than MJ, its energy consumption is significantly higher. This
supports our assumption that the energy consumption related to the execution
of a specific algorithm mostly depends on its memory requirements and that the
algorithms complexity class (i.e. number of execution cycles) plays a minor role.
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7 Optimized Algorithm Usage

To optimize the energy consumption of modern DBMS systems via selecting
energy-efficient DBMS algorithms and -queries has prerequisites. A cost model
is needed that can be used to predict the cost (i.e., J or energy) for executing a
specific algorithm or query on a specific input set. We developed such a model
based on the energy complexity metrics introduced in section 4 and on extrap-
olated trend functions that calculate an estimation of the required energy for
1,000 executions 2 of an algorithm or query, based on the input size n. A selec-
tion of algorithms and queries were analyzed for defining their energy complexity
measure. The reason for using both, metric and real-live data was implied by
the goal of this research to find the optimal balance between performance and
energy consumption.

As discussed in (Bunse, Klingert & Schulze 2012) energy consumption, per-
formance and memory usage represent a kind of quality triangle. The cost of
an algorithm or query is interrelated with other quality factors. Thus, selecting
the “best” artifact cannot be based on a single criterion (i.e., energy complex-
ity metrics or trend function). Complexity metrics characterize algorithms or
queries according to their energy needs. Different algorithms/queries may be
represented using the energy consumption metric. Due to the nearly linear na-
ture of the trend function the result would always indicate Insertionsort as the
most energy-efficient algorithm. In addition, both classifications neglect algorith-
mic complexity and performance. Therefore we applied the following strategy:

1. By using the size n of the set as an input the energy-related costs for all
algorithms are calculated and stored in a table.

2. The minimum result and thus the most energy-efficient algorithm is identi-
fied.

3. Based on the algorithmic and energy complexity, the minimum value is com-
pared to those values that are related to algorithms of “lower” complexity
classes.

4. If the difference between the energy requests is below a predefined threshold
or delta the “better” algorithm is chosen.

The measurements are based on the networked experimental setup (cf. Sec-
tion 5). A look at the battery level V over time supports the initial assumption
that the uptime of a systems is directly correlates with the energy consumption
related to the executed software system. However, a closer look at Figure 3(a)
shows that a non-adaptive approach (i.e., using a fixed algorithm) either re-
sults in an excellent or a poor energy efficiency. Interestingly, the results for
the adaptive version are close to those of the non-optimized Insertionsort vari-
ant. Figure 3(b) supports the initial assumption concerning the trade-off be-
tween energy efficiency and performance. Fast variants like Quicksort handle
more sorting requests in a shorter period of time but result in a very limited
V . Energy-efficient variants like Insertionsort result in an optimal V but handle

2 trend functions are build upon measurements for 1,000 execution cycles
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significantly less sorting requests. Only adaptive systems provide a good balance
of energy-efficiency and performance. This is also supported by Figure 3(c) that
shows the total number of elements that were sorted over time.

Recently, we started the exploration of using genetic algorithms for select-
ing artifacts (Wick & Phillips 2002). Genetic algorithms are a search procedure
based on the principles governing natural selection in a “survival of the fittest”
environment. In principle, genetic algorithms denote solutions (i.e., selections)
as chromosomes, representing a specific combination of properties (i.e., perfor-
mance, energy consumption, memory usage). The genetic algorithm transforms
or evolves solutions to find those with an optimal fit by applying reproduction,
crossover, and mutation activities. Fit is checked by performing automated test
runs on dedicated machines. Results are promising and indicate that the energy
needs of a DMBS system can be significantly reduced.

8 Summary, Conclusions and Outlook

We presented first results towards realizing energy aware database management
for AVR micro controller based embedded systems. We concentrated on sorting
and join algorithms as those are essential for query processing.We introduced our
measurement setup and discussed first, preliminary results. We highlighted that
memory intensive implementations consume more energy then CPU intensive
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ones. Interestingly, we found out that energy consumption is not solely corre-
lated with the complexity class (performance) of an algorithm. Furthermore, we
discussed first ideas on how to optimize the algorithm usage based on trend func-
tions reflecting the energy consumption of certain algorithm implementations.

The next step on our agenda is to replicate the experiments with other plat-
forms (i.e., PIC, ARM, and PSoC) in order to get a more generalized “cost
model”. Furthermore, we plan to examine other DBMS algorithms for query
processing (set operations, projection, selection, etc.) and for indexing data (B-
Tree, AVL trees, etc.). Afterwards, we plan to define an overall optimization
strategy based on the user requirements (i.e., fast results vs. long up-time).
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Höpfner, H., Bunse, C.: Towards an energy-consumption based complexity classification

for resource substitution strategies. In: Balke, W.-T., Lofi, C. (eds.) Grundlagen
von Datenbanken. CEUR Workshop Proceedings, vol. 581. CEUR-WS.org (2010b)

Jain, R., Molnar, D., Ramzan, Z.: Towards understanding algorithmic factors affect-
ing energy consumption: Switching complexity, randomness, and preliminary ex-
periments. In: Workshop on Discrete Algothrithms and Methods for MOBILE
Computing and Communications — Proceedings of the 2005 Joint Workshop on
Foundations of Mobile Computing, pp. 70–79. ACM, New York (2005)

Koc, H., Ozturk, O., Kandemir, M., Narayanan, S.H.K., Ercanli, E.: Minimizing energy
consumption of banked memories using data recomputation. In: ISLPED 2006:
Proceedings of the 2006 International Symposium on Low Power Electronics and
Design, pp. 358–362. ACM, New York (2006)

Lafond, S., Lilius, J.: Energy consumption analysis for two embedded Java virtual
machines. Journal of Systems Architecture 53(5-6), 328–337 (2007)

Lafore, R.: Data Structures and Algorithms in Java, 2nd edn. SAMS Publishing, Indi-
anapolis (2002)

Lancaster, D.E.: TTL Cookbook. Sams (1974)
Liveris, N., Zhou, H., Banerjee, P.: A dynamic-programming algorithm for reducing

the energy consumption of pipelined system-level streaming applications. In: ASP-
DAC 2008: Proceedings of the 2008 Conference on Asia and South Pacific Design
Automation, pp. 42–48. IEEE Computer Society Press, Los Alamitos (2008)

Ozturk, O., Kandemir, M.: Nonuniform Banking for Reducing Memory Energy Con-
sumption. In: DATE 2005: Proceedings of the Conference on Design, Automation
and Test in Europe, pp. 814–819. IEEE Computer Society, Washington, DC (2005)

Potlapally, N.R., Ravi, S., Raghunathan, A., Jha, N.K.: A Study of the Energy Con-
sumption Characteristics of Cryptographic Algorithms and Security Protocols.
IEEE Transactions on Mobile Computing 5(2), 128–143 (2006)

Seddik-Ghaleb, A., Ghamri-Doudane, Y., Senouci, S.-M.: A performance study of TCP
variants in terms of energy consumption and average goodput within a static
ad hoc environment. In: IWCMC 2006: Proceedings of the 2006 International
Conference on Wireless Communications and Mobile Computing, pp. 503–508.
ACM, New York (2006)

Senouci, S.-M., Naimi, M.: New routing for balanced energy consumption in mobile ad
hoc networks. In: PE-WASUN 2005: Proceedings of the 2nd ACM International
Workshop on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous
Networks, pp. 238–241. ACM, New York (2005)

Seo, C., Malek, S., Medvidovic, N.: An energy consumption framework for distributed
java-based systems. In: ASE 2007: Proceedings of the Twenty-Second IEEE/ACM
International Conference on Automated Software Engineering, pp. 421–424. ACM,
New York (2007)

Shen, H., Kumar, M., Das, S.K., Wang, Z.: Energy-efficient data caching and prefetch-
ing for mobile devices based on utility. Mobile Networks and Application 10(4),
475–486 (2005)



Energy Aware Database Management 53

Singh, H., Singh, S.: Energy consumption of tcp reno, newreno, and sack in multi-hop
wireless networks. ACM SIGMETRICS Performance Evaluation Review 30(1),
206–216 (2002)

Sun, B., Gao, S.-X., Chi, R., Huang, F.: Algorithms for balancing energy consumption
in wireless sensor networks. In: FOWANC 2008: Proceeding of the 1st ACM In-
ternational Workshop on Foundations of Wireless Ad Hoc and Sensor Networking
and Computing, pp. 53–60. ACM, New York (2008)

Tuan, T., Kao, S., Rahman, A., Das, S., Trimberger, S.: A 90nm low-power FPGA
for battery-powered applications. In: FPGA 2006: Proceedings of the 2006
ACM/SIGDA 14th International Symposium on Field Programmable Gate Ar-
rays, pp. 3–11. ACM, New York (2006)

Wang, L., French, M., Davoodi, A., Agarwal, D.: FPGA dynamic power minimiza-
tion through placement and routing constraints. EURASIP Journal on Embedded
Systems 2006(1) (2006)

Wick, M.R., Phillips, A.T.: Comparing the template method and strategy design pat-
terns in a genetic algorithm application. SIGCSE Bull. 34(4), 76–80 (2002)

Zhang, M., Chang, X., Zhang, G.: Reducing cache energy consumption by tag encoding
in embedded processors. In: ISLPED 2007: Proceedings of the 2007 International
Symposium on Low Power Electronics and Design, pp. 367–370. ACM, New York
(2007)



 

S. Klingert et al. (Eds.): E2DC 2013, LNCS 8343, pp. 54–65, 2014. 
© Springer-Verlag Berlin Heidelberg 2014 

A Data Center Control Architecture for Power 
Consumption Reduction 

Juan Felipe Botero1, David Rincón1, Anna Agustí1, Xavier Hesselbach1,  
Frederic Raspall1, David Remondo1,  

Antoni Barba1, Paolo Barone2, and Giovanni Giuliani2  

1 Dept. of Telematics Engineering, Universitat Politècnica de Catalunya 
– BarcelonaTech, Spain 

{jfbotero,drincon,anna.agusti,xavierh,fredi, 
remondo,telabm}@entel.upc.edu 

2 HP Italy Innovation Center, Milan, Italy 
{paolo.barone,giuliani}@hp.com 

Abstract. In recent years, the emergence of the cloud computing has increased 
the need of resources to support cloud-based services. Therefore, the role of the 
data centers has become essential. Following the growing of services, power 
consumption has increased dramatically, while the need for energy savings and 
CO2 reduction has become a requirement for a sustainable world.  

The All4Green project fosters collaboration between energy providers (EP), 
data centers (DC) and customers/end users (EU) in order to provide energy sav-
ings and CO2 emissions reduction. In this architecture, the contract binding EPs 
and DCs includes flexibility terms in order to allow the collaboration in the 
form of discounts that can be transferred also to DC customers, if they are will-
ing to collaborate.  

This paper introduces such new control architecture for the data centers 
oriented to energy savings. We provide a high-level view of the modules and 
functionalities required for achieving the collaboration goal. We describe how 
SLA conditions can be extended with flexible terms, how DCs can modulate 
their operational mode mode according to the EPs’ and their own power con-
sumption needs, and what are the new elements and functionalities that must be 
implemented in the DC. 

Keywords: GreenSLA, Energy Efficiency, Green Data Center and Control Ar-
chitecture. 

1 Introduction 

It has been estimated that the Information and Communications Technology industry 
is responsible of 2% of the global CO2 emissions, and a similar share of global energy 
consumption, and the trends point towards an increase of these figures [1]. Recent 
research effort to save energy in ICT industry is mainly devoted to the following top-
ics: energy-efficient hardware, energy-efficient multiprocessor and Grid Systems and 
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data centers, energy-efficient wireless and wired networks, and energy-efficient 
HVAC (heating, ventilation and air conditioning). 

Data centers (DCs), due to their constant growing size, amount of information, 
market penetration and, especially, high-energy demand, have been a subject of re-
search interest in the energy efficiency field. The efforts to reduce energy have been 
directed to servers and cooling. 

Current efforts to reduce energy consumption in DCs are focused on the optimiza-
tion of single IT elements [2-4] or even subsets of the IT elements that are part of a 
DC [5,6]. The recently finished European Union (EU) funded project Fit4Green has 
made notable contributions in this topic. This research project designed energy aware 
optimization policies for DCs where, among other solutions, it considered the federa-
tion of several DCs and showed that energy consumption could be significantly re-
duced by consolidating workload on fewer, more efficient servers or by intelligently 
re-allocating IT services to federated sites with low environmental impact. 

This paper presents the control architecture in the DCs proposed by All4Green 
(follow-up of FIT4Green), a project funded by the European Union (EU), which is 
committed to devise an architecture to reduce DCs’ energy consumption by 10% on 
top of existing strategies and the associated CO2 emissions. One fundamental role of 
this control architecture is to provide the current and estimated power consumption of 
the IT services running in the DC, so that the DC’s intelligence is able to take deci-
sions that contribute to the energy consumption reduction. 

2 Collaboration to Save Energy 

All4Green considers the following entities in the DC ecosystem, as shown in Fig.1: 
Data Centers, Energy Providers (EP) that supply energy to the DCs, and End Users 
(EUs) or IT Customers (ITCs) that demand IT services from the DCs. 

Our scenario is a composition of the aforementioned entities, which cooperate in 
order to improve the energy efficiency. Such cooperation is carried out by means of 
the communication between software agents acting on behalf of each entity. Agents’ 
actions are constrained by the contractual agreements between the parties, the so-
called SLA (Service Level Agreements) or SDA (Supply Demand Agreements). Such 
agreements are extended with energy-related flexibility and collaboration statements. 
The agreements describing the services to be delivered are called GreenSDA (be-
tween DC and EP) and GreenSLA (between DC and ITC) [7,8].  

Energy efficiency is obtained by changing the run-time conditions (GreenSLA) of 
the deployed IT services. The DC Agent makes energy-aware decisions over a service 
due to time/calendar changes (e.g. a service may run in low performance mode during 
weekends) or due to a request coming from the EP (e.g. the EP asks the DC to de-
crease its energy consumption due to a power shortage). 

The set of energy-aware decisions made by the DC Agent needs the support of an 
energy-aware control architecture in the DC. For these purposes a centralized control 
based architecture is proposed in this paper. The agents negotiate with the diverse 
entities to provide energy savings, while the centralized control architecture provides 
the functionality needed by the DC Agent to support its decision-making process.  
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process is supported by the information coming from the interaction DC Agent ⇄ DC 
Connector about the power consumed by each service in the DC under the current 
conditions and also an estimation of the power that a service would consume in 
different running conditions. After this information has been gathered by the DC 
Agent, it can take an energy-efficient decision that implies the enforcement of the 
new running conditions for a set of IT Services in the DC. 

Fig. 2 shows the interaction among the aforementioned entities. It is worth noting 
that the communication between the agents (DC, ITC) and the DC Connector takes 
place by means of three different types of messages: Generic, specific and pass-
through. Each type of message triggers a different functionality in the DC Connector. 

 

Fig. 2. Interaction among DC Agent, DC Connector and ITC Agent 

3.1 General Functionality 

As shown in Fig. 2, the generic functionalities of the DC Connector are triggered by 
the reception of any of these messages: Power Consumption per Service (asking for 
the current consumption of a running IT service), Expected Power Consumption per 
Service (asking for an estimation of the power that a specific IT service would 
consume over different running conditions), Expected Power Consumption per 
Potential New Service (asking for an estimation of the power that a new service 
would consume after deployed) and Expected Total Power Consumption (asking for 
an estimation of the total power consumed by the DC).  

These functionalities are generic because they do not depend on the specifics of 
different data centers but they are common to all of them. The generic messages are 
related with power and their aim is to get current or estimated values of the power 
consumed either by an IT Service or by the complete DC. 

To be able to provide a response to the Power Consumption per Service message 
coming from the DC Agent, the DC Connector should implement functionality that  
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retrieves, from the DC control system, the current data necessary to calculate the  
current power of an IT Service. In turn, to provide a good estimation for the rest of the 
messages, the DC Connector rely on a Knowledge Base (KB) where historic informa-
tion about the deployment and power consumption of the IT services is stored. 

 

Fig. 3. DC Connector building blocks 

Fig. 3 shows various components of the DC Connector that are needed to cope 
with the generic requests made by the DC Agent: 

• DC Connector ⇄ DC control system interface messages: To calculate the amount 
of power used by an IT Service, the DC Connector needs to know how the service 
is deployed in the DC and the power consumed by the elements that host it (dedi-
cated servers and Virtual Machines -VMs-). This information is retrieved by means 
of the following messages: Get IT Service allocation (retrieves the set of dedicated 
servers and VMs where the service is deployed), Get Server resource status (re-
trieves the current resource usage of the server, mainly its CPU and its power con-
sumption) and Get VM(Server) resource status (retrieves the current resource 
usage of the VM, mainly its CPU). 
 

• Knowledge base: The KB periodically polls the DC Control System to store the 
information of service deployment and element usage for each Time Slot (TS) 
making use of the aforementioned messages. 
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• IT Service Power Computer: Asking the KB for the deployment of a specific 
service and the current resource usage of the elements (dedicated servers, VMs) 
hosting it, this function calculates its current power consumption. 

 
• Estimator: This functionality allows estimating the power of a running service, 

potential new service or completing DC, taking into account the historic register 
stored in the KB.  

3.2 Specific Functionality 

The specific functionalities of the DC Connector depend on the DC itself, i.e. they are 
not generic functionalities but have to be implemented taking into account the 
specifics of each DC. The need to implement these functionalities in the DC 
Connector is generated by the reception of the following messages: 
Adaption/Enforcement (asking for the enforcement of either a deployed service with 
different conditions or a new service) and Service Status (asking for the current status 
of a specific IT Service). 

3.3 Pass-Through Functionality 

This functionality of the DC Connector is very simple. Upon the reception of a pass-
through request, the DC connector just passes the request to the DC control system. 
Also, upon the reception of a pass-through response from the DC control system, the 
DC Connector passes the same response to the corresponding agent. 

The set of pass-through messages coming from 1) the DC Agent are: 
GetITServiceList, GetITServiceDetails and CreateNewItService and 2) from the ITC 
Agent are Activation/Termination and ServiceStatus. 

4 Implementation Concerns 

Fig. 4 shows a schema of the elements and functions that the DC Connector must 
implement in order to provide an answer to the generic messages sent by the DC 
Agent.  

In the first place, either to calculate the current power consumption of a given ser-
vice or to estimate the power consumption under a given combination of SLA para-
meters, the DC Connector must keep track of the power consumption of each Server 
and Virtual Machine (VM), as well as the power consumption of each IT Service 
during a certain time interval.  

Information regarding the power consumption of Servers and Virtual Machines is 
obtained by periodically polling the DC using the messages defined in the interface 
between the DC Connector and the DC (point 1 in Fig. 4). The granularity of the pol-
ling periodicity is defined in Time Slots (TS), the duration of which is DC dependent 
and represents the minimum time during which the DC expects to maintain the  
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assignment of servers and VMs almost unchanged for any IT service instance. An-
swers provided by the DC are stored in the Knowledge Base (point 2 in Fig. 4).  

The DC Connector can directly obtain the Servers’ power consumption from the 
DC. However, the power consumption of each VM must be inferred using some sort 
of algorithm to distribute the power consumption of the physical server where the VM 
is running on. How to design the power distribution function is also an implementa-
tion issue of the DC Connector (point 4 in Fig. 4). 

 

Fig. 4. Schema of the elements required to implement the generic functions in the DC  
Connector 

The Knowledge Base (KB), in addition to the power consumption of Servers and 
VMs, also stores the power consumption of each IT Service. Given that the characte-
ristics of each IT Service are described by a set of SLA parameters and given that the 
power consumption depends tightly on the values of such set of SLA parameters, IT 
Services are classified in the KB according to its type. Thus, the DC Connector re-
quests to the DC the list of Servers and VMs assigned to a given IT Service in each 
TS. Then, the DC Connector calculates the power consumption of such an IT Service, 
and stores the result together with the list of SLA parameters and their values in the 
KB. Fig. 5 shows the KB’s structure of tables of Servers, VMs and IT Services, as 
well as the messages of the interface between the DC Connector and the DC that are 
required to obtain the information. 
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The DC Connector estimates the power consumption of a given IT Service under 
certain operation conditions by taking a given set of values of the KB and using an 
estimation algorithm (point 3 in Fig. 4). The selection of which set of values are going 
to be retrieved from the KB as well as the specific steps to make each power compu-
tation operation depends on the implementation of the corresponding functions in the 
DC Connector (points 5 to 8 in Fig. 4).  

 

Fig. 5. Knowledge Base structure 

5 Description of Functions 

As shown in Fig. 4, there are four types of requests from the DC Agent to the DC 
Connector. To build the responses to these requests, the DC Connector will need spe-
cific functionalities, as indicated with numbers 5 to 8 in Fig. 4. Next, we describe the 
four different functionalities. 

5.1 Power Consumption Per Service Function 

This function comprises the following steps: 

• The DC Connector requests the DC the resources for all servers and VMs where 
the service instance runs. This is done via <Get Server resources status> and <Get 
VM(Server) resources status> messages, respectively. Resources are for instance 
power consumption, CPU speed, allocated memory, and network resources. 

• For each VM, calculate the Power Consumption using the power calculator. 
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• The Power Consumption per Service is calculated as the sum of the power con-
sumptions of all VM and dedicated servers where the service instance runs. 

5.2 Expected Power Consumption Per Service Function 

This function comprises the following steps: 

• Request power consumption history values from the KB for this IT service instance 
and for TSs when SLA parameter values were identical to those in the request1. 
The function that executes this request may include two additional parameters: age 
and maximum number of samples; these two parameters limit the amount of values 
that are passed to the caller. 

• Pass the values to the estimator to establish the expected energy consumption of 
the service instance.  

5.3 Expected Power Consumption Per Potential New Service Function 

This function comprises the following steps: 

• Request power consumption history values from the KB for IT service instances of 
the same type (i.e. same set of SLA parameters) and for TSs when SLA parameter 
values were identical to those in the request. The function that executes this request 
may include two additional parameters: age and maximum number of samples; 
these two parameters limit the amount of values that are passed to the caller. 

• Pass the values to the estimator to establish the expected energy consumption of 
the service instance.  

5.4 Expected Total Power Consumption Function 

This function comprises the following steps: 

• Request power consumption history values of all servers from the KB. 
• Use the estimator to establish, for each server, its expected power consumption. 
• Calculate the sum of the expected power consumptions of all servers.  
• Return the sum multiplied by the Power Usage Effectiveness (PUE) factor, which 

incorporates the impact of cooling, UPS, etc. 

6 The Power Distributor Function 

To calculate the power consumed by an IT service, we need to know the power of 
each element (Dedicate Servers, VMs) hosting the service. The power of dedicated 
servers can be easily retrieved by means of the Get Server resource status message. 

                                                           
1 If no data is available, the function “Expected Power Consumption per Potential New Ser-

vice” will be used instead. 
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However, for VMs the power information is not known as it is not easy to get an idea 
of the exact percentage of the server’s power being consumed by each of its 
instantiated VMs. Consequently, to define the power consumed by each VM, we 
make a rough estimation based on the percentage of the server CPU (in the literature 
the most significant element affecting power consumption [2]) that the VM is using. 
The calculation of this proportion is carried out using the following formula: 

 
N = Number of servers 
VM= Set of virtual machines 
NCj = Number of virtual CPUs of the virtual machine j 
Ei = Energy spent by the server i, i=0,1,…,n 
VLjk = Load of virtual CPU k in the virtual machine j 
CPUi = CPU load of the server i, i=0,1,…,n 
Perj = Percentage of CPU load of the Virtual Machine j 
VEj = Energy spent by virtual machine j 
αij = Binary value indicating whether a virtual machine j belongs to server i 

ݎ݁ܲ  ൌ  ቀ∑ ேೕୀܮܸ ቁ ൫∑ ܲܥߙ ܷேୀ ൯൙   ሺ1ሻ 

ܧܸ  ൌ ݎ݁ܲ ∑ ேୀܧߙ  ሺ2ሻ 

The next constraint ensures that a VM can be allocated in only one server:  

 ∑ ேୀߙ ൌ 1, ݆ א  ሺ3ሻ ܯܸ

7 Estimation of Energy Consumption 

One key element for the aforementioned architecture to work properly and achieve 
the energy reduction goals is to obtain good estimations of the power consumption of 
each IT Service. The better the estimations, the more accurate the decisions to be 
made at the DC Agent (i.e. time-shifting jobs, or changing SLA levels).  In our archi-
tecture, the estimator is responsibility of the DC Connector, since it is the piece that 
includes the Knowledge Base where past samples are stored, and it is also the module 
that dialogues directly with the DC. 

In general, there are two approaches for the estimation: a) power-model based es-
timators, and b) history-based estimators. The former relies on a detailed knowledge 
of the servers’ characteristics and other hardware involved in the delivery of the IT 
Service, by applying a power model (previously calibrated) that is able to compute the 
consumed power from the monitoring of parameters such as CPU, memory, and disk 
usage, and input/output activity (see [2] for an example of such a model). Given the 
complexity of such models, and since our design must be general enough to run on 
different types of servers and/or types of DCs, we decided to rely on historical records 
stored in the KB and the use of linear predictors and machine learning techniques.  



64 J.F. Botero et al. 

 

There are two different situations that involve estimation. On the one hand, we 
need to know the power consumption of an already existing IT Service under certain 
SLA conditions. In principle, we have information about past consumptions of the 
same IT Service. In this case, the estimations are obtained from the energy that the IT 
Service consumed under the same SLA conditions; in case no such data is available, a 
not-so-good estimation can be obtained from the records involving the same IT Ser-
vice under different SLA conditions. On the other hand, there can be a new IT Service 
(either coming from a federated DC or locally demanded) for which there is no past 
information. In this case, we rely on the categorization of services into types (e.g. web 
server, virtual machine) and provide an estimation based on the past consumptions of 
IT services of the same type.  

The aforementioned procedures use an auxiliary function that ranks the “quality” 
of the available samples stored in the knowledge database. The quality factor is com-
puted from an age parameter that indicates how old is the sample, the type of service, 
the set of desired SLA parameters expressed in the form SLA_Condition_Pair = 
(SLA_Condition_type: String, value: String) that is compared to the SLA conditions 
that held during the execution of the IT Services whose consumptions are stored, and 
a maximum number of past samples to be returned. The function returns the desired 
number of samples, ordered in terms of the quality rank.  

The estimators currently in use include a) mean of the selected past samples, and b) 
an autoregressive model (AR) of order 1 such as  

 ሺ4ሻ ܥ+ݐ߳+1−ݐܺ߮=ݐܺ 

where Xt is the time series of the stored samples, εt is zero-mean white noise with 
variance equal to that of the past samples, ϕ is the normalized autocorrelation of Xt at 
lag 1, and C is related to the mean of the time series. Although its simplicity, and 
given the statistical characteristics of consumption values captured from servers in 
production DCs, they seem adequate for the first phase of All4Green. We are also 
investigating the use of machine learning techniques. In subsequent phases, the use of 
Principal Component Analysis (PCA) [9] will improve the accuracy of the estimation 
by exploiting the intrinsic correlation between the time series stored in the KB. 

8 Conclusions and Future Work 

This paper has presented a novel architecture to monitor and control the data centers 
to take intelligent decisions in order to save energy and reduce the carbon emissions. 

The paper analyzes the requirements of the full ecosystem, and defines the blocks 
diagram and functionalities for a real test bed. The full set of SLA conditions of the 
services, the running modes of the data centers and history stored of the power con-
sumed by the services are considered.  

The energy savings achieved by the proposed architecture cannot be evaluated in 
this paper as this environment is now being implemented and tested in a set of operat-
ing DCs under the All4Green Project. The results of these tests will give leave to 
assess the validity of this proposal by confirming the 10% energy consumption  
reduction of current DCs on top of existing strategies. The results will also allow to 
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measure the energy consumption produced by the implementation of the proposed 
architecture and its relationship with the overall energy saved. 

An interesting branch of future research is the scalability. It is important to assure 
the system availability and reliability even if the number of servers to be measured 
increases. Such studies will be carried out during the second phase of the project, and 
will ensure the deployment of our approach in arbitrarily sized DCs.  
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Abstract. In this paper we present a concept and specification of Data
Center Efficiency Building Blocks (DEBBs), which represent hardware
components of a data center complemented by descriptions of their en-
ergy efficiency. Proposed building blocks contain hardware and thermo-
dynamic models that can be applied to simulate a data center and to
evaluate its energy efficiency. DEBBs are available in an open reposi-
tory being built by the CoolEmAll project. In the paper we illustrate
the concept by an example of DEBB defined for the RECS multi-server
system including models of its power usage and thermodynamic proper-
ties. We also show how these models are affected by specific architecture
of modeled hardware and differences between various classes of applica-
tions. Proposed models are verified by a comparison to measurements on
a real infrastructure. Finally, we demonstrate how DEBBs are used in
data center simulations.

Keywords: data centers, energy efficiency, simulations.

1 Introduction

Recent fast development of cloud computing and computational science caused
growing demand for large capacities that should be delivered in a cost-effective
way by distributed data centers. However, these processes led to huge amounts
of consumed energy. In many current data centers the actual IT equipment uses
only half of the total energy while most of the remaining part is required for
cooling and air movement resulting in poor Power Usage Effectiveness (PUE)
[1] values. For these reasons many efforts were undertaken to measure and study
energy efficiency of data centers, for instance [2][3][4] to name a few. In order
to optimize a design or configuration of data center we need a thorough study
using appropriate metrics and tools evaluating how much computation or data
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processing can be done within given power and energy budget and how it affects
temperatures, heat transfers, and airflows within data center. Therefore, there
is a need for simulation tools and models that approach the problem from a
perspective of end users and take into account all the factors that are critical to
understanding and improving the energy efficiency of data centers, in particular,
hardware characteristics, applications, management policies, and cooling.

To cope with this problem we introduce Data Center Efficiency Building
Blocks (DEBBs), which (i) provide means to to prepare descriptions and mod-
els to be easily inserted into simulations (ii) allows data center designers and
analysts to take holistic view of data centers from impact of single applications
up to the heat transfer and cooling process in the whole data center. Proposed
building blocks contain hardware and thermodynamic models that can be ap-
plied to simulate a data center and to evaluate its energy efficiency. They are
based on common formats and standards, and contain evaluation of their energy
efficiency in various conditions (rather than defining maximum power only). In
this way they allow, once applied in the CoolEmAll Simulation, Visualization
and Decision Support Toolkit (SVD Toolkit), to integrate discrete event and
Computational Fluid Dynamics (CFD) simulations [5] and enable optimization
of data center energy-efficiency also for low and variable loads rather than just
for peak ones as it is usually done today. The toolkit includes the repository
of DEBBs, workload and application profiles, the Data Center Workload and
Resource Management Simulator, CFD simulator, metrics calculator, and visu-
alization tools. The architecture along with interactions between components
and details about the SVD Toolkit can be found in [5][6].

The structure of the paper is as follows. Section 2 contains related work con-
cerning data center building blocks and simulations of data centers. The concept
of open data center efficiency building blocks is described in Section 3. In this
Section we explain how we define and build profiles of data center hardware.
In Section 4 we illustrate the DEBB concept by an example of DEBB defined
for the Christmann RECS system along with specific models of energy efficiency
and thermodynamic properties. This Section also contains a verification of mod-
els by comparison to tests on real infrastructure. Section 5 illustrates the use
of DEBBs in simulations of hardware behavior for various workloads. Section 6
concludes the paper.

2 Related Work

The problem of data center energy efficiency is recently gaining more and more
interest and importance so there is a lot of ongoing work both in industry and
research. There are already software tools available on the market, which can
be applied to simulate thermal processes in data centers. Examples of such soft-
ware include simulation codes along with more than 600 models of servers from
Future Facilities, SigmaDC software, CA tools, or the TileFlow application. In
most cases the simulation tools are complex and expensive solutions that allow
detailed modeling heat transfer in data centers. To simplify the analysis process
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Romonet introduced a simulator, which concentrates on costs analysis. Instead
of complex Computational Fluid Dynamics (CFD) simulations it is based on sim-
plified computational and cost models. However it does not enable detailed heat
transfer analysis. Common problem in case of commercial data center modeling
tools is that they use closed limited databases of data center hardware. Although
some of providers as Future Facilities [7] have impressive databases, extensions
of these databases and use of models across various tools is limited. To cope with
this issue Schneider have introduced the GENOME Project that aims at collect-
ing ”genes” which are used to build data centers. They contain details of data
center components and are publicly available on the Schneider website. Never-
theless, the components are described by static parameters such as ”nameplate”
power values rather than details that enable simulating and assessing their en-
ergy efficiency in various conditions. Another initiative aiming at collection of
designs of data centers is the Open Compute Project. Started by Facebook which
published its data center design details, consists of multiple members describing
data centers’ designs. However, Open Compute Project blueprints are designed
for description of good practices rather than to be applied to simulations.

In addition to industrial solutions significant research effort was performed in
the area of energy efficiency modeling and optimization. For example, models of
servers’ power usage were presented in [8] whereas application of these models to
energy-aware scheduling in [3]. Additionally, authors in [9][10] proposed method-
ologies of modeling and estimation of power by specific application classes. There
were also attempts to use thermodynamic information in scheduling as in [11].
Nevertheless, the above works are focused on research aspects and optimization
rather than providing models to simulate real data centers.

3 Open Data Center Efficiency Building Blocks

As noted, one of the main results of the CoolEmAll project is the design of
diverse types of Data center Efficiency Building Blocks (DEBBs), enabling to
model and simulate a data center on different granularity levels. The following
subsections describe the DEBB concept, its structure, hardware- and thermody-
namic models, and metrics assessing energy-efficiency.

3.1 DEBB Concept and Structure

A DEBB is an abstract description of a piece of hardware and other components,
reflecting a data-center building block on different granularity levels. A DEBB
contains hardware- and thermodynamic models used by SVD toolkit [5] to sim-
ulate workload, heat- and airflow, enabling (energy-efficiency) assessment and
optimization of different configurations of data centers built of these building
blocks (DEBBs).

Within CoolEmAll, a DEBB is organized hierarchically and can be described
on following granularity levels:
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1. Node Unit reflects the finest granularity of building blocks to be modeled
within CoolEmAll - a single blade CPU module, a so-called ”pizza box”, or
a RECS CPU module.

2. Node Group reflects an assembled unit of building blocks of level 1, e.g. a
complete blade center or a complete RECS unit (currently consisting of 18
node-units).

3. ComputeBox1 reflects a typical rack within an IT service center, including
building blocks of level 2 (Node Groups), power supply units and integrated
cooling devices.

4. ComputeBox2 building blocks are assembled of units of level 3, e.g. reflect-
ing a container or even complete compute rooms, filled with racks, power-
units, cooling devices, etc.

Fig. 1. DEBB structure

The structure of the DEBB is shown in Figure 1. The formal specification of
DEBBs along with selected formats is described in [12], and contains description
of:

(a) The hierarchy of a DEBB with aggregation and position of its objects
(lower level DEBBs) is described in PLMXML [13] format, allowing references
to description of models or profiles in different formats, listed below.

(b) Geometrical data describing object-shapes, necessary for CFD simulation,
is expressed in STL [14] format, and is referenced from the object description in
PLMXML file. The combination of these two formats: PLMXML for description
of the DEBB hierarchy with position of its objects (lower level DEBBs) and STL
for description of object-shapes, enables to model any scene definition (needed for
CFD simulation) on different granularity levels, such as a server-room consisting
of cooling components, racks, power-units, and other devices. Often a geometry
for CFD simulations is simplified to reduce execution time of simulations. Hence,
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DEBB also contains a separate model for visualization (see point (f)).These files
are optional so either STL or VRML can be used for visualization.

(c) The PLMXML file, describing DEBB hierarchy, contains for each object a
corresponding reference to its technical description, DEBB Component, describ-
ing its manufacturer and model in a CIM based format. This allows a workload
simulator to identify the node type being selected for workload execution and
correlate it with its power-usage profile. The entire XSD schema for specification
of DEBB Components is described in [12].

(d) Power-usage profile is embedded into DEBB Component and describes
for each load level of a particular component type (model and manufacturer)
its corresponding power-usage, enabling calculating and simulating power con-
sumption and heat load for different utilization levels during the simulation of
the workload execution. This allows assessing power-usage of workload being
executed on particular component types, such as node-types.

(e) Thermodynamic profile, stating air-throughput of fans for different lev-
els and cooling capacity of cooling devices is defined in scope of DEBB Com-
ponent schema definition. Thermodynamic profile is used by workload simu-
lator to calculate air flow - initial boundary conditions necessary for airflow
and heat-distribution simulation. The entire XSD schema for specification of
thermodynamic-profile is described in scope of Component Description schema,
in [12].

(f) Geometrical data for visualisation of DEBB and their shapes is described in
VRML format. It is referneced from PLMXML in the same manner as geometric
shapes (STL format) objects for CFD simulation.

(g) Metrics are described in XML format, embedded into PLMXML with user
defined values.

As mentioned, a DEBB contains models used by SVD toolkit [5] to simulate
power usage and airflow caused by workloads, enabling assessment and optimiza-
tion of different configurations of data centers built of building blocks. Hence, a
simulation of a DEBB on level n (e.g. ComputeBox2 level), requires DEBBs of
level n-1 (e.g. ComputeBox1). As the focus of CoolEmAll is to simulate thermal
behavior of a DEBB to enable design of energy-efficient building blocks, it is
modeled as the smallest unit in the thermodynamic modeling process. As such,
the complete Node Unit is the smallest feature that will be present in a simu-
lation. The thermodynamic processes within a Node Group are modeled using
Node-Unit models, allowing to simulate accurate heat distribution within the
Node-Group. The ComputeBox1 simulations will require - besides the arrange-
ment of the Node Groups - the velocity field and temperature at the Node Group
outlets over time as inbound boundary condition and will provide the room tem-
perature over time at the outlet of the Node Group. Similarly, the simulation
of compute-room (ComputeBox2) or a container will require velocity field and
temperature on inlets and outlets of ComputeBox1, reducing simulation models
to required level. The following sections contain descriptions of DEBB specifica-
tion elements. Additionally, the general analysis and classification of metrics for
evaluation of data centers and DEBBs can be found in [15].
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3.2 DEBB Energy-Efficiency Profiles

Power Profile. The key characteristics of data center components is obviously
their power use. However, to analyze data centers efficiency in dynamic settings
power values should be known for various loads and conditions.

In the case of IT equipment the power function may depend on its power
states, load or even specific applications that are executed on resources. Total
power usage can be also completed by adding constant power usage of compo-
nents that does not depend on load or state of resources.

Main cause of power usage and heat dissipation are processors. Generally, the
power consumption of a modern CPU is given by the formula:

P = C · V 2
core · f (1)

with C being the processor switching capacitance, Vcore the current P-State’s
core voltage and f the frequency. Based on the above equation it is suggested that
although the reduction of frequency causes an increase in the time of execution,
the reduction of frequency also leads to the reduction of Vcore and thus the
power savings from the P ∼ V 2

core relation outweigh the increased computation
time. However, experiments performed on several HPC servers shown that this
dependency does not reflect theoretical shape and is often close to linear [8].
This phenomenon can be explained by impact of other component than CPU
and narrow range of available voltages.

Furthermore, detailed power usage of components such as CPUs or memory
are usually unavailable. For these reasons, CoolEmAll DEBBs allow users to
define dependencies between power usage and resource states (such as CPU
frequency) in the form of tables. If more complex dependencies must be modeled
the SVD Toolkit enables definition of arbitrary functions using energy estimation
plugins.

There are two basic approaches to model power usage of resources in DEBBs:
static and resource load model [16].

Static model is based on a static definition of resource power usage. This
model calculates the total amount of energy consumed by the computing resource
system as a sum of energy, consumed by all its components (processors, disks,
power adapters, etc.). More advanced versions of this approach assume definition
of resource states (e.g. CPU P-states) along with corresponding power usage.
This model follows changes of resource power states and sums up the amounts
of energy defined for each state. In this case, specific values of power usage are
defined for all discrete n states as shown in (2):

Si → Pi, i = 1, .., n (2)

Resource load model extends the static power state description and enhances
it with real-time resource usage, most often simply the processor load. In this
way it enables a dynamic estimation of power usage based on resource basic
power usage and state (defined by the static resource description) as well as
resource load. In this case, specific values of power usage are defined for all pairs
state and load values (discretized to l values) as shown in (3):
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(Si, Lj) → Pij , i = 1, .., n, j = 1, ..., l (3)

The power usage of computing resources may strongly depend on a type of ex-
ecuted application [9] [10]. Therefore, CoolEmAll power profiles allows defining
power usage functions for specific application classes based on application pro-
files. In the example of DEBB (Section 4.3) we show differences between power
profiles for selected diverse applications.

Thermodynamic Profile. Thermodynamics properties include both air
throughput and thermal models. While estimation of power usage P (t) and
air throughput Q(t) in time for all nodes is sufficient to compute temperatures
using Computational Fluid Dynamics (CFD) methods, we also propose thermal
models that allows simplified and faster calculations. Two ways of simulations
with the use of the SVD Toolkit are illustrated in Figure 2.

Fig. 2. Two ways of simulations with the use of the SVD Toolkit

In the first approach that assumes the use of a CFD solver to simulate detailed
thermal distributions, power usage and airflow throughput must delivered as an
input. Power usage is estimated based on profiles defined in Section 3.2. The
airflow throughput is modeled using the air throughput profile, which enables
specification of the throughput (measured in m3/s) depending on the state of
resource. The state of resource include its power state (in particular if it is on
or off) but also a temperature T , which determines the air throughput level.
General profile can be defined as (4). Some consideration and tests of the air
throughput in a concrete server are included in Section 4.3.

Q =

⎧⎨
⎩

0, for node off;
Q(T0), for T ≤ T0;
Q(Ti), for Ti−1 < T ≤ Ti, i > 0.

(4)

In order to create simplified thermal models of DEBBs we use basic thermo-
dynamics rules and empirical data. For instance, for server illustrated in Figure
3 we can express dependency between power usage and change of temperature
(between outlet and inlet temperature) by( 5), where ρ denotes air density, Q air
throughput, and C air heat capacity. However, this dependency assumes ideal
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case where the whole heat is dissipated into the outlet air. In practice, heat is
often dissipated in other directions so to cope with this issue we introduced a
parameter δ, which should be found empirically. The final formula to calculate
outlet temperature is given in (6).

Fig. 3. Air flow in a single CPU server, section view

P = ρ ·Q · C ·ΔT (5)

Tout = Tin + δ
P

ρ ·Q · C (6)

The example of formula derived for concrete servers and calculating δ are
presented in Section 4.

4 Case Study: Building Blocks for RECS System

In this section we present a DEBB for a specific type of servers delivered by the
Christmann company. Although the system provided by Christmann is a specific
prototype it represents an important and emerging class of solutions that allow
integrating a significant number of servers in few rack units. These solutions
require more complex modeling of interrelationships between their components
then traditional servers. The thermal and power usage analysis of such high-
density systems is also of a great importance. For this reason, a multi-node
RECS system is a good test case for illustration of DEBB design and modeling.

4.1 Efficient RECS Server Prototypes

The test case system, called RECS [5], is a high density multi-node computer
that consists of 18 single server nodes within one Rack Unit. To enable the
user to have a fine-grained monitoring- and controlling-system, the RECS has
a dedicated master-slave system of microcontrollers integrated that can gather
different metrics directly without the need of polling every single node or the need
of Operation System support [2]. This enables us in the CoolEmAll project to
gather many metrics like power usage, status and temperature for every node via
only one request. Importantly, RECS can be equipped with diverse computing
nodes ranging from high performance Intel i7 processors to Intel Atom CPUs or
even embedded ARMs.
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According to the DEBB hierarchy levels (defined in Section 3.1) each of RECS
containing different CPUs can be defined as a separate DEBB and its model with
profiles can be inserted into simulations. On the other hand, the whole set of
RECS systems located in a single rack enclosure can be defined as a DEBB too.
The decision depends on a scope of simulations and interests of a data center
designer or analyst. In this paper we focus on modeling energy-efficiency profiles
of computing nodes in a single RECS system (1 rack unit).

In the next section, we describe the actual testing environment used to con-
struct DEBBs built on top of RECS systems.

4.2 Testbed Configuration

The testbed used to build and verify models of hardware consists of 3 RECS
systems equipped with diverse kinds of CPUs. In the testbed used as a reference
for building RECS models there are 3 major CPU types: Intel i7, AMD Fusion,
and Intel Atom. Detailed specification of these CPUs is as follows:

– CPU: AMD G-T40N Processor @ 1GHz, CPU Cache: 512 KB, CPU Cores#:
2, RAM: 3.5 GB

– CPU: Intel Atom N2600 @ 1.60GHz, CPU Cache: 512 KB, RAM: 2 GB

– CPU: Intel Core i7-3615QE CPU @ 2.30GHz, CPU Cache: 6144 KB, RAM:
16 GB

– CPU: Intel Core i7-2715QE CPU @ 2.10GHz, CPU Cache: 6144 KB, RAM:
16 GB

Processors of each of these types are grouped in a single 18-nodes RECS
system placed in one rack unit. Experiments were conducted using the Phoronix
benchmark suite [17]. In particular, we run benchmarks such as pybench, c–ray,
and unpack linux. In this way, we introduced various classes of applications:
sequential single-core, scalable CPU-intensive, and IO-intensive computations.
For each of the benchmark we imposed several load values: 25%, 50%, 75%, 100%.
Additionally, we used 12.5% for Intel i7 processors to model load corresponding
to a usage of one (of eights) single core (taking into account hyper-threading
mechanism).

4.3 Modeling Building Blocks for RECS

Description of DEBBs for RECS is accompanied by models of servers’ perfor-
mance, power usage and thermodynamic properties. The models found for the
configuration of the RECS system are presented in next sections. Thermodynam-
ics properties include both air throughput and thermal models. While estimation
of power usage and air throughput is sufficient to compute temperatures using
Computational Fluid Dynamics (CFD) methods, we also propose thermal mod-
els that allows simplified and faster calculations as it was presented in Section 3.2.
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Power Models. As presented in Section 3.2 DEBB specification allows to pre-
cisely define the power usage of modeled hardware in various states and condi-
tions. We applied the resource load model, which define power usage with respect
to given P-state (CPU frequency) and load. Dependencies between these values
for Intel i7, AMD Fusion, and Intel Atom processors are presented in figures
below.

Dependency between Load, CPU Frequency and Power Usage
Figure 4a illustrated dependency between load and power usage for selected CPU
frequencies whereas Figure 4b between CPU frequency and power usage for var-
ious loads in Intel i7 CPU. While close to linear relation of power from load is
usually expected, the power - CPU frequency relation does not follow theoreti-
cal quadratic (or even cubic) relation. Some possible reasons of this phenomenon
are given in Section 3.2. It is also easy to see significant growth of power usage
for the highest CPU frequency. Please note that for i7 processors, Turbo Boost
technology is activated only for the maximum frequency. Hence power consump-
tion and computing capabilities are different for 2300 and 2301MHz as the latter
can in fact go slightly higher as long as it stays under the thermal design power
(TDP).

Power profiles of RECS nodes based on AMD Fusion and Intel Atom proces-
sors are presented in Figures 4c and 4d. In case of low power Atom-based nodes
power changes slightly with respect to CPU frequency and even less for changing
load. In the case of AMD processors variability is also reduced mostly due to
limited number of frequencies and cores. Compared to these processors Intel i7
provides large range of possible power usage and temperature values so that it
makes sense to look closer to their optimal use.

Dependency between Load, CPU Frequency and Power Usage for Spe-
cific Application Classes
In CoolEmAll we model various applications including description of their phases
as presented in [18]. How important is a possibility of distinction between energy
efficiency of servers for various classes of applications can be seen in Figure 5.
Dependency between power and CPU frequencies are presented for three differ-
ent applications: single threaded pybench application, compute intensive scalable
c-ray application, and IO-intensive unpacking task. As pybench application uses
one core we run c-ray application with 12.5% and 25% load in order to obtain
equivalent of fully loaded one logical (including hyper-threading) or physical
core, respectively. The presented curves differ significantly, which shows that to
obtain a precise model application classes must be taken into account. Further-
more, comparing power usage by pybench and c-ray which load the whole CPU
at the same level but pybench at one core whereas c-ray evenly through all cores,
we can see that the latter requires less lower power to run.

Air throughput Profile. General dependency between dissipated heat, inlet
temperature and CPU/outlet temperature was briefly presented in Section 3.2.
However, Christmann servers are quite specific. Flow of air from inlet to outlet
through the RECS system is presented in [2] and Figure 6 (section view). This
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(a) Intel i7 - P(L) (b) Intel i7 - P(f)

(c) AMD Fusion - P(f) (d) Intel Atom - P(f)

Fig. 4. Power in function of load and CPU frequency Top: Power in function of load
(left) and CPU frequency (right) for Intel i7 Bottom: Power in function of CPU
frequency for AMD Fusion (left) and Intel Atom (right)

Fig. 5. Power profiles of Intel i7 processor for various applications

architecture has its consequences in the air flow properties. The mean air flow
throughput of a single fan is equal to 0.22m3/min (i.e. 0.0037m3/s) and it
is constant regardless the CPU load and temperature. However, the air inside
RECS enclosure can move in various directions and mix with air from other
nodes. Based on our experiments the air throughput measured at the outlet and
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generated by the inlet node (in the first row) with the outlet node switched
off was equal just to 45% of the full throughput generated by all nodes. In
this way there is a dependency between power states (in this case on/off) and
locations (on/off neighbors) and air throughput. This fact must be taken into
account within simulation therefore should be defined within DEBB. However,
for calculations of temperatures we assumed that the throughput over specific
nodes inside the RECS are the same (we could not verify this assumption as we
do not have air flow sensors inside enclosure of RECS).

Fig. 6. Flow of air through a couple of nodes in RECS system, section view. Fans are
on the side of the RECS.

Thermal Profile. The RECS architecture must be also reflected in thermal
profile in DEBB. Therefore two sources of heat must be taken into account as
well as two values of δ. The input temperature for CPU2 is Tmid being an outlet
temperature from CPU1. Then according to (6) we define temperatures as:

Tout = Tmid + δ2
P2

ρ ·Q2 · C , Tmid = Tin + δ1
P1

ρ ·Q1 · C , (7)

Hence, Tout can be calculated as follows:

Tout = Tin + δ1
P1

ρ ·Q1 · C + δ2
P2

ρ ·Q2 · C , (8)

In order to derive values of δ1 and δ2, we executed tests on nodes in a single
row at once (inlet row to calculate δ1 and outlet row for δ2) so that there was
only one source of heat per each couple of nodes in one column. The obtained
values were δ1 = 1.78 and δ2 = 2.1.

Having these δ values calculated and assuming the same air throughput for
both inlet and outlet nodes (in case both nodes are switched on) we can model
Tout in simulations (Section 5). However, even without simulations certain ob-
servations related to location of utilized computing nodes were made based on
experiments conducted on our testbed. In Figure 8 we present 4 diverse states of
a RECS system. Starting from top of the figure: (1) nodes in the second (outlet)
row are loaded while nodes in the first (inlet) row are idle, (2) nodes in the first
row are loaded while nodes in the second row are idle, (3) nodes in the second
row are loaded while nodes in the first row are switched off, and (4) nodes in the
first row are loaded while nodes in the second row are switched off. For such con-
figurations we observed that: differences of outlet temperatures between states 1
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Fig. 7. Difference between outlet and inlet temperature in function of power usage

and 2 are negligible, for state 2 are much higher (2-2.5◦C) than for state 4, also
for state 3 are significantly higher then for state 4 (0.6-2.6◦C). Interesting case
is the difference between state 1 and 3. For the highest load outlet temperatures
are higher in state 3 (by around 0.5◦C) than in state 1 while for lower loads
opposite occurs. For loads 0.75, 0.5, 0.25 and 0.125, outlet temperature in state
3 is lower than in state 1 by 0.3, 1.0, 1.1 and 1.5◦C, respectively. This uncommon
behavior can be explained by a support in removing hot air by a second fan of
idle node in state 1. If load of the outlet node decreases gain from additional
fan is reduced compared to heat dissipated by the idle node. Additionally, we
noticed usual increase of temperatures for nodes under significant load close to
measurement points (0.1-0.7◦C). As it also happened for inlet temperatures it
suggests that this change is caused by heat dissipated in other ways than passed
by flowing air.

5 Application of Models in Data Center Simulations

DEBBs available in the CoolEmAll repository can be used in tools being part
of the SVD Toolkit [5] to simulate and analyze energy-efficiency of data cen-
ters. One of these tools is a Data Center Workload and Resource Management
Simulator (DCworms) [16][19]. In general, DCworms allows modeling and simu-
lation of data center computing infrastructures to study their performance and
energy-efficiency. As explained in Section 3.2, it can be used as a tool providing
input (power usage, air throughput) to heat transfer CFD simulations or as a
simulator that provides rough estimations of temperatures, too. To this end, we
use DCworms to verify power usage and thermodynamic models proposed in
previous sections and perform experiments in order to get insights into a few
examples of management policies.

5.1 Verification of Models

In the first step simple experiments reflecting tests in real environment were per-
formed to verified obtained models. These models include two issues: (i) modeling
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Fig. 8. Various configurations of switched on/off and loaded/idle computing nodes in
RECS system (States: 1, 2, 3, 4 starting from the top)

and estimating power usage and (ii) modeling and estimating outlet tempera-
tures. Results of this verification are briefly summarized below.

The application of power profiles in a simulation environment allows esti-
mating power usage of hardware components based on load and P-state of the
system. While we were able to include all measured values of P-states the load
had to be discretized (to 25%, 50%, 75%, and 100%). To estimate power usage
for load in between values defined in the profile we used linear interpolation. The
mean error of such estimation exceeded slightly 2W, from 0.62W to 4.22W for
various frequencies and load ranges. Overwhelming majority of errors were over-
estimations. Factors that especially affected the accuracy of prediction included
hyper-threading mechanism and Turbo Boost mode in the Intel i7 processor,
which are difficult to model.

Proposed outlet temperature estimation models along with calculated δ values
gave mean errors 0.78 and 0.81 degree Celsius, respectively. For both inlet and
outlet nodes switched on at the same time errors were slightly bigger so for
more detailed heat transfer analysis CFD simulations are needed taking as an
input the power usage and air throughput delivered by DCworms. Generally,
CoolEmAll users have these two options to choose depending on purpose and
timeline of their experiments.

5.2 Simulation Experiments

Using DCworms we simulated execution of workloads on resources defined by
DEBBs for RECS. In particular, to increase the accuracy of obtained results,
we performed our experiments for one single homogeneous RECS unit based
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on i7 nodes. However, more complex architectures ranging from racks up to
the whole data center can also be evaluated. For the experimental purposes,
we incorporated the proposed outlet temperature estimation models into the
DCworms. Jobs were managed by 3 simple policies: left2right - allocating jobs
from the left to the right side of RECS in both rows, in2out - allocating jobs
from the inlet nodes to the outlet row, out2in - allocating jobs from the inlet
nodes to the outlet row.

The details of a workload used in this experiment are presented in Table 1.

Table 1. Workload characteristics

Load intensity
Characteristic 30 70 Distribution

Task Count 1000 constant

Task Interval [s] 1200 560 poisson

Load 0.0 - 1.0 uniform

Application class
Scalable CPU-intensive uniform - 33%

Single threaded uniform - 33%
IO-intensive uniform - 33%

The Table 2 summarizes the results. As expected, that greater load results
in higher outlet temperatures. Moreover, even if mean outlet temperatures are
similar between different policies, the variability of these temperatures may dif-
fer. Additionally, for policies out2in and in2out differences between standard
deviation are opposite for various workloads (in this case 30 and 70%).

Table 2. Mean outlet temp (◦C) and standard deviation for 30% and 70% workload

30% 70%
policy left2right30 in2out30 out2in30 left2right70 in2out70 out2in70

mean 26.96 26.87 27.15 28.79 28.72 28.89

std. dev. 1.99 0.715 0.83 1.68 1.00 0.85

This simple example of DCworms usage demonstrates how DEBBs can be
applied within SVD Toolkit to study energy-efficiency of data centers, in par-
ticular to topics such as capacity management, power capping, and thermal-
aware scheduling. Additionally, to study phenomena such as air turbulences and
heat transfers within the whole data center, the Computational Fluid Dynamics
(CFD) simulations are applied. To this end, we use CoolEmAll SVD Toolkit
tools that take as an input DEBB geometry models and boundary conditions
from the output of workload simulations presented in this section.
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6 Conclusions

In this paper, we presented a concept of open Data Center Efficiency Building
Blocks (DEBBs) - descriptions and models of hardware that can be used to build
and enhance data centers. The role of DEBBs is to provide models that can be
easily inserted into simulations (both of workloads and heat transfer) and visual-
ization. Hence, a DEBB consists of several parts defined in common or standard
formats where possible. We demonstrated the DEBB concept on an example of
a prototype multi-node high-density system called RECS. We presented power
usage and thermodynamics models, which can be applied to more complex sim-
ulations of data centers. To perform these simulations larger number of DEBBs
along with models of additional devices such as UPS must be added. To analyze
air flow processes in more detail CFD simulations should be applied which, al-
though out of the scope of this paper, are part of the CoolEmAll SVD Toolkit
functionality. DEBBs defined within CoolAmAll project are available through
the DEBB repository at the CoolEmAll website [20]. Among future work we plan
to improve precision of thermodynamic models and add more energy-efficiency
and performance information for well defined application classes. We are go-
ing to apply prepared DEBBs in various simulation studies including tests with
management policies as well as data center cooling infrastructures.

Acknowledgements. The results presented in this paper are partially funded
by the European Commission under contract 288701 through the project CoolE-
mAll and by a grant from Polish National Science Center under award number
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Abstract. The scalable and bandwidth-efficient delivery of IPTV ser-
vices to an increasingly diverse set of screens requires the deployment of
telco content distribution networks (CDNs). These CDNs are composed
of cache servers located in the telco’s data centers close to the end user.
The additional cache servers need to be designed for energy efficiency
to limit the increase of data-center energy consumption. We analyze real
HTTP adaptive-streaming traces from an operational telco CDN deliver-
ing IPTV to mobile devices to identify workload characteristics that can
be exploited to conserve energy. We also present a trace-driven simulator
that models the energy consumption of such a CDN down to the level
of the cache-server disk to evaluate potential energy-saving techniques.
The traces reveal cyclic load fluctuations that can be exploited to save
energy in CDNs by varying the number of powered cache servers and
disks according to the load.

Keywords: Content distribution network, HTTP adaptive streaming,
cache server, energy efficiency, disk drive, power reduction.

1 Introduction

Because consumers want to watch videos on every screen they own, Internet
service providers are starting to extend their IPTV offering with online multi-
screen video services. ISPs can deliver video streams from content providers to
their clients by means of their own content distribution network (CDN) for a
superior viewing experience. Such telco CDNs [1], which are composed of disk-
packed cache servers deployed in the ISP-owned regional network close to the
end users, ensure a scalable, bandwidth-efficient delivery of both linear and on-
demand video streams. Data centers consume globally 1 to 2% of all available
power and their power consumption grows by 15% a year [2]. The deployment of
additional power-hungry cache servers in data centers to build new telco CDNs
can be expected to accelerate the increase in data-center power consumption.
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In this paper, we target energy savings in content distribution networks by
approaching the CDN as a storage system distributed over multiple data cen-
ters, thereby exploiting the state-of-the-art in power-aware storage systems. We
present the following three research contributions. As our main contribution, we
propose a trace-driven CDN energy-consumption simulator based on the com-
mon linear model for the energy consumption of a cache server as a function of
the server load [3] and the known model for the energy consumption of a disk
drive as a function of disk read and write accesses [4]. The simulator includes
a model for traditional hard disk drives as well as solid-state disks. It allows
transitioning a cache server from the idle mode to the standby mode and the
other way around. Such transitions can also be applied to individual disks of a
cache server. The simulator allows trading off energy consumed by the caches
(and their disks) against CDN scalability (or throughput) and bandwidth effi-
ciency. For this initial release of the simulator, we don’t model the location of the
caches in the network. Consequently, the load balancing over the caches doesn’t
take the proximity between client and cache into account. We intend to support
geographical load balancing in the next iteration of the simulator. We plan to
release the simulator as free and open-source software to accelerate the research
in this domain through collaboration.

As a supporting second contribution, we provide a first-cut characterization
of the multiscreen (tablet and smartphone) IPTV workload used to drive the
simulator. We present the most relevant workload characteristics of the HTTP
adaptive streaming traces collected from an operational telco CDN delivering
exclusively IPTV services. The file download bandwidth as a function of time
exhibits a diurnal pattern of large load fluctuations to a great extent consistent
with observations for similar workloads, e.g. IPTV delivered to the traditional
TV screen only [5] and user-generated video-on-demand [6].

The simulator is based on known models. Therefore, we don’t present a vali-
dation of the simulator. Instead, we present interesting simulation results based
on the IPTV workload traces at the level of the disk, cache server, and CDN as
derived third contribution. Simulation reveals that CDNs are far from energy-
proportional [3]. This lack of energy proportionality leads to energy waste be-
cause of the fluctuations in the workload. This waste can be reduced by applying
a power-reduction technique known for data-center storage systems as DIV [7]
(short for diverted accesses) to content distribution networks.

The remainder of the paper has the following outline. Section 2 describes
the workload characterization. In Section 3, we present the CDN simulator.
Simulation results are described in Section 4. In Section 5, we describe related
work. Finally, Section 6 is the conclusion of our paper.

2 Workload Characterization

In this section, we search for CDN workload characteristics that can be exploited
to save energy in the CDN. We start from workload traces produced by an oper-
ational telco CDN delivering IPTV (live broadcast TV and video-on-demand) to
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mobile screens (smartphone and tablet) by means of HTTP adaptive streaming.
The combination of the widespread use of wireless terminals, even in the home,
and the large bandwidth variation exhibited by wireless connections drives the
adoption of HTTP adaptive streaming as the protocol for delivering on-line video
services [8]. For HTTP adaptive streaming, the source video stream is encoded
at different bit rates. These different-bit-rate streams are partitioned in short,
constant-duration segments. The segment files are stored in the origin server
together with index files, which provide an ordered list of references to segment
files. For live television, the index files provide a frequently regenerated rolling
snapshot of the broadcast. Using HTTP, the client fetches segments one after
the other (according to the index) from a cache, which might then fetch it from
the origin. The client selects every segment such that the segment’s bit-rate
encoding is adapted to the network conditions.

The traces contain information about all HTTP responses delivered by any
of the CDN caches during one calendar day. We analyze the seven consecutive
traces of a week during the Fall of 2012. We subsampled the traces by randomly
selecting clients. The resulting subsampled traces contain the information of
about ∼1.4 billion HTTP responses and have a total zipped-file size of ∼48GiB.
Our analysis results in (1) the probability mass function (pmf) of the downloaded
file and (2) the file download bandwidth as a function of time. Figure 1 shows
the estimated pmf of the downloaded file. We consider all files (solid line), the
index files only (dashed line), and the segment files only (dash-dot line). The pmf
estimation involves counting the number of downloads per unique file during one
week. This table of download frequencies is divided by the total number of unique
files. This division leads to relative frequencies. The files are ranked according
to their download frequency. The roughly ∼3000 files that are downloaded most
frequently appear to be downloaded at a significantly higher rate than the rest
of the files. These turn out to be the index files that are continuously fetched for
live streams. Even when we only consider segment files, the pmf doesn’t appear
to be linear in the log-log scale.

Figure 2 shows the file download bandwidth as a function of time. This down-
load bandwidth is calculated by adding up the sizes of the HTTP responses per
60-s time interval (during which the HTTP response was sent) and dividing by
60 s. The figure reveals a cyclic load fluctuation that can be explained based on
end user behavior. During the day, most people are working and therefore the
load on the caches is low. In the evening more people start watching videos until
∼21:30 when the load on the caches peaks. After this peak, the load drops as
people presumably go to sleep. In the morning (∼7:30) before people generally
go to work, there is a smaller load peak. During the weekend, the load fluc-
tuation is naturally somewhat different from the fluctuation on a weekday. In
addition to the daily and weekly load variation, there might also be seasonal load
fluctuations as well as a gradual load variation caused by the changing number
of subscribers to the service. A large load variation over long time intervals can
be exploited to save energy by activating at any point in time only the number
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Fig. 1. Probability mass function of the (ranked) downloaded file for all files, the index
files only, and the segment files only
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Fig. 2. File download bandwidth (from caches to clients) over a single week

of caches and disks required to support the load at that moment, as will be
explained in Section 4.

To the best of our knowledge, we are not aware of any work characterizing
exactly the type of workload we consider in this paper: IPTV (live and on-
demand) delivered to mobile devices (smartphones and tablets) by means of
HTTP adaptive streaming over a telco CDN. Nevertheless, it does make sense
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to compare our results with the characteristics of slightly different workload
types such as traditional IPTV, i.e., live TV delivered to TV screens, on the one
hand [5] and user-generate videos streamed on-demand on the other hand [6]. We
are especially interested in comparing the load fluctuations. A traditional IPTV
workload shows cyclic load fluctuations similar to the ones shown in Figure 2
although we observe a slightly more pronounced peak in the morning and the
large peak at ∼15:00 observed in [5] is missing in Figure 2. Also a web-based
video-sharing workload [6] shows daily load variations but the traffic peaks in
the afternoon (between ∼14:00 and ∼18:00), thus earlier than IPTV.

3 CDN Energy Simulator

In this section, we describe a trace-driven CDN energy-consumption simulator,
which can be used to evaluate potential techniques for saving energy in content
distribution networks. Our Python-based simulator uses the workload traces
described in Section 2 as input. The CDN model used as basis for our simulator
is described next.

3.1 CDN Model

In practice, when a client wants to access one of the video streams on the origin, a
combination of DNS indirection and HTTP redirection redirects the client to the
best cache server. Commonly used request-routing policies would select the cache
server that is closest to the client and not overloaded. However, our traces do not
group clients geographically, and the initial release of our simulator described in
this paper does not consider location. Therefore, we selected a request-routing
policy for the simulator that balances the load across the cache servers without
consideration of distance between client and cache. A new client to the CDN is
redirected to the active cache server with the lowest load. The simulator allows
turning off caches to save energy. Every succeeding HTTP request from a client
gets redirected to the same cache server. Only when that cache is overloaded or
powered-down does the simulated request-routing system redirect the client to
another cache server, again with the lowest load.

The simulator models cooperative pull-based content outsourcing where cache
servers don’t prefetch files from the origin: a file is pulled from the origin upon
a cache miss. A cache may be considered a surrogate server or reverse proxy
because it distributes content on behalf of the origin. Caches located in the same
rack could cooperate; for example, using the Internet Cache Protocol (ICP).
When a cache doesn’t have a requested file in memory or disk, it could first try
to fetch this file efficiently from one of its neighboring caches in the same rack
before going to the origin. Although the simulator supports cooperative content
outsourcing, we assume for simplicity that there is only one cache server per
rack.

The simulated cache server applies multi-level caching wherein the server
fetches the requested file from, in order of priority, its memory, one of its disks,
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one of its neighboring caches (in the same rack), or the origin. Initially in pull-
based caching, a file requested by a client is not available in the cache server. The
server first fetches the file from the origin (or possibly from its neighbors), then
delivers it to the client, and finally caches it in its primary memory. New files
are always cached in memory. When memory is full, least-recently-used (LRU)
files are moved to a disk to make space available for caching a new file. The
least-loaded disk is selected to balance the load across all disks. When a disk is
full while a new file needs to be stored on it, least-recently-used files are removed
until the new file fits in the freed space. Thus, the simulator applies the common
LRU cache replacement policy both for memory and disks.

The simulator models the CDN’s energy consumption attributed to its cache
servers. The energy consumption of the disks (§ 3.2) in the caches is modeled sep-
arately from the servers (§ 3.3). The simulator includes an energy-consumption
model for both traditional hard disk drives as well as solid-state disks. The con-
sumed energy is logged per time interval Tres = 60 s (by default) for the duration
of the workload trace. The total energy consumed by the CDN corresponds to
the total amount of energy consumed by the cache servers the CDN is composed
of, and the total energy consumed by a cache server is the sum of the energy
consumed by the server excluding disks and the energy consumed by each of the
server’s disks. We only consider energy consumed directly by the cache servers;
we ignore the additional energy required for hosting these servers in a data cen-
ter (such as energy for cooling and network access). The goal of energy-saving
techniques for content distribution networks is to reduce the CDN’s energy con-
sumption without unacceptable performance degradation.

3.2 Disk Energy-Consumption Model

The power consumed by a hard disk drive (HDD) depends on its activity. When
a disk is idle, it consumes P dsk

id . When seeking, the disk consumes P dsk
sk . When

reading or writing, the disk is in the active power state and consumes P dsk
act .

Finally, the disk can be spun down to the standby power state in which it
consumes P dsk

sb . The current simulator ignores the energy required to spin a disk
down or up.

When the disk receives a request i to read or write a file at time ti, it takes (1)
time T sk (on average) to move the actuator arm to the required cylinder, (2) time
T rt (on average) to wait until the right sector has rotated under the read/write

head, and (3) time T tf
i to transfer the file. For sake of simplicity, we assume that

every file is contiguously laid out on disk. We ignore the underestimation of the
seek energy that may occur as a consequence of this assumption. The transfer
time (milliseconds) is a function of the file size Sfile

i (KiB) and the transfer

rate Rtf (MiB/s): T tf
i = 1000Sfile

i /(1024Rtf). The total time T dsk
req,i spent by

a disk to handle request i is the sum of the seek time, rotational latency, and
transfer time for that request, i.e., T dsk

req,i = T sk + T rt + T tf
i . The total time

T dsk
j a disk is busy addressing all requests received during time interval j is

given by T dsk
j =

∑
jTres≤ti<(j+1)Tres

T dsk
req,i. The simulator enforces the constraint
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T dsk
j ≤ Tres to avoid overloading a disk. Any request that does not fit within

this constraint is addressed by the cache server by fetching the requested file
directly from the origin. The total energy Edsk

req,i consumed by a disk to handle

request i is given by Edsk
req,i = P dsk

sk T sk + P dsk
id T rt + P dsk

act T
tf
i . The total energy

Edsk
j an active disk consumes during a time interval j may be expressed as

Edsk
j = (Tres − T dsk

j )P dsk
id +

∑
jTres≤ti<(j+1)Tres

Edsk
req,i. A disk in the standby

mode during time interval j consumes the amount of energy Edsk
j = P dsk

sb Tres.
Although traditional hard disk drives are usually preferred when capacity

matters most, solid-state disks (SSDs) can be much faster for high I/O workloads.
We model the energy consumption of solid state disks similarly as hard disk
drives but with the following differences. The transfer rate for reading is different
from the rate for writing. In addition, also the active read power is different from
the active write power. Finally, we note that an SSD doesn’t require seeking, or
incur rotational latency. Our simulator supports solid-state disks and provides
numeric values for all model parameters for two SSD types: HP 120GB 3G SATA
SFF MDL SSD and HP 200GB 3G SATA MLC SFF [9]. These SSD types are
used in cache servers deployed in operational CDNs. For the HP 120GB disk, the
idle power is 0.1W, the read power 1.5W, the write power 1.9W, the transfer
rate for reading 230MiB/s, and the transfer rate for writing 180MiB/s. For the
HP 200GB disk, the idle power is 1.3W, the read power 1.8W, the write power
3.4W, the transfer rate for reading 257MiB/s, and the transfer rate for writing
235MiB/s. We assume that 80% of the disk capacity can be used for caching
files. We assume that the SSD standby power is 0W.

3.3 Cache Server Energy-Consumption Model

The power consumed by a cache server depends on the server’s load. This load
is determined by the server’s download rate Rsrv,dn, where we define down-
stream as the direction towards the clients. This download rate varies over
time and therefore depends on the time interval j, i.e., Rsrv,dn

j . The simula-

tor calculates Rsrv,dn
j as follows: Every HTTP response i with size Sresp

i (in
bytes) is sent by the server towards the client at time ti during a certain
time interval j (where jTres ≤ ti < (j + 1)Tres) and therefore adds a rate

rsrv,dni = 8Sresp
i /(109Tres) (in Gb/s) to the server’s download rate Rsrv,dn

j (in

Gb/s), i.e., Rsrv,dn
j =

∑
jTres≤ti<(j+1)Tres

rsrv,dni . The request-routing system

enforces the constraint Rsrv,dn
j ≤ Rsrv,dn

max to avoid overloading a cache server

(with maximum download rate Rsrv,dn
max ). When a client request cannot be han-

dled by a cache server because of this constraint, the client is redirected to
another cache server (the one with the lowest load). If all cache servers are
overloaded, the request is dropped.

The load λj on the cache server during time interval j is defined by λj =

Rsrv,dn
j /Rsrv,dn

max . This implies: 0 ≤ λj ≤ 1. The power consumed by a fully-
loaded (λ = 1) cache server is given by P srv

max. However, this power includes the
power consumed by the cache disks for which we use a separate disk-specific
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energy-consumption model (§ 3.2). We can derive the power P srv−
max consumed

by a fully-loaded cache server excluding disks by subtracting from P srv
max the

power consumed by the cache disks, i.e., P srv−
max ≈ P srv

max −NdskP
dsk
act . The power

consumed by the disks of a fully-loaded cache server is approximately the power
consumed by all Ndsk disks in the active mode P dsk

act where we assume that all
disks are of the same type. For an SSD, we assume 80% read activity and 20%
of write activity, i.e., P dsk

act = 0.8P dsk
r + 0.2P dsk

w .
The power consumed by an idle (λ = 0) cache server is given by P srv

id . This
power includes the power of the idle cache disks. We derive the power P srv−

id

consumed by an idle cache server excluding disks as expressed by P srv−
id =

P srv
id −NdskP

dsk
id . The power P srv−

j of a cache server excluding disks with load

λj at time interval j is modeled as a linear function of this load, i.e., P srv−
j (λj) =

P srv−
id +λj(P

srv−
max −P srv−

id ). The simulator allows transitioning cache servers to a
standby mode in which the server consumes P srv−

sb . Similar as for the disks, the
current simulator ignores the energy required for such transition. The energy
consumed by a cache server excluding disks is given by Esrv−

j = P srv−
j Tres.

Combining the results of this section and the previous one, the energy consumed
by a cache server including disks is Esrv

j = Esrv−
j +

∑
k=0,1,...,Ndsk

Edsk
j,k .

The simulator implements this cache-server energy-consumption model and
provides numeric values for all model parameters for an HP Proliant server as
an example. Such a server is equipped with a Dual Intel Xeon 5600 processor,
144GiB of DDR3 RAM, 2 300GiB SAS disks, and 14 120GiB SSD disks. This
cache server contains Ndsk = 14 cache disks of type HP 120GB specified in
Section 3.2. However, we can simulate the energy consumption of such a server
with any number of cache disks of any type as explained previously in this sec-
tion. The server’s idle energy excluding disks is 224.6W. The server’s maximum
download rate is 18Gb/s. At this rate, the server excluding disks consumes the
maximum power 405.88W. We assume the cache-server standby power to be
0W. In addition, we assume that 80% of the memory can be used for caching
files.

4 Simulation Results

In this section, we demonstrate the capabilities of the CDN simulator and based
on the simulation results, we identify DIV as a power-reduction technique ap-
plicable to content distribution networks. We present the results of a simulation
of a CDN composed of two cache servers filled to capacity with disks. The cache
servers are located in different racks so there is no inter-cache traffic. We drive
the simulation by means of a one-day subsampled trace (as previously described)
recorded on a Sunday by an operational CDN.

The simulated CDN is different from the operational CDN. For the simulation,
we use the minimum number of cache servers required to serve all requests in the
trace at any time interval, and we provision the maximum number of cache disks
in the cache servers so as to maximize the cache hit ratio. Both cache servers in
our simulation are HP Proliant servers, which are introduced in Section 3.3. The
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simulated servers each contain 14 solid-state cache disks of type HP 200GB as
specified in Section 3.2. Since we currently don’t consider location, adding more
cache servers doesn’t improve performance. On the contrary, if we add a cache
server, the clients get distributed over more cache servers due to load balancing.
This distribution leads to diminished file sharing among clients and therefore a
smaller cache hit ratio. Moreover, limiting the number of cache servers to the
minimum required for serving all requests also leads to a conservative estimate
of the energy savings. At the start of the simulation the caches are empty. The
cache memory fills up in ∼10min; the cache disks are full after ∼10h. In the
following sections, we present the simulation results for (1) one of the disks, (2)
one of the cache servers, and (3) the complete CDN. Note that the results are
very similar for all disks and all cache servers because of the load balancing.

4.1 Disks

Per time interval, the disk’s energy consumption depends on the disk reads and
writes during the interval. Therefore, we first present Figure 3, which shows the
disk read and write throughput as a function of time. The disks are not heavily
loaded because the load is distributed over all 14 disks. The maximum observed
write throughput represents roughly ∼10% of the maximum write throughput
supported by the disk (235MiB/s), while the maximum observed read through-
put corresponds to approximately only ∼1% of the maximum read throughput
that the disk can handle (257MiB/s). Such a write-dominated workload is ab-
normal for cache disks and reveals an opportunity for improving the design of
the simulated CDN. Provided the memory-based cache is large enough, there is
no benefit to writing video segments of live streams to disk. Eliminating these
unnecessary disk writes would save energy and improve the disk cache hit rate.

Because the load on the disk is small, the power consumed by the disk only
exceeds the idle power at most by roughly 10% as shown in Figure 4. For this
HP 200GB SSD the idle power is 1.3W, the active read power is 1.8W, and the
active write power is 3.4W. The load on the disk varies over time by a factor of
∼2, whereas the power consumed by the disk only varies by roughly 10%. This
discrepancy exposes the disk’s lack of energy proportionality.

4.2 Cache Servers

The energy consumed by a cache server depends on its load. The download rate
determines the cache load. Figure 5 shows the download rate over a single day
and divides this rate in memory cache hits, disk cache hits, and cache misses.
Every cache miss requires a file upload from the origin server. The maximum
download rate for this type of HP Proliant server is 18Gb/s. The cache hit ratio
(including memory and disk cache) is approximately 80% and remains more
or less constant during the entire day. There are relatively few disk cache hits
because (1) the linear video streams can be served directly from primary memory
because it is large enough and (2) on-demand video represents only about 5%
of the data requested by clients.
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Fig. 3. Single cache-server disk read and write throughput over a single day
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Fig. 4. Single cache-server disk power consumption

The load fluctuation over the day causes a similarly fluctuating power con-
sumption as shown in Figure 6. This figure also divides the consumed power
between the cache disks and the cache server excluding disks. The maximum
power consumption of this type of cache server (including 14 HP 200GB disks)
is approximately 435.56W, whereas the idle power consumption is 242.8W. For
the type of cache server and disks under consideration, the power consumed by
the disks represents about 5% of the total power consumed. This ratio strongly
depends on the disk type and is significantly higher for hard disk drives for which
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Fig. 5. Single cache-server data rate over a single day divided in memory cache hits,
disk cache hits, and cache misses
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Fig. 6. Single cache-server power consumption over a single day divided between disks
and server

we don’t present simulation results in this paper to save space. Like a disk, a
cache server is far from energy proportional as a comparison of Figure 6 and
Figure 5 reveals.
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Fig. 7. Download and upload rate (cache miss) for a 1-cache CDN (thin solid), 2-cache
CDN (thin solid), and DIV-enabled 2-cache CDN (thick dashed) over a single day

4.3 CDN

Finally, we present simulation results at the level of the CDN by aggregating the
results of the 2 cache servers and their 28 disks (in total). For comparison, we add
the simulation results for a similar CDN composed of just 1 HP Proliant cache
server also packed with 14 SSDs of type HP 200GB. Figure 7 shows the download
and upload rate for the original 2-cache CDN and the newly-introduced 1-cache
CDN over a single day. For both CDNs, the download rate is divided into the rate
served directly from the cache (cache hit) and the rate that requires uploading
from the origin (cache miss). The maximum download rate of the HP Proliant
cache server under consideration equals 18Gb/s. Therefore, during prime time
the 1-cache CDN cannot serve all HTTP requests. The shaded area at the top
of the figure between the download rate of the 1-cache CDN and the 2-cache
CDN represents the requested data volume that is not delivered by the 1-cache
CDN. For the 2-cache CDN, the upload rate is higher than for the 1-cache CDN
because a 2-cache CDN exhibits less file sharing than a 1-cache CDN.

Figure 7 shows the power consumed by the 2-cache and 1-cache CDN. Ob-
viously, the 1-cache CDN consumes less power than the CDN composed of 2
cache servers. The total energy consumed over the day under consideration by
the 2-cache CDN amounts to 15.25kWh, whereas the 1-cache CDN consumes
only 9.67kWh. Thus, both from an energy as well as a performance perspective,
the 1-cache CDN outperforms the 2-cache CDN during the time periods where
the requested download rate does not exceed the maximum rate a single cache
server can deliver.

Comparing Figure 7 and 8 reveals that the CDN is far from energy propor-
tional. For example, while the data rate delivered by the CDN decreases from
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Fig. 8. Power consumed by a 1-cache CDN (thin solid), 2-cache CDN (thin solid), and
DIV-enabled 2-cache CDN (thick dashed) over a single day

∼25Gb/s to ∼7.5Gb/s, i.e., by ∼70%, the power consumed by the CDN de-
creases by only ∼25%. This energy disproportionality is caused by the significant
idle power consumed by both cache servers and disks. The CDN is provisioned to
cope with the peak load and therefore overprovisioned under moderate to light
load. Energy can be saved by the application of dynamic power management
(DPM), which reduces power consumption by turning off system components or
decreasing their performance when they are idle or underutilized [10]. In data-
center storage systems, DPM may be enabled by diverting disk accesses from
redundant to original disks using a technique called DIV [7]. Similarly we pro-
pose to turn off cache servers and disks under moderate to light load. Cache
servers and their disks can be powered-down relatively easily because they only
contain replicated data, but performance constraints in a real CDN would also
need to be considered. When a cache server is powered down, clients can be
directed to one of the caches that remain active. When a disk is turned off and
the requested file is stored on that disk, the cache server can fetch the file either
from one of its neighbors (in the same rack) or from the origin. Devices may be
powered down completely or alternatively transitioned to a standby mode. In the
future, we intend to adapt DIV to content distribution networks and evaluate
this energy-saving technique using our CDN energy simulator.

Figure 8 illustrates DIV-based energy savings. Suppose we turn off one of
the caches of the 2-cache CDN whenever the requested download rate is smaller
than 18Gb/s, then we would save 2.84kWh or, equivalently, 20%, which the
shaded areas of Figure 8 represent. The thick dashed line corresponds to the
power consumed by the DIV-enabled 2-cache CDN. Even though we provisioned
just the minimum number of caches required to handle the workload, the energy
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savings are significant. Taking a realistic overprovisioning into account (to cope
with larger fluctuations caused by, for example, flash crowds), would yield even
more energy savings. Additionally, scalability is maintained and bandwidth effi-
ciency even improved as can be observed from Figure 7. The thick dashed lines
in Figure 7 represent the download and upload rate of the DIV-enabled 2-cache
CDN. The shaded area on the bottom of the figure between the upload rate of
the 1-cache and 2-cache CDN represents the additional data volume that can be
served directly from the cache.

5 Related Work

Over the last ten years many power-reduction techniques for data-center storage
systems were proposed. We present an exhaustive survey of such energy-saving
techniques in [4] based on an analysis of over a hundred high-quality papers.
To our knowledge, the state-of-the-art in power-aware storage systems does not
yet include content distribution networks although such networks are composed
of storage elements distributed over multiple data centers. In this paper, we
propose to adapt a power-reduction technique called DIV [7] (short for diverted
accesses) to content distribution networks as explained in Section 4. The inherent
segregation of original and redundant data in a CDN facilitates the application
of DIV to CDNs. Instead of diverting accesses from redundant disks, accesses in
a CDN are diverted from underutilized cache servers.

Even though power-reduction techniques for storage systems have not yet been
applied to content distribution networks, recently the energy efficiency of CDNs
in general has become an area of active research. The focus of this research is on
energy-aware cache-server placement and file replica placement. [11] compares
the energy consumed by delivering content (1) directly from storage servers
centralized in a data center, (2) from cache servers of a CDN, and (3) from
neighboring clients using P2P delivery. The CDN architecture turns out to be
the most energy efficient. Similar results were obtained by [12] in the context of
IPTV delivery. [13] claims even higher energy savings by placing the caches in
the home gateways. Content-centric networking (CCN) integrates cache servers
into routers and therefore eliminates the need for an overlay content distribution
network. [14] claims that CCN is even more energy-efficient than a traditional
CDN. [15] refines this claim by revealing the dependency on content popularity
and catalog size. In this paper, we consider only the CDN architecture and don’t
take the location of the cache servers into account. Therefore, we don’t model the
transport energy but only the energy required by the cache servers. However, this
server energy is modeled in much greater detail. We use this detailed cache-server
energy consumption model as the basis for a trace-driven CDN energy simulator
to evaluate energy-saving techniques based on dynamic power management.

Recently, research results were presented about energy-aware load balancing
in content distribution networks [2], which is similar to the energy-saving tech-
nique of diverted accesses. However, Mathew et al. focus on the energy-aware
load-balancing algorithms, whereas our focus is on a trace-driven CDN energy
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simulator that allows evaluating potentially different energy-saving techniques.
To the best of our knowledge, no CDN energy simulators exist; only CDN per-
formance simulators are available [16].

6 Conclusion

The massive end-user demand for IPTV on any screen spurs the deployment of
telco CDNs for HTTP-based adaptive video streaming. The disk-packed cache
servers of which such CDNs are composed add to the energy consumption of
data centers, which is a growing concern to data-center operators. In this paper,
we target energy savings in these content distribution networks. Therefore, we
analyze the HTTP-adaptive-streaming workload from an operational CDN deliv-
ering IPTV. This workload exhibits cyclic fluctuations, which can be exploited
to save energy. In addition, we present a CDN energy simulator, which can
be used to evaluate energy-saving techniques in content distribution networks.
Simulation results reveal that typical CDNs are far from energy proportional.
Therefore, we propose to apply a power-reduction technique for storage systems
called DIV to content distribution networks. The adapted technique would turn
off complete cache servers or individual cache disks under moderate or light
load. In the future, we plan to propose algorithms for determining the minimum
number of cache servers and disks that need to stay on to satisfy performance
requirements. In addition, we want to make the current simulator location-aware
such that we can observe latency and transport energy trade-offs and support
geographical load balancing.
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Abstract. Data center (DC) power consumption is a topic of interest
and research activities. Articles handle power saving by using virtualiza-
tion technologies and server consolidation. We assume these technologies
as base, but we want DC to profit from local renewable energy sources,
reducing CO2 emissions. We propose the idea of integrating DC into
smart grid, respecting location dependencies. We present our concept
consisting of two individual simulations, a smart grid and a DC simu-
lation, which are both combined to create a holistic simulation. Special
focus is placed on a new DC model, the Surrogate DC Model (SDCM),
and its functionality and requirements. The SDCM acts as DC, but it
can adapt itself and its architecture to different energy scenarios. Goal is
to obtain the best possible synergy effects between DC and smart grid in
terms of energy exchange and infrastructure usage. Concepts introduced
in this paper are work-in-progress.

Keywords: Data Center Effiency, Green IT, Smart Grids, Energy Man-
agement, Waste Heat Usage, Modelling, Simulation.

1 Introduction

The power demand of components of the Internet and Communication Technol-
ogy (ICT) is rising since the last few years [1]. The growing demand for cloud
computing and of mobile services usage [2] plays a significant role for this trend.
This has lead to a significantly higher demand of power for data centers, pushing
up their operational costs. The European Commission states that today, data
centers consume about 2% of the entire power demand, this value is expected to
double soon [3].

To reduce these costs and to comply with environmental requirements, sev-
eral power saving methodologies for data centers have emerged, including server
consolidation using virtualization technologies [4]. Current virtual machine mi-
gration strategies create a virtual machine distribution for optimal server usage
with the aim of power savings [5,6,7,8]. Unused servers can be powered off, all
active servers should be used up to their maximum capacity. These approaches
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c© Springer-Verlag Berlin Heidelberg 2014



100 S. Janacek, G. Schomaker, and W. Nebel

enable a data center to regulate its server load and thus the power consumption
of power related components.

Meanwhile, the idea of integrating data centers into power networks such as
smart grids has emerged, where the specific power consumption of a data cen-
ter will become a challenge. Smart grids include several power generators and
consumers, partly heavily dynamic, for example due to the usage of renewable
energy sources. These are mostly intermittent energy sources (solar radiation,
wind) and power is produced for example by photovoltaics or wind energy con-
verters. A data center could act as a power balancer in such a grid, cutting power
peaks or decreasing computational reserves in times of power shortages.

The usage of waste heat, the data center’s servers and other components
generate, is another reasonable use case in a smart grid. Here, schools, theaters,
malls and other public and private facilities are potential consumers. Because
of conduction losses and minimum heat energy requirements, the data center
needs to generate thermal energy with specific constraints to make this scenario
profitable1. Here again, the data center’s utilization distribution may become a
regulator for the power consumption and thus for the outcoming heat. There
are already several existing data centers that exemplify that this concept is well
working [9] and a promising approach.

Finally, a data center can profit from the infrastructure of the smart grid.
Modern smart grids may contain long-term energy storages like Pumped-Storage
Hydroelectricity (PSH) and Compressed Air Energy Storage (CAES) or short-
term storages like e-car batteries [10] or fly wheels.

Here, we present the idea of a data center integration into an existing smart
grid scenario as described above. By using simulation systems for both worlds,
the data center and the smart grid world, and combining these, we want to find an
optimal strategy of integrating a specific data center into an existing smart grid
location or to find the optimal data center architecture for a certain location. The
optimization aims to improve not only the data center’s energy efficiency, but the
efficiency of the smart grid including the data center as a whole. It also aims at
operating the data center almost exclusively with renewable energies. Therefore,
a metric to measure the success of the project should rather be the Carbon Usage
Effectiveness (CUE) [11] than the Power Usage Effectiveness (PUE) [12]. The
resulting simulation could help data center operators to optimize their existing
data center or data center planers to find a well suited data center architecture
for a new facility.

The paper is organized as follows: In Sect. 2, we provide some preconditions
needed to understand our simulation concept, which is explained in Sect. 3.
Section 4 introduces the Surrogate DC Model, one of the key aspects of our
simulation concept. In 5, we list the related work, followed by our future research
in 6 and the conclusion in Sect. 7.

1 See http://www.energyefficiencyasia.org/docs/ee modules/Chapter-Waste

%20Heat%20Recovery.pdf

http://www.energyefficiencyasia.org/docs/ee_modules/Chapter-Waste%20Heat%20Recovery.pdf
http://www.energyefficiencyasia.org/docs/ee_modules/Chapter-Waste%20Heat%20Recovery.pdf
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2 Preliminaries

There has already been some research in the area of optimizing the energy effi-
ciency of data centers. However, in this area, it is important to define the meaning
of the term data center, since a (modern large-scale) data center hosts numer-
ous different subsections and crafts. In our research, we want to optimize the
energy efficiency of the entire data center, including components for infrastruc-
ture, cooling, power management and IT. Therefore, when we use the term data
center in this paper, the facility including all of its components just mentioned
is meant.

We do not provide a concept for virtualization optimization in this paper,
however we use certain strategies as a base for our work.

The idea presented in this paper bases on the fact that a data center’s power
consumption, especially of the servers, can be regulated by adjusting the load
of individual servers [13]. This load may either be controlled by the amount
and quality of incoming tasks or by applying a virtualization and migration
strategy that tries to consolidate unused servers. In our concept we assume that
the data center is fully virtualized, meaning that all or almost all applications
run on virtual machines and that these can be live-migrated among all servers.
In this context, throughout the paper, we will refer to the term virtual machine
meaning an application and its operating system, both running inside one virtual
machine. As stated in [13], this technology lets the data center operate in a power
range, defined by a minimal power consumptionDCPmin that is needed to power
all components without any load, and a maximum consumption DCPmax that
occurs in times of full load. So, for the power consumption at each time DCP (t)
the following equation counts:

DCPmin ≤ DCP (t) ≤ DCPmax (1)

This power range is the result of control mechanisms that affect the data center’s
load and task distribution, but without affecting its architecture.

3 Simulation Concept

Our simulation concept consists of two simulation areas, which are combined to
achieve an overall simulation. These are the smart grid simulation and attached
to it a simulation system of a complete data center. In our current research,
we focus on the development of the models for the data center components
and their architecture, not on the smart grid simulation itself. Here, we use an
existing smart grid simulation framework that is currently developed at OFFIS,
the mosaik framework [14]. Also, existing models and power and usage profiles
for the entities in a smart grid (for example electricity grid, photovoltaics, wind
energy, private houses, energy stores, electric vehicles [15]) are integrated into
this framework.

The smart grid simulation includes public and private consumers as well as
energy producers and already considers demand side management between them.
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Next to these smart grid entities, we attach a data center simulation, which acts
as a normal data center from the smart grid perspective. This means that in a
first step, the smart grid simulation framework must not know, if the attached
data center is “real” or simulated. It handles the data center as a power con-
sumer, but able to apply demand side management. Therefore, the data center
simulation provides information about the power consumption range, described
in Sect. 2, to the smart grid.

Fig. 1. Simulation architecture of the data center simulation (Surrogate DC Model)
and the smart grid simulation framework (mosaik)

It is important to state that both simulation systems are independent of each
other. This is an important part of the concept and it leads to a further improve-
ment of the flexibility of the entire simulation system. The simulation concept
should be able to answer the following questions:

1. What IT-load profiles can a specific data center operate with?
2. Which modifications of a specific data center architecture can improve the

load profile according to a specific desired energy profile?
3. How much time does it take for a fixed data center architecture to transform

its energetic state to a another desired state?
4. Up to how much percent can the data center be powered by local renew-

able energies under the assumption that a desired load profile (from 1.) is
operated?
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5. How much CO2 emissions can be saved compared to a conventional energy
supply?

Figure 1 shows a diagram of the concept. The smart grid simulation framework
mosaik models the energy flow of power producers and consumers, already con-
sidering power profiles and usage schedules. The simulation must also be able to
create forecasts for the power consumption and power producers.

The interface between the smart grid simulation and the data center simula-
tion contains communication protocols for the following parameters, where the
smart grid provides the following information:

– Amount of energy supply available from renewable energy sources in the
smart grid for the period of THnext

– Amount of storage capacity for power for the period of THnext, information
about the chronological deferral when discharging the storage (how fast can
the storage provide power?)

– Waste heat demand profile for the period of THnext

The data center provides the following information:

– Power demand profile for the period of THnext and the possible power range
including DCPminand DCPmax

– Waste heat production profile for the period of THnext

THnext defines the duration of the next forecasting period and should be in
the range of several hours.

The data center simulation focuses on the key parameters server load (gen-
erated by tasks), power consumption and temperature levels, resulting in the
generation of waste heat. A Geographic Information System (GIS) will be used
to model and simulate external factors that influence these parameters. The sim-
ulation system for the data center is represented by the Surrogate DC Model,
which is described in detail in the following Sect. 4.

4 Surrogate Data Center Model

The Surrogate DC Model acts as a complete data center to the outside, it is used
as a representation of a data center in the smart grid simulation. Internally, it
observes the events and actions in the smart grid and adapts itself to these
changing conditions. These conditions include changes to the interface parame-
ters listed in Sect. 3, for example a change of the current power that is available
from renewable energy sources in the smart grid or the power consumption pro-
files of the smart grid’s consumers. Here, the data center can apply electric load
balancing (demand side management).

The Surrogate DC Model has two general options to adjust the power con-
sumption of the simulated data center:

– Short-term reactions: adjust the current virtual machine distribution on the
servers by using live-migration.
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Fig. 2. Details of the Surrogate DC Model that is used to model a data center from
the perspective of a smart grid

– Long-term reactions: modify the architecture of the simulated data center.

The details of the Surrogate DC Model are shown in Fig. 2. The input and
output communication to the interface to the smart grid simulation matches
the parameters listed in Sect. 3. Additionally, the load profile of the tasks that
should run in the data center is needed as an input. The Surrogate DC Model
uses an internal database with different models for data center components. To
adapt itself to a different scenario or to different smart grid conditions, it can
exchange its internal simulated components discretely. These component models
include several equipment types as well as parameters that can be adjusted to
represent a different component behavior.

A key component of this concept is the adaptive system that consists of an
artificial intelligence algorithm. It observes the external conditions, controls the
current simulation model chain and adjusts the particular models or their pa-
rameters.

4.1 Model Architecture

A challenge in this Surrogate DC Model is the development and definition of
the architecture of the component models. Different component types need to
be exchangeable, but also different data center architectures must be able to
be represented by this model chain. For example, a data center may use power
storages of the smart grid if they can guarantee an uninterrupted operation and
thus it may be able to abstain from the usage of a dedicated Uninterrupted
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Power Supply (UPS). Also, thermal energy storages and cold storages locally
available may be used by the cooling, leading to architecture modifications of
the simulated data center.

From these demands, several requirements for the architecture and the inter-
faces of the component models arise. Besides the modeling of the energy flow
(power and thermal energy), each component must identify its internal type and
component category (cooling, power distribution, server, ...) and it must provide
information about its internal state. Since the modeling of chronological behavior
of the components, as described in Sect. 4.2, is an important simulation aspect,
the interfaces will also include timing parameters.

4.2 Modeling Chronological Behavior

One of the key aspects of our simulation concept is the modeling of the tempo-
ral behavior of components inside a data center. Figure 3 provides an example
of these constellations. For example, the live-migration of virtual machines to

Fig. 3. Timing aspects of data center components (especially cooling) when applying
live-migrations

different servers takes a certain amount of time. The target servers will also
take some time until they change their temperature level and thus pass their
new load situation to the cooling system. Meanwhile, the computing demand as
well as the smart grid parameters (renewable energy, power consumption, waste
heat demand) underlie deviations. In this example, the aim is now to model
these timings so that a data center may be able to shift its tasks, reaching a
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specific waste heat generation at a certain time. In order to be able to simulate
this behavior, fine-granular models of chronological behavior in terms of power
consumption and temperature level are needed for each simulated component.

5 Related Work

There has been other research in the areas this paper addresses. The modeling of
the thermal behavior of data center components, especially of servers, has been
researched before. In [16], the thermal load of processors and micro controllers
is considered. [17] handles thermal predictions of processors and combines it
with a Dynamic Voltage and Frequency Scaling (DVFS) technique. The thermal
modeling of a server rack is arranged in [18]. [19] presents a dynamic model for
the temperature and cooling demand of server racks that are enclosed in a hot
aisle containment.

General server power models can be found in [13] and [20] while [21] already
proposes additional models for racks and cooling units. Energy models for data
centers are found in [22] and [7]. Our research partly bases on these results.

In [23], the authors propose the idea to combine a data center with a local
power network that includes renewable energy sources. Such a power network
is, however, less complex than a smart grid, since it only consists of power
producers. The authors also cover the aspect of the intermittency of these power
producers. They propose to shift the work load to other data center locations,
each profiting from individual energy advantages. A similar approach is covered
in [24], including weather conditions at different locations.

[25] proposes a service request routing for data centers to distribute the load
according to the electric grid in a smart grid.

In [26], the authors present the idea of a carbon-aware data center operation.
They propose three key ideas to implement this concept: on-site and off-site
renewable energies and Renewable Energy Certificates (REC). In our research,
the usage of RECs is, however, not a legitimate concept.

The correlation of power consumption and temperature of server internal cool-
ers is investigated in [27]. As a result, the authors state that it is possible to save
power under certain conditions, when the Computer Room Air Conditioning
(CRAC) adapts itself to a higher temperature level and the server coolers com-
pensate this by applying a higher rotation frequency. They also model the time
that cool air needs to travel from CRAC units to a specific server rack. However,
a detailed correlation to server load is not handled.

6 Future Work

In this paper, we introduced our simulation concept and some of the research
ideas we intend to follow. Nevertheless, there is a lot of research needed to com-
plete the entire simulation system. A next research topic is the detailed techni-
cal definition of the model chain and the interfaces needed for each component
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model. Also, the technical and programmatic definition of the simulation inter-
face between the smart grid simulation framework mosaik and the Surrogate DC
Model will follow. As the Surrogate DC Model needs an artificial intelligence,
we need to find and evaluate an appropriate algorithm for this task.

Finally, there are several future thoughts we like to research to extend our
simulation concept. Connecting the simulation system to a GIS is a promising
idea, since this could allow the usage of spatial weather data. Several cooling
concepts rely on weather parameters such as temperature and humidity or other
conditions like wind. A detailed modeling of these might improve the simulation
results.

7 Conclusion

In this paper, we introduced our simulation concept for data centers in smart
grids and, as of our current knowledge, the approach described here is a new
methodology in this area. We have motivated the idea of integrating a data cen-
ter in a smart grid in Sect. 1 with rising energy prices and the upcoming need
to use renewable energy sources as much as possible. Connected research listed
in Sect. 5 showed that this topic is currently highly relevant to the data cen-
ter industries. After providing basic information in Sect. 2, we introduced our
simulation concept for the combination of smart grid simulations with a specific
data center simulation system, with a key aspect on the Surrogate DC Model.
This model will adapt its internal structure and the internal components to a
data center architecture that provides optimal synergy effects according to the
particular smart grid location. Our work is still in concept and a lot of future
research is still to do, but we expect this approach to be very promising.
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