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PREFACE

THIS book is written primarily for undergraduate students of science
and engineering, and presents an elementary introduction to some of
the major branches of modern algebra - namely, matrices, sets and
groups. Of these three topics, matrices are of especial importance at
undergraduate level, and consequently more space is devoted to their
study than to the other two. Nevertheless the subjects are inter­
related, and it is hoped that this book will give the student an insight
into some of the basic connections between various mathematical
concepts as well as teaching him how to manipulate the mathematics
itself.

Although matrices and groups, for example, are usually taught to
students in their second and third year ancillary mathematics
courses, there is no inherent difficulty in the presentation of these
subjects which make them intractable in the first year. In the author's
opinion more should be done to bring out the importance of alge­
braic structures early on in an undergraduate course, even if this is
at the expense of some of the more routine parts of the differential
calculus. Accordingly this book has been made virtually self­
contained and relies only on a minimum of mathematical knowledge
such as is required for university entrance. It should therefore be
suitable for physicists, chemists and engineers at any stage of their
degree course.

Various worked examples are given in the text, and problems for
the reader to work are included at the end of each chapter. Answers
to these problems are at the end of the book. In addition, a list of
further reading matter is given which should enable the student to
follow the subjects discussed here considerably farther.

The author wishes to express his thanks to Dr. I. N. Baker and
Mr. D. Dunn, both of whom have read the manuscript and made
numerous criticisms and suggestions which have substantially
improved the text. Thanks are also due to Dr. A. N. Gordon for
reading the proofs and making his usual comments.

Imperial College, London. G. S.
1964
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CHAPTER 1

Sets, Mappings and Transformations
1.1 Introduction

The concept of a set of objects is one of the most fundamental in
mathematics, and set theory along with mathematical logic may
properly be said to lie at the very foundations of mathematics.
Although it is not the purpose of this book to delve into the funda­
mental structure of mathematics, the idea of a set (corresponding as
it does with our intuitive notion of a collection) is worth pursuing as
it leads naturally on the one hand into such concepts as mappings
and transformations from which the matrix idea follows and, on
the other, into group theory with its ever growing applications in the
physical sciences. Furthermore, sets and mathematical logic are now
basic to much of the design of computers and electrical circuits, as
well as to the axiomatic formulation of probability theory. In this
chapter we develop first just sufficient of elementary set theory and
its notation to enable the ideas of mappings and transformations
(linear, in particular) to be understood. Linear transformations are
then used as a means of introducing matrices, the more formal
approach to matrix algebra and matrix calculus being dealt with
in the following chapters.

In the later sections of this chapter we again return to set theory,
giving a brief account of set algebra together with a few examples of
the types of problems in which sets are of use. However, these ideas
will not be developed very far; the reader who is interested in the
more advanced aspects and applications of set theory should consult
some of the texts given in the list of further reading matter at the
end of the book.

1.2 Sets

We must first specify what we mean by a set of elements. Any
collection of objects, quantities or operators forms a set, each indi­
vidual object, quantity or operator being called an element (or mem­
ber) of the set. For example, we might consider a set of students, the
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Sets, Mappings and Transformations 11.2)

set of all real numbers between 0 and 1, the set of electrons in an
atom, or the set of operators a/ax t , a/ax2 , ••• , a/ax•. If the set con­
tains a finite number of elements it is said to be a finite set, otherwise
it is called infinite (e.g. the set of all positive integers).

Sets will be denoted by capital letters A, E, C, , whilst the
elements of a set will be denoted by small letters a, b, x, y, Z, and
sometimes by numbers 1, 2, 3, ....

A set which does not contain any elements is called the empty set
(or null set) and is denoted by 121. For example, the set of all integers
x in 0 < x < 1 is an empty set, since there is no integer satisfying this
condition. (We remark here that if sets are defined as containing
elements then 121 can hardly be called a set without introducing an
inconsistency. This is not a serious difficulty from our point of view,
but illustrates the care needed in forming a definition of such a basic
thing as a set.)

The symbol E is used to denote membership of - or belonging to­
a set. For example, xEA is read as ' the element x belongs to the
set A '. Similarly x¢:A is read as ' x does not belong to A' or' x is not
an element of A'.

If we specify a set by enumerating its elements it is usual to enclose
the elements in brackets. Thus

A={2,4,6,8,10} (1)

is the set of five elements - the numbers 2, 4, 6, 8 and 10. The order
of the elements in the brackets is quite irrelevant and we might just
as well have written A = {4, 8,6,2, IO}. However, in many cases
where the number of elements is large (or not finite) this method of
specifying a set is no longer convenient. To overcome this we can
specify a set by giving a ' defining property' E (say) so that A is the
set of all elements with property E, where E is a well-defined property
possessed by some objects. This is written in symbolic form as

A = {x; x has the property E}. (2)

For example, if A is the set of all odd integers we may write

A = {x; x is an odd integer}.

This is clearly an infinite set. Likewise,

B = {x; x is a letter of the alphabet}

is a finite set of twenty-six elements - namely, the letters
a, b, C ••• y, z.

2



Sets, Mappings and Transformations (1.2)

Using this notation the null set (or empty set) may be defined as

0={x;x#x}. (3)

We now come to the idea of a subset. If every element of a set A
is also an element of a set B, then A is called a subset of B. This is
denoted symbolically by A £; B, which is read as 'A is contained in
B' or 'A is included in B '. The same statement may be written as
B 2 A, which is read as ' B contains A '. For example, if

A = {x; x is an integer}
and

B = {y; y is a real number}

then A £; Band B 2 A. Two sets are said to be equal (or identical)
if and only if they have the same elements; we denote equality in the
usual way by the equality sign =.

We now prove two basic theorems.

Theorem 1. If A £; Band B £; C, then A £; C.

For suppose that x is an element of A. Then xEA. But x~B since
A £; B. Consequently XEC since B £; C. Hence every element of A
is contained in C - that is, A £; C.

Theorem 2. If A £; Band B £; A, then A = B.

Let xeA (x is a member of A). Then XEB since A £; B. But if xEBthen
x~A since B £; A. Hence A and B have the same elements and conse­
quently are identical sets - that is, A = B.

If a set A is a subset of B and at least one element of B is not an
element of A, then A is called a proper subset of B. We denote this
by A c B. For example, if B is the set of numbers {I, 2, 3} then the
sets {1,2}, {2,3}, {3, l}, {I}, {2}, {3} are proper subsets of B.
The empty set 0 is also counted as a proper subset of B, whilst the
set {I, 2, 3} is a subset of itself but is not a proper subset. Counting
proper subsets and subsets together we see that B has eight subsets.
We can now show that a set of n elements has 2n subsets. To do this
we simply sum the number of ways of taking r elements at a time
from n elements. This is equal to

n

L nCr = nCO+nC l + ... +nCn = 2n
r=O

(4)

using the binomial theorem. This number includes the null set (the
nco term) and the set itself (the nCn term).

3



Sets, Mappings and Transformations (1.3)

1.3 Venn diagrams

A simple device of help in set theory is the Venn diagram. Fuller
use will be made of these diagrams in 1.7 when set operations are
considered in more detail. However, it is convenient to introduce the
essential features of Venn diagrams at this point as they will be used
in the next section to illustrate the idea of a mapping.

The Venn diagram method represents a set by a simple plane area,
usually bounded by a circle - although the shape of the boundary
is quite irrelevant. The elements of the set are represented by points
inside the circle. For example, suppose A is a proper subset of B
(i.e. A c B). Then this can be denoted by any of the diagrams of
Fig.!.!.

Fig. 1.1

If A and B are sets with no elements in common - that is no ele­
ment of A is in B and no element of B is in A - then the sets are said
to be disjoint. For example, if

A = {x; x is a planet}
and

B = {y; y is a star}

then A and B are disjoint sets. The Venn diagram appropriate to this
case is made up of two bounded regions with no points in common
(see Fig. 1.2).

Fig. 1.2

4
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Fig. 1.3

It is also possible to have two sets with some elements in common.
This is represented in Venn diagram form by Fig. 1.3, where the
shaded region is common to both sets. More will be said about this
case in 1.7.

1.4 Mappings

One of the basic ideas in mathematics is that of a mapping. A mapping
of a set A onto a set B is defined by a rule or operation which assigns
to every element of A a definte element of B (we shall see later that
A and B need not necessarily be different sets). It is commonplace
to refer to mappings also as transformations or functions, and to
denote a mappingf of A onto B by

f
f:A-+B, or A-+B. (5)

If x is an element of the set A, the element of B which is assigned to
x by the mapping f is denoted by f(x) and is called the image of x.
This can conveniently be pictured with the help of the diagram
(Fig. 1.4).

Fig. 1.4

A special mapping is the identity mapping. This is denoted by
f: A -+ A and sends each element x of A into itself. In other words,
f(x) = x (i.e. x is its own image). It is usual to denote the identity
mapping more compactly by I.

5



Sets, Mappings and Transformations [1.4)

We now give two examples of simple mappings.
(a) If A is the set of real numbers x, and iffassigns to each number

its exponential, then f(x) = e" are the elements of B, B being the
set of positive real numbers.

(b) Let A be the set of the twenty-six letters of the alphabet. Iff
denotes the mapping which assigns to the first letter, a, the number
1, to b the number 2, and so on so that the last letter z is assigned
the number 26, then we may write

r~: ~

f= 1I~16
The elements of B are the integers I, 2, 3 . . . 26. Both these

mappings (transformations, functions) are called one-to-one by
which we mean that for every element y of B there is an element
x of A such thatf(x) = y, and that if x and x' are two different ele­
ments of A then they have different images in B (i.e. f(x) ¥: f(x'».
Given a one-to-one mappingfan inverse mapping /-1 can always be
found which undoes the work of f For if f sends x into y so that
y = f(x), andf-l sends y into x so that x = f_l(y), then

y = fEr l(y)] = ff-l(y) (6)
and

(7)

Hence we have
(8)

where I is the identity mapping which maps each element onto itself.
In example (a) the inverse mappingf-l is clearly that mapping which
assigns to each element its logarithm (to base e) since

logee" = x and e1og
." = x.

The inverse of the product of two or more mappings or transfor­
mations (provided they are both one-to-one) can easily be found.
For suppose f sends x into y and 9 sends y into z so that

y = f(x) and z = g(y). (9)

6
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Then
z = g[J(x)], (10)

which, by definition, means first perform f on x and then g on f(x).
Consequently

But from (9) we have

x =f-l(y) and y = g-I(Z).
Consequently

(11)

(12)

X =f- 1[g-I(Z)] = (f-l g -l)(Z). (13)

Comparing (11) and (13) we find

(gj)-1 =f- 1g- 1. (14)

The inverse of the product of two one-to-one transformations is
obtained therefore by carrying out the inverse transformations one­
by-one in reverse order.

One-to-one mappings are frequently used in setting up codes.
For example, the mapping of the alphabet onto itself shifted four
positions to the left as shown

abc d e
t t t t t
e f g h j

stuvwxyz

tttttttt
w x y z abc d

transforms • set theory' into' wix xIisvc '.
Not all mappings are one-to-one. For example, the mapping f

defined by Fig. 1.5, where x is the image of a, and z is the image of

f-
Fig. 1.5

both band c, does not have an inverse mapping, although of course,
inverses of the individual elements exist; these are f-l(X) = a,
f-l(Z) = {b, c} (i.e. the set containing the two elements b and c), and
f-l(y) = Ii'J (the null set) since neither a, b nor c is mapped into y.

7
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(18)

(16)

Sets, Mappings and Transformations [1.4)

It is clear that iff, 9 and h are any three mappings then

f{g[h(x)]} = (fg)[h(x)] = fgh(x) = f(gh) (x) (15)

- that is, that the associative law is true. However, it is not true that
two mappings necessarily commute - that is, that the product is
independent of the order in which the mappings are carried out. For
suppose

{
a-+b} ra-+b}f = b -+ c and g = ~ b -+ b .
c-+a l c-+a

If we first carry out the mapping 9 and then the mappingfwe find

{
a-+c}

fg = b -+ c .
c-+b

Conversely, carrying out first f and then 9 we find

{

a-+ b}
gf= b-+a .

c-+b

Clearly fg # gf, showing that f and 9 do not commute. It might be
suspected that non-commutation arises in this particular instance
since f is a one-to-one mapping whilst 9 is not. However, even two
one-to-one mappings do not necessarily commute. Nevertheless, two
mappings which always commute are a one-to-one mapping f and
its inversef- 1 (see (8) ).

1.5 Linear transformations and matrices

Consider now the two-dimensional problem of the rotation of rec­
tangular Cartesian axes x10XZ through an angle e into Y10yZ (see
Fig. 1.6).

.p

o xJ

Fig. 1.6

8



Sets, Mappings and Transformations [1.5]

If P is a typical point in the plane of the axes then its coordinates
(Yl' Y2) with respect to the YI0Y2 system are easily found to be
related to its coordinates (Xl' X2) with respect to the X10X2 system
by the relations

Yl=X1COSe+x2 sine, }
(19)

Y2 = - X 1sin e+ x2cos e.
These equations define a mapping of the x lx2-plane onto the

Y1Y2-plane and form a simple example of a linear transformation.
The general linear transformation is defined by the equations

Yl = a ll x l +a12 x 2+ .
Y2 = a21 x 1 +a22 x 2+ •

(20)

Ym=amlxl+am2X 2+' .. +amnxn·

in which the set of n quantities (Xl' X2, X3' ••• , xn) (the coordinates
of a point in an n-dimensional space, say) are transformed linearly
into the set of m quantities (Y1> Y2• ..., Ym) (the coordinates of a
point in an m-dimensional space). This set of equations may be
written more concisely as

n

Yl = L a1kxk (i = 1,2, ... , m),
k=l

or, in symbolic form, as
Y=AX,

where

(21)

(22)

Y = Yl ,
Y2

Ym

The rectangular array, A, of mn quantities arranged in m rows and
n columns is called a matrix of order (m x n) and must be thought of
as operating on X in such a way as to reproduce the right-hand side
of (20). The quantities a1k are called the elements of the matrix A,
alk being the element in the i 1h row and k 1h column. We now see that

9



Sets, Mappings and Transformations [1.5J

Y and X are matrices of order (m xl) and (n xl) respectively ­
matrices having just one column, such as these, are called column
matrices.

Of particular importance are square matrices which have the same
number of rows as columns (order (m x m)). A simple example of
the occurrence of a square matrix is given by writing (19) in
symbolic form

where
Y=AX, (23)

(25)

and A = ( C?s () sin () ). (24)
-sm () cos(}

Here A is a (2 x 2) matrix which operates on X to produce Y.
Now clearly the general linear transformation (20) with m i= n

cannot be a one-to-one transformation since the number of elements
in the set (Xl' X2' •••, xn) is different from the number in the set
(y .. Y2' ..., Ym)' An inverse transformation to (20) cannot exist
therefore, and consequently we should not expect to be able to find
an inverse matrix A-1 (say) which undoes the work of A. Indeed,
inverses of non-square matrices are not defined. However, if m = n
it may be possible to find an inverse transformation and an associated
inverse matrix. Consider, for example, the transformation (19).
Solving these equations for Xl and X 2 using Cramer's rulet we have

I ~~ ~~s:I I_~~s; ~~ I
x 1 = I cos () sin () I ' X

2
= I cos () sin () \.

- sin () cos () - sin () cos ()

Consequently unique values of Xl and X2 exist since the determinant
in the denominators of (25) is non-zero. This determinant is in fact
just the determinant of the square matrix A in (24). In general, an
inverse transformation exists provided the determinant of the square
matrix inducing the transformation does not vanish. Matrices with
non-zero determinants are called non-singular - otherwise they are
..mgular. In Chapter 3 we discuss in oetail how to construct the
inverse of a non-singular matrix. However, again using our know­
ledge of mappings we can anticipate one result which will be proved

t See, for example, the author's Mathematical Methods forScience Students.
Longman, 2nd edition 1973 (Chapter 16).

10
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later (see Chapter 3, 3.4) - namely, that if A and B are two non­
singular matrices inducing linear transformations (mappings) then
(cf. equation (14) ) the inverse of the product AB is given by

(AB)-1 = B-1A-1. (26)

Consider now two linear transformations

"
Zl = L b1ky" with j = 1,2, ... ,m, (27)

"=1
and

I'

Y" = L a"JxJ with k = 1,2, ...,n. (28)
J=I

In symbolic form these may be written as

Z=BY and Y=AX, (29)
where

Z1 \, Y= Yl X= Xl (30)
Zz Yz Xz

J Y" xl'

and

A= all a l2 • all' B= bll b 12 • bin (31)
a 21 au • a 2p b 21 bu • bz"

The result of first transforming (Xl' X2, ..., Xl') into (Yl' Y2, •.., Y,,)

by (28), and then transforming (Yl, Yz, .. 0' Y,,) into (Zl' Z2' ••• , zm)
by (27) is given by

Zl = f blk ±akjx} = f (f bikak}) Xj' (32)
k=1 }=l }=l k=l

Symbolically this is equivalent to

Z = BY = BAX, (33)

where the operator BA must be thought of as transforming X into Z.
Suppose, however, we go direct from (Xl' X2, • • ., Xl') into

11



Sets, Mappings and Transformations [1.5)

(Zl' Z2' ••• , zm) by the transformation
p

Z/ = L C1jXj,
j=l

which in symbolic form reads

Z=CX,
where

C = ( CII

C21

~ '..
Then comparing (34) and (32) we find

n

C'j = L bikakj •
k=l

(34)

(35)

(36)

(37)

(38)

Equation (37) gives the elements elk of the matrix C in terms of the
elements a ik of A and b ik of B. However, from (35) and (33) we see
that C = BA so (37) in fact gives the elements of the matrix product
BA. Clearly for this product to exist the number of columns of B
must be equal to the number of rows of A (see (37) where the sum­
mation is on the columns of B and the rows of A). The order of the
resulting matrix C is (m xp).

As an example of the product of two matrices we can justify the
earlier statement Y = AX (see equation (23) ) since, using (37),

AX = ( C?S () sin () ) ( X I )
- Sill () cos () X2

= ( Xl C?S () + X 2 sin 0 ) = ( YI ) = Y.
- X I Sill () + X 2 cos () Y2

Our aim so far has been to show the close relationship between
linear transformations and matrices. In Chapter 2, 2.1, matrix
multiplication and other matrix operations will be dealt with in
greater detail and in a more formal way.

1.6 Occurrence and uses of matrices

Although matrices were first introduced in 1857 by Cayley, it was not
until the early 1920s when Heisenberg, Born and others realised their

12



Sets, Mappings and Transformations [1.6J

use in the development of quantum theory that matrices became of
interest to physicists. Nowadays, matrices are of interest and use to
mathematicians, scientists and engineers alike, occurring as they do
in such a variety of subjects as electric circuit theory, oscillations,
wave propagation, quantum mechanics, field theory, atomic and
molecular structure - as well as being a most powerful tool in many
parts of mathematics such as the stability of differential equations,
group theory, difference equations and computing. In the fields of
probability and statistics, game theory, and mathematical economics,
matrices are also widely used.

It is instructive to give at this stage a simple illustration of the
formulation of a physical problem in matrix language.

Consider the problem of the small vertical oscillations of two
masses m l and m1 attached to two massless springs of stiffness SI and

Equilibrium
position

Fig. 1.7

Stretched
position

(39)

Sz (see Fig. 1.7). IfYI and Yz are the displacements from the equilib­
rium position at time t, the equations of motion are

ml~l = -SIYI +Sz{Yz-YI)'}

m1yz = -Sz{Yl-YI),

(dots denoting differentiation with respect to time). These equations
may be written in matrix form as

(40)



(41)

Sets, Mappings and Transformations (1.6)

where

Y=(Yl)' and A=(_(Sl+S2) ~).
h ml m l

S2 S2

m2 m2

If desired the second time derivatives may be eliminated from (39)
by the introduction of two new dependent variables Y3 and Y4 such
that

Then

~3 = -SlYl +S2(h - Yl)'}

Y4 = -s2(h- Yl)·

In matrix form (42) and (43) read

W=BW,

where

W~W)
and B= 0 0

0 0

-(Sl +S2) 52

S2 -S2

(42)

(43)

(44)

1
0 (45)

ml

0
1

m2
0 0
0 0

We see that the second time derivatives have been eliminated only
at the expense of introducing larger matrices.

1.7 Operations with sets

In the earlier sections of this chapter we introduced the ideas of set
theory and developed the set notation just far enough to enable
the concept of a mapping to be understood. Of course, it would have
been possible to omit the set theory sections and to introduce
matrices just by linear transformations. However, as mentioned
earlier, set theory is becoming increasingly used in many branches
of science and engineering; consequently having already introduced
some of its basic notions we follow it a little farther here.

A common criticism of introducing set theory to scientists and
engineers (and for that matter to school children, as is now fashion-

14



Sets, Mappings and Transformations (1.7)

able) is that it is only notation and that little or nothing can be done
using set formalism that cannot be done in a more conventional way.
Although to some extent this may be true it is equally true of a large
part of mathematics as a whole; the development of a new notation
often has a unifying and simplifying effect and suggests lines of
further development. For example, it is more convenient to deal with
the Arabic numbers rather than the clumsy Roman form; vectors are
more convenient in many cases than dealing separately with their
components, and linear transformations are better dealt with in
matrix form than by writing down a set of n linear equations.

We shall not pursue set theory very far, but will go just a sufficient
distance to show some of the types of problems in which sets may be
used with profit.

In what follows we let U denote the set of elements under discus­
sion (the universal set) and A and B be two subsets of U.

(a) Union and intersection of sets

The union (or join or logical sum) of A and B is denoted by A u B
and is defined as the set of all elements belonging to either A or B
or both (see, for example, the shaded part of the Venn diagram in
Fig. 1.8). The symbol u is usually read as 'cup '.

A U]j represented by shaded region

Fig. 1.8

Clearly
AuB= BuA,

and, since A and B are subsets of A u B,

A £; (A u B), and B £; (A u B).
Likewise

Au U = UuA = U.
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The intersection (or meet or logical product) of A and B is denoted
by A (') B and is the set of those elements common to both A and B
(see the shaded part of the Venn diagram in Fig. 1.9). The symbol
(') is read as ' cap'.

A n B represented by shaded region

Fig. 1.9

Corresponding results to those for the union are

A (') B = B (') A,

(A (') B) £ A, (A (') B) £ B,
and

A (') U = U (') A = A.

(49

(50)

(51)

Furthermore, if A and B are disjoint sets (i.e. no elements in com­
mon) then

where e is the empty set.

A (') B = e, (52)

Example 1. If A represents the set of numbers {I, 2, 3,4,5, 6}, and
B the set of numbers {5, 6, 7}, then

AUB={1,2,3,4,5,6,7} (53)
and

A(')B = {5,6}. (54)

Example 2. Let A be the set of points in the region of the Euclidean
plane defined by Ix I ~ 1, Iy I ~ 1, and B the set of points in the
region defined by y2 ~ x, 0 ~ x ~ 2. The sets A u B and A (') Bare
then represented by the shaded parts of Figs. 1.10 and 1.1 I
respectively.
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A U B represented by shaded region

Fig. 1.10

y

A B

2 x

A n B represented by shaded region

Fig 1.11

(b) Complement ofa set and difference of sets

The complement of a set A is denoted by A' and is the set of elements
which do not belong to A. Accordingly if A is a subset of the universal
set U (represented by the rectangle in Fig. 1.12), then A'is
represented by the shaded part of the diagram.

"I' represented hy shaded region
Fig. 1.12

17
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It is clear that

and

(A')' = A,

AuA' = U,

AnA'=0.

(55)

(56)

(57)

The difference of two sets A and B is denoted by A - B and is the
set of elements which belong to A but not to B (see Fig. 1.13).

A-B
represented by shaded region

Fig. 1.13

By inspection of the Venn diagram we find

A-B £ A,

A uB = (A-B)uB,
and

(58)

(59)

A-B=AnB'. (60)

Furthermore, A-B, An Band B-A are disjoint sets. Hence

(A-B)n(AnB) = 0, (61)
and so on.

Example 3. Suppose U is the set of numbers

{1,2,3,4,5,6,7,8,9,10}.

Let A be the subset {I, 2, 3, 4, 5, 6} and B the subset {5, 6, 7}. Then

A-B = {1,2,3,4}, (62)

A' = {7, 8, 9, 10}, (63)
and

B' = {1, 2, 3, 4, 8, 9, 10}.

We may easily verify (60), for example, since

AnB' = {1,2,3,4},

which is identical with (62).

18

(64)

(65)



Sets, Mappings and Transformations (1.8)

1.8 Set algebra

It will have been noticed in the previous section that various relation­
ships hold between the four operations u, n, -, and '. These are in
fact just examples of the laws of set algebra, the most important of
which we give here. In these relations A, Band C are subsets of the
universal set U.

(a) U'=0, AnA'=0,

(A')' = A.}
(66)

0' = U, AuA' = U,

(b) AuA=A, AnA=A. (67)

(c) AuU= U, AU0=A, A-0 = A'} (68)
AnU=A, An0=0, A-A=0.

(d) AnB=BnA
(commutative laws). (69)

AuB=BuA

(e) (A u B) u C = A u (B u C)
(associative laws). (70)

(A n B) n C = An (B n C)

(f) Au (B n C) = (A u B) n (A u C)
(distributive laws). (71)

An (B u C) = (A n B) u (A n C)

These relations may be easily verified by Venn diagrams. For
example, in Fig. 1.14a the horizontally shaded part represents
A n B, and the horizontally and vertically shaded part (A n B) n C.

Fig.1.14a Fig.1.14b

Likewise in Fig. 1.14b, the horizontally shaded part represents
B n C, and the horizontally and vertically shaded part An (B n C).

Clearly (A n B) n C = A n (B n C), as stated in (70).
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1.9 Some elementary applications of set theory

It is impossible here to give an overall picture of the applications of
set theory. Indeed, much of the importance of set theory lies in the
more abstract and formal branches of pure mathematics. However,
the following examples give some indication of a few of the problems
which may be dealt with using sets.

Example 4. In a survey of 100 students it was found that 40 studied
mathematics, 64 studied physics, 35 studied chemistry, I studied all
three subjects, 25 studied mathematics and physics, 3 studied
mathematics and chemistry, and 20 studied physics and chemistry.
To find the number who studied chemistry only, and the number
who studied none of these subjects.

Here the basic set under discussion U (the universal set) is the set
of 100 students in the survey. This set is represented in the usual way
by a rectangle (see Fig. 1.15). Let the three overlapping circular

u

Fig. 1.15

regions M, P and C represent the subsets of U corresponding to
those students studying mathematics, physics and chemistry respec­
tively. We see that the intersection of all three subsets Mn(PnC)
represents 1 student (and is so labelled). Likewise, since the number
of students studying mathematics and chemistry (M n C) is 3, the
number of students studying only mathematics and chemistry is

M n C - M n (P n C) = 3-1 = 2. ( 2)

In this way every part of the Venn diagram may be labelled with the
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appropriate number of elements. From Fig. 1. I 5 we see that the
numbers of students studying only mathematics, only physics and
only chemistry are respectively 13, 20 and 13. Furthermore, the total
of the numbers in the subset (M u P) u C is seen to be 92. Hence
the number of students not studying any of the three subjects is

[(MuP)uC]' = U-[(MuP)uC] = 100-92 = 8. (73)

Example 5. The results of surveys are not always consistent. Consis­
tency may be readily checked using Venn diagrams. Suppose out of
900 students it was reported that 700 drove cars, 400 rode bicycles,
and 150 both drove cars and rode bicycles. If A represents the set of
car-driving students, and B the set of cyclists then A !1 B = 150.
Hence A-B = 550 and B-A = 250 (see Fig. 1.16). Since the basic

u

Fig. 1.16

set U contains 900 students and, by inspection,

Au B = 550+250+ 150 = 950,

we see that the data must be inconsistent. Put another way, the
number of students who neither drive cars nor ride cycles is

U -(A u B) = 900-950 = -50. ( 4)

Clearly the necessary and sufficient condition for data to be consistent
is that the number of elements in each subset must be non-negative.

Example 6. Closely connected with set theory is Boolean algebra.
This is an algebraic structure which has laws similar to those of sets
(see 1.8). Its importance chiefly lies in the description and design of
electrical switching circuits and computing systems. Although it is
not possible to give a detailed account of Boolean algebra here, a
few simple ideas can be indicated.
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Consider the simple circuit shown in Fig. 1.1 7(a) in which Sl and
S2 are switches in series. If p denotes the statement' switch Sl is
open' and q the statement' switch S2 is open " then (a) is described
by the statement' p and q '. In set theory notation we have seen that
the intersection A 11 B of two sets A and B defines those elements

C;~ ~I'" ,,~
(a) (b)

Fig. 1.17

common to A and B. Hence we take over the set notation and write
p 11 q for' p and q '. The circuit of Fig. 1.1 7(a) is therefore described
by the logical statement p 11 q.

Using the set notation p' to mean' not p " we see that the circuit
of Fig. 1.1 7(b) in which switches SI and S2 are not open is described
by the logical statement p' 11 q'. The circuits of Fig. 1.18 are similarly
described.

G::9J
(b)

Fig. 1.18

Now consider the circuits of Fig. 1.19 where SI and S2 are in
parallel. In set notation the union A u B of two sets A and B defines
those elements in A or B. Consequently, parallel circuits in which the
current has alternative routes are described by the use of the union
symbol u. For example, Fig. I.l9(a) is described by p u q', Fig.
1.I9(b) by p' u q', Fig. I.l9(c) by p u q, and Fig. 1.I9(d) by p' u q.

The description of more complicated circuits can readily be found
by treating them as combinations of these basic series and parallel
circuits.

Boolean algebra is useful in showing the equivalence of two cir­
cuits. For suppose a circuit is described by (p u q) n (p u r). Then
since (p u q) 11 (q U r) = p u (q 11 r) is a law of Boolean algebra
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s,

e
(c)

Fig. 1.19

(cf. equation (71) ) the circuit must be equivalent to another with the
structure p u (q n r). This brief sketch of Boolean algebra has been
included here only to indicate one of the developments of set theory.
For further details the reader should consult a more specialised text.

PROBLEMS

1. Express in words the statements

(a) A = {x; x 2 +x-12 = a},
(b) B = {x; tan x = a}.

Which of these two sets is finite?

2. Which of the following sets is the null set,,?

(a) A = {x; x is > I and x is < I},
(b) B = {x; x+3 = 3},
(c) C = {,,}.

3. (a) If A = p, 2, 3, 4}, enumerate all the subsets of A.
(b) If B = {I, {2, 3} }, enumerate all the subsets of B.

4. Which of the following sets are equal?

(a) {x; x is a positive integer ~ 4},
(b) {I, 2, 3},
(c) {x; x is a prime number < 5},
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(d) {I, {2, 3} },
(e) {I, 2, 3, l}.

5. The symbol
2 3

denotes the mapping which sends I into ai' 2 into a2 , 3 into a3
and 4 into a4 •

If f = ( ~ ~ ; ~) and g = ( ~ ; i :)
find Ig and gl Each mapping (J and g) is a permutation of the
numbers I, 2, 3, 4. How many such mappings are there? Are
the mappings 19 and gl members of this set?

6. Given that the letter e is the most frequently occurring letter in
the decoded form of the message

gqk xeja bacqbab lxwm sammeya,

obtain the mapping of the alphabet onto itseif which decodes
the message. The only operations allowed are lateral displace­
ments of the alphabet as a whole, and turning the alphabet back­
wards.

7. Express the transformation

YI = 6x I +2X2-X3,

Y2 = Xl -x2+ 2X3'
Y3 = 7x I +X2 +X3'

in the symbolic form Y = AX. Determine whether or not an
inverse transformation exists.

8. Evaluate the matrix product

(; i ;) ( i -~).
1 2 3 -2 1

9. Given A = {I, 2,3, 4}, B = p, 4, 5} and C = {l, 4, 5}, find
A u (B (") C), A (") (B (") C), A u (B (") C) and A (") (B u C).
Verify that A (") (B u C) = (A (") B) u (A (") C).

10. Verify that A-(B u C) = (A-B) (") (A-C), and that

A-(B (") C) = (A-B) Y (A-C).

24



CHAPTER 2

Matrix Algebra
2.1 Laws of matrix algebra

In Chapter 1, 1.5 a matrix was defined as an array of mn elements
arranged in m rows and n columns. We now consider some of the
elementary algebraic operations which may be carried out with
matrices, bearing in mind that as with matrix multiplication these
may be derived from first principles by appealing to the properties
of linear transformations.

(3)

(1)
~ -~)

A+B = (-1 ~ 1) and A-B = C=~ =~ ;). (2)

Two matrices are said to be conformable to addition and sub­
traction if they are of the same order. No meaning is attached to the
sum or difference of two matrices of differing orders. From the
definition of the addition of matrices it can now be seen that if
A, Band C are three matrices conformable to addition then

A+B=B+A

(a) Addition and subtraction of matrices

The operations of addition and subtraction of matrices are defined
only if the matrices which are being added or subtracted are of the
same order. If A and B are two (m x n) matrices with elements aik
and bik respectively, then their sum A + B is the (m x n) matrix C
whose elements Cik are given by Cik = aik+bik' Likewise A-B is
the (m x n) matrix D whose elements d ik are given by d ik = aik-b1k.
For example, if

A = ( 1 2
-1 1

then

and
A+(B+C) = (A+B)+C = A+B+C. (4)

These two results are respectively the commutative law of addition
and the associative law of addition.
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(b) Equality of matrices

Two matrices A and B with elements aik and bik respectively are
equal only if they are of the same order and if all their corresponding
elements are equal (i.e. if aik = bik for all i, k).

(c) Multiplication of a matrix by a number

The result of multiplying a matrix A (with elements aik) by a number
k (real or complex) is defined as a matrix B whose elements bik are
k times the elements of A. For example, if

A = ( 1 2) then 6A = (6 12 ) .
3 4 \ 18 24

From this definition it follows that the distributive law

~A±~=U±ffi W
is valid (provided, of course, that A and B are conformable to
addition). Furthermore, we define

kA = Ak (7)

so that multiplication of a matrix by a number is commutative.

(d) Matrix products

As we have already seen in Chapter 1, 1.5, two matrices A and B
can be multiplied together to form their product BA (in that order)
only when the number of columns of B is equal to the number of
rows of A. A and B are then said to be conformable to the product
BA. We shall see shortly, however, that A and B need not be con­
formable to the product AB, and that, even when they are, the
product AB does not necessarily equal the product BA. That is,
matrix multiplication is in general non-commutative.

Suppose now A is a matrix of order (m x p) with elements aik> and
B is a matrix of order (p x n) with elements bik . Then A and Bare
conformable to the product AB which is a matrix C, say, of order
(m x n) with elements Cik defined by

p

Cik = L aisbsk' (8).= I

For example, if A and B are the matrices

A = ( all a 12 ) , B = ( bll
a21 an b21
a31 an
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then C = AB is the (3 x 2) matrix (using (8) )

(10)

The product BA, however, is not defined since the number ofcolumns
of B (i.e. two) is not equal to the number of rows of A (i.e. three) ­
in other words, A and B are not conformable to the product BA.

As another example, we take the matrices

Then

AB = (10
11

13 ).
14

(11)

(12)

Now the product BA is also defined in this case since the number of
columns of B is equal to the number of rows of A. However, it is
readily found that

BA = (7 3
11 4
12 5

~) .
13

(13)

Clearly AB # BA, since the orders of the two matrix products are
different (see 2.I(b)). This non-commutative property of matrix
multiplication may appear even when the two products are defined
and are of the same order. To illustrate this we take

(14)

Then

0),
-1

(15)

whence again AB # BA. This shows that matrices behave in a
different way from numbers by not obeying (in general) the com­
mutative law of multiplication. However, they still obey the associa­
tive law of multiplication and the distributive law in that if A, Band
C are three matrices for which the various products and sums are
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defined then

and
(AB)C = A(BC)

(A+B)C = AC+BC.

(16)

(17)

Matrices A and B for which AB = BA are said to commute under
multiplication.

2.2 Partitioning of matrices

In dealing with matrices of high order it is often convenient to
break down the original matrix into sub-matrices. This is done by
inserting horizontal and vertical lines between the elements. The
matrix is then said to be partitioned into sub-matrices. For example,
the (3 x 4) matrix

A = ( all
a21

---------1----

a31

(18)

is partitioned into sub-matrices IX I !, IX!Z' IX Z! and IX n by the straight
lines, and may be written as

A = ( 1Xl!

IX Z !

(19)

where

IX!! = (all
a2!

IXZ! = (a 31

(20)

Now suppose A and B are two matrices conformable to addition.
Then if A and B are partitioned as

we have

B=(IlI!
1l2!

1112 )
Ilzz

(21)

(22)A+B=(lXll+llll 1X 12 +Il!z)
IX ZI +PZ! IX zz +Ilzz

provided that for each sub-matrix lX ik the corresponding sub-matrix
Ilik is of the same order. This will be so provided A and Bare par-
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titioned in precisely the same way. For example,

(
_1 47) + (_0_~) = ( 1
2 58 1 47 3
3 69 2 58 5

7

911
13 ). (23)

15
17

We now come to the problem of the multiplication of partitioned
matrices. Suppose A is a (m xp) matrix and B is a (p x n) matrix.
Then their product AB = C is an (m x n) matrix with elements
Cik , where

P

Cik = L aisbsk
s= 1

If now A is partitioned into, say, four sub-matrices

and B into

B=(~ll ~12)
~21 ~22

then the product AB = C may be written as

C=(111 112)
121 122

where
r

1ik = L (Xis~sk·
s= 1

(24)

(25)

(26)

(27)

(28)

(r depending on the partitioning pattern)

provided the sub-matrices (Xis and ~sk are conformable to the product
(X1s~sk. This will always be so provided the partitioning of A and B
is such that the columns of A are partitioned in the same way as the
rows of B. However, the rows of A and the columns of B may be
partitioned in any way whatsoever.

Example 1. To evaluate AB given

1
2
1

3
1
2

(29)
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Partitioning so that

A=(1X11 .ute 1

:)1X21 1X22 1 2

0 1

and

B~ (~ut C 3

:)P21 2 1

3 2

(30)

(31)

(i.e. partitioning the columns of A in the same way as the rows of B),
we have using (28)

AB = (lXllPll +1X12P21 ) (32)

1X 21 PII + 1X22 P21

= ((~ ~)(~
3 ~) + (;) (3

2 1) (33)
1

\ (0 1) (; 3 ~) + (4)(3 2 1)
1

~ (n 10
~) + (~

4

D)
(34)

5 6

(2 1 2) + (12 8 4)

~(1l 14 n (35)
14 11
14 9

The same result could have been obtained by partitioning A and
as

1

2
1

3

1
2

(36)

where again the columns of A are partitioned in the same way as the
rows of B.
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2.3 Some special types of matrices

(a) Row matrix

A set of n quantities arranged in a row is a matrix of order (1 x n).
Such a matrix is usually called a row matrix or row vector and is
denoted by

(37)

(b) Column matrix

(38)

A set of m quantities arranged in a column is a matrix of order
(m x 1). Such a matrix is called a column matrix or column vector
and is denoted by

(c) Zero (or null) matrix

A matrix of order (m x n) with all its elements equal to zero is called
the zero (or null) matrix of order (m x n). For example, the matrix 0,
where

(39)
~)o= (~ ~

is the (2 x 3) zero matrix.
We note here that, if A and B are two matrices conformable to

the product AB and such that AB = 0 where 0 is the zero matrix,
this does not necessarily imply that either A = 0 or B = 0, or both.
For if

(40)

then

AB = (~ ~).

Here again matrices do not follow the behaviour of numbers.
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The zero matrix 0 has the following obvious properties:

A-A = 0 }
A+O = 0'+ A = A,

AO=O,

OA =0,

(42)

provided A and 0 are conformable to the various sums and products.

(d) Square matrices

A matrix with the same number of rows as columns is said to be
square, and to be of order 1l if n is the number of rows. For example,
the (n x n) matrix

(43)

is a square matrix of order n. The diagonal containing the elements
all' an, a33' ... , an. is called the leading diagonal, and the sum of
these diagonal elements

•La ii
i= 1

is called the trace or spur of the matrix. This sum is usually denoted
by Tr (or Sp). For example, if

then

o
1
4

(44)

TrA = 1+1+5 = 7. (45)

(e) Diagonal matrix

A square matrix with zero elements everywhere except in the leading
diagonal is called a diagonal matrix. In other words, if a ik are to be
the elements of a diagonal matrix we must have a ik = 0 for i '" k.
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This is best described by introducing the Kronecker delta (jik which
is defined by

{
I for i = k,

(j'k =
I 0 for i =I k.

The elements of the nth order diagonal matrix A, where

(46)

(47)

may now be written as

(48)

where i and k run from I to n.
All diagonal matrices of the same order commute under multipli­

cation to give another diagonal matrix. Furthermore, if A is the
diagonal matrix of (47) and B is a general (n x n) matrix with ele­
ments bik, then

o 0
A2 0
o

o (49)

bnl b n2 b nn

0 0 An

= ( Al b ll Al b l2 Al bIn (50)
A2b 21 A2b22 A2b 2n

ll.b., An b n2 An bnn

We see that, on forming the product AB, Al multiplies all the ele­
ments of the first row of B, A2 the elements of the second row, and
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so on. On the other hand

BA= bl1 b12 bin Al 0 0 (51)
bZI b22 bzn 0 Az

0 0

bnl bnz bnn
0 0 An

Al bl1 Az b12 An bin (52)
Al b21 Az b22 Anbzn

which shows that, on forming the product BA, Al multiplies all the
elements of the first column of B, Az the elements of the second
column, and so on.

(f) Unit matrix

The unit (or identity) matrix of order n is an nIh order diagonal
matrix with unit elements. Such matrices are usually denoted by I
(or sometimes by E). For example, the unit matrix of order 3 is

I = (~ ~ ~)
001

the elements of which are Dik (i, k = 1,2,3).
related to the identity mapping

Yl = Xl'

Yz = XZ,

Y3 = X3'

Yn =

which in matrix form reads

Y=IX.

34
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where

y= Y1

Y2

I = I
o
o

o 0
I 0
o I

o and X= Xl .(56)
X 2

Yn
o

In general, if A is an arbitrary square matrix of order n and I is the
unit matrix of the same order then IA = AI = A. To prove this
result we write B = IA. If the elements of Bare bik then

n

bjk = L Disask = a ik • (57)
s=l

Hence IA = A. Similarly we may prove that AI = A.
By taking A = I in the results, we find

12 = I (58)
and consequently

(60)

(59)Ik = I k
-

1 = ... = 12 = I,

where k is any positive integer.
If A is not square then IA # AI since one or other of these products

will not be defined. However, provided the product is defined we can
always multiply an (m x n) matrix. by a unit matrix without changing
its form. For example,

(

1 0
o 1
o 0

(g) Idempotent and nilpotent matrices

A square matrix A which satisfies the relation

A2 = A (61)

is called idempotent. Such matrices arise, for example, from the two
relations

AB = A and BA = B.
For then

(62)

{
= (AB)A = A2

ABA '
= A(BA) = AB = A,

showing that A2 = A.

(63)
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A square matrix A which satisfies the relation

Ak=O, (64)

where k is any positive integer, is said to be nilpotent of order k.
For example,

-1)
-2

A= (~

is nilpotent of order 2 since A2 = O.

(65)

(66)

(h) The transposed matrix

If A is a (m x n) matrix its transpose A. (sometimes denoted by A'
or AT) is defined as the (n x m) matrix obtained by interchanging the
rows and columns of A. Consequently the jib row of A becomes the
i lb column of A.. For example, if

A~0nthen h(~ ; ~).

Clearly the transpose of a column vector, say

is a row vector

(67)

Similarly the transpose of the row vector [A] is the column vector
{A}. It follows that

{1) {A} = [A] (A] = ai+ai+a~. (68)

In general we see that if A is matrix of order (m x n) then A. is of
order (n x m) and hence A and A. are conformable to both products
AA. and A.A. (N.B. both products exist but are of different orders
unless A is square.)

We now show that if A and B are two matrices conformable to
the product AB = C, then

(69)

To prove this, suppose A is of order (m xp) with elements aik and
B is of order (p x n) with elements b ik • Then C is a matrix of order
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(m x n) with elements Cik given by
p

Cik= I aisbsk·
s= 1

Consequently

and therefore

(70)

(71)

c = aA = (AB). (72)

Similarly we may show that if At, A2 , ••• ,An are n matrices conform­
able to the product At A2 ••• An' then

----------(A t A2 A 3 ···An) = An···A3 A2 At · (73)

In other words, in taking the transpose of matrix products the order
of the matrices forming the product must be reversed. For
example, if

A=U ~), B= (~) (74)

then

A= (; ~), a = (2 1). (75)

Consequently

AB = C~), aA = (4 10), (76)

and hence (AB) = HI.

(i) Complex conjugate of a matrix; real and imaginary matrices

If A is a matrix of order (m x n) with complex elements aik then the
complex conjugate A* (sometimes A) of A is found by taking the
complex conjugates of all the elements. For example, if

A = (1 + i 2 - i) then A* = (1- i 2 i). (77)
3 l-i 2+i 3 l+i 2-i

It is easily seen that
(A*)* = A,

(AA)* = A*A*, (78)

(AB)* = A*B*,

where A. is a complex number, and where the product AB is assumed
to exist.

37



Matrix Algebra [2.3)

A matrix A which satisfies the relation

A =A* (79)

is called real, since (79) ensures that all its elements will be real
numbers. Likewise a matrix A is called imaginary if it satisfies the
relation

A= -A* (80)

since this condition ensures that all its elements will be imaginary
numbers.

U) Symmetric and skew-symmetric matrices

A matrix A is symmetric if

A = A (i.e. aik = aki for all i, k). (81)

Such a matrix is necessarily square and has the leading diagonal as
a line of symmetry. For example, a typical symmetric matrix is

x
3
z

(82)

For an arbitrary square matrix of order n there are n2 independent
elements. Imposing the symmetry condition aik = aki , however,
reduces this number to

n 2 -n
-2- + n = -!n(n+1). (83)

A matrix A is skew-symmetric if

A = -.A (i.e. if aik = - aki for all i, k). (84)

Such a matrix is again necessarily square, and in virtue of the rela­
tions all = -all' an = -a22 , etc., all the elements of the leading
diagonal are zero. For example,

A= (-~ ~ o~)
-1 -3

(85)

is skew-symmetric. It is easily verified that for an nth order skew­
symmetric matrix the number of independent components is

-!n(n-1).

38
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Any square matrix may be written as the sum of a symmetric
matrix and a skew-symmetric matrix since

A= (A;A) + (A;A),

the first bracket being a symmetric matrix (satisfying (81» and the
second bracket a skew-symmetric matrix. We note that the sum of
the numbers in (83) and (86) gives n2 as it should in virtue of (87).

(k) Hermitian and skew-Hermitian matrices

A matrix A is called Hermitian if

A = (A*). (88)

""'Such a matrix is necessarily square. We usually denote (A*) by
At (or AH); so A is Hermitian if

A=At. (89)

In terms of the elements aik of A, (89) means a ik = a~, which clearly
shows that the diagonal elements of a Hermitian matrix are real.
For example,

A = ( 1
1- i
-i

(90)

is Hermitian.
We note here that if in (88) A is real the definition becomes that of

a symmetric matrix (see 2.3m ).
A matrix A is skew-Hermitian (or anti-Hermitian) if

""'A = -(A*)

which, in terms of At, reads

A= -At.

(91)

(92)

In terms of elements, (92) means aik = - a:i , from which it follows
that the diagonal elements of a skew-Hermitian matrix are either
zero or purely imaginary. For example,

is skew-Hermitian.

A= (_\ ~
-l-i
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Every square matrix with complex elements may be written as
the sum of a Hermitian matrix and a skew-Hermitian matrix, since

(94)

the first bracket being a Hermitian matrix (satisfying (89) ), and the
second bracket a skew-Hermitian matrix (satisfying (92) ).

Now since (AB)* = A*B*, and (AB) = EA (see (69)), we have

or rather

PROBLEMS 2

1. If A = G ~) and B = (~ D'
evaluate (A+B), (A-B), (A-B)(A+B) and A 2 _B2

•

(95)

(96)

1
2

-1

2 If A ~ (: ~ Dand B ~n
evaluate A + B, A - B, AB and BA.

3. If A = (~ _ ~) and B = (~ - ~),

find AB and BA.

If C = (~ ~)

verify that A(BC) = (AB)C, and that (A + BIC = AC + Be.

4. If A = (2 3 1) ,
o 1 -1

-1 0 2

calculate Au, A2 u, Av, A2 v and iiA2 v.

5. Given

C12=(~ -~),

40
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Matrix Algebra [Problems]

show that 0'10'2 = i0'3' 0'20'3 = iO'b 0'30'1 = i0'2' and that
O'iO'k+O'kO'j = 26 ik I (i, k = 1,2,3), where I is the unit matrix
of order 2.

6. Given

y,~o ! ~~)' Y'~(J: -~ ~)'

Y'~C J~ -D' Y'~C ~ -! J),
show that 'Yi'Yk+'Yk'Yi = 2b ik I (i, k = 1,2,3,4), where I is the
unit m;ttrix of order 4.

7. II A ~ (1 =i!j)
prove that A1 -= I. Prove also that if P = AMI A and
Q = AM2 A, where M 1 and M 1 are arbitrary diagonal matrices
of order 4, then PQ = QP.

8. Find the symmetric and skew-symmetric parts of the matrix

A = (~ ~ -~).
-1 t 2

9. Verify that the matrix

is Hermitian.

10. Prove that if A is skew-Hermitian, then ±iA is Hermitian.

11. Determine the nature (symmetric, skew-symmetric, Hermitian
or skew-Hermitian) of the following matrices:

1-
5
i), ( 0 5), ( i

-5 0 -1-i
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12. Show that if A is Hermitian then A = S+iT, where Sand T
are real symmetric and skew-symmetric matrices respectively.

13. Prove that At A and AAt are both Hermitian.

14. Show that both the matrices

G=: Dand

are idempotent.
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CHAPTER 3

The Inverse and Related Matrices
3.1 Introduction

In Chapter 1, 1.5 we discussed briefly the idea of a linear one-to-one
transformation, illustrating it by the particular case of a two­
dimensional rotation of Cartesian axes. Consider now the linear
transformation

YI =allxl+aIZxZ+ +a.lnxn,
Yz = aZlx l +azzxz+ + aZnxn,

(1)

Yn = anixi +anZxZ+ +annxn,

which may be written in matrix form as

Y=AX, (2)
where

Y= YI , X= Xl and A= all alZ aln (3)

Yz Xz aZI an aZn

Yn

We now wish to find the inverse transformation

Xl = bll YI +b12 Y2+
Xz = bZIYI +bzzYz+

(4)

(assuming that it exists) which expresses the Xi explicitly in terms
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of the Yi' In matrix form (4) reads

X=BY,

where X and Yare given by (3) and where

B = bll b12 b!n

bl1 b22 bln

bn1 bnn

From (2) and (5), it follows that

Y = ABY and X = BAX

which in turn give
AB = BA = I,

(5)

(6)

(7)

(8)

where I is the unit matrix of order n.
B is called the inverse matrix of A and is denoted by A-1. Equa­

tion (8) now becomes
AA -1 = A-I A = I, (9)

which is to be compared with equation (8), Chapter 1, where essen­
tially the same result was derived for one-to-one mappings in
general. We note that A and A-I necessarily commute under multi­
plication. What is now required is a method of calculating A-I
given the matrix A. To do this we first need to discuss the adjoint of
a square matrix.

3.2 The adjoint matrix

If A is a square matrix of order n its adjoint - denoted by adj A ­
is defined as the transposed matrix of its cofactors. Suppose A Ik is
the cofactor of the element a ik in A (i.e. (- 1)i +k times the value of
the determinant formed by deleting the row and column in which
a'k occurs). Then the matrix of cofactors is the square matrix (of
the same order as A)

(10)
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The Inverse and Related Matrices (3.2)

Consequently

Example 1. If

adjA= AII

A I2

A 21 •

A 22 ·

(11)

(12)
A=(~ ; ;)

1 5 12

then the cofactor of all is AII = (_1)1 +1(3.12-5.5) = 11, the co­
factor ofa12 is AI2 =(-I)I+2 (12.1-5.1)= -7, and so on.
Proceeding in this way we find

using the expansion property of

adj A = ( 11
-7

2

Now, returning to (11) and
determinants

-9 1).
9 -2

-3 1

(13)

we find

A (adj A) = a ll a\2

a2\ a22

n

L aisAks = IAI (jik'
s= I

(14)

ani ann A ln Ann /

IAI 0 o.

n
(16)

0 IAI o .
0 0 IAI

0 IAI}
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which may be written more compactly as

A(adj A) = IAI I,

where I is the unit matrix of order n.
Likewise, using the result

n

L Ask asi = IAI 6ik ,
s=1

we may easily prove that

(adj A)A = IAI I.
Consequently

A(adj A) = (adj A)A = IAI I,

(17)

(18)

(19)

(20)

which shows that A and its adjoint matrix commute under multi­
plication.

Some further properties of the adjoint matrix may be derived
from (20). For example, taking determinants (and remembering that
the determinant of a product is the product of the determinantst)
we have

or

provided IA I '# O.

IAjladj AI = lAin

ladj AI = IAjn-l,

(21)

(22)

3.3 The inverse matrix

. I . adj A . hFrom (20) It is c ear that the matnx lAf behaves III t e way re-

quired of an inverse of A-I since

(af~~)A = Aef~~) = I

(compare with (9) ). Consequently we define

A-I = adj A
IAI

(23)

(24)

It is necessary, however, to show that this inverse is unique in that
there is no other matrix with the desired properties. To prove this

t There are many ways of proving this result. It is sufficient here for the reader
to establish the result for the determinants of two (2 X 2) matrices and to see
that the method can be readily extended to higher order determinants.
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suppose that X is any matrix such that AX = I. Then
A-I AX = A-I I = A-I. (25)

Since A-I A = I, (25) gives X = A-I. Likewise if Y is a matrix
such that YA = I, then

YAA -I = IA -1 = A-I (26)

and, since AA -I = I, Y = A-I. Consequently provided the inverse
exists it is unique. Clearly, from (24), the inverse A-I exists provided
IAI # 0 - that is provided A is non-singular.

Example 2. The adjoint of the matrix

A = ( 1 4
-1 2

o 0

(27)

is the matrix

8) .
-2

6

(28)

Furthermore IAI = 12. Hence

A-
1

=ad
j
A=(t -t t).IAI .1 .1_.1

6 6 6

001
It may easily be verified that AA - 1 = A-I A = I.

(29)

3.4 Some properties of the inverse matrix

Suppose A and B are two square non-singular matrices of the same
order. Then since IAI and IBI are both non-zero so also is IABI.
Consequently AB has an inverse (AB) -1 such that

(AB) (AB) - 1 = I. (30)

Hence multiplying (30) throughout on the left by B-IA-I we have

B- 1A- 1AB(AB)-1 =B- 1A- 1I, (31)

which gives (since A-IA = I, B- 1B = I)

(AB)-I=B- 1A- 1 • (32)

The same result is obtained by taking (AB) -IAB = I and multi­
plying throughout on the right by B- 1A-I. Equation (32) shows
that the inverse of a product is obtained by taking the product of the
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inverses In reverse order. This result was, in fact, deduced in
Chapter 1, 1.4 using the idea of general mappings, and may be
extended to n non-singular matrices AI' A2 , A3 , ••• , An of the same
order to give

(AI A2 •.. An- I An)-I = A; IA;! I" .Al l A; 1. (33)

Another result which is easily proved is that if A is a non-singular
matrix then

r--.-J
(A)-1 = (A-I). (34)

For, since AA- I = A-IA = I, we have
~ r--.-J
(AA - I) = (A - I)A = i = I (35)

and
~ _r--....J _
(A-IA) = A(A -I) = I = I. (36)

Consequently
r--.-J r--.J

A(A-I) = (A -I)A = I. (37)
However

A(A)-I = (A)-IA = I, (38)
so

r--.J
(A)-I = (A-I). (39)

Finally we may now show that if A is non-singular and symmetric
then so also is A-I. For since

f'.-.-/ r--.J
A-IA = I = i = (AA -I) = (A -I)A, (40)

it follows, using the symmetry of A expressed by the relation
A = A, that

~

A-I=(A- I). (41)

Consequently A- I is symmetric.

3.5 Evaluation of the inverse matrix by partitioning

Suppose A is a non-singular square matrix of order n. We now par­
tition A into sub-matrices (see Chapter 2, 2.2) as

(42)
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where 01: 11 is an (s x s) matrix, OC l 2 an (s x s) matrix, 01:21

matrix and 01: 22 a (s x s) matrix, and where 2s=n.
Let the inverse matrix A- I be partitioned as

a (s x s)

(43)

(49)

(44)

(50)

(51)

(45)

(46)

(47)

(48)

where the partitioning is carried out in exactly the same way as the
partitioning of A (i.e. P!l is an (s x s) matrix, etc.). Now, since
AA -1 = I, we have

(~~) (~~)=(=-~),
1X 21 IX22 P21 P22 0 Is

where Is is the unit matrix of order s.
From (44) it follows that

IX II PII + 1X 12 P21 = Is>

IXIIP12+1X12P22 = 0,

1X 21 P11 +1X22 P21 = 0,

1X 21 P12 + IX 22 P22 = Is·
Putting P22 = k - 1, we have from (46)

PI2 = -1X1t' IX 12 k -
1

(assuming that 1X 11 is non-singular), and from (48)

PI2 = lXi/-IX;? IX 22 k - 1

(assuming that 1X21 is non-singular also).
Comparing (49) and (50) it is easily found that

k = 1X 22 -1X111X1/1X12'

Hence, using (51) and (50),

P12 = -1X 1 t'1X 12 k-
1

•

Now from (47)
(52)

(53)
and from (45)

Pl1 = 1X1t'-1X 1t'IX 12 P21'

Consequently from (53) and (54)

P21 = I s(lX12 -1X 11 1X;/ IX22)-1

= -k-11X211X1t' (using (51».
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Finally, using (56) and (54), we have

Pll = 1Xi""l+lX l llX 12 k- 1
1X 21 IXil·

Collecting the appropriate results together we have

Pll = IXll + IX III IX \2 k- 11X
21 1X 1/' ]

P12 = -1X;-l lX 12 k - l
,

(58)
P21 = -k- 11X 21 1X;-l,

P22 = k- 1
,

where k is defined by (51). In the calculation of these sub-matrices
the inverse matrices which need be calculated are (Xil and k - I.

Identical results to (58) may be obtained by partitioning A accord­
ing to some other pattern. However, the choice of the way in
which the original matrix A is partitioned depends very much on its
form. In general, however, the method of partitioning enables the
inversion of a large matrix to be reduced to the inversion of several
smaller order matrices.

Example 3. To find by partitioning the inverse of the matrix

A=(_~ ; ~).
253

(59)

Let

1X11=( 1 2),
-1 2

1X21 = (2 5),

It is easily found that

1X
12

= (D'
1X 22 = (3).

(60)

and hence that

k = 3 - (2 5)* ( ; - nC)
= t·

Consequently, using (58),

Pll = (! -i) + 2(i -i) (D (2 5) (t -i)
50
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(65)

(66)

(67)

and
P22 = 2.

Hence the inverse of A is the matrix

-1
1

-1

0).-1
2

(68)

(69)

3.6 Orthogonal matrices and orthogonal transformations

A square matrix A (with real elements) is said to be orthogonal if

A = A-I. (70)

Since AA -1 = A-I A = I, it follows that an orthogonal matrix A
satisfies the relation

AA = AA = I. (71)

(72)-i)
-t

From (71) it is easily deduced that the columns (or column vectors)
and also the rows (or row vectors) of an orthogonal matrix form an
orthonormal set of vectors (i.e. mutually orthogonal and of unit
length). For example, the matrix

A = ( j
-t

is orthogonal. Now taking the first column of elements as represent­
ing the components of a 3-vector, its length is

{(t)2+(t)2+( -i)2}t = 1.

Likewise for the second and third columns (and also the rows).
Furthermore, taking the scalar product of the first column vector
with the second column vector, we have t.i+i.t-i+i = 0,
showing that the first two column vectors are mutually orthogonal.
Likewise for the second and third columns, and the third and first
columns. Similar results hold for the rows. These results may be
expressed more compactly for a general nIh order orthogonal
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matrix A with elements a ik by the relation
n

I aisaks = (jik'
s=1

(73)

Some other results concerning orthogonal matrices may easily
be proved.

(a) Suppose A and B are two nth order orthogonal matrices. Then
AA = AA = I and BB = BB = I. Hence

(AB)(AB) = ABBA (using equation (72), Chapter 2), (74)

= I. (75)
Likewise

(AB)AB = JUAB = I, (76)

so consequently the product of two orthogonal matrices is an
orthogonal matrix.

(b) The transpose of an orthogonal matrix A is crthogonal. For,
since A = A- 1, then

'" ~
(A) = (A -1) = (A)-1 (using (39», (77)

which shows A to be orthogonal.
(c) The inverse of an orthogonal matrix A is orthogonal. For,

since A = A- 1, then

~ '"
(A- 1)=(A)=A=(A- I )-I, (78)

which shows A- I to be orthogonal.
(d) The determinant of an orthogonal matrix is equal to ±1. For,

since AA = I, we have, taking determinants,

(79)

so that IAI = ± 1.
Suppose now that the elements of the column vector

(80)

represent the Cartesian coordinates (Xl' X 2 , •••, xn) of a point P
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in an Euclidean space of n-dimensions. Then Xx = xi +x~ + ... +x;
gives the squared distance from the origin to the point P (in 3-dimen­
sions this reduces to the well-known result xi +x~ +xD. Now
supposing we make a coordinate transformation by means of the
matrix relation Y = AX, where A is an nth order matrix and

Y = Yl
Y2

Yo

With respect to the new axes, the coordinates of the point P are now
(Yl' Yz, ..., Yo)' The distance of P from the origin (which is a fixed
point under the transformation, since when X = 0, Y = 0 also) is
now '£Y = yi+y~+ ... +y;. But

f'-....)

YY = (AX)AX = XAAX (using (72), Chapter 2), (81)

so if AA = I then '£Y = XX, and distance is preserved (i.e. is an
invariant quantity) under the transformation. But AA = I is the
condition that A be orthogonal. Consequently the transformation

Y = AX with A orthogonal (82)

is called an orthogonal transformation, and has the important
property of preserving distance. Besides leaving distance unaltered,

Q ( (2) ,(2) ,- (2»)
X1 'x2 '·· .... ··,Xn

o

P ( (I) (I) (I»)
Xl 'X2 , .. , ..... ,Xn

Fig. 3.1

an orthogonal transformation also leaves the angle between any
two vectors unaltered. Suppose X(l) and X(Z) are two vectors in
n-dimensional space (see Fig. 3.1), and that they are represented by
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column matrices

X(I) = X(I)
I ,

X(I)
2

X(2) = (83)

(85)

where (xl1), X~I), ... , X~l» and (x12), x~2), ... , X~2» are coordinates
of the points P and Q respectively. Then the angle e between X(I)
and X(2) is defined by

xi l )x12)+X~I)X~2) + ... + X~l )X~2)

cose = {xll)1+x~1)1+ ... +X~I)2P {xi2J' +X~2)2 + ... +~0)lft· (84)

in matrix form this becomes
~(I)X(2)

cos e= {~( 1 lX( I)} -l- {~(2)X(2)} -l- .

Now let X(I) be transformed into a new vector y(l) by an orthogonal
transformation y(l) = AX(I), and X(2) be transformed into a new
vector y(2) by the same matrix so that y(2) = AX(2). Then the
angle cP, say, between the new vectors y(l) and y(2) is

y(l)y(2)

cos <P = {y(l)y(l)}-l- r£(2)y(2)}-l-

r---..J
(AX( I»AX(2)

r---,) r--J
{(AX(I»AX(I)}-l- {(AX(2»AX(2)}-l-

~
X(I)AAX(2)

r-v
{X(I)AAX(1)}-l- {~(2)AAX(2)}-l-

~(I)X(2)

(since AA = I)- {~(I)X(I)}t {~(2)X(2)}-l-

= cos e.

(86)

(87)

(88)

(89)

Hence e = <p, showing that an orthogonal transformation preserves
angles between vectors.
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We now consider the conditions to be placed on the general
second order matrix with real elements

for it to be orthogonal. Now, since we require AA = I,

a 21 )=(1
an 0

Hence
ail +ai2 = I,

all a21 +al2an = 0,
and

(90)

we have

(91)

(92)

(93)

(94)

Writing all = cos e, a 21 = cos cp, (92) and (94) give al2 = sin e
and a22 = sin cp respectively. Equation (93) now becomes

cos (e- 4» = 0

giving cp = e+11./2 or cp = e+ 311./2. Consequently

(95)

an = ± cos e, all = =+= sin e. (96)

Hence there are only two possible second-order orthogonal matrices,
namely

A l =( cose sine) and A 2 =(cose sine). (97)
- sin e cos e sin e - cos e

The first of these two matrices, namely AI' has been met earlier (see
Chapter I, 1.5) in connection with the rotation of Cartesian axes.
The orthogonal transformation Y = Al X corresponds therefore to
a rotation about the origin. The transformation Y = A2 X, however,
is not just a rotation about the origin, but consists of a rotation of
the axes through an angle e together with a reversal of the sign
of the second coordinate. In other words, a rotation through an
angle e, followed by a reflection in the 0yt axis (see Fig. 3.2). The
essential difference between these two transformations is in the values
of the determinants of the matrices Al and A2 • For IAII = + 1,
whilst jA2 1 = - I. In general, orthogonal transformations for which
IAI = + 1 correspond to pure rotations about the origin, whilst
orthogonal transformations with IA I = - I correspond to a rotation
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)',

Fig. 3.2

plus a reflection in one or other of the planes defined by the axes.
A rigid body is therefore unaltered in size and shape by an orthogonal
transformation (since length and angle are both unaltered by the
transformation), but undergoes either a pure rotation about the
origin or a rotation about the origin together with a reflection in an
axis plane.

3.7 Unitary matrices

A square matrix A is said to be unitary if

At = A-I (i.e. AAt = AtA = I), (98)

where At = (A*') is the transpose of the complex conjugate of A
(see Chapter 2, 2.3(k) ). Clearly when the elements of A are real {98)
reduces to A = A- I, which is the definition of an orthogonal
matrix. In fact, the unitary matrix is the generalisation of the real
orthogonal matrix when the matrix elements are allowed to be
complex. For this reason similar results to those obtained in the
last section still apply. For example, the product of two unitary
matrices is an unitary matrix since, if A and B are unitary, At = A-I
and b ' = B-t, and hence

(AB)t = BtAt (usmg (96), Chapter 2) (99)

=B-IA- 1 =(ABfl (using (32), Chapter 3). (100)

As in the previous section we may also prove that the inverse and
transpose of a unitary matrix are unitary matrices. The transfor­
mation Y = AX is called unitary if the matrix A is unitary, and
preserves lengths of vectors and angles between them when the
vector components are complex numbers (Xl' X2' ••• , xn). The
definition of squared distance, for example, is different now and is
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no longer given by ~X (see last section) but by
,....,
X*X = xix i +xi'x2 +",+x:xn (101)

= IXI12+lx212+ ... +lxnI2, (102)

where bars llldicate the moduli of the complex numbers. Similarly
the angle between two vectors X(I) and X(2) with complex com­
ponents is now

r---.J
X(1)*X(2)

cos (J = r--....J f'o..J (103)
{X(I)*X(I)}+ {X(2)*X(2)}+

which is to be compared with (85). It can easily be verified that (J is
an invariant under the unitary transformation Y = AX (A unitary;'

Example 4. The matrix

is unitary, since

(104)

_i ) and (A*) = At = ( ~
J~ J~
1 i

-)2 - J~

_i ). (105)
J2
1

- J2

(106)

Hence At = A -I.

Now suppose X is a column vector with components XI and ix 2 ,

say, where XI and X2 are real numbers. Then

x=(.x l ),
1X2

and the squared length of X is

(X*)X = xtx = x~+x~. (107)

Now carry out an unitary transformation Y = AX using the unitary
matrix (l04). Then the transformed vector

Y = (YI)
Y2
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is given by

whence

1

(
YI) = /-(~ i) (.X I)
Yz V 2 - 1 -1 IX z

(l08)

(109)

(110)

The squared length of the vector Y is

Y*Y = IYllz+I.vzlz= 1(X1-X2)Z+1(-'1 +X2)2 = xi+x~, (l1l)

showing that distance is unaltered under an unitary transformation.

PROBLEMS 3

I. Prove that

(i) adj AB = adj B adj A;

(ii) if A is symmetric so is adj A;

(iii) if A is Hermitian so is adj A;

(iv) adj (adj A) = IAln-ZA if IAI # O.

2. By solving the equations

YI = X I cos 0 + X2 sin 0

Yz = -XI sin 0 + x 2 cosO

for Xl and Xz, show that the inverse of the matrix

A = ( cos 0 sin 0 ) is A - I = (cos 0 - sin 0 ) .
-sinO cosO sinO cosO

Verify that AA -1 = A-I A = I, and that A is an orthogonal
matrix.

3. Find the inverse of

(
a+ib

-c+ id

given that a2+b2+c2+d2 = I.
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4. If o
1
o

show that A-I = A.
(Such matrices are called self-reciprocal.)

5. Find the inverse matrix of

A~G ~ D
and verify that AA - 1 = A-IA = I.

6. Verify that
IX

1

fi
and that

1) .
-1

1

non-singular, and if

1
1
o(~

verify that

7. If

D' ~G-;
lX+ifi =( IX

-fJ
(lX+i fJ )-1 5 ( IX

-fJ
8. Prove that (adj A)-l = (adj A-I).

9. If A is an (m x n) matrix with AA
B = I-A(AA)-IA, show that B=B2

•

10. Obtain by partitioning the inverse of

0 2

D4
5

11. If x= 1 J3
0

2 2

J3 1
0-

2 2
0 0 2
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and

p~ ( ~ ..)3
0-

2
..)j I

0

\
-

2 2
0 0

prove that P - 1XP is a diagonal matrix and that X satisfies the
equation

X3 -2X 2 -X+21 = 0,

where I is the unit matrix of order 3.

12. If A is skew-symmetric (i.e. A = - A), show that

(I-A)(I+A)-l

is orthogonal (assuming that I +A is non-singular).

13. Verify that

(
sin 0
cosO

COSO)
-sin 0

is orthogonal.

14. If An is an nth order orthogonal matrix, show that

An + 1 = 1 0 0 ... 0

o

o

o
is orthogonal.

15. If AB = BA, show that RAR find RBll commute if R IS

orthogonal.
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16. Show that

S=(~,)5-
1

,)2
is orthogonal. Show also that if

P=G
then SPS is a diagonal matrix.

i)

17. Prove that if A is skew-Hermitian then

(I-A)(I+A)-I

is unitary (assuming that I +A is non-singular).

18. Show that

I(~ ~)I = IAIICI,
where A and C are square matrices, and A-I exists. By con­
sidering the matrix product

e+B
AB

~)G ~)
show that

II +AB I = BA + I.
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CHAPTER 4

Systems of Linear Algebraic
Equations

4.1 Introduction

One of the important uses of matrices occurs in the solution of
systems of linear algebraic equations. However, this is almost a
subject in its own right since the problem really reduces to the
numerical computation of inverse matrices. Various numerical pro­
cedures are now available for the inversion of large matrices to any
desired degree of accuracy, and the reader who is interested in these
techniques should consult one or other of the treatises listed at the
end of this book (in particular, a useful account is given in the text
by Fox, An Introduction to Numerical Linear Algebra). For this
reason only a somewhat formal and elementary account of the
solution of linear equations is given here.

4.2 Non-homogeneous equations

Consider the set of n linear algebraic equations m n unknowns

anixi +an2 x 2+· . .+annxn = hn,

where the coefficients alA: and hi (i, k = 1, 2, ... , n)
constants. Writing (1) in matrix form, we have

AX=H,

where

aIIXI+a I2 x 2+'

a21 x I +a22 x 2+·
.+alnXn = hi'
.+a211xn = h2,

(1)

are known

(2)

(3)
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and

(4)

Itn

Provided H is a non-zero column vector (i.e. not all elements equal
to zero), equations (1) are called non-homogeneous. Homogeneous
equations (H = 0) will be discussed later in this chapter.

Now returning to (2) and assuming that A has an inverse A-I we
have, by pre-multiplying by A-I throughout,

A-lAX = A-IH, (5)

which, since A-I A = I, gives

X=A-IH.

This matrix equation gives the solution of (2).

Example 1. Tv solve the equations

x+ y+z = 6,}
x+2y+3z = 14,
x+4y+9z = 36.

Now

(6)

(7)

(8)

Hence

- 1 _ adj A - t ( 6A - ~-~-
IAI' -6

2

and consequently, since X = A-IH,

-5
8

-3

1) ,-2
1

(9)

(10)

The solutions are therefore x = 1, y = 2 and z = 3.
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The general matrix method just outlined may be used to derive
Cramer's rule for the solution of linear equations by determinants.
For from (6) we have

x = A-IH = I~I (adj A)H, (11)

which, using the definition of adj A given in Chapter 3, 3.2, gives

1 .
XI = IA!t h I A ll+ h2A21+'" +hnA nl ),

1
X2 = !AI(hIAI2+h2A22+' .. +hnAn2 ),

(12)

Each of these expre~~ions is the expansion of a determinant divided
by IAI. It is easily seen that in fact

i hi al2 a ln I all hi a ln
h 2 a22 a21 h2 a2n

I

I
I a~1I hn an2 ann hn ann

(13)XI = I X2 =
a ln I'I all a 12 al n a II a 12

I

a 21 an a2n a 21 a22 Q2n i

. I

ani ann ani ann
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Systems of Linear Algebraic Equations [4.21

and so on. In general we have

where the determinant in the numerator is obtained from the
determinant in the denominator (i.e. IAI) by replacing the rth column
by the elements hi, hz, ... , hn• This is Cramer's rule. As an example
we take the equations of Example 1 again. Using (14) we have

6 1 1 6 1
14 2 3 14 3
36 4 9 1 36 9

(15)XI=
1 1 1

= 1, Xz = 1--1--1- =2,

1 2 3 1 2 3
1 4 9 1 4 9

and
1 1 6
1 2 14
1 3 36

x 3 =
1 1 1

= 3, (16)

1 2 3
1 4 9

where XI =X, X z =Y and X3 =z.
Now from the method outlined by equations (2)-(6) it is clear

that a solution of n linear algebraic equations in n unknowns exists
provided A-I exists - that is, provided IAI #- O. This solution is in
fact unique. For suppose the solution is X = Xl so that AX I = H.
Let Xz be another solution. Then AXz = H. Consequently
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(18)

(19)

(20)

Systems of Linear Algebraic Equations (4.2]

AX! = AX2 • But, since IAI f= 0, Xl = X2 , and hence the solution
is unique.

We must now consider the two possibilities which can arise when
IAI = O.

(a) If any of the determinants in the numerators of (14) are non­
zero, then, since the determinant in the denominator (i.e. IAI) is
zero, no finite solution of the set of equations exists. The equations
are then said to be inconsistent or incompatible.

For example, the equations

3x+2y = 2,}
3x+2y = 6,

are of this type since, by Cramer's rule,

I ~ ; I -8
x = I; ;I= 0' and

which are not defined quantities. No finite solution exists therefore.
This result may be interpreted geometrically by noting that (18)
represents two non-intersecting straight lines.

Similarly the set of equations

-2x+ y+z = 1, }
x-2y+z = 2,

x+y-2z = 3,

(for which IAI = 0) has no finite solution. The equations are
inconsistent since the negative of the sum of the last two equations
gives - 2x+Y+z = - 5, which is inconsistent with the first equation
of the set.

(b) If, in addition to IAI = 0, the determinants in the numerators
of (14) are all zero, then in general an infinity of solutions exist.
For example, the equations

3x+2y = 2,}
6x+4y = 4,

are of this type. The second equation is just the first equation in
disguise. Consequently there is only one equation for two unknowns
with the result that an infinity of (x, y) values satisfy the equation.
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(23)

(21)

Systems of Linear Algebraic Equations 14.2)

The equations are linearly dependent in .that one is a multiple of
the other. (Geometrically (20) represents two coincident lines with
an infinity of common points.) Similarly the equations

-2x+ y+z = I, }
x-2y+z = 2,

x+y-2z = -3,

have IAI = 0, and all numerator determinants equal to zero. Again
the equations are linearly dependent in that the first is just the
negative of the sum of the second and third and is therefore redun­
dant. Consequently (21) is in reality only a pair of equations for
three unknowns x, y and z - namely

x-2y+z = 2, }

x+y-2z=-3,

which are satisfied by the infinity of solutions of the form

x=A-t y=A-t z=~

where A. is an arbitrary parameter.

4.3 Homogeneous equations

We now consider a system of n homogeneous equations

allx l +a12x2 + +alnxn = 0,
a 21 x I +a22 x2+ +a2n xn = 0,

(24)

anlx l +an2 x2+.. .+annxn = 0,

which is obtained by putting the elements hI' h2 , ••• , hn in (1) equal
to zero. In matrix form, therefore, (24) becomes

AX = 0, (25)

where 0 is the zero column matrix (or vector) of order n. If IAI ¥= °
then A-I exists and consequently by (6)

X = A - 10 = 0 (26)

is the only solution - that is, XI = 0, X 2 = 0, ., X n = 0. This
identically zero solution is usually called the trivial solution and is
of little interest. However, if IA I = ° an infinity of non-trivial
solutions exists as in the non-homogeneous case.
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For example, the set

x+5y+3z = 0, }
5x+ y-kz = 0,

x+2y+kz = 0,

where k is an arbitrary parameter, has the trivial solution
x = y = z = °for all values of k. Non-trivial solutions will exist,
however, when

IAI = 1
5
1

5 3 =27(l-k)=0,
1 -k
2 k

(28)

which gives k = I. In this case the equations are linearly dependent
since

x+5y+3z = -t(5x+ y-z)+t(x+2y+z). (29)

Consequently there are only two equations for three unknowns.
Solving any two of (27) we find the infinity of solutions

x = - A, y = 2,1., z = - 3,1., (30)

where Ais an arbitrary parameter.

4.4 D1-conditioned equations

In many instances where the set of equations of type (1) arise from
the mathematical description of an experimental set-up, the co­
efficients aik' hi (i, k = 1,2, ... , n) may be known only approxi­
mately as experimentally determined values subject to certain errors.
If, in addition, the value of IAI is small compared with the magnitude
of the coefficients a ik , hi then the solution of the set of equations
may be very sensitive to small changes in the values of the co­
efficients. Such equations are called' ill-conditioned '. Consider, for
example, the pair of equations

3x+l'52y = I,}
(31)

2x +1·02y = 1,
for which

IAI = 1 3 1'521 = 0·02.
2 1·02

By Cramer's rule, the solution of (31) is

x = - 25, y = 50.
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Now allow a small change in the an coefficient so that the equations
read, for example,

3x+ 1'52y = I,}
(34)

2x+ 1'03y = 1.

Then IAI = 0·05 and, by Cramer's rule again,

x = -9'8, Y = 20. (35)

Clearly if the experimental design leads to a set of ill-conditioned
equations no reliance can be placed on the solutions of such equa­
tions for, as the example shows, a change of about 1%in one of the
coefficients can lead to a change of some 200%-300% in the solu­
tions. In general, there is no mathematical way of overcoming this
difficulty. The best that can be done is to re-interpret the experimen­
tal set-up (using different variables, for example) in an attempt to
obtain a set of equations which is not ill-conditioned.

PROBLEMS 4

1. Solve by matrix methods the equations

4x-3y+z = 11,

2x+ y-4z = -1,

x+2y-2z = 1.

2. Show that the three equations

-2x+y+z = a,

x-2y+z = b,

x+y-2z = c,

have no solutions unless a+b+c = 0, in which case they have
infinitely many. Find these solutions when a = 1, b = 1, c = - 2.

3. Show that there are two values of k for which the equations

kx+3y+2z = 1,

x+(k-l)y = 4,

lOy+3z 0::: -2,

2x-ky-z = 5,

are consistent. Find their common solution for that value of k
which is an integer.
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4. Solve, where possible, the following sets of equations:

(a) 8x-4y+z = 8,

4x+2y-2z = 0,

2x+ 7y-4z = 0.

(b)

(c)

(d)

(e)

(f)

(g)

x+y-z+w = 0,

3x-y+2z+3w = 7,

x+2y-2z-w = -1,

3z+w = 9.

x-2y+3z = 0,

2x+5y+6z = 0.

x+y+z = 1,
x-y+2z = 5,

3x+y+z = 2,

2x-2y+3z = 1.

x+y+z+w = 1,

2x-y+z-2w = 2,

3x+2y-z-w = 3.

x+5y+3z = 1,

5x+y-z = 2,

x+2y+z = 3.

x+y-z = 0,

2x+3y-3z = 1,

-x+4y-z = 3,

4x-5y+z = 2.

5. Suppose B is good approximation to the inverse A-1 of A. Let
AB = I-oE, so that oE = 0 when B = A-1. Deduce that

A- 1 = B+A- 1 oE,
and that

A-1 = B+(B+A -1 bE) bE = B(I+bE+bE2 +bE3 + ...).
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If the elements of bE are sufficiently small the series will converge
and A-I may be calculated to any desired degree of accuracy.
Use this result (up to the bE3 term) to obtain an improved
approximation to A-I, where

6. Obtain the solutions of

x+1'52y = 1,

2x+(3'05+<5)y = 1,

for <5 = -0·02, -0'01, 0, 0·01 and 0·02.

7. Consider the following m linear equations III n unknowns
Xl' Xl' ..., Xn where m > n:

a ll x 1+a1lxl +· . . +a 1n xn = hI'

a l l x 1+allxl +· . . +alnxn = hl ,

In general these equations will be inconi'>istent. The' best values'
of Xl' Xl' . Xn are then defined as those which make the
expression

m

E= L {arlXl+arlXl+,..+arnxn-hr}l
r= 1

a minimum. The necessary conditions for this to be so are

Show that these conditions lead to the set of n equations (the
• normal' equations)
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m

L arl(arlx I+ar2X2+· . .+arnxn-hr) = 0
r= 1

m

L ar2(arl X I +ar2X2+· .+arnxn-hr) = 0
r=1

m

L arn(arlXI +ar2 x 2+· .+arnxn-hr) = 0
r=1

for the best values of XI' X 2 , ••• , X n •

(This is the method of least squares.)
Find the best values of X and y for the inconsistent equations

2x+3y = 8,

3x- y = 1,

x+v = 4.
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CHAPTER 5

Eigenvalues and Eigenvectors

5.1 Introduction

In Chapter 1, 1.6 a typical oscillation problem was formulated in
matrix language and it was shown that the equations of motion
could be written as (see equation (40), Chapter 1).

~=AY, (1)

where Y is a (2 x 1) column vector and A a second order square
matrix, the dots denoting differentiation with respect to time t. In
an attempt to solve (1) we write

(2)

where X is a column vector independent of t, and where w is a
constant. Equation (1) now becomes

AX = w 2 X,

which may be written as a set of homogeneous equations

(A-AI) X = 0,

(3)

(4)

where A = w 2 and I is the unit matrix of the same order as A.
Besides having the trivial solution X = 0 (which is of no interest),

equation (4) will have non-trivial solutions (X # 0) only if

lA-AIl = 0 (5)

(see Chapter 4, 4.3). This equation is called the characteristic
equation of A and determines those values of A for which non­
trivial solutions of (4) will exist. In the particular oscillation prob­
lem considered here (since A = w 2

) the A values determine the fre­
quencies of oscillation w. Equations of the type (4) arise frequently
in the solution of many other types of physical problems and in the
sections which follow therefore we discuss the general nature of these
equations and their solutions.
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5.2 Eigenvalues and eigenvectors

Suppose A is a square matrix of order n with elements alk' and X is
a column vector of order n with elements XI' Then the set of homo­
geneous equations

(A-AI) X = 0

has non-trivial solutions only if

lA-AIl = o.
That is, only if

=0.

(6)

(7)

(8)

As already indicated in 5.1, equation (7) (or (8» is called the
characteristic (or secular) equation of the matrix A. The expansion
of lA-AIl gives rise to an nth degree polynomial in A, say I(A),
caned the characteristic polynomial, and the roots ,1.1> ,1.2' ••. , An of
the characteristic equation 1(,1.) = 0 are caned the eigenvalues (or
characteristic roots, latent roots or proper values) of the matrix A.
To each root AI(i = 1, 2, ... , n) there is a non-trivial solution XI
caned the eigenvector (or characteristic vector or latent vector). For
any other value of A f= AI the only solution of (6) is the trivial one
X = O.

Finally it is important to note that, since the set of equations (6)
is homogeneous, if XI is an eigenvector belonging to an eigenvalue
A, then so also is kX/, where k is an arbitrary non-zero constant.
The length of the eigenvector is therefore undetermined by the
equations. If the elements of the eigenvectors are all real then the
length of kX I is given by

('..J r-..J

{(kX/)kX/}! = k{XIX,}!, (9)

and it is usual to choose k such that the eigenvector has unit length.
(If some of the elements of the eigenvector are complex then the

length of kX, is defined as k{(Xhxy - see Chapter 3, 3.6.) In most
of what follows eigenvectors win be normalised to unit length.
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Example I. To find the eigenvalues and eigenvectors of the matrix

A= (~ D'
Now the characteristic equation is

(10)

I \ = (A-2)(A-5) = O.
3-A

(11)

Hence the two eigenvalues are Al = 2, A2 = 5. To find the eigen­
vectors belonging to these two eigenvalues we take the basic set of
homogeneous equations (6) with A given by (10) and solve for
X for each A value. In general, the eigenvector corresponding to the
jlh eigenvalue Ai will be denoted by Xi and the elements (or compo­
nents) ofX j denoted by xl(l), X/i), .• . , xn(i).

Case Al = 2

Equations (6) become

[(~ D-2(b ~)] (;{::) = (~).
(12)

Hence

giving
(13)

(15)(I) _ ~
X 2 - -/5'

x~1) = -tx~I). (14)

If we normalise the length of the eigenvector to unity we require
X~1)2 +X~I)2 = 1, so that using (14)

1
X (l) - --

1 - .J5'
Consequently the normalised eigenvector corresponding to Al = 2 is

(16)

Case A2 = 5

Equations (6) now become

[( ~ D-5 (b ~)J (~{~;) = (~) ,
(17)
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which are

(18)

(20)

giving
x\Z) = X).Zl (19)

Normalising to unit length as before so that x\2)' +xiZ)2 = 1 we find

(Z) __1_ (2) __1_
XI - -/2' Xz - -/2'

Hence the normalised eigenvector corresponding to the eigenvalue
Az = 2 is

(21)

Example 2. To find the eigenvalues and eigenvectors of the matrix

A ~ (; =i =n. (22)

The characteristic equation is

I-A
I
1

-1
-i-A

o

-1 = 0,
o

-I-A

(23)

which gives three roots Al = -1, A2 = i, )'3 = -i.

Case Al = -1

Equations (6) are

[0 =i -~)+1(~
-1 0

o
1
o

(24)

which give

Hence

2X\ll_X).I)-X~I)= 0, }

X\I) = 0 (twice).
(25)

X\I) = 0, xii) = -x~1).
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Normalising to unit length so that xil)Z +X~I)Z +X~I)Z = 1 we have

xii) = 0,

Consequently

(I) __1_
X

2
- .J2'

x1 = °
1

Ii
1

- .J2

1
X (I)- -

3 - - .J2° (27)

(28)

Case ).2 = +i

Here equations (6) take the form

=~ -~) -i(~
° -1 °

°1
°

(29)

giving
(1- i)xi2)- X~2) _X~2) = 0, }

xi2)- (1 + i)X~2) = 0,

xi2)-(I+i)x~2) =0,

the solutions of which are

(30)

(31)

Now, since some of the elements of the eigenvector are complex,
when normalising to unit length we must use the generalised defini­
tion of distance (see Chapter 3, 3.6) and require

(32)

Consequently

(33)

The normalised eigenvector is therefore

(34)
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Case ..1. 3 = -i

Proceeding in a similar fashion we find in this case

(3) _ 1-- i X(Z3) = t, X(3) = ~
XI - 2 ' 3 .' (35)

giving
(36)

(38)

(39)

5.3 Some properties of eigenvalues

We now return to the characteristic equation (8). The left-hand side
of this equation may be written

lA-AIl =f(A) = (-1tP'-IXIA·-I+IX2i:-z ... +(-I)"ctn}, (37)

where lXI' ctz, . "", ctnare defined in terms of the elements aik • Suppose
now that AI' Az, ..., An are the n roots (the eigenvalues) of the
characteristic equationf(A) = O. Then

f(A) = (AI - A) CA2 - A)(A3- A) .. (An - A).

Comparing (37) and (38) we have

ctl = Al +Az +... +An,
ctz = AI A2 +A I ).3 + ... +Al).n+ AzA3 +A2 A4 +

+ ... +AzAn+ .. ·+An-I An'
lX3 = Al Az A3 + ... +An - 2 An - 1 An'

O!n = AI AZ'" An'

Two important results now follow.
(a) By putting A. = 0 in (37) we have

lXn = IAI = Al Az ... A.n, (40)

showing that the product of the n eigenvalues of A is equal to its
determinant. It follows that a matrix is singular if it has a zero eigen­
value, and non-singular if all its eigenvalues are non-zero.

(b) By inspection

lXl = al1 +a2;z+ ... +a'n = A.l+).2+ .. ·+ An, (41)
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using (39). Hence
n n

TrA = L ail = L Ai'
i= I j= 1

(42)

In other words, the sum of the eigenvalues of a matrix is equal to
its trace.

These two results may be easily verified for the matrices of
Examples 1 and 2. For, from Example 1,

2

LA j =7=4+3=TrA, (43)
1= 1

and
,1.1,1.2 = 5·2 = 10 = IAI.

Likewise for Example 2
3

LA=-l-i+i = -1 = TrA
1= 1 I • '

and

(44)

(45)

,1.1,1.2,1.3 = (-1)( - i)(i) = -1 = IAI. (46)

Some further results may also be proved. Suppose A is an nIh

order matrix. Then
lA-AIl = IX-All, (47)

so A and its transpose A have the same eigenvalues. However, A
and A will have different eigenvectors unless, of course, A is sym­
metric (A = A). Furthermore, if AI, ,1.2' •••, An are the eigenvalues
of A, the matrix kA where k is an arbitrary scalar has eigenvalues
kA 1 , kA2 , •• _, kAn• This follows since

IkA-kAII = Ik(A-AI)! = kn I(A-AI)I· (48)

We can also show that the eigenvalues of A-1 are the inverses of
the eigenvalues of A, provided none of the eigenvalues of A are zero.
For

lA-AIl = I-AA (A-I - DI= ±An IAII A-1 - ~I, (49)

which shows that if A has eigenvalues A., then A-1 has eigenvalues 1/A..

5.4 Repeated eigenvalues

In Examples 1 and 2 of 5.2 the eigenvalues of each matrix were all
different. We may now prove quite generally that if Xl' X2 , ••• , Xn

are the n eigenvectors corresponding to n different eigenvalues
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..1.1' ..1.2, •••, An then the eigenvectors are linearly independent - that
is, there is no linear relationship between them of the type

(50)

where the c/ are constants, except when C I = C2 = ... = Cn = O.
Now, since AXj = AjXj{j = 1,2, ... , n), we have

(51)

Suppose a linear relation of the type (50) does exist for some non­
zero values of Ct. Consider

(A-A21)(CIXI+C2X2+ .. +cnXn)=O. (52)

Using (51), (52) becomes

CI(AI -A2)X I +c3(A 3 -A2)X3 + ... +cn(An-A2)Xn = 0 (53)

in which the X t eigenvector is missing. Proceeding in a similar way
and operating with (A - ..1. 31), (A - }o41), ... , (A - Ani) we eliminate in
turn X3, X4, ..., Xn and arrive at

CI(A 1 -A2)(A 1 -A3)(Al -..1.4 ) ... (AI -..1.n)X I = O. (54)

Now by assumption all A/ are different. Hence, since XI i:. 0,
C1 = O. In a similar fashion we can, by operating on (50) by
(A-All), (A-A31), ..., (A-Ani) eliminate in turn XI' X3, ..., Xn
and obtain

(55)

showing that C2 = O.
In this way it can be shown that provided all the A/ are different

then Cl = C2 = ... = Cn = O. Hence no linear relationship exists
between the eigenvectors and they are consequently linearly
independent.

If, however, two or more eigenvalues are equal then the C/ need
not necessarily all be zero, and the eigenvectors may be either
linearly dependent or linearly independent (see Examples 3 and 6
which follow and also 5.6 dealing with real symmetric matrices).

Example 3. Consider the matrix

hG ~ D"
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(57)2 = 0,
3

5-A

1
2-A
o

The characteristic equation is

2-A
o
o

which has the solutions

Al = 5, ).2 = 2, A3 = 2. (58)

We now obtain the eigenvectors corresponding to each eigen­
value, noting that two of the eigenvalues are the same.

Case Al = 5
The homogeneous equations (6) become

12)-5(102 3 ° 1
o 5 ° °

(59)

which give

(60)
-3X\I)+X~I)+2x~l) = 0,

-X~I)+X~I) = 0.

Hence Xl!) = x~!) = X~I). Normalising to unit length as before we
have

(61)

and consequently
(62)

Case A2 = A3 = 2

Here equations (6) reduce to

(
0 1 2)
003
003 (

X\2.3») = (0),
X~2. 3) 0
X~2. 3) 0

(63)

which lead to

X\2.3) arbitrary, X~2. 3) = 0, X~2.3) = 0. (64)
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Consequently, in this case there is only one eigenvector - namely

(65)

where a is an arbitrary parameter. Normalising Xz to unit length
leads to a = 1. The eigenvector X3 has also to have the same form
as Xz and is consequently linearly dependent on Xz'

In this example the matrix A, in virtue of its repeated eigenvalues.
has only two linearly independent eigenvectors.

5.5 Orthogonal properties of eigenvectors

In 5.3 we showed that A and A have the same eigenvalues. However,
A and A will have different eigenvectors (unless A is symmetric ­
see 5.6).

Now let A be a non-symmetric square matrix and consider

AX, = AIX" (66)

where Xl is the column eigenvector corresponding to the jIb eigen­
value of A" Let Y l be the column eigenvector of Acorresponding to
the jIb eigenvalue A,. Then

AY, = AIY,. (67)

Taking the transpose of (67) we have (using (69), Chapter 2)

)'i A = Ai)'i' (68)

which shows that '£, is a row eigenvector of A.
From (66) we have by premultiplying by YJ

YJAX, = Ai )'jX/> (69)

and from (68) by post-multiplying by X j

Y,AXj = A,)'iXj' (70)

By writing j for j and j for j in (70) it follows that

)'jAX, = Aj YjX,. (71)

Comparing (69) and (71) we find

(Aj-A,))'jX, = O. (72)
Hence if A, # Aj then

'£jX, = 0, (73)

which shows that the row eigenvector '£ j corresponding to any
eigenvalue of a general square matrix is orthogonal to the column
eigenvector Xl corresponding to any different eigenvalue.
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Example 4. We take the matrix of Example 1

A = (~ ~) (74)

whose eigenvalues are II = 2').2 = 5. The corresponding normalised
column eigenvectors are respectively

(75)

XI = (-0)' x, ~ (~2)'
.lSi )2

Now the row eigenvectors YI and Y2 are obtained in the following
way.

(76)

(77)

(78)

~)J=(~}

D= (~),(y\l) Jil» (;

where / I), yjI) are the elements of YI'

Equations (76) now give

y\I)+A2)=0 (twice).

Hence AI) = - y~I), and the normalised row eigenvector

Case).1 = 2

Equations (68) become

(y\ 1) y~I» l(~
or

(79)

Case ).2 = 5

Here (68) becomes, after simplification,

(y\2) Yi2»(-; _;)=(~), (80)

which gives
y\2) = 2A2) (twice).

Normalising to unit length we have

Y
2

= (35 )5)'
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(83)

(84)

Js) (- i:ro

-J2) u:r oY1X2 = (_1
-/2

and

Now since both c.igenvalues are different, the row eigenvector of
one eigenvalue should be orthogonal to the column eigenvector of
the other eigenvector (see (73) ). This is easily verified since (using
(75) and (82) )

"£2 Xl = (2­
-/5

5.6 Real symmetric matrices

In all the examples given in this chapter so far, the elements of the
basic matrix A have been real numbers. However, as Example 2
shows, the eigenvalues and eigenvectors of a real matrix may be
complex. We now show that provided A is real and symmetric the
eigenvalues (and consequently the eigenvectors) are necessarily real.

Suppose A is a real symmetric matrix of order n. Then

AX; = AiXi, (85)

where X j is the eigenvector corresponding to the eigenvalue A/.
Taking the complex conjugate of (85) we find

AXi = AiXi (since A = A*). (86)

Hence, using (85) and (86),

X:AXi-tjAXi = (Aj-Ai):~iXi, (87)

since (if)Xi = t j Xi.
Now tiAXi is a number and the transpose of a number is itself.

Consequently
r--....../ '"

t iAXi = (tjAX:') = XiAXi (88)

= ifAXi (since A = A, A being symmetric). (89)

Using (89), (87) gives
(Aj-Aj)tjXi = O. (90)
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Since ~iXi is just the square of the length of the eigenvector X, it
is both real and positive, and hence

(91)

(93)

showing that Al is a real quantity.
Another important result concerning symmetric matrices can be

readily deduced from 5.5 by putting A = A. It then follows from
(67) that YI is an eigenvector of A, and consequently (73) gives

XjX j = 0 for Ai # Aj • (92)

In other words, eigenvectors corresponding to different eigenvalues
of a symmetric matrix are orthogonal.

Example 5. The real symmetric matrix

A=(~ _~)

has eigenvalues 5 and - 5 (both real). The normalised eigenvectors
appropriate to these two eigenvalues are respectively

(94)

which are orthogonal since Xl X2 = O.
The orthogonality property of eigenvectors expressed by (92) is,

as we have seen, true if the eigenvalues are different. It can also be
proved that if out of the set of n eigenvalues k of them are the same
(i.e. a repeated root of the characteristic equation of multiplicity k)
then there are k orthogonal eigenvectors corresponding to this par­
ticular repeated eigenvalue, and that each of these eigenvectors is
orthogonal to the eigenvectors corresponding to the other n - k
different eigenvalues.

Example 6. Consider the matrix

h(~ ! D
85
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The characteristic equation is

2-..1.
o
1

which has the roots

o
3-..1.
o

1 = 0,
o

2-..1.

(96)

Al = 1, 22 = ).3 = 3. (97)

The root of value 3 is therefore a repeated root of multiplicity two.
The eigenvectors are now found in the usual way.

o
3
o

to unit length as

(I) _ 1
X 3 -- J2'

Case Al = 1

The homogeneous equations (6) become

D-1G ! mm::rm'
which give

X1I)+X~I) = 0, }
2X~I) = 0,

xll)+x~1) = O.

Hence xli) = -x~l), and X~I) = O. Normalising
before we have

(I) __1_
XI -"/2'

and consequently

(98)

(99)

(100)

(101)

j)
Case ..1. 2 = ..1.3 = 3

Here the equations (6) reduce to

(

-1 °o 0

1 °
which give
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Two mutually orthogonal normalised eigenvectors satisfying (103)
are

x, ~ (~i'l and X, ~ m'
\J2)

(104)

both of which are orthogonal to the eigenvector Xl given by (101).
The results of this section (which are of importance in Chapter 6)

may be summarised as follows:
(a) The eigenvalues of a real symmetric matrix are real.
(b) For a real symmetric matrix of order n there are n mutually

orthogonal (and normalisable) eigenvectors Xi irrespective of whether
the eigenvalues are all different or not. Assuming the Xi are nor­
malised to unit length this result may be written as

(105)

where fllj is the Kronecker delta symbol (see Chapter 2, equation
(46) ).

Eigenvectors satisfying (105) are called orthonormal.

5.7 Hermitian matrices

In Chapter 2, 2.3(k) it was shown that a real symmetric matrix
(A = A) is just the real counterpart of a Hermitian matrix (A = A*).
Corresponding results to those obtained in the last section apply
therefore to Hermitian matrices - namely:

(a) The eigenvalues of a Hermitian matrix are real.
(b) For a Hermitian matrix of order n there are n mutually

orthogonal (and normalisable) eigenvectors Xi irrespective of
whether the eigenvalues are all different or not. If the Xi are nor­
malised to unit length the corresponding result to (105) is

Example 7. The matrix

X*X <i j::C: (J i "

A=( 1 1+
2

i)
1- i

87
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is Hermitian. Its characteristic equation is

I
I-A
1-i

1+ i 1=0,
2-Je

(108)

which gives eigenvalues

Al = 0, AZ = 3 (both real). (109)

The normalised column eigenvectors in these two cases are
respectively

(110)

Then

(111)

showing that Xl and X2 are orthogonal.

5.8 Non-homogeneous equations

Consider now the non-homogeneous system of equations

AX-AX =B, (112)

where A is a real symmetric nth order matrix, X is a column matrix
of order (n x 1), A is a given constant, and B a real (n x 1) column
matrix. Now the n eigenvectors of A are known to form a set of n
mutually orthogonal n-dimensional vectors and consequently are
linearly independent. Hence any other n-dimensional vector may be
expanded as a linear combination of these eigenvectors. Let the
normalised eigenvectors of A be X? so that

Expressing X as a linear combination of the Xi by the relation

n

X = L CXjX~,
j=1

88
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where the (Xj are constants, and inserting (114) into (112) we find
n n

A I (XjX~-A I (XjX~ = B.
j=l j=l

Inserting (113) into the first term of (115) gives
n n

L: Aj(XjX~-A I (XjX~ = B.
j=l j=l

(115)

(116)

"-'

We now pre-multiply (116) through by xg, where xg is the k th

eigenvector of A. Then

(117)

Now owing to the orthogonality property of the xg and the assump­

tion that the xg are normalised to unit length we have XZX~ = DkJ
(see 105) ). Consequently (I 17) becomes

or
(118)

(k=1,2, ... ,n). (119)

Hence, from (I 14), the solution of the set of equations (I 12) is

X= f (~B)X~
j= I Aj-A

provided Ais not one of the eigenvalues Aj of A.

Example 8. Consider the set of equations (I 12) with

A=(; n, A=l, B=(212)'
The eigenvalues of A are easily found to be

AI = 3, ).2 = -1,

and the corresponding normalised eigenvectors are

(120)

(121)

(122)

(123)
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Consequently, using (120), the solution X of (112) is given by

1) (' J2) 1(1) +
Ji 2Ji 3-1 ~

1) (J2) 1 ( 1)
J2 2J2 -1-1 _~:

'../2

PROBLEMS 5

(124)

(125)

3
1
o

1. Obtain eigenvalues and eigenvectors normalised to unit length
for each of the following matrices:

(a)(; ~n' (b)(~ ~),

(c) (1 45)' (d) (2o 2 6 0
o 0 3 0

2. Obtain eigenvalues and a set of orthonormal eigenvectors for
each of the following matrices:

(aJ G
(cJ G

1
o
o
2
2
o

(b) (~ ~
o 0

(d) C~ i

3. Show that if A has eigenvalues AI' A2 , ••. , An then Am (where m is
a positive integer) has eigenvalues ).7, AT, ..., ).;:'.
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4. Prove that the eigenvalues of a unitary matrix (A-I = (A*) ) have
absolute value I.

5. Prove that the eigenvalues of a skew-Hermitian matrix

((A*) = - A) are purely imaginary or zero.

6. Show that if AI, Az, ••. , J'n are the eigenvalues of A then
AI-k, Az-k, . .. , An-k are the eigenvalues of A-kI.

7. Show that the square matrices A and B = I'AT have the same
eigenvalues, where T is an arbitrary non-singular matrix.

8. Prove that if A and B are of order n and A is a non-singular
matrix then A-IBA and B have the same eigenvalues.

9. Prove that every eigenvalue of a real orthogonal matrix has
absolute value I. Prove also that both + 1 and - I are eigenvalues
if the number of rows is even and the determinant has value -1.

Verify that the matrix

o
o

-1
o

o
o
o

-1

is orthogonal, and determine its eigenvalues.

91



CHAPTER 6

Diagonalisation of Matrices

6.1 Introduction

In Chapter 5, Example 1, the eigenvalues and eigenvectors of the
matrix

A=(~ D
were found to be respectively XI = 2, }'2 = 5, and

(1)

(2)

(3)

~5)'
J2
3

Consider now the matrix V, whose columns are formed from the
eigenvectors of A. Then

_1 ) and U - I = ( J-S
Ii -3
_1 2li
Ii -3-

(4)

(5)

A straightforward calculation now gives

V-IAU = (~ ~) = D (say),

showing that the matrix V-I AU is diagonal.
In general, any two matrices A and B which· are related to each

other by a relation of the type

B =M-1AM

where M is any non-singular matrix, are said to be similar, equation
(5) being called a similarity transformation. The properties of similar
matrices are discussed in detail in the next section. For the moment,
however, we notice that the matrix A of (1) has been transformed into
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diagonal form (4) by a similarity transformation with M equal to U
(the matrix of the eigenvectors of A). It is in fact often possible to
carry out the diagonalisation of a matrix in this way, and in the
later sections of this chapter we discuss the various conditions
under which matrices may be diagonalised. Diagonalisation is an
important concept and is useful in many ways. For example, the
elements of the k th power (k a positive integer) of a given square
matrix A are usually difficult to obtain except for small values of k.
However, the powers of a diagonal matrix are readily obtained
since, if

(6)
~)

D
k

= ( ~ %k ) , (7)

and similarly for diagonal matrices of higher order. Suppose A is
an arbitrary matrix of order 2 which is similar to the diagonal
matrix D of (6). Then

then

(8)

where M is some non-singular matrix.
Now from (8)

D 2 = (M-1AM)(M-1AM) = M- 1A2 M

since MM- 1 = I.
Similarly

(9)

(10)
and, in general,

D k = M-1AkM. (11)

To find Ak from (11) we now only have to pre-multiply by M and
post-multiply by M- 1 so that

MDkM- 1 = MM- 1AkMM- 1 = Ak • (12)

Hence, since Dk may be easily calculated, Ak may be obtained pro­
vided the matrix M which diagonalises A to D is known.

Example 1. To find A8 given

A = (~ D'
93
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As already shown (see (4) ) A is similar to the diagonal matrix

0=(; ~).
Now

(14)

o ) = (256 0).
58 0 390625

(15)

The matrix M which diagonalises A is the matrix U given by (3).
Hence using (12)

A8 = UD 8U- 1

= / __1

I ~5
\ .)5

= (260502
260246

(16)

Apart from the ease of calculating powers of matrices by first
diagonalising them (if possible), another motive can be seen in
diagonalisation. Consider as an illustration the problem of the maxi­
misation or minimisation of a function of two variables, say f(x, y).
Suppose f(x, y) has a convergent Taylor expansion within some
domain of the xy-plane so that if (xo. Yo) is a typical point in this
region then

+ (y- YO)2 (02~) + ...
2! oy x~xo

Y~YO

(17)

Now the necessary conditions for a stationary value of f(x, y) at
(xo, Yo) are

(Of) = 0ox x~xo •

Y~YO

94

(Of) = 0
oy x~xo '

Y~YO

(18)



Diagonalisation of Matrices 16.1)

which are equations determining the values of Xo and Yo' However,
these conditions do not tell us whether the function takes on a
maximum value or minimum value at (xo, Yo) or whether the
stationary point is a saddle point. Clearly the nature of the stationary
point depends on the quadratic terms in (17) since, using (18),

f(x,y) =f(xo,yo)+tQ(x,y), (19)
where

and

(
iYf)a= -z 'ax X=XQ

Y=Yo

(21)

Writing X-Xo = u, y-Yo = v we have

Q(lI, v) = all z+2hllv + bv2: (22)

This expression is called a quadratic form in 1I and v since each
term is homogeneous of degree 2. If Q(lI, v) > 0 for all values 0f u
and v close to zero (i.e. for (x, y) values in the neighbourhood of
(xo, Yo» thenfC" y) > f(xo, Yo) and the stationary point corresponds
to a minimum of/(x,y). Likewise if Q(lI, v) < 0 thenf(x,y) < f(xo,Yo)
and the stationary point corresponds to a maximum. (The case in
which Q(u, v) takes both positive and negative values leads to a
saddle point.) Clearly determining the nature of a stationary point
is closely related to determining whether a quadrati r form is positive
definite (i.e. Q(u, v) > 0 for non-zero u, v), negative definite (i.e.
Q(u, v) < 0 for non-zero u, v) or indefinite (Q(u, v) taking both
positive and negative values for different 1I, v values). This can best
be done by writing (22) in matrix form as

where

Q = SAS, (23)

(24)S = ( ~) and A = ( ~

If now Q can be put into diagonal form such that

Q = AU 2 +/1V z, (25)

where A, ~l are constants and U, V are new variables related to u, v,
then Q is positive when both Aand 11 are positive, and negative when
both A and 11 are negative. As we shall see in 6.8 the reduction of a
quadratic form to a diagonal form is closely related to the diagonali-
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sation of the matrix A associated with the form (see, for example,
(23) and (24) ).

Now the nature of a quadratic form in two variables such as
(22) may easily be determined without using matrix ideas. For from
first principles Q(u, v) > 0 if a > 0 and ab-hz > 0, and Q(u, v) < 0
if a < 0, ab-hz > O. However, when dealing with functions of
many variables say f(x 1 , Xz, ..., xn ) the nature of the stationary
point depends on the nature of the general quadratic form

n n

L L ajkUjUk = allui+a12UluZ±... +annu; (26)
i~ 1 k~ 1

and the matrix approach becomes of prime importance. We shall
return to this problem in 6.8.

6.2 Similar matrices

As we have already seen two matrices A and B are said to be similar
if there exists a non-singular matrix M such that

B = M-IAM. (27)

We now show that similar matrices have the same eigenvalues. For

B-AI = M-1AM-AI = M-1AM-AM-IM = M-1(A-AI)M, (28)

and hence

IB-AII = IM-1(A-AI)MI = 1M-II lA-AIl 1M!= lA-AIl, (29)

since IM- 1 1IMI = 1. Consequently the characteristic polynomials
of A and B are identical and so therefore are their eigenvalues.

Suppose now that Xi is an eigenvector of A and YI is an eigen­
vector of B both corresponding to the i 1h eigenvalue Ai' Then

and
BY j = A/Yi

But since B = M - 1AM then

MB=AM,
and hence, using (31),

MBY j = AM):j '" ~iMYi'

Comparing (33) and (30) we see that

Xi = MY,.
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Another result follows from the fact that A and B both have the
same characteristic equation for then

TrA = TrB. (35)
Furthermore

(36)

so that the determinants of similar matrices are equal. To illustrate
these results we again return to the matrix

(38)

(37)

(39)

(40)

IBI·

M=C ~).

B = M - 1AM = ( ~ _ D.
Again it is easily verified that Tr B = Tr A, and that IAI =

A=(~ ~).

In 6.1 it was found that A is similar to the diagonal matrix

D=(~ ~).

Clearly Tr A = 4+3 = 5+2 = Tr D, and IAI = 10 = IDI. As a
further example we take

A=(~ ;),
Then

6.3 Diagonalisation of a matrix whose eigenvalues are aU different

In Chapter 5, 5.4 we showed that if the eigenvalues of a general nth
order matrix A, say, are all different then a set of n linearly inde­
pendent eigenvectors always exists. Now let U be the square matrix
whose columns are the eigenvectors of A. Then, if XI is the eigen­
vector corresponding to the jib eigenvalue Ai, we have

U=(X 1 XZ X3 °o·Xn),

which in terms of the components of the eigenvectors is

(4l)

(42)
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We further write

D = Al
o
o

o
o
o

(43)

0 0 An
Consequently

VD= Al X\I) A2X\21. AnX\n1 (44)
AIX~1) A2A2). An x~n)

AIX~I) A2X~2). AnX~n)

which, in the abbreviated notation of (41), is the matrix

(AI XI A2X2 ... AnXn). (45)

Likewise AV is an nih order matrix given by

AV = (AX I AX2 ... AXn). (46)

But since AX I = A/Xl we have

AV = (AIX I A2X2 ... AnXn). (47)
Hence

or
AV=VD (48)

(49)

where D is a diagonal matrix whose elements are the eigenvalues
of A. (We note here that since all the eigenvalues are assumed
different the columns of V are linearly independent (see 5.4) and
hence V-I exists. If some of the eigenvalues of A were the same the
eigenvectors would not necessarily be independent. Consequently
two or more columns of IVI would be proportional giving IVI = O.
Hence V-I would not exist and diagonalisation could not be carried
out.) The general result of this section is as follows:

A matrix A with all different eigenvalues may be diagonalised by
a similarity transformation D = V-IAV, where V is the matrix
whose columns are the eigenvectors of A. The diagonal matrix D
has as its elements the eigenvalues of A.
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The origin of the diagonalisation of the matrix of equation (I) is
now clear, equation (4) showing that the elements ofD are indeed the
eigenvalues of A. As a further illustration of the method of diagonali­
sation we consider the following example.

Example 2. The matrix of Chapter 5, Example 2,

=~ -~)
o -1

(50)

has eigenvalues ).1 = -I, )'2 = i, )03 = - i and corresponding
eigenvectors

X I = 0
1

,)i
1

- Ii
Hence

(51)

u= 1+ i 1- i ,
0 - --

2 2
1

;= t t
",2
1

t t-)2

lui = -il/i, and

U- I = 1 1
0

J7- - ,)7-

-i
1+ i 1+i
-- --

2 2
1- i 1- i

2 2
Hence

U'AU~n 0
~).

0 -I
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6.4 Matrices with repeated eigenvalues

As shown in Chapter 5, 5.4 the eigenvectors of a matrix with
repeated eigenvalues may not be linearly independent. The remarks
of the last section then lead us to the fact that such a matrix cannot
be diagonalised by a similarity transformation. Consider as an
example the matrix of Chapter 5, Example 3, where

1
2
o

(55)

Using the results of (62) and (65) (Chapter 5) we have

V= 1

)3
1

)3
0 0

1
0 0

)3

(56)

Hence IVI = 0, and therefore V-I does not exist. Consequently A
is not diagonalisable.

In general, a non-symmetric matrix with repeated eigenvalues
(such as (55» is not diagonalisable, but may be reduced to the
Jordan normal form. This is a matrix with elements in the leading
diagonal, elements equal to 0 or I in the next line parallel to and
above the leading diagonal, and zeros everywhere else. However,
we will not prove this result here.

6.5 Diagonalisation of symmetric matrices

In Chapter 5, 5.6 we have seen that corresponding to any nth order
real symmetric matrix A there are (even if some eigenvalues are
repeated) n orthonormal eigenvectors Xi satisfying the relation

(57)

(see Chapter 5, equation (l05) ).
We now see that in virtue of (57) the db order matrix of the eigen­

vectors X, of A, namely,

V = (Xl X2 •.• Xn)

100
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satisfies the relation

from which
OU=I (59)

(60)

Hence U is an orthogonal matrix (see Chapter 3, 3.5). Consequently
it follows from (49) and (60) that A is diagonalised to D by an
orthogonal matrix U, where

D=U-1AU=OAU. (61)

The general result obtained here may be stated as follows:
A real symmetric matrix A (with distinct or repeated eigenvalues)

may be diagonalised by an orthogonal transformation D = OAD,
where U is the orthogonal matrix whose columns are formed from a
set of orthonormal eigenvectors of A. The diagonal matrix D has
as its elements the eigenvalues of A.

Example 3. The matrix

A= (3 4)
4 -3

of Chapter 5, Example 5, has eigenvalues Al = 5, A2 =

orthonormal eigenvectors

(62)

-5 and

(63)

Hence

and

U=(2,)5
1

J5

__1_) (which is orthogonal)

,)5
2

,)5

0) =D.
-5

(64)

(65)

Example 4. The matrix

hG ~ ~)
101

(66)
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of Chapter 5, Example 6, has eigenvalues ;. I = I, .le2 = .Ie] = 3.
An orthonormal set of eigenvectors corresponding to these eigen­
values is (see (101) and (l04), Chapter 5)

Hence

X2 = 1

Ii
o
1

Ii

v = I 1 )

~2 ~2 °01

-)2 )2

(67)

(68)

and
o
3
o

(69)

6.6 Diagonalisation of Hermitian matrices

It was found in Chapter 5, equation (106) that the normalised eIgen­
vectors Xi of a Hermitian matnx satisfy

Xfx j = bij'

Accordingly the matrix of the normalised eigenvectors

V = (X 1X 2 ••• Xn )

satisfies

(70)

(71)

(72)

V is therefore a unitary matrix. Hence a Hermitian matrix A can be
diagonalised by the unitary matrix V formed from an orthonormal
set of its eigenvectors. For, using (49) and (72), we have

V-1AV = U*AV = D , (73)

where D is a diagonal matrix with the eigenvalues of A as
elements.
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Example 5. The matrix

A=( J I+i)
1- i 2

of Chapter 5, Example 7, is Hermitian and has orthonormal eigen­
vectors

x, ~C(J:i1)' X, ~ (3;)
satisfying (70).

Hence

U ~ ( _ (l+i) 1+-')-/3 -/6
I

J~,J3
and

r-..J

U· ~ ( _ (I-i)

J~)-/3
l-i

-/6
Consequently

(75)

(76)

(77)

U*AU = (~ ~) = D. (78)

It is easily verified that 0 and 3 are, in fact, the eigenvalues of A.

6.7 Bilinear and quadratic forms

An expression of the type
m n

B = I I aijxiYj
i= I j= I

(79)

which is linear and homogeneous in each of the sets of variables
Xl' X2' ••., Xm ; YI' Y2, . _ -, Yn is called a bilinear form. For the
moment we shall deal only with real forms for which the coefficients
alj' and the variables Xl' Yj are real quantities. Now (79) may be
written in terms of matrices as

B =XAY,
103
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where

X= XI

Xz
a In ,

Q Zn

y= YI ,(81)

Y2

Yn

A being called the matrix of the form.
For example, the bilinear form

B1 = Xl Yl +2YzX 1+3xzYI +4XzY2 +5YI X3+6YzX3
may be written as

(x, x, x,)0DG:)
Likewise

(82)

(83)

Bz=6xIY1+2xIYz+3xzYl-4xzYz (84)

=(X1 xz)(~ _~) (~:). (85)

A special case of (80) occurs when X and Y each have the same num­
ber of elements and A = I (the unit matrix). Then

B = fy = XI Yl +xzYz + ... +xnYn, (86)

which is the matrix form of the scalar product of the two vectors
X and Y.

Bilinear forms lead naturally into quadratic forms when Y = X,
for then

n n

B = Q = L L aijx,xj'
'=1 j=l

(87)

which is a homogeneous polynomial of degree two in the variables Xl'

In matrix form (87) becomes

Q= fAX, (88)

where A is the matrix of the quadratic form. Now expanding (87)
we find

Q = all xi +(alz +aZ1 )X I Xz +(a13 +a 31 )X1X3+ ... +

+azzxi +(aZ3 +a32 )XZX3+ ... +annx~, (89)
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Writing

for all i and k (90)

so that Cjk = Ckj ' Q becomes

C II xi + 2c 12 X I X 2 + 2c 13 X I X 3 + ... +
+C22X~+2c23X2X3+'" +cnnx;, (91)

which in matrix form is
~CX,

where C is a symmetric matrix.
For example, the matrix

A = (b -D
associated with the quadratic form

~AX = xi-3xIX2+5x~

is non-symmetric. However, writing (94) as

Xi-1Xl X2-1X2XI +5x~ = ~CX,

we see that the associated symmetric matrix C is

(
1 -1),

-1 5

6.8 Lagrange's reduction of a quadratic form

A real quadratic form
n n

Q = L L aijxjx j
1=1 j=1

can be reduced by a variety of methods to the form

IX I yi + IX2Y~ + ... +llnY;,

(92)

(93)

(94)

(95)

(96)

(97)

(98)

where the YI are linearly related to the Xi and the IXI are constants.
This process is called reducing the quadratic form to a diagonal
form - or, more briefly, diagonalisation. One method of diagonalisa­
tion (due to Lagrange) consists of continually completing the square,
as shown by the following example.
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Example 6. Consider

= xi+4x~+5x~-2x2x3-XIX2'

Then regrouping the terms in (99) gives

_ ( x 2) 2 I 5 4 2 2 4 2- XI - 2- +-4"(X2 -TIX3) +5x3-n-x 3

= yi+ 145Y~+ i ~yL

(99)

(100)

(101)
where

Y2 =

Y3 =

(102)

6.9 Matrix diagonalisation of a real quadratic form

We now consider the matrix form of Q - namely

XCX (see (92», (103)

where C is a real symmetric matrix. Suppose we now allow a real
non-singular linear transformation of the variables Xi to a new set of
variables Y i defined by

X=VY, (104)

(106)o

where V is some real non-singular matrix.
Then

~

Q = (VY)CVY = V(JCVY. (105)

Clearly if V can be chosen such that (JCV is a diagonal matrix then
Q will be transformed into the diagonal form (98). Although there
is frequently no unique way of doing this, an important method
already discussed in 6.5 is based on choosing V to be the matrix of
a set of orthonormal eigenvectors of C. The matrix V is then
orthogonal «(J = V-I) and (JCV is a diagonal matrix D, whose
elements are the eigenvalues AI' A2' ..., )'n of C. Hence, with this
particular choice of V, we have

Q = VDY = (YI Y2 ... Yn)

o Yn
(107)
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Now as we have seen in 6. lone of the important problems asso­
ciated with a quadratic form is to determine the nature of the form ­
that is, whether it is positive definite, negative definite or indefinite.
The results of this section enable this to be decided very easily.
For from (107) if all the eigenvalues Ai of C are positive then
Q(XI) > 0 for all XI except Xi = 0 and consequently is positive
definite. Similarly if all the eigenvalues of C are negative then
Q(xi) < 0 for all XI except Xi = 0 and accordingly is negative
definite. If, however, C has both positive and negative eigenvalues
then Q(x,) takes on positive and negative values for different X,

values and is consequently an indefinite form. For example,

QI=xi+2x~+3x~ (108)

is a positive definite form, and

Qz = xi +2x~ - 3x~ (109)
is an indefinite form.

An important number associated with a quadratic form is its
signature s. This is defined as the number of positive terms minus the
number of negative terms in the diagonalised form of Q. By inspec­
tion the signatures of QI and Qz of(108) and (109) are respectively
+3 and + I, whereas, for example,

Q3 = xi-x~-x~-x~ (110)
has signature - 2.

An important result is that given two or more real linear transfor­
mations which diagonalise a quadratic form the resulting diagona­
Iised forms (although different) nevertheless have the same signature.
In other words, the signature is an invariant quantity under real
transformations of the variables XI' (Clearly signature is not an
invariant quantity under complex transformations. Fur example,
the transformation XI = YI' Xz = iyz, x 3 = iY3 transforms QI of
(108) which has signature +3, into yi-2y~-3y~, which has
signature - 1.)

Example 7. The real quadratic form

Q = 2xi+2x~+2xlxz+3x~

may be written as XAX, where

A··· G ~ ~) and X ~ (;;) .
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It is easily found that the eigenvalues of A are AI = I, ..1.2 = ..1. 3 = 3,
and that a corresponding set of orthonormal eigenvectors is

ql = 1 q2 = 1 q,~ m (113)

)2 )2
1 1

--:;2 )i
0 0

(N.B. ql has been used to denote the i th eigenvector of A rather than
XI so as to avoid possible confusion with X in (112), which is an
arbitrary column vector associated with the quadratic form.)

The matrix A may now be diagonalised by the orthogonal matrix
U of the eigenvectors (113), where

U= 1 1

)2- )i
0

1 1

- Ii )2
0

0 0 1

to give

(114)

o
3
o

(115)

Hence the transformation X = UY, where

diagonalises the quadratic form :RAX to give

r---.J
(UY)AUY = "2'OAUY = "2'DY = yi+3y~+3y~.

(116)

(117)

(118)

Alternatively Q of (Ill) may be reduced to diagonal form by the
Lagrange method of 6.8 to give

(
X2)2 2 2

=2 XI +2 +!x2+3x3

= 2ui+iu~+3u~,
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where

U 2 =X2' or

U3 = X 3 ,

Xl=Ul-~2,}
X 2 = u2 ,

x 3 = U3'

(120)

2
-1

1

Finally the transformation X = WZ, where

Z~G:) and W~T~

sends ~AX into

(121 )

'l\flAWZ = zf+zi+z;. (122)

Here W is not an orthogonal matrix - nevertheless \fIAW is diagonal.
In the three diagonalised forms of (111) - namely, (117), (119) and

(122) - the coefficients of the variables are different, as are the rela­
tions between the XI and the transformed coordinates. However, the
signature of each form is + 3.

6.10 Hermitian forms

Results similar to those obtained in the last section for a real quad­
ratic form hold for a Hermitian form H defined by

H = X*AX = xtAX, (123)

where A is a Hermitian matrix (i.e. At = A) and X is a column vector
of complex elements. If A and X are real then H is a real quadratic
form. One of the important properties of a Hermitian form is that
its value is always real. This is easily proved by considering

H* = (0AX)* = ~A*x* = ~AX*.

Now, since the transpose of a number is itself,
r---....J "-'

(~AX*) = (~AX*) = X*AX = H.
Consequently

H* =H,

(124)

(125)

(126)
showing that H is real.

A Hermitian form may be diagonalised in a similar way to a real
quadratic form. Consider the non-singular complex linear transfor­
mation

X=UY,
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applied to H so that H becomes

(Uy)tAUY = ytUtAUY. (128)

If now U is chosen to be the unitary matrix formed from the column
eigenvectors of A (see 6.6) then

UtAU(= U*AU) = D, (129)

where D is a diagonal matrix with the eigenvalues (real) of A as
elements. Consequently by (128) and (129) we have

H = ytDY = AI !Yll z+Az!Yzl z+... +}'n IYnl z, (130)

where /YII denotes the modulus J(Y~YI) of YI' etc., and
A" Az, ..., An are the eigenvalues of A. (Since the eigenvalues of a
Hermitian matrix are necessarily real, (130) again demonstrates that
H is a real quantity.)

6.11 Simultaneous diagonalisation of two quadratic forms

It has been shown in 6.5 that a real symmetric matrix may always be
diagonalised by an orthogonal transformation. We now wish to
find the conditions under which two real symmetric matrices may be
diagonalised by the same orthogonal transformation. Suppose the
real symmetric matrix A is diagonalised by the orthogonal matrix
U(O = V-I) so that

(131)

Now if B is another real symmetric matrix, then in general emU will
not be a diagonal matrix. However, if UBU is a diagonal matrix
Dz (say) then, since D 1 Dz = DzD I , we have

UAVUBU = OBVOAU. (132)

Now, since V is orthogonal, vO = I, and hence

AB = BA. (133)

In other words, if two real symmetric matrices are simultaneously
diagonalisable by the same orthogonal transformation they must,
of necessity, commute. It may also be shown that this condition is
sufficient in that if two real symmetric matrices commute then they
may be simultaneously diagonalised by the same orthogonal
transformation.

It follows that two real quadratic forms QI = XAX, Qz = XBX
A and B symmetric) may be simultaneously reduced to diagonal
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form by the same orthogonal transformation only if A and B
commute.

In quantum mechanics special importance is attached to unitary
transformations. It is easily seen that if H is now a Hermitian matrix

which is diagonalised by a unitary matrix U(Ul = u* = U- I
) so

that UtHU is diagonal, then another Hermitian matrix K is diagona­
lised by the same unitary transformation only if Hand K commute.
In the same way as for real quadratic forms it follows that two
Hermitian forms HI = XtHX, Hz = XtKX may be simultaneously
reduced to diagonal form by the same unitary transformation only
if Hand K commute.

Example 8. The symmetric matrices

A = CD' B = (; ;) (134)

commute. Hence they can both be diagonalised by the same ortho­
gonal transformation. Now the orthogonal matrix formed from the
orthonormal eigenvectors of A is easily found to be

1 ).J2

-J2

(135)

Consequently

DAU = (~ ~) and DBU = (~ ~),

showing that both A and Bare diagonalised by U.

(136)

PROBLEMS 6

1. Diagonalise each of the following matrices by means of a similarity
transformation:

(al (; D' (h) (t ~ ~D' (e) n-l D
In each case obtain the sixth power of the matrix by first finding
the sixth power of the diagonal form and then transforming back.
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2. Diagonalise each of the following real symmetric matrices by
means of an orthogonal transformation:

(a)
(~ 4), (b) (! 1

n'-3 0
0

(e) G 2

n' (d) (~
1 0

!)2 0 0
0 0 0

0 1

(b) (3 I-i),
l+i 4

0).
-~i4

2i

3. Diagonalise each of the following Hermitian matrices by means
of a unitary transformation:

(a) (-2 3+3i),
3-3i 1

(e) H
4. Find the real symmetric matrix associated with each of the

following quadratic forms:

(a) 2x~-5xIX2+5x~,

(b) xi - 2x I X2 +2x~ - 2x2X3+ 2x~,

(c) x~+8XIX2-lOxIX3+2x~.

5. Reduce each of the above quadratic forms to diagonal form by
Lagrange's method.

6. It can be proved that a set of necessary and sufficient conditions
for the c:uadratic form :XAX to be positive definite, where A is a
real symmetric matrix with elements a1k , is that all the determinants

AI = all' A 2 = Iall a121'
a21 a22

A 3 = all a l2 a 13 , ... , An = IAI
a21 a22 a23
a31 a32 a33

are positive.
Using these conditions, show that the quadratic forms

3x~ +4x I X2+5~~
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and

2x~+2xIX2+2x~-6xIX3-2x2X3+7x~

are both positive definite.

7. Suppose that the real quadratic form )lAX is diagonalised by the
orthogonal transformation X = UY (U orthogonal) to give

YDY = AIY~+A2Y~+'" +AnY';,
where A1 , A2, , An are the eigenvalues of A. We now assume
that A1 ~ A2 ~ ~ An. Then

YDY ~ An YY and YDY:<:;; AI YY.
Hence

)lAX
A1 = max. )lX '

and consequently

. )lAx
An = mm. )lX '

1
3
o

By choosing different forms for the vector X, obtain approximate
bounds on the eigenvalues of

A~ G

113



CHAPTER 7

Functions of Matrices
7.1 Introduction

In the last chapter it was shown that powers of a square matrix
could readily be obtained by putting the matrix into diagonal form
by means of a similarity transformation. Powers of matrices are
frequently required especially in the study of matrix functions,
where for example a power series such as

A2

eA =I+A+
2

!+... (1)

dapends on all positive powers of A. We shall deal with matrix
functions - in particular, with (1) - in later sections of this chapter.
For the moment, however, we recall that not all matrices are
diagonalisable by a similarity transformation and consequently
some other method is required for evaluating powers of matrices.
Such a method, which in fact can be applied to all (square) matrices,
is embodied in the Cayley-Hamilton theorem discussed in the next
section.

7.2 Cayley-Hamilton theorem

This theorem states that every square matrix satisfies its own
characteristic equation. In other words if

f(A) = lA-AIl (2)

is the characteristic polynomial of an nth order matrix A then

f(A) = 0, (3)

where 0 is the zero matrix of order n.
We may see the origin of this theorem in the following analysis.

For, by Chapter 5, 5.3,

f(A) = ( -It()-"-cx1 An - 1 +CX2 ).',-2 - ... + (-ltcxn) (4)

and hence
f(A) = (_l)n(An_ CX I An- 1 +lX2An-2 - ... +( -ltcxnI). (5)
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Now if X, is an eigenvector of A corresponding to the i lb eigenvalue
Ai then

and

f(A)X j = ( -InA" - IX I A,,-I +IXz A"- z... + ( -1)"IX"I)X j • (7)

However, from (6) it fol1ows that

A"X j = A?X j • (8)

Hence using (8) in each term on the right-hand side of (7) we have

j(A)X i = (-I)"(A?-IXIA?-I+IXzA?-z ... +(-I)"IX,,)Xi (9)

= 0, since Ai is an eigenvalue of A. (10)

Now if A has n distinct (i.e. not repeated) eigenvalues there wil1 be
n linearly independent eigenvectors XI' Xz, ..., X". Writing the
matrix of these eigenvectors as

or

S = (X IX2 ... X,,),

(10) may be expressed as
j(A)S = O.

Since the Xi are linearly independent, S - I exists, and hence

j(A)SS-1 = 0

j(A) = 0,

(11)

(12)

(13)

(14)

which is the Cayley-Hamilton theorem.
This proof depends on A having distinct eigenvalues. We now show

that the Cayley-Hamilton theorem is true for any nth order A whether
it has repeated eigenvalues or not.

Consider first adj (A - }J) which is, by definition, the transposed
matrix of the cofactors of A-/J. Now, since lA-AIl is a polynomial
of degree n in )., adj (A - /J) will, in general, be a polynomial of
degree n - I in A with matrix coefficients. Hence we may write

adj(A-JeI) = CoA,,-l+C I A,,-z+ ... +C,,_l, (15)

where Co, C I' ... , C,,_ I are n'h order matrices with elements depen­
dent on the elements of A.

Now by definition

(A-AI) adj(A-)J) = lA-AliI =f(A)1. (16)
Hence

(A - AI)(CoX' - 1 +C 1 )." - z+ '" + C,,_ I) = ( -1)" x
(A" - IX I A" - 1 + IX Z A" - z. .. + ( - I)" IX,,)I. (17)
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Equating coefficients of like powers of J. on each side of (17) we find

- Co = ( -1)" I, 1

ACO-C1 = -( -1)"1:(1 1,

AC 1-C2 = (-1)"1:(2 1,

r

I
J

Pre-multiplying the first equation in (18) by A", the second by
A"-l, and so on, the last being pre-multiplied by I, and then finally
adding the resulting equations we have

or
f(A) = 0,

which again is the Cayley-Hamilton theorem.
The following examples illustrate the theorem.

Example 1. Consider the matrix

A = (~ D
whose characteristic equation (jA - J.I I = 0) is

J. 2 -4J.-5=0.

(20)

(21)

(22)

Hence, by the Cayley-Hamilton theorem, A must satisfy the relation

A2 -4A-51 = 0, (23)

where ° is the zero matrix of order 2. This is easily verified by
evaluating A2 directly to give

A
2

=(~ 1~)= 4(~ D+ 5(~ ~}

To evaluate A3 we write (using (23»

A3 = AA2 = A(4A+51) = 4A2 +5A

= 5A+4(4A+51) = 21A+2OI

= 21 (1 2)+ 20(1 0)=(41 42).
4 3 ° 1 84 83

116

(24)

(25)

(26)



Functions of Matrices [7.2)

Likewise

(using (23»

0) = (209
I 416

A4 = AA 3 = A(2IA+20I) (ming (25»

= 21A 2 +20A = 21(4A+51)+20A

=104A+1051

= 104 G D+ 105 (~ 208).
417

(27)

(28)

(29)

(30)

Furthermore, since A is non-singular, (23) may be written as

A-41-5A- 1 =0 (31)
so that

A-I = ~(A-41) =.~ (~ D-~ (~ ~)
(32)

_(_1
-1} (33)- 5

4
-5-

This is a very useful way of evaluating the inverse of a matrix, and
may be readily extended to higher negative powers. For example,

A- Z =A- 1A- 1 = ~(A-41)~(A-41)

= z\(Az -8A+ 161)

= -h-(4A+51)-}sA+ l-~I, (using (23»,

= - 245A+ nl, (34)

(35)

as may be verified from first principles.
Clearly all positive and negative integral powers of A may be

expressed as linear combinations of A itself and the Ul1lt matrix I;
that is

(36)

where r is a positive or negative integer, and al and az are numerical
constants which are different for each r (as shown by (25), (29), (32)
and (34) ). This result is true for any matrix of order 2 (assuming that
it is non-singular for the negative powers to exist) and in 7.3 we show
how the constants a 1 and az may be evaluated.
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Example 2. The matrix

1
2
o

(37)

has as characteristic equation

,l,3-9A,z+24A-20 = O.

Hence, by the Cayley-Hamilton theorem

A3 -9A2 +24A-201 = O.

(38)

(39)

Consequently, A4, for example, may be evaluated by writing

A4 = AA 3 = A(9A2 -24A + 201)

= 9(9A2
- 24A + 201) - 24A2 + 20A

= 57A2 -196A+1801

~ 57 (~

=( 16
180

o

: ;i) -196(~
o 25 0

i~ ~~~).
o 625

1
2
o

o
1
o

(40)

(41)

(42)

~)
(43)

Moreover, since A is non-singular, A-] may be evaluated by writing
(39) as

A2 -9A+24I-20A-] = 0 (44)
or

A-] = 210(A2 -9A+24I), (45)

~i"n-5 -} (46)
10 -6
0 4

Similar calculations can be made for higher positive and negative
integral powers of A. In fact, it is clear (see, for example, (42) and
(45) ) that

(47)

where r is a positive or negative integer, and ai' a2 and a3 are
numerical constants whose values depend on the value of r.
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7.3 Powers of matrices

The previous two examples have shown that (a) in the case of a
second order (i.e. (2 x 2) ) matrix A,

A' = a I A+a 2 I, (48)

and (b) in the case of a third order matrix A,

A' = aIA2+a2A+a3I. (49)

Using the Cayley-Hamilton theorem it is easily found that for an
d h order matrix any integral power A' may be expressed as

A' = a l An-I +a2An-2 + a3An- 3+ ... + an-I A+anI, (50)

where the values of ai' a2' ..., an depend on the particular choice
of r. However, as Example 2 showed, the evaluation of the constants
ai' a2, ..• etc., required repeated use of the Cayley-Hamilton
theorem. We give here an alternative procedure for the calculation
of these constants. For convenience we deal only with second order
matrices, the analysis for'nth order matrices (which is exactly similar)
being partly discussed in Problems 4 and 5 at the end of the chapter.

Now the characteristic polynomial f(A) of a second-order matrix
A is a quadratic expression. Hence If ;: IS divided by ((/.) we have

A' = f(A)Q(A)+R(A), (51)

where Q(A) is a quotient polynomial and R(A) is a remainder poly­
nomial which at most is of first degree.

Let
R(A) = a l A+a2' (52)

Then since the eigenvalues of A, }'I and A2 , say, are the roots of
f(A) = 0, we have, using (51) and (52)

A; = alAI +a 2 ,}
(53 )

A2 = aIA2+ a2'

Provided Al f= A2 , the two equations of (53) determine the values
of a l and a2 •

Now the analogous result to (51) for the matrix A (which we state
here without proof) is

A' = f(A)Q(A) +R(A). (54)

However, by the Cayley-Hamilton theorem f(A) = O. Hence

A'=R(A)=a IA+a2I, (55)

which is precisely the result of (48). The values of a l and a2 , how­
ever, are now the solutions of (53).
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Example 3. We consider the matrix

A =G ~) (56)

of Example I. To evaluate A3 we write

A3 = a I A+azI, (57)

and determine a l and az from the equations (53) making use of the
fact that the eigenvalues of A are )'1 = 5 and Az = -I. That is

53 = 5a l +az, }
(58)

(_1)3 =-al+aZ'
whence

Hence

as in (26).
Likewise

A3 = 21A+2OI

= 21 (~ D+ 20 (~

az = 20.

0) = (41
1 84

42)
83

(59)

(60)

(61)

A6 = bIA+bzI, (say),

where b l and bz are the solutions of

56 = 5b 1 +bz, }

(-1)6=-b l +bz·

(62)

(63)

Solving (63) we find

b l = 2771,
Hence

bz = 2770. (64)

(65)A
6

=2771(1 2)+2770(1 0)=(5541 5542).
3 4 ° 1 8313 13854

The eigenvalues of A in the last example are different, this being
the condition under which (53) leads to unique values of al and az.
It is natural to ask how these constants can be determined for a
matrix (again second order) with two identical eigenvalues. Suppose
AI is a double root of the characteristic equation I(A) = 0. Then

(66)

Now differentiating (51) with respect to J. we have

rA'-1 = f(A)Q'(A) +f'(A)Q(J.) +R'(A).
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Hence putting A = Al and using (66) we find

d;-I = R'(AI) = at.

The pair of equations

(68)

A; = a l AI +a z,} (69)
r).;-I = ai'

then determine uniquely the values of a l and az and take the place
of (53) when the two eigenvalues are the same.

Example 4. Consider the matrix

A=(6 D
which has eigenvalues Al = 1 (twice).

Hence

(70)

Ar = a 1 A+a z I,

where a I and az are the solutions of the equations

l r
= la l +a z,}

rlr-I = a
l

.

Equation (72) leads directly to

(71)

(72)

az=l-r. (73)

(75)

(74)

Hence, for example,

A3

= 3(~

A
26

= 26(6

and

~)=(6

~)=(6

A-
I =-(6 ;)+2(6 ~)=(6 -;} (76)

As mentioned earlier the analysis for nth order matrices is similar
to that developed here for second order matrices, and further
details can be found in Problems 4 and 5 at the end of the chapter.

7.4 Some matrix series

We indicated in 7. I that matrix functions - in particular, power
series - would be considered later. This is an extensive subject and alI
that is possible here is to give a brief introd uction to it without
any proofs.
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First we recall some ideas relating to series whose arguments are
scalar quantities. Suppose z is a complex number. The series

where the Q, are real coefficients, will converge absolutely to a sum
f(z) (say) if

I
Q z,+ 1 I

lim ~-,- < 1 (D' Alembert's ratio test);
r-+oo a,z

that is, if

where
Izl <R, (78)

(79)

(80)

. I Q, IR=hm --.
r-+oo ar +l

Since z is a complex number, (78) defines a circle of radius R in the
Argand plane with centre at the origin (see Fig. 7.1). The series con­
verges for all values of z inside the circle and diverges for aU z
outside; for this reason, the circle is called the circle of convergence.

For example, the series

Z2 z' 00 z'
1+z+-+'''+-+'''=L -

2! r! ,=0 r!

has a circle of convergence of radius

R =lim I Irrl
1)! I= lim Ir+11 =00, (81)

'-+00 1 r+. '-+00

and consequently converges absolutely for all z. It is easily seen
that (80) is just the power series expansion of e'.

On the other hand the series

has

00

1+z+z2 +... +z'+ = L z'
,=0

(82)

R =lim I~ I=lim I~ 1= 1, (83)
r-+oo ar + 1 '-00 1

and consequently is absolutely convergent only for Izi < 1. For such

values of z the series represents the function _1_.
l-z
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We are now in a position to be able to state (without proof) one
of the basic theorems of matrix analysis. This is that if all the eigen­
values of a matrix A lie within the circle of convergence of the power
series

00

fez) = I a,z'
7=0

then the matrix power series

(84)

(85)

(where AO is defined as the unit matrix J) converges absolutely to the
matrix function I(A). If at least one eigenvalue of A lies outside the
circle of convergence, (85) diverges. (A more refined test of con­
vergence is necessary when one or more of the eigenvalues of A lies
on the circle of convergence - this case wiH not be discussed here.)
For example, since the functions eZ

, sin z, cos z converge for aH z
(i.e. R = (0), it foHows that the matrix functions

A 2 A'
eA = I + A + - + ... + ~ + ... (86)

2! r!
A3 AS A2r + 1

sinA=A--+-- ...+(-IY~-~+... (87)
3! 5! (2r+l)!

A2 A4 A2r

cos A = I -2T + 4! - ... +( -1)' (2r)! + ... (88)

are valid for every square matrix A.
Likewise

eiA = cos A + j sin A.

Now, since eZe- Z = 1, we have
eAe-A=I

whence

(89)

(90)

(eA)-l = e- A. (91)

Hence the inverse of eA always exists and eA is consequently a non­
singular matrix for every A.

Care must be taken when dealing with more than one matrix
function. For, although creY = eX +Y , it is not necessarily true that
eAeB = eA +B

• This may be seen to be the case since (by (86))

~A+B)2
eA +B = I+(A+B) + -~~- + ... , (92)

2!
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whereas

Hence
eA+B_eA eB = 1(BA-AB)+

+ terms of higher order in (BA - AB). (94)
Consequently

eA+B = eA eB (95)

only if A and B commutc. When dealing with functions of two
matrices analogous rcsults to those of functions of a scalar variable
usually hold only if the two matrices commute. For example,

sin (A+B) = sin A cos B+cos A sin B (96)

only if A and B commute (as can be verified by using the power
series expansions (87) and (88) ).

We now illustrate how matrix functions may be simplified using
the Cayley-Hamilton theorem.

Example 5. To evaluate

e
AI

with A = (_ ~ ~)'

where t is an arbitrary parameter.
Now

(97)

A 2 t 2

eAI = I + At + --- + ... (98)
2!

But the characteristic equation of A is

f().) =).2+1 =0. (99)

Hence, by the Cayley-Hamilton theorem,

f(A)=A2+I=O. (100)

Consequently from (l00) we deduce that

A2 =-I, A3 =-A, A4 =I, A5 =A, (101)

Hence, using (l 01) in (98),

It2 At3 It4 At5

eAI = I+At - - - - + - + - - ... (102)
2! 3! 4! 5!

= 1(1 - ~2! + ~~ _ ... ) + A (t - ~; + ~~ - ... ) (103)

=Icost+Asint. (104)
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Hence

0) cos t+ ( 0
1 -1

~) sin t. (105)

Example 6. To evaluate

," with A ~ (! o
o
1

(106)

where t is an arbitrary parameter.
Now by the Cayley-Hamilton theorem

f(A) = A 3 = o.
Hence

Ar = 0, r ~ 3,
and therefore

A 2 t 2

eAr = I +At + - -.
2!

Evaluating A 2 and inserting in (109) we have

e" ~ (~
0

~t'(!
0

~t;(~1 0
0 1

l
0

~)1
t 2

2

Example 7. To evaluate

e
A

with A =(~ ~}

Now it was shown in Example 4 that

Ar = rA+(l-r)1.

Consequently
Ar A l-r
-= ~-+ --I.
r! (r-l)! r!
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Hence, using (114),

00 A' 00 1 00 1- r
~=L-=I+AL--+IL-

,=or! '=I(r-l)! ,=1 r!

= I+Ae+l(e-l-e)

= Ae

(115)

(116)

(117)

Example 8. We have seen earlier in this chapter that the series
. 1

l+z+z2 + ... +z'+ ... converges to the functIOn - for Izl < I.
I-z

Hence the matrix power series
00

LA' = I+A+A2 + ... +A'+ ... = (I-A)-I (118)
,=0

provided all the eigenvalues of A have moduli < I. The matrix

(119)

has eigenvalues i (twice) satisfying this condition. To evaluate A'
we write (as in 7.3)

A' = 0IA+0 2 1, (120)

and, since the two eigenvalues are equal, use (69) to determine the
constants 01 and 02' Since..1.1 = !, (69) become

(1)' = tal +02'} (121)
r(1)'-1 =° 1 ,

from which we find

ol=r(1)'-I, °2 = (1)'(1-r).

Hence, using (120) and (122),

A'=<1y-I(rA+ l;r l ).

Hence by (111))

(122)

(123)

00 00 00

(I-A)-I = L A'=I+A L r(1)'-I+1 L (1-r)(ty. (124)
,=0 r=l r=1

Using the fact that the series in the last two terms of (124) are
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expressible in terms of the geometric series, we find after some
simplification that

This result is readily checked since

(125)

and

I-A =(~ ~)-(6 D=(6 -D
(6 -~)(~ ~)=(~ ~)

(126)

(127)

as required.
We have concentrated so far on showing how powers of matrices

(and consequently matrix power series such as eAt) may be evaluated
with the help of the Cayley-Hamilton theorem. This method is valid
for any matrix. However, an alternative method of evaluating matrix
power series exists for matrices which are diagonalisable by means of
a similarity transformation. For suppose A is a matrix such that

U-IAU=D, (cf. (49) of Chapter 6), (128)

where D is a diagonal matrix whose elements are the eigenvalues of
A and U is the matrix of the eigenvectors of A. Then

A Z = UDU- I UDU- I = UDl V-I, ...

A r = UD r U- I
, (r integral) (129)

Hence for any analytic function fez) we can write (using (84) and (85»

U- I , (130)

o fUn)

where AI' Az, ••. , An are the eigenvalues of A.
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As an example of (130), we have for any diagonalisable matrix A

eAt = V e Alt V-i. (131)
eht 0

7.5 Differentiation and integration of matrices

Suppose A is any matrix (not necessarily square) whose elements a ik

are at least once differentiable functions of a scalar parameter t.
Then the derivative of A with respect to t is defined as the matrix
whose elements are the derivatives of the elements of A. For example,
if

A = (Si~ t t
2

)
e2t

then

dA
dt = (co; t 2t )-

2e2t

(132)

(133)

(134)

(135)

From this definition it follows that if A and B are any two matrices
for which the product AB is defined then

d dA dB
dt (AB) = dt B+A di'

Care is necessary, however, in differentiating matrices. For
example, it is not generally true that

!!..- An = nAn-i dA
dt dt

as might have been expected. Rather we have to write

*i An = ~ (AA... A)

dA dA dA
=diAn-i-tAdiAn-z+ ... +An-idi (136)

since, in general, A and dA/dt do not commute.
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d
Likewise (provided A -I exists) - A -I must be obtained in the

dt
following way:

Since AA -I = I (by definition),

d dA dA- 1

-(AA- 1
) = --A-I+A- = O.

ell ell dl

Pre-multiplying (I 37) by A-I we have

d~ =-A-I~~A-I
dl dl'

dA dA
which gives the expected result - A- 2 .. only when A -I and -

dt dt
commute.

An important result which we use shortly is that for a constant
matrix A

d
_(eAt) = A eAt = eAtA. (139)
dl

This is readily verified by term-by-term differentiation of the power
series expansion of eAt.

Lastly we come to integration. The integral of a matrix A whose
elements arc integrable functions of a parameter t (say) is the matrix
whose clements arc the integrals of the elements of A. Thus if

A =(1 cos leI)
I t 2 13 (140)

then

f Adl =(t
12

2

sin I

t 3

3

et)+c,
14

4

(141)

where C is an arbitrary constant matrix of the same order as A.
The results of this section are of usc in the solution of linear

differential equations by matrix methods. For suppose we have a
set of n linear first order equations in n unknown functions YIU),

Y2(t), . - -, Yn(t)
dYi 0

-dl =.L aijYj. (i = 1,2, ... ,n), (142)
)=1

where the aij are constants, and where the initial values Yi(O) are
given.
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Writing

yet) = Y1(t)
Y2(t)

Yn(t)

(143) may be written in matrix form as

dY(t) = AY(t)
dt '

(143)

(144)

where the column vector YeO) is given. Using (139), it is easy to see
that the solution of (144) is

yet) = eAt YeO). (145)

The solution of the set of differential equations is equivalent there­
fore to finding eAt. This may be done by any of the methods discussed
in 7.4. For example, if A is diagonalisable by a similarity transforma­
tion then, using (130),

~t = U eDt V- 1, (146)

where D is a diagonal matrix with the eigenvalues of A as elements.
Consequently (145) becomes

yet) = V eDt U- 1 YeO). (147)

Another approach is to make the transformation

W(t) = V- 1 yet) (148)
in (144), whence

dW(t) = U-1AUW(t) = DW(t).
dt

This is a set of uncoupled equations of the type

dw 1(t) -' ( )
dt - 11.1 W 1 t ,

dwit) _, ( )
dt - 11.2 W2 t,

dwn(t) =' ( )
dt II.nWn t ,
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where the wj(t) are the elements of the column vector W(t), and
A1> A2, ..., An are the eigenvalues of A. Each of these equations may
be solved separately and Y(t) found from the inverse transformation
of (148).

PROBLEMS 7

I. Evaluate

G i)14 and G ~ro,

2. Show that

( cos 8 sin o)n = ( cos nO sin no)"
-sin 8 cos 0 - sin nO cos nO

the method of 7.3)

_q)l
q ,

are Al = 1,
deduce that

1 (l-p-q)'AT=-(q q) + ( P
p+q P P p+q -p

assuming that p+q f= O.

3. Show that the eigenvalues of

A=(l-P q)
P l-q

)'2 = I-p-q. Hence (using

4. Extend the method of 7.3 to an nth order matrix with distinct
eigenvalues AI' Az, ... , An so obtaining the result that

AT = R(A) = aIAn-l+a2An+Z+ ... +an_1A+anI,

where the constants ai' az, .•., an are uniquely determined by
the n equations

A; = R(A1), A; = R(Az),' .. , A~ = R(An).

Hence obtain AB for

A =( ~
-4

1
2
4

5. Suppose A is an nth order matrix with n repeated eigenvalues
Al = Az = ... = An' Show that

AT = R(A) = at An
-

1 +azAn-Z +... +an-l A +anI,
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where the constants ai' az, ..., an are determined by the
equations

A~
,,-1

rAI

r(r -1 )A~- z

R()'I),
R(1)(A1) = (n-I)al A~-z +

+(n-2)azA~-3+

+ ... +an- I,
R(Z)(}.I) = (n-I)(n-2)aIA~-3+

+(n-2)(n-3)x
xazA~-4+... +
+2an-z,

[r(r-l) ... (r-n+I)]A;-n+l = R(Il-I)(Al) =

where

A=( i : ~ ~I)
-1 -1 0

has all four of its eigenvalues equal to unity. Show that

A' = r ~ ~ ~ol'
r(r-I) r 1

2

- r(;+!) _ r 0 1}

6. Given that A has distinct eigenvalues, show by diagonalising A
that the condition that A' --+ 0 as r --+ 00, where r is a positive
integer is that the moduli of all eigenvalues of A are less than
unity.

7. Given that eA is diagonalisable by a similarity transformation,
show that

leAl = eTTA.

Hence deduce that leA I = I when A is a skew-symmetric matrix.
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8. Show that if A is a real skew-symmetric matrix then eA
IS an

orthogonal matrix.

9. Show that if H is a Hermitian matrix then eiH is a unitary matrix.
(This result is of extreme importance in quantum mechanics.)

10. Show that

e(6 g) = (~

II. By letting y2 = A, where A is a
Ii

obtam an equation for (AI).
cit

function of a parameter t,

12. A function 'Yr defined for r = 0, I, 2, ... sati~fics the second­
order lmear dilrc~ence equation

\r+t+a\r+h\r-l =0 (r = 1,2,3 ... ),

and is subject to the initial conditions

"o=Cf., x 1 ={J,

where Cf. and fI are given constants.
By writing Yr+ 1 = X r, the second-order difference equation

may be written as a pair of first-order difference equations

"r+ 1 = -a"r-byro

Letting

this pair of equations may be written in matrix form as

Er + 1 = AEr ,

where

Hence

where
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By evaluating A' for the difference equation

xr + I -5xr +6xr -1 =0,

solve this equation for X r subject to the initial conditions
X o = 1, Xl = 2.

13. Show that the set of n linear differential equations

dy;(t) n

-dt =.L aijYj(t)+f;(t)
J=l

in the unknowns Yi(t), where aij are constants and !J(t) are
given functions, may be written in matrix form as

dY(t) = AY(t)+F(t),
dt

where

yet) =

and

A=

F(t) = fl(t)\.
f2(t)

!net),
Show that the solution of this matrix equation is

t

yet) = eAty(O) + f eA(t-t'lF(t')dt'.
o

14. Verify that the solution of the matrix equation

dY(t)
---;Jt = A yet) +Y(t)B,

where A and B are constant matrices, and where YeO) = C is a
constant matrix, is

yet) = eAtCeBt.
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IS. Show that a necessary condition that the solution of matrix
equation

dY(t) (
-- = At)

dt '
Y(O) = B,

where A and B are constant matrices and A has distinct eigen­
values, tends to zero as t -> Cf) is that alI the eigenvalues of A
have negative real parts. (Hint: use the representation of (I31).)
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CHAPTER 8

Group Theory

8.1 Introduction

We mentioned in Chapter 1,1.1 that set theory led naturally on into
group theory. Now in this final chapter, having dealt with sets and
matrices in the earlier chapters, we discuss what is required of a set
of elements in order that it should be a group, and, in addition,
show the way in which matrices play an important part in what is
called group representation theory. Group theory is an important
subject principally in the fields of theoretical physics and chemistry
and, within this context, finds numerous applications to the quantum
mechanics of atoms, molecules and nuclei, solid state theory,
crystal structure, as well as to elementary particle theory and
relativity.

Group theory is the formal mathematical way of dealing with the
symmetries (if any) of a system or structure, and its importance lies
therefore in simplifying the mathematical description of the system
in virtue of any symmetries it may have. Some elementary examples
of groups are given in 8.3. However, most of the applications to
genuine physical problems require an extensive knowledge of the
subject to which group theory is being applied (e.g. quantum
mechanics, crystal structure). Rather than attempt to give the
necessary background to these subjects and then demonstrate the
applications of group theory, it was felt better to provide the basic
language of group theory, leaving it to the reader to apply it to his
particular subject. To this end, the list of further reading matter at
the end of the book provides a fairly wide selection of books covering
most of the fields mentioned here.

8.2 Group axioms

A set G (finite or infinite) of elements a, b, C ••• is said to form a
group if there exists a rule for combining any two elements to form
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their ' product' ab, say, such that the folIowing four axioms are
satisfied.

(i) For every a,b E G (using the set notation of Chapter I, 1.2),
ab E G. In other words, every' product' of two elements (ab being
considered as different, in general, from ba) and every' square' (aa)
are to be elements of G.

If this axiom is satisfied the set is said to be closed under multi­
plication.

(ii) For every a,b,c E G,
(ab)e = a(be).

This is the associative law for group' products '.
(iii) The set G contains a unit (nulI, or neutral) element e such

that for all a E G
ae = ea = a. (I)

(iv) For every a E G there exists an element a-I of G called the
inverse of a such that

(2)

The word' product' used here is to be understood within the con­
text of the rule of combination. For example, if the elements are to
be combined under multiplication then their' products' are obtained
by multiplying any two elements together. If, however, the rule of
combination is addition then the' product' of any two elements is
their sum.

A group is calIed Abelian (or commutative) if for every pair of
elements a,b E G

ab = ba. (3)

FinalIy, any finite set of elements satisfying the four group axioms
is said to form a finite group, the order of the group being equal to
the number of elements in the set. If the group does not have a finite
number of elements it is calIed an infinite group.

Examples of these various types of groups will be given in the next
section. However, before doing this it might reasonably be asked
whether the unit element in (iii) is necessarily unique. To show that
this is so we suppose that e and e' are two unit elements of G. Then
by (I)

and likewise
ae = ea = a,

ae' = e'a = a.
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Letting a = e in (4) and (5), we have

e2 = e = ee' = e'l

Similarly, letting a = e' in (4) and (5),

e,2 = e' = e'e = ee'.

Hence, comparing (6) and (7), it follows that

e = e'.

(6)

(7)

(8)

The unit element therefore is unique.
Similarly, it may be proved that the inverse of each group element

is unique (see Problem 1 at the end of the chapter).

8.3 Examples of groups

Example 1. The set S 1 of all integers (positive, negative and zero)
forms an infinite group under addition. To verify this we note that the
group axiom (i) is satisfied since the sum of any two integers (and the
sum of any integer with itself) is always another integer. Similarly, (ii)
is satisfied since the associative law of addition a+(b+c) = (a+b)+c
is true for integers. The unit element must be taken as 0, since the
addition of 0 to any integer does not alter it; consequently (iii) is
satisfied. Finally, (iv) is satisfied since, if the inverse of an integer is
defined as its negative, then

a+( -a) =0.

The group is Abelian since a+b = b+a.
We note here that the same set does not form a group under

multiplication since the inverses of integers are not integers; (iv)
therefore cannot be satisfied.

Example 2. The set S2 of all rational numbers plq (q t= 0) forms a
group under addition. Here the unit element is 0 (i.e. p = 0) and the
inverse of a given number is its negative. Again this is an example
of an infinite Abelian group.

Example 3. The set S3 of all complex numbers z = x+iy forms an
infinite Abelian group under addition. Here z = 0 is the unit element,
and - z is the inverse of z.

We notice that the set of elements of Example I is a subset of the
set of elements of Example 2. Likewise, the set of elements of
Example 2 is a subset of the set of elements of Example 3. Hence

51 c 52 C 53 (and hence SI c S3)' (9)
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Since each of these sets forms a group under the same rule of com­
bination, we &ay that 8 1 is a subgroup of 8 2 and that 8 2 is a sub­
group of 8 3 , Accordingly, 8 1 is a subgroup of 8 3 ,

Subgroups wiII be dealt with in more detail in 8.9. For the moment,
however, we remark that every group G (say) has two trivial or
improper subgroups, namely G itself and the group containing only
one element - the unit element.

Example 4. It may easily be verified that the set of all rational num­
bers, the set of all real numbers and the set of all complex numbers,
with °excluded in each case, form infinite Abelian groups under multi­
plication. For example, if we take a rational number plq (p # 0,
q # 0) then (i) is satisfied since the product (in the ordinary sense)
of two rational numbers is another rational number. Axiom (ii) is
clearly satisfied since multiplication of numbers is associative. The
unit element is III = 1, and if the inverse of plq is taken as qlp then
(iv) is satisfied since (plq)(qlp) = I.

Example 5. Consider now the rotations of a line about the z-axis
through angles n12, n, 3nl2 and 2n in the xy-plane (see Fig. 8. I).

z

Fig. 8.1

This is a finite set of order 4 in that it contains four elements,
namely the four rotations through angles of n12, n and so on. We
now show that this set of elements forms a group under composition
of rotations. It is clear that if we perform the operation of rotating

139



Group Theory 18.3)

the line through n/2 from the 0 = 0 po~ition and then follow it by a
further rotation of n we reach the 0 = 3n/2 position. This position
could have been reached by performing one basic rotation of 3n/2.
Likewise the composition of any two basic rotations leads to another
basic rotation. Consequently the group axiom (i) is satisfied. The
associative law (ii) is satisfied since the order in which successive
rotations are performed is immaterial, e.g.

n + e2
n

- 2n) = (n + ~f) - 2n

The element 0 = 2n( ~ 0°) corresponds to the unit element, since a
rotation of the line through 2n brings it back to Its il1ltial position.
Hence (iii) is satisfied. Finally, (iv) is satisfied If the inverse of any
basic rotation is defined as a rotation of the same magl1ltude but 111

the opposite direction.

Example 6. The set of four numbers I, i, - I, - i forms a group of
order 4 under multiplication. Group property (I) is clearly satisfied
since the product of any two elements (and the squares of each ele­
ment) are elements of the set (e.g. Ii = i, i( -i) = I, i 2 = - I, (_i)2
= - I, etc.). The associative law (ii) also holds for the multipltcation
of numbers. The unit clement e is taken as the JlUmber I. Fl11ally, if
the inverse of every element is taken as its recIprocal (e.g. l,Ii = - i,
1/ -1 = - 1, etc.) then group property (iv) is satisfied.

Example 7. It should now be clear from the earlier work on matrices
that they possess properties such thz.t the set of all square non-singu­
lar matrices of a fixed order forms an infinite group under matrix
multiplication, the unit matrix corresponding to the unit clement
of the group. This group is non-Abelian. However, finite sets of non­
singular matrices may also form groups. As an example of a finite
group of matrices which is Abelian we give the matrIces

(~ 0),
-1

(10)

which form a group of order 4 under matrix multipltcation.
Sets of matrices which form groups with respect to matrIX multi­

plication are usually called matrix groups, and are of extreme
importance in the theory of group representations (see 8.10).
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8.4 Cyclic groups

A group whose elements can al1 be expressed as powers of a single
element is called a cyclic group. The structure of the group is such
that the set of elements

2 n-le, Q, a , ... , a ,

where n is the smal1est integer for which

an = e,

(11)

(12)

forms the cyclic group of order n generated by the element a. The
first three group axioms are easily verified by a direct inspection of
(11) and (12); we now verify that each element possesses an inverse
element in the set. To do this we simply note that, since

ar an- r = an = e, (13)

the inverse of ar is an
-

r which is an element of the set. Hence group
axioms (iv) is satisfied.

Cyclic groups are necessarily Abelian since a2 a = aa 2
, etc.

We now give some examples of cyclic groups.

Example 8. Suppose PQR is an equilateral triangle (see Fig. 8.2).

P (i) (' Q R (ii) a P

P R

66
Q (iIi) R

b=aa
Fig. 8.2

P (i\') Q
c=aaa ~e

Consider the rotations of PQR in its plane which bring it into coin­
cidence with itself. These rotations may be represented as fol1ows:

e (== 0°) leaves PQR unchanged (see Fig. 8.2(i) ),
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a (== 2n/3) sends P-+Q, Q-+R, R-+P (see Fig. 8.2(ii»,

b = aa (== 4n/3) sends P-+R, Q-+P, R-+Q (see Fig. 8.2(iii»,

c = aaa (== 2n) brings P back to P, Q back to Q, and R back to
R (see Fig. 8.2(iv) ).

Clearly c = aaa = a3 = e. Hence the possible rotations form a
set of three elements e, a and b, or equivalently

e, a, a2(a 3 = e). (14)

This set forms a cyclic group of order 3 under composition of
rotations. For example, the rotation b is equivalent to the rotation a
twice over (i.e. 4n/3 = 2n/3 +2n/3). Similarly, the inverse of a is a2

since the rotation which undoes the work of a (== 2n/3) is a further
rotation b (== 4n/3).

Example 9. The set of elements

1, a, a2 , ••• , an
- 1 ,

where
a = exp(2ni/n),

forms a cyclic group of order n under
an = 1 (== e) as required by (12).

(15)

(16)

multiplication. Again

8.5 Group tables

A group of order n clearly has 1/2 products. These products may be
arranged in a square array called a group multiplication table. As a
particular example we take the group of order 4 of Example 6,
where the elements e, a, b, c are the numbers 1, i, - 1, - i respectively.
The group multiplication table then takes the form

e a b c 1 -1 -i

e a b c or 1 1 -1 -i
a a b c e equivalently -1 -i 1
b b c e a -1 -1 -i 1
c c e a b -i -i 1 -1

Table 1.

from which the product ab (say) may be read off as the element
common to the row marked a and the column marked b (in that
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order). Since the group is Abelian (ab = ba, etc.) the multiplication
table is symmetrical about its leading diagonal. Conversely, if a
group multiplication table is symmetrical about its leading diagonal
it must arise from an Abelian group.

In a group multiplication table each element occurs once only
in each row, and once only in each column. For if the elements of
the group are at (i = I, 2, ..., n) and if two entries in a row or
column are the same then ajaj = ajak' This gives a j = aj-1ajak = ak

which is not the case.
We now give another example of a group and its multiplication

table which will be of interest again in later sections of this chapter.

Example 10. Consider all the rotations which send an equilateral
triangle into itself. (This is not the same problem as in Example 8,
where only rotations in the plane were allowed.) Now let PQR be an
equilateral triangle with centre 0 (see Fig. 8.3), and let OA, OB and

R

c
Fig. 8.3

OC be a set of rotation axes fixed in space and passing through the
three vertices of the triangle (these axes are left unchanged as
the triangle is rotated).

The operations which bring the triangle into coincidence with
itself may now be described as follows:

e: the identity element (leave the triangle as it is).
a: an anti-clockwise rotation of 2n/3 in the plane of the triangle

so that P--+Q, Q--+R, R--+P.
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b: an anti-clockwise rotation of 4n/3 in the plane of the triangle
so that P~R, Q~P, R~Q.

~: a rotation of the triangle through n about the DA axis.
v: a rotation of the triangle through n about the DB axis.
(J: a rotation of the triangle through n about the DC axis.

As in Example 8, we see that b = a 2
• All the products of the elements

may now be worked out from first principles, and it is easily verified
that this set of six operations forms a group. For example, ~b means
first consider the effect of b and then the effect of~. Now b sends

R.

D
p

D
)' Q

into

Q R

p

R.

D
Q

into

RQ

and the effect of II on this is to send
p

D
This configuration is the same as that obtained by rotating the
original configuration through n about the DC axis. Hence ~b = (J.

Similarly b~ = v, which shows that, since ~b # b~, the group is
non-Abelian.

The group multiplication table has the following form:

I e a b Jl v (J

e e a b Jl v (J

a a b e (J Jl v
b b e a v (J Jl
Jl Jl v (J e a b
v v (J Jl b e a
(J (J Jl v a b e

Table 2.

From this table the inverses of the six elements may easily be read off.
For example, b- 1 = a, ~ -1 = ~, etc. Furthermore, we notice that
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the set of elements {e, a, b} forms a subgroup (see 8.3 and 8.9) of
order 3 and that, since b = a2

, this subgroup is cyclic with the ele­
ment a as the generator (see 8.4). Three other subgroups - each of
order 2 - exist, namely {e, Il}, {e, v} and {e, o}

8.6 Isomorphic groups

Two groups with the same multiplication table are called isomorphic.
In more formal language two groups G and G' with elements
a, b, C ••• and a', b', c' ... respectively are said to be isomorphic if
a one-to-one correspondence exists between all their elements such
that ab = c implies a'b' = c', etc., and vice versa. The elements of
the two groups may, however (and, in general, do), represent com­
pletely different mathematical entities.

The isomorphism of groups is a special instance of the homo­
morphism of groups. For, whereas isomorphism requires a one-to­
one correspondence between elements, homomorphism allows a
one-to-many correspondence. However, we shall not discuss this
concept further here.

We now give two examples of the isomorphism of groups.

Example 11. Consider the group G of Example 6. This consists
of the four elements

e = 1, a = i, b = -1, C = - i, (17)'

with ordinary multiplication as the rule of combination. The group
multiplication table is shown in Table 1.

Now let G' be the matrix group of Example 7, with elements

e'=(~ ~)' a'=(_~ ~), b'=(-~ _~), C'=G -~}
(18)

It is easily found that the group multiplication table of this group is

e' a' b' c'

e' e' a' b' c'
a' a' b' c' e'
b' b' c' e' a'
c' c' e' a' b'

Table 3.
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Comparing Tables 1 and 3 we see that they have precisely the same
structure. Accordingly, the groups G and G' are isomorphic.

(20)

"~( ~:
is isomorphic with the group G of Example 10, as may be verified
by constructing the multiplication table of G' and comparing with
Table 2. For example,

~' b' =(b _~)(-t -~3)=( -t
Jj -t - Jj
2 2

e' =(~

~' =(1 0),° -1

Example 12. The matrix group G' of order 6 with elements

::} b'~(~ ~:)
(19)

-;')

and so on.

(22)

(21)

8.7 Permutations: the symmetric group

Suppose we have a set of n distinct objects labelled, for convenience,
1,2, ..., n. The operation of replacing 1 by ai' 2 by a2, .•., n by an
to give some arrangement a1a2 •.. an of the same n objects is called
a permutation P and is denoted by the symbol

P =( 1 2 3 n),
a1 a2 a3 an

indicating that each element in the first row is to be replaced by the
element directly below it in the second row. The order in which the
columns of the permutation symbol (21) are placed is irrelevant and
we may just as well write

P=(2 1 n
a2 a1 an .,.

and so on.
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(23)

For n objects there are n! arrangements or permutations, each of
which may be written in the form (21).

To be more explicit we deal here with the set of six (= 3!) permu-
tations of three objects. These permutations are

P
1
=G ;~)' P

2
=G i D'

P
3 =G ; D' P

4 =G i D'
Ps=G ; i)' P

6
=G ~ D'

Now the product of two permutations PiP j (i,j = 1,2, ..., 6) is
defined as the permutation obtained by first performing P j and then
Pi' (This convention is consistent with that used for operators,
although when dealing with permutations the opposite convention ­
Pi first, then Pj - is adopted in many texts.) For example, P6 P2

means first perform P2 and then P6 • To evaluate the result we see
that by P2 1 is replaced by 3, and by P6 3 is replaced by 2. Hence,
by P 6 P2 , 1 is replaced by 2.

Similarly by P 2 2 is replaced by 1, and by P4 1 is replaced by 1.
Hence, by P6 P2 , 2 is replaced by 1. Finally, we find

P6 P2 =G ~ DG i D=G i D= P4
• (24)

Other products may be obtained in the same way.
Included in the set of six permutations is the one which leaves the

original arrangement unaltered, namely P l' This permutation is
called the identity permutation.

Lastly, to every permutation Pi there exists another permutation
Pi -1 called the inverse of Pi which undoes the work of Pi' For
example the inverse of

(26)

(25)D
2
3

since
P2 P;: 1 = P2 P3 = P1 (the identity permutation). (27)

Now from (24) it is seen that the product P6 P2 (= P4 ) is an
element of the set of six basic permutations (23). Likewise by (26)
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the inverse of P2 (= P3) is also an element of the set. In fact, it may
easily be verified that all products and inverses are elements of the
set of permutations and that accordingly the permutations
Pl' P2 , ••• , P6 form a (non-Abelian) group of order 6. This group
is called the symmetric group, and its multiplication table is shown
in Table 4.

PI P2 P3 P4 Ps P6

Pl PI P2 P3 P4 Ps P6

P2 P2 P3 Pl P6 P4 Ps
P3 P3 PI P2 Ps P6 P4

P4 P4 Ps P6 PI Pz P3

Ps Ps P6 P4 P3 PI P2

P6 P6 P4 Ps Pz P3 PI

Table 4.

A comparison of Tables 4 and 2 shows that they have the same
structure. The symmetric group of order 6 is therefore isomorphic
with the group of operations which bring an equilateral triangle into
coincidence with itself (see Example 10). The correspondence
between the elements is

(30)

1
o
o
o
o
1

o
1
o

o
1
o
o
o
1

1
o
o

e+-+PI, a+-+Pz, b+-+P3 , j1+-+P4 , V+-+Ps, CJ+-+P6 • (28)
Furthermore, since the group of matrices (19) is isomorphic with
the group of Example 10, this matrix group must also be isomorphic
with the symmetric group of order 6. Another isomorphism is
obtained from the correspondence

Pl+-+Sl> Pz+-+Sz, P3 +-+S3 , P4 +-+S4 , Ps+-+Ss, P6 +-+S6 , (29)
where
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Although we have dealt specifically here with the permutations
of three objects, it is clear that the set of permutations of n objects
forms a group - the symmetric group - of order n1. As we shall see
in the next section this group has an important place in the theory
of finite groups as a whole.

We note here in passing that the matrix Sj (j = 1, 2, ..., 6) of
(30) is the unit matrix in which the rows have been subjected to the
permutation Pj' This gives a general rule for writing down the
(n x n) matrices associated with the permutation of n objects.

(35)

(36)

(33)P j =( al az an)
aja l aiaz aian

be a permutation associated with the element ai' Then when aj is
chosen to be the unit element of the group P j becomes the identity
permutation.

Furthermore, if

P
j

= (a;~l a;~z a;~J (34)

is the permutation associated with the element aj' and aj and aj are
chosen to be different, then PI and Pj are different permutations.

Finally, taking the product PjPj we have

PjPj =( al az an) ( a l a z
aia l aja Z ajan aja l ajaZ

=( a l a z an )'
aiaja l ajajaZ ajajan

which is just the permutation corresponding to the element ajaj of
the group G.

8.8 Cayley's theorem
This theorem states that every finite group is isomorphic with a suit­
able group of permutations. To prove this important result we let
G be a group of order n with elements

al,aZ, ... ,an. (31)

Now choose anyone of these elements, say ai' and form the products
(in the group sense)

aja!> aja z,... , ajan. (32)

These products are again just the n distinct elements of G and
consequently form a rearrangement of (31).

Let
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From these results it is clear that a one-to-one correspondence
exists between the elements ai' a2 , ••• , an of G and the permutations
PI> P2 , •••, Pn, and that these n permutations themselves form a
group. This group H (say) is a subgroup of order 11 of the sym­
metric group of order n! which contains all n! permutations of
ai' a2' ••., an'

Cayley's theorem highlights the important position of permutation
groups in the study of finite groups. Quite apart from this, however,
permutation groups are of importance in quantum mechanics where,
owing to the identity of elementary particles of a given type (all
electrons are identical!), various quantities must be invariant under
interchange or permutation of the particles. Further details of the
consequences of this invariance property may be found in almost
any book dealing with the applications of group theory to quantum
mechanics.

8.9 Subgroups and cosets

The idea of a subgroup has been met in earlier sections of this
chapter. We now prove that the order of a subgroup is a factor of
the order of the group from which the subgroup is derived.

Let G be a group of order n with elements

(37)

where, for convenience, we associate al with the unit element e.
Suppose now H is a subgroup of G of order m with elements

b1, b2 ,· •• , bm• (38)

Again we let b 1 = e (since, being a group H must contain the unit
element). We now take some element ak (say) of G which is not in H,
and consider the set of m elements

b1ak' b2ak,· .. , bm ak' (39)
This collection of elements is called the right-coset of H with respect
to ak and is denoted more compactly by Hak • (The term' right' is
used to signify that the • products' are obtained by putting the ak

on the right-hand sides of the b i .) We see that Hak consists of m
different elements since biak = bjak implies

bi = bjaka;; 1 = bj aka;; 1 = bj

which is not so.
This right-coset of H does not form a group. For if it did it would
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contain the unit element (al = b1 = e) which would require for
some bJ that bjak = e or, equivalently, ak = bj -1. This requires ak
to be an element of H, which is contrary to assumption. Indeed, the
right-coset does not contain any element in common with H. For
supposing it contains some element bj (say) of H. Then for some
bi we must have

(40)

But this requires that

(41)

which, in turn, requires that ak be a member of H. Again this is
contrary to assumption.

Moreover, if Hak and Ha, have an element in common then they
are identical. For if biak = Dja, then for any bpak in Hak we have

bpak = (bpbjl)biak = (bpbjl)bj a, = bsa" (42)

where bs = bpbjlbj• Since bsa, is an element of Ha, we have
Hak = Ha" Now every element ak in G but not in H belongs to
some coset Hak. Thus G falls into the union of H and a number
of non-overlapping cosets, each having m different elements. The
order of G is therefore divisible by m. Hence the order of a sub­
group H of G is a factor of the order of G.

This result is well illustrated by the group of order 6 of Example 10
where the proper subgroups are of orders 2 and 3. The improper
subgroups - namely, the unit element and the group itself - have
orders I and 6 respectively, both orders again being factors of 6.

Finally, we remark that by forming the products akH we obtain
the left-cosets of H with respect to ak • It may be shown that using
left-cosets similar arguments to those used here for right-cosets
again lead to (42).

8.10 Some remarks on representations

In some previous sections of this chapter (see 8.6 and 8.7) we have
seen examples of groups having isomorphisms with matrix groups.
In these examples every element of a group G corresponds to a dis­
tinct square matrix of a matrix group G' (say). When this is the
case G' is called a faithful (or true) representation of G. Suppose G
has elements a, b, .... Let rca) be the square matrix corresponding
to the element a, reb) be the square matrix corresponding to the
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element b, and so on. Then if

r(a)r(b) = r(ab)
and

(43)

r(e) = I (the unit matrix) (44)

(e being the unit element) the matrices satisfy the group axioms.
The order of r is called the dimensionality of the representation.
For example, the matrices of (18) form a 2-dimensional representa­
tion of the group G of Example 6. Likewise, the matrices (19) form
a 2-dimensional representation of the group of Example 10. Similarly,
the matrices (30) form a 3-dimensional representation of the permu­
tation group of order 6.

Now suppose each matrix of the representation G' of G is trans­
formed by a similarity transformation (see Chapter 6) into rea),
where

rea) = V-I r(a)V, (45)

V being a non-singular matrix. Then

r(a)r(b) = V-I r(a)VU- I r(b)U (46)

= V-I r(a)r(b)U (47)

= V-Ir(ab)V (using (43)) (48)

= r(ab). (49)

Hence the group properties still hold for the transformed matrices
and so they too form a true representation of G. In general, repre­
sentations related in this way are regarded as being equivalent,
although, of course, the forms of the individual matrices will be
quite different in equivalent representations. With this freedom in
the choice of the forms of the matrices it is important to look for
some quantity which is an invariant for a given representation.
This is found in considering the traces of the matrices forming a
representation for, as we have seen in Chapter 6, 6.2, the trace of a
matrix is invariant under a similarity transformation. The traces of
the matrices forming a representation are called the characters of
the representation and are invariant under the transformation (45).
Characters play an important part in the theory of group repre­
sentations and are of importance in many of the group theory appli­
cations to quantum mechanics. This topic, and others related to
whether a given representation of a group can be reduced to one of
smaller dimension are, however, beyond the scope of this book.
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PROBLEMS 8

1. Show that the inverse of each element of a group is unique.

2. Show that the identity operation and the rotations through 1t

about anyone of three mutually perpendicular intersecting lines
form a group of order 4, and obtain its multiplication table.

3. Verify that the set of positive rational numbers does not form a
group under division.

4. Show that the set of all three-dimensional vectors forms an
infinite Abelian group under vector addition.

5. Prove that all orthogonal matrices of a fixed order form a matrix
group. Prove also that all orthogonal matrices of fixed order
and of determinant +1 form a matrix group.

6. Show that the six functions

flex) = x,

I
fix) =-,

x

fix) = I-x,

I
fs(x) = -1-,

-x

x-I
f3(x)=-,

x

form a group with the substitution of one function into another
as the law of combination.

7. Verify that the six matrices

(~ (
-1
-1

G

-1),
-1

~)

0),
-1

form a matrix group. Show that the group is cyclic and that it
may be generated by either of the last two matrices'.

8. Show that matrices of the type

where a ¥= 0, form a matrix group which is isomorphic with the
group of real non-zero numbers under multiplication.
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9. Show that the four functions

form a group under substitution of one function into another.
Verify that this group is isomorphic with the matrix group
whose corresponding elements are

0).
-1

10. Prove that a group of prime order has no proper subgroups
and is necessarily cyclic.

11. Examine the structures of groups of order 1 to 4 (inclusive).
Show that there are only two possible groups of order 4, one of
which is cyclic.
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ANSWERS TO PROBLEMS

PROBLEMS 1

I. (0) is a finite set.

2. (0) is the null set.

3. {l}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4},
{I, 2, 3}, {2, 3, 4}, {I, 2, 4}, {3,4, l}, {I, 2, 3, 4} and e.

4. The sets (b), (c) and (e) are equal.

5. fg =(1 2 3 4), gf=(1 2 3 4
2
).

3 142 431

There are 4! mappings of whichfg and gf are two.

6. The message reads 'you have decoded this message'.

7. y ~ ~:). X ~ (;) A ~G-: -D
Since IAI = 0 an inverse transformation does not exist.

8. (7 -1).
6 -1

-1 2

PROBLEMS 2

1. A+B =(~ ~)' A-B=(-1 D'-1

(A-B)(A+B) =(: :), A2 _B2 =(_1
~)-5

2. A+B~n 2

D'
A-B ~ ( 5 0

~)'7 -3 3
-1 0 1 -I

AB~ ( 2 2 } BA~C3 2 }28 6 19 19 16 27
-2 0 2 1 -4 -3

3. AB =C2 -1)- BA =(-~ 1;).
10 -9
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Answers to Problems

4.
AU~(J' A'U~CD' A'll)' A', ~( 1~)'

-13
iiA2 v= 18.

8. Symmetric part of A is

U 1 -i)'0

1
skew-part of A is

H 1 -i)0
-i

I I. Skew-Hermitian: symmetric, Hermitian, skew-symmetri~, skew­
Hermitian.

PROBLEMS 3

3. (a-ib -c- id}
c-id a+ib

5.

H
-3 !)2 -1

0 1
10 ( 1 -3 -!)-3 3

2 -1

PROBLEMS 4

1. x = 3, Y = 1, Z = 2.

2. x = k-I, Y = k-I, Z = k, (k arbitrary).

3. k = 3, - is, x = 2, Y = 1, Z = - 4.

4. (a) x = 2, Y = 4, Z = 8.
(b)x=l, y=2, z='3, w=O.
(c) x = - 3k, y = 0, Z = k, (k arbitrary).
(d) Inconsistent.
(e) x=l+-l-r-k, Y=-Hk, L.=-T~k, w=k,(karbitrary).
(f) Inconsistent.
(g) Inconsistent.
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Answers to Problems

6. X= -151,y= 100; no solution;x= l53,Y= -100;x=77,
y = -50; x = 51 2

/ 3 , y = -331
/ 3 ,

7. x = -H-~, y = gt.

4

J17
1

J17
o

(b) ,1,1 = 2,

(c) )'1 = 1,

PROBLEMS 5
1. (a) ,1,1 = 3,

(d) )'1 = 2,

X3 = 29

J989
12

-;}989
2

J989

X, ~ G),

2. (a) ).1 = -I, Xl = 1

J2
1

- J2­
o

,1,2 = I, X2 = 1

J2-
1

../2­
o
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Answers to Problems

(b) Al = 0,

A3 = 1,

(c) Al = 0, x, ~ (i);
j

(d) Al = 0, X'lOJ:,J));
A2 = 3,

X2 = C1 Jf/J6}

9. A=±1, ±i.

PROBLEMS 6

1. (a) (~ 0)' (b) (i 0

~)'-2 2
0

(cj G 0
o )"3(1 + i)

3(10_ i)0

2. (a) G 0)' (b) (~
0

~),-5 1
0 -1

160



_~). (c) ( 1

2 -~

Answers to Problems

(c)

(~
0

~), (d) (~
0 0

~)1 1 0
0 0 -1

0 0 -1

3. (a) (~ 0)- (b) G~}
(c) (:

0
-5 5+JTI

2

0

-1
2

-1

o

5-~)
2

4
o
o

5. (a) 2ui+ Vu~, Ul = X 1 -!X2' U2 = X2'

(b) ui+u~+u~, U 1 =X 1 -X2• U2=X 2 -X3 , U3=X 3 ,

(c) ui+2u~-u~, U l = Xl +4x2 -5x3• U2 = X3.

u3 = 4x2 -5x3 •

. 5+-/5
Exact eIgenvalues are 2. 2'

PROBLEMS 7

4. (-12099
-12100
-13120

12. X, = 2'.

12355
12356
13120

6305).
6305
6561
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INDEX

Abelian group, 137-139
Addition of matrices, 25
Adjoint matrix, 44-46
Algebraic equations, 62-69

Bilinear forms, 103-105
Boolean algebra, 21-23

Cayley-Hamilton theorem, 114-119,
124-127

Cayley's theorem, 149-150
Character of a group, 152
Characteristic equation, 73-74
Characteristic polynomial, 74
Characteristic values, 74
Codes, 7
Column matrix, 31
Complement of a set, 17-18
Complex conjugate of a matrix, 37
Convergence of matrix series, 121-123
Cosets, 15D-151
Cramer's rule, 10,64-66
• Cup' and' cap', 15-16
Cyclic group, 141

Diagonal matrix, 33
Diagonalisation of Hermitian forms,

109-110
Diagonalisation of Hermitian matrices,

102-103
Diagonalisation of matrices, 92-111,

127
Diagonalisation of matrices (eigen­

values all different), 97-99
Diagonalisation of matrices (repeated

eigenvalues), 100
Diagonalisation of real quadratic

forms, 106-109
Diagonalisation ofsymmetric matrices,

100-102
Differentiation of a matrix, 128-131
Differential equations, 129-131
Disjoint sets, 4
Difference equation, 133

Eigenvalues, properties of, 78-80
repeated, 79-80

Eigenvectors, 73-90
Element of a set, I, 136-138
Element, unit, 137
Empty set, 2
Equality of matrices, 26
Equality of sets, 3

Finite group, 137
Finite set, 2
Functions of matrices, 114-131

Group character, 152
Group representations, 151-152
Group tables, 142-145
Groups, 136-152

Abelian, 137-139
axioms of, 136-138
cyclic, 141-142
examples of, 138-140
isomorphic, 145-146
symmetric, 146-149

Hermitian matrix, 39--4D, 87-88
Homogeneous equations, 67-68
Homomorphism of groups, 145

Idempotent matrix, 35
Identity mapping, 5
Ill-conditioned equations, 65-69
Imaginary matrix, 37-38
Improper sub-group, 139
Inconsistent equations, 66
Indefinite form, 95-96
Infinite set, 2
Infinite group, 137
Integration of matrices, 128-131
Intersection of sets, 15-17
Inverse by partitioning, 48-51
Inverse mapping, 6
Inverse matrix, 46-48
Inverse of a group element, 137-138
Inverse of a matrix product, 47-48
Inverse transformation, 10,43-44
Isomorphic groups, 145 -146

Jordan normal form, 100
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Index

Kronecker delta symbol, 33

Lagrange's reduction of a quadratic
form, 105-106

Latent roots, 74
Leading diagonal, 32
Least squares, 71-72
Linear dependence, 80

Mappings, 5-8
Matrix, Hermitian, 39-40

idempotent, 35
imaginary, 37-38
nilpotent, 35
orthogonal, 51-56
real and imaginary, 37-38
skew-Hermitian, 39-40
skew-symmetric, 38-39
symmetric, 38-39
transposed, 36-37
unit, 34
unitary, 56-58

Matrix algebra, 25-42
Matrix, definition of, 8-12
Matrix diagonalisation, 92-111
Matrix differentiation, 128-131
Matrix equations, 88-90
Matrix group, 140
Matrix integration, 128-131
Matrix products, 11-12,26-28
Matrix series, 114, 121-128

Negative definite forms, 95-96
Nilpotent matrix, 35
Non-homogeneous equations, 62-67
Non-homogeneous matrix equations,

88-90
Non-singular matrix, 10
Null element, 137
Null set, 2

One-to-one mapping, 6
Orthogonal matrices, 51-56
Orthogonal properties of eigenvectors,

82
Orthogonal transformations, 51-56
Orthonormal set of eigenvectors, 87
Oscillations, 13, 73

Partitioning of matrices, 28-30, 48-51
Permutations, 146-149
Positive definite form, 95-96
Powers of matrices, 119-121
Product of matrices, 11-12, 26-28

Quadratic forms, 95-96
diagonalisation of, 106-109
simultaneous diagonalisation of, 2,

110-111

Real matrix, 37-38
Real symmetric matrices, 84-85
Row matrix, 31

Sets, 1-3
Set algebra, 19
Set applications, 20-23
Set operations, 14-19
Similar matrices, 92-93, 96-97
Similarity transformation, 92, 100, 127
Simultaneous diagonalisation of quad-

ratic forms, 110-111
Singular matrix, 10
Skew-Hermitian matrix, 39-40
Skew-symmetric matrix, 38-39
Square matrix, 32
Subgroup, 139, 150-151
Subset, 3
Subtraction of matrices, 25
Switching circuits, 21-23
Symmetric group, 146-149
Symmetric matrix, 38-39

Trace of a matrix, 32
Transformations, linear, 8-12

orthogonal, 51-56
unitary, 56-58

Transpose of a matrix product, 36-37
Transposed matrix, 36-37

Union of sets, 15-17
Unit element, 137
Unit matrix, 34
Unitary matrices, 56-58
Unitary transformation, 56-58

Venn diagrams, 4-5, 15-21

Zero matrix, 31
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