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Preface

In the last decade of the 20th century, the ‘‘Decade of the Brain’’, the scientific
community put forth a concerted effort towards understanding the nervous system.
Although experimental neurophysiological approaches provided many advances, it
became increasingly evident that mathematical and computational techniques
would be required to achieve a comprehensive and quantitative understanding of
neural system function. ‘‘Computational Neuroscience’’ emerged to complement
experimental neurophysiology. Simultaneously, fueled by engineering break-
throughs, the last two decades have seen a phenomenal rise in our ability to probe
the nervous system and to influence neural system activity across scales of complex-
ity and states of disease. Devices that use focused electrical stimulation to activate
neural circuits are now routinely used to restore hearing to the deaf and to alleviate
the symptoms of Parkinson�s disease, while emerging technologies will provide
amputees with the ability to feel with their artificial limb. In the first decade of the
21st century, this new engineering paradigm that links living with non-living
systems to investigate, intervene and harness neural plasticity to counter disease
and disablement emerged in the form of ‘‘Neural Engineering’’.

This book presents a window into the convergence of Computational
Neuroscience and Neural Engineering. Over the past two decades it has been my
privilege to be enriched by the flourishing of both Computational Neuroscience and
Neural Engineering and to have the opportunity to dialogue with neuroscientists,
mathematicians, physicists, and engineers from around the world. Two summers
have played an important role inmy personal engagement with these fields. One was
a summer at Woods Hole, attending the �Methods in Computational Neuroscience
Course�. Here, I listened to John Rinzel present phase space analyses methods,
talked to Ron Calabrese about leech heart interneurons that I modeled, heard about
the newly devised �Dynamic Clamp� from Eve Marder, talked about �Consciousness�
with Christof Koch and others on the beach at night, and met a neuroscientist who
became my postdoctoral mentor - Avis Cohen. It was Avis who suggested a summer
at Telluride at the �Neuromorphic Engineering� workshop. There, I listened to
Rodney Douglas and Misha Mahowald, once again Christof Koch, and got intro-
duced to the world of engineers trying to capture the biological neuron in hardware.
It is not surprising then, that as a biomedical engineer fascinated by the two fields, I
have sought to find a practical interface that is driven by the merger of the software

XI



and hardware models of neurons with the nervous system itself. It is at the summer
courses that I met many of my fellow scientists and engineers who have over the
years sought similar goals, some of who have contributed to this book.
Growth of such a transdisciplinary effort required a concerted investment by

many institutions that were guided by people with foresight and boldness. Dennis
Glanzman and Yuan Liu from the National Institutes of Health, USA and Kenneth
Whang from the National Science Foundation, USA have played an unrelenting role
in supporting programmatic growth of Computational Neuroscience and the
research effort of several investigators. The Collaborative Research in Computa-
tional Neuroscience Program has supported a wide range of research efforts that
underlie the development of biohybrid systems and has allowed me to seek new
knowledge in spinal organization formotor control after spinal cord injury. The book
and I have also benefitted from transdisciplinary dialogue on biohybrid systems and
neuromorphic design at a series of workshops that we conducted with support
through the Science of Learning Centers program at the National Science Founda-
tion, USA under Soo-Siang Lim. Grace Peng from the National Institutes of Health
has been a steady champion of programmatic growth in neural engineering and has
been a supporter of the efforts of many, including me, in bringing technology to the
people that stand to benefit from this technology.Most interestingly, Elmar Schmeis-
ser from the Army Research Office saw promise in our work on neuromorphic
control of spinal interfaces in the lamprey as the basis for a novel approach to control
powered or thoses for people with lower limb dysfunction. It was a presentation of
thesemultiple related areas of research that caught the attention ofWiley and I thank
them for invitingme to develop a book to present our ideas about this emerging field
of biohybrid systems. The growing interest in this topic motivated my colleagues
andmeto develop a book for a cross-section of scientists and engineers.We hope that
this book will enhance the communication between computational neuroscientists
and neural engineers and bring to attention the exciting new applications that
biohybrid systems could offer clinicians who are eager to deliver new solutions to
their clients. It has beenmy pleasure to have worked with the authors of the different
chapters and their teams in the writing of the book. I thank them for their effort and
for their enthusiasm, not only in penning their own chapters, but also in providing
helpful critiques of others.
I must thank my brother Vikram who has over the many years shared with me

many of his management skills that have allowed me to juggle multiple projects and
work across academic-clinical-industrial partnerships.My parents, Sarla and Padam,
are a steady source of support and guidance. My husband Jimmy and son Nikhar,
who are both contributors to this book, have been my sounding boards, have
withstood my immersion in various projects, but most importantly have been a
never-ending source of joy and companionship. Finally, I am forever indebted to
my doctoral thesis advisor, Peter Katona who fostered inquiry across boundaries,
supported my inquisitiveness and nurtured my foray into new realms.

June 30, 2011
Miami, Florida
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1
Merging Technology with Biology
Ranu Jung

1.1
Introduction

The most important trend in recent technological developments may be that
technology is increasingly integrated with biological systems. Many of the critical
advances that are emerging can be attributed to the interactions between the
biological systems and the technology. The integration of technology with biology
makes us more productive in the workplace, makes medical devices more effective,
and makes our entertainment systems more engaging. Our lives change as biology
and technology merge to form biohybrid systems.

This book describes some of the recent advances and some of the key challenges
faced by engineers and scientists developing biohybrid systems that interface
nerves, muscles, and machines. Modern computers have high computational
capacity and high rates of internal information transfer between components;
similarly, neurobiological systems have high computational capacity and high
interconnectivity of neural structures. Some of the key developments in biohybrid
systems have been in opening lines of communication between the engineered
and the biological systems. Real-time communication between a nervous system
and a device is now possible, but full and reliable integration is still far from reality.
In order to achieve more complete integration, some of the key challenges in
biohybrid system development are to improve the quality, quantity, and reliability
of the information that can be transferred between the engineered and the
biological systems.

As we move forward in developing biohybrid systems, we can leverage a
second key trend in recent technological developments: technology is increasingly
being designed to be adaptive in its capabilities. The breakthrough about to be
achieved is to close the loop in a manner that utilizes the adaptive capabilities
of electronic and mechatronic systems in order to promote adaptation in the
nervous system.

Biohybrid Systems: Nerves, Interfaces, and Machines, First Edition. Edited by Ranu Jung.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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1.2
NeuroDesign

The nervous system functions by generating patterns of neural activity. These patterns
underlie sensation and perception as well as control of movement, cardiovascular,
endocrine, immune, and other systems. Nonlinearities and dynamical states that
span scales of physical form and time are key features of the patterns that emerge
from the living nervous system. Biohybrid interfaces can be developed to (1) access
these neural activity patterns, (2) influence the neural activity patterns, or (3)
fundamentally alter the pattern formation mechanisms (i.e., promote plasticity)
(Figure 1.1). This development can be accomplished through the process of
�NeuroDesign.� One aspect of NeuroDesign is that the man-made abiotic systems
to access or influence the neural patterns can be devised to embody the design
principles of the nervous system. Here, the fundamental structure and/or operation
of the technological system are based on an understanding of nervous system
function. A second aspect of NeuroDesign is the process of engineering the nervous
system itself. The concept here is a deliberate approach to mold and modify the
structure and function of the nervous system to obtain a specific objective. In the
short timescale, this can be thought of as �influence� or control of neural system
function, in the medium timescale as �adaptation,� and in the long timescale as
�plasticity or learning� of the nervous system. In closing the loop between the
nonliving and the living, NeuroDesign also allows us to merge technology and
science. Thismerger opens new opportunities for use of technological innovation for
scientific investigation and a continuous modulation of biological activity to achieve
desired function.

Figure 1.1 Biohybrid systems can access thepatterns of neural activity, influence this pattern in real
time, and induce plasticity by altering the pattern formationmechanisms. Brain image from http://
www.getfreeimage.com/image/77/human-brain-and-neuron-impulses.
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The primary challenge is to design biohybrid interfaces that can access and capture
the biosignatures of the living system through limited spatiotemporal sampling and
influence the inherently adaptive biological system through punctate intervention.
For promoting plasticity, the challenge is to promote learning by influencing the core
biochemical machinery in a desired manner.

1.3
The NeuroDesign Approach

Figures 1.2 and 1.3 illustrate the approach to NeuroDesign. The three features of this
approach are (1) integration between the exogenous human designed system and the
endogenous living system (2) biomimicry in the design of the exogenous system, and
(3) the fact that an intervention that exerts its direct influence at one scale has an
overall effect that spans multiple scales. The exogenous system performs both
neurosensing and neuroactivation. By designing engineered systems that are
biomimetic, we are able to produce systems with some of the robustness and
versatility of biological systems and that potentially facilitate functional integration
with the endogenous biological system. The nature and degree of biomimicry that

Figure 1.2 �NeuroDesign� integrates man-
made systems with biological systems to access
information, influence the activation of the
biological system in real time, and/or promote
long-term plasticity in the biological system.

Bidirectional communication at multiple points
of interface offers opportunities for closed-loop
control of coadaptive systems. Biomimetic
approaches are often used in the design of the
exogenous system.

1.3 The NeuroDesign Approach j3



could be used in the design of the exogenous system depend on the objective for
which the biohybrid is developed. That is, when using a closed-loop system to
discover ion channels at the cellular level, neuromimicry at the cellular level leads to
utilization of computational models of neurons with details of ion channels. On the
other hand, the development of systems for closed-loop rhythmic control of the
neuromusculoskeletal system utilizes the concept of pattern generators in the
nervous system to design the exogenous system.

Biohybrid systems can effect outcomes at multiple scales, at the behavioral scale
(function), electrophysiological scale (synaptic learning),morphological scale (form),
or molecular scale (genes/proteins/sugars). An interface that acts at one scale
influences the entire chain (Figure 1.3). Thus, changes brought about at the
molecular microlevel affect the pattern of activation across scales and ultimately
influence behavior on amacroscale. On the other end, intervention at themacroscale
for, for example, electrical stimulation of peripheral nerves after incomplete spinal
cord injury to provide repetitive movement therapy, can promote motor recovery
perhaps by promoting neuroplasticity at the molecular level [1–4].

Biohybrid systems can thus facilitate investigation of the intact and diseased living
systems to efficiently replace damaged biological systems and to effectively interact
with the residual biological components with the promise of repair.

1.4
Neuromorphic Control of a Powered Orthosis for Crutch-Free Walking

The use ofNeuroDesign in the deployment of biohybrid systems can be illustrated by
the following example of a powered orthotic and prosthetic system that is driven by a

Figure 1.3 Biohybrid interfaces between exogenous man-made systems and endogenous
biological systems can occur at one ormore junctions alongmultiple scales of form and complexity.
The effects of the interface at any one scale are propagated along the chain of scales.
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neuromorphic controller that was designed using biomimetic NeuroDesign princi-
ples [5]. This biohybrid system (patent pending) is designed to allow �crutch-free�
walking by a person with a tibial fracture of the lower limb. For this system, two
objectives must be met: (1) the injured lower limb must be stabilized; and (2) the
person must be able to walk under voluntary control. To achieve the former, the
orthotic system illustrated in Figure 1.4 was designed. This device consists of a fixed-
ankle orthosis that is used to stabilize or immobilize the injured lower limb. The
fixed-ankle orthosis is encased by an actuated (powered) false-foot orthosis and the
combined device forms an actuated articulated false-foot orthosis (AAFO). This
AAFO is designed to permit the person to walk with a stabilized lower limb with
minimal load bearing on the injured limb.

In order to achieve the second objective and provide voluntary control of the false
foot, it was necessary to access information about the intent of the person to walk and
then appropriately control the cyclic movement of the AAFO during walking. The
inspiration for the design of this control system scheme was drawn from the control
of movement in biological systems. Networks of neurons in the spinal cord of
vertebrates are capable of producing rhythmic neural output that in turn controls a
well-orchestrated sequence of muscle activation for cyclic control of locomotion [6].
The activity of these spinal pattern generators is usually initiated and terminated by
descending voluntary control signals from the brain. The pattern generators also
receive feedback from sensors in actuatedmuscles and tendons during the entire gait
cycle. The neural organization of this biological system was mimicked in the design
of the control system used for the AAFO.

An electronic circuit was designed to implement a neural network pattern
generator that could be used as the controller (Figure 1.5). The biomimetic archi-
tecture of the pattern generator circuit was based on knowledge of connectivity of
neurons within the spinal cord of the lamprey, a primitive vertebrate [7, 8].
Computational models of individual neurons were implemented in a circuit made
from analog very large scale integrated (aVLSI) components and discrete electronic
components [9, 10]. This pattern generator is capable of autonomously generating

Figure 1.4 Prototype of a fixed universal ankle–foot orthosis (UAFO) attached to an AAFO. The
prototypedevice is designed for use by combat troops.Quick release pins on the top andbottomcan
be used to easily separate the actuator from the AAFO.
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cyclic voltage output that drives the AAFO. Biological pattern generators can be
entrained by impinging cyclic rhythms. Their rhythm can also be reset if a pertur-
bation of sufficient strength is applied at a particular phase of the rhythm. For
example, the spinal pattern generator of the lamprey can be entrained by mechan-
osensory signals as well as reset by perturbations to stop and start anew [11]. Sensors
mounted on the leg or AAFO provide cyclic input to the electronic pattern generator
controlling the AAFO. In this manner, voluntary control of gait initiates and
terminates cyclic actuation of the AAFO. Once initiated, the cadence of the AAFO
matches the user�s self-selected walking speed. Sensors mounted on the AAFO also
provide two types of feedback signals. One set of signals feeds back position
information to the actuator of the articulated ankle for local control, while another
set of signals feeds information on external perturbation to the pattern generator and
resets the cyclic control of the AAFO.

The importance of having an actively controlled AAFO instead of just a passively
controlled ankle–foot orthosis (AFO) becomes apparent during walking (Figure 1.6).
When operating in passive mode (without active control), the false foot dorsiflexes
during stance phase (at approximately 40% of the gait cycle) and does not actively
plantar flex at the ankle during push-off (at approximately 60% of the gait cycle).With

Figure 1.5 Biohybrid neuromorphic orthotic
control system. The rhythmicmovement sensor
captures intent to move and provides periodic
descending signals to entrain the unit pattern
generator controller, which provides the cyclic
voltage output needed to actuate the AFO.

Sensors on the AFO provide local feedback
(FBs) to the actuator for control of position and
ankle stiffness; sensors also provide input to the
pattern generator where it may reset the rhythm
in the presence of perturbation (FBR).

6j 1 Merging Technology with Biology



active control that is automatically timed by the entrained pattern generator, this
dorsiflexion is prevented and the ankle more closely follows the normal ankle
movement pattern.

Thus, this example shows how a neuromorphic design of a control system for a
powered orthosis can function as a biohybrid device at the macroscale. It offers
�crutch-free walking� to a person with an injured lower limb.

1.5
Frontiers of Biohybrid Systems

The greatest promise of biohybrid systems lies in promoting plasticity in the nervous
system, thereby contributing to recovery and repair of lost biological function
whether it ensues because of trauma, disease, or aging. This will be achieved as
the closed loop becomes adaptivewith adaptation occurring in both the biological and
the engineered components. The greatest challenge is to design engineered systems
whose adaptation enables the system to customize itself to each individual and to
account for changes in the biological system as the two systems coadapt ([12–18].

As discussed and presented by multiple examples in this book, patterns of activity
of the biological system could be accessed using advanced adaptive technology that
responds to a biological system that is nonstationary and dynamic, and functions
across multiple time- and spatial scales and multiple modalities. The design of the
control systemwill be guided by the structural and functional constraints observed in
biological systems, and allow for real-time learning, stability, and error correction that
accounts for the biological systems features and takes into account the paucity of
inputs to influence the biological system. The frontier lies in being able to harness the
adaptive technology to promote plasticity and synergistic learning with the biological
system on a long timescale under coadaptive conditions. Optimizing the technology
will necessitate an approach that looks beyond the technology in isolation and looks
beyond the technology as it interacts with the biological system in its current state.

Figure 1.6 Ankle kinematics (in degrees of dorsiflexion) during a typical normalized gait cycle (heel
strike to heel strike) with no orthosis (normal), passive orthosis (left), and active AAFO (right).
Active control of the orthosis corrects the excessive dorsiflexion during stance phase (at 40%) and
provides more plantarflexion at push-off (at 60%).
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Here, the design of effective technologymust consider its adaptive interaction with a
biological system that is continuously changing.

Endogenous compensatory learning of the biological system on short and long
timescales and the physical constraints of interaction will provide challenges to this
synergistic learning. It is likely that there exist windows of opportunity that may be
critical periods for induction of sustained learning. Learning in the merged systems
will have occurred when there are carryover effects beyond the time period when the
technology is interacting with the biological systems. Future biohybrid systems may
have the ability to self-weanwhennecessary. The biohybrid systemswill thus allow us
to discover the principles governing activity-dependent learning in living systems, to
develop novel approaches to sense the dynamic changes in the adaptive living system
and the environment, and to deliver novel adaptive technology that encourages
appropriate plasticity in biological systems.

1.6
Chapter Organization

The book chapters are divided into three sections. Together, the chapters illustrate the
principle approaches of NeuroDesign and present practical applications of the use of
biohybrid systems for scientific interrogation and medical intervention. The first
three chapters present the principles that can be used for development of biohybrid
systems. Chapter 2 presents the principles of computational neuroscience. Com-
putation complements mathematical theory and is often used to understand and
reengineer the neural code represented by the rich repertoire of neural activity
patterns under natural as well as experimental conditions. This chapter introduces
basic physiology of neurons and presents mathematical models for excitable cells. It
also presents general formalisms in neuronal modeling and briefly captures models
for plasticity. The ability to embody these equivalent mathematical models for neural
cells and synapses in silicon using neuromorphic electronic design principles is
presented in Chapter 3. Fundamental devices and circuits that can emulate neuronal
behavior at the single cell level as well as more complex circuits are presented. The
chapter also discusses the advantages of using a neuromorphic approach in the
design of the hardware. Chapter 4 presents principles of signal processing. It
specifically examines the use of point process theory for understanding the neural
code and illustrates the bounds placed by this theory in the rational design of
interfaces for biohybrid systems for neurosensing and neurostimulation.

The next three chapters discuss biohybrid systems that interface at the single cell
level. Chapter 5 presents the role of dynamic clamp in biomimetic and biohybrid
living-hardware systems. The concepts of the dynamic clamp experimental tech-
nique are discussed and illustrated. The technique utilizes artificial synapse inter-
faces between single cells and computational models of those cells to investigate the
fundamental biochemistry of neuronal activation. Also presented are examples of use
of such biohybrid systems for specific neuronal gain control by manipulating
synapses. Approaches by which the actual interface between individual neurons
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and sensing transducers can be enhanced by surface modification of the hardware at
nanoscales thatmimic biology are presented inChapter 6. This sectionwraps upwith
Chapter 7, which introduces real-time computing for the development of the artificial
neurons utilized in dynamic clamp studies. It also presents an easy-to-learn and easy-
to-use technique for performing biohybrid systems analysis and presents the use of a
biohybrid system to control the heartbeat in a leech though dynamic clamp.

The last section of the book consists of four chapters on biohybrid systems that
interface at a macroscale and present the potential for closed-loop control of complex
systems using such interfaces. Chapter 8 on biomimetic adaptive control algorithms
presents the use of biomimetic features including computational models of excitable
neurons, network architectures derived from biological systems, and learning algo-
rithms inspired by synaptic learning mechanisms for the design of adaptive control
algorithms. The chapter also discusses factors that should be considered in the design
of closed-loop control systems in the context of coadaptation of the interfaced systems.
Chapter 9 builds on Chapter 3 by presenting applications that utilize neuromorphic
hardware for audition and vision and a system to control the neuromuscular skeletal
system after spinal cord injury. In Chapter 10, a new approach to control cardiac
function by interfacing with the nervous system is presented. It discusses the
precautionary measures that will be necessary in the design of a closed-loop system.
Finally, a biohybrid systemwith an adaptive smart sensor tomeasure neural activity of
pancreatic cells cultured on multielectrode arrays is presented in Chapter 11. The
chapter also presents the initial building blocks for a closed-loop implantable system
for measuring blood-borne glucose for the management of diabetes.
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2
Principles of Computational Neuroscience
Sharmila Venugopal, Sharon Crook, Malathi Srivatsan, and Ranu Jung

2.1
Introduction

The computational capacity of the nervous system is incredible. Computational
neuroscience tries to capture the theoretical basis of this complex capacity atmultiple
scales using computational approaches. Computation complements mathematical
theory and is often used to understand and reengineer the neural code represented by
the rich repertoire of neural activity patterns under both natural and experimental
conditions. A historical step in this direction dates back to the seminal works of Alan
L. Hodgkin and Andrew F. Huxley who developed a neurophysiology-based math-
ematical model for the squid giant axon action potential [1]. Their formalism is
extensively used even today, either in its original or in its reduced form. Another
noteworthy contribution came fromWilfrid Rall, who emphasized the importance of
the spatial domain and dendritic processing of synaptic input using mathematical
approaches based on electrical cable theory [2–4]. Rall pioneered the use of digital
computers in neuroscience employing a discretized version of cable theory [5], and
this compartmental modeling has formed the basis for some of themost widely used
software tools in computational neuroscience (e.g., GENESIS [6] and NEURON [7]).
The term �computational neuroscience� was, however, coined only in the late 1980s
by Eric L. Schwartz who organized a conference whose proceedings were later
published in the form of a book, �Computational Neuroscience� [8]. Despite much
controversy for a clear definition of the field, computational models of neuronal
systems have nonetheless been successful in providing test beds for hypotheses and
generating valuable neurobiological predictions. The realm of computational neu-
roscience has now extended beyond its original scope of complementing empirical
findings andproviding insights into the underlying neurophysiology. As discussed in
later chapters in the book, computational neuroscience is now significantly expand-
ing its role and influencing advancements in related fields of neuroengineering and
neurotechnology. Several excellent textbooks and seminal articles have rigorously
dealt with neurobiological principles and theories (e.g., [9–16]) as well as analytical
tools and techniques used in computational neuroscience (e.g., [1, 2, 6–8, 17–22]).

Biohybrid Systems: Nerves, Interfaces, and Machines, First Edition. Edited by Ranu Jung.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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This chapter outlines some of the predominant physiological and theoretical prin-
ciples guiding neuronal modeling further indicating some of the key applications of
computational models for neuromorphic and biohybrid system design and
development.

2.2
Some Physiology of Neurons

Neurons and their supporting glial cells form the principal cell types of the nervous
system. The Neuron Doctrine, as developed after the works of neuroanatomists
Camillo Golgi and Ramon y Cajal, describes neurons as the structural and functional
units of the nervous system [23]. Neurons form the basic information processing
units of the nervous system and typically have a basic architecture consisting of a cell
body (soma), many input processes (dendrites), and an output process (axon) (see
Figure 2.1). The soma contains the nucleus and much of the cell�s machinery. Each
neuron usually has a single axon that arises from the axon hillock of the cell body and
extends away from the soma. The plasma membrane of the axon is called the
axolemma and is specialized to conduct electrical impulses originating at the axon
hillock away from the neuronal cell body to other neurons. Terminal arborizations of
axons end in boutons that form close appositions with the dendrites, soma, or axons
of other neurons. These junctions are called synapses. Axodendritic synapses between
the axonal terminals of the presynaptic neuron and specialized structures called
dendritic spines on dendrites of the postsynaptic neuron are most common. Commu-
nication between the presynaptic neuron and the postsynaptic neuron typically
occurs through two types of synapses, electrical or chemical. An electrical synapse
consists of a gap junction between the pre- and postsynaptic neurons that allows rapid
directflowof ionic currents between the neurons bidirectionally. In chemical synapses,

Figure 2.1 Basic architecture of a typical neuron communicating with another neuron via a
chemical synapse.
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the boutons at the axon terminal of the presynaptic neuron store synaptic vesicles
containing neurotransmitter chemicals. The space between the presynaptic axon
terminal and the apposing postsynaptic dendritic spine is called the synaptic cleft.
Transmission of action potentials to the axon terminals of the presynaptic neuron
leads to release of the neurotransmitter(s) into the synaptic cleft that consequently
binds to ionotropic or metabotropic receptors (G-protein-coupled receptors) on the
surface of the postsynaptic neuronal membrane. Transmitter binding to ionotropic
receptors leads to opening of ion channels that result in the generation of an electrical
signal in the postsynaptic neuron. Transmitter binding to G-protein-coupled recep-
tors activates second-messenger pathways often resulting in long-term changes.
Neurotransmitters can have an excitatory effect and stimulate the postsynaptic
neuron to generate an electrical impulse. They can also have an inhibitory effect
wherein the neurotransmitter may bind to its receptor on the postsynaptic neuron
and reduce its ability to generate electrical impulses. Thus, neuronal communication
and information exchange occur between neurons across synapses by means of
electrical and chemical signaling.

2.2.1
Membrane Potential

All living cells including neurons maintain a negative electrical gradient between the
inside (cytoplasm) and the outside of the cells separated by their cellmembrane. The
cell membrane encompassing the cytoplasm is a lipid (fat) barrier separating ions
(charged particles) in the intracellular and extracellular fluids. Ions can be positively
(cation) or negatively (anion) charged. Physiologically, the extracellular space largely
consists of sodium (Naþ ) and chloride (Cl�) ions and the intracellular space is rich in
potassium (Kþ ) and organic anions (A�) (see Figure 2.2).

The restriction of these ions to their respective locations occurs due to electro-
chemical and physiological constraints. Ideally, the cell membrane is a perfect
electrical insulator and hence the ions stay where they are. In particular, the larger
organic anions stay in the intracellular space, conferring the neuron with a negative
electrical gradient. Moreover, the differential distribution of individual ionic types
across themembrane leads to their respective chemical concentration gradients. But the
cell membrane consists of ion-selective channels made of complex proteins embed-
dedwithin themembrane (e.g., potassiumchannels) that allow ions toflowacross the
neuronal membrane. For example, if Kþ ions were free to diffuse out of the cell via
openKþ channels down its concentration gradient, the negative electrical gradient of
the cell prevents the outwardmovement of these cations. Similarly, the inwardflowof
the negatively charged Cl� ions down their concentration gradient is counterba-
lanced by the negativemembrane potential. But for Naþ ions, both the electrical and
the concentration gradients drive the Naþ ions into the cell that could eventually
neutralize the negative electrical gradient. Fortunately, at least two mechanisms
prevent the inwardNaþ ionflow. The foremost is the sodium–potassium transporter
(also a membrane protein, often called Naþ /Kþ pump). The transporter utilizes

2.2 Some Physiology of Neurons j13



cellular energy reserves (ATP) and exchanges three Naþ ions for two Kþ ions across
the cell membrane assisting in maintaining higher Naþ concentration outside the
cell. Second, in addition to the ion selectivity, most channels are sensitive to
membrane potential (voltage sensitive). Hence, the voltage-sensitive Naþ channels
are typically closed at negative membrane potentials further preventing Naþ entry
into the cell.

The balance between the electrical and the chemical gradients results in equilib-
riumpotentials for each ionic species. Thus, an equilibrium potential exists for the Kþ

ions at which the electrochemical gradients balance each other and no netmovement
of Kþ ions occurs. This equilibrium potential for potassium ions can be estimated
using the Nernst equation given by

EK ¼ 2:3
RT
F

log
½K þ �OUT

½K þ �IN
; ð2:1Þ

where R is the gas constant, T is the absolute temperature and [Kþ ]OUT and [Kþ ]IN
are the extracellular and intracellular potassium ion concentrations, respectively.
Similarly, equilibrium potentials can be obtained for each ionic species. The
combined effect of more than one ionic species on the membrane potential can
be expressed by the Goldman–Katz equation as follows:

Vm ¼ 58log
PK½K þ �OUT þPNa½Naþ �OUT þPCl½Cl��IN
PK½K þ �IN þPNa½Naþ �IN þPK½K þ �OUT

; ð2:2Þ

Figure 2.2 Physiological distribution of
prominent ionic species across the membrane.
The organic anions (A�), potassium (Kþ ) ions,
sodium (Naþ ) ions, and chloride (Cl�) ions are
shown along with directions of the force of

diffusion due to concentration gradients and
electrical gradients due to differential
distribution of ions across the membrane.
Larger font size implies higher concentration.
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where Vm is the membrane potential and P is the relative membrane permeability
for each ion type. This equation includes the contribution of any ionic gradient to
the membrane potential by simply weighting its effect in accord with its membrane
permeability. Note that this estimation of membrane potential is based on the
assumption of constant electric field (or potential gradient) across the membrane.
The resultantmembrane potential is referred as the restingmembrane potential orVrest

(e.g., �70mV).

2.2.2
Membrane Equivalent Circuit

The neuronal membrane bears close correlation with electrical circuits. The lipid
bilayer acts like a capacitor forming a thin insulating barrier for the ions in the
intracellular and extracellular spaces. Let Vm(t) describe the membrane potential
difference between the intracellular and the extracellular domains at any given
instant of time. The capacitance of the cell membrane (Cm) is a measure of the
charge (Q) distributed across themembrane to give rise toVm given byQ ¼ CmVm.
Current flowswhen the voltage across the capacitor changes; this capacitive current
is given by

IC ¼ dQ
dt

¼ Cm
dVmðtÞ

dt
:

In addition, the existence of various ionic channels confers the ability to conduct
charges. As noted earlier, a resting membrane displays a negative potential and
resistance to the flow of charges via the ion channels. The ion-permeable channels
therefore contribute to the membrane resistance, Rm. Considering a point repre-
sentation of the neuron (ignoring the complex morphology), we can represent a
resting membrane by means of a simple resistance–capacitance equivalent circuit
with a battery Vrest as shown in Figure 2.3.

The total current flowing across the membrane (Im) is the sum of the resistive (Ii)
and capacitive (Ic) components. Applying Kirchoff�s current law, the total current can
be given by

Im ¼ Ic þ Ii ¼ Cm
dVm

dt
þ ðVm�VrestÞ

Rm

¼ Cm
dVm

dt
þGmðVm�VrestÞ;

where Cm is the specific membrane capacitance (F/cm2) and Rm is the specific
membrane resistance (V cm2), and Gm, the inverse of Rm is the specific membrane
conductance (S/cm2). The equivalent circuit described in Figure 2.3 includes many
constituent ionic currents described in Section 2.2.1. The term Ii is therefore a sum
total of various individual ionic current types as follows:

Ii ¼ Ileak þ INa þ IK þ . . .
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Here, the current Ileak is due to the conductance Gm and is voltage independent.
The general expression for any given ionic current is given by

IionðtÞ ¼ GionðVmðtÞ; tÞðVmðtÞ�EionÞ;
whereGion(Vm(t),t) describes voltage-dependent ionic conductance for a given type of
ionic channel; Eion is the ionic reversal potential given by Nernst�s equation for a
particular ionic species. The reversal potential is the membrane potential at which a
given ionic current reverses polarity. The total membrane current, Im in the current
balance equation is set to zero due to conservation of charge. Hence, the membrane
current balance equation can be written as follows:

Cm
dVm

dt
¼
X

�Gion Vm tð Þ; tð Þ Vm tð Þ�Eionð Þ�Gm Vm�Vrestð Þ ð2:3Þ

2.2.3
Action Potential: Generation and Propagation

It is possible to experimentally gain access to the cell membrane by means of
sharpmicroelectrodes (�2mmdiameter) and introduce artificial currents to alter the
membrane�s potential (current clamp). Alternatively, themembrane potential can be
held constant at different voltages to record the voltage-sensitive gating properties of
various ionic membrane currents (voltage clamp). These two approaches have been
integral to our understanding of themembrane physiology and to the development of
physiologically realistic computational models of single neurons and synaptic
currents.

Generation of an action potential (see Figure 2.4) involves rapidmovement of ions
across the membrane producing a transient change in the membrane potential
leading to all or none electrical events (also called nerve impulse, electric impulse, or
spike). Following from Section 2.2.1, if we inject a direct current of polarity such that
it would result in de polarization of the resting membrane potential to more positive
values, the depolarization-sensitive Naþ -selective ion channels open; Naþ ions flow
into the cell along their electrochemical gradient in turn making the membrane
potentialmore positive. Increasing themagnitude of current injectionwill eventually

Figure 2.3 Equivalent circuit of the electrical properties of the neuronal membrane.
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allow the membrane potential to cross a certain threshold, resulting in an action
potential (a rapid event typically lasting 1–2ms). During the action potential, the
membrane potential rapidly increases to about 40mV (approximately the reversal
potential for Naþ ions) and Naþ channels become refractory and enter an inactive
state. The positive membrane potential in turn activates a set of voltage-sensitive Kþ

channels called delayed rectifiers that allow Kþ to flow out of the cell along its
concentration gradient. The outflow of Kþ ions often undershoots the membrane
potential below resting level and the membrane potential slowly returns to Vrest

leading to an after-hyperpolarization (AHP) following an AP (see Figure 2.4); the
process underlies closing of the delayed rectifier Kþ channels as Naþ channels are
simultaneously deinactivated and become ready to be activated again. The refrac-
toriness of Naþ channels makes the generation of a second action potential
impossible until the membrane is polarized to negative values close to its resting
potential. Furthermore, the Naþ /Kþ pump enables extrusion of Naþ ions that
entered the cell during the action potential. Thus, the generation of action potential
depends on threshold and is refractory. While the mechanisms of a classical Naþ

impulse can be thus described, action potentials of different neurons have varied
amplitudes, shapes, and durations largely owing to the enormous diversity of the
underlying ionic channels and their mechanisms [24].

The action potential generated at or near the soma is conducted along the axonwith
nearly no depreciation in its amplitude and duration. The axonal membrane
resembles an electrical cable with passive electrotonic properties (known as cable
properties; also see Section 2.3.3) with resistance and capacitance coupled along the

Figure 2.4 Generation of a typical action potential (AP).
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length of the axon. The electrotonic currents at the site of initiation of the action
potential spread along the neighboring membrane sites where, upon reaching
threshold, the action potential is regenerated. The rate of spread of depolarization
largely depends on the size of the axon (larger axons have higher conduction rates)
(also see chapters in Refs [12, 19]).

2.3
General Formalisms in Neuronal Modeling

2.3.1
Conductance-Based Hodgkin–Huxley Model for Action Potential Generation

The seminal works of Alan Hodgkin and Andrew Huxley resulted in the first
physiologically realistic mathematical model for the generation of neuronal spikes.
Their model formulation was based on a series of ion replacement and voltage
clamp experiments where they studied the voltage- and time dependencies of the
ionic conductances underlying the action potential in a giant axon of the squid ([25–
28]). Following the physiological description of action potential generation in
Section 2.2.3, the Hodgkin–Huxley (HH) model consists of conductance-based
formalism for the fast sodium and delayed rectifier potassium currents. In
particular, they introduced fictitious gating variables that described the activation
and inactivation of these currents in a voltage- and time-dependent manner.
Following equation 2.3 in Section 2.2.2, the total membrane current in the HH
model was given by

Cm
dVm

dt
¼ �GKn

4ðVm�EKÞ�GNam
3hðVm�ENaÞ�GmðVm�VrestÞþ IinjðtÞ;

ð2:4Þ

where Iinj(t) is the current injected via an intracellular microelectrode. Although
the existence of ion channels was tentative at that time, the terms n, m, and h
denote the activation or inactivation states of fictitious (channel) gating particles of
the corresponding conductances. These terms were essentially dimensionless
numbers between 0 and 1 and satisfied the linear kinetic equations as follows:

dn
dt

¼ anð1�nÞ�bnn;

dm
dt

¼ amð1�mÞ�bmm;

dh
dt

¼ ahð1�hÞ�bhh;

where ai is the voltage-dependent rate constant (in units of s�1) that specifies the
number of transitions from closed to open states and bi specifies the number of
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transitions from open to closed states of the gating variables. Hodgkin and Huxley
derived empirical fits for the rate constants given by

anðVmÞ ¼ 0:01
10�Vm

ðeð10�VmÞ=10�1Þ ;

bnðVmÞ ¼ 0:125eð�Vm=80Þ;

amðVmÞ ¼ 0:1
25�Vm

ðeð25�VmÞ=10�1Þ ;

bmðVmÞ ¼ 4eð�Vm=18Þ;
ahðVmÞ ¼ 0:07e�Vm=20;

bhðVmÞ ¼ 1
ðeð30�VmÞ=10 þ 1Þ :

The above HH model reproduced experimentally similar action potentials of the
squid giant axon and for the first time provided insight into the ionic mechanisms
underlying all-or-none spike generation. In addition, theHHmodel displayed a spike
threshold and refractory period (see Figure 2.5). These equations have formed the
basis for conductance-based neuronal modeling.

In many instances, reduced forms of the HH model are considered to provide
analytically tractable models to gain better insight into the qualitative dynamics (e.g.,
excitability, threshold behavior, etc.) of single neurons (e.g., see Refs [17, 18, 22, 29],
and Chapter 5 in Ref. [20]). A detailed analytical treatment of reducing the
four-dimensional coupled ordinary differential equations (ODEs) in the HH model
to two dimensions was provided by Rinzel [30] where an earlier reduction by
FitzHugh [31, 32] was also discussed and biophysically interpreted. The following
two main assumptions were made to guide the reduction:

Figure 2.5 Simulations of current clamp
(a) and voltage clamp (b) Hodgkin–Huxley
experiments using an XPPAUT-based HH
model. In (a) membrane voltage (Vm) to three
levels of injected current (Iinj) are shown. Note
all-or-none spike generation at a certain
threshold Iinj and continuous spiking at a higher
(suprathreshold) Iinj value. In (b) voltage clamp

simulation shows (i) the composite inward
(Naþ ) and outward (Kþ ) currents under
control condition, (ii) only inward Naþ current
with Kþ conductance blocked (GK¼ 0), and
(iii) only outward Kþ current with Naþ

conductance blocked (GNa¼ 0). The horizontal
black bar shows the duration of voltage clamp at
Vm¼ 0, from a holding potential of �60mV.
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a) The activation of the Naþ conductance is instantaneous as the observed gating
characteristics of m occur within a fraction of a millisecond; this allows approx-
imation of the temporal dynamics of m to a voltage-dependent steady state and
hence eliminates the dm=dt equation.

b) A further approximation of the inactivation gating variable h for the Naþ

conductance in terms of the activation gating variable n for Kþ conductance
(e.g., see Refs [17, 30] and Chapter 3) yields further reduction of dh=dt and dn=dt
equations into a single ODE in terms of a new variable w that denotes the fraction
of the Kþ channels in the open state.

The reduced two-dimensional ODEs are given by

Cm
dVm

dt
¼ �GKw

4ðVm�EKÞ�GNam¥ðVmÞð1�wÞðVm�ENaÞ

dw
dt

¼ � w�w0ðVmÞ½ �
twðVmÞ ;

where n¼w and h¼ 1�w; tw is the time constant for w. The reduced models have
been invaluable in allowing the use of geometric methods and bifurcation analyses
derived from dynamical systems approaches to understanding neuronal dynamics.

2.3.2
Chemical and Electrical Synaptic Inputs

Conductance-based models of neuronal excitability, based on HH formalism pre-
sented in Section 2.3.1, generally model the influence of a presynaptic neuron on a
postsynaptic neuron by including a term that describes the synaptic current in the
current-balance equation. The general form of the synaptic current due to a chemical
synapse is

IsynðV ; tÞ ¼ GsynðtÞðV�EsynÞ; ð2:5Þ
where V represents the membrane potential in the postsynaptic cell, Esyn is the
reversal potential for the synapse, and Gsyn is a function that describes the shape of
the postsynaptic conductance. Excitatory chemical synapses are modeled using a
reversal potential that is higher than the resting potential of the postsynaptic cell, and
inhibitory synapses rely on a reversal potential that is lower than the resting potential
of the postsynaptic cell. One common choice forGsyn(t) is the waveform for an alpha
synapse with conductance

GsynðtÞ ¼ �gsyn
ðt�tspÞ

t
eð1�ðt�tspÞ=tÞ ð2:6Þ

for t> tsp, where �gsyn is the maximal synaptic conductance, tsp is the time of the
presynaptic spike that elicits the onset of the postsynaptic conductance, and t is the
decay time constant. Another common choice is the double-exponential synaptic
conductance

GsynðtÞ ¼ �gsynAe
�ðt�tspÞ=td�e�ðt�tspÞ=tr ð2:7Þ
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for t> tsp, where �gsyn is the maximal synaptic conductance, tr and td are the time
constant for rise and decay of the postsynaptic conductance respectively, and A is a
normalization factor

A ¼ 1
e�p=td�e�p=tr

;

where p is the time to peak. When the presynaptic cell also is explicitly modeled by a
system of differential equations, Gsyn(t) can be modeled as

GsynðtÞ ¼ �gsynsðVpost�EsynÞ; ð2:8Þ

where Vpost is now the membrane potential of the postsynaptic cell, and the term
s describes how the waveform of the postsynaptic conductance depends on the
presynaptic membrane potential Vpre.

Since electrical synapses (gap junctions) rely on channels that directly connect the
presynaptic and postsynaptic neurons, a voltage change in either cell will generally
cause a corresponding voltage change in the other cell. In this case, the postsynaptic
current can be modeled with the term

Isyn ¼ �gsynðVpre�VpostÞ: ð2:9Þ

2.3.3
Cable Theory of Neuronal Conduction and Compartmental Modeling

Many neurons have extensive dendritic processes with complex geometry, which
allows a cell to receive thousands of synaptic inputs that can interact in a highly
nonlinear fashion, leading to a complex dendritic computation [33, 34]. The main
purpose of the use of cable theory in computational neuroscience is to understand
how these synaptic inputs interact and are integrated in the system of branching
dendrites of different diameters with differing membrane properties.

When considering a long, thin neural process, which is part of a dendrite or an
axon, the membrane potential varies more along the neural process than in the
perpendicular dimension. By neglecting the perpendicular variation, we are able to
model the variation along the long axis of a uniform dendrite with only one spatial
dimension, denoted by x.With this assumption, the cable equation can be expressed
as the second-order partial differential equation

t
dVm

dt
�l2

q2VmðxÞ
qx2

¼ �ðVm�VrestÞ; ð2:10Þ

where the membrane potential Vm now depends on both space x and time t. The
membrane time constant t ¼ RmCm, where Rm is the membrane resistance per
unit area and Cm is the membrane capacitance per unit area as defined above. The
space constant l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdRmÞ=ð4RiÞ

p
, where Ri represents the resistivity per unit

volume of the intracellular medium, and d is the diameter of the uniform neural
process. Formore details, a complete derivation of the cable equation is provided in
Ref. [21].
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We can approximate this continuous model using adjacent, connected regions of
lumped, isopotential membrane by discretizing in space, which provides several
computational advantages. In particular, this approximation does not require that the
neural process be uniform; instead, this computational approach can be applied to
dendrites of varying diameterwith branching structures andnonuniformmembrane
properties. This is the basis for many simulation platforms developed for neuro-
science, including NEURON and GENESIS (see Section 2.6).

2.3.4
Calcium and Calcium-Dependent Potassium Currents

Ionized calcium (Ca2þ ) is a critical ionic species formembrane potential dynamics
that serves as a key determinant ofmany different cellular/neuronal processes such
as triggering neurotransmitter release during a presynaptic action potential, axonal
growth, muscle contraction, and synaptic plasticity (see Section 2.4.1) to name a
few. Primarymechanisms regulating the influx of Ca2þ into the cytoplasm include
voltage-sensitive calcium channels and NMDA (N-methyl-D-aspartate)-sensitive
channels (receptors for the endogenous neurotransmitter glutamate). Although
a variety of calcium conductances exist, the resulting calcium current is depolar-
ization sensitive and always inward owing to the vast difference between the
intracellular (m moles) and extracellular (m moles) calcium concentrations that
barely generate any outward current beyond the reversal potential; if inactivation
exists, it is much slower than that for sodium currents. Three prominent types
of calcium currents, namely, high threshold Ca2þ current (ICaL), low-threshold
Ca2þ current (ICaT), and intermediate threshold Ca2þ current (ICaN) have been
modeled as

ICaL ¼mðVmÞkh Ca2þ
� �

i

� �
ICa;

ICaT ¼mðVmÞ2hðVmÞICa;
ICaN ¼mðVmÞ3hðVmÞICa;

ð2:11Þ

where k is an integer � 2, and m and h are activation and inactivation functions of
the calcium currents, respectively. Note thatm is voltage dependent, while h can be
calcium (for ICaL) or voltage dependent (for ICaTand ICaN). The term ICa can be given
by the Goldman–Hodgkin–Katz current equation or its variants, or by Ohm�s law
(see Ref. [19], Chapter 9).

Several types of potassium currents that depend on the intracellular calcium
concentration exist and are known as calcium-dependent potassium (IKCa) currents.
These currents primarily serve to limit firing frequencies and/or cause firing
frequency adaptation. Two main IKCa currents include the voltage and calcium-
dependent big conductance potassium currents (IBK) and calcium-dependent small
conductance potassium currents (ISK). These currents can be modeled as

IBK ¼ gBKm Vm; Ca2þ
� �

i

� �
Vm�EKð Þ;

ISK ¼ gSKm Ca2þ
� �

i

� �
Vm�EKð Þ: ð2:12Þ
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The ISK current is typically referred to as IAHP and is responsible for a second
component of the after-hyperpolarization following a spike.

2.3.5
Simplified Neuronal Models

Large-scale network models based on detailed structural and physiological compo-
nents such as outlined in the previous sections result in increased computational
burden.Hence, in order to ask functional questions on the role of individual neurons
in encoding information, simplified models of neurons have often been used.
Moreover, simplified models can guide the design and development of biologically
based neural networks. These models are based on the premise that all information
in the nervous system is essentially encoded by the firing rates (rate code) of cells or by
temporal patterns (temporal code) of spikes (also see Ref. [19], Chapters 14 and 15).
The twomost common types of models are spike/pulsemodels and firing ratemodels.

Awell-known example for spike models is the integrate-and-fire (IF) model that is
essentially a voltage integrator and generates impulses/spikes when a certain
voltage threshold (Vth) is reached. IF models existed long before the physiological
description of mechanisms of action potential and the HH model. The original
investigation of a basic form of IFmodel was performed by Lapique [35, 36]; other
examples include [37, 38]. The general description of the membrane current
balance equation for the IF model is given by

C
dVðtÞ
dt

¼ �VðtÞ
R

þ IðtÞ: ð2:13Þ

Upon crossing the threshold Vth, discrete, all-or-none output impulses are
generated that can be represented by a series of delta functions

P
i dðt�tiÞ; ti is the

time at which an ith spike occurs, where i ¼ 1; 2 � � � n. The continuous firing rate as a
function of input current I for the above case is given by F ¼ 1=Tth, where Tth is the
time to spike for a current I > Ith, given by Tth ¼ �t lnð1�ðVth=IRÞÞ; the time
constant t ¼ RC. Here Ith is the threshold current required for spike generation.

Several variants of the IF model exist. For example, the one described above is a
leaky IF model due to the existence of the resistive component of the current.
Alternatively, nonleaky IF models lack the resistance R and hence include only the
capacitive current.

There are also certain forms of reduced models that can generate spikes in a
threshold-dependent manner similar to IF models while retaining some of the
physiological characteristics of the HH type models in reduced form, providing an
approach to improve efficacy of large-scale computations (e.g., [39]). Moreover, such
models are mathematically more tractable compared to their empirically realistic
counterparts [40]. On the other hand, IF models are good candidates for electronic
circuit implementation of neuromorphic designs using circuit elements such as
capacitors, resistors, current/voltage sources, and switching components (see
Chapters 4 and 6).
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Firing rate models define firing frequency as a continuous function. Experimen-
tally, the firing rates are obtained using three different procedures including
averaging over time, averaging over several runs, or averaging across a population.
When modeling a firing rate neuron, the rate is typically modeled as a continuous
function of membrane voltage (e.g., F ¼ gðVÞ, where gðVÞ is often a sigmoidal
function [19]). Alternatively, considering averaging over time, the averagefiring rateF
can be expressed as a function of the input (intracellular current) I, which remains
constant over a period T (F ¼ gðIÞ). Extending this to a network of neurons, the input
Ii to a postsynaptic neuron i is generated by the ratesFj of other (presynaptic) neurons j
given by

Fi ¼ g
X
j

wijFj

 !
; ð2:14Þ

where wij is a weighting factor representing synaptic efficacy.
Choices for the gain function gð � Þ include logistic function [22] or hyperbolic

tangent [17]. We further refer interested readers to the highly influential Wilson–
Cowan equations [41] in the neural network community, describing the dynamics
of interaction between simple excitatory and inhibitory populations of neurons and
also to the derivations of biophysically motivated heuristic and conductance-based
networks considered by Ermentrout and Terman [22]. In summary, firing rate
models have greatly influenced artificial neural networks such as multilayer
perceptrons and massively recurrent attractor networks as well as models of
biological phenomena.

2.4
Synaptic Coupling and Plasticity

The well-known pioneer of neuroscience, Santiago Ram�on Y Cajal, first proposed
that memories might be formed by strengthening the connections between
existing neurons [42]. Synaptic plasticity was more formally proposed as an
underlying mechanism for learning and memory in the theoretical work of Hebb,
who postulated that a connection between two neurons is potentiated when the
spiking activity of one neuron drives the spiking activity of the other [9]. Later
theoretical work suggested that decreases in synaptic strength are also necessary
for learning in order to prevent the saturation of synaptic strengths and retain
selectivity [43].

Many neural correlates exist for these theoretical ideas. Paired pulse facilitation
and depression are well known forms of short-term synaptic plasticity, where a
change in the amplitude of an excitatory postsynaptic conductance (EPSC) is
observed when the eliciting presynaptic spike follows an earlier conditioning
spike. These and similar forms of short-term changes to chemical synapses, which
last for at most a few minutes, are often attributed to the effects of a residual
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elevation in presynaptic Ca2þ [44]. In contrast, long-term potentiation (LTP) and
long-term depression (LTD) are persistent, lasting from severalminutes to hours or
longer. LTP refers to a long-lasting, activity-dependent enhancement in synaptic
efficacy, whereas LTD is a persistent, activity-dependent reduction in the efficacy of
chemical synapses. Both LTP and LTD occur due to multiple biophysical mechan-
isms, which vary across brain regions, species, and development stages [45, 46].
Spike timing dependent plasticity (STDP) is a form of Hebbian learning that relies
on tight temporal correlations between the spikes of presynaptic and the spikes of
postsynaptic neurons. With STDP, when presynaptic action potentials repeatedly
arrive a few milliseconds before the generation of postsynaptic action potentials,
long-term potentiation of the synapse occurs. However, the repeated occurrence of
postsynaptic action potentials just prior to the arrival of presynaptic action poten-
tials leads to long-term depression. It is widely believed that STDP is critically
important both for learning and memory and for the development of the nervous
system [47, 48].

2.4.1
Modeling Synaptic Plasticity

A popular phenomenological model for short-term plasticity comes from Tsodyks
andMarkram [49, 50], where model synapses can be depressing, facilitating, or have
both depressing and facilitating components. This model assumes that a synapse is
characterized by the residual synaptic resources following a number of synaptic
events. Each presynaptic spike arriving at time tsp activates a fraction of resources
denoted by U. The corresponding kinetics can be written as

dx
dt

¼ z
tR

�Uxdðt�tspÞ;

dy
dt

¼� y
ti

þUxdðt�tspÞ;

dz
dt

¼ y
ti
� z
tR

;

ð2:15Þ

where x, y, and z are the fractions of the resources in the recovered, active, and
inactive states, respectively. The postsynaptic current is taken to be proportional to the
fraction of resources in the active state so that IsynðtÞ ¼ AyðtÞ, where the parameterA
is the absolute synaptic strength seen when all resources are activated. Between
synaptic events, replenishment of synaptic resources occurs based on linear dynam-
ics with recovery time constant tR.

To include facilitation, we assume thatU is not fixed but instead is increased with
each presynaptic event. In this case, the additional equation for U is

dU
dt

¼ �U
tF

þUSEð1�UÞdðt�tspÞ; ð2:16Þ
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whereUSE determines the increase in the value ofU with each spike. This equation
can be represented by a recursive expression for the value of U upon the arrival of
n þ 1 action potentials,

Uðnþ 1Þ ¼ Unexp �Dt
tF

� �
þU1 1�Unexp �Dt

tF

� �� �
; ð2:17Þ

where Dt is the duration of the period between spike number n and spike number
n þ 1, and tF is the facilitation time constant. Note that between synaptic events,
there is a linear decay of this accumulated fraction of resources that will be
employed by the next spike with a single time constant tF. In the limit as
tF ! 0, the synapse is depressing only since no facilitation can accumulate. In
the limit as tR ! 0, the synapse is facilitating only since all resources are instantly
replenished.

The discovery of spike timing dependent plasticity has led to the development of
many models where synapses are potentiated or depressed based on the relative
timing between each pair of presynaptic and postsynaptic action potentials. In the
widely used STDP model of Song et al. [51], synaptic modification is defined by the
learning rule,

FðDtÞ ¼ Aþ exp
Dt
tþ

� �
ð2:18Þ

for spike pairs with negative timing differenceDt¼ tpre� tpost, where the presynaptic
spike occurs before the postsynaptic spike. In contrast,

FðDtÞ ¼ �A� exp �Dt
t�

� �
ð2:19Þ

for spike pairs with positive timing difference, where the postsynaptic spike
occurs before the presynaptic spike. According to this learning rule, �gsyn is
replaced by �gsyn þFðDtÞ�gmax. That is, the parameters Aþ and A� control the
maximum size of the update to the peak synaptic conductance as a fraction of the
maximum possible synaptic conductance �gmax for potentiation and depression,
respectively. The time constants tþ and t� determine the time differences for
which positive and negative timing differences lead to modification of the synaptic
strength, respectively. Generally, this STDP model truncates changes to the
synaptic strength that would lead to weights outside of a range between zero
and the upper bound �gmax.

In contrast to these phenomenologicalmodels, there aremany biophysically based
models of LTD, LTP, and STDP that concentrate on modeling the biochemical and
physiological processes that lead to synaptic changes. Most of these models focus on
how synaptic plasticity depends on the dynamics of calcium. In particular, many
models rely on the calcium control hypothesis that postulates that a large calcium
transient results in LTP, while a moderate increase results in LTD [52–54]. Other
more detailed biophysically based models explicitly model the signal transduction
pathways associated with synaptic plasticity [53, 55, 56].
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2.5
Computational Models of Neuronal Systems for Biohybrid Applications

Design of biohybrid systems requires suitable interfaces that enable robust
communication between the biological and the nonbiological systems. The
interface design often refers to the electrodes and tissue–hardware interactions.
As discussed in Chapter 1, the whole system, however, requires the ability to
decode and process the information from the living system or influence that
activity of the living system. Computational models of neurons and neuronal
networks can support the design of the biohybrid systems in several ways.
Software implementations of computational models can be integrated as part of
the living neuronal network in real time. Chapters 5 and 7 describe the dynamic
clamp approach, a hybrid interfacing technique that allows direct interaction of
physiologically realistic models with biological neuronal networks in vitro.
Computational neural models or finite element modeling of the neural struc-
tures themselves can also be used in the design of neurotechnology to stimulate
the nervous system [57–62]. Chapter 8 describes the use of biologically inspired
neural models in the design of systems to control non-neuronal components that
interact with humans for rehabilitation therapy and other activities. They can
also be used in the design of closed loop biohybrid systems for control of
physiological function with wide ranging applications such as neurocardiology
(Chapter 10). Simple conductance-based and cable theory-based neuronal models
provide the theoretical basis for designing electronic neuromorphic circuit
design [63–65] that can be directly interfaced with the nervous system [66].
Chapter 3 presents basic principles for design of neuromorphic hardware, while
Chapters 9 and 11 illustrate the use of neuromorphic hardware for various
applications.

2.6
Resources

1) NEURON: Simulation tool for empirically based models of neurons and net-
works. Web site: http://www.neuron.yale.edu/neuron/; book: [67].

2) GENESIS: The General Neural Simulation Software, a simulation tool for
realistic modeling of subcellular components and biochemical reactions to
single neurons, networks, and system-level models. Web site: http://genesis-
sim.org/; book: [6].

3) XPPAUT: A general numerical simulation tool for simulating, animating,
and analyzing dynamical systems. It is widely used by computational
and theoretical neuroscientists as it provides the ability to perform a
complete numerical analysis of the dependence of solutions on parameters
(bifurcation analyses). Web site: http://www.math.pitt.edu/�bard/xpp/xpp.
html; book: [16].

4) Some of the other available tools are reviewed in Ref. [68].
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3
Neuromorphic Electronic Design
Francesco Tenore and Ralph Etienne-Cummings

At the foundation of complex neuromorphic systems are simple, fundamental
circuits that allow engineers to emulate the sophisticated behaviors of biological
processing systems. To identify these circuits, it is first necessary to properly
understand the properties of the underlying biological systems that they morph.
The task then becomes to identify device properties or circuit characteristics that
behave similarly in response to similar inputs. This chapter provides an overview of
the fundamental devices and circuits that allow emulation of neuronal behavior as
well as more complex sensory system processing circuits, to emulate the visual and
auditory systems. For each processing element, applications of the circuits are
shown. Finally, it provides models of circuits that can act on the environment, such
as repetitive neural control patterns and muscle actuation.

3.1
Choices for Neuromorphic Circuits: Digital versus Analog

Think of an animal. Better yet, think of an insect. Every task that your insect
specializes in doing is done better and many times more efficiently than any
man-made machine attempting to perform similar tasks. For example, the most
sophisticated aerial vehicle is no match for a bee�s flight motor skills, even when a
man is remote controlling it! The bee�s rudimentary sensors allow it to scan large
areas to find suitable locations for beehives and flowers for pollination. Comparing
this �primitive� life form to state-of-the-art autonomous navigational robotic vehicles
such as those participating in the Defense Advanced Research Projects Agency�s
Grand Challenge, which relied heavily on precise Global Positioning System sensor
data using approximately 1 kW of computing power [1], or to the Air Force�s
Unmanned Aerial Vehicles that require remote guidance for navigation shows how
distant our technology is to emulating even the most rudimentary life forms.

It is, in turn, possible to harness the power of neuronal computations using super-
computers, which rely on fast, clocked, two-dimensionalmultiprocessor digital systems
characterized by high-power dissipation and large scales (when compared to �1 cm3

Biohybrid Systems: Nerves, Interfaces, and Machines, First Edition. Edited by Ranu Jung.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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total volume occupied by an average bee). In contrast, however, neuronal activity is a
slow, three-dimensional asynchronous process, requiring comparatively little energy.
This discrepancy implies that although it may be possible to mimic neural behavior
using these digital machines, they are not direct translations of neuronal circuits.

The analog nature of neuronal computations, as shown in the next sections, is such
that the proper emulation of neuronal behavior requires devices and/or circuits that
under appropriate conditions behave as neurons. The field of neuromorphic engi-
neering stems from this premise.

Nonetheless,modern forms of neuromorphic engineering take advantage ofmany
of the benefits of digital circuits. For example, the communications between analog
or digital neurons use a protocol called Address Event Representation (AER), in
which asynchronous digital circuits are used to multiplex multiple neuronal spikes
onto a common data bus [2]. Furthermore, there is a movement toward using Field
Programmable Gate Arrays (FPGA) to model large networks of neurons with digital
hardware because of the reprogrammability and �instant� prototyping capabilities [3].
Hence, the debate between the purists – who hold to the original �Mead�-ian
proposition of morphing nervous system using subthreshold analog integrated
circuits – and the modern perspective – which uses any tool that allows the closest
mimicry of biological performance – rages on. In this chapter, we will present
examples from both camps.

Fundamentally, the circuits that are used in neuromorphic engineering are no
different from what is used in standard analog and digital integrated circuit design.
Hence, the basic building blocks, which can be found in a number of dedicated texts,
will not be reviewed here. See references [4–6] for details on basic circuit design. On
the other hand, we present the circuits as a neuromorphic engineer would design
them. That is, we identify the biological system being implemented and then identify
the circuits that can be used to realize the desired functionality. In this way, we restate
some basic principles found in other chapters dedicated to the biology, but then
translate the biophysical models into their circuit counterparts. One additional word
of caution should be given here: this transformation is not unique. Hence, the
examples provided are either the seminal contributions to the field or particular
versions favored by the authors.

3.2
The Breadth of Neuromorphic Systems

The term �neuromorphic� was coined by Carver Mead in the late 1980s to describe
the design of artificial systems that emulate the physical properties or information
representations found in biological nervous systems [4].

The neuromorphic engineering approach to solve real-world problems typically
stems from three important considerations:

. a biological entity (such as a cell, an organ, or an organ system) exists that solves a
problem efficiently and elegantly;
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. the biological entity is the fruit of billions of years of evolution, resulting in its
present form;

. understanding how the problem is solved and why it is solved in that particular
way allows the possibility of speeding up the evolutionary process for �artificial�
mimics of the biological system, thereby providing alternative means to solve
engineering problems.

In addition, it is also believed that the process of analyzing, building, and testing
the neuromorphic systems can provide some insight into the construction and
function of their biological counterparts. This perspective is fortified by the
realization that the artificial version can be configured in modes that may be
impossible for the biological version. To date this belief has not been fully verified,
primarily because the all details of the biological systems are not fully understood,
which makes their mimicry impossible. Nonetheless, the three motivations above,
coupledwith thefinal hope, have taken thefield of neuromorphic engineering from
single labs in the United States [4] and Switzerland [7] to tens of labs around the
world.

As pointed out by one of the pioneers of the field,MishaMahowald, perhaps one of
themore fundamental differences between the biological systems and the silicon that
seeks to emulate them is that the silicon systems are typically designed to perform a
particular function, and its circuits are defined by their functional significance, rather
than an arbitrary morphological demarcation [8]. Yet, neuromorphic engineers
continue to morph silicon into models of biology with the hope of unlocking the
computationalmagic of the latter. In the following sections, we showhow this is done
and some of the successes that have been achieved.

3.3
The Fundamental Processing Unit: The Neuron

To gain insight into the way the nervous system computes, we start with its
fundamental unit of computational activity: the neuron. The previous chapter
presented an overview of the physiology of neurons and general formalisms in
neuronal modeling. Here we focus on understanding how these neural models
can be implemented in basic electronic circuits.

Chapter 2 detailed themany different charge carriers (Na, K, Ca) involved in neural
processes. These characteristics of the action potential can be reproduced (to some
extent) using a single charge carrier (the electron) exploiting the physical laws
responsible for the exponential relationship between current and voltage of an MOS
transistor operating in the subthreshold orweak inversion region. A transistor is said to
be operating in this region if its gate-to-source voltage is below the transistor�s
specified threshold voltage. In this case, the transistor�s drain current, ID, is
calculated as

ID ¼ I0e
kVgsð1�e�VdsÞ; ð3:1Þ
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where k is a function of the geometry of the device and is inversely proportional to the
thermal voltage, Ut¼ kT/q.

Similarly, the behavior of the cell membrane can be emulated by a fixed capacitor,
and the voltage-dependent conductances of biological membranes in steady state can
be emulated by the current–voltage relationship generated by CMOS transistors
arranged to form a differential pair, as shown in Figure 3.1a [4]. In this circuit,Vbias is
a subthreshold voltage (Vbias<Vth) and in normal operation its drain voltage, V, is
saturated,making the e�Vds term in Equation 3.1 negligible. The contributions to Ibias
due toM1 andM2 are therefore a function of the difference betweenV1 andV2. Using
Equation 3.1,

Ibias ¼ I1 þ I2 ¼ I0e
ðV1�VÞ þ I0e

ðV2�VÞ ¼ I0e
V ðeV1 þ eV2Þ ð3:2Þ

or

I1 ¼ Ibias
eV1

eV1 þ eV2
;

I2 ¼ Ibias
eV2

eV1 þ eV2
:

ð3:3Þ

Mirroring I1 onto I2 allows computation of the difference between the two currents,
as shown in Figure 3.1b. This circuit is an operational transconductance amplifier
(OTA) and is characterized by the fact that its output current, Iout, is equal to
the difference between I1 and I2 and is therefore a function of the difference between
V1 and V2:

DI ¼ Iout ¼ I1 ¼ I2 ¼ Ibtanh
kðV1�V2Þ

2

� �
ð3:4Þ

and if V1�V2, then tanh(DV)�DV,

Gm ¼ qIout
qVin

� kIb
2

: ð3:5Þ

M1 M2

Mbias

I1 I2

Ibias

V

Vbias

Vdd

M3 M4

Iout

M1 M2

Mbias

I1 I2

Ibias

V

Vbias

(a) (b)

V1 V2
V1 V2

Figure 3.1 (a) Schematic of the differential pair. The bias voltage Vbias is set to ensure operation in
the subthreshold region. (b) Schematic of an operational transconductance amplifier. The current
Iout is proportional to the difference between V1 and V2.
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Recall fromEquation 3.1, that as k is inversely proportional to the thermal voltageUT,
the kIb term in Equation 3.5 is, in fact, a conductance. Also note that the maximum
current for each conductance is directly controlled by its Vbias.

The activation and inactivation of membrane conductances can then be emulated
by the voltage-dependent output currents from differential pairs. The ability to
control this conductance allows the implementation of I(V)¼ g(E�V), as discussed
in Equation 2.1.

Starting from this foundation, we proceed to examine in more detail how silicon
neurons can be designed, in relation to the type of functionality that they seek to
emulate. At the two ends of the �neuron emulation� spectrum, we find neurons that
seek to faithfully capture the dynamics of neural signals, thereby implementing
circuits that qualitatively follow Hodgkin–Huxley or Morris–Lecar models [9], and at
the other end are circuits that seek to capture the neurons� basic functionality
focusing instead on the massive interconnectivity that broadly characterizes neural
systems. This is typically achieved by using simplermodels such as integrate-and-fire
models, described in Section 3.3.2.2 [4]. The implicit trade-off involved in the two
different approaches is between the fidelity of the dynamics of the circuits that are
emulated and the area required for the circuits (or complexity of computation). Also
see Refs [10, 11] for an in-depth review of silicon neurons.

3.3.1
Conductance-Based Modeling

The first examples of analog integrated circuits with dynamics similar to those of real
neurons, as dictated by the Hodgkin–Huxley model, were engineered in the late
1980s byMahowald and Douglas [12]. The circuits emulated ion currents in neurons
in the neocortex, in which the activation and inactivation of the membrane con-
ductances controlling the flow of sodium-like and potassium-like ions depended on
both time and voltage.

Figure 3.2 helps illustrate how these types of circuits can be constructed. Start by
assuming a time-varying, nonzero voltage Vmem. In this case,ONa andOK, which are
OTAs, are configured as buffers and low-passfilters for the input voltage. The sodium
and potassium conductance dynamics can then be tuned throughV tNa andVtK. The
conductance-tuning voltages VNa_Off, VNa_On, and VK produce inactivation and
activation sodium currents and potassium currents, respectively, which contribute
to the charging and discharging of the membrane potential. Finally, the threshold
voltage is a global parameter that is also responsible formodulating the charging and
discharging currents.

Additional elements that can be added to this basic structure with similarmodules
are a leakage current, a persistent (bias) sodium current, a calcium-dependent potassium
current (to add adaptation), and so on.

Similarly, Patel andDeWeerth [13] andSimoni et al. [14] implemented aMorris–Lecar
model of a neuron in their silicon implementation. These models are characterized by
the presence of a slow time constant in conjunctionwith the action potential-generating
fast time constant, typically found in high-fidelity neuron modeling.
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It should be noted that regardless of the type of neuron modeled, or the way a
neuron is modeled, no two neurons are ever exactly identical in their characteristics.
This is another feature that silicon neurons share with their biological counterparts.
These differences are – in both cases, albeit differently – caused by �manufacturing,�
that is, nature or the integrated circuit processing.

3.3.2
Compartmental Modeling

With reference to Figure 2.1, neural signals can also be reproduced by individually
emulating the functionality of the three compartments that give neural signals their
characteristics: the somatic compartment, the metabolic center of the neuron,
responsible for producing the action potentials; the dendritic compartment, which
allows the cell body to connect to neighboring nerve cells and which �contains� the
synapses that provide inputs to a neuron; and the axonal compartment, which sends a
neuron�s signal to adjacent neurons� synaptic inputs. The remainder of this section
illustrates the inner workings of neuromorphic circuits that emulate each
compartment.
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Figure 3.2 Schematic of conductance-based model for reproducing the dynamics of sodium
(excitatory) and potassium (inhibitory) currents.
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3.3.2.1 The Dendritic Compartment: Home to the Synapses
As seen in the previous chapter, when an action potential traveling along a neuron�s
axon reaches a synaptic terminal, it provokes the release of neurotransmitting
molecules from the terminal into a synaptic cleft. This is where the neurotransmitters
bind themselves to receptor molecules on an adjacent (postsynaptic) neuron�s
dendrites, as captured in Figure 2.1 (box), causing ion channels to open, thus
altering the membrane potential.

This alteration is at the root of one of the most important processes in neural
systems: synaptic weighing or modulation, which gives rise to these systems� ability
to �learn.� Here, �learning� is viewed as the ability to use past experiences to
appropriately modify the system in response to new stimuli.

In vertebrates, synapses are responsible formodulating these electricalmembrane
properties, and more in general the activity, of neurons. Each neuron, in fact, has
thousands of synapses to receive information from and broadcast the integrated
information to adjacent neurons.

In silicon, the synaptic modulation can be achieved mainly in two ways, again
depending on specific implementation functions of the synapses. Specifically,
simple synaptic models modulate incoming signals through externally program-
mable weighting schemes, thus making the learning circuitry external to the
neuron. These synaptic voltages can be modulated using either externally pro-
grammable digital-to-analog voltages or externally controllable voltages for an
operational transconductance amplifier. These circuits are typically configured
off-chip and appropriate when fixed neural spiking rhythms are used, such as to
emulate a central pattern generator (see Chapter 9 for details on these
implementations).

The types of synapses described lack synaptic mechanisms of shunting inhibition,
where the synaptic conductance short-circuits currents that are generated at adjacent
excitatory synapses. This feature is typically used to reduce the effect of excitatory
signals impinging on a neuron after the same neuron has fired an action potential.
This inhibition of the excitatory postsynaptic potentials, or EPSPs, are at the
foundation of the unsupervised learning mechanisms (short-term plasticity) of the
brain, such as spike timing-dependent plasticity (STDP) introduced in Chapter 2.
STDP depends on the causal relationship between the pre- and postsynaptic spikes to
strengthen the synapse between two neurons (the anticausal relationship leads to
synaptic depression) [15]. Shunting inhibition can be implemented compactly using
a synaptic cleft-type circuit, capable of extending the duration of an action potential,
and a low-pass filter [16, 17].

Silicon implementations of synapses that exhibit short-term plasticity are suitable
for evaluating the computational roles of synaptic adaptation in large networks of
spiking neurons using complex stimuli and in real time [18]. On the other hand,
realization of long-term plasticity circuits, using transistors from the flash-memory
technology [19], allows us to implement learning algorithms and set synaptic weights
of synapses automatically, without requiring dedicated pins or wires for individual
synapses.

3.3 The Fundamental Processing Unit: The Neuron j37



3.3.2.2 The Somatic Compartment: Spike-Based Processing and the Integrate-and-Fire
Model
English neurophysiologist and Nobel laureate Charles Sherrington considered the
integrative action of the nervous system –producing its decision-making results – the
most fundamental operation performed by the brain [20].

Integrate-and-fire neuron models, introduced in Chapter 2, are typically divided
into the nonleaky, or idealmodel, and leaky. At their core, thesemodels aremade up of
a capacitor, acting as the integrator, a comparator, with the threshold voltage as
trigger, and a discharging circuit.

Figure 3.3a shows a basic nonleaky integrate-and-fire model, and Figure 3.3b–h
present some variations in the basic theme: in which the threshold voltage can be
tuned (b); in which the leakage element can be added (c, modeled as a resistor that
discharges the charge on the capacitor); where a tunable refractory period can be
added (d); inwhich the output pulsewidth can be tuned, for example, through the use
of current tuning bias voltage (e,Vbpw) or a hysteretic comparator (f, whereVp sets the
difference between the comparator�s high and low thresholds); where the resting
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Figure 3.3 Basic integrate-and-fire (I-F) models.
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potential can be tuned (g); and in which adaptation of the output spike frequency can
be added to gradually remove charge from the capacitor,more spikes are generated by
the neuron (also described as synaptic fatigue, h).

To illustrate the behavior of this model, we examine the circuit in Figure 3.3c and
show how the results extend to other implementations.

Assuming an ideal comparator, the synaptic input current, Isyn, partly charges the
membrane capacitor, Cm, and is partly dissipated on the resistance Rleak:

Isyn ¼ CmVm þ Vm

Rleak
; ð3:6Þ

where Vm is the voltage across the membrane. Therefore, if a constant current
Isyn<Vthresh/Rleak, then Vm will relax exponentially to the steady-state
voltage (IsynRleak) but never reach the threshold voltage. In this situation, Vout is
always low.

The current required to charge themembrane capacitor to the threshold voltage,
such that Vm¼Vthresh, is called the rheobase. If the input synaptic current is greater
than the rheobase, then Vm reaches Vthresh and the comparator switches state. This
causes the NMOS resetting transistor to turn on, thus removing all charge from
Cm. The assumption made here is that the resetting is instantenous. In the model
shown in Figure 3.3e, f and g, the pulse width is nonnegligible, and in (g) the
capacitor discharges at most to Vrest. This causes the comparator to go low, and the
cycle starts anew. The firing frequency is proportional to Isyn and significantly also
depends on whether the model implements a nonzero pulse width (e,f), a
refractory period (d), a leak (c,d), or spike frequency adaptation (SFA, h).

Typically, combinations of the many features that can be added to the simplest
model are used. For example, Carver Mead�s self-resetting neuron [4] is a combi-
nation of the nonleaky implicit comparator (Figure 3.3a) with tunable pulse width
(Figure 3.3e). Indiveri et al. [21, 22] also use source followers to increase their linear
integration range.

More recently, Folowosele et al. [23] reported on a different kind of integrate-and-
fire neuron based on the Mihalas-Niebur model [24] and implemented using an
adaptive threshold and a switched capacitor-based architecture to implement the
model�s parameters. Using the switched capacitor methodology instead of depend-
ing on the subthreshold transistor characteristics (as is typically the case in the
neuromorphic engineering community) allows for better controllability, matching,
and reproducibility of the neuron�s behavior. These properties may not be important
when there is redundancy through millions to billions of individual units (as in
biology); however, it is important when there are limited neurons in the network and
each neuron has to be as accurate as possible in representing the input signal,
internal state, or in making decisions.

3.3.2.3 The Axonal Compartment: Address-Event Representation
Communication between neurons occurs mainly through the largest dendritic
process, the axon. Experiments on a variety of sensory systems, such as locust
olfaction, cat vision, and monkey vision and audition, suggest that spike timing
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across neurons and neuron ensembles is crucial to understanding neuronal behavior
in response to stimuli. Therefore, if we place our focusmore on temporal coding, that
is, the timing of the event, then it becomes clear that whatwe should seek is to acquire
all spike occurrences. Address-Event Representation (AER) is used by the neuro-
morphic community to multiplex spikes from a population of neurons onto a
common bus. This multiplexing takes advantage of the six orders of magnitude
difference between the spike frequency of silicon neurons (when operating at
physiological rates) and the inherent speed of silicon. Hence, each bus can carry
the information from up to 1 million neurons. Because the spikes now share the
common communication channel, it is important to know where they originated.
Hence, the address of the source is attached to each spike or event, leading to the term
Address-Events. If the bus request conflicts can be resolved quickly (i.e., in nano-
seconds), then the timing of the spikes is preserved. This approach to spike
communications is well described in Refs [2, 25]. This technique, of which a
schematic representation is shown in Figure 3.4, allows neuromorphic systems to
exploit the strengths of digital communication circuits, with their constantly increas-
ing transmission speeds, to help createmappings between large numbers of neurons
in two-dimensional space, thereby helping to offset the inherent three-dimensional
advantage in biological neural systems. This allows complex neuronal architectures
to be developed in silicon, as shown in the integrate-and-fire array transceivers
developed by Goldberg et al. and Vogelstein et al. [26, 27], as well as in modeling of
various areas of the brain, such as the visual cortex [28] and the hippocampus [17] and
neuromorphically inspired image sensors [29].

3.4
Sensing the Environment

At a fundamental level, neural systems evolved to process sensory information
required to survive in predatory environments. At the periphery of the nervous
systems are complex structures that are capable of transducing environmental data in
neural signals. In this section, we focus on the emulation of the transduction of light
into neural signals, to emulate the visual system, and of sound waves into neural
signals, thereby emulating the auditory system.

Figure 3.4 Address event representation (reproduced from Ref. [26]).
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3.4.1
Vision

The human visual system is responsible for providing the brain with optical
information, from which it can extract information relevant for its interaction with
the environment. Given the difficulty of this task, the vision system is a complex,
diverse structure that starts from the eyes� �mechanical� components, that is, the
lens, iris, cornea, and pupil, and proceeds toward the neural transduction and
preprocessing of the light information [30] to relay information to the brain�s
primary visual cortex (V1) and other areas of the brain. Among themost fascinating
aspects of this structure is the transduction itself, which is accomplished by
photosensitive neural tissue at the back of the eye, known as the retina, and its
ability to quickly adapt to environmental changes in background illuminance, and
to compressively code the information from 100 million photodetectors and
communicate the information using only 1 million optic nerve fibers. Silicon
implementation of such a complex system typically focuses on the neural front and
back ends of the visual system. That is, the retina [29, 31–33] and the visual
cortex [25–28] were implemented. This section will, therefore, examine the
neuromorphic circuit emulation of these systems.

Neuromorphic vision starts with emulating one of the farthest outposts of the
central nervous system: the retina. The retina is a thin sheet of neural, light-sensitive
tissue that lines the inner surface of the eye. It is responsible for collecting all the
visual information in the receptive field of view and provide initial processing for
the brain to interpret. With reference to Figure 3.5, the retina�s first layer is made
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Figure 3.5 (a)Human eye; (b) cross section of
primate retina, showing subset of all signal
pathways. The photoreceptors transduce the
light into neural signals, which are relayed in the
outer plexiform layer. The intermediate bipolar
and amacrine cells then relay the visual

information to the ganglion cells, the axons of
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up of two types of photoreceptors, which amplify photon events. These photorecep-
tors are the rods and cones. Rods are active mainly under dim light conditions
and provide black and white vision; cones support daytime vision and add the
perception of color.

This initial transduction does not output discrete action potentials, the sort found
in most other areas of the brain. In fact, all the neurons in the subsequent outer
plexiform layer (OPL) and prior to the efferent synaptic connections to the ganglion
cells, represent information with smooth gradient responses [30]. Specifically, with
reference to Figure 3.5b, the cones make excitatory synapses onto both horizontal
cells (H) and bipolar cells (IB) [30]. The horizontal cells are coupled to each other
through gap junctions, thus creating a resistive and capacitive sheet. This sheet
therefore produces spatial and temporal averaging of the photodetector signals.
Finally, the depolarizing and hyperpolarizing bipolar cells produce a differential
signal that is fed to the retinal ganglion cells.

In addition, the photoreceptors and the neurons of the intermediate layers (the
plexiform layers and the nuclear layer) produce signals with a very narrow dynamic
range fromwidely varying amounts of incoming light. However, the output dynamic
range is sufficient to capture an image�s salient information.

This adaptation described above allows the retina to be compared to film in an
analog camera. Adaptation is obtained through several processing techniques, such
as a photoresponsive iris, pigment changes in the retinal receptors, and some neural
processing in the visual cortex, and allows humans to appropriately respond to
environmental scenes with illuminance that ranges over nine orders of magnitude,
that is, from 10�4 lux (white objects under starlight, overcast sky, new moon) to 104

lux (the illuminance of a clear day). This feature of the visual system is most locally
implemented by the OPL. The OPL allows a system with limited output range and
finite analog resolution to communicate small local changes in image intensity when
the background intensities may vary by a factor of one million.

From the intermediate processing layers, the transduced signal is finally repre-
sented using the brain�s characteristic action potentials to ganglion cells, the axons of
which form the optic nerve.

3.4.2
The Silicon Retina

Historically, the retina was among the first neural systems to be emulated in silicon,
through the works of Mahowald andMead [25, 33] and Boahen and Andreou [31]. As
described in the previous section, three fundamental processing elements are
required to construct a silicon retina:

. a phototransduction component;

. a network of horizontal cell-type elements, capable of spatially and temporally
averaging the output of the phototransduction;

. a bipolar cell-type output, capable of amplifying the difference between the output
of the phototransduction component and the horizontal cell signals.
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Physiological recordings show that the photoreceptors� electrical response is
logarithmic in light intensity over the central part of the photoreceptors� range, as
are the responses of other cells in the distal retina [30]. The logarithmic nature of the
response has an important system-level consequence: the voltage difference between
two points is proportional to their contrast ratio, that is, the difference between
reflectance of two adjacent objects in an image.

To achieve this, as discussed in Equation 3.1, and with reference to Figure 3.6a, we
can therefore connect a photodiode (note that in Mahowald�s seminal work on the
silicon retina [33], until shortly thereafter, p-type photo-bipolar junction transistors
(BJTs) were used, that biase a series of diode-connected transistors in the subthresh-
old region to obtain an output voltage that is a function of the logarithm of the input
current:

Vout / ln
ID
I0

� �
¼ ln

Iphoton
I0

� �
: ð3:7Þ

This conversion to a log-domain space allows the compression of a large input
range into a smaller output range. This simple circuit, known as a feed-forward
retina [25], has no adaptation and its output voltage is typically too close to VDD to be
able to properly bias the component it is connected to, that is, the resistive network of
horizontal cells. Hence, additional buffering or voltage-to-current conversion is
required to connect to the resistive grid [34, 41].

Thenext evolution in the development of a neuromorphic photodetectorwas to add
temporal adaptation to allow vision systems to operate over as wide a range of
ambient intensity as their biological counterparts. The circuit in Figure 3.6b was
developed by Delbruck and Mead [35] and has the following properties: (1) the load
transistor (M1) above the photodiode operates in subthreshold, implying that the
voltage across the photo diode is logarithmic; (2) the voltage across the photodiode is

M1

M2

Vout

Vbias

Vcascode
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Adaptive
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      (b)(a) 

Figure 3.6 Components of a silicon retina. (a) Feedforward photoreceptor; (b) photoreceptor with
adaptive feedback.
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amplified using a common-source cascaded, inverting, amplifier (M2�M4); and
(3) the output of the amplifier is band-pass filtered (by the adaptive element) and
fed back to the load transistor M1. Because it is fed back to the gate of M1, which is a
NMOSFET, it has the effect of readjusting the voltage across the photodiode to counter
the output of the cascade amplifier. That is, the circuit realizes a negative feedback
loop. Hence, if the photocurrent stays constant for some time (governed by the
adaptive element), the output voltage (Vout) of the amplifier will return to close to its
original value before the ambient light changed on the photodiode. This is adaptation,
where the output amplifiermagnifies changes to the photocurrent that are in the pass
band of the adaptive element, but remain relatively insensitive to changes that are
either too slow or too fast. As a result, the circuit was responsive to nearly nine orders of
magnitude of ambient intensity, which is comparable to the human retina.

To achieve response times that were physiologically realistic (adaptation on the
order of hundreds of milliseconds), the band-pass filter needed a particularly low
frequency cutoff, which is hard to achieve in small VLSI circuits. Delbruck invented a
device that used reverse biased MOS and parasitic BJTdiodes, connected in parallel
but opposite directions, to realize resistance as large as tens to hundreds of GV.
Furthermore, these resistors were small, allowing them to be placed in each pixel of
the retina. This was one of the key breakthroughs that made retinas with biologically
comparable temporal adaptation possible.

3.4.3
Audition

The transduction of sound pressure signals into neural impulses forms the front end
of the auditory system. Figure 3.7 shows a pictorial of the human ear, the organ
responsible for detecting sound. Acoustic pressure waves enter the ear and are first
reflected and attenuated by the pinna, then passed through the auditory canal at the
end of which they impinge on the tympanic membrane. This acoustic pressure is
then coupled with the cochlea�s oval window (attached to the stapes) through the
three middle-ear ossicles (malleus, incus, and stapes). The outer and middle ears, in
other words, are responsible for gathering sound energy and efficiently coupling it
into the inner ear.

The oval window, also shown in Figure 3.8, provides the acoustic input to the inner
ear through the cochlea, a liquid-filled, nautilus shell-shaped organ.1) When an
acoustic pressure input, that is, a sound, enters the oval window, it displaces onefluid-
filled cavity of the cochlea, known as the scala media. Themoving fluid rests on a thin
membrane, the basilar membrane (BM), which separates the scala media from an
adjacent cavity, the scala timpani. The pressurewave that enters from the oval window
will therefore propagate according to the characteristics of this membrane. If the
membrane is stiff and thick, thewave propagates very rapidly, and ismore sensitive to
high frequency sound vibrations. If, on the other hand, the membrane is thin and
flexible, then the pressurewave is slow, and resonates at lower frequencies. As it turns

1) The word �cochlea�, in fact, comes from the Greek word for �shell.�
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out, just like the strings on a piano, the basilar membrane is narrow and firm at its
base (located at the oval window) and wide and compliant at its apex. To complete the
circuit, the fluid in the scalamedia distorts the basilarmembrane causing the fluid in
the scala timpani to move toward the cochlea�s exit, the round window.

The transduction itself from pressure wave to nerve signal is achieved by the hair
cells, which detect themotion of the fluid on their cilia and respondswith a change in
the cell�s voltage as well as release of neurotransmitter. The cochlea�s basilar
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Figure 3.7 Pictorial of the human ear.
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Figure 3.8 The cochlea is responsible for the transduction of the pressure signal representing the
acoustic input into neural impulses that can be processed by the brain.
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membrane is the hair cell�s fixed base, such that each hair cell processes a differently
filtered version of the pressure entering the ear. The fluid�s displacement causes the
row of 3500 hair cells (in humans) to move (1A

�
is sufficient to be able to detect a

sound), in turn causing nerve pulses to travel first to the cochlear nucleus and then to
the brain.

Equally as important as the actual transduction is the ear�s ability to adapt to a wide
range of sound intensities through suppression of loud sounds and amplification of
soft ones. The outer and middle ear attenuate loud sounds passively through
directionality conformations and protective muscular reflexes to reduce transfer
efficiency. The inner ear is responsible for amplification of soft sounds through the
outer hair cells, which couple energy back into the system. When the sound signals
are large, the outer hair cells are inhibited and the Automatic Gain Control (AGC)
circuitry is effectively turned off. As the sounds become weaker, the inhibition is
reduced and energy is fed back into the system.

3.4.3.1 Silicon Cochlea Modeling
Since all auditory processing starts with the cochlea, silicon auditory processingmust
seek to emulate the functionality of the cochlea. The cochlea�s fundamental structure,
as described in the previous section, is its basilar membrane. The characteristic
frequency of the basilar membrane exponentially decreases from base to apex. This
can be modeled by discretizing the BM into segments of equal length, where each
segment is made up of a cascade of filters, roughly representing the inner hair cells,
each with its own (exponentially decreasing) characteristic frequency. Specifically, in
the original design for the silicon cochlea [36], the basilar membrane wasmodeled as
a cascade of 480 stages of the second-order filters in a boustrophedonic arrangement
to optimize the use of the silicon real estate available. The filters use wide-range
OTAs, presented in Figure 3.9a. In Section 3.3, we derived the equation for an OTA,
the transistors of which operated in the weak inversion (subthreshold) regime.
Specifically, this was summarized with Equations 3.4 and 3.5, which showed that for
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Figure 3.9 Second-order bandpass filters implemented to produce a 1D silicon cochlea.
(a) Schematic of the wide-range OTA. In Lyon and Mead�s implementation [36], 480 filters were
used, each with a different (exponentially increasing) center frequency. (b) Sharp bandpass filter
made with three wide-range OTAs.
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small differences between the input voltages, the amplifier is linear with a trans-
conductance gm¼ Ibias/UT, where Ibias is the amplifier�s bias current and UT is the
thermal voltage. The wide-range OTA, depicted in Figure 3.9a, uses four more long
transistors, M5–M8, to effectively maximize the output impedance of the device and
thus its voltage gain.

Three wide-range OTAs are used to form a sharp (high-Q) bandpass filter: two of
them (G1 and G2) are connected in a feed-forward, follower integrator configuration,
while the thirdone (G3) provides amplification throughpositive feedback (Figure 3.9b).

The follower integrators act as unity gain buffers at low frequencies, in which the
output impedance of the circuit is very large, but act as low-pass filters/integrators at
high frequencies. Specifically, at high frequencies, the integrator follower transfer
function in the Fourier domain becomes

Vm ¼ 1=jvC
1=Gþ 1=jvC

Vin ¼ G
jvCþG

Vin ¼ 1
1þ jvC=G

Vin; ð3:8Þ

Am ¼ Vm

Vin
¼ 1

1þ jvt
; ð3:9Þ

where G is the OTAs (tunable) transconductance, t is the circuit�s time constant,
t¼C/G, and Am is the amplification of G1 assuming G2 and G3 are off. This
means that in the absence of feedback (G3 is off), each integrator follower has a pole at
v¼G/C, after which the response falls at a rate of 6 dB/dec (i.e., 3 dB/dec per filter):

Aout G3¼off ¼ Vout

Vin
¼ 1

ð1þ jvtÞ2
����� ð3:10Þ

G3 is anOTA in a positive feedback configuration that allowsmodulation of the quality
factor, Q, of the second-order system. In general, Q characterizes the bandwidth of
a resonator relative to its center frequency, 1/t. Therefore, the small-signal transfer
function for the filter with G3 on becomes

Aout ¼ 1
1þ 2jvtð1�aÞ�v2t2

¼ 1
1þðjvt=QÞ�v2t2

; ð3:11Þ

where2)

a ¼ G3

G1 þG2
ð3:12Þ

and

Q ¼ 1
2ð1�aÞ : ð3:13Þ

The exponentially increasing time constant required to emulate the center
frequency of the silicon basilar membrane was created by applying a voltage
difference across a resistive polysilicon line [36]. This sets up a linear voltage gradient
along the resistive line resulting in exponential changes in bias currents when using
MOSFETs (in subthreshold regime).

2) Note that the above is also the equation of a second-order mechanical mass-spring system.
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From the initial silicon cochlea, improvements took various different directions.
The first modifications that weremade to the circuitry aimed at improvingmatching
in the second-order sections aswell as the large-signal stability of the individualOTAs
(e.g., Watts et al. [34] and van Schaik et al. [37]). Subsequently, Sarpeshkar et al. [38]
further improved on thewide rangeOTAs by reducing the transconductance and also
added a �fuse type� of nonlinearity that shuts off the positive-feedback amplification
at large-signal levels instead of merely saturating it.

These approaches to designing the silicon cochlea are inherently imperfect: first,
the serial cascade of second-order sections is such that if one of the sections fails, all
the sections that follow become unusable; second, the number of second-order filter
stages that can be employed is limited by the increasing delay between stages, which
eventually prevents real-time usage of the system. These design issues spawned a
different approach to the development of the silicon cochlea. Liu et al. [39, 40], for
example, proposed a filter configuration in which the resonant elements (the band-
pass filters) are placed in parallel to each other, whereas the cascaded elements (the
low-pass filters) are either first-order or damped second-order filters, the delay of
which could be varied independent of the characteristic frequencies of the resona-
tors. It should be noted, however, that as withmany issues associated with emulating
biological systems, solutions to some potential issues with emulations come at the
expense of the fidelity of the biological emulation itself.

3.5
Conclusions

This chapter provides an overview to help the reader understand the fundamental
concepts of neuromorphic circuits. Startingwith the brain�s fundamental processing
unit, the neuron, we showed how the underlying principles of the nervous system
closely resemble those of MOS transistors biased in the subthreshold region, and
how to emulate the basic functionality of the neuron, such as the production of the
action potential, using simple circuitry that allows implementation of neuronal
circuits on large scales.

The chapter also provided an overview of two important sensory systems and how
basic CMOS circuits can rudimentarily emulate some of their characteristics.
Specifically, we explained how biological systems confront the problem of transform-
ing light into neural signals such that they can be processed by the brain, and how
soundwaves propagate through the ear canal and are converted to neural impulses by
the fluid-filled cavities of the cochlea.

3.6
Resources

To implement neuromorphic circuits, tools for integrated circuits design are used. In
particular, Cadence� (a) and Tanner Tools� (b) are the primary Electronic Design

48j 3 Neuromorphic Electronic Design



Automation (EDA) packages used. They allow a user to perform schematic-level
simulations of their circuits (using a physical circuit simulation software called
SPICE), followed by drawing the physical layout of the circuit (i.e., define thematerial
that must be placed on the silicon chip in order to realize the transistors and
connections between them). Next, the layout and the drawn schematic must be
compared tomake sure that the layout is indeed an implementation of the schematic.
This is done using a Layout versus Schematic (LVS) tool that is part of the packages.
The final step is one where the schematic represented by the layout is Extracted (the
name of the tool), with all parasitic capacitors, resistors, and diodes attached to the
schematic. This extracted schematic can subsequently be simulated with SPICE to
finalize the circuit functionality. Thisfinal simulation provides results that are usually
the closest to the measured results after the chip is fabricated because it includes
many of the parasitic devices that are usually not part of the initially drawn schematic.

Some neuromorphic designers have made some of their circuits available for
download. Below we list two of these sites (c,d). Finally, there is an organization
dedicated to the promotion of neuromorphic engineering and the dissemination of
the community�s products (e,f).

(a) Cadence Design Tools: www.cadence.com
(b) Tanner Design Tools: www.tannereda.com
(c) Tobi Delbruck�s Neuromorphic Circuits Resources: www.ini.uzh.ch/�tobi/
(d) Kwabena Boahen�s AER Circuits Resources: www.stanford.edu/group/

brainsinsilicon/boahen.html
(e) The Institute for Neuromorphic Engineering: www.ine-web.org
(f) Neuromorphic Engineering and Cognition Blog: www.neurdon.com
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4
Principles of Neural Signal Processing
Don H. Johnson

4.1
Introduction

Sensory neurons represent information about the environment and motor neurons
represent commands to muscular systems. Clearly, the neural codes employed by
various systems operate under different constraints; as a consequence, the represen-
tationof informationwithin eachsystemvaries considerably. For example, neurons in
the visual and auditory systems face different demands and encode information
differently. As a result, the neural code does not exist. Neural signal processing
endeavors to determine how neurons represent information and with what accuracy.
Biohybridsystemsgoeven further, attemptingeither to createneural signals to restore
sensorimotor function (whatwe call stimulationprosthetics) or to extract information
from neural signals to generate control signals (measurement prosthetics).

Because of the stochastic nature ofmost neural spike trains, themathematical tool
used to describe spike trains as a spatiotemporal sequence of isolated events is point
process theory [1–3]. After using this theory to describe what neural coding is, we
describe the signal processing techniques neuroscientists use to determine the
neural code and engineers use to extract the coded information from recorded
signals. The discussion then turns to an information theoretic description of the
limits to which neurons can represent sensory or motor signals. This approach also
provides insights into the consequences of simple biohybrid interfaces for prosthetic
applications.

4.2
Point Process Theory

4.2.1
Definition of a Point Process

A regular point process [1] is defined so that the probability of an event occurring in the
time interval ½t; tþDtÞ is given by

Biohybrid Systems: Nerves, Interfaces, and Machines, First Edition. Edited by Ranu Jung.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Pr½one event in ½t; tþDtÞjNt;wt� ¼ mðt;Nt;wtÞDt;
Pr½more than one event in ½t; tþDtÞjNt;wt� ¼ oðt;DtÞ: ð4:1Þ

Here, Nt is the number of events that have occurred prior to time t (observations are
assumed to start at time t ¼ 0);wt is the vector of occurrence times of theseNt events:
wt ¼ ½w1; . . . ;wNt �; and oðt;DtÞ decreases to zero with decreasing Dt faster than
linearly: limDt! 0oðt;DtÞ=Dt ¼ 0. These equationsmean that nomore than one event
can occur in a sufficiently small interval and that the probability of one event
occurring within a small interval is proportional to the interval duration. Most
important to this definition is the intensity mðt;Nt;wtÞ that governs how the event
probability depends on time and on the process�s history as encapsulated byNt andwt:
the number and times at which all events occurred prior to time t. These quantities
are depicted in Figure 4.1. Note that the probabilities are conditional probabilities:
they all depend on the point process�s history. The conditional probability of an event
occurring during a small time interval equals the product of the interval duration Dt
and the nonnegative mðt;Nt;wtÞ. The intensity has units of events per second and can
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Figure 4.1 The essential quantities that
define a point process are noted along side a
sample function in the upper panel. wn is the
occurrence time of the nth event and
tn ¼ wnþ 1�wn is the interevent interval. Nt is
known as the counting process. The middle
trace depicts the corresponding intensity of a
refractory process. This intensity depends on
immediate process history, with the intensity

dropping to zero for a time interval equaling D
after each event. This type of intensity means
that event occurrence is suppressed for a
period of time after each event. The bottom
trace shows the usual procedure for the
analog-to-digital conversion of a spike train:
divide time into intervals of duration d and
produce the number of events that occur
within each interval.
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be considered the instantaneous rate at which events occur. The intensity can depend
on time and/or the point process�s history. If the intensity depends explicitly on time
t, the process is nonstationary. Such temporal variations usually represent rate
variations that are due to external influences and have been suitably modified –

processed – by the neuron. Such variations represent how information is encoded in
the point process. The �historical� portion of the intensity describes the detailed
interactions of previous events on the current one. In a neuroscientific context, this
history could, among other possibilities, represent the neuron�s dynamic active-
membrane properties and its sensitivity to modulators and transient ionic concen-
trations, all of which certainly contribute to the neuron�s processing function. For
example, the discharge rate typically decreases to zero momentarily after an action
potential occurs. This refractory effect has long been noted; in the present context,
this phenomenon means that the intensity for virtually all accurate point process
models of neural discharges must contain a historical component. Consequently,
both the neuron�s biophysics and the encoded information affect the discharge
behavior of a neuron.

Once we have the intensity of a point process, the process�s entire statistical structure is
specified. Consequently, a thorough analysis of a discharge pattern must yield the
process�s intensity function. In technical terms, deciphering the neural code
amounts to measuring the intensity and teasing apart the intrinsic and extrinsic
components. Even when the rate is constant, a seemingly boring situation from an
information processing viewpoint, careful analysis of the intensity�s historical
component can yield important insights into the neuron�s processing function when
rate variations are present. Unfortunately, the intensity is usually related to neural
mechanisms in a complicated, not easily deciphered, way.

4.2.2
Examples of Point Processes

4.2.2.1 The Poisson Process
The Poisson process has the simplest structure of any point process. Its intensity
does not depend on history: mðt;Nt;wtÞ ¼ lðtÞ. The quantity lðtÞ could be constant,
meaning that events occur randomly at a fixed average rate (the process is
stationary), it could vary with time, meaning that occurrence rate varies accordingly,
or it could vary stochastically, resulting in what is known as a doubly stochastic
Poisson process. No matter which of these situations applies, event occurrence does
not depend statistically on when previous events occur: the Poisson process has no
memory. Since a neuron�s dynamic membrane properties would most certainly
introduce memory into its output, the Poisson process can approximate only neural
output.

In point process theory, the Poisson process is akin to white Gaussian noise in
randomprocess theory: analytic results about the Poisson process�s structure are easy
to derive and virtually all other point processes present analytic difficulties. For
example, the probability that n events occur between the times t and tþT , T > 0, is
given by [1, 3]
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Pr NtþT�Nt ¼ n½ � ¼ 1
n!

ðtþT

t
lðaÞ da

� �n

exp �
ðtþT

t
lðaÞ da

� �
; n ¼ 0; . . .

ð4:2Þ
We define the rate of discharge l̂ðtÞ to be the limit of the expected number of events in
an interval that begins at time t divided by the interval�s duration:

l̂ðtÞ ¼ lim
Dt! 0þ

E½NtþDt�Nt�
Dt

:

Here, E½ � � denotes expected value. For the Poisson point process, the expected value
equals

Ð tþDt
t lðaÞ da, and the discharge rate equals the smoothed intensity as

expected. We shall find that the Poisson point process is unique in having this
property. We can derive from (4.2) the probability density function (pdf) of the
interevent interval tn.

ptNt þ 1ðt; tÞ ¼ lðwNt þ tÞexp �
ðwNt þ t

wNt

lðaÞ da
( )

: ð4:3Þ

When thePoissonprocess is stationary, with lðtÞ ¼ l0, wehave thewell-known result
that the interevent intervals in a Poisson process are exponentially distributed:
ptðtÞ ¼ l0 exp f�l0tg; t > 0.

Despite its limitations to describe single-neuron data, thePoissonprocess provides
a starting point for understanding a given point process�s properties. The rule of
thumb is that if you cannot analyze a Poisson process approximation, related analysis
of amore exact point process description will almost certainly bemore difficult, if not
impossible.

4.2.2.2 Renewal Processes
A renewal process results when the intensity�s historical dependence amounts to the
time at which the last event preceding time t occurred [4]: mðt;Nt;wtÞ ¼ mðt;Nt;wNtÞ.
Thus, interevent intervals are statistically independent random variables, with the
probability of an event occurring varying with time since the last event. When
the intensity does not depend on absolute time, the intensity is a function only of
the interval t�wNt since the last event:

mðt;Nt;wtÞ ¼ Hðt�wNtÞ: ð4:4Þ

If the functionHð � Þ is a constant (no dependence on the interval since the last event),
a Poisson process results. If this function equals zero for small arguments and then
jumps to some nonzero value, HðtÞ ¼ m0uðt�DÞ, we can describe absolute refrac-
tory effects with D identified as the refractory interval and uð � Þ is the unit step
function. After the refractory interval has ended, the constant-valued intensitymeans
that the process has entered a Poisson-like mode, with event occurrence oblivious to
event history. The lower panel of Figure 4.1 depicts the intensity for this type of
renewal process.
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Thisfigure also clarifies the somewhat confusing point that the average occurrence
rate for this so-called deadtime-modified point process does not equal m0; the rate of
event occurrence must be less than m0. To compute the average rate �l, note that it
should equal the long-term average of the intensity. Considering Figure 4.1, the area
under the intensity equals m0Tð1��lDÞ. Dividing this equation by T and setting the
result equal to �l yield �l ¼ m0=ð1þm0DÞ. This example demonstrates that the
intensity function indicates the true rate of discharge immediately following an
event while the average rate indicates the overall rate at which events occur. Another
conclusion can be drawn: gross measures of event rate – ones that do not take event
history into account – do not indicate the true rate within which information is
encoded.However, we can, in some circumstances, determine underlying quantities
frommeasured ones. Assumingwe know the value ofD, we could estimate a renewal
process�s true rate variations [5, 6].

Every stationary renewal process is completely characterized by the probability
density function ptð � Þ of the interval between successive events. This fact follows
because the procedure used to derive (4.3) can be used on renewal processes. This pdf
is related to the process�s intensity through the function Hð � Þ defined in (4.4) as

HðtÞ ¼ ptðtÞÐ¥
t ptðaÞ da

;

ptðtÞ ¼ HðtÞexp � Ð t
0 HðaÞ da� �

:

ð4:5Þ

The quantityHð � Þ is known as the hazard function or the recovery function associated
with the point process. Clearly, this quantity is just the renewal process�s intensity.
Our example has HðtÞ ¼ m0uðt�DÞ, which corresponds to the interval pdf
ptðtÞ ¼ m0expf�m0 � ðt�DÞguðt�DÞ.

Calculating the hazard function frequently provides more insight into the
process�s structure than does the interval distribution. The hazard function
HðtÞ is proportional to the probability of an interval equaling t given that the
interval is at least that long; this interpretation follows directly from (4.5). A
constant-valued hazard function means that the probability of an event occurring
is as likely now as it is later: the process has no memory over the range of intervals
for which the hazard function, the intensity, is constant. If the hazard function is an
increasing function, then the process becomes more �anxious� to produce an event
as the interval becomes longer. For example, if the hazard function increases
linearly, HðtÞ ¼ K � t, K a constant, then ptðtÞ ¼ Kt expf�Kt2=2g, a much nar-
rower distribution of intervals than in the Poisson (a constant hazard function $
exponential interval pdf) case. A decreasing hazard function has the opposite
interpretation. However, a point process�s intensity cannot decrease to zero as t

approaches infinity; if it does, events could cease to occur, and the process would not
be self-consistent.1)

1) More precisely, a valid hazard function�s integral must be infinite:
Ð¥
0 HðaÞ da ¼ ¥. In most cases,

Hð � Þ is bounded; however, this technical condition allows unbounded choices.
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4.2.2.3 Markov Point Processes
Events in nonrenewal processes depend not only on when the previous event
occurred but also on ones before that. In Markov point processes, event occurrence
depends on the most recent kþ 1 events and not on ones prior to those. Conse-
quently, the intensity simplifies to some degree.

mðt;Nt;wtÞ ¼ mðt;Nt; ½wNt ;wNt�1; . . . ;wNt�k�Þ:
The number k is known as the order of the Markovian dependence structure. A
renewal process has order zero: event occurrence depends only on the most recent
event. Higher-order dependence means that successive interevent intervals are
correlated random variables, which complicates development of concise descriptions
of data.

If the spike production mechanism is described �classically� – a synaptic event
influences the transmembrane potential of active membrane modeled by Hodg-
kin–Huxley Naþ and Kþ channels – the equations governing spike production have
no state variable that persists beyond the occurrence of an action potential. Thus,
spike occurrence does depend on when the previous spike occurs but not on any
others, which means that a renewal process model always results.

4.2.2.4 Non-Markovian Point Processes
In many neuron types, some persistent variable (such as Ca2þ ) affects active
membrane�s dynamics and the consequent production of action potentials. The
dynamic equations that describe these phenomena indicate that spike production
depends not on some number of previous events (which would lead to a Markov
model) but on a time-weighted average. For example, the intensity at time t would
depend on the output of a linear filter having an input equal to impulses occurring at
all previous event times [7]:

mðt;Nt;wtÞ ¼ l0 þ
ðt
0
gðt�aÞ dNa:

The Stieltjes representation of this convolution integral is needed for technical
reasons; it simply equals the summed impulse responses delayed by all event times
occurring prior to time t:

mðt;Nt;wtÞ ¼ l0 þ
XNt

i¼1

gðt�wiÞ:

Thus, the intensity depends on all past event times viewed through the window
described by gð � Þ. This model could be used to describe situations in which event
occurrence depends on the times at which all previous events occur (when gð � Þ has
infinite duration) or that it varies with events occurring within the most recent T
seconds (gð � Þ is nonzero only over ½0;T �).

An arbitrary impulse response gð � Þ cannot be used in this expression. For
instance, intensities are always positive quantities, meaning that the summed
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impulse responses cannot be more negative than �l0. Further restrictions on the
impulse response result if we demand this so-called Hawkes� process be stationary.
Defining �l as the average occurrence rate, the intensity must satisfy

�l ¼ l0 þ �l

ðt
�¥

gðt�aÞ da Y �l ¼ l0

1� Ð¥
0 gðaÞ da� 	 :

This result means that the filter�s impulse response must satisfy
Ð¥
0 gðaÞ da < 1

for the Hawkes process to exist. The Hawkes� process is frequently used in the
so-called log-linear models of point process intensity, which allows much simpler
use of maximum likelihood and Bayesian techniques for analyzing point pro-
cesses [8, 9].

4.2.3
Multiple Point Processes

Experimental techniques today allow several spike trains to be recorded simulta-
neously, either with individual electrodes that are spatially separated or with
electrode arrays [10]. Rather than recording a single neuron�s pattern, each
electrode provides a superposition of spike trains from an unknown number of
neurons. As we will show later, data provided this way is of little use for prosthetic
applications. The so-called spike sorting algorithms endeavor to recast such record-
ings into individual neuron spike trains. In the single electrode case, optimal
classification algorithms exploit spike amplitude and waveform differences to
separate a single recording into multiple point processes representing individual
neuron spikes [11]. When electrode arrays are used, several electrodes can record
the same neuron�s signal. Array processing algorithms that exploit event simul-
taneity, as well as amplitude and waveform, separate multiple recordings into a
multichannel point process [12]. The article by Lewicki [13] surveys spike sorting
issues and algorithms.

Describing several point processes as jointly defined random processes is quite
complicated. The joint distribution of more than two Poisson processes has only
been conjectured [14, 15]. What has been shown is that jointly defined Poisson
processes can be dependent only positively: the occurrence of an event in one
process increases the probability of an event in another. Both positively and
negatively dependent simultaneously recorded spike trains have been observed.
Negatively correlated pairs of renewal processes can be defined [16], but not in a way
extensible to more. Furthermore, triple and higher order dependencies only loosely
related to pairwise dependencies must be present among jointly defined Poisson
processes [15].

One way of defining the joint distribution of several point processes is as marked
point processes [1]. Here, each event carries a mark – a value – that defines which
process produced it. While such a description is possible, it has not yet proven its
utility.
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4.3
Analyzing a Point Process

Point processes are no different from other signals in at least one way: before
computer analysis is possible, the process (or processes)must be digitized. Here, the
�analog-to-digital� conversion, illustrated in Figure 4.1, consists of counting the
number of events that occur in a sequence of small intervals.

sðlÞ ¼ Nlds ;ðlþ 1Þds ¼D Nðlþ 1Þds�Nlds :

In most cases, the binwidth ds is chosen to be less than the refractory interval, which
means the digitized spike train, denoted by sðlÞ, is binary valued. Consequently, the
point process is converted into a Bernoulli processwherein the probability of an event
occurring equals

Pr½sðlÞ ¼ 1� ¼
ððlþ 1Þds

lds

mðt;Nt;wtÞ dt;

therebymimicking (4.1) when ds is chosen to be smaller than the temporal variations
of the intensity.

When multiple spike trains are digitized, the bins are aligned and a common
binwidth is usually chosen. Each �sample� now consists of a vector having a length
equal to thenumber of neurons being digitizedMandwith each component equaling
the number of events occurring during the bin from one of the spike trains.
Consequently, we now have a vector-valued process sðlÞ in which both temporal
and spatial (along the dimension of each vector) variations and/or statistical depen-
dencies can occur. Only when binary-valued elements in each vector sample occur do
we have a viable probabilistic description, a vector Bernoulli process [14]. This model
can describe statistical dependencies in the spatial dimension but not in time.

The sampling process has a signal processing model [17]. First of all, the model
represents each point process by a sequence of delta functions according to dNt=dt.
The �analog-to-digital� conversion process for point processes is equivalent to
passing this sequence through a finite-time integrator (duration ds), then sampling
every ds. The impulse response hdsðtÞ of the finite-time integrator is

hdsðtÞ ¼
1 0 < t < ds;
0 otherwise:

�

The transfer function of this system is proportional to sinc ðpf dsÞ, which has a low-
pass character. Thus, counting the number of events that occur in a bin amounts to a
nonideal antialiasing filter having a cutoff frequency somewhat less than 1=2ds. The
subsequent sampling, sðlÞ ¼ ðdNt=dtÞ � hdsðtÞjt¼lds , that produces the digitized point
process can introduce aliasing if the intensity varies more rapidly than the reciprocal
binwidth.

Digitizing several jointly recorded spike trains is no different from applying the
binning procedure to each spike train individually. As we will learn later, this process
imposes additional constraints beyond those predicted by sampling theory.
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4.3.1
The Interval Histogram and Hazard Function

The interval histogram estimates the probability density function of interevent
interval durations. When the process is stationary and renewal, the interval histo-
gram suffices to characterize the process.When interval dependencies are present or
when the process is nonstationary, the interval histogram no longer suffices to
describe the process. Nevertheless, the interval histogram and the associated hazard
function are frequently measured to assess the spike train�s intrinsic statistical
properties.

Algorithmically, the interval histogram computes the fraction of measured intere-
vent intervals having durations between ld and ðlþ 1Þd, then normalizes by the
binwidth so that the estimate �integrates� to one. Note that the interval histogram�s
binwidth d is usually larger than the sampling binwidth ds. Letting Il;dð � Þ denote the
indicator function,

Il;dðtÞ �
1; ld � t < ðlþ 1Þd;
0; otherwise;

(

the interval histogram computation is expressed by [17]

INTðlÞ ¼ 1
Nd

XN�1

n¼0

Il;dðtnÞ; ð4:6Þ

whereN is the total number of intervals entering into the computation. The expected
value of the histogram equals

Ð ðlþ 1Þd
ld ptðtÞ dt=d. If the true interval distribution is

essentially constant over all length-d bins, this expected value equals the interval pdf
evaluated at ld: E½INTðlÞ� � ptðldÞ. Assuming a renewal point process, we can easily
analyze the variance of the interval histogram. The variance of a sum of N
independent binary-valued random variables equals Np ð1�pÞ. Assuming that
p 	 1, the variance of the interval histogram for a renewal process equals

V INTðlÞ½ � ¼
Ð ðlþ 1Þd
ld ptðtÞ dt

Nd2
� ptðldÞ

Nd
:

To assess this variance better, we consider the histogram�s coefficient of variation,
whichmeasures the percentage variation of nonnegative-valued random variables as
the ratio of the random variable�s standard deviation and its expected value.

C X½ � ¼D V X½ �ð Þ1=2
E X½ � : ð4:7Þ

Thus, the coefficient of variation for each bin of the interval histogram is

C½INTðlÞ� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
ððlþ 1Þd

ld
ptðtÞ dt

s
� ½NdptðldÞ��1=2:
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Thus, the percentage error increases as the density�s value decreases: we canmore
accurately estimate the histogram�s modes than we can its valleys and tail.

Because the hazard function and the interval pdf are directly related, we estimate
the hazard function using a discrete version of (4.5):

HAZ ðlÞ ¼ INTðlÞP¥
k¼l

INTðkÞd
:

Calculating the coefficient of variation for the hazard function is analytically difficult
because the hazard function is the ratio of two random, correlated quantities. Using
an approximation detailed in Johnson [3], we find that

C HAZðlÞ½ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NdptðldÞ�

1

Nd
P¥
k¼l

ptðkdÞ

vuuut ¼ C INTðlÞ½ �½1�HðldÞd�1=2:

This expression ismeaningless unlessHðldÞd 	 1, whichmeans that the binwidth
ismuch less than the smallest interspike interval. In such situations, the coefficient
of variation for the hazard function estimate approximately equals that for the
interval histogram, with both becoming large for the same intervals. However, as
opposed to the interval histogram, the value of the hazard function is usually not
small when these large values occur, which accentuates the errors.

4.3.2
The PST Histogram

The PST (poststimulus or peristimulus time) histogram measures the temporal
variations in a single neuron�s rate of discharge by averaging the spike-train response
to a periodically repeating stimulus. The onset of each stimulus presentation serves
as the histogram�s time origin. Assume that the time axis is quantized into bins of
length d (an integer multiple of the sampling binwidth) and that the stimulus is
presented every R bins with the first stimulus presented at time t ¼ 0. The count of
the events in the rth bin ½rd; ðrþ 1ÞdÞ is denoted by cðrÞ. If the analysis binwidth
equals the sampling binwidth, d ¼ ds, the event count equals the sampled spike
train. The PST histogram computation averages this sequence across stimulus
presentations [17]:

PSTðrÞ ¼ 1
Kd

XK�1

k¼0

cðr þ kRÞ:

Here, K denotes the number of stimulus presentations. Normalized in this way, the
units of a PST histogram are events/s.

For even the simplest point process, the expected value of the PST histogram
containsmany surprises. First, assume that the binwidth is small so that the intensity
definition of (4.1) can be used. This assumption means that more than one event
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rarely occurs within a single bin. Under this condition, the expected value of the
sequence cðrÞ is E mðrd;Nrd;wrdÞ½ �d, where the expected value is computed with
respect to event history. When the intensity�s time dependence repeats with period
Rd, the expected value of a PST histogram equals this quantity divided by d. Thus, the
PST histogram corresponds to averaging over all event histories that lead to or
prevent an event occurring at time rd after the stimulus presentation:

E PSTðrÞ½ � ¼ E mðrd;Nmd;wrdÞ½ �: ð4:8Þ

Thus, this expected value does not depend solely on the intensity�s temporal
variation. The only point process that expresses this temporal dependence directly
is the Poisson because its intensity does not depend on event history. For all other
point processes, including renewal ones, the PST histogram represents stimulus-related
temporal variations averaged across the point process�s history. This expected value is
extremely difficult to evaluate. Consequently, the PST histogram is a complicated
function of the process�s stimulus-related nonstationarity and the inherent
�nonstationarity� induced by the process�s statistical structure [5].

4.3.3
Characterizing Multiple Point Processes

The interval and response characteristics of the individual point processes of an
ensemble recording can be analyzed as described previously. But using only these
marginal measures to characterize multiple point processes implicitly assumes that
the processes are statistically independent. Such a strong assumption needs verifi-
cation. In general, assessing whether two random variables, much less a larger
number, are statistically independent is a difficult problem. What makes this
assessment even more difficult in neural recordings are nonstationarities, which
are always likely to be present. When these time variations can be linked to stimulus
presentations, the statistical accuracy of any dependence test depends on the number
of stimulus repetitions. Statistical demands require this number to be related
exponentially to the number of point processes being considered, overwhelming the
capabilities of most experiments.

Though usually a weak measure of statistical dependence, the correlation coef-
ficient function rijð‘Þ between pairs of digitized processes sið � Þ, sjð � Þ expresses
whether the digitized processes are statistically independent or not. Extending the
usual definition of correlation coefficient to include a lag ‘,

rijðl; ‘Þ ¼
E½ðsiðlþ ‘Þ�E½siðlþ ‘Þ�Þ � ðsjðlÞ�E½sjðlÞ�Þ�

½V ½siðlþ ‘Þ� V ½sjðlÞ��1=2
:

If the individual processes are jointly stationary, the correlation coefficient does not
depend on bin index l and this fact can be used to incorporate more data into the
estimation process. If the correlation coefficient is zero for all lags ‘ and bin indices l,
the digitized processes are uncorrelated and, in addition, when the number of counts
in a bin is binary valued, they are also statistically independent. But note that when
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only binary values occur, the statistical description for jointly Bernoulli processes [18]
requires the correlation coefficient to be greater than�½pipj=ð1�piÞð1�pjÞ�1=2, where
pi ¼ E½si�. Since pi � l � d, the most negative a correlation coefficient can be depends
on the binwidth d. Thus, if negative correlation is measured, the actual correlation
between the point processes might be more negative.

The usual way of estimating the pairwise correlation coefficient is to use the so-
called plug-in estimator: use empirical estimates for each expected value and variance
in the formula. In the Bernoulli case, the variance depends only on the probability of
an event occurring to – V½X � ¼ E½X �ð1�E½X �Þ – thereby simplifying the estimation
process. No empirical estimate will be zero; consequently, confidence intervals need
to be established to test for independence.

Even if all
M
2

� �
pairs of processes in a collection of M are statistically indepen-

dent, the processes could be statistically dependent. To prove that a collection of
jointly Bernoulli processes consists of statistically independent components, the
correlation coefficient of all orders would need to be zero. Defining a high-order
correlation coefficient consistent with the pairwise correlation is not obvious. The
one definition that can be used for all orders and has the property that all correlation
coefficients are less than 1 can be derived [15]. The formula for the kth order
correlation coefficient function

ri1 i2...ikðl; ‘1; . . . ; ‘k�1Þ ¼ E½ðsi1ðlþ ‘i1Þ�E½si1 ðlþ ‘i1Þ�Þ � � � ðsikðlÞ�E½sikðlÞ�Þ�
ðV½si1 ðlþ ‘i1Þ� � � � V½sikðlÞ�Þ1=k

;

which clearly is a complicated function of k variables. Furthermore, the amount of
data needed to compute it grows exponentially in k; rarely is enough data available to
reliably estimate a correlation function of orders greater than 2. Furthermore, the
correlation coefficients of various orders are loosely related to each other [14]. For
example, for a completely symmetric population (all selections of k neurons are
correlated in the same way), if the pairwise correlation coefficient exceeds 1=M, then
the third-order correlation coefficientmust be nonzero. Note that the critical quantity
here is not the number of neurons recorded but the actual population size.
Consequently, the correlation coefficients of all orders may be linked in ways that
are not apparent from measurements. Other techniques for testing for dependence
among k processes based on entropy calculations promise to be less data hungry, but
it remains an open problem to assess dependencies at different lags.

4.4
Dynamic Neural Processing

All of the techniques described previously assume stationarity (estimates of the
interval histogram and correlation coefficients) or periodic repetitions of the stim-
ulus (the PST histogram). Even under these restrictions, much insight can be gained
into the nature of the point process�s intensity. Can this information be exploited to

64j 4 Principles of Neural Signal Processing



determine the neural response, even interpret it, under less well-controlled condi-
tions, for example, in freely behaving conditions? Using dynamic Bayesian models
and adaptive filters, such processing possibilities can be derived [8, 19, 20].

For any dynamic system that begins functioning at the time origin, the input–
output relationship is given by the conditional probability function pYtjx0:tðytjx0:tÞ,
where x0:t denotes the entire input over the interval ½0; t� and yt is the output at time t.
Note that the system could introduce stochastic behavior on its own. Foreshadowing
binned recordings of neural spike trains, we assume the time variable is integer
valued. In many cases, this general form can be expressed in a recursive form
reminiscent of a state space model.

pYtjx0:tðytjx0:tÞ ¼ pYtjxt; y0:t�1ðytjxt; y0:t�1Þ:
In words, knowledge of the previous outputs and the most recent input suffice to
determine the statistical properties of the output at each moment of time. Note that
because of the formof the intensity, the probability lawof point processes (4.1) has the
same form.

The goal is to estimate the signal driving the intensity based on observing the
response of one or several neurons. A well-known result from estimation theory
states that theminimummean-square estimate of the input xt based onobserving the
output y0:t for any system is the conditional mean: x̂optt ¼ E½XtjY0:t ¼ y0:t�. By using
this estimate, you can determine the system�s input knowing the output signal and
the system�s input–output relationship as summarized by pYtjx0:tðytjx0:tÞ. In neural
processing applications, given recorded spike trains and some knowledge of the
neuron�s intrinsic properties, you can estimate the stimulus being encoded by the
spike train(s). To find it, you need the probability function pXtjy0:tðxtjy0:tÞ, known as
the posterior distribution. The point process model gives us the opposite conditional
probability. To convert from the model to the posterior, we use Bayes� rule and some
simplifications.

pXtjY0:tðxtjy0:tÞ ¼ pXt;Y0:tðxt; y0:tÞ
pY0:tðy0:tÞ

¼ pXtjY0:t�1ðxtjy0:t�1ÞpYtjxt;Y0:t�1ðytjxt; y0:t�1Þ
pyt jy0:t�1

ðytjy0:t�1Þ :
ð4:9Þ

This result amounts to a nonlinear recursive equation for the evolution of the
posterior as observations accumulate, what amounts to a state space model [21].

From this basic result, many algorithms have been developed and applied to the
analysis of population data. From multielectrode data, how hippocampal place cells
encode spatial information was determined in real time [19, 22]. Receptive
field plasticity for these place cells was determined using an adaptive filter
strategy [8]. Particle filtering, a sequential Monte Carlo technique for estimating
the conditional mean, has also been used to measure these receptive fields [23].
Learning, a situation where a neuron continually changes its characteristics, has
been explored by estimating model parameters using the expectation maximization
(EM) algorithm [24].
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These are just examples of how modern statistical signal processing methods can
be used to �read� the neural code given an intensity description. But how well can
such methods succeed? Even though these algorithms all have the goal of mini-
mizing an error criterion, what is the smallest achievable error? How many neural
recordings need to bemade to infer the encoded input to a specific accuracy? Amore
general theory of information processing – information theory –needs to be explored
that sheds light on these questions.

4.5
Information Theory and Neural Signal Processing

In sensory systems especially and in neural information processing systems more
generally, we are ultimately concerned with how a neuron�s discharge pattern
represents information and what fidelity that representation provides. However,
how data are processed affects the quality of the analysis and what we can glean from
measurements. Information theory has much to say about what interfaces to neural
systems, for both stimulation and recording, can be effective.

The fundamental model for information theory analysis is shown in Figure 4.2. A
source produces S, which can be taken to be a stimulus, is encoded into the signal X .
The channel introduces noise and possibly distorts the signal to produce the signalY .
The decoder attempts to reconstruct from Y what the stimulus was by producing the
estimate Ŝ. More generally, this could be a cascade of arbitrary systems. For example,
the channel could be a measurement system trying to capture the encoded stimulus
and the decoder could be a signal processing system that extracts information from
measurements. In another scenario, the encoder could be a stimulation interface in
which the signal X is the result of neural stimulation.

The fundamental quantity of information theory is mutual information. If x and y
represent tworandomvariables, themutual informationbetweenthemisdefinedtobe

IðX ;YÞ ¼
ðð
pX ;Y ðx; yÞ log2

pX ;Y ðx; yÞ
pX ðxÞpY ðyÞ dx dy: ð4:10Þ

encoder

XS Y

channel

S

decoder

R(D)

C

D

R(D)

Dmin Dmax

C

Figure 4.2 The key quantities in Shannon�s
classic information theory – capacity and the
rate distortion function – are defined for the
standard communications and processing
model used in information theory. Capacity
(C) summarizes the channel that presumably
introduces disturbances into the

communication process. The rate distortion
function RðDÞ depends solely on stimulus
characteristics. Shannon�s rate distortion
theorem relates these two quantities,
showing that the smallest possible
distortion Dmin is determined by
C ¼ RðDminÞ.
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If the random variables are discrete valued, the integrals become sums without
affecting any of the properties of mutual information. The use of a base-two
logarithm means the �units� of mutual information are bits. Two important prop-
erties of mutual information are (1) that IðX ;YÞ ¼ 0 –mutual information must be
nonnegative – only when X and Y are statistically independent and (2) that its
maximal value is achievedwhenX ¼ Y : IðX ;XÞ ¼ HðXÞ in the discrete-valued case
and IðX ;XÞ ¼ þ¥ in the continuous-valued case. Mutual information completely
characterizes the degree of similarity between the statistical properties of two random
variables, making it a far more powerful measure of statistical dependence than the
correlation coefficient because these properties apply regardless of the random
variables involved. If X is a system�s input and Y is its output, zero mutual
information means the output does not depend on the input and maximal mutual
information means the output echoes the input exactly. More generally, the smaller
the mutual information relative to its maximum, the less Y represents X . In the
communications scenario, the mutual information between the channel�s input and
the output is significantly smaller than its maximum because of disturbances
introduced by the channel.

4.5.1
Data Processing Theorem

One of the most important post-Shannon results in information theory, the data
processing theorem, highlights the fragility with which signals represent informa-
tion. Using Figure 4.2 as an example, consider two systems of any kind – linear,
nonlinear, time invariant, time varying – in cascade. We use the notation X !Y !Z
to indicate the signals involved. The data processing theorem is quite succinctly stated.

IðX ;YÞ 
 IðX ;ZÞ:

First of all, this result means that regardless what the second system is, the degree to
which its output Z reflects the input X cannot be better than the representation by Y.
In fact, unless the system is very carefully chosen, the representation ofX byZwill be
worse! For example, the point process digitization processmost certainly reduces the
capability of extracting information about the original point process. However,
putting a quantitative measure on the reduction and interpreting it is quite difficult,
partially because calculation of mutual information in this case is very difficult. But
more importantly, applying the data processing theorem in this form demands a
cascade of two systems. The data processing theorem can be shown to hold between
a single system�s input and output using a different information theoretic
measure [15, 25, 26]. Consequently, interfacing to the brain will probably, but not
always, lead to performance reductions because of this result. We need more details
than this; Shannon theory tilted toward the general communications and processing
scenario (not just digital communications) suffices to some degree. We need two
quantities to delve more deeply into information process: the channel capacity and
the rate distortion function.
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4.5.2
Channel Capacity

The capacity defines the ultimate ability to extract information about the channel�s
input from its output [27]. For a point process, we take the intensity as the channel
input since it expresses how the information (the stimulus or the motor command)
is encoded by the point process. The output is, of course, the actual sequence of
events (the spike train) produced according to this model. More generally, when a
measurement system interacts with a system under study, capacity determines how
accurate the measurements can be. Mutual information expresses the statistical
dependence of the output on the input, but it depends on the choice for the input
distribution. To obtain a quantity that expresses the best possible situation, Shannon
optimized mutual information over all input probability distributions. Maximizing
in this way yields the channel capacity, a fundamental quantity that characterizes
any channel.

C ¼ lim
T !¥

max
pX ð � Þ2C

1
T
IðX ;YÞ: ð4:11Þ

As mutual information usually increases in proportion to the length of the
observation interval T , we divide by it, which results in capacity having units of
bits/s. The maximization is usually restricted to probability distributions for the
channel input that has characteristics defined by the constraint class C. The oft-
quoted channel example is an additive Gaussian noise channel wherein Y ¼ X þN,
N being Gaussian noise. The constraint on the channel input is a mild one: demand
that the input power E½X2� be less than a specified value P. Shannon showed that the
capacity was achieved when the input is Gaussian and that the capacity equals
1
2 log 1þ P

s2
N

� �
.

Kabanov [28] derived the capacity of the single point process channel, and Johnson
and Goodman [29] extended his result to the multiple Poisson process case. Both
results imposeminimal andmaximal constraints on the intensity: C ¼ fmðt;Nt;wtÞ :
lmin � mðt;Nt;wtÞ � lmaxg. If the maximal rate were not constrained, the capacity
would be infinite. Note that thismaximal rate equals the peak rate a given neuron can
produce, even though it may be capable of doing so only transiently. Kabanov found
thatCð1Þ, the capacity of the single neuron channel, to be attained by aPoissonprocess
and was related to the constraints according to

Cð1Þ ¼ lmin

ln2
1
e

lmax

lmin

� �lmax=ðlmax�lminÞ
�ln

lmax

lmin

� �lmax=ðlmax�lminÞ
" #

:

Typically, a neuron�s rate of discharge in response to stimuli can fall to zero, making
lmin ¼ 0. In this case, the expression for capacity simplifies greatly and we shall
frequently use this result in subsequent expressions.

Cð1Þ ¼ lmax

e ln 2
: ð4:12Þ
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Kabanov further showed that no non-Poisson process satisfying the constraints
can have a larger capacity. Our recent work [15] details this result, showing that
more realistic point process models that embrace refractory effects and other
dependencies on previous events have a strictly smaller capacity neatly given by the
expression

Cð1Þ ¼ max
mðt;Nt ;wtÞ2C

E½ mðt;Nt;wtÞ�
e ln 2

;

where E ½ mðt;Nt;wtÞ� equals the expected value of intensitywith respect to all possible
histories. This expected value is exactly the same as the one that appears in (4.8), the
expected value of the PSThistogram. For a Poissonprocess that has nohistory effects,
this quantity equals lmax. For more realistic models of single-neuron discharge
characteristics, the average rate is strictly less than lmax, thereby resulting in a smaller
capacity. For example, if absolute refractory effects occur (refractory interval D), the
capacity under a maximal rate constraint of lmax is given by

Cð1Þ ¼ 1
1þ lmaxD

� lmax

e ln 2
: ð4:13Þ

Capacity results are quite limited for neural populations. In contrast with
Kabanov�s general single point process result, multineuron results are confined to
jointly Poisson process descriptions of a restricted type [14]. Two issues arise in an
information theoretic analysis of a population�s capacity. The first is the input
innervation: do the neurons comprising the population have individual innervation,
do they share a single input, or do they have a combination of the two? Individual
innervation is shown in Figure 4.3a. From an information theoretic perspective, the
separate signals arise from encoding the stimulus into M signals in a coordinated
fashion. The decoder must use all the outputs (spike trains) to decode as much as
possible. The single-input scenario is shown in Figure 4.3b, wherein the encoder
produces one signal that serves as the common intensity of all the point process
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single aggregated output 
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(d)
multiple aggregated outputs 
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Figure 4.3 The panels show simple interfacing
scenarios to neural systems. In panel
(a), each neuron receives its own input, while in
(b) a single input drives all. In panels (c) and

(d), the neural outputs are summed, first with
only one composite output and the rightmost
with several outputs that aggregate overlapping
subpopulations.
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channels. Second, are there lateral connections among the population�smembers? In
Figure 4.3, the neurons function independently, with the occurrence of a spike in one
not affecting the production of a spike in another. In this case, conditioned on the
intensity, the point processes are independent and have zero correlation coefficient
values (if the time variations in X are taken into account). If lateral connections do
exist, at least some of these correlations would be nonzero. Interestingly, when no
lateral connections exist (zero correlation), input innervation (at least for the two
extremes shown in Figure 4.3) does not affect the capacity result. Consequently, the
capacity of the channel does not depend on which of these two ways of interfacing to
the subchannels is used. For a population ofM neurons, each of which ismodeled as
a Poissonprocess having amaximalfiring rate of lmax, the population capacityCðMÞ in
this case simply equals MCð1Þ. Thus, the capacity is proportional to the population
size, which makes a population far more capable of encoding a stimulus to a high
degree of fidelity than a single neuron.

When lateral connections among population members do exist, capacity depends
on the degree of connection-induced correlation and on the input innervation. If a
common input serves the population, increased coupling between neurons results in
a capacity smaller thanmCð1Þ. On the other hand, if each neuron has its own input, a
different result emerges: capacity increases with increased coupling, attaining values
that can double it from the uncoupled baseline. In either case, the presumption is that
the encoder and decoder know the channel�s characteristics and function optimally to
cope with the channel�s behavior.

4.5.3
Rate Distortion Theory

Shannon�s information theory goes well beyond dealing solely with communication
systems and shows that by using the capacity how the channel – any system in fact –
affects recovering encoded information from the channel�s output is entirely sum-
marized by the capacity. Letting S represent the stimulus and Ŝ its �estimate� after it
has been encoded, passed through a channel, and processed (Figure 4.2), this theory
begins by introducing a distortionmeasure dðS; ŜÞ that expresses how thefidelity of the
communication (or signal processing) system is to be assessed. Presumably, the
distortion increases as the discrepancy increases between the stimulus and its
reconstructed value. Interestingly, Shannon�s framework allows any reasonable
distortion measure (dðS; ŜÞ 
 0, equaling zero when Ŝ ¼ S). It can be chosen
according towhatever criteria evaluate what effective communication and processing
mean in any particular scenario. A common distortion measure used in commu-
nications and signal processing is the squared errormeasure: dðS; ŜÞ ¼ ðŜ�SÞ2. The
distortion measure could also incorporate some desired stimulus processing, in
which Ŝ relates to some feature of S. For control applications, the distortion could
incorporate time-to-target penalties.

Next, Shannon defined the average distortion D as the expected value of the
distortion measure with respect to the joint distribution of the stimulus and its
estimate.
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D¼D E½dðs; ŝÞ� ¼
ðð
dðs; ŝÞpŝjsð̂sjsÞpsðsÞ ds d̂s:

The conditional distribution pŜjSð̂sjsÞ depends on virtually everything in a neural
coding scenario: how the stimulus is encoded, the neuron�s spiking characteristics,
and how the decoder works. Recall that neuroscientists rarely know (or canmeasure)
Ŝ, what is presumably the estimated stimulus. In biohybrid applications, however,
particularly those involving an effector, estimation error (distortion) can be explicitly
measured. Shannon proceeded by defining the rate distortion functionRðDÞ to be the
minimal mutual information between the stimulus and its estimate over all possible
channels, encoders, and decoders that yield an average distortion smaller than D.

RðDÞ¼D lim
T !¥

1
T

min
pŜjSð � j � Þ: �D�d

IðS; ŜÞ: ð4:14Þ

Note that the minimization is calculated over all possible relationships between a
stimulus and its estimate, not just the one under study. In this way, we do not need to
specify the optimal estimator. The rate distortion function has units of bits/s. It is not
the bit rate of some equivalent digital scheme; rather it becomes the intermediate
variable, a universal unit of information, that evaluates howwell communication and
processing systems can perform according to the specified distortion criterion.

Rate distortion functions are notoriously difficult to calculate, with only a few
results known. If the stimulus source is a band-limited Gaussian random process
having maximal power P and bandwidth W , and the distortion measure is squared
error, the rate distortion function equals [27]

RðDÞ ¼ W log2
P
d
; D � P;

0; D > P:

0
@ ð4:15Þ

This result, shown in Figure 4.2, illustrates the properties all rate distortion functions
satisfy.

. RðDÞ is a strictly decreasing and convex function.

. RðDÞ equals zero at some distortion, remaining zero for any larger values. This
critical value is known as the maximal distortion dmax and corresponds to the
decoder�s best guess as towhat the stimulusmight bewithnodata. For example, in
the Gaussian case, mean-squared distortion is minimized by guessing Ŝ ¼ E½S�.
In the binary case, theminimumprobability of error decoder flips a coin biased to
the stimulus probability p. Consequently, no combination of encoder, channel,
and decoder should yield a distortion larger than dmax.

Shannon�s crowning result, the rate distortion theorem, unifies all of his results:
The distortion at which the rate distortion function equals the channel capacity
defines the smallest possible distortion Dmin any encoder and decoder can obtain:
RðDminÞ ¼ C (see Figure 4.2). The rate distortion function depends only on stimulus
characteristics and on the desired level of distortion. Capacity summarizes the
interference properties any system has that intervenes between the encoder and
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the decoder. The capacity determines via the rate distortion function the smallest
possible distortion that any encoder and decoder can achieve for a given source. The
value of Dmin defined by the source and the channel determines how well a given
system can perform, thereby serving as a benchmark. In more detail, Shannon
showed there exists an encoder and decoder that can achieve this performance
limit. Unfortunately, his theory does not reveal what they are; it merely states
they exist.

It is important to appreciate how important and general Shannon�s result is. Rate
distortion theory applies when no digital scheme is involved. Quite surprisingly,
�bits/s� is the fundamental unit of exchange in any communication or signal
processing system, whether it communicates discrete- or continuous-valued signals
and regardless of the criteria used to judge performance (the distortion measure).
Information theoretic rate (not to be confused with spike rate) serves as an
intermediary. Regardless of the distortion measure, all rate distortion functions
look like the one portrayed in Figure 4.2. Second, an important, general concept
emerges that highlights the importance of capacity: the larger the capacity the smaller
the achievable distortion can be in all cases.

4.5.4
Application to Biohybrid Systems

To show the relevance of rate distortion theory to biohybrid systems, we return to the
population capacity results. Because the capacity is proportional to the population
size, the smallest possible distortion must decrease accordingly. The nature of the
decrease depends on the details of the rate distortion function. Using the Gaussian
result of (4.15) as an example, we find that Dmin ¼ exp f�MCð1Þln 2=Wg: the
distortion decreases exponentially in a number of neurons. Consequently, with a
suitable encoder and decoder, a neural population can represent information many
times better than can a single neuron. Furthermore, the proper choice of inter-
connections among the neurons can increase the capacity, making a population of a
given size even more capable of supporting a low-distortion output.

Note that when the neurons function independently, capacity remained
unchanged when the encoder provided the same or individual signals to the neural
subchannels. When the subchannels were conditionally (conditional on the input)
statistically dependent, the capacity changed in these two conditions. This result has
important implications for stimulation-type interfaces. Presumably, electrical stim-
ulation will affect several neurons, essentially serving as a common input. If we take
individual innervation as the baseline, imposing a common input can affect the
capacity. If the neurons function independently, no capacity change will occur,
meaning that artificial stimulation can function as well as the natural one. The
utility of this result hinges on finding an effective encoder and the brain adapting to
the new information representation. On the other hand, if the neurons coordinate
their activity, using electrical stimulation can lower the capacity. In the context of rate
distortion theory, the smaller capacity means the minimal distortion Dmin must
increase, resulting in a performance deficit that cannot be overcome.
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Electrophysiological techniques for recording neural signals, either for scientific
study or for controlling prostheses, employ electrodes that each sum the electricfields
produced by several neurons. For single-neuron recordings, electrode position is
adjusted so that one spike train dominates and is well isolated. In such circum-
stances, the only confounding effects are recording noise and background gross
potentials. Johnson [17] showed that recording noise acts as a low-pass filter, the
cutoff frequency of which equals the signal-to-noise ratio times the rise time of each
spike, and that background signals can affect the measured point process intensity
according to their derivative. When the spike train is not well isolated, whether it be
from a single or multielectrode recording, either spike sorting is used to convert
recordings into spike trains, each of which supposedly represents the activity of a
single neuron, or the recordings are used �as is� in simplistic prosthetic applications.
In either case, how well the result represents the neural activity depends on the
algorithm used. Details vary from algorithm to algorithm, but information theory
places a hard limit on the fidelity they can achieve.

First of all, we know from the data processing theorem that once summed by
the recording electrode, no algorithm that follows can increase fidelity. Johnson
and Goodman [29] examined the consequence on the population capacity of
summing the activity of the entire population or summing the activities of several
overlapping subpopulations (see Figure 4.3). In the first instance wherein only one
electrode records the activity of many neurons, the channel capacity is 1:577Cð1Þ,
a little over one-and-a-half times the capacity of one neuron.2) Even though the best
possible spike-sorting algorithm may follow, the total capacity cannot exceed this
small value. If E electrodes are used, the best possible situation is for each to record
from half the population (but different subpopulations), in which case the capacity
becomes ð2E�1Þ 1:577Cð1Þ: the capacity is proportional to the number of electrodes
in the array. How to translate these results into a measure of prosthetic errors is
difficult. Suffice it to say, the smaller the capacity, the larger the best possible
distortion that any system can incur when it tries to extract information about the
source. In summary, regardless of an algorithm�s sophistication in decoding neural
signals, measurement prostheses cannot penetrate the performance barrier estab-
lished by the rate distortion theorem. This result suggests that recording techniques
must improve so that the activity of large numbers of neurons can be measured
before any measurement prosthetic algorithm can produce high-fidelity actions.

4.6
Summary

Point processes, the ubiquitous model of neural discharge patterns, are completely
characterized by their intensities. Neural signal processing for the scientist amounts
to estimating the intensity, not only for individual neurons but also for the joint

2) This result assumes that spikewaveforms are identical. If thewaveformsor even just their amplitudes
differ, this result is pessimistic.
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response of a neural population. Partially because no convenient model for jointly
distributed point processes exist, how to characterize a joint response is an open
research issue. The most direct approach is to measure PST histograms for each
neuron and to compute pairwise correlation functions. However, this approach does
not suffice to characterize fully the population�s response. More promising are the
dynamic, state-space-like approaches, which are very flexible but often computa-
tionally intensive.

The introduction of information theory, specifically rate distortion theory, into
signal processing helps frame the performance limits any algorithmcan achieve. The
theory�s generality is both useful and frustrating. Modern methods for recording
electric fields produced by neurons cannot overcome the capacity limits the aggre-
gation of individual responses into a superposition imposes. Exactly what these are is
the frustrating part: information theory only reveals that no matter what the
distortion measure used, aggregation reduces capacity thereby increasing error.

More telling is the prediction that stimulation interfaces can work very well.
Information theory throws up no roadblocks here like it does for gross recordings.
However, this result comes with the admonishment that a well-suited encoder must
be found (an engineering design problem) and that the decoder, the brain, can adapt
to the newway information is represented. The same holds for recording techniques
that produce individual spike trains, whether it be by careful electrode position or
some nonelectrical technique: no capacity loss impairs optimal performance but the
encoder – the nervous system –must adapt to the decoder, the apparatus designed to
translate neural signals into action.
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5
Dynamic Clamp in Biomimetic and Biohybrid Living-Hardware
Systems
Ryan Hooper and Astrid A. Prinz

The dynamic clamp is an experimental technique that enables the selective intro-
duction of artificial conductances in electrically excitable cells. This is accomplished
by establishing a hybrid system composed of biological tissue and a controlling
computational device. This basic ability endows themethod with not only a flexibility
for probing a wide variety of preparations but also a wide variety of potential uses for
study of the dynamics of excitable tissue. Unlike a number of the other hybrid
systems covered in this book, the dynamic clamp is primarily employed as a basic
research tool, with no therapeutic applications developed using it to date.

In this chapter, we will describe how the dynamic clamp creates an artificial
conductance, review some of the implementations in use, explore a few examples of
what kind of experiments are possible with this technique, and consider some of the
recent discoveries of the dynamic clamp�s limitations and future potential.

5.1
What is a Dynamic Clamp?

The dynamic clamp, also known as the conductance clamp, is a powerful tool
developed for studying the electrophysiological behavior of cells. It is composed of
a computational device connected to an electrically excitable cell or network of cells.
In many respects, the technique is very familiar: an electrically excitable cell is
impaled with an electrode that serves as an interface for the experiment, which is
recorded from and controlled by a user-operated tool that serves to observe and
manipulate the electrical dynamics of the cell. This reminds us of the voltage clamp
and current clamp, each of which independently holds its designated electrical
property (either voltage or current) in the cell fixed (i.e., �clamped�) for a given time
period, while simultaneously recording the other (current or voltage, respectively).
While these longer established electrophysiological tools are primarily geared toward
manipulating cellular electrical properties in order to measure cellular activity
dynamics, the dynamic clamp�s unique manipulation allows it to actually alter the
behavior of cells by perturbing the very operating principle upon which its electrical
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activity ultimately relies: conductance. This transmembrane conductance is the basis
of electrical activity in electrically excitable cells, be it via electrical cell-to-cell
coupling, voltage-dependent ion channels, or voltage-independent ion channels
(such as those controlled by synapses, giving rise to synaptic currents) [1].
The dynamic clamp introduces artificial conductances that either act in parallel with
or in lieu of such normally existing conductances.

In a sense, the dynamic clamp can be thought of as a current clamp that is
controlled by a feedback loop that determines the appropriate current to use at any
instant (Figure 5.1). Unlike traditional current clamp, the current to be used is not
known a priori. Instead, the current necessary to establish a given artificial conduc-
tance is calculated using the recorded membrane potential. This computation relies
on Ohm�s law, I¼ g�V, where I is themembrane current to be injected into the cell in
order to adjust the effective membrane conductance, g is the target artificial
membrane conductance, and V is the driving force of the biological component
being simulated. The final expressions for driving force and conductance are chosen
to simulate the dynamical properties of the biological component to be modeled.
Typically, this currentmust be calculated very quickly to keep upwith the dynamics of
the system being interfaced with.

This process is repeated cyclically based on a feedback principle. During any given
feedback loop, the device cycles between recording membrane voltage, making a
calculation of needed current, and injecting current. The calculation will typically
depend onmembrane voltage, and can be thought of as a computationalmodel of the
biological component that the experimentalist intends to mimic: whether it be a gap
junction, voltage-dependent ion channel, synapse,model cell, or evenmodel network
of cells.What is important is that the process to bemodeledmust have dynamics and
topology that can be approximated with a computational model and that those
dynamics and topology be programmable within the framework of the device
(whether it be software or hardware) used to implement dynamic clamp, and that

Figure 5.1 Typical dynamic clamp feedback
loop. The system cycles between recording the
neuron�s membrane voltage (Vm), then
calculating and applying a current (Iinj) to
impose a calculated conductance change
(g) at a reversal potential (E). Typically, these
operations are performed with the same
electrode, which necessitates a time-sharing
scheme. Note the intermediary presence of

the electrophysiology amplifier. This
provides the time-sharing scheme, translates
the dynamic clamp�s representation for Iinj
from a command voltage (Vcmd) into a
current, and performs other required
functions to record from the electrode.
Performance limitations of the amplifier can
make it a source of error in dynamic clamp
experiments [22].
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the complexity of the model works within the performance constraints of the
dynamic clamp system.

Oneof the simplest operations that the dynamic clampperforms is that of electrical
coupling, which is an equivalent computation to introducing a fixed conductance
between two cells. This was the operation performed when the dynamic clamp was
first introduced [2–5], when isolated embryonic chick ventricular cells were coupled
with an artificial electrical junction of a selected intercellular conductance, originally
termed an �Ersatz Nexus.� In this case, the cells were physically connected by a
dynamic clamp that consisted of analog circuitry that established a resistive
connection between the cells. This was accomplished by a difference computation
on the independently measured membrane potentials of the two cells, multiplying
this difference (driving force) by the desired conductance to obtain the junction
current, and injecting the resulting current into each cell, with opposite polarities, so
that the current may flow from one cell to the other, thus providing each cell with
input similar to what it would receive if it were coupled to the other via a real gap
junction. The resulting operation can then be described as

I1 ¼ GðV1�V2Þ;
I2 ¼ GðV2�V1Þ;

where Vi and Ii are the respective measured membrane voltages and calculated
injection current for each cell, and G is the (usually constant) conductance of the
synapse established between them. Note that the magnitudes of I1 and I2 are equal.

Other dynamic clamp tasks that go beyond a fixed conductance are performed in a
similar fashion, by accounting for the applicable parameters and parameter depen-
dencies in the model. So to simulate voltage-gated ion channels, the expression for
conductance is represented by a Hodgkin–Huxley model with attendant activation
and inactivation state variables [6, 7], or even aMarkovmodel [8, 9], while the driving
force is represented by the difference between the neuron�smembrane potential and
the reversal potential for that ion channel type. Ligand-gated conductances are
created in a similar fashion, where activity for the synaptic input is formulated and
used to activate the conductance of a model ligand-gated ion channel. In these two
previous cases, our simulated conductance has now evolved to a dynamic rather than
a fixed one. It allows for the enhancement of existing ion channels or even the
introduction of ion channels that are novel to the preparation. Another dynamic
clamp technique recently developed, known as the �dynamic action potential clamp,�
even allows another biological cell to serve as a vessel for biological ion channels that
act the part of the model conductance, which is linked to the cell of interest via the
dynamic clamp [10–12].

Once the conductancemodel is established, it is then implemented in the dynamic
clamp. The system performing this execution may operate based on analog, as we
saw earlier, or as is becoming most common, digital computational devices,
as developed independently by Sharp et al., Robinson and Kawai, and Hutcheon
et al. [7, 13–15]. As the system runs through its feedback cycle of recording, making
calculations, and injecting current, we notice that there are two unique, independent
modalities of activity that are interacting with one another: the biological voltage
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activity in the cell(s) and the model activity in the dynamic clamp. In order to
understand how to perform a dynamic clamp task, we must consider the physical
interaction of these two systems and their timescales, as the computational system
�reads� and responds to the biological system and the biological system �reads� and
responds to the computational system.

5.1.1
The Digital Dynamic Clamp

A dynamic clamp implemented with a digital system obtains all of the information
about the interfaced biological system through a series of periodically measured
voltage samples, each of which is simply an instantaneous measurement of the
recorded voltage at a given discrete time. This process, in which an analog (in our
case biological) waveform is given a digital representation by assignment of an
amplitude value and corresponding time value for a periodic series of discrete
points over a specified time interval, is known as analog to digital conversion (A/D).
The rate at which these samples are acquired by the dynamic clamp is known as
the sampling frequency, and is typically limited by the performance of the hardware,
computational demands of the software, and sometimes the number of simulta-
neous recording channels chosen to be utilized by the user (as for a computer data
acquisition (DAQ) board). At a minimum, we need this sampling frequency to be
high enough to track the fastest dynamics present in the activity of the biological
system under study. This is quantified by the Nyquist–Shannon sampling theorem,
which requires us to sample at a rate that exceeds twice that of the fastest dynamics
in our sampled activity. However, this performance requirement does not
account either for stability considerations that arise from the fact that the
dynamic clamp establishes a feedback loop or for imperfections in model imple-
mentations and numerical equation solvers, so it is not necessarily a comprehensive
performance guideline for achieving satisfactorily performing dynamic clamp
in itself. Each sample is also quantized, which is to say that it is given a finite
digital value whose resolution is determined by the precision of the system. This is
a source of potential measurement error, known as quantization error, so the full
scale range of the A/D system should be adjusted to match the amplitude of the
biological signal.

Once the digital dynamic clamp systemhas these samples on hand, it uses them to
inform and update the model. The information that will be utilized by the model is
determined by its physical dependencies. Sometimes, thismay include elements that
are not directly measured by the dynamic clamp, such as intracellular calcium
concentration, in which case the activity in question must be approximated with a
model of its own. Usually the modeled mechanisms are described with ordinary
differential equations (ODEs), as is the case for both Hodgkin–Huxley type models
and Markov type models, which instead of being implemented with analog
circuitry, must be represented and solved in a manner that works within the
framework of discrete time computation. A finite-difference approximation for each
of themodel equations� derivatives ismade, which reduces the differential equations
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to algebraic equations [16]. The equations are now in a form that can be solved
stepwise by a given solver, some of the most popular examples being the forward-
Euler, exponential-Euler, and Runge–Kutta solvers.

Once the conductance calculation is performed, as in the first step, the biological
system obtains all information from the dynamic clamp via the electrode. A digitally
implemented dynamic clamp sends a digital representation of the current to be
injected into the digital-to-analog converter (D/A), which creates the necessary
analog representation that eventually becomes the injection current, possibly
subsequent to some analog gain as needed to compensate and allow for the full
output range of the D/A to be used. As this injection current flows through the
electrode and into the cell, it alters the charge inside the cell, thus effecting a desired
overall conductance change. But this change is limited in that it flows from a small
interfacing electrode tip that acts as a point current source, and thus may fail to
provide adequate space clamp, depending on the electrotonic size andmorphology of
the cell [10, 17]. This prevents the dynamic clamp from fully mimicking a biological
process due to the absence of in vivo-like effects of the imposed conductance such as
spatially distributed ionic channel density, second-messenger activation, and intra-
cellular calcium concentration modulation. However, this limitation can be an asset
when one seeks to investigate the isolated impact of electricalmechanisms, free from
the confounding activity of other mechanisms, as was done in a recent study that
demonstrated that it is the voltage dependence of L-typeCa2þ channels that results in
pacemaker activity of dopamine neurons in the substantia nigra, rather than their
Ca2þ selectivity [18].

In addition, we require simultaneous membrane voltage recording and current
injection. Typically, this is accomplished by time-sharing recording and current
injection tasks with the discontinuous single electrode voltage clamp (dSEVC) or
discontinuous current clamp (DCC) method [19], which permits simultaneous
recording and injection with the same electrode. These methods have the added
benefit of limiting interactions between the two tasks, which reduces measure-
ment error.

As a digital dynamic clamp cycles through these various tasks, we assess the
performance of the system in terms of threemeasures: time step duration, jitter, and
latency. The time step duration is selected by the experimenter and set as a parameter
in the dynamic clamp, usually chosen as the limit of stable operation onmostmodern
systems, around 10–50 kHz for computer-based systems, and higher for hardware-
based systems. The system will then attempt to execute each dynamic clamp cycle of
sampling, calculating, and injecting current within this time step duration. If there
are excessive delays or other such imperfections in the involved hardware, the system
may fail to meet the targeted duration. We would prefer that the system was
guaranteed to never miss such deadlines, and if it is we say that it gives us �hard
real-time� performance. Furthermore, we would wish that each of these time step
executions would occur on an infinitesimal timescale to maximize accuracy and
account for the fastest dynamics in any studied system of interest. But in practice, the
time step duration is constrained on its lower bounds by system latency, and jitter can
result in time step variability.
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Latency is the time required for the system to execute the necessary calculations,
overhead tasks, analog and digital conversions, reads and writes, and other time-
consuming operations associated with the directly and indirectly required tasks that
performa dynamic clamp cycle between the time that a voltage sample is read and the
corresponding output is updated. Such delays are relatively fixed based on the
system�s architecture and performance.

Jitter is the cycle-to-cycle variability in the time step duration, which is typically
quantified by its variance for our purposes. Such timing inaccuracies generally
degrade the effective resolution of digital sampling systems and transform the
behavior of the time step duration to that of a random variable. Jitter arises from
many sources in digital devices, giving rise to jitter on multiple timescales, and like
latency, is an inherent product of the system design [20].

5.2
Dynamic Clamp Performance and Limitations

The first dynamic clamp, as implemented by Scott, was constructed from statically
configured analog hardware. Due to the difficulty and expense of reconfiguring such
a system, its flexibility and power is limited. It was the partnering of the dynamic
clamp with the programmable digital device that unleashed the general applicability
and flexibility that the technique is capable of. This approach of modeling processes
with a computational system can theoretically extend the performance limits of the
dynamic clamp to match that of each successive generation of faster, more powerful
computational platforms. Indeed, this has been the case so far. We have seen that as
computer performance and memory increase, the ability to perform ever more
complex and time-sensitive tasks with the dynamic clamp increases.

However, as timescales decrease and candidate technologies on which to base
dynamic clamp improve, it becomes important to assess each contender with a
rigorous and objective set of evaluation criteria. The accuracy of dynamic clamp
systems is our most important consideration if we want to guarantee that the
observed spike shapes, firing rate, or any other metric of cellular electrical activity
is due to our dynamic clamp manipulation, not just the product of a systematic
error in the system. So we would like to know the specific impact of the quantifiable
dynamic clamp system performance measures on accuracy such as jitter, latency,
step rate, and numerical equation solver employed. This was exactly the focus of a
recent study fromwhich anumber of interesting conclusions canbe drawn [21]. First,
while time step, latency, and ODE solver all proved to be important to accuracy,
latency was perhaps the most important. But the activity was most impacted by
error in the spike shape, not the firing frequency. While jitter is capable of causing
such errors, the error it produced was always bounded by the error produced by the
worst-case time step when fixed. The authors also were able to infer some basic
guidelines for necessary time step durations for Naþ and Kþ ion channels, and
reveal some error trends that may prove useful for diagnosing an error-prone
dynamic clamp.
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As with any feedback system, instability in the dynamic clamp can lead to system
output errors. Preyer and Butera recently quantified the widely observed phenom-
enon of transient instabilities in voltage levels during large conductance injections
using dynamic clamp [22] (Figure 5.2). This phenomenon was verified to be
consistently present in a variety of digital dynamic clamp implementations inde-
pendent of preparation and dynamic clamp system architecture and hardware. An
analysis of all of the experimental performance variables that are under the user�s
control that could have an influence on this phenomenonwas performed. The results
indicated that a dynamic clamp time step duration only chosen to be fast enough to
account for the dynamics of the studied biological system and ensure stability of the
ODE solver may not be fast enough to maintain stability of the dynamic clamp.
Traditionally, acceptable levels of electrode resistance and capacitance were revealed
to be insufficient for optimal dynamic clamp stability, as they tend to create voltage
instability by preventing excess electrode voltage that arises during dynamic clamp
oscillation fromdecaying before thenext time step occurs. Increasing dynamic clamp
time step performance increased this stability, but onlywhen electrode compensation
was sufficient. Unfortunately, themethods for attaining the optimal level of electrode
compensation have yet to be developed, so the presence of this instability at high
conductance outputs should bemanaged according to the limitations of the systemas
best as possible in the meanwhile.

5.3
Experimental Applications of Dynamic Clamp

The examples to follow will illustrate some of the basic conceptual questions that the
dynamic clamp can be employed to address. The first will illustrate how dynamic
clamp can be used to explore the contribution of specific neuronal mechanisms and
conditions (such as those contributed by in vivo-like conditions or specific type of

Figure 5.2 Typical dynamic clamp transient
instability. A simple up/down conductance
ramp introduced into a hyperpolarized neuron in
the abdominal ganglion ofAplysia californica. The

extent of the instability depends on conductance
magnitude and exists in most platforms and
preparations. Reproduced from Preyer and
Butera [22] with permission � 2009 IEEE.
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plasticity in synaptic input) to overall neuronal activity through knockin or knockout
of artificial conductances. The second will demonstrate the dynamic clamp�s capa-
bility to construct ad hoc neuronal circuits to investigate the behavior of neuronal
networks. These are but a few examples of dynamic clamp�s applicability among
many in the fields of neurophysiology and cardiac electrophysiology. In addition to
these abilities, and the previously mentioned role in creating artificial gap junctions,
dynamic clamp has also been used to simulate the effects of other voltage-indepen-
dent ion channels, voltage-dependent ion channels, and the effects of neuromodu-
lators [7, 13, 23, 24].Wewill not cover all the possible applications here, but a number
of comprehensive overviews are available [1, 10, 25, 26].

Notice that in all of these experimental possibilities, artificial adjustment of
functional membrane conductance serves to empower the experimenter to quickly
mimic physiological conditions that would otherwise be possible only with more
time-consuming and expensive pharmacological and genetic techniques, and does so
with far less limitations on what is possible in the modern laboratory. This is due to
the general applicability of the conductance modeling process. However, also note
that there are limitations that arise from the very process that enables this generality,
as alluded to earlier.

5.3.1
Example Application 1: Neuronal Gain Control

5.3.1.1 Synaptic Background Noise Mechanism
Neurons are known to perform important computational tasks. Two primary
examples of such observed phenomenon are additive and multiplicative operations
on their synaptic inputs. Functionally, these operations correspond to a transform on
the input–output firing rate relationship as a horizontal shift or a slope gain
(Figure 5.3), where the independent variable is synaptic firing rate or driving current
level, and the dependent variable is output firing rate. The output activity of neurons

Figure 5.3 Gain modulation in the
input–output firing rate relationship of a
neuron. A change in gain (dark gray, X) reflects
a change in a neuron�s input sensitivity,
while an additive shift (light gray, þ ) is

typically due to a change in the sum of synaptic
inhibition and excitation. Reproduced
from Rothman, Cathala, Steuber, and Silver
(2009) [36] with permission from Nature
Publishing Group.
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is often thought of as arising from the sum of synaptic inputs, both excitatory and
inhibitory, resulting in enhancement or suppression of output activity based on the
overall balance of opposing independent synaptic contributions (often described as
the �push–pull� tally). But gain modulation scales the neuron�s sensitivity in a
distinctly different manner that is essential for many computations. Some processes
that have been shown to depend on gain modulation include spatial perception [27],
attention [28, 29], auditory processing [30], and coordinate transformations [31–34].
However, lacking a thoroughunderstanding of themechanism(s) that give rise to this
phenomenon, it remained unclear if the traditional view of the push–pull mecha-
nism as the primary mode of information flow to neurons truly captures the full
picture of computational throughput in neurons. And it was the dynamic clamp that
was uniquely suited to explore this question.

Chance et al. [35] used dynamic clamp to examine cortical layer 5 pyramidal
neurons and found one such mechanism. In this study, the authors examined the
changes in input–output relationship due to varying levels of synaptic background
noise. It was known that the presence of this synaptic background activity caused an
increase in overall conductance and discharge variability, but the authors discovered
that as the strength of this background activity is varied, gain is modulated. This was
discovered by introducing model synaptic activity that mimics in vivo conductance
fluctuations into in vitro single neurons with dynamic clamp. Because the imposed
conductance waveform is modeled on a computer, its parameters are under full
experimental control.

The conductance waveform to be used by the dynamic clamp was constructed by
first determining the appropriate waveform for the unitary excitatory and inhibitory
conductance that arises from each presynaptic activation of AMPA or GABAA ion
channel populations, then summing these presynaptic events timed on a spike train
generatedwith a Poisson process. This was repeated independently for excitatory and
inhibitory channels, and finally injected into the cell after the dynamic clamp
converted the conductance waveforms into the appropriate current by multiplying
the conductance waveforms by their respective synaptic driving force, taken as the
difference of the synaptic reversal and membrane potentials,

Isyn ¼ gEðEE�VmÞþ gIðEI�VmÞ:

Here, gE and gI are the excitatory and inhibitory conductancewaveforms, respectively,
EE and EI are the excitatory and inhibitory synaptic reversal potentials, respectively,
and Vm is the recorded membrane potential.

The authors balanced the excitatory and inhibitory synaptic currents so that the
observed changes in input–output relationship with changes in background synaptic
activity would be free from confounding effects of altered overall excitatory drive that
would otherwise occur, resulting in little overall depolarization or hyperpolarization.
By varying the background synaptic input firing rates proportionally for both
excitatory and inhibitory inputs over discrete steps of 0� (no background synaptic
input), 1� , 2� , and 3� , the baseline observed synaptic background firing rate,
then driving the cell with a series of constant currents, the input–output relationship
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was observed and plotted. The results showed consistent incremental change in firing
rate sensitivity to driving current with changes in background synaptic rate, with no
observed additive shifts in preparations that did not exhibit excess excitation or
inhibition. These results correspond well to results from a computational model.
If indeed this is a primarymeans of gainmodulation, the simultaneous rise and fall of
synaptic input signals� excitatory and inhibitory componentswouldhave to be a neural
phenomenon that carries a signal to command changes in neural gain sensitivity.
If this were the case, the level of this covarying push–pull synaptic input could be
considered an independent information pathway to control the computation of a
neuron, resulting in a mode of operation that is similar to gate control in transistors.

5.3.1.2 Synaptic Depression Mechanism
In a subsequent study, Rothman et al. [36] used dynamic clamp to find another
mechanism that controls neuronal gain that operates independent of noise. They
studied cerebellar granule cells (GCs) with dynamic clamp and found that when
excitatory synaptic input with short-term depression (STD) is present, gain modu-
lation ismediated by inhibitory input. In this system, theGC is synaptically excited by
approximately fourmossyfibers (MFs) and receives inhibitory input fromGolgi cells.
The authors replaced this synaptic input with model synaptic input via dynamic
clamp,which created the ability to experimentally control the synaptic depression and
firing rate with model adjustments.

In order to construct the model synaptic excitatory postsynaptic currents (EPSCs)
for the dynamic clamp to inject and modulate, EPSCs were evoked by extracellular
stimulation of singleMF inputs with Poisson stimulation trains, and the resultingGC
output was recorded. Trains with similar statistics were repeated such that an average
waveform could be calculated, and stimulus artifacts were removed. This formed the
model for the depressing EPSCwaveformonce the voltage recordingwas converted to
conductance. Nondepressing waveforms were then constructed by fitting the first
EPSC responses in each train to amultiple exponential function, then convolving this
modelwith theoriginalPoisson stimulation train. The results of introducing these two
different artificial conductance trains showed amodulation of gain by STD that occurs
independent of noise, and appears to arise from the nonlinearity in time-averaged
excitatory synaptic conductances (Gexc) as a functionofMFstimulation rate introduced
bydepression since theGCfiring rate doesnot changeat anygivenGexc in thepresence
or absence of STD. Furthermore, the magnitude of this change in gain was shown to
be mediated by inhibitory input using the dynamic clamp to introduce simple tonic
inhibition. Each of these phenomena was brought to light with dynamic clamp and
reproduced with computational model simulations.

5.3.2
Example Application 2: Constructing Artificial Neuronal Circuits

We have already seen how one of the dynamic clamp�s most prominent features is
its ability to create artificial synapses in electrically excitable cells. Because the
manifestation of this synapse consists of a mathematical expression executed by a
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hardware platform interfacingwith either a computationalmodel cell or real cell, and
all of the parameters and connections are specified by the experimenter,
this technique can be used to establish any circuit that the user desires, within
the constraints of the hardware platform and experimental preparation accessibility
limitations (see Section 5.4). Just as any pair of electrically excitable cells can
be coupled by independently interfacing each individual cell with the same
dynamic clamp and accounting for the recorded activity of each cell in the equation
of the model synapse, any larger set of cells can be connected to one another by
extending this procedure to multiple cells. This not only allows the construction of
biological and hybrid circuits that would not otherwise have existed, it also gives the
user control over the structure and parameters of the circuit created, and an
additional avenue for inspection of the operating principles of circuits of electrically
excitable cells.

One example of such a study focused on exploring the intercircuit synchronization
of microcircuits [37], such as those that are proposed to underlie the complex cortical
activity in the brain. In one microcircuit view of brain activity, cortical microcircuits
exist with stereotyped topology that is composed of a group of neurons that interact
with one another through synapses and result in an overall circuit activity like that of a
central pattern generator (CPG), which is characterized by oscillatory behavior. These
microcircuits in turn are connected by synaptic connections in a manner that gives
rise to intercircuit coordination; however, the connections that give rise to this are
difficult to assay directly with experiments in the brain. To explore these connections
and attempt to determine the most likely connectivity patterns that these intercircuit
synapses must display in order to reliably yet flexibly facilitate coordination, the
authors connected two invertebrate stomatogastric (STG) CPGs with varied dynamic
clamp synapses.

The STG CPGhas a circuit configuration similar to that of a cerebral microcircuit,
including a pacemaking core connected to inhibitory neurons with reciprocal
connections. Synapse configurations were established, one at a time, as either
electrical coupling of pacemakers or inhibitory neurons, or chemical synapses
simulating excitatory or inhibitory synapses, connecting in unilateral or bilateral
configurations. The bilateral chemical synapses were arranged with either direct
reciprocal connections between similar neuron types or with indirect contralateral
connections from inhibitory neurons to pacemakers (Figure 5.4).

The resulting activity from these experiments indicated that the contralateral
inhibitory configuration is the most stable and flexible, offering both an improve-
ment in activity variability over isolatedCPGs and an optimality in the coordination of
phase relationships between the activity of different CPGs. Electrically coupled and
reciprocally inhibiting pacemakers also displayed coordinating ability, but with less
stability and flexibility.

In connecting multiple independent neuronal networks to one another, dynamic
clamp allowed the experimentalists to explore more general network operating
principles. Perhaps in the future, a more complete approximation of the dynamics
of cortical microcircuits, which contain a larger population of neurons than a single
invertebrate CPG, will be possible with a similar in vitro preparation that more
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fully enlists the computational capabilities of the dynamic clamp by introducing
computational model neurons into the network, creating a thoroughly hybrid
neuronal network.

5.4
Dynamic Clamp System Implementations and Future

5.4.1
Fundamental Considerations

As we have seen, a dynamic clamp implementation may consist of any electronic
system that is capable of making a few simple recordings, current commands,
and computations. However, the feature set designed into the system determines
how rudimentary or versatile it will be. Cost is another issue. And as we will see,
performance is a vital consideration. The number and degrees of freedom

Figure 5.4 Artificial microcircuit
configurations constructed from two simplified
invertebrate stomatogastric ganglion (STG)
pacemakers using dynamic clamp to test
microcircuit synchronization. Constituents are
the anterior burster (AB) andpyloric dilator (PD)
complex, pyloric (PY) and ventricular dilator
(VD) neurons, and laterlal pyloric (LP) and
inferior cardiac (IC) neurons. Configuration
(a) uses electrically coupled pacemakers, and

exhibits some activity stability. (b) employs
reciprocal inhibitory synapses between
pacemakers, while (c) uses contralaterally
inhibitory connections between pacemakers
and inhibitory neurons, making for the most
stable tested configuration. Configurations
(d), (e), and (f) displayed the least efficient
synchronization. Reproduced from Szücs,
Huerta, Rabinovich, and Selverston (2009) [37]
with permission from Elsevier.
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of these variables has resulted in a large number of different implementa-
tions [25], from the original implementations created with analog circuits [2]
to the latest systems that run on high-performance personal computers and
digital devices.

As personal computer platforms continue to progress and expand in computa-
tional power and decrease in cost, laboratories are increasingly relying on these
flexible systems to implement dynamic clamp. These systemsmake a lot of sense for
many labs because they are ubiquitous, cost-effective, fast, portable, intuitive to
interface with, possess extensive graphical user interfacing (GUI) capabilities
and flexibility, and provide the ability to draw on substantial existing technological
and user-community resources. Freely available open source software in the real-
time operating system and data acquisition card driver suite projects such as RTAI
and COMEDI have been particularly useful here (see Section 5.5), as have the
commercially developed software suites developed by National Instruments, espe-
cially the real-time version of LabVIEW [38]. Real-time operating systems
have proven to be valuable tools for fully utilizing the capabilities of the personal
computer to meet the performance demands of dynamic clamp. They accomplish
this by endowing the computer with the ability to more effectively meet certain
performance guarantees in performing a computational cycle, reducing jitter to a
level that is not possible with standard operating systems due to unpredictable
software interruptions and task scheduling. Implementing dynamic clamp on one of
these real-time operating systems circumvents these issues by forcing the running
dynamic clamp task to always have top execution priority.However, it appears that the
problems that necessitate this solution are becoming less of an issue in some systems
with recent multicore processor computers, which tend to split the routine operating
system tasks and high priority dynamic clamp tasks across the different processor
cores [9].

To create such a dynamic clamp setup, an investigator needs little more than a
computer with moderate performance by modern standards, a DAQ board and
associated connectors chosen to meet expected performance requirements, a simple
electrophysiology rig, and the ability to download software. Steady computer and
DAQ board performance increases have been raising the ceiling of possible dynamic
clamp step rates up to around 50 kHz for an averagemulticore systemwith a low-cost
DAQboard, and even higher possibilities for latest generationDAQ cards such as the
National Instruments M-series cards.

For various reasons, many implementations of the dynamic clamp based on
various technologies exist, with varied user interfaces, and different performance
advantages and drawbacks. Often individual laboratories would have unique needs
that were not readily met by available systems, so developed their own. Some have
attempted to make their systems broadly applicable and available for the research
community. Unfortunately, we cannot discuss all implementations in detail here, but
as this topic has been covered previously [10, 25], we will discuss a few of the
implementations released since the last overview. We also have attempted to list all
the available systems in the chapter resources.
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5.4.2
Recent and Future Implementations

Of the many personal computer implementations that exist, some recent efforts to
push theboundaries ofwhat these systemsare capable of, aswell as increase their ease
of installation and use, have been solidifying. The Real-Time eXperiment Interface
(RTXI) software package is now an active, well supported, in-use dynamic clamp (see
resources). This project has been the result of a combined effort of three labs that had
previously independently developed real-timeLinux computer dynamic clamp imple-
mentations (RTLab [39], RTLDC [40], and MRCI [41]), and has resulted in a much
improved, more broadly applicable, and up-to-date system. One of the major draw-
backs of real-time Linux-based dynamic clamp systems, which have otherwise been
attractive because of their low cost, precision, stability, and adaptability, has been their
sometimes significant installation difficulty. This issue is being addressed in RTXI
through thedevelopmentof a liveCDthat alsoworksas an installationdisk,which is at
present functional and available for beta testing. With this development, installation
difficulty should no longer be a significant barrier that labs need be concerned about
when deciding between different systems. RTXI also adds some new features and
flexibility such as a customizable graphical user interface, community-supported
plug-in functionality, and libraries that increaseeaseofprogrammingandflexibilityof
experimental protocols (see repository on Web site), and file recording in the HDF5
file format (see Section 5.5), which makes saving, managing, and organizing
experimental data significantly easier (personal communication, David Christini).
However, like most other computer-based dynamic clamp implementations, RTXI
still relies on DAQ board technology that limits the number of physical output
channels andoutput speed, and is limited in themodel complexity it canhandledue to
computational limits of contemporary personal computers [42].

Recently, another intriguing computer-based dynamic clamp implementation was
developed as an extension of the freely available Microsoft Windows-based QuB
software package for electrophysiology (see Section 5.5). Although it does not
technically use a hard real-time system, latency and jitter performance have proven
to be excellent onmulticore systems (personal communication, LorinMilescu) since
dynamic clamp tasks tend to run exclusively on one ormore of the available CPUs in a
multicore computer with this system. Furthermore, by building on top of a more
broadly targeted electrophysiology software suite, this dynamic clamp inherited an
impressive library of functionality and GUI flexibility that nicely compliments
traditional dynamic clamp operations in a way that makes novel application of
dynamic clamp procedures straightforward. For instance, one of this program�s first
uses was to study kinetic parameters of ion channels in a novel way that combined
dynamic clamp simulation of Markov model based ion channels with a parameter
search [9].

Still another new dynamic clampdeveloped byHughRobinson at theUniversity of
Cambridge is continuing on the path of implementing dynamic clamp on digital
signal processing (DSP) hardware to increase performance [25, 43]. This particular
development has opened up the possibility of having both the performance benefits

90j 5 Dynamic Clamp in Biomimetic and Biohybrid Living-Hardware Systems



of executing dynamic clampmodel equations on hardware that ismore ideally suited
to fast, highly parallel, low-jitter computation than the more generalized CPU
processor, while retaining all the benefits of an ease of programming that a personal
computer-based dynamic clamp would provide. But directly programming a DSP is
typically a time-consuming process that requires some technical expertise, which
makes it a less than ideal platform for varied and repeated dynamic clamp experi-
ments. Robinson circumvented this limitation by developing a scripting language that
performs the major programming tasks for a given typical dynamic clamp operation,
greatly increasing the user-friendliness of such systems for use in dynamic clamp.
Further efforts along these lines should one daymake such systems as easy to use and
as much versatile as the computer-based dynamic clamp systems, thus making
accessible their hardware�s full potential for significant increases in performance
andmodel and experiment complexity tomany. For themoment, thefinancial expense
to acquire such a system remains higher than a computer-based system. This will
continue to be an important factor as laboratories evaluate their dynamic clampneeds.

Perhaps among the most exciting current directions in new dynamic clamp
implementations are the moves to make the mechanisms of action more biological
in nature and broad in experimental applicability. Some of the systems such as
RTBiomanager [44] andRTXI are becoming so versatile that they are not only capable
of mimicking cellular electrical conductance but can also simulate chemical and
mechanical stimuli and other outputs, as well as receive such signals for inputs. This
was demonstrated recently when dynamic clamp was employed to mediate mechan-
osensory stimulation by controlling stepper motors that manipulated the physical
orientation of the statocysts of the mullosk Clione limacina [45]. The question arises
just how far this idea of using real-time control in biological scientific experimen-
tation can be pushed, which implies that the future of the dynamic clamp may be
bigger than just the dynamic clamp, itself.

5.5
Resources

. Scholarpedia: Dynamic clamp
http://www.scholarpedia.org/article/Dynamic_clamp

. Dynamic clamp implementations
-Advanced Dynamic Clamp [46]/RTBiomanager [44] (Linux-based)
http://arantxa.ii.uam.es/�gnb/adclamp/

-DynaClamp [11] (Linux-based)
http://www.amc.nl/index.cfm?pid¼4922

-Dynamic Clamp [47] (Windows-based)
http://stg.rutgers.edu/software/

-DynClamp2/4 [48] (Windows-based)
http://inls.ucsd.edu/�rpinto/dynclamp.html
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-G-clamp v2 [38] (Windows/NI LabVIEW-based)
http://hornlab.neurobio.pitt.edu/

-QuB Dynamic Clamp [9] (Windows-Based)
http://www.qub.buffalo.edu/wiki/index.php/Dynamic_Clamp

-RTXI – Real-Time eXperiment Interface (Linux-based)
http://www.rtxi.org/

-SM-2 Digital Conductance Injection System [8] (Windows/DSP-based)
http://www.cambridgeconductance.com/

-Spike Timing Dependent Plasticity Clamp [49] (DynClamp2-based)
http://inls.ucsd.edu/�nowotny/dynclamp.html

. RTAI – the RealTime Application Interface for Linux from DIAPM
https://www.rtai.org/

. COMEDI – Linux Control and Measurement Device Interface
http://www.comedi.org/

. HDF5 – The HDF5 Group
http://www.hdfgroup.org/HDF5/
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6
Biohybrid Circuits: Nanotransducers Linking Cells and Neural
Electrodes
Linfeng Chen, Jining Xie, Hargsoon Yoon, Malathi Srivatsan,
Robert E. Harbaugh, and Vijay K. Varadan

6.1
Introduction to Neural–Electrical Interfaces

The nervous system operates with electrical signals that are generated by neurons
and conducted through a complex network. Since the 1950s, there has been growing
interest in developing electrical interfaces to the nervous system. Such neural–elec-
trical interfaces connect neurons, the electrically active cells of the nervous system,
and electronic circuitry, and are used for neural recording and stimulation in
neuroscience research to understand the physiological processes at the cellular
level, and in neural prosthetics to help restore functions in the nervous system [1].
In these applications, the most common transduction scheme is based on micro-
electrodes, which work as a bridge between nerve cells and outside equipment for
transferring charge.

With rapid advances in the past few decades, microelectrodes are now considered
an important component of treatment systems for neurological disorders such as
Parkinson�s disease [2], epilepsy [3], andTourette syndrome [4]. Their application is also
extended to neural prosthetes, such as retinal implants, cochlear implants, and for
urinary bladder function restoration, and limb control in paralyzed individuals [5–10].

6.1.1
Typical Types of Microelectrode Arrays

Though single microelectrodes are still in use, in most cases it is highly desirable to
record the electrical activity from and/or stimulate multiple neurons simultaneously
so that neuronal network physiology can be studied. Therefore,much effort has been
made in developing various types of microelectrode arrays (MEAs) for different
purposes. Generally speaking, the MEAs for recording signals from and stimulating
neurons fall into two categories: planar MEAs and neural probes. Figure 6.1a shows
an example of a planarMEA for neurons in culture. In such a structure, the electrode
surface is approximately a flat two-dimensional (2D) surface, and there is a well
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(Teflon ring) for cell culture. PlanarMEAs arewidely used for in vitro studies of neural
network physiology. Several companies, such as Alpha MED Scientific Inc. (Japan),
Multi Channel Systems MCS GmbH (Germany), Bio-Logic SAS (France), and
Ayanda Biosystems SA (Switzerland), can provide planar MEAs for both stimulation
and acquisition purposes. Planar MEAs with low impedance (less than 30 kV) and
different electrode spacing can be obtained from the Alpha MED Scientific Inc. The
Multi Channel Systems MCS GmbH can provide MEAs with different electrode
spacing and different numbers of channels and wells. The combination of Bio-Logic
SAS and Ayanda Biosystems SA can provide MEAs with a three-dimensional (3D)
electrode shape that allows better tissue penetration and minimizes the distance to
active cells within the tissue.

Figure 6.1b shows an example of a neural probe. In this structure, multiple
recording and/or stimulating sites are located on a sharp protrusion, and the probe
can be used for in vivo recording and stimulation. Three-dimensional arrays of
recording and/or stimulating sites can be achieved by arranging protrusions with
desired stimulating and/or recording sites. Using such 3D neural probes, detailed
mapping of connections in the nervous system could be possible, and such studies
will give important insights into the signal processing mechanisms in the nervous
system [12]. Most of the current neural probes are silicon based, and they weremade
using standard planar photolithographic CMOS-compatible techniques on silicon
wafers. Michigan array and Utah array are two typical kinds of silicon-based neural
probes that are widely used in neuroscience research andmedical practice [1]. Neural
probes with different specifications are also commercially available. For example, the
NeuroNexus Technologies Inc. (USA) can provide neural probes, which are micro-
fabricated thin film MEMS devices with a typical thickness of 15 mm and a typical
width of 150 mm. Such a probe has up to 64 channels and can target brain regions up
to 10mmdeep; therefore, simultaneous sampling of various cortical brain layers can
be made.

Although rigidMEAs have long been used, themechanical mismatch between the
stiff probe and soft biological tissuesmay aggravate inflammation at the implantation

Figure 6.1 Examples of microelectrodes for recording from and stimulating neurons. (a) Planar
MEA for in vitro recording from neurons in culture. (b) Neural probe for in vivo cerebral neural
recording. Reproduced with permission from Paik et al. [11]. Copyright 2003 IOP Publishing Ltd.
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site. In recent years, flexible substrates, such as polyimide, have been used for
reducing the chronic tissue inflammation responses [1, 13]. In addition, MEAs on
flexible substrates donot easily break duringbiological andmedical reliability testing.

6.1.2
Electric Circuit Model

When microelectrodes are used to record neural signals, they are immersed in a
conducting medium, and electrochemical reactions occur at the interface between
the solid microelectrodes and the electrolyte. Microelectrodes record the voltages
producedby ionic currentflowaroundneurons as their cellmembranes depolarize in
response to inputs received from other cells. These neural �spike� potentials
represent the electrical half of an electrochemical system, with amplitudes as high
as several hundred microvolts and frequencies up to about 10 kHz [12, 14].

Figure 6.2 shows an electric circuit model for the electrode–electrolyte interface,
including the interfacial capacitance (CI), the charge transfer resistance (Rt), the
diffusion-related Warburg elements (RW and CW), and the solution resistance
(Rs) [15].

Although the parameters in the model are related to some physical properties of
the electrode–electrolyte interface, they can be scaled with frequency and electrode
areas. The impedances scaling with the frequency (f), the surface area (AS), and the
geometric area (AG) are given by [11]

jZCI j ¼ k=ðfASÞ; ð6:1Þ

jZRt j ¼ k=ðfASÞ; ð6:2Þ

jZWj ¼ k=ð
ffiffiffi
f

p
ASÞ; ð6:3Þ

jZRS j ¼ k=ð
ffiffiffi
f

p ffiffiffiffiffiffi
AG

p
Þ; ð6:4Þ

where k is a constant determined by the electrochemistry and ionmobility. The above
equations indicate that an increase in AS or AG will decrease the impedance of the
electrode–electrolyte interface.

Figure 6.2 Circuit model for an electrode–electrolyte interface.
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An electrode–electrolyte interface with low impedance is critical for neural
recording and stimulation. For in vitromonitoring of electrogenic cells, where small
microelectrodes are required for high-resolution recording and stimulation, the need
for low interface impedance is twofold. For stimulation, a certain current density is
necessary to generate activity. High impedance would result in a large applied
electrode voltage leading to undesirable electrochemical reactions that may be
harmful to neurons in culture. For recording, as the extracellular signals are low,
on the order ofmicrovolts for neurons, the neural signals will be lost in the noisy, ion-
based electric fluctuations of the surrounding electrolyte media if the electrode
impedance is not low enough [16]. In neural prosthetic systems, low-impedance
electrode–tissue interfaces are important both for maintaining signal quality for
recording and for effective charge transfer for stimulation [17].

In general, a recording microelectrode has a surface area in the range of
100–400 mm2, and a stimulatingmicroelectrodewith charge injection density around
800 mC/cm2 has a surface area in the range of 1000–10 000 mm2 [12, 18]. Usually,
microelectrodes have high impedance due to their small surface areas. Among
various methods for reducing interface impedances, based on the considerations of
signal-to-noise ratio, process steps, cell size, and positioning of probes, it is highly
desirable to minimize the interface impedance by increasing the effective areas of
microelectrodes, without increasing the physical surface area. The effective area of an
electrode can be increased through micropatterning, electroplating, surface rough-
ening, chemical modification, and so on [11, 19–21].

6.1.3
Requirements on Electrode Materials

In the development of MEAs, to ensure long-term sensitive recording and effective
stimulation, there are special requirements on the electrode materials:

1) Excellent cell adhesion: The surface roughness plays a critical role in neuron
adhesion [22]. Materials with rough surfaces or materials whose roughness could
besignificantlyincreasedbytraditionalsurfacerougheningtechniquesarefavorable.

2) Strong capability of transferring electrical signals: InanMEAsystem, transduction
is accomplished through the conversion processes between electrophysiological
activities of neurons and electrical signals. An MEA electrode must be electrically
conductive and it should conduct the desired electrical current to the contacting
neurons inmilliseconds toavoid theelectrolysisofbothwaterandbiomolecules [23].

3) High signal-to-noise ratio and high effectiveness: As discussed in Section 6.1.2,
increasing the effective area of a microelectrode is an effective way for decreasing
the interface impedance of the microelectrode. Therefore, materials whose
effective surface areas can be greatly increased by physical, chemical, and
electrical techniques are desirable.

4) Long-term operation: For neural implant applications, an MEA should allow
long-term recording and/or stimulation. Unexpected chemical reactions with
the biological medium may lead to a complete failure for the MEA operation.
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Due to this reason, a combination of good biocompatibility, mechanical stability,
and chemical durability is required for suitable MEA material candidates.

Based on the above considerations, inert metals, such as platinum, gold, iridium,
and tungsten, have been used in the fabrication of MEAs for a long time. Metallic
oxidematerials, such as iridiumoxide and tantalumpentoxide, have also beenused to
enhance the electrode efficiency and long-term reliability. Meanwhile, conducting
polymers including poly(pyrrole) (PPy) and poly(3, 4-ethylenedioxythiophene)
(PEDOT) are also investigated seeking the advantage of excellent biocompatibility
and high electrode efficiency.

6.1.4
Applications of Nanotechnology

Nanotechnology has a substantial impact on neuroscience because molecular and
signal processing occurs at the micrometer scale of neurons, which have distinct
nanometer-scale compartments, such as synapses, axons, and dendrites [19, 20].
Recent advances in nanotechnology offer a unique opportunity to integrate nanos-
tructures on the surfaces of electrodes to improve neural interfaces. The integration
of nanostructures on an electrodemay significantly increase the effective surface area
of the electrode and decrease the impedance of the neural–electrical interface.

The advances of nanotechnology have also made it possible to develop nanoelec-
trodes, which may exhibit unbeatable spatial and temporal resolution as well as
sensitivity [24, 25]. This area is still in its infancy, and at present, the main issues
facing the development and applications of nanoelectrodes include the preparation of
devices and the understanding of their electrochemical performances.

In this chapter, the applications of nanomaterials for improving the neural–elec-
trical interfaces will be discussed. Among various types of nanomaterials, nanopar-
ticles are first used in decreasing the impedance of neural–electrical interfaces.
Platinum black (Pt nanoparticle) coating is a common method for integrating
nanostructures onto neural electrodes [26]. Although platinum black coating is a
simple process that yields a large area increase, this approach is unreliable for long-
term implantations because its flimsy dendritic structures are not mechanically
robust and they would quickly dissolve and thereby lose their effectiveness. This
chapter will concentrate on the applications of nanowires, carbon nanofibers (CNFs),
carbon nanotubes (CNTs), and conducting polymer nanomaterials for the improve-
ment ofMEAs. The development of nanoelectrodes will also be discussed, and future
research directions in this field will be given at the end of this chapter.

6.2
Neural Probes with Nanowires

Based on themerits of combining one-dimensional (1D) behavior of nanowires with
the three-dimensional, high aspect ratio columnar structures, the use of aligned

6.2 Neural Probes with Nanowires j99



nanowires is one of the most active areas of development [27–30]. The aligned
nanowires onMEA electrodesmay significantly increase the electrochemically active
area of the electrodes without losing spatial resolution of the MEA. In the following
sections, we discuss neural probes with metallic nanowires and metal oxide
nanowires.

6.2.1
Metallic Nanowires for Neural–Electrical Interfaces

Metallic nanowires, such as Au and Pt, have been used for a wide range of
biomedical applications. Gold nanowires have been fabricated on various sub-
strates for neural interfaces [19, 31]. As shown in Figure 6.3a, Yoon et al. [31]
synthesized Au nanowires on microelectrodes with 50 mm diameter on a flexible
polyimide substrate. As shown in Figure 6.3b, significant reduction in impedance
was observed, compared to planar Au electrodes with the same dimension. As
shown in Figure 6.3c, the biocompatibility of nanowire electrodeswas confirmed by
culturing neuronally differentiating pheochromocytoma cells (PC 12) on the
electrode array, showing differentiation into neurons and preferential attachment
on nanowire electrodes. These nanowire ensembles are being tested both for
extracellular neural recording and stimulation using the brain and for physiological
sensing using cardiac myocytes.

Figure 6.3 (a) SEM image of neural electrode
array with Au nanowires on a flexible polymer
neural probe. (b) Comparison of impedance
magnitude on gold electrodes with planar
surface and nanowire bundles measured in

PBS buffer at 5mV AC and 0V DC potential
versus Ag/AgCl reference electrode.
(c) Fluorescence microscope image of
PC12 cells on nanowire electrode array.

100j 6 Biohybrid Circuits: Nanotransducers Linking Cells and Neural Electrodes



6.2.2
Metal Oxide Nanowires for Neural–Electrical Interfaces

Severalmetal oxide thinfilmshave beenused tomediate the electrochemical processes
at the electrode and cell interface for neural recording and stimulation. Tantalum oxide
and iridium oxide have been chosen as electrodematerials. Guyton andHambrecht [9]
investigated purely capacitive electrodes with a tantalum pentoxide surface for safe
stimulation of nerve cells and tissues without generating electrochemical by-products.
The large available surface area and the thin insulating coating of tantalum pentoxide
can operate as capacitor-stimulating electrodes having high capacitance per unit
volume. However, the application of Ta2O5 is limited by low charge injection that
results from the planar electrode structure. Instead, an iridium oxide thin film with a
pseudocapacitive property shows large charge storage capacity of over 25mC/cm2.
Electrochemical reaction of iridium oxide involves a reversible reduction and oxidation
reaction (Ir4þ þ e ! Ir3þ ), so that large charge injection and storage capacity can be
obtained. Iridium oxide exhibits both electronic and ionic conductivity.

Iridium oxide thin film can be fabricated by many types of processes including
electrochemical anodization of iridium, reactive sputtering, thermal decomposition,
and electrochemical deposition. To enhance electrode efficiency, a nanotechnology
integration method has been developed using heterostructured iridium oxide/gold
nanowires [32]. In this, heterostructured nanowires with an inner core of gold and
outer surface layer of iridium oxide provide a large charge storage capacity (48.6mC/
cm2) for neural signal sensing and stimulation. As shown in Figure 6.4, vertically
aligned heterostructured nanowires were fabricated at the tip of a neural probe with
polymer or titanium substrates. Impedance measurements indicated that the
heterostructured nanowire electrodes exhibited almost three orders of impedance
decrease, compared to bare gold electrodes.

6.3
Microelectrode Arrays with Carbon Nanofibers

Carbon nanofibers are cylindrical or conical structures with diameters varying from
a few to hundred nanometers and lengths ranging from less than 1 mm to several

Figure 6.4 Iridium oxide nanowire electrode array on a neural probe.
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millimeters. Generally speaking, a carbon nanofiber consists of stacked curved
graphite layers that form cones or cups, while the internal structure of carbon
nanofibers varies and is comprised of different arrangements of modified graphene
sheets [33]. Due to their structural similarity to elongated neurites, CNFs, particularly
well-aligned ones, have been used as matrixes to guide axonal growth and nerve
repair [34, 35].

The inherent sizes and structures of vertically aligned CNFs (VACNFs)make them
attractive for MEA development [34–36]. Conventional planar MEAs have electrodes
confined to the substrate plane and cannot penetrate into tissues. They are not ideal
for investigating acutely sectioned tissue slices and slice cultures because the injured
or dead cells and the reactive glia layers at the surfaces of these samples reduce signal
propagation from the active cells to the electrodes. To improve signal quality, it is
necessary to develop MEAs with 3D electrodes to penetrate into the tissue under
study. MEAs with VACNFs have been developed by several groups [35, 37]. Because
the electrodes are carbon-based, these arrays have potential advantages over metal
electrodes and could enable a variety of future applications as precise, informative,
and biocompatible neural–electrical interfaces.

As shown inFigure6.5, theVACNFMEAconsists of a linear array of 40 individually
addressedVACNFelectrodes, 10 mminheight, spaced15mmapart alonga total length
of 600 mm. Figure 6.5c indicates that individual VACNF electrodes were cone-like in
shape, allowing the electrodes to penetrate into the tissue to improve electrical
coupling. Figure 6.5b and c was acquired after the array was used for recording from
multiple slice cultures, indicating that theVACNFelectrodes aremechanically robust
and were not sheared during tissue positioning and removal [35].

As shown in Figure 6.6, to demonstrate the electric recording capability of the
array, a hippocampal slice was placed on the array crossing the hilus region with
electrode 1 in the DG granule cell layer and electrode 40 in the CA3 pyramidal cell
layer. The bicuculline methiodide (BIC)-induced epileptiform activities that
propagated throughout the hippocampal slice were detected on multiple
channels [35].

Figure 6.5 Images of VACNF arrays: (a) light
micrograph of a VACNF array. (b) SEM image of
a part of the VACNF array acquired after several
electrophysiological recordings. (c) SEM image
of a VACNFelectrode from the samearray in (b).

The SEM images indicate that the VACNF
electrodes are mechanically robust and are not
sheared by the process of multiple recordings.
Reproduced with permission from Yu et al. [35].
Copyright 2007 American Chemical Society.
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6.4
Microelectrode Arrays with Carbon Nanotubes

A CNT can be imagined as a seamless cylinder rolled up from an sp2 bonded
graphene sheet. Depending upon the number of layers, carbon nanotubes are
classified as single-walled carbon nanotubes (SWNTs) and multiwalled carbon
nanotubes (MWNTs). The application of carbon nanotubes in neuroscience research
started from the first report on the feasibility of using nanotubes as substrates for
neuronal growth and as probes of neural functions at the nanoscale [38]. It was found
that the surface charge of carbon nanotubes can be used to control the neurite
outgrowth [39]. Furthermore, directed neuronal growth can be achieved by using
patterned vertically aligned CNTs as the substrate [40].

The feasibility and advantages of using CNTs as MEA electrodes have been
confirmed by several groups [41–43]. In the following, we discuss the applications
of random CNTs and vertically aligned CNTs in the development of MEAs for
neural–electrical interfacing.

6.4.1
Microelectrode Arrays with Random Carbon Nanotubes

Amicrofabrication process has been used to fabricate MEAs with random CNTs [42,
44]. In this process, TiN tracks were deposited as conductors on a silicon dioxide
substrate followed by a deposition of a Si3N4 passivation layer. After etching holes
on the Si3N4 layer, a patterned Ni thin film was deposited as the catalyst for CNT
growth. Thefinal process involved a thermal chemical vapor deposition to growhigh-
density carbon nanotube islands as the MEA electrodes.

When neurons were cultured on such a CNT-based MEA, strong affinity of
neurons to CNT islands was observed. As shown in Figure 6.7a, neurons migrated

Figure 6.6 Bicuculline-induced epileptiform
activity was recorded from hippocampal slices
with the VACNF array chips. (a) A light
micrographof a hippocampal slice (13DIV) ona
VACNF array chip. (b) A schematic of the
hippocampal anatomy depicts the electrode
recording locations. The electrode array crossed
the hilus region from theDGgranule cell layer to

the CA3 pyramidal layer. (c) BIC-induced
epileptiform activity as shown for four channels
(electrodes 3, 4, 39, and 40). Compared to the
spontaneous activity, BIC induced continuous
large oscillations with amplitudes up to
600mV. Reproduced with permission from Yu
et al. [35]. Copyright 2007 American Chemical
Society.

6.4 Microelectrode Arrays with Carbon Nanotubes j103



from the flat surface and adhered exclusively onto the CNTelectrodes. By culturing
neurons with proper density, it was possible to form highly organized neural
networks, as shown in Figure 6.7b. This observation suggests a feasible method to
engineer the geometry of neural connections in a controlled manner.

A comparative study was conducted on commercial TiN-based MEAs and CNT-
based MEAs to investigate their neural recording capabilities [46]. Spontaneous
spikes with typical bursting and propagation waves from whole-mount neonatal
mouse retinas were recorded consistently after placing retinas over the MEA
electrodes. As shown in Figure 6.8, the left traces show the typical unfiltered
baseline noise levels while the right traces illustrate spontaneous spiking activities.
Obviously, compared to TiN-based electrodes, CNT-based ones display lower
baseline noise and substantially higher signals. It was also observed that the spike

Figure 6.7 (a) SEM micrograph of neuronal cells adhering preferentially to isolated islands of
CNTs. (b)Opticalmicroscope image of the patterned interconnected neuronal network formedwith
CNT-based MEA. Reproduced from Ref. [45] by permission of the Royal Society of Chemistry.

Figure 6.8 Recording neuronal activity by (a) TiN electrodes and (b) CNT-based electrodes.
Reproduced with permission from Shoval et al. [46].
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amplitudes increased gradually over a period, implying improvement of the
neuron–electrode coupling.

Gabriel et al. [47] reported another type of random CNT-based MEA, which was
fabricated by directly depositing SWNTsuspension onto standard platinum electro-
des. The results showed enhanced electrical properties of the modified MEA
electrodes with lower average noises, which can facilitate enormously the identifi-
cation and isolation of extracellular activities in neural networks.

6.4.2
Microelectrode Arrays with Vertically Aligned Carbon Nanotubes

It appears that random CNT-based MEAs are limited in providing true 3D scaffolds
for neuronal growth and cannot offer an effective way for electron transfer. It would
be favorable to use vertically aligned CNTarrays for both neural recording and neural
stimulation.

Several techniques have been employed for the synthesis of aligned CNTs. In
general, it is the van der Waals force among nanotubes that forms the self-oriented
large nanotube bundles with sufficient rigidity [48]. A prototype neural interface
using vertically alignedCNTs asmicroelectrodes was developed and proved to be able
to enhance the efficacy of neural stimulation and satisfy the safety requirements [43].
The schematic cross section of the device fabricated by microfabrication techniques
is depicted in Figure 6.9a. A thin film of heavily doped polysilicon serves as the
conducting layer. The top and bottom silicon dioxide and silicon nitride layers are
used to provide a hydrophilic surface, to reduce capacitive current, and to block ionic
current, respectively. By thermal catalytic chemical vapor deposition, carbon nano-
tubes self-assemble into uniform pillars projecting orthogonally from the substrate
surface, as shown in Figure 6.9b and c. After fabrication, the surface modification of
carbon nanotubes is a requisite step for better neuron adhesion. Among various

Figure 6.9 (a) Schematic of the vertically aligned CNT pillar microelectrodes. (b) CNT
microelectrode arrays. (c) Magnified image. Reproduced with permission from Wang et al. [43].
Copyright 2006 American Chemical Society.
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methods, noncovalent binding is an appealing approach due to the least invasive
characteristics andminimumdisturbance to the structures and electronic properties
of the nanotubes.

An in vitro stimulation was conducted on embryonic rat hippocampal neurons
with the vertically aligned CNT-based MEA. After culturing neurons on the MEA
for 4 days, current pulses were applied to stimulate neurons through CNT arrays.
The action potentials generated by the neurons were detected by observing
intracellular Ca2þ level change with a fluorescent calcium indicator dye. Thus,
by comparing the fluorescence intensity with and without the applied electrical
pulses, the efficacy of stimulation can be evaluated. The fluorescent microscope
observation confirmed the increase influorescence level in hippocampal cells when
a stimulus was applied. As shown in Figure 6.10, when a series of monophasic
cathodic pulses were applied with intervals, the fluorescence level changed accord-
ingly resulting in multiple peaks. This repeated excitation response strongly
suggests both the normal electrode functionality and the good physiological
condition of the neuron.

Vertically alignedCNTarrays can be used for neural recording aswell. Lin et al. [49]
developed a flexible aligned CNT-basedMEA bymicrofabrication, and demonstrated
the enhanced performance in neural recording. Furthermore, such a flexible device
could easilyfit the diverse shapes of the human body to record other types of electrical
signals such as EMG, EEG, and ECG [49].

6.5
Microelectrode Arrays with Conducting Polymer Nanomaterials

Because of their promising electrical properties, biocompatibility, and potential use
for drug delivery, conducting polymers such as PPy, PEDOT, and PEDOTderivatives
are attractive for neural interface applications [31, 50, 51]. PEDOT thin films and
nanostructures doped with anion such as poly(styrene sulfonate) (PSS) and LiClO4

Figure 6.10 Fluorescence intensity change with repeated neuron stimulation. Reproduced with
permission from Wang et al. [43]. Copyright 2006 American Chemical Society.
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have been investigated for the development of MEAs. As shown in Figure 6.11,
PEDOT nanotubes were electrochemically polymerized on microelectrodes with
electrospun nanofiber template. The impedance measurements showed that the
charge storage capacity of the electrode sites modified with PEDOT nanotubes
increased by about three orders of magnitude [52].

6.6
Nanoelectrodes for Neural Probes

In neurophysiology, it is generally accepted that sampling of neurons is biased by the
tip size of the electrodes used in neural recording, and the signals of many
populations of small neurons are rarely recorded with currently available electrodes.
Therefore, there could be an advantage of developing nanoscale tipped electrodes.
Perhaps, the signals fromsmall neurons thatwere difficult or almost impossible to be
recorded with the standard electrodes would become accessible with smaller tipped
electrodes [53].

Furthermore, microelectrodes can only measure extracellular potentials due to
their large electrode size. There are other issues associated with extracellular
electrodes [54]. First, the large size of electrodes may cause damage to the tissue
and cells. Second, signal-to-noise ratio may be too low for meaningful detection.
Third, the recorded signal could originate from several cells. These limiting factors
might be addressed by intracellular detections using nanoelectrodes. The typical
magnitude of extracellular signals is significantly lower than that of intracellular
signals (about 100mV). The significantly higher magnitude of intracellular signals
may result in higher measurement accuracy and higher signal-to-noise ratio.

Figure 6.11 Scanning electronmicrographs of
electropolymerized PPy and PEDOT nanotubes
on neural microelectrode sites. (a) Top view of
PPy nanotubes, (b) 3D view of PPy nanotubes,
(c) top viewof PEDOTnanotubes, (d) 3Dviewof

PEDOT nanotubes, and (e) impedance
spectroscopy over a frequency range of 1–105

Hz. Reproduced with permission from Ref. [52].
Copyright 2008 Elsevier.
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The advancements in nanotechnology havemade it possible to fabricate electrodes
with diameter less than 1mm. In the following section, we discuss two types of
nanoelectrodes: metal nanoelectrodes and CNT nanoelectrodes.

6.6.1
Metal Nanoelectrodes

Qiao et al. [53] developed a procedure for fabricating tungsten nanoelectrodes of
consistent tip dimension with high efficiency. The tip of a tungsten wire with
diameter 127 mm was etched down to less than 100 nm and then insulated with
cathodic electrophoretic paint. Focused ion beam (FIB) polishing was employed to
remove the insulation at the apex of the electrode, leaving a nanoscale-sized
conductive tip of 100–1000 nm. Figure 6.12 shows SEM images of tungsten nanoe-
lectrodes fabricated by this procedure.

The fabricated electrodes were used to record action potentials extracellularly in
vivo from single neurons in a cat. For the purpose of demonstration, an electrode
with an effective radius of about 700 nm was inserted into the brain of the
cat through a guide tube. Electrical signals were recorded with the electrode,
amplified by an extracellular amplifier. The nanoelectrode could record well-isolated

Figure 6.12 (a) Tungsten nanoelectrode with
an effective radius of 450 nm. (b) Tungsten
nanoelectrode with an effective radius of
100 nm. (c) Trace showing action potentials
recorded from an optic tract fiber of a cat with a

paint insulated tungsten nanoelectrode
(effective radius¼ 700 nm). Reproduced with
permission fromQiao et al. [53]. Copyright 2005
IOP Publishing Ltd.
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action potentials from single neurons for more than 50min, a recording time
sufficient for many neurophysiological studies [53]. Figure 6.12c shows the action
potentials recorded from an X-cell axon, and the recording exhibits excellent signal-
to-noise ratio.

6.6.2
Carbon Nanotube-Based Nanoelectrodes

Based on the mechanical robustness and high conductivity of CNTs, Kawano
et al. [54] proposed aCNT-based nanoelectrode for intracellular electrophysiological
measurements. As illustrated in Figure 6.13a, the nanoelectrode is based on an
individual CNT fabricated by a controlled local growth process and subsequently
encapsulated with an insulating layer of Parylene C. It is integrated with a silicon
microstructure with a total length of 5 mm, and its tip at the distal end is locally
heated to expose about 100 nm longCNTas the sensingport. Figure 6.13b shows the
TEM images of the tip region. The diameter of the nanotube is 10 nm and the
thickness of ParyleneC is 50 nm. The inset image is the close-up viewof the exposed
CNT. Such a CNTnanoelectrode, with its high strength and Young�s modulus, may
act as a low-invasive intracellular electrode for measurements inside neurons [54].

Figure 6.13 (a) Illustration of a carbon
nanotube-based nanoprobe with a silicon
support. (b) TEM image showing a CNT coated
with 50 nm thick ParyleneC as an insulator layer.

Inset image shows a close-up view of the tip
area. The diameter of the CNT is 10 nm.
Reproduced with permission from Kawano
et al. [54]. Copyright 2007 IEEE.
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6.7
Summary and Future Work

The extensive efforts in nanotechnology are accelerating the technological evolution
in the field of neural–electrical interfaces. Nanotechnology has been used to
significantly decrease the impedance of neural–electrical interfaces mainly by
increasing the effective surface areas of microelectrodes, resulting in more sensitive
recording andmore effective stimulation. Nanotechnology has also been used for the
development of nanoelectrodes, which could be used to record small neurons, and
perform intracellular recording.

Several aspects in the application of nanotechnology for neural–electrical inter-
faces are attractive for future research in this field. First, there needs to be a complete
understanding about neural–nanomaterial interfaces at the nanometer scale. Com-
prehensive and quantitative characterization of neuron–nanomaterial interfaces is
needed, and the robustness, long-term biocompatibility, and functionality of neu-
ron–nanomaterial interfaces should be verified [20]. Second, the chemical aspects of
neural recording and stimulation could be addressed through nanotechnology.
Recently, extensive attention has been paid to the chemical aspects of the nervous
system, with the goal of realizing probes that, in addition to stimulating/recording
electrodes, have a complete set of microfluidic components, including chemical
sensors, fluidic channels, and valves [12, 21, 51]. Nanomaterials and nanofabrication
techniques will play vital roles for this purpose. For example, nanotubes are an ideal
candidate for fluidic channels. Third, nanotechnology will be helpful for the
development of fully implantable neural microsystems. A fully implantable neural
microsystem could simultaneously sample signals at many points in a tissue,
providing insight into processes such as movement control, memory formation,
and perception [1]. It is expected that nanoelectronics could be integrated into
microelectrodes and nanoelectrodes for data processing and signal analysis.
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7
Hybrid Systems Analysis: Real-Time Systems for Design
and Prototyping of Neural Interfaces and Prostheses
William Barnett and Gennady Cymbalyuk

7.1
Introduction

Neuroprosthetics is a frontierfield at the intersection of neuroscience andbiomedical
engineering. It has proven itself efficient in restoring hearing, sight, and mobility to
people challenged by disabilities [1–4]. Its success has fostered a strong demand for a
variety of tools for design and prototyping so that neuroprostheses can be manu-
factured at the industrial scale necessary for practical medical applications. The
modern technology of real-time systems is commonly used for development and
prototyping in industries such as automotive, robotics, and aerospace. In neurosci-
ence, real-time systems form the basis for such techniques as dynamic clamp and
hybrid systems analysis see (see Chapter 5) [5–9]. Hybrid systems assembled from
artificial and living neurons are instrumental in developing prototype
neuroprostheses.

A neuroprosthesis implements and enables artificial neurons to interact with
living neural circuits in order to provide functionality to network dynamics. In order
for a neuroprosthesis to operate successfully, it must be biocompatible. Biocompat-
ibility is often discussed in terms of thematerial composition of a neuronal interface,
but here we emphasize biocompatibility in the sense that the dynamics of the
artificial neuron do not compromise the functionality of network activity. Hybrid
systems can be used to prototype for biocompatibility in neuroprostheses.

A hybrid system can be envisaged as a dynamical system. The activity of the system
is determined by the biophysical characteristics, that is, parameters. We use bifur-
cation theory tofind andmanipulate control parameters in order to avoid undesirable
dynamics brought on by such changes. Bifurcation theory allows us to identify and
characterize equilibria and oscillatory regimes such as spiking and bursting activity
in neuronal dynamics [10–12]. With it, we are also able to identify dynamical
transitions or bifurcations. A bifurcation dictates quantitative laws describing the
dynamics of the system.By applying these laws to a neuronalmodel or hybrid system,
we can design artificial neurons with robust activity. For a range of parameter values
in the artificial neuron, the activity of the hybrid system may appear functional even
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though it is not robust. These regimes of activity are structurally not stable: small
changes to biophysical parameters result in qualitatively different dynamics [13, 14].
Structural instability of artificial neurons can cause hazardous dynamics. Hazardous
dynamics are regimes of activity that are susceptible to unwanted dynamical transi-
tions. We consider two general cases of hazardous dynamics that are associated with
bifurcation: catastrophes and multistability.

A catastrophe is an abrupt change in the activity of the system that occurs at the
onset of some bifurcation. As a parameter changes in a way that approaches a
bifurcation, the activity of the system changes smoothly. At a critical parameter value,
the bifurcation occurs, and the activity of the system changes dramatically. A
catastrophe is usually associated with multistability, which is the coexistence of
attracting regimes. An external perturbation can then switch the system from one
basin of attraction to another. Multistability has been observed in both themodel and
the living squid giant axon [15–17]. Environmental noise can cause the multistable
neuron to switch back and forth between regimes irregularly [17].

In a neuron, the types of regimes that manifest as a result of catastrophe or
multistability can be nonfunctionalmodes of activity. The functionality of an artificial
neuron is critical for biocompatibility. We use bifurcation theory to identify hazard-
ous regimes of activity that may compromise biocompatibility and to identify control
strategies tomaintain robust and functional dynamics. By investigating the dynamics
of themodel, we identify different regimes of activity spanning the high dimensional
parameter space typical in a Hodgkin–Huxley style neuronal model. We can identify
catastrophes and multistabilities that may dominate the activity of the system or are
associated with hazardous dynamics. After any drawbacks and catastrophes of the
hybrid have been studied and classified, a new generation of the prototype is to be
designed and tested. This prototyping test phase is to be iterated until it achieves a
hybrid system that is deemed biocompatible in this sense.

Hybrid systems combine the parameter controllability of mathematical modeling
with the physical realism of electrophysiological experiments. From a technological
point of view, the implementation of hybrid systems is facilitated by developments in
dynamic clamp and real-time computing (Chapter 5). These hybrid systems require
software operating in real time on a timescale that is fast compared to the funda-
mental time constants of any real or artificial ionic currents involved. Designated
controllers are a provenmeans to fulfill these real-time requirements. Acontroller is a
computer that performs computational tasks on a strict schedule. Using such a
system to control a dynamic clamp enables real-time interaction between simulated
and biological cells. Dynamic clamp has been used to implement artificial ionic
currents in, and synapses between, living cells (Chapter 5) [5–9]. In hybrid systems,
dynamic clamp provides the interface between the simulated and the living neu-
rons [18]. These real-time solutions are often made from scratch. We use industrial
off-the-shelf dSPACE real-time controllers in conjunction with the MATLAB and
Simulink Real-Time Workshop to design and implement artificial neurons [19, 20].

In this chapter, we describe an easy-to-learn and -use technique with which to
performhybrid systems analysis.We describe a library of Simulink functions that are
compatible with dSPACE controllers and sufficient to implement a typical dynamic
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clamp and to construct any Hodgkin–Huxley style model of a neuron (which is
available at http://neuro.ni.gsu.edu/�gcymbalyuk/). Then,weprovide an example of
a real-time implementation of the Hodgkin–Huxley model of the squid giant axon
and demonstrate hazardous dynamics. Our final example describes hybrid
systems analysis of the leech heart interneuron and a half-center oscillator. We
discuss the applicability of our tool for prototyping and interfacing biocompatible
neuroprostheses.

7.2
Technology

The automotive, aerospace, and robotics industries rely on the extensive prototyping
of control systems using real-time technology. The same technologies can be used for
the development and testing of neuroprostheses by using hybrid systems analysis. A
number of dynamic clamp solutions exist that satisfy the requirements for real-time
computation (see Chapter 5). Real-Time Linux Dynamic Clamp and now Real-Time
eXperiment Interface (RTXI; www.rtxi.org) are both open source platforms based
on the real-time kernel extension for the Linux operating system [6]. National
Instruments (Austin, TX) produces several lines of real-time PXI data acquisition
boards in addition to the LabVIEW software suite that has been utilized for dynamic
clamp [21]. Milescu et al. have created a dynamic clamp extension for the QuB
program (www.qub.buffalo.edu) [22].

Hybrid systems need well-defined control systems and a robust platform in order
to operate effectively in real time. Our models are built in Matlab and Simulink,
which are a programming environment for technical computing (The MathWorks,
Inc., Natick, MA). Simulink has a graphically represented language with extensive
libraries of functions for common mathematical and analytical tasks. Some of these
libraries, such as Real-Time Workshop, are dedicated to real-time and hardware-
targeted computing. We use dSPACE real-time boards: the DS1104 R&D and the
DS1103 PPC. dSPACE, Inc. (Paderborn, Germany) produces and distributes a series
of control system-oriented real-time boards. A software package is bundled together
with the dSPACE boards. It includes Real-Time Interface (RTI) and ControlDesk.
RTI automatically converts block diagrams developed in Simulink into real-time code
for dSPACEhardware.ControlDeskpermits the building of a graphical user interface
with elaborate instrument panels that can be connected with corresponding model
variables for interactive control of real-time applications. dSPACE also provides a
number of Simulink libraries for the design of control systems intended specifically
for dSPACE hardware.

Our Simulink library is easy to use. Matlab and Simulink and the dSPACE
hardware are over-the-counter and compatible with modern desktop computers. In
addition, LabVIEW provides a number of tool-kits that allow Simulink models to be
configured onto a number of National Instruments hardware targets. Our ready-
made templates for Hodgkin–Huxley-type model components can be configured for
a specific biological system and directly executed in real time.
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7.2.1
dSPACE Boards

The dSPACE DS1104 R&D and DS1103 PPC controller boards are extensively used
in the automotive, aeronautical, and robotics industries to prototype control systems.
These controllers can be installed in most modern desktop computers. The DS1104
runs a Power PC 603emicroprocessor at 250MHz with 32MB of SDRAM and 8MB
of flash memory. A 100-pin serial input/output ribbon connects the board to the
CP1104 data acquisition board. The CP1104 has 16 BNC ports. The input voltage
range is �10V on eight analog-to-digital conversion BNC ports. The first four ports
are multiplexed over one channel with 16 bits of resolution. Each of the four
remaining ports has a dedicated channel with 12 bits of resolution. The eight output
ports each have a range of �10V with 16 bits of resolution.

The DS1103 is a full-sized ISA card. Alternatively, it can be housed in an external
box with a PCI card adapter for the host PC. This larger board is equipped with a
Power PC 750GX microprocessor running at 1 GHz with 32 MB local and 96 MB
global SDRAM. Data acquisition is performed on the CP1103 board that links to the
DS1103 via 3 parallel 100-pin serial ribbons. There are 32 BNC ports that handle
input/output over the range of �10V with 16 bits of resolution. Sixteen of the ports
are analog-to-digital input ports multiplexed over four channels. Each of the eight
digital-to-analog output ports has a dedicated channel.

While the dSPACE boards are primarily used to design and test airplane and car
control systems, they are also efficient controllers for prototyping hybrid systems.
Hardware specifications allow a board to simulatemodel neurons with the speed and
fidelity necessary for electrophysiological protocols. When paired with standard
laboratory equipment such as the AxoClamp-2B (Axon Instruments, CA), a Simulink
model can efficiently run dynamic clamp in real-time on the DS1104 or DS1103.

7.2.2
Introduction to Programming in Simulink

Our dynamic clamp is implemented as a Simulink block diagram. We describe a
library of functions that can be used to tailor it to specific needs. We have included a
model of an oscillatory leech heart interneuron as well as basic functions for the
construction of Hodgkin–Huxley-type neuronal models and functions to implement
all standard dynamic clamp features.

Simulink is a graphical programming language for designing control systems in
the MatLab programming environment. Operations and functions are represented
by individual blocks or groups of blocks, and the flow of the program ismade explicit
by arrowed lines connecting each block. Blocks have input ports, where arguments
and parameters are passed into the block, and output ports where the block returns
the results of the operations or functions that it represents. Depending on the type of
block, double clicking on a block allows the user to access its properties and options,
embedded code, or the embedded subsystemof blocks. Simulink comeswith 15basic
libraries of blocks in addition to several specialized libraries. The basic libraries
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contain blocks for math functions and signal processing, while the specialized
libraries are targeted for more specific applications such as real-time control.

A small set of basic blocks is sufficient to create a neuronal model based on the
Hodgkin–Huxley formalism (Figure 7.1a). These blocks work together when the
output port of one block is connected to the input port of the next block. Each of
these blocks has a number of ports, modes, and functions that can be changed by the
developer. By configuring the internal settings of a block, the user can change the type
of operation the block performs. For example, the Constant block supplies an
unchanging signal of amplitude specified by the user. This signal may be a scalar,
vector, ormatrix depending on the configuration. TheGain blockmultiplies its input
signal by a factor specified by the user. This can be used in place of theMultiplication/
Division block. TheMultiplication/Division block is versatile: the number and type of
inputs can be tailored to the task at hand. It accepts scalar, vector, ormatrix input. It is
also possible to specify element wise or matrix operations. Setting this block with a
single port that performs division is equivalent to obtaining the reciprocal for scalar
inputs or performingmatrix inversion onmatrix inputs. Similarly, the Add/Subtract
block has variable input ports and acts on scalar, vector, or matrix inputs. The
Integration block performs numerical integration. There are both fixed step and
variable step solvers available to the developer. The initial conditions for integration
can be defined as a parameter internal to the block or they can be passed in as an
argument. The Math Function block can be set to compute exponents, natural
logarithms, powers of 10, logarithms of base 10, complex amplitude, squares, square
roots, powers defined by input, complex conjugation, reciprocals, hypotenuses,

Figure 7.1 In Simulink, programs are
represented as diagrams built out of elemental
blocks. Each block represents an individual
operation. (a) A small number of blocks
representing basic mathematical functions are
sufficient to create Hodgkin–Huxley-style
neuronal models. (b) dSPACE blocks provide
Simulink models with a means to interact with
real-world systems. (b1,2) Channels with

dedicated BNC ports can be accessed with
individual blocks. The number at the end of the
block name corresponds to the channel number
of the port on the CP1104 board. (b3) The 16-bit
analog-to-digital conversion channels are
multiplexed. Internal block settings allow the
developer to specify to which ports the block is
connected.
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remainders, moduli, transposes, and complex conjugate transposes. The Trigono-
metric Function block can perform functions including sine, cosine, tangent,
arcsine, arccosine, arctangent, hyperbolic sine, hyperbolic cosine, hyperbolic tan-
gent, and hyperbolic arctangent.

These Simulink blocks are sufficient to create sophisticated neuronal models, but
do not provide us with a tool to interact with external systems. In order for a model to
be useful for hybrid systems, a control signal from the system must be passed to an
amplifier and into a cell as current, and the amplifier must feed the membrane
potential of the cell back to the model. We move the simulation of the system off the
desktop computer and onto a peripheral dSPACE board specialized for control
systems. dSPACE has provided a set of Simulink blocks for writing data to and
reading data from devices such as an amplifier. By passing the desired control signal
from a model into a dSPACE block, the signal is routed out through the data
acquisition board to the amplifier. Similarly, a dSPACE block acts as a source in a
Simulink block diagram by routing the membrane potential of the cell back onto the
control board. Blocks compatible with the DS1104 board are located in the DS1104
MASTER PPC library that is located in the dSPACE RTI1104 PPC directory in the
Simulink library browser. dSPACE blocks allow the control system to interact with
other devices via specific ports on the CP1104 (Figure 7.1b). The DS1104ADC_C5
block reads input from the board with 12-bit resolution. The C5 suffix indicates that
the block corresponds to port 5, but the block is applicable for ADC ports 5 through 8.
The DS1104DAC_C1 block writes to a digital-to-analog port with 16-bit resolution
and is applicable for all eight digital-to-analog ports. For the DS1104DAC and
DS1104ADC blocks, the user can specify the channel with which it is associated
by changing the number in the suffix to the desired port number, provided that it is
within the applicable range. Finally, the DS1104MUX_ADC block reads from
analog-to-digital ports 1 through 4 at 16 bits. In order to specify which port or ports,
it is necessary to change the settings of the block.

7.2.3
Library for Dynamic Clamp

The dynamic clamp is a tool used to perform electrophysiological experiments by
injecting current with particular dynamical characteristics into a living cell. In this
manner, an artificial current with characteristics defined by the researcher can be
introduced in addition to the existing set of ionic currents endogenous to the
membrane. Alternatively, the dynamic clamp can be used to substitute an artificial
current with desirable characteristics for an endogenous ionic current. A hybrid
system uses the dynamic clamp as a link between the computational and the living
components of the system in order to realize real-time control of the temporal
characteristics of neuronal dynamics. The dynamic clamp is described in detail in
Chapter 5.

Let us consider the hyperpolarization-activated current (Ih) identified and mea-
sured in the heart interneuron (HN) of themedicinal leech and then implemented in
the canonical model of HN [23, 24]. The membrane potential and time in this model
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of the HN are in units of volts and seconds. The equations for the current and its
activation are

mh¥ðVÞ ¼ 1
1þ 2 expð180½Vþ 0:047�Þ þ expð500½Vþ 0:047�Þ ;

tðVÞ ¼ 0:7þ 1:7
1þ expð�100½Vþ 0:073�Þ ;

dmh

dt
¼mh¥ðVÞ�mh

tðVÞ ;

Ih ¼ ghm
2
h½V�Eh�

such that gh is the maximal conductance, Eh is the reversal potential, and mh is the
activation variable. The functions mh¥ðVÞ and tðVÞ are the steady state and time
constant of activation. These types of models lend themselves to hierarchical
organization. At the highest level, the model, environmental parameters, and
dSPACE links to the data acquisition board are assigned. Descending into the model
reveals a menagerie of blocks and subsystems.

A block diagram built to perform a specific task can be condensed into a single
block so that complicated systems can be organized into a set of subsystems. A
subsystem is a block diagram that is represented by a single block. Subsystemsmake
it easy to conceptualize and organize the flow of operations in a block diagram by
establishing a tree-like hierarchy for functionalmodel components.Mundane details
of computation can be sequestered to lower hierarchical levels while control para-
meters can be readily available for manipulation closer to the root of the model.

At the lowest organizational level, system functions are evaluated. The operations
performed at this level are primarily the calculations of steady-state membrane
potentials and gating variable time constants. The steady-statemembrane potential of
Ih is a sigmoidal function (represented by f ðb;VÞ in Figure 7.2a). The corresponding
block diagram is inserted into the subsystem block hnInfh. The parameter b is an
argument of the function and an input port of the block. It will be assigned by a
Constant block at a higher organizational level. Other parameters of the function,
such as the Gain blocks set at 180 and 500, can still be accessed fromControlDesk in
real time, but are left at this lower organizational level because there is no anticipation
of accessing them. The steady-state membrane potential for the activation of Ih is a
unique function. The function for the voltage-dependent time constant of activation,
however, is frequently used in our model. From current to current, these functions
are represented by similar equations differing only in parameter values. Rather than
build a dozen unique diagrams for time constant functions, a small set of equations
can be reused to define many gating variables. A common equation for a voltage-
dependent time constant is also a sigmoidal function and contained in the subsystem
block hnTau (represented by f ða; b; c; d;VÞ in Figure 7.2b). In this case, each of the
parameters is assigned at a higher organizational level so that the same block can be
used in more than one gating variable.

The equation for the derivative of the activation of Ih, dmh=dt is presented as a block
diagram in Figure 7.3a. The Simulink subsystem block for this equation is mh with
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one input port, V, for the membrane potential and one output port, mh, for the value
of the gating variable. Inside the subsystem, the dynamics of the gating variable are
defined by the steady-state activation block hnInfh and the time constant block
hnTau.At this hierarchical level, the parameters left undefined inside these blocks are
passed in as arguments along with the membrane potential. It becomes important,
when working in ControlDesk, to give these Constant blocks names that explicitly
identify not only the parameter that each represents but also the specific current,
variable, and functionwithwhich each is associated so that theymay be differentiated
from similar blocks in other subsystems.

Each ionic current subsystem has input ports for the membrane potential, the
maximal conductance, and the reversal potential and output ports for the current and
each of the intrinsic gating variables (Figure 7.3b). The eight subsystem blocks
representing the voltage-gated currents are assembled to create a complete model of
the HN neuron. This model is implemented as the �HN Neuron� subsystem
(Figure 7.4).

The mutually inhibitory HN cells form a robust half-center oscillator. Our model
utilizes a fast spike-mediated synapse as the agent of this inhibition [24, 25]. The
activation and modulation of ISyn are dynamical variables that are controlled by the
presynaptic membrane potential. Spikes of the presynaptic cell lead to an increase in

Figure 7.2 (a) The function f ðb;VÞ denotes
the steady-state membrane potential of Ih. The
block diagram equivalent to f ðb;VÞ is
embedded in the subsystem block hnInfh. In
this case, a single parameter is defined at a
higher organizational level. (b) The voltage-
dependent time constant of activation of Ih can

be written as f ða; b; c; d;VÞ, and its block
diagram is embedded in the subsystem block
hnTau. This function is not unique to Ih. By
defining many parameters at a higher
organizational level, this block can be used for
different time constants in other subsystems of
the same model.
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the conductance of the current, and the membrane potential of the postsynaptic cell
drives the synaptic current. The synaptic current on the postsynaptic cell is summed
and integrated along with the intrinsic ionic currents of themembrane. The updated
membrane potential is fed back into the intrinsic ionic current subsystems and is also
passed out of the cell to determine the activation of the synapse onto the other cell.
The neuronal subsystemHNwFastSyn implements the synaptic current by including
the ISynS ionic current block and an additional input port for the presynaptic
membrane potential.

A hybrid system has both a living component and a computational component. An
electrode placed inside of a living neuron reads the membrane potential and injects

Figure 7.3 (a) The activation variable for Ih is
determined by the equation for dmh=dt that can
be put together using preexisting functions for
steady state of activation and time constant of
activation (see Figure 7.5). At this hierarchical
level, constants left undeclared in constituent
functions are assigned and passed into the

appropriate input ports. (b) The current
subsystem, Ih, has two outputs: values for mh

and Ih. Functionally, the block is meant to
evaluate the current, but it is convenient to pass
out the activation variable as well, so that
its dynamics can be recorded for further
analysis.
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current. Each of these processes is mediated by an amplifier and a data acquisition
board. Aprocedure running in real-time allows a researcher to analyze captured data
and directly control the dynamics of an injected current on the fly. By implementing
our neuronal model in such a procedure, the model may interact with a living cell.
The membrane potential of the living cell is read off the electrode and passed to the
model running in real time. This data feed is utilized to produce a synaptic response
on themodel neuron, and the response of themodel cell is used to calculate a synaptic
current that is then injected back into the living cell. The subsystemblockMathAndL-
ive demonstrates an implementation of just such a procedure on the DS1104
controller.

By connecting the voltage out and injected current command ports on an amplifier
to the ADC and DAC ports on the CP1104 data acquisition board, the dSPACE ADC
and DAC Simulink blocks provide a neuronal model direct access to its living
counterpart. Themembrane potential of the living cell is passed from the ADC block

Figure 7.4 This is the model hierarchical level.
Each of the eight voltage-gated currents is
implemented as a subsystem block to keep the
flow of the program uncluttered and allow
maximum utilization of generic library

functions. Conductance and reversal potential
parameters are assigned at and each of the state
variables is passed out to a higher
organizational level for ease of access in
ControlDesk.
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to the model cell where the live-to-math synapse is calculated. This current is
summedwith the intrinsic currents of themodel neuron and integrated.Meanwhile,
the membrane potential of the model cell is used to calculate the activation of
the math-to-live synapse, and the membrane potential of the living cell is used to
calculate the synaptic current. The value of the current is passed into the DAC block,
and the signal is fed from the CP1104 board into the injected current command
port on the amplifier.

7.3
Applications

7.3.1
Building Neuronal Models with Simulink for Real-Time Analysis

Consider the model of the squid giant axon [26]. It includes a fast sodium
current (INa), a delayed rectifier potassium current (IK), a leak current (IL), and an
injected current (Iinj). The differential equation for membrane potential takes
the form

dV
dt

¼ 1
C

Iinj��gKn
4 V�EK½ ���gNam

3h V�ENa½ ���gL V�EL½ �� �
;

where the gating variables are defined as the differential equations

dn
dt

¼ an½1�n��bnn;

dm
dt

¼ am½1�m��bmm;

dh
dt

¼ ah½1�h��bhh

and the rate functions are

an ¼ 10 � ½10�V �
expð½10�V �=10Þ�1

;

bn ¼ 125 � expð�V=80Þ;

am ¼ 100 � ½25�V �
expð½25�V �=10Þ�1

;

bm ¼ 4000 � expð�V=18Þ;
ah ¼ 70 � expð�V=20Þ;

bh ¼ 1000
expð½30�V �=10Þþ 1
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such that V is the membrane potential in millivolts, n is the activation of the
potassium current,m is the activation of the sodium current, and h is the inactivation
of the sodiumcurrent. In thismodel, time is in seconds. Themaximal conductance of
an ionic current and its reversal potential are �g ion andEion. The parameter values used
for maximal conductances are �gK ¼ 36mS=cm2, �gNa ¼ 120mS=cm2, �gL ¼
0:3mS=cm2, and the values used for reversal potentials are EK ¼ �12mV,
ENa ¼ 115mV, and EL ¼ 10:13mV.

Hodgkin–Huxley style neuronal models typically share a common structure.
Gating variables are defined by voltage-dependent rate functions, currents are
defined by gating variables, and the membrane potential is computed by integrating
the sum of the ionic currents. The equations at each level of a model are often
identical apart from parameter values. Wemake Simulink block diagrams as generic
as possible, so that the same block can be used to buildmore than one gating variable
or ionic current. With this copy-and-paste style of programming, it is easy to compile
libraries of multipurpose functions.

The dynamics of the squid giant axon model are determined by three channel
opening rates and three channel closing rates. Each of these six rate functions can be
described by one of the following three equations:

k1ðc; d;VÞ ¼ c½d�V �
expð½d�V �=10Þ�1

;

k2ðc; d;VÞ ¼ c � expð�V=dÞx;
k3ðc; d;VÞ ¼ c

expð½d�V �=10Þþ 1
:

Functions k1ðc; d;VÞ, k2ðc; d;VÞ, and k3ðc; d;VÞ are embedded in the subsystem
blocks k1, k2, and k3 with input ports for c, d, and themembrane potential (Figure 7.5).
Block k1 corresponds to rates an and am; block k2 corresponds to rates bn, bm, and ah,
and block k3 corresponds to the rate bh.

These rate functions and their associated parameters identify the otherwise
generic gating variable derivative blocks. The gating variable blocks are used in
much the same way; once the correct rate function and parameters are assigned, the
derivative block can be dropped directly into themodel. For example, the block dn%dt
computes dn=dt ¼ an½1�n��bnn. At this level of organization, the derivative block
calls the rate function blocks k1 and k2 and assigns the rate parameters for an and bn
(Figure 7.6). It uses the current gating variable and membrane potential value to
evaluate these functions and outputs the derivative of the gating variable with respect
to time. The equations governing the conductances of the ionic currents are largely
unique, so there is a dedicated block for each current.

In this model, integration is performed as a vector operation. The derivatives of
each of the variables of state are multiplexed into a single signal and passed into the
integrator. In the block diagram, themultiplexed signal is a thicker connecting arrow
(Figure 7.7). The actual operation of integration is performed on each derivative
independently. There are many methods for numerical integration. The simplest
method is Euler�s algorithm where, given some initial value of a function, F, the
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derivative of the function is evaluated at discrete intervals of time in order to produce
a numerical approximation ofFas it evolves over time. Othermethodsmay produce a
more accurate approximation but may not meet the time constraints imposed by the
application.

Figure 7.5 With these three unique subsystem
blocks, one can implement in Simulink any of
the six rate equations of the Hodgkin–Huxley
model. (a) The block k1 represents function
k1ðc; d;VÞ. This block is used for the ratesan and

am. (b) Block k2 represents function k2ðc; d;VÞ
that corresponds to rates bn, bm, and ah. (c)
Subsystem block k3 represents the function
k3ðc; d;VÞ that corresponds to bh.
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7.3.2
Propensity to Hazardous Dynamics of the Squid Giant Axon

For the parameter values provided by Hodgkin and Huxley, this model does not
exhibit periodic tonic spiking. A brief depolarizing injected current pulse may elicit
an individual spike of the membrane potential, and a constant depolarizing injected
current may bring the cell into a regime of tonic spiking. For a particular range of
values for Iinj, there is coexistence of a stable stationary state and a stable tonic spiking
regime [15, 16]. These two regimes are separated by the stable manifold of a saddle
orbit. The coexistence means that the neuron could be found in either the silent or
spiking regime. Also, it has been shown that a pulse of current can switch the activity
of the neuron between these two regimes [15, 16].

This scenario can be tested by applying episodes of noise to the artificial cell
(Figure 7.8) [17].We introduce amechanism throughwhich amodel can interact with
external processes. For this example, the dSPACE DS1104 hosts the model of the
squid giant axon. The basic Simulink and dSPACE data acquisition blocksmay all be
compiled to run in real-time. The DS1104MUXADC block reads input from the first
four analog-to-digital channels on the CP1104. This block will read the external
stimulus used to switch the model from spiking to silence. The ADC block feeds
directly into a gain block, so that the stimulus signal can be amplified to sufficient
magnitude and is also modified by an offset current to keep the ambient stimulus
signal at zero.

The model is compiled with Real-TimeWorkshop and is loaded onto the dSPACE
board. We have designed an example of a graphical user interface implemented in

Figure 7.6 The maximal conductance of a
current is determined by the component gating
variables. The temporal characteristics of each
of these gating variables are determined by a
pair of rate functions. The rate function blocks

are inserted into a generic derivative block, and
the parameter inputs are specified. Take, for
example, the dn%dt block. Blocks k1 and k2
are the appropriate rate equations for
an and bn.
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ControlDesk, which contains tools to interact with and control themodel in real time.
It includes a plot and control panel to monitor and capture the membrane potential
and stimulus current. The layout also includes two numerical input fields to control
the amplitude of the stimulus current and the offset current. It may be necessary to
zero the ambient stimulus current by adjusting the offset block so that a baseline
stimulus current does not modify the dynamics of the cell.

To provide an external stimulus, an operator touched theADC1port on theCP1104
with a conducting pin. This procedure provided a 60 Hz noisy stimulus. The voltage

Figure 7.7 The Hodgkin–Huxley model of the
squid giant axon implemented as a block
diagram. The variable derivatives are
multiplexed onto one signal, and the system is
integrated as a vector. The resultant state
variables are demultiplexed and passed into the
system. Rather than multiple Integrator blocks

operating at different hierarchical levels,
integration is carried out at the model
level of organization. Dark upright
blocks are multiplexers and demultiplexers.
Thick connecting arrows indicate
multidimensional signals.
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and current traces were monitored and recorded using ControlDesk (Figure 7.8). As
long as the contact with the port is maintained, noisy excursions are observed in the
stimulus current.

7.4
Hybrid Systems Analysis in the Leech Heart Interneuron

Hybrid systems analysis is a powerful technique that has proven itself in neuroscience.
We show its usefulness as a prototyping tool for biomedical engineers. We consider
the hybrid system to be a neural interface implemented with dynamic clamp.
Previously, the technology has been used to identify the role of individual currents
in specific cellularmechanisms. The intent of prototypingmay be to establish a certain
stable regime of circuit activity, but it is hybrid systems analysis that we use to reveal

Figure 7.8 A noisy 60Hz stimulus currentmay
cause a switch from silence to tonic spiking or
cause the annihilation of tonic spiking. This
current was generated when the operator
touched the input port of the data acquisition

board. (a) A stimulus is insufficient to cause a
switch from silence to spiking. The second
stimulus does switch the model cell from a
silent to a spiking mode. (b) A brief stimulus
terminates the spiking activity.
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the effect of explicitly defined ionic currents of the artificial cell on the activity of a
neural circuit. By replacing a component of a living circuit with a computational cell,
we gain knowledge of its role in the circuit bymanipulating the parameters of artificial
ionic currents. With prototyping, we seek to take the knowledge of the role of
individual ionic currents and move an unhealthy circuit from a pathological regime
to a healthy regime. We present a set of experiments performed on the leech heart
interneuron as an example of prototyping and hybrid systems analysis. The first study
utilizes a VLSI silicon artificial neuron in which Ih is tuned to examine its interaction
with the synaptic current [19]. The second study uses computational neurons built
with the library we present in Section 7.2.3 to tune the slow Ca2þ current to show its
role in supporting bursting activity [20].

7.4.1
Model Heart Interneuron

The artificial cell is composed of eight voltage gated currents and a leak current [24].
The eight voltage gated currents are composed of thirteen gating variables. The
mathematical model is composed of 14 equations: one for the membrane potential
and one each for the gating variables. The hybrid system contains a synapse from the
artificial cell onto the living cell and a synapse from the living cell onto the artificial
cell. The synaptic current has a spike-mediated component and a slower modulating
component, so the system requires an additional six differential equations:

ISyn ¼ �gSynYpostMpost½Vpost�Epost�;
dXpost

dt
¼ ½X¥ðVpreÞ�Xpost�

0:002
;

dYpost

dt
¼ ½Xpost�Ypost�

0:011
;

dMpost

dt
¼ ½M¥ðVpreÞ�Mpost�

0:2
;

X¥ðVpreÞ ¼ 1
1þ expð�1000½Vpre þ 0:01�Þ ;

M¥ðVpreÞ ¼ 0:1þ 0:9
1þ expð�1000½Vpre þ 0:04�Þ :

The membrane potential of the living cell is recorded and passed into the model
system where it is used to calculate the synaptic current received by the artificial cell.
The membrane potential of the artificial cell is used to evaluate the synaptic current
onto the living cell, which is passed out of the system to be injected by an amplifier
into the live cell.We are able to integrate each of these operationswith Euler�smethod
for numerical integration at 10 to 20 kHz on the DS1103 PPC board. At these
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frequencies, the artificial system performs sufficiently fast to produce biophysically
plausible dynamics.

7.4.2
Hybrid Systems Analysis

The heartbeat of the leech is controlled by a central pattern generator (CPG). The
kernel of this CPG consists of pairs of bursting HN cells, which form half-center
oscillators. In a half-center oscillator, HN cells inhibit each other with inhibitory
cholinergic synaptic currents and burst in alternation [27]. On the inhibited neuron,
the prolonged hyperpolarization during the interburst interval activates Ih, and the
balance between ISyn and Ih determines the duration of its interburst interval [19, 24].
Upon depolarization, the conductance of ICaS, the slow low-threshold Ca2þ current,
becomes large and then slowly dwindles as the current is inactivated [20]. This long-
lasting inward current supports the plateau depolarization of the burst and regulates
the spike frequency. The time course of inactivation of ICaS determines the cell�s burst
duration [20, 24]. These three currents play key roles in determining the temporal
characteristics of the leech heart half-center oscillator [19, 20, 24, 25].

Studies of the leech heart half-center oscillator pose a technical difficulty. Observa-
tions with sharp intracellular electrodes have shown that the HN cells spike tonically
when pharmacologically isolated from the cholinergic synapse with bicuculline
methiodide [27]. However, recordings with extracellular electrodes under the same
pharmacological conditions show that HNs burst endogenously [25]. The model
shows evidence that a nonspecific leak current, introduced by piercing the cell with a
sharp electrode, is responsible for the onset of tonic spiking. In order to implement a
hybrid system, a sharp electrode is used to inject an artificial current into the living
cell. Even though the HN is an endogenously bursting cell, dynamic clamp experi-
ments are performed while the cell is in a tonic spiking mode. Nevertheless, the
inhibitory synaptic coupling between artificial and living HN cells is sufficient to
establish antiphasic bursting activity [19, 20]. We tune the hybrid system by
manipulating the parameters of the artificial cell to identify the mechanisms
supporting the half-center oscillator.

In order to establish a biophysically plausible hybrid half-center oscillator, a certain
amount of tuning is necessary. Key parameters for temporal regulation can be
identified in an analysis of the parameter space ahead of time, such that the artificial
cell can be adapted to its intended synaptic target quickly at run time [24, 25]. The
uncoupled artificial cell must exhibit spiking activity of roughly the same frequency
as its living counterpart that was achieved by tuning the leak current [20].

The experiments that ascertain the role of Ih and ICaS encapsulate the essence of
prototyping. Sorensen et al. show that by decreasing gh in the artificial cell, the
interburst interval of the artificial cell increases [19]. When gh is increased in the
artificial cell, the counteraction to inhibition increases and the interburst interval of
the artificial cell decreases in duration. Olypher et al. describe the role of ICaS with a
similar set of experiments (Figure 7.9) [20]. By decreasing the time constant of
inactivation of ICaS, th,CaS, the conductance of ICaS is inactivated at a greater rate in
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response to the depolarization during the burst, so the bursts are shorter, and the
interburst interval of the presynaptic HN is shortened. An increase in th,CaS in the
artificial cell allows ICaS to stay activated for a longer period. The prolonged burst of
the artificial cells leads to a prolonged synaptic current on the living HN cell.

7.5
Discussion

Neuroprosthetic devices will one day routinely treat neurological disorders by
monitoring and regulating the electrical activity in the central nervous system. Such
brain–machine interfaces will need to be small, fast, and power efficient. The
introduction of the analog very large-scale integration (aVLSI) neuron provides a
framework for artificial cells and neural networks that satisfies these criteria [28].
Silicon neurons working in tandem with living networks have produced biologically
valid patterns [19, 29]. The optimization of circuit design promises efficient and

Figure 7.9 A hybrid system consists of a living
cell coupled to a model cell via artificial ionic
currents. gCaS is the conductance of ICaS. mHNv

is the model HN. HNc is recorded from a living
HN via sharp electrode. Removal of inactivation
during the hyperpolarized quiescent phase of
the burst supports the plateau depolarization
during the active phase of the burst. The
membrane potential of the model cell and both

synaptic currents are calculated in real time. The
membrane potential of the living cell is
monitored via intracellular electrode.
(a) Example trajectories showing activity for
three values of g. (b) Period, burst duration, and
final spike frequency for g¼ 0.5, g¼ 1, g¼ 2,
and g¼ 4. Reproduced from Olypher,
Cymbalyuk, Calabrese, J. Neurophysiology, 2006
[20] with permission from Am. Physiol. Soc.
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biocompatible VLSI chips [30]. The clinical distribution of these neuroprostheseswill
require industrial manufacturing of implants. Like in any other industry, the
neuronal models upon which these devices will be based will need to be tested
before the production process begins. Testing could be done with a hybrid system:
artificial neurons can be interfaced with biological neurons or networks of neurons
with a dynamic clamp. By tuning characteristics of the artificial cell, an analysis of the
hybrid system can reveal pathological or otherwise undesirable neuronal or network
states. By prototyping neuroprostheses in this manner, a researcher can design an
artificial cell that meets implant design parameters without compromising the
dynamics of the biological component of the hybrid system.

In order for a hybrid system to function properly, the artificial system must be
simulated on a computer such that the computational cell is able to respond to the
living cell without interruption. These computational necessities are often accom-
plished with real-time computing in which operations are performed on a strict
schedule. Developers must rely on specialized products to implement real-time
applications: a real-time operating system runs a program directly on the desktop
computer or a program is run on a real-time peripheral device (a control board) that is
controlled from the desktop computer. A prominent supplier of real-time control
boards and support software is dSPACE, Inc. dSPACE products are commonly used
for prototyping control systems. dSPACE software automatically utilizes a system
designed in Simulink and executes it on a real-time control board. We realize hybrid
systemsby designingneuronalmodels in Simulink andusing dSPACE to implement
these models in real time.

Matlab and Simulink provide a high-level programming language designed for
technical and high-performance computing. Simulink is a graphical programming
environment. Even an inexperienced user can go from a set of equations or a
conceptualflow chart to a sophisticatedmodel quicklywith Simulink�s drag-and-drop
programming style. As in any high-level programming language, program compo-
nents can be reused to reduce development time.Wedescribe a library of functions in
Simulink sufficient to create a neuronal model. This library includes individually
implemented artificial currents, voltage-dependent steady-state curves, and voltage-
dependent time constants. Moreover, these functions provide a template with which
to construct novel neuronal models. Many of our functions are standardized so that
each numerical parameter is specified by the user. By providing custom parameters
based on experimentally measured ionic currents, a researcher could implement any
number of currents not found in our library. Thesemodels are designed to be used as
real-time control systems for a dynamic clamp.

In order for a neuroprosthesis to assume the role of some functional neuronal
circuit, it must behave as though it is a functional neuronal circuit. That means that
it must continue to have a functional role in its host as the local and global neuronal
environments change over time. Factors such as fatigue, age, injury, and drug use
can all change the way neuronal circuits and their synaptic targets function.
Prosthetic activity must be robust so that the larger neuronal circuit remains
resistant to degeneration. We use the numerical and analytical tools of dynamical
systems theory to study the mechanisms through which these environmental
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factors enact neuromodulation in order to identify manifestations of pathology in
model neurons.

Dynamical systems theory provides a theoretical foundation for sensitivity analysis
in mathematical models. Qualitative aspects of a dynamical system can be revealed
through mathematical analysis of critical parameter values and initial conditions in
the context of perturbations and environmental noise. For example, there may exist
multiple stable regimesnearby each other in state space (multistability), or the activity
of a system may change dramatically with small changes to sensitive parameters
(catastrophe). Regimes of activity that exist in amultistable or potentially catastrophic
system could be hazardous if small perturbations to the system cause it to switch to a
different mode of activity. Multistability and catastrophes are not mutually exclusive.
A catastrophemaymanifest itself as one of themany stablemodes becomes unstable
or disappears. Forearmed with the knowledge of the type of activity that can be
expected across a range of parameters, a researcher may design a model neuron in
order to exclude or take advantage of certain regimes.

Multistability and catastrophes can be used to describe several facets of intrinsic
neuronal dynamics and modulation. A neuron may exhibit coexistence of stable
regimes [16, 17, 31]. Such a cell could toggle between these regimes upon stimu-
lation. Using dynamical systems theory, a researcher may predict suchmultistability
in a neuronal model. If the model were intended to fire indefinitely as a pacemaking
oscillator, then bistability would be a pathological trait. On the other hand, bistability
could be a functional trait if the model is intended to be an on–off switch that
modulates some macroscopic behavior. A model neuron may switch from endog-
enous bursting to tonic spiking at a particular parameter value [25, 31]. A researcher
may implement this parameter as a slow variable dependent on themodel�s synaptic
input or state of activity in order to effect the modulation of neuronal dynamics.

In this chapter, we described a technique for the implementation of hybrid systems
based on the technology provided by dSPACE Inc. This technique has proven fruitful
for analysis of dynamics of small neuronal networks [19, 20] aswas described inmore
detail in Chapter 5. Concerning prototyping of prosthetic devices, we emphasized
development of individual artificial neurons with biophysically accurate dynamics
and focused this chapter on systems composed of individual artificial and living
neurons. This approach, requiring successive iterations of development of artificial
neurons and analysis of hybrid systems, uses intracellular electrodes and is not
directly applicable to human subjects.We suggest that preliminary prototyping could
be done on invertebrate neural circuits that are dynamically similar to target circuits
in the human nervous system. For example, the stomatogastric CPG has been
proposed as a conceptual model for cortical circuits (Chapter 5) [32].

Contemporary neuroprostheses deal with large numbers of neurons. These
applications are based on extracellular electrodes, and dSPACE technology is readily
compatible with the spike-driven signals that these prostheses record as input from
the host. On the other hand, the technology providing feedback from the prostheses
to living tissue is an open problem for bioengineering, although a number of
promising technologies are under development. For example, microelectromecha-
nical and microfluidic-based technologies have opened an interesting avenue for
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prosthetically controlled chemical input to neuronal or otherwise excitable tissue [33–
36].We have not described these technologies in detail because their implementation
lies outside the scope of our tutorial on developing hybrid systems utilizing real-time
controllers. However, future prostheses will combine extracellular recordings with
chemical input to implement local and artificial synapses. We assert that these
technologies will be driven by artificial neurons or networks of artificial neurons, and
whether these computational models are biophysically accurate or phenomenolog-
ical, such a hybrid systemmust be prototyped to ensure dynamical biocompatibility.
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8
Biomimetic Adaptive Control Algorithms
James J. Abbas

8.1
Introduction

In the quest to design improved tools and devices, engineers are often interested in
interpreting patterns of sensory information and/or controlling movements. Not
only is the nervous system particularly good at performing these sensory and motor
tasks but also the adaptive capabilities of neural tissue endow animals with the ability
to learn to improve their performance. For these reasons, there has been great
interest in using biomimetic approaches to the engineering design of systems for
sensory processing, movement control, and adaptation [1].

8.1.1
Potential to Enhance Capabilities of Engineered Systems

In the engineering world, the primary motivation for pursuing this line of research
is the pragmatic goal of overcoming the shortcomings of existing techniques. If
existing approaches to sensor processing and control were suitable for the tasks at
hand, biomimetic techniques would primarily be a branch of quantitative biology.
In many engineering applications, however, there is a growing acknowledgment
that existing (nonbiomimetic) techniques have limited capabilities – and those
limitations are most apparent in addressing problems that biological systems
routinely solve.

In the realm of sensory processing, biological systems perform especially well at
tasks such as recognizing faces, comprehending speech in noisy environments,
distinguishing odors and tastes, and recognizing shapes and textures – all of which
have presented particular challenges to the engineering community. In the realm of
control, biological systems display exquisite balance and coordination under a variety
of environments, trackmovements of objects by controlling eyemovements within a
head and body that are moving rapidly through space, and regulate chemical
concentrations in the presence of highly time-varying demands. Meeting these
control goals requires integration of information frommultiple distributed sources,
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coordinated activation of several effectors, attention to system dynamics and time
delays, and simultaneous consideration ofmultiple control objectives. The interest in
biomimetic control is driven primarily by the need to design systemswith these types
of capabilities.

Although the sensor processing and motor capabilities of biological systems are
attractive to engineering designers, the adaptive capabilities are perhaps most
enticing. The ability of biological systems to learn from experience – and in particular
to learn in an unsupervised manner – provides them with versatility and autonomy,
both of which are of great interest in many engineering fields.

8.1.2
Integrating Engineered Systems with Biological Systems

Technological innovations in the recent past – and on the near horizon –have utilized
an increasing degree of interaction with biological systems. This is perhaps most
apparent in the field of robotics. While early robots had their impact performing
routine and repeatable tasks on the assembly line,manymodern robotic systems – in
the factory, on the battlefield, and in the operating room – are designed to augment or
assist humans in performing tasks.

This interactionwith humans (or other biological systems) underlines the need for
the engineered system to adapt. In addition to dealing with the uncertainties of the
physical environment, the device must also deal with the uncertainties, and vari-
ability, that are inherent in biological systems.

The next level of complexity in this progression is the notion of coadaptation – the
situation in which both the engineered system and the biological system adapt. The
engineered system adapts to account for the specific characteristics of the biological
systemand the biological systemadapts to accommodate the interactionwith the robot.
Inmany instances, the roleof the engineered systemcouldbe to guide the adaptationof
the biological system – that is, to take on the role of teacher. The transformation then is
frommachines that perform tasks, tomachines that actively assist humans to perform
tasks, to machines that actively train humans to perform tasks.

The best example of the potential role for coadaptation may be in the field of
rehabilitation, such as the design of a robot to be used in rehabilitation therapy. In
such applications, the variability across a set of individuals is often enhanced by the
trauma or neurological disorder. Furthermore, the behavior of the individual is likely
to change over time due to spontaneous recovery, the effect of therapy, disease-related
degradation, or aging. Therefore, in these applications, the device must have the
ability to effectively interact with individuals with a wide range of capabilities and
behavior patterns that may change over time.

8.1.3
Focus on the Nervous System

Biological systems use highly integrated control in a number of different realms:
genetic, molecular, cellular, biochemical, hormonal, and neuronal. This chapter
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focuses on neural control systems and how to mimic neural processes that mediate
control of complex processes.

8.2
Biomimetic Algorithms

Figure 8.1 presents a general block diagram illustrating basic sensorimotor inte-
gration and the role that learning can play in modifying the internal processes to
adapt to changing needs. A key feature of this structure is that information derived
both from external and from internal structures can be used to modify the sensory
processing procedures and/or the control procedures. Although this general struc-
ture can describe both nonbiomimetic and biomimetic approaches, the biomimetic
approach utilizes biological inspiration in order to implement operations within a
given block or tomodify or elaborate on the interactions among system components.

Here, we consider four classes of biological models (Figure 8.2) that have potential
for use in biomimetic systems: phenomenological input/output models (input/
output models), models with structural components that are designed to mimic the
actions of key regions in the brain and/or spinal cord (neurostructural models), models
that use simplistic units that represent themost basic properties of neurons (artificial
neural network models), and models that use detailed biophysical models of neuron
compartments, individual neurons, or neuronpools (biophysicalmodels). The sections
that followprovide a brief description of each of these classes of biologicalmodels and
indicate some biomedical applications of biomimetic control.

8.2.1
Input/Output Models

Quantitative models of neural control systems date back to the early 1960s when
linear systems techniques were used to describe the oculomotor control system [2, 3]

Figure 8.1 General structure for biomimetic
adaptive control systems. The feedback pathway
(sensor, sensor processing, and control)
provides the basic regulatorymechanism that is
dependent upon specific parameters for each
component. The learning module uses

information derived both from sensors and
from the effectors and controller output signals;
the learning process can alter the operations of
the sensor processing block or the controller
block.
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and the cardiovascular control system [4]. Input/output data for the entire system or
for each component could be used to determine model parameters for a specified
model structure. In this phenomenological approach, the model structure and
parameters are selected as those that best fit the input/output data. These models

Figure 8.2 (a) Input/output model block
diagram structure. In this arrangement, the
outputisafixedfunctionoftheinput;themapping
from input to output may utilize a linear transfer
function ormay benonlinear (i.e., a given change
in inputmaynotalwaysproduce thesamechange
inoutput).(b)Neurostructuralmodelexample. In
this hypothetical arrangement, three brain
regions (B1, B2, B3) interact with two spinal cord
regions (SC1, SC2) to process input from two
sources (e.g., visual and somatosensory) to
determine the output to the effectors, which is
delivered through the spinal cord. Several neural
models and biomimetic systems utilize such
interactions between blocks that represent
specific neural centers in the brain or spinal cord.
Such blocks have been used to represent small
sets of neurons (e.g., column inmotor cortex) or
large brain regions (e.g., the cerebellum). The
equationscantaketheformofsimplelinearinput/
output blocks or high dimensional nonlinear
components. (c) Artificial neural network model
structure.AnANNmoduleistypicallyconstructed
asmultiple layersofneurons(circles) that interact
via synaptic weights (signals). Weights are
adapted using a learning algorithm. In practice,
networks may contain tens or hundreds of

neurons in a given layer. Connections in the
configurationshownare �feedforward� in that the
output of a given neuron provides input to the
neurons in the following layer. For use in
engineering control systems, the ANNmodule
canbeusedinplaceofclassical transferfunctions;
for example, the ANN module could be used as
the �controller� or �sensory processing� block in
Figure 8.1. (d) Basic biophysical model of one
compartment of a neuron. This electrical
equivalent model of a cell compartment has
components that represent the general features
of the biophysicalmodel:membrane capacitance
(Cm), leak conductance (GL), ionic conductances
(GX), synaptic conductances (GSYN), and
conductances responsible for pacemaker
properties (GPM).Eachconductance represents a
set of channels with a corresponding equilibrium
potential (E) that will provide the driving force for
current through the channel. The compartment
shown, with membrane voltage (Vm), is
connected to neighboring compartments
through internal resistances (Ri). Additional
features are added to represent other channels
(neuromodulators, voltage-dependent
conductances, calcium-dependent
conductances, etc.).
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provided mathematically tractable representations of key features of these biological
processes and, especially as computing power increased, these models enabled
computer simulation studies of the effects of model parameters and interactions
between system components. However, these linear representations are clearly
limited in their ability to capture many of the critical features of biological control
systems.

Biological systems utilize nonlinearities extensively, and in many cases the
nonlinear componentsmay be responsible for the versatility, robustness, and stability
displayed by biological systems. Incorporating nonlinear components into models
with linear dynamic components has in some instances successfully captured the key
features of a biological system [5]. To address some of the shortcomings of linear
approaches with more generic and widely applicable techniques, some groups have
utilized models based on nonlinear kernels [6, 7]. These classes of models and
techniques for parameter estimation provide general tools that can be utilized to fit
input/output data to nonlinear models.

The primary intent in developing these models was to gain insight into the
functioning of the biological control system – that is, they served a basic science
objective. These models, however, have been the precursors for many later
attempts at mimicking neural control systems. The block diagram structures
and sometimes the specific sets of equations have formed the foundation for
design of systems to control blood pressure, glucose, arm movements, and
locomotion.

8.2.2
Neurostructural Models: Models Based on Regional Neuroanatomy
and Neurophysiology

With information derived primarily from investigations of neuroanatomy and
lesion studies, the roles of various brain regions in specific tasks have long been
understood – at least in a general sense. Movement of our limbs results from
interactions among such structures as motor cortex, the cerebellum, the basal
ganglia, and spinal motoneuron pools. Inputs from the red nucleus and the
vestibular nucleus influence the spinal circuits that regulate posture control
through the rubrospinal and vestibulospinal pathways, respectively. These studies
have produced block diagram-level models of the brain and spinal cord that
describe the roles of various regions and pathways in the control of many
physiological functions. In some instances, mathematical representations of the
various regions and their interactions have been developed. In contrast to a
phenomenological approach, in these models the components and their interac-
tions are established by – and constrained by – the structure, connectivity, and
functional interactions identified in neuroanatomical and neurophysiological
studies. These types of models have formed the foundation for the development
of several biomimetic systems.

Such approaches have been successfully utilized to mimic the oculomotor control
system in order to develop systems to track objects that move in the visual field [8, 9].
Several groups have developedmodels for control of posture [10], pedaling [11, 12], or
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locomotion [13–17] that use modules to describe the organization in the spinal cord
responsible for synergistic activation of muscles.

8.2.3
Artificial Neural Network Models

For the past half century, there has been a broad-based effort to develop computa-
tional structures and algorithms that mimic the organization and operations of the
nervous system. The research activity has spanned the fields of neuroscience,
psychology, computer science, electrical engineering, biomedical engineering, and
others.

Many artificial neural network (ANN) systems use only themost basic concept that
underlies the organization of the nervous system:

. Individual processing units interact:
- each neuron receives input from other neurons; some neurons receive inputs
from external sources.
- each neuron output is a (typically nonlinear) function of the weighted sum of the
inputs.
- each neuron sends its output to other neurons.
- the output of the network is determined by the pattern of activity across a subset
of the units.

. Adaptation is produced by changing the strength of interaction of the units via a
learning rule.

These basic concepts, which constitute the foundation for the field of artificial
neural networks, were first introduced by McCulloch and Pitts in 1943 in the form
of the Threshold Logic Unit [17]. Within the field, a wide variety of neuron models
(input–output function for each computational unit), network architectures (con-
nectivity pattern among the units), and learning rules (equation that governs
adaptation of the weights) have been developed [18]. Although proper selection
of neuron model and network architecture is important, the success of artificial
neural network techniques can be primarily attributed to the development and
clever application of a wide variety of learning algorithms. Some of these algo-
rithms borrow directly from optimization theory, while others borrow directly from
biology.

The most commonly used algorithms utilize gradient descent, a widely utilized
engineering optimization technique that has been incorporated into the neural
network structure. These algorithms calculate the gradient of error versus network
parameter (weight) and then change the parameter in a direction that reduces
error. An important implementation of this approach uses backpropagation,
which extends the concept of gradient descent to a multilayer network structure
and consequently vastly enhances network capacity. A key aspect of this
technique is that it utilizes supervised learning – that is, the algorithm requires
knowledge of (or estimates of) the error in the network output. Some of the
limitations of this approach include biological plausibility (a problem for purists
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but not for pragmatists); adaptation can be slow (especially in high dimensional,
multilayer implementations), adaptation can be limited in its efficacy (due to the
presence of local minima in the error surfaces), and the need to know error in
network output.

Another commonly used set of learning paradigms is that of the Hebbian-type
algorithms. These networks use a basic idea drawn from biological observation (by
DonaldHebb): the connection between two neurons is strengthened if both neurons
are active at the same time. There are several variations of this idea with many
different neuronmodels and network structures [18]. Some of the limitations of this
approach are the need to impose meaning/structure to get effective learning,
learning can be slow, and there is a tradeoff between the need to unlearn useless
information and the need for persistent excitation.

Extensions of the biological inspiration have used evolutionary algorithms to train
ANNs. This class of algorithms utilizes a biomimetic approach to parameter
selection for the neural network. In this technique, the parameter set is repre-
sented as a gene; multiple instances of the parameter set are produced; the fittest
instances survive; the next generation of instances are produced using sexual or
asexual reproduction, with or without mutations; and the next generation is
evaluated. While this technique can be very powerful, one of the limitations is that
extensive training times that are required and therefore online implementation
may not be practical.

In the biomedical realm, ANN systems have been highly successful at solving
some problems that involve pattern classification, adaptive filtering, and, to a lesser
degree, adaptive control [19–22].

8.2.4
Biophysical Models: Conductance-Based Models and Beyond

The last century has seen major advances in our understanding of the biophysics of
neurons. It is apparent that the functioning of an individual neuron depends upon
the capacitive bilipid membrane, passive flow of ionic current through complex
dendritic branch systems, voltage-gated ion channels, various neurotransmitter and
neuromodulator systems, local ionic concentrations, localized channel distributions,
second-messenger systems, and so on. The explosion of data has clearly confirmed
the inadequacy of theMcCulloch–Pitts formulation as a neuronmodel. But what are
the implications for the design of engineered systems? Can we improve the
performance of engineered systems by embedding a higher degree of biological
fidelity into the control system?

The increased interest in exploring the utility of neuron models with a higher
degree of biological fidelity is driven primarily by two observations: (1) biological
systems exhibit capabilities that exceed those of engineered systems that utilize
simple neuron models and (2) detailed biophysical models exhibit properties that
may be responsible for the impressive capabilities of the biological system.

A simple, single-compartment conductance-basedmodel consists of anRCcircuit,
with the capacitor representing the bilipid membrane and the resistor representing
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the pathways for ionic current that are provided by proteins embedded in the
membrane. Using this single-compartment conductance-based model as a starting
point, several well-documented features could enhance biological fidelity and may
endow engineered biomimetic systems with enhanced functionality. Several of these
features are listed and described below:

. Multicompartmental structure: The single-compartment neuron model char-
acterizes the cell as an isopotential sphere in which the single value for
membrane potential represents the state of the neuron at a given time.
Biological neurons are complex structures with local variations in electrical
potential, ion concentrations, and channel densities. These spatial variations are
an integral component of the information processing capabilities of the neuron
in that they enable the cell to utilize spatial and temporal information in
interpreting synaptic inputs. The effect of an individual postsynaptic potential
on the firing pattern of a neuronwill depend on the location of the synapse in the
cell and on the timing of the event with respect to inputs in neighboring regions
of the cell. The multicompartment structure seeks to enhance the information
processing capacity of individual neurons by allowing for the spatial variations
in electrical potential that then has implications for temporal processing due to
the local dynamics [23].

. Spiking neurons: Neurons utilize action potentials to transmit information
internally (within the neuron), and the arrival of the action potential at a
presynaptic terminal is the trigger for the release of neurotransmitter that will
then be responsible for generating the postsynaptic potential. Some neuron
models represent the firing activity of the neuron as a continuous variable:firing
rate. That is, the models assume that information is encoded in variations of
the instantaneous firing rate and that the precise timing of individual spikes is
inconsequential. In many biological systems and in their biomimetic counter-
parts, this simplifying assumption may be valid. In some biological systems,
however, the precise timing of spikes conveys essential information. Notable
examples are in the processing of binaural information for sound source
localization [24] and in neuronal adaptation in what has been termed spike
timing-dependent plasticity [25]. In these systems, the valuable information
that is encoded in the relative timing of spikes may be entirely independent
of the information that is encoded in firing rate. Engineered systems that
utilize spiking neurons may be able to effectively utilize this additional dimen-
sion of information capacity to enhance the processing power of biomimetic
systems.

. Synaptic dynamics: Inmany artificial neural network systems and neuralmodels,
synaptic interactions are modeled as instantaneous processes. In models that do
not use spiking neurons, postsynaptic effects are often determined entirely by the
instantaneous firing rate of the presynaptic neuron. In models that use spiking
neurons, the postsynaptic potential that results from a presynaptic spike is often
incorporated as a dynamic process. The magnitude and time profile of the
postsynaptic potential can depend upon receptor dynamics, second-messenger
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dynamics, and dendritic spine shape. One consequence of the time-dependent
response of the synapse is that it canhave a strong influence on the spatiotemporal
integration of synaptic inputs in the cell. Perhapsmore importantly, the processes
that underlie the synaptic dynamics may provide a powerful mechanism for
nonlinear information processing and integration. The general theme is prev-
alent in biological systems – complexity in a pathway provides opportunities for
interaction and complex processing. Biomimetic systems may be able to utilize
these processes to enhance the richness and subtleties of information processing
and control.

. Synaptic reversal potentials: In artificial neural networks and many models of
synaptic interaction, synapses are defined as excitatory or inhibitory by the sign of
the synaptic weight. Furthermore, the postsynaptic effect depends only on
presynaptic activity and the strength of the synapse. In biological systems,
however, synaptic effect is strongly influenced by the state of the postsynaptic
neuron. Synaptic inputs cause channels to open; currentflow through the channel
depends upon the equilibrium potential for the channel and the local membrane
potential. In this manner, both the direction and the magnitude of synaptic
currents are affected by the postsynaptic state. By utilizing such mechanisms for
state-dependent responses, biomimetic control systemsmay be able to reactmore
appropriately to multidimensional inputs.

. Neuromodulators and multiple transmitter systems: An individual neuron
utilizes a wide array of protein channels that regulate ionic flow; many of these
are responsive to the chemical environment of the cell. Some of these chemicals
are released from other neurons and exert their effect through typical synaptic
structures; on its postsynaptic side, an individual neuron may use a variety of
transmitter systems across its set of synapses. Other chemicals exert their effect in
a broad and more diffuse manner and have what has been termed a neuromo-
dulatory effect. Some of these neuromodulators are released from other neurons
or their support cells, while others are hormones released by the endocrine
system. Typically, neuromodulators exert their effects with dynamics that are
much slower than neurotransmitters. This neuromodulatorymechanism enables
individual neurons to process synaptic interaction in a highly state-dependent
manner and provides yet another mechanism for neuronal integration across
systems or subsystems. In biomimetic systems, there is a strong interest in
incorporatingmechanisms for state-dependent responses since this is a hallmark
of biological systems and one that is critical for performing complex functions;
utilizing models of neuromodulatory systems may provide such capabilities.

. Intracellular calcium pools: Local calcium concentrations play a large role in
regulating the dynamics of intracellular pathways and their interactions [23].
Modeling these effects has demonstrated that intracellular variations in calcium
concentrations can influence dendritic integration and firing properties. In
biomimetic systems, this aspect of cellular function may be able to enhance the
complexity and capabilities of individual neurons and their interactions.

. Presynaptic inhibition: The impact of synaptic location is perhaps nowhere more
apparent than in the arrangement that allows presynaptic inhibition. In this
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situation, one synaptic input can selectively silence the action of another. The
anatomical relationship is the primary factor in determining this interaction; the
dynamics of the individual postsynaptic potentials can influence the degree and
timing of the effect. From a control systems perspective, this mechanism gives a
highly selective means of implementing and dynamically modifying the integra-
tion of information from several sources. It is apparent that nature has utilized
thismechanismand anatomical arrangement extensively; in biomimetic systems,
this structural arrangement may provide an efficient and flexible building block
for systems that exhibit rich sensorimotor capabilities.

Collectively, these and other features of biological neurons are, at least in part,
responsible for some of the capabilities of biological systems that are of interest to
biomimetic engineers [24, 26]. Basic models for these features have been
developed; a key challenge is to incorporate these features into sensory processing
and control structures so that they can be utilized effectively in biomimetic
systems. More information regarding these models is presented in Chapter 2.

8.2.5
Central Pattern Generators

For the control of cyclic tasks such as locomotion, many biological systems use
circuits that have been described as central pattern generators (CPGs) [27–29]. These
circuits consist of a group of neurons that interact to produce an oscillatory pattern of
activity. Although in the purest sense of the term, a CPG is capable of generating
oscillatory activity in the absence of sensory input, this arrangement is never (or at
least rarely) observed in vivo in biological systems and may be of limited use in
biomimetic systems. Inputs to the CPG in the form of afferent feedback can couple
the neuronal dynamics to that of the plant (system) and provide information to
modify CPG signals in order to regulate outputs of the plant.

Investigations and modeling of CPG circuitry of several organisms have provided
insight into the mechanisms used by CPGs and suggest potential advantages for
using CPG circuits in biomimetic systems. Some of these characteristics are
properties of cells (examples are provided in the set of equations given in Table 8.1);
others are properties of the circuit (examples are provided in the neural circuit
diagram given in Figure 8.3):

. Plateau potentials: Several cells have the intrinsic capacity to generate a sustained
response to a transient input. Specialized membrane proteins provide this
mechanism, which can be utilized effectively in CPG circuits to generate
oscillatory patterns on timescales that are several orders of magnitude greater
than that of an action potential or membrane time constant. During the depolar-
izing phase of these oscillations, bursts of action potentials produce inputs to
other cells in the circuit and the internalmechanics of generating action potentials
influence the intrinsic membrane oscillations and the burst properties.

. Voltage-dependent channels: Many ionic channels exhibit a voltage-dependent
response that, similar to the effect of the postsynaptic potential, can provide a
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mechanism for the cell to process inputs in a state-dependent manner. Such
channels have been used in CPG models [30, 31] and have been used in
biomimetic control system design to contribute to the pattern-generating capa-
bilities of the neural circuit [32].

. Reciprocal inhibition: In cells that utilize intrinsic or network mechanisms to
produce sustained plateau potentials, there must be some mechanism (or
mechanisms) in place to shut down the burst. Voltage-dependent channels with

Table 8.1 Example CPG Neuron equations.

Membrane dynamics:

dVmiðtÞ=dt ¼ ðIsyni
ðVm; tÞþ IPMiðVm; tÞþ Iinji�VmiðtÞ=RmiÞ=Cmi ð8:1Þ

Output function (firing rate):

yiðtÞ ¼ 1
1þ e�2miðVmiðtÞ�VoiÞ

ð8:2Þ

Membrane currents:

Isyni
ðtÞ ¼

X
yjðtÞgsynij

ðEsynij
�VmiðtÞÞ ð8:3Þ

IPMiðtÞ ¼ INMDAiðtÞþ IKCaiðtÞ ð8:4Þ
Burst initiation:

INMDAiðtÞ ¼ KNMDAi gNMDAi piðtÞðENMDAi�VmiðtÞÞ ð8:5Þ

dpiðtÞ
dt

¼ Aaie
ððVmi

�Er Þ=Cai
Þð1�piðtÞÞ�Abie

ððEr�Vmi
Þ=Cbi

ÞpiðtÞ ð8:6Þ

Burst termination:

IKCaiðtÞ ¼ gKCai ½CaNMDAiðtÞ�ðEKCai�VmiðtÞÞ ð8:7Þ

d½CaNMDAðtÞ�i
dt

¼ piðtÞrNMDAi
KNMDAiðECaNMDAi�VmiðtÞÞ�dNMDAi ½CaNMDAðtÞ�i

ð8:8Þ

This set of equations provides amodel neuronwith intrinsic oscillatory capabilities.When combined
with a network interaction such as the one depicted in Figure 8.1, biological systems utilize a layered
structure that uses interactions between intrinsic cellular properties and network properties to
generate stable, yet flexible and adaptable oscillatory patterns. This model includes a capacitive
membrane with multiple channels for current to flow (Equation 8.1); a neuron output that describes
firing rate as an instantaneous function of membrane potential (Equation 8.2). The membrane
currents include synaptic currents that utilize synaptic reversal potentials (Equation 8.3) and
pacemaker currents that provide the intrinsic oscillatory capacity. In thismodel, the burst initiation is
provided by NMDA channels (Equations 8.5 and 8.6) and the burst termination is provided by the
calcium-dependent potassium channels (Equations 8.7 and 8.8). Collectively, this set of equations
endows the cell with oscillatory capabilities. Such mechanisms are exhibited in biological oscillators
and have been utilized both in biological models and in some biomimetic control systems.
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time-dependent responses can provide an intrinsic mechanism, but this is often
supplemented by a network mechanism of reciprocal inhibition. In this arrange-
ment, one neuron excites another, which in turn inhibits the first. Themembrane
time constant and other dynamic processes involved in cellular interactions and
responses result in a delay between the initial activity and the recurrent inhibition.
In this manner, the network arrangement can self-regulate activity in a manner
that affects overall oscillation period as well as the activity patterns of individual
cells in the circuit.

. Mutual inhibition: At the small circuit level, biological systems utilize the
mechanism of mutual inhibition, in which two cells (or two groups of cells)
inhibit each other. When combined with internal dynamics and/or time delays,
the mutual inhibitory structure can form the foundation of an oscillatory circuit.
This mechanism has been demonstrated in many models of neural circuits and
has been used in biomimetic control system design [22, 32–43].

These cellular and network properties endow theCPGwith several capabilities that
may be highly desirable for an engineered biomimetic system: stable oscillations,

Figure 8.3 Example CPG circuit that
demonstrates some of the fundamental
network mechanisms used by CPGs to produce
stable, yet versatile oscillatory patterns. One key
component is to have a mechanism for burst
initiation. In this circuit, this is provided by the
Es neurons, which have intrinsic properties that
tend to initiate a burst (see example equations in
Table 8.1). The second component is a
mechanism to alternate between sides of the
oscillator (e.g., flexor/extensor or left/right
oscillations in circuits for locomotion).
Biological systems commonly utilize a mutually

inhibitory arrangement in which opposite sides
of the oscillator inhibit each other, as shown in
this example. A third component is a
mechanism for terminating a burst. In this
example, a reciprocally inhibitory network
arrangement provides this feature.On each side
of the oscillator, as the Es neuron fires, it excites
the Is neuron, which in turn inhibits the Es
neuron. These mechanisms are commonly
exhibited in biological oscillators and have been
utilized both in biological models and in some
biomimetic control systems.
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frequency modulation, phase-dependent sensory integration, and phase reset-
ting [44–47]. Each of these has been demonstrated in mathematical models of CPGs
and has been utilized in biomimetic systems [32–43].

8.3
Discussion

In the implementation of any adaptive system, there are risks of adapting in an
inappropriate manner. One key issue revolves around the decision of when to
adapt and how strongly to adapt. To operate autonomously, the adaptive system
must determine when the information derived from sensors is not only reliable
but also useful. Context can play a critical role in determining the most appro-
priate way to adapt. For example, information derived from sensors on the feet just
after the foot hits the ground may be very useful in adapting a specific set of
parameters of the CPG circuit whereas the signal from the same set of sensors
may not be useful in other phases of the gait cycle. Information derived from
sensors with a high noise level may lead to adaptation that degrades overall
performance. Biomimetic approaches to adaptive weighting of sensory inputs for
both real-time control and real-time adaptation may provide advantages over
existing techniques. In particular, biomimetic approaches may enable integration
of multiple sensors and multiple sensory modalities in order to fine-tune the
adaptive processes.

As we design systems that are intended to coadapt, this adds a new dimension to
the complexity of the adaptive process and raises important questions about the
stability of the adaptive processes. In psychophysical studies of humans interacting
with machines, the general observation is that people learn best how to use a tool if
that tool behaves reliably and in a repeatablemanner, thus suggesting that adaptation
in the device could be detrimental to overall performance. As we design adaptive
biomimetic systems, howwill the adaptability that is engineered into the biomimetic
device affect the user�s ability to use the device? How will the adaptability affect the
user�s learning process? Similar concerns are raised about the reciprocal process –
that is, how will the changes in performance due to biological learning affect the
adaptive procedures engineered into the biomimetic system? In this coadaptive
environment, there is great potential for instabilities in the adaptive processes. Itmay
be possible to address these concerns by simply avoiding rapid adaptation; if the time
constants on the learning processes are slow enough, instabilities may be avoided.
However, effective coadaptation may require new theoretical developments to
maximize learning while ensuring stability.

For many applications that involve interactions with people, the complexity and
potential pitfalls of implementing adaptive engineered systems may contraindicate
(or at least call into question) their use. A valid approach may be to design a
nonadaptive engineered system and let the biological system handle all adaptation.
In the design of the next generation of �smart� prostheses, the question has been
raised: should we engineer the smarts into the prosthesis or should we design a
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highly capable �dumb� (nonadaptive) prosthesis and let the brain learn how to best
use it [48]?

8.4
Future Developments

It is apparent thatmany biological systems exhibit capabilities that far exceed the best
that today�s engineered systems have to offer. Although there is growing interest in
utilizing biomimetic approaches to develop the next generation of high-performance
engineered systems, it is not clear how best to proceed. As we move along the
spectrum from today�s engineering devices to high-fidelity biomimetic systems,
there is an important tradeoff between the potential benefits of biological fidelity and
the costs of the complexity of design and implementation.

The cost/benefit tradeoff is likely to be greatly improved by developments in the
following key areas:

. The development of theoretical frameworks and mathematical tools can provide
mathematical/engineering rigor to complex biomimetic systems. The growing
interest and activity in the fields of computational neuroscience and neural
modeling (Chapter 2) will provide new algorithms to implement high-fidelity
models of individual neurons and their interactions.

. The development of neuromorphic hardware (e.g. Chapter 3 and Chapter 9)
[34, 41] can facilitate implementation of biomimetic systems by providing the
capability of real-time simulation of complex biomimetic models. Such proces-
sing capability is not only critical for real-time control but it will also accelerate the
development of the knowledge base for biomimetic systems.

. The development of high-density/high-fidelity neural interfaces (e.g. Chapter 6
and Chapter 7) will enable the integration of biomimetic and biological systems.
In designing machines that interact with people, neural interfaces provide a
means to directly connect the engineered system to the nervous system. If used
appropriately, these interfaces may provide a high degree of integration between
the user and the machine [48, 49]. A high-quality interface may not only improve
the performance of the biohybrid systems butmay alsomake them easier to learn
to use. The development of these interfaces will provide new opportunities for the
biomimetic community and it will provide a new set of challenges.

. The development of an improved understanding of neuroplasticity will enhance
our ability tomimic it and promote it. Although there has been great progress in
the development of the knowledge base that describes learning in the nervous
system, there are still several critical gaps. A more detailed and nuanced
understanding of the multiple mechanisms involved in learning can be incor-
porated into the next generation of adaptive algorithms. Perhaps more impor-
tantly, that knowledge can also be used to design the biomimetic system such
that its interactions with the biological system can maximize learning in the
biological system.
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9
Neuromorphic Hardware for Control
Kevin Mazurek, R. Jacob Vogelstein, and Ralph Etienne-Cummings

Neuromorphic hardware emulates functions of the nervous system in silicon
integrated circuits in an attempt to replicate the performance of its biological
counterpart. The term neuromorphic was coined by Carver Mead in the early
1990s and is commonly associated with low-power analog circuits that operate
in an analogous fashion to biological systems [1]. This hardware is commonly found
in biomimetic systems emulating processes such as vision, audition, locomotion,
and elementary processes such as neural encoding, discrimination, and adapta-
tion [2–11]. This emulation of lower-level processes can then be used to provide
functional control of an internal or external system. This is advantageous in
biomimetic systems because it ensures that computations are performed as would
be observed in nature. Information in Refs [1, 12, 13] and Chapter 3 provide a more
detailed background about the fundamental design and analysis of these building
blocks. This chapter provides detailed examples of systems where neuromorphic
hardware is used for functional control. In these applications, the control signal is
one that another system uses to determine its next course of action. Thismay involve
an analog signal from a neuromorphic vision system that tracks an object [4] or
a spiking signal from external sensors for controlling the stimulation waveform of a
neuroprosthesis [10]. Mobile applications typically utilize neuromorphic circuits
because they operate effectively while consuming low power that is ideal when
attempting to conserve battery power. The applications discussed in the following
sections include locomotion, audition, and vision. These are a sample of the
many applications in existence that incorporate neuromorphic hardware in their
biomimetic systems.

9.1
Neuromorphic Hardware for Locomotion

When designing and using neuromorphic hardware, the application for which it is
being used determines the type of biological components to emulate and incorporate
in the device. For applications involving locomotion, neural circuitry that controls
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sequential activation of muscles is the key biological process to emulate. Neural
circuitry that can produce periodic outputs with periodic forcing forms central
pattern generators (CPGs). CPGs for locomotion produce efferent neural signals
to control body appendages for movement observed during walking, running, or any
other type of gait [14–20]. Their activity can also bemodified by sensory afferents. The
afferent sensory feedback aids the CPG in fine-tuning the legged movements to
ensure robustness against perturbations such as slipping or tripping.

The use of neuromorphic hardware for locomotor control has often been used in
the realm of robotics. There is a need to provide control mechanisms to determine
how to activate different legs of a robot, let it be bipedal, quadrupedal, and so on.
Digital processors are used to implement algorithms that coordinate the activation of
different actuators orDCmotors (depending onwhat operates the robotic limbs). For
neuromorphic systems, it is desirable to replicate the control mechanisms that aid
organisms in biology, the CPG. In doing so, themovements attained by the robot will
appear more biologically realistic, which is the purpose of using neuromorphic
hardware. By achieving this biofidelity, it allows for the robot to respond to different
environmental changes similar to those observed in nature.

There are several neuromorphic devices that emulate the CPGof different animals
in order to control different legged robots. Such devices provide control to bipedal,
quadrupedal, and hexapedal robots to aid in locomotion [9, 21, 22]. The example of
neuromorphic hardware emulating bipedal movements uses a programmable
network of silicon neurons to generate output-spiking patterns similar to what is
observed in biological recordings [23]. In order to generate outputs to accurately
control a bipedal robot, the inhibitory and excitatory weights between neurons are set
appropriately to achieve proper timing and sensory feedback from external signals
aided in the activation/deactivation of different neurons. In this system, the param-
eter space is quite large (several synaptic weights need to be set to achieve the desired
output). As a result, genetic algorithms are implemented to aid the programming of
the SiCPG to obtain walking patterns at certain stepping frequencies faster than a
�guess and check� method [24]. A more detailed explanation of the SiCPG will be
provided later in this section.

For quadrupedal CPGs, the neuromorphic hardware generates output control
using feedforward techniques [22]. The different gait patterns generated are con-
trolled by setting certain input values. The device consists of four coupled oscillators
that control the frequency, pulse width, and oscillatory delay through appropriate
settings of input voltage values. The oscillators intend to mimic the motor unit
outputs observed in biology. These oscillator circuits require bias voltages to
determine the overall stepping frequency, stepping pattern, and direction of gait
generated. The output patterns from this neuromorphic chip can control DCmotors
of a four-legged robot to recreate different types of gaits [22]. The difference between
the generated gaits is the phasic relationship between the four moving legs. For
example, the order in which the four legs move during walking is different from that
during a cantor. The device uses a support vector machine (SVM) to learn the
appropriate values for each type of gait, as an alternative to optimization techniques
such as genetic algorithms previously mentioned.
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Hexapedal walking is achieved through neuromorphic hardware by using
cellular neural networks (CNNs) to determine the pattern of output activation [9].
These CNNs are implemented in VLSI to generate the desired outputs similar to the
biological CPG of a hexapod. (More information about CNNs and the theory behind
them can be found in Ref. [25].) The hexapedal device generates different gait
patterns based on reconfigurable input variables. The outputs of the device control a
hexapedal robot to realize the desired gait patterns and movements.

The previous applications each incorporate a neuromorphic CPG chip to control
themovements of a robot. Another way to use this technology is to create a controller
that acts as a neuroprosthesis for restoring locomotion in living systems [10]. One
such application using the same SiCPG chip as mentioned before is described in the
following sections.

9.1.1
A Biohybrid System for Restoring Quadrupedal Locomotion

Spinal cord injury (SCI) occurs in approximately 12 000 individuals in the United
States each year [26].When the injury occurs above the lumbosacral cord, there is loss
of activation of the spinal motor pattern generating circuitry in the lumbosacral cord
by descending input from the brain. This loss of activation results in paralysis.
However, the neural circuitry controlling locomotor movements remains intact as
long as the lesion of paralysis occurs above the lumbosacral region of the spinal
cord [14]. By replacing the lost brain control of this circuitry with an external device, a
biohybrid system can be built to restore lost locomotor control.

9.1.2
Silicon Neural Network Design

The silicon CPG chip (described earlier for controlling a bipedal robot) for restoring
locomotion consists of a membrane capacitance, interconnecting synapses, and an
axon hillock [23]. A block diagram of these components in an individual spiking
neuron is shown in Figure 9.1. There are four different types of synapses available on
the chip allowing for differentmeans of neural communication. Four analog and four
digital synapses are present that allow for external inputs to excite or inhibit certain
neurons. There are also 10 feedback or recurrent synapses to interconnect each
neuron with one another and with itself. An additional test synapse is available for
each neuron but is typically used for testing purposes. Each feedback synapse has a
programmable digital weight that controls the strength of excitation or inhibition
each neuron imposes. The digital weights are used to programa currentmode analog
to digital converter [27], which adds charge to a neuron�s membrane
voltage. Figure 9.2a depicts the current steering circuitry that allows for this program-
mability. The synaptic value is an 8-bit word (represented as {S0, . . ., S7}) and
passes scaled versions of the reference current to the neuron�s membrane voltage
node. An additional bit is used to specify whether the programmed synaptic weight is
excitatory or inhibitory. This determines the direction the current moves toward the

9.1 Neuromorphic Hardware for Locomotion j159



membrane potential, that is, excitatory adds charge while inhibitory removes it. A
hysteretic comparator is implemented to represent the axon hillock and transitions
between high and low states depending on the membrane voltage on the input
capacitor.

There are additional circuit components representing a refractory period, dis-
charge rate, and spikewidth control that can be programmed tofine-tune the shape of
the spike. The different parameters available tomodify the spiking properties of each
neuron provide the ability to output different rhythmic spiking patterns similar to
those observed in biological systems such as the locomotor CPG.
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Figure 9.1 Block diagram of the silicon neurons in the SiCPG chip. (Adapted from Ref. [10].)
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Figure 9.2 (a) Circuit diagram for the
programmable synapse. The output current is
passed to the capacitor to either increase or
decrease its voltage potential (depending on
whether the synapse is excitatory or inhibitory).
(b) The preprogrammed CPG controller

determines the muscles to be stimulated at a
given time (top). The sensory feedback from the
accelorometers and force plates the cat is
walking on triggers the transition from stance-
to-swing for each leg (bottom). (Adapted from
Ref. [10].)
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9.1.3
Using the Chip for Locomotor Control

By appropriately setting the programmable synaptic weights of the different silicon
neurons, it is possible to produce rhythmic spiking outputs representing different
muscle activation during locomotion. The transitions between active neurons
depend on the synaptic weights that are set both with digital recurrent synapses
and with external sensory (analog or digital) synapses. The validity of this device is
tested on anesthetized cats to ensure its appropriate performance, and such an
experiment is described as follows [10]. The male cats are anesthetized through
inhalation of isoflurane, and an intravenous catheter is placed for the administration
of somnotol, a barbiturate anesthetic. The SiCPG controls the stimulation pattern of
intramuscular stimulation (IMS) electrodes in order to create the desired walking
movements. The IMS electrodes are inserted near the six major motor points of the
hindlimbs to be able to generate sufficient walking movements. Movements are
considered sufficient if they are capable of producing an appropriate amount of
weight bearing force and the necessary motion to move the body forward in an
appropriate walking pattern.

The cat is placed on a sling attached to a trolley where it can walk along a walkway.
The walkway is attached to two parallel force plates that record the ground reaction
forces (GRFs) of each leg, while accelerometers are placed on the hind limbs of each
leg. These two signals provide feedback information to determine when each leg
should make a stance-to-swing or swing-to-stance transition. Proper filtering and
calibrating of threshold values enables the SiCPG to make these swing and stance
transitions during the in vivo experiments. The SiCPGwill transition to a swing state
or a stance state based on predetermined threshold values measured prior to
implementing overgroundwalking. The transitions occurwhen the recorded sensory
signals cross these thresholds, which allows for a change in which leg is in stance or
swing, thus producing the appropriate walking pattern of alternating extension and
flexion between each leg.

As demonstrated in Ref. [10], a total of 57 trials were conducted on the three cats to
determine the efficacy of the controller in producing organized and stable walking
(see Figure 9.3). A degree of variability between experiments and between cats relates
to muscle fatigue, electrode placement, walkway friction, and sensory thresholds.
However, successful walks were exhibited in certain trials when the SiCPG was
programmed appropriately. Implementing a more complex CPG model to accom-
modate for the variability of the environment (such as perturbations and walkway
resistance) and developing a controller that uses both feedback and feedforward
information to conduct transitions may lead to a more successful neuromorphic
device. The described experiment was capable of operating only in closed loop
mode that had the potential of being locked in a certain state if the sensory signals
did not cross the necessary threshold. By applying underlying open loop control
as well, it allows for a timing signal to prevent such an occurrence. This type of
advanced SiCPG would be capable of operating with lower current stimulation
methods such as intraspinal microstimulation (ISMS), to produce a low-power,

9.1 Neuromorphic Hardware for Locomotion j161



mobile neuroprosthesis. With further improvements andmore detailedmodeling of
the biological CPG, an advanced and efficient neuromorphic hardware device for
biohybrid control could be developed. The described application illustrates some of
the capabilities of neuromorphic hardware for processing information from its
environment to provide control of another system that in this case happens to be the
activation of walking movements in an anesthetized cat.

9.2
Neuromorphic Hardware for Audition

The audition pathway is another complex biological system that has been emulated in
integrated circuits. Specifically, there are implementations ofmodels of the biological
cochlea to process complex auditory signals in hardware [28–31]. While some of this
material has been discussed in Chapter 3, a brief review of the basic components will
be presented.

The biological cochlea acts as a filter bank for processing different auditory
information [32]. The basilar membrane within the cochlea performs temporal and
spatial computations that encodes information about the incoming auditory signal.
Different locations along the membrane activate when different frequencies are
present, allowing certain frequency information to pass while strongly rejecting
others, andmore specifically the higher frequencies relative to the current frequency
tap. This spectral analysis translates the sound into spikes through the inner and
outer hair cells, allowing the spiking information to be processed in higher-level
neural circuits.

Figure 9.3 Results of one successful walking
trial. The top trace is a stick figure
representation of the hind leg movement
over time. The second trace shows the right
hip angle (HA) and ground reaction force.
For theHA, it is possible to observe the changes

from extension (E) to flexion (F). The GRF
shows when the leg is loaded (L) or
unloaded (U). The bottom trace shows the
activation pattern from the SiCPG to the
right and left extensors (E) and flexors (F).
(Figure from Ref. [10].)
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The functionality of the cochlea is implemented in silicon through the use of
several band pass or low-pass filters with exponentially scaled cutoff frequencies
similar to those observed in biology [33]. The reproducibility of the silicon cochlea
improves as filter mismatch is corrected, instabilities are reduced, dynamic range
improves, and inner and outer hair cell (IHC and OHC, respectively) models are
incorporated. The frequency information from the biological cochlea is spaced out in
an exponential manner as achieved in certain models.

Auditory applications involving neuromorphic hardware use the silicon cochlea as
a front end to systems involving speech recognition, sound localization, and cochlear
implants [6–8, 34–39]. Using a cochlear circuit allows for performing spectral
computations in an analog domain (it outputs digital spikes with analog timing)
that reduces the power consumption in comparison to a digital processor. This is
especially important when designing cochlear implants because they operate on
battery power and, as mentioned in Section 9.1, this allows for longer durations
between changing batteries. It also allows for spectral information of the input signal
to be computed in the analog domain and in real time as opposed to using a digital
processor to perform computations on windows of information. Digital systems
would require several frames of data to compute the spectral information that an
analog system accomplishes in real time. In addition, each frame would require an
analog-to-digital conversion resulting in more power consumed than when the
computations were performed solely in the analog domain. It is possible to achieve
a comparable performance rates in both analog and digital processors; however, the
rate at which the conversions occur in the digital processor will result in a much
higher power consumption rate.

The AER EAR is a neuromorphic device that uses two silicon cochlear circuits to
provide spiking information through address event representation (AER, as dis-
cussed in Chapter 3) to another system for performing digital computations [7].
Typically used in multichip configurations, the AER EAR is useful when commu-
nicating with other devices with an AER interface. One control application
involving the AER EAR uses the silicon cochlea�s spectral computations to detect
rhythmic sounds that in turn control thewalking of a bipedal robot [39]. The following
sections describe the specifics of the AER EAR and its use in such a control
application.

9.2.1
AER EAR Architecture

The general building blocks of the AER EAR are twomatched silicon cochlea circuits,
inner hair cell (IHC) circuit models, and integrate-and-fire neurons with the AER
interface [7]. Each silicon cochlea consists of 32 second-order low-pass filters using
transconductance amplifiers operating in the weak regime (Figure 9.4). This allows
the filters to operate while not requiring large amounts of current. The cutoff
frequencies exponentially decrease and each filter produces an output voltage from
the differential input values. The frequency range of the low-passfilters is from50Hz
to 1 kHz.
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The inner hair cell circuits are meant to emulate the biological function of
transducing vibrations into neural signals. The differential voltage output from the
cochlea circuit is passed into the IHC circuit and produces a single-ended output
current. This output current is rectified and low-pass filtered before outputting to the
neuron circuits.

The output current of the IHC is sent through a current mirror and passed to the
membrane capacitance of the integrate-and-fire neuron. This current is integrated
into the capacitor until the voltage crosses a certain threshold at which time the
neuron produces a digital output to activate the AER circuitry. The AER output can be
used by other AER communicating devices [7].

9.2.2
AER EAR Control Application

A control application involving the AER EAR uses the AER sound-based output
from the silicon cochleas as the input to an AER-controlled audio filter [39]. This
filter extracts the rhythm of the audio signal that controls the walking rate of a
bipedal robot. The AER EAR front-end passes the spiking output to an AER filter.
The output of the cochlea circuits contains information about the frequency of
the input signal. This information is processed by the audio filter to extract the
rhythm or �beat.�

From Previous Filter
To Next Filter

Resistive Line

Icutoff Icutoff

Vcf VQ Vcf

IQ

Figure 9.4 Schematic of one second-order
low-pass filter. The resistive line allows for
controlling the exponential spacing between
cutoff frequencies. Each filter is connected to

its neighboring filter and the voltage Vcf sets
the cutoff frequency of this filter. The ratio
of Icutoff to IQ also sets the Q factor of the filter.
(Adapted from Ref. [7].)
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Beat detection is computed by determining the interspike interval (ISI) of certain
cochlear output channels. The detection takes into account the spacing of the spikes
to determine whether they are from the same burst of spikes or from repeating
bursts. Aprogrammed threshold determines the amount of time a burst of spikeswill
take in order to distinguish rhythmic beats. In this example, the beat threshold was
set to 250ms, which happens to be the amount of time required to make the bipedal
robot walk on step. The rhythmic outputs from the AER filter are passed to an AER
board with an FPGA onboard (Figure 9.5). The FPGA realizes a CPG network to
operate the bipedal robot. The typical CPG network operating the robot consists of
integrate-and-fire with adaptation neuron models and control hip flexion, hip
extension, knee flexion, and knee extension in both left and right legs [40].
The output signals controlling the robot are driven by preprogrammed activation
patterns. Each rhythmic output from the beat detector activates certain CPG
commands programmed in VHDL in the FPGA. These commands activate certain
actuators in the bipedal robot to generatewalking at a certain rate. Synaptic weights of
neuron models are no longer needed to adjust the walking cycle of the robot.
The stepping frequency depends on the rhythmof the sound that allows for adjusting
the walking speed by increasing the audio frequency. The outputs from the FPGA

Silicon Cochlea Output

Rhythm Detection

AER

A
E

R

AER

CPG Network

Bipedal Robot

Silicon Cochlea

Figure 9.5 An audio signal is transmitted
via AER into spikes to a rhythm detection
circuit. This circuit produces activating
pulses based on the rhythm of the cochlear

input. The activating pulses coordinate the
movement through the CPG40, which in
turn controls the bipedal robot. (Adapted
from Ref. [39].)
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board are also transmitted via AER that allows for generating the desired pulses to the
robots� actuators at the hips and knees of each leg. This output of pulses controls the
specific activation pattern of hip and knee extensors and flexors generating the
walking movements. This application demonstrates the ability of neuromorphic
hardware to emulate multiple biological systems (in this case, audition and loco-
motion) to provide efficient control to an external system (the robot).

9.3
Neuromorphic Hardware for Vision

For neuromorphic vision applications, the front-end component is typically a model
of the biological retina. This circuit is commonly called a silicon retina, whichwas the
first sensory neuromorphic VLSI system by Mahowald and Mead [11], and attempts
to replicate the functionality of the biological retina in terms of localized information
processing. In order to emulate the biological retina, the circuit must be capable of
encoding visual information in its output while operating over a wide dynamic range
of input signals. Silicon retina circuits perform well as front-end transducers from
light to electrical signal and have been described in detail in Chapter 3. Successful
retinal circuits incorporate models of photoreceptors, horizontal cells, and bipolar
cells or at least replicate their functionality [11, 41, 42]. The purpose of photoreceptor
cells in biology is to transduce light into a voltage (represented by its membrane
potential) [43]. Themembrane potentials of several photoreceptor cells in the human
retina are connected to horizontal cells that act as a low-pass spatial filter. The bipolar
cells integrate the spatially low-passed signals from the horizontal cells and the
photoreceptors to produce center-surround receptive fields. This information is
transmitted to the visual cortex via the outer plexiform layer, ganglion cells, and the
thalamus [43]. In some organisms, more complex image processing occurs at the
retina. For example, rabbits can performmotion detection in the retina [44] and frogs
perform orientation and scale discrimination [45]. These are functions necessary for
their survival.

The localized signal processing occurring in the retinal cells iswhatmakes it such a
desirable biological process to emulate for other applications. Visual features
incorporating spatial, orientation-based, and temporal filtering are computed at the
pixel level and passed to the visual cortex. By incorporating this information, it
enables performing processes such as edge detection and grouping or object tracking
without having to process the scene in a frame-by-frame basis [2, 46, 47].

A simple example using a silicon retina imager demonstrates how edge
tracking can control a motor [48, 49]. As a one-dimensional edge is shown to
the sensor that has localized edge enhancement circuits at each pixel, the outputs
of the pixel are used to compute the location of the edge. This voltage adjusts the
position of a DC motor such that it rotates in the direction of the edge to keep it
centered along the pixel array. This application in one dimension describes the
efficiency a retina sensor could have on more complex control application (such as
in two dimensions).
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Other applications involving neuromorphic vision hardware include object
detection [5] and object tracking [4, 49, 50]. In object detection, the retinal output
is passed to an array of integrate-and-fire neurons where certain cells respond to
different properties of the input image [5]. There are two types of cells in this
application: simple and complex. The simple cell neurons respond to basic infor-
mation about the image such as edge orientations. These simple cells transmit
spiking information to complex cells that respond tomore detailed shapes (such as 45
degree corners). Through the use of simple and complex cells, the network replicates
the same computations believed to exist in the primary visual cortex (V1).

For object tracking, different approaches are taken to create aneuromorphic system,
depending on what processes are emulated [4, 49]. In Ref. [49], the application
represents a more detailed emulation of the biological counterpart that then requires
programming a larger variable space. The system includes retinomorphic imaging,
motion detection, object tracking, and selective attention modulation. The hardware
incorporates spatial and temporalfiltering of a visual scene in order to operate amotor
that follows the object. Another approach uses a two-dimensional foveated retina
designed for object tracking. In this case, the hardware emulates the biological
functionality as opposed to the detailed processes emulated in Ref. [49]. This
application will be discussed in further detail as the hardware can be used in
applications involving smart surveillance or road following for an autonomous
navigation system [3].

9.3.1
The Neuromorphic Imager (Silicon Retina)

The neuromorphic imager for tracking applications designed in Ref. [4] divides the
pixel array into two sections: the fovea and the periphery. The pixel density ratio
between these two regions is four, allowing for more detailed imaging in the foveal
region. Another advantage of separating the image array into these two sections is
that the peripheral pixels require less power than the foveal pixels, resulting in
approximately four times less the power consumption than an array composed of
foveal pixels alone. The computations in the foveal pixels emulate the biological
function of smooth pursuit. In the periphery, the pixels emulate the saccadic
movements in the primate ocular system. These two pixel types, when coupled with
amotor system, provide the imager with the ability to either follow an object detected
in the fovea region of the pixel array or perform saccades toward an object detected in
the peripheral region.

The pixels in the fovea array perform localized computations to detect the
velocity of an object in the field of view [4]. The velocity measurements are realized
out of the array to reduce pixel sizes (and increase thefill factor). The foveal circuitry is
depicted in Figure 9.6a where edge detection circuits are packed together in each
pixel. The pixel operates on a log scale when exposed to low light and a linear scale
in bright light. This is due to the current mirror configuration and sizing where
the mirroring transistor current to voltage relationship is exponential during
subthreshold operation and linear above threshold. The transistor attached to the
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photodiode is also configured as a diode, thus operating in saturation mode, which
allows for efficient gain control over wide dynamic ranges of the input. This prevents
pixel saturation as the circuit scales the input appropriately to remain in the desired
operating range.

The computations in the peripheral pixels search for a new object to track. Each
peripheral circuit computes the centroid of the target object such that when the fovea
decides to track it, the position is known such that it can be appropriately centered
within the fovea array.High resolution is unnecessary for detecting a new target. This
allows the use of larger photodiode sizes and fewer cells in the peripheral array.
The edge detection and photoreceptor circuitry of these cells is similar to those of the
fovea as in Figure 9.6a. One additional computation performed in the periphery is the
detection of the arrival of new objects using a temporal ON-set detection circuit,
depicted in Figure 9.6b.When a newobject is detected, themotor system reorientates
the retina so that the object can be examined by the high-resolution fovea, similar to
what is observed in biology. In order to determine the location of the object, its
centroid is computed using a resistance grid along the x- and y-directions. For
robustness, spatial and temporal averaging of the centroid values is computed. This
analog voltage models the mapping function of the superior colliculus, which is
known to provide target locations for saccades in primates [51].

9.3.2
Visual Tracking

For tracking an object moving in the field of view, saccadic generation and smooth
pursuit are emulated similar to what is observed in the primate ocular system [52].
The decision to saccade or track using smooth pursuit depends on the status of the
fovea and peripheral circuits (Figure 9.7a). The peripheral pixels perform saccades by
signifying a new target is available to track. The target is identified by peripheral pixels
detecting a significant edge of an object whose intensity changes in time. The fovea
region moves the target into the field of view. Once the object is located by the fovea
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Figure 9.6 (a) Circuit schematic of the pixel that performs phototransduction, edge detection, and
spatial filtering. (b) Motion detection circuit that determines the direction of motion the target is
moving. (Adapted from Ref. [4].)
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pixels, it attempts to keep it in the field of view by following the object�s motion. This
represents the smooth pursuit observed in biological visual systems. As previously
mentioned, themotion detection is computed outside of the imaging array in order to
save space and allow for a higher foveal pixel density.

The interactions between the peripheral and foveal pixels are determined by a state
machine. There are four potential states that decide whether to generate saccades or
smooth pursuit. This state machine is depicted in Figure 9.7b and runs as follows.
If there is no motion in the fovea and an object is detected in the periphery,
the position of the object is computed and the fovea is centered about that object.
If the target moves within the foveal array, it is followed through smooth pursuit
movements. If the followed object becomes stationary for a preset amount of time,
smooth pursuit ceases and a new target search is generated in the periphery. If at any
point motion is detected in the fovea while a target search is conducted in the
periphery, the target search is abandoned and smooth pursuit starts in the fovea.
These state decisions put emphasis on smooth pursuit while only performing
saccade generations for a new target when nothing is detected or can be tracked
in the fovea. If the preference is set to the saccadic movements as opposed to smooth
pursuit, the imager would bounce around between different objects detected in the
periphery and would never be able to completely track targets in the fovea.

9.3.3
Object Tracking Application

The completedhardware has pixel array sizes of 9� 9 for the fovea and 19� 17 for the
periphery. The sensor detects and tracks people in a cluttered environment in both an
indoor and an outdoor setting [4] (see Figure 9.8). Individuals running or walking
from varying distances are tracked by the fovea array. One limitation to the system
relates to the size of the fovea array. If the moving object is too far away, the low
resolution in the fovea hinders its tracking ability because themotion is too small for
the array to discern its location. Another setback to the fovea size is that fast moving
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Figure 9.7 (a) The pixel layout of the neuromorphic imager. The fovea pixel cells are encompassed
by the peripheral pixel cells. (b) The state machine controlling whether to saccade toward a new
target found in the periphery or track an existing one detected in the fovea. (Adapted from Ref. [4].)
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objects can move quickly out of the fovea�s view faster than it can be tracked. When
this happens, the periphery needs to redetect the target to center the fovea again and
continue smooth pursuit.

A more complex application involving the sensor provides control to a robot for
autonomous navigation [3] (see Figure 9.9). This application uses the neuromorphic
imager as the front end of the system to provide coordinates to control the move-
ments of a robot. The simple task of line following is accomplished by passing
information about the state of the line to a microcontroller. Themicrocontroller uses
these results to determine the required acceleration, deceleration, and steering to
maintain an appropriate position along the line. To make the application more
complex, obstacle avoidance is also incorporated to ensure the robot follows a specific
path without hitting objects along the way.

In this application, two sensors are used to provide binocular vision to the robot;
however, because the retinas� fields of view do not overlap, stereo depth perception is
not implemented. Both the sensors attempt to maintain the line in a blind spot
between the retinas� fields of view and essentially compete with one another to
ensure the line be kept between them. The microcontroller has the ability to avoid
obstacles in its path once detected. If an object is detected, the controller stops
tracking the line and performs an avoidance maneuver to move around the said
object. While navigating around the object, the controller remembers the avoidance
direction such that it can remember how to reorient the robot back toward the line.

Figure 9.8 Oscilloscope trace of x- and
y-positions of a high-contrast target moving
across the pixel array as reported by the
peripheral pixels. The x-direction is constant
at 27 foveal pixels per second while the
y-direction varies as specified by the
numerical directions in the inset. When the

target is over the fovea, the peripheral
positions freeze at the last known state
as shown on the graph (On Fovea).
The inset represents the movement of
the target across the entire pixel array as
specified by the different numerical values.
(Figure from Ref. [4].)
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The object avoidance always takes precedence over line tracking to ensure the robot
does not collide with anything in its path.

As the robot navigates the path, the control strategy emphasizes accelerating when
the path is straight anddeceleratingwhen the path curves or has a corner. The angle of
the line relative to the X-axis position of the neuromorphic sensors determines
the speed of the robot as well. If the angle of the line is less than 45 degrees, the x- and
y-coordinates are small and large, respectively. These values correspond to deceler-
ating the robot to ensure the line is maintained between the two sensors. The robot
is successfully capable of traversing a path outlined by black tape on the gray
linoleum floor. The lens on the sensor allows for a viewing angle of 10 degrees.
The path contains black and white obstacles, two sharp turns, and some smooth �S�
curves. As the robot moves at an average speed of 1m/s it is capable of traversing the
track with no errors. When the average speed increases, the errors observed occur
from oversteering as opposed to problems with the tracking algorithm in the
microcontroller.

9.4
Conclusions

Neuromorphic hardware possesses the ability to provide low-power control to
systems such as robotics or neuroprosthetics. These devices are attractive because
they perform computations in real time while using micro- to milliwatts of power.
The applications described in this chapter are but a few of the ways neuromorphic
hardware can be applied to control other external systems. As neuromorphic circuits
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become more compact and biologically realistic, more complex applications may
arise utilizing their capabilities. In the future, biohybrid systems could incorporate
neuromorphic hardware emulating vision, audition, proprioception, and locomotion
in an effort to provide more complete control for robotics and living systems.
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10
Biohybrid Systems for Neurocardiology
Peter H. Veltink, Lilian Kornet, Simone C.M.A. Ordelman, Richard Cornelussen,
and Rik Buschman

10.1
Introduction

The heart is able to generate an activation and contraction pattern in a self-sustained
manner. In a healthy heart, the activation starts at the sinoatrial node and is
subsequently transmitted over the atria and ventricles to generate a well-coordinated
contraction. The autonomic nervous system modulates this autonomous activation
and contraction process, influencing heart rate (chronotropy), contractility of the
heart (inotropy), and velocity of signal transduction in the AV node (dromotropy). It
consists of two antagonistic parts: the ortho- and parasympathetic systems. In a
healthy heart, generally speaking, the orthosympathetic system increases and the
parasympathetic system suppresses cardiac activity.

Amalfunctioningheart is, inmany cases, life threatening. Theheart rhythmcanbe
too slow (bradycardia) and/or not synchronized in the ventricles or too fast (tachy-
cardia). Bradycardia (a slow heart rate or missed heart beats) can be the result of an
affected sinus node or an affected conduction system. The affected conduction
system could be due to a disorder of the AV node, the His bundle, or the bundle
branches. An affected conduction system could also result in asynchronous con-
traction of the ventricles. Artificial cardiac pacemakers can generate the missing
activation pulses in case of bradycardia, synchronize atrium and ventricle in case of
AV block, or optimize synchronization of the contraction of both ventricles in heart
failure (cardiac resynchronization therapy, CRT [1–3]).

Too high heart frequencies (tachycardia) can be symptomatic or even life
threatening if they result in fibrillation of the ventricles. Ventricular fibrillation
might be due to the presence of a high sympathetic level in combination with, for
example, heterogeneous innervation induced by a cardiac infarct or another reason
of nerve deterioration [4]. Antiarrhythmic drugs such as those targeting ion
channels have inadequate effectiveness and a risk of serious complications. To
terminate ventricular tachyarrhythmias, implantable cardioverter defibrillators
(ICDs) include antitachycardia pacing (ATP) and high-energy shocks (HES). ATP
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effectively terminates 85–90% of ventricular tachycardia episodes minimizing the
disadvantages of HES [5]. Instead of treating VF with high-energy shocks that reset
the fibrillating heart, it would be better to suppress fibrillation by preventing, for
example, high sympathetic levels. No clinically used stimulation system is available
to perform this function. Present treatment using medication to lower sympathetic
activity such as beta blockers continuously limit the capacity of the heart, thus
preventing optimal heart function in the safe area of operation.

In recent years, stimulation of the parasympathetic innervation of the heart has
been shown to effectively influence cardiac parameters. The aim of this chapter on
biohybrid systems for neurocardiology is to provide an overview of this exciting field
of neurocardiac monitoring andmodulation, wherby a closed loop biohybrid system
is formed. First, the main characteristics of the autonomic control of the heart are
described. Subsequently, approaches in stimulation, sensing, and artificial control of
the parasympathetic innervation of the heart are presented. Finally, conclusions are
drawn and an outlook of future developments given.

10.2
Autonomic Neural Control of the Heart

The autonomic neural control of the heart consists of two antagonistic parts, which
both consist of reflexive feedback loops and neural integration on several hierarchical
levels.

10.2.1
Antagonistic Neural Control of the Heart

The autonomic nervous system modulates heart activity, which is autonomously
generated by the heart itself. It consists of two antagonistic parts: the (ortho)
sympathetic and the parasympathetic system [6]. Increased sympathetic activity
results in increased cardiac activity: increased heart rate, increased contractility of
the heart muscle, and decreased resistance of the large arteries (vasodilatation).
Increased parasympathetic activity results in decreased cardiac activity, mainly
decreased heart rate, and decreased conduction from the atrium to ventricle.
At rest, parasympathetic activation dominates and heart rate is below the value,
which would be obtained if the heart would be deprived ofmodulating neural inputs,
the so-called intrinsic heart rate.

Parasympathetic preganglionic neurons originate from the brain stem and sacral
spinal cord and synapse with short postganglionic neurons in terminal ganglia that
are located near target organs [6]. The parasympathetic ganglia innervating the heart
lie mainly embedded in epicardial fat, the so-called fat pads, on various locations on
the atria and ventricles [7]. They are innervated by the 10th cranial nerve, the vagus,
�wandering,� nerve. The sympathetic system has paravertebral ganglia close to the
spinal cord and prevertebral intrathoracic ganglia. Preganglionic sympathetic neu-
rons that influence heart function originate at thoracic levels from the spinal cord [6]
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and mostly synapse with long postganglionic neurons in these ganglia. However,
preganglionic sympathetic nerves were also found to synapse in ganglia on the
heart [8]. Preganglionic and parasympathetic postganglionic axons involved in neural
control of the heart release the neurotransmitter acetylcholine and are therefore
called cholinergic. The sympathetic postganglionic axons release norepinephrine
and are called adrenergic (Figure 10.1).

10.2.2
Reflexive Neural Control of the Heart

Both ortho- and parasympathetic systems are reflexive in nature (Figure 10.1). These
reflexes provide feedback control of the neural modulation of the heart. Sensors
providing feedback are mainly mechano- and chemosensitive. Stress-sensitive bar-
oreceptors are present in both the high- and the low-pressure parts of the circulation.
In the high-pressure system, the main baroreceptors are located in the carotid sinus
and aortic arch. Baroreceptors exhibit static and to some extent rate sensitivity, and
generate signals that are predominantly phasic in nature and in synchrony with the
heart cycle [9–11]. They provide feedback for the primary regulation of the aortic
pressure through the baroreceptor reflex. The afferent information of the carotic sinus
receptors is carried by the sinus nerve, which join the glossopharyngeal nerve [6]. The
afferents from the aortic arch receptors are included in the depressor branch of the
vagus nerve [6]. Low-pressure sensors are located in the junction of the atria with their
veins, thepulmonary artery and theendo- andepicardiumof the atria andventricles [6].
Stressmeasured by these sensors dependsmainly on venous return. Therefore, these
sensors are important in sensing blood volume and are involved in the Bainbridge

Figure 10.1 Sympathetic and parasympathetic
systems reflexively control the heart. Ganglia of
the sympathetic system lie close to the spinal
cord and those of the parasympathetic system

lie epicardially. Neurotransmitters released by
the pre- and postganglionic neurons are partly
different, as indicated.
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reflex, which stimulates heart rate and contractility if blood volume at the venous side
of the circulation increases.

In addition to controlling blood pressure, the neural regulation of the heart
depends on oxygen and carbon dioxide concentrations, which are sensed by chemor-
eceptors. Such sensors are located both peripherally near the baroreceptors in the
carotid sinus and aortic arch and centrally in the medulla [6]. The peripheral
chemoreceptors predominantly sense arterial oxygen pressure, while the central
receptors sense pH, related to arterial carbon dioxide pressure. In addition, mixed
mechano- and chemosensitive sensors are present in the walls of all cardiac
chambers [12]. Their information is transmitted by unmyelinated fibers in the vagus
nerve. These mixed sensors are involved in the Bezold–Jarisch reflex, activation of
which causes inhibition of efferent sympathetic activity, reducing atrial blood pres-
sure [12]. The baroreceptor and Bezold–Jarisch reflexes are complementary in blood
pressure control. During normal conditions, the baroreceptor reflex is dominant.

10.2.3
Hierarchical Neural Control of the Heart

In addition to the feedback control of heart contraction via reflexive loops to the brain
stem, an extensive neural network is present peripheral to the brain, consisting of
interconnected ganglionated plexi on the epicardium of the heart. This complex
neural network on the heart, also called �the little brain on the heart� integrates
afferent and efferent as well as parasympathetic and sympathetic activity as a final
relay station, and is thought to be important in the coordinated neural control of the
heart [8, 13]. In addition to direct neural modulation, the cardiac system is also more
systemically modulated by catecholamines circulating in the blood, for example,
released by the adrenal medulla.

In conclusion, the cardiovascular system is modulated by a complex distributed
multilevel reflexive neural system, consisting of two antagonistic parts.

10.3
Monitoring and Modulating the Autonomic Reflexive Control of the Heart

In addition to direct cardiac pacing, artificial stimulation of the autonomic neural
system may provide many opportunities for providing support in case of cardiovas-
cular disorders. Related to its function, stimulation of the sympathetic system is
expected to result in increased cardiac output, involving increased heart rate and
stronger contraction of the heart and vasoconstriction, resulting in a higher blood
pressure. In contrast, stimulation of the parasympathetic system is expected to result
in decreased cardiac output. The latter is especially relevant since conventional
cardiac pacing does not allow reducing cardiac activity, which is important if the load
on a weak heart becomes too high. By reducing load, parasympathetic stimulation is
expected to be able to reduce the occurrence of tachycardia in heart failure. Also,
increased parasympathetic activation may limit the sympathetic activity, which in
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remodeled or sick hearts, like ischemic hearts or those with a previous cardiac
infarct [4],might be heterogeneous, imposing a risk for the induction of arrhythmias.
Both, that is, reducing load and inhibiting sympathetic activation, may be important
in avoiding ventricular fibrillation, which is life threatening. In addition, parasym-
pathetic stimulationmight influence blood flow within the cardiac tissue, lungs, and
other organs and have a positive effect on inflammation markers present in heart
failure patients [14].

In order to control stimulation of the autonomic system adequately, relevant
parameters describing the state of the cardiovascular system need to be sensed.
For example, the following parameters may be determined and collected using the
electrical activity of the patient�s heart: heart rate, heart rate variability, heart rate
turbulence, T-wave alterations, P-P, P-R, A-V intervals, S-T elevation, and so on. In
addition, artificial sensors for measuring blood pressure-derived parameters or
lung fluid status and chemical compounds can be used such as partial oxygen
pressure, brain natriuretic peptide content, and pH. If these indicate that the
status of the heart has become dangerously unbalanced, stimulation of the
parasympathetic system can be initiated. Alternatively, information can be derived
about the chemical or pressure state by sensing information conducted by the
autonomic nerves. The question is whether we can derive these signals selectively
from these nerves, which carry afferent and efferent signals for many body
functions.

When taking a closer look, the problem of artificial neural modulation of the heart
is complex and challenging, considering that we place an artificial closed loop control
system, including sensing and stimulation, in parallel with a dysfunctioning car-
diovascular system under multilevel closed loop neural control (Figure 10.2).
The challenge then in is to develop an appropriate design of an artificial support
system in order for the combined biohybrid system to function optimally.

The following sections will provide an overview of the state of the art on sensing,
stimulation, and artificial neural control of the cardiovascular system. First, the

Figure 10.2 Schematic representation of an artificial control system to monitor and modulate
cardiac function, placed in parallel to the dysfunctioning neurocardiac system.
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possibility of deriving information from the mechanical and chemical sensors of
the cardiovascular system will be discussed. Subsequently, two approaches taken in
the artificial stimulation of the parasympathetic neural control system of the heart
will be presented: stimulation of the vagus nerve and stimulation of the parasym-
pathetic ganglia or nerves on the heart. Finally, the first studies on a biohybrid system
consisting of an artificial closed loop neural control of the heart will be presented.

10.3.1
Sensing of Afferent Signals from and Efferent Signals to the Heart

Zucker and Gilmore recorded afferent discharges of individual receptors in the atria
from single nerve fibers of the cervical vagus in dogs. During normal heart function,
these receptors exhibited a rhythmic discharge pattern in synchrony with the heart
cycle [11].

The recordings performed by Zucker and Gilmore require dissection of the vagus
nerve, which can be performed only during acute experiments. Less-invasive
recording techniques are required if signals are to be recorded chronically. Several
electrode configurations have been proposed, which potentially can be used for
chronic recording. Whole-nerve recordings can be obtained from tripolar electrode
configurations inside an insulating cuff that are placed around the nerve [15–18].
Recently, we have evaluated whole-nerve recording from the vagus nerve of pigs.
In 10 out of 12 pigs, we found a modulation of the signal with the heart cycle after
ensemble averaging the nerve signals over approximately 100 cycles using an
electrocardiogram (ECG) to identify the cycles (Figure 10.3). The need for ensemble
averaging overmany heart cycles lies in the fact that the cyclically active sensoryfibers
from the cardiac systemconstitute only a relatively small percentage of allfibers in the
vagus nerve trunk. They are, therefore, hard to be selectively sensed from the outside.
The major problem of whole-nerve recordings is therefore selectivity. As described,
the vagus nerve carries bidirectional information for control andmonitoring ofmany
body functions, including cardiac and visceral. Efferent and afferent myelinated and
unmyelinatednervefibers involved in these different functions lie partly organized in
bundles, the so-called fascicles, inside the vagus nerve. Fibers that transmit infor-
mation about pressure or chemical compounds from the heart to the central nervous
system have a limited range of fiber diameters and therefore limited range of
transduction velocities. To selectively record certain signals in these afferent fibers,
we will need a velocity-selective method. Donaldson et al. presented a method for
velocity-selective, and thus fiber diameter-selective, whole-nerve recordings using a
cuff configuration with many electrodes positioned along the nerve [19, 20], but did
not apply their method to vagus nerve recording. In this method, delayed signals on
subsequent electrode tripoles are added, thus amplifying signals that propagate with
a certain velocity. This method can also distinguish between afferent and efferent
signals, but requires a long cuff with many electrodes along the nerve. Improved
spatial selectivity can be obtained using intrafascicular electrodes. For this purpose,
longitudinal intrafascicular electrodes (LIFEs) were developed [21–24], but they have
not yet been applied for vagus nerve recording. The low-conducting connective tissue
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sheet around each fascicle, called perineurium, provides insulation from signals
from other fascicles, thus having the same function as an insulating cuff for
extraneural recording. Intrafascicular electrodes have been reported to be biocom-
patible and cause little nerve damage [23]. The problemwith intrafascicular recording
in a mixed nerve with many fascicles is to identify the fascicles involved in the
targeted function, in our case neurocardiac control and its invasivenesswith potential
detrimental effects in a chronic setting.

Evoked responses, called nerve compound action potentials (NCAPs) can be
derived after electrical stimuli of the vagal nerve using extraneural tripolar nerve
cuff electrode configurations [25–27]. These NCAPs consist of several peaks with
varying latencies, each being generated by a different class of excited nerve fibers: the
peak with the smallest latency is generated by the thickest myelinated Ab fibers
having highest conduction velocity. Subsequent peaks represent the slower and
thinner myelinated nerve fibers (Ac and B fibers) and finally unmyelinated fibers. In
general, the fibers with higher conduction velocities have a lower threshold. There-
fore, at progressively higher stimulation levels, additional peaks with larger latencies
appear in the NCAP.

Ordelman et al. [25] showed that an evoked fast-traveling, relatively dispersed long-
latency component coming from theperiphery is present in theNCAPwhen applying
the average reference recording method (Figure 10.4). This method records the
signal of each electrode relative to the average signal of all electrodes. The fast-
traveling long-latency component is not present in the usual tripolar nerve recording,

Figure 10.3 Example registration from a pig
experiment showing modulation of the whole
nerve vagal signal with the heart cycle after
ensemble averaging the nerve signals over
approximately 100 cycles. The signals of all

cycles were centered on the R-tops of the ECG.
The solid line represents the mean and the
dotted lines the mean �95% confidence
interval.
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due to the second order spatial filtering, which is implicit in thismethod. The latency
of this long-latency component changedwhen influencing the state of the heart using
high-frequency stimulation and is, therefore, hypothesized to be influenced, at least
in part, by the state of the heart and potentially generated by the �little brain on the
heart� [8, 25]. Further investigations have to validate this hypothesis and investigate
whether this NCAP can provide useful information about the state of the heart to be
used as amonitoring index and for feedback in the control of vagusnerve stimulation.

10.3.2
Stimulation of the Parasympathetic Input to the Heart

Neural stimulation of the parasympathetic system has been shown to have negative
chronotropic and dromotopic effects [28–32] and to be potentially protective in heart
failure [33]. Several approaches have been taken to stimulate the parasympathetic
innervation of the heart. The first method stimulates the vagus nerve on the cervical
level with electrodes on the nerve or inside the superior vena cava [30]. Alternatively,
the ganglionated plexuses on the heart can be stimulated from within the heart
[30, 31] or with epicardial electrodes on the heart [32]. Both approaches will be
described separately in the following sections.

10.3.2.1 Stimulation of the Cervical Vagus Nerve
Stimulation of the vagus nerve at the cervical level is a common clinical practice in
refractory epilepsy patients [34–37]. The cervical vagus nerve can be approached
easily during surgery. Besides reduction of seizure frequency in epilepsy through
activation of afferent fibers, stimulation of the vagus nerve can have great effects on

Figure 10.4 Example a compound action potential measured from the vagal nerve, showing an
indirect long-latency component, which was shown to come from the periphery and to have a
relatively high conduction velocity [25]. The experiments were performed on pigs.
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heart rhythm (Figure 10.5), can delay the atrial–ventricular conduction, and even lead
to blocking of atrial–ventricular conduction (Figure 10.6). During vagus nerve
stimulation for epilepsy, cardiac effects are avoided by stimulating the left vagus
nerve, which is thought to have a relatively low effect on heart rate, and by applying

Figure 10.5 Stimulation of the vagal nerve can reduce the heart rate: example recording from a pig
experiment. The bar at the bottomof the graph indicates the period duringwhich the vagal nervewas
stimulated. The alternation of the heart rate is due to breathing.

Figure 10.6 Stimulation of the vagal nerve can
lead to blocking of atrial–ventricular conduction
(AV block): example recording from a pig
experiment. The black bar at the bottom of the
figure indicates the period in which the vagal

nerve was stimulated. The displayed ECG
recording shows an absence of QRS complexes
after a number of seconds, indicating an
absence of ventricular activation due to an AV
block.
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relatively low stimulation amplitudes. Therefore, adverse cardiac effects occur rarely,
when stimulating the vagus nerve for treatment of epilepsy [36, 38]. In recent years,
vagus nerve stimulation, with the purpose of influencing the heart, has been
investigated [27, 33, 39]. Schwartz et al. [33] studied feasibility, safety, and possible
efficacy of chronic vagus nerve stimulation on the evolution of heart failure in eight
heart failure patients with a follow-up of 6 months. The right vagus nerve was
chronically stimulated using an asymmetrical bipolar multicontact cuff with
cathodic excitation and subsequent unilateral anodal block, which was assumed
to preferentially activate efferent fibers. Primarily, it was found that the treatment is
feasible, safe, and tolerable, with only minor side effects such as hoarseness,
coughing, and sensation of stimulation. In addition, this small study showed a
significant improvement in quality of life, NYHA functional class, and left-
ventricular end-systolic volume. Definite conclusions regarding efficacy need to
follow from a larger placebo–controlled randomized study in humans. Zhang
et al. [39] further investigated chronic vagus nerve stimulation in a randomized
control study in 15 dogs with heart failure induced by high-rate ventricular pacing.
The left ventricular ejection fraction, heart rate variability, and baroreflex sensitivity
were significantly larger after chronic vagus nerve stimulation than if none was
applied. In addition, pronounced antiinflammatory effects of chronic vagus nerve
stimulation were found.

An important practical side effect of vagus nerve stimulation is hoarseness [36],
which is associated with activation of the large diameter myelinated efferent fibers
innervating the vocal folds through the recurrent laryngeal nerve. This nerve
branches from the vagus nerve caudally from the site where the vagus nerve is
surgically accessible for placing stimulation electrodes. These large-diameter
myelinatedfibers have a relatively low excitation threshold because of their size [40].
Tosato et al. recently proposed to selectively block the activation of intrinsic
laryngeal muscles during vagus nerve stimulation using quasitrapezoidal pulses
applied in a tripolar electrode cuff configuration [27]. They demonstrated 75%
reduction in the first component of the NCAP, associated with major reduction in
the excitation of the thickest myelinated nerve fibers and the intrinsic laryngeal
muscles. This method of anodal blocking had been previously demonstrated by
Fang and Mortimer [41], who did not apply the method to selective stimulation of
the vagus nerve. It was compared with alternative methods of diameter-selective
activation such as depolarizing prepulses and slowly rising stimulation pulses by
Vuckovic et al. [42].

An alternative method for selective activation of cardiac fibers in the vagus
nerve may be intrafascicular stimulation [43–48]; however, this method has not
been applied to vagus nerve stimulation as far as we know. The problem with
selective stimulation using intrafascicular electrodes is how to identify the
fascicles involved in the targeted function, in our case neurocardiac control.
More important, it is an invasive approach, which may not be suited for use in
patients. Finally, stimulation of cardiac branches of the vagus nerve may be an
option. However, it may be more difficult to approach them because they might
appear relatively caudally and they are relatively small compared to the vagal
trunk [49].
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10.3.2.2 Stimulation of the Autonomic Cardiac Innervation
Chen et al. [28] and Quan et al. [29] demonstrated that intracardiac stimulation of the
nerves innervating the AV node in the right postero- and anteroseptal areas could
induce slowing of the ventricular rate and a complete AV conduction block in acute
human experiments. In both acute studies, stimulation was performed during
spontaneous or induced atrial fibrillation in order to avoid activation of the myo-
cardium. Alternatively, Schauerte et al. [30] avoided stimulation of the myocardium
by using high-frequency burst stimulation, applied during the atrial refractory period
in animals. Bianchi et al. demonstrated that negative dromotropic effects could also
be obtained using a standard atrial pacing lead at a septal position [31]. Besides using
the intracardiac septal position [50], Schauerte et al. demonstrated negative dromo-
tropic effects using intracardiac electrodes, placed in the inferior vena cava [51] or
coronary sinus [30]. More recently, several studies reproduced and further investi-
gated the induction of negative dromotropic effects by stimulation of fat pads. In an
acute dog study, a leadwasfixated epicardially into parasympathetic neural structures
that supply the AV node to decrease the ventricular rate during AF [52]. In a chronic
dog study, Zhang et al. demonstrated that regular slow ventricular rhythm could be
obtained during atrial fibrillation by combining epicardial AV node stimulation with
ventricular pacing [53], and that chronic AV node stimulation using a epicardial lead
on the AV node fat pad resulted in beneficial long-term ventricular rate slowing [54].
Rossi et al. [32] used a temporary heart wire, implanted for 5 days in 32 patients
during bypass surgery, showing complete AV block in 29 patients and reduced
ventricular rate during atrial fibrillation in 14 patients. Chronic effects of AV node
stimulation on ventricular rate during AF has been found by us for up to 8 months
(unpublished) and others for upto 2 years [50].

Future alternatives to or improvements of AV node stimulation for treatment of
ventricular arrhythmias in heart failure may be based on an improved understanding
of possible causal relations between sympathetic and parasympathetic inputs to the
heart and these arrhythmias [55]. Several recent studies provide relevant knowledge
that has not yet been applied in new therapies. Chiou et al. [56] demonstrated in
patients with AV node-related tachycardia that increased vagal tone can induce
tachycardia because it has different effects on the refractoriness of slow and fast AV
nodal conduction pathways. In addition, Ogawa et al. [57] and Zhou et al. [58]
demonstrated relations between specific patterns of autonomic nerve discharge and
cardiac arrhythmias during heart failure in which sympathetic input patterns play a
major role. They showed that the majority of malignant ventricular arrhythmias are
preceded by increased sympathetic input, having specific patterns, including low-
amplitude burst and high-amplitude spike discharges [58]. Also, the reduction in
sympathovagal balance at night appeared to be due to reduced sympathetic discharge
rather than a net increase in vagal activity [57]. Swissa et al. demonstrated that long-
term subthreshold stimulation of the left stellate ganglion induces sympathetic and
parasympathetic sprouting and, consequently, hyperinnervation in both right and left
atria in dogs [59]. Lewis et al. demonstrated that vagus nerve stimulation decreases left
ventricular contractility involving a degree of interaction between vagal and sympa-
thetic influences [60]. They paced the heart in order to avoid the confounding effect of
heart rate changes. These new insights have yet to be used in improved therapies.
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10.3.3
Biohybrid Closed Loop Artificial Neural Control of the Heart

Research on closed loop control of cardiac function involving stimulation of the
autonomic neural system has been limited until now. Tosato et al. demonstrated
closed loop control of heart rate by electrical stimulation of the vagus nerve in
pigs [26], sensing heart rate from ECG. Heart rate could be changed maximally 20%
with respect to baseline. The reason for this limited range of operation was
suggested to be the parallel action of physiological reflexes. These reflexes may
have been stimulated directly or reacted indirectly to the effect of the vagal nerve
stimulation. In fact, artificial heart rate control was demonstrated to be able to
overrule this parallel physiological control system in the above-mentioned limited
range. A different approach to closed loop artificial control of the heart was taken
by Sato et al. [61–63], who replaced a nonfunctioning baroreceptor reflex in
baroreflex failure rats by an artificial bionic baroreflex. This artificial reflex was
called bionic because it was implemented using a computerized system, simulating
the dynamics of the vasomotor center in real time, and artificially closing the
interrupted baroreceptor loop by providing the systemic blood pressure, as sensed
by a micromanometer, as the input and by stimulating the sympathetic efferent
nerves based on the output of the simulated vasomotor center dynamics. The open-
loop dynamics of the physiological baroreflex system was first identified by system
identification methods using white noise perturbations. After implementing the
bionic baroreflex, blood pressure responses to head-up tilt were demonstrated to be
comparable to intact baroreflex responses. Artificial replacement of a dysfunction-
ing baroreflex may be relevant in patients with neurological disorders that lead to
baroreflex failure, such as traumatic spinal cord injuries and baroreceptor deaf-
ferentation [61]. It should be noted, however, that these principles have been
demonstrated only in acute animal experiments and robust chronic implementation
may be challenging for several reasons, including the need for a reliable chronically
implanted sensor for blood pressure.

Biohybrid closed loop artificial neural control of the heart is still a big
challenge since it needs to be integrated with the affected neural control of the
heart, of which the complex multilevel dynamical characteristics still remain
largely unknown and which may be only partially observable with the limited
sensory information that can be practically measured. In general, the remaining
physiological neural feedback control and the added artificial feedback control
will interfere in a manner that may be understood only partly with available
knowledge. For this reason, the first feasible approach beyond open-loop stim-
ulation of the neurocardiac system, which is being tested in humans as reported
in Section 10.3.2, is expected to be conditional neural stimulation if the status of
the heart, as monitored with feasible means, is detected to be dangerously
unbalanced and predicted to result in a hazardous state of the heart. In this
manner, parasympathetic stimulation could be initiated if atrial or ventricular
fibrillation is predicted based on information sensed from the cardiac and neural
system.
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10.4
Conclusions

Artificial neuromodulation of the cardiac system by stimulation of the autonomic
neural system complements conventional cardiac pacing. The clinical potential of
stimulation of cervical vagus nerve, its cardiac branches, or the neural plexuses on
the heart using intracardiac leads has been demonstrated in recent years [30–33].
However, important questions remain regarding artificial neural sensing, stim-
ulation, and control. The essential issue in neural sensing and stimulation is to
achieve adequate selectivity using interface methods, which are potentially clin-
ically feasible. The challenge is to design the artificial control system such that the
combined physiological and artificial control is functioning in an optimal manner.
This requires a better understanding of the dynamics of the complex autonomous
neural control of the heart, improved observability of this complex system using
adequate sensing, and good controllability. At present, several open-loop approaches
for stimulation of the autonomous neural control of the heart are investigated in
human studies. The next step is to apply these methods conditionally upon detection
or better, prediction of hazardous states of the heart.
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11
Bioelectronic Sensing of Insulin Demand
Matthieu Raoux, Guilherme Bontorin, Yannick Bornat, Jochen Lang, and Sylvie Renaud

This chapter presents potential design of a closed loop system in the context of
therapy for diabetes, using integrated hardware as smart biohybrid sensors of
glucose, hormones, and drugs. The devices process cellular action potentials, could
be used for drug/toxicity screening, and act as integrated sensors for assessing
insulin demand in the treatment of diabetes,mainly of type 1. In a closed loop system,
the sensor output would be used as a control signal for driving an insulin pump. We
present here novel results for the sensor and the conditioning/detection hardware
tested on in vitro preparations of pancreatic endocrine cells, and propose an
architecture for the closed loop system, inspired by previous systems we have
designed for neuroscience applications.

11.1
Sensor Technologies and Cell Therapy in Diabetes: a Life-Long Debilitating Disease

Diabetes mellitus (DM) is a serious, debilitating, incurable, and costly disease that
involves an electrically excitable microorgan, the pancreatic islets. This pathology
poses the challenge for the application of the principles of bioelectronic hybrid
systems in online investigation and the development of an artificial organ. Inmedical
terms, DM is a disorder of carbohydrate and lipid metabolism characterized by
impaired ability of the body to produce and/or respond to the hormone insulin
produced by b-cells in pancreatic islets and thereby maintenance of proper levels of
sugar (glucose) in the blood. The disease appears in two main forms: type 1 and
type 2. The hallmarks of type 2 diabetes mellitus (T2DM) are deficient insulin
secretion from pancreatic islets and insulin resistance in target tissues. In type 1
diabetes (T1DM), destruction of pancreatic b-cells usually leads to absolute insulin
deficiency and concerns some 5–10%of all cases ofDM.Diabetes causes a number of
secondary complications such as heart disease, renal failure, and peripheral limb
neuropathy that can lead to amputation, and in developed countries diabetes
constitutes the leading cause of vision loss. Aprogression in the incidence of diabetes
has been observed worldwide, including T1DM in the young, with a total of
220 million cases in 2010. In addition to the human burden caused by diabetes,
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not only to the patients but also to their careers, the economic costs are enormous.
Clearly, adapting newer technologies shall provide crucial human and economic
benefits in treatment of diabetes.

Though lifestyle intervention (e.g., diet and exercise) combined with oral drug
treatment remains the cornerstone of therapy, this will not suffice for many patients.
Chronic insulin treatment ismandatory for patients afflictedbyT1DMand thequality
of long-term blood glucose control is decisive to reduce the occurrence of complica-
tions.Thenecessityofmultipledailyhormoneinjections,mainly inT1DM,represents
a major nuisance aggravated by repetitive blood sugar controls to ensure adequate
therapy and avoid life-threatening hypoglycemia. Insulin therapy also poses the
problem of difficult dosage management to adapt to diverse situations in everyday
life and requires substantial and expensive paramedic assistance. These constraints
ledtothedevelopmentof insulinpumpsandtheconceptof theartificialpancreas inthe
1980s.Thesystems inclinicaluse consist of an implantable insulinpump,continuous
measurement internalglucosesensors thatutilizeenzyme-enhancedelectrochemical
reactions and software control algorithms. Despite the use of smart algorithms, the
system still works essentially as an open loopmainly due to problems inherent to the
sensor technology.Drawbacks include lag time insensingand inducedhypoglycemia,
inability to cope with changes induced by exercise, puberty, and the menstrual cycle,
just to mention a few. One reason for these drawbacks is the use of measurement of
a single parameter, that is, glucose for the control algorithms, and the lack of reliability
of electrochemical glucose sensors especially for detection of hypoglycemic levels.

The concept of an artificial pancreas has to be weighted in the light of cell therapy.
Islet cell transplantation is indicated only in very restricted number of patients with
unstable diabetes and its success is transient and burdened by immunosuppressive
therapy. Although considerable progress has been achieved in producing islet cells
from stem cells for a potential cure, general protocols are still not available, their
applicability to man remains to be fully explored, andmajor hurdles remain, such as
differentiation into specific lineages and the risk of inherent tumorigenicity leading
potentially to teratomas and cancer. Even in the presence of successful stem cell
therapy, the development of a bioartificial organ still has its place in transient use in
critically ill patients, either as a diagnostic device for metabolic monitoring or as a
screening module. It may, in fact, even benefit from a constant and well-defined
source of cells.

11.2
The Biological Sensor: Function of b-Cells and Islet

Energy homeostasis of the human body relies on the precise sensing of nutrient
levels and integration of hormonal signals to adapt to different physiological
demands such as rest or exercise. The best-studied sensor is given by the islets of
Langerhans, shaped for this purpose throughout evolution. Some 1–3 million islets
are dispersed throughout the pancreas in humans accounting for about 2% of the
total organ. They exhibit a size ranging from 50 to 500mm and contain generally
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1000–3000 cells, mainly insulin-secreting b-cells and also glucagon-releasing a- and
few somatostatin-containing d-cells. Islets precisely analyze blood nutrient levels
such as glucose, due to the specific arrangement of their metabolic pathways, and
provide exactly the required amount of insulin [1]. Pancreatic b-cells not only sense
glucose levels but also take into account other nutrients, such as certain amino and
fatty acids (Figure 11.1). The metabolism of these nutrients generates intracellular
metabolic coupling factors such as ATP and the ensuing change in the ratio of ATP/
ADP leads to the closure of ATP-sensitive Kþ channels (KATP), thereby depolarizing
the cells from the resting potential (�70mV) to above �55mV. At this stage, the
activation of voltage-dependent Ca2þ channels (Cav, mainly L-type) initiates action
potentials further that are enhanced by voltage-dependent sodium channels (Nav) [2]
(Figure 11.1). Ca2þ influx through different ion channels subsequently triggers the
release of insulin through exocytosis. Repolarization of the membrane potential is
exerted by Ca2þ -activated potassium channels (BK) and to some degree by voltage-
dependent Kþ channels (Kv). These ionic events are further tuned by the influence of
intracellular second messengers, namely, cAMP generated by adenylyl cyclases that
are regulated by hormones (such as incretins or adrenalin) aswell as glucose itself [3].
The generation of action potentials (spikes) thus reflects the metabolic and signaling
state. In addition, islets contain not only b- but also a-cells that react in response to
glucose and incretins in a manner opposite to b-cells, that is, by reduced electrical
activity [2]. This property may be used both for ratio measurements and for safer
detection of hypoglycemia. Note that d-cells respond to glucosemainly like b-cells [4].

Insulin secretion is also influenced by hormones, a modulation absolutely
required for maintenance of homeostasis. The incretins GIP (glucose-dependent
insulinotropic polypeptide) and GLP-1 (glucagon-like peptide-1) are secreted
from intestinal cells upon the arrival of nutrients and sensitize the b-cell to the
action of glucose [5]. They favor depolarization, whereas other hormones, such as

Figure 11.1 Glucose and hormones regulate insulin secretion via changes in the membrane
potential (DY). For details, see text.
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somatostatin or adrenaline, hyperpolarise b-cells to reduce insulin secretion during
stress [6] (Figure 11.1). As all these hormones regulate secretion by impinging on the
regulation of membrane conductances, electrical activity represents a coincidence
readout of the state of b-cells or of a-cells and insulin demand. It therefore provides a
highly informative signal. Thus, b-cells or islets provide the best sensor available,
shaped continuously during evolution, both for continuous glucose monitoring and
for pharmacological and toxicological screening.

11.3
Automated Islet Screening and Bioelectronic Sensor of Insulin Demand

We chose to use the integrative sensing properties of the islets by measuring and
processing their electrical activity on silicon-based active electrode arrays. We condi-
tion and process analog voltages measured on each electrode, in order to detect and
quantify the spiking activity, that itself testifies for the metabolic state of the islets.
Using analog hardware, we can thus integrate �smart sensors� or �pixels� combining
sensing and processing on a single substrate and guarantee online and real-time
features for each measurement channel. Analog voltages from each channel of
the array are conditioned in analog and online, using low-power/low-cost integrated
circuits (ICs) able to quantify and decode the detected parameters in real time.

A deliverable device for automated functional islet screening is of interest in two
major settings: first, drug development, and toxicity tests; second, quality control and
toxicity testing in the frame of islet transplantations and generation of islets from
stemcells.While the latter represents a small thoughhighly active group in relation to
the number of transplantations (approximately 400/year worldwide), diabetes drug
discovery concerning islet function can be found in the portfolios of leading
pharmaceutical companies (e.g., Eli Lilly, Novartis, Novo, Merck, and Servier) as
well as small research-intensive companies (e.g., Incyte, VIA, Veroscience, Lexicon,
and Arete) in line with the importance of diabetes. The highly informative readout of
an automated long-term functional screening device occupies an important niche
between in-depth single-cell work and large-scale single-time-point screening. Note
that the latter often requires genetically engineered cells or loading of probes, thus
considerably changing the environment or precluding long-term measurements.

Providing an autonomous, continuous hormone replacement therapymost closely
adapted to physiology and responsive to different everyday life situations will provide
a major advantage not only in terms of patients� life quality and expectancy [7, 8] but
also in terms of cost effectiveness [9]. As outlined below, sensor technology is amajor
bottleneck in achieving this goal. The long-term goal, an implantable biomicroelec-
tronic hybrid sensor of insulin demand,will provide amajor advance in the attempt to
approach normal lifestyles and reduce complications especially in patients suffering
from T1DM. Themajor hurdle in this context is to prevent immunological attacks of
implanted cells. Recent progress in this very active research field inmaterial sciences
has permitted production of semipermeable membranes that restrict access of
immune components [10–12].
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11.4
Closed Loop Exploration In Vitro

This sensor and the conditioning/detection devices also serve to provide the proof of
concept for closed loop functions. Figure 11.2 shows a potential in vitro closed loop
configuration, as opposed to the in vivo configuration described above. As the device
will not be implanted at the current stage, biological feedback control by glucose and
levels of relevant hormones will not be feasible compared to a model implanted in
animals or man. Therefore, buffers with dynamic glucose and hormone profiles will
be delivered to the MEA device as �extracorporeal solutions� mimicking �absence�
versus �presence� of appropriate concentrations of insulin (note in the reduced
system here, insulin cannot diminish glucose as this action of the hormone is
mediated mainly via liver, muscle, and fat cells). To calibrate drugs delivery profiles,
preliminary simulations will be conducted to determine the dynamics required to
stabilize the system.

11.5
Methods

11.5.1
Cultures and MEA

The classical approach for electrophysiological investigations of pancreatic islet cells
is to utilize intracellular recording via patch-clamp [2]. However, this powerful
method for the study of ion channels requires high expertise and allows recording
of only one cell at a time. In addition, patch-clamp electrodes are quite invasive for

Figure 11.2 Closed loop embodiment of
the smart biosensor, highlighting in vitro
versus in vivo approaches. (a) In vitro setup:
perfusions of glucose and hormones mimic

the dynamics of insulin. (b) In vivo setup:
glucose and levels of insulin are regulated
by the patient via insulin injection from a
pump.
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cells, hence limiting the duration of recordings to several minutes. By using
microelectrode arrays (MEAs) for the first time in this field, we developed a novel
approach in which 60 microelectrodes are located outside the cells for extracellular,
multicellular, noninvasive, and long-term recordings. Electrodes, were made from
titanium nitride or platinum and had a diameter of 10–30 mm in order to limit the
number of cells recorded by each channel. The minimal distance between two
neighboring electrodes was 100 mm. This prevents recording of the same signal on
several electrodes. The surface of theMEAswas coatedwith an extracellularmatrix in
order to improve cell adherence.

The ability to record from both clonal and primary cells was tested. Clonal INS-1E
cells derived from rat insulinoma are the most commonly used cell line model of
pancreatic b-cells. Islet cells were obtained from NMRI mice by enzymatic in situ
digestion and subsequent isolation. The formation of islet-like clusters was observed
after 2–3 days of culture on MEAs (Figure 11.3a).

Electrophysiological data were acquired with a MEA1060-Inv-BC-Standard ampli-
fier (Multichannel Systems, Reutlingen, GE), sampled at 10 kHz, filtered at
0.01–3 kHz and analyzed with the MC Rack (Multichannel Systems) and Neuroex-
plorer (Nex Technologies) software.

11.5.2
Signal Conditioning and Spike Detection

As an initial step toward development of screening devices or closed loop insulin
control systems, it is mandatory to design smart integrated circuits for processing
online electrode signals. The planned use as a screening tool (multiple parallel
channels), as well as the need for an implanted device, implies design constraints
such as high signal-to-noise ratio, low power, low cost, and high integration density.

Figure 11.3 Culture and recording of islet
cells on MEAs. (a) Mouse islet cells cultured
for 2 days on the microelectrodes of an MEA
(scale bar, 100mm); (b) 60 recording
channels corresponding to the electrodes
of the MEA in (a). The upper arrow points

to a biologically silent electrode (i.e., no cell
on the electrode), whereas the lower one
shows electrical signals generated by the
cells growing on an electrode. We can
observe that the signal amplitude is in tens
of microvolts.
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To have full control on device performances, ASICs were designed in full custom
mode on standard (i.e., low cost) CMOS technology.

For each acquisition channel (microelectrode), a �pixel� was designed including a
preamplifier and an activity detector. We use the term �pixel� by analogy with the
APS (Analog Pixel Sensor) approach: APS image sensing devices are arrays of pixels
where the photodetector is integrated on silicon together with its processing
amplifier, in order to solve the speed and scalability issues of passive pixel sensors.
In our case, the pixel approach not only helped solve the scale issue but also improved
the signal-to-noise ratio.

Each pixel in our device consists of a preamplifier and an activity detector
(Figure 11.4), and should be situated as close as possible to the electrode, under the
MEA substrate, to maximize shielding from noise of the biological signal, which is
limited to�50mVas explained in the previous section. The gain of the amplifier is set
between 200 and 300, its cutoff frequency is between 10 and 30kHz. An activity
detector processes online the amplified signal. The detectionmethod utilizes dynamic
thresholding; the threshold is continuously adapted to the signal standard deviation.
Its output is an asynchronous binary signal encoding the presence and duration of
spikes. The detector details are presented in Section 11.6. Both the amplified signal
and the detection signal are available as outputs of the pixel.

Note that we have not yet considered themicrofluidic aspects that are important for
biomedical applications. Other setups [13, 14] have successfully addressed this point,
and our next series of prototypes, developed with collaborators [15], shall include
microfluidic channels for drug delivery.

Our preliminary studies showed that it was possible to record and detect electrical
activity on pancreatic b-cells. Results using the prototype setup providing real-time
activity extraction using fixed and adaptive threshold methods are presented in
the next section. In parallel, we are studying the hardware implementation of
alternative detection methods based on wavelet transforms [16]. Preliminary results
on noise reduction and detection mistakes are very encouraging. The setup can be
adapted for real-time acquisition to suit the specific needs of closed loop applications.

Figure 11.4 Integrated pixel for activity detection in cultures of pancreatic islet cells (see details
in text).
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11.6
Results

11.6.1
Recordings

Although MEAs have been widely used in neuroscience applications, we succeeded
for the first time in the culture and the electrophysiological recording on MEAs of
both clonal and primary endocrine b-cells (Figure 11.3) that are known to havemuch
smaller electrical signals than neurons. The upper part of Figure 11.5a is a repre-
sentative electrophysiological trace recorded on an active electrode of an MEAplated
with mouse b-cells. At 37 �C, a rise in glucose concentration in the bath from 3 to
15mMevoked typical cellular electrical events, namely, action potentials or spikes, in
both primary (Figure 11.5a, upper trace) and INS-1E (not shown) b-cells. Classically,
action potentials induced by glucose in b-cells are recorded using the perforated
patch-clamp technique as shown in the lower part of Figure 11.5a. This technique
consists of the technically demanding and rather time-consuming approach of
sealing the tip of a glass microelectrode to the cell membrane and waiting for small
perforations of the membrane patch by a pore-forming antibiotic previously intro-
duced into the electrode. This configuration provides electrical access to the intra-
cellular compartment and prevents washout of enzymes and coupling factors
required for the response to glucose (see Section 11.2). Figure 11.5a (lower panel)
also nicely demonstrates that b-cells depolarize only to around 0mV, in stark contrast
to the approximately 40mV observed in neurons, thus explaining the small ampli-
tude of extracellular recordings (Figure 11.5a, upper panel). Note that delays in the

Figure 11.5 Representative electrophysiological
recordings of primary and clonal b-cells.
(a) Comparison between MEA (upper trace)
and perforated patch-clamp (lower trace) for the
recording of electrical signals of mouse b-cells
stimulated with 15mM of glucose.
(b) Modulation of MEA-recorded electrical

activities of INS-1E b-cells by 200mM of the KATP
channel opener diazoxide (Dzx, upper trace) and
by 1mM of the cAMP-raising agent forskolin
(lower trace). Diazoxide and forskolin were
applied in the presence of 15mM of glucose.
A raster plot presenting each spike by a vertical
bar is given below the upper trace.
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onset of glucose-evoked spike trains and spike frequencies were in the same order in
both patch-clamp and MEA recordings (Figure 11.5a).

We confirmed that glucose-induced electrical activities recorded onMEAs involve
the closure of KATP channels, as in the presence of high glucose (15mM), action
potentials were abolished in a reversible and reproducible manner by 200 mM of
the KATP channel opener diazoxide (Figure 11.5b, upper trace). Taken together these
elements indicate thatMEAs arewell suited for the study of islet cells in a noninvasive
manner offering amuch simpler approach compared to perforated patch-clamp. This
device could also be used for pharmacological and long-term toxicological screening
of drugs on islets cells. In addition, changes observed in the electrical pattern after
glucose elevation constitute the basis for the development of a glucosensor.

The development of glucosensors, which also detect endocrine hormones regu-
lating insulin secretion, remains a challenge. Thus, we decided to test whether the
bioelectronic model was able to sense changes in the electrical activity of b-cells after
stimulation with forskolin, a cAMP-raising agent that mimics the effects of the
incretin hormones GLP-1 and GIP. In the presence of 15mM of glucose, 1mM of
forskolin clearly increased the firing rate of INS-1E b-cells (Figure 11.5b, lower trace),
demonstrating that a hybrid bioelectronic sensor based on this technologywill take in
account not only glucose but also other parameters crucial for the determination of
insulin demand.

11.6.2
Adaptive Detection

Spiking and bursting patterns indeed depend on the glucose and hormone con-
centrations, and encode the demand in insulin or drug effects. Therefore, spike
detection on extracellular recordings from b-cells is primordial to access such
information. This detection may be complicated by superposition of multiple action
potential from neighboring cells. Spikes can also be embedded in noise: the
electrolyte–electrode interface generates a low-frequency potential difference
between the solid electrode and the electrolyte solution. This potential varies spatially,
from electrode to electrode, and temporally. For example, in recording from a gold-
coated electrode in buffered saline solution, this DC offset can be as high as
�50mV [17]. To process low-frequency noise fluctuations, we proposed an adaptive
detection method in which the detection circuit (Figure 11.4) implements dynamic
voltage thresholding. The circuit estimates in real time, and over a predefined time
frame, the standard deviation (SD) of the signal. The threshold is set at amultipleN of
SD, and thus dynamically updated (Figure 11.6a). Configuration parameters such as
the length of the time window, the integer N, and the direction of the detected
transition (up/down) are controlled by an external capacitance and by digital codes,
respectively. Except for the control inputs, the detection circuit is entirely analog and
was integrated using a low-cost MOS technology.

Figure 11.6b shows experimental results obtained by the integrated pixel and
detectors processing in real time the signal recorded on aMEA from an islets culture.
The signal was preamplified by the pixel IC as described in Section 11.5. The noise is
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important and presents a fluctuating baseline. The adaptive threshold voltage
contours the low-frequency noise (baseline). Detection is effective on down transi-
tions of the signal, the time window is 100ms, and N is set to 5. A high value for N
allows avoiding detection faults that would otherwise appear, for example, at time
0.5 s, where the �low� spike occurrence was an artifact from electrical activity of a
neighboring cell (not shown in the figure). For each detected spike, the width of the
output pulse represents the duration of the spike, whose variation can provide useful
information for postprocessing.

11.7
Conclusions

The proposed system is amajor step in the development of an implantable sensor for
insulin demand. As a screening device, it measures themajor integrative function of
islet cells, that is, electrical activity, without the requirement of prior probe loading or
genetic manipulation and their inherent problems, but offering the possibility of
long-term culture. It will be able to detect immediately acting compounds, and due to
the possibility of long-term recordings, it can also detect slowly acting substances (up
to days) in paired controls. Automatic signal interpretation qualifies it formedium- to
high-throughput screening. In the long run, this can be extended to an implantable
screening device recording effects of compounds in the whole animal.

Its conception as a future implantable sensor (Figure 11.7) for insulin demand
uses the best sensor imaginable, that is, islets that have been shaped for this role
during evolution and where all relevant signals tightly regulate action potentials.
The project deals with the notoriously difficult issue of using living cells with
limited lifetime and interfacing them tomicroelectromechanical systems. It exploits
recent advances in hybrid bioelectronic interfaces using embedded ICs for signal

Figure 11.6 Spike detection in islets electrical
activity: (a) architecture of the analog
detection IC. The detector output and
the control inputs are digital signals.
(b) Activity detection of signals from primary
b-cells recorded by MEAs. Voltages are scaled

down to the value before amplification by
the pixel IC. Upper plot: recorded signal.
Middle plot: threshold voltage, as
computed by the SD estimation and the xN
subcircuits. Bottom plot: detector
asynchronous output.
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processing. As illustrated by several examples in this book, several advances in
biohybrid systems are beingmade in the context of neurosciences, but we show here
that the field can expand: dedicated cells such as islet cells have an unparalleled
capacity for recognition and integration of relevant signals, thus providing a very
attractive model for making biohybrid circuits to sense biochemical changes in the
body. Because of the capability for miniaturization inherent to electronic systems,
setups such as those described in this chapter offermajor advantages compared to the
design of chemical or photonic approaches for hybrid biosensors. Not only could
implantable in vivo systems be developed specifically for insulin sensing but alsomay
geneticmodifications of the cells allow in vitro diagnostic systems for awide variety of
highly diverse compounds and signals.

Figure 11.7 Implantable bioelectronic sensor for insulin need: the sensing, detection, and
encoding functions are integrated into a single die using a low-power mixed analog/digital
technology.
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