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Preface

There are three main reasons for writing this book. While several assembly
language books are on the market, almost all of them cover only the 8086
processor—a 16-bit processor Intel introduced in 1979. A modern computer
organization or assembly language course requires treatment of a more recent
processor like the Pentium, which is a 32-bit processor in the Intel family. This
is one of the main motivations for writing this book.

There are two other equally valid reasons. The book approaches assembly
language programming from the high-level language viewpoint. As a result,
it focuses on the assembly language features that are required to efficiently
implement high-level language constructs.

Performance is another reason why people program in assembly language.
This is particularly true with real-time application programming. Our treatment
of assembly language programming is oriented toward performance optimiza-
tion. Every chapter ends with a performance section that discusses the impact
of specific sets of assembly language statements on the performance of the
whole program. Put another way, this book focuses on performance-oriented
assembly language programming.

Intended Use

This book is intended as an introduction to assembly language programming
using the Intel 80X86 family of processors. We have selected the assembly
language of the Intel 80X86 processors (including the Pentium processor) be-
cause of the widespread availability of PCs and assemblers. Both Microsoft
and Borland provide assemblers for the PCs.

Assembly language programming is part of an undergraduate curriculum
in computer science, computer engineering, and electrical engineering depart-
ments. This book can be used as a text for those courses that teach assembly
language. It can also be used as a companion text in a computer organiza-
tion course for teaching the assembly language. Because of the performance-
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oriented assembly language programming style advocated by the book, it is
especially useful in real-time programming courses in engineering.

In addition, it can be used as a text in vocational training courses offered by
community colleges. Because of the teach-by-example style used in the book,
it is also suitable for self-study by computer professionals and engineers.

Prerequisites

The student is assumed to have had some experience in a structured, high-level
language such as C. However, the book does not assume extensive knowledge
of any high-level language—only the basics are needed. Furthermore, it is
assumed that the student has rudimentary background in the software devel-
opment cycle, as is obtained in a typical high-level programming course. Of
course, the student is assumed to be familiar with the PC and its operating
system.

Features
Here is a summary of the special features that sets this book apart:

o The book is self-contained and does not assume background in computer
organization. All necessary background material on computer organiza-
tion is presented in the book.

e The book uses a methodical organization of chapters for a step-by-step
introduction to the assembly language.

e The book covers all processors in the Intel 80X86 series (from 8086 to
Pentium).

e Extensive examples are used in each chapter to illustrate the points dis-
cussed in the chapter. Our objective is not just to explain how an instruc-
tion works, but to provide the rationale as to why the instruction has been
designed the way it is. This is the best way of understanding the strengths
and weaknesses of the Intel 80X86 series of processors.

e Procedures are introduced early to encourage modular programming in
developing assembly language programs.

e A set of input and output routines is provided so the student can focus
on developing assembly language programs rather than spending time
in understanding how input and output can be done using the basic /O
functions provided by the operating system.

e This book does not use fragments of code in examples. All examples are
complete in the sense that they can be assembled and run, giving a better
feeling about how these programs work.
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e All examples and other required software are available online (check my
home page for information) to give opportunities for students to perform
hands-on assembly programming.

e Most chapters are written in such a way that each one can be covered in
two or three 60-minute lectures by giving proper reading assignments.
Typically, important concepts are emphasized in the lectures while leav-
ing the other material in the book as a reading assignment. Our emphasis
on extensive examples facilitates this pedagogical approach.

e Since performance is one of the two main objectives in using assembly
language, each chapter contains a “Performance” section that discusses
the performance implications of the topics/instructions discussed in that
chapter. This aspect is important in those courses that deal with real-
time programming. However, the performance section is completely
independent and can be omitted altogether.

e Inter-chapter dependencies are kept to a minimum to offer maximum
flexibility to instructors in organizing the material. Each chapter clearly
indicates the objectives and provides an overview at the beginning and a
summary at the end.

e Eachchapter contains two types of exercises—review and programming—
to reinforce the concepts discussed in the chapter.

e The appendices provide special reference material that contains a thor-
ough treatment of various topics.

Overview and Organization

The book is divided into four parts. Part I presents introductory topics and
consists of the first three chapters. Chapter 1 provides an introduction to as-
sembly language and presents reasons for programming in assembly language.
Chapter 2 presents basics of computer organization with a focus on the Intel
80X86 family of processors. In particular, this chapter gives sufficient details
on the 16- and 32-bit Intel processors so the student can effectively program in
assembly language. Chapter 3 gives an overview of assembly language. After
covering these three chapters, one can write simple stand-alone assembly lan-
guage programs without requiring further information from the other chapters.
These three chapters should be covered in the sequence presented in the book.
The amount of time spent on this part can vary depending on the background
of the students.

Part II provides basic topics and consists of five chapters—Chapters 4
through 8. To emphasize the importance of modular programming, proce-
dures are introduced early on (in Chapter 4). The other chapters in this part
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expand on the overview given in Chapter 3. Chapter 5 presents the address-
ing modes supported by the Intel 16- and 32-bit processors. This chapter also
contains a detailed discussion of the motivation for providing the various ad-
dressing modes. Chapter 6 discusses the arithmetic instructions and the use of
the flags register. Chapters 7 and 8 present conditional and bit manipulation
instructions. A feature of these two chapters is that they explain how high-level
language statements can be implemented using the instructions discussed in
these two chapters. The first two chapters of this part—chapters 4 and 5—
should be covered in some detail for proper grounding in assembly language
programming. However, the remaining three chapters can be studied in any
order. Also, the depth that these three chapters cover can be varied without
sacrificing the effectiveness, depending on the time available and importance
to the course objective.

The remaining five of the thirteen chapters constitute Part III. These chapters
deal with advanced topics. Chapter 9 discuses the string processing instructions
in detail. Macros and conditional assembly directives are discussed in Chap-
ter 10. ASCII and BCD arithmetic instructions are presented in Chapter 11.
Chapter 12 takes a detailed look at the interrupt mechanism and input/output
interface. This is an important chapter in computer organization and real-time
system programming courses. The final chapter deals with high-level language
interface, which allows mixed-mode programming in more than one language.
We use C and assembly language to cover the principles involved in mixed-
mode programming. The chapters in this part can be covered in any order
the instructor wishes. While most of the topics of this part are optional, a
good, well-rounded course should cover some aspects of macros (Chapter 10),
interrupts (Chapter 12), and high-level language interface (Chapter 13).

The five appendices provide a wealth of reference material needed by the
student. Appendix A primarily discusses the number systems and their internal
representation. Appendix B gives information on the use of I/O routines pro-
vided with this book and the assembler software. Debugging is discussed in
Appendix C. Selected Pentium instructions are given in Appendix D. Finally,
Appendix E gives the standard ASCII table.
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Chapter 1

Introduction

Objectives

e To introduce assembly language and to explain where it fits in the hier-
archy of computer languages

e To discuss the advantages and disadvantages associated with program-
ming in assembly language

e To provide motivation to learn assembly language

e To demonstrate the performance advantages of assembly language

Users of a computer system can interact with the system at several different
levels. At the highest level, the interaction could be through an application
program (e.g., a spreadsheet or a word processor). The next two levels use a
programming language to facilitate interaction at a lower level. The hierarchy
of levels is discussed in Section 1.1.

High-level programming languages such as C and PASCAL can be used to
develop modular programs. These languages provide several high-level con-
structs (if-then-else, while, etc.) that aid in faster program development
and maintenance. After giving a brief introduction to assembly language in
Section 1.2, we will discuss the main advantages of the high-level languages
in Section 1.3. The advantages of programming in assembly language are
highlighted in Section 1.4.

Section 1.5 identifies some typical application areas that benefit from pro-
gramming in assembly language. Section 1.6 discusses some reasons for learn-
ing assembly language.

The performance advantage of programming in assembly language over
programming in C is demonstrated in Section 1.7. A summary of the chapter is
given in the last section.

S. P. Dandamudi, /ntroduction to Assembly Language Programming
o S S S S
© Springer Science+Business Media New York 1998
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1.1 A User’s View of Computer Systems

A user’s view of a computer system depends on the degree of abstraction pro-
vided by the underlying software. Figure 1.1 shows a hierarchy of levels at
which users can interact with a computer system. Moving to the top of the
hierarchy shields the user from the lower-level details. At the highest level, the
user interaction is simply limited to the interface provided by an application
software such as spreadsheet, word processor, etc. The user is expected to have
only a rudimentary knowledge of how to operate the system. Problem solving
at this level, for example, might be composing a letter by using a word processor
application software.

At the next level, problem solving is done in one of the high-level languages
such as C, PASCAL, FORTRAN, BASIC, etc. A user interacting with the sys-
tem at this level should have a detailed knowledge of software development
using a high-level language. Typically, these users are application program-
mers. Level 4 users are knowledgeable about the application and the high-level
language that they would use to write the application software. They may not,
however, have a very detailed knowledge about the system (unless they are also
involved in developing system software such as device drivers, assemblers, or
operating systems).

Both levels 4 and 5 are system independent, i.e., independent of the partic-
ular processor (CPU) used in the system. For example, an application program
written in C can be executed on a system based on an Intel 80X86 CPU or
on a Motorola 680X0 CPU without any modification to the source code. All
you have to do is recompile the program with a C compiler native to the target
system. In contrast, software development done at all levels below level 4 is
system dependent.

Assembly language programming is also referred to as low-level program-
ming because each assembly language instruction performs a much lower-level
task compared to an instruction in a high-level language. As a consequence,
to perform the same task, assembly language code tends to be much larger
than the equivalent high-level language code. Assembly language instructions
are native to the particular CPU used in the system. For example, a program
written in the 80X86 assembly language cannot be executed on a system based
on a 680X0 CPU. Programming in assembly language also requires a detailed
knowledge about the system components such as the CPU, memory, and so on.

Machine language is a close relative of the assembly language. Typically,
there is a one-to-one correspondence between the instructions of assembly lan-
guage and the corresponding machine language. The CPU only understands the
machine language, whose instructions consist of a string of 1’s and 0’s. More
on the assembly and machine languages will be said in the next section.
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Increased
level of
abstraction

Level 5

Application program level

(Spreadsheet, Word Processor)

Level 4

High-level language level
(C, PASCAL, FORTRAN)

Assembly language level

Level 2

Machine language level

Level 1

Operating system level

Level O

Hardware level

System
independent

System
dependent

Figure 1.1 A user’s view of various levels of a computer system.

Even though assembly language is considered to be a low-level language,
programming in assembly language will not expose you to all the nuts and
bolts of the system. Your operating system (e.g., DOS) hides several of the
low-level details so that the assembly language programmer can breath easy.
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For example, if you want to read the input given from the system keyboard, you
can rely on the services provided by your operating system to do the job.

Well, ultimately there has to be something to execute the machine language
instructions. This is the system hardware, which consists of digital logic circuits
and the associated support electronics. A detailed discussion of this topic is
beyond the scope of this book.

1.2 What Is Assembly Language?

Assembly language is a low-level programming language with a one-to-one
correspondence between its instructions and the machine language instructions
of a CPU. Assembly language is directly influenced by the instruction set and
architecture of a CPU. The assembly language code must be processed by
an assembler in order to generate the machine language code. An assembler
is a program that translates assembly language code into machine language.
MASM (Microsoft Assembler) and TASM (Borland Turbo Assembler) are the
two popular assemblers for the PC.

Assembly language instructions specify low-level tasks (hence, the name
low-level language). Here are some examples from the assembly language of
the Intel 80X86 CPU.

inc result

mov class_size,45
and maskl,128

add marks, 10

The first instruction increments the variable result. This assembly lan-
guage instruction is equivalent to

result++;

in C. The second instruction initializes class_size to 45. The equivalent
statement in C is

class_size = 45;

The third instruction performs the bitwise and operation on mask1 and can be
expressed in C as

maskl = maskl & 128;

The last instruction updates marks by adding 10. This is equivalent to
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marks = marks + 10;
in C.
The above examples illustrate several points:
1. Assembly language instructions are cryptic.
2. Assembly language operations are expressed by using mnemonics (like
and, inc, add etc.).

3. Assembly language instructions are low level. For example, you cannot
write the following:

mov class_size, value
add marks, 10.8

The first instruction is invalid because two variables class_size and
value cannot be used in a single instruction. The second instruction is
not a valid assembly language instruction because real (i.e., fractional)
numbers cannot be used.

You would appreciate the readability of the assembly language instructions
when you look at the equivalent machine language instructions. Here are some

examples:
Assembly language Machine language (in hex)
inc result FF060A00
mov class_size, 45 C7060C002D00
and mask, 128 80260E0080
add marks, 10 83060F000A

In the above table, machine language instructions are written in the hex-
adecimal number system. If you are not familiar with the hexadecimal number
system, consult Appendix A for a detailed discussion of various number sys-
tems. It is obvious from these examples that understanding the code of a pro-
gram in the machine language is almost impossible. Since there is a one-to-one
correspondence between the instructions of assembly language and machine
language, it is fairly straightforward to translate instructions from assembly
language to the machine language. Assembler is the software that achieves this
code translation. As a result, only a masochist would consider programming in
a machine language.

1.3 Advantages of High-Level Languages

High-level languages such as C are preferred to program applications, as they
provide a convenient abstraction of the underlying system suitable for problem
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solving. Here are some advantages of programming in a high-level language
rather than in an assembly language.

1. Programdevelopment is faster in a high-level language. Many high-level
languages provide structures (sequential, selection, iterative) that facil-
itate program development. Programs written in a high-level language
are relatively small (compared to the equivalent programs written in an
assembly language) and easier to code and debug.

2. Programs written in a high-level language are easier to maintain. Pro-
gramming for a new application can take several weeks to several months
and the life cycle of such an application software can be several years.
Therefore, it is critical that software development be done with a view of
software maintainability, which involves activities ranging from fixing
bugs to generating the next version of the software. Programs written
in a high-level language are easier to understand and, when good pro-
gramming practices are followed, easier to maintain. Assembly language
programs tend to be lengthy and take more time to code and debug. As
a result, they are also difficult to maintain.

3. Programs written in a high-level language are portable. High-level lan-
guage programs contain very few machine-dependent details, and they
can be used with little or no modification on different computer systems.
In contrast, assembly language programs are written for a particular sys-
tem and cannot be used for a different system.

To illustrate the differences between programs written in C and assembly
languages, Section 1.7 presents a concrete example that sorts an array of num-
bers using the bubble sort algorithm. You can get an idea of how readable and
compact the code written in C is by comparing the bubble_sort procedure
written in C (see Program 1.2) and assembly language (see Program 1.3). A
more detailed discussion is deferred until Section 1.7.

1.4 Why Program in Assembly Language?

While the previous discussion enumerated the disadvantages of assembly lan-
guages, there are certain advantages associated with programming in an assem-
bly language.

There are two main reasons why programming is still done in assembly
language: (i) efficiency, and (ii) accessibility to system hardware.
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Efficiency refers to how “good” a program is in achieving a given objective.
Here we consider two objectives based on space (space-efficiency) and time
(time-efficiency).

Space-efficiency refers to the memory requirements of a program (i.e., the
size of the code). Program A is said to be more space-efficient if it takes less
memory space than program B to perform the same task. Very often, programs
written in an assembly language tend to be more compact than when written
in a high-level language. You should not confuse the size of source code with
that of the executable code (see Section 1.7 for an example).

Time-efficiency refers to the time taken to execute a program. Obviously a
program that runs faster is said to be better from the time-efficiency point of
view. Programs written in an assembly language tend to run faster than those
written in a high-level language. Section 1.7 demonstrates this advantage of
assembly language through an example.

As an aside, note that we can also define a third objective: how fast a
program can be developed (i.e., write code and debug). This objective is related
to programmer productivity, and assembly language loses the battle to high-
level languages as discussed before.

The superiority of assembly language in generating compact code is becom-
ing increasingly less important for several reasons. First, the savings in space
pertain only to the program code and not to its data space. Thus, depending
on the application, the savings in space obtained by converting an application
program from some high-level language to an assembly language may not be
substantial. Second, the cost of memory (i.e., cost per bit) has been decreasing
and memory capacity has been increasing. Thus, the size of a program is not
a major hurdle anymore. Finally, compilers are becoming “smarter” in gen-
erating code that is both space- and time-efficient. However, there are areas
such as embedded controllers in which space-efficiency is important (see also
Section 1.5).

One of the main reasons for writing programs in assembly language is to
generate a code that is time-efficient. The superiority of assembly language
programs in producing a code that runs faster is a direct manifestation of speci-
ficity. That is, assembly language programs contain only the necessary code
to perform the given task. Even here, a “smart” compiler can optimize the
code that can compete well with its equivalent written in an assembly language.
Although the gap is narrowing with improvements in compiler technology, as-
sembly language still retains its advantage for now.

The other main reason for writing programs in an assembly language is to
have direct control over system hardware. High-level languages, on purpose,
provide arestricted (abstract) view of the underlying hardware. Because of this,
it is almost impossible to perform certain tasks that require access to the system
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hardware. For example, writing an interface program (called device driver) to a
new printer on the market almost certainly requires programming in an assembly
language. Since assembly language does not impose any restrictions, you can
have direct control over all of the system hardware. If you are developing
system software (e.g., assembler, linker), you cannot avoid writing programs
in assembly language.

1.5 Typical Applications

We have identified three advantages to programming in an assembly language.

1. Time-efficiency
2. Accessibility to hardware
3. Space-efficiency

Time-efficiency: Applications for which the execution speed is important fall
under two categories:

1. Time convenience (to improve performance)
2. Time critical (to satisfy functionality)

Applications belonging to the first category benefit from time-efficient pro-
grams because it is convenient or desirable (but not absolutely necessary for
their operation). For example, a graphics package that scales an object instan-
taneously is more pleasant to use than one that takes noticeable time to do the
same.

In time-critical applications, tasks have to be completed within a certain
time period. These applications are called real-time applications. These ap-
plications include aircraft navigation systems, process control systems, robot
control software, communications software, and target acquisition (e.g., missile
tracking) software.

Accessibility to hardware: Systems software often requires direct control over
the system hardware. Examples include operating systems, assemblers, com-
pilers, linkers, loaders, device drivers, and network interfaces.

Some applications require hardware control as well. The most notable
example is video games. Another example is computer animation.

Space-efficiency: As indicated in Section 1.4, for most systems, compactness
of application code is not a major concern. However, in portable and hand-
held devices, code compactness is an important factor. Space-efficiency of a
program is also important in spacecraft control systems.
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1.6 Why Learn Assembly Language?

Programming in assembly language is a tedious and error-prone process. The
natural preference of a programmer is to program the application in some high-
level language. However, there are some good reasons why some applications
cannot be programmed in a high-level language. Even the applications that
require coding in assembly language do not require the whole program to be
written in assembly language. In such instances, part of the program can be
written in assembly language and the rest can be written in some high-level
language. Such programs are referred to as hybrid programs or mixed-mode
programs. Very often, programs that require assembly language are actually
hybrid programs. In Chapter 13, we will discuss how you can write hybrid
programs.

Learning assembly language has both practical and educational purposes.
Even if you do not plan to write in an assembly language, studying it provides
a good understanding of computer systems. When you program in a high-
level language such as C, you are shielded from low-level details on purpose
and provided only a “black-box” view of the system. When programming in
assembly language, you need to understand the internal details of the system
(how data is stored, how code can be made time-efficient, and so on). To
understand assembly language is to understand the computer system itself!

This book uses the PC to explore these internal details. The reason for this
is that PCs are popular and their architecture encompasses several important
characteristics to provide a good understanding of some fundamental concepts,
yet simple enough to provide a gentle introduction to computers beyond the
black-box view.

A final reason to learn assembly language is the personal satisfaction that
comes with learning something complex. Sure, learning assembly language
is more difficult than learning C. But assembly language gives you complete
control over the system hardware. It is very easy to write a simple program
in assembly language that can crash the system. Try to achieve the same with
a high-level language! You feel powerful with assembly language on your
side, making the time spent learning assembly language worth your while. The
insights provided by assembly language would benefit you even when you are
programming in some high-level language.

1.7 Performance: C Versus Assembly Language

We stated in Section 1.4 that one of the main reasons for programming in an
assembly language is to produce a code that runs faster than the corresponding
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Initial state: 4 3 51 2
After 1st comparison: 3 4 51 2 (4 and 3 swapped)
After 2nd comparison: 3 4 5 1 2 (no swap)
After 3rd comparison: 3 4 15 2 (5 and 1 swapped)
End of first pass: 3 412 5 (5 and 2 swapped)

Figure 1.2 Actions taken during the first pass of the bubble sort algorithm.

code produced by a high-level language compiler. In this section, we will see
how much better we can do by writing programs in assembly language. As
an example, let us consider the problem of sorting an array of numbers. Our
strategy is to write a sort procedure in C (a representative high-level language)
and in the 80X86 assembly language and compare the time required to sort the
array by these two versions.

There are several algorithms to sort an array of numbers. The particular
algorithm that we are using here is called the bubble sort algorithm. We describe
the algorithm next.

The bubble sort algorithm consists of several passes through the array of
numbers to be sorted in ascending order. Each pass scans the array, performing
the following actions:

e Compare adjacent pairs of data elements

e If they are out of order, swap them.

The algorithm terminates if, during a pass, no data elements are swapped. If at
least a single swap is done during a pass, it will initiate another pass to scan the
array.

Figure 1.2 shows the behavior of the algorithm during the first pass. The
algorithm starts by comparing the first and second data elements (4 and 3).
Since they are out of order, 4 and 3 are interchanged. Next, the second data
element 4 is compared with the third data element 5, and no swapping takes
place as they are in order. During the next step, 5 and 1 are compared and
swapped and finally 5 and 2 are swapped. This terminates the first pass. The
algorithm has performed N — 1 comparisons, where N is the number of data
elements in the array. At the end of the first pass, the largest data element 5 is
moved to its final position in the array.

Figure 1.3 shows the state of the array after each pass. Notice that after
the first pass, the largest number (5) is in its final position. Similarly, after the
second pass, the second largest number (4) moves to its final position, and so
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Initial state: 4351 2
After 1st pass: 34125 (5 in its final position)
After 2nd pass: 312 4 5 (4 in its final position)

12345 (array in sorted order)
12345

final pass to check)

After 3rd pass:
After the final pass:

Figure 1.3 Behavior of the bubble sort algorithm.

on. This is why this algorithm is called the bubble sort: during the first pass, the
largest element bubbles to the top, the second largest bubbles to the top during
the second pass, and so on. Even though the array is in sorted order after the
third pass, one more pass is required by the algorithm to detect that the array is
sorted.

The number of passes required to sort an array depends on how unsorted the
initial array is. If the array elements are already in sorted order, only a single
pass is required. At the other extreme, if the array is completely unsorted (i.e.,
elements are initially in the descending order), the algorithm requires a number
of passes equal to one less than the number of elements in the array.

The main program is shown in Program 1.1 (see page 17). To avoid the influ-
ence of I/O, we time only the sort procedure. To do this, we use clock() avail-
able in C. This function is defined in the time.h header file. When clock()
is invoked, it gives the current clock value in terms of number of clock ticks.
The number of clock ticks per second is defined by CLOCKS_PER_SEC macro.
Thus, to obtain the sort time in seconds, we have to divide the clock ticks by
CLOCKS_PER_SEC.

The bubble_sort procedure given in Program 1.2 (page 18) follows di-
rectly the algorithm described here. In our experiments, the array is initialized
in descending order so that the maximum number of passes is required by the
bubble sort algorithm.

In the assembly language version of the program, only the bubble_sort
procedure is written in the assembly language. The assembly language version
of the bubble sort procedure is shown in Program 1.3 on page 19. At this time,
you are not expected to make any sense out of this program. The purpose is to
show the complexity of the assembly language programs.

Space-efficiency
The executable file sizes of the C and assembly language versions of the bubble
sort program are as follows:
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C version: 50,256 bytes
Assembly language version: 50,208 bytes

As you can see from the above data, there is only a marginal improvement! This
is mainly because the main program is written in C. In contrast, the source file
sizes (shown below) of the bubble sort procedure written in C and assembly lan-
guage show the low-level nature and complexity of programming in assembly
language.

Bubble sort procedure source code length:
C version: 1,340 bytes
Assembly language version: 1,851 bytes

Time-efficiency

The sort time taken by the C and assembly language versions is shown in Fig-
ure 1.4. The programs were run under Borland C++ on an 80486DX2-based
system with a 66 MHz clock. The x-axis is the size of the array and the y-axis
gives the sort time in seconds. Notice that the assembly language version runs
substantially faster and substantiates our claim that programs written in assem-
bly language are time-efficient. Be cautioned that the improvement obtained
by writing in assembly language depends on the application, compiler, and the
type of processor, etc.

In practice, assembly language programming is limited to critical sections
of a program. When we say critical, we mean either due to application (as in
real-time applications), or due to performance reasons. For example, if two
sort utilities are on the market—one written in C and the other in assembly
language—the C version would be a commercial flop. Thus, converting the
bubble sort procedure into assembly language is beneficial and justifies the
increased program development cost. On the other hand, writing a procedure
init_array to initialize the array in assembly language is a waste of time
and effort, as this procedure is called only once and, therefore, is not a critical
procedure.

1.8 Summary

We introduced assembly language and discussed where it fits in the hierarchy
of computer languages. Our discussion focused on the usefulness of high-
level languages such as C vis-a-vis assembly language. We noted that high-
level languages are preferred, as their use aids in faster program development,
program maintenance, and portability. Assembly language, however, provides
two chief benefits: faster program execution, and access to system hardware.
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Figure 1.4 Sort time comparison of the bubble sort example: C version uses the bubble_sort
procedure shown in Program 1.2; Assembly language (AL) version replaces the bubble_sort
procedure by the assembly language procedure shown in Program 1.3.

In the final section of the chapter, we used the bubble sort example to illus-
trate the advantages and disadvantages of programming in assembly language.

1.9 Exercises

1-1 What is programmer’s productivity? Discuss how a programming lan-
guage can affect programmer’s productivity.

1-2 You are acting as a consultant to New Age Appliances, Inc. The company
is bringing out a new dishwasher. You are asked to design the control
software that should include as many features as possible in order to gain
marketing advantage over competition. Which programming language
would you choose and why?

1-3 From the example programs given in Program 1.2 and Program 1.3, you
can see that the assembly language programs are long and complex. Why,
then, should we learn to program in assembly language?
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1-4 What is the relationship between assembly language and machine lan-

1-5

guage? Under what circumstances, if any, do you consider programming
in machine language?

Why is assembly language called a low-level language and C a high-level
language?

Why is portability of programs important? When portability is important,
which language—C or assembly language—would you use?
Accessibility to hardware is touted as one of the reasons for program-
ming in assembly language. Discuss why we can’t have full control over
hardware by using a high-level language.

Assume that the array used in the bubble sort program is initialized as
5 1 2 3 4. How many passes over the array are needed for the bubble
sort algorithm to sort the array in ascending order?

The bubble sort algorithm discussed in Section 1.7 sorts elements in
ascending order. How difficult is it to change this algorithm to sort in
descending order? Suggest the specific changes required to the algorithm.
We have stated that assembly language programs tend to produce code
that is space-efficient. However, if you see the code for the bubble sort
procedure, the C version is about a page (see page 18), while the assembly
language version is twice as long (see Program 1.3). Explain the apparent
contradiction.

1.10 Progamming Exercises

1-P1

1-P2

Compile and run the C and assembly language versions of the bubble
sort program on your machine. Compare the timing obtained on your
machine with the data presented in Figure 1.4. After reading Chapter 2,
you should be able to identify some of the reasons for the difference in
the sort times.

The objective of this exercise is to study the overhead associated with
procedure calls in C. Towards this end, modify the C bubble sort pro-
cedure so that, instead of swapping elements within the procedure, it
calls a procedure—say swap—to exchange two elements. A call to this
procedure

swap (&x[i], &x[i+1]);

replaces the following three lines of code in Program 1.2 given on page 18.

temp = x[il;
x[i] = x[i+1];
x[i+1] = temp;
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Compare the sort times of the new program with the sort times obtained
in the last exercise for the original C version. In a later chapter, we will
look at procedure call overhead in assembly language (see Chapter 4).

1.11 Program Listings

This section gives the source code listings of

bblsortm.c main program
bblsortc.c bubble sort procedure—C version
bblsorta.asm bubble sort procedure—Assembly language version

Compilation is straightforward. For example, the command
bcc bblsortm.c bblsortc.c

can be used to compile the C version under Borland C++. Similarly,
bcc bblsortm.c bblsorta.asm

generates the assembly language version.

Program 1.1 bblsortm.c program listing

/*****************************************************************

* This program initializes an array in descending order and *
* uses the bubble sort algorithm to sort the array in ascending *
* order. Array size is given as input to the program. *
kKR KKKk KRR KKK RO KOK KRRk Rk kR ok kR ok ok kR ok kR ok ok ok Kok R Kok ok /
#include <stdio.h>
#include <time.h>

#define ARRAY_SIZE 8000
extern void bubble_sort (int*, int);

int main(void)
{

clock_t start, finish;
int value [ARRAY_SIZE];
int i, size;

printf ("Please input the array size: ");
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scanf ("%d", &size);

/* initialize the array in descending order */
for (i=0; i<size;i++)
value[i] = size-i;
start = clock();
bubble_sort (value, size);

finish = clock();

printf ("Sorting took %f seconds to finish.\n",
((double) (finish-start))/ CLOCKS_PER_SEC) ;

return O;

Program 1.2 bblsortc.c procedure listing

/KK ok ok Kok o K sk kKK ok ok ok ok koK ok ok ok ok ks ok KRRk KRR KR KR Kok K
* This procedure uses the bubble sort algorithm to sort an *
* array of integers in ascending order. The procedure *

* receives the array and its size as parameters. *
sk ko ok kK koK ok ok ok ok sk kKoK Kok kK ok sk sk s sk ook ok ok ok sk ok ok kR ok ok ok ok /

#define UNSORTED O
#define SORTED 1

void bubble_sort (int x[], int size)

{
int state; /* records SORTED/UNSORTED status  */

int end_index; /* number of comparisons to be done */
int i, temp;

/* Assume that the whole array is initially unsorted */
state = UNSORTED;
end_index = size;

while (state == UNSORTED)

{
state = SORTED; /* Now prove that the array
is not sorted x/

end_index--;
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for (i=0; i<end_index; i++) /* pass loop */
{
/* Look at adjacent pairs of elements and swap
if the second element is less than the first */
if (x[i] > x[i+1])
{

temp = x[i];

x[i] = x[i+1];
x[i+1] = temp;
state = UNSORTED;

Program 1.3 bblsorta.asm procedure listing

COMMENT | Bubble sort procedure BBLSORTA . ASM
Objective: To implement the bubble sort algorithm
Inputs: A pointer to the array to be sorted
and its size are received via the stack.
Output: Returns nothing but the array is sorted
| in ascending order.
SORTED EQU 0
UNSORTED EQU 1

.MODEL SMALL

.CODE

.486

PUBLIC _bubble_sort

_bubble_sort PROC
; save registers used by the procedure
pusha
mov BP,SP

;CX serves the same purpose as the end_index variable

; in the C procedure. CX keeps the number of comparisons
; to be done in each pass. Note that CX is decremented

; by 1 after each pass.

mov CX, [BP+20] ; load array size into CX

mov BX, [BP+18] ; load array address into BX

next_pass:
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dec CX ; if # of comparisons is zero
jz done ; then we are done
mov DI,CX ; else start another pass
;DX is used to keep SORTED/UNSORTED status
mov DX,SORTED ; set status to SORTED
;SI points to element X and SI+2 to the next element
mov SI,BX ; load array address into SI

pass:

;This loop represents one pass of the algorithm.
;Each iteration compares elements at [SI] and [SI+2]
; and swaps them if ([SI]) < ([SI+2]).
mov AX, [ST]
cmp AX, [SI+2]
jg swap
increment:
;Increment SI by 2 to point to the next element
add SI,2
dec DI
jnz pass
cmp DX, SORTED ; if status remains SORTED
je done ; then sorting is done
jmp SHORT next_pass ; else initiate another pass
swap:
; swap elements at [SI] and [SI+2]
xchg AX, [SI+2]
mov [SI1],AX
mov DX, UNSORTED ; set status to UNSORTED
jmp SHORT increment
done:

; restore registers

popa
ret

_bubble_sort ENDP

END




Chapter 2

Basic Computer
Organization

Objectives

e To provide a high-level view of computer organization

e To describe the organization of the Intel Pentium processor
e To introduce the memory organization of Pentium

e To discuss briefly how input/output devices are interfaced
e To illustrate the importance of data alignment

Programming in a high-level language does not require a detailed knowledge of
the underlying system hardware. Assembly language programmers, however,
should have some basic understanding of the underlying system architecture. A
high-level view of computer systems, presented in Section 2.1, consists of three
major components: a processor, a memory unit, and input/output (I/0) devices.

The next three sections discuss these three components in detail. Section 2.2
discusses the architecture of the Intel Pentium processor. Sufficient details are
presented here to understand the basic organization of the Pentium processor.

Section 2.3 presents some basic concepts about the memory system. Pen-
tium memory organization is described in Section 2.4. It is important for an
assembly language programmer to understand the segmented memory organi-
zation supported by Pentium.

Section 2.5 gives a brief overview of how input/output devices such as a
keyboard, display screen, printer, etc. are interfaced to the system. Chapter 12
gives further details on I/0 interfacing.

S. P. Dandamudi, Introduction to Assembly Language Programming
© Springer Science+Business Media New York 1998
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Section 2.6 discusses how data alignment affects the running time of pro-
grams. We use the bubble sort example discussed in Chapter 1 to illustrate the
impact of data alignment. Section 2.7 concludes the chapter with a summary.

2.1 Basic Components of a Computer System

A computer system has three main components: a central processing unit (CPU)
or processor, a memory unit, and input/output (I/O) devices. These three com-
ponents are interconnected by a system bus. The term bus is used to represent
a group of electrical signals or the wires that carry these signals. Figure 2.1
shows details of how they are interconnected and what actually constitutes the
system bus. As shown in Figure 2.1, the three major components of the system
bus are the address bus, data bus, and control bus.

The width of address bus determines the amount of physical memory ad-
dressable by the processor. The width of data bus indicates the size of the data
transferred between the processor and memory or I/O device. For example,
the 8086 processor has a 20-bit address bus and a 16-bit data bus. The amount
of physical memory that this processor can address is 22°, or 1 MB, and each
data transfer involves at most 16 bits. The Pentium, on the other hand, has 32
address lines and 64 data lines. Thus, Pentium can address up to 232 ora4GB
memory. Furthermore, each data transfer can move 64 bits of data.

The control bus consists of a set of control signals. Typical control signals
include memory read, memory write, I/O read, I/O write, interrupt, interrupt
acknowledge, bus request, and bus grant. These control signals indicate the
type of action taking place on the system bus. For example, when the processor
is writing data into the memory, the memory write signal is asserted. Similarly,
when the processor is reading from an I/O device, the I/O read signal is asserted.

The system memory, also called main memory or primary memory, is used
to store both program instructions and data. I/O devices such as the keyboard,
display screen, printer, modem, etc. are used to provide user interface. /O
devices are also used to interface with secondary storage devices such as disks.

The system bus is the communication medium for data transfer. Such data
transfers are called bus transactions. Some examples of bus transactions are
memory read, memory write, I/O read, I/O write, and interrupt. Depending on
the processor and the type of bus used, there may be other types of transactions.
For example, Pentium supports a burst mode of data transfer in which up to
four 64 bits of data can be transferred in a burst cycle.

Every bus transaction involves a master and a slave. The master is the
initiator of the transaction and the slave is the target of the transaction. For
example, when the CPU wants to read data from the memory, it initiates a bus
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Figure 2.1 Simplified block diagram of a computer system.

transaction, also called a bus cycle, in which the CPU is the bus master and
memory is the slave. The CPU usually acts as the master of the system bus,
while components like memory are usually slaves. Some components may act
as slaves for some transactions and as masters for other transactions.

When there is more than one master device, which is typically the case,
the device requesting the use of the bus sends a bus request signal to the bus
arbiter using the bus request control line. If the bus arbiter grants the request,
it notifies the requesting device by sending a signal on the bus grant control
line. The granted device, which acts as the master, can then use the bus for
data transfer. The bus-request-grant procedure is called bus protocol. Different
buses use different bus protocols. In some protocols, permission to use the bus
is granted for only one bus cycle; in others, permission is granted until the bus
master relinquishes it.

2.2 The Processor

The CPU or processor acts as the controller of all actions or services provided
by the system. The CPU can be thought of as executing the following cycle
forever:
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1. Fetch an instruction from the memory
2. Decode the instruction (i.e., find out what the instruction is)

3. Execute the instruction (i.e., perform the action specified by the instruc-
tion).

This process is often referred to as the fetch-execute cycle, or simply the exe-
cution cycle.

This raises several questions. Who provides the instructions to the CPU?
Who places these instructions in the main memory? How does the CPU know
where in the main memory these instructions are located?

When we write programs—whether in a high-level language or in an as-
sembly language—we are providing a sequence of instructions to perform a
particular task (i.e., solving a problem). The instructions that we write in
whatever language will eventually be translated by a compiler or assembler to
an equivalent sequence of machine language instructions that the CPU under-
stands.

The operating system, which provides instructions to the CPU whenever a
user program is not executing, loads the user program into the main memory.
The operating system then indicates the location of the user program to the CPU
and instructs it to execute the program.

2.2.1 The Pentium Processor

The CPU is the heart of a computer system. The particular CPU used by a
computer system determines the power and personality of the system. The
goal of this section is to provide enough details on the Pentium processor that
you need to know to program in the assembly language. We do not attempt
to provide complete details of Pentium, as most aspects of the internal details
are unimportant to the assembly language programmer. As indicated in the
last section, a program is executed by the CPU by repeatedly performing the
fetch-execute cycle shown in Figure 2.2.

Fetching an instruction from the main memory involves placing the appro-
priate address on the address bus and activating the memory read control signal
on the control bus to indicate to the memory unit that an instruction should be
read from that location. The memory unit requires time to read the instruction
at the addressed location. This time is called the access time. The memory then
places the instruction on the data bus. The CPU, after instructing the memory
unit to read, waits until the instruction is available on the data bus and then
reads the instruction.
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Figure 2.2 Execution cycle of a typical computer system.

Decoding involves identifying the instruction that has been fetched from
the memory. To facilitate the decoding process, machine language instructions
follow a particular instruction encoding scheme.

To execute an instruction, the CPU contains hardware consisting of con-
trol circuitry and an arithmetic and logic unit (ALU). The control circuitry is
needed to provide timing controls as well as to instruct the internal hardware
components to perform a specific operation. The ALU is mainly responsible for
performing arithmetic operations (such as add, divide) and logical operations
(such as and, or) on data.

In practice, instructions and data are not fetched, most of the time, from the
main memory. There is a high-speed cache memory that provides faster access
to instructions and data than the main memory. For example, Pentium provides
a 16 KB on-chip cache. This is divided equally into data cache and code cache.
The presence of on-chip cache is transparent to application programs—it helps
improve application performance.

2.2.2 The Pentium Registers

Pentium provides several internal registers for the storage of data, control, and
other information. Pentium has ten 32-bit and six 16-bit registers. These
registers are grouped into general, control, and segment registers. The general
registers are further grouped into data, pointer, and index registers.

Data Registers

There are four 32-bit data registers that can be used for arithmetic and logical
operations (see Figure 2.3). These four registers are unique in that they can be
used as:

o four 32-bit registers (EAX, EBX, ECX, EDX), or
o four 16-bit registers (AX, BX, CX, DX), or
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Figure 2.3 Data registers of the Pentium processor (16-bit registers are shown shaded).

o eight 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL)

As shown in Figure 2.3, it is possible to use a 32-bit register and access its
lower half of the data by the corresponding 16-bit register name. For example,
the lower 16 bits of EAX can be accessed by using AX. Similarly, the lower
two bytes can be individually accessed by using the 8-bit register names. For
example, the lower byte of AX can be accessed as AL and the upper byte as
AH.

The data registers can be used without constraint in most arithmetic and
logical instructions. However, some registers have additional special functions
when executing some specific instructions. For example, when performing a
multiplication operation, one of the two data items needed should be in the
EAX, AX, or AL register depending on whether the operation is on 32-bit,
16-bit, or 8-bit data items. Similarly, the ECX or CX register is assumed to
contain the loop count value for the iterative instructions.

Pointer and Index Registers

Figure 2.4 shows the four 32-bit registers in this group. These registers can
be used either as 16-bit registers or 32-bit registers. The two index registers
play a special role in string processing instructions (discussed in Chapter 9). In
addition, they can be used as general-purpose data registers.

The pointer registers are mainly used to maintain the stack. Even though
they can be used as general purpose data registers, they are almost exclusively
used for maintaining the stack. The stack is discussed in Chapter 4.
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Figure 2.4 Index and pointer registers of the Pentium processor.

Control Registers

This group of registers consists of two 32-bit registers: the instruction pointer
register and the flags register. The instruction pointer register is used by the
processor to keep track of the location of the next instruction to be executed
in the memory. In other words, the instruction pointer is kind of a marker to
remember where the next instruction is located. The instruction pointer can be
used either as a 16-bit register (IP), or as a 32-bit register (EIP). IP is used for
16-bit addresses and EIP for 32-bit addresses (see Section 2.4 for details on
memory architecture).

When an instruction is fetched from memory, the instruction pointer is
incremented to point to the next instruction. This register is also modified
during the execution of an instruction that transfers control to another location
in the program (such as a jump instruction, procedure call, or an interrupt).

The flags register can also be considered as either a 16-bit FLAGS register,
or a 32-bit EFLAGS register. The FLAGS register is useful in executing 8086
processor code. The EFLAGS register consists of six status or arithmetic
flags, one control flag, and ten system flags, as shown in Figure 2.5. Bits of
this register can be set (to 1) or cleared (to 0). Pentium provides instructions to
set or clear some flags. For example, the c1c instruction clears the carry flag,
while the stc instruction sets it.

The six status flags record certain information about the most recent arith-
metic or logical operation. For example, if an arithmetic operation such as
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Figure 2.5 Flags and instruction pointer registers of the Pentium processor.

subtraction has resulted in a zero result, the zero flag (ZF) bit would be set (i.e.,
ZF = 1). Chapter 6 discusses the status flags in detail.

The control flag is useful in string operations. This determines whether a
string operation is to scan the string in the forward or backward direction. The
function of the direction flag is described in Chapter 9, which discusses the
string instructions supported by Pentium.

The ten system flags control the operation of the processor. A detailed
discussion of all ten system flags is beyond the scope of this book. Here we
discuss a few flags in this group that are relevant to our objective. The two
interrupt enable flags—the trap enable flag (TF) and the interrupt enable flag
(IF)—are useful in interrupt-related activities. For example, setting the trap
flag causes the processor to single step through a program, which is useful
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Figure 2.6 The six segment registers of the Pentium processor.

in debugging programs. These two flags are covered in Chapter 12, which
discusses the interrupt processing mechanism of Pentium.

The ability to set and clear the identification (ID) flag indicates that the
processor supports the CPUID instruction. The CPUID instruction provides
information to software about the vendor (Intel chips use “Genuinelntel” string),
processor family, model, etc. The virtual-8086 mode (VM) flag, when set,
emulates the programming environment of the 8086 processor.

The last flag that we discuss is the alignment check (AC) flag. When this
flag is set, the processor operates in alignment check mode and generates excep-
tions when a reference is made to an unaligned memory address. Section 2.6
provides further information on data alignment and its impact on application
performance.

Segment Registers

The six 16-bit segment registers of Pentium are shown in Figure 2.6. These reg-
isters support the segmented memory organization of Pentium. This memory
organization is discussed in detail in Section 2.4. In such a segmented orga-
nization, memory is partitioned into segments, where each segment is a small
part of the memory. The processor, at any point in time, can only access up to
six segments of the main memory. The six segment registers point to where
these segments are located in the memory.

Your program is logically divided into two parts: a code part that contains
only the instructions, and a data part that contains only the data operated on
by the instructions in the code part. The code segment (CS) register points to
where your instructions are stored in the main memory, and the data segment



Chapter 2 Basic Computer Organization

’é_ clock
cycle

4 ----

—= time

Figure 2.7 Clock signal of a computer system.

(DS) register points to your data segment location. The stack segment (SS)
register points to your program’s stack segment (discussed in Chapter 4).

The last three segment registers—ES, GS, and FS—are additional segment
registers that can be used in a similar way as the other segment registers. For
example, if a program’s data could not be fit into a single data segment, it is
efficient to use two data segment registers to point to the two data segments that
your program uses.

2.2.3 The System Clock

System clock provides timing signal to synchronize the operation of the system.
A clock is a sequence of 1’s and O’s, as shown in Figure 2.7. Clock rate is
measured in number of cycles per second. This number is referred to as Hertz
(Hz). The abbreviation MHz is used for millions of cycles per second.

The system clock defines the speed at which the system is operating. All
operations of the processor take multiple clock cycles. For example, transfer
of data from a memory location to Pentium takes three clock cycles. Thus, the
higher the clock rate, the faster the system can work.

Clock period is defined as the length of time taken by one clock cycle.

1
Clock period = ———
Ock petio Clock rate
For example, a clock rate of 100 MHz yields a clock period of
1
¢ = 10ns
100 x 10

If it takes three clock cycles to move data on the system bus (for example,
reading data from a memory location), it takes 3x 10 ns = 30 ns.

One way to increase the speed of a computer system is to use a higher clock
rate. For example, if we use a clock of 200 MHz, the time to move a unit of
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data on the system bus reduces from 30 ns to 15 ns. Clock rates increase with
improvements in technology. The original IBM PC used a clock rate of 4.77
MHz. Current technology allows clock rates higher than 400 MHz.

2.24 The Intel 80X86 Processor Family

Intel introduced the 8086 in 1979. It has a 20-bit address bus and a 16-bit data
bus. The 8088 is a less expensive version of the 8086. While the 8088 also has
a 20-bit address bus, it uses only an 8-bit data bus. The 8088, however, uses an
internal 16-bit data bus. The 8088 has a 4-byte instruction queue as opposed to
a 6-byte queue of the 8086.

The 80186 is a faster version of the 8086. It has a 20-bit address bus and
16-bit data bus, but has an improved instruction set. The 80186 was never
widely used in computer systems. The real successor to the 8086 is the 80286,
which was introduced in 1982. It has a 24-bit address bus and hence a 16 MB
memory address space. The data bus is still 16 bits wide, but the 80286 has
memory protection capabilities. It is backward-compatible in that it can run all
of the original 8086-based software.

Intel introduced the first 32-bit CPU—the 80386—in 1985. It has a 32-
bit data bus and a 32-bit address bus. The memory address space has grown
substantially from that of the 80286 (from a 16 MB address space to 4 GB).
Like the 80286, it can run all the programs designed to run on 8086 and 8088
CPUs. In the following year, Intel introduced the 80386SX. The 80386SX is
essentially the same as the 80386 except that it has a 16-bit data bus instead of
a 32-bit data bus. In other words, 80386SX is to 80386 what 8088 is to 8086.

The Intel 80486 was introduced in 1989. This is an improved version of
the 80386. While maintaining the same address and data buses, it combines the
coprocessor functions for performing floating-point arithmetic and includes an
internal cache.

The latest in the family is the Pentium series. It is not named 80586 because
Intel found belatedly that numbers cannot be trademarked! The first Pentium
was introduced in 1993. Pentium is similar to 80486 but uses a 64-bit data
bus. However, the instruction set of Pentium supports 32-bit operands like that
of the 80486. Systems based on Pentium would fall into what is called the
“workstation” category.

The number-crunching capability of a CPU can be enhanced by using spe-
cial hardware to perform numeric operations. The 80X87 numeric coprocessor
was designed to work with the 80X86 family CPUs to enhance the number pro-
cessing capabilities. The 8087 numeric coprocessor works with the 8086/8088
to provide extensive high-speed numeric processing capabilities. The 8087, for
example, provides about a hundred-fold improvement in execution time com-
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Figure 2.8 Logical view of the system memory.

pared to that of an equivalent function in software on a S MHz 8086. The 80287
works with the 80286 and the 80387 with the 80386. The 80486 and Pentium
have built-in numeric processor capabilities and therefore do not need a special
numeric processor.

2.3 Memory

The memory of a computer system consists of tiny electronic switches, with
each switch set in one of two states: open or closed. 1t is, however, more
convenient to think of these states as 0 and 1 rather than open and closed. A
single such switch can be used to represent two (i.e., binary) numbers: a zero
and a one. Thus, each switch can represent a binary digit or bit, as it is known.
The memory unit consists of millions of such bits. In order to make memory
more manageable, bits are organized into groups of eight bits called bytes.
Memory can then be viewed as consisting of an ordered sequence of bytes.
Each byte in this memory can be identified by its sequence number starting
with 0, as shown in Figure 2.8. This is referred to as the memory address of the
byte. Such memory is called byte addressable memory.
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Figure 2.9 Block diagram of the system memory.

Pentium can address up to 4 GB (232 bytes) of main memory (see Figure 2.8).
This magic number comes from the fact that the address bus of Pentium has 32
address lines. This number is referred to as the memory address space (MAS).
The memory address space of a system is determined by the address bus width of
the CPU used in the system. The actual memory in a system, however, is always
less than or equal to the memory address space. The amount of memory in a
system is determined by how much of this memory address space is populated
with memory chips.

2.3.1 Two Basic Memory Operations

The memory unit supports two fundamental operations: read and write. The
read operation reads a previously stored data and the write operation stores
a value in memory. Both of these operations require an address in memory
from which to read a value or to which to write a value. In addition, the write
operation requires specification of the data to be written. The block diagram of
the memory unit is shown in Figure 2.9. The address and data of the memory
unit are connected to the address and data buses of the system bus, respectively.
The read and write signals come from the control bus.

Two metrics are used to characterize memory. Access time refers to the
amount of time required by the memory to retrieve the data at the addressed
location. The other metric is the memory cycle time, which refers to the
minimum time between successive memory operations.

The read operation is nondestructive in the sense that one can read a location
of the memory as many times as one wishes without destroying the contents of
that location. The write operation, on the other hand, is destructive, as writing
a value into a location destroys the old contents of that memory location.
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Steps in a typical read cycle

1. Place the address of the location to be read on the address bus

2. Activate the memory read control signal on the control bus

3. Wait for the memory to retrieve the data from the addressed memory
location

4. Read the data from the data bus

5. Drop the memory read control signal to terminate the read cycle.

A simple Pentium read cycle takes three clock cycles. During the first clock
cycle, steps 1 and 2 are performed. Pentium waits until the end of the second
clock and reads the data and drops the read control signal. If the memory is
slower (and therefore cannot supply data within the specified time), the memory
unit indicates its inability to the CPU and the CPU waits longer for the memory
to supply data by inserting wait cycles. Note that each wait cycle introduces
a waiting period equal to one system clock period and thus slows down the
system operation.

Steps in a typical write cycle

1. Place the address of the location to be written on the address bus
Place the data to be written on the data bus

Activate the memory write control signal on the control bus
Wait for the memory to store the data at the addressed location
Drop the memory write signal to terminate the write cycle.

A

As with the read cycle, Pentium requires three clock cycles to perform a
simple write operation. During the first clock cycle, steps 1 and 3 are done.
Step 2 is performed during the second clock cycle. Pentium gives memory
time until the end of the second clock and drops the memory write signal. If
the memory cannot write data at the maximum CPU rate, wait cycles can be
introduced to extend the write cycle to give more time to the memory unit.

2.3.2 Types of Memory

The memory unit can be implemented using a variety of memory chips—
different speeds, different manufacturing technologies, and different sizes. The
two basic types of memory are read-only memory and read/write memory.

A basic property of memory systems is, they are random access memories
in that accessing any memory location (for reading or writing) takes the same
time. Contrast this with data stored on a magnetic tape. Access time on the
tape depends on the location of the data.
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Volatility is another important property of a memory unit. A volatile mem-
ory requires power in order to retain its contents. A nonvolatile memory can
retain its values even in the absence of power.

Read-Only Memories

Read-only memory (ROM) allows only read operations to be performed. This
memory cannot be written into by the CPU. The main advantage of ROM is
that it is nonvolatile. Most ROM is factory programmed and cannot be altered.
The term programming in this context refers to writing values into a ROM. This
type of ROM is cheaper to manufacture in large quantities than other types of
ROM. The program that controls the standard input and output functions (called
BIOS), for instance, is kept in ROM.

Other types of ROM include programmable ROM (PROM) and erasable
PROM (EPROM). PROM is useful in situations where the contents of ROM are
not yet fixed. For instance, when the program is still in the development stage,
it is convenient for the designer to be able to program the ROM locally rather
than at the time of manufacture.

In PROM, a fuse is associated with each bit cell. If the fuse is on, the bit
cell supplies a 1 when read. The fuse has to be burned to read a O from that bit
cell. When PROM is manufactured, its contents are all set to 1. To program
PROM, selective fuses are burned (to introduce 0’s) by sending high current.
This is the writing process and is not reversible (i.e., a burned fuse cannot be
restored). EPROM offers further flexibility during system prototyping. Con-
tents of EPROM can be erased by exposing them to ultraviolet light for 10-20
minutes. Once erased, EPROM can be reprogrammed again.

Read/Write Memory

Read/write memory is commonly referred to as random access memory (RAM),
even though ROM is also random access memory. This terminology is so
entrenched in the literature that we follow it here with a cautionary note that
RAM actually refers to RWM.

Read/write memory can be divided into static and dynamic categories.
Static random access memory (SRAM) retains the data, once written, without
further manipulation so long as the source of power holds its value. SRAM is
typically used for implementing the CPU registers and cache memories.

The bulk of main memory in a typical computer system, however, consists
of dynamic random access memory (DRAM). DRAM is a complex memory
device that uses a tiny capacitor to store a bit. A charged capacitor represents
1 bit. Since capacitors slowly lose their charge due to leakage, they must be
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Table 2.1 A comparison of different memory types

Type of Typical Number of write Volatility
memory | access time | cycles allowed | (power required)
ROM 50-100 ns Once* No
PROM 50-100 ns Once No
EPROM | 50-100 ns Many No
SRAM 10-20 ns Infinite Full
DRAM | 50-100 ns Infinite 10%

“at the time of manufacture

refreshed to replace the charges representing 1 bit. A typical refresh period is
about 4 ms. Reading from DRAM involves testing to see if the corresponding
bit cells are charged. Unfortunately, this test destroys the charges on the bit
cells representing 1 bit. Thus, DRAM is a destructive read memory.

For proper operation, a read cycle is followed by a restore cycle. As aresult,
the DRAM cycle time, the actual time necessary between accesses, is typically
about twice the read access time, which is the time necessary to retrieve a datum
from the memory. Table 2.1 gives a summary.

SRAM is faster than dynamic memory but it is more expensive. Typical
access time for SRAM is in the 10-20 ns range, whereas that for DRAM is in
the 50-100 ns range. However, DRAM costs about $30-100 per MB, whereas
the corresponding figure for SRAM is $200-400.

2.3.3 Storing Multibyte Data

Storing data often requires more than 8 bits, or a byte. For example, we need
two bytes of memory to store the value of a variable that can take a number in
the range O through 65,535. Let us assume that the value to be stored is 39,095.
Its binary equivalent is shown in Figure 2.10a.

How can this 2-byte data be stored in memory at locations 100 and 101?
Figure 2.10 shows two possibilities: least significant byte (Figure 2.10b) or
most significant byte (Figure 2.10c) is stored at location 100. These two byte
ordering schemes are referred to as little endian and big endian. In either
case, we always refer to such multibyte data by specifying the lowest memory
address (100 in this example).
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Figure 2.10 Two byte ordering schemes.

Is one byte ordering scheme better than the other? Not really! It is largely
a matter of choice for the designers. The Intel 80X86 processors use the lit-
tle endian scheme, while the Motorola 680X00 processors use the big endian
scheme.

The particular byte ordering scheme used does not pose any problems as
long as you are working with machines that use the same byte ordering scheme.
However, difficulties arise when you want to transfer data between two ma-
chines that use different byte ordering schemes. In this case, conversion from
one scheme to the other is required. Pentium provides two instructions to fa-
cilitate such conversion: xchg can be used for 16-bit data conversion between
little and big endian schemes, and bswap for 32-bit data. Chapter 3 discusses
these instructions in detail.

24 Pentium Memory Architecture

Pentium supports a sophisticated memory architecture. In this section we dis-
cuss the architectural features provided under real and protected modes. The
real mode, which uses 16-bit addresses, is provided to run programs written
for 8086. In this mode, Pentium supports the segmented memory architecture.
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Figure 2.11 Relationship between logical address and physical address of memory (all numbers
are in hex).

The protected mode, which is the native mode of Pentium, supports both seg-
mentation and paging. Paging is useful in implementing virtual memory. One
requires background in the operating system area to understand the concept of
virtual memory. Furthermore, paging is transparent to the application program
but segmentation is not. Therefore, we will not discuss the paging features of
Pentium. The rest of the section describes the segmented memory architecture
in real and protected modes.

2.4.1 Real Mode Memory Architecture

As mentioned, Pentium behaves like a faster 8086 in real mode. The memory
address space of the 8086 CPU is 1 MB as its address bus width is 20. To address
a memory location, which stores a byte of data, we need a 20-bit address. The
address of the first location is 00000H; the last addressable memory location is
at FFFFFH. Recall that numbers expressed in the hexadecimal number system
are indicated by suffix H (see Appendix A).

Since all registers in the 8086 CPU are only 16 bits wide, the address space
is limited to 29, or 65,536 (64 K) locations. As a consequence, the memory is
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organized as a set of segments. Each segment of memory is a linear contiguous
sequence of up to 64 K bytes. In this segmented memory organization, we
have to specify two components to identify a memory location. These are the
segment base and an offset within the specified segment (see Figure 2.11). This
two-component specification is referred to as the logical address. The segment
base specifies the beginning address of a segment in memory and the offset
specifies the address relative to the beginning of the segment. The offset is also
referred to as the effective address. The relationship between the logical and
physical addresses is shown in Figure 2.11.

The mechanism as described here will not completely solve the problem
of addressing a memory address space that requires 20 bit addresses by using
16-bit registers.

Notice from Figure 2.11 that the segment beginning address is 20 bits long
(11000H). So how can we use a 16-bit register to store the 20-bit segment base
address? The trick is to store the most significant 16 bits of the segment base
address and assume that the least significant four bits are all 0. In the example,
we would store 1100H as the segment base. The implied four least significant
zero bits are not stored. This trick works but imposes a restriction on where
the segments can begin. Segments can begin only at those memory locations
whose address has the least significant four bits as 0. Thus, segments can begin
at 00000H, 00010H, 00020H, - - - FFFEOH, FFFFOH. Segments, for example,
cannot begin at 00001H or FFFEEH.

In the segmented memory organization, a memory location can be identified
by its logical address, which consists of specifying the segment it is located in
and the offset within the segment. We use the notation segment.offset to specify
the logical address. For example, 1100:450H identifies the memory location
(i.e., 11450H), as shown in Figure 2.11. The latter value to identify a memory
location is referred to as the physical memory address.

As a programmer, you need to worry about logical addresses only. However,
when the CPU accesses the memory, it has to supply the 20-bit physical memory
address. The conversion of logical address to physical address is straightfor-
ward. This translation process, shown in Figure 2.12, involves adding four
least significant zero bits to the segment base value and then adding the offset
value. When using the hexadecimal number system, simply add a zero digit to
the segment base address at the right and add the offset value. As an example,
consider the logical address 1100:450H. The physical address is:

11000  (add O to 16-bit segment base value)
+ 450  (offset value)
11450  (physical address)




40

Chapter 2 Basic Computer Organization

19 43 0

Segment Register I 0000

19 1615 0
[oo0o00] Offset Value
[ ADDER ‘

19 0
| 20-bit Physical Memory Address |

Figure 2.12 Physical address generation in 8086.

For each logical memory address, there is a unique physical memory ad-
dress. The converse, however, is not true. More than one logical address can
refer to the same physical memory address. This is illustrated in Figure 2.13,
where logical addresses 1000:20A9H and 1200: A9H refer to the same physical
address 120A9H. The location 120A9H is mapped to two segments.

In our discussion of segments, we never said anything about the actual size
of a segment. The main factor limiting the size of a segment is the 16-bit offset
value, which restricts the segments to at most 64 K bytes in size. In the real
mode, Pentium sets the size of each segment to exactly 64 K bytes.

Programmers view the memory address space as a group of segments. These
segments are defined by the programmer. At any instance, a program can access
up to six segments. (The 8086 actually supports only four segments—segment
registers FS and GS are not present in the 8086 processor.) Typically two of
these segments contain code (program’s instructions) and data (program’s data).
The third segment is used for the stack.

If necessary, other segments may be used, for example, to store data, as
shown in Figure 2.14. Assembly language programs typically use at least two
segments—code and stack segments. If the program has data (which almost
all programs do), a third segment is also needed to store data. Those programs
that require additional memory can use the other segments.
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Figure 2.13 Two logical addresses map to the same physical address (all numbers are in hex).

The six segment registers of Pentium point to the six segments, as shown
in Figure 2.14. There are no restrictions on the segments except that segments
must begin on 16-byte memory boundaries, as described earlier. Except for
this restriction, segments can be placed anywhere in the memory. The segment
registers are independent and segments can be contiguous, disjoint, partially
overlapped, or fully overlapped, as shown in Figure 2.15.

Even though programmers view memory as a group of segments and use the
logical address to specify a memory location, all interactions between the CPU
and the memory unit must use the physical address. We have seen the process
involved in translating a given logical address to the corresponding physical
address (see page 39). Pentium has dedicated hardware to perform the address
translation, as illustrated in Figure 2.12.

Here is a summary of the real mode memory architecture:

e Segments are exactly 64 K bytes in size.
o A segment register contains a pointer to the base of the segment.
o Default operand size and effective addresses are 16 bits long.
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Figure 2.14 The six segments of the memory system.

(a) Adjacent (b) Disjoint (d) Fully overlapped

Figure 2.15 Various ways of placing segments in the memory.
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Figure 2.16 Logical to physical address translation process in the protected mode.

e Stack operations use the 16-bit SP register.

o Stack size is limited to 64 KB.

e Paging is not available. Thus, the processor uses the linear address as the
physical address (see Figure 2.16).

Keep in mind that the above list is the default attributes. It is, however, possible
to change some of these defaults. Section 2.4.7 discusses how 32-bit operands
and addresses can be used in the real mode.

2.4.2 Protected Mode Memory Architecture

In protected mode, Pentium supports a more sophisticated segmentation mech-
anism in addition to paging. This section focuses on the segmentation features
of the memory architecture.

As described in the previous section, application programs use the logical
addresses, which consists of two components: a segment base, and an offset.
Recall that the offset is also called the effective address. The segment unit trans-
lates a logical address into a 32-bit linear address. The paging unit translates
the linear address into a 32-bit physical address, as shown in Figure 2.16. If no
paging mechanism is used, the linear address is used as the physical address. It
is the physical address that is passed on to the memory to identify the location
of access in memory. In the remainder of this section, we focus on the segment
translation process only.

The protected mode segment translation process is different from that used
in the real mode. In the real mode, which mimics the 8086 mode of operation,
the physical address is 20 bits long. The physical address is obtained directly
from the contents of the selected segment register and the offset, as illustrated
on page 39. In protected mode, the contents of the segment register are taken
as an index into a segment descriptor table to get a descriptor. The segment
translation process is shown in Figure 2.17. A segment descriptor provides
the 32-bit base address of the segment, its size, and access rights, as shown in
Figure 2.19. To translate a logical address to the corresponding linear address,
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Figure 2.17 Protected mode address translation.

the offset is added to the 32-bit base address. The offset value can be either a
16-bit or a 32-bit number.

2.4.3 Segment Registers

Every segment register has a “visible” part and an “invisible” part, as shown
in Figure 2.18. When we talk about segment registers, we are referring to the
16-bit visible part. The visible part is referred to as the segment selector. There
are direct instructions to load the segment selector. These instructions include
mov, pop, 1ds, les, 1ss, 1gs, and 1fs. These instructions are discussed
in later chapters. The invisible part of the segment registers is automatically
loaded by the processor from a descriptor table (described next).
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Figure 2.18 Visible and invisible parts of segment registers.

The segment selector provides three pieces of information:

Index: Index selects a segment descriptor from one of two descriptor
tables—a Local Descriptor Table or a Global Descriptor Table. Since the
index is a 13-bit value, it can select one of 213 = 8192 descriptors from
the selected descriptor table. Since each descriptor, shown in Figure 2.19,
is 8 bytes long, the processor multiplies the index by 8 and adds the result
to the base address of the selected descriptor table. The base address of
the two descriptor tables is contained in registers GDTR and LDTR for
local and global descriptor tables, respectively.

Table Indicator (TI): This bit indicates whether the local or global de-
scriptor table should be used.

0 = Global descriptor table
1 = Local descriptor table

Requester Privilege level (RPL): This field identifies the privilege level
that is useful in providing protected access to data. The smaller the value
of RPL, the higher the privilege level.

24.4 Segment Descriptors

A segment descriptor provides the attributes of a segment. These attributes
include a 32-bit base address, a 20-bit segment size, as well as control and
status information, as shown in Figure 2.19. As an application programmer, you
are not concerned with the creation of segment descriptors. Typically, system
software such as compilers, linkers, and loaders, creates segment descriptors.
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Figure 2.19 Segment descriptor.
Here we provide a brief description of some of the fields shown in Figure 2.19.

e Base Address: The 32-bit base address specifies the starting address of
a segment in the 4 GB physical address space. This 32-bit value is added
to the offset value to form the linear address (see Figure 2.17).

o Granularity (G): This bit indicates whether the segment size value,
described next, should be interpreted in units of bytes or 4 KB. If the
granularity bit is zero, segment size is interpreted in bytes; otherwise, in
units of 4 KB.

e Segment Limit: This is a 20-bit number that specifies the size of the
segment. Depending on the granularity bit, two interpretations are given
to this value:

1. If the granularity bit is zero, the segment size can range from 1 byte
to 1 MB (i.e., 2%° bytes), in increments of 1 byte.

2. If the granularity bit is 1, the segment size can range from 4 KB to
4 GB, in increments of 4 KB.

e D/B bit: In a code segment, this bit is called a D bit and specifies the
default size for operands and offsets. If the D bit is 0, default operands
and offsets are assumed to be 16 bits; for 32-bit operands and offsets, the
D bit is set to 1.

In a data segment, this bit is called B bit and controls the size of the stack
pointer and size of the stack. If the B bit is 0, stack operations use the SP
register and the upper bound for the stack is FFFFH. If the B bit is 1, the
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ESP register is used for the stack operations with a stack upper bound of
FFFFFFFFH.

Typically, this bit is cleared for the real mode operation and set for the
protected mode operation. Section 2.4.7 describes how 16-bit and 32-bit
operands and addresses can be mixed in a given mode of operation.

e Shit: This bitidentifies whether the segment is a system or an application
segment. If the bit is 0, the segment is identified as a system segment;
otherwise, as an application (code or data) segment.

o Descriptor Privilege Level (DPL): This field defines the privilege level
of the segment. It is useful in controlling access to the segment using the
protection mechanisms of the Pentium processor.

e Type: This field identifies the type of segments. The actual interpreta-
tions of this field depend on whether the segment is a system or application
segment. For application segments, the type depends on whether the seg-
ment is a code or data segment. For a data segment, a type can identify it
as a read-only, read-write, and so on. For a code segment, type identifies
it as an execute-only, execute/read-only, and so on.

e P bit: This bit indicates whether the segment is present or not. If this bit
is 0, the processor generates the segment-not-present exception when a
selector for the descriptor is loaded into a segment register.

24.5 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors shown in Fig-
ure 2.19. There are three types of descriptor tables:

e The global descriptor table (GDT)
e Local descriptor tables (LDT)
e The interrupt descriptor table (IDT)

All three descriptor tables are variable in size from 8 bytes to 64 KB. They can
contain up to 8 K 8-bit descriptors. As shown in Figure 2.17, the upper 13 bits
of a segment selector are used as an index into the descriptor table. Each table
has an associated register that holds the 32-bit linear base address and a 16-bit
size of the table.

The global descriptor table contains descriptors that are available to all tasks
within the system. There is only one GDT in the system. Typically, the GDT
contains code and data used by the operating system. The local descriptor table
contains descriptors for a given program. There can be several LDTs, each of
which may contain descriptors for code, data, stack, and so on. A segment
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cannot be accessed by a program unless there is a descriptor for the segment in
either the current LDT or GDT.

The two associated registers, LDTR and GDTR, can be loaded using 11dt
and 1gdt instructions. Similarly, the LDTR and GDTR register values can
be stored by sldt and sgdt instructions. These instructions are used by the
operating system. The interrupt descriptor table is used in interrupt processing
and is discussed in Chapter 12.

2.4.6 Segmentation Models

Remember that the 8086 segments are limited to 64 KB, as the offsets used are
16 bits in length. However, in Pentium, it is possible to span a segment over
the entire physical address space of 4 GB. As a result, we can effectively make
the segmentation invisible by mapping all segment base addresses to zero and
setting the size to 4 GB. Such a model is called flat model and is useful for
programming environments like UNIX.

Another model that uses the capabilities segmentation to the full extent is
the multisegment model. Figure 2.20 shows how the current six segments are
mapped. A program, in fact, can have more than just six segments. In this case,
the segment descriptor table associated with the program will have descriptors
loaded for all the segments defined by the program. However, at any time, only
six of these segments can be active. The active segments are those that have
their segment selectors loaded into the six segment registers. A segment that
is not active can be made active by loading its selector into one of the segment
registers, and the processor automatically loads the associated descriptor (i.e.,
the “invisible part” shown in Figure 2.18). The processor generates a general-
protection exception if an attempt is made to access memory beyond the segment
limit.

24.7 Mixed Mode Operation

Our previous discussion of the real and protected modes of operation suggests
that we use either 16-bit or 32-bit operands and addresses. The D/B bit indicates
the default size. The questions is, is it possible to mix these two? For instance,
can we use 32-bit registers in a 16-bit mode of operation? The answer is yes!
Pentium provides two size override prefixes—one for the operands and the
other for the addresses—to facilitate such mixed mode programming. Details
on these prefixes are provided in Chapter 5.
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Figure 2.20 Segments in a multisegment model.

2.4.8 Which Segment Register to Use?

This discussion applies to both real and protected modes of operation. In
generating a physical memory address, the processor uses different segment
registers depending on the purpose of the memory reference. Similarly, the
offset part of the logical address comes from a variety of sources.

Instruction Fetch: When the memory access is to read a program instruction,
the CS register is used to provide the segment part of the logical address of
the instruction to be fetched. The offset part is supplied either by the IP or
EIP register, depending on whether we are using 16-bit or 32-bit addresses.
Thus, CS:(E)IP always points to the next instruction to be fetched from the
code segment.

Stack Operations: Whenever the processor is accessing the memory to perform
a stack operation such as push or pop, SS register is used for the segment
base address and the offset value comes from either the SP register (for 16-bit
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addresses), or the ESP register (for 32-bit addresses). For other operations on
the stack, the BP or EBP register supplies the offset value. A lot more will be
said about the stack in Chapter 4.

Accessing Data: If the purpose of accessing memory is to read or write data, the
DS register is the default choice for providing the data segment start address.
The offset value comes from a variety of sources depending on the addressing
mode used. Addressing modes are discussed in Chapter 5.

2.5 Input/Output

Input/Output (I/O) devices provide the means by which a computer system can
interact with the outside world. An I/O device can be a purely input device (e.g.,
keyboard, mouse), a purely output device (e.g., printer, display screen), or both
an input and output device (e.g., disks). Here we present a brief overview of
the I/O device interface. Chapter 12 provides more details on I/O interfaces.

Computers use I/O devices (also called peripheral devices) for two major
purposes—to communicate with the outside world, and to store data. I/O de-
vices such as printers, keyboards, and modems are used for communication
purposes and devices like disk drives are used for data storage. Regardless of
the intended purpose of the I/O device, all communications with these devices
must involve the systems bus. However, I/O devices are not directly connected
to the system bus. Instead, there is usually an I/O controller that acts as an
interface between the system and the I/O device.

There are two main reasons for using an I/O controller. First, different
I/0 devices exhibit different characteristics and, if these devices are connected
directly, the CPU would have to understand and respond appropriately to each
I/O device. This would cause the CPU to spend a lot of time interacting with
I/O devices and spend less time executing user programs. If we use an I/O
controller, this controller could provide the necessary low-level commands and
data for proper operation of the associated I/O device. Often, for complex I/O
devices such as disk drives, there are special I/O controller chips available.

The second reason for using an I/O controller is that the amount of electrical
power used to send signals on the system bus is very low. This means that the
cable connecting the I/O device has to be very short (a few centimeters at
most). I/O controllers typically contain driver hardware to send current over
long cables that connect the I/O devices.

/O controllers typically have three types of internal registers—a data regis-
ter, a command register, and a status register—as shown in Figure 2.21. When
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Figure 2.21 Block diagram of a generic I/O device interface.

the CPU wants to interact with an I/O device, it communicates only with the
associated I/O controller.

To focus our discussion, let us consider printing a character on the printer.
Before the CPU sends a character to be printed, it has to first check the status reg-
ister of the associated I/O controller to see whether the printer is online/offline,
busy or idle, out of paper, and so on. In the status register, three bits can be used
to provide this information. For example, bit 4 can be used to indicate whether
the printer is online (1) or offline (0), bit 7 can be used for busy (1) or not busy
(0) status indication, and bit 5 can be used for out of paper (1) or not (0).

The data register holds the character to be printed and the command register
tells the controller the operation requested by the CPU (for example, send the
character in the data register to the printer). The following summarizes the
sequence of actions involved in sending a character to the printer:

e Wait for the controller to finish the last command
e Place a character to be printed in the data register
e Set the command register to initiate the transfer.

The CPU accesses the internal registers of an I/O controller through what are
called /O ports. An /O port is simply the address of a register associated with
an I/O controller.

There are two ways of mapping I/O ports. Some CPUs, for example the
Motorola 68000, map I/O ports to memory addresses. This is called memory-
mapped I/0. In these systems, writing to an I/O port is similar to writing to
a memory address. Other CPUs, like the Intel Pentium, have an 1I/0 address
space that is separate from the memory address space. This technique is called
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isolated I/0. In these systems, to access the I/O address space, special I/O
instructions are needed. Pentium provides two instructions—in and out—to
access I/0O ports. The in instruction can be used to read from an I/O port and
the out for writing to an I/O port. See Chapter 12 for more details on these
instructions.

Pentium provides 64 KB of I/O address space. This address space can be
used for 8-bit, 16-bit, and 32-bit I/O ports. However, the combination cannot
be more than the I/O address space. For example, we can have 64 K 8-bit ports,
32 K 16-bit ports, 16 K 32-bit ports, or a combination of these that fits the 64 K
address space. As I/O instructions do not go through segmentation and paging
units, the I/O address space refers to the physical address rather than the linear
address.

Systems designed with processors supporting the isolated I/O have the flex-
ibility of using either the memory mapped I/O or the isolated I/O. Typically,
both strategies are used. For instance, devices like a printer or a keyboard could
be mapped to the I/O space using the isolated I/O strategy; the display screen
could be mapped to a set of memory addresses using the memory-mapped I/O.

2.5.1 Accessing I/0 Devices

As a programmer, you can have direct control on any of the I/O devices (through
their associated I/O controllers) when you program in assembly language. How-
ever, it is often a difficult task to access an I/O device without any help. Fur-
thermore, it is a waste of time and effort if everyone has to develop their own
routines to access I/O devices (called device drivers). In addition, system re-
sources could be abused either intentionally or accidentally. For instance, an
improper disk driver could erase the contents of a disk due to a bug in the driver
routine.

To avoid these problems and to provide a standard way of accessing I/O
devices, operating systems provide routines to conveniently access I/O devices.
Typically, access to I/O devices can be obtained from two layers of system
software: the basic I/O system (BIOS), and the operating system. BIOS is
ROM resident and is a collection of routines that control the I/O devices. Both
provide access to routines that control the I/O devices though a mechanism
called interrupts. Interrupts are discussed in detail in Chapter 12.

2.6 Performance: Effect of Data Alignment

Running time of a program is influenced by several factors—some of which are
under the control of the programmer. Other factors that influence the running
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time of a program include the clock rate of the system, efficiency of the compiler
used if the program is written in a high-level language, presence of a cache
memory, and so on.

Here we look at the influence of data alignment on the performance of the
bubble sort example discussed in Chapter 1. One of the factors influencing
the sort time is the clock cycles required to fetch data. For example, to fetch
a 32-bit data item in an 8086-based system with a data bus only 16 bits wide
requires two bus cycles. However, in a Pentium-based system, which uses a
64-bit wide data bus, a 32-bit data item can be fetched in a single bus cycle if
the data is properly aligned. In the following we explain the concept of data
alignment using a 16-bit data item accessed on a 16-bit data bus (e.g., in 8086
mode). You can easily generalize this discussion to Pentium’s data bus.

A 16-bit data item is said to be aligned (i.e., word-aligned) if it is located
at an even address. For example, a data word located at memory address 120
is aligned because it is located in two contiguous bytes starting at address 120.
On the other hand, a data word located at memory address 135 is unaligned.
A data word that is located at an even address can be fetched in one bus cycle.
If the data word is located at an odd-numbered address, the processor requires
two bus cycles to access the 16-bit data—one byte per bus cycle.

The reason for this peculiar behavior is simple to understand. Since the
memory is byte-addressable, we supply only one address even when accessing
a multibyte data object—such as the int data type in C that requires 16 bits
of storage. The 16-bit data bus that interconnects the CPU and the memory
always supplies the byte that located at an even-numbered address location in
the memory on the lower half of the data bus and the byte at the next location
on the upper half of the data bus, as shown in Figure 2.22. Thus, 16-bit data
that starts at an even address (i.e., word-aligned) can be obtained in one bus
cycle. For example, accessing a 16-bit data stored at memory locations 120 and
121 requires only a single bus cycle with the byte at address 120 placed on the
lower half of the data bus and the byte at 121 on the upper half of the data bus.

On the other hand, if the 16-bit data is located at addresses 121 and 122,
the processor fetches the 16 bits located at addresses 120 and 121 during the
first bus cycle, and fetches the 16 bits at addresses 122 and 123 during the next
bus cycle. The processor internally discards the unwanted bytes. Therefore, to
maximize performance, 16-bit data should be word-aligned (i.e., stored at even
addresses).

This discussion can be extended to cover other data items. To avoid a
performance penalty, the data should be aligned.



54

Chapter 2 Basic Computer Organization

Figure 2.22 Byte-addressable memory interface to the 16-bit data bus.

e 2-byte data: A 16-bit data item is aligned if it is stored at an even ad-
dress (i.e., addresses that are multiples of 2). This means that the least
significant bit of the address must be 0.

e 4-byte data: A 32-bit data item is aligned if it is stored at an address that
is a multiple of 4. This implies that the least significant two bits of the
address must be 0.

e 8-byte data: A 64-bit data item is aligned if it is stored at an address that
is a multiple of 8. This means that the least significant three bits of the
address must be 0. This alignment is important for Pentium processors,
as they have a 64-bit wide data bus. On 80486 processors, since their data
bus is 32 bits wide, a 64-bit data item is in two bus cycles and alignment
at 4-byte boundaries is sufficient.

Figure 2.23 shows the impact of word alignment on the sort time. When
the array is not word-aligned, the sort time increases by about 16 percent.
For example, to sort an 8,000 element array, it takes about four seconds more
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Figure 2.23 Impact of word alignment on the performance of the bubble sort algorithm.

if the array starts at an odd address (i.e., not word-aligned). Except for the
performance penalty, word alignment is totally transparent to software.

The Intel 80X86 family of processors allow aligned and unaligned data
items. Of course, unaligned data causes performance problems. Alignment
constraints of this type are referred to as soft alignment constraints. Because
of the performance penalty associated with unaligned data, some processors,
such as Motorola 68000 and Intel i860, do not allow unaligned data. These
alignment constraints are referred to as hard alignment constraints.

2.7 Summary

Programmers should have some basic knowledge about the processor and the
system architecture in order to effectively program in assembly language. This
chapter has presented the basics of computer organization with a focus on the
Pentium processor.

We started with a high-level view of the system. At this level, a computer
system can be thought of as consisting of three main components: a processor,
a memory unit, and I/O devices.
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We described the architecture of Pentium processors from a programmer’s
point of view. This knowledge is necessary, as the assembly language explicitly
refers to the internal registers, and so on.

Pentium can address up to 4 GB of memory. We discussed the memory
architecture of real and protected modes. In real mode, Pentium supports 16-bit
addresses and the memory architecture of the 8086 processor. The protected
mode is the native state of the Pentium processor. In this mode, Pentium
supports both paging and segmentation. Paging is useful in implementing
virtual memory and is not considered here, as it is beyond the scope of this
book. We discussed the segmented memory architecture in detail, as these
details are necessary to program in the assembly language.

We briefly discussed how I/O devices are interfaced to the system. More
details on this topic are provided in Chapter 12.

We also considered the impact of data alignment on the run time of appli-
cation programs. By using the bubble sort program discussed in Chapter 1, we
demonstrated the influence of data alignment on the sort time.

2.8 Exercises

2-1 What is the execution cycle?

2-2 What are the main components of the system bus? Describe the func-
tionality of each component.

2-3 What is the purpose of providing various registers in a CPU?
2-4 What are the three address spaces supported by Pentium?

2-5 What is a segment? Why does Pentium support segmented memory
architecture?

2-6 Why is segment size limited to 64 KB in size in the real mode?
2-7 What is the maximum size of a segment in the protected mode?

2-8 We stated that Pentium can access up to six segments at a time. What is
the hardware reason for this limitation?

2-9 Describe the logical to physical address translation process in the real
mode.

2-10 Describe the logical to linear address translation process in the protected
mode.

2-11 Discuss the differences between the segmentation architectures supported
in the real and protected modes.

2-12 If a system uses a 166 MHz clock, what is the clock period?
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2-13 If a processor has 16 address lines, what is the physical memory address
space of this processor? Give the address of the first and last addressable
memory locations in hex.

2-14 What are the differences between ROM and RAM?

2-15 Compare and contrast DRAM and SRAM.

2-16 Convert the following logical addresses to physical addresses. All num-
bers are in hexadecimal. Assume the real address mode.

(a) 1A2B:019A (c) 3911:200
(b) 2591:10B5 (d) 1100:ABCD

2-17 Discuss why I/O controllers are used to interface I/O devices to the sys-
tem.

2-18 How many memory read cycles are required by the 8086 processor to read
a word (i.e., 16 bits) of data located at the following logical addresses
(all numbers are in hex):

(a) 1234:5678 (c) 9128:101
(b) 1ABC:755 (d) 38B0:268

2-19 Repeat the above exercise for a double word (i.e., 32 bits) and byte data.

2.9 Progamming Exercises

2-P1 Write a program in your favorite high-level language to perform logical
address to physical address translation in real mode. Your program should
take a logical address as its input and display the corresponding physical
address. The input consists of two parts: segment value and offset value.
Both are given as hexadecimal numbers.
In Chapter 3, you will be asked to repeat the exercise in assembly lan-
guage. The purpose is to compare the time required to write programs
in assembly and high-level languages. Therefore, while working on this
exercise, you should record the amount of time you spend. Make sure to
include the debugging time as well in the comparison.

2-P2 Modify the bubble sort program (C version) given in Chapter 1 to sort an
array of characters. Compare the sort times to sort character and integer
arrays. After you have become proficient in assembly language, come
back to this exercise and give a rational explanation for any difference
between the two.



Chapter 3

Overview of Assembly
Language

Objectives

e To introduce the basics of the Pentium assembly language

e To discuss data allocation statements of the assembly language
To describe data transfer instructions of Pentium

To provide an overview of the Pentium instruction set

To examine how constants are defined in assembly language

To demonstrate the performance benefits of translation instruction

The objective of this chapter is to review the basics of the Pentium assembly
language. Assembly language statements can either instruct the CPU to per-
form a task, or direct the assembler during the assembly process. The latter
statements are called assembler directives. Section 3.1 discusses the format
and types of assembly language statements.

Assemblers provide several directives to reserve storage space for variables.
These directives are discussed in Section 3.2. The instructions of the CPU
consist of an operation code to indicate the type of operation to be performed,
and the specification of the data required (also called addressing mode) by the
operation. Section 3.3 describes some basic addressing modes supported by
Pentium.

The instruction set of Pentium can be divided into several groups of in-
structions. Section 3.4 discusses the instructions that transfer data, including

S. P. Dandamudi, Introduction to Assembly Language Programming
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mov, xchg, and x1at instructions. Section 3.5 provides an overview of some of
the Pentium instructions belonging to the other groups. Later chapters discuss
these instructions in more detail.

Section 3.6 describes the assembler directives to define constants—numeric
as well as string constants. Several examples are provided in Section 3.7. The
performance advantage of the translation instruction x1at is demonstrated in
Section 3.8. The chapter concludes with a summary.

3.1 Assembly Language Statements

Assembly language programs are created out of three different classes of state-
ments. Statements in the first class tell the CPU what to do. These instructions
are called executable instructions, or instructions for short. Each executable
instruction consists of an operation code (op-code for short). Executable in-
structions cause the assembler to generate machine language instructions. As
stated in Chapter 1, each executable statement typically generates one machine
language instruction.

The second class of statements provide information to the assembler on
various aspects of the assembly process. These instructions are called assembler
directives or pseudo-ops. Assembler directives are non-executable and do not
generate any machine language instructions.

The last class of statements, called macros, are used as a shorthand notation
for a group of statements. Macros permit the assembly language programmer
to name a group of statements and refer to the group by the macro name. During
the assembly process, each macro is replaced by the group of statements that
it represents and assembled in place. This process is referred to as macro
expansion. We will use macros to provide the basic input and output capabilities
to stand-alone assembly language programs. Macros are discussed in detail in
Chapter 10.

Assembly language statements are entered one per line in the source file.
Even though up to 128 characters can be used in a line, it is a good practice to
limit a line to 80 characters so that it can be displayed on the screen. Except fora
few statements, most assembly language statements require far fewer characters
than 80.

All three classes of the assembly language statements use the same format:

[label] mnemonic [operands] [;com-
ment]

The fields in the square brackets are optional in some statements. As a result
of this format, it is a common practice to align the fields to aid readability
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of assembly language programs. The assembler does not care about spaces
between the fields.

Assembly language statements require more characters per line only be-
cause of the comments we add to the code lines. Long comments can always
be broken into multiple lines. Blank lines, comment lines (lines consisting en-
tirely of comments), and label lines (lines just containing labels) are acceptable
and should be judiciously used to structure the program in order to improve its
readability and maintainability.

Label: This is an optional field. The label field serves two distinct purposes:
it’s used to represent either an identifier or a constant. When a label appears in
an executable instruction, it is used as a marker to identify the instruction. Then,
for example, you can make program execution jump to the labeled instruction.
In this case, label represents the memory address of the instruction. When used
with certain assembler directives like EQU, label represents a constant.

Mnemonic: This is a required field and identifies the purpose of the state-
ment. In certain statements, this field is not required. Examples include lines
consisting of a comment, or a label, or a label and a comment.

Operands: Operands specify the data to be manipulated by the statement. The
number of operands required depends on the specific statement or directive. For
instance, executable statements may have zero, one, two, or three operands.

Comment: This is an optional field and serves the same purpose as that in a
high-level language. Comments play a more important role in assembly lan-
guage, as it is a low-level language. Assembler ignores all comments. Com-
ments begin with a semicolon (;) and extend until the end of the line. Since
the readability of assembly language programs is poor, comments should be
generously added to improve readability. While some authors suggest adding
comments to every line of code, it is good programming practice to explain the
functionality of a group of statements by several lines of comments and then
add brief comments to selected code lines within the group. This is the practice
followed in this book.
Now let us look at some sample assembly language statements.

repeat: inc result ;increment result by 1

The label repeat can be used torefer to this particular statement. The mnemonic
inc indicates increment operation to be done on data stored in memory at a
location referred to by the variable name result. The comment simply ex-
plains what the instruction is doing. Adding such self-explanatory comments is
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redundant and we will avoid commenting each line with such trivial comments.
The following assembler directive defines a constant CR. The ASCII carriage
return value is assigned to it by the EQU directive.

CR EQU ODH ;carriage return character

In the previous two examples, label field has two different forms. The label
in the executable instruction is followed by a colon (:) but not in the directive
statement.

A label and other names can be formed from upper and lowercase letters
(a~z, A-Z), digits (0 through 9), and special characters (-, %, ?, $, ., @).

A name may not begin with a digit and if a period is used, it must be the
first character. For example, jump2 and repeat are valid but not go . back and
2_jump. Other characters may be used in any position. Among the special
characters, the underscore character is frequently used to aid readability. (Un-
derscores also play a special role in interfacing with C language—discussed in
Chapter 13.)

A name can have many characters but only the first 31 characters are sig-
nificant. Certain reserved words that have special meaning to the assembler are
not allowed as names. These include mnemonics such as inc and EQU.

The assembler is normally case insensitive. For example, labels repeat
and REPEAT are treated the same. The assembler can be made case sensitive by
using an option (e.g., /m1 option with TASM). We follow the convention that
the source code is normally in lowercase except for directive mnemonics and
constants defined in the program.

The fields in a statement must be separated by at least one space or tab
character. More spaces and tabs can be used at the programmer’s discretion,
but the additional spaces/tabs are ignored by the assembler.

It is good programming practice to use blank lines and spaces to improve
the readability of assembly language programs. As a result, you will rarely see
in this book a statement containing all four fields in a single line. In particular,
we will almost always write labels on a separate line unless doing so destroys
the program structure. Thus, our first example statement would be written as
two statements, as

repeat:
inc result ;increment result by 1

3.2 Data Allocation

In high-level languages, allocation of storage space for variables is done indi-
rectly by specifying the data types of each variable used in the program. For
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example, in C the following declarations allocate different amounts of storage
space for each variable.

char response; /* 1 byte is allocated */
int value; /* 2 bytes are allocated */
float total; /* 4 bytes are allocated */

double average_value; /* 8 bytes are allocated */

These variable declarations not only specify the amount of storage required,
but also indicate how the stored bit pattern should be interpreted. As anexample,
consider the following two statements in C:

unsigned value_1;
int value_2;

Both variables will have two bytes reserved for storage. However, the bit pattern
stored in them would be interpreted differently. For instance, the bit pattern
(8DBYH)

1000 1101 1011 1001

stored in the two bytes allocated for value_1 is interpreted as representing
36,281, while the same bit pattern stored in value_2 would be interpreted as
—29,255.

In assembly language, allocation of storage space is done by the define
assembler directive. The define directive can be used to reserve and initialize
one or more bytes. However, no interpretation (as in C variable declarations)
is attached to the contents of these bytes. It is entirely up to the program to
interpret the bit pattern stored in the space reserved for data.

The general format of a storage allocation statement is

[variable-name] define-directive initial-value [,initial-value],...

The square brackets indicate optional items. The variable-name is used to

identify the storage space allocated. The assembler associates an offset value

for each variable name defined in the data segment. Note that no colon (:)

follows the variable name (unlike a label identifying an executable statement).
The define directive takes one of the five basic forms:

DB Define Byte ;allocates 1 byte
DW Define Word ;allocates 2 bytes
DD Define Doubleword ;allocates 4 bytes
DR Define Quadword ;allocates 8 bytes

DT Define Ten Bytes ;allocates 10 bytes

Let us look at some examples now.
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sorted DB ’y?

This statement allocates a single byte of storage and initializes to character y.
Your assembly language program can refer to this data location by its name
sorted. If you just want to reserve storage space without initialization, you
can write

sorted DB ?

You can also use numbers to initialize. For example,
sorted DB 79H

or
sorted DB 1111001B

is equivalent to

sorted DB ’y?

Note that the ASCII value for y is 79H. The following data definition state-
ment allocates two bytes of contiguous storage and initializes to 25159.

value DW 25159

The decimal value 25159 is automatically converted to its 16-bit binary equiv-
alent (6247H). Since Pentium uses little endian byte ordering (see Chapter 2),
this 16-bit number is stored in memory as

address: X x+1
contents: 47 62

You can also use negative values, as in the following example:
balance DW -29255

Since 2’s complement representation is used to store negative values, —29,255
is converted to 8DBI9H and is stored as

address: X x+1
contents: B9 8D

The statement

total DD 542803535

would allocate four contiguous bytes of memory and initialize it to 542803535
(205A864FH), as shown below:

address: X x+1 x+2 x+3
contents: 4F 86 5A 20



Section 3.2 Data Allocation 65

Range of Numeric Operands

The numeric operand of a define directive can take both signed and unsigned
numbers. The valid range depends on the number of bytes allocated. The
following table shows the valid range for the numeric operands:

Directive Valid range
DB —1281t0255(ie., —27 028 — 1)
DW —32,768 to 65,535 (i.e., —2'5 to 216 — 1)
DD —2,147,483,648 to 4,294,967,295 (i.e., —23! t0 232 — 1)

or a short floating-point number (32 bits)

DQ  —2%8t02% -1
or a long floating-point number (64 bits)

Using a constant that is outside the specified range can result either in an
assembler error, or in assigning a wrong value. For example, the statement

bytel DB 256

causes an assembly time error. In general, the assembler can accept a value
in the range —256 to +255. However, 8 bits are not sufficient for the values
between —256 and —129. Therefore, the assembler converts the number into
2’s complement representation using 16 bits and stores the lower byte. For
example,

byte2 DB -200 ; stores 38H

stores 38H because the 2’s complement representation of —200 is FF38H.
Similarly, the statement

wordil DW -60000 ; stores 15A0H

assigns 15A0H because —60000 is outside the range of signed numbers that
can be represented using 16 bits. Therefore, as in the last example, —60000
is converted to its 2’s complement equivalent using 32 bits (FFFF15A0H), and
the lower word is stored.

Short and long floating-point numbers are represented using 32 or 64 bits,
respectively. See Appendix A for details. We can use DD and DQ directives to
assign real numbers, as shown in the following examples:

floatl DD 1.234
real2 DQ 123.456
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Multiple Definitions

Assembly language programs typically contain several data definition stateme-
nts. For example, look at the following assembly language program fragment:

sorted DB ’y? ; ASCII of y = 79H
value DW 25159 ; 25159D = 6247H
total DD 542803535 ; 542803535D = 205A864FH

When several data definition statements are used as above, the assembler
allocates contiguous memory locations for the variables. The memory layout
for the three variables is

address: X x+1 x+2 x+3 x+4 x+5 x+6
contents: 79 a7 62 4F 86 5A 20
N—~—’ g h v
sorted value total

Multiple data definitions can be abbreviated. For example, the following
sequence of eight DB directives

message DB W2
DB 'E?
DB 'L’
DB ’c?
DB a0’
DB M’
DB ’E’
DB 2

can be abbreviated as
message DB )WJ,)E),)L)’)C),)OJ’)M)’)E)’)!)
or even more compactly as

message DB ’WELCOME!’

Here is another example showing how abbreviated forms simplify data
definitions. The definition

message DB ’B’
DB )y)
DB ‘e’
DB ODH
DB OAH

can be written as
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message DB ’Bye’ ,0DH,OAH

Similar abbreviated forms can be used with the other define directives. For
instance, a marks array of size 8 can be defined and initialized to zero by

marks DW 0
DW
DW
DW
DW
DW
DW
DW

O OO O0OO0OOoOOo

which can be abbreviated as

marks DW 0, 0, 0,0,0,0,0,0

Multiple Initializations

In the previous example, if the class size is 90, it is inconvenient to define the
array as described. The DUP directive allows multiple initializations to the
same value. Using DUP, marks array can be defined as

marks DW 8 DUP (0)

The DUP directive is useful in defining arrays and tables. Here are some
examples using the DUP directive.

tablel DW 10 DUP (?) ;10 words,uninitialized
namel DB 30 DUP (’7??) ;30 bytes,each byte

; initialized to 7
name?2 DB 30 DUP (?) ;30 bytes,uninitialized

message DB 3 DUP (’Bye!’) ;12 bytes,initialized
; to Bye!Bye!Bye!

The DUP directive may also be nested. For example, to allocate storage
space containing

we can write
stars DB 4 DUP (3 DUP (’x’), 2 DUP (°7?’), 5 DUP (°!?))

A two-dimensional 10x 5 matrix (10 rows, 5 columns) can be defined as
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matrix DW 10 DUP (5 DUP (0))

The initialization values of define directives can also be expressions, as shown
in the following example.

max_marks DW 7*25

This statement is equivalent to

max_marks DW 175

The assembler evaluates such expressions at assembly time and assigns the
resulting value. Use of expressions to specify initial values is not preferred
because it affects the readability of your program. However, there are certain
situations where using an expression actually helps clarify the code. In our
example, if max_marks is representing the sum of seven assignment marks
where each assignment is marked out of 25 marks, it is preferable to use the
expression 7*25 rather than 175. Data definitions are further discussed in
Chapter 10.

Symbol Table

When we allocate storage space using a data definition directive, we usually
associate a symbolic name to refer to it. The assembler, during the assembly
process, assigns an offset value for each symbolic name. For example, consider
the following data definition statements:

.DATA
value DW 0
sum DD O

marks DW 10 DUP (7?)
message DB  ’The grade is:’,0
charil DB 7

As we have indicated, the assembler assigns contiguous memory space for
the variables. Assembler also uses the same ordering of variables that is present
in the source code. Then, finding the offset values of a variable is a simple
matter of counting the number of bytes allocated to the variables preceding
it. For example, the offset value of marks is 6 because value and sum are
allocated 2 and 4 bytes, respectively. The symbol table for the data segment is
shown in Table 3.1. '
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Table 3.1 Symbol table for the example data segment

name offset
value 0
sum 2
marks 6
message 26
chari 40

Table 3.2 Correspondence between Turbo C data types and data definition
directives

Directive C data type
DB char
DW int, unsigned
DD float, long
DQ double
DT Not used to specify a data type but used
to store intermediate float values

Correspondence to C Data Types

The correspondence between the data definition directives and the Turbo C data
types is shown in Table 3.2. Some examples using DB, DW, and DD directives
are shown in Table 3.3.

Two consecutive apostrophes can be used in a string to specify a single
apostrophe, as in

message DB ’John’’s’
to reserve 6 bytes of storage and initialize it to John’s. TASM and MASM

also allow the use of double quotation marks to specify a string of characters,
as in

message DB ’?John’s’’

In a string that is delineated by double quotation marks, two consecutive
double quotation marks can be used to stand for a single one. Since double
quotation marks are used to specify strings in C (and is different from the
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Table 3.3 Some example data definition declarations

C declaration Assembly language data definition
char ch_1; ch 1 DB ?
char stringl[30]; stringl DB 30 DUP (7)
char namel[25] = ‘‘John’’; namel DB  ’John’,0,20 DUP (?)
int value = 50; value DW 50;
int array[20] ; array DW 20 DUP (7?)
long total = O; total DD O

sense used here to specify a string of characters) we will exclusively use only
apostrophes in this book.

LABEL Directive

The LABEL directive provides another way to name a memory location without
actually defining any data. The syntax is

name LABEL type

where type specifies the variable type. The standard types BYTE, WORD,
DWORD, QWORD, and TBYTE can be used to label 1-, 2-, 4-, 8-, and 10-byte
data.

In the example

.DATA

count LABEL WORD
Lo_count DB 0
Hi_count DB 0

.CODE
mov Lo_count, AL
mov Hi_count,CL

the two bytes of memory Lo_count and Hi_count can also be referenced as
a 16-bit number count. We can also individually manipulate the lower and
upper halves of count.
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The LABEL directive is also useful in creating an alias of another data type,
as shown in the following example.

.DATA

byte_count LABEL BYTE
count DW 0

.CODE

mov byte_count,CL
If the LABEL directive is not used in this example, we have to use the PTR
directive (discussed in Section 3.4.2) to rewrite the mov statement as

mov BYTE PTR count,CL

3.3 Where Are the Operands?

Assembly language programs can be thought of as consisting of two logical
parts: data and code. Most of the assembly language instructions require spec-
ification of the location of the data to be operated on. There are a variety of ways
to specify and find where the operands required by an instruction are located.
These are called addressing modes. This section is a brief overview of some
of the addressing modes required to do basic assembly language programming.
A complete discussion is given in Chapter 5.

An operand required by an instruction may be in any one of the following
locations:

e in a register internal to the CPU
e in the instruction itself

e in main memory (usually in the data segment)

at an I/O port (discussed in Chapter 12)

Specification of an operand that is in a register is called register addressing
mode, while immediate addressing mode refers to specifying an operand that is
part of the instruction. A variety of addressing modes are available to specify
the location of an operand residing in memory. The motivation for providing
several addressing modes comes from the need to efficiently support high-level
language constructs. Chapter 5 discusses this issue in detail.
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3.3.1 Register Addressing Mode

In this addressing mode, CPU registers contain the data to be manipulated by
the instruction. For example, the instruction

mov EAX,EBX

requires two operands and both are in the CPU registers. The syntax of the mov
instruction is

mov destination,source

The mov instruction copies contents of source to destination. The contents
of source, however, are not destroyed as a result. Thus,

mov EAX,EBX

copies the contents of the EBX register into the EAX register. Note that the
original contents of EAX are lost. In this example, mov is operating on 32-bit
data. However, the mov instruction can also be used on 16- and 8-bit data, as
shown in the following example:

mov BX,CX
mov AL,CL

Using the register addressing mode is the most efficient way of specifying data
because the data is residing within the CPU and, therefore, no memory access
is required.

3.3.2 Immediate Addressing Mode

In this addressing mode, data is specified as part of the instruction. As a result,
even though the data is in memory, it is located in the code segment, not in
the data segment. This addressing mode is typically used in instructions that
require at least two data items to manipulate. In this case, this mode can only
specify the source operand and immediate data is always a constant, either given
directly or via the EQU directive (discussed in Section 3.6). Thus, instructions
typically use another addressing mode to specify the destination operand.

In the following example,

mov AL,75

the source operand 75 is specified in the immediate addressing mode and the
destination operand is specified in the register addressing mode. Such instruc-
tions are said to use mixed mode addressing.
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The remainder of the addressing modes that we discuss here deal with
operands that are located in the data segment. These are called the memory
addressing modes. We discuss two memory addressing modes here: direct and
indirect addressing modes.

3.3.3 Direct Addressing Mode

Operands specified in a memory addressing mode require access to the main
memory (usually to the data segment). As a result, they tend to be slower than
either of the two addressing modes previously described.

Recall that to locate a data item in a data segment, we need two components:
the segment start address and an offset value within the segment. The start
address of the segment is typically found in the DS register. Thus, various
memory addressing modes differ in the way the offset value of data is specified.
The offset value is sometimes referred to as the effective address.

In the direct addressing mode, the offset value is specified directly as part
of the instruction. In an assembly language program, the value is usually
indicated by the variable name of the data item referenced. The assembler will
translate the name into its associated offset value during the assembly process.
To facilitate this translation, assembler maintains a symbol table, which stores
the offset values of all variable names in the assembly language program.

This addressing mode is the simplest of all the memory addressing modes.
A restriction associated with the memory addressing modes is that these can
be used to specify only one operand. The examples that follow assume the
following data definition statements in the program.

response DB ’y? ;reserves one byte and

; initializes with y
tablel DW 20 DUP (0) ;reserves 40 bytes and

; initializes to O
namel DB ’Jim Ray’ ;reserves 7 bytes and

; initializes to Jim Ray

Here are some examples of the mov instruction:

mov AL,response ;copies character y into
; AL register
mov response,’N’ ;N is written into the

; byte represented by

; response (Y is lost)
mov namel, ’K’ ;write K as the first

; character of namel,

; which now reads Kim Ray
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mov tablel,56 ; 56 is written in the
; first two bytes of
; table, which contains
; 56 and zeroes for the
; remaining 19 elements

This last statement is equivalent to table1 [0] = 56 in C.

3.3.4 Indirect Addressing Mode

The direct addressing mode can be used in a straightforward way but is limited
to accessing simple variables. For example, it is not useful in accessing the
second element of tablel, such as

table1[1] = 99

The indirect addressing mode remedies this deficiency. In this addressing mode,
the offset or effective address of the data is in one of the general registers. For
this reason, this addressing mode is sometimes referred to as the register indirect
addressing mode.

The indirect addressing mode is not required for variables having only a
single element (e.g., response). But for variables like tablel containing
several elements, the starting address of the data structure can be loaded into,
say, the BX register and then BX acts as a pointer to an element in tablel. By
manipulating the contents of the BX register, we can access different elements
of tablel. Remember that we use 16-bit segments where the offset into a
segment is 16 bits long (see Chapter 2).

How do we get the starting address of tablel? A statement like

mov BX,tablel

will not work because this statement copies the first element of tablel into the
BX register. Remember that the symbolic name tablel refers to the offset of
the first element of tablel. The OFFSET directive should be used whenever
the offset (i.e., the effective address) of a variable is needed. Thus,

mov BX,0FFSET tablel

copies the offset of tablel into the BX register. The following code assigns

" 100 to the first element and 99 to the second element of tablel. Note that BX

is incremented by 2 because each element of tablel requires two bytes.

mov BX,0FFSET tablel ; copy address of tablel to BX

mov [BX],100 ; tablel[0] := 100
add BX,2 ; BX := BX + 2
mov [BX],99 ; tablei[1] := 99
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Chapter 5 discusses other memory addressing modes that can perform this
task more efficiently. In summary, we have discussed four addressing modes:

addressing mode valid example invalid example
register mov EAX,EBX mov AX,EBX
immediate mov ECX,155 mov 155,ECX

direct mov tablel,DX mov response,namel
indirect mov [BX],EAX mov [BX], [AX]

The effective address can also be loaded into a register by the 1lea (load
effective address) instruction. The syntax of this instruction is

lea register,source

Thus,
lea BX,tablel

can be used in place of the

mov BX,0FFSET tablel

instruction. The difference is that 1lea computes the offset values at run time,
whereas mov with OFFSET resolves the offset value at assembly time. For this
reason, we will try to use the latter whenever possible. However, lea offers
more flexibility as to the types of source operands. For example, we can write

lea BX,array[SI]

to load BX with the address of an element of array whose index is in the SI
register. However, we cannot write

mov BX,0FFSET array[SI] ; illegal

3.4 Data Transfer Instructions

We now discuss some of the data transfer instructions supported by Pentium.
Specifically, we describe mov, xchg, and x1at instructions. Other data transfer
instructions such as movsx and movzx are discussed in Chapter 6.

3.4.1 The mov Instruction

We have already introduced the mov instruction, which requires two operands
and has the syntax
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mov destination,source

The data is copied from source to destination and the source operand
remains unchanged. Both operands should be of the same size. The mov
instruction can take one of the following five forms:

mov register,register
Restrictions:

e Destination register cannot be CS or (E)IP registers
e Both registers cannot be segment registers

mov register,immediate

Restriction: Register cannot be a segment register

mov memory,immediate
mov register,memory
mov memory,register

There is no move instruction to transfer data from memory to memory, as
the Pentium processor does not allow it. However, as we will see in Chapter 9,
memory to memory data transfer is possible when operating on strings.

Here are some example mov statements:

.DATA
response DB 'Y’
tablel DW 20 DUP (0)

namel DB ’Jim Ray’
CODE
mov AL,response
mov DX, tablel
mov response, ’N’
mov namel+4, ’K’

Some invalid mov statements are

mov DL,CX ;different operand sizes
mov DS, 175 ;immediate value cannot be moved
; into a segment register
mov CsS,DX ;destination register cannot be CS
mov ES,DS ;both registers cannot be segment
; registers
mov 715,EAX ;immediate value cannot be

; destination operand
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34.2 Ambiguous Moves: PTR Directive

Moving immediate value into memory sometimes causes ambiguity as to the
type of operand. For example, in the statements

mov BX,0FFSET tablel
mov SI,0FFSET namel
mov [BX],100
mov [s1],100

it is not clear whether a word (2 bytes) or a byte equivalent of 100 is to be
written in the memory. The PTR directive can be used to clarify. WORD PTR
can be used to identify a word operation and BYTE PTR for a byte operation.
Using the PTR directive, we can write

mov WORD PTR [BX],100
mov BYTE PTR [SI],100

WORD and BYTE are called type specifiers. Some of the type specifiers avail-
able are

Type specifier Bytes addressed

BYTE 1
WORD 2
DWORD 4
QWORD 8
TBYTE 10

3.4.3 The xchg Instruction

The xchg instruction exchanges 8-, 16-, or 32-bit source and destination operands.
The syntax is similar to that of the mov instruction. Some examples are

xchg EAX,EDX
xchg response,CL
xchg total,DX

As in the mov instruction, both operands cannot be located in memory. Thus,

xchg response,namel ; illegal

is invalid.

The xchg instruction is convenient because we do not need a third register
to hold a temporary value in order to swap two values. For example, we need
three mov instructions
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mov ECX,EAX
mov EAX,EDX
mov EDX,ECX

to perform xchg EAX,EDX. Thus, xchg is the most efficient way to exchange
two 8-, 16-, or 32-bit values. This instruction is especially useful in sorting
applications. The xchg instruction is also useful in implementing semaphores
for process synchronization. It is also useful to swap the two bytes of 16-bit
data to perform conversions between little endian and big endian forms, as in
the following example:

xchg AL,AH

Pentium provides the bswap instruction to perform such conversions on a
32-bit data. The format is

bswap 32-bit register

This instruction works only on the data located in a 32-bit register.

3.4.4 The xlat Instruction

The x1at (translate) instruction can be used to perform character translation.
For example, it can be used to translate character codes from ASCII to EBCDIC
and vice versa. The x1at has the form

xlatb

To use the x1at instruction, the BX register must to be loaded with the
starting address of the translation table and AL must contain an index value
into the table. The xlat instruction adds contents of AL to BX and reads
the byte at the resulting address. This byte replaces the index value in the AL
register. Since the 8-bit AL register provides the index into the translation table,
the number of entries in the table is limited to 256. An application of x1at is
given in Example 3.3.

3.5 Overview of Assembly Language Instructions

This section briefly reviews some of the remaining assembly language instruc-
tions. The discussion presented here would provide sufficient exposure to the
assembly language so that you can write meaningful assembly language pro-
grams.
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3.5.1 Simple Arithmetic Instructions

The Pentium family provides several instructions to perform simple arithmetic
operations. In this section, we will describe five instructions to perform addition
and subtraction. We will defer a full discussion until Chapter 6.

The inc and dec Instructions

These instructions can be used to either increment or decrement the operands
by one. The inc (INCrement) instruction adds one to its operand and the
dec (DECrement) instruction subtracts one from its operand. Both of these
instructions require a single operand. The operand can be either in a register
or in memory. It does not make sense to use an immediate operand such as
inc 55 ordec 109.

The general format of these instructions is

inc destination
dec destination

where destination may be an 8-, 16- or 32-bit operand.

inc BX ; increment 16-bit register
dec DL ; decrement 8-bit register

Let us assume that BX and DL have 1057H and 5AH, respectively. After
executing the above two instructions, BX and DL will have 1058H and 59H,
respectively. If the initial values of BX and DL are FFFFH and OOH, after
executing the two statements the contents of BX and DL are changed to 0000H
and FFH, respectively.

Consider the following program:

.DATA
count DW 0
value DB 25

.CODE
inc count ;unambiguous
dec value ;unambiguous
move BX,0FFSET count
inc [BX] ;ambiguous
mov SI,0FFSET value
dec [S1] ;ambiguous

In the above example,
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inc count
dec value

are unambiguous because the assembler knows from the definition of count
and value that they are WORD and BYTE operands. However,

inc [BX]
dec [s1]

are ambiguous because BX and SI registers merely point to an object in memory
but the actual object type (whether a WORD or BYTE) is not clear. We have
to resort to the PTR directive to clarify, as shown below:

inc WORD PTR [BX]
dec BYTE PTR [SI]

The add Instruction

The add instruction can be used to add two 8-, 16- or 32-bit operands. The
syntax is

add destination,source

As with the mov instruction, add can also take the five basic forms depending
on how the two operands are specified. The semantics of the add instruction
are

destination := (destination) + (source)

As a result, destination loses its contents before the execution of add but
the contents of source remain unchanged. The examples given below assume
the following data definitions:

.DATA
value DB OFOH
count DW 3746H

Before add After add
instruction source destination destination
add AX,DX DX = AB62H AX = 1052H | AX = BBB4H
add BL,CH BL = 76H CH = 27H BL = 9DH
add value,10H — value = FOH | value = OOH
add DX,count count = 3746H | DX = C8BY9H DX = FFFFH

The following instructions are invalid:
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add AX,BL ;mismatched operands
add [s1], [DI] ;two memory operands
add value, [BX]  ;two memory operands

The instruction

add [BX]1,10

is ambiguous. It should be written as one of the following depending on the
operand size:

add BYTE PTR [BX],10 ; for 8-bit operand

add WORD PTR [BX],10 ; for 16-bit operand

add DWORD PTR [BX],10 ; for 32-bitoperand
In general,

inc EAX

is preferred to

add EAX,1

as the inc version requires less memory space to store the instruction. However,
both instructions typically execute at about the same speed.

The sub and cmp Instructions

The sub (SUBtract) instruction can be used to subtract two 8-, 16- or 32-bit
numbers. The syntax is

sub destination,source

The source operand is subtracted from the destination operand and the
result is placed in the destination.

destination := (destination) - (source)
Before sub After sub
instruction source destination destination
sub AX,DX DX = AB62H AX = 1052H | AX = 64FO0H
sub BL,CH CH = 27H BL = 76H BL = 4FH
sub value,10H — value = FOH | value = EOH
sub DX,count | count = 3746H | DX = C8B9H | DX = 9173H
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The cmp (CoMPare) instruction is used to compare two operands (equal, not
equal, and so on). The cmp instruction performs the same operation as the sub
except that the result of subtraction is not saved. Thus, cmp does not disturb
both destination and source operands. While both sub and cmp instructions
take the same number of clocks in most cases, cmp requires one less if the
destination is memory. This is because the cmp instruction does not write the
result in memory, whereas the sub instruction does.

The cmp instruction is used in conjunction with conditional jump instruc-
tions for decision making. This is the topic of the next section.

3.5.2 Conditional Execution

The Pentium instruction set contains several branching and looping instructions
to construct programs that require c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>