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Preface

This textbook is intended for use in an introductory graduate level course 
that broadens (expands) the fundamental concepts acquired by students in 
their undergraduate work. The introductory graduate course can be fol-
lowed by advanced courses dedicated to topics such as mechanical and 
chemical stabilization of soils, geoenvironmental engineering, finite ele-
ment application to geotechnical engineering, critical state soil mechanics, 
geosynthetics, rock mechanics, and others.

The first edition of this book was published jointly by Hemisphere 
Publishing Corporation and McGraw-Hill Book Company of New York 
with a 1983 copyright. Taylor & Francis Group published the second and 
third editions with 1997 and 2008 copyrights, respectively. Compared to 
the third edition, the text is now divided into 11 chapters. Stresses and 
displacements in a soil mass are now presented in two chapters with two-
dimensional problems in Chapter 3 and three-dimensional problems in 
Chapter 4. Permeability and seepage are now presented in two separate 
chapters (Chapters 6 and 7). Similarly, the settlement of shallow founda-
tions is now presented in two chapters—elastic settlement in Chapter 10 
and consolidation settlement in Chapter 11. Several new example problems 
have been added. SI units have been used throughout the text.

Some major changes in this edition include the following:

•	 In Chapter 1, “Soil aggregate, plasticity, and classification,” a 
more detailed description of the relationships between the maxi-
mum and minimum void ratios of granular soils is provided. The 
American Association of State Highway and Transportation Officials 
(AASHTO) soil classification system has been added to this chapter. 
Sections on soil compaction procedures in the laboratory, along with 
recently developed empirical relationships for maximum dry unit 
weight and optimum moisture content obtained from Proctor com-
paction tests, have been summarized.

•	 Chapter 4, “Stresses and displacements in a soil mass: Three-
dimensional problems,” has new sections on vertical stress due to a 
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line load of finite length; vertical stress in Westergaard material due 
to point load; line load of finite length; circularly loaded area; and 
rectangularly loaded area.

•	 The fundamental concepts of compaction of clay soil for the construc-
tion of clay liners in waste disposal sites as they relate to permeability 
are discussed in Chapter 6, “Permeability.”

•	 Several new empirical correlations for overconsolidation ratio and 
compression index for clay soils have been added to Chapter 8, 
“Consolidation.”

•	 Chapter 9, “Shear strength of soils,” provides additional discussion 
on the components affecting friction angle of granular soils, drained 
failure envelopes, and secant residual friction angles of clay and clay 
shale. Also added to this chapter are some new correlations between 
field vane shear strength, preconsolidation pressure, and overconsoli-
dation ratio of clay soils.

•	 Chapter 10, “Elastic settlement of shallow foundations,” has been 
thoroughly revised and expanded.

•	 Discussion related to precompression with sand drains has been added 
to Chapter 11, “Consolidation settlement of shallow foundations.”

•	 The parameters required for the calculation of stress at the interface 
of a three-layered flexible system have been presented in graphical 
form in the Appendix, which should make interpolation easier.
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1

Chapter 1

Soil aggregate, plasticity, 
and classification

1.1 � INTRODUCTION

Soils are aggregates of mineral particles; and together with air and/or water 
in the void spaces, they form three-phase systems. A large portion of the 
earth’s surface is covered by soils, and they are widely used as construction 
and foundation materials. Soil mechanics is the branch of engineering that 
deals with the engineering properties of soils and their behavior under stress.

This book is divided into 11 chapters: “Soil Aggregate, Plasticity, and 
Classification,” “Stresses and Strains: Elastic Equilibrium,” “Stresses  and 
Displacement in a Soil Mass: Two-Dimensional Problems,” “Stresses 
and Displacement in a Soil Mass: Three-Dimensional Problems,” “Pore 
Water Pressure due to Undrained Loading,” “Permeability,” “Seepage,” 
“Consolidation,” “Shear Strength of Soil,” “Elastic Settlement of Shallow 
Foundations,” and “Consolidation Settlement of Shallow Foundations.” 
This chapter is a brief overview of some soil properties and their 
classification. It is assumed that the reader has been previously exposed 
to a basic soil mechanics course.

1.2 � SOIL: SEPARATE SIZE LIMITS

A naturally occurring soil sample may have particles of various sizes. Over 
the years, various agencies have tried to develop the size limits of gravel, 
sand, silt, and clay. Some of these size limits are shown in Table 1.1.

Referring to Table 1.1, it is important to note that some agencies classify 
clay as particles smaller than 0.005 mm in size, and others classify it as par-
ticles smaller than 0.002 mm in size. However, it needs to be realized that 
particles defined as clay on the basis of their size are not necessarily clay 
minerals. Clay particles possess the tendency to develop plasticity when 
mixed with water; these are clay minerals. Kaolinite, illite, montmorillonite, 
vermiculite, and chlorite are examples of some clay minerals.
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Fine particles of quartz, feldspar, or mica may be present in a soil in the 
size range defined for clay, but these will not develop plasticity when mixed 
with water. It appears that it is more appropriate for soil particles with 
sizes <2 or 5 μm as defined under various systems to be called clay-size 
particles rather than clay. True clay particles are mostly of colloidal size 
range (<1 μm), and 2 μm is probably the upper limit.

Table 1.1  �Soil: separate size limits

Agency Classification Size limits (mm)

U.S. Department of Agriculture (USDA) Gravel >2

Very coarse sand 2–1
Coarse sand 1–0.5
Medium sand 0.5–0.25
Fine sand 0.25–0.1
Very fine sand 0.1–0.05
Silt 0.05–0.002
Clay <0.002

International Society of Soil Mechanics and 
Foundation Engineering (ISSMFE)

Gravel >2

Coarse sand 2–0.2
Fine sand 0.2–0.02
Silt 0.02–0.002
Clay <0.002

Federal Aviation Administration (FAA) Gravel >2
Sand 2–0.075
Silt 0.075–0.005
Clay <0.005

Massachusetts Institute of Technology (MIT) Gravel >2
Coarse sand 2–0.6
Medium sand 0.6–0.2
Fine sand 0.2–0.06
Silt 0.06–0.002
Clay <0.002

American Association of State Highway and 
Transportation Officials (AASHTO)

Gravel
Coarse sand
Fine sand
Silt
Clay

76.2–2
2–0.425
0.425–0.075
0.075–0.002
<0.002

Unified (U.S. Army Corps of Engineers, 
U.S. Bureau of Reclamation, and American 
Society for Testing and Materials)

Gravel
Coarse sand
Medium sand
Fine sand
Silt and clay (fines)

76.2–4.75
4.75–2
2–0.425
0.425–0.075
<0.075
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1.3 � CLAY MINERALS

Clay minerals are complex silicates of aluminum, magnesium, and iron. 
Two basic crystalline units form the clay minerals: (1) a silicon–oxygen 
tetrahedron, and (2) an aluminum or magnesium octahedron. A silicon–
oxygen tetrahedron unit, shown in Figure 1.1a, consists of four oxygen 
atoms surrounding a silicon atom. The tetrahedron units combine to 
form a silica sheet as shown in Figure 1.2a. Note that the three oxygen 
atoms located at the base of each tetrahedron are shared by neighbor-
ing tetrahedra. Each silicon atom with a positive valence of 4 is linked 
to four oxygen atoms with a total negative valence of 8. However, each 
oxygen atom at the base of the tetrahedron is linked to two silicon atoms. 
This leaves one negative valence charge of the top oxygen atom of each 
tetrahedron to be counterbalanced. Figure 1.1b shows an octahedral unit 
consisting of six hydroxyl units surrounding an aluminum (or a magne-
sium) atom. The combination of the aluminum octahedral units forms a 
gibbsite sheet (Figure 1.2b). If the main metallic atoms in the octahedral 
units are magnesium, these sheets are referred to as brucite sheets. When 
the silica sheets are stacked over the octahedral sheets, the oxygen atoms 
replace the hydroxyls to satisfy their valence bonds. This is shown in 
Figure 1.2c.

Some clay minerals consist of repeating layers of two-layer sheets. A two-
layer sheet is a combination of a silica sheet with a gibbsite sheet, or a 
combination of a silica sheet with a brucite sheet. The sheets are about 
7.2 Å thick. The repeating layers are held together by hydrogen bonding 
and secondary valence forces. Kaolinite is the most important clay mineral 
belonging to this type (Figure 1.3). Other common clay minerals that fall 
into this category are serpentine and halloysite.

The most common clay minerals with three-layer sheets are illite and 
montmorillonite (Figure 1.4). A three-layer sheet consists of an octahedral 
sheet in the middle with one silica sheet at the top and one at the bottom. 

Silicon

Oxygen
Hydroxyl

Aluminum or
magnesium

(a) (b)

Figure 1.1  �(a) Silicon–oxygen tetrahedron unit and (b) aluminum or magnesium octa­
hedral unit.
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Repeated layers of these sheets form the clay minerals. Illite layers are 
bonded together by potassium ions. The negative charge to balance the 
potassium ions comes from the substitution of aluminum for some sili-
con in the tetrahedral sheets. Substitution of this type by one element for 
another without changing the crystalline form is known as isomorphous 
substitution. Montmorillonite has a similar structure to illite. However, 
unlike illite, there are no potassium ions present, and a large amount of 
water is attracted into the space between the three-sheet layers.

The surface area of clay particles per unit mass is generally referred to 
as specific surface. The lateral dimensions of kaolinite platelets are about 
1,000–20,000 Å with thicknesses of 100–1,000 Å. Illite particles have lateral 
dimensions of 1000–5000 Å and thicknesses of 50–500 Å. Similarly, mont-
morillonite particles have lateral dimensions of 1000–5000 Å with thick-
nesses of 10–50 Å. If we consider several clay samples all having the same 

(b)
and Hydroxyl

Aluminum

(a)

and

and

Silicon

Oxygen

Hydroxyl
Aluminum
Silicon

Oxygen

(c)

Figure 1.2  �(a) Silica sheet, (b) gibbsite sheet, and (c) silica–gibbsite sheet. (After Grim, R.E., 
J. Soil Mech. Found. Div., ASCE, 85(2), 1–17, 1959.)
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mass, the highest surface area will be in the sample in which the particle sizes 
are the smallest. So it is easy to realize that the specific surface of kaolinite 
will be small compared to that of montmorillonite. The specific surfaces 
of kaolinite, illite, and montmorillonite are about 15, 90, and 800  m2/g, 
respectively. Table 1.2 lists the specific surfaces of some clay minerals.

Gibbsite sheet

A number of
repeating layers of
kaolinite form a
kaolinite particle

Silica sheetS

G
S

S

G

S

G

S

G

Elementary kaolinite layer

Figure 1.3  �Symbolic structure for kaolinite.
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S

S

S

G

S

S

G

S

S

S

(a) (b)

Figure 1.4  �Symbolic structure of (a) illite and (b) montmorillonite.
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Clay particles carry a net negative charge. In an ideal crystal, the positive 
and negative charges would be balanced. However, isomorphous substitu-
tion and broken continuity of structures result in a net negative charge at 
the faces of the clay particles. (There are also some positive charges at the 
edges of these particles.) To balance the negative charge, the clay particles 
attract positively charged ions from salts in their pore water. These are 
referred to as exchangeable ions. Some are more strongly attracted than 
others, and the cations can be arranged in a series in terms of their affinity 
for attraction as follows:

	 Al Ca M g N H K H N a Li3+ 2+ 2+
4
+ + + + +> > > > > > >

This series indicates that, for example, Al3+ ions can replace Ca2+ ions, and 
Ca2+ ions can replace Na+ ions. The process is called cation exchange. For 
example,

	
N a CaCl Ca N aClclay 2 clay+ → +

Cation exchange capacity (CEC) of a clay is defined as the amount of 
exchangeable ions, expressed in milliequivalents, per 100 g of dry clay. 
Table 1.2 gives the CEC of some clays.

1.4 � NATURE OF WATER IN CLAY

The presence of exchangeable cations on the surface of clay particles was 
discussed in the preceding section. Some salt precipitates (cations in excess 
of the exchangeable ions and their associated anions) are also present on 
the surface of dry clay particles. When water is added to clay, these cations 
and anions float around the clay particles (Figure 1.5).

Table 1.2  �Specific surface area and cation exchange capacity 
of some clay minerals

Clay mineral Specific surface (m2/g)
Cation exchange 

capacity (me/100 g)

Kaolinite 10–20 3
Illite 80–100 25
Montmorillonite 800 100
Chlorite 5–50 20
Vermiculite 5–400 150
Halloysite (4H2O) 40 12
Halloysite (2H2O) 40 12
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At this point, it must be pointed out that water molecules are dipolar, 
since the hydrogen atoms are not symmetrically arranged around the oxygen 
atoms (Figure 1.6a). This means that a molecule of water is like a rod with 
positive and negative charges at opposite ends (Figure 1.6b). There are three 
general mechanisms by which these dipolar water molecules, or dipoles, can 
be electrically attracted toward the surface of the clay particles (Figure 1.7):

	 a.	Attraction between the negatively charged faces of clay particles and 
the positive ends of dipoles

	 b.	Attraction between cations in the double layer and the negatively 
charged ends of dipoles. The cations are in turn attracted by the nega-
tively charged faces of clay particles

	 c.	Sharing of the hydrogen atoms in the water molecules by hydrogen 
bonding between the oxygen atoms in the clay particles and the oxy-
gen atoms in the water molecules
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Figure 1.5  �Diffuse double layer.
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Figure 1.6  �Dipolar nature of water: (a) unsymmetrical arrangement of hydrogen atoms; 
(b) dipole.
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The electrically attracted water that surrounds the clay particles is known 
as double-layer water. The plastic property of clayey soils is due to the 
existence of double-layer water. Thicknesses of double-layer water for typi-
cal kaolinite and montmorillonite crystals are shown in Figure 1.8. Since 
the innermost layer of double-layer water is very strongly held by a clay 
particle, it is referred to as adsorbed water.

Case (b)

Case (a)

+

+

+

+

+

–

–

–

–

–

–

–

–

Case (c)

Dipole
Clay

particle

Dipole

Cation

Cation

Dipole

Hydrogen

Figure 1.7  �Dipolar water molecules in diffuse double layer.

Double-layer water
10 Å

1000 Å

10 Å

400 Å

400 Å

Kaolinite
crystal

Adsorbed
water

Double-
layer water200 Å

200 Å

10 Å
Adsorbed water

Montmorillonite
crystal

(a) (b)

Figure 1.8  �Clay water (a) typical kaolinite particle, 10,000 by 1,000 Å and (b) typical 
montmorillonite particle, 1,000 by 10 Å. (After Lambe, T.W., Trans. ASCE, 
125, 682, 1960.)
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1.5 � REPULSIVE POTENTIAL

The nature of the distribution of ions in the diffuse double layer is 
shown in Figure 1.5. Several theories have been presented in the past 
to describe the ion distribution close to a charged surface. Of these, the 
Gouy–Chapman theory has received the most attention. Let us assume 
that the ions in the double layers can be treated as point charges, and 
that the surface of the clay particles is large compared to the thickness 
of the double layer. According to Boltzmann’s theorem, we can write 
that (Figure 1.9)

	
n n v e

KT+ +
+= −

( )exp0
Φ

	 (1.1)

	
n n v e

KT− −
−= −

( )exp0
Φ

	 (1.2)

where
n+ is the local concentration of positive ions at a distance x
n− is the local concentration of negative ions at a distance x
n+(0), n−(0) are the concentration of positive and negative ions away from 

the clay surface in the equilibrium liquid
Φ is the average electric potential at a distance x (Figure 1.10)
v+, v− are ionic valences
e is the unit electrostatic charge, 4.8 × 10−10 esu
K is the Boltzmann constant, 1.38 × 10−16 erg/K
T is the absolute temperature

Clay
particle

Ions

dxx

Figure 1.9  �Derivation of repulsive potential equation.
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The charge density ρ at a distance x is given by

	 ρ = −+ + − −v en v en 	 (1.3)

According to Poisson’s equation

	

d
dx

2

2
4Φ = − πρ
λ

	 (1.4)

where λ is the dielectric constant of the medium.
Assuming v+ = v− and n+(0) = n−(0) = n0, and combining Equations 1.1 

through 1.4, we obtain

	

d
dx

n ve ve
KT

2

2
08Φ Φ= π

λ
sinh 	 (1.5)

It is convenient to rewrite Equation 1.5 in terms of the following nondi-
mensional quantities

	
y ve

KT
= Φ 	 (1.6)

	
z ve

KT
= Φ0 	 (1.7)

Po
te

nt
ia

l, 
Φ

Φ0

Distance from surface of clay, x

Figure 1.10  �Nature of variation of potential Φ with distance from the clay surface.
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and

	 ξ = κx 	 (1.8)

where Φ0 is the potential at the surface of the clay particle and

	
κ2 0

2 2
28= −π

λ
n e v
KT

(cm )	 (1.9)

Thus, from Equation 1.5

	

d y
d

y
2

2ξ
= sinh 	 (1.10)

The boundary conditions for solving Equation 1.10 are

	 1.	At ξ = ∞, y = 0 and dy/dξ = 0
	 2.	At ξ = 0, y = z, that is, Φ = Φ0

The solution yields the relation

	
e e e e

e e e
y

z z

z z
/

/ /

/ /
( ) ( )
( ) ( )

2
2 2

2 2
1 1
1 1

= + + −
+ − −

−

−

ξ

ξ 	 (1.11)

Equation 1.11 gives an approximately exponential decay of potential. The 
nature of the variation of the nondimensional potential y with the nondi-
mensional distance is given in Figure 1.11.

For a small surface potential (<25 mV), we can approximate Equation 1.5 as

	

d
dx

2

2
2Φ Φ= κ 	 (1.12)

	 Φ Φ= −
0e xκ 	 (1.13)

Equation 1.13 describes a purely exponential decay of potential. For this 
condition, the center of gravity of the diffuse charge is located at a distance 
of x = 1/κ. The term 1/κ is generally referred to as the double-layer thickness.

There are several factors that will affect the variation of the repulsive 
potential with distance from the surface of the clay layer. The effect of 
the cation concentration and ionic valence is shown in Figures 1.12 and 
1.13, respectively. For a given value of Φ0 and x, the repulsive potential Φ 
decreases with the increase of ion concentration n0 and ionic valence v.

When clay particles are close and parallel to each other, the nature of 
variation of the potential will be as shown in Figure 1.14. Note for this case 
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Figure 1.11  �Variation of nondimensional potential with nondimensional distance.
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Figure 1.12  �Effect of cation concentration on the repulsive potential.
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Figure 1.13  �Effect of ionic valence on the repulsive potential.
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Figure 1.14  �Variation of Φ between two parallel clay particles.
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that at x = 0, Φ = Φ0, and at x = d (midway between the plates), Φ = Φd and 
dΦ/dx = 0. Numerical solutions for the nondimensional potential y = yd 
(i.e., Φ = Φd) for various values of z and ξ = κd (i.e., x = d) are given by 
Verweg and Overbeek (1948) (see also Figure 1.15).

1.6 � REPULSIVE PRESSURE

The repulsive pressure midway between two parallel clay plates (Figure 1.16) 
can be given by the Langmuir equation

	
p n KT ve

KT
d= −





2 10 cosh Φ
	 (1.14)

where p is the repulsive pressure, that is, the difference between the osmotic 
pressure midway between the plates in relation to that in the equilibrium 
solution. Figure 1.17, which is based on the results of Bolt (1956), shows 
the theoretical and experimental variation of p between two clay particles.

Although the Guoy–Chapman theory has been widely used to explain 
the behavior of clay, there have been several important objections to this 
theory. A good review of these objections has been given by Bolt (1955).

y d

yd =

z= z1

KT
veΦd

z1> z2> z3

z= z2

z= z3

ξ=κd

Figure 1.15  �Nature of variation of the nondimensional midplane potential for two paral­
lel plates.
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Figure 1.16  �Repulsive pressure midway between two parallel clay plates.
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Figure 1.17  �Repulsive pressure between sodium montmorillonite clay particles. (After 
Bolt, G.H., Geotechnique, 6, 86, 1956.)
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1.7 � FLOCCULATION AND DISPERSION 
OF CLAY PARTICLES

In addition to the repulsive force between the clay particles, there is an 
attractive force, which is largely attributed to the Van der Waal force. This 
is a secondary bonding force that acts between all adjacent pieces of matter. 
The force between two flat parallel surfaces varies inversely as 1/x3 to 1/x4, 
where x is the distance between the two surfaces. Van der Waal’s force is 
also dependent on the dielectric constant of the medium separating the sur-
faces. However, if water is the separating medium, substantial changes in the 
magnitude of the force will not occur with minor changes in the constitution 
of water.

The behavior of clay particles in a suspension can be qualitatively visual-
ized from our understanding of the attractive and repulsive forces between 
the particles and with the aid of Figure 1.18. Consider a dilute suspension of 
clay particles in water. These colloidal clay particles will undergo Brownian 
movement and, during this random movement, will come close to each 
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Figure 1.18  �Dispersion and flocculation of clay in a suspension.
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other at distances within the range of interparticle forces. The  forces of 
attraction and repulsion between the clay particles vary at different rates 
with respect to the distance of separation. The force of repulsion decreases 
exponentially with distance, whereas the force of attraction decreases as 
the inverse third or fourth power of distance, as shown in Figure 1.18. 
Depending on the distance of separation, if the magnitude of the repulsive 
force is greater than the magnitude of the attractive force, the net result will 
be repulsion. The clay particles will settle individually and form a dense 
layer at the bottom; however, they will remain separate from their neigh-
bors (Figure 1.19a). This is referred to as the dispersed state of the soil. On 
the contrary, if the net force between the particles is attraction, flocs will be 
formed and these flocs will settle to the bottom. This is called flocculated 
clay (Figure 1.19b).

1.7.1 � Salt flocculation and nonsalt flocculation

We saw in Figure 1.12 the effect of salt concentration, n0, on the repulsive 
potential of clay particles. High salt concentration will depress the double 
layer of clay particles and hence the force of repulsion. We noted earlier 
in this section that the Van der Waal force largely contributes to the force 
of attraction between clay particles in suspension. If the clay particles are 
suspended in water with a high salt concentration, the flocs of the clay par-
ticles formed by dominant attractive forces will give them mostly an orien-
tation approaching parallelism (face-to-face type). This is called a salt-type 
flocculation (Figure 1.20a).

Another type of force of attraction between the clay particles, which is 
not taken into account in colloidal theories, is that arising from the elec-
trostatic attraction of the positive charges at the edge of the particles and 
the negative charges at the face. In a soil–water suspension with low salt 
concentration, this electrostatic force of attraction may produce a floccula-
tion with an orientation approaching a perpendicular array. This is shown 
in Figure 1.20b and is referred to as nonsalt flocculation.

(a) (b)

Figure 1.19  �(a) Dispersion and (b) flocculation of clay.
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1.8 � CONSISTENCY OF COHESIVE SOILS

The presence of clay minerals in a fine-grained soil will allow it to be remolded 
in the presence of some moisture without crumbling. If a clay slurry is dried, 
the moisture content will gradually decrease, and the slurry will pass from 
a liquid state to a plastic state. With further drying, it will change to a 
semisolid state and finally to a solid state, as shown in Figure 1.21. In 1911, 
A. Atterberg, a Swedish scientist, developed a method for describing the 
limit consistency of fine-grained soils on the basis of moisture content. 
These limits are the liquid limit, the plastic limit, and the shrinkage limit.

The liquid limit is defined as the moisture content, in percent, at which 
the soil changes from a liquid state to a plastic state. The moisture contents 
(in percent) at which the soil changes from a plastic to a semisolid state 
and from a semisolid to a solid state are defined as the plastic limit and 
the shrinkage limit, respectively. These limits are generally referred to as 
the Atterberg limits. The Atterberg limits of cohesive soil depend on sev-
eral factors, such as the amount and type of clay minerals and the type of 
adsorbed cation.

Liquid
state

Moisture
content

decreasing
Solid
state

Semisolid
state

Plastic
state

Liquid
limit

Plastic
limit

Shrinkage
limit

Figure 1.21  �Consistency of cohesive soils.

(a) (b)

Figure 1.20  �(a) Salt and (b) nonsalt flocculation of clay particles.
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1.8.1 � Liquid limit

The liquid limit of a soil is generally determined by the Standard 
Casagrande device. A schematic diagram (side view) of a liquid limit 
device is shown in Figure 1.22a. This device consists of a brass cup and a 
hard rubber base. The brass cup can be dropped onto the base by a cam 
operated by a crank. To perform the liquid limit test, one must place a 
soil paste in the cup. A groove is then cut at the center of the soil pat with 
the standard grooving tool (Figure 1.22b). By using the crank-operated 
cam, the cup is lifted and dropped from a height of 10 mm. The moisture 
content, in percent, required to close a distance of 12.7 mm along the 
bottom of the groove (see Figure 1.22c and d) after 25 blows is defined as 
the liquid limit.

54 mm
50 mm

2 mm11 mm27°

8
mm

27 mm

(a) (b)

8 mm

2 mm

Plan

11
mm

Section

12.7 mm

46.8 mm

(c) (d)

Figure 1.22  �Schematic diagram of (a) liquid limit device, (b) grooving tool, (c) soil pat at 
the beginning of the test, and (d) soil pat at the end of the test.



20  Advanced Soil Mechanics﻿

It is difficult to adjust the moisture content in the soil to meet the required 
12.7 mm closure of the groove in the soil pat at 25 blows. Hence, at least three 
tests for the same soil are conducted at varying moisture contents, with the 
number of blows, N, required to achieve closure varying between 15 and 35. 
The moisture content of the soil, in percent, and the corresponding number of 
blows are plotted on semilogarithmic graph paper (Figure 1.23). The relation-
ship between moisture content and log N is approximated as a straight line. 
This line is referred to as the flow curve. The moisture content corresponding 
to N = 25, determined from the flow curve, gives the liquid limit of the soil. 
The slope of the flow line is defined as the flow index and may be written as

	
I w w

N NF /
= −1 2

2 1log( )
	 (1.15)

where
IF is the flow index
w1 is the moisture content of soil, in percent, corresponding to N1 blows
w2 is the moisture content corresponding to N2 blows

Note that w2 and w1 are exchanged to yield a positive value even though the 
slope of the flow line is negative. Thus, the equation of the flow line can be 
written in a general form as

	 w I N C= − +F log 	 (1.16)

where C is a constant.
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Figure 1.23  �Flow curve for the determination of the liquid limit for a silty clay.
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From the analysis of hundreds of liquid limit tests in 1949, the U.S. Army 
Corps of Engineers, at the Waterways Experiment Station in Vicksburg, 
Mississippi, proposed an empirical equation of the form

	
LL = 





w N
N 25

tanβ

	 (1.17)

where
N is the number of blows in the liquid limit device for a 12.7 mm 

groove closure
wN is the corresponding moisture content
tan β = 0.121 (but note that tan β is not equal to 0.121 for all soils)

Equation 1.17 generally yields good results for the number of blows 
between 20 and 30. For routine laboratory tests, it may be used to deter-
mine the liquid limit when only one test is run for a soil. This procedure 
is generally referred to as the one-point method and was also adopted by 
ASTM under designation D-4318 (ASTM, 2010). The reason that the one-
point method yields fairly good results is that a small range of moisture 
content is involved when N = 20–30.

Another method of determining the liquid limit, which is popular in 
Europe and Asia, is the fall cone method (British Standard—BS 1377). 
In this test, the liquid limit is defined as the moisture content at which a 
standard cone of apex angle 30° and weight of 0.78 N (80 gf) will penetrate 
a distance d = 20 mm in 5 s when allowed to drop from a position of point 
contact with the soil surface (Figure 1.24a). Due to the difficulty in achiev-
ing the liquid limit from a single test, four or more tests can be conducted at 
various moisture contents to determine the fall cone penetration, d, in 5 s. 
A semilogarithmic graph can then be plotted with moisture content w ver-
sus cone penetration d. The plot results in a straight line. The moisture 
content corresponding to d = 20 mm is the liquid limit (Figure 1.24b). From 
Figure 1.24b, the flow index can be defined as

	
I w w

d dFC = −
−

2 1

2 1

(% ) (% )
log log

	 (1.18)

where w1, w2 are the moisture contents at cone penetrations of d1 and d2, 
respectively.

1.8.2 � Plastic limit

The plastic limit is defined as the moist content, in percent, at which the soil 
crumbles when rolled into threads of 3.2 mm diameter. The plastic limit 
is the lower limit of the plastic stage of soil. The plastic limit test is simple 
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and is performed by repeated rolling of an ellipsoidal size soil mass by hand 
on a ground glass plate. The procedure for the plastic limit test is given by 
ASTM Test Designation D-4318 (ASTM, 2010).

As in the case of liquid limit determination, the fall cone method can be 
used to obtain the plastic limit. This can be achieved by using a cone of 
similar geometry, but with a mass of 2.35 N (240 gf). Three to four tests at 
varying moist contents of soil are conducted, and the corresponding cone 
penetrations d are determined. The moisture content corresponding to a cone 
penetration of d = 20 mm is the plastic limit. Figure 1.25 shows the liquid 
and plastic limit determined by the fall cone test for Cambridge Gault clay 
reported by Wroth and Wood (1978).

50

40

M
oi

st
ur

e c
on

te
nt

, w
 (%

)

30
10 20

Liquid limit

40 60 80 100

55 mm
(a)

40 mm

Soil

30° Weight, W= 0.78 N

d

Penetration, d (mm)(b)

Figure 1.24  �(a) Fall cone test and (b) plot of moisture content versus cone penetration 
for determination of liquid limit.
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The difference between the liquid limit and the plastic limit of a soil is 
defined as the plasticity index, PI

	 PI LL PL= − 	 (1.19)

where
LL is the liquid limit
PL is the plastic limit

Sridharan et al. (1999) showed that the plasticity index can be correlated 
to the flow index as obtained from the liquid limit tests. According to their 
study

	 PI 412 F(% ) . (% )= I 	 (1.20)

and

	 PI 74 FC(% ) . (% )= 0 I 	 (1.21)
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Figure 1.25  �Liquid and plastic limits for Cambridge Gault clay determined by the fall cone test.
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1.9 � LIQUIDITY INDEX

The relative consistency of a cohesive soil can be defined by a ratio called 
the liquidity index LI. It is defined as

	
LI PL

LL PL
PL

PI
N N= −

−
= −w w

	 (1.22)

where wN is the natural moisture content. It can be seen from Equation 
1.22 that, if wN = LL, then the liquidity index is equal to 1. Again, if 
wN = PL, the liquidity index is equal to 0. Thus, for a natural soil deposit 
which is in a plastic state (i.e., LL ≥ wN ≥ PL), the value of the liquidity 
index varies between 1 and 0. A natural deposit with wN ≥ LL will have a 
liquidity index greater than 1. In an undisturbed state, these soils may be 
stable; however, a sudden shock may transform them into a liquid state. 
Such soils are called sensitive clays.

1.10 � ACTIVITY

Since the plastic property of soil is due to the adsorbed water that 
surrounds the clay particles, we can expect that the type of clay minerals 
and their proportional amounts in a soil will affect the liquid and plastic 
limits. Skempton (1953) observed that the plasticity index of a soil lin-
early increases with the percent of clay-size fraction (percent finer than 
2μ by weight) present in it. This relationship is shown in Figure 1.26. 
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Figure 1.26  �Relationship between plasticity index and percentage of clay-size fraction 
by weight.
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The average lines for all the soils pass through the origin. The correla-
tions of PI with the clay-size fractions for different clays plot separate 
lines. This is due to the type of clay minerals in each soil. On the basis 
of these results, Skempton defined a quantity called activity, which is the 
slope of the line correlating PI and percent finer than 2μ. This activity A 
may be expressed as

	
A = PI

percentageofclay-sizefraction by w eight( )
	 (1.23)

Activity is used as an index for identifying the swelling potential of clay 
soils.  Typical values of activities for various clay minerals are given in 
Table 1.3.

Seed et al. (1964a) studied the plastic property of several artificially pre-
pared mixtures of sand and clay. They concluded that, although the rela-
tionship of the plasticity index to the percent of clay-size fraction is linear 
(as observed by Skempton), it may not always pass through the origin. This 
is shown in Figure 1.27. Thus, the activity can be redefined as

	
A

C
=

−
PI

percentofclay-sizefraction ′
	 (1.24)

where C′ is a constant for a given soil. For the experimental results shown 
in Figure 1.27, C′ = 9.

Further works of Seed et al. (1964b) have shown that the relationship 
of the plasticity index to the percentage of clay-size fractions present in a 
soil can be represented by two straight lines. This is shown qualitatively 
in Figure 1.28. For clay-size fractions greater than 40%, the straight line 
passes through the origin when it is projected back.

Table 1.3  Activities of clay minerals

Mineral Activity (A)

Smectites 1–7
Illite 0.5–1
Kaolinite 0.5
Halloysite (4H2O) 0.5
Halloysite (2H2O) 0.1
Attapulgite 0.5–1.2
Allophane 0.5–1.2
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1.11 � GRAIN-SIZE DISTRIBUTION OF SOIL

For a basic understanding of the nature of soil, the distribution of 
the grain size present in a given soil mass must be known. The grain-
size distribution of coarse-grained soils (gravelly and/or sandy) is 
determined by sieve analysis. Table 1.4 gives the opening size of some 
U.S. sieves.
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Bentonite/kaolinite—1.5:1
Bentonite/kaolinite—4:1
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Percentage of clay-size fraction (<2µ)

Figure 1.27  �Relationship between plasticity index and clay-size fraction by weight for 
kaolinite/bentonite clay mixtures. (After Seed, H.B. et al., J. Soil Mech. Found. 
Eng. Div., Am. Soc. Civ. Eng., 90(SM4), 107, 1964.)
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The cumulative percent by weight of a soil passing a given sieve is referred 
to as the percent finer. Figure 1.29 shows the results of a sieve analysis for a 
sandy soil. The grain-size distribution can be used to determine some of the 
basic soil parameters, such as the effective size, the uniformity coefficient, 
and the coefficient of gradation.
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x

Percentage of clay-size fraction (<2μ)

Figure 1.28  �Simplified relationship between plasticity index and percentage of clay-size 
fraction by weight. (After Seed, H.B. et al., J. Soil Mech. Found. Eng. Div., Am. 
Soc. Civ. Eng., 90(SM6), 75, 1964.)

Table 1.4  U.S. standard sieves

Sieve no. Opening size (mm)

3 6.35
4 4.75
6 3.36
8 2.38

10 2.00
16 1.19
20 0.84
30 0.59
40 0.425
50 0.297
60 0.25
70 0.21

100 0.149
140 0.105
200 0.075
270 0.053
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The effective size of a soil is the diameter through which 10% of the total 
soil mass is passing and is referred to as D10. The uniformity coefficient Cu 
is defined as

	
C D

Du = 60

10
	 (1.25)

where D60 is the diameter through which 60% of the total soil mass is passing.
The coefficient of gradation Cc is defined as

	
C D

D Dc = ( )
( )( )

30
2

60 10
	 (1.26)

where D30 is the diameter through which 30% of the total soil mass is passing.
A soil is called a well-graded soil if the distribution of the grain sizes 

extends over a rather large range. In that case, the value of the uniformity 
coefficient is large. Generally, a soil is referred to as well graded if Cu is larger 
than about 4–6 and Cc is between 1 and 3. When most of the grains in a soil 
mass are of approximately the same size—that is, Cu is close to 1—the soil is 
called poorly graded. A soil might have a combination of two or more well-
graded soil fractions, and this type of soil is referred to as a gap-graded soil.

The sieve analysis technique described earlier is applicable for soil grains 
larger than No. 200 (0.075 mm) sieve size. For fine-grained soils, the pro-
cedure used for determination of the grain-size distribution is hydrometer 
analysis. This is based on the principle of sedimentation of soil grains.
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Figure 1.29  �Grain-size distribution of a sandy soil.
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1.12 � WEIGHT–VOLUME RELATIONSHIPS

Figure 1.30a shows a soil mass that has a total volume V and a total weight W. 
To develop the weight–volume relationships, the three phases of the soil mass, 
that is, soil solids, air, and water, have been separated in Figure 1.30b. Note that

	 W W W= +s w 	 (1.27)

and, also

	 V V V V= + +s w a 	 (1.28)

	 V V Vv w a= + 	 (1.29)

where
Ws is the weight of soil solids
Ww is the weight of water
Vs is the volume of the soil solids
Vw is the volume of water
Va is the volume of air

The weight of air is assumed to be zero. The volume relations commonly 
used in soil mechanics are void ratio, porosity, and degree of saturation.

Void ratio e is defined as the ratio of the volume of voids to the volume 
of solids:

	
e V

V
= υ

s

	 (1.30)

Weight

=

Weight

Air

WaterW Ww

Va

Vw

Vv

VsWs

Volume Volume

V

(b)(a)

Soil
solids

Figure 1.30  �Weight–volume relationships for soil aggregate: (a) soil mass of volume V; 
(b) three phases of the soil mass.
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Porosity n is defined as the ratio of the volume of voids to the total volume:

	
n V

V
= υ 	 (1.31)

Also, V = Vs + Vv

and so

	
n V

V V
V V

V V V V
e
e

=
+

=
+

=
+

υ

υ

υ

υs

s

s s s

/
/ /( ) ( ) 1

	 (1.32)

Degree of saturation Sr is the ratio of the volume of water to the volume 
of voids and is generally expressed as a percentage:

	
S V

Vr
w(% )= ×
υ

100 	 (1.33)

The weight relations used are moisture content and unit weight. Moisture 
content w is defined as the ratio of the weight of water to the weight of soil 
solids, generally expressed as a percentage:

	
w W

W
(% )= ×w

s
100 	 (1.34)

Unit weight γ is the ratio of the total weight to the total volume of the soil 
aggregate:

	
γ = W

V
	 (1.35)

This is sometimes referred to as moist unit weight since it includes the 
weight of water and the soil solids. If the entire void space is filled with 
water (i.e., Va = 0), it is a saturated soil; Equation 1.35 will then give us the 
saturated unit weight γsat.

The dry unit weight γd is defined as the ratio of the weight of soil solids 
to the total volume:

	
γd s= W

V
	 (1.36)

Useful weight–volume relations can be developed by considering a soil 
mass in which the volume of soil solids is unity, as shown in Figure 1.31. 
Since Vs = 1, from the definition of void ratio given in Equation 1.30, the 
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volume of voids is equal to the void ratio e. The weight of soil solids can 
be given by

	 W G V G Vs s w s s w ssince 1= = =γ γ ( )

where
Gs is the specific gravity of soil solids
γw is the unit weight of water (9.81 kN/m3)

From Equation 1.34, the weight of water is Ww = wWs = wGsγw. So the 
moist unit weight is

	
γ γ γ γ

υ
= = +

+
= +

+
= +

+
W
V

W W
V V

G w G
e

G w
e

s w

s

s w s w s w

1
1

1
( )

	 (1.37)

The dry unit weight can also be determined from Figure 1.31 as

	
γ γ
d

s s w= =
+

W
V

G
e1

	 (1.38)

The degree of saturation can be given by

	
S V

V
W
V

w G
e

w G
er

w w w s w w s/ /= = = =
υ υ

γ γ γ
	 (1.39)

Water

Air

Soil
solids

Ww=wGsγw Vw=wGs

Vs= 1

Vυ= e

Ws=Gsγw

Figure 1.31  �Weight–volume relationship for Vs = 1.
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For saturated soils, Sr = 1. So, from Equation 1.39,

	 e w G= s	 (1.40)

By referring to Figure 1.32, the relation for the unit weight of a saturated 
soil can be obtained as

	
γ γ γ
sat

s w s w w= = + = +
+

W
V

W W
V

G e
e1

	 (1.41)

Basic relations for unit weight such as Equations 1.37, 1.38, and 1.41 in 
terms of porosity n can also be derived by considering a soil mass that has a 
total volume of unity as shown in Figure 1.33. In this case (for V = 1), from 
Equation 1.31, Vυ = n. So, Vs = V − Vv = 1 − n.

Ww=wGsγw(1–n) Water

Air

Vv=n

Vs= (1–n)

V=1

Ws=Gsγw(1–n) Soil
solids

Figure 1.33  �Weight–volume relationship for V = 1.

Water

Soil
solids

Vv= e

Vs= 1

Ww= eγw

Ws=Gsγw

Figure 1.32  �Weight–volume relation for saturated soil with Vs = 1.
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The weight of soil solids is equal to (1 − n)Gsγw, and the weight of water 
Ww = wWs = w(1 − n)Gsγw. Thus, the moist unit weight is

	

γ γ γ

γ

= = + = − + −

= − +

W
V

W W
V

nG w nG

G n w

s w s w s w

s w

( ) ( )

( )( )

1 1
1

1 1 	 (1.42)

The dry unit weight is

	
γ γd

s
s w= = −W

V
nG( )1 	 (1.43)

If the soil is saturated (Figure 1.34),

	
γ γ γ γsat

s w
s w w s s w= + = − + = − −W W

V
nG n G nG( ) [ ( )]1 1 	 (1.44)

Table 1.5 gives some typical values of void ratios and dry unit weights 
encountered in granular soils.

Water
Vv=n

Vs= (1–n)

Ww=nγw

Ws=Gsγw(1–n)

V=1

Soil
solids

Figure 1.34  �Weight–volume relationship for saturated soil with V = 1.

Table 1.5  Typical values of void ratios and dry unit weights for granular soils

Soil type

Void ratio, e Dry unit weight, γd

Maximum Minimum Minimum (kN/m3) Maximum (kN/m3)

Gravel 0.6 0.3 16 20
Coarse sand 0.75 0.35 15 19
Fine sand 0.85 0.4 14 19
Standard Ottawa sand 0.8 0.5 14 17
Gravelly sand 0.7 0.2 15 22
Silty sand 1 0.4 13 19
Silty sand and gravel 0.85 0.15 14 23
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Example 1.1

For a soil in natural state, given e = 0.8, w = 24%, and Gs = 2.68.

	 a.	Determine the moist unit weight, dry unit weight, and degree of 
saturation.

	 b.	 If the soil is completely saturated by adding water, what would 
its moisture content be at that time? Also, find the saturated unit 
weight.

Solution

Part a:

From Equation 1.37, the moist unit weight is

	
γ γ= +

+
G w

e
s w ( )1
1

Since γw = 9.81 kN/m3,

	
γ = +

+
=( . )( . )( . )

.
.2 68 9 81 1 0 24

1 0 8
18 11 3kN /m

From Equation 1.38, the dry unit weight is

	
γ γ
d

s w 3kN /m=
+

=
+

=G
e1

2 68 9 81
1 0 8

14 61( . )( . )
.

.

From Equation 1.39, the degree of saturation is

	
S w G

er
s(% ) ( . )( . )

.
. %= × = × =100 0 24 2 68

0 8
100 80 4

Part b:

From Equation 1.40, for saturated soils, e = wGs, or

	
w e

G
(% ) .

.
. %= × = × =

s
100 0 8

2 68
100 29 85

From Equation 1.41, the saturated unit weight is

	
γ γ γ
sat

s w w 3kN /m= +
+

= +
+

=G e
e1

9 812 68 0 8
1 0 8

18 97. ( . .)
.

.



Soil aggregate, plasticity, and classification  35

1.13 � RELATIVE DENSITY AND RELATIVE 
COMPACTION

Relative density is a term generally used to describe the degree of compac-
tion of coarse-grained soils. Relative density Dr is defined as

	
D e e

e er = −
−

m ax

m ax m in
	 (1.45)

where
emax is the maximum possible void ratio
emin is the minimum possible void ratio
e is the void ratio in natural state of soil

Equation 1.45 can also be expressed in terms of dry unit weight of the soil:

	
γ γ γ

γd
s w s w

d
or(m ax)

(m ax)m in
m in=

+
= −G

e
e G

1
1	 (1.46)

Similarly,

	
e G
m ax (m in)

= −s w

d

γ
γ

1 	 (1.47)

and

	
e G= −s w

d

γ
γ

1 	 (1.48)

where γd(max), γd(min), and γd are the maximum, minimum, and natural-
state dry unit weights of the soil. Substitution of Equations 1.46 through 
1.48 into Equation 1.45 yields

	
D r

d

d

d d

d d
= 









−
−











γ
γ

γ γ
γ γ

(m ax) (m in)
(m ax) (m in) 	 (1.49)

Relative density is generally expressed as a percentage. It has been used 
by several investigators to correlate the angle of friction of soil, the soil 
liquefaction potential, etc.

Another term occasionally used in regard to the degree of compaction of 
coarse-grained soils is relative compaction, Rc, which is defined as

	
R c

d

d
= γ

γ (m ax)
	 (1.50a)
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Comparing Equations 1.49 and 1.50a,

	
R R

D Rc
o

r o
=

− −1 1( )
	 (1.50b)

where Ro = γd(min)/γd(max).
Lee and Singh (1971) reviewed 47 different soils and gave the approxi-

mate relation between relative compaction and relative density as

	 R Dc r= +80 0 2. 	 (1.50c)

where Dr is in percent.

1.14 � RELATIONSHIP BETWEEN emax AND emin

The maximum and minimum void ratios for granular soils described in 
Section 1.13 depend on several factors such as

•	 Grain size
•	 Grain shape
•	 Nature of grain-size distribution
•	 Fine content Fc (i.e., fraction smaller than 0.075 mm)

Following are some of the correlations now available in the literature related 
to emax and emin of granular soils.

•	 Clean sand (Fc = 0%–5%)

Miura et al. (1997) conducted an extensive study of the physical characteris-
tics of about 200 samples of granular material, which included mostly clean 
sand, some glass beads, and lightweight aggregates (LWA). Figure 1.35 
shows a plot of emax versus emin obtained from that study, which shows that

	 e em ax m in.≈ 1 62 	 (1.51)

Cubrinovski and Ishihara (2002) analyzed a large number of clean sand 
samples based on which it was suggested that

	 e em ax m in. .= +0 072 1 53 	 (1.52)

The data points upon which Equation 1.52 is based and an additional 55 data 
points for clean sand given by Patra et al. (2010) are shown in Figure 1.36. 
From this figure, it appears that Equation 1.51 may be taken as a good aver-
age approximation. The difference in the angularity or roundness of the 
particles of different soils is another major factor causing the scatter.



Soil aggregate, plasticity, and classification  37

2.0

1.5

1.0

0.5

0.2
0.2 0.5 1.0 1.5

Natural sample
Uniform sample
Graded sample
Glass beads
LWA

2.0

e m
ax

emax = 1.62emin

emin

Figure 1.35  �Plot of emax versus emin based on the results of Miura et al. (1997).
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Figure 1.36  �Plot of emax versus emin for clean sand.
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Based on best-fit linear regression lines, Cubrinovski and Ishihara (2002) 
also provided the following relationships for other soils:

•	 Sand with fines (5% < Fc ≤ 15%)

	 e em ax m in25 137= +0. . 	 (1.53)

•	 Sand with fines and clay (15% < Fc ≤ 30%; Pc = 5%–20%)

	 e em ax m in44 121= +0. . 	 (1.54)

•	 Silty soils (30% < Fc ≤ 70%; Pc = 5%–20%)

	 e em ax m in44 132= +0. . 	 (1.55)

		  where
Fc is the fine fraction for which grain size is smaller than 0.075 mm
Pc is the clay-size fraction (<0.005 mm)

Based on a very large database, Cubrinovski and Ishihara (1999, 2002) devel-
oped a unique relationship between emax – emin and median grain size D50. The 
database included results from clean sand, sand with fines, and sand with clay, 
silty soil, gravelly sand, and gravel. This relationship is shown in Figure 1.37. 
In spite of some scatter, the average line can be given by the relation

	
e e

Dm ax m in . .− = +0 23 0 06
50(m m )

	 (1.56)

It appears that the upper and lower limits of emax – emin versus D50 as shown 
in Figure 1.37 can be approximated as

•	 Lower limit

	
e e

Dm ax m in . .− = +0 16 0 045
50(m m )

	 (1.57)

•	 Upper limit

	
e e

Dm ax m in . .− = +0 29 0 079
50(m m )

	 (1.58)

1.15 � SOIL CLASSIFICATION SYSTEMS

Soil classification is the arrangement of soils into various groups or subgroups to 
provide a common language to express briefly the general usage characteristics 
without detailed descriptions. At the present time, two major soil classification 
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systems are available for general engineering use. They are the unified system 
and the American Association of State Highway and Transportation Officials 
(AASHTO) system. Both systems use simple index properties such as grain-
size distribution, liquid limit, and plasticity index of soil.

1.15.1 � Unified system

The unified system of soil classification was originally proposed by A. 
Casagrande in 1948 and was then revised in 1952 by the Corps of Engineers 
and the U.S. Bureau of Reclamation. In its present form [also see ASTM 
D-2487, ASTM (2010)], the system is widely used by various organizations, 
geotechnical engineers in private consulting business, and building codes.

Initially, there are two major divisions in this system. A soil is classified 
as a coarse-grained soil (gravelly and sandy) if more than 50% is retained 
on a No. 200 sieve and as a fine-grained soil (silty and clayey) if 50% or 
more is passing through a No. 200 sieve. The soil is then further classified 
by a number of subdivisions, as shown in Table 1.6.
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Figure 1.37  �Plot of emax – emin versus median grain size (D50). (Redrawn after Cubrinovski 
and Ishihara, Soils Found., 42(6), 65–78, 2002.)
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Example 1.2

For a soil specimen, given the following,

Passing No. 4 sieve = 92% Passing No. 40 sieve = 78%
Passing No. 10 sieve = 81% Passing No. 200 sieve = 65%
Liquid limit = 48 Plasticity index = 32

classify the soil by the unified classification system.

Solution

Since more than 50% is passing through a No. 200 sieve, it is a fine-
grained soil, that is, it could be ML, CL, OL, MH, CH, or OH. Now, if 
we plot LL = 48 and PI = 32 on the plasticity chart given in Figure 1.38, 
it falls in the zone CL. So the soil is classified as CL.

1.15.2 � AASHTO classification system

This system of soil classification was developed in 1929 as the Public Road 
Administration Classification System. It has undergone several revisions, 
with the present version proposed by the Committee on Classification of 
Materials for Subgrades and Granular Type Roads of the Highway Research 
Board in 1945 [ASTM (2010) Test Designation D-3282].

The AASHTO classification system in present use is given in 
Table  1.7. According to this system, soil is classified into seven major 
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Figure 1.38  �Plasticity chart.
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Table 1.7  �Classification of highway subgrade materials

General classification
Granular materials (35% or less of total sample passing No. 

200 sieve)

A-1 A-2

Group classification A-1-a A-1-b A-3 A-2-4 A-2-5 A-2-6 A-2-7
Sieve analysis (percent 
passing)

No. 10 50 max.
No. 40 30 max. 50 max. 50 min.
No. 200 15 max. 25 max. 10 max. 35 max. 35 max. 35 max. 35 max.
Characteristics of 
fraction passing

No. 40
Liquid limit 40 max. 41 min. 40 max. 41 min.
Plasticity index 6 max. NP 10 max. 10 max. 11 min. 11 min.
Usual types of 
significant 
constituent materials

Stone fragments, 
gravel, and sand

Fine 
sand

Silty or clayey gravel and sand

General subgrade 
rating

Excellent to good

General classification Silt–clay materials (more than 35% or total sample passing No. 
200 sieve)

A-7
A-7-5a

Group classification A-4 A-5 A-6 A-7-6b

Sieve analysis (percent 
passing)

No. 10
No. 40
No. 200 36 min. 36 min. 36 min. 36 min.
Characteristics of 
fraction passing

No. 40
Liquid limit 40 max. 41 min. 40 max. 41 min.
Plasticity index 10 max. 10 max. 11 min. 11 min.
Usual types of 
significant 
constituent materials

Silty soils Clayey soils

General subgrade 
rating

Fair to poor

a	 For A-7-5, PI ≤ LL – 30.
b	 For A-7-6, PI > LL – 30.



44  Advanced Soil Mechanics﻿

groups: A-1 through A-7. Soils classified into Groups A-1, A-2, and A-3 are 
granular materials, where 35% or less of the particles pass through the No. 
200 sieve. Soils where more than 35% pass through the No. 200 sieve are 
classified into groups A-4, A-5, A-6, and A-7. These are mostly silt and clay-
type materials. The classification system is based on the following criteria:

	 1.	Grain size
Gravel: Fraction passing the 75 mm sieve and retained on No. 10 (2 mm) 

U.S. sieve
Sand: Fraction passing the No. 10 (2 mm) U.S. sieve and retained on 

the No. 200 (0.075 mm) U.S. sieve
Silt and clay: Fraction passing the No. 200 U.S. sieve

	 2.	Plasticity: The term silty is applied when the fine fractions of the soil 
have a plasticity index of 10 or less. The term clayey is applied when 
the fine fractions have a plasticity index of 11 or more.

	 3.	If cobbles and boulders (size larger than 75 mm) are encountered, they 
are excluded from the portion of the soil sample on which classifica-
tion is made. However, the percentage of such material is recorded.

To classify a soil according to Table 1.7, the test data are applied from 
left to right. By the process of elimination, the first group from the left into 
which the test data will fit is the correct classification.

For the evaluation of the quality of a soil as a highway subgrade material, 
a number called the group index (GI) is also incorporated with the groups 
and subgroups of the soil. The number is written in parentheses after the 
group or subgroup designation. The group index is given by the equation

	 G I 35 2 5LL 4 1 15 PI 1= − + − + − −( )[ . . ( )] . ( )( )F F0 0 00 0 0 0 0 	 (1.59)

where
F is the percent passing the No. 200 sieve
LL is the liquid limit
PI is the plasticity index

The first term of Equation 1.59—that is, (F − 35)[0.2 + 0.005(LL − 40)]—
is the partial group index determined from the liquid limit. The second 
term—that is, 0.01(F − 15) (PI – 10)—is the partial group index deter-
mined from the plasticity index. Following are the rules for determining 
the group index:

	 1.	If Equation 1.59 yields a negative value for GI, it is taken as 0.
	 2.	The group index calculated from Equation 1.59 is rounded off to the 

nearest whole number (e.g., GI = 3.4 is rounded off to 3; GI = 3.5 is 
rounded off to 4).
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	 3.	There is no upper limit for the group index.
	 4.	The group index of soils belonging to groups A-1-a, A-1-b, A-2-4, 

A-2-5, and A-3 is always 0.
	 5.	When calculating the group index for soils that belong to groups 

A-2-6 and A-2-7, use the partial group index for PI, or

	 G I 1 15 PI 1= − −0 0 0. ( )( )F 	 (1.60)

In general, the quality of performance of a soil as a subgrade material is 
inversely proportional to the group index.

Example 1.3

Classify the following soil by the AASHTO classification system.

Passing No. 10 sieve: 100%
Passing No. 40 sieve: 92%
Passing No. 200 sieve: 86%
Liquid limit (LL): 70
Plasticity index (PI): 32

Solution

Percent passing the No. 200 sieve is 86%. So, it is a silty clay material 
(i.e., A-4, A-5, A-6, or A-7) as shown in Table 1.7. Proceeding from left 
to right, we see that it falls under A-7. For this case, PI = 32 < LL – 30. 
So, this is A-7-5. From Equation 1.59

	 G I 35 2 5LL 4 1 15 PI 1= − + − + − −( )[ . . ( )] . ( )( )F F0 0 00 0 0 0 0

Now, F = 86; LL = 70; PI = 32; so

	

G ( 6 35)[0.2 0.005(70 40)] 0.01( 6 15)(32 10)

33.47 33

I= − + − + − −

= ≈

8 8

Thus, the soil is A-7-5(33).

1.16 � COMPACTION

Compaction of loose fills is a simple way of increasing the stability and 
load-bearing capacity of soils, and this is generally achieved by using 
smooth-wheel rollers, sheepsfoot rollers, rubber-tired rollers, and vibratory 
rollers. In order to write the specifications for field compaction, Proctor 
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compaction tests are generally conducted in the laboratory. A brief descrip-
tion of the Proctor compaction test procedure is as follows:

1.16.1 � Standard Proctor compaction test

A standard laboratory soil compaction test was first developed by Proctor 
(1933), and this is usually referred to as the standard Proctor test (ASTM des-
ignation D-698). The test is conducted by compaction of three layers of soil in 
a mold that is 944 cm3 in volume. Each layer of soil is subjected to 25 blows by 
a hammer weighing 24.6 N with a 304.8 mm drop. From the known volume 
of the mold, weight of moist compacted soil in the mold, and moisture content 
of the compacted soil, the dry unit weight of compaction can be determined as

	
γm oist

W eightofm oistsoilin them old
Volum eofthem old

=

	
γ γ
d

m oist 
1

=
+ w

where
γmoist is the moist unit weight of compacted soil
γd is the dry unit weight of compacted soil
w is the moisture content of soil

The test can be repeated several times at various moist contents of soil. 
By plotting a graph of γd against the corresponding moisture content, the 
optimum moisture content wopt and the maximum dry unit weight γd(max) 
can be obtained (Figure 1.39). Also plotted in Figure 1.39 is the variation of 

γd (max)
γzav vs. w

wopt

D
ry

 u
ni

t w
ei

gh
t, 

γ d

Moisture content, w (%)

Figure 1.39  �Nature of variation of γd versus w.
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the dry unit weights, assuming the degree of saturation to be 100%. These 
are the theoretical maximum dry unit weights that can be attained for a 
given moisture content when there will be no air in the void spaces. With 
the degree of saturation as 100%

	 e w G= s	 (1.61)

The maximum dry unit weight at a given moisture content with zero air 
voids can be given by (Equation 1.38)

	
γ γ γ γ
zav

s w s w

s

w

s/
=

+
=

+
=

+
G

e
G
w G G w1 1 1( )

	 (1.62)

where γzav is the zero-air-void unit weight (dry).
For standard Proctor compaction test, the compaction energy E can be 

expressed as

	

E = ( . )( )(
( )

24 5 3
944 106

N /blow layers 25blow s/layer)(0.3048m )
/ m 3

== ≈593 294, N -m /m 593kN -m /m3 3

1.16.2 � Modified Proctor compaction test

With the development of heavier compaction equipment, the standard 
Proctor test has been modified for better representation of field conditions. 
In the modified Proctor test (ASTM designation D-1577), the same mold 
as in the standard Proctor test is used. However, the soil is compacted in 
5 layers, with a 44.5 N hammer giving 25 blows to each layer. The height 
of drop of the hammer is 457.2 mm. Hence, the compactive effort in the 
modified Proctor test is equal to

	

E = ( ( )( . )
( )

25blow s/layer) layers N /blow (0.4572m )
/ m 3

5 44 5
944 106

== ≈2 694 041 604, , N -m /m 2 kN -m /m3 3

The maximum dry unit weight obtained from the modified Proctor test 
will be higher than that obtained from the standard Proctor test due to the 
application of higher compaction energy. It will also be accompanied by a 
lower optimum moisture content compared to that obtained from the stan-
dard Proctor compaction test.



48  Advanced Soil Mechanics﻿

1.17 � EMPIRICAL RELATIONSHIPS FOR PROCTOR 
COMPACTION TESTS

Omar et al. (2003) presented the results of modified Proctor compaction 
tests on 311 soil samples. Of these samples, 45 were gravelly soil (GP, 
GP–GM, GW, GW–GM, and GM), 264 were sandy soil (SP, SP–SM, 
SW–SM, SW, SC–SM, SC, and SM), and two were clay with low plasticity 
(CL). Based on the tests, the following correlations were developed:

	 ρd s LL(m ax)
.[ , , . ( ) , ( # ) , ,= − + −4 804 574 195 55 156 971 4 9 527 8302 0 5G R ]].0 5

	
� (1.63)

	
ln( ) . ( ) . . ( # ) .w G Ropt sLL= × − − × +− −1 195 10 1 964 6 617 10 4 7 6514 2 5

	
� (1.64)

where
ρd(max) is the maximum dry density
wopt is the optimum moisture content (%)
Gs is the specific gravity of soil solids
LL is the liquid limit, in percent
R#4 is the percent retained on No. 4 sieve

For granular soils with less than 12% fines (i.e., finer than No. 200 sieve), 
relative density may be a better indicator for end product compaction speci-
fication in the field. Based on laboratory compaction tests on 55 clean sands 
(less than 5% finer than No. 200 sieve), Patra et al. (2010) provided the 
following relationships:

	 D AD B
r = −

50 	 (1.65)

	 A E= −0 0 0. .216ln 85 	 (1.66)

	 B E= − +0 0 0 0. .3ln 3 6 	 (1.67)

where
Dr is the maximum relative density of compaction achieved with com-

paction energy E, kN-m/m3

D50 is the median grain size, mm

Gurtug and Sridharan (2004) proposed correlations for optimum mois-
ture content and maximum dry unit weight with the plastic limit PL of 
cohesive soils. These correlations can be expressed as
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w Eopt PL(% ) [ . . (log )]( )= −1 95 0 38 	 (1.68)

	 γd 3kN /m opt
(m ax)

. (% )( ) .= 22 68 0 0183e w 	 (1.69)

where
PL is the plastic limit, %
E is the compaction energy, kN-m/m3

For modified Proctor test, E ≈ 2700 kN/m3. Hence,

	
w opt PL(% ) . ( )≈ 0 65

	 γd 3 PLkN /m(m ax)
. ( )( ) .≈ −22 68 0 012e

Osman et al. (2008) analyzed a number of laboratory compaction test 
results on fine-grained (cohesive) soil, including those provided by 
Gurtug and Sridharan (2004). Based on this study, the following cor-
relations were developed:

	
w Eopt PI(% ) ( . . ln )( )≈ −1 99 0 165 	 (1.70)

	
γd 3

optkN /m(m ax)( ) (% )≈ −L M w 	 (1.71)

where

	 L E= +1434 1195ln. . 	 (1.72)

	 M E= − +0 0 0. .19 73ln 	 (1.73)

wopt is the optimum moisture content, %
PI is the plasticity index, %
γd(max) is the maximum dry unit weight, kN/m3

E is the compaction energy, kN-m/m3

DiMatteo et al. (2009) analyzed the results of 71 fine-grained soils and pro-
vided the following correlations for optimum moisture content wopt and max-
imum dry unit weight γd(max) for modified Proctor tests (E = 2700 kN-m/m3)

	 w opt LL) + 3.04 LL
G

(% ) . ( .= − 





+0 86 2 2 	 (1.74)



50  Advanced Soil Mechanics﻿

	
γd optkN m PI(m ax)

. .( / ) . ( ) .3 0 295 0 3240 316 2 4= ( ) −−w 	 (1.75)

where
LL is the liquid limit, %
PI is the plasticity index, %
Gs is the specific gravity of soil solids

Example 1.4

For a sand with 4% finer than No. 200 sieve, estimate the maximum 
relative density of compaction that may be obtained from a modified 
Proctor test. Given D50 = 1.4 mm.

Solution

For the modified Proctor test, E = 2696 kN-m/m3.
From Equation 1.66

	 A E= − = − =0 0 0 0 0 0 0. . ( . ( † . .216ln 85 216)ln 2696) 85 856

From Equation 1.67

	 B E= − + = − + =0 0 0 0 0 0 0 0 0 0. . ( . )( ) . .3ln 3 6 3 ln 2696 3 6 69

From Equation 1.65

	 D AD B
r = = = =− −

50
0 0690 856 1 4 0 836 83 6( . )( .) . . %.

Example 1.5

For a silty clay soil given LL = 43 and PL = 18. Estimate the maximum 
dry unit weight of compaction that can be achieved by conducting 
modified Proctor test. Use Equation 1.71.

Solution

For the modified Proctor test, E = 2696 kN-m/m3.
From Equations 1.72 and 1.73

	 L E= + = + =1434 1195ln 1434 1195ln 2696 2378. . . . ( ) .

	 M E= − + = − + =0 0 0 0 0 0 0. . . . ( ) .19 73ln 19 73ln 2696 387
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From Equation 1.70

	

w Eopt PI(% ) ( . . ln )( )

[ . . ln( )]( )

= −

= − −

=

1 99 0 165

1 99 0 165 2696 43 18

17.. %16 	

From Equation 1.71

	 γd opt
3kN /m(m ax) . ( . )( . ) .= − = − =L M w 23 78 0 387 17 16 17 14
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Chapter 2

Stresses and strains
Elastic equilibrium

2.1 � INTRODUCTION

An important function in the study of soil mechanics is to predict the 
stresses and strains imposed at a given point in a soil mass due to cer-
tain loading conditions. This is necessary to estimate settlement and to 
conduct stability analysis of earth and earth-retaining structures, as well 
as to determine stress conditions on underground and earth-retaining 
structures.

An idealized stress–strain diagram for a material is shown in Figure 2.1. 
At low stress levels, the strain increases linearly with stress (branch ab), 
which is the elastic range of the material. Beyond a certain stress level, the 
material reaches a plastic state, and the strain increases with no further 
increase in stress (branch bc). The theories of stresses and strains presented 
in this chapter are for the elastic range only. In determining stress and 
strain in a soil medium, one generally resorts to the principles of the theory 
of elasticity, although soil in nature is not fully homogeneous, elastic, or 
isotropic. However, the results derived from the elastic theories can be judi-
ciously applied to the problem of soil mechanics.

2.2 � BASIC DEFINITION AND SIGN 
CONVENTIONS FOR STRESSES

An elemental soil mass with sides measuring dx, dy, and dz is shown in 
Figure 2.2. Parameters σx, σy, and σz are the normal stresses acting on the 
planes normal to the x, y, and z axes, respectively. The normal stresses are 
considered positive when they are directed onto the surface. Parameters 
τxy, τyx, τyz, τzy, τzx, and τxz are shear stresses. The notations for the shear 
stresses follow.
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Figure 2.1  Idealized stress–strain diagram.
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Figure 2.2  �Notations for normal and shear stresses in a Cartesian coordinate system.
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If τij is a shear stress, it means the stress is acting on a plane normal to 
the i axis, and its direction is parallel to the j axis. A shear stress τij is con-
sidered positive if it is directed in the negative j direction while acting on 
a plane whose outward normal is the positive i direction. For example, all 
shear stresses are positive in Figure 2.2. For equilibrium

	
τ τxy yx= 	 (2.1)

	 τ τxz zz= 	 (2.2)

	
τ τyz zy= 	 (2.3)

Figure 2.3 shows the notations for the normal and shear stresses in 
a polar coordinate system (two-dimensional case). For this case, σr and 
σθ are the normal stresses, and τrθ and τθr are the shear stresses. For 
equilibrium, τrθ = τθr. Similarly, the notations for stresses in a cylindri-
cal coordinate system are shown in Figure 2.4. Parameters σr, σθ, and 
σz are the normal stresses, and the shear stresses are τrθ = σθr, σθz = σzθ, 
and τrz = τzr.

z

x

σθ

τθr

τrθ

θ

dθ

drτθr
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r
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Figure 2.3  �Notations for normal and shear stresses in a polar coordinate system.
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2.3 � EQUATIONS OF STATIC EQUILIBRIUM

Figure 2.5 shows the stresses acting on an elemental soil mass with sides 
measuring dx, dy, and dz. Let γ be the unit weight of the soil. For equilib-
rium, summing the forces in the x direction
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Figure 2.4  �Notations for normal and shear stresses in cylindrical coordinates.
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Similarly, along the y direction, ∑Fy = 0, or
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Along the z direction
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The last term of the preceding equation is the self-weight of the soil mass.
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Figure 2.5  �Derivation of equations of equilibrium.
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Thus
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− =σ τ τ γz xz yz

z x y
0 	 (2.6)

Equations 2.4 through 2.6 are the static equilibrium equations in the 
Cartesian coordinate system. These equations are written in terms of total 
stresses.

They may, however, be written in terms of effective stresses as

	 σ σ σ γx x x wu h= ′ + = ′ + 	 (2.7)

where
′σx is the effective stress

u is the pore water pressure
γw is the unit weight of water
h is the pressure head

Thus
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Similarly
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and
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Substitution of the proper terms in Equations 2.4 through 2.6 results in
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where γ′ is the effective unit weight of soil. Note that the shear stresses will 
not be affected by the pore water pressure.
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In soil mechanics, a number of problems can be solved by two-dimensional 
stress analysis. Figure 2.6 shows the cross-section of an elemental soil prism 
of unit length with the stresses acting on its faces. The static equilibrium equa-
tions for this condition can be obtained from Equations 2.4 through 2.6 by 
substituting τxy = τyx = 0, τyz = τzy = 0, and ∂σy/∂y = 0. Note that τxz = τzx. Thus
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+ ∂
∂

=σ τx xz

x z
0 	 (2.14)
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− =σ τ γz xz

z x
0 	 (2.15)

Figure 2.7 shows an elemental soil mass in polar coordinates. Parameters 
σr and σθ are the normal components of stress in the radial and tangential 
directions, and τθr and τrθ are the shear stresses. In order to obtain the static 
equations of equilibrium, the forces in the radial and tangential directions 
need to be considered. Thus
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Figure 2.6  �Derivation of static equilibrium equation for a two-dimensional problem in 
Cartesian coordinates.
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Taking sin dθ/2 ≈ dθ/2 and cos dθ/2 ≈ 1, neglecting infinitesimally small 
quantities of higher order, and noting that ∂(σrr)/∂r = r(∂σr /∂r) + σr and 
τθr = τrθ, the previous equation yields
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+ ∂
∂

+ − − =σ τ
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σ σ γ θθ θr r r

r r r
1 0cos 	 (2.16)

Similarly, the static equation of equilibrium obtained by adding the com-
ponents of forces in the tangential direction is

	

1 2 0
r r r

r r∂
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τ τ γ θθ θ θ sin 	 (2.17)

The stresses in the cylindrical coordinate system on a soil element are 
shown in Figure 2.8. Summing the forces in the radial, tangential, and 
vertical directions, the following relations are obtained:
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Figure 2.7  �Derivation of static equilibrium equation for a two-dimensional problem in 
polar coordinates.
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2.4 � CONCEPT OF STRAIN

Consider an elemental volume of soil as shown in Figure 2.9a. Owing to 
the application of stresses, point A undergoes a displacement such that its 
components in the x, y, and z directions are u, v, and w, respectively. The 
adjacent point B undergoes displacements of u + (∂u/∂x)dx, v + (∂v/∂x)dx, 
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Figure 2.8  �Equilibrium equations in cylindrical coordinates.
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and w + (∂w/∂x)dx in the x, y, and z directions, respectively. So, the change 
in the length AB in the x direction is u + (∂u/∂x)dx − u = (∂u/∂x)dx. Hence, 
the strain in the x direction, ∈x, can be given as

	
∈ = ∂

∂




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= ∂
∂x dx

u
x
dx u

x
1

	 (2.21)

Similarly, the strains in the y and z directions can be written as

	
∈ = ∂

∂y
v
y

	 (2.22)

	
∈ = ∂

∂z
w
z

	 (2.23)

where ∈y and ∈z are the strains in the y and z directions, respectively.
Owing to stress application, sides AB and AC of the element shown in 

Figure 2.9a undergo a rotation as shown in Figure 2.9b (see A′B″ and A′C″). 
The small change in angle for side AB is α1, the magnitude of which may 
be given as [(∂v/∂x)dx](1/dx) = ∂v/∂x, and the magnitude of the change in 
angle α2 for side AC is [(∂u/∂y)dy](1/dy) = ∂u/∂y. The shear strain γxy is 
equal to the sum of the change in angles α1 and α2. Therefore
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Figure 2.9  �Concept of strain: (a) elemental volume of soil measuring dx dy dz; (b) rotation 
of sides AB and AC of the elemental volume.
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Similarly, the shear strains γxz and γyz can be derived as

	
γxz

u
z

w
x

= ∂
∂

+ ∂
∂

	 (2.25)

and
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Generally, in soil mechanics, the compressive normal strains are considered 
positive. For shear strain, if there is an increase in the right angle BAC 
(Figure 2.9b), it is considered positive. As shown in Figure 2.9b, the shear 
strains are all negative.

2.5 � HOOKE’S LAW

The axial strains for an ideal, elastic, isotropic material in terms of the 
stress components are given by Hooke’s law as
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where
E is the Young’s modulus
v is the Poisson’s ratio

Form the relation given by Equations 2.27 through 2.29, the stress com-
ponents can be expressed as
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The shear strains in terms of the stress components are
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where shear modulus
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2.6 � PLANE STRAIN PROBLEMS

A state of stress generally encountered in many problems in soil mechanics 
is the plane strain condition. Long retaining walls and strip foundations 
are examples where plane strain conditions are encountered. Referring to 
Figure 2.10, for the strip foundation, the strain in the y direction is zero 
(i.e., ∈y = 0). The stresses at all sections in the xz plane are the same, and the 
shear stresses on these sections are zero (i.e., τyx = τxy = 0 and τyz = τzy = 0). 
Thus, from Equation 2.28
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Substituting Equation 2.37 into Equations 2.27 and 2.29
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and
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Since τxy = 0 and τyz = 0

	
γ γxy yz= =0 0 	 (2.40)

and
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2.6.1 � Compatibility equation

The three strain components given by Equations 2.38, 2.39, and 2.41 are 
functions of the displacements u and w and are not independent of each 
other. Hence, a relation should exist such that the strain components give 
single-valued continuous solutions. It can be obtained as follows. From 
Equation 2.21, ∈x = ∂u/∂x. Differentiating twice with respect to z
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Figure 2.10  �Strip foundation: plane strain problem.
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From Equation 2.23, ∈z = ∂w/∂z. Differentiating twice with respect to x
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Similarly, differentiating γxz (Equation 2.25) with respect to x and z
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Combining Equations 2.42 through 2.44, we obtain
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Equation 2.45 is the compatibility equation in terms of strain compo-
nents. Compatibility equations in terms of the stress components can also 
be derived. Let E′ = E/(1 − v2) and v′ = v/(1 − v). So, from Equation 2.38, 
∈x = 1/E′(σx − v′σz). Hence
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Similarly, from Equation 2.39, ∈x = (1/E′)(σz − v′σx). Thus
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Again, from Equation 2.41
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Substitution of Equations 2.46 through 2.48 into Equation 2.45 yields
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From Equations 2.14 and 2.15
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Combining Equations 2.49 and 2.50
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For weightless materials, or for a constant unit weight γ, the previous 
equation becomes
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Equation 2.51 is the compatibility equation in terms of stress.

2.6.2 � Stress function

For the plane strain condition, in order to determine the stress at a given 
point due to a given load, the problem reduces to solving the equations of 
equilibrium together with the compatibility equation (Equation 2.51) and 
the boundary conditions. For a weight-less medium (i.e., γ = 0), the equa-
tions of equilibrium are
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The usual method of solving these problems is to introduce a stress func-
tion referred to as Airy’s stress function. The stress function ϕ in terms of 
x and z should be such that
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The aforementioned equations will satisfy the equilibrium equations. When 
Equations 2.52 through 2.54 are substituted into Equation 2.51, we get
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So, the problem reduces to finding a function ϕ in terms of x and z such that 
it will satisfy Equation 2.55 and the boundary conditions.

2.6.3 � Compatibility equation in polar coordinates

For solving plane strain problems in polar coordinates, assuming the 
soil to be weightless (i.e., γ = 0), the equations of equilibrium are (from 
Equations 2.16 and 2.17)
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The compatibility equation in terms of stresses can be given by
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The Airy stress function ϕ should be such that
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The previous equations satisfy the equilibrium equations. The compat-
ibility equation in terms of stress function is
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Similar to Equation 2.37, for the plane strain condition

	 σy = v(σr + σθ)

Example 2.1

The stress at any point inside a semi-infinite medium due to a line load 
of intensity q per unit length (Figure 2.11) can be given by a stress 
function

	
φ = 





−Ax z
x

tan 1

where A is a constant. This equation satisfies the compatibility equa-
tion (Equation 2.55). (a) Find σx, σz, σy, and τxz. (b) Applying proper 
boundary conditions, find A.

Line load,
q/unit length

σz

x

z

Figure 2.11  �Stress at a point due to a line load.
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Solution

Part a:

	
φ = 





−Ax z
x

tan 1

The relations for σx, σz, σy, and τxz are given in Equations 2.52 
through 2.54.
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Part b: Consider a unit length along the y direction. We can write
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We can see that at z = 0 (i.e., at the surface) and for any value of x ≠ 0, 
σx, σz, and τxz are equal to zero.

2.7 � EQUATIONS OF COMPATIBILITY 
FOR THREE-DIMENSIONAL PROBLEMS

For three-dimensional problems in the Cartesian coordinate system as 
shown in Figure 2.2, the compatibility equations in terms of stresses are 
(assuming the body force to be zero or constant)

	
∇ +

+
∂
∂

=2
2

2
1

1
0σx v x

Θ
	 (2.61)
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∇ +
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where
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∂
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2x y z

and

	 Θ = σx + σy + σz

The compatibility equations in terms of stresses for the cylindrical coor-
dinate system (Figure 2.4) are as follows (for constant or zero body force):
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2.8 � STRESSES ON AN INCLINED PLANE 
AND PRINCIPAL STRESSES FOR 
PLANE STRAIN PROBLEMS

The fundamentals of plane strain problems are explained in Section 2.5. 
For these problems, the strain in the y direction is zero (i.e., τyx = τxy = 0; 
τyz = τzy = 0) and σy is constant for all sections in the plane.

If the stresses at a point in a soil mass (i.e., σx, σy, σz, τxz(= τzx)) are known 
(as shown in Figure 2.12a), the normal stress σ and the shear stress τ on 
an inclined plane BC can be determined by considering a soil prism of unit 
length in the direction of the y axis. Summing the components of all forces 
in the n direction (Figure 2.12b) gives

	 ∑Fn = 0

	 σ dA = (σx cos θ)(dA cos θ) + (σz sin θ)(dA sin θ)

	 + (τxz sin θ)(dA cos θ) + (τxz cos θ)(dA sin θ)

where dA is the area of the inclined face of the prism. Thus
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Similarly, summing the forces in the s direction gives
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xz
x z 	 (2.74)

Note that σy has no contribution to σ or τ.
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2.8.1 � Transformation of stress components from 
polar to Cartesian coordinate system

In some instances, it is helpful to know the relations for transformation of 
stress components in a polar coordinate system to a Cartesian coordinate sys-
tem. This can be done by a principle similar to that demonstrated earlier for 
finding the stresses on an inclined plane. Comparing Figures 2.12 and 2.13, 

x

s

n

Principal plane
(a)

B

z

A

θ τ
σ

σx

σz

C
Ć

C˝

τxz

τzx

AB=BC cos θ
AC=BC sin θ

A C

dA

θ

τ σ
σx

σz

σy

σy

τxz

τzx

Unit
length

B
(b)

Figure 2.12  �(a) Stresses on an inclined plane for the plane strain case; (b) soil prism of 
unit length in the direction of y-axis.



Stresses and strains  75

it  is  obvious that we can substitute σr for σz, σθ for σx, and τrθ for τxz in 
Equations 2.73 and 2.74 to obtain σx and τxz as shown in Figure 2.13. So

	 σ σ θ σ θ τ θ θθ θx r r= + +sin cos 2 sin cos2 2 	 (2.75)

	 τ σ θ θ σ θ θ τ θ θθ θxz r r= − + + −sin cos sin cos cos sin2 2( )	 (2.76)

Similarly, it can be shown that

	 σ σ θ σ θ τ θ θθ θz r r= + −cos sin 2 sin cos2 2 	 (2.77)

2.8.2 � Principal stress

A plane is defined as a principal plane if the shear stress acting on it is zero. 
This means that the only stress acting on it is a normal stress. The normal 
stress on a principal plane is referred to as the principal stress. In a plane 
strain case, σy is a principal stress, and the xz plane is a principal plane. 
The orientation of the other two principal planes can be determined by 
considering Equation 2.74. On an inclined plane, if the shear stress is zero, 
it follows that

	
τ θ σ σ θxz

x zcos sin2
2

2= −





θ

θ

σx

σθ

σr

τxzτθr

τrθ

x

z

Figure 2.13  �Transformation of stress components from polar to Cartesian coordinate 
system.
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tan2 2θ τ

σ σ
=

−
xz

x z
	 (2.78)

From Equation 2.78, it can be seen that there are two values of θ at right 
angles to each other that will satisfy the relation. These are the directions 
of the two principal planes BC′ and BC″ as shown in Figure 2.12. Note 
that there are now three principal planes that are at right angles to each 
other. Besides σy, the expressions for the two other principal stresses can 
be obtained by substituting Equation 2.78 into Equation 2.73, which gives

	
σ σ σ σ σ τp(1) = + + −





+x z x z
xz2 2

2
2 	 (2.79)

	
σ σ σ σ σ τp(3) = + − −





+x z x z
xz2 2

2
2 	 (2.80)

where σp(1) and σp(3) are the principal stresses. Also

	
σ σ σ σp p1 3( ) + = +( ) x z 	 (2.81)

Comparing the magnitude of the principal stresses, σp(1) > σy = σp(2) > σp(3). 
Thus σp(1), σp(2), and σp(3) are referred to as the major, intermediate, and 
minor principal stresses. From Equations 2.37 and 2.81, it follows that

	
σ σ σy v= +[ ]() ( )p p1 3 	 (2.82)

2.8.3 � Mohr’s circle for stresses

The shear and normal stresses on an inclined plane (Figure 2.12) can also 
be determined graphically by using Mohr’s circle. The procedure to con-
struct Mohr’s circle is explained later.

The sign convention for normal stress is positive for compression and 
negative for tension. The shear stress on a given plane is positive if it tends 
to produce a clockwise rotation about a point outside the soil element, and 
it is negative if it tends to produce a counterclockwise rotation about a point 
outside the element (Figure 2.14). Referring to plane AB in Figure 2.12a, 
the normal stress is +σx and the shear stress is +τxz. Similarly, on plane 
AC, the stresses are +σz and −τxz. The stresses on planes AB and AC can 
be plotted on a graph with normal stresses along the abscissa and shear 
stresses along the ordinate. Points B and C in Figure 2.15 refer to the stress 
conditions on planes AB and AC, respectively. Now, if points B and C are 
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joined by a straight line, it will intersect the normal stress axis at O′. With 
O′ as the center and O′B as the radius, if a circle BP1 CP3 is drawn, it will 
be Mohr’s circle. The radius of Mohr’s circle is

	
′ = ′ + = −





+O B O D BD x z
xz

2 2
2

2

2
σ σ τ 	 (2.83)

Negative
shear stress

Positive
shear stress

Positive
shear stress

Figure 2.14  �Sign convention for shear stress used for the construction of Mohr’s circle.
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Figure 2.15  �Mohr’s circle.
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Any radial line in Mohr’s circle represents a given plane, and the 
coordinates of the points of intersection of the radial line and the circumfer-
ence of Mohr’s circle give the stress condition on that plane. For example, 
let us find the stresses on plane BC. If we start from plane AB and move 
an angle θ in the clockwise direction in Figure 2.12, we reach plane BC. In 
Mohr’s circle in Figure 2.15, the radial line O′B represents the plane AB. 
We move an angle 2θ in the clockwise direction to reach point F. Now the 
radial line O′F in Figure 2.15 represents plane BC in Figure 2.12. The coor-
dinates of point F will give us the stresses on the plane BC.

Note that the ordinates of points P1 and P3 are zero, which means 
that O′P1 and O′P3 represent the major and minor principal planes, and 
OP1 = σp(1) and OP3 = σp(3):

	
σ σ σ σ σ τp(1) = = ′ + ′ = + + −





+O P O O O P x z x z
xz1 1

2
2

2 2

	
σ σ σ σ σ τp(3) = = ′ − ′ = + − −





+O P O O O P x z x z
xz3 3

2
2

2 2

The previous two relations are the same as Equations 2.79 and 2.80. Also 
note that the principal plane O′P1 in Mohr’s circle can be reached by moving 
clockwise from O′B through angle BO′P1 = tan−1 [2τxz/(σx − σz)]. The other 
principal plane O′P3 can be reached by moving through angle 180° + tan−1 
[2τxz/(σx − σz)] in the clockwise direction from O′B. So, in Figure 2.12, if 
we move from plane AB through angle (1/2) tan−1 [2τxz/(σx − σz)], we will 
reach plane BC′, on which the principal stress σp(1) acts. Similarly, moving 
clockwise from plane AB through angle 1/2{180° + tan−1 [2τxz/(σx − σz)]} = 
90° +  (1/2) tan−1 [2τxz/(σx − σz)] in Figure 2.12, we reach plane BC″, on 
which the principal stress σp(3) acts. These are the same conclusions as 
derived from Equation 2.78.

2.8.4 � Pole method for finding stresses 
on an inclined plane

A pole is a unique point located on the circumference of Mohr’s circle. If a 
line is drawn through the pole parallel to a given plane, the point of inter-
section of this line and Mohr’s circle will give the stresses on the plane. The 
procedure for finding the pole is shown in Figure 2.16.

Figure 2.16a shows the same stress element as Figure 2.12. The corre-
sponding Mohr’s circle is given in Figure 2.16b. Point B on Mohr’s circle 
represents the stress conditions on plane AB (Figure 2.16a). If a line is drawn 
through B parallel to AB, it will intersect Mohr’s circle at P. Point P is the 



Stresses and strains  79

pole for Mohr’s circle. We could also have found pole P by drawing a line 
through C parallel to plane AC. To find the stresses on plane BC, we draw 
a line through P parallel to BC. It will intersect Mohr’s circle at F, and the 
coordinates of point F will give the normal and shear stresses on plane AB.

Example 2.2

The stresses at a point in a soil mass are shown in Figure 2.17 (plane 
strain case). Determine the principal stresses and show their direc-
tions. Use v = 0.35.

Solution

Based on the sign conventions explained in Section 2.2,

	 σ σ τz x xz= + = + = −100 50 25kN /m kN /m and kN /m2 2 2, ,

	

σ σ σ σ σ τp = + ± −





+

= + ± −

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+ −

x z x z
xz2 2

50 100
2

50 100
2

25

2
2

2
2( ) == ±( . )75 35 36 kN /m 2

	 σp(1) = 110.36 kN/m2  σp(3) = 39.64 kN/m2

	 σp(2) = v[σp(1) + σp(3)] = (0.35)(110.36 + 39.34) = 52.5 kN/m2
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Figure 2.16  �Pole method of finding stresses on an inclined plane: (a) stress element; 
(b) corresponding Mohr’s circle.
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From Equation 2.78

	

tan ( )( )
( )

tan ()

2 2 2 25
50 100

1

2 1 451

θ τ
σ σ

θ

=
−

= −
−

=

= = ° °−

xz

x z

and 225 so θθ = ° °22.5 and112.5

Parameter σp(2) is acting on the xz plane. The directions of σp(1) and σp(3) 
are shown in Figure 2.17.

Example 2.3

Refer to Example 2.2.

	 a.	Determine the magnitudes of σp(1) and σp(3) by using Mohr’s circle.
	 b.	Determine the magnitudes of the normal and shear stresses on 

plane AC shown in Figure 2.17.

Solution

Part a: For Mohr’s circle, on plane AB, σx = 50 kN/m2 and τxz = −25 kN/m2. 
On plane BC, σz = +100 and τxz +25 kN/m2. For the stresses, Mohr’s 
circle is plotted in Figure 2.18. The radius of the circle is

	
′ = ′ + = + =O H O I H I( ) ( ) .2 2 2 2 225 25 35 36 kN /m

B

A

110.36 kN/m2

39.64 kN/m2

C
σz = 100 kN/m2

σx = 50 kN/m2

τxz = 25 kN/m235°

22.5°

x

z

Figure 2.17  �Determination of principal stresses at a point.
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	 σp(1) = OO′ + O′P1 = 75 + 35.36 = 110.36 kN/m2

	 σp(3) = OO′ + O′P1 = 75 − 35.36 = 39.64 kN/m2

The angle GO′P3 = 2θ = tan−1(JG/O′J) = tan−1(25/25) = 45°. So, we 
move an angle θ = 22.5° clockwise from plane AB to reach the minor 
principal plane, and an angle θ = 22.5 + 90 = 112.5° clockwise from 
plane AB to reach the major principal plane. The orientation of the 
major and minor principal stresses is shown in Figure 2.17.

Part b: Plane AC makes an angle 35°, measured clockwise, with plane 
AB. If we move through an angle of (2)(35°) = 70° from the radial line 
O′G (Figure 2.18), we reach the radial line O′K. The coordinates of K 
will give the normal and shear stresses on plane AC. So

	 τ = O′K sin 25° = 35.36 sin 25° = l4.94 kN/m2

	 σ = OO′ − O′K cos 25° = 75 − 35.36 cos 25° = 42.95 kN/m2

Note:  This could also be solved using Equations 2.73 and 2.74:

	
τ τ θ σ σ θ= − −



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xz
x zcos sin2
2

2

where
τxz = –25 kN/m2

θ = 35°
σx = +50 kN/m2

σz = +100 kN/m2 (watch the sign conventions)
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Figure 2.18  �Mohr’s circle for stress determination.
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So

τ

σ σ

= − − −





= − − −

=

=

25 70 50 100
2

70 8 55 23 49

14 94 2

cos sin . ( . )

. kN /m

xx z x z
xz

+





+ −





+

= +





+ −

σ σ σ θ τ θ
2 2

2 2

50 100
2

50 1

cos sin

000
2

70 25 70

75 8 55 23 49 42 96 2







+ −

= − − =

cos ( )sin

. . . kN /m

2.9 � STRAINS ON AN INCLINED PLANE 
AND PRINCIPAL STRAIN FOR 
PLANE STRAIN PROBLEMS

Consider an elemental soil prism ABDC of unit length along the y direction 
(Figure 2.19). The lengths of the prism along the x and z directions are AB = 
dx and AC = dz, respectively. When subjected to stresses, the soil prism is 
deformed and displaced. The length in the y direction still remains unity. 
A′B″D″C″ is the deformed shape of the prism in the displaced position. 
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2 +π
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dz dl
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γxz
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Figure 2.19  �Normal and shear strains on an inclined plane (plane strain case).
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If the normal strain on an inclined plane AD making an angle θ with the 
x axis is equal to ∈,

	 ′ ′′ = +∈ = + ∈A D AD dl( ) ( )l 1 	 (2.84)

where AD = dl.
Note that the angle B″A′C″ is equal to (π/2 − γxz). So the angle A′C″D″ is 

equal to +(π/2 + γxz). Now

	 ( ) ( ) ( ) ( )( ) ( )′ ′′ = ′ ′′ + ′ ′′ − ′ ′′ ′′ ′′ +A D A C C D A C C D xz
2 2 2 2 cos /2π γ 	 (2.85)

	 ′ ′′ = + ∈ = + ∈ = + ∈A C AC dz dlz z z( ) ( ) ( )( )l 1 sin 1θ 	 (2.86)

	 ′′ ′′ = ′ ′′ = + ∈ = + ∈C D A B dx dlx x( ) ( )( )1 cos 1θ 	 (2.87)

Substitution of Equations 2.84, 2.86, and 2.87 into Equation 2.85 gives

	

( )( ) [ ( )( )] [ ( )( )]

( )(

1 sin 1 cos 1

2 sin

2 2 2

2

+ ∈ = + ∈ + + ∈

+

dl dl dl

dl

z xθ θ2

θθ θ γ)( )( )( )cos 1 l  sin+ ∈ + ∈x z xz 	 (2.88)

Taking sin γxz ≈ γxz and neglecting the higher order terms of strain such as 
∈ ∈ ∈ ∈ ∈ ∈ ∈2 2 2, , , , , ,x z x xz z xz x z xzγ γ γ  Equation 2.88 can be simplified to

	

1 2 1 2 1 2 22 2

2

+ ∈ = + ∈ + + ∈ +

∈ = ∈ + ∈

( )sin ( )cos sin cos

cos sin

z x xz

x z

θ θ γ θ θ

θ 22

2
2θ γ θ+ xz sin 	 (2.89)

or

	
∈ = ∈ + ∈ + ∈ − ∈ +x z x z xz

2 2
2

2
2cos sinθ γ θ 	 (2.90)

Similarly, the shear strain on plane AD can be derived as

	 γ γ θ θ= − ∈ − ∈xz xcos2  sin2( )z 	 (2.91)

Comparing Equations 2.90 and 2.91 with Equations 2.73 and 2.74, it 
appears that they are similar except for a factor of 1/2 in the last terms of 
the equations.
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The principal strains can be derived by substituting zero for shear strain 
in Equation 2.91. Thus

	
tan2θ γ=

∈ − ∈
xz

x y
	 (2.92)

There are two values of θ that will satisfy the aforementioned relation. 
Thus, from Equations 2.90 and 2.92, we obtain

	
∈ = ∈ + ∈ ± ∈ − ∈





+ 





p
x z x z xz

2 2 2

2 2γ
	 (2.93)

where ∈p = principal strain. Also note that Equation 2.93 is similar to 
Equations 2.79 and 2.80.

2.10 � STRESS COMPONENTS ON AN INCLINED 
PLANE, PRINCIPAL STRESS, AND OCTAHEDRAL 
STRESSES: THREE-DIMENSIONAL CASE

2.10.1 � Stress on an inclined plane

Figure 2.20 shows a tetrahedron AOBC. The face AOB is on the xy plane 
with stresses σz, τzy, and τzx acting on it. The face AOC is on the yz plane 
subjected to stresses σx, τxy, and τxz. Similarly, the face BOC is on the xz 

BO

A

y

σx

σz

σy

τxy

τzy

τyz

τyx

τzx

psy
psz

C

x

psx

Normal to plane ABC;
unit vector = s

τxz

z

Figure 2.20  �Stresses on an inclined plane—three-dimensional case.
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plane with stresses σy, τyx, and τyz. Let it be required to find the x, y, and z 
components of the stresses acting on the inclined plane ABC.

Let i, j, and k be the unit vectors in the x, y, and z directions, and let s 
be the unit vector in the direction perpendicular to the inclined plane 
ABC:

	 s s x sy sz= + +cos cos cos(, ) (, ) (, )i j k 	 (2.94)

If the area of ABC is dA, then the area of AOC can be given as dA(s · i) = 
dA cos(s, x). Similarly, the area of BOC = dA(s · j) = dA cos(s, y), and the 
area of AOB = dA(s · k) = dA cos(s, z).

For equilibrium, summing the forces in the x direction, ∑Fx = 0:

	 psx dA = [σx cos(s, x) + τyx cos(s, y) + τzx cos(s, z)]dA

or

	
p s x sy szsx x yx zx= + +σ τ τcos cos cos(, ) (, ) (, )	 (2.95)

where psx is the stress component on plane ABC in the x direction.
Similarly, summing the forces in the y and z directions

	
p s x sy szsy xy y zy= + +τ σ τcos cos cos(, ) (, ) (, )	 (2.96)

	
p s x sy szsz xz yz z= + +τ τ σcos cos( ) cos(, ) , (, )	 (2.97)

where psy and psz are the stress components on plane ABC in the y and z 
directions, respectively. Equations 2.95 through 2.97 can be expressed in 
matrix form as

	

p
p
p

s x
sy
sz

sx

sy

sz

x yx xz

xy y zy

xz yz z

=
σ τ τ
τ σ τ
τ τ σ

cos(, )
cos(, )
cos(, )

	 (2.98)

The normal stress on plane ABC can now be determined as

	

σ

σ σ

= + +

= +

p s x p sy p sz

s x s

sx sy sz

x y

cos cos cos

cos cos2 2

(, ) (, ) (, )

(, ) (,, ) (, ) (, ) (, )

(, ) (,

y sz s x sy

sy sz

z xy

yz

+ +

+

σ τ

τ

cos cos  cos

2 cos cos

2 2

)) (, ) (, )+ 2 cos cosτzx s x s z 	(2.99)
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The shear stress τ on the plane can be given as

	
τ σ= + +( ) −p p psx sy sz

2 2 2 2 	 (2.100)

2.10.2 � Transformation of axes

Let the stresses in a soil mass in the Cartesian coordinate system be given. 
If the stress components in a new set of orthogonal axes (x1, y1, z1) as 
shown in Figure 2.21 are required, they can be determined in the following 
manner. The direction cosines of the x1, y1, and z1 axes with respect to the 
x, y, and z axes are shown:

x y z
x1 l1 m1 n1

y1 l2 m2 n2

z1 l3 m3 n3

Following the procedure adopted to obtain Equation 2.98, we can write

	

p
p
p

l
m
n

x x

x y

x z

x yx zx

xy y zy

xz yz z

1

1

1

1

1

1

=
σ τ τ
τ σ τ
τ τ σ

	 (2.101)

where p p px x x y x z1 1 1, , and  are stresses parallel to the x, y, and z axes and are 
acting on the plane perpendicular to the x1 axis (i.e., y1z1 plane).

x

x1

z1

y1
y

z

Figure 2.21  �Transformation of stresses to a new set of orthogonal axes.
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We can now take the components of p p px x x y x z1 1 1, , and  to determine the 
normal and shear stresses on the y1z1 plane, or

	

σ

τ

τ

x x x x y x z

x y x x x y x z

x z

lp m p n p

lp m p n p

l

1 1 1 1

1 1 1 1 1

1 1

1 1 1

2 2 2

3

= + +

= + +

= pp m p n px x x y x z1 1 13 3+ +

In a matrix form, the previous three equations may be expressed as

	

σ
τ
τ

x

x y

x z

x x

x y

x z

l m n
l m n
l m n

p
p
p

1

1 1

1 1

1

1

1

1 1 1

2 2 2

3 3 3

= 	 (2.102)

In a similar manner, the normal and shear stresses on the x1z1 plane  
( , , )i.e.,  and σ τ τy y x y z1 1 1 1 1  and on the x1y1 plane  (i.e.,  and σ τ τz z x z y1 1 1 1 1, , ) can 
be determined. Combining these terms, we can express the stresses in the 
new set of orthogonal axes in a matrix form. Thus

	

σ τ τ
τ σ τ
τ τ σ

x y x z x

x y y z y

x z y z z

l m n
l m n
l m n

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1

2 2 2

3 2 2

=
σσ τ τ
τ σ τ
τ τ σ

x yx zx

xy y zy

xz yz z

l l l
m m m
n n n

1 2 3

1 2 3

1 2 3

� (2.103)

Note:  τxy = τyx, τzy = τyz, and τzx = τxz.

Solution of Equation 2.103 gives the following relations:

	
σ σ σ σ τ τ τx x y z yz zx xyl m n m n n l lm1 1

2
1
2

1
2

1 1 1 1 1 12 2 2= + + + + + 	 (2.104)

	
σ σ σ σ τ τ τy x y z yz zx xyl m n m n n l lm1 2

2
2
2

2
2

2 2 2 2 2 22 2 2= + + + + + 	 (2.105)

	
σ σ σ σ τ τ τz x y z yz zx xyl m n m n n l lm1 3

2
3
2

3
2

3 3 3 3 3 32 2 2= + + + + + 	 (2.106)

	

τ τ σ σ σ τx y y x x y z yzll m m n n m n m n

n l n l

1 1 1 1 1 2 1 2 1 2 1 2 2 1

1 2 2 1

= = + + + +

+ +

( )

( )) ( )τ τzx xylm lm+ +1 2 2 1 	 (2.107)
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τ τ σ σ σ τx z z x x y z yzll m m n n m n m n

n l n l

1 1 1 1 1 3 1 3 1 3 1 3 3 1

1 3 3 1

= = + + + +

+ +

( )

( )) ( )τ τzx xylm lm+ +1 3 3 1 	 (2.108)

	

τ τ σ σ σ τy z z y x y z yzll m m n n m n m n

n l n l

1 1 1 1 2 3 2 3 2 3 2 3 3 2

2 3 3 2

= = + + + +

+ +

( )

( )) ( )τ τzx xylm lm+ +2 3 3 2 	 (2.109)

2.10.3 � Principal stresses

The preceding procedure allows the determination of the stresses on any 
plane from the known stresses based on a set of orthogonal axes. As dis-
cussed earlier, a plane is defined as a principal plane if the shear stresses act-
ing on it are zero, which means that the only stress acting on it is a normal 
stress. This normal stress on a principal plane is referred to as a principal 
stress. In order to determine the principal stresses, refer to Figure 2.20, in 
which x, y, and z are a set of orthogonal axes. Let the stresses on planes 
OAC, BOC, and AOB be known, and let ABC be a principal plane. The 
direction cosines of the normal drawn to this plane are l, m, and n with 
respect to the x, y, and z axes, respectively. Note that

	 l m n2 2 2 1+ + = 	 (2.110)

If ABC is a principal plane, then the only stress acting on it will be a 
normal stress σp. The x, y, and z components of σp are σpl, σpm, and σpn. 
Referring to Equations 2.95 through 2.97, we can write

	 σpl = σxl + τyxm + τzxn

or

	
( )σ σ τ τx yx zxl m n− + + =p 0 	 (2.111)

Similarly

	
τ σ σ τxy y zyl m n+ − + =( )p 0 	 (2.112)

	
τ τ σ σxz yz zl m n+ + − =( )p 0 	 (2.113)
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From Equations 2.110 through 2.113, we note that l, m, and n cannot all be 
equal to zero at the same time. So

	

( )
( )

( )

σ σ τ τ
τ σ σ τ
τ τ σ σ

x yx zx

xy y zy

xz yz z

−
−

−
=

p

p

p

0 	 (2.114)

or

	
σ σ σp p
3 − + − =I I Ip1

2
2 3 0 	 (2.115)

where

	
I x y z1 = + +σ σ σ 	 (2.116)

	
I x y y z x z xy yz xz2

2 2 2= + + − − −σ σ σ σ σ σ τ τ τ 	 (2.117)

	
I x y z xy yz xz x yz y xz z xy3

2 2 22= + − − −σ σ σ τ τ τ σ τ σ τ σ τ 	 (2.118)

I1, I2, and I3 defined in Equations 2.116 through 2.118 are independent of 
direction cosines and hence independent of the choice of axes. So, they are 
referred to as stress invariants.

Solution of Equation 2.115 gives three real values of σp. So there are 
three principal planes and they are mutually perpendicular to each other. 
The directions of these planes can be determined by substituting each σp in 
Equations 2.111 through 2.113 and solving for l, m, and n, and observing 
the direction cosine condition for I2 + m2 + n2 = 1. Note that these values 
for l, m, and n are the direction cosines for the normal drawn to the plane 
on which σp is acting. The maximum, intermediate, and minimum values 
of σp(i) are referred to as the major principal stress, intermediate principal 
stress, and minor principal stress, respectively.

2.10.4 � Octahedral stresses

The octahedral stresses at a point are the normal and shear stresses acting 
on the planes of an imaginary octahedron surrounding that point. The 
normals to these planes have direction cosines of ±1 3 with respect to 
the direction of the principal stresses (Figure 2.22). The axes marked 1, 2, 
and 3 are the directions of the principal stresses σp(1), σp(2), and σp(3). The 
expressions for the octahedral normal stress σoct can be obtained using 
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Equations  2.95 through 2.97 and 2.99. Now, compare planes ABC in 
Figures 2.20 and 2.22. For the octahedral plane ABC in Figure 2.22

	
p ls1 1= σp() 	 (2.119)

	
p ms2 2= σp( ) 	 (2.120)

	
p ns3 3= σp( ) 	 (2.121)

where ps1, ps2, and ps3 are stresses acting on plane ABC parallel to the 
principal stress axes 1, 2, and 3, respectively. Parameters l, m, and n are the 
direction cosines of the normal drawn to the octahedral plane and are all 
equal to 1 3/ . Thus, from Equation 2.99

	

σ σ σ σ

σ σ σ

oct = + +

= + +

l m n1
2

1 1
2

2 1
2

3

1 2 3
1
3

p p p

p p p

() ( ) ( )

() ( ) ( )[ ] 	 (2.122)

B
l

A

2

C

τoct

O

Normal to octahedral plane,
(ps1)2 + (Ps2)2 + (ps3)2

3

σoct

33, 1/ 3, 1/direction cosine 1/

Figure 2.22  �Octahedral stress.
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The shear stress on the octahedral plane is

	
τ σoct oct

2= + + −[( ) ( ) ( )]p p ps s s1
2

2
2

3
2 	 (2.123)

where τoct is the octahedral shear stress, or

	
τ σ σ σ σ σ σoct = − + − + −1

3 1 2
2

2 3
2

3 1
2[ ] [ ] [ ]() ( ) ( ) ( ) ( ) ()p p p p p p 	 (2.124)

The octahedral normal and shear stress expressions can also be derived 
as a function of the stress components for any set of orthogonal axes x, y, z. 
From Equation 2.116

	
I x y z1 1 2 3const= = + + = + +σ σ σ σ σ σp p p() ( ) ( )	 (2.125)

So

	
σ σ σ σ σ σ σoct = + + = + +1

3
1
31 2 3[ ] ( )() ( ) ( )p p p x y z 	 (2.126)

Similarly, from Equation 2.117

	

I x y y z z x xy yz xz2
2 2 2

1 2 2

= = + + − − −

= +

const ( )

() ( ) ( )

σ σ σ σ σ σ τ τ τ

σ σ σ σp p p pp p p( ) ( ) ()3 3 1+ σ σ 	 (2.127)

Combining Equations 2.124, 2.125, and 2.127 gives

	
τ σ σ σ σ σ σ τ τ τoct = − + − + − + + +1

3
6 6 62 2 2 2 2 2( ) ( ) ( )x y y z z x xy yz xz 	 (2.128)

Example 2.4

The stresses at a point in a soil mass are as follows:

σx = 50 kN/m2	 τxy = 30 kN/m2

σy = 40 kN/m2	 τyz = 25 kN/m2

σz = 80 kN/m2	 τxz = 25 kN/m2

Determine the normal and shear stresses on a plane with direction 
cosines l = 2/3, m = 2/3, and n = 1/3.
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Solution

From Equation 2.98

p
p
p

l
m
n

x

y

z

x xy xz

xy y yz

xz yz z

s

s

s

=
σ τ τ
τ σ τ
τ τ σ

The normal stress on the inclined plane (Equation 2.99) is

	 σ = psxl + psym + pszn

	 = σxl2 + σym2 + σzn2 + 2τxylm + 2τyzmn + 2τxzln

	 = 50(2/3)2 + 40(2/3)2 + 80(1/3)2 + 2(30)(2/3)(2/3)

	 + 2(25)(2/3)(1/3) + 2(25)(2/3)(1/3) = 97.78 kN/m2

	 psx = σxl + τxym + τxzn = 50(2/3) + 30(2/3) + 25(1/3)

	 = 33.33 + 20 + 8.33 = 61.66 kN/m2

	 psy = τxyl + σym + τyzn = 30(2/3) + 40(2/3) + 25(1/3)

	 = 20 + 26.67 + 8.33 = 55 kN/m2

	 psz = τxzl + τyzm + σzn = 25(2/3) + 25(2/3) + 80(1/3)

	 = 16.67 + 16.67 + 26.67 = 60.01 kN/m2

The resultant stress is

	
p p p px y z= + + = + + =s s s

2 2 2 2 2 2 261 66 55 60 01 102 2. . . kN /m

The shear stress on the plane is

	
τ σ= − = − =p2 2 2 2102 2 97 78 29 73. . . kN /m 2

Example 2.5

At a point in a soil mass, the stresses are as follows:

σx = 25 kN/m2	 τxy = 30 kN/m2

σy = 40 kN/m2	 τyz = −6 kN/m2

σz = 17 kN/m2	 τxz = −10 kN/m2

Determine the principal stresses and also the octahedral normal and 
shear stresses.
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Solution

From Equation 2.114

( )
( )

( )

σ σ τ τ
τ σ σ τ
τ τ σ σ

x yx zx

xy y zy

xz yz z

−
−

−
=

p

p

p

0

( )
( )

( )

25 30 10
30 40 6
10 6 17

82 1069 800 02
− −

− −
− − −

= − + − =
σ

σ
σ

σ σ σ
p

p

p

p p p
3

The three roots of the equation are

	 σp(l) = 65.9 kN/m2

	 σp(2) = 15.7 kN/m2

	 σp(3) = 0.4 kN/m2

	

σ σ σ σoct

2kN /m

= + +

= + + =

1
3

1
3
65 9 15 7 0 4 27 33

1 2 3[ ]

( . . .) .

() ( ) ( )p p p

	

τ σ σ σ σ σ σoct = − + − + −

=

1
3

1
3

65

1 2
2

2 3
2

3 1
2[ ] [ ] [ ]

( .

() ( ) ( ) ( ) ( ) ()p p p p p p

99 15 7 15 7 0 4 0 4 65 9 27 972 2 2− + − + − =. ) ( . .) ( . .) . kN /m 2

2.11 � STRAIN COMPONENTS ON AN INCLINED 
PLANE, PRINCIPAL STRAIN, AND OCTAHEDRAL 
STRAIN: THREE-DIMENSIONAL CASE

We have seen the analogy between the stress and strain equations derived 
in Sections 2.7 and 2.8 for the plane strain case. Referring to Figure 2.20, 
let the strain components at a point in a soil mass be represented by ∈x, ∈y, 
∈z, γxy, γyz, and γzx. The normal strain on plane ABC (the normal to plane 
ABC has direction cosines of l, m, and n) can be given by

	
∈ = ∈ + ∈ + ∈ + + +l m n lm m n lnx y z xy yz zx

2 2 2 γ γ γ 	 (2.129)
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This equation is similar in form to Equation 2.99 derived for normal stress. 
When we replace ∈x, ∈y, ∈z, γxy/2, γyz/2, and γzx/2, respectively, for σx, σy, σz, 
τxy, τyz, and τzx in Equation 2.99, Equation 2.129 is obtained.

If the strain components at a point in the Cartesian coordinate system 
(Figure 2.21) are known, the components in a new set of orthogonal axes 
can be given by (similar to Equation 2.103)

	

∈

∈

∈

=

x

y

z

x y x z

x y y z

x z y z

l m n

1

1 1 1

1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1

1 1 1 1

1 1 1 1

1

1

γ γ

γ γ

γ γ

ll m n
l m n

l l l
m m

x

y

z

xy xz

xy yz

xz yz

2 2 2

3 3 3

1 2 3

1

1
2

1
2

1
2

1
2

1
2

1
2

∈

∈

∈

γ γ

γ γ

γ γ

22 3

1 2 3

m
n m n

	 (2.130)

The equations for principal strains at a point can also be written in a 
form similar to that given for stress (Equation 2.115) as

	
∈ − ∈ + ∈ − =p p p
3 J J J1

2
2 3 0 	 (2.131)

where ∈p is the principal strain

	
J x y z1 =∈ + ∈ + ∈ 	 (2.132)

	
J x y y z z x

xy yz xz
2

2 2 2

2 2 2
=∈ ∈ + ∈ ∈ + ∈ ∈ −





− 





− 





γ γ γ
	 (2.133)

	
J x y z x y z

xy yz zx yz xz xy
3

2 2

4 2 2 2
=∈ ∈ ∈ + − ∈ 





− ∈ 





− ∈ 


γ γ γ γ γ γ 

2

	 (2.134)

J1, J2, and J3 are the strain invariants and are not functions of the direction 
cosines.
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The normal and shear strain relations for the octahedral planes are

	
∈ = ∈ + ∈ + ∈oct

1
3 1 2 3[ ]() ( ) ( )p p p 	 (2.135)

	
γoct = + +∈ − ∈ ∈ − ∈ ∈ − ∈2

3 1 2 2 3 3 1
2 2 2[ ] [ ] [ ]() ( ) ( ) ( ) ( ) ()p p p p p p 	 (2.136)

where
∈oct is the octahedral normal strain
γoct is the octahedral shear strain
∈p(l), ∈p(2), ∈p(3) are the major, intermediate, and minor principal strains, 

respectively

Equations 2.135 and 2.136 are similar to the octahedral normal and shear 
stress relations given by Equations 2.126 and 2.128.
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Chapter 3

Stresses and displacements 
in a soil mass
Two-dimensional problems

3.1 � INTRODUCTION

Estimating the increase in stress at various points and the associated 
displacement caused in a soil mass due to external loading using the theory 
of elasticity is an important component in the safe design of the foundations 
of structures. The ideal assumption of the theory of elasticity, namely that the 
medium is homogeneous, elastic, and isotropic, is not quite true for most nat-
ural soil profiles. It does, however, provide a close estimation of geotechnical 
engineers and, using proper safety factors, safe designs can be developed.

This chapter deals with two-dimensional problems (plane strain cases) 
involving stresses and displacements induced by various types of loading. 
The expressions for stresses and displacements are obtained on the assump-
tion that soil is a perfectly elastic material. Problems relating to plastic 
equilibrium are not treated in this chapter.

Stresses and displacements related to three-dimensional problems are 
treated in Chapter 4.

3.2 � VERTICAL LINE LOAD ON THE SURFACE

Figure 3.1 shows the case where a line load of q per unit length is applied at 
the surface of a homogeneous, elastic, and isotropic soil mass. The stresses 
at a point P defined by r and θ can be determined by using the stress function

	
φ

π
θ θ= qr sin 	 (3.1)

In the polar coordinate system, the expressions for the stresses are as follows:

	
σ φ φ

θr
r r r

= ∂
∂

+ ∂
∂

1 1
2

2

2 	 (2.57)
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σ φ

θ = ∂
∂

2

2r
	 (2.58)

and

	
τ φ

θθr
r r

= − ∂
∂

∂
∂







1
	 (2.59)

Substituting the values of ϕ in the previous equations, we get

	

σ
π

θ θ
π

θ
π

θ
π

θ θ

π

r r
q

r
qr qr qr

q
r

= 





+ + −





1 1

2

2sin

=

cos cos sin

coosθ 	 (3.2)

Similarly

	 σθ = 0 	 (3.3)

and

	 τ θr = 0 	 (3.4)

q/unit length

x

dθ

τθr = τrθ

θ

σr

σθ

P(r,θ)

z

Figure 3.1  �Vertical line load on the surface of a semi-infinite mass.
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The stress function assumed in Equation 3.1 will satisfy the compatibility 
equation:

	

∂
∂

+ ∂
∂

+ ∂
∂











∂
∂

+ ∂
∂

+ ∂
∂









 =

2

2 2

2

2

2

2 2

2

2
1 1 1 1 0

r r r r r r r rθ
φ φ φ

θ
	 (2.60)

Also, it can be seen that the stresses obtained in Equations 3.2 through 3.4 
satisfy the boundary conditions. For θ = 90°, r > 0, σr = 0, and at r = 0, σr is theo-
retically equal to infinity, which signifies that plastic flow will occur locally. 
Note that σr and σθ are the major and minor principal stresses at point P.

Using the earlier expressions for σr, σθ, and τrθ, we can derive the stresses 
in the rectangular coordinate system (Figure 3.2):

	 σ = σ θ σ θ τ θ θθ θz r rcos sin sin cos2 2 2+ − 	
(2.77)

or,

	

σ
π

θz
q
r

q
x z

z
x z

qz
x z

= =
+ +









 =

+
2 2 23

2 2 2 2

3 3

2 2 2cos
( )π π

	 (3.5)

Similarly

	 σ σ θ σ θ τ θ θθ θx r r= + +sin cos 2 sin cos2 2 	 (2.75)

or,

	
σ

πx
qx z

x z
=

+
2 2

2 2 2( )
	 (3.6)

q/unit length

θ

r =

cos θ =

sin θ =

z

x

z

σz

σx

x

x

σz

σx

τzx
τxz

τzx
τxz

x2 + z2

x2 + z2

x2 + z2

P

z

r

Figure 3.2  �Stresses due to a vertical line load in rectangular coordinates.
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and

	 τ σ θ θ σ θ θ τ θ θθ θxz r r= − + + −sin cos sin cos cos sin2 2( )	 (2.76)

or,

	
τ

πxz
qxz

x z
=

+
2 2

2 2 2( )
	 (3.7)

For the plane strain case

	
σ ν σ σy x z= +( )	 (3.8)

The values for σx, σz, and τxz in a nondimensional form are given in Table 3.1.

3.2.1 � Displacement on the surface (z = 0)

By relating displacements to stresses via strain, the vertical displacement w 
at the surface (i.e., z = 0) can be obtained as

	
w

E
q x C= − +2 1 2

π
ν ln 	 (3.9)

where
E is the modulus of elasticity
ν is Poisson’s ratio
C is a constant

Table 3.1  �Values of σz/(q/z), σx/(q/z), and τxz/(q/z) 
(Equations 3.5 through 3.7)

x/z σz/(q/z) σx/(q/z) τxz/(q/z)

0 0.637 0 0
0.1 0.624 0.006 0.062
0.2 0.589 0.024 0.118
0.3 0.536 0.048 0.161
0.4 0.473 0.076 0.189
0.5 0.407 0.102 0.204
0.6 0.344 0.124 0.207
0.7 0.287 0.141 0.201
0.8 0.237 0.151 0.189
0.9 0.194 0.157 0.175
1.0 0.159 0.159 0.159
1.5 0.060 0.136 0.090
2.0 0.025 0.102 0.051
3.0 0.006 0.057 0.019
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The magnitude of the constant can be determined if the vertical displace-
ment at a point is specified.

Example 3.1

For the point A in Figure 3.3, calculate the increase of vertical stress σz 
due to the two line loads.

Solution

The increase of vertical stress at A due to the line load q1 = 20 kN/m:

	
G iven,x

z
= =2
2

1m
m

From Table 3.1, for x/z = 1, σz/(q/z) = 0.159. So

	
σz

q
z() . . .1
10 159 0 159 20

2
1 5= 





= 





= 9 kN /m 2

The increase of vertical stress at A due to the line load q2 = 30 kN/m:

	
G iven,x

z
= =6m

m2
3

From Table 3.1, for x/z = 3, σz/(q/z) = 0.006. Thus

	
σz

q
z( ) . . .2
20 006 0 006 30

2
0= 





= 





= 09 kN /m 2

So, the total increase of vertical stress is

	 σ σ σz z z= + = + =( ) ( ) . . .1 2
2159 9 168kN /m0 0

2 m

4 m
q1 = 20 kN/mq2 = 30 kN/m

A

2 m

Figure 3.3  �Two line loads acting on the surface.
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3.3 � VERTICAL LINE LOAD ON THE 
SURFACE OF A FINITE LAYER

Equations 3.5 through 3.7 were derived with the assumption that the homoge-
neous soil mass extends to a great depth. However, in many practical cases, a 
stiff layer such as rock or highly incompressible material may be encountered 
at a shallow depth (Figure 3.4). At the interface of the top soil layer and the 
lower incompressible layer, the shear stresses will modify the pattern of stress 
distribution. Poulos (1966) and Poulos and Davis (1974) expressed the verti-
cal stress σz and vertical displacement at the surface (w at z = 0) in the forms:

	
σ

πz
q
h
I= 1 	 (3.10)

	
w q

E
Iz= =0 2π

	 (3.11)

where I1 and I2 are influence values.
I1 is a function of z/h, x/h, and v. Similarly, I2 is a function of x/h and v. The 

variations of I1 and I2 are given in Tables 3.2 and 3.3, respectively, for v = 0.

3.4 � VERTICAL LINE LOAD INSIDE 
A SEMI-INFINITE MASS

Equations 3.5 through 3.7 were also developed on the basis of the 
assumption that the line load is applied on the surface of a semi-infinite 
mass. However, in some cases, the line load may be embedded. Melan 
(1932) gave the solution of stresses at a point P due to a vertical line load of 

Rigid layer

x

h

q/unit length

z

Figure 3.4  �Vertical line load on a finite elastic layer.
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q per unit length applied inside a semi-infinite mass (at point A, Figure 3.5). 
The final equations are given as follows:

	

σ
πz
q

v
z d
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z d z d dz
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dzd zx
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+ −
−
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








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1 2
41

3 4
1
2

2
4

2

2
4

v
v

z d
r

z d
r

zx
r( )

	 (3.12)

Table 3.2  Variation of I1 (v = 0)

x/h

z/h

0.2 0.4 0.6 0.8 1.0

0 9.891 5.157 3.641 2.980 2.634
0.1 5.946 4.516 3.443 2.885 2.573
0.2 2.341 3.251 2.948 2.627 2.400
0.3 0.918 2.099 2.335 2.261 2.144
0.4 0.407 1.301 1.751 1.857 1.840
0.5 0.205 0.803 1.265 1.465 1.525
0.6 0.110 0.497 0.889 1.117 1.223
0.8 0.032 0.185 0.408 0.592 0.721
1.0 0.000 0.045 0.144 0.254 0.357
1.5 −0.019 −0.035 −0.033 −0.018 0.010
2.0 −0.013 −0.025 −0.035 −0.041 −0.042
4.0 0.009 0.009 0.008 0.007 0.006
8.0 0.002 0.002 0.002 0.002 0.002

Table 3.3  Variation of I2 (v = 0)

x/h I2

0.1 3.756
0.2 2.461
0.3 1.730
0.4 1.244
0.5 0.896
0.6 0.643
0.7 0.453
0.8 0.313
1.0 0.126
1.5 −0.012
2.0 −0.017
4.0 −0.002
8.0 0
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Figure 3.6 shows a plot of σz/(q/d) based on Equation 3.12.

3.5 � HORIZONTAL LINE LOAD ON THE SURFACE

The stresses due to a horizontal line load of q per unit length (Figure 3.7) 
can be evaluated by a stress function of the form

	
φ

π
θ θ= qr cos 	 (3.15)

q/unit length

x

A

d

P(x, z)

r1

r2d

z

Figure 3.5  �Vertical line load inside a semi-infinite mass.
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z
d

= 1.5

q/
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x
d

Figure 3.6  �Plot of σz/(q/d) versus x/d for various values of z/d (Equation 3.12).

q/unit length

θ

x

σθ
σr

τθr = τrθ

P(r, θ)

dθ

z

Figure 3.7  �Horizontal line load on the surface of a semi-infinite mass.
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Proceeding in a similar manner to that shown in Section 3.2 for the case 
of vertical line load, we obtain the stresses at a point P defined by r and θ as

	
σ

π
θr

q
r

= 2 sin 	 (3.16)

	 σθ = 0 	 (3.17)

	 τ θr = 0 	 (3.18)

In the rectangular coordinate system,

	
σ

πz
q xz
x z

=
+

2 2

2 2 2( )
	 (3.19)

	
σ

πx
q x
x z

=
+

2 3

2 2 2( )
	 (3.20)

	
τ

πxz
q x z
x z

=
+

2 2

2 2 2( )
	 (3.21)

For the plane strain case, σy = v(σx + σz).
Some values of σx, σz, and τxz in a nondimensional form are given in Table 3.4.

Table 3.4  �Values of σz/(q/z), σx/(q/z), and τxz/(q/z) 
(Equations 3.19 through 3.21)

x/z σz/(q/z) σx/(q/z) τxz/(q/z)

0 0 0 0
0.1 0.062 0.0006 0.006
0.2 0.118 0.0049 0.024
0.3 0.161 0.0145 0.048
0.4 0.189 0.0303 0.076
0.5 0.204 0.0509 0.102
0.6 0.207 0.0743 0.124
0.7 0.201 0.0984 0.141
0.8 0.189 0.1212 0.151
0.9 0.175 0.1417 0.157
1.0 0.159 0.1591 0.159
1.5 0.090 0.2034 0.136
2.0 0.051 0.2037 0.102
3.0 0.019 0.1719 0.057
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3.6 � HORIZONTAL LINE LOAD INSIDE 
A SEMI-INFINITE MASS

If the horizontal line load acts inside a semi-infinite mass as shown in 
Figure 3.8, Melan’s solutions for stresses at a point P(x, z) may be given as 
follows:
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	 (3.23)
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Figure 3.8  �Horizontal line load inside a semi-infinite mass.
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3.7 � UNIFORM VERTICAL LOADING ON AN 
INFINITE STRIP ON THE SURFACE

Figure 3.9 shows the case where a uniform vertical load of q per unit area 
is acting on a flexible infinite strip on the surface of a semi-infinite elastic 
mass. To obtain the stresses at a point P(x, z), we can consider an elemen-
tary strip of width ds located at a distance s from the centerline of the load. 
The load per unit length of this elementary strip is q · ds, and it can be 
approximated as a line load.

The increase of vertical stress, σz, at P due to the elementary strip loading 
can be obtained by substituting x − s for x and q · ds for q in Equation 3.5, or

	
d qds z

x s zzσ
π

=
− +

2 3

2 2 2[( ) ]
	 (3.25)

q/unit area

ds

x

δ

P(x, z)

s

B = 2b

α

z

Figure 3.9  �Uniform vertical loading on an infinite strip.
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The total increase of vertical stress, σz, at P due to the loaded strip can be 
determined by integrating Equation 3.25 with limits of s = b to s = −b; so

	

σ σ
π

π

z z

b

b

d q z
x s z

ds

q z
x b

z
x b

bz

= =
− +

=
−

−
+

−

∫ ∫
−

+

− −

2

2

3

2 2 2

1 1

[( ) ]

tan tan (( )
( )

x z b
x z b b z

2 2 2

2 2 2 2 2 24
− −

+ − +








 	 (3.26)

In a similar manner, referring to Equations 3.6 and 3.7,
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Equations 3.26 and 3.27 are for x ≥ b. However, for x = 0 to x < b, 
the term tan−1 (z/(x − b)) becomes negative. For such cases, replace tan−1 
(z/(x − b)) with π + tan−1 (z/(x − b)). Also note that, due to symmetry, the 
magnitudes of σz, σx, and τxz are the same at ±x for a given value of z.

The expressions for σz, σx, and τxz given in Equations 3.26 through 3.28 
can be presented in a simplified form:

	
σ

π
α α α δz

q= + +[ sin cos( )]2 	 (3.29)

	
σ

π
α α α δx

q= − +[ sin cos( )]2 	 (3.30)

	
τ

π
α α δxz

q= +[sin sin( )]2 	 (3.31)

where α and δ are the angles shown in Figure 3.9.

(Note:  The angle δ is positive measured counterclockwise from the vertical 
drawn at P.)

Tables 3.5 through 3.7 give the values of σz/q, σx/q, τxz/q for various val-
ues of x/b and z/b.
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Table 3.5  �Values of σz/q (Equation 3.26)

z/b

x/b

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
0.10 1.000 1.000 0.999 0.999 0.999 0.998 0.997 0.993 0.980 0.909 0.500
0.20 0.997 0.997 0.996 0.995 0.992 0.988 0.979 0.959 0.909 0.775 0.500
0.30 0.990 0.989 0.987 0.984 0.978 0.967 0.947 0.908 0.833 0.697 0.499
0.40 0.977 0.976 0.973 0.966 0.955 0.937 0.906 0.855 0.773 0.651 0.498
0.50 0.959 0.958 0.953 0.943 0.927 0.902 0.864 0.808 0.727 0.620 0.497
0.60 0.937 0.935 0.928 0.915 0.896 0.866 0.825 0.767 0.691 0.598 0.495
0.70 0.910 0.908 0.899 0.885 0.863 0.831 0.788 0.732 0.662 0.581 0.492
0.80 0.881 0.878 0.869 0.853 0.829 0.797 0.755 0.701 0.638 0.566 0.489
0.90 0.850 0.847 0.837 0.821 0.797 0.765 0.724 0.675 0.617 0.552 0.485
1.00 0.818 0.815 0.805 0.789 0.766 0.735 0.696 0.650 0.598 0.540 0.480
1.10 0.787 0.783 0.774 0.758 0.735 0.706 0.670 0.628 0.580 0.529 0.474
1.20 0.755 0.752 0.743 0.728 0.707 0.679 0.646 0.607 0.564 0.517 0.468
1.30 0.725 0.722 0.714 0.699 0.679 0.654 0.623 0.588 0.548 0.506 0.462
1.40 0.696 0.693 0.685 0.672 0.653 0.630 0.602 0.569 0.534 0.495 0.455
1.50 0.668 0.666 0.658 0.646 0.629 0.607 0.581 0.552 0.519 0.484 0.448
1.60 0.642 0.639 0.633 0.621 0.605 0.586 0.562 0.535 0.506 0.474 0.440
1.70 0.617 0.615 0.608 0.598 0.583 0.565 0.544 0.519 0.492 0.463 0.433
1.80 0.593 0.591 0.585 0.576 0.563 0.546 0.526 0.504 0.479 0.453 0.425
1.90 0.571 0.569 0.564 0.555 0.543 0.528 0.510 0.489 0.467 0.443 0.417
2.00 0.550 0.548 0.543 0.535 0.524 0.510 0.494 0.475 0.455 0.433 0.409
2.10 0.530 0.529 0.524 0.517 0.507 0.494 0.479 0.462 0.443 0.423 0.401
2.20 0.511 0.510 0.506 0.499 0.490 0.479 0.465 0.449 0.432 0.413 0.393
2.30 0.494 0.493 0.489 0.483 0.474 0.464 0.451 0.437 0.421 0.404 0.385
2.40 0.477 0.476 0.473 0.467 0.460 0.450 0.438 0.425 0.410 0.395 0.378
2.50 0.462 0.461 0.458 0.452 0.445 0.436 0.426 0.414 0.400 0.386 0.370
2.60 0.447 0.446 0.443 0.439 0.432 0.424 0.414 0.403 0.390 0.377 0.363
2.70 0.433 0.432 0.430 0.425 0.419 0.412 0.403 0.393 0.381 0.369 0.355
2.80 0.420 0.419 0.417 0.413 0.407 0.400 0.392 0.383 0.372 0.360 0.348
2.90 0.408 0.407 0.405 0.401 0.396 0.389 0.382 0.373 0.363 0.352 0.341
3.00 0.396 0.395 0.393 0.390 0.385 0.379 0.372 0.364 0.355 0.345 0.334
3.10 0.385 0.384 0.382 0.379 0.375 0.369 0.363 0.355 0.347 0.337 0.327
3.20 0.374 0.373 0.372 0.369 0.365 0.360 0.354 0.347 0.339 0.330 0.321
3.30 0.364 0.363 0.362 0.359 0.355 0.351 0.345 0.339 0.331 0.323 0.315
3.40 0.354 0.354 0.352 0.350 0.346 0.342 0.337 0.331 0.324 0.316 0.308
3.50 0.345 0.345 0.343 0.341 0.338 0.334 0.329 0.323 0.317 0.310 0.302
3.60 0.337 0.336 0.335 0.333 0.330 0.326 0.321 0.316 0.310 0.304 0.297
3.70 0.328 0.328 0.327 0.325 0.322 0.318 0.314 0.309 0.304 0.298 0.291
3.80 0.320 0.320 0.319 0.317 0.315 0.311 0.307 0.303 0.297 0.292 0.285
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Table 3.5 (continued)  �Values of σz/q (Equation 3.26)

z/b

x/b

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

3.90 0.313 0.313 0.312 0.310 0.307 0.304 0.301 0.296 0.291 0.286 0.280
4.00 0.306 0.305 0.304 0.303 0.301 0.298 0.294 0.290 0.285 0.280 0.275
4.10 0.299 0.299 0.298 0.296 0.294 0.291 0.288 0.284 0.280 0.275 0.270
4.20 0.292 0.292 0.291 0.290 0.288 0.285 0.282 0.278 0.274 0.270 0.265
4.30 0.286 0.286 0.285 0.283 0.282 0.279 0.276 0.273 0.269 0.265 0.260
4.40 0.280 0.280 0.279 0.278 0.276 0.274 0.271 0.268 0.264 0.260 0.256
4.50 0.274 0.274 0.273 0.272 0.270 0.268 0.266 0.263 0.259 0.255 0.251
4.60 0.268 0.268 0.268 0.266 0.265 0.263 0.260 0.258 0.254 0.251 0.247
4.70 0.263 0.263 0.262 0.261 0.260 0.258 0.255 0.253 0.250 0.246 0.243
4.80 0.258 0.258 0.257 0.256 0.255 0.253 0.251 0.248 0.245 0.242 0.239
4.90 0.253 0.253 0.252 0.251 0.250 0.248 0.246 0.244 0.241 0.238 0.235
5.00 0.248 0.248 0.247 0.246 0.245 0.244 0.242 0.239 0.237 0.234 0.231

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.10 0.091 0.020 0.007 0.003 0.002 0.001 0.001 0.000 0.000 0.000
0.20 0.225 0.091 0.040 0.020 0.011 0.007 0.004 0.003 0.002 0.002
0.30 0.301 0.165 0.090 0.052 0.031 0.020 0.013 0.009 0.007 0.005
0.40 0.346 0.224 0.141 0.090 0.059 0.040 0.027 0.020 0.014 0.011
0.50 0.373 0.267 0.185 0.128 0.089 0.063 0.046 0.034 0.025 0.019
0.60 0.391 0.298 0.222 0.163 0.120 0.088 0.066 0.050 0.038 0.030
0.70 0.403 0.321 0.250 0.193 0.148 0.113 0.087 0.068 0.053 0.042
0.80 0.411 0.338 0.273 0.218 0.173 0.137 0.108 0.086 0.069 0.056
0.90 0.416 0.351 0.291 0.239 0.195 0.158 0.128 0.104 0.085 0.070
1.00 0.419 0.360 0.305 0.256 0.214 0.177 0.147 0.122 0.101 0.084
1.10 0.420 0.366 0.316 0.271 0.230 0.194 0.164 0.138 0.116 0.098
1.20 0.419 0.371 0.325 0.282 0.243 0.209 0.178 0.152 0.130 0.111
1.30 0.417 0.373 0.331 0.291 0.254 0.221 0.191 0.166 0.143 0.123
1.40 0.414 0.374 0.335 0.298 0.263 0.232 0.203 0.177 0.155 0.135
1.50 0.411 0.374 0.338 0.303 0.271 0.240 0.213 0.188 0.165 0.146
1.60 0.407 0.373 0.339 0.307 0.276 0.248 0.221 0.197 0.175 0.155
1.70 0.402 0.370 0.339 0.309 0.281 0.254 0.228 0.205 0.183 0.164
1.80 0.396 0.368 0.339 0.311 0.284 0.258 0.234 0.212 0.191 0.172
1.90 0.391 0.364 0.338 0.312 0.286 0.262 0.239 0.217 0.197 0.179
2.00 0.385 0.360 0.336 0.311 0.288 0.265 0.243 0.222 0.203 0.185
2.10 0.379 0.356 0.333 0.311 0.288 0.267 0.246 0.226 0.208 0.190
2.20 0.373 0.352 0.330 0.309 0.288 0.268 0.248 0.229 0.212 0.195
2.30 0.366 0.347 0.327 0.307 0.288 0.268 0.250 0.232 0.215 0.199

(continued)
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Table 3.6  Values of σx/q (Equation 3.27)

z/b

x/b

0 0.5 1.0 1.5 2.0 2.5

0 1.000 1.000 0 0 0 0
0.5 0.450 0.392 0.347 0.285 0.171 0.110
1.0 0.182 0.186 0.225 0.214 0.202 0.162
1.5 0.080 0.099 0.142 0.181 0.185 0.165
2.0 0.041 0.054 0.091 0.127 0.146 0.145
2.5 0.230 0.033 0.060 0.089 0.126 0.121

Table 3.5 (continued)  �Values of σz/q (Equation 3.26)

z/b

x/b

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

2.40 0.360 0.342 0.323 0.305 0.287 0.268 0.251 0.234 0.217 0.202
2.50 0.354 0.337 0.320 0.302 0.285 0.268 0.251 0.235 0.220 0.205
2.60 0.347 0.332 0.316 0.299 0.283 0.267 0.251 0.236 0.221 0.207
2.70 0.341 0.327 0.312 0.296 0.281 0.266 0.251 0.236 0.222 0.208
2.80 0.335 0.321 0.307 0.293 0.279 0.265 0.250 0.236 0.223 0.210
2.90 0.329 0.316 0.303 0.290 0.276 0.263 0.249 0.236 0.223 0.211
3.00 0.323 0.311 0.299 0.286 0.274 0.261 0.248 0.236 0.223 0.211
3.10 0.317 0.306 0.294 0.283 0.271 0.259 0.247 0.235 0.223 0.212
3.20 0.311 0.301 0.290 0.279 0.268 0.256 0.245 0.234 0.223 0.212
3.30 0.305 0.296 0.286 0.275 0.265 0.254 0.243 0.232 0.222 0.211
3.40 0.300 0.291 0.281 0.271 0.261 0.251 0.241 0.231 0.221 0.211
3.50 0.294 0.286 0.277 0.268 0.258 0.249 0.239 0.229 0.220 0.210
3.60 0.289 0.281 0.273 0.264 0.255 0.246 0.237 0.228 0.218 0.209
3.70 0.284 0.276 0.268 0.260 0.252 0.243 0.235 0.226 0.217 0.208
3.80 0.279 0.272 0.264 0.256 0.249 0.240 0.232 0.224 0.216 0.207
3.90 0.274 0.267 0.260 0.253 0.245 0.238 0.230 0.222 0.214 0.206
4.00 0.269 0.263 0.256 0.249 0.242 0.235 0.227 0.220 0.212 0.205
4.10 0.264 0.258 0.252 0.246 0.239 0.232 0.225 0.218 0.211 0.203
4.20 0.260 0.254 0.248 0.242 0.236 0.229 0.222 0.216 0.209 0.202
4.30 0.255 0.250 0.244 0.239 0.233 0.226 0.220 0.213 0.207 0.200
4.40 0.251 0.246 0.241 0.235 0.229 0.224 0.217 0.211 0.205 0.199
4.50 0.247 0.242 0.237 0.232 0.226 0.221 0.215 0.209 0.203 0.197
4.60 0.243 0.238 0.234 0.229 0.223 0.218 0.212 0.207 0.201 0.195
4.70 0.239 0.235 0.230 0.225 0.220 0.215 0.210 0.205 0.199 0.194
4.80 0.235 0.231 0.227 0.222 0.217 0.213 0.208 0.202 0.197 0.192
4.90 0.231 0.227 0.223 0.219 0.215 0.210 0.205 0.200 0.195 0.190
5.00 0.227 0.224 0.220 0.216 0.212 0.207 0.203 0.198 0.193 0.188
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Using the relationships given in Equation 3.26, isobars for σz/q can be 
drawn. This is shown in Figure 3.10.

3.7.1 � Vertical displacement at the surface (z = 0)

The vertical surface displacement relative to the center of the strip load can 
be expressed as

	

w x w x q v
E

x b x b

x b x b b b
z z= =− = = − − − −

+ − +





0 0

2
0 2 1

2
( ) ( ) ( ) ( )ln

( )ln lnπ







	 (3.32)

Table 3.7  Values of τxz/q (Equation 3.28)

z/b

x/b

0 0.5 1.0 1.5 2.0 2.5

0 — — — — — —
0.5 — 0.127 0.300 0.147 0.055 0.025
1.0 — 0.159 0.255 0.210 0.131 0.074
1.5 — 0.128 0.204 0.202 0.157 0.110
2.0 — 0.096 0.159 0.175 0.157 0.126
2.5 — 0.072 0.124 0.147 0.144 0.127

0.5
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12b

4b 6b2b
0.9

0.4
0.3

0.2

0.1
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10b

σz/q =

Figure 3.10  �Isobars for σz/q below a strip load.
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Example 3.2

Refer to Figure 3.9. Given B = 4 m. For point P, z = 1 m and x = 1 m. 
Determine σz/q, σx/q, and τxz/q at P. Use Equations 3.26 through 3.28.

Solution

σz/q Calculation

Given b = B/2 = 4/2 = 2

	 z = 1 m

From Equation 3.26, since x < b
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σx/q Calculation
From Equation 3.27

	

σ
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τxz/q Calculation

From Equation 3.28

	

τ
π π
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q
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3.8 � UNIFORM STRIP LOAD INSIDE 
A SEMI-INFINITE MASS

Strip loads can be located inside a semi-infinite mass as shown in Figure 3.11. 
The distribution of vertical stress σz due to this type of loading can be deter-
mined by integration of Melan’s solution (Equation 3.12). This has been 
given by Kezdi and Rethati (1988). The magnitude of σz at a point P along 
the centerline of the load (i.e., x = 0) can be given as
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Figure 3.12 shows the influence of d/b on the variation of σz/q.

q/unit area
d

d

z

x

P(0, z)

z + 2d

B = 2b

z

Figure 3.11  �Strip load inside a semi-infinite mass.
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3.9 � UNIFORM HORIZONTAL LOADING ON 
AN INFINITE STRIP ON THE SURFACE

If a uniform horizontal load is applied on an infinite strip of width 2b as 
shown in Figure 3.13, the stresses at a point inside the semi-infinite mass can 
be determined by using a similar procedure of superposition as outlined in 
Section 3.7 for vertical loading. For an elementary strip of width ds, the load 
per unit length is q · ds. Approximating this as a line load, we can substitute q · 
ds for q and x − s for x in Equations 3.19 through 3.21. Thus, at a point P(x, z)

	

σ σ
π πz z
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Figure 3.12  �Plot of σz/q versus z/b (Equation 3.33).
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τ τ
π

π

xz xz

s b

s b

d q x s z
x s z

ds

q z
x b

= = −
− +

=
−

−

∫ ∫
=−

=+

−

2 2

2 2 2

1

( )
[( ) ]

tan tann ( )
( )

−

+
− − −

+ − +










1
2 2 2

2 2 2 2 2 2
2

4
z

x b
bzx z b

x z b b z
	 (3.36)

For x = 0 to x < b, the term tan−1 (z/(x − b)) in Equation 3.36 will be nega-
tive. So, it should be replaced by π + tan−1 (z/(x − b)). For a given value of z, 
the magnitude of τxz is the same at ± x.

The expressions for stresses given by Equations 3.34 through 3.36 may 
also be simplified as follows:

	
σ

π
α α δz

q= +[sin sin( )]2 	 (3.37)
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τ

π
α α α δxz

q= − +[ sin cos( )]2 	 (3.39)

where R1, R2, α, and δ are as defined in Figure 3.13. The angle δ is positive 
measured counterclockwise from the vertical drawn at P.
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x

ds
s

δα

R1
R2

z

Figure 3.13  �Uniform horizontal loading on an infinite strip.
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The variations of σz, σx, and τxz in a nondimensional form are given in 
Tables 3.8 through 3.10.

3.9.1 � Horizontal displacement at the surface (z = 0)

The horizontal displacement u at a point on the surface (z = 0) relative to 
the center of the strip loading is of the form

	

u x u x q v
E
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x b x b b b
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	 (3.40)

Example 3.3

Refer to Figure 3.13. Given B = 4 m. For point P, z = 1 m. Determine 
σz/q, σx/q, and τxz/q at x = ±1 m.

Solution

Calculation for σz /q

Given b = B/2 = 2 m

	 z = 1 m

	 x = ±1 m

From Equation 3.34
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Table 3.8  Values of σz/q (Equation 3.34)

z/b

x/b

0 0.5 1.0 1.5 2.0 2.5

0 — — — — — —
0.5 — 0.127 0.300 0.147 0.055 0.025
1.0 — 0.159 0.255 0.210 0.131 0.074
1.5 — 0.128 0.204 0.202 0.157 0.110
2.0 — 0.096 0.159 0.175 0.157 0.126
2.5 — 0.072 0.124 0.147 0.144 0.127
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Calculation for σx/q

From Equation 3.35
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Calculation of τxz at x = ±1 m

Note:  x < b. From Equation 3.36
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Table 3.10  Values of τxz/q (Equation 3.36)

z/b

x/b

0 0.5 1.0 1.5 2.0

0 1.000 1.000 0 0 0
0.5 0.959 0.902 0.497 0.089 0.019
1.0 0.818 0.735 0.480 0.214 0.084
1.5 0.688 0.607 0.448 0.271 0.146
2.0 0.550 0.510 0.409 0.288 0.185
2.5 0.462 0.436 0.370 0.285 0.205
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3.10 � TRIANGULAR NORMAL LOADING ON AN 
INFINITE STRIP ON THE SURFACE

Figure 3.14 shows a vertical loading on an infinite strip on width 2b. The 
load increases from zero to q across the width. For an elementary strip of 
width ds, the load per unit length can be given as (q/2b)s · ds. Approximating 
this as a line load, we can substitute (q/2b)s · ds for q and x − s for x in 
Equations 3.5 through 3.7 to determine the stresses at a point (x, z) inside 
the semi-infinite mass. Thus
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Figure 3.14  �Linearly increasing vertical loading on an infinite strip.
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For Equations 3.41 through 3.43, the angle δ is positive in the counter-
clockwise direction measured from the vertical drawn at P.

Nondimensional values of σz (Equation 3.41) are given in Table 3.11.

3.10.1 � Vertical deflection at the surface

For this condition, the vertical deflection at the surface (z = 0) can be 
expressed as
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Example 3.4

Refer to Figure 3.15. For a linearly increasing vertical loading on an 
infinite strip, given b = 1 m; q = 100 kN/m2. Determine the vertical 
stress ∆σz at P (−1 m, 1.5 m).

Solution

Refer to Figure 3.15. Also note that 2b = 2 m.

Table 3.11  Values of σz/q (Equation 3.41)

x/b

z/b

0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0

−3 0 0.0003 0.0018 0.00054 0.0107 0.0170 0.0235 0.0347 0.0422
−2 0 0.0008 0.0053 0.0140 0.0249 0.0356 0.0448 0.0567 0.0616
−1 0 0.0041 0.0217 0.0447 0.0643 0.0777 0.0854 0.0894 0.0858

0 0 0.0748 0.1273 0.1528 0.1592 0.1553 0.1469 0.1273 0.1098
1 0.5 0.4797 0.4092 0.3341 0.2749 0.2309 0.1979 0.1735 0.1241
2 0.5 0.4220 0.3524 0.2952 0.2500 0.2148 0.1872 0.1476 0.1211
3 0 0.0152 0.0622 0.1010 0.1206 0.1268 0.1258 0.1154 0.1026
4 0 0.0019 0.0119 0.0285 0.0457 0.0596 0.0691 0.0775 0.0776
5 0 0.0005 0.0035 0.0097 0.0182 0.0274 0.0358 0.0482 0.0546
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Figure 3.15  Linearly increasing load.
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3.11 � VERTICAL STRESS IN A SEMI-INFINITE 
MASS DUE TO EMBANKMENT LOADING

In several practical cases, it is necessary to determine the increase of vertical 
stress in a soil mass due to embankment loading. This can be done by the 
method of superposition as shown in Figure 3.16 and described later.

The stress at A due to the embankment loading as shown in Figure 3.16a 
is equal to the stress at A due to the triangular loading shown in Figure 3.16b 
minus the stress at A due to the triangular loading shown in Figure 3.16c.

Referring to Equation 3.41, the vertical stress at A due to the loading 
shown in Figure 3.16b is

	

q b aq+ +( ) ( )/
π

α α1 2

Similarly, the stress at A due to the loading shown in Figure 3.16c is
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Thus the stress at A due to embankment loading (Figure 3.16a) is
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–=

Figure 3.16  �Vertical stress due to embankment loading: (a) embankment loading with 
an angle of α1 + α2 at A; (b) triangular loading with an angle α1 + α2 at A; 
(c) triangular loading with angle α2 at A.
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where I3 is the influence factor,
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The values of the influence factor for various a/z and b/z are given in 
Figure 3.17.
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Figure 3.17  �Influence factors for embankment load. (After Osterberg, J.O., Influence 
values for vertical stresses in semi-infinite mass due to embankment loading, 
Proc. 4th Int. Conf. Soil Mech. Found. Eng., vol. 1, p. 393, 1957.)
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Example 3.5

A 5 m-high embankment is to be constructed as shown in Figure 3.18. 
If the unit weight of compacted soil is 18.5 kN/m3, calculate the verti-
cal stress due solely to the embankment at A, B, and C.

Solution

Vertical Stress at A: q = γH = 18.5 × 5 = 92.5 kN/m3 using the method 
of superposition and referring to Figure 3.19a.

	 σ σ σzA z z= +( ) ( )1 2

For the left-hand section, b/z = 2.5/5 = 0.5 and a/z = 5/5 = 1. From 
Figure 3.17, I3 = 0.396. For the right-hand section, b/z = 7.5/5 = 1.5 and 
a/z = 5/5 = 1. From Figure 3.17, I3 = 0.477. So

	 σzA = + =( . . )( .) .0 0 0396 477 92 5 8 75 kN /m 2

Vertical stress at B: Using Figure 3.19b

	 σ σ σ σzB z z z= + −( ( (†1) 2) 3)

For the left-hand section, b/z = 0/10 = 0, a/z = 2.5/5 = 0.5. So, from 
Figure 3.17, I3 = 0.14. For the middle section, b/z = 12.5/5 = 2.5, a/z = 
5/5 = 1. Hence, I3 = 0.493. For the right-hand section, I3 = 0.14 (same 
as the left-hand section). So

	

σzB = × + × − ×

=

( . )( . .) ( . )( . ) ( . )( . .)

( .

0 14 18 5 2 5 0 493 18 5 5 0 14 18 5 2 5

0 4993 92 5 45 5 2)( .) .= kN /m

5 m

1:1 Slope

1:1 Slope

2.5 m

10 m
2.5

7.5 m m

5 m
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Figure 3.18  �Stress increase due to embankment loading (not to scale).
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Vertical stress at C: Referring to Figure 3.19c

	 σ σ σzC z z= −( (†1) 2)

For the left-hand section, b/z = 20/5 = 4, a/z = 5/5 = 1. So, I3 = 0.498. 
For the right-hand section, b/z = 5/5 = 1, a/z = 5/5 = 1. So, I3 = 0.456. 
Hence

	 σzC = − =( . . )( .)† .0 0498 456 92 5 389 kN /m 2
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Chapter 4

Stresses and displacements 
in a soil mass
Three-dimensional problems

4.1 � INTRODUCTION

In Chapter 3, the procedure for estimating stress and displacement for 
plane strain cases was discussed. This chapter relates to the calculation 
of stress and displacement for three-dimensional problems based on the 
theory of elasticity.

4.2 � STRESSES DUE TO A VERTICAL 
POINT LOAD ON THE SURFACE

Boussinesq (1883) solved the problem for stresses inside a semi-infinite 
mass due to a point load acting on the surface. In rectangular coordinates, 
the stresses at a point P(x,y,z) may be expressed as follows (Figure 4.1):
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τ
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where
Q is the point load

R z r= +2 2

r x y= +2 2

v is Poisson’s ratio

In cylindrical coordinates, the stresses may be expressed as follows 
(Figure 4.2):
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Figure 4.1  �Concentrated point load on the surface (rectangular coordinates).
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Equation 4.1 (or [4.7]) can be expressed as

	
σz I Q

z
= 4 2 	 (4.11)

where I4 is the nondimensional influence factor:
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Table 4.1 gives the values of I4 for various values of r/z.

4.3 � DEFLECTION DUE TO A CONCENTRATED 
POINT LOAD AT THE SURFACE

The deflections at a point due to a concentrated point load located at the 
surface are as follows (Figure 4.1):
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Figure 4.2  �Concentrated point load (vertical) on the surface (cylindrical coordinates).
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4.4 � HORIZONTAL POINT LOAD ON THE SURFACE

Figure 4.3 shows a horizontal point load Q acting on the surface of a semi-
infinite mass. This is generally referred to as Cerutti’s problem. The stresses 
at a point P(x, y, z) are as follows:
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Table 4.1  �Value of I4 (Equation 4.12)

r/z I4

0 0.4775
0.2 0.4329
0.4 0.3294
0.6 0.2214
0.8 0.1386
1.0 0.0844
1.2 0.0513
1.4 0.0317
1.6 0.0200
1.8 0.0129
2.0 0.0085
2.5 0.0034
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Also, the displacements at point P can be given as
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P(x, y, z)y

x

y

z

x

Q

R

z

Figure 4.3  �Horizontal point load on the surface.
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4.5 � VERTICAL STRESS DUE TO A LINE 
LOAD OF FINITE LENGTH

Figure 4.4 shows a flexible line load of length L, and the load per unit 
length is equal to q. In order to determine the vertical stress at P due to the 
line load, we consider an elementary length dy of the line load. The load 
on the elementary length is then equal to q · dy. The vertical stress increase 
dσz due to the elemental load at P can be obtained using Equation 4.1, or

	
d q dy z

Rzσ
π

= ⋅3
2

3

5
( )

	 (4.25)

where

	 R a y z5 2 2 2 5 2= + +( )/ 	 (4.26)

Thus, the total stress increase σz at P due to the entire line load of length L 
can be given as

	

σ σ
πz z

L

d q dy z
a y z

q
z
I= = ⋅

+ +
=∫ ∫ 3

2

3

2 2 2 5 2 5

0

( )
( )/ 	 (4.27)

y q

o

x

L

dy

x = a
σz

y

P (0, 0, z)

z

Figure 4.4  �Line load of length L on the surface of a semi-infinite soil mass.
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where
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m a

z1 = 	 (4.29)

	
n L

z1 = 	 (4.30)

Figure 4.5 shows a plot of the variation of I5 with m1 and n1.

0.34

m1 = 0

0.3 0.1
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0.3
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0.5

0.6

0.7

0.8

0.9

1.0
1.2

1.4
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0.2

I 5

0.1

10.0 1.0 0.1
0

n1

Figure 4.5  �Variation of I5 with m1 and n1.
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Example 4.1

Refer to Figure 4.4. Given a = 3 m, L = 4.8 m, q = 50 kN/m. Determine 
the increase in stress, σz, due to the line load at

	 a.	Point with coordinates (0, 0, 6 m)
	 b.	Point with coordinates (0, 2.4 m, 6 m)

Solution

Part a:

	
m a

z1
3
6

0 5= = = .

	
n L

z1
4 8
6

0 8= = =. .

From Figure 4.5, for m1 = 0.5 and n1 = 0.8, the value of I5 is about 
0.158. So

	
σz

q
z
I= = =( ) ( . )5

50
6

0 158 1.32kN /m 2

Part b:

As shown in Figure 4.6, the method of superposition can be used. 
Referring to Figure 4.6,

	 σ σ σz z z= +() ( )1 2

For obtaining σz(1) (Figure 4.6a),

	
m 1

3
6

0 5= = .

	
n L

z1
1 2 4

6
0 4= = =. .

From Figure 4.5, I5(1) ≈ 0.1. Similarly, for σz(2) (Figure 4.6b)

	 m 1 5= 0.

	
n L

z1
2 2 4

6
0 4= = =. .

So, I5(2) ≈ 0.1. Hence

	
σz

q
z
I I= + = + =[ ] ( . .)() ( )5 1 5 2

50
6

0 1 0 1 1.67kN /m 2
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4.6 � STRESSES BELOW A CIRCULARLY LOADED 
FLEXIBLE AREA (UNIFORM VERTICAL LOAD)

Integration of the Boussinesq’s equation given in Section 4.2 can be adopted 
to obtain the stresses below the center of a circularly loaded flexible area. 
Figure 4.7 shows a circular area of radius b being subjected to a uniform 
load of q per unit area. Consider an elementary area dA. The load over 
the area is equal to q · dA, and this can be treated as a point load. To deter-
mine the vertical stress due to the elementary load at a point P, we can 

substitute q · dA for Q and r z2 2+  for R in Equation 4.1. Thus

	
d q dA z

r zzσ
π

=
+

( )
( )/
3

2

3

2 2 5 2
⋅

	 (4.31)

Since dA = rdθ dr, the vertical stress at P due to the entire loaded area 
may now be obtained by substituting for dA in Equation 4.31 and then 
integrating

	

σ
π

θ

θ

θ

z

r

r b
q z rd dr
r z

q z
b z

=
+

= −
+











=

=

=

=

∫ 3
2

1
3

2 2 5 2

3

2 2 3 2
00

( ) ( )/ /

22π

∫ 	 (4.32)

y1

x1 x1

y2

L1 = 2.4 m

q= 50 kN/m

q= 50 kN/m

L2 = 2.4 m

z= 6 m
z= 6 m

3 m

3 m

σz(1)
σz(2)

z1 z1(a) (b)

Figure 4.6  Stress due to a line load: (a) determination of z(1); (b) determination of z(2).
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Proceeding in a similar manner, we can also determine σr and σθ at point P as

	
σ σθr

q v v z
b z

z
b z

= = + − +
+

+
+









2

1 2 21
2 2 1 2

3

2 2 3 2
( )

( ) ( )/ / 	 (4.33)

A detailed tabulation of stresses below a uniformly loaded flexible circu-
lar area was given by Ahlvin and Ulery (1962). Referring to Figure 4.8, the 
stresses at point P may be given by

	 σz q A B= ′ + ′( )	 (4.34)

	 σr q vA C v F= ′ + + −[ ( ) ]2 1 2 	 (4.35)

	 σθ = ′ − + −q vA D v E[ ( ) ]2 1 2 	 (4.36)

	 τ τrz zr qG= = 	 (4.37)

where A′, B′, C, D, E, F, and G are functions of s/b and z/b; the values of 
these are given in Tables 4.2 through 4.8.

r

b

dr

dθ

dA

O

Diameter = 
B = 2b

q per unit area

σz
P

Figure 4.7  �Stresses below the center of a circularly loaded area due to uniform 
vertical load.
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Note that σθ is a principal stress, due to symmetry. The remaining two 
principal stresses can be determined as

	
σ σ σ σ σ τ
P

z r z r rz= + ± − +( ) ( ) ( )2 22
2

	 (4.38)

Example 4.2

Refer to Figure 4.8. Given that q = 100 kN/m2, B = 2b = 5 m, and 
v = 0.45, determine the principal stresses at a point defined by s = 3.75 m 
and z = 5 m.

Solution

s/b = 3.75/2.5 = 1.5; z/b = 5/2.5 = 2. From Tables 4.2 through 4.8

A′ = 0.06275

B′ = 0.06371

C = −0.00782

D = 0.05589

E = 0.04078

F = 0.02197

G = 0.07804

s

bLoad = q per unit area

b

s

z

P

Figure 4.8  �Stresses at any point below a circularly loaded area.
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4.7 � VERTICAL DISPLACEMENT DUE TO UNIFORMLY 
LOADED CIRCULAR AREA AT THE SURFACE

The vertical displacement due to a uniformly loaded circular area at a point 
(Figure 4.9) can be determined by using the same procedure we used previ-
ously for a point load, which involves determination of the strain ∈z from the 
equation

	
∈ = − +z z rE

v1[ ( )]σ σ σθ 	 (4.39)

and determination of the settlement by integration with respect to z.
The relations for σz, σr, and σθ are given in Equations 4.34 through 4.36. 

Substitution of the relations for σz, σr, and σθ in the preceding equation for 
strain and simplification gives (Ahlvin and Ulery, 1962)

	
∈ = − − ′ + ′z q v

E
v A B1 1 2[( ) ]	 (4.40)

where q is the load per unit area. A′ and B′ are nondimensional and are 
functions of z/b and s/b; their values are given in Tables 4.2 and 4.3.
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The vertical deflection at a depth z can be obtained by integration of 
Equation 4.40 as

	
w q v

E
b z

b
I vI= + + −





1 16 7( ) 	 (4.41)

where
I6 = A′ (Table 4.2)
b is the radius of the circular loaded area

The numerical values and I7 (which is a function of z/b and s/b) are given 
in Table 4.9.

From Equation 4.41, it follows that the settlement at the surface (i.e., at 
z = 0) is

	
w qb v

E
Iz( )= = −

0

2

7
1

	 (4.42)

dz
Єz

z

Circular area;
Load/unit area =q

B=2b
Radius

=b

s

Figure 4.9  �Elastic settlement due to a uniformly loaded circular area.
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Example 4.3

Consider a uniformly loaded flexible circular area on the surface of a 
sand  layer 9 m thick as shown in Figure 4.10. The circular area has a 
diameter of 3 m. Also given q = 100 kN/m2; for sand, E = 21,000 kN/m2 
and v = 0.3.

	 a.	Use Equation 4.41 and determine the deflection of the center of 
the circular area (z = 0).

	 b.	Divide the sand layer into these layers of equal thickness of 3 m 
each. Use Equation 4.40 to determine the deflection at the center 
of the circular area.

Solution

Part a:

From Equation 4.41

	
w q v

E
b z

b
I vI= + + −





( ) ( )1 16 7

	 w w wz s z snet 9m= −= = = =( , ) ( , )0 0 0

3 m

3 m

3 m

3 m

Flexible

E= 21,000 kN/m2

v= 0.3

Sand

q= 100 kN/m3

z

Rock

Є1

Є2

Є3

Figure 4.10  �Elastic settlement calculation for a layer of finite thickness.
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For z/b = 0 and s/b = 0, I6 = 1 and I7 = 2; so

	
w z s( , )

( .)
,

( .)[( .) ] .= = = + − = =0 0
1001 0 3
21 000

1 5 1 0 32 0 013 m 13m m

For z/b = 9/1.5 = 6 and s/b = 0, I6 = 0.01361 and I7 = 0.16554; so

	

w z m s( , )
( .)( .)

,
[ ( . ) ( .) .= = = + + −9 0

1001 0 3 1 5
21 000

60 01361 1 0 30 165 554

0 00

]

. .= =183m 183m m

Hence, wnet = 13 − 1.83 = 11.17 mm.

Part b:

From Equation 4.40

	
∈ = + − ′ + ′z

q v
E

v A B( )[( ) ]1 1 2

Layer 1: From Tables 4.2 and 4.3, for z/b = 1.5/1.5 = 1 and s/b = 0, 
A′ = 0.29289 and B′ = 0.35355

	
∈ = + − + =z()

( .)
,

[( . )( . ) . ] .1
1001 0 3
21 000

1 0 6 0 29289 0 35355 0 00291

Layer 2: For z/b = 4.5/1.5 = 3 and s/b = 0, A′ = 0.05132 and B′ = 0.09487

	
∈ = + − + =z( )

( .)
,

[( . )( . ) . ] .2
1001 0 3
21 000

1 0 6 0 05132 0 09487 0 00071

Layer 3: For z/b = 7.5/1.5 = 5 and s/b = 0, A′ = 0.01942 and B′ = 0.03772

	
∈ = + − + =z( )

( .)
,

[( . )( . ) . . ] .3
1001 0 3
21 000

1 0 6 0 01942 0 0 3772 0 00028

The final stages in the calculation are tabulated as follows:

Layer i Layer thickness ∆zi (m)
Strain at the center 

of the layer ∈z(i) ∈z(i) ∆zi (m)

1 3 0.00291 0.00873
2 3 0.00071 0.00213
3 3 0.00028 0.00084

Σ0.0117 m

= 11.7 mm
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4.8 � VERTICAL STRESS BELOW A RECTANGULAR 
LOADED AREA ON THE SURFACE

The stress at a point P at a depth z below the corner of a uniformly loaded 
(vertical) flexible rectangular area (Figure 4.11) can be determined by inte-
gration of Boussinesq’s equations given in Section 4.2. The vertical load 
over the elementary area dx dy may be treated as a point load of magnitude 
q · dx · dy. The vertical stress at P due to this elementary load can be evalu-
ated with the aid of Equation 4.1:

	
d qdxdyz

x y zzσ
π

=
+ +

3
2

3

2 2 2 5 2( )/

The total increase of vertical stress at P due to the entire loaded area 
may be determined by integration of the previous equation with horizontal 
limits of x = 0 to x = L and y = 0 to y = B. Newmark (1935) gave the results 
of the integration in the following form:

	 σz qI= 8 	 (4.43)

	
I m n m n

m n m n
m n
m n8

2 2 1 2

2 2 2 2

2 2

2 2
11

4
2 1

1
2
1

2= + + +
+ + +

+ +
+ +




 + −

π
( ) tan

/ mm n m n
m n m n

( )/2 2 1 2

2 2 2 2
1
1

+ +
+ − +






� (4.44)

where
m = B/z
n = L/z

The values of I8 for various values of m and n are given in Table 4.10.

L

P (0, 0, z)

y

B

x

dy
dx

Uniform vertical load
q/unit area

z

Figure 4.11  �Vertical stress below the corner of a uniformly loaded (normal) rectangular area.
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The arctangent term in Equation 4.44 must be a positive angle in radians. 
When m2 + n2 + 1 < m2n2, it becomes a negative angle. So, a term π should 
be added to that angle.

For equations concerning the determination of σx, σy, τxz, τyz, and τxy, 
the reader is referred to the works of Holl (1940) and Giroud (1970).

The use of Table 4.10 for determination of the vertical stress at any point 
below a rectangular loaded area is shown in Example 4.4.

In most cases, the vertical stress below the center of a rectangular area is 
of importance. This can be given by the relationship

	 ∆σ = qI9

where
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m n n

� (4.45)

	
′ =m L

B1 	 (4.46)

	
′ =n z

B1 2( )/
	 (4.47)

The variation of I9 with m1 and n1 is given in Table 4.11.

Example 4.4

A distributed load of 50 kN/m2 is acting on the flexible rectangular 
area 6 × 3 m as shown in Figure 4.12. Determine the vertical stress at 
point A, which is located at a depth of 3 m below the ground surface.

Solution

The total increase of stress at A may be evaluated by summing the 
stresses contributed by the four rectangular loaded areas shown in 
Figure 4.12. Thus

	 σz q I I I I= + + +( )() ( ) ( ) (8 1 8 2 8 3 8 4)

	
n L

z
m B

z() ()
. . . .1

1
1

14 5
3

1 5 1 5
3

0 5= = = = = =
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Table 4.11  Variation of I9 with ′m1 and ′n1

′n1

′m1

1 2 3 4 5 6 7 8 9 10

0.20 0.994 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997
0.40 0.960 0.976 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977
0.60 0.892 0.932 0.936 0.936 0.937 0.937 0.937 0.937 0.937 0.937
0.80 0.800 0.870 0.878 0.880 0.881 0.881 0.881 0.881 0.881 0.881
1.00 0.701 0.800 0.814 0.817 0.818 0.818 0.818 0.818 0.818 0.818
1.20 0.606 0.727 0.748 0.753 0.754 0.755 0.755 0.755 0.755 0.755
1.40 0.522 0.658 0.685 0.692 0.694 0.695 0.695 0.696 0.696 0.696
1.60 0.449 0.593 0.627 0.636 0.639 0.640 0.641 0.641 0.641 0.642
1.80 0.388 0.534 0.573 0.585 0.590 0.591 0.592 0.592 0.593 0.593
2.00 0.336 0.481 0.525 0.540 0.545 0.547 0.548 0.549 0.549 0.549
3.00 0.179 0.293 0.348 0.373 0.384 0.389 0.392 0.393 0.394 0.395
4.00 0.108 0.190 0.241 0.269 0.285 0.293 0.298 0.301 0.302 0.303
5.00 0.072 0.131 0.174 0.202 0.219 0.229 0.236 0.240 0.242 0.244
6.00 0.051 0.095 0.130 0.155 0.172 0.184 0.192 0.197 0.200 0.202
7.00 0.038 0.072 0.100 0.122 0.139 0.150 0.158 0.164 0.168 0.171
8.00 0.029 0.056 0.079 0.098 0.113 0.125 0.133 0.139 0.144 0.147
9.00 0.023 0.045 0.064 0.081 0.094 0.105 0.113 0.119 0.124 0.128

10.00 0.019 0.037 0.053 0.067 0.079 0.089 0.097 0.103 0.108 0.112

L1 = L3

B1 = 1.5 m 1 2

3

A

4

B1 = B2

B3 = B4B3 = 1.5 m

L3 = 4.5 m L4 =
1.5 m

L2 = L4

3 m

A

Figure 4.12  �Distributed load on a flexible rectangular area.
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From Table 4.10, I8(1) = 0.131. Similarly

	
n L

z
m B

z
I( ) ( ) ( )

. . . .2
2

2
2

8 2
1 5
3

0 5 0 5 0 084= = = = = =

	 n m I( ) ( ) ( ). . .3 3 8 31 5 0 5 0 131= = =

	 n m I( ) ( ) ( ). . .4 4 8 40 5 0 5 0 085= = =

So

	 σz = + + + =5 131 84 131 84 215 kN /m 200 0 0 0 0 0( . . . . ) .

4.9 � DEFLECTION DUE TO A UNIFORMLY 
LOADED FLEXIBLE RECTANGULAR AREA

The elastic deformation in the vertical direction at the corner of a uni-
formly loaded rectangular area of size L × B (Figure 4.11) can be obtained 
by proper integration of the expression for strain. The deflection at a 
depth z below the corner of the rectangular area can be expressed in the 
form (Harr, 1966)
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Values of I10 and I11 are given in Tables 4.12 and 4.13.
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Table 4.12  Variation of I10

′′n1

Value of ′′m1

1 2 3 4 5 6 7 8 9 10

0.00 1.122 1.532 1.783 1.964 2.105 2.220 2.318 2.403 2.477 2.544
0.25 1.095 1.510 1.763 1.944 2.085 2.200 2.298 2.383 2.458 2.525
0.50 1.025 1.452 1.708 1.890 2.032 2.148 2.246 2.331 2.406 2.473
0.75 0.933 1.371 1.632 1.816 1.959 2.076 2.174 2.259 2.334 2.401
1.00 0.838 1.282 1.547 1.734 1.878 1.995 2.094 2.179 2.255 2.322
1.25 0.751 1.192 1.461 1.650 1.796 1.914 2.013 2.099 2.175 2.242
1.50 0.674 1.106 1.378 1.570 1.717 1.836 1.936 2.022 2.098 2.166
1.75 0.608 1.026 1.299 1.493 1.641 1.762 1.862 1.949 2.025 2.093
2.00 0.552 0.954 1.226 1.421 1.571 1.692 1.794 1.881 1.958 2.026
2.25 0.504 0.888 1.158 1.354 1.505 1.627 1.730 1.817 1.894 1.963
2.50 0.463 0.829 1.095 1.291 1.444 1.567 1.670 1.758 1.836 1.904
2.75 0.427 0.776 1.037 1.233 1.386 1.510 1.613 1.702 1.780 1.850
3.00 0.396 0.728 0.984 1.179 1.332 1.457 1.561 1.650 1.729 1.798
3.25 0.369 0.686 0.935 1.128 1.281 1.406 1.511 1.601 1.680 1.750
3.50 0.346 0.647 0.889 1.081 1.234 1.359 1.465 1.555 1.634 1.705
3.75 0.325 0.612 0.848 1.037 1.189 1.315 1.421 1.511 1.591 1.662
4.00 0.306 0.580 0.809 0.995 1.147 1.273 1.379 1.470 1.550 1.621
4.25 0.289 0.551 0.774 0.957 1.107 1.233 1.339 1.431 1.511 1.582
4.50 0.274 0.525 0.741 0.921 1.070 1.195 1.301 1.393 1.474 1.545
4.75 0.260 0.501 0.710 0.887 1.034 1.159 1.265 1.358 1.438 1.510
5.00 0.248 0.479 0.682 0.855 1.001 1.125 1.231 1.323 1.404 1.477
5.25 0.237 0.458 0.655 0.825 0.969 1.093 1.199 1.291 1.372 1.444
5.50 0.227 0.440 0.631 0.797 0.939 1.062 1.167 1.260 1.341 1.413
5.75 0.217 0.422 0.608 0.770 0.911 1.032 1.137 1.230 1.311 1.384
6.00 0.208 0.406 0.586 0.745 0.884 1.004 1.109 1.201 1.282 1.355
6.25 0.200 0.391 0.566 0.722 0.858 0.977 1.082 1.173 1.255 1.328
6.50 0.193 0.377 0.547 0.699 0.834 0.952 1.055 1.147 1.228 1.301
6.75 0.186 0.364 0.529 0.678 0.810 0.927 1.030 1.121 1.203 1.275
7.00 0.179 0.352 0.513 0.658 0.788 0.904 1.006 1.097 1.178 1.251
7.25 0.173 0.341 0.497 0.639 0.767 0.881 0.983 1.073 1.154 1.227
7.50 0.168 0.330 0.482 0.621 0.747 0.860 0.960 1.050 1.131 1.204
7.75 0.162 0.320 0.468 0.604 0.728 0.839 0.939 1.028 1.109 1.181
8.00 0.158 0.310 0.455 0.588 0.710 0.820 0.918 1.007 1.087 1.160
8.25 0.153 0.301 0.442 0.573 0.692 0.801 0.899 0.987 1.066 1.139
8.50 0.148 0.293 0.430 0.558 0.676 0.783 0.879 0.967 1.046 1.118
8.75 0.144 0.285 0.419 0.544 0.660 0.765 0.861 0.948 1.027 1.099
9.00 0.140 0.277 0.408 0.531 0.644 0.748 0.843 0.930 1.008 1.080
9.25 0.137 0.270 0.398 0.518 0.630 0.732 0.826 0.912 0.990 1.061
9.50 0.133 0.263 0.388 0.506 0.616 0.717 0.810 0.895 0.972 1.043
9.75 0.130 0.257 0.379 0.494 0.602 0.702 0.794 0.878 0.955 1.026

10.00 0.126 0.251 0.370 0.483 0.589 0.688 0.778 0.862 0.938 1.009
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Table 4.13  Variation of I11

′′n1

Value of ′′m1

1 2 3 4 5 6 7 8 9 10

0.25 0.098 0.103 0.104 0.105 0.105 0.105 0.105 0.105 0.105 0.105
0.50 0.148 0.167 0.172 0.174 0.175 0.175 0.175 0.176 0.176 0.176
0.75 0.166 0.202 0.212 0.216 0.218 0.219 0.220 0.220 0.220 0.220
1.00 0.167 0.218 0.234 0.241 0.244 0.246 0.247 0.248 0.248 0.248
1.25 0.160 0.222 0.245 0.254 0.259 0.262 0.264 0.265 0.265 0.266
1.50 0.149 0.220 0.248 0.261 0.267 0.271 0.274 0.275 0.276 0.277
1.75 0.139 0.213 0.247 0.263 0.271 0.277 0.280 0.282 0.283 0.284
2.00 0.128 0.205 0.243 0.262 0.273 0.279 0.283 0.286 0.288 0.289
2.25 0.119 0.196 0.237 0.259 0.272 0.279 0.284 0.288 0.290 0.292
2.50 0.110 0.186 0.230 0.255 0.269 0.278 0.284 0.288 0.291 0.293
2.75 0.102 0.177 0.223 0.250 0.266 0.277 0.283 0.288 0.291 0.294
3.00 0.096 0.168 0.215 0.244 0.262 0.274 0.282 0.287 0.291 0.294
3.25 0.090 0.160 0.208 0.238 0.258 0.271 0.279 0.285 0.290 0.293
3.50 0.084 0.152 0.200 0.232 0.253 0.267 0.277 0.283 0.288 0.292
3.75 0.079 0.145 0.193 0.226 0.248 0.263 0.273 0.281 0.287 0.291
4.00 0.075 0.138 0.186 0.219 0.243 0.259 0.270 0.278 0.285 0.289
4.25 0.071 0.132 0.179 0.213 0.237 0.254 0.267 0.276 0.282 0.287
4.50 0.067 0.126 0.173 0.207 0.232 0.250 0.263 0.272 0.280 0.285
4.75 0.064 0.121 0.167 0.201 0.227 0.245 0.259 0.269 0.277 0.283
5.00 0.061 0.116 0.161 0.195 0.221 0.241 0.255 0.266 0.274 0.281
5.25 0.059 0.111 0.155 0.190 0.216 0.236 0.251 0.263 0.271 0.278
5.50 0.056 0.107 0.150 0.185 0.211 0.232 0.247 0.259 0.268 0.276
5.75 0.054 0.103 0.145 0.179 0.206 0.227 0.243 0.255 0.265 0.273
6.00 0.052 0.099 0.141 0.174 0.201 0.223 0.239 0.252 0.262 0.270
6.25 0.050 0.096 0.136 0.170 0.197 0.218 0.235 0.248 0.259 0.267
6.50 0.048 0.093 0.132 0.165 0.192 0.214 0.231 0.245 0.256 0.265
6.75 0.046 0.089 0.128 0.161 0.188 0.210 0.227 0.241 0.252 0.262
7.00 0.045 0.087 0.124 0.156 0.183 0.205 0.223 0.238 0.249 0.259
7.25 0.043 0.084 0.121 0.152 0.179 0.201 0.219 0.234 0.246 0.256
7.50 0.042 0.081 0.117 0.149 0.175 0.197 0.216 0.231 0.243 0.253
7.75 0.040 0.079 0.114 0.145 0.171 0.193 0.212 0.227 0.240 0.250
8.00 0.039 0.077 0.111 0.141 0.168 0.190 0.208 0.224 0.236 0.247
8.25 0.038 0.074 0.108 0.138 0.164 0.186 0.205 0.220 0.233 0.244
8.50 0.037 0.072 0.105 0.135 0.160 0.182 0.201 0.217 0.230 0.241
8.75 0.036 0.070 0.103 0.132 0.157 0.179 0.198 0.214 0.227 0.238
9.00 0.035 0.069 0.100 0.129 0.154 0.176 0.194 0.210 0.224 0.235
9.25 0.034 0.067 0.098 0.126 0.151 0.172 0.191 0.207 0.221 0.233
9.50 0.033 0.065 0.095 0.123 0.147 0.169 0.188 0.204 0.218 0.230
9.75 0.032 0.064 0.093 0.120 0.145 0.166 0.185 0.201 0.215 0.227

10.00 0.032 0.062 0.091 0.118 0.142 0.163 0.182 0.198 0.212 0.224
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For surface deflection at the corner of a rectangular area, we can substi-
tute z B n/ = ′′ =1 0 in Equation 4.48 and make the necessary calculations; thus

	
w qB

E
v I( ) ( )corner = −

2
1 2

10 	 (4.53)

The deflection at the surface for the center of a rectangular area (Figure 4.13) 
can be found by adding the deflection for the corner of four rectangular 
areas of dimension L/2 × B/2. Thus, from Equation 4.48
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E
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− = −4 2
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Example 4.5

Consider a flexible rectangular area measuring 3 m × 6 m (B × L) 
on the ground surface. The flexible area is subjected to a loading 
q = 100 kN/m2. A rock layer is located 6 m below the ground surface. 
Determine the deflection at the surface below the center of the loaded 
area. Use E = 18,000 kN/m2 and ν = 0.3.

Solution

	 w w z w z( ) ( ) ( )center center at center at 6 m= = − =0

From Equation 4.54

	
w z qB

E
I(centerat 0)= = −( )1 2
10ν

1
3

Corner of
small rectangles

2 4

L/2

B/2

B/2

L/2

Figure 4.13  �Determination of settlement at the center of a rectangular area of dimen­
sions L × B.
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′′ = = =m L

B1
6
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2

	
′′ = = =n z

B1
0
3

0

From Table 4.12, for ′′ =m 1 2 and ′′ =n1 0, the value of I10 is 1.532. 
Hence

	
w z(centerat 0) m 23.2m= = − = =( )()

,
( . )( . ) .100 3

18 000
1 0 3 1 532 0 02322 mm

w(center at z = 6 m) = (4)[w(corner) at z = 6 m of a rectangular area 
measuring B′ × L′ = B/2 × L/2 = 1.5 m × 3 m

For this case
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From Table 4.12, I10 = 0.580; and from Table 4.13, I11 = 0.138. For one 
of the rectangular areas measuring B′ × L′, from Equation 4.48
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So, for the center of the rectangular area measuring B × L
w(center at z = 6 m) = (4)(1.9) = 7.6 mm

Hence
w(center) = 23.2 − 7.6 = 15.6 mm

4.10 � STRESSES IN A LAYERED MEDIUM

In the preceding sections, we discussed the stresses inside a homogeneous 
elastic medium due to various loading conditions. In actual cases of soil 
deposits, it is possible to encounter layered soils, each with a different 
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modulus of elasticity. A case of practical importance is that of a stiff soil 
layer on top of a softer layer, as shown in Figure 4.14a. For a given loading 
condition, the effect of the stiff layer will be to reduce the stress concentra-
tion in the lower layer. Burmister (1943) worked on such problems involv-
ing two- and three-layer flexible systems. This was later developed by Fox 
(1948), Burmister (1958), Jones (1962), and Peattie (1962).

The effect of the reduction of stress concentration due to the presence of 
a stiff top layer is demonstrated in Figure 4.14b. Consider a flexible circu-
lar area of radius b subjected to a loading of q per unit area at the surface 
of a two-layered system. E1 and E2 are the moduli of elasticity of the top 
and the bottom layer, respectively, with E1 > E2; and h is the thickness of 
the top layer. For h = b, the elasticity solution for the vertical stress σz at 
various depths below the center of the loaded area can be obtained from 
Figure 4.14b. The curves of σz/q against z/b for E1/E2 = 1 give the simple 
Boussinesq case, which is obtained by solving Equation 4.32. However, 
for E1/E2 > 1, the value of σz/q for a given z/b decreases with the increase 
of E1/E2. It must be pointed out that in obtaining these results it is assumed 
that there is no slippage at the interface.

The study of the stresses in a flexible layered system is of importance in 
highway pavement design.

0
0

1

2

3

0.2

100
50

20
10

3 2

= 1

0.4

E1
E2

0.6 0.8 1.0

σz
q

Based on Burmister (1958)
solution (Note: h = b) 

E1

E2

b
z

z

Load = q/unit area
Radius = b

h

(b)(a)

Figure 4.14  �(a) Uniformly loaded circular area in a two-layered soil E1 > E2 and (b) verti­
cal stress below the centerline of a uniformly loaded circular area.
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4.11 � VERTICAL STRESS AT THE INTERFACE 
OF A THREE-LAYER FLEXIBLE SYSTEM

Peattie (1962) prepared a number of graphs for determination of the vertical 
stress σz at the interfaces of three-layer systems (Figure 4.15) below the 
center of a uniformly loaded flexible circular area. These graphs are pre-
sented in Figures A.1 through A.32 (see the Appendix). In the determination 
of these stresses, it is assumed that Poisson’s ratio for all layers is 0.5. The 
following parameters have been used in the graphs:

	
K E

E1
1

2
= 	 (4.55)

	
K E

E2
2

3
= 	 (4.56)

	
A b

h
=

2

	 (4.57)

	
H h

h
= 1

2
	 (4.58)

For determination of the stresses σz1 and σz2 (vertical stresses at interfaces 
1 and 2, respectively), we first obtain ZZ1 and ZZ2 from the graphs. The 
stresses can then be calculated from

	 σz q ZZ1 1= ( )	 (4.59a)

h1

v1 = 0.5
E1

v3 = 0.5
E3

v2 = 0.5
E2

h2

h3 = ∞

σz1

σz2 σŕ2

σŕ3

σr1

σr2

Load =q/unit area

Interface 1

Interface 2

Uniformly loaded circular area
Radius =b

Figure 4.15  �Uniformly loaded circular area on a three-layered medium.
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and

	 σz q ZZ2 2= ( )	 (4.59b)

Typical use of these graphs is shown in Example 4.6.

Example 4.6

A flexible circular area is subjected to a uniformly distributed load of 
100 kN/m2 as shown in Figure 4.16. Determine the vertical stress σz1 at 
the interface of the stiff and medium-stiff clay.

Solution

	
K E

E1
1

2

10 000
6 666

1 5= = =,
,

.

	
K E

E2
2

3

6 666
1666 5

4= = =,
.

	
A b

h
= = =

2

0 6
3

0 2. .

	
H h

h
= = =1

2

1 5
3

0 5. .

From the figures given in the Appendix, we can prepare the following table:

K1

ZZ1

K2 = 0.2 K2 = 2.0 K2 = 20

0.2 0.29 0.27 0.25
2.0 0.16 0.15 0.15

20.0 0.054 0.042 0.037

1.5 m

Uniformly loaded
circular area

Sti� clay
E1 = 10,000 kN/m2

Medium sti� clay
E2 = 6666 kN/m2

Soft clay
E3 = 1666.5 kN/m2

Radius b = 0.6 m
q = 100 kN/m2

3 m

σz1

Figure 4.16  Flexible circular load on layered soil.



164  Advanced Soil Mechanics﻿

Based on the results of this table, a graph of ZZ1 against K2 for various 
values of K1 is plotted (Figure 4.17). For this problem, K2 = 4. So, the 
values of ZZ1 for K2 = 4 and K1 = 0.2, 2.0, and 20.0 are obtained 
from Figure 4.17 and then plotted as in Figure 4.18. From this graph, 
ZZ1 = 0.16 for K1 = 1.5. Thus

	 σz1 1000 16= =( . ) 16kN /m 2

0.5
0.4

0.3

0.2

0.1
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0.06
0.05
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K1 = 2.0

K1 = 0.2
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1 (l
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e)

4.0 20.0
K2 (log scale)

Figure 4.17  Plot of ZZ1 vs. K2.
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Figure 4.18  Plot of ZZ1 vs. K1.
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4.12 � VERTICAL STRESS IN WESTERGAARD MATERIAL 
DUE TO A VERTICAL POINT LOAD

Westergaard (1938) proposed a solution for the determination of the 
vertical stress due to a point load Q in an elastic solid medium in which 
there exist alternating layers with thin rigid reinforcements (Figure 4.19a). 
This type of assumption may be an idealization of a clay layer with thin 
seams of sand. For such an assumption, the vertical stress increase at a 
point P (Figure 4.19b) can be given as

	
σ η

π ηz
Q
z rz

=
+









2

1
2 2 2

3 2

( )

/

/
	 (4.60)

x

y P

z

Q

Thin rigid
reinforcement

Q

(a)

z σz

r

(b)

Figure 4.19  �Westergaard’s solution for vertical stress due to a point load. (Note: 
ν  =  Poisson’s ratio of soil between the rigid layers.) (a) Westergaard type  
material; (b) Vertical stress at P due to a point load Q.
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where

	
η ν

ν
= −

−
1 2
2 2

	 (4.61)

ν = Poisson’s ratio of the solid between the rigid reinforcements

	
r x y= +2 2

Equation 4.60 can be rewritten as

	
σz

Q
z

I= 



2 12 	 (4.62)

where

	

I r
z12 2

2 3 2
1

2
1= 







 +













−

πη η

/

	 (4.63)

Table 4.14 gives the variation of I12 with ν.
In most practical problems of geotechnical engineering, Boussinesq’s 

solution (Section 4.2) is preferred over Westergaard’s solution.

Table 4.14  Variation of I12 (Equation 4.63)

r/z

I12

ν = 0 ν = 0.2 ν = 0.4

0 0.3183 0.4244 0.9550
0.1 0.3090 0.4080 0.8750
0.2 0.2836 0.3646 0.6916
0.3 0.2483 0.3074 0.4997
0.4 0.2099 0.2491 0.3480
0.5 0.1733 0.1973 0.2416
0.6 0.1411 0.1547 0.1700
0.7 0.1143 0.1212 0.1221
0.8 0.0925 0.0953 0.0897
0.9 0.0751 0.0756 0.0673
1.0 0.0613 0.0605 0.0516
1.5 0.0247 0.0229 0.0173
2.0 0.0118 0.0107 0.0076
2.5 0.0064 0.0057 0.0040
3.0 0.0038 0.0034 0.0023
4.0 0.0017 0.0015 0.0010
5.0 0.0009 0.0008 0.0005



Stresses and displacements in a soil mass  167

4.13 � SOLUTIONS FOR VERTICAL STRESS 
IN WESTERGAARD MATERIAL

The Westergaard material was explained in Section 4.12, in which the 
semi-infinite mass is assumed to be homogeneous, but reinforced internally 
so that no horizontal displacement can occur. Following are some solutions 
to obtain stress at a point due to surface loading on Westergaard material.

	 a.	Vertical Stress (σz) due to a Line Load of Finite Length
		  Referring to Figure 4.4, the stress at P

σ η
π η η

z
q
z

n
m m n

=
+

⋅
+ +( )

















2
11

1
2 2

1
2

1
2 2 0 5. 	 (4.64)

		  where

	
η ν

ν
= −

−
1 2
2 2

	
m a

z1 =

	
n L

z1 =

	 b.	Vertical Stress (σz) due to a Circularly Loaded Area
		  Referring to Figure 4.7, the vertical stress at P

σ η
ηz q

b z
= −

+








1 2 2 0 5[ ( )] ./  	 (4.65)

		  Table 4.15 gives the variation of σz/q for ν = 0.
	 c.	Vertical Stress (σz) due to a Rectangularly Loaded Area
		  Referring to Figure 4.11, the vertical stress at P

σ
π

η ηz
q

m n m n
= +





+ 



























−

2
1 1 11 2
2 2

4
2 2

0 5

cot
.


	 (4.66)

		  where

	
m B

z
=

	
n L

z
=

Figure 4.20 shows the variation of σz/q with m and n.
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Table 4.15  �Variation of σz/q for ν = 0 
(Equation 4.65)

b/z σz/q

0 0
0.1 0.0099
0.2 0.0378
0.3 0.0794
0.4 0.1296
0.5 0.1835
0.6 0.2375
0.7 0.2893
0.8 0.3377
0.9 0.3822
1.0 0.4227
2.0 0.6667
3.0 0.7706
4.0 0.8259
5.0 0.8599

σ z q

0.20

0.15

0.10

0.05

0
0.01 0.1 1.0

0

0.1

0.3

0.4

0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4
1.6

1.8
2.0

3.0
4.0
5.0
8.0
10.0

m=∞

10.0

0.25

0.2

n

Figure 4.20  �Variation of σz/q (Equation 4.66) with m and n. (Note: ν = 0.)
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4.14 � DISTRIBUTION OF CONTACT 
STRESS OVER FOOTINGS

In calculation vertical stress, we generally assume that the foundation of a 
structure is flexible. In practice, this is not the case; no foundation is per-
fectly flexible, nor is it infinitely rigid. The actual nature of the distribution 
of contact stress will depend on the elastic properties of the foundation and 
the soil on which the foundation is resting.

Borowicka (1936, 1938) analyzed the problem of distribution of contact 
stress over uniformly loaded strip and circular rigid foundations resting on 
a semi-infinite elastic mass. The shearing stress at the base of the founda-
tion was assumed to be zero. The analysis shows that the distribution of 
contact stress is dependent on a nondimensional factor Kr of the form

	
K v

v
E
E

T
br = −

−






















1
6

1
1

2

2

3
s

f

f

s
	 (4.67)

where
vs is the Poisson’s ratio for soil
vf is the Poisson’s ratio for foundation material
Ef, Es are the Young’s modulus of foundation material and soil, 

respectively

	

b =
H alf-w idthforstripfoundation

Radiusforcircularfoundation





T is the thickness of foundation

Figure 4.21 shows the distribution of contact stress for a circular founda-
tion. Note that Kr = 0 indicates a perfectly flexible foundation, and Kr = ∞ 
means a perfectly rigid foundation.

4.14.1 � Foundations of clay

When a flexible foundation resting on a saturated clay (ϕ = 0) is loaded with 
a uniformly distributed load (q/unit area), it will deform and take a bowl 
shape (Figure 4.22). Maximum deflection will be at the center; however, 
the contact stress over the footing will be uniform (q per unit area).

A rigid foundation resting on the same clay will show a uniform settle-
ment (Figure 4.22). The contact stress distribution will take a form such as 
that shown in Figure 4.22, with only one exception: the stress at the edges 
of the footing cannot be infinity. Soil is not an infinitely elastic material; 
beyond a certain limiting stress [qc(max)], plastic flow will begin.
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4.14.2 � Foundations on sand

For a flexible foundation resting on a cohesionless soil, the distribution of 
contact pressure will be uniform (Figure 4.23). However, the edges of the 
foundation will undergo a larger settlement than the center. This occurs 
because the soil located at the edge of the foundation lacks lateral-confining 
pressure and hence possesses less strength. The lower strength of the soil at 
the edge of the foundation will result in larger settlement.

Contact stress, qc

T

0.25 q

0.50 q

1

0.5

Kr = ∞

0.05
0.75 q

q0

Diameter = 2b

Figure 4.21  �Contact stress over a rigid circular foundation resting on an elastic medium.

Contact stress
(rigid)

Contact stress
(flexible)

Settlement profile
(flexible)

q

Settlement profile
(rigid)

Figure 4.22  �Contact pressure and settlement profiles for foundations on clay.
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A rigid foundation resting on a sand layer will settle uniformly. The con-
tact pressure on the foundation will increase from zero at the edge to a 
maximum at the center, as shown in Figure 4.23.

4.15 � RELIABILITY OF STRESS CALCULATION 
USING THE THEORY OF ELASTICITY

Only a limited number of attempts have been made so far to compare theo-
retical results for stress distribution with the stresses observed under field 
conditions. The latter, of course, requires elaborate field instrumentation. 
However, from the results available at present, fairly good agreement is 
shown between theoretical considerations and field conditions, especially 
in the case of vertical stress. In any case, a variation of about 20%–30% 
between the theory and the field conditions may be expected.
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Chapter 5

Pore water pressure due 
to undrained loading

5.1 � INTRODUCTION

In 1925, Terzaghi suggested the principles of effective stress for a saturated 
soil, according to which the total vertical stress σ at a point O (Figure 5.1) 
can be given as

	 σ σ= ′ + u 	 (5.1)

where

	 σ γ γ= +h h1 2 sat	 (5.2)

σ′ is the effective stress

	 u h= =pore w ater pressure 2 wγ 	 (5.3)

γw is the unit weight of water

Combining Equations 5.1 through 5.3 gives

	 σ σ γ γ γ γ γ′ = − = + − = + ′u h h h h h( )1 2 sat 2 w 1 2 	 (5.4)

where γ′ is the effective unit weight of soil = γ γsat w− .
In general, if the normal total stresses at a point in a soil mass are σ1, σ2, 

and σ3 (Figure 5.2), the effective stresses can be given as follows:

	 D irection1: ′ = −σ σ1 1 u

	 D irection 2: ′ = −σ σ2 2 u

	 D irection 3: ′ = −σ σ3 3 u

where
′σ1, ′σ2, and ′σ3 are the effective stresses

u is the pore water pressure, h ′γw
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A knowledge of the increase of pore water pressure in soils due to var-
ious loading conditions without drainage is important in both theoreti-
cal and applied soil mechanics. If a load is applied very slowly on a soil 
such that sufficient time is allowed for pore water to drain out, there 
will be practically no increase of pore water pressure. However, when 
a soil is subjected to rapid loading and if the coefficient of permeability 
is small (e.g., as in the case of clay), there will be insufficient time 
for drainage of pore water. This will lead to an increase of the excess 

h1 Dry unit weight = γ

Saturated
unit weight = γsat

O

h2 h2

Figure 5.1  �Definition of effective stress.

h

2
σ2

σ3σ1

σ2

σ3 σ1

1

dx

dz

dy

3

Figure 5.2  �Normal total stresses in a soil mass.



Pore water pressure due to undrained loading  175

hydrostatic pressure. In this chapter, mathematical formulations for the 
excess pore water pressure for various types of undrained loading will 
be developed.

5.2 � PORE WATER PRESSURE DEVELOPED DUE 
TO ISOTROPIC STRESS APPLICATION

Figure 5.3 shows an isotropic saturated soil element subjected to an isotro-
pic stress increase of magnitude ∆σ. If drainage from the soil is not allowed, 
the pore water pressure will increase by ∆u.

The increase of pore water pressure will cause a change in volume of the 
pore fluid by an amount ∆Vp. This can be expressed as

	
∆ ∆V nV C up o p= 	 (5.5)

where
n is the porosity
Cp is the compressibility of pore water
Vo is the original volume of soil element

The effective stress increase in all directions of the element is ∆σ′ = ∆σ − ∆u. 
The change in volume of the soil skeleton due to the effective stress increase 
can be given by

	 ∆ ∆ ∆ ∆V C V C V u= ′ = −3 3c o c oσ σ( )	 (5.6)

1

2

Δσ

Δσ

Δσ

Δσ

Δσ

Δσ Δu

3

Figure 5.3  �Soil element under isotropic stress application.
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In Equation 5.6, Cc is the compressibility of the soil skeleton obtained from 
laboratory compression results under uniaxial loading with zero excess 
pore water pressure, as shown in Figure 5.4. It should be noted that com-
pression, that is, a reduction of volume, is taken as positive.

Since the change in volume of the pore fluid, ∆Vp, is equal to the change 
in the volume of the soil skeleton, ∆V, we obtain from Equations 5.5 and 5.6

	 nVoCp∆u = 3CcVo(∆σ − ∆u)

and hence

	

∆
∆

= =
+

u B
nC Cσ
1

1 3( )p c/
	 (5.7)

where B is the pore pressure parameter (Skempton, 1954).
If the pore fluid is water,

	 Cp = Cw = compressibility of water

and

	
3 31C C v

Ec sk= = −( )

where E and υ are the Young’s modulus and Poisson’s ratio with respect to 
changes in effective stress. Hence

	
B

nC C
=

+
1

1 ( )w sk/
	 (5.8)

V
Vo

Vo

ΔV/Vo

ΔV

Δσ΄
Cc=

Δσ΄

σ΄

Figure 5.4  �Definition of Cc: volume change due to uniaxial stress application with zero 
excess pore water pressure. (Note: V is the volume of the soil element at any 
given value of σ′.)
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5.3 � PORE WATER PRESSURE PARAMETER B

Black and Lee (1973) provided the theoretical values of B for various types 
of soil at complete or near complete saturation. A summary of the soil types 
and their parameters and the B values at saturation that were considered by 
Black and Lee is given in Table 5.1.

Figure 5.5 shows the theoretical variation of B parameters for the soils 
described in Table 5.1 with the degree of saturation. It is obvious from this 
figure that, for stiffer soils, the B value rapidly decreases with the degree of 
saturation. This is consistent with the experimental values for several soils 
shown in Figure 5.6.

As noted in Table 5.1, the B value is also dependent on the effective iso-
tropic consolidation stress (σ′) of the soil. An example of such behavior in 
saturated varved Fort William clay as reported by Eigenbrod and Burak 
(1990) is shown in Figure 5.7. The decrease in the B value with an increase 
in σ′ is primarily due to the increase in skeletal stiffness (i.e., Csk).

Hence, in general, for soft soils at saturation or near saturation, B ≈ l.

5.4 � PORE WATER PRESSURE DUE 
TO UNIAXIAL LOADING

A saturated soil element under a uniaxial stress increment is shown in 
Figure  5.8. Let the increase of pore water pressure be equal to ∆u. As 
explained in the previous section, the change in the volume of the pore 
water is

	 ∆Vp = nVoCp∆u

Table 5.1  Soils considered by Black and Lee (1973) for evaluation of B

Soil type Description
Void 
ratio Csk

B at 100% 
saturation

Soft soil Normally consolidated clay ≈2 ≈0.145 × 10−2 m2/kN 0.9998
Medium soil Compacted silts and clays 

and lightly 
overconsolidated clay

≈0.6 ≈0.145 × 10−3 m2/kN 0.9988

Stiff soil Overconsolidated stiff 
clays, average sand of 
most densities

≈0.6 ≈0.145 × 10−4 m2/kN 0.9877

Very stiff soil Dense sands and stiff clays, 
particularly at high 
confining pressure

≈0.4 ≈0.145 × 10−5 m2/kN 0.9130
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Change
of scale
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soil

1.00
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0.85

B

0.75
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90 94 98 99 99.5 100
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soil

Sti�
soil

Very
sti�
soil

Degree of saturation (%)

Figure 5.5  �Theoretical variation of B with degree of saturation for soils described in 
Table 5.1. (Note: Back pressure = 207 kN/m2, ∆σ = 138 kN/m2.)

Various soils
Skempton and Bishop (1956)
Kaolinite
Black and Lee (1973)
Ottawa sand
Black and Lee (1973)

1.0
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0.4
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55 60 70 80 90 100

Degree of saturation (%)

Figure 5.6  �Variation of B with degree of saturation.
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Case (a)
Case (b)
Case (c)
Case (d)

Loading

Unloading

1.0

0.8

0.6

0.4

B

0.2

0
0 100 200 300 400

E�ective consolidation pressure, σ΄

Figure 5.7  �Dependence of B values on the level of isotropic consolidation stress 
(varved clay) for (a) regular triaxial specimens before shearing, (b) regular 
triaxial specimens after shearing, (c) special series of B tests on one single 
specimen in loading, and (d) special series of B tests on one single specimen 
in unloading. (After Eigenbrod, K.D. and Burak, J.P., Geotech. Test. J., 13(4), 
370, 1990.)
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Δσ
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Figure 5.8  �Saturated soil element under uniaxial stress increment.
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The increases of the effective stresses on the soil element in Figure 5.8 are

	 Direction 1: ∆σ′ = ∆σ − ∆u

	 Direction 2: ∆σ′ = 0 − ∆u = –∆u

	 Direction 3: ∆σ′ = 0 − ∆u = –∆u

This will result in a change in the volume of the soil skeleton, which may 
be written as

	 ∆ ∆ ∆ ∆ ∆V C V u C V u C V u= − + − + −c o e o e o( ) ( ) ( )σ 	 (5.9)

where Ce is the coefficient of the volume expansibility (Figure 5.9). Since 
∆Vp = ∆V

	 nVoCp∆u = CcVo(∆σ − ∆u) – 2CeVo∆u

or

	

∆
∆

= =
+ +

u A C
nC C Cσ

c

p c e2
	 (5.10)

where A is the pore pressure parameter (Skempton, 1954).
If we assume that the soil element is elastic, then Cc = Ce, or

	
A

nC C
=

+
1

3( )p c/
	 (5.11)

Again, as pointed out previously, CP is much smaller than Ce. So 
CP/Cc ≈ 0, which gives A = 1/3. However, in reality, this is not the case, 

V
Vo

Vo

ΔV/Vo

ΔV

Δσ΄

Δσ΄

= Ce

–σ΄ +σ΄

Figure 5.9  �Definition of Ce: coeff icient of volume expansion under uniaxial 
loading.
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that is, soil is not a perfectly elastic material, and the actual value of A 
varies widely.

The magnitude of A for a given soil is not a constant and depends on the 
stress level. If a consolidated drained triaxial test is conducted on a satu-
rated clay soil, the general nature of variation of ∆σ, ∆u, and A = ∆u/∆σ 
with axial strain will be as shown in Figure 5.10. For highly overconsoli-
dated clay soils, the magnitude of A at failure (i.e., Af) may be negative. 
Table 5.2 gives the typical values of A at failure (=Af) for some normally 
consolidated clay soils. Figure 5.11 shows the variation of Af with overcon-
solidation ratio for Weald clay. Table 5.3 gives the typical range of A values 
at failure for various soils.

Overconsolidated
Normally consolidated

Axial strain
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Figure 5.10  �Variation of ∆σ, ∆u, and A for a consolidated drained triaxial test in 
clay: (a) plot of ∆σ vs. axial strain; (b) plot of ∆u vs. axial strain; (c) plot 
of A vs. axial strain.
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Table 5.2  Values of Af for normally consolidated clays

Clay Type Liquid limit Plasticity index Sensitivity Af

Natural soils
Toyen Marine 47 25 8 1.50

47 25 8 1.48
Drammen Marine 36 16 4 1.2

36 16 4 2.4
Saco River Marine 46 17 10 0.95
Boston Marine — — — 0.85
Bersimis Estuarine 39 18 6 0.63
Chew Stoke Alluvial 28 10 — 0.59
Kapuskasing Lacustrine 39 23 4 0.46
Decomposed Talus Residual 50 18 1 0.29
St. Catherines Till (?) 49 28 3 0.26

Remolded soils
London Marine 78 52 1 0.97
Weald Marine 43 25 1 0.95
Beauharnois Till (?) 44 24 1 0.73
Boston Marine 48 24 1 0.69
Beauharnois Estuarine 70 42 1 0.65
Bersimis Estuarine 33 13 1 0.38

Source:	 After Kenney, T.C., J. Soil Mech. Found. Eng. Div., 85(SM3), 67, 1959.
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Figure 5.11  �Variation of Af with overconsolidation ratio for Weald clay.
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5.5 � DIRECTIONAL VARIATION OF Af

Owing to the nature of deposition of cohesive soils and subsequent con-
solidation, clay particles tend to become oriented perpendicular to the 
direction of the major principal stress. Parallel orientation of clay par-
ticles could cause the strength of clay and thus Af to vary with direc-
tion. Kurukulasuriya et al. (1999) conducted undrained triaxial tests 
on kaolin clay specimens obtained at various inclinations i as shown in 
Figure 5.12. Figure 5.13 shows the directional variation of Af with over-
consolidation ratio. It can be seen from this figure that Af is maximum 
between α = 30°–60°.

5.6 � PORE WATER PRESSURE UNDER 
TRIAXIAL TEST CONDITIONS

A typical stress application on a soil element under triaxial test conditions 
is shown in Figure 5.14a (∆σ1 > ∆σ3). ∆u is the increase in the pore water 
pressure without drainage. To develop a relation between ∆u, ∆σ1, and ∆σ3, 

Table 5.3  Typical values of A at failure

Type of soil A

Clay with high sensitivity
3
4
1
1
2

−

Normally consolidated clay 1
2
1−

Overconsolidated clay − −1
2
0

Compacted sandy clay 1
2
3
4

−

Direction of
consolidation α

Direction of
major principal

stress

Figure 5.12  �Directional variation of major principal stress application.
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Figure 5.13  �Variation of Af with α and overconsolidation ratio (OCR) for kaolin clay based 
on the triaxial results of Kurukulasuriya et al. Soils Found., 39(1), 21–29, 1999.
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Figure 5.14  �Excess pore water pressure under undrained triaxial test conditions: (a) 
triaxial test condition; (b) application of isotropic stress ∆σ3; (c) application 
of axial stress ∆σ1 – ∆σ3.
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we can consider that the stress conditions shown in Figure 5.14a are the 
sum of the stress conditions shown in Figure 5.14b and c.

For the isotropic stress ∆σ3 as applied in Figure 5.14b,

	 ∆ ∆u Bb 3= σ 	 (5.12)

(from Equation 5.7), and for a uniaxial stress ∆σ1 − ∆σ3 as applied in 
Figure 5.14c,

	 ∆ ∆ ∆u Aa 1 3= −( )σ σ 	 (5.13)

(from Equation 5.10). Now,

	 ∆ ∆ ∆ ∆ ∆ ∆u u u B A= + = + −b a 3 1 3σ σ σ( )	 (5.14)

For saturated soil, if B = 1; then

	 ∆ ∆ ∆ ∆u A= + − 3 1 3σ σ σ( )	 (5.15)

5.7 � HENKEL’S MODIFICATION OF PORE 
WATER PRESSURE EQUATION

In several practical considerations in soil mechanics, the intermediate and 
minor principal stresses are not the same. To take the intermediate princi-
pal stress into consideration (Figure 5.15), Henkel (1960) suggested a modi-
fication of Equation 5.15:

	
∆ = ∆ + ∆ + ∆ + ∆ − ∆ + ∆ − ∆ + ∆ − ∆u aσ σ σ σ σ σ σ σ σ1 2 3

1 2
2

2 3
2

3 1
2

3
( ) ( ) ( )

� (5.16)

Δσ1 (Major principal stress)

Δσ3 (Minor principal
stress)

Δσ2 (Intermediate
principal stress)

Δσ2

Δσ3

Δu

Δσ1

Figure 5.15  �Saturated soil element with major, intermediate, and minor principal stresses.
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or

	 ∆ ∆ ∆u a= +σ τoct oct3 	 (5.17)

where 
a is Henkel’s pore pressure parameter
∆σoct and ∆τoct are the increases in the octahedral normal and shear 

stresses, respectively

In triaxial compression tests, ∆σ2 = ∆σ3. For that condition,

	
∆ = ∆ + ∆ + ∆ − ∆u aσ σ σ σ1 3

1 3
2
3

2( )	 (5.18)

For uniaxial tests as in Figure 5.14c, we can substitute ∆σ1 − ∆σ3 for ∆σ1 
and zero for ∆σ2 and ∆σ3 in Equation 5.16, which will yield

	
∆ = ∆ − ∆ + ∆ − ∆u aσ σ σ σ1 3

1 33
2( )

or

	
∆ = +





∆ − ∆u a1
3

2 1 3( )σ σ 	 (5.19)

A comparison of Equations 5.13 and 5.19 gives

	
A a= +





1
3

2

or

	
a A= −





1
2

1
3

	 (5.20)

The usefulness of this more fundamental definition of pore water pressure 
is that it enables us to predict the excess pore water pressure associated with 
loading conditions such as plane strain. This can be illustrated by deriving 
an expression for the excess pore water pressure developed in a saturated 
soil (undrained condition) below the centerline of a flexible strip loading of 
uniform intensity, q (Figure 5.16). The expressions for σx, σy, and σz for such 
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loading are given in Chapter 3. Note that σz > σy > σx, and σy = υ(σx + σz). 
Substituting σz, σy, and σx for σ1, σ2, and σ3 in Equation 5.16 yields

	

∆ = + + + + −





− + + + −

u Az x z x

z z x z x

σ υ σ σ σ

σ υ σ σ υ σ σ σ

( )

[ ( )] [ ( )

3
1
2

1
3

2◊ xx x z] ( )2 2+ −σ σ

For υ = 0.5

	
∆ = + −





+








 −u Ax z xσ σ σ3

2
1
3

1
2
( )	 (5.21)

If a representative value of A can be determined from standard triaxial 
tests, ∆u can be estimated.

Example 5.1

A uniform vertical load of 145 kN/m2 is applied instantaneously over 
a very long strip, as shown in Figure 5.17. Estimate the excess pore 
water pressure that will be developed due to the loading at A and B. 
Assume that υ = 0.45 and that the representative value of the pore 
water pressure parameter A determined from standard triaxial tests 
for such loading is 0.6.

Load per unit area = q

x

z

σxσx

σz

σz

z

Figure 5.16  �Estimation of excess pore water pressure in saturated soil below the center­
line of a flexible strip loading (undrained condition).
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Solution

The values of σx, σz, and τxz at A and B can be determined from Tables 
3.5 through 3.7.

•	 At A: x/b = 0, z/b = 2/2 = 1, and hence
	 1.	 σz/q = 0.818, so σz = 0.818 × 145 = 118.6 kN/m2

	 2.	 σx/q = 0.182, so σx = 26.39 kN/m2

	 3.	 τxz/q = 0, so τxz = 0

Note that in this case σz and σx are the major (σ1) and minor (σ3) prin-
cipal stresses, respectively.

This is a plane strain case. So, the intermediate principal stress is

	 σ2 = υ (σ1 + σ3) = 0.45(118.6 + 26.39) = 65.25 kN/m2

From Equation 5.20

	
a A= −





= −





=1
2

1
3

1
2

0 6 1
3

0 189. .

So

∆ = + + + − + − + −

= + +

u aσ σ σ σ σ σ σ σ σ1 2 3
1 2

2
2 3

2
3 1

2

3

118 6 65 25 26 39

( ) ( ) ( )

. . .
33

0 189 118 6 65 25 65 25 26 39 26 39 118 6

91 51

2 2 2+ − + − + −

=

. ( . . ) ( . . ) ( . . )

. kkN /m 2

4 m

2 m

2 m
BA

Clay

G.W.T.

Strip load
145 kN/m2

x

z

Figure 5.17  �Uniform vertical strip load on ground surface.
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•	 At B: x/b = 2/2 = 1, z/b = 2/2 = 1, and hence
	 1.	 σz/q = 0.480, so σz = 0.480 × 145 = 69.6 kN/m2

	 2.	 σx/q = 0.2250, so σx = 0.2250 × 145 = 32.63 kN/m2

	 3.	 τxz/q = 0.255, so τxz = 0.255 × 145 = 36.98 kN/m2

Calculation of the major and minor principal stresses is as follows:

	

σ σ σ σ σ σ τ1 3

2
2

2 2

69 6 32 63
2

69 6 32 63
2

,

. . . .

= + ± −





+

= + ± −


z x z x
xz




+
2

236 98.

Hence

σ1 = 92.46 kN/m2    σ3 = 9.78 kN/m2

σ2 = 0.45(92.46 + 9.78) = 46 kN/m2

	

∆ = + +

+ − + − + −

u
92 46 9 78 46

3

0 189 92 46 46 46 9 78 9 78 92 462 2

. .

. ( . ) ( . ) ( . . )22

268 6= . kN /m

5.8 � PORE WATER PRESSURE DUE 
TO ONE-DIMENSIONAL STRAIN 
LOADING (OEDOMETER TEST)

In Section 5.4, the development of pore water pressure due to uniaxial load-
ing (Figure 5.8) is discussed. In that case, the soil specimen was allowed to 
undergo axial and lateral strains. However, in oedometer tests the soil spec-
imens are confined laterally, thereby allowing only one directional strain, 
that is, strain in the direction of load application. For such a case, referring 
to Figure 5.8,

	 ∆Vp = nVoCp∆u

and

	 ∆V = CcVo(∆σ − ∆u)

However, ∆Vp = ∆V. So

	 nVoCp∆u = CcVo(∆σ − ∆u)
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or

	

∆
∆

= =
+

u C
nC Cσ
1

1 ( )p c/
	 (5.22)

If CP < Cc, the ratio CP/Cc ≈ 0; hence C ≈ l. Lambe and Whitman (1969) 
reported the following C values:

Vicksburg buckshot clay slurry	 0.99983
Lagunillas soft clay	 0.99957
Lagunillas sandy clay	 0.99718

Veyera et al. (1992) reported the C values in reloading for two poorly graded 
sands (i.e., Monterrey no. 0/30 sand and Enewetak coral sand) at various 
relative densities of compaction (Dr). In conducting the tests, the specimens 
were first consolidated by application of an initial stress ( ),′σc  and then the 
stress was reduced by 69 kN/m2. Following that, under undrained condi-
tions, the stress was increased by 69 kN/m2 in increments of 6.9 kN/m2. 
The results of those tests for Monterey no. 0/30 sand are given in Table 5.4.

Table 5.4  �C values in reloading for 
Monterrey no. 0/30 sand

Relative 
density Dr (%)

Effective confining 
pressure ′σc (kN/m2) C

6 86 1.00
6 172 0.85
6 345 0.70

27 86 1.00
27 172 0.83
27 345 0.69
27 690 0.56
46 86 1.00
46 172 0.81
46 345 0.66
46 690 0.55
65 86 1.00
65 172 0.79
65 345 0.62
65 690 0.53
85 86 1.00
85 172 0.74
85 345 0.61
85 690 0.51

Source:	 Compiled from the results of Veyera, 
G.E. et al., Geotech. Test. J., 15(3), 223, 1992.
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From Table 5.4, it can be seen that the magnitude of the C value can 
decrease well below 1.0, depending on the soil stiffness. An increase in the 
initial relative density of compaction as well as an increase in the effective 
confining pressure does increase the soil stiffness.
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Chapter 6

Permeability

6.1 � INTRODUCTION

Any given mass of soil consists of solid particles of various sizes with 
interconnected void spaces. The continuous void spaces in a soil permit 
water to flow from a point of high energy to a point of low energy. 
Permeability is defined as the property of a soil that allows the seepage of 
fluids through its interconnected void spaces. This chapter is devoted to the 
study of the basic parameters involved in the flow of water through soils.

6.2 � DARCY’S LAW

In order to obtain a fundamental relation for the quantity of seepage 
through a soil mass under a given condition, consider the case shown in 
Figure 6.1. The cross-sectional area of the soil is equal to A and the rate of 
seepage is q.

According to Bernoulli’s theorem, the total head for flow at any section 
in the soil can be given by

	 Total head Elevation head pressure head velocity head= + + 	 (6.1)

The velocity head for flow through soil is very small and can be neglected. 
The total heads at sections A and B can thus be given by

	 Total head at A A A= +z h

	 Total head at B B B= +z h

where
zA and zB are the elevation heads
hA and hB are the pressure heads
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The loss of head ∆h between sections A and B is

	 ∆h z h z h= + − +( ) ( )A B A B 	 (6.2)

The hydraulic gradient i can be written as

	
i h

L
= ∆

	 (6.3)

where L is the distance between sections A and B.
Darcy (1856) published a simple relation between the discharge velocity 

and the hydraulic gradient:

	 υ = ki	 (6.4)

where
υ is the discharge velocity
i is the hydraulic gradient
k is the coefficient of permeability

Hence, the rate of seepage q can be given by

	 q kiA= 	 (6.5)

Note that A is the cross-section of the soil perpendicular to the direction 
of flow.

Soil

zA

zB

hBhA

Δh

Datum

L

B

A

Figure 6.1  �Development of Darcy’s law.
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The coefficient of permeability k has the units of velocity, such as cm/s or 
mm/s, and is a measure of the resistance of the soil to flow of water. When 
the properties of water affecting the flow are included, we can express k by 
the relation

	
k K g( )cm /s = ρ

µ
	 (6.6)

where
K is the intrinsic (or absolute) permeability, cm2

ρ is the mass density of the fluid, g/cm3

g is the acceleration due to gravity, cm/s2

μ is the absolute viscosity of the fluid, poise [i.e., g/(cm · s)]

It must be pointed out that the velocity υ given by Equation 6.4 is the 
discharge velocity calculated on the basis of the gross cross-sectional area. 
Since water can flow only through the interconnected pore spaces, the 
actual velocity of seepage through soil, υs, can be given by

	
υ υ
s =

n
	 (6.7)

where n is the porosity of the soil.
Some typical values of the coefficient of permeability are given in 

Table 6.1. The coefficient of permeability of soils is generally expressed at a 
temperature of 20°C. At any other temperature T, the coefficient of perme-
ability can be obtained from Equation 6.6 as

	

k
kT

T

T

20 20

20
= ( )( )
( )( )
ρ µ
ρ µ

where
kT, k20 are the coefficient of permeability at T°C and 20°C, respectively
ρT, ρ20 are the mass density of the fluid at T°C and 20°C, respectively
μT, μ20 are the coefficient of viscosity at T°C and 20°C, respectively

Table 6.1  �Typical values of coefficient of permeability for various soils

Material Coefficient of permeability (mm/s)

Coarse 10 –103

Fine gravel, coarse, and medium sand 10−2–10
Fine sand, loose silt 10−4–10−2

Dense silt, clayey silt 10−5–10−4

Silty clay, clay 10−8–10−5
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Since the value of ρ20/ρT is approximately 1, we can write

	
k kT T
20

20
= ( )

( )
µ
µ

	 (6.8)

Table 6.2 gives the values of μT/μ20 for a temperature T varying from 10°C 
to 30°C.

6.3 � VALIDITY OF DARCY’S LAW

Darcy’s law given by Equation 6.4, υ = ki, is true for laminar flow through 
the void spaces. Several studies have been made to investigate the range 
over which Darcy’s law is valid, and an excellent summary of these works 
was given by Muskat (1937). A criterion for investigating the range can be 
furnished by the Reynolds number. For flow through soils, Reynolds num-
ber Rn can be given by the relation

	
R D
n = υ ρ

µ
	 (6.9)

where
υ is the discharge (superficial) velocity, cm/s
D is the average diameter of the soil particle, cm
ρ is the density of the fluid, g/cm3

μ is the coefficient of viscosity, g/(cm · s)

Table 6.2  �Values of μT/μ20

Temperature T (°C) μT/μ20 Temperature T (°C) μT/μ20

10 1.298 21 0.975
11 1.263 22 0.952
12 1.228 23 0.930
13 1.195 24 0.908
14 1.165 25 0.887
15 1.135 26 0.867
16 1.106 27 0.847
17 1.078 28 0.829
18 1.051 29 0.811
19 1.025 30 0.793
20 1.000
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For laminar flow conditions in soils, experimental results show that

	
R D
n = υ

µ
ρ ≤ 1 	 (6.10)

with coarse sand, assuming D = 0.45 mm and k ≈ 100D2 = 100(0.045)2 = 
0.203 cm/s. Assuming i = 1, then υ = ki = 0.203 cm/s. Also, ρwater ≈ 1 g/cm3, 
and μ20°C = (l0−5)(981) g/(cm · s). Hence

	
Rn = = <−

( . )( . )()
( )( )

.0 203 0 045 1
10 986

0 931 15

From the previous calculations, we can conclude that, for flow of water 
through all types of soil (sand, silt, and clay), the flow is laminar and 
Darcy’s law is valid. With coarse sands, gravels, and boulders, turbulent 
flow of water can be expected, and the hydraulic gradient can be given by 
the relation

	 i a b= +υ υ2 	 (6.11)

where a and b are experimental constants (e.g., see Forchheimer [1902]).
Darcy’s law as defined by Equation 6.4 implies that the discharge veloc-

ity bears a linear relation with the hydraulic gradient. Hansbo (1960) 
reported the test results of four undisturbed natural clays. On the basis of 
his results (Figure 6.2),

	 υ = − ′ ≥ ′k i i i i( ) 	 (6.12)

D
isc

ha
rg

e v
el

oc
ity

, υ

i΄

Equation 6.13 Equation 6.12

Hydraulic gradient, i

Figure 6.2  �Variation of υ with i (Equations 6.12 and 6.13).
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and

	 υ = < ′ki i in 	 (6.13)

The value of n for the four Swedish clays was about 1.6. There are several 
studies, however, that refute the preceding conclusion.

Figure 6.3 shows the laboratory test results between υ and i for four clays 
(Tavenas et al., 1983a,b). These tests were conducted using triaxial test 
equipment, and the results show that Darcy’s law is valid.

6.4 � DETERMINATION OF THE COEFFICIENT 
OF PERMEABILITY IN THE LABORATORY

The three most common laboratory methods for determining the coeffi-
cient of permeability of soils are the following:

	 1.	Constant-head test
	 2.	Falling-head test
	 3.	Indirect determination from consolidation test

The general principles of these methods are given later.

32

24

16

υ 
(1

0–9
 m

/s
)

8

0
0 4 8 12 16

Atchafalaya
clay

Louisville
clay

Louisville
clay

Matagomi
clay

20 24 28
i

Figure 6.3  �Discharge velocity–gradient relationship for four clays. (After Tavenas, F. 
et al., Can. Geotech. J., 20(4), 629, 1983b.)
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6.4.1 � Constant-head test

The constant-head test is suitable for more permeable granular materials. 
The basic laboratory test arrangement is shown in Figure 6.4. The soil spec-
imen is placed inside a cylindrical mold, and the constant-head loss h of 
water flowing through the soil is maintained by adjusting the supply. The 
outflow water is collected in a measuring cylinder, and the duration of the 
collection period is noted. From Darcy’s law, the total quantity of flow Q 
in time t can be given by

	 Q qt kiAt= =

where A is the area of cross-section of the specimen. However, i = h/L, 
where L is the length of the specimen, and so Q = k(h/L)At. Rearranging 
gives

	
k Q L

hAt
= 	 (6.14)

Once all the quantities on the right-hand side of Equation 6.14 have been 
determined from the test, the coefficient of permeability of the soil can be 
calculated.

Water
supply Porous

stone Constant
water level

Constant
water level

Collection
of water

Porous
stone

Soil L
h

Overflow

Figure 6.4  �Constant-head laboratory permeability test.
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6.4.2 � Falling-head test

The falling-head permeability test is more suitable for fine-grained soils. 
Figure 6.5 shows the general laboratory arrangement for the test. The 
soil specimen is placed inside a tube, and a standpipe is attached to the 
top of the specimen. Water from the standpipe flows through the speci-
men. The initial head difference h1 at time t = 0 is recorded, and water 
is allowed to flow through the soil such that the final head difference at 
time t = t is h2.

The rate of flow through the soil is

	
q kiA k h

L
A adh

dt
= = = −

	
(6.15)

where
h is the head difference at any time t
A is the area of specimen
a is the area of standpipe
L is the length of specimen

From Equation 6.15

	

dt aL
Ak

dh
h

t

h

h

= −



∫ ∫

0 1

2

Stand
pipe

Porous
stone

Porous
stone

SoilL

h2

h1 h

Figure 6.5  �Falling-head laboratory permeability test.
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or

	
k aL

At
h
h

= 2 303 1

2
. log 	 (6.16)

The values of a, L, A, t, h1, and h2 can be determined from the test, and 
the coefficient of the permeability k for a soil can then be calculated from 
Equation 6.16.

6.4.3 � Permeability from consolidation test

The coefficient of permeability of clay soils is often determined by the con-
solidation test, the procedures of which are explained in Section 8.5. From 
Equation 8.25

	
T C t

Hυ
υ= 2

where
Tυ is the time factor
Cυ is the coefficient of consolidation
H is the length of average drainage path
t is time

The coefficient of consolidation is (see Equation 8.15)

	
C k

mυ
υγ

=
w

where
γw is the unit weight of water
mυ is the volume coefficient of compressibility

Also

	
m e

eυ σ
=

+
∆

∆ ( )1

where
∆e is the change of void ratio for incremental loading
∆σ is the incremental pressure applied
e is the initial void ratio
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Combining these three equations, we have

	
k T eH

t e
=

+
υγ

σ
w ∆

∆

2

1( )
	 (6.17)

For 50% consolidation, Tυ = 0.197, and the corresponding t50 can be esti-
mated according to the procedure presented in Section 8.10. Hence

	
k eH

t e
=

+
0 197

1

2

50

.
( )

γ
σ
w ∆

∆
	 (6.18)

6.5 � VARIATION OF THE COEFFICIENT OF 
PERMEABILITY FOR GRANULAR SOILS

For fairly uniform sand (i.e., small uniformity coefficient), Hazen (1911) 
proposed an empirical relation for the coefficient of permeability in the form

	 k cD( )cm /s = 10
2 	 (6.19)

where
c is a constant that varies from 1.0 to 1.5
D10 is the effective size, in millimeters, and is defined in Chapter 1

Equation 6.19 is based primarily on observations made by Hazen on loose, 
clean filter sands. A small quantity of silts and clays, when present in a 
sandy soil, may substantially change the coefficient of permeability.

Casagrande proposed a simple relation for the coefficient of permeability 
for fine to medium clean sand in the following form:

	 k e k= 14 2
85. .0 	 (6.20)

where
k is the coefficient of permeability at a void ratio e
k0.85 is the corresponding value at a void ratio of 0.85

A theoretical solution for the coefficient of permeability also exists in the 
literature. This is generally referred to as the Kozeny–Carman equation, 
which is derived later.

It was pointed out earlier in this chapter that the flow through soils finer 
than coarse gravel is laminar. The interconnected voids in a given soil mass 
can be visualized as a number of capillary tubes through which water can 
flow (Figure 6.6).



Permeability  203

According to the Hagen–Poiseuille equation, the quantity of flow of 
water in unit time, q, through a capillary tube of radius R can be given by

	
q SR a= γ

µ
w

8
2 	 (6.21)

where
γw is the unit weight of water
μ is the absolute coefficient of viscosity
a is the area cross-section of tube
S is the hydraulic gradient

The hydraulic radius RH of the capillary tube can be given by

	
R

R
R

R
H

area
w ettedperim eter

= = =π
π

2

2 2
	 (6.22)

From Equations 6.21 and 6.22

	
q SR a= 1

2
2γ

µ
w

H 	 (6.23)

For flow through two parallel plates, we can also derive

	
q SR a= 1

3
2γ

µ
w

H 	 (6.24)

L

Flow of water
through tortuous
channels in soil;

length = L1

Figure 6.6  �Flow of water through tortuous channels in soil.
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So, for laminar flow conditions, the flow through any cross section can 
be given by a general equation

	
q S

C
R a= γ

µ
w

s
H
2 	 (6.25)

where Cs is the shape factor. Also, the average velocity of flow υa is given by

	
υ γ

µa
w

s
H= =q

a
S

C
R 2 	 (6.26)

For an actual soil, the interconnected void spaces can be assumed to be 
a number of tortuous channels (Figure 6.6), and for these, the term S in 
Equation 6.26 is equal to ∆h/∆L1. Now

	

RH
area

perim eter
(area)(length)

(perim eter)(length)
= volum e
s

= =
uurfacearea

surfacearea /(volum eofpores)
= 1
( ) 	 (6.27)

If the total volume of soil is V, the volume of voids is Vυ = nV, where n is 
porosity. Let Sv be equal to the surface area per unit volume of soil (bulk). 
From Equation 6.27

	
R nV

SV
n
SH

v v

volum e
surfacearea

= = = 	 (6.28)

Substituting Equation 6.28 into Equation 6.26 and taking υa = υs (where υs 
is the actual seepage velocity through soil), we get

	
υ γ

µs
w

s v
=
C

Sn
S

2

2 	 (6.29)

It must be pointed out that the hydraulic gradient i used for soils is the 
macroscopic gradient. The factor S in Equation 6.29 is the microscopic 
gradient for flow through soils. Referring to Figure 6.6, i = ∆h/∆L and 
S = ∆h/∆L1. So

	
i h

L
L
L

ST= =∆
∆

∆
∆1

1 	 (6.30)



Permeability  205

or

	
S i

T
= 	 (6.31)

where T is tortuosity, ∆L1/∆L.
Again, the seepage velocity in soils is

	
υ υ υ
s = =

n
L
L n

T∆
∆

1 	 (6.32)

where υ is the discharge velocity. Substitution of Equations 6.32 and 6.31 
into Equation 6.29 yields

	
υ υ γ

µs
w

s v
= =
n
T

C
i
T
n
S

2

2

or

	
υ γ

µ
= w

s vC S
n
T

i2

3

2 	 (6.33)

In Equation 6.33, Sv is the surface area per unit volume of soil. If we define 
Ss as the surface area per unit volume of soil solids, then

	 SV SVs s v= 	 (6.34)

where Vs is the volume of soil solids in a bulk volume V, that is,

	 V nVs 1= −( )

So

	
S SV

V
SV
nV

S
ns

v

s

v v= =
−

=
−( )1 1

	 (6.35)

Combining Equations 6.33 and 6.35, we obtain

	

υ γ
µ

γ
µ

=
−

=
+

w

s s

s s

w

C S T
n
n

i

C S T
e
e
i

2 2

3

2

2 2

3

1

1
1

( )

	 (6.36)
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where e is the void ratio. This relation is the Kozeny–Carman equation 
(Kozeny, 1927, 1933; Carman, 1956). Comparing Equations 6.4 and 6.36, 
we find that the coefficient of permeability is

	
k

C S T
e
e

=
+

1
12 2

3

s s

wγ
µ

	 (6.37)

The absolute permeability was defined by Equation 6.6 as

	
K k= µ

γw

Comparing Equations 6.6 and 6.37,

	
K

C S T
e
e

=
+

1
12 2

3

s s
	 (6.38)

The Kozeny–Carman equation works well for describing coarse-
grained soils such as sand and some silts. For these cases, the coefficient 
of permeability bears a linear relation to e3/(1 + e). However, serious dis-
crepancies are observed when the Kozeny–Carman equation is applied to 
clayey soils.

For granular soils, the shape factor Cs is approximately 2.5, and the tor-
tuosity factor T is about 2.

From Equation 6.20, we write that

	 k e∝ 2 	 (6.39)

Similarly, from Equation 6.37

	
k e

e
∝

3

1+
	 (6.40)

Amer and Awad (1974) used the preceding relation and their experimen-
tal results to provide

	
k C D C e

e
=

+1 10
2 32 0 6

3

1
. .

u 	 (6.41)

where
D10 is the effective size
Cu is a uniformity coefficient
C1 is a constant
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Another form of relation for the coefficient of permeability and void ratio 
for granular soils has also been used, namely

	
k e

e
∝

2

1+
	 (6.42)

For comparison of the validity of the relations given in Equations 6.39 
through 6.42, the experimental results (laboratory constant-head test) for 
a uniform Madison sand are shown in Figure 6.7. From the plot, it appears 
that all three relations are equally good.

More recently, Chapuis (2004) proposed an empirical relationship for k 
in conjunction with Equation 6.40 as

	
k D e

e
( ) .

.

cm /s =
+









2 4622

110
2

3 0 7825

	 (6.43)

where D10 is the effective size (mm).
The preceding equation is valid for natural, uniform sand and gravel to 

predict k that is in the range of 10−1–10−3 cm/s. This can be extended to 
natural, silty sands without plasticity. It is not valid for crushed materials 
or silty soils with some plasticity.

Mention was made in Section 6.3 that turbulent flow conditions may 
exist in very coarse sands and gravels and that Darcy’s law may not be valid 
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Figure 6.7  �Plot of k against permeability function for Madison sand.
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for these materials. However, under a low hydraulic gradient, laminar flow 
conditions usually exist. Kenney et al. (1984) conducted laboratory tests 
on granular soils in which the particle sizes in various specimens ranged 
from 0.074 to 25.4 mm. The uniformity coefficients of these specimens, Cu, 
ranged from 1.04 to 12. All permeability tests were conducted at a relative 
density of 80% or more. These tests showed that, for laminar flow condi-
tions, the absolute permeability can be approximated as

	 K D( ) ( . )m m 2
5
20 05 1= − 	 (6.44)

where D5 is the diameter (mm) through which 5% of soil passes.

6.5.1 � Modification of Kozeny–Carman 
equation for practical application

For practical use, Carrier (2003) modified Equation 6.37 in the following 
manner. At 20°C, γw/μ for water is about 9.33 × 104 (1/cm · s). Also, (CsT2) 
is approximately equal to 5. Substituting these values into (6.37), we obtain

	
k

S
e
e

( ) .cm /s
s

= × 





 +

1 99 10 1
1

4
2 3

	 (6.45)

Again

	
S

Ds
eff

SF
cm

= 





1
	 (6.46)

with

	

D
f Di i

eff
av/

=
( )∑
100%

( )
	 (6.47)

where fi is the fraction of particles between two sieve seizes, in percent 
(Note: larger sieve, l; smaller sieve, s)

	 D D Di i i( )
. .( ) [ ( )] [ ( )]av l
5

s
5cm cm cm= ×0 0 	 (6.48)

SF is the shape factor
Combining Equations 6.45 through 6.48

	

k
f D Di i i

( ) . %
. .

cm /s
/ SFl s

= ×
×( )



















∑

1 99 10 100 14
0 5 0 5

2
2 ee

e

3

1+








 	 (6.49)
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The magnitude of SF may vary between 6 and 8, depending on the angularity 
of the soil particles.

Carrier (2003) further suggested a slight modification of Equation 6.49, 
which can be written as

	

k
f D Di i i

( ) . %
. .

cm /s
/ SFl s

= ×
×( )
















∑

1 99 10 100 14
0 404 0 595

5


 +











2 3

1
e
e

	 (6.50)

Example 6.1

The results of a sieve analysis on sand are given as follows:

Sieve no Sieve opening (cm) Percent passing
Fraction of particles between 
two consecutive sieves (%)

30 0.06 100
4

12
34
50

40 0.0425 96
60 0.02 84

100 0.015 50
200 0.0075 0

Estimate the hydraulic conductivity using Equation 6.50. Given: the 
void ratio of the sand is 0.6. Use SF = 7.

Solution

For fraction between Nos. 30 and 40 sieves

	

f
D D

i

i il s
0 404 0 595 0 404 0 595

4
0 06 0 0425

81 62. . . .( . ) ( . )
.

×
=

×
=

For fraction between Nos. 40 and 60 sieves

	

f
D D

i

i il s
0 404 0 595 0 404 0 595

12
0 0425 0 02

440 76. . . .( . ) ( . )
.

×
=

×
=

Similarly, for fraction between Nos. 60 and 100 sieves

	

f
D D

i

i il s
0 404 0 595 0 404 0 595

34
0 02 0 015

2009 5. . . .( . ) ( . )
.

×
=

×
=

And, for between Nos. 100 and 200 sieves

	

f
D D

i

i il s
0 404 0 595 0 404 0 595

50
0 015 0 0075

5013 8. . . .( . ) ( . )
.

×
=

×
=



210  Advanced Soil Mechanics﻿

	

100 100
81 62 440 76 2009 5 5013 8

0
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. . . .. .f D Di i il s×( )

=
+ + +

≈
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..0133

From Equation 6.50

	
k = × 



 +









 =( . )( . ) .

.
.1 99 10 0 0133 1

7
0 6
1 0 6

0 00974 2
2 3

cm /s

Example 6.2

Refer to Figure 6.7. For the soil, (a) calculate the “composite 
shape factor,” C S TS s

2 2, of the Kozeny–Carman equation, given 
μ20°C = 10.09 × 10−3 poise, (b) If Cs = 2.5 and T = 2, determine Ss. 
Compare this value with the theoretical value for a sphere of diameter 
D10 = 0.2 mm.

Solution

Part a:

From Equation 6.37,

	
k

C S T
e
e

=
+

1
12 2

3

s s

wγ
µ

	
C S T e e

ks s
w /2 2

3 1= +γ
µ

( )

The value of [e3/(1 + e)]/k is the slope of the straight line for the plot of 
e3/(1 + e) against k (Figure 6.7). So

	

e e
k

3 1 0 15
0 03

5/
cm /s

( ) .
.

+ = =

	
C S Ts s

g/cm cm /s
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cm2 2
3 2

3
5 21 981

10 09 10
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() .

Part b:

(Note the units carefully.)

	
S

C Ts
s

cm /cm= × = ×
×

=4 86 10 4 86 10
2 5 2

311 8
5

2

5

2
2 3. .

. ( )
.
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For D10 = 0.2 mm

	

Ss
Surfaceareaofasphereofradius0.01cm

Volum eofsphereofradiu
=

ss0.01cm

/
cm /cm= = =4 0 01

4 3 0 01
3

0 01
300

2

3
2 3π

π
( . )

( ) ( . ) .

This value of Ss = 300 cm2/cm3 agrees closely with the estimated value 
of Ss = 311.8 cm2/cm3.

6.6 � VARIATION OF THE COEFFICIENT OF 
PERMEABILITY FOR COHESIVE SOILS

The Kozeny–Carman equation does not successfully explain the variation of 
the coefficient of permeability with void ratio for clayey soils. The discrepancies 
between the theoretical and experimental values are shown in Figures 6.8 and 
6.9. These results are based on consolidation–permeability tests (Olsen, 1961, 
1962). The marked degrees of variation between the theoretical and the experi-
mental values arise from several factors, including deviations from Darcy’s law, 

10–5

10–6

10–7

k 
(m

m
/s

)

10–8

10–9
0.2 0.4 0.6

Equation 6.37

1

2Sodium illite
10–1 N NaCl
Sodium illite
10–4 N NaCl

0.8
Porosity, n

Figure 6.8  �Coefficient of permeability for sodium illite. (After Olsen, H.W., Hydraulic 
flow through saturated clay, ScD thesis, Massachusetts Institute of Technology, 
Cambridge, MA, 1961.)
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high viscosity of the pore water, and unequal pore sizes. Olsen developed a 
model to account for the variation of permeability due to unequal pore sizes.

Several other empirical relations were proposed from laboratory and field 
permeability tests on clayey soil. They are summarized in Table 6.3.

Example 6.3

For a normally consolidated clay soil, the following values are given:

Void ratio k (cm/s)

1.1 0.302 × 10−7

0.9 0.12 × 10−7

100
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Ra
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Porosity, n

Figure 6.9  �Ratio of the measured flow rate to that predicted by the Kozeny–Carman 
equation for several clays. Notes: curve 1: sodium illite, 10−1 N NaCl; curve 2: 
sodium illite, 10−4 N NaCl; curve 3: natural kaolinite, distilled water H2O; 
curve 4: sodium Boston blue clay, 10−1 N NaCl; curve 5: sodium kaolinite 
and 1% (by weight) sodium tetraphosphate; curve 6: calcium Boston blue 
clay, 10−4 N NaCl. (After Olsen, H.W., Hydraulic flow through saturated clay, 
ScD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1961.)
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Estimate the hydraulic conductivity of the clay at a void ratio 
of 0.75. Use the equation proposed by Samarsinghe et al. (1982; see 
Table 6.3; see also Figure 6.10).

Solution

	
k C e

e

n
=

+








4 1

	

k
k

e e

e e

n

n
1

2

1 1

2 2

1

1
=

+( )
+( )

/

/

( )

( )

Table 6.3  �Empirical relations for the coefficient of permeability in clayey soils

Investigator Relation Notation Remarks

Mesri and 
Olson (1971)

log k = C2 log e + C3 C2, C3 = constants Based on artificial 
and remolded 
soils

Taylor (1948) log log
k

k k
e e
C

= − −
0

0 k0 = coefficient of 
in situ permeability 
at void ratio e0

Ck ≈ 0.5e0 (Tavenas 
et al., 1983a,b)

k = coefficient of 
permeability at void 
ratio e

Ck = permeability 
change index

Samarsinghe 
et al. (1982)

k C
e
e

n

=
+4
1

C4 = constant
log [k(l + e)] = log 
C4 + n log e

Applicable only to 
normally 
consolidated 
clays

Raju et al. 
(1995)

e
e

k
L

2 23 2 4log= +. .0 0 k is in cm/s
eL = void ratio at 
liquid limit = wLL Gs

wLL = moisture 
content at liquid 
limit

Normally 
consolidated 
clay

Tavenas et al. 
(1983a,b)

k = f f = function of void 
ratio, and Pl + CF

See Figure 6.10

Pl = plasticity index 
in decimals

CF = clay 
size fraction in 
decimals
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Figure 6.10  �Plot of e versus k for various values of Pl + CF (See Table 6.3).
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Hence

	
k e

e
= ×

+






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.
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1
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5 1
cm /s

At a void ratio of 0.75
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
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
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.
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6.7 � DIRECTIONAL VARIATION OF PERMEABILITY 
IN ANISOTROPIC MEDIUM

Most natural soils are anisotropic with respect to the coefficient of perme-
ability, and the degree of anisotropy depends on the type of soil and the 
nature of its deposition. In most cases, the anisotropy is more predominant 
in clayey soils compared to granular soils. In anisotropic soils, the directions 
of the maximum and minimum permeabilities are generally at right angles 
to each other, maximum permeability being in the horizontal direction.

Figure 6.11a shows the seepage of water around a sheet pile wall. 
Consider a point O at which the flow line and the equipotential line are 

Flow
line

Flow
line

Equipotential
line

Equipotential
line

x

n

mkv

kh

h

z

O

O

β
α

(a) (b)

Figure 6.11  �Directional variation of the coefficient of permeability: (a) seepage of water 
around a sheet pile wall; (b) flow and equipotential lines at O.
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as shown in the figure. The flow line is a line along which a water particle 
at O will move from left to right. For the definition of an equipotential 
line, refer to Section 7.2. Note that in anisotropic soil, the flow line and 
equipotential line are not orthogonal. Figure 6.11b shows the flow line 
and equipotential line at O. The coefficients of permeability in the x and z 
directions are kh and kv, respectively.

In Figure 6.11, m is the direction of the tangent drawn to the flow line 
at O, and thus that is the direction of the resultant discharge velocity. 
Direction n is perpendicular to the equipotential line at O, and so it is the 
direction of the resultant hydraulic gradient. Using Darcy’s law,

	
υx k h

x
= − ∂

∂h 	 (6.51)

	
υz k h

z
= − ∂

∂v 	 (6.52)

	
υ αm k h

m
= − ∂

∂
	 (6.53)

	
υ βn k h

n
= − ∂

∂
	 (6.54)

where
kh is the maximum coefficient of permeability (in the horizontal x 

direction)
kv is the minimum coefficient of permeability (in the vertical z direction)
kα, kβ are the coefficients of permeability in m, n directions, respectively

Now, we can write

	

∂
∂

= ∂
∂

+ ∂
∂

h
m

h
x

h
z

cos sinα α 	 (6.55)

From Equations 6.51 through 6.53, we have

	

∂
∂

= − ∂
∂

= − ∂
∂

= −h
x k

h
z k

h
m k

x z mυ υ υ
αh v

Also, υx = υm cos α and υz = υm sin α.
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Substitution of these into Equation 6.55 gives

	
− = − −υ υ α υ α

α

m x z

k k kh v
cos sin

or

	

υ υ α υ α
α

m m m

k k k
= +

h v
cos sin2 2

so

	

1 2 2

k k kα

α α= − +cos sin
h v

	 (6.56)

The nature of the variation of kα with α as determined by Equation 6.56 
is shown in Figure 6.12. Again, we can say that

	 υ υ β υ βn x z= +cos sin 	 (6.57)

Combining Equations 6.51, 6.52, and 6.54

	
k h

n
k h

x
k h

zβ β β∂
∂

= ∂
∂

+ ∂
∂h vcos sin 	 (6.58)

z

kα kβ

x

Equation 6.56

kv

Equation 6.61

kh

Figure 6.12  �Directional variation of permeability.
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However

	

∂
∂

= ∂
∂

h
x

h
n
cosβ 	 (6.59)

and

	

∂
∂

= ∂
∂

h
z

h
n
sinβ 	 (6.60)

Substitution of Equations 6.59 and 6.60 into Equation 6.58 yields

	 k k kβ β β= +h
2

v
2cos sin 	 (6.61)

The variation of kβ with β is also shown in Figure 6.12. It can be seen that, 
for given values of kh and kv, Equations 6.56 and 6.61 yield slightly differ-
ent values of the directional permeability. However, the maximum differ-
ence will not be more than 25%.

There are several studies available in the literature providing the experi-
mental values of kh/kv. Some are given in the following:

Soil type kh/kv Reference

Organic silt with peat 1.2–1.7 Tsien (1955)
Plastic marine clay 1.2 Lumb and Holt (1968)
Soft clay 1.5 Basett and Brodie (1961)
Soft marine clay 1.05 Subbaraju (1973)
Boston blue clay 0.7–3.3 Haley and Aldrich (1969)

Figure 6.13 shows the laboratory test results obtained by Fukushima and 
Ishii (1986) related to kh and kv on compacted Maso-do soil (weathered 
granite). All tests were conducted after full saturation of the compacted soil 
specimens. The results show that kh and kv are functions of molding mois-
ture content and confining pressure. For given molding moisture contents 
and confining pressures, the ratios of kh/kv are in the same general range as 
shown in the preceding table.

6.8 � EFFECTIVE COEFFICIENT OF PERMEABILITY 
FOR STRATIFIED SOILS

In general, natural soil deposits are stratified. If the stratification is continu-
ous, the effective coefficients of permeability for flow in the horizontal and 
vertical directions can be readily calculated.
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6.8.1 � Flow in the horizontal direction

Figure 6.14 shows several layers of soil with horizontal stratification. Owing 
to fabric anisotropy, the coefficient of permeability of each soil layer may 
vary depending on the direction of flow. So, let us assume that k k kh h h1 2 3, , , ,…  
are the coefficients of permeability of layers 1, 2, 3, …, respectively, for flow 
in the horizontal direction. Similarly, let k k kv v v1 2 3, , , ,…  be the coefficients 
of permeability for flow in the vertical direction.

Based on Fukushima
and Ishii (1986)
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Figure 6.13  �Variation of kv and kh for Masa-do soil compacted in the laboratory.
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Considering a unit length of the soil layers at right angle to the cross-
section as shown in Figure 6.14, the rate of seepage in the horizontal direc-
tion can be given by

	 q q q q qn= + + + +1 2 3 � 	 (6.62)

where
q is the flow rate through the stratified soil layers combined
q1, q2, q3, …, is the rate of flow through soil layers 1, 2, 3, …, respectively

Note that for flow in the horizontal direction (which is the direction of 
stratification of the soil layers), the hydraulic gradient is the same for all 
layers. So

	

q k iH

q k iH

q k iH

1 1

2 2

3 3
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=

=

h

h

h

�

	 (6.63)

and

	 q k iH= e h( ) 	 (6.64)
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Figure 6.14  �Flow in horizontal direction in stratified soil.
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where
i is the hydraulic gradient
ke(h) is the effective coefficient of permeability for flow in horizontal 

direction
H1, H2, H3 are the thicknesses of layers 1, 2, 3, respectively
H = H1 + H2 + H3 + …

Substitution of Equations 6.63 and 6.64 into Equation 6.62 yields

	
k H k H k H k He(h) h h h= + + +1 2 31 2 3 �

Hence

	
k

H
k H k H k He(h) h h h= + + +( )1

1 2 31 2 3 � 	 (6.65)

6.8.2 � Flow in the vertical direction

For flow in the vertical direction for the soil layers shown in Figure 6.15,

	 υ υ υ υ υ= = = = =1 2 3 � n 	 (6.66)
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Figure 6.15  �Flow in vertical direction in stratified soil.
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where υ1, υ2, υ3, … are the discharge velocities in layers 1, 2, 3, …, 
respectively; or

	
υ = = = = =k i k i k i k ie(v) v v v1 2 31 2 3 … 	 (6.67)

where
ke(v) is the effective coefficient of permeability for flow in the vertical 

direction
k k kv v v1 2 3, , ,… are the coefficients of permeability of layers 1, 2, 3, …, 

respectively, for flow in the vertical direction
i1, i2, i3, … are the hydraulic gradient in soil layers 1, 2, 3, …, respectively

For flow at right angles to the direction of stratification

	 Total head loss = (head loss in layer 1) + (head loss in layer 2) + ⋯

or

	 iH iH iH iH= + + +1 1 2 2 3 3 � 	 (6.68)

Combining Equations 6.67 and 6.68 gives

	

υ υ υ υ
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H
k

H
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H
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= + + +
1 2 3

1 2 3 �

or

	
k H

H k H k H ke v
v v v/ / /2

( ) =
+ + +1 2 31 3 �

	 (6.69)

Varved soils are excellent examples of continuously layered soil. 
Figure 6.16 shows the nature of the layering of New Liskeard varved clay 
(Chan and Kenny, 1973) along with the variation of moisture content and 
grain size distribution of various layers. The ratio of ke(h)/ke(v) for this soil 
varies from about 1.5 to 3.7. Casagrande and Poulos (1969) provided the 
ratio ke(h)/ke(v) for a varved clay that varies from 4 to 40.

6.9 � DETERMINATION OF COEFFICIENT 
OF PERMEABILITY IN THE FIELD

It is sometimes difficult to obtain undisturbed soil specimens from the 
field. For large construction projects, it is advisable to conduct permeability 
tests in situ and compare the results with those obtained in the laboratory. 
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Several techniques are presently available for determination of the coefficient 
of permeability in the field, such as pumping from wells and borehole tests, 
and some of these methods will be treated briefly in this section.

6.9.1 � Pumping from wells

6.9.1.1 � Gravity wells

Figure 6.17 shows a permeable layer underlain by an impermeable stra-
tum. The coefficient of permeability of the top permeable layer can be 
determined by pumping from a well at a constant rate and observing the 
steady-state water table in nearby observation wells. The steady state is 
established when the water levels in the test well and the observation wells 
become constant. At steady state, the rate of discharge due to pumping can 
be expressed as

	 q kiA  =
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of New Liskeard varved clay. (After Chan, H.T. and Kenney, T.C., Can. 
Geotech. J., 10(3), 453, 1973.)
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From Figure 6.17, i ≈ dh/dr (this is referred to as Dupuit’s assumption) 
and A = 2πrh. Substituting these into the previous equation for rate of dis-
charge gives

	
q kdh

dr
rh= 2π

	

dr
r

k
q

hdh
r

r

h

h

=∫ ∫2

1

2

1

2
π
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k q r r

h h
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−
2 303 2 1

2
2

1
2

. [ ( )]
( )
log /

π
	 (6.70)

If the values of r1, r2, h1, h2, and q are known from field measurements, 
the coefficient of permeability can be calculated from the simple relation 
given in Equation 6.70. According to Kozeny (1933), the maximum radius 
of influence, R (Figure 6.17), for drawdown due to pumping can be given by

	
R t

n
qk= 12
π

	 (6.71)
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Figure 6.17  �Determination of the coefficient of permeability by pumping from wells—
gravity well.
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where
n is the porosity
R is the radius of influence
t is the time during which discharge of water from well has been 

established

Also note that if we substitute h1 = hw at r1 = rw and h2 = H at r2 = R, then

	
k q R r

H h
=

−
2 303

2 2
. [ ( )]

( )
log /w

wπ
	 (6.72)

where H is the depth of the original groundwater table from the imperme-
able layer.

The depth h at any distance r from the well (rw ≤ r ≤ R) can be determined 
from Equation 6.70 by substituting h1 = hw at r1 = rw and h2 = h at r2 = r. Thus

	
k q rr

h h
=

−
2 303

2 2
. [ ( )]

( )
log /w

wπ

or

	
h q

k
r
r

h= +2 303 2.
π

log
w

w 	 (6.73)

It must be pointed out that Dupuit’s assumption (i.e., that i = dh/dr) does 
introduce large errors in regard to the actual phreatic line near the wells during 
steady-state pumping. This is shown in Figure 6.17. For r > H − 1.5H, the phre-
atic line predicted by Equation 6.73 will coincide with the actual phreatic line.

The relation for the coefficient of permeability given by Equation 6.70 
has been developed on the assumption that the well fully penetrates the per-
meable layer. If the well partially penetrates the permeable layer as shown 
in Figure 6.18, the coefficient of permeability can be better represented by 
the following relation (Mansur and Kaufman, 1962):

	
q k H s t

R r
r
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


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




π [( ) ]
. log( )

. sin .2 2

2 303
1 0 30 10 1 8

/w
w 


 	 (6.74)

The notations used on the right-hand side of Equation 6.74 are shown in 
Figure 6.18.

6.9.1.2 � Artesian wells

The coefficient of permeability for a confined aquifer can also be determined 
from well pumping tests. Figure 6.19 shows an artesian well penetrating 
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Figure 6.18  �Pumping from partially penetrating gravity wells.
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Figure 6.19  �Determination of the coefficient of permeability by pumping from wells—
confined aquifer.
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the full depth of an aquifer from which water is pumped out at a constant 
rate. Pumping is continued until a steady state is reached. The rate of water 
pumped out at steady state is given by

	
q kiA kdh

dr
rT= = 2π 	 (6.75)

where T is the thickness of the confined aquifer, or
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Solution of Equation 6.76 gives

	
k q r r
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Hence, the coefficient of permeability k can be determined by observing the 
drawdown in two observation wells, as shown in Figure 6.19.

If we substitute h1 = hw at r1 = rw and h2 = H at r2 = R in the previous 
equation, we get

	
k q R r

T H h
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−
log( )

. ( )
/w

w2 727
	 (6.77)

6.9.2 � Auger hole test

Van Bavel and Kirkham (1948) suggested a method to determine k from 
an auger hole (Figure 6.20a). In this method, an auger hole is made in 
the ground that should extend to a depth of 10 times the diameter of 
the hole or to an impermeable layer, whichever is less. Water is pumped 
out of the hole, after which the rate of the rise of water with time is 
observed in several increments. The coefficient of permeability is cal-
culated as

	
k r

Sd
dh
dt

= 0 617. w 	 (6.78)
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where
rw is the radius of the auger hole
d is the depth of the hole below the water table
S is the shape factor for auger hole
dh/dt is the rate of increase of water table at a depth h measured from 

the bottom of the hole

The variation of S with rw/d and h/d is given in Figure 6.20b (Spangler 
and Handy, 1973). There are several other methods of determining the field 
coefficient of permeability. For a more detailed description, the readers are 
directed to the U.S. Bureau of Reclamation (1961) and the U.S. Department 
of the Navy (1971).

Example 6.4

Refer to Figure 6.18. For the steady-state condition, rw = 0.4 m, 
H = 28 m, s = 8 m, and t = 10 m. The coefficient of permeability of the 
layer is 0.03 mm/s. For the steady-state pumping condition, estimate 
the rate of discharge q in m3/min.
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Figure 6.20  �Auger hole test: (a) auger hole; (b) plot of S with h/d and rw/d.
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Solution

From Equation 6.74
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	 k = 0.03 mm/s = 0.0018 m/min

So
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From the equation for q, we can construct the following table:

R (m) q (m3)

25 0.5
30 0.48
40 0.45
50 0.43

100 0.37

From the aforementioned table, the rate of discharge is approximately 
0.45 m3/min.

6.10 � FACTORS AFFECTING THE COEFFICIENT 
OF PERMEABILITY

The coefficient of permeability depends on several factors, most of which 
are listed in the following:

	 1.	Shape and size of the soil particles.
	 2.	Void ratio. Permeability increases with increase in void ratio.
	 3.	Degree of saturation. Permeability increases with increase in degree 

of saturation.
	 4.	Composition of soil particles. For sands and silts, this is not impor-

tant; however, for soils with clay minerals, this is one of the most 
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important factors. Permeability depends on the thickness of water 
held to the soil particles, which is a function of the cation exchange 
capacity, valence of the cations, and so forth. Other factors remain-
ing the same, the coefficient of permeability decreases with increasing 
thickness of the diffuse double layer.

	 5.	Soil structure. Fine-grained soils with a flocculated structure have 
a higher coefficient of permeability than those with a dispersed 
structure.

	 6.	Viscosity of the permeant.
	 7.	Density and concentration of the permeant.

6.11 � ELECTROOSMOSIS

The coefficient of permeability—and hence the rate of seepage—through 
clay soils is very small compared to that in granular soils, but the drainage 
can be increased by the application of an external electric current. This phe-
nomenon is a result of the exchangeable nature of the adsorbed cations in 
clay particles and the dipolar nature of the water molecules. The principle 
can be explained with the help of Figure 6.21. When dc electricity is applied 
to the soil, the cations start to migrate to the cathode, which consists of a 
perforated metallic pipe. Since water is adsorbed on the cations, it is also 
dragged along. When the cations reach the cathode, they release the water, 
and the subsequent build up of pressure causes the water to drain out. 

Ground surface

Water

Water

CathodeAnode

+ ++

Cation

+ –

Figure 6.21  �Principles of electroosmosis.
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This process is called electroosmosis and was first used by L. Casagrande 
in 1939 for soil stabilization in Germany (See Casagrande, 1952).

6.11.1 � Rate of drainage by electroosmosis

Figure 6.22 shows a capillary tube formed by clay particles. The surface 
of the clay particles has negative charges, and the cations are concentrated 
in a layer of liquid. According to the Helmholtz–Smoluchowski theory 
(Helmholtz, 1879; Smoluchowski, 1914; see also Mitchell, 1970, 1976), 
the flow velocity due to an applied dc voltage E can be given by

	
υ

πηe
D E

L
= ζ
4

	 (6.79)

where
υe is the flow velocity due to applied voltage
D is the dielectric constant
ζ is the zeta potential
η is the viscosity
L is the electrode spacing

Equation 6.79 is based on the assumptions that the radius of the capil-
lary tube is large compared to the thickness of the diffuse double layer sur-
rounding the clay particles and that all the mobile charge is concentrated 
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Figure 6.22  �Helmholtz–Smoluchowski theory for electroosmosis.
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near the wall. The rate of flow of water through the capillary tube can be 
given by

	 q a ec = υ 	 (6.80)

where a is the area of cross section of the capillary tube.
If a soil mass is assumed to have a number of capillary tubes as a result of 

interconnected voids, the cross-sectional area Aυ of the voids is

	 A nAυ =

where
A is the gross cross-sectional area of the soil
n is the porosity

The rate of discharge q through a soil mass of gross cross-sectional area 
A can be expressed by the relation

	
q A nA n D E

L
Ae e= = =υυ υ

πη
ζ

4
	 (6.81)

	 or,

	 q k iA= e e 	 (6.82)

where
ke = n(Dζ/4πη) is the electroosmotic coefficient of permeability
ie is the electrical potential gradient

The units of ke can be cm2/(s · V) and the units of ie can be V/cm.
In contrast to the Helmholtz–Smoluchowski theory (Equation 6.79), 

which is based on flow through large capillary tubes, Schmid (1951) pro-
posed a theory in which it was assumed that the capillary tubes formed by 
the pores between clay particles are small in diameter and that the excess 
cations are uniformly distributed across the pore cross-sectional area 
(Figure 6.23). According to this theory

	
υ

ηe
r A F E

L
=

2

8
o 	 (6.83)

where
r is the pore radius
Ao is the volume charge density in pore
F is the Faraday constant
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Based on Equation 6.83, the rate of discharge q through a soil mass of 
gross cross-sectional area A can be written as

	
q n r A F E

L
A k iA= =

2

8
�

η e e 	 (6.84)

where
n is porosity
ke = n(r2AoF/8η) is the electroosmotic coefficient of permeability

Without arguing over the shortcomings of the two theories proposed, 
our purpose will be adequately served by using the flow-rate relation 
as q = keieA. Some typical values of ke for several soils are as follows 
(Mitchell, 1976):

Material Water content (%) ke (cm2/(s · V))

London clay 52.3 5.8 × 10−5

Boston blue clay 50.8 5.1 × 10−5

Kaolin 67.7 5.7 × 10−5

Clayey silt 31.7 5.0 × 10−5

Rock flour 27.2 4.5 × 10−5

Na-Montmorillonite 170 2.0 × 10−5

Na-Montmorillonite 2000 12.0 × 10−5
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Figure 6.23  �Schmid theory for electroosmosis.
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These values are of the same order of magnitude and range from 1.5 × 10−5 
to 12 × 10−5 cm2/(s · V) with an average of about 6 × 10−5 cm2/(s · V).

Electroosmosis is costly and is not generally used unless drainage by 
conventional means cannot be achieved. Gray and Mitchell (1967) have 
studied the factors that affect the amount of water transferred per unit 
charge passed, such as water content, cation exchange capacity, and free 
electrolyte content of the soil.

6.12 � COMPACTION OF CLAY FOR CLAY 
LINERS IN WASTE DISPOSAL SITES

When a clay soil is compacted at a lower moisture content, it possesses 
a flocculent structure. Approximately at the optimum moisture content 
of compaction, the clay particles have a lower degree of flocculation. 
A  further increase in the moisture content at compaction provides a 
greater degree of particle orientation; however, the dry unit weight 
decreases because the added water dilutes the concentration of soil solids 
per unit volume.

Figure 6.24 shows the results of laboratory compaction tests on a clay 
soil as well as the variation of the coefficient of permeability of the com-
pacted clay specimens. From the laboratory test results shown, the follow-
ing observations can be made:

	 1.	For a given compaction effort, the coefficient of permeability k 
decreases with the increase in molding moisture content, reach-
ing a minimum value at about the optimum moisture content (i.e., 
approximately where the soil has a higher dry unit weight with the 
clay particles having a lower degree of flocculation). Beyond the 
optimum moisture content, the coefficient of permeability increases 
slightly.

	 2.	For similar compaction effort and dry unit weight, a soil will have a 
lower coefficient of permeability when it is compacted on the wet side 
of the optimum moisture content.

Benson and Daniel (1990) conducted laboratory compaction tests by 
varying the size of clods of moist clayey soil. These tests show that, for 
similar compaction effort and molding moisture content, the magnitude of 
k decreases with the decrease in clod size.

In some compaction work in clayey soils, the compaction must be 
done in a manner so that a certain specified upper level of coefficient 
of permeability of the soil is achieved. Examples of such works are 
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compaction of the core of an earth dam and installation of clay liners 
in solid-waste disposal sites.

To prevent groundwater pollution from leachates generated from solid-
waste disposal sites, the U.S. Environmental Protection Agency (EPA) 
requires that clay liners have a hydraulic conductivity of 10−7 cm/s or less. 
To achieve this value, the contractor must ensure that the soil meets the fol-
lowing criteria (U.S. Environmental Protection Agency, 1989):

	 1.	The soil should have at least 20% fines (fine silt and clay-sized 
particles).

	 2.	The plasticity index (PI) should be greater than 10. Soils that have a 
PI greater than about 30 are difficult to work with in the field.
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Figure 6.24  �Test on clay soil: (a) modified Proctor compaction curve; (b) variation of k 
with molding moisture content.
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	 3.	The soil should not include more than 10% gravel-sized particles.
	 4.	The soil should not contain any particles or chunks of rock that are 

larger than 25–30 mm.

In many instances, the soil found at the construction site may be some-
what nonplastic. Such soil may be blended with imported clay minerals 
(like sodium bentonite) to achieve the desired range of coefficient of per-
meability. In addition, during field compaction, a heavy sheepsfoot roller 
can introduce larger shear strains during compaction that create a more 
dispersed structure in the soil. This type of compacted soil will have an 
even lower coefficient of permeability. Small lifts should be used during 
compaction so that the feet of the compactor can penetrate the full depth 
of the lift.

The size of the clay clods has a strong influence on the coefficient of per-
meability of a compacted clay. Hence, during compaction, the clods must 
be broken down mechanically to as small as possible. A very heavy roller 
used for compaction helps to break them down.

Bonding between successive lifts is also an important factor; otherwise, 
permeant can move through a vertical crack in the compacted clay and then 
travel along the interface between two lifts until it finds another crack to 
travel down.

In the construction of clay liners for solid-waste disposal sites where 
it is required that k ≤ 10−7 cm/s, it is important to establish the mois-
ture content–unit weight criteria in the laboratory for the soil to be 
used in field construction. This helps in the development of proper 
specifications.

Daniel and Benson (1990) developed a procedure to establish the mois-
ture content–unit weight criteria for clayey soils to meet the coefficient of 
permeability requirement. The following is a step-by-step procedure to 
develop the criteria.

Step 1: Conduct Proctor tests to establish the dry unit weight versus mold-
ing moisture content relationships (Figure 6.25a).

Step 2: Conduct permeability tests on the compacted soil specimens (from 
Step 1) and plot the results as shown in Figure 6.25b. In this figure, also 
plot the maximum allowable value of k (i.e., kall).

Step 3: Replot the dry unit weight–moisture content points (Figure 6.25c) 
with different symbols to represent the compacted specimens with k > kall 
and k ≤ kall.

Step 4: Plot the acceptable zone for which k is less than or equal to kall 
(Figure 6.25c).



Permeability  237

Moisture content(a)

(b) Moisture content

Acceptable zone

Maximum allowable k, kall

Co
e�

ci
en

t o
f p

er
m

ea
bi

lit
y

D
ry

 u
ni

t w
ei

gh
t

Modified Proctor
Standard Proctor

D
ry

 u
ni

t w
ei

gh
t

(c) Moisture content

Figure 6.25  �(a) Proctor curves; (b) variation of k of compacted specimens; (c) determi­
nation of acceptable zone.
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Chapter 7

Seepage

7.1 � INTRODUCTION

In many practical cases, the nature of the flow of water through soil is 
such that the velocity and gradient vary throughout the medium. For these 
problems, calculation of flow is generally made by use of graphs referred to 
as flow nets. The concept of the flow net is based on Laplace’s equation of 
continuity, which describes the steady flow condition for a given point in 
the soil mass. In this chapter, we will derive Laplace’s equation of continu-
ity and study its applications as related to problems such as the flow under 
hydraulic structures and seepage through earth dams.

7.2 � EQUATION OF CONTINUITY

To derive the equation of continuity of flow, consider an elementary 
soil prism at point A (Figure 7.1b) for the hydraulic structure shown in 
Figure 7.1a. The flows entering the soil prism in the x, y, and z directions 
can be given from Darcy’s law as

	
q k iA k h

x
dydzx x x x x= = ∂

∂
	 (7.1)

	
q k iA k h

y
dxdzy y y y y= = ∂

∂
	 (7.2)

	
q k iA k h

z
dxdyz z z z z= = ∂

∂
	 (7.3)

where
qx, qy, qz are the flow entering in directions x, y, and z, respectively
kx, ky, kz are the coefficients of permeability in directions x, y, and z, 

respectively
h is the hydraulic head at point A
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The respective flows leaving the prism in the x, y, and z directions are

	

q dq k i di A

k h
x

h
x

dx dydz

x x x x x x

x

+ = +

= ∂
∂

+ ∂
∂











( )

2

2 	 (7.4)

	
q dq k h

y
h
y
dy dxdzy y y+ = ∂

∂
+ ∂

∂










2

2 	 (7.5)

	
q dq k h

z
h
z
dz dxdyz z z+ = ∂

∂
+ ∂

∂










2

2 	 (7.6)

For steady flow through an incompressible medium, the flow entering 
the elementary prism is equal to the flow leaving the elementary prism. So,

	
q q q q dq q dq q dqx y z x x y y z z+ + = + + + + +( ) ( ) ( )

(b)(a)

Flow at point A

x

z

dz

dy

qy

dx

y

H2

H1
h

A

qx

qz

qx + dqx

qy + dqy

qz + dqz

Figure 7.1  �Derivation of continuity equation: (a) hydraulic structure; (b) flow in an 
elementary soil prism at A.
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Substituting Equations 7.1 through 7.6 in the preceeding equation we obtain

	
k h

x
k h

y
k h

zx y
∂
∂

+ ∂
∂

+ ∂
∂

=
2

2

2

2 2

2

2 0 	 (7.7)

For two-dimensional flow in the xz plane, Equation 7.7 becomes

	
k h

x
k h

zx z
∂
∂

+ ∂
∂

=
2

2

2

2 0 	 (7.8)

If the soil is isotropic with respect to permeability, kx = kz = k, and the 
continuity equation simplifies to

	

∂
∂

+ ∂
∂

=
2

2

2

2 0h
x

h
z

	 (7.9)

This is generally referred to as Laplace’s equation.

7.2.1 � Potential and stream functions

Consider a function ϕ(x, z) such that

	

∂
∂

= = − ∂
∂

φ υ
x

k h
xx 	 (7.10)

and

	

∂
∂

= = − ∂
∂

φ υ
z

k h
zz 	 (7.11)

If we differentiate Equation 7.10 with respect to x and Equation 7.11 
with respect to z and substitute in Equation 7.9, we get

	

∂
∂

+ ∂
∂

=
2

2

2

2 0φ φ
x z

	 (7.12)

Therefore, ϕ(x, z) satisfies the Laplace equation. From Equations 7.10 and 7.11

	 φ( , ) ( , ) ()x z kh x z fz= − + 	 (7.13)
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and

	 φ( , ) ( , ) ( )x z kh x z g x= − + 	 (7.14)

Since x and z can be varied independently, f(z) = g(x) = C, a constant. So

	 φ( , ) ( , )x z kh x z C= − +

and

	
h x z

k
C x z( , ) [ ( , )]= −1 φ  	 (7.15)

If h(x, z) is a constant equal to h1, Equation 7.15 represents a curve in 
the xz plane. For this curve, ϕ will have a constant value ϕ1. This is an 
equipotential line. So, by assigning to ϕ a number of values such as ϕ1, 
ϕ2, ϕ3, …, we can get a number of equipotential lines along which h = h1, 
h2, h3, …, respectively. The slope along an equipotential line ϕ can now 
be derived:

	
d

x
dx

z
dzφ φ φ= ∂

∂
+ ∂

∂
	 (7.16)

If ϕ is a constant along a curve, dϕ = 0. Hence

	

dz
dx

x
z

x

z







= − ∂ ∂
∂ ∂

= −
φ

φ
φ

υ
υ

/
/

	 (7.17)

Again, let ψ(x, z) be a function such that

	

∂
∂

= = − ∂
∂

ψ υ
z

k h
zx 	 (7.18)

and

	
− ∂

∂
= = − ∂

∂
ψ υ
x

k h
zz 	 (7.19)

Combining Equations 7.10 and 7.18, we obtain

	

∂
∂

= ∂
∂

φ ψ
x z
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∂
∂

= ∂
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2

2

2ψ φ
z x z

	 (7.20)

Again, combining Equations 7.11 and 7.19

	
− ∂

∂
= ∂

∂
φ ψ
z x

	
− ∂

∂ ∂
= ∂

∂

2 2

2

φ ψ
x z x

	 (7.21)

From Equations 7.20 and 7.21

	

∂
∂

+ ∂
∂

= − ∂
∂ ∂

+ ∂
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=
2

2

2

2

2 2
0ψ ψ φ φ

x z x z x y

So ψ(x, z) also satisfies Laplace’s equation. If we assign to ψ(x, z) various 
values ψ1, ψ2, ψ3, …, we get a family of curves in the xz plane. Now

	
d

x
dx

z
dzψ ψ ψ= ∂

∂
+ ∂

∂
	 (7.22)

For a given curve, if ψ is constant, then dψ = 0. Thus, from Equation 7.22

	

dz
dx

x
z

z

x







= ∂ ∂
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=
ψ

ψ
ψ

υ
υ

/
/

	 (7.23)

Note that the slope (dz/dx)ψ is in the same direction as the resultant velocity. 
Hence, the curves ψ = ψ1, ψ2, ψ3, … are the flow lines.

From Equations 7.17 and 7.23, we can see that at a given point (x, z) the 
equipotential line and the flow line are orthogonal.

The functions ϕ(x, z) and ψ(x, z) are called the potential function and the 
stream function, respectively.

7.3 � USE OF CONTINUITY EQUATION FOR 
SOLUTION OF SIMPLE FLOW PROBLEM

To understand the role of the continuity equation (Equation 7.9), consider a 
simple case flow of water through two layers of soil as shown in Figure 7.2. 
The flow is in one direction only, that is, in the direction of the x axis. The 
lengths of the two soil layers (LA and LB) and their coefficients of perme-
ability in the direction of the x axis (kA and kB) are known. The total heads 
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at sections 1 and 3 are known. We are required to plot the total head at any 
other section for 0 < x < LA + LB.

For one-dimensional flow, Equation 7.9 becomes

	

∂
∂

=
2

2 0h
x

	 (7.24)

Integration of Equation 7.24 twice gives

	 h C x C= +2 1 	 (7.25)

where C1 and C2 are constants.
For flow through soil A, the boundary conditions are

	 1.	At x = 0, h = h1

	 2.	At x = LA, h = h2

However, h2 is unknown (h1 > h2). From the first boundary condition and 
Equation 7.25, C1 = h1. So

	 h C x h= +2 1 	 (7.26)

From the second boundary condition and Equation 7.25,

	
h C L h C h h

L2 2 A 1 2
2

A
or= + = −( )

LA

LB

Soil B
kB

Soil A
kA

Flow

Datum
h1

h2

z 3

2

1

x

Figure 7.2  �One-directional flow through two layers of soil.
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So

	
h h h

L
x h x L= − − + ≤ ≤1 2

1
A

A0 	 (7.27)

For flow through soil B, the boundary conditions for solution of C1 and C2 
in Equation 7.25 are

	 1.	At x = LA, h = h2

	 2.	At x = LA + LB, h = 0

From the first boundary condition and Equation 7.25, h2 = C2LA + C1, or

	 C h C L1 2 2 A= − 	 (7.28)

Again, from the secondary boundary condition and Equation 7.25, 
0 = C2(LA + LB) + C1, or

	 C C L L1 2 A B= − +( )	 (7.29)

Equating the right-hand sides of Equations 7.28 and 7.29,

	 h C L C L L2 2 A 2 A B− = − +( )

	
C h

L2
2= −
B

	 (7.30)

and then substituting Equation 7.30 into Equation 7.28 gives

	
C h h

L
L h L

L1 2
2

2 1= + = +







B
A

A

B
	 (7.31)

Thus, for flow through soil B,

	
h h

L
x h L

L
L x L L= − + +






 ≤ ≤ +2

2 1
B

A

B
A A B 	 (7.32)

With Equations 7.27 and 7.32, we can solve for h for any value of x from 
0 to LA + LB, provided that h2 is known. However

	 q = =rate of flow  through soil A rate of flow  through soil B
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So

	
q k h h

L
A k h

L
A= −






 = 





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A

A
B

B

1 2 2 	 (7.33)

where
kA and kB are the coefficients of permeability of soils A and B, 

respectively
A is the area of cross section of soil perpendicular to the direction of flow

From Equation 7.33

	
h k h

L k L k L2 =
+( )

A 1

A A A B B/ /
	 (7.34)

Substitution of Equation 7.34 into Equations 7.27 and 7.32 yields, after 
simplification,

	
h h k x

k L k L
x L= −

+






 =1 1 0B

A B B A
A( )for to 	 (7.35)

	
h h k

k L k L
L L x x L L L=

+
+ −



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= +1
A

A B B A
A B A A B( ) ( ( ))for to 	 (7.36)

7.4 � FLOW NETS

7.4.1 � Definition

A set of flow lines and equipotential lines is called a flow net. As discussed 
in Section 7.2, a flow line is a line along which a water particle will travel. 
An equipotential line is a line joining the points that show the same piezo
metric elevation (i.e., hydraulic head = h(x, z) = constant). Figure 7.3 shows 
an example of a flow net for a single row of sheet piles. The permeable 
layer is isotropic with respect to the coefficient of permeability, that is, 
kx = kz = k. Note that the solid lines in Figure 7.3 are the flow lines and the 
broken lines are the equipotential lines. In drawing a flow net, the bound-
ary conditions must be kept in mind. For example, in Figure 7.3,

	 1.	AB is an equipotential line.
	 2.	EF is an equipotential line.
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	 3.	BCDE (i.e., the sides of the sheet pile) is a flow line.
	 4.	GH is a flow line.

The flow lines and the equipotential lines are drawn by trial and error. It 
must be remembered that the flow lines intersect the equipotential lines 
at right angles. The flow and equipotential lines are usually drawn in 
such a way that the flow elements are approximately squares. Drawing 
a flow net is time consuming and tedious because of the trial-and-error 
process involved. Once a satisfactory flow net has been drawn, it can be 
traced out.

Some other examples of flow nets are shown in Figures 7.4 and 7.5 for 
flow under dams.

7.4.2 � Calculation of seepage from a flow 
net under a hydraulic structure

A flow channel is the strip located between two adjacent flow lines. To 
calculate the seepage under a hydraulic structure, consider a flow channel 
as shown in Figure 7.6.

The equipotential lines crossing the flow channel are also shown, along 
with their corresponding hydraulic heads. Let ∆q be the flow through the 

Constant hydraulic
head along an

equipotential line

Permeable
layer

U/S Water level

6 m

3 m
D/S

Water level h

F

1 m
Scale

H

A 0.5 m

G

0.82 m

C D

B  E

1.5 m

Impermeable layer

Figure 7.3  �Flow net around a single row of sheet pile structures.
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flow channel per unit length of the hydraulic structure (i.e., perpendicular 
to the section shown). According to Darcy’s law

	

∆ = = −





 × = −






 ×

= −

q kiA k h h
l

b k h h
l

b

k h h
l

i

1 2
1

2 3

2
2

3 4

3

1 1( ) ( )






 × =( )b3 1 � 	 (7.37)

Determine maximum
exit gradient from this
element (Section 7.10)

Permeable
layer

Impermeable layer

10 m

C

A

B

10 m
Scale

Figure 7.4  �Flow net under a dam.

Impermeable layer

Permeable layer

Water level

Toe �lter

10 m
Scale

Figure 7.5  �Flow net under a dam with a toe filter.
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If the flow elements are drawn as squares, then

	 l b1 1=

	 l b2 2=

	 l b3 3=

	 �

So, from Equation 7.37, we get

	
h h h h h h h h

N1 2 2 3 3 4− = − = − = = ∆ =�
d

	 (7.38)

where
∆h is the potential drop (= drop in piezometric elevation between two 

consecutive equipotential lines)
h is the total hydraulic head (= difference in elevation of water between 

the upstream and downstream side)
Nd is the number of potential drops

Equation 7.38 demonstrates that the loss of head between any two con-
secutive equipotential lines is the same. Combining Equations 7.37 and 
7.38 gives

	
∆ =q k h

N d

	 (7.39)

Δq

Δq

h2

h3

h4

 b3

 l3
b2

l2

b1

l1

h1

Figure 7.6  �Flow through a flow channel.
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If there are Nf flow channels in a flow net, the rate of seepage per unit 
length of the hydraulic structure is

	
q N q kh N

N
= ∆ =f

f

d
	 (7.40)

Although flow nets are usually constructed in such a way that all flow ele-
ments are approximately squares, that need not always be the case. We could 
construct flow nets with all the flow elements drawn as rectangles. In that 
case, the width-to-length ratio of the flow nets must be a constant, that is

	

b
l

b
l

b
l

n1

1

2

2

3

3
= = = =� 	 (7.41)

For such flow nets, the rate of seepage per unit length of hydraulic structure 
can be given by

	
q kh N

N
n= f

d
	 (7.42)

Example 7.1

For the flow net shown in Figure 7.4

	 a.	How high would water rise if a piezometer is placed at (i) A (ii) B 
(iii) C?

	 b.	If k = 0.01 mm/s, determine the seepage loss of the dam in 
m3/(day · m).

Solution

The maximum hydraulic head h is 10 m. In Figure 7.4, Nd = 12, 
∆h = h/Nd = 10/12 = 0.833.

Part a(i).

To reach A, water must go through three potential drops. So head lost 
is equal to 3 × 0.833 = 2.5 m. Hence, the elevation of the water level in 
the piezometer at A will be 10 − 2.5 = 7.5 m above the ground surface.

Part a(ii).

The water level in the piezometer above the ground level is 10 − 
5(0.833) = 5.84 m.

Part a(iii).

Points A and C are located on the same equipotential line. So water in 
a piezometer at C will rise to the same elevation as at A, that is, 7.5 m 
above the ground surface.
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Part b:

The seepage loss is given by q = kh(Nf/Nd). From Figure 7.4, Nf = 5 and 
Nd = 12. Since

	
k = 





× × =0 01 0 01
1000

60 60 24 0 864. . ( ) .m m /s = m /day

	
q = 





= ⋅0 0 5
12

. ) .864(1 36m /(day m )3

7.5 � HYDRAULIC UPLIFT FORCE 
UNDER A STRUCTURE

Flow nets can be used to determine the hydraulic uplifting force under 
a structure. The procedure can best be explained through a numerical 
example. Consider the dam section shown in Figure 7.4, the cross section of 
which has been replotted in Figure 7.7. To find the pressure head at point D 
(Figure 7.7), we refer to the flow net shown in Figure 7.4; the pressure head is 
equal to (10 + 3.34 m) minus the hydraulic head loss. Point D coincides with 
the third equipotential line beginning with the upstream side, which means 
that the hydraulic head loss at that point is 2(h/Nd) = 2(10/12) = 1.67 m. So

Pressure head at D = 13.34 − 1.67 = 11.67 m

Similarly

Pressure head at E = (10 + 3.34) − 3(10/12) = 10.84 m

Pressure head at F = (10 + 1.67) − 3.5(10/12) = 8.75 m

18.32 m
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Figure 7.7  �Pressure head under the dam section shown in Figure 7.4.
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(Note that point F is approximately midway between the fourth and the 
fifth equipotential lines starting from the upstream side.)

Pressure head at G = (10 + 1.67) − 8.5(10/12) = 4.56 m

Pressure head at H = (10 + 3.34) − 9(10/12) = 5.84 m

Pressure head at I = (10 + 3.34) − 10(10/12) = 5 m

The pressure heads calculated earlier are plotted in Figure 7.7. Between 
points F and G, the variation of pressure heads will be approximately 
linear. The hydraulic uplift force per unit length of the dam, U, can now 
be calculated as

	

U =

= +




γw (areaofthepressureheaddiagram )

9.81
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7.6 � FLOW NETS IN ANISOTROPIC MATERIAL

In developing the procedure described in Section 7.4 for plotting flow nets, we 
assumed that the permeable layer is isotropic, that is, khorizontal = kvertical = k. 
Let us now consider the case of constructing flow nets for seepage through 
soils that show anisotropy with respect to permeability. For two-dimensional 
flow problems, we refer to Equation 7.8:

	
k h

x
k h

zx z
∂
∂

+ ∂
∂

=
2

2

2

2 0

where
kx = khorizontal

kz = kvertical
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This equation can be rewritten as

	

∂
∂

+ ∂
∂

=
2

2

2

2 0h
k k x

h
zz x( )/

	 (7.43)

Let ′ =x k k xz x/ , then

	

∂
∂

= ∂
∂ ′

2

2

2

2
h

k k x
h
xz x( )/

	 (7.44)

Substituting Equation 7.44 into Equation 7.43, we obtain

	

∂
∂ ′

+ ∂
∂

=
2

2

2

2 0h
x

h
z

	 (7.45)

Equation 7.45 is of the same form as Equation 7.9, which governs the 
flow in isotropic soils and should represent two sets of orthogonal lines 
in the x′z plane. The steps for construction of a flow net in an anisotropic 
medium are as follows:

	 1.	To plot the section of the hydraulic structure, adopt a vertical scale.
	 2.	Determine k k k kz x/ /vertical horizontal= .
	 3.	Adopt a horizontal scale such that scale / scalehorizontal vertical= k kz x( ).
	 4.	With the scales adopted in steps 1 and 3, plot the cross section of the 

structure.
	 5.	Draw the flow net for the transformed section plotted in step 4 in the 

same manner as is done for seepage through isotropic soils.
	 6.	Calculate the rate of seepage as

	
q k k h N

Nx z= f

d
	 (7.46)

Compare Equations 7.39 and 7.46. Both equations are similar except for 
the fact that k in Equation 7.39 is replaced by k kx z  in Equation 7.46.

Example 7.2

A dam section is shown in Figure 7.8a. The coefficients of permeability 
of the permeable layer in the vertical and horizontal directions are 
2 × 10−2 and 4 × 10−2 mm/s, respectively. Draw a flow net and calculate 
the seepage loss of the dam in m3/(day · m).
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Solution

From the given data

	 kz = × =−2 1 m m /s 1728 m /day20 .

	 kx = × =−4 1 m m /s 3456 m /day20 .

and h = 10 m. For drawing the flow net,

	

H orizontalscale verticalscale

verticalsca

= ×
×

=

−

−
2 10
4 10

1
2

2

2 ( )

( lle)

On the basis of this, the dam section is replotted, and the flow net drawn 
as in Figure 7.8b. The rate of seepage is given by q k k h N Nx z= ( ).f d/  

12.5 m

10 m

(a)

Permeable
layer

Impermeable layer

1.0

1.0

0.5

10 m

Horizontal scale = 12.5 ×     2 = 17.68 m

(b) Vertical scale = 12.5 m

Figure 7.8  �Construction of flow net under a dam: (a) section of the dam; (b) flow net.
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From Figure 7.8b, Nd = 8 and Nf = 2.5 (the lowermost flow channel has 
a width-to-length ratio of 0.5). So

	 q = = ⋅( . )( . )( )( . ) .1 728 3 456 10 2 5 8 7 637 3/ m /(day m )

Example 7.3

A single row of sheet pile structure is shown in Figure 7.9a. Draw a 
flow net for the transformed section. Replot this flow net in the natu-
ral scale also. The relationship between the permeabilities is given as 
kx = 6kz.

Solution

For the transformed section

	

H orizontalscale verticalscale

verticalscale

=

=

k
k
z

x
( )

( )1
6

The transformed section and the corresponding flow net are shown in 
Figure 7.9b.

Figure 7.9c shows the flow net constructed to the natural scale. One 
important fact to be noticed from this is that when the soil is anisotro-
pic with respect to permeability, the flow and equipotential lines are 
not necessarily orthogonal.

7.7 � CONSTRUCTION OF FLOW NETS 
FOR HYDRAULIC STRUCTURES ON 
NONHOMOGENEOUS SUBSOILS

The flow net construction technique described in Section 7.4 is for the 
condition where the subsoil is homogeneous. Rarely in nature do such 
ideal conditions occur; in most cases, we encounter stratified soil depos-
its (such as those shown in Figure 7.12 later in the chapter). When a flow 
net is constructed across the boundary of two soils with different perme-
abilities, the flow net deflects at the boundary. This is called a transfer 
condition. Figure 7.10 shows a general condition where a flow channel 
crosses the boundary of two soils. Soil layers 1 and 2 have permeabilities 
of k1 and k2, respectively. The dashed lines drawn across the flow channel 
are the equipotential lines.
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Impermeable layer

kx = 6kz
12.5 m

Scale

4 m

10 m

20 m

15 m

Impermeable layer

Vertical scale
10 m

Horizontal scale =

(b)

(a)

(c)
10 m

Scale

10 ×     6 = 24.5 m

Figure 7.9  �Flow net construction in anisotropic soil: (a) sheet pile structure; (b) flow net 
in transformed scale; (c) flow net in natural scale.
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Let ∆h be the loss of hydraulic head between two consecutive equipoten-
tial lines. Considering a unit length perpendicular to the section shown, the 
rate of seepage through the flow channel is

	
∆ = ∆ × = ∆ ×q k h

l
b k h

l
b1

1
1 2

2
21 1( ) ( )

or

	

k
k

b l
b l

1

2

2 2

1 1
= /

/
	 (7.47)

where
l1 and b1 are the length and width of the flow elements in soil layer 1
l2 and b2 are the length and width of the flow elements in soil layer 2

Referring again to Figure 7.10

	 l AB AB1 1 1sin cos= =θ α 	 (7.48a)

	 l AB AB2 2 2sin cos= =θ α 	 (7.48b)

	 b AC AC1 1 1cos sin= =θ α 	 (7.48c)

	 b AC AC2 2 2cos sin= =θ α 	 (7.48d)

From Equations 7.48a,c

	

b
l
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Figure 7.10  �Transfer condition.
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or

	

b
l
1

1 1
1

1= =
tan

tan
θ

α 	 (7.49)

Also, from Equations 7.48b,d

	

b
l
2

2

2

2

2

2
= =cos
sin
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θ
θ

α
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or

	

b
l
2

2 2
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α 	 (7.50)

Combining Equations 7.47, 7.49, and 7.50

	

k
k
1

2

1

2

2

1
= =tan
tan

tan
tan

θ
θ

α
α

	 (7.51)

Flow nets in nonhomogeneous subsoils can be constructed using the 
relations given by Equation 7.51 and other general principles outlined in 
Section 7.4. It is useful to keep the following points in mind while con-
structing the flow nets:

	 1.	If k1 > k2, we may plot square flow elements in layer 1. This means 
that l1 = b1 in Equation 7.47. So, k1/k2 = b2/l2. Thus, the flow elements 
in layer 2 will be rectangles and their width-to-length ratios will be 
equal to k1/k2. This is shown in Figure 7.11a.

	 2.	If k1 < k2, we may plot square flow elements in layer 1 (i.e., l1 = b1). 
From Equation 7.47, k1/k2 = b2/l2. So, the flow elements in layer 2 will 
be rectangles. This is shown in Figure 7.11b.

An example of the construction of a flow net for a dam section resting on a 
two-layered soil deposit is given in Figure 7.12. Note that k1 = 5 × 10−2 mm/s 
and k2 = 2.5 × 10−2 mm/s. So

	

k
k
1

2

2

2
2

1

1

2

5 0 10
2 5 10

2= ×
×

= = =
−

−
.
.

tan
tan

tan
tan

α
α

θ
θ

In soil layer 1, the flow elements are plotted as squares, and since k1/k2 = 2, 
the length-to-width ratio of the flow elements in soil layer 2 is 1/2.
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7.8 � NUMERICAL ANALYSIS OF SEEPAGE

7.8.1 � General seepage problems

In this section, we develop some approximate finite difference equations 
for solving seepage problems. We start from Laplace’s equation, which was 
derived in Section 7.2. For two-dimensional seepage

	
k h

x
k h

zx z
∂
∂

+ ∂
∂

=
2

2

2

2 0 	 (7.52)
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α1 α1

α2

l2

b2
l2

< 1
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l2

> 1

(a) (b)

b2

Figure 7.11  �Flow channel at the boundary between two soils with different coefficients 
of permeability: (a) k1 > k2; (b) k1 < k2.

15 m

Layer 1
k1 = 5 × 10–2 mm/s 5 m

h

10 mLayer 2
k2 = 2.5 × 10–2 mm/s

Figure 7.12  �Flow net under a dam resting on a two-layered soil deposit.
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Figure 7.13 shows a part of a region in which flow is taking place. For 
flow in the horizontal direction, using Taylor’s series, we can write

	
h h x h
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and
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Adding Equations 7.53 and 7.54, we obtain
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Figure 7.13  �Hydraulic heads for flow in a region.
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Assuming ∆x to be small, we can neglect the third and subsequent terms on 
the right-hand side of Equation 7.55. Thus

	

∂
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




 = + −

∆

2

2
0

1 3 0
2
2h

x
h h h

x( )
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Similarly, for flow in the z direction we can obtain
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∆
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2
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Substitution of Equations 7.56 and 7.57 into Equation 7.52 gives

	
k h h h

x
k h h h

zx z
1 3 0

2
2 4 0

2
2 2 0+ −

∆
+ + −

∆
=

( ) ( )
	 (7.58)

If kx = ky = k and ∆x = ∆z, Equation 7.58 simplifies to

	 h h h h h1 2 3 4 4+ + + − =0 0

or

	
h h h h h0 1 2 3 4

1
4

= + + +( )	 (7.59)

Equation 7.59 can also be derived by considering Darcy’s law, q = kiA. 
For the rate of flow from point 1 to point 0 through the channel shown in 
Figure 7.14a, we have

	
q kh h

x
z1 0

1 0
− = −

∆
∆ 	 (7.60)

Similarly

	
q kh h

x
z0 3
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∆ 	 (7.61)

	
q kh h

z
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∆
∆ 	 (7.62)

	
q kh h

z
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− = −

∆
∆ 	 (7.63)
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Since the total rate of flow into point 0 is equal to the total rate of flow 
out of point 0, qin − qout = 0. Hence

	 ( ) ( )q q q q1 2 3 4− − − −+ − + =0 0 0 0 0 	 (7.64)

Taking ∆x = ∆z and substituting Equations 7.60 through 7.63 into 
Equation 7.64, we get

	
h h h h h0 1 2 3 4

1
4

= + + +( )

If the point 0 is located on the boundary of a pervious and an impervious 
layer, as shown in Figure 7.14b, Equation 7.59 must be modified as follows:
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Figure 7.14  �Numerical analysis of seepage: (a) derivation of Equation 7.59; (b) derivation of 
Equation 7.69; (c) derivation of Equation 7.71; (d) derivation of Equation 7.77.
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q kh h

z
x0 2

0 2
− = −

∆
∆ 	 (7.67)

For continuity of flow

	 q q q1 3 2− − −− − =0 0 0 0 	 (7.68)

With ∆x = ∆z, combining Equations 7.65 through 7.68 gives

	

h h h h
h h1 0 0 3
0 22 2

0− − − − − =( )

	

h h
h h1 3
2 02 2

2 0+ + − =

or

	
h h h h0 1 2 3
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4

2= − + +( )	 (7.69)

When point 0 is located at the bottom of a piling (Figure 7.14c), the equa-
tion for the hydraulic head for flow continuity can be given by

	 q q q q q1 4 3 2 2− − − − ′ − ″+ − − − =0 0 0 0 0 0 	 (7.70)

Note that 2′ and 2″ are two points at the same elevation on the opposite 
sides of the sheet pile with hydraulic heads of h2′ and h2″, respectively. For 
this condition, we can obtain (for ∆x = ∆z), through a similar procedure to 
that mentioned earlier,

	
h h h h h h0 1 2 2 3 4

1
4

1
2

= + + + +





′ ′′( ) 	 (7.71)

7.8.2 � Seepage in layered soils

Equation 7.59, which we derived earlier, is valid for seepage in homogeneous 
soils. However, for the case of flow across the boundary of one homoge-
neous soil layer to another, Equation 7.59 must be modified. Referring to 
Figure 7.14d, since the flow region is located half in soil 1 with a coefficient 
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of permeability k1 and half in soil 2 with a coefficient of permeability k2, 
we can say that

	
k k kav = +1

2 1 2( )	 (7.72)

Now, if we replace soil 2 by soil 1, the replaced soil (i.e., soil 1) will have 
a hydraulic head of h4′ in place of h4. For the velocity to remain the same
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Thus, based on Equation 7.52, we can write
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Taking ∆x = ∆z and substituting Equation 7.74 into Equation 7.75
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The application of the equations developed in this section can best be 
demonstrated by the use of a numerical example. Consider the problem of 
determining the hydraulic heads at various points below the dam as shown 
in Figure 7.12. Let ∆x = ∆z = 1.25 m. Since the flow net below the dam will 
be symmetrical, we will consider only the left half. The steps for determining 
the values of h at various points in the permeable soil layers are as follows:

	 1.	Roughly sketch out a flow net.
	 2.	Based on the rough flow net (step 1), assign some values for the hydrau-

lic heads at various grid points. These are shown in Figure 7.15a. Note 
that the values of h assigned here are in percent.
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	 3.	Consider the heads for row 1 (i.e., i = 1). The h(i,j) for i = 1 and 
j = 1, 2, …, 22 are 100 in Figure 7.15a; these are correct values based 
on the boundary conditions. The h(i,j) for i = 1 and j = 23, 24, …, 28 
are estimated values. The flow condition for these grid points is sim-
ilar to that shown in Figure 7.14b, and according to Equation 7.69, 
(h1 + 2h2 + h3) − 4h0 = 0, or

	
( )(, ) ( ,) (, ) (,)h h h hij i j ij ij+ + −+ + − =1 1 12 4 0 	 (7.78)

Since the hydraulic heads in Figure 7.15 are assumed values, 
Equation 7.78 will not be satisfied. For example, for the grid point 
i = 1 and j = 23, h(i,j−1) = 100, h(i,j) = 84, h(i,j+1) = 68, and h(i+1,j) = 78. If 
these values are substituted into Equation 7.78, we get [68 + 2(78) + 
100] − 4(84) = −12, instead of zero. If we set −12 equal to R (where R 
stands for residual) and add R/4 to h(i,j), Equation 7.78 will be satis-
fied. So the new, corrected value of h(i,j) is equal to 84 + (−3) = 81, as 
shown in Figure 7.15b. This is called the relaxation process. Similarly, 
the corrected head for the grid point i = 1 and j = 24 can be found as 
follows:

	 [ ( ) ] ( )84 267 61 468 7+ + − = = R

So, h(1,24) = 68 + 7/4 = 69.75 ≈ 69.8. The corrected values of h(1,25), 
h(1,26), and h(1,27) can be determined in a similar manner. Note that 
h(l,28) = 50 is correct, based on the boundary condition. These are 
shown in Figure 7.15b.

	 4.	Consider the rows i = 2, 3, and 4. The h(i,j) for i = 2, …, 4 and j = 2, 
3, …, 27 should follow Equation 7.59; (h1 + h2 + h3 + h4) − 4h0 = 0; or

	
( )(, ) ( ,) (, ) ( ,) (,)h h h h hij i j ij i j ij+ − − ++ + + − =1 1 1 1 4 0 	 (7.79)

To find the corrected heads h(i,j), we proceed as in Step 3. The resid-
ual R is calculated by substituting values into Equation 7.79, and the 
corrected head is then given by h(i,j) + R/4. Owing to symmetry, the 
corrected values of h(1,28) for i = 2, 3, and 4 are all 50, as originally 
assumed. The corrected heads are shown in Figure 7.15b.

	 5.	Consider row i = 5 (for j = 2, 3, …, 27). According to Equation 7.77

	
h k

k k
h h k

k k
h h1

1

1 2
2 3

2

1 2
4 0

2 2 4 0+
+

+ +
+

− = 	 (7.80)
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Since k1 = 5 × 10−2 mm/s and k2 = 2.5 × 10−2 mm/s

	

2 2 5 10
5 2 5 10

1 3331

1 2

2

2
k

k k+
= ×

+ ×
=

−

−
()

( .)
.

	

2 2 2 5 10
5 2 5 10

0 6672

1 2

2

2
k

k k+
= ×

+ ×
=

−

−
( .)

( .)
.

Using the aforementioned values, Equation 7.80 can be rewritten as

	
h h h h hij i j ij i j ij(, ) ( ,) (, ) ( ,) (,). .+ − − ++ + + − =1 1 1 11333 667 40 0

As in step 4, calculate the residual R by using the heads in 
Figure 7.15a. The corrected values of the heads are given by h(i,j) + R/4. 
These are shown in Figure 7.15b. Note that, owing to symmetry, the 
head at the grid point i = 5 and j = 28 is 50, as assumed initially.

	 6.	Consider the rows i = 6, 7, …, 12. The h(i,j) for i = 6, 7, …, 12 and 
j = 2, 3, …, 27 can be found by using Equation 7.79. Find the cor-
rected head in a manner similar to that in step 4. The heads at j = 28 
are all 50, as assumed. These values are shown in Figure 7.15b.

	 7.	Consider row i = 13. The h(i,j) for i = 13 and j = 2, 3, …, 27 can be 
found from Equation 7.69, (h1 + 2h2 + h3) − 4h0 = 0, or

	
h h h hij i j ij ij(, ) ( ,) (, ) (,)+ − −+ + − =1 1 12 4 0

With proper values of the head given in Figure 7.15a, find the resid-
ual and the corrected heads as in step 3. Note that h(13,28) = 50 owing 
to symmetry. These values are given in Figure 7.15b.

	 8.	With the new heads, repeat steps 3 through 7. This iteration must be 
carried out several times until the residuals are negligible.

Figure 7.15c shows the corrected hydraulic heads after 10 iterations. With 
these values of h, the equipotential lines can now easily be drawn.

7.9 � SEEPAGE FORCE PER UNIT 
VOLUME OF SOIL MASS

Flow of water through a soil mass results in some force being exerted on the 
soil itself. To evaluate the seepage force per unit volume of soil, consider 
a soil mass bounded by two flow lines ab and cd and two equipotential 
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lines ef and gh, as shown in Figure 7.16. The soil mass has unit thick-
ness at right angles to the section shown. The self-weight of the soil mass 
is (length)(width)(thickness)(γsat) = (L)(L)(1)(γsat) = L2γsat. The hydrostatic 
force on the side ef of the soil mass is (pressure head)(L)(1) = h1γwL. The 
hydrostatic force on the side gh of the soil mass is h2Lγw. For equilibrium

	 ∆F h L L h L= + −1 w
2

sat 2 wsinγ γ α γ 	 (7.81)

However, h1 + L sin α = h2 + ∆h, so

	 h h L h2 1 sin= + −α ∆ 	 (7.82)

Combining Equations 7.81 and 7.82

	 ∆ ∆F h L L h L h L= + − + −1 w
2

sat 1 wsin sinγ γ α α γ( )

or

	

∆ = − + ∆ = ′F L h L L2 2( )sin sinγ γ α γ γ αsat w w
effective weight
of soil inn the 

direction of flow

w
seepage
force

+ ∆h Lγ 	 (7.83)

F + ΔF

Δh

h2

h1

f

c

e

h

b

L

a

F

L sin α
α

L

dg

Figure 7.16  �Seepage force determination.
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where γ′ = γsat − γw. From Equation 7.83, we can see that the seepage force 
on the soil mass considered is equal to ∆hγwL. Therefore

	

Seepageforceperunitvolum eofsoilm ass w

w w

= ∆

= ∆ =

h L
L

h
L

i

γ

γ γ

2

	 (7.84)

where i is the hydraulic gradient.

7.10 � SAFETY OF HYDRAULIC STRUCTURES 
AGAINST PIPING

When upward seepage occurs and the hydraulic gradient i is equal to icr, 
piping or heaving originates in the soil mass:

	
icr

w
=

′γ
γ

	
′ = − = +

+
− = −

+
γ γ γ γ γ γ γ

sat w
s w w

w
s wG e

e
G

e1
1

1
( )

So

	
i G

ecr
w

s=
′

= −
+

γ
γ

1
1

	 (7.85)

For the combinations of Gs and e generally encountered in soils, icr varies 
within a range of about 0.85–1.1.

Harza (1935) investigated the safety of hydraulic structures against 
piping. According to his work, the factor of safety against piping, FS, can 
be defined as

	
F i

iS
cr

exit
= 	 (7.86)

where iexit is the maximum exit gradient. The maximum exit gradient can 
be determined from the flow net. Referring to Figure 7.4, the maximum 
exit gradient can be given by ∆h/l (∆h is the head lost between the last 
two equipotential lines, and l the length of the flow element). A factor 
of safety of 3–4 is considered adequate for the safe performance of the 
structure. Harza also presented charts for the maximum exit gradient of 
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dams constructed over deep homogeneous deposits (see Figure 7.17). Using 
the notations shown in Figure 7.17, the maximum exit gradient can be 
given by

	
i C h

Bexit = 	 (7.87)

A theoretical solution for the determination of the maximum exit gradi-
ent for a single row of sheet pile structures as shown in Figure 7.3 is avail-
able (see Harr, 1962) and is of the form

	
iexit

m axim um hydraulichead
depth ofpenetration ofsheetpile

= 1
π

	 (7.88)

10

C

B

h

d

0
0

0.5

1.0

1.5

155

Deep homogeneous soil

h
Biexit = C

Toe sheeting only

Heel and toe sheeting

B/d

Figure 7.17  �Critical exit gradient (Equation 7.87).
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Lane (1935) also investigated the safety of dams against piping and sug-
gested an empirical approach to the problem. He introduced a term called 
weighted creep distance, which is determined from the shortest flow path:

	
L

L
Lw

h
v= +∑ ∑3

	 (7.89)

where
Lw is the weighted creep distance
ΣLh = Lh1

 + Lh2
 + … is the sum of horizontal distance along shortest 

flow path (see Figure 7.18)
ΣLv = Lv1

 + Lv2
 + … is the sum of vertical distances along shortest flow 

path (see Figure 7.18)

Once the weighted creep length has been calculated, the weighted creep 
ratio can be determined as (Figure 7.18)

	
W eightedcreepratio w=

−
L

H H1 2
	 (7.90)

For a structure to be safe against piping, Lane (1935) suggested that the 
weighted creep ratio should be equal to or greater than the safe values 
shown in Table 7.1.

Permeable layer

Lh2

Lv2
Lv1

Lh1

H2

H1

Impermeable layer

Figure 7.18  �Calculation of weighted creep distance.
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If the cross section of a given structure is such that the shortest flow path 
has a slope steeper than 45°, it should be taken as a vertical path. If the 
slope of the shortest flow path is less than 45°, it should be considered as a 
horizontal path.

Terzaghi (1922) conducted some model tests with a single row of sheet 
piles as shown in Figure 7.19 and found that the failure due to piping takes 
place within a distance of D/2 from the sheet piles (D is the depth of pen-
etration of the sheet pile). Therefore, the stability of this type of structure 
can be determined by considering a soil prism on the downstream side of 

Table 7.1  �Safe values for the weighted creep ratio

Material Safe weighted creep ratio

Very fine sand or silt 8.5
Fine sand 7.0
Medium sand 6.0
Coarse sand 5.0
Fine gravel 4.0
Coarse gravel 3.0
Soft to medium clay 2.0–3.0
Hard clay 1.8
Hard pan 1.6

Possible
failure zone

H2

H1

D/2

D

W΄

U

ha

Permeable
layer

Impermeable layer

Figure 7.19  �Failure due to piping for a single-row sheet pile structure.
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unit thickness and of section D × D/2. Using the flow net, the hydraulic 
uplifting pressure can be determined as

	
U D h= w a

1
2

γ 	 (7.91)

where ha is the average hydraulic head at the base of the soil prism. The sub-
merged weight of the soil prism acting vertically downward can be given by

	
′ = ′W D1

2
2γ 	 (7.92)

Hence, the factor of safety against heave is

	
F W

U
D
D h

D
hs

w a a w
=

′
=

′
=

′1
2

2

1
2

γ
γ

γ
γ

	 (7.93)

A factor of safety of about 4 is generally considered adequate.
For structures other than a single row of sheet piles, such as that shown 

in Figure 7.20, Terzaghi (1943) recommended that the stability of several 
soil prisms of size D/2 × D′ × 1 be investigated to find the minimum factor 
of safety. Note that 0 < D′ ≤ D. However, Harr (1962, p. 125) suggested 
that a factor of safety of 4–5 with D′ = D should be sufficient for safe per-
formance of the structure.

Permeable layer

Soil
wedge

D΄

D/2

D

U

Impermeable base

Figure 7.20  �Safety against piping under a dam.
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Example 7.4

A flow net for a single row of sheet piles is given in Figure 7.3.

	 a.	Determine the factor of safety against piping by Harza’s method.
	 b.	Determine the factor of safety against piping by Terzaghi’s 

method (Equation 7.93).

Assume γ′ = 10.2 kN/m3.

Solution

Part a:

	
i h

L
h

Nexit
d

m= ∆ ∆ = − = − =3 0 5 3 0 5
6

0 417. . .

The length of the last flow element can be scaled out of Figure 7.3 and 
is approximately 0.82 m. So

	
iexit = =0 417

0 82
0 509.

.
.

(We can check this with the theoretical equation given in Equation 7.88:

	
iexit

3 5 53= 





−





=1 0
1 5

0
π

( .)
.

.

which is close to the value obtained earlier.)

	
icr

w
3

kN /m
kN /m

=
′

= =γ
γ

10 2
9 81

1 04
3.

.
.

So, the factor of safety against piping is

	

i
i
cr

exit
= =1 04
0 509

2 04.
.

.

Part b:

A soil prism of cross section D × D/2, where D = 1.5 m, on the down-
stream side adjacent to the sheet pile is plotted in Figure 7.21a. The 
approximate hydraulic heads at the bottom of the prism can be evalu-
ated by using the flow net. Referring to Figure 7.3 (note that Nd = 6)

	
hA = − =3

6
3 0 5 1 25( .) . m

	
hB = − =2

6
3 0 5 0 833( .) . m

	
hC = − =1 8

6
3 0 5 0 75. ( .) . m
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ha m= + +





=0 375
0 75

1 25 0 75
2

0 833 0 917.
.

. . . .

	
F D

hs
a w

=
′

= ×
×

=γ
γ

1 5 10 2
0 917 9 81

1 7. .
. .

.

The factor of safety calculated here is rather low. However, it can be 
increased by placing some filter material on the downstream side above 
the ground surface, as shown in Figure 7.21b. This will increase the 
weight of the soil prism (W′; see Equation 7.92).

Example 7.5

A dam section is shown in Figure 7.22. The subsoil is fine sand. Using 
Lane’s method, determine whether the structure is safe against piping.

Solution

From Equation 7.89

	

L
L

L

L

L

L

w
h

v

h

v

w

6 1 16m

1 (8 8) 1 2 2 m

m

= +

= + =

= + + + + =

= + =

∑ ∑
∑
∑

3

0

0

16
3

20 25 33.

D = 1.5 m

C

Filter

0.75 m
B
0.833
m

A
1.25
m

0.5 m

3 m

ha = 0.917 m

Soil
prism

(a) (b)

Figure 7.21  �Factor of safety calculation by Terzaghi’s method: (a) hydraulic head at the 
bottom prism measuring D ⨯ D/2; (b) use of filter in the downstream side.
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From Equation 7.90

	
W eightedcreepratio = wL

H H1 2

25 33
10 2

3 17
−

=
−

=. .

From Table 7.1, the safe weighted creep ratio for fine sand is about 7. 
Since the calculated weighted creep ratio is 3.17, the structure is unsafe.

7.11 � FILTER DESIGN

When seepage water flows from a soil with relatively fine grains into a 
coarser material (e.g., Figure 7.21b), there is a danger that the fine soil par-
ticles may wash away into the coarse material. Over a period of time, this 
process may clog the void spaces in the coarser material. Such a situation 
can be prevented by the use of a filter or protective filter between the two 
soils. For example, consider the earth dam section shown in Figure 7.23. 
If rockfills were only used at the toe of the dam, the seepage water would 
wash the fine soil grains into the toe and undermine the structure. Hence, 

8 m

6 m

10 m Upstream
apron

1 m
1 m 2 m

10 m

2 m

Figure 7.22  �Safety against piping under a dam by using Lane’s method.

Rock toe

Filter

Soil to be
protected

Figure 7.23  �Use of filter at the toe of an earth dam.
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for the safety of the structure, a filter should be placed between the fine soil 
and the rock toe (Figure 7.23). For the proper selection of the filter material, 
two conditions should be kept in mind:

	 1.	The size of the voids in the filter material should be small enough to 
hold the larger particles of the protected material in place.

	 2.	The filter material should have a high permeability to prevent build up 
of large seepage forces and hydrostatic pressures.

Based on the experimental investigation of protective filters, Terzaghi and 
Peck (1948) provided the following criteria to satisfy the above conditions:

	

D
D

15

85
4 5( )

( )
( )F

B
to satisfy condition1≤ − 	 (7.94)

	

D
D

15

15
4 5( )

( )

F

B
(to satisfy condition 2)≥ − 	 (7.95)

where
D15(F) is the diameter through which 15% of filter material will pass
D15(B) is the diameter through which 15% of soil to be protected will pass
D85(B) is the diameter through which 85% of soil to be protected will pass

The proper use of Equations 7.94 and 7.95 to determine the grain-size 
distribution of soils used as filters is shown in Figure 7.24. Consider the soil 
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5 1.0 0.5 0.1 0.05 0.01

0.045 mm

Curve a (soil to
be protected)

0.009 mm

Curve b
Range of

good �lter

Curve c

0.55 mm

5D15(B) =

D85(B) = 0.11 mm
5D85(B) =

D15(B) =

0.005 0.002

Pe
rc

en
t �

ne
r

20

0

Grain-size distribution (mm)

Figure 7.24  �Determination of grain-size distribution of soil filters using Equations 7.94 
and 7.95.
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used for the construction of the earth dam shown in Figure 7.23. Let the 
grain-size distribution of this soil be given by curve a in Figure 7.24. We can 
now determine 5D85(B) and 5D15(B) and plot them as shown in Figure 7.24. 
The acceptable grain-size distribution of the filter material will have to lie 
in the shaded zone.

Based on laboratory experimental results, several other filter design 
criteria have been suggested in the past. These are summarized in 
Table 7.2.

Table 7.2  �Filter criteria developed from laboratory testing

Investigator Year Criteria developed

Bertram 1940
D
D

D
D

15

85

15

85

6 9(F)

(B)

(F)

(B)

< <;

U.S. Corps of 
Engineers

1948
D
D

D
D

D
D

15

85

50

50

15

15

5 25 20(F)

(B)

(F)

(B)

(F)

(B)

< < <; ;

Sherman 1953 For u(base)
(F)

(B)

(F)

(B)

(F)

(B

C
D
D

D
D

D
D

< < <1 5 6 2015

85

15

15

50

50

. : ; ;
))

< 25

For1.5< u(base)
(F)

(B)

(F)

(B)

(F)C
D
D

D
D

D
< < <4 0 5 2015

85

15

15

50. : ; ;
DD50

20
(B)

<

For u(base)
(F)

(B)

(F)

(B)

(F)

(B

C
D
D

D
D

D
D

> < <4 0 5 4015

85

15

15

50

50

. : ; ;
))

< 25

Leatherwood and 
Peterson

1954
D
D

D
D

15

85

50

50

4 1 5 3(F)

(B)

(F)

(B)

< <. ; .

Karpoff 1955 Uniform filter: 5 1050

50

< <
D
D

(F)

(B)

Well-graded filter: 12 58 12 4050

50

15

15

< < < <
D
D

D
D

(F)

(B)

(F)

(B)

; ; and 

parallel grain-size curves

Zweck and 
Davidenkoff

1957 Base of medium and coarse uniform sand: 5 < (F)

(B)

D
D
50

50

10<

Base of fine uniform sand: 5 1550

50

< <
D
D

(F)

(B)

Base of well-graded fine sand: 5 2550

50

< <
D
D

(F)

(B)

Note:	 D50(F), diameter through which 50% of the filter passes; D50(B), diameter through which 50% of 
the soil to be protected passes; Cu, uniformity coefficient.
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7.12 � CALCULATION OF SEEPAGE THROUGH AN 
EARTH DAM RESTING ON AN IMPERVIOUS BASE

Several solutions have been proposed for determination of the quantity of 
seepage through a homogeneous earth dam. In this section, some of these 
solutions will be considered.

7.12.1 � Dupuit’s solution

Figure 7.25 shows the section of an earth dam in which ab is the phreatic 
surface, that is, the uppermost line of seepage. The quantity of seepage 
through a unit length at right angles to the cross-section can be given by 
Darcy’s law as q = kiA.

Dupuit (1863) assumed that the hydraulic gradient i is equal to the slope 
of the free surface and is constant with depth, that is, i = dz/dx. So

	
q k dz

dx
z k dz

dx
z= =[()()]1

	

qdx kzdz
d

H

H

0 2

1

∫ ∫=

	
qd k H H= −( )2 1

2
2
2

or

	
q k

d
H H= −( )2 1

2
2
2 	 (7.96)

a

z

z

b

dz
dx

Impermeable base

Phreatic
line H2

H1

x

d

Figure 7.25  �Dupuit’s solution for flow through an earth dam.
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Equation 7.96 represents a parabolic free surface. However, in the deri-
vation of the equation, no attention has been paid to the entrance or exit 
conditions. Also note that if H2 = 0, the phreatic line would intersect the 
impervious surface.

7.12.2 � Schaffernak’s solution

For calculation of seepage through a homogeneous earth dam. Schaffernak 
(1917) proposed that the phreatic surface will be like line ab in Figure 7.26, 
that is, it will intersect the downstream slope at a distance l from the imper-
vious base. The seepage per unit length of the dam can now be determined 
by considering the triangle bcd in Figure 7.26:

	 q kiA A bd l= = =; ( )() sin1 β

From Dupuit’s assumption, the hydraulic gradient is given by i = dz/dx = 
tanβ. So

	
q kzdz

dx
k l= = ( )(sin )(tan )β β 	 (7.97)

or

	

zdz l dx
l

H

l

d

sin cos

sin
β β

β β∫ ∫= ( )(tan )

	

1
2

2 2 2( sin ) (sin ) )( cos )H l l d l− = −β β β β(tan

Impermeable base

d

a

x

dz
dx

b
β l

d c

Parabolic
free surface

z

H

Figure 7.26  �Schaffernak’s solution for flow through an earth dam.
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1
2

2 2 2
2

( sin ) sin
cos

( cos )H l l d l− = −β β
β

β

	

H l ld l
2

2

2
2

2
cos
sin

cos cosβ
β

β β
2

− = −

	
l ld H2

2

22 0cos cos
sin

β β
β

− + =

	
l d d H= ± −2 4 4

2

2 2 2 2[( cos )sin ]
cos

β β
β

/
	 (7.98)

so

	
l d d H= − −

cos cos sinβ β β

2

2

2

2 	 (7.99)

Once the value of l is known, the rate of seepage can be calculated from the 
equation q = kl sin β tan β.

Schaffernak suggested a graphical procedure to determine the value of l.
This procedure can be explained with the aid of Figure 7.27:

	 1.	Extend the downstream slope line bc upward.
	 2.	Draw a vertical line ae through the point a. This will intersect the 

projection of line bc (step 1) at point f.
	 3.	With fc as diameter, draw a semicircle fhc.

a

e c

f

b

h

g

Phreatic
line

H

Impermeable surface

Figure 7.27  �Graphical construction for Schaffernak’s solution.



286  Advanced Soil Mechanics﻿

	 4.	Draw a horizontal line ag.
	 5.	With c as the center and cg as the radius, draw an arc of a circle, gh.
	 6.	With f as the center and fh as the radius, draw an arc of a circle, hb.
	 7.	Measure bc = l.

Casagrande (1937) showed experimentally that the parabola ab shown in 
Figure 7.26 should actually start from the point a′ as shown in Figure 7.28. 
Note that aa′ = 0.3∆. So, with this modification, the value of d for use in 
Equation 7.99 will be the horizontal distance between points a′ and c.

7.12.3 � L. Casagrande’s solution

Equation 7.99 was obtained on the basis of Dupuit’s assumption that the 
hydraulic gradient i is equal to dz/dx. Casagrande (1932) suggested that this 
relation is an approximation to the actual condition. In reality (see Figure 7.29)

	
i dz

ds
= 	 (7.100)

For a downstream slope of β > 30°, the deviations from Dupuit’s assump-
tion become more noticeable. Based on this assumption (Equation 7.100), 
the rate of seepage is q = kiA. Considering the triangle bcd in Figure 7.29,

	
i dz

ds
A bd l= = = =sin ( )() sinβ β1

So

	
q kdz

ds
z kl= = sin2β 	 (7.101)

0.3Δ
a

b

c
Impermeable

layer
d

H

á

Δ

Figure 7.28  �Modified distance d for use in Equation 7.99.
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or

	

zdz l ds
l

H

l

s

sin

( )
β

β∫ ∫ sin2

where s is the length of the curve a′bc. Hence

	

1
2

2 2 2 2( sin ) sin ( )H l l s l− = −β β

	 H l ls l2 2 2 2 2 2sin 2 sin 2 sin− = −β β β

	
l ls H2

2

22 0− + =
sin β

	 (7.102)

The solution to Equation 7.102 is

	
l s s H= − −2

2

2sin β
	 (7.103)

With about a 4%–5% error, we can approximate s as the length of the 
straight line a′c. So

	 s d H= +2 2 	 (7.104)

H

x

Phreatic
surface

b

l
β

z

d
dI

dz

a

0.3Δ

á

dx

ds

c

Δ

Figure 7.29  �L. Casagrande’s solution for flow through an earth dam (Note: length of the 
curve a′bc = S).
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Combining Equations 7.103 and 7.104

	
l d H d H= + − −2 2 2 2 2cot β 	 (7.105)

Once l is known, the rate of seepage can be calculated from the equation

	 q kl= sin2β

A solution that avoids the approximation introduced in Equation 7.105 was 
given by Gilboy (1934) and put into graphical form by Taylor (1948), as 
shown in Figure 7.30. To use the graph

	 1.	Determine d/H
	 2.	For given values of d/H and β, determine m
	 3.	Calculate l = mH/sin β
	 4.	Calculate q = kl sin2 β

β 
(d

eg
)
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80
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40

20

0
0 1 2 3

0.8
0.7

0.6

0.4 0.3

0.2
0.15

0.3Δ

Δ

β l sin β
H

d
= mH

m = 0.1

0.5

4 5 6 7 8 9
d/H

Figure 7.30  �Chart for solution by L. Casagrande’s method based on Gilboy’s solution.
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7.12.4 � Pavlovsky’s solution

Pavlovsky (1931; also see Harr, 1962) also gave a solution for calculation 
of seepage through an earth dam. This can be explained with reference to 
Figure 7.31. The dam section can be divided into three zones, and the rate 
of seepage through each zone can be calculated as follows.

7.12.4.1 � Zone I (area agOf)

In zone I the seepage lines are actually curved, but Pavlovsky assumed that 
they can be replaced by horizontal lines. The rate of seepage through an 
elementary strip dz can then be given by

	 dq kidA=

	 dA dz dz= =( )()1

	
i l l

H z
= =

−
Lossofhead
Lengthofflow d

,
( )cot

1 1

1β

So

	

q dq kl
H z

dz kl H
H h

h

= =
−

=
−∫∫ 1

1
0

1

1 1

1

( )cot cotd

d

d
ln

β β

H Hd

a

g

B

Phreatic
line

Zone II
Zone I

dz

df
xc

b
h1

β1 β2
h2

l1

Zone III

Impermeable base
O

z

L

Figure 7.31  �Pavlovsky’s solution for seepage through an earth dam.
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However, l1 = H − h1. So

	
q k H h H

H h
= −

−
( )
cot

1

1 1β
ln d

d
	 (7.106)

7.12.4.2 � Zone II (area Ogbd)

The flow in zone II can be given by the equation derived by Dupuit (Equation 
7.96). Substituting h1 for H1, h2 for H2, and L for d in Equation 7.96, we get

	
q k

L
h h= −( )2 1
2

2
2 	 (7.107)

where

	 L B H h= + −( )d 2 2 cotβ 	 (7.108)

7.12.4.3 � Zone III (area bcd)

As in zone I, the stream lines in zone III are also assumed to be horizontal:

	

q k dz kh
h

= =∫ cot cotβ β2
0

2

2

2

	 (7.109)

Combining Equations 7.106 through 7.108

	

h B H B H h2
2 2

2

1
2= + − +









 −

cot cotβ βd d 	 (7.110)

From Equations 7.106 and 7.109

	

H h H
H h

h−
−

=1

1 1

2

2cot cotβ β
ln d

d
	 (7.111)

Equations 7.110 and 7.111 contain two unknowns, h1 and h2, which can 
be solved graphically (see Example 7.6). Once these are known, the rate of 
seepage per unit length of the dam can be obtained from any one of the 
Equations 7.106, 7.107, and 7.109.
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7.12.5 � Seepage through earth dams with kx ≠ kz

If the soil in a dam section shows anisotropic behavior with respect to 
permeability, the dam section should first be plotted according to the trans-
formed scale (as explained in Section 7.6):

	
′ =x k

k
xz

x

All calculations should be based on this transformed section. Also, for cal-
culating the rate of seepage, the term k in the corresponding equations 
should be equal to k kx z.

Example 7.6

The cross section of an earth dam is shown in Figure 7.32. Calculate 
the rate of seepage through the dam [q in m3/(min ∙ m)] by (a) Dupuit’s 
method; (b) Schaffernak’s method; (c) L. Casagrande’s method; and 
(d) Pavlovsky’s method.

Solution

Part a: Dupuit’s method.

From Equation 7.96

	
q k

d
H H= −( )2 1

2
2
2

25 m 2
2

Impermeable layer

b

c

30 m

k = 3 × 10–4 m/min

aa΄

0.3 × 50
= 15 m

1 1

5 m

60 m5 m10 m50 m

Figure 7.32  �Seepage through an earth dam.
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From Figure 7.32, H1 = 25 m and H2 = 0; also, d (the horizontal dis-
tance between points a and c) is equal to 60 + 5 + 10 = 75 m. Hence

	
q = ×

×
= × ⋅

−
−3 10

2 75
25 12 5 10

4
2 4 3( ) . (m inm / m )

Part b: Schaffernak’s method.

From Equations 7.97 and 7.99

	
q k l l d d H= = − −( )(sin )(tan );

cos cos sin
β β

β β β

2

2

2

2

Using Casagrande’s correction (Figure 7.28), d (the horizontal distance 
between a′ and c) is equal to 60 + 5 + 10 + 15 = 90 m. Also

	
β = = =−tan .1 1

2
26 57° H 25m

So

	

l= −








 −











90
26 57

90
26 57

25
26 57

100 63

2 2

cos . cos . sin .

.

° ° °

= −− − =( . ) ( . ) .100 63 55 89 16 952 2 m

q = (3 × 10−4)(16.95)(sin 26.57°)(tan 26.57°) = 11.37 × 10−4 m3/(min · m)

Part c: L. Casagrande’s method.

We will use the graph given in Figure 7.30.

	
d H d

H
= = = = =90m 25m 26.5790

25
3 6. β °

From Figure 7.30 for β = 26.57° and d/H = 3.6, m = 0.34, and

	
l m H= = =

sin
. ( )

sin .
.

β
0 34 25
26 57

19 0
°

m

q = kl sin2 β = (3 × 10−4) (19.0) (sin 26.57°)2 = 11.4 × 10−4 m3/(min · m)

Part d: Pavlovsky’s method.

From Equations 7.110 and 7.111

	

h B H B H h2
2 2

2

1
2= + − +









 −

cot cotβ βd d
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H h H
H h

h−
−

=1

1 1

2

2cot cotβ β
ln d

d

From Figure 7.32, B = 5 m, cot β2 = cot 26.57° = 2, Hd = 30 m, and 
H = 25 m. Substituting these values in Equation 7.110, we get

	
h h2

2

1
25

2
30 5

2
30= + − +





−

or

	 h h2 1
232 5 1056 25= − −. . 	 (E7.1)

Similarly, from Equation 7.111

	

25
2

30
30 2

1

1

2−
−

=h
h

hln

or

	
h h

h
2 1

1
25 30

30
= −

−
( )ln 	 (E7.2)

Equations E7.1 and E7.2 must be solved by trial and error:

h1 (m) h2 from Equation E7.1 (m) h2 from Equation E7.2 (m)

2 0.062 1.587
4 0.247 3.005
6 0.559 4.240
8 1.0 5.273

10 1.577 6.082
12 2.297 6.641
14 3.170 6.915
16 4.211 6.859
18 5.400 6.414
20 6.882 5.493

Using the values of h1 and h2 calculated in the preceding table, we 
can plot the graph as shown in Figure 7.33 and from that, h1 = 18.9 m 
and h2 = 6.06 m. From Equation 7.109

	
q kh= = × = × ⋅

−
−2

2

4
4 33 10 6 06

2
9 09 10

cot
( )( . ) . (m in

β
m / m )
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7.13 � PLOTTING OF PHREATIC LINE FOR 
SEEPAGE THROUGH EARTH DAMS

For construction of flow nets for seepage through earth dams, the phreatic 
line needs to be established first. This is usually done by the method pro-
posed by Casagrande (1937) and is shown in Figure 7.34a. Note that aefb 
in Figure 7.34a is the actual phreatic line. The curve a′efb′c′ is a parabola 
with its focus at c′. The phreatic line coincides with this parabola, but with 
some deviations at the upstream and the downstream faces. At a point a, 
the phreatic line starts at an angle of 90° to the upstream face of the dam 
and aa′ = 0.3∆.

The parabola a′efb′c′ can be constructed as follows:

	 1.	Let the distance cc′ be equal to p. Now, referring to Figure 7.34b, 
Ac = AD (based on the properties of a parabola), Ac x z= +2 2 , and 
AD = 2p + x. Thus

	 x z p x2 2 2+ = + 	 (7.112)

7

6

5

4

3

h 2
 (m

)

2

1

0
10 12 14 16

Equation E7.2

Equation E7.1

18 20
h1 (m)

Figure 7.33  �Plot of h2 against h1.
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		  At x = d, z = H. Substituting these conditions into Equation 7.112 and 
rearranging, we obtain

	
p d H d= + −( )1

2
2 2 	 (7.113)

		  Since d and H are known, the value of p can be calculated.
	 2.	From Equation 7.112

	 x z p x px2 2 2 24 4+ = + +

	
x z p

p
= −2 24

4
	 (7.114)

With p known, the values of x for various values of z can be calculated 
from Equation 7.114, and the parabola can be constructed.
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Figure 7.34  �Determination of phreatic line for seepage through an earth dam: (a) phre­
atic line; (b) parabola with the focus at c′.
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To complete the phreatic line, the portion ae must be approximated 
and drawn by hand. When β < 30°, the value of l can be calculated from 
Equation 7.99 as

	
l d d H= − −

cos cos sinβ β β

2

2

2

2

Note that l = bc in Figure 7.34a. Once point b has been located, the curve 
fb can be approximately drawn by hand.

If β ≥ 30°, Casagrande proposed that the value of ∆l can be determined 
by using the graph given in Figure 7.35. In Figure 7.34a, b′b = ∆l and bc = l. 
After locating the point b on the downstream face, the curve fb can be 
approximately drawn by hand.

7.14 � ENTRANCE, DISCHARGE, AND 
TRANSFER CONDITIONS OF LINE OF 
SEEPAGE THROUGH EARTH DAMS

A. Casagrande (1937) analyzed the entrance, discharge, and transfer con-
ditions for the line of seepage through earth dams. When we consider the 
flow from a free-draining material (coefficient of permeability very large; 
k1 ≈ ∞ into a material of permeability k2, it is called an entrance). Similarly, 
when the flow is from a material of permeability k1 into a free-draining 
material (k2 ≈ ∞), it is referred to as discharge. Figure 7.36 shows various 

0.4

0.3

0.2

0.1

0
30 50 70 90 110 130 150 170 180

Δl
(l

+
Δl

)

β (deg)

Figure 7.35  �Plot of ∆l/(l + ∆l) against downstream slope angle. (After Casagrande, A., 
Seepage through dams, in Contribution to Soil Mechanics 1925–1940, Boston 
Society of Civil Engineering, Boston, MA, p. 295, 1937.)
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Figure 7.36  �Entrance, discharge, and transfer conditions: (a) entrance, β < 90°; (b) 
entrance, β = 90°; (c) entrance, β > 90°; (d) discharge, β < 90°; (e) discharge, 
β = 90°; (f) discharge, β > 90°; (g) discharge, β = 180°; (h) transfer, k1 < k2, 
α2 = 270° – α1 – ω; (i) transfer, k1 > k2, α2 = 270° – α1 – ω; (j) transfer, k1 > k2, α1 = 
α2  = ω; (k) transfer, k1 < k2, α1 = α2 = 0. (After Casagrande, A., Seepage 
through dams, in Contribution to Soil Mechanics 1925–1940, Boston Society 
of Civil Engineering, Boston, MA, p. 295, 1937.)
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entrance, discharge, and transfer conditions. The transfer conditions show 
the nature of deflection of the line of seepage when passing from a material 
of permeability k1 to a material of permeability k2.

Using the conditions given in Figure 7.36, we can determine the nature of 
the phreatic lines for various types of earth dam sections.

7.15 � FLOW NET CONSTRUCTION FOR EARTH DAMS

With a knowledge of the nature of the phreatic line and the entrance, dis-
charge, and transfer conditions, we can now proceed to draw flow nets for 
earth dam sections. Figure 7.37 shows an earth dam section that is homo-
geneous with respect to permeability. To draw the flow net, the following 
steps must be taken:

	 1.	Draw the phreatic line, since this is known.
	 2.	Note that ag is an equipotential line and that gc is a flow line.
	 3.	It is important to realize that the pressure head at any point on the 

phreatic line is zero; hence, the difference of total head between any 
two equipotential lines should be equal to the difference in elevation 
between the points where these equipotential lines intersect the phre-
atic line.

Since loss of hydraulic head between any two consecutive equipo-
tential lines is the same, determine the number of equipotential drops, 
Nd, the flow net needs to have and calculate ∆h = h/Nd.

	 4.	Draw the head lines for the cross section of the dam. The points of 
intersection of the head lines and the phreatic lines are the points 
from which the equipotential lines should start.

Nf = 2.3
Nd = 10

Impermeable layer

Δh
a

g

Δh
Δh

Δh
Δh

Δh
Δh

Head line

Head line

Δh
Δh

Δh
c

Figure 7.37  �Flow net construction for an earth dam.
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	 5.	Draw the flow net, keeping in mind that the equipotential lines and 
flow lines must intersect at right angles.

	 6.	The rate of seepage through the earth dam can be calculated from the 
relation given in Equation 7.40, q = kh(Nf/Nd).

In Figure 7.37, the number of flow channels, Nf, is equal to 2.3. The top 
two flow channels have square flow elements, and the bottom flow channel 
has elements with a width-to-length ratio of 0.3. Also, Nd in Figure 7.37 is 
equal to 10.

If the dam section is anisotropic with respect to permeability, a trans-
formed section should first be prepared in the manner outlined in Section 
7.6. The flow net can then be drawn on the transformed section, and the 
rate of seepage obtained from Equation 7.46.

Figures 7.38 and 7.39 show some typical flow nets through earth dam 
sections.

A flow net for seepage through a zoned earth dam section is shown in 
Figure 7.40. The soil for the upstream half of the dam has a permeabil-
ity k1, and the soil for the downstream half of the dam has a permeability 
k2 = 5k1. The phreatic line must be plotted by trial and error. As shown 
in Figure 7.11b, here the seepage is from a soil of low permeability 

Δh
Δh

Δh
Δh

Δh
Δh

Nf = 1.5
Nd = 6

Impermeable layer

Figure 7.38  �Typical flow net for an earth dam with rock toe filter.

Δh

Nf =2
Nd =5

Δh
Δh

Δh
Δh

Impermeable layer

Figure 7.39  �Typical flow net for an earth dam with chimney drain.
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(upstream half) to a soil of high permeability (downstream half). From 
Equation 7.47

	

k
k

b l
b l

1

2

2 2

1 1
= /

/

If b1 = l1 and k2 = 5k1, b2/l2 = 1/5. For that reason, square flow elements 
have been plotted in the upstream half of the dam, and the flow elements in 
the downstream half have a width-to-length ratio of 1/5. The rate of seep-
age can be calculated by using the following equation:

	
q k h

N
N k h

N
N= =1 1 2 2

d
f

d
f() ( )	 (7.115)

where
Nf(1) is the number of full flow channels in the soil having a perme-

ability k1

Nf(2) is the number of full flow channels in the soil having a perme-
ability k2
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Chapter 8

Consolidation

8.1 � INTRODUCTION

When a soil layer is subjected to a compressive stress, such as during the 
construction of a structure, it will exhibit a certain amount of compres-
sion. This compression is achieved through a number of ways, including 
rearrangement of the soil solids or extrusion of the pore air and/or water. 
According to Terzaghi (1943), “a decrease of water content of a saturated 
soil without replacement of the water by air is called a process of con-
solidation.” When saturated clayey soils—which have a low coefficient 
of permeability—are subjected to a compressive stress due to a founda-
tion loading, the pore water pressure will immediately increase; however, 
because of the low permeability of the soil, there will be a time lag between 
the application of load and the extrusion of the pore water and, thus, the 
settlement. This phenomenon, which is called consolidation, is the subject 
of this chapter.

To understand the basic concepts of consolidation, consider a clay layer 
of thickness Ht located below the groundwater level and between two 
highly permeable sand layers as shown in Figure 8.1a. If a surcharge of 
intensity ∆σ is applied at the ground surface over a very large area, the pore 
water pressure in the clay layer will increase. For a surcharge of infinite 
extent, the immediate increase of the pore water pressure, ∆u, at all depths 
of the clay layer will be equal to the increase of the total stress, ∆σ. Thus, 
immediately after the application of the surcharge

	 ∆u = ∆σ

Since the total stress is equal to the sum of the effective stress and the pore 
water pressure, at all depths of the clay layer the increase of effective stress 
due to the surcharge (immediately after application) will be equal to zero 
(i.e., ∆σ′ = 0, where ∆σ′ is the increase of effective stress). In other words, 
at time t = 0, the entire stress increase at all depths of the clay is taken by 
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the pore water pressure and none by the soil skeleton. It must be pointed 
out that, for loads applied over a limited area, it may not be true that the 
increase of the pore water pressure is equal to the increase of vertical stress 
at any depth at time t = 0.

After application of the surcharge (i.e., at time t > 0), the water in the 
void spaces of the clay layer will be squeezed out and will flow toward 
both the highly permeable sand layers, thereby reducing the excess pore 
water pressure. This, in turn, will increase the effective stress by an equal 
amount, since ∆σ′ + ∆u = ∆σ. Thus, at time t > 0

	 ∆σ′ > 0

and

	 ∆u < ∆σ

Sand

Sand
(a)

Δσ

Ground water table

ClayHt

z z

Δu Δσ΄

t = ∞ t = ∞

t = 0

t = 0t > 0 t > 0Hi

(b) (c)

Figure 8.1  �Principles of consolidation: (a) soil profile; (b) variation of ∆u with depth; 
(c) variation of ∆σ´ with depth.
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Theoretically, at time t = ∞, the excess pore water pressure at all depths of 
the clay layer will be dissipated by gradual drainage. Thus, at time t = ∞

	 ∆σ′ = ∆σ

and

	 ∆u = 0

Following is a summary of the variation of ∆σ, ∆u, and ∆σ′ at various 
times. Figure 8.1b and c show the general nature of the distribution of ∆u 
and ∆σ′ with depth.

Time, t
Total stress 

increase, ∆σ
Excess pore water 

pressure, ∆u
Effective stress 
increase, ∆σ′

0 ∆σ ∆σ 0
>0 ∆σ <∆σ >0
∞ ∆σ 0 ∆σ

This gradual process of increase in effective stress in the clay layer due 
to the surcharge will result in a settlement that is time-dependent, and is 
referred to as the process of consolidation.

8.2 � THEORY OF ONE-DIMENSIONAL 
CONSOLIDATION

The theory for the time rate of one-dimensional consolidation was first 
proposed by Terzaghi (1925). The underlying assumptions in the derivation 
of the mathematical equations are as follows:

	 1.	The clay layer is homogeneous.
	 2.	The clay layer is saturated.
	 3.	The compression of the soil layer is due to the change in volume 

only, which in turn is due to the squeezing out of water from the void 
spaces.

	 4.	Darcy’s law is valid.
	 5.	Deformation of soil occurs only in the direction of the load application.
	 6.	The coefficient of consolidation Cυ (Equation 8.15) is constant during 

the consolidation.

With the assumptions described earlier, let us consider a clay layer of thick-
ness Ht as shown in Figure 8.2. The layer is located between two highly 
permeable sand layers. When the clay is subjected to an increase of verti-
cal pressure, ∆σ, the pore water pressure at any point A will increase by u. 
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Consider an elemental soil mass with a volume of dx·dy·dz at A; this is simi-
lar to the one shown in Figure 7.1b. In the case of one-dimensional consolida-
tion, the flow of water into and out of the soil element is in one direction only, 
that is, in the z direction. This means that qx, qy, dqx, and dqy in Figure 7.1b 
are equal to zero, and thus the rate of flow into and out of the soil element 
can be given by Equations 7.3 and 7.6, respectively. So

	
( )q dq q V

tz z z+ − = = ∂
∂

rateofchangeofvolum eofsoilelem ent 	 (8.1)

where

	 V dxdydz= 	 (8.2)

Substituting the right-hand sides of Equations 7.3 and 7.6 into the left-hand 
side of Equation 8.1, we obtain

	
k h

z
dx dy dz V

t
∂
∂

= ∂
∂

2

2   	 (8.3)

where k is the coefficient of permeability (kz in Equations 7.3 and 7.6). 
However

	
h u=

γw
	 (8.4)

Ht= 2H

z

A

h=

Sand

Sand

G.W.T.

u
γw

Clay

Δσ

z

Figure 8.2  �Clay layer undergoing consolidation.
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where γw is the unit weight of water. Substitution of Equation 8.4 into 8.3 
and rearranging gives

	

k u
z dx dy dz

V
tγw   

∂
∂

= ∂
∂

2

2
1

	 (8.5)

During consolidation, the rate of change of volume is equal to the rate of 
change of the void volume. So

	

∂
∂

= ∂
∂

V
t

V
t
υ 	 (8.6)

where Vυ is the volume of voids in the soil element. However

	 V eVυ = s 	 (8.7)

where
Vs is the volume of soil solids in the element, which is constant
e is the void ratio

So

	

∂
∂

= ∂
∂

=
+

∂
∂

=
+

∂
∂

V
t

V e
t

V
e

e
t

dx dy dz
e

e
ts

  
1 1

	 (8.8)

Substituting the aforementioned relation into Equation 8.5, we get

	

k u
z e

e
tγw

∂
∂

=
+

∂
∂

2

2
1

1
	 (8.9)

The change in void ratio, ∂e, is due to the increase of effective stress; 
assuming that these are linearly related, then

	 ∂ = − ∂ ′e aυ σ( )∆ 	 (8.10)

where aυ is the coefficient of compressibility. Again, the increase of effective 
stress is due to the decrease of excess pore water pressure, ∂u. Hence

	 ∂ = ∂e a uυ 	 (8.11)

Combining Equations 8.9 and 8.11 gives

	

k u
z

a
e

u
t

m u
tγ

υ
υ

w

∂
∂

=
+

∂
∂

= ∂
∂

2

2 1
	 (8.12)
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where

	
m a

eυ
υ= =

+
coefficientofvolum ecom pressibility

1
	 (8.13)

	
or

w

∂
∂

= ∂
∂

= ∂
∂

u
t

k
m

u
z

C u
zγ υ

υ

2

2

2

2 	 (8.14)

where

	
C k

mυ
υγ

= =coefficientofconsolidation
w

	 (8.15)

Equation 8.14 is the basic differential equation of Terzaghi’s consolida-
tion theory and can be solved with proper boundary conditions. To solve 
the equation, we assume u to be the product of two functions, that is, the 
product of a function of z and a function of t, or

	 u F zG t= () ()	 (8.16)

So

	

∂
∂

= ∂
∂

= ′u
t

F z
t
G t F zG t() () () ()	 (8.17)

and

	

∂
∂

= ∂
∂

= ′′
2

2

2

2
u
z z

F zG t F zG t() () () ()	 (8.18)

From Equations 8.14, 8.17, and 8.18

	 F zG t C F zG t() () () ()′ = ′′υ

or

	

′′
=

′F z
F z

G t
C G t

()
()

()
()υ

	 (8.19)

The right-hand side of Equation 8.19 is a function of z only and is inde-
pendent of t; the left-hand side of the equation is a function of t only and is 
independent of z. Therefore, they must be equal to a constant, say, −B2. So

	 ′′ = −F z B F z() ()2 	 (8.20)
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A solution to Equation 8.20 can be given by

	 F z A Bz A Bz()= +1 2cos sin 	 (8.21)

where A1 and A2 are constants.
Again, the right-hand side of Equation 8.19 may be written as

	 G t B C G t′ = −() ()2
υ 	 (8.22)

The solution to Equation 8.22 is given by

	 G t A B C t() ( )= −3
2 exp υ 	 (8.23)

where A3 is a constant. Combining Equations 8.16, 8.21, and 8.23

	

u A Bz A BzA B C t

A Bz A Bz B C

= + −

= + −

( ) ( )

( ) (

1 2 3
2

4 5
2

cos sin exp

cos sin exp

υ

υυt) 	 (8.24)

where
A4 = A1A3

A5 = A2A3

The constants in Equation 8.24 can be evaluated from the boundary 
conditions, which are as follows:

	 1.	At time t = 0, u = ui (initial excess pore water pressure at any depth)
	 2.	u = 0 at z = 0
	 3.	u = 0 at z = Ht = 2H

Note that H is the length of the longest drainage path. In this case, which is 
a two-way drainage condition (top and bottom of the clay layer), H is equal 
to half the total thickness of the clay layer, Ht.

The second boundary condition dictates that A4 = 0, and from the third 
boundary condition we get

	 A5 sin 2BH = 0  or  2BH = nπ

where n is an integer. From the previous equation, a general solution of 
Equation 8.24 can be given in the form

	
u A n z

H
n T

n
n

n

= −









=

=∞

∑ sin exp
1

2 2

2 4
π π υ 	 (8.25)

where Tυ is the nondimensional time factor and is equal to Cυt/H2.
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To satisfy the first boundary condition, we must have the coefficients of 
An such that

	
u A n z

Hn
n

n

i =
=

=∞

∑ sin
1 2

π
	 (8.26)

Equation 8.26 is a Fourier sine series, and An can be given by

	

A
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u n z
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dzn

H

= ∫1
2

0

2
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π

	 (8.27)

Combining Equations 8.25 and 8.27

	

u
H

u n z
H
dz n z

H
n T

H

n

n

=












−




∫∑
=

=∞ 1
2 2 4

0

2

1

2 2

isin sin expπ π π υ


 	 (8.28)

So far, no assumptions have been made regarding the variation of ui with 
the depth of the clay layer. Several possible types of variation for ui are 
shown in Figure 8.3. Each case is considered later.

8.2.1 � Constant ui with depth

If ui is constant with depth—that is, if ui = u0 (Figure 8.3a)—then, referring 
to Equation 8.28
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π
π π π υ( cos )sin exp 	 (8.29)

Note that the term 1 − cos nπ in the previous equation is zero for cases when 
n is even; therefore, u is also zero. For the nonzero terms, it is convenient to 
substitute n = 2m + 1, where m is an integer. So, Equation 8.29 will now read
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Figure 8.3  �Variation of ui with depth: (a) ui constant with depth (two-way drainage); 
(b) ui constant with depth (drainage at top); (c) ui constant with depth (drain­
age at bottom); (d) linear variation of ui (two-way drainage); (e) sinusoidal 
variation of ui (two-way drainage); (f) half sinusoidal variation of ui (two-way 
drainage); (g) triangular variation of ui (two-way drainage); (h) triangular varia­
tion of ui (drainage at top)-base at bottom; (i) triangular variation of ui (drainage 
at bottom)-base at top; (j) triangular variation of ui (drainage at top)-base at 
top; (k) triangular variation of ui (drainage at bottom)-base at bottom.
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0

2sin exp( )υ 	 (8.30)

where M = (2m + 1)π/2. At a given time, the degree of consolidation at any 
depth z is defined as

	

U z = Excess pore w ater pressure dissipated
Initial excess poree w ater pressure

    i

i i i
= − = − = ∆ ′

= ∆ ′u u
u

u
u u u

1
0

σ σ
	 (8.31)

where ∆σ′ is the increase of effective stress at a depth z due to consolidation. 
From Equations 8.30 and 8.31.
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M z
H

M Tz
m

m

= − −
=

=∞

∑1 2 2

0

sin exp( )υ 	 (8.32)

Figure 8.4 shows the variation of Uz with depth for various values of the 
nondimensional time factor Tυ; these curves are called isochrones. Example 
8.1 demonstrates the procedure for calculation of Uz using Equation 8.32.

Example 8.1

Consider the case of an initial excess hydrostatic pore water that is 
constant with depth, that is, ui = u0 (Figure 8.3c). For Tυ = 0.3, deter-
mine the degree of consolidation at a depth H/3 measured from the top 
of the layer.

Solution

From Equation 8.32, for constant pore water pressure increase

	
U

M
M z
H

M Tz
m

m

= − −
=

=∞

∑1 2 2

0

sin exp( )υ
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Here, z = H/3, or z/H = 1/3, and M = (2m + 1)π/2. We can now make 
a table to calculate Uz.

1. � z/H 1/3 1/3 1/3
2. � Tυ 0.3 0.3 0.3
3. � m 0 1 2
4. � M π/2 3π/2 5π/2
5. � Mz/H π/6 π/2 5π/6
6. � 2/M 1.273 0.4244 0.2546
7. � exp(–M2Tυ) 0.4770 0.00128 ≈0
8. � sin(Mz/H) 0.5 1.0 0.5
9. � (2/M)[exp(–M2Tυ)

sin(Mz/H)]
0.3036 0.0005 ≈0 ∑ = 0.3041

z
H

1.0
2.0

1.5

1.0

Tυ= 0.1 0.2 0.3 0.4 0.5
0.6 0.7

0.8 0.9

0.5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.9 0.8 0.7 0.6 0.5
u0

u

0.4 0.3 0.2 0.1 0

u0

Δσ΄Uz =

Figure 8.4  �Variation of Uz with z/H and Tυ.
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Using the value of 0.3041 calculated in step 9, the degree of consolida-
tion at depth H/3 is

	 U(H/3) = 1 − 0.3041 = 0.6959 = 69.59%

Note that in the previous table we need not go beyond m = 2, since the 
expression in step 9 is negligible for m ≥ 3.

In most cases, however, we need to obtain the average degree of consoli-
dation for the entire layer. This is given by

	

U
H udz H udz

H udz

H H

Hav

t i t

t i

/ /

/

t t

t
=

−∫ ∫
∫

( ) ( )

( )

1 1

1
0 0

0

	
(8.33)

The average degree of consolidation is also the ratio of consolidation settle-
ment at any time to maximum consolidation settlement. Note, in this case, 
that Ht = 2H and ui = u0.

Combining Equations 8.30 and 8.33
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m

av = − −
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2

0

2exp( )υ 	 (8.34)

Terzaghi suggested the following equations for Uav to approximate the 
values obtained from Equation 8.34:

	
For =av

avU T U= − 



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0 53
4 100

2

% % : %
υ

π
	 (8.35)

	 For 53% 1 1781 933 log1av avU T U= − = − −00 0 00% : . . [ ( % )]†υ 	 (8.36)

Sivaram and Swamee (1977) gave the following equation for Uav varying 
from 0% to 100%:
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1 4
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or

	
T U

Uυ
π=

−
( )( % )

[ ( % ) ]. .
/ /

/
av

av

4 100
1 100

2

5 6 0 357 	 (8.38)

Equations 8.37 and 8.38 give an error in Tυ of less than 1% for 0% < Uav < 
90% and less than 3% for 90% < Uav < 100%. Table 8.1 gives the variation 
of Tυ with Uav based on Equation 8.34.

It must be pointed out that, if we have a situation of one-way drainage 
as shown in Figure 8.3b and c, Equation 8.34 would still be valid. Note, 
however, that the length of the drainage path is equal to the total thickness 
of the clay layer.

8.2.2 � Linear variation of ui

The linear variation of the initial excess pore water pressure, as shown in 
Figure 8.3d, may be written as

	
u u u H z

Hi = − −
0 1 	 (8.39)

Substitution of the earlier relation for ui into Equation 8.28 yields
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The average degree of consolidation can be obtained by solving Equations 
8.33 and 8.40:

	

U
M

M T
m

m

av = − −
=
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∑1 2
2

0

2exp( )υ

This is identical to Equation 8.34, which was for the case where the excess 
pore water pressure is constant with depth, and so the same values as given 
in Table 8.1 can be used.

8.2.3 � Sinusoidal variation of ui

Sinusoidal variation (Figure 8.3e) can be represented by the equation

	
u u z

Hi = 0 2
sin π

	 (8.41)
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Table 8.1  �Variation of Tυ with Uav

Uav(%)

Value of Tυ

ui = u0 = const (Figure 8.3a through c)

u u u
H z
H

i  = − −





0 1 ( . )Figure 8 3d u u
z
H

i  .= 0
2

sin ( )
π
Figure 8 3e

0 0 0
1 0.00008 0.0041
2 0.0003 0.0082
3 0.00071 0.0123
4 0.00126 0.0165
5 0.00196 0.0208
6 0.00283 0.0251
7 0.00385 0.0294
8 0.00502 0.0338
9 0.00636 0.0382

10 0.00785 0.0427
11 0.0095 0.0472
12 0.0113 0.0518
13 0.0133 0.0564
14 0.0154 0.0611
15 0.0177 0.0659
16 0.0201 0.0707
17 0.0227 0.0755
18 0.0254 0.0804
19 0.0283 0.0854
20 0.0314 0.0904
21 0.0346 0.0955
22 0.0380 0.101
23 0.0415 0.106
24 0.0452 0.111
25 0.0491 0.117
26 0.0531 0.122
27 0.0572 0.128
28 0.0615 0.133
29 0.0660 0.139
30 0.0707 0.145
31 0.0754 0.150
32 0.0803 0.156
33 0.0855 0.162
34 0.0907 0.168
35 0.0962 0.175
36 0.102 0.181
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Table 8.1 (continued)  �Variation of Tυ with Uav

Uav(%)

Value of Tυ

ui = u0 = const (Figure 8.3a through c)

u u u
H z
H

i  = − −





0 1 ( . )Figure 8 3d u u
z
H

i  .= 0
2

sin ( )
π
Figure 8 3e

37 0.107 0.187
38 0.113 0.194
39 0.119 0.200
40 0.126 0.207
41 0.132 0.214
42 0.138 0.221
43 0.145 0.228
44 0.152 0.235
45 0.159 0.242
46 0.166 0.250
47 0.173 0.257
48 0.181 0.265
49 0.188 0.273
50 0.196 0.281
51 0.204 0.289
52 0.212 0.297
53 0.221 0.306
54 0.230 0.315
55 0.239 0.324
56 0.248 0.333
57 0.257 0.342
58 0.267 0.352
59 0.276 0.361
60 0.286 0.371
61 0.297 0.382
62 0.307 0.392
63 0.318 0.403
64 0.329 0.414
65 0.304 0.425
66 0.352 0.437
67 0.364 0.449
68 0.377 0.462
69 0.390 0.475
70 0.403 0.488
71 0.417 0.502

(continued)
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The solution for the average degree of consolidation for this type of 
excess pore water pressure distribution is of the form

	
U T

av = − −







1

4

2
exp π υ 	 (8.42)

The variation of Uav for various values of Tυ is given in Table 8.1.

Table 8.1 (continued)  �Variation of Tυ with Uav

Uav(%)

Value of Tυ

ui = u0 = const (Figure 8.3a through c)

u u u
H z
H

i  = − −





0 1 ( . )Figure 8 3d u u
z
H

i  .= 0
2

sin ( )
π
Figure 8 3e

72 0.431 0.516
73 0.446 0.531
74 0.461 0.546
75 0.477 0.562
76 0.493 0.578
77 0.511 0.600
78 0.529 0.614
79 0.547 0.632
80 0.567 0.652
81 0.588 0.673
82 0.610 0.695
83 0.633 0.718
84 0.658 0.743
85 0.684 0.769
86 0.712 0.797
87 0.742 0.827
88 0.774 0.859
89 0.809 0.894
90 0.848 0.933
91 0.891 0.976
92 0.938 1.023
93 0.993 1.078
94 1.055 1.140
95 1.129 1.214
96 1.219 1.304
97 1.336 1.420
98 1.500 1.585
99 1.781 1.866

100 ∞ ∞
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8.2.4 � Other types of pore water pressure variation

Figure 8.3f through k shows several other types of pore water pressure 
variation. Table 8.2 gives the relationships for the initial excess pore water 
pressure variation (ui) and the boundary conditions. These could be solved 
to provide the variation of Uav with Tυ and they are shown in Figure 8.5.

Example 8.2

Owing to certain loading conditions, the excess pore water pressure in 
a clay layer (drained at top and bottom) increased in the manner shown 
in Figure 8.6a. For a time factor Tυ = 0.3, calculate the average degree 
of consolidation.

Solution

The excess pore water pressure diagram shown in Figure 8.6a can be 
expressed as the difference of two diagrams, as shown in Figure 8.6b 
and c. The excess pore water pressure diagram in Figure 8.6b shows a 
case where ui varies linearly with depth. Figure 8.6c can be approxi-
mated as a sinusoidal variation.

Table 8.2  �Relationships for ui and boundary conditions

Figure ui Boundary conditions

8.3f u
z
H

0
4

cos
π

Time t = 0, u = ui

u = 0 at z = 2H
u = 0 at z = 0

8.3g For 

For 

z H
u
H
z

z H u
u
H
z

≤

≥ −

,

,

0

0
02

t = 0, u = ui

u = 0 at z = 2H
u = 0 at z = 0

8.3h u
u
H
z0

0− t = 0, u = ui

u = 0 at z = H
u = u0 at z = 0

8.3i
u
H
z0 t = 0, u = ui

u = u0 at z = H
u = 0 at z = 0

8.3j
u
H
z0 t = 0, u = ui

u = u0 at z = H
u = 0 at z = 0

8.3k u
u
H
z0

0− t = 0, u = ui

u = 0 at z = H
u = u0 at z = 0
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The area of the diagram in Figure 8.6b is

	
A1 6 1

2
15 5 60= 



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+ =( ) kN /m

The area of the diagram in Figure 8.6c is

	

A z
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Figure 8.5  �Variation of Uav with Tυ for initial excess pore water pressure diagrams shown 
in Figure 8.3.
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The average degree of consolidation can now be calculated as follows:

	

                     For Figure 8.6b          For Figure 8..6c 

                                                    ↓                  

  av
av av

↓

= = = − =U T U T A U T A( .) ( .) ( .)
υ

υ υ0 3 0 3 0 31 22

1 2A A−

↑                                                  ↑↑

For Figure 8.6a                 N et area of Figure 8.6a 

From Table 8.1 for Tυ = 0.3, Uav ≈ 61% for area A1; Uav ≈ 52.3% for 
area A2.

So

	
U av = −

−
= =6160 7 6452 3

60 7 64
3260 43
52 36

62 3( ) ( . ) .
.

.
.

. %

Pervious

Pervious(a)

Clay

6 m = 2H = Ht

3 m

ui (kN/m2)

8

5

15

2

5

–

15

10

(c)(b)

Figure 8.6  �Calculation of average degree of consolidation (Tυ = 0.3): (a) soil profile and 
excess pore water pressure; (b) excess pore water pressure as a linear distri­
bution; (c) excess pore water pressure as a sinusoidal distribution.
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Example 8.3

A uniform surcharge of q = 100 kN/m2 is applied on the ground sur-
face as shown in Figure 8.7a.

	 a.	Determine the initial excess pore water pressure distribution in 
the clay layer.

	 b.	Plot the distribution of the excess pore water pressure with depth 
in the clay layer at a time for which Tυ = 0.5.

Solution

Part a: The initial excess pore water pressure will be 100 kN/m2 and 
will be the same throughout the clay layer (Figure 8.7a).

1.0

0.8

5

4

3

2

z (
m
)

1

0
0 20 40

0.6

0.4

z/
H

0.2

0
0 0.2 0.4

Tυ= 0.5

0.6 0.8 1.0

q

4 m
Sand

Sand

Clay

Rock(a)

5 m = H = Ht 5 m

G.W.T.

ui = 100 kN/m2

(b) (c) u (kN/m2)Uz

Figure 8.7  �Excess pore water pressure distribution: (a) soil profile and plot of initial 
excess pore water pressure with depth; (b) plot of Uz with z/H at Tυ = 0.5; 
(c) plot of u with z at Tυ = 0.5.
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Part b: From Equation 8.31, Uz = 1−u/ui, or u = ui(1 − Uz). For Tυ = 0.5, 
the values of Uz can be obtained from the top half of Figure 8.4 as 
shown in Figure 8.7b, and then the following table can be prepared:

Figure 8.7c shows the variation of excess pore water pressure with 
depth.

z/H z (m) Uz u = ui(1 − Uz) (kN/m2)

0 0 0.63 37
0.2 1 0.65 35
0.4 2 0.71 29
0.6 3 0.78 22
0.8 4 0.89 11
1.0 5 1 0

Example 8.4

Refer to Figure 8.3e. For the sinusoidal initial excess pore water pres-
sure distribution, given

	
u z

Hi kN /m= 





50
2

2sin π

Assume Hi = 2H = 5 m. Calculate the excess pore water pressure at the 
midheight of the clay layer for Tυ = 0.2, 0.4, 0.6, and 0.8.

Solution

From Equation 8.28
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Let us evaluate the term A
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Note that the integral mentioned earlier is zero if n ≠ 1, and so the only 
nonzero term is obtained when n = 1. Therefore

	

A
H

z
H
dz

H
H

H

= = =∫50
2

50 502

0

2

sin π

Since only for n = 1 is A not zero

	
u z
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sin expπ π υ

At the midheight of the clay layer, z = H, and so

	
u T T= −
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The values of the excess pore water pressure are tabulated as follows:

Tυ u
T= −







50exp

4
(kN m )

2
2π υ /

0.2 30.52
0.4 18.64
0.6 11.38
0.8 6.95

8.3 � DEGREE OF CONSOLIDATION UNDER 
TIME-DEPENDENT LOADING

Olson (1977) presented a mathematical solution for one-dimensional consoli-
dation due to a single ramp load. Olson’s solution can be explained with the 
help of Figure 8.8, in which a clay layer is drained at the top and at the bot-
tom (H is the drainage distance). A uniformly distributed load q is applied at 
the ground surface. Note that q is a function of time, as shown in Figure 8.8b.

The expression for the excess pore water pressure for the case where 
ui = u0 is given in Equation 8.30 is

	

u u
M

M z
H

M T
m

m

= −
=

=∞

∑ 2 0

0

2sin exp( )υ

where Tυ = Cυt/H2.
As stated earlier, the applied load is a function of time:

	 q ft= ( )a 	 (8.43)

where ta is the time of application of any load.
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For a differential load dq applied at time ta, the instantaneous pore pres-
sure increase will be dui = dq. At time t, the remaining excess pore water 
pressure du at a depth z can be given by the expression

	

du du
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M C t t
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dq
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Figure 8.8  �One-dimensional consolidation due to single ramp load: (a) soil profile; 
(b) ramp loading; (c) variation of Uav (%) with Tʋ and Tc. (After Olson, R. E., 
J. Geotech. Eng. Div., ASCE, 103(GT1), 55, 1977.)
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The average degree of consolidation can be defined as

	
u

q H udz

q
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H

av

c t
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Settlem ent at tim e 
Settlem ent at 

=
−

=∫α ( / )1
0

ttim e t= ∞
	 (8.45)

where αqc is the total load per unit area applied at the time of the analy-
sis. The settlement at time t = ∞ is, of course, the ultimate settlement. 
Note that the term qc in the denominator of Equation 8.45 is equal to 
the instantaneous excess pore water pressure (ui = qc) that might have 
been generated throughout the clay layer had the stress qc been applied 
instantaneously.

Proper integration of Equations 8.44 and 8.45 gives the following:

For Tυ ≤ Tc
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and
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For Tυ ≥ Tc
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and
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where

	
T C t

Hc
c= υ
2 	 (8.50)

Figure 8.8c shows the plot of Uav against Tυ for various values of Tc.
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Example 8.5

Based on one-dimensional consolidation test results on a clay, the 
coefficient of consolidation for a given pressure range was obtained 
as 8 × 10−3 mm2/s. In the field, there is a 2 m-thick layer of the same 
clay with two-way drainage. Based on the assumption that a uniform 
surcharge of 70 kN/m2 was to be applied instantaneously, the total 
consolidation settlement was estimated to be 150 mm. However, dur-
ing the construction, the loading was gradual; the resulting surcharge 
can be approximated as

	
q t( ) ( )kN /m days2 70

60
=

for t ≤ 60 days and
q = 70 kN/m2

for t ≥ 60 days. Estimate the settlement at t = 30 and 120 days.

Solution

	
T C t

Hc
c= υ
2 	 (8.50)

Now, tc = 60 days = 60 × 24 × 60 × 60 s; also, Ht = 2 m = 2H (two-way 
drainage), and so H = 1 m = 1000 mm. Hence
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At t = 30 days
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From Figure 8.8c, for Tυ = 0.0207 and Tc = 0.0414, Uav ≈ 5%. So

	 Settlement = (0.05)(150) = 7.5 mm

At t = 120 days

	
Tυ = × × × × =

−( )( )
( )

.8 10 120 24 60 60
1000

0 083
3

2

From Figure 8.8c for Tυ = 0.083 and Tc = 0.0414, Uav ≈ 27%. So

	 Settlement = (0.27)(150) = 40.5 mm
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8.4 � NUMERICAL SOLUTION FOR ONE-DIMENSIONAL 
CONSOLIDATION

8.4.1 � Finite difference solution

The principles of finite difference solutions were introduced in Section 7.8. 
In this section, we will consider the finite difference solution for one-
dimensional consolidation, starting from the basic differential equation of 
Terzaghi’s consolidation theory:

	

∂
∂

= ∂
∂

u
t

C u
zυ

2

2 	 (8.51)

Let uR, tR, and zR be any arbitrary reference excess pore water pressure, 
time, and distance, respectively. From these, we can define the following 
nondimensional terms:

	
N ondim ensional excess pore w ater pressure:
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From Equations 8.52, 8.53, and the left-hand side of Equation 8.51
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Similarly, from Equations 8.52, 8.53, and the right-hand side of 
Equation 8.51
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From Equations 8.55 and 8.56
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or

	

1
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2t
u
t

C
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u
zR R

∂
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υ 	 (8.57)

If we adopt the reference time in such a way that t z CR R /= 2
υ, then 

Equation 8.57 will be of the form

	

∂
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u
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u
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2

2 	 (8.58)

The left-hand side of Equation 8.58 can be written as

	

∂
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=
∆

−+∆
u
t t

u ut t t
1

0 0( ), , 	 (8.59)

where u ut t t0 0, ,and +∆  are the nondimensional pore water pressures at 
point 0 (Figure 8.9a) at nondimensional times t and t + ∆t. Again, similar to 
Equation 7.56:
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Equating the right sides of Equations 8.59 and 8.60 gives
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For Equation 8.61 to converge, ∆t
_
 and ∆z

_
 must be chosen such that ∆t

_
/(∆z

_
)2 

is less than 0.5.
When solving for pore water pressure at the interface of a clay layer 

and an impervious layer, Equation 8.61 can be used. However, we need 
to take point 3 as the mirror image of point 1 (Figure 8.9b); thus u

_
1,t

_ = u
_

3,t
_. 

So, Equation 8.61 becomes

	
u t

z
u u ut t t t t0 2 1 0 02 2, , , ,( )
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− + 	 (8.62)
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8.4.2 � Consolidation in a layered soil

It is not always possible to develop a closed-form solution for consolida-
tion in layered soils. There are several variables involved, such as different 
coefficients of permeability, the thickness of layers, and different values of 
coefficient of consolidation. Figure 8.10 shows the nature of the degree of 
consolidation of a two-layered soil.

In view of the earlier description, numerical solutions provide a better 
approach. If we are involved with the calculation of excess pore water 
pressure at the interface of two different types (i.e., different values of Cυ) 

1

Layer 1
Cυ1

, k1

Layer 2
Cυ2

, k2

0
2

Interface
4

Δz

Δz

1 1

0 0

(a) (b)

4 42 2

3 3

Clay

Impervious
layer

Δz Δz

ΔzΔz

(c) 3

Figure 8.9  �Numerical solution for consolidation: (a) derivation of Equation 8.61; 
(b) derivation of Equation 8.62; (c) derivation of Equation 8.66.
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of clayey soils, Equation 8.61 will have to be modified to some extent. 
Referring to Figure 8.9c, this can be achieved as follows (Scott, 1963). 
From Equation 8.14
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Figure 8.10  �Degree of consolidation in two-layered soil: (a) soil profile; (b) variation 
of Uz with z/H and Tʋ. (After Luscher, U., J. Soil Mech. Found. Div., ASCE, 
91(SM1), 190, 1965.)
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Based on the derivations of Equation 7.76
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where
k1 and k2 are the coefficients of permeability in layers 1 and 2, 

respectively
u0,t, u1,t, and u3,t are the excess pore water pressures at time t for points 

0, 1, and 3, respectively

Also, the average volume change for the element at the boundary is
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where u0,t and u0,t+∆t are the excess pore water pressures at point 0 at times t 
and t + ∆t, respectively. Equating the right-hand sides of Equations 8.63 
and 8.64, we get
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Assuming 1 1
2/ /R Rt C z= υ  and combining Equations 8.52 through 8.54 and 

8.65, we get
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Example 8.6

A uniform surcharge of q = 150 kN/m2 is applied at the ground surface 
of the soil profile shown in Figure 8.11a. Using the numerical method, 
determine the distribution of excess pore water pressure for the clay 
layers after 10 days of load application.

Solution

Since this is a uniform surcharge, the excess pore water pressure 
immediately after the load application will be 150 kN/m2 through-
out the clay layers. However, owing to the drainage conditions, the 
excess pore water pressures at the top of layer 1 and bottom of layer 2 
will immediately become zero. Now, let zR = 8 m and uR = 1.5 kN/m2. 
So, z

_
 = (8 m)/(8 m) = 1 and u– = (150 kN/m2)/(1.5 kN/m2)  =  100. 
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Figure 8.11  �Numerical solution for consolidation in layered soil: (a) soil profile; (b) varia­
tion of pore water pressure with depth and time.
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Figure  8.10b shows the distribution of u– at time t = 0; note that 
∆z

_
 = 2/8 = 0.25. Now
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Let ∆t = 5 days for both layers. So, for layer 1
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At z
_
 = 0.5 (Note: this is the boundary of two layers, so we will use 

Equation 8.66)
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or
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The variation of the nondimensional excess pore water pressure is 
shown in Figure 8.11b. Knowing u = (u

_
)(uR) = u

_
 (1.5) kN/m2, we can 

plot the variation of u with depth.

Example 8.7

For Example 8.6, assume that the surcharge q is applied gradually. 
The relation between time and q is shown in Figure 8.12a. Using the 
numerical method, determine the distribution of excess pore water 
pressure after 15 days from the start of loading.
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Solution

As mentioned earlier, zR = 8 m, uR = 1.5 kN/m2. For ∆t = 5 days
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The continuous loading can be divided into step loads such as 
60 kN/m2 from 0 to 10 days and an added 90 kN/m2 from the tenth 
day on. This is shown by dashed lines in Figure 8.12a.
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Figure 8.12  �Numerical solution for ramp loading: (a) ramp loading; (b) variation of pore 
water pressure with depth and time.
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At t = 0 days
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 = 0.25, from Equation 8.61
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 = 0.5, from Equation 8.66
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 = 0.75, from Equation 8.61
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At this point, a new load of 90 kN/m2 is added, so u
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 will increase by an 
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from Equation 8.66
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	 New u
_
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_ = 28.4 + 60 = 88.4
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 = 0.75, from Equation 8.61
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_
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_
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The distribution of excess pore water pressure is shown in Figure 8.12b.

8.5 � STANDARD ONE-DIMENSIONAL 
CONSOLIDATION TEST AND INTERPRETATION

The standard one-dimensional consolidation test is usually carried out 
on saturated specimens about 25.4 mm thick and 63.5 mm in diameter 
(Figure 8.13). The soil specimen is kept inside a metal ring, with a porous 
stone at the top and another at the bottom. The load P on the specimen is 
applied through a lever arm, and the compression of the specimen is mea-
sured by a micrometer dial gauge. The load is usually doubled every 24 h. 
The specimen is kept under water throughout the test.
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For each load increment, the specimen deformation and the correspond-
ing time t are plotted on semilogarithmic graph paper. Figure 8.14a shows a 
typical deformation versus log t graph. The graph consists of three distinct 
parts:

	 1.	Upper curved portion (stage I). This is mainly the result of precom-
pression of the specimen.

	 2.	A straight-line portion (stage II). This is referred to as primary con-
solidation. At the end of the primary consolidation, the excess pore 
water pressure generated by the incremental loading is dissipated to 
a large extent.

	 3.	A lower straight-line portion (stage III). This is called secondary 
consolidation. During this stage, the specimen undergoes small 
deformation with time. In fact, there must be immeasurably small 
excess pore water pressure in the specimen during secondary 
consolidation.

Note that at the end of the test, for each incremental loading, the stress on 
the specimen is the effective stress σ′. Once the specific gravity of the soil 
solids, the initial specimen dimensions, and the specimen deformation at 
the end of each load have been determined, the corresponding void ratio 
can be calculated. A typical void ratio versus effective pressure relation 
plotted on semilogarithmic graph paper is shown in Figure 8.14b.

8.5.1 � Preconsolidation pressure

In the typical e versus log σ′ plot shown in Figure 8.14b, it can be seen 
that the upper part is curved; however, at higher pressures, e and log σ′ 
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Soil
specimen

Porous stone

Porous stone

Figure 8.13  �Consolidometer.
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bear a linear relation. The upper part is curved because when the soil 
specimen was obtained from the field, it was subjected to a certain maxi-
mum effective pressure. During the process of soil exploration, the pres-
sure is released. In the laboratory, when the soil specimen is loaded, 
it will show relatively small decrease of void ratio with load up to the 
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Figure 8.14  �(a) Typical specimen deformation versus log-of-time plot for a given 
load increment and (b) typical e versus log σ′ plot showing procedure for 
determination of ′σc and Cc.
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maximum effective stress to which the soil was subjected in the past. 
This is represented by the upper curved portion in Figure 8.14b. If the 
effective stress on the soil specimen is increased further, the decrease 
of void ratio with stress level will be larger. This is represented by the 
straight-line portion in the e versus log σ′ plot. The effect can also be 
demonstrated in the laboratory by unloading and reloading a soil speci-
men, as shown in Figure 8.15. In this figure, cd is the void ratio–effective 
stress relation as the specimen is unloaded, and dfgh is the reloading 
branch. At d, the specimen is being subjected to a lower effective stress 
than the maximum stress ′σ1 to which the soil was ever subjected. So, df 
will show a flatter curved portion. Beyond point f, the void ratio will 
decrease at a larger rate with effective stress, and gh will have the same 
slope as bc.

Based on the previous explanation, we can now define the two conditions 
of a soil:

	 1.	Normally consolidated. A soil is called normally consolidated if the 
present effective overburden pressure is the maximum to which the 
soil has ever been subjected, that is, ′ ≥ ′σ σpresent past m axim um .

	 2.	Overconsolidated. A soil is called overconsolidated if the present 
effective overburden pressure is less than the maximum to which the 
soil was ever subjected in the past, that is, ′ < ′σ σpresent past m axim um .
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Figure 8.15  �Plot of void ratio versus effective pressure showing unloading and reloading 
branches.
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In Figure 8.15, the branches ab, cd, and df are the overconsolidated state 
of a soil, and the branches bc and fh are the normally consolidated state of 
a soil.

In the natural condition in the field, a soil may be either normally consol-
idated or overconsolidated. A soil in the field may become overconsolidated 
through several mechanisms, some of which are listed in the following 
(Brummund et al., 1976):

•	 Removal of overburden pressure
•	 Past structures
•	 Glaciation
•	 Deep pumping
•	 Desiccation due to drying
•	 Desiccation due to plant lift
•	 Change in soil structure due to secondary compression
•	 Change in pH
•	 Change in temperature
•	 Salt concentration
•	 Weathering
•	 Ion exchange
•	 Precipitation of cementing agents

The preconsolidation pressure from an e versus log σ′ plot is generally 
determined by a graphical procedure suggested by Casagrande (1936), as 
shown in Figure 8.14b. The steps are as follows:

	 1.	Visually determine the point P (on the upper curved portion of the e 
versus log σ′ plot) that has the maximum curvature.

	 2.	Draw a horizontal line PQ.
	 3.	Draw a tangent PR at P.
	 4.	Draw the line PS bisecting the angle QPR.
	 5.	Produce the straight-line portion of the e versus log σ′ plot backward 

to intersect PS at T.
	 6.	The effective pressure corresponding to point T is the preconsolida-

tion pressure ′σc.

In the field, the overconsolidation ratio (OCR) can be defined as

	
O CR= c

o

′
′

σ
σ

	 (8.67)

where ′σo = present effective overburden pressure.
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8.5.1.1 � Empirical correlations for preconsolidation pressure

There are some empirical correlations presently available in the literature to 
estimate the preconsolidation pressure in the field. Following are a few of 
these relationships. However, they should be used cautiously.

Stas and Kulhawy (1984)

	

′
= −σc

a

LI for clays w ith sensitivity betw een 1
p

101 11 1 62( . . )(   and 10)	 (8.68)

where
pa is the atmospheric pressure (≈100 kN/m2)
LI is the liquidity index
Hansbo (1957)

	 ′ =σ αc VST u VST( ) ( )S 	 (8.69)

where
Su(VST) = undrained shear strength based on the vane shear test

α( ) (% )VST an em pirical coefficient
LL

= = 222

where LL is the liquid limit.
Mayne and Mitchell (1988) gave a correlation for α(VST) as

	
α VST

4822PI( )
−= 0. 	 (8.70)

where PI is the plasticity index (%).
Nagaraj and Murty (1985)

	
log . ( / ) . log

.
′ = − ′

σ σ
c

o L o1 322 0 0463
0 188

e e
	 (8.71)

where
eo is the void ratio at the present effective overburden pressure, σ′
eL is the void ratio of the soil at liquid limit

′σc and ′σo are in kN/m2

	
e GL s

LL= 





(% )
100

Gs is the specific gravity of soil solids
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8.5.1.2 � Empirical correlations for overconsolidation ratio

Similar to the preceding correlations for preconsolidation pressure, the 
overconsolidation ratio (OCR) in the field has been empirically correlated 
by various investigators. Some of those correlations are summarized in the 
following.

The overconsolidation has been correlated to field vane shear strength 
[Su(VST)] as

	
O CR VST

o
=

′
β

σ
Su( ) 	 (8.72)

where ′σo is the effective overburden pressure.
The magnitudes of β developed by various investigators are given in the 

following:

•	 Mayne and Mitchell (1988)

	 β = −22 0 48[ (% )] .PI  	 (8.73)

		  where PI is the plasticity index.

•	 Hansbo (1957)

	
β = 222

w(% )
	 (8.74)

		  where w is the moisture content.

•	 Larsson (1980)

	
β =

+
1

0 08 0 0055. . ( )PI
	 (8.75)

Kulhawy and Mayne (1990) have also presented the following three 
correlations:

	
O CR LI=

′








−p
o

a

σ
101 11 1 62( . . )	 (8.76)
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	 O CR LI /= − − ′101 2 5 1 25[ . . log( )]σo ap 	 (8.77)

where LI is the liquidity index.

	
O CR

o
=

′






0 58. N pa

σ
	 (8.78)

where N is the field standard penetration resistance.
Mayne and Kemper (1988) provided a correlation between OCR and the 

cone penetration resistance qc in the form

	
O CR o

o
= −

′






0 37
1 01

.
.

qc σ
σ

	 (8.79)

where σo and ′σo are total and effective vertical stress, respectively.

8.5.2 � Compression index

The slope of the e versus log σ′ plot for normally consolidated soil is referred 
to as the compression index Cc. From Figure 8.14b

	
C e e e
c /

= −
′ − ′

= ∆
′ ′

1 2

2 1 2 1log log log( )σ σ σ σ
	 (8.80)

For undisturbed normally consolidated clays, Terzaghi and Peck (1967) 
gave a correlation for the compression index as

	 Cc = 0.009(LL–10)

Based on the laboratory test results, several empirical relations for Cc 
have been proposed, some of which are given in Table 8.3.

Based on the modified Cam clay model, Wroth and Wood (1978) have 
shown that

	
C Gc s

PI≈ 0 5
100

. [ (% )]
	 (8.81)

where PI is the plasticity index.
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If an average value of Gs is taken to be about 2.7 (Kulhawy and Mayne, 
1990)

	
C c

PI
74

≈ 	 (8.82)

Burland (1990) showed that there exists a good relationship between 
eL and C c*  in the form

	 C ec L* . .= −0 256 0 04 	 (8.83)

where eL is the void ratio at liquid limit (LL).

Table 8.3  �Empirical relations for Cc

Reference Relation Comments

Terzaghi and Peck (1967) Cc = 0.009(LL – 10) Undisturbed clay
Cc = 0.007(LL – 10) Remolded clay
LL = liquid limit (%)

Azzouz et al. (1976) Cc = 0.01wN Chicago clay
wN = natural moisture content (%)
Cc = 0.0046(LL – 9) Brazilian clay
LL = liquid limit (%)
Cc = 1.21+1.005(e0 − 1.87) Motley clays from

Sao Paulo city
e0 = in situ void ratio
Cc = 0.208e0 + 0.0083 Chicago city
e0 = in situ void ratio
Cc = 0.0115wN Organic soil, peat
wN = natural moisture content (%)

Nacci et al. (1975) Cc = 0.02 + 0.014(PI) North Atlantic clay
PI = plasticity index (%)

Rendon-Herrero (1983) Cc = 0.141
 
G

G
s

s

1 2 0
2 38

1.
.

+







e

Gs = specific gravity of soil solids
e0 = in situ void ratio

Nagaraj and Murty (1985) Cc = 0.2343
LL

s
100






G

Gs = specific gravity of soil solids
LL = liquid limit (%)

Park and Koumoto (2004) C
n

n
c

o

o

=
−371 747 4 275. .

no = in situ porosity of soil
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C e e e ec 2

2
 kN /m
 kN /m

*
log

= −










= −100 1000
100 10001000

100

	 (8.84)

where e100 and e1000 are void ratios at vertical effective pressures of 100 and 
1000 kN/m2, respectively.

Example 8.8

For a clay soil, given LL = 54% and specific gravity of soil solids 
Gs = 2.71. Determine the value of C c* based on Equation 8.83.

Solution

From Equation 1.40

	 e = wGs

For e = eL, w = LL. Hence

	
e GL s

LL= 





= 





=(% ) ( ) ( . ) .
100

54
100

2 71 1 463

From Equation 8.83

	 C ec L* . . ( . )( . ) . .= − = − =0 256 0 04 0 256 1 463 0 04 0 335

8.6 � EFFECT OF SAMPLE DISTURBANCE 
ON THE e VERSUS LOG σ′ CURVE

Soil samples obtained from the field are somewhat disturbed. When con-
solidation tests are conducted on these specimens, we obtain e versus log σ′ 
plots that are slightly different from those in the field. This is demonstrated 
in Figure 8.16.

Curve I in Figure 8.16a shows the nature of the e versus log σ′ variation 
that an undisturbed normally consolidated clay (present effective overbur-
den pressure ′σ0; void ratio e0) in the field would exhibit. This is called the 
virgin compression curve. A laboratory consolidation test on a carefully 
recovered specimen would result in an e versus log σ′ plot such as curve II. 
If the same soil is completely remolded and then tested in a consolidometer, 
the resulting void ratio–pressure plot will be like curve III. The virgin com-
pression curve (curve I) and the laboratory e versus log σ′ curve obtained 
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from a carefully recovered specimen (curve II) intersect at a void ratio of 
about 0.4e0 (Terzaghi and Peck, 1967).

Curve I in Figure 8.16b shows the nature of the field consolidation 
curve of an overconsolidated clay. Note that the present effective over-
burden pressure is ′σ0, the corresponding void ratio e0, ′σc the preconsoli-
dation pressure, and bc a part of the virgin compression curve. Curve II is 
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Figure 8.16  �Effect of sample disturbance on the e versus log σ′ curve: (a) normally con­
solidated soil; (b) overconsolidated soil.
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the corresponding laboratory consolidation curve. After careful testing, 
Schmertmann (1953) concluded that the field recompression branch (ab 
in Figure 8.15b) has approximately the same slope as the laboratory 
unloading branch, cd. The slope of the laboratory unloading branch is 
referred to as Cr. The range of Cr is approximately from one-fifth to one-
tenth of Cc. Table 8.4 gives typical values of Cc and Cr of some natural 
clays.

Based on the modified Cam clay model, Kulhawy and Mayne (1990) 
have shown that

	
C r

PI≈
370

	 (8.85)

8.7 � SECONDARY CONSOLIDATION

It has been pointed out previously that clays continue to settle under sus-
tained loading at the end of primary consolidation, and this is due to the 
continued readjustment of clay particles. Several investigations have been 
carried out for qualitative and quantitative evaluation of secondary con-
solidation. The magnitude of secondary consolidation is often defined by 
(Figure 8.14a)

	
C H H

t tα = ∆
−
t t/

log log2 1
	 (8.86)

where Cα is the coefficient of secondary consolidation.
Mesri (1973) published an extensive list of the works of various investi-

gators in this area. Figure 8.17 details the general range of the coefficient 
of secondary consolidation observed in a number of clayey soils. Secondary 
compression is greater in plastic clays and organic soils. Based on the 

Table 8.4  �Typical values of Cc and Cr 
of some natural clays

Soil Cc Cr Cc/Cr

Boston blue clay 0.35 0.07 5
Chicago clay 0.4 0.07 5.7
New Orleans clay 0.3 0.05 6
Montana clay 0.21 0.05 4.2
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coefficient of secondary consolidation, Mesri (1973) classified the second-
ary compressibility, and this is summarized as follows:

Cα Secondary compressibility

<0.002 Very low
0.002–0.004 Low
0.004–0.008 Medium
0.008–0.016 High
0.016–0.032 Very high

100

10

C α
 (%

)
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10
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Figure 8.17  �Coefficient of secondary consolidation for natural soil deposits: 
1, Whangamarino clay; 2, Mexico City clay; 3, calcareous organic silt; 4, Leda 
clay; 5, Norwegian plastic clay; 6, amorphous and fibrous peat; 7, Canadian 
muskeg; 8, organic marine deposits; 9, boston blue clay; 10, Chicago blue clay; 
11, organic silty clay; ∙, organic silt, etc. (After Mesri, G., J. Soil Mech. Found. 
Div., ASCE, 99(SMI), 123, 1973.)



Consolidation  351

In order to study the effect of remolding and preloading on secondary com-
pression, Mesri (1973) conducted a series of one-dimensional consolidation 
tests on an organic Paulding clay. Figure 8.18 shows the results in the form 
of a plot of ∆e/(∆log t) versus consolidation pressure. For these tests, each 
specimen was loaded to a final pressure with load increment ratios of 1 and 
with only sufficient time allowed for excess pore water pressure dissipation. 
Under the final pressure, secondary compression was observed for a period 
of 6 months. The following conclusions can be drawn from the results of 
these tests:

	 1.	For sedimented (undisturbed) soils, ∆e/(∆log t) decreases with the 
increase of the final consolidation pressure.

	 2.	Remolding of clays creates a more dispersed fabric. This results in a 
decrease of the coefficient of secondary consolidation at lower con-
solidation pressures as compared to that for undisturbed samples. 
However, it increases with consolidation pressure to a maximum 
value and then decreases, finally merging with the values for normally 
consolidated undisturbed samples.

	 3.	Precompressed clays show a smaller value of coefficient of secondary 
consolidation. The degree of reduction appears to be a function of the 
degree of precompression.
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Figure 8.18  �Coefficient of secondary compression for organic Paulding clay. (After 
Mesri, G., J. Soil Mech. Found. Div., ASCE, 99(SMI), 123, 1973.)
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Mesri and Godlewski (1977) compiled the values of Cα/Cc for a number 
of naturally occurring soils. A summary of this is given in Table 8.5. From 
this study, it appears that, in general,

•	 Cα/Cc ≈ 0.04 ± 0.01 (for inorganic clays and silts)
•	 Cα/Cc ≈ 0.05 ± 0.01 (for organic clays and silts)
•	 Cα/Cc ≈ 0.075 ± 0.01 (for peats)

8.8 � GENERAL COMMENTS ON 
CONSOLIDATION TESTS

Standard one-dimensional consolidation tests as described in Section 8.5 are 
conducted with a soil specimen having a thickness of 25.4 mm in which the 
load on the specimen is doubled every 24 h. This means that ∆σ/σ′ is kept at 
1 (∆σ is the step load increment, and σ′ the effective stress on the specimen 
before the application of the incremental step load). Following are some general 
observations as to the effect of any deviation from the standard test procedure.

Table 8.5  �Values of Cα/Cc for natural oils

Soil Cα/Cc

Whangamarino clay 0.03–0.04
Calcareous organic silt 0.035–0.06
Amorphous and fibrous peat 0.035–0.083
Canadian muskeg 0.09–0.10
Leda clay 0.03–0.055
Peat 0.075–0.085
Post-glacial organic clay 0.05–0.07
Soft blue clay 0.026
Organic clays and silts 0.04–0.06
Sensitive clay, Portland 0.025–0.055
Peat 0.05–0.08
San Francisco Bay mud 0.04–0.06
New Liskeard varved clay 0.03–0.06
Nearshore clays and silts 0.055–0.075
Fibrous peat 0.06–0.085
Mexico City clay 0.03–0.035
Hudson River silt 0.03–0.06
Leda clay 0.025–0.04
New Haven organic clay silt 0.04–0.075

Source:	 Compiled from Mesri, G. and Godlewski, P.M., 
J. Geotech. Eng., ASCE, 103(5), 417, 1977.
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Effect of load-increment ratio ∆σ/σ′. Striking changes in the shape of the 
compression–time curves for one-dimensional consolidation tests are gen-
erally noticed if the magnitude of ∆σ/σ′ is reduced to less than about 0.25. 
Leonards and Altschaeffl (1964) conducted several tests on Mexico City 
clay in which they varied the value of ∆σ/σ′ and then measured the excess 
pore water pressure with time. The general nature of specimen deformation 
with time is shown in Figure 8.19a. From this figure it may be seen that, 
for ∆σ/σ′ < 0.25, the position of the end of primary consolidation (i.e., zero 
excess pore water pressure due to incremental load) is somewhat difficult 
to resolve. Furthermore, the load-increment ratio has a high influence on 
consolidation of clay. Figure 8.19b shows the nature of the e versus log σ′ 
curve for various values of ∆σ/σ′. If ∆σ/σ′ is small, the ability of individual 
clay particles to readjust to their positions of equilibrium is small, which 
results in a smaller compression compared to that for larger values of ∆σ/σ′.
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Figure 8.19  �Effect of load-increment ratio: (a) effect of ∆σ/σ´ on the consolidation curve; 
(b) effect of ∆σ/σ´ on e-log σ´ plot.
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Effect of load duration. In conventional testing, in which the soil speci-
men is left under a given load for about a day, a certain amount of sec-
ondary consolidation takes place before the next load increment is added.

If the specimen is left under a given load for more than a day, additional 
secondary consolidation settlement will occur. This additional amount of sec-
ondary consolidation will have an effect on the e versus log σ′ plot, as shown in 
Figure 8.20. Curve a is based on the results at the end of primary consolidation. 
Curve b is based on the standard 24 h load-increment duration. Curve c refers 
to the condition for which a given load is kept for more than 24 h before the 
next load increment is applied. The strain for a given value of σ′ is calculated 
from the total deformation that the specimen has undergone before the next 
load increment is applied. In this regard, Crawford (1964) provided experimen-
tal results on Leda clay. For his study, the preconsolidation pressure obtained 
from the end of primary e versus log σ′ plot was about twice that obtained from 
the e versus log σ′ plot where each load increment was kept for a week.

Effect of specimen thickness. Other conditions remaining the same, the pro-
portion of secondary to primary compression increases with the decrease of 
specimen thickness for similar values of ∆σ/σ′.
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Figure 8.20  �Effect of load duration on the e versus log σ′ plot: (a) end of primary 
consolidation, (b) 24 h load increment duration, and (c) more than 
24 h load duration.
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Effect of secondary consolidation. The continued secondary consolidation of a 
natural clay deposit has some influence on the preconsolidation pressure ′σc. This 
fact can be further explained by the schematic diagram shown in Figure 8.21.

A clay that has recently been deposited and comes to equilibrium by its own 
weight can be called a “young, normally consolidated clay.” If such a clay, 
with an effective overburden pressure of ′σ0 at an equilibrium void ratio of 
e0, is now removed from the ground and tested in a consolidometer, it will 
show an e versus log σ′ curve like that marked curve a in Figure 8.21. Note 
that the preconsolidation pressure for curve a is ′σ0. On the contrary, if the 
same clay is allowed to remain undisturbed for 10,000 years, for example, 
under the same effective overburden pressure ′σ0, there will be creep or sec-
ondary consolidation. This will reduce the void ratio to e1. The clay may 
now be called an “aged, normally consolidated clay.” If this clay, at a void 
ratio of e1 and effective overburden pressure of ′σ0, is removed and tested in 
a consolidometer, the e versus log σ′ curve will be like curve b. The precon-
solidation pressure, when determined by standard procedure, will be ′σ1. 
Now, ′ = ′ > ′σ σ σc 1 0. This is sometimes referred to as a quasi-preconsolida-
tion effect. The effect of preconsolidation is pronounced in most plastic 
clays. Thus, it may be reasoned that, under similar conditions, the ratio 
of the quasi-preconsolidation pressure to the effective overburden pressure 

′ ′σ σc/ 0 will increase with the plasticity index of the soil. Bjerrum (1972) gave 
an estimate of the relation between the plasticity index and the ratio of 
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σ΄ (log scale)

Figure 8.21  �Effect of secondary consolidation.
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quasi-preconsolidation pressure to effective overburden pressure ( )′ ′σ σc/ 0  for 
late glacial and postglacial clays. This relation is shown as follows:

Plasticity index ≈ ′ ′σ σc 0

20 1.4
40 1.65
60 1.75
80 1.85

100 1.90

8.9 � CALCULATION OF ONE-DIMENSIONAL 
CONSOLIDATION SETTLEMENT

The basic principle of one-dimensional consolidation settlement calculation is 
demonstrated in Figure 8.22. If a clay layer of total thickness Ht is subjected 
to an increase of average effective overburden pressure from σ′0 to σ′1, it will 
undergo a consolidation settlement of ∆Ht. Hence, the strain can be given by

	
∈ = ∆H

H
t

t

	 (8.87)

where ∈ is strain. Again, if an undisturbed laboratory specimen is subjected 
to the same effective stress increase, the void ratio will decrease by ∆e. 
Thus, the strain is equal to

	
∈ = ∆e

e1 0+
	 (8.88)

where e0 is the void ratio at an effective stress of σ′0.

Volume of
solid = 1

Field Laboratory
Initial average effective pressure = σ 0́ Initial effective pressure = σ 0́

Final effective pressure = σ 1́

Volume of
void = e0

Δe

Ht

ΔHt

Final average effective pressure = σ 1́

Figure 8.22  �Calculation of one-dimensional consolidation settlement.
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Thus, from Equations 8.87 and 8.88

	
∆ ∆H eH

et
t=

1 0+
	 (8.89)

For a normally consolidated clay in the field (Figure 8.23a)

	
∆ ∆e C C=

′
′

=
′ +
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σ

σ σ
σ
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0
	 (8.90)
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Figure 8.23  �Calculation of ∆e: (a) Equation 8.90; (b) Equation 8.91; (c) Equation 8.92.
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For an overconsolidated clay, (1) if σ′1 < σ′c (i.e., overconsolidation pres-
sure) (Figure 8.23b)

	
∆ ∆e C C=

′
′

=
′ +

′r rlog logσ
σ

σ σ
σ

1

0 0
	 (8.91)

and (2) if σ′0 < σ′c < σ′1 (Figure 8.23c)
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σ σ

σ
	 (8.92)

The procedure for calculation of one-dimensional consolidation settlement 
is described in more detail in Chapter 11.

8.10 � COEFFICIENT OF CONSOLIDATION

For a given load increment, the coefficient of consolidation Cυ can be deter-
mined from the laboratory observations of time versus dial reading. There 
are several procedures presently available to estimate the coefficient of con-
solidation, some of which are described later.

8.10.1 � Logarithm-of-time method

The logarithm-of-time method was originally proposed by Casagrande and 
Fadum (1940) and can be explained by referring to Figure 8.24.

	 1.	Plot the dial readings for specimen deformation for a given load 
increment against time on semilog graph paper as shown in 
Figure 8.24.

	 2.	Plot two points, P and Q, on the upper portion of the consolidation 
curve, which correspond to time t1 and t2, respectively. Note that 
t2 = 4t1.

	 3.	The difference of dial readings between P and Q is equal to x. Locate 
point R, which is at a distance x above point P.

	 4.	Draw the horizontal line RS. The dial reading corresponding to this 
line is d0, which corresponds to 0% consolidation.

	 5.	Project the straight-line portions of the primary consolidation and 
the secondary consolidation to intersect at T. The dial reading cor-
responding to T is d100, that is, 100% primary consolidation.
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	 6.	Determine the point V on the consolidation curve that corresponds to 
a dial reading of (d0 + d100)/2 = d50. The time corresponding to point V 
is t50, that is, time for 50% consolidation.

	 7.	Determine Cυ from the equation Tυ = Cυt/H2. The value of Tυ for 
Uav = 50% is 0.197 (Table 8.1). So

	
C H

tυ = 0 197 2

50

.
	 (8.93)

8.10.2 � Square-root-of-time method

The steps for the square-root-of-time method (Taylor, 1942) are as follows:

	 1.	Plot the dial reading and the corresponding square-root-of-time t as 
shown in Figure 8.25.

	 2.	Draw the tangent PQ to the early portion of the plot.
	 3.	Draw a line PR such that OR = (1.15)(OQ).
	 4.	The abscissa of the point S (i.e., the intersection of PR and the con-

solidation curve) will give t90  (i.e., the square root of time for 90% 
consolidation).

	 5.	The value of Tυ for Uav = 90% is 0.848. So

	
C H

tυ = 0 848 2

90

. .	 (8.94)
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Figure 8.24  �Logarithm-of-time method for determination of Cυ.
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8.10.3 � Su’s maximum-slope method

	 1.	Plot the dial reading against time on semilog graph paper as shown in 
Figure 8.26.

	 2.	Determine d0 in the same manner as in the case of the logarithm-of-
time method (steps 2–4).

OR = (1.15)(OQ)

S

P

D
ia

l r
ea

di
ng

O Q R √Time√t90

Figure 8.25  �Square-root-of-time method for determination of Cυ.
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Figure 8.26  �Maximum-slope method for determination of Cυ.
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	 3.	Draw a tangent PQ to the steepest part of the consolidation curve.
	 4.	Find h, which is the slope of the tangent PQ.
	 5.	Find du as

	
d d h Uu av= +0 0 688.

	 (8.95)

		  where du is the dial reading corresponding to any given average degree 
of consolidation, Uav·

	 6.	The time corresponding to the dial reading du can now be determined, 
and

	
C T H

tυ
υ=

2

	 (8.96)

Su’s method (1958) is more applicable for consolidation curves that do not 
exhibit the typical S-shape.

8.10.4 � Computational method

The computational method of Sivaram and Swamee (1977) is explained in 
the following steps: 

	 1.	Note two dial readings, d1 and d2, and their corresponding times, t1 
and t2, from the early phase of consolidation. (“Early phase” means 
that the degree of consolidation should be less than 53%.)

	 2.	Note a dial reading, d3, at time t3 after considerable settlement has 
taken place.

	 3.	Determine d0 as

	

d
d d t

t
t
t

0

1 2
1

2

1

2
1

=
−

−
	 (8.97)

	 4.	Determine d100 as

	

d d d d

d d t t
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	 5.	Determine Cυ as

	
C d d

d d
H

t tυ
π= −

− −








4

1 2

0 100 2 1

2

	 (8.99)

where H is the length of the maximum drainage path.

8.10.5 � Empirical correlation

Based on laboratory tests, Raju et al. (1995) proposed the following empiri-
cal relation to predict the coefficient of consolidation of normally consoli-
dated uncemented clayey soils:

	
C e

eυ
σ

σ
= + − ′



 ′











−1 1 23 0 276 100
3

0
0 353

L

L

( . . log )
( ). 	 (8.100)

where
Cυ is the coefficient of consolidation (cm2/s)
σ′0 is the effective overburden pressure (kN/m2)
eL is the void ratio at liquid limit

Note that

	
e GL s

LL= 





(% )
100

	 (8.101)

where
LL is the liquid limit
Gs is the specific gravity of soil solids

8.10.6 � Rectangular hyperbola method

The rectangular hyperbola method (Sridharan and Prakash, 1985) can be 
illustrated as follows. Based on Equations 8.32 and 8.34, it can be shown 
that the plot of Tυ/Uav versus Tυ will be of the type shown in Figure 8.27a. In 
the range of 60% ≤ Uav ≤ 90%, the relation is linear and can be expressed as

	

T
U

Tυ
υ

av
= × + ×− −8 208 10 2 44 103 3. . 	 (8.102)

Using the same analogy, the consolidation test results can be plotted in 
graphical form as t/∆Ht versus t (where t is time and ∆Ht is specimen defor-
mation), which will be of the type shown in Figure 8.27b. Now the follow-
ing procedure can be used to estimate Cυ.



Consolidation  363

	 1.	Identify the straight-line portion, bc, and project it back to d. 
Determine the intercept, D.

	 2.	Determine the slope m of the line bc.
	 3.	Calculate Cυ as

	
C m H

Dυ =








0 3

2
.

		  where H is the length of maximum drainage path. Note that the unit 
of m is L−l and the unit of D is TL−1. Hence, the unit of Cυ is

	

( )( )L L
TL

L T
−

−
−=

1 2

1
2 1

t
ΔHt

Equation 8.102

Tυ

Tυ
Uav

Uav = 60%
Uav = 90%

d

a

b
1

Time (t)

(a)

m

c

D

(b)

Figure 8.27  �Rectangular hyperbola method for determination of Cυ: (a) plot of Tυ/Uav 
vs. Tυ; (b) plot of t/∆Ht vs. t.
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8.10.7 � ∆Ht − t/∆Ht method

According to the ∆Ht − t/∆Ht method (Sridharan and Prakash, 1993),

	 1.	Plot the variation of ∆Ht versus t/∆Ht as shown in Figure 8.28 (Note: 
t is time and ∆Ht compression of specimen at time t.)

	 2.	Draw the tangent PQ to the early portion of the plot.
	 3.	Draw a line PR such that

	 OR = (1.33)(OQ)

	 4.	Determine the abscissa of point S, which gives t90/∆Ht from which t90 
can be calculated.

	 5.	Calculate Cυ as

	
C H

tυ = 0 848 2

90

.
	 (8.103)

8.10.8 � Early-stage log t method

The early-stage log t method (Robinson and Allam, 1996), an exten-
sion of the logarithm-of-time method, is based on specimen deforma-
tion against log-of-time plot as shown in Figure 8.29. According to this 
method, follow the logarithm-of-time method to determine d0. Draw a 
horizontal line DE through d0. Then, draw a tangent through the point 

S

P

O t90 t

OR= (1.33)(OQ)ΔH
t

RQ

ΔHt ΔHt

Figure 8.28  �∆Ht − t/∆Ht method for determination of Cυ.
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of inflection F. The tangent intersects line DE at point G. Determine the 
time t corresponding to G, which is the time at Uav = 22.14%. So

	
C H

tυ = 0 0385 2

22 14

.
.

In most cases, for a given soil and pressure range, the magnitude of Cυ deter-
mined using the logarithm-of-time method provides the lowest value. The 
highest value is obtained from the early stage log t method. The primary rea-
son is that the early-stage log t method uses the earlier part of the consolida-
tion curve, whereas the logarithm-of-time method uses the lower portion of 
the consolidation curve. When the lower portion of the consolidation curve 
is taken into account, the effect of secondary consolidation plays a role in the 
magnitude of Cυ. This fact is demonstrated for several soils in Table 8.6.

Several investigators have also reported that the Cυ value obtained from 
the field is substantially higher than that obtained from laboratory tests 
conducted using conventional testing methods (i.e., logarithm-of-time and 
square-root-of-time methods). Table 8.7 provides some examples of this as 
summarized by Leroueil (1988). Hence, the early-stage log t method may 
provide a more realistic value of fieldwork.

Example 8.9

The results of an oedometer test on a normally consolidated clay are 
given as follows (two-way drainage):

σ′ (kN/m2) e

50 1.01
100 0.90

D G E

F

D
ef

or
m

at
io

n 
(in

cr
ea

sin
g)

t22.14

d0

Time (t) (log scale)

Figure 8.29  �Early stage log t method.
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The time for 50% consolidation for the load increment from 50 to 100 
kN/m2 was 12 min, and the average thickness of the sample was 24 mm. 
Determine the coefficient of permeability and the compression index.

Solution

	
T C t

Hυ
υ= 2

Table 8.6  �Comparison of Cυ obtained from various methods (based 
on the results of Robinson and Allam, 1996) for the 
pressure range σ′ between 400 and 800 kN/m2

Soil Cυ(esm) (cm2/s)

C
C

υ

υ

(esm)

(lcm)

C
C

υ

υ

(esm)

(scm)

Red earth 12.80 × 10−4 1.58 1.07
Brown soil 1.36 × 10−4 1.05 0.94
Black cotton soil 0.79 × 10−4 1.41 1.23
lllite 6.45 × 10−4 1.55 1.1
Bentonite 0.022 × 10−4 1.47 1.29
Chicago clay 7.41 × 10−4 1.22 1.15

Note:	 esm: early-stage log t method; ltm: logarithm-of-time method; stm: 
square-root-of-time method.

Table 8.7  �Comparison between the coefficients of consolidation determined in 
the laboratory and those deduced from embankment settlement 
analysis as observed by Leroueil (1988)

Site Cυ(lab) (m2/s) Cυ(in situ) (m2/sec) Cυ(lab)/Cυ(in situ)

Ska-Edeby IV 5.0 × 10−9 1.0 × 10−7 20
Oxford (1) 4–57
Donnington 4–7
Oxford (2) 3–36
Avonmouth 6–47
Tickton 7–47
Over causeway 3–12
Melbourne 200
Penang 1.6 × 10−8 1.1 × 10−6 70
Cubzac B 2.0 × 10−8 2.0 × 10−7 10
Cubzac C 1.4 × 10−8 4.3 × 10−7 31
A-64 7.5 × 10−8 2.0 × 10−6 27
Saint-Alban 1.0 × 10−8 8.0 × 10−8 8
R-7 6.0 × 10−9 2.8 × 10−7 47
Matagami 8.0 × 10−9 8.5 × 10−8 10
Berthierville 4.0 × 10−8 3–10
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For Uav = 50%, Tυ = 0.197. Hence
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For the given data, ∆e = 1.01 − 0.90 = 0.11; ∆σ = 100 − 50 = 50 kN/m2
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8.11 � ONE-DIMENSIONAL CONSOLIDATION 
WITH VISCOELASTIC MODELS

The theory of consolidation we have studied thus far is based on the assump-
tion that the effective stress and the volumetric strain can be described by 
linear elasticity. Since Terzaghi’s founding work on the theory of consoli-
dation, several investigators (Taylor and Merchant, 1940; Taylor, 1942; 
Tan, 1957; Gibson and Lo, 1961; Schiffman et al., 1964; Barden, 1965, 
1968) have used viscoelastic models to study one-dimensional consolida-
tion. This gives an insight into the secondary consolidation phenomenon 
that the Terzaghi’s theory does not explain. In this section, the work of 
Barden is briefly outlined.

The rheological model for soil chosen by Barden consists of a linear 
spring and nonlinear dashpot as shown in Figure 8.30. The equation of 
continuity for one-dimensional consolidation is given in Equation 8.9 as

	

k e u
z

e
t

( )1 2

2
+ ∂

∂
= ∂

∂γw
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Figure 8.31 shows the typical nature of the variation of void ratio with 
effective stress. From this figure, we can write that

	

e e
a

e e
a

u1 2 1− = − + +
υ υ

τ 	 (8.104)

where
e e
a

1 2− = ′ =
υ

∆σ  total effective stress increase the soil will be subjected to 

at the end of consolidation
e e
a
1 − =

υ
 effective stress increase in the soil at some stage of consolidation 

(i.e., the stress carried by the soil grain bond, represented by the 
spring in Figure 8.30)

L
N

Figure 8.30  �Rheological model for soil. L: Linear spring; N: Nonlinear dashpot.
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Δσ
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Figure 8.31  �Nature of variation of void ratio with effective stress.
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u is the excess pore water pressure
τ is the strain carried by film bond (represented by the dashpot in 

Figure 8.30)

The strain τ can be given by a power-law relation:

	
τ = ∂

∂




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b e
t

n1/

where n > 1, and b is assumed to be a constant over the pressure range ∆σ. 
Substitution of the preceding power-law relation for τ in Equation 8.104 
and simplification gives
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	 (8.105)

Now, let e − e2 = e′. So

	

∂ ′
∂

= ∂
∂

e
t

e
t

	 (8.106)

	
z z

H
= 	 (8.107)

where H is the length of maximum drainage path, and

	
u

u=
′∆σ
	 (8.108)

The degree of consolidation is

	
U e e

e ez = −
−

1

1 2
	 (8.109)

and
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Elimination of u from (8.9) and (8.105) yields
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Combining Equations 8.107, 8.110, and 8.111, we obtain
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where
mυ is the volume coefficient of compressibility
Cυ the coefficient of consolidation

The right-hand side of Equation 8.112 can be written in the form
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	 (8.113)

where Tυ is the nondimensional time factor and is equal to Cυt/H2.
Similarly defining
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we can write
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Ts in Equations 8.114 and 8.115 is defined as structural viscosity.
It is useful now to define a nondimensional ratio R as
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From Equations 8.112, 8.113, and 8.115
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Note that Equation 8.117 is nonlinear. For that reason, Barden suggested 
solving the two simultaneous equations obtained from the basic Equation 8.9.
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Consolidation  371

and

	
− − = ∂

∂
1
R

u
T

n( )λ λ
υ

	 (8.119)

Finite-difference approximation is employed for solving the previous two 
equations. Figure 8.32 shows the variation of λ and u

_
 with depth for a clay 

layer of height Ht = 2H and drained both at the top and bottom (for n = 5, 
R = 10−4). Note that for a given value of Tυ (i.e., time t), the nondimensional 
excess pore water pressure decreases more than λ (i.e., void ratio).

For a given value of Tυ, R, and n, the average degree of consolidation can 
be determined as (Figure 8.32)

	

U dzav = − ∫1
0

1

λ 	 (8.120)

Figure 8.33 shows the variation of Uav with Tυ (for n = 5). Similar results 
can be obtained for other values of n. Note that in this figure the beginning 
of secondary consolidation is assumed to start after the midplane excess 
pore water pressure falls below an arbitrary value of u = 0.01 ∆σ. Several 
other observations can be made concerning this plot:

	 1.	Primary and secondary consolidation are continuous processes and 
depend on the structural viscosity (i.e., R or Ts).

	 2.	The proportion of the total settlement associated with the secondary 
consolidation increases with the increase of R.

	 3.	In the conventional consolidation theory of Terzaghi, R = 0. Thus, the 
average degree of consolidation becomes equal to 100% at the end of 
primary consolidation.

	 4.	As defined in Equation 8.116

	
R C a

H
bn

n=
′ −

υ υ

σ2 1( )∆

The term b is a complex quantity and depends on the electrochemical envi-
ronment and structure of clay. The value of b increases with the increase of 
effective pressure σ′ on the soil. When the ratio ∆σ′/σ′ is small, it will result 
in an increase of R, and thus in the proportion of secondary to primary 
consolidation. Other factors remaining constant, R will also increase with 
decrease of H, which is the length of the maximum drainage path, and thus 
so will the ratio of secondary to primary consolidation.
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Figure 8.32  �(a) Plot of z
_
 against u

_
 for a two-way drained clay layer; (b) plot of z

_
 against 

λ for a two-way drained clay layer. (After Barden, L., Geotechnique, 15(4), 
345, 1965.)
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8.12 � CONSTANT RATE-OF-STRAIN 
CONSOLIDATION TESTS

The standard one-dimensional consolidation test procedure discussed in 
Section 8.5 is time-consuming. At least two other one-dimensional consoli-
dation test procedures have been developed in the past that are much faster 
yet give reasonably good results. The methods are (1) the constant rate-of-
strain consolidation test and (2) the constant-gradient consolidation test. 
The fundamentals of these test procedures are described in this and the next 
sections.

The constant rate-of-strain method was developed by Smith and Wahls 
(1969). A soil specimen is taken in a fixed-ring consolidometer and sat-
urated. For conducting the test, drainage is permitted at the top of the 
specimen, but not at the bottom. A continuously increasing load is applied 
to the top of the specimen so as to produce a constant rate of compres-
sive strain, and the excess pore water pressure ub (generated by the con-
tinuously increasing stress σ at the top) at the bottom of the specimen is 
measured.

8.12.1 � Theory

The mathematical derivations developed by Smith and Wahls for obtaining 
the void ratio–effective pressure relation and the corresponding coefficient 
of consolidation are given later.
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Figure 8.33  �Plot of degree of consolidation versus Tυ for various values of R (n = 5). 
(After Barden, L., Geotechnique, 15(4), 345, 1965.)
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The basic equation for continuity of flow through a soil element is given 
in Equation 8.9 as
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1

The coefficient of permeability at a given time is a function of the average 
void ratio e

_
 in the specimen. The average void ratio is, however, continu-

ously changing owing to the constant rate of strain. Thus

	
k k e f t= = ( )( ) 	 (8.121)

The average void ratio is given by

	

e
H

edz
H

= ∫1

0

where H (= Ht) is the sample thickness. (Note: z = 0 is the top of the speci-
men and z = H is the bottom of the specimen.)

In the constant rate-of-strain type of test, the rate of change of volume 
is constant, or

	

dV
dt

RA= − 	 (8.122)

where
V is the volume of the specimen
A is the area of cross-section of the specimen
R is the constant rate of deformation of upper surface

The rate of change of average void ratio e
_
 can be given by

	

de
dt V

dV
dt V

RA r= = − = −1 1
s s

	 (8.123)

where r is a constant.
Based on the definition of e

_
 and Equation 8.121, we can write

	 e g zt ezt( ,) ()= + 0 	 (8.124)

where
e(z,t) is the void ratio at depth z and time t
e0 is the initial void ratio at the beginning of the test
g(z) is a function of depth only
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The function g(z) is difficult to determine. We will assume it to be a 
linear function of the form
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where b is a constant. Substitution of this into Equation 8.124 gives
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Let us consider the possible range of variation of b/r as given in 
Equation 8.125:

	 1.	If b/r = 0,

	
e e rtzt,( ) = −0 	 (8.126)

		  This indicates that the void is constant with depth and changes with 
time only. In reality, this is not the case.

	 2.	If b/r = 2, the void ratio at the base of the specimen, that is, at z = H, 
becomes

	
e eH t,( ) = 0 	 (8.127)

This means that the void ratio at the base does not change with time at 
all, which is not realistic.

So the value of b/r is somewhere between 0 and 2 and may be taken as 
about 1.

Assuming b/r ≠ 0 and using the definition of the void ratio as given by 
Equation 8.125, we can integrate Equation 8.9 to obtain an equation for 
the excess pore water pressure. The boundary conditions are as follows: at 
z = 0, u = 0 (at any time); and at z = H, ∂u/∂z = 0 (at any time). Thus
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where
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Equation 8.128 is very complicated. Without losing a great deal of accu-
racy, it is possible to obtain a simpler form of expression for u by assuming 
that the term 1 + e in Equation 8.9 is approximately equal to 1 + e

_
 (note 

that this is not a function of z). So, from Equations 8.9 and 8.125
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Using the boundary condition u = 0 at z = 0 and ∂u/∂t = 0 at z = H, Equation 
8.131 can be integrated to yield
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The pore pressure at the base of the specimen can be obtained by substi-
tuting z = H in Equation 8.132:
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The average effective stress corresponding to a given value of uz=H can be 
obtained by writing

	
′ = −

=
=σ σav

avu
u

u
z

z
H

H 	 (8.134)

where
′σav is the average effective stress on the specimen at any time

σ is the total stress on the specimen
uav is the corresponding average pore water pressure
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Substitution of Equations 8.132 and 8.133 into 8.135 and further simplifi-
cation gives
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Note that for b/r = 0, uav/uz=H = 0.667; and for b/r = 1, uav/uz=H = 0.700. 
Hence, for 0 ≤ b/r ≤ 1, the values of uav/uz=H do not change significantly. So, 
from Equations 8.134 and 8.136
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8.12.2 � Coefficient of consolidation

The coefficient of consolidation was defined previously as
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Substitution of these into the expression for Cυ gives
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8.12.3 � Interpretation of experimental results

The following information can be obtained from a constant rate-of-strain 
consolidation test:

	 1.	Initial height of specimen, Hi

	 2.	Value of A
	 3.	Value of Vs

	 4.	Strain rate R
	 5.	A continuous record of uz=H

	 6.	A corresponding record of σ (total stress applied at the top of the 
specimen)

The plot of e versus ′σav can be obtained in the following manner:

	 1.	Calculate r = RA/Vs.
	 2.	Assume b/r ≈ 1.
	 3.	For a given value of uz=H, the value of σ is known (at time t from the 

start of the test), and so ′σav can be calculated from Equation 8.137.
	 4.	Calculate ∆H = Rt and then the change in void ratio that has taken 

place during time t

	
∆ ∆e H

H
e= +

i
( )1 0

		  where Hi is the initial height of the specimen.
	 5.	The corresponding void ratio (at time t) is e = e0 − ∆e.
	 6.	After obtaining a number of points of ′σav and the corresponding e, 

plot the graph of e versus log ′σav.
	 7.	For a given value of ′σav and e, the coefficient of consolidation Cυ 

can be calculated by using Equation 8.139 (Note that H in Equation 
8.139 is equal to Hi − ∆H).

Smith and Wahls (1969) provided the results of constant rate-of-strain 
consolidation tests on two clays—Massena clay and calcium montmoril-
lonite. The tests were conducted at various rates of strain (0.0024%/min–
0.06%/min) and the e versus log σ′ curves obtained were compared with 
those obtained from the conventional tests.

Figures 8.34 and 8.35 show the results obtained from tests conducted 
with Massena clay.

This comparison showed that, for higher rates of strain, the e versus log σ′ 
curves obtained from these types of tests may deviate considerably from 
those obtained from conventional tests. For that reason, it is recommended 
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that the strain rate for a given test should be chosen such that the value of 
uz=H/σ at the end of the test does not exceed 0.5. However, the value should 
be high enough that it can be measured with reasonable accuracy.

8.13 � CONSTANT-GRADIENT CONSOLIDATION TEST

The constant-gradient consolidation test was developed by Lowe et al. 
(1969). In this procedure, a saturated soil specimen is taken in a con-
solidation ring. As in the case of the constant rate-of-strain type of test, 
drainage is allowed at the top of the specimen and pore water pressure 
is measured at the bottom. A load P is applied on the specimen, which 
increases the excess pore water pressure in the specimen by an amount 
∆u (Figure 8.36a). After a small lapse of time t1, the excess pore water 
pressure at the top of the specimen will be equal to zero (since drainage 
is permitted). However, at the bottom of the specimen, the excess pore 
water pressure will still be approximately ∆u (Figure 8.36b). From this 
point on, the load P is increased slowly in such a way that the difference 
between the pore water pressures at the top and bottom of the specimen 
remains constant, that is, the difference is maintained at a constant ∆u 
(Figure 8.36c and d). When the desired value of P is reached, say at time t3, 
the loading is stopped and the excess pore water pressure is allowed to dis-
sipate. The elapsed time t4 at which the pore water pressure at the bottom 
of the specimen reaches a value of 0.1∆u is recorded. During the entire 

z = 0

z = H = Ht

t = 0
Δu

=
0.08H2

(a) (b) (c) (d) (e)

(1.1 – 0.08)H2

Development
of parabolic
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Controlled-gradient tests

t2t1

t1 t4 t3– =

t3 t4

Δu Δu Δu
0.1Δu

Dissipation
of pore water

pressure

CυCυ

Figure 8.36  �Stages in controlled-gradient test variation of pore water pressure in depth: 
(a) at time t = 0; (b) at time t1 ; (c) at time t2; (d) at time t3; (e) at time t4.
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test, the compression ∆Ht that the specimen undergoes is recorded. For 
complete details of the laboratory test arrangement, the reader is referred 
to the original paper of Lowe et al. (1969).

8.13.1 � Theory

From the basic Equations 8.9 and 8.10, we have
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or
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Since σ′ = σ − u
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For the controlled-gradient tests (i.e., during the time t1 to t3 in Figure 8.36), 
∂u/∂t = 0. So
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Combining Equations 8.141 and 8.143
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Note that the left-hand side of Equation 8.144 is independent of the vari-
able z and the right-hand side is independent of the variable t. So both sides 
should be equal to a constant, say A1. Thus
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and
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Integration of Equation 8.146 yields
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and
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The boundary conditions are as follows (note that z = 0 is at the bottom 
of the specimen):

	 1.	At z = 0, ∂u/∂z = 0
	 2.	At z = H, u = 0 (note that H = Ht; one-way drainage)
	 3.	At z = 0, u = ∆u

From the first boundary condition and Equation 8.147, we find that 
A2 = 0. So
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From the second boundary condition and Equation 8.149
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From the third boundary condition and Equation 8.151
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or
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Substitution of this value of A1 into Equation 8.151 yields
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Equation 8.153 shows a parabolic pattern of excess pore water pressure 
distribution, which remains constant during the controlled-gradient test 
(time t1 − t3 in Figure 8.36). This closely corresponds to Terzaghi isochrone 
(Figure 8.4) for Tυ = 0.08.

Combining Equations 8.145 and 8.152, we obtain
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8.13.2 � Interpretation of experimental results

The following information will be available from the constant-gradient test:

	 1.	Initial height of the specimen Hi and height Ht at any time during the test
	 2.	Rate of application of the load P and thus the rate of application of 

stress ∂σ/∂t on the specimen
	 3.	Differential pore pressure ∆u
	 4.	Time t1

	 5.	Time t3

	 6.	Time t4

The plot of e versus ′σav can be obtained in the following manner:

	 1.	Calculate the initial void ratio e0.
	 2.	Calculate the change in void ratio at any other time t during the test as

	
∆ ∆ ∆e H

H
e H

H
e= + = +

i i
( ) ( )1 10 0

t

		  where ∆H = ∆Ht is the total change in height from the beginning of 
the test. So, the average void ratio at time t is e = e0 − ∆e.
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	 3.	Calculate the average effective stress at time t using the known total 
stress σ applied on the specimen at that time:

	 ′ = −σ σav avu

		  where uav is the average excess pore water pressure in the specimen, 
which can be calculated from Equation 8.153.

Calculation of the coefficient of consolidation is as follows:

	 1.	At time t1

	
C H

tυ = 0 08 2

1

.

	 2.	At time t1 < t < t3
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H
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∆ ∆

2

2
	 (8.154)

		  Note that ∆σ/∆t, H, and ∆u are all known from the tests.

	 3.	Between time t3 and t4
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8.14 � SAND DRAINS

In order to accelerate the process of consolidation settlement for the con-
struction of some structures, the useful technique of building sand drains 
can be used. Sand drains are constructed by driving down casings or hol-
low mandrels into the soil. The holes are then filled with sand, after which 
the casings are pulled out. When a surcharge is applied at ground surface, 
the pore water pressure in the clay will increase, and there will be drain-
age in the vertical and horizontal directions (Figure 8.37a). The horizontal 
drainage is induced by the sand drains. Hence, the process of dissipation of 
excess pore water pressure created by the loading (and hence the settlement) 
is accelerated.
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The basic theory of sand drains was presented by Rendulic (1935) and 
Barron (1948) and later summarized by Richart (1959). In the study of sand 
drains, we have two fundamental cases:

	 1.	Free-strain case. When the surcharge applied at the ground surface is 
of a flexible nature, there will be equal distribution of surface load. 
This will result in an uneven settlement at the surface.

	 2.	Equal-strain case. When the surcharge applied at the ground surface 
is rigid, the surface settlement will be the same all over. However, this 
will result in an unequal distribution of stress.

Another factor that must be taken into consideration is the effect of 
“smear.” A smear zone in a sand drain is created by the remolding of clay 
during the drilling operation for building it (see Figure 8.37a). This remold-
ing of the clay results in a decrease of the coefficient of permeability in the 
horizontal direction.

The theories for free-strain and equal-strain consolidation are given 
later. In the development of these theories, it is assumed that drainage takes 
place only in the radial direction, that is, no dissipation of excess pore 
water pressure in the vertical direction.

8.14.1 � Free-strain consolidation with no smear

Figure 8.37b shows the general pattern of the layout of sand drains. For 
triangular spacing of the sand drains, the zone of influence of each drain 
is hexagonal in plan. This hexagon can be approximated as an equivalent 
circle of diameter de. Other notations used in this section are as follows:

	 1.	re = radius of the equivalent circle = de/2
	 2.	rw = radius of the sand drain well
	 3.	rs = radial distance from the centerline of the drain well to the farthest 

point of the smear zone. Note that, in the no-smear case, rw = rs

The basic differential equation of Terzaghi’s consolidation theory for 
flow in the vertical direction is given in Equation 8.14. For radial drainage, 
this equation can be written as
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	 (8.155)

where
u is the excess pore water pressure
r is the radial distance measured from the center of the drain well
Cυr is the coefficient of consolidation in radial direction
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For solution of Equation 8.155, the following boundary conditions are used:

	 1.	At time t = 0, u = ui

	 2.	At time t > 0, u = 0 at r = rw

	 3.	At r = re, ∂u/∂r = 0

With the aforementioned boundary conditions, Equation 8.155 yields the 
solution for excess pore water pressure at any time t and radial distance r:
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In Equation 8.156
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where
J0 is the Bessel function of first kind of zero order
J1 is the Bessel function of first kind of first order
Y0 is the Bessel function of second kind of zero order
Y1 is the Bessel function of second kind of first order
α1, α2, … are roots of Bessel function that satisfy J1(αn)Y0(α) − Y1(αn)

J0(α) = 0
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In Equation 8.161
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where kh is the coefficient of permeability in the horizontal direction.



388  Advanced Soil Mechanics﻿

The average pore water pressure uav throughout the soil mass may now 
be obtained from Equation 8.156 as
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The average degree of consolidation Ur can be determined as

	
U u

ur
av= −1
i

	 (8.164)

Figure 8.38 shows the variation of Ur with the time factor Tr.

8.14.2 � Equal-strain consolidation with no smear

The problem of equal-strain consolidation with no smear (rw = rs) was 
solved by Barron (1948). The results of the solution are described later 
(refer to Figure 8.37).
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Figure 8.38  �Free strain—variation of degree of consolidation Ur with time factor Tr.



Consolidation  389

The excess pore water pressure at any time t and radial distance r is given by

	
u u

d F n
r r

r
r r= 






 − −









4
22

2
2

av

e
e

w

w
2

( )
ln 	 (8.165)

where
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uav average value of pore w ater pressure throughout the cl= aay layer

= uei λ� (8.167)
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The average degree of consolidation due to radial drainage is
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Table 8.8 gives the values of the time factor Tr for various values of Ur. 
For re/rw > 5, the free-strain and equal-strain solutions give approximately 
the same results for the average degree of consolidation.

Olson (1977) gave a solution for the average degree of consolidation Ur 
for time-dependent loading (ramp load) similar to that for vertical drain-
age, as described in Section 8.3.

Referring to Figure 8.8b, the surcharge increases from zero at time t = 0 
to q = qc at time t = tc. For t ≥ tc, the surcharge is equal to qe. For this case
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and

	
′ =T C t

rrc
r c

e

υ
2 	 (8.171)
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Table 8.8  �Solution for radial-flow equation (equal vertical strain)

Degree of 
consolidation 
Ur (%)

Time factor Tr for value of n(= re/rw)

5 10 15 20 25

0 0 0 0 0 0
1 0.0012 0.0020 0.0025 0.0028 0.0031
2 0.0024 0.0040 0.0050 0.0057 0.0063
3 0.0036 0.0060 0.0075 0.0086 0.0094
4 0.0048 0.0081 0.0101 0.0115 0.0126
5 0.0060 0.0101 0.0126 0.0145 0.0159
6 0.0072 0.1222 0.0153 0.0174 0.0191
7 0.0085 0.0143 0.0179 0.0205 0.0225
8 0.0098 0.0165 0.0206 0.0235 0.0258
9 0.0110 0.0186 0.0232 0.0266 0.0292

10 0.0123 0.0208 0.0260 0.0297 0.0326
11 0.0136 0.0230 0.0287 0.0328 0.0360
12 0.0150 0.0252 0.0315 0.0360 0.0395
13 0.0163 0.0275 0.0343 0.0392 0.0431
14 0.0177 0.0298 0.0372 0.0425 0.0467
15 0.0190 0.0321 0.0401 0.0458 0.0503
16 0.0204 0.0344 0.0430 0.0491 0.0539
17 0.0218 0.0368 0.0459 0.0525 0.0576
18 0.0232 0.0392 0.0489 0.0559 0.0614
19 0.0247 0.0416 0.0519 0.0594 0.0652
20 0.0261 0.0440 0.0550 0.0629 0.0690
21 0.0276 0.0465 0.0581 0.0664 0.0729
22 0.0291 0.0490 0.0612 0.0700 0.0769
23 0.0306 0.0516 0.0644 0.0736 0.0808
24 0.0321 0.0541 0.0676 0.0773 0.0849
25 0.0337 0.0568 0.0709 0.0811 0.0890
26 0.0353 0.0594 0.0742 0.0848 0.0931
27 0.0368 0.0621 0.0776 0.0887 0.0973
28 0.0385 0.0648 0.810 0.0926 0.1016
29 0.0401 0.0676 0.0844 0.0965 0.1059
30 0.0418 0.0704 0.0879 0.1005 0.1103
31 0.0434 0.0732 0.0914 0.1045 0.1148
32 0.0452 0.0761 0.0950 0.1087 0.1193
33 0.0469 0.0790 0.0987 0.1128 0.1239
34 0.0486 0.0820 0.1024 0.1171 0.1285
35 0.0504 0.0850 0.1062 0.1214 0.1332
36 0.0522 0.0881 0.1100 0.1257 0.1380
37 0.0541 0.0912 0.1139 0.1302 0.1429
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Table 8.8 (continued)  �Solution for radial-flow equation (equal vertical strain)

Degree of 
consolidation 
Ur (%)

Time factor Tr for value of n(= re/rw)

5 10 15 20 25

38 0.0560 0.0943 0.1178 0.1347 0.1479
39 0.579 0.0975 0.1218 0.1393 0.1529
40 0.0598 0.1008 0.1259 0.1439 0.1580
41 0.0618 0.1041 0.1300 0.1487 0.1632
42 0.0638 0.1075 0.1342 0.1535 0.1685
43 0.0658 0.1109 0.1385 0.1584 0.1739
44 0.0679 0.1144 0.1429 0.1634 0.1793
45 0.0700 0.1180 0.1473 0.1684 0.1849
46 0.0721 0.1216 0.1518 0.1736 0.1906
47 0.0743 0.1253 0.1564 0.1789 0.1964
48 0.0766 0.1290 0.1611 0.1842 0.2023
49 0.0788 0.1329 0.1659 0.1897 0.2083
50 0.0811 0.1368 0.1708 0.1953 0.2144
51 0.0835 0.1407 0.1758 0.2020 0.2206
52 0.0859 0.1448 0.1809 0.2068 0.2270
53 0.0884 0.1490 0.1860 0.2127 0.2335
54 0.0909 0.1532 0.1913 0.2188 0.2402
55 0.0935 0.1575 0.1968 0.2250 0.2470
56 0.0961 0.1620 0.2023 0.2313 0.2539
57 0.0988 0.1665 0.2080 0.2378 0.2610
58 0.1016 0.1712 0.2138 0.2444 0.2683
59 0.1044 0.1759 0.2197 0.2512 0.2758
60 0.1073 0.1808 0.2258 0.2582 0.2834
61 0.1102 0.1858 0.2320 0.2653 0.2912
62 0.1133 0.1909 0.2384 0.2726 0.2993
63 0.1164 0.1962 0.2450 0.2801 0.3075
64 0.1196 0.2016 0.2517 0.2878 0.3160
65 0.1229 0.2071 0.2587 0.2958 0.3247
66 0.1263 0.2128 0.2658 0.3039 0.3337
67 0.1298 0.2187 0.2732 0.3124 0.3429
68 0.1334 0.2248 0.2808 0.3210 0.3524
69 0.1371 0.2311 0.2886 0.3300 0.3623
70 0.1409 0.2375 0.2967 0.3392 0.3724
71 0.1449 0.2442 0.3050 0.3488 0.3829
72 0.1490 0.2512 0.3134 0.3586 0.3937
73 0.1533 0.2583 0.3226 0.3689 0.4050
74 0.1577 0.2658 0.3319 0.3795 0.4167

(continued)
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For ′ ≥ ′T Tr rc

	
U

AT
AT ATr

rc
rc r= −

′
′ −[ ] − ′1 1 1exp( ) exp( )	 (8.173)

where

	
A

F n
= 2

( )
	 (8.174)

Figure 8.39 shows the variation of Ur with ′Tr and ′Trc for n = 5 and 10.

Table 8.8 (continued)  �Solution for radial-flow equation (equal vertical strain)

Degree of 
consolidation 
Ur (%)

Time factor Tr for value of n(= re/rw)

5 10 15 20 25

75 0.1623 0.2735 0.3416 0.3906 0.4288
76 0.1671 0.2816 0.3517 0.4021 0.4414
77 0.1720 0.2900 0.3621 0.4141 0.4546
78 0.1773 0.2988 0.3731 0.4266 0.4683
79 0.1827 0.3079 0.3846 0.4397 0.4827
80 0.1884 0.3175 0.3966 0.4534 0.4978
81 0.1944 0.3277 0.4090 0.4679 0.5137
82 0.2007 0.3383 0.4225 0.4831 0.5304
83 0.2074 0.3496 0.4366 0.4992 0.5481
84 0.2146 0.3616 0.4516 0.5163 0.5668
85 0.2221 0.3743 0.4675 0.5345 0.5868
86 0.2302 0.3879 0.4845 0.5539 0.6081
87 0.2388 0.4025 0.5027 0.5748 0.6311
88 0.2482 0.4183 0.5225 0.5974 0.6558
89 0.2584 0.4355 0.5439 0.6219 0.6827
90 0.2696 0.4543 0.5674 0.6487 0.7122
91 0.2819 0.4751 0.5933 0.6784 0.7448
92 0.2957 0.4983 0.6224 0.7116 0.7812
93 0.3113 0.5247 0.6553 0.7492 0.8225
94 0.3293 0.5551 0.6932 0.7927 0.8702
95 0.3507 0.5910 0.7382 0.8440 0.9266
96 0.3768 0.6351 0.7932 0.9069 0.9956
97 0.4105 0.6918 0.8640 0.9879 1.0846
98 0.4580 0.7718 0.9640 1.1022 1.2100
99 0.5391 0.9086 1.1347 1.2974 1.4244
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Radial time factor, Tŕ 
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Figure 8.39  �Olson’s solution for radial flow under single ramp loading for n = 5 and 10 
(Equations 8.172 and 8.173).
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8.14.3 � Effect of smear zone on radial consolidation

Barron (1948) also extended the analysis of equal-strain consolidation 
by sand drains to account for the smear zone. The analysis is based on 
the assumption that the clay in the smear zone will have one boundary 
with zero excess pore water pressure and the other boundary with an 
excess pore water pressure that will be time-dependent. Based on this 
assumption
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where ks is the coefficient of permeability of the smeared zone.
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The average degree of consolidation is given by the relation
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8.15 � NUMERICAL SOLUTION FOR RADIAL 
DRAINAGE (SAND DRAIN)

As shown previously for vertical drainage (Section 8.4), we can adopt the 
finite-difference technique for solving consolidation problems in the case of 
radial drainage. From Equation 8.155
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Let uR, tR, and rR be any reference excess pore water pressure, time, and 
radial distance, respectively. So

	
N ondim ensional excess pore w ater pressure

R
= =u

u
u

	 (8.180)

	
N ondim ensional tim e

R
= =t t

t
	 (8.181)

	
N ondim ensional radial distance

R
= =r

r
r

	 (8.182)

Substituting Equations 8.180 through 8.182 into 8.155, we get
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Referring to Figure 8.40
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Figure 8.40  �Numerical solution for radial drainage.
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If we adopt tR in such a way that 1 2/ /R r Rt C r= υ  and then substitute 
Equations 8.184 through 8.186 into 8.183, then
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Equation 8.187 is the basic finite-difference equation for solution of the 
excess pore water pressure (for radial drainage only).

Example 8.10

For a sand drain, the following data are given: rw = 0.38 m, re = 1.52 m, 
rw = rs, and Cυr = 46.2 × 10−4 m2/day. A uniformly distributed load of 
50 kN/m2 is applied at the ground surface. Determine the distribution 
of excess pore water pressure after 10 days of load application assum-
ing radial drainage only.

Solution

Let rR = 0.38 m, ∆r = 0.38 m, and ∆t = 5 days. So r
_

e = re/rR = 1.52/0.38 = 4; 
∆r

_ 
= ∆r/rR = 0.38/0.38 = 1
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Let uR = 0.5 kN/m2. So, immediately after load application, 
u
_
 = 50/0.5 = 100.
Figure 8.41 shows the initial nondimensional pore water pressure 

distribution at time t = 0. (Note that at r
_
 = 1h, u

_
 = 0 owing to the 

drainage face.)
At 5 days: u

_
 = 0, r

_
 = 1. From Equation 8.187
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At r
_
 = 3
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Similarly at r
_
 = 4
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At r
_
 = 4

	 u
_
 = 100

	 u = u
_
 × uR = 0.5 u

_
 kN/m2

The distribution of nondimensional excess pore water pressure is 
shown in Figure 8.41.
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Figure 8.41  �Excess pore water pressure variation with time for radial drainage.
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8.16 � GENERAL COMMENTS ON 
SAND DRAIN PROBLEMS

Figure 8.37b shows a triangular pattern of the layout of sand drains. In 
some instances, the sand drains may also be laid out in a square pattern. 
For all practical purposes, the magnitude of the radius of equivalent circles 
can be given as follows:
Triangular pattern

	 re 525 drain spacing= ( . )( )0 	 (8.188)

Square pattern

	 re 565 drain spacing= ( . )( )0 	 (8.189)

Prefabricated vertical drains (PVDs), also referred to as wick or strip 
drains, were originally developed as a substitute for the commonly used 
sand drain. With the advent of materials science, these drains began to be 
manufactured from synthetic polymers such as polypropylene and high-
density polyethylene. PVDs are normally manufactured with a corrugated 
or channeled synthetic core enclosed by a geotextile filler as shown sche-
matically in Figure 8.42. Installation rates reported in the literature are on 
the order of 0.1–0.3 m/s, excluding equipment mobilization and setup time. 
PVDs have been used extensively in the past for expedient consolidation 
of low-permeability soils under surface surcharge. The main advantage of 

Polypropylene
core

Geotextile
fabric

a

b

Figure 8.42  �Prefabricated vertical drain (PVD).
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PVDs over sand drains is that they do not require drilling; thus, installation 
is much faster. For rectangular flexible drains, the radius of the equivalent 
circles can be given as

	
r b a
w = +( )

π
	 (8.190)

where
a is width of the drain
b is the thickness of the drain

The relation for average degree of consolidation for vertical drainage 
only was presented in Section 8.2. Also the relations for the degree of con-
solidation due to radial drainage only were given in Sections 8.14 and 8.15. 
In reality, the drainage for the dissipation of excess pore water pressure 
takes place in both directions simultaneously. For such a case, Carrillo 
(1942) has shown that

	 U U Uυ υ, ( )( )r r1 1 1= − − − 	 (8.191)

where
Uυ,r is the average degree of consolidation for simultaneous vertical and 

radial drainage
Uυ is the average degree of consolidation calculated on the assumption 

that only vertical drainage exists (note the notation Uav was used 
before in this chapter)

Ur is the average degree of consolidation calculated on the assumption 
that only radial drainage exists

Example 8.11

A 6-m-thick clay layer is drained at the top and bottom and has some 
sand drains. The given data are Cυ (for vertical drainage) = 49.51 × 
10−4 m/day; kυ = kh; dw = 0.45 m; de = 3 m; rw = rs (i.e., no smear at the 
periphery of drain wells).

It has been estimated that a given uniform surcharge would cause 
a total consolidation settlement of 250 mm without the sand drains. 
Calculate the consolidation settlement of the clay layer with the same 
surcharge and sand drains at time t = 0, 0.2, 0.4, 0.6, 0.8, and 1 year.

Solution

Vertical drainage: Cυ = 49.51 × 10−4 m/day = 1.807 m/year.
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Radial drainage:
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Since kυ = kh, Cυ = Cυr. So
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The steps in the calculation of the consolidation settlement are shown 
in Table 8.9. From Table 8.9, the consolidation settlement at t = 1 year 
is 217.5 mm. Without the sand drains, the consolidation settlement at 
the end of 1 year would have been only 126.25 mm.
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Chapter 9

Shear strength of soils

9.1 � INTRODUCTION

The shear strength of soils is an important aspect in many foundation 
engineering problems such as the bearing capacity of shallow foundations and 
piles, the stability of the slopes of dams and embankments, and lateral earth 
pressure on retaining walls. In this chapter, we will discuss the shear strength 
characteristics of granular and cohesive soils and the factors that control them.

9.2 � MOHR–COULOMB FAILURE CRITERION

In 1900, Mohr presented a theory for rupture in materials. According to 
this theory, failure along a plane in a material occurs by a critical combina-
tion of normal and shear stresses, and not by normal or shear stress alone. 
The functional relation between normal and shear stress on the failure 
plane can be given by

	 s f= ( )σ 	 (9.1)

where
s is the shear stress at failure
σ is the normal stress on the failure plane

The failure envelope defined by Equation 9.1 is a curved line, as shown in 
Figure 9.1.

In 1776, Coulomb defined the function f (σ) as

	 s c= + σtanφ 	 (9.2)

where
c is cohesion
ϕ is the angle of friction of the soil
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Equation 9.2 is generally referred to as the Mohr–Coulomb failure crite-
rion. The significance of the failure envelope can be explained using Figure 
9.1. If the normal and shear stresses on a plane in a soil mass are such that 
they plot as point A, shear failure will not occur along that plane. Shear 
failure along a plane will occur if the stresses plot as point B, which falls on 
the failure envelope. A state of stress plotting as point C cannot exist, since 
this falls above the failure envelope; shear failure would have occurred 
before this condition was reached.

In saturated soils, the stress carried by the soil solids is the effective 
stress, and so Equation 9.2 must be modified:

	 s c u c= + − = + ′( )σ σtan tanφ φ 	 (9.3)

where
u is the pore water pressure
σ′ is the effective stress on the plane

The term ϕ is also referred to as the drained friction angle. For sand, 
inorganic silts, and normally consolidated clays, c ≈ 0. The value of c is 
greater than zero for overconsolidated clays.

The shear strength parameters of granular and cohesive soils will be 
treated separately in this chapter.

Equation 9.1

Equation 9.2
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Figure 9.1  �Mohr–Coulomb failure criterion.
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9.3 � SHEARING STRENGTH OF GRANULAR SOILS

According to Equation 9.3, the shear strength of a soil can be defined as 
s = c + σ′ tan ϕ. For granular soils with c = 0,

	 s= ′σ tanφ 	 (9.4)

The determination of the friction angle ϕ is commonly accomplished by 
one of two methods: the direct shear test or the triaxial test. The test pro-
cedures are given later.

9.3.1 � Direct shear test

A schematic diagram of the direct shear test equipment is shown in 
Figure 9.2. Basically, the test equipment consists of a metal shear box into 
which the soil specimen is placed. The specimen can be square or circular 
in plan, about 19–25 cm2 in area, and about 25 mm in height. The box is 
split horizontally into two halves. Normal force on the specimen is applied 
from the top of the shear box by dead weights. The normal stress on the 
specimens obtained by the application of dead weights can be as high as 
1035 kN/m2. Shear force is applied to the side of the top half of the box 
to cause failure in the soil specimen. (The two porous stones shown in 
Figure 9.2 are not required for tests on dry soil.) During the test, the shear 
displacement of the top half of the box and the change in specimen thick-
ness are recorded by the use of horizontal and vertical dial gauges.

Shear
force

Normal force

Porous
stone

Porous
stone

Loading
plate

Shear
box

τ

τ

Figure 9.2  �Direct shear test arrangement.
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Figure 9.3 shows the nature of the results of typical direct shear tests in 
loose, medium, and dense sands. Based on Figure 9.3, the following obser-
vations can be made:

	 1.	In dense and medium sands, shear stress increases with shear dis-
placement to a maximum or peak value τm and then decreases to an 
approximately constant value τcυ at large shear displacements. This 
constant stress τcυ is the ultimate shear stress.

	 2.	For loose sands, the shear stress increases with shear displacement to 
a maximum value and then remains constant.

	 3.	For dense and medium sands, the volume of the specimen initially 
decreases and then increases with shear displacement. At large values 
of shear displacement, the volume of the specimen remains approxi-
mately constant.

	 4.	For loose sands, the volume of the specimen gradually decreases to a 
certain value and remains approximately constant thereafter.
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Figure 9.3  �Direct shear test results in loose, medium, and dense sands.
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If dry sand is used for the test, the pore water pressure u is equal to 
zero, and so the total normal stress σ is equal to the effective stress σ′. The 
test may be repeated for several normal stresses. The angle of friction ϕ 
for the sand can be determined by plotting a graph of the maximum or 
peak shear stresses versus the corresponding normal stresses, as shown 
in Figure 9.4. The Mohr–Coulomb failure envelope can be determined 
by drawing a straight line through the origin and the points representing 
the experimental results. The slope of this line will give the peak friction 
angle ϕ of the soil. Similarly, the ultimate friction angle ϕcυ can be deter-
mined by plotting the ultimate shear stresses τcυ versus the corresponding 
normal stresses, as shown in Figure 9.4. The ultimate friction angle ϕcυ 
represents a condition of shearing at constant volume of the specimen. 
For loose sands, the peak friction angle is approximately equal to the 
ultimate friction angle.

If the direct shear test is being conducted on a saturated granular soil, 
time between the application of the normal load and the shearing force 
should be allowed for drainage from the soil through the porous stones. 
Also, the shearing force should be applied at a slow rate to allow complete 
drainage. Since granular soils are highly permeable, this will not pose a 
problem. If complete drainage is allowed, the excess pore water pressure is 
zero, and so σ = σ′.

Some typical values of ϕ and ϕcυ for granular soils are given in Table 9.1.
The strains in the direct shear test take place in two directions, that is, in 

the vertical direction and in the direction parallel to the applied horizontal 
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E	ective normal stress, σ΄cυ

Figure 9.4  �Determination of peak and ultimate friction angles from direct shear tests.
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shear force. This is similar to the plane strain condition. There are some 
inherent shortcomings of the direct shear test. The soil is forced to shear in 
a predetermined plane—that is, the horizontal plane—which is not neces-
sarily the weakest plane. Second, there is an unequal distribution of stress 
over the shear surface. The stress is greater at the edges than at the center. 
This type of stress distribution results in progressive failure (Figure 9.5).

In the past, several attempts were made to improve the direct shear test. 
To that end, the Norwegian Geotechnical Institute developed a simple 
shear test device, which involves enclosing a cylindrical specimen in a rub-
ber membrane reinforced with wire rings. As in the direct shear test, as the 
end plates move, the specimen distorts, as shown in Figure 9.6a. Although 
it is an improvement over the direct shear test, the shearing stresses are not 
uniformly distributed on the specimen. Pure shear as shown in Figure 9.6b 
only exists at the center of the specimen.

Normal
force

Shear
force

Figure 9.5  �Unequal stress distribution in direct shear equipment.

Table 9.1  �Typical values of ϕ and ϕcυ for granular soils

Type of soil ϕ (deg) ϕcυ (deg)

Sand: Round grains
Loose 28–30
Medium 30–35 26–30
Dense 35–38

Sand: Angular grains
Loose 30–35
Medium 35–40 30–35
Dense 40–45

Sandy gravel 34–48 33–36
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9.3.2 � Triaxial test

A schematic diagram of triaxial test equipment is shown in Figure 9.7. In 
this type of test, a soil specimen about 38 mm in diameter and 76 mm 
in length is generally used. The specimen is enclosed inside a thin rubber 
membrane and placed inside a cylindrical plastic chamber. For conducting 
the test, the chamber is usually filled with water or glycerin. The specimen 
is subjected to a confining pressure σ3 by application of pressure to the fluid 

(a) (b)

Figure 9.6  �(a) Simple shear and (b) pure shear.

Loading ram

Axial load

Air release
valve

Pressure gauge

Rubber
ring

Water

To cell pressure control

Rubber
ring

Top cap
Porous disc

Flexible tube

Sample enclosed
in a rubber
membrane

Porous disc
Sealing ring

Connections for drainage or
pore pressure measurement

Figure 9.7  �Triaxial test equipment. (After Bishop, A.W. and Bjerrum, L., The relevance 
of the triaxial test to the solution of stability problems, in Proc. Res. Conf. 
Shear Strength of Cohesive Soils, Am. Soc. of Civil Eng., pp. 437–501, 1960.)
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in the chamber. (Air can sometimes be used as a medium for applying the 
confining pressure.) Connections to measure drainage into or out of the 
specimen or pressure in the pore water are provided. To cause shear failure 
in the soil, an axial stress ∆σ is applied through a vertical loading ram. This 
is also referred to as deviator stress. The axial strain is measured during the 
application of the deviator stress. For determination of ϕ, dry or fully satu-
rated soil can be used. If saturated soil is used, the drainage connection is 
kept open during the application of the confining pressure and the deviator 
stress. Thus, during the test, the excess pore water pressure in the specimen 
is equal to zero. The volume of the water drained from the specimen during 
the test provides a measure of the volume change of the specimen.

For drained tests, the total stress is equal to the effective stress. Thus, the 
major effective principal stress is ′ = = +σ σ σ σ1 1 3 ∆ ; the minor effective princi-
pal stress is ′ =σ σ3 3; and the intermediate effective principal stress is ′ = ′σ σ2 3.

At failure, the major effective principal stress is equal to σ3 + ∆σf, 
where ∆σf is the deviator stress at failure, and the minor effective princi-
pal stress is σ3. Figure 9.8b shows the nature of the variation of ∆σ with 
axial strain for loose and dense granular soils. Several tests with similar 
specimens can be conducted by using different confining pressures σ3. 
The value of the soil peak friction angle ϕ can be determined by plotting 
effective-stress Mohr’s circles for various tests and drawing a common tan-
gent to these Mohr’s circles passing through the origin. This is shown in 
Figure 9.9a. The angle that this envelope makes with the normal stress axis 
is equal to ϕ. It can be seen from Figure 9.9b that
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However, it must be pointed out that in Figure 9.9a the failure envelope 
defined by the equation s = σ′ tan ϕ is an approximation to the actual 
curved failure envelope. The ultimate friction angle ϕcυ for a given test can 
also be determined from the equation

	
φ σ σ

σ συ
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υ
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1(c )

1(c )
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
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


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−sin 1 3

3
	 (9.6)

where ′ = ′ +σ σ συ υ1(c ) (c )3 ∆ . For similar soils, the friction angle ϕ determined by 
triaxial tests is slightly lower (0°–3°) than that obtained from direct shear tests.
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The axial compression triaxial test described earlier is of the conventional 
type. However, the loading process on the specimen in a triaxial chamber 
can be varied in several ways. In general, the tests can be divided into two 
major groups: axial compression tests and axial extension tests. The follow-
ing is a brief outline of each type of test (refer to Figure 9.10).

9.3.3 � Axial compression tests

	 1.	Radial confining stress σr constant and axial stress σa increased. This 
is the test procedure described earlier.

	 2.	Axial stress σa constant and radial confining stress σr decreased.
	 3.	Mean principal stress constant and radial stress decreased.
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Figure 9.8  �Drained triaxial test in granular soil: (a) application of confining pressure and 
(b) application of deviator stress.
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Figure 9.9  �Drained triaxial test results: (a) determination of soil friction angle ϕ; 
(b) derivation of Equation 9.5.
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Figure 9.10  �Soil specimen subjected to axial and radial stresses.
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For drained compression tests, σa is equal to the major effective principal 
stress ′σ1, and σr is equal to the minor effective principal stress ′σ3, which 
is equal to the intermediate effective principal stress ′σ2. For the test listed 
under item 3, the mean principal stress, that is, ( ) ,′ + ′ + ′σ σ σ1 2 3 3/  is kept con-
stant. Or, in other words, ′ + ′ + ′ = = +σ σ σ σ σ1 2 3 2J a r is kept constant by 
increasing σa and decreasing σr.

9.3.4 � Axial extension tests

	 1.	Radial stress σr kept constant and axial stress σa decreased.
	 2.	Axial stress σa constant and radial stress σr increased.
	 3.	Mean principal stress constant and radial stress increased.

For all drained extension tests at failure, σa is equal to the minor effective 
principal stress ′σ3, and σr is equal to the major effective principal stress ′σ1, 
which is equal to the intermediate effective principal stress ′σ2.

The detailed procedures for conducting these tests are beyond the scope 
of this text, and readers are referred to Bishop and Henkel (1969). Several 
investigations have been carried out to compare the peak friction angles 
determined by the axial compression tests to those obtained by the axial 
extension tests. A summary of these investigations is given by Roscoe et al. 
(1963). Some investigators found no difference in the value of ϕ from com-
pression and extension tests; however, others reported values of ϕ deter-
mined from the extension tests that were several degrees greater than those 
obtained by the compression tests.

9.4 � CRITICAL VOID RATIO

We have seen that for shear tests in dense sands, there is a tendency of 
the specimen to dilate as the test progresses. Similarly, in loose sand, the 
volume gradually decreases (Figures 9.3 and 9.8). An increase or decrease 
of volume means a change in the void ratio of soil. The nature of the 
change of the void ratio with strain for loose and dense sands is shown in 
Figure 9.11. The void ratio for which the change of volume remains con-
stant during shearing is called the critical void ratio. Figure 9.12 shows 
the results of some drained triaxial tests on washed Fort Peck sand. The 
void ratio after the application of σ3 is plotted in the ordinate, and the 
change of volume, ∆V, at the peak point of the stress–strain plot is plot-
ted along the abscissa. For a given σ3, the void ratio   corresponding to 
∆V = 0 is the critical void ratio. Note that the critical void ratio is a func-
tion of the confining pressure σ3. It is, however, necessary to recognize 
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that whether the volume of the soil specimen is increasing or decreasing, 
the critical void ratio is reached only in the shearing zone, even if it is gen-
erally calculated on the basis of the total volume change of the specimen.

The concept of critical void ratio was first introduced in 1938 by A. 
Casagrande to study liquefaction of granular soils. When a natural deposit 
of saturated sand that has a void ratio greater than the critical void ratio is 
subjected to a sudden shearing stress (due to an earthquake or to blasting, 
for example), the sand will undergo a decrease in volume. This will result in 
an increase in pore water pressure u. At a given depth, the effective stress is 
given by the relation σ′ = σ − u. If σ (i.e., the total stress) remains constant 
and u increases, the result will be a decrease in σ′. This, in turn, will reduce 
the shear strength of the soil. If the shear strength is reduced to a value 
which is less than the applied shear stress, the soil will fail. This is called 
soil liquefaction. An advanced study of soil liquefaction can be obtained 
from the work of Seed and Lee (1966).

9.5 � CURVATURE OF THE FAILURE ENVELOPE

It was shown in Figure 9.1 that Mohr’s failure envelope (Equation 9.1) 
is actually curved, and the shear strength equation (s = c + σ tan ϕ) is 
only a straight-line approximation for the sake of simplicity. For a drained 
direct shear test on sand, ϕ = tan−1(τmax/σ′). Since Mohr’s envelope is actu-
ally curved, a higher effective normal stress will yield lower values of ϕ. 
This fact is demonstrated in Figure 9.13, which is a plot of the results of 
direct shear tests on standard Ottawa Sand. For loose sand, the value of 
ϕ decreases from about 30° to less than 27° when the normal stress is 
increased from 48 to 768 kN/m2. Similarly, for dense sand (initial void ratio 
approximately 0.56), ϕ decreases from about 36° to about 30.5° due to a 
16-fold increase of σ′.

For high values of confining pressure (greater than about 400 kN/m2), 
Mohr’s failure envelope sharply deviates from the assumption given by 
Equation 9.3. This is shown in Figure 9.14. Skempton (1960, 1961) intro-
duced the concept of angle of intrinsic friction for a formal relation between 
shear strength and effective normal stress. Based on Figure 9.14, the shear 
strength can be defined as

	 s k= + σ ψ'tan 	 (9.7)

where ψ is the angle of intrinsic friction. For quartz, Skempton (1961) gave 
the values of k ≈ 950 kN/m2 and ψ ≈ 13°.



416  Advanced Soil Mechanics﻿

0.54
26

28

30

32

34

35

0.58 0.62

Based on Taylor (1948)

0.66 0.68

Fr
ic

tio
n 

an
gl

e, 
(d

eg
)

96 kN/m2

E�ective
normal
stress =

48 kN/m2

cυ = 26.7°

192 kN/m2

384 kN/m2

768 kN/m2

Initial void ratio, e

Figure 9.13  �Variation of peak friction angle, ϕ, with effective normal stress on standard 
Ottawa sand.

E�ective stress, σ΄

Sh
ea

r s
tr

es
s

k

ψ

a
Equation 9.7

s = σ΄ tan

á
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9.6 � GENERAL COMMENTS ON THE FRICTION 
ANGLE OF GRANULAR SOILS

The soil friction angle determined by the laboratory tests is influenced by 
three major factors. They are

•	 Mineral friction (ϕμ): The experimental values of ϕμ for several soils 
are shown in Table 9.2.

•	 Particle reorientation
•	 Expansion (i.e., dilation)

The contributions of the three factors on medium-to-fine quartz sand are 
shown in Figure 9.15 (Rowe, 1962). At high confining pressure, there is a 
fourth major factor which is grain crushing. Thus

	 φ φ βµ= + 	 (9.8)

where β is a function of particle reorientation, dilation, and grain crushing.
Figure 9.16 shows the contributions of the four factors schematically as 

discussed by Lee and Seed (1968).
The value of tan ϕ in triaxial compression tests is not greatly affected 

by the rate of loading. For sand, Whitman and Healy (1963) compared the 
tests conducted in 5 min and in 5 ms and found that tan ϕ decreases at the 
most by about 10%.

9.7 � SHEAR STRENGTH OF GRANULAR SOILS 
UNDER PLANE STRAIN CONDITIONS

The results obtained from triaxial tests are widely used for the design of 
structures. However, under structures such as continuous wall footings, the 
soils are actually subjected to a plane strain type of loading, that is, the 
strain in the direction of the intermediate principal stress is equal to zero. 

Table 9.2  �Experimental values of ϕμ

Reference Material ϕμ (deg)

Lee (1966) Steel ball, 2.38 mm diameter 7
Glass bollotini 17
Medium-to-fine quartz sand 26
Feldspar (25–200 sieves) 37

Horne and Deere (1962) Quartz 24
Feldspar 38
Calcite 34

Rowe (1962) Medium-to-fine quartz sand 26
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Several  investigators have attempted to evaluate the effect of plane strain 
type of loading (Figure 9.17) on the angle of friction of granular soils. A sum-
mary of the results obtained was compiled by Lee (1970). To discriminate the 
plane strain drained friction angle from the triaxial drained friction angle, 
the following notations have been used in the discussion in this section:

	 ϕp = drained friction angle obtained from plane strain tests
	 ϕt = drained friction angle obtained from triaxial tests

Lee (1970) also conducted some drained shear tests on a uniform sand 
collected from the Sacramento River near Antioch, California. Drained tri-
axial tests were conducted with specimens of diameter 35.56 mm and height 
86.96 mm. Plane strain tests were carried out with rectangular specimens 
60.96 mm high and 27.94 × 71.12 mm in cross-sectional area. The plane 
strain condition was obtained by the use of two lubricated rigid side plates. 
Loading of the plane strain specimens was achieved by placing them inside 
a triaxial chamber. All specimens, triaxial and plane strain, were aniso-
tropically consolidated with a ratio of major to minor principal stress of 2:

	
kc

(consolidation)
(consolidation)

=
′
′

=σ
σ
1

3
2 	 (9.9)

The results of this study are instructive and are summarized in the following:

	 1.	For loose sand having a relative density of 38%, at low confining 
pressure, ϕp and ϕt were determined to be 45° and 38°, respectively. 
Similarly, for medium-dense sand having a relative density of 78%, 
ϕp and ϕt were 48° and 40°, respectively.
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Figure 9.17  �Plane strain condition.
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	 2.	At higher confining pressure, the failure envelopes (plane strain and 
triaxial) flatten, and the slopes of the two envelopes become the same.

	 3.	Figure 9.18 shows the results of the initial tangent modulus, E, for 
various confining pressures. For given values of ′σ3, the initial tangent 
modulus for plane strain loading shows a higher value than that for 
triaxial loading, although in both cases, E increases exponentially 
with the confining pressure.

	 4.	The variation of Poisson’s ratio v with the confining pressure for plane 
strain and triaxial loading conditions is shown in Figure 9.19. The 
values of v were calculated by measuring the change of the volume of 
specimens and the corresponding axial strains during loading. The 
derivation of the equations used for finding v can be explained with 
the aid of Figure 9.17. Assuming compressive strain to be positive, for 
the stresses shown in Figure 9.17

	 ∆H H= ∈1 	 (9.10)

	 ∆B B= ∈2 	 (9.11)

	 ∆L L= ∈3 	 (9.12)

		  where
H, L, B are the height, length, and width of the specimen
∆H, ∆B, ∆L are the changes in height, length, and width of speci-

men due to application of stresses
∈1, ∈2, ∈3 are the strains in the direction of major, intermediate, 

and minor principal stresses
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Figure 9.18  �Initial tangent modulus from drained tests on Antioch sand. (After Lee, K.L., 
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The volume of the specimen before load application is equal to V = LBH, 
and the volume of the specimen after the load application is equal to 
V − ∆V. Thus

	

∆ ∆ ∆ ∆ ∆V V V V LBH L L B B H H

LBH LBH

= − − = − − − −

= − − ∈ − ∈ − ∈

( ) ( )( )( )

( )( )(1 1 11 2 33) 	 (9.13)

where ∆V is change in volume. Neglecting the higher-order terms such as 
∈1∈2, ∈2∈3, ∈3∈1, and ∈1∈2∈3, Equation 9.13 gives

	
υ = = ∈ + ∈ + ∈∆V

V
1 2 3 	 (9.14)

where υ is the change in volume per unit volume of the specimen.
For triaxial tests, ∈2 = ∈3, and they are expansions (negative sign). So, ∈2 = 

∈3 = −v ∈1. Substituting this into Equation 9.14, we get υ = ∈1 (1 − 2υ), or

	
υ υ= −

∈








1
2
1

1
 (for triaxial test conditions)	 (9.15)
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Figure 9.19  �Poisson’s ratio from drained tests on Antioch sand. (After Lee, K.L., J. Soil 
Mech. Found. Div., ASCE, 96(SM3), 901, 1970.)
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With plane strain loading conditions, ∈2 = 0 and ∈3 = −v ∈1. Hence, from 
Equation 9.14, υ = ∈1 (1 − υ), or

	
υ υ= −

∈
1

1
 (for plane strain conditions)	 (9.16)

Figure 9.19 shows that for a given value of ′σ3, Poisson’s ratio obtained 
from plane strain loading is higher than that obtained from triaxial loading.

Hence, on the basis of the available information at this time, it can be 
concluded that ϕp exceeds the value of ϕt by 0°–8°. The greatest difference 
is associated with dense sands at low confining pressures. The smaller dif-
ferences are associated with loose sands at all confining pressures, or dense 
sand at high confining pressures. Although still disputed, several sugges-
tions have been made to use a value of ϕ ≈ ϕP = 1.1ϕt, for calculation of 
the bearing capacity of strip foundations. For rectangular foundations, the 
stress conditions on the soil cannot be approximated by either triaxial or 
plane strain loadings. Meyerhof (1963) suggested for this case that the fric-
tion angle to be used for calculation of the ultimate bearing capacity should 
be approximated as

	
φ φ= −






1 1 0 1. . B

L
f

f
t 	 (9.17)

where
Lf is the length of foundation
Bf the width of foundation

After considering several experiment results, Lade and Lee (1976) gave 
the following approximate relations:

	
φ φ φp t t

o= − >1 5 17 34. 	 (9.18)

	
φ φ φp t i

o= ≤ 34 	 (9.19)

9.8 � SHEAR STRENGTH OF COHESIVE SOILS

The shear strength of cohesive soils can generally be determined in the labo-
ratory by either direct shear test equipment or triaxial shear test equipment; 
however, the triaxial test is more commonly used. Only the shear strength 
of saturated cohesive soils will be treated here. The shear strength based 
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on the effective stress can be given by (Equation 9.3) s = c + σ′ tan ϕ. For 
normally consolidated clays, c ≈ 0, and for overconsolidated clays, c > 0.

The basic features of the triaxial test equipment are shown in Figure 9.7. 
Three conventional types of tests are conducted with clay soils in the 
laboratory:

	 1.	Consolidated drained test or drained test (CD test or D test)
	 2.	Consolidated undrained test (CU test)
	 3.	Unconsolidated undrained test (UU test)

Each of these tests will be separately considered in the following sections.

9.8.1 � Consolidated drained test

For the consolidated drained test, the saturated soil specimen is first sub-
jected to a confining pressure σ3 through the chamber fluid; as a result, the 
pore water pressure of the specimen will increase by uc. The connection to 
the drainage is kept open for complete drainage, so that uc becomes equal 
to zero. Then, the deviator stress (piston stress) ∆σ is increased at a very 
slow rate, keeping the drainage valve open to allow complete dissipation 
of the resulting pore water pressure ud. Figure 9.20 shows the nature of 
the variation of the deviator stress with axial strain. From Figure 9.20, 
it must also be pointed out that, during the application of the deviator 
stress, the volume of the specimen gradually reduces for normally con-
solidated clays. However, overconsolidated clays go through some reduc-
tion of volume initially but then expand. In a consolidated drained test, 
the total stress is equal to the effective stress, since the excess pore water 
pressure is zero. At failure, the maximum effective principal stress is 

′ = = +σ σ σ σ1 1 3 ∆ f, where ∆σf is the deviator stress at failure. The mini-
mum effective principal stress is ′ =σ σ3 3.

From the results of a number of tests conducted using several specimens, 
Mohr’s circles at failure can be plotted as shown in Figure 9.21. The values 
of c and ϕ are obtained by drawing a common tangent to Mohr’s circles, 
which is the Mohr–Coulomb envelope. For normally consolidated clays 
(Figure 9.21a), we can see that c = 0. Thus, the equation of the Mohr–
Coulomb envelope can be given by s = σ′ tan ϕ. The slope of the failure 
envelope will give us the angle of friction of the soil. As shown by Equation 
9.5, for these soils

	
sinφ σ σ

σ σ
σ σ φ=

′ − ′
′ + ′







 ′ = ′ ° +





1 3

1 3
1 3

2 45
2failure

or tan

Figure 9.22 shows a modified form of Mohr’s failure envelope of pure clay 
minerals. Note that it is a plot of ( ) .′ − ′ ′ + ′σ σ σ σ1 3 1 32 2failure failure/ versus( ) /
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For overconsolidated clays (Figure 9.21b), c ≠ 0. So, the shear strength 
follows the equation s = c + σ′ tan ϕ. The values of c and ϕ can be deter-
mined by measuring the intercept of the failure envelope on the shear stress 
axis and the slope of the failure envelope, respectively. To obtain a general 
relation between ′ ′σ σ1 3, , ,  c  and ϕ, we refer to Figure 9.23 from which

	

sin ( )/

( s

φ σ σ
φ σ σ

σ

=
+

=
′ − ′
+ ′ + ′

′ −

ac
bO O a c

1 3
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2

1

 cot ( )/2

         iin ) ( sin )φ φ σ φ= + ′ +2 13c cos 	 (9.20)

Axial strain

C
om

pr
es

sio
n

V
ol

um
e 

ch
an

ge
 d

ue
 to

de
vi

at
or

 st
re

ss
Ex

pa
ns

io
n

Axial strain(a)

Δσult

σ3σ3
σ3

Time

Δ
σ

Δσf

uc = 0
ud = 0

σ3

σ3

σ3

Overconsolidated
clay

σ3 + Δσ = σ1

σ3 + Δσ = σ1

Normally
consolidated
clay

C
om

pr
es

sio
n

V
ol

um
e 

ch
an

ge
 d

ue
 to

co
nf

in
in

g 
pr

es
su

re Ex
pa

ns
io

n

Δσf

(b)

Figure 9.20  �Consolidated drained triaxial test in clay: (a) application of confining pres­
sure and (b) application of deviator stress.
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or

	

′ = ′ +
−

+
−

′ = ′ ° +

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σ σ φ
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c

c  tan 45
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° +





φ
	 (9.21)

Note that the plane of failure makes an angle of 45° + ϕ/2 with the major 
principal plane.
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Figure 9.21  �Failure envelope for (a) normally consolidated and (b) overconsolidated clays 
from consolidated drained triaxial tests.
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If a clay is initially consolidated by an encompassing chamber pressure of 
σ σc c= ′  and allowed to swell under a reduced chamber pressure of σ σ3 3= ′, 
the specimen will be overconsolidated. The failure envelope obtained from 
consolidated drained triaxial tests of these types of specimens has two dis-
tinct branches, as shown in Figure 9.24. Portion ab of the failure envelope 
has a flatter slope with a cohesion intercept, and portion bc represents a 
normally consolidated stage following the equation s = σ′ tan ϕbc.
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Figure 9.22  �Modified Mohr’s failure envelope for quartz and clay minerals. (After Olson, 
R.E., J. Geotech. Eng. Div., ASCE, 100(GT11), 1215, 1974.)

Normal stressa

c

b

c

O

Sh
ea

r s
tr

es
s

σ1́ + σ3́

2
σ1́ – σ3́

c cot
2

Figure 9.23  �Derivation of Equation 9.21.



Shear strength of soils  427

It may also be seen from Figure 9.20 that at very large strains the deviator 
stress reaches a constant value. The shear strength of clays at very large strains 
is referred to as residual shear strength (i.e., the ultimate shear strength). It 
has been proved that the residual strength of a given soil is independent of 
past stress history, and it can be given by the equation (see Figure 9.25)

	 sresidual ult tan= ′σ φ 	 (9.22)
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(i.e., the c component is 0). For triaxial tests

	
φ σ σ

σ σult
residual

=
′ − ′
′ + ′









−sin 1 1 3

3
	 (9.23)

where ′ = ′ +σ σ σ1 3 ∆ ult.
The residual friction angle in clays is of importance in subjects such as 

the long-term stability of slopes.
The consolidated drained triaxial test procedure described earlier is of 

the conventional type. However, failure in the soil specimens can be pro-
duced by any one of the methods of axial compression or axial extension 
as described in Section 9.3 (with reference to Figure 9.10), allowing full 
drainage condition.

9.8.2 � Consolidated undrained test

In the consolidated undrained test, the soil specimen is first consolidated 
by a chamber-confining pressure σ3; full drainage from the specimen is 
allowed. After complete dissipation of excess pore water pressure, uc, gen-
erated by the confining pressure, the deviator stress ∆σ is increased to cause 
failure of the specimen. During this phase of loading, the drainage line 
from the specimen is closed. Since drainage is not permitted, the pore water 
pressure (pore water pressure due to deviator stress ud) in the specimen 
increases. Simultaneous measurements of ∆σ and ud are made during the 
test. Figure 9.26 shows the nature of the variation of ∆σ and ud with axial 
strain; also shown is the nature of the variation of the pore water pressure 
parameter A (A = ud/∆σ; see Equation 5.11) with axial strain. The value of 
A at failure, Af, is positive for normally consolidated clays and becomes 
negative for overconsolidated clays (also see Table 5.2). Thus, Af is depen-
dent on the overconsolidation ratio (OCR). The OCR for triaxial test con-
ditions may be defined as

	
O CR c=

′σ
σ3

	 (9.24)

where ′ =σ σc c is the maximum chamber pressure at which the specimen 
is consolidated and then allowed to rebound under a chamber pressure 
of σ3.

The typical nature of the variation of Af with the OCR for Weald clay is 
shown in Figure 5.11.
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At failure

	 Total major principal stress = σ1 = σ3 + ∆σf

	 Total minor principal stress = σ3

	 Pore water pressure at failure = ud(failure) = Af∆σf

	 Effectivem ajorprincipalstress f f= − = ′σ σ σ1 1A ∆
	 Effectivem inorprincipalstress f f= − = ′σ σ σ3 3A ∆

Consolidated undrained tests on a number of specimens can be conducted 
to determine the shear strength parameters of a soil, as shown for the case 
of a normally consolidated clay in Figure 9.27. The total-stress Mohr’s cir-
cles (circles A and B) for two tests are shown by dashed lines. The effective-
stress Mohr’s circles C and D correspond to the total-stress circles A and B, 
respectively. Since C and D are effective-stress circles at failure, a common 
tangent drawn to these circles will give the Mohr–Coulomb failure enve-
lope given by the equation s = σ′ tan ϕ. If we draw a common tangent to the 
total-stress circles, it will be a straight line passing through the origin. This 
is the total-stress failure envelope, and it may be given by

	 s= σtan cuφ 	 (9.25)

where ϕcu is the consolidated undrained angle of friction.
The total-stress failure envelope for an overconsolidated clay will be of 

the nature shown in Figure 9.28 and can be given by the relation

	 s c= +cu cutanσ φ 	 (9.26)
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Figure 9.27  �Consolidated undrained test results—normally consolidated clay.
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where ccu is the intercept of the total-stress failure envelope along the shear 
stress axis.

The shear strength parameters for overconsolidated clay based on effec-
tive stress, that is, c and ϕ, can be obtained by plotting the effective-stress 
Mohr’s circle and then drawing a common tangent.

As in consolidated drained tests, shear failure in the specimen can be pro-
duced by axial compression or extension by changing the loading conditions.

9.8.3 � Unconsolidated undrained test

In unconsolidated undrained triaxial tests, drainage from the specimen 
is not allowed at any stage. First, the chamber-confining pressure σ3 is 
applied, after which the deviator stress ∆σ is increased until failure occurs. 
For these tests,

	 Total major principal stress = σ3 +∆σf = σ1

	 Total minor principal stress = σ3

Tests of this type can be performed quickly, since drainage is not allowed. 
For a saturated soil, the deviator stress failure, ∆σf, is practically the same, 
irrespective of the confining pressure σ3 (Figure 9.29). So the total-stress 
failure envelope can be assumed to be a horizontal line, and ϕ = 0. The 
undrained shear strength can be expressed as

	
s S= =u

f∆σ
2

	 (9.27)
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Figure 9.28  �Consolidated undrained test—total stress envelope for overconsolidated clay.
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This is generally referred to as the shear strength based on the ϕ = 0 
concept.

The fact that the strength of saturated clays in unconsolidated und-
rained loading conditions is the same, irrespective of the confining pres-
sure σ3 can be explained with the help of Figure 9.30. If a saturated clay 
specimen A is consolidated under a chamber-confining pressure of σ3 
and then sheared to failure under undrained conditions, Mohr’s circle at 
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Figure 9.29  �Unconsolidated undrained triaxial test.
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failure will be represented by circle no. 1. The effective-stress Mohr’s circle 
corresponding to circle no. 1 is circle no. 2, which touches the effective-
stress failure envelope. If a similar soil specimen B, consolidated under a 
chamber-confining pressure of σ3, is subjected to an additional confining 
pressure of ∆σ3 without allowing drainage, the pore water pressure will 
increase by ∆uc. We saw in Chapter 5 that ∆uc = B∆σ3 and, for saturated 
soils, B = 1. So, ∆uc = ∆σ3.

Since the effective confining pressure of specimen B is the same as speci-
men A, it will fail with the same deviator stress, ∆σf. The total-stress Mohr’s 
circle for this specimen (i.e., B) at failure can be given by circle no. 3. So, at 
failure, for specimen B,

	 Total minor principal stress = σ3 + ∆σ3

	 Total minor principal stress = σ3 + ∆σ3 + ∆σf

The effective stresses for the specimen are as follows:

	 Effective major principal stress = (σ3 + ∆σ3 + ∆σf) − (∆uc + Af∆σf)

	 = (σ3 + ∆σf) − Af∆σf

	 = f fσ σ σ1 1− = ′A ∆

	 Effective minor principal stress = (σ3 + ∆σ3) − (∆uc + Af∆σf)

	 = f fσ σ σ3 3− = ′A ∆

The aforementioned principal stresses are the same as those we had for 
specimen A. Thus, the effective-stress Mohr’s circle at failure for specimen 
B will be the same as that for specimen A, that is, circle no. 1.

The value of ∆σ3 could be of any magnitude in specimen B; in all cases, 
∆σf would be the same.

Example 9.1

Consolidated drained triaxial tests on two specimens of a soil gave the 
following results:

Test no.
Confining pressure 

σ3 (kN/m2)
Deviator stress at failure 

∆σf (kN/m2)

1 70 440.4
2 92 474.7

Determine the values of c and ϕ for the soil.
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Solution

From Equation 9.21, σ1 = σ3 tan2 (45° + ϕ/2) + 2c tan (45° + ϕ/2). 
For test 1, σ3 = 70 kN/m2; σ1 = σ3 + ∆σf = 70 + 440.4 = 510.4 kN/m2. So,

	
510.4 70 tan tan2= ° +





+ ° +





45
2

2 45
2

φ φ
c 	 (E9.1)

Similarly, for test 2, σ3 = 92 kN/m2; σ1 = 92 + 474.7 = 566.7 kN/m2. 
Thus

	
566 7 45

2
2 45

2
. = ° +



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+ ° +



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92 tan tan2 φ φ
c 	 (E9.2)

Subtracting Equation E9.1 from Equation E9.2 gives

	
56 3 45

2
. = ° +



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22 tan2 φ

	

φ = 



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− °












= °−2 tan . /
1

1 256 3
22

45 26

Substituting ϕ = 26° in Equation E9.l gives

	
c= − ° +

° +
= −510 4 70 45 26 2

2 45 25 2
510 4 70 2 56

21 6

2. tan ( )
tan( )

. ( . )
( .

/
/ ))

.= 103 5 kN /m 2

Example 9.2

A normally consolidated clay specimen was subjected to a consoli-
dated undrained test. At failure, σ3 = 100 kN/m2, σ1 = 204 kN/m2, and 
ud = 50 kN/m2. Determine ϕcu and ϕ.

Solution

Referring to Figure 9.31

	
sin ( )

( )
φ σ σ

σ σ
σ σ
σ σcu

10
/
/

= = −
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= −
+

= −
+

=ab
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1 3

3

1 3

1 3

2
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204 100
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Hence

	 ϕcu = 20°

Again

	
sinφ σ σ

σ σ
= =

′ − ′
′ + ′

cd
c0

1 3

1 3
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′ = − =σ3 100 50 50 kN /m 2

	
′ = − =σ1 204 50 154 kN /m 2

So

	
sinφ = −

+
=154 50

154 54
104
204

Hence

	 ϕ = 30.7°

9.9 � UNCONFINED COMPRESSION TEST

The unconfined compression test is a special case of the unconsolidated 
undrained triaxial test. In this case, no confining pressure to the specimen 
is applied (i.e., σ3 = 0). For such conditions, for saturated clays, the pore 
water pressure in the specimen at the beginning of the test is negative (capil-
lary pressure). Axial stress on the specimen is gradually increased until the 
specimen fails (Figure 9.32). At failure, σ3 = 0 and so

	 σ σ σ σ1 3 f f u= + = =∆ ∆ q 	 (9.28)

where qu is the unconfined compression strength.
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Figure 9.31  �Total- and effective-stress Mohr’s circles.
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Theoretically, the value of ∆σf of a saturated clay should be the same as 
that obtained from unconsolidated undrained tests using similar specimens. 
Thus, s = Su = qu/2. However, this seldom provides high-quality results.

The general relation between consistency and unconfined compression 
strength of clays is given in Table 9.3.

9.10 � MODULUS OF ELASTICITY AND POISSON’S 
RATIO FROM TRIAXIAL TESTS

For calculation of soil settlement and distribution of stress in a soil mass, it 
may be required to know the magnitudes of the modulus of elasticity and 
Poisson’s ratio of soil. These values can be determined from a triaxial test. 
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Figure 9.32  �Unconfined compression strength.

Table 9.3  �Consistency and unconfined 
compression strength of clays

Consistency qu (kN/m2)

Very soft 0–24
Soft 24–48
Medium 48–96
Stiff 96–192
Very stiff 192–383
Hard >383



Shear strength of soils  437

Figure 9.33 shows a plot of ′ − ′σ σ1 3 versus axial strain ∈ for a triaxial test, 
where σ3 is kept constant. The definitions of the initial tangent modulus 
Ei and the tangent modulus Et at a certain stress level are also shown in 
the figure. Janbu (1963) showed that the initial tangent modulus can be 
estimated as

	
E Kp

p

n

i a
a

=
′









σ3 	 (9.29)

where
′σ3 is the minor effective principal stress

pa is the atmospheric pressure (same pressure units Ei and ′σ3)
K is the modulus number
n is the exponent determining the rate of variation of Ei with ′σ3

For a given soil, the magnitudes of K and n can be determined from the 
results of a number of triaxial tests and then plotting Ei versus ′σ3 on log–log 
scales. The magnitude of K for various soils usually falls in the range of 
300–2000. Similarly, the range of n is between 0.3 and 0.6.

The tangent modulus Et can be determined as

	
Et = ∂ ′ − ′

∂∈
( )σ σ1 3

	 (9.30)
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Figure 9.33  �Definition of Ei and Et.
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Duncan and Chang (1970) showed that
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where Rf is the failure ratio. For most soils, the magnitude of Rf falls 
between 0.75 and 1.

For drained conditions, Trautman and Kulhawy (1987) suggested that

	
K ≈ + ° − °

°

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


300 900 25
20

φ
	 (9.32)

The approximate values of n and Rf are as follows (Kulhawy et al., 1983):

Soil type n Rf

GW 1/3 0.7
SP 1/3 0.8
SW 1/2 0.7
SP 1/2 0.8
ML 2/3 0.8

The value of Poisson’s ratio (ν) can be determined by the same type of 
triaxial test (i.e., σ3 constant) as

	
ν = ∈ − ∈

∈
∆ ∆

∆
a

a

υ

2 	 (9.33)

where
∆∈a is the increase in axial strain
∆∈υ is the volumetric strain = ∆∈a + 2∆∈r

∆∈r is the lateral strain

So

	
ν = ∈ − ∈ + ∈

∈
= − ∈

∈
∆ ∆ ∆
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a a r

a

r
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( )2
2

	 (9.34)

For undrained loading of saturated cohesive soil

	 ν = 0.5
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For drained conditions, Poisson’s ratio may be approximated as (Trautman 
and Kulhawy, 1987)

	
ν φ= + ° − °

°




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0 1 0 3 25
20

. . 	 (9.35)

9.11 � FRICTION ANGLES ϕ AND ϕult

Figure 9.34 shows plots of the friction angle ϕ versus plasticity index PI of 
several clays compiled by Kenney (1959). In general, this figure shows an 
almost linear relationship between sin ϕ and log (PI).

Figure 9.35 shows the variation of the magnitude of ϕult for several clays 
with the percentage of clay-size fraction present. ϕult gradually decreases 
with the increase of clay-size fraction. At very high clay content, ϕult 
approached the value of ϕμ (angle of sliding friction) for sheet minerals. 
For highly plastic sodium montmorillonites, the value of ϕult  can be as 
low as 3°–4°.

Stark and Eid (1994) evaluated the residual friction angle of 32 clays and 
clay shales using the torsional ring shear tests. Based on those tests, the 
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Figure 9.34  �Relationship between sin ϕ and plasticity index for normally consolidated 
clays. (After Kenney, T.C., Proc. Am. Soc. Civ. Eng., 85(SM3), 67, 1959.)
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effect of clay mineralogy on ϕult is shown in Figure 9.36a. It can be seen that 
ϕult decreases with increasing liquid limit; also ϕult decreases with increas-
ing activity. Figure 9.36a also shows that the drained residual failure enve-
lope can be nonlinear. The relation between ϕult (secant residual friction 
angle) and liquid limit of clays with varying clay-size fractions is shown in 
Figure 9.36b. From this figure, it appears that there is a definite relation 
between ϕult, liquid limit, and the clay-size fraction.

9.12 � EFFECT OF RATE OF STRAIN ON THE 
UNDRAINED SHEAR STRENGTH

Casagrande and Wilson (1949, 1951) studied the problem of the effect of 
rate of strain on the undrained shear strength of saturated clays and clay 
shales. The time of loading ranged from 1 to 104 min. Using a time of 
loading of 1 min as the reference, the undrained strength of some clays 
decreased by as much as 20%. The nature of the variation of the und-
rained shear strength and time to cause failure, t, can be approximated by 
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a straight line in a plot of Su versus log t, as shown in Figure 9.37. Based on 
this, Hvorslev (1960) gave the following relation:
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1 ρ log 	 (9.36)

where
Su(t) is the undrained shear strength with time, t, to cause failure
Su(a) is the undrained shear strength with time, ta, to cause failure
ρa is the coefficient for decrease of strength with time
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In view of the time duration, Hvorslev suggested that the reference time 
be taken as 1000 min. In that case
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m in
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1
1000

ρ log 	 (9.37)

where
Su(m) is the undrained shear strength at time 1000 min
ρm is the coefficient for decrease of strength with reference time of 

1000 min

The relation between ρa in Equation 9.36 and ρm in Equation 9.37 can 
be given by

	
ρ ρ

ρm
a

a a/
=

−1 1000log[( m in)( m in)]t
	 (9.38)

For ta = 1 min, Equation 9.38 gives

	
ρ ρ

ρm
1

1
=

−1 3
	 (9.39)

Hvorslev’s analysis of the results of Casagrande and Wilson (1951) yielded 
the following results: general range ρ1 = 0.04–0.09 and ρm = 0.05–0.13; 
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Figure 9.37  �Effect of the rate of strain on undrained shear strength.
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Cucaracha clay-shale ρ1 = 0.07–0.19 and ρm = 0.09–0.46. The study of 
the strength–time relation of Bjerrum et al. (1958) for a normally consoli-
dated marine clay (consolidated undrained test) yielded a value of ρm in 
the range 0.06–0.07.

9.13 � EFFECT OF TEMPERATURE ON 
THE UNDRAINED SHEAR STRENGTH

A number of investigations have been conducted to determine the effect of 
temperature on the shear strength of saturated clay. Most studies indicate 
that a decrease in temperature will cause an increase in shear strength. 
Figure 9.38 shows the variation of the unconfined compression strength 
(qu = 2Su) of kaolinite with temperature. Note that for a given moisture 
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content, the value of qu decreases with increase of temperature. A similar 
trend has been observed for San Francisco Bay mud (Mitchell, 1964), as 
shown in Figure 9.39. The undrained shear strength (Su = (σ1 − σ3)/2) varies 
linearly with temperature. The results are for specimens with equal mean 
effective stress and similar structure. From these tests

	

dS
dT

u 2kN /(m C)≈ °0 59. 	 (9.40)

Kelly (1978) also studied the effect of temperature on the undrained 
shear strength of some undisturbed marine clay samples and commercial 
illite and montmorillonite. Undrained shear strengths at 4°C and 20°C 
were determined. Based on the laboratory test results, Kelly proposed the 
following correlation:

	

∆
∆
S
T

Su
u(average)= +0 0102 0 00747. . 	 (9.41)

where
Su(average) = (Su(4°C) + Su(20°C))/2 in kN/m2

T is the temperature in °C
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Example 9.3

The following are the results of an unconsolidated undrained test: σ3 = 70 
kN/m2, σ1 = 210 kN/m2. The temperature of the test was 12°C. Estimate 
the undrained shear strength of the soil at a temperature of 20°C.

Solution

	
Su(12 C)

2kN /m° = − = − =σ σ1 3

2
210 70

2
70

From Equation 9.41

	 ∆Su = ∆T[0.0102 + 0.00747Su(average)]

Now

	 ∆T = 20 − 12 = 8°C

and

	 ∆Su = 8[0.0102 + 0.00747(70)] = 4.26 kN/m2

Hence

	 Su(20°C) = 70 − 4.26 = 65.74 kN/m2

9.14 � STRESS PATH

Results of triaxial tests can be represented by diagrams called stress paths. 
A stress path is a line connecting a series of points, each point representing 
a successive stress state experienced by a soil specimen during the progress 
of a test. There are several ways in which the stress path can be drawn, two 
of which are discussed later.

9.14.1 � Rendulic plot

A Rendulic plot is a plot representing the stress path for triaxial tests origi-
nally suggested by Rendulic (1937) and later developed by Henkel (1960). 
It is a plot of the state of stress during triaxial tests on a plane Oabc, as 
shown in Figure 9.40.

Along Oa, we plot 2 ′σr, and along Oc, we plot ′σa ( ′σr is the effec-
tive radial stress and ′σa the effective axial stress). Line Od in Figure 9.41 
represents the isotropic stress line. The direction cosines of this line are 
1 3 3 3/  1/  1/, , . Line Od in Figure 9.41 will have slope of 1 vertical to 2 
horizontal. Note that the trace of the octahedral plane ( ′ + ′ + ′σ σ σ1 2 3= const) 
will be at right angles to the line Od.

In triaxial equipment, if a soil specimen is hydrostatically consolidated 
( ),i.e., a r′ = ′σ σ  it may be represented by point 1 on the line Od. If this speci-
men is subjected to a drained axial compression test by increasing ′σa and 
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2σŕ√

Figure 9.41  �Rendulic diagram.



Shear strength of soils  447

keeping ′σr constant, the stress path can be represented by the line 1–2. 
Point 2 represents the state of stress at failure. Similarly

Line 1–3 will represent a drained axial compression test conducted by 
keeping ′σa constant and reducing ′σr.

Line 1–4 will represent a drained axial compression test where the mean 
principal stress ( )or J= ′ + ′ + ′σ σ σ1 2 3  is kept constant.

Line 1–5 will represent a drained axial extension test conducted by keep-
ing ′σr constant and reducing ′σa.

Line 1–6 will represent a drained axial extension test conducted by 
keeping ′σa constant and increasing ′σr.

Line 1–7 will represent a drained axial extension test with  J= ′ + ′ + ′σ σ σ1 2 3 
constant ( ).i.e., constanta rJ= ′ + ′σ σ2

Curve 1–8 will represent an undrained compression test.
Curve 1–9 will represent an undrained extension test.

Curves 1–8 and 1–9 are independent of the total stress combination, 
since the pore water pressure is adjusted to follow the stress path shown.

If we are given the effective stress path from a triaxial test in which failure 
of the specimen was caused by loading in an undrained condition, the pore 
water pressure at a given state during the loading can be easily determined. 
This can be explained with the aid of Figure 9.42. Consider a soil specimen 
consolidated with an encompassing pressure σr and with failure caused in 
the undrained condition by increasing the axial stress σa. Let acb be the 
effective stress path for this test. We are required to find the excess pore 
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water pressures that were generated at points c and b (i.e., at failure). For this 
type of triaxial test, we know that the total stress path will follow a vertical 
line such as ae. To find the excess pore water pressure at c, we draw a line cf 
parallel to the isotropic stress line. Line cf intersects line ae at d. The pore 
water pressure ud at c is the vertical distance between points c and d. The 
pore water pressure ud(failure) at b can similarly be found by drawing bg paral-
lel to the isotropic stress line and measuring the vertical distance between 
points b and g.

9.14.2 � Lambe’s stress path

Lambe (1964) suggested another type of stress path in which are plot-
ted the successive effective normal and shear stresses on a plane making 
an angle of 45° to the major principal plane. To understand what a stress 
path is, consider a normally consolidated clay specimen subjected to a con-
solidated drained triaxial test (Figure 9.43a). At any time during the test, 
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Figure 9.43  �Definition of stress path: (a) sample under loading; (b) definition of Kf line.
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the stress condition in the specimen can be represented by Mohr’s circle 
(Figure  9.43b). Note here that, in a drained test, total stress is equal to 
effective stress. So

	 σ σ3 3= ′ (m inorprincipalstress)

	 σ σ σ σ1 (m ajorprincipalstress)= + = ′3 1∆

At failure, Mohr’s circle will touch a line that is the Mohr–Coulomb failure 
envelope; this makes an angle ϕ with the normal stress axis (ϕ is the soil 
friction angle).

We now consider the effective normal and shear stresses on a plane mak-
ing an angle of 45° with the major principal plane. Thus

	
Effectivenorm alstress, ′ =

′ + ′
p

σ σ1 3

2
	 (9.42)

	
Shearstress, ′ =

′ − ′
q

σ σ1 3

2
	 (9.43)

The point on Mohr’s circle having coordinates p′ and q′ is shown in 
Figure 9.43b. If the points with p′ and q′ coordinates of all Mohr’s circles 
are joined, this will result in the line AB. This line is called a stress path. 
The straight line joining the origin and point B will be defined here as the 
Kf line. The Kf line makes an angle α with the normal stress axis. Now

	
tan ( )
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() ()

() ()
α σ σ

σ σ
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f f
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	 (9.44)

where ′σ1()f and ′σ3()f are the effective major and minor principal stresses at 
failure.

Similarly
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φ σ σ

σ σ
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D C
O C

1 3

1 3

2
2

f f

f f

/
/

	 (9.45)

From Equations 9.44 and 9.45, we obtain

	 tan sinα = φ 	 (9.46)

For a consolidated undrained test, consider a clay specimen consolidated 
under an isotropic stress σ σ3 3= ′  in a triaxial test. When a deviator stress 
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∆σ is applied on the specimen and drainage is not permitted, there will be 
an increase in the pore water pressure, ∆u (Figure 9.44a):

	 ∆ ∆u A= σ 	 (9.47)

where A is the pore water pressure parameter.
At this time, the effective major and minor principal stresses can be given 

by

	 M inoreffectiveprincipalstress= ′ = −σ σ3 3 ∆u

	 M ajoreffectiveprincipalstress= ′ = − = + −σ σ σ σ1 1 3∆ ∆ ∆u u( )

Mohr’s circles for the total and effective stress at any time of deviator stress 
application are shown in Figure 9.43b. (Mohr’s circle no. 1 is for total stress 
and no. 2 for effective stress.) Point B on the effective-stress Mohr’s circle 
has the coordinates p′ and q′. If the deviator stress is increased until failure 
occurs, the effective-stress Mohr’s circle at failure will be represented by 
circle no. 3, as shown in Figure 9.43b, and the effective-stress path will be 
represented by the curve ABC.

The general nature of the effective-stress path will depend on the value 
of A. Figure 9.45 shows the stress path in a p′ versus q′ plot for Lagunilla 
clay (Lambe, 1964). In any particular problem, if a stress path is given in a 
p′ versus q′ plot, we should be able to determine the values of the major and 
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Figure 9.44  �Stress path for consolidated undrained triaxial test: (a) sample under loading; 
(b) effective-stress path.
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minor effective principal stresses for any given point on the stress path. This 
is demonstrated in Figure 9.46, in which ABC is an effective stress path.

From Figure 9.45, two important aspects of effective stress path can be 
summarized as follows:

	 1.	The stress paths for a given normally consolidated soil are geometri-
cally similar.

	 2.	The axial strain in a CU test may be defined as ∈1 = ∆L/L, as shown in 
Figure 9.44a. For a given soil, if the points representing equal strain in 
a number of stress paths are joined, they will be approximately straight 
lines passing through the origin. This is also shown in Figure 9.45.
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Example 9.4

Given here are the loading conditions of a number of consolidated 
drained triaxial tests on a remolded clay (ϕ = 25°, c = 0).

Test no.
Consolidation 

pressure (kN/m2)
Type of loading applied 

to cause failure

1 400 σa increased; σr constant
2 400 σa constant; σr increased
3 400 σa decreased; σr constant
4 400 σa constant; σr decreased
5 400 σa + 2σr constant; increased 

σd and decreased σr

6 400 σa + 2σr constant; decreased 
σd and increased σr

	 a.	Draw the isotropic stress line.
	 b.	Draw the failure envelopes for compression and extension tests.
	 c.	Draw the stress paths for tests 1–6.

Solution

Part a: The isotropic stress line will make an angle θ = cos−1 1 3/  with 
the ′σa axis, so θ = 54.8°. This is shown in Figure 9.47 as line 0a. 
Part b:

	
sin siφ σ σ

σ σ
σ
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where ′σ1 and ′σ3 are the major and minor principal stresses. For com-
pression tests, ′ = ′σ σ1 a and ′ = ′σ σ3 r. Thus
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The slope of the failure envelope is
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r

r

  Hence, δ1 = 60.1°. The failure envelope for the compression tests is 
shown in Figure 9.47.
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For extension tests, ′ = ′σ σ1 r and ′ = ′σ σ3 a. So

	

′
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+
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r failure
a ror1 25
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The slope of the failure envelope for extension tests is

	 tan . .δ σ
σ
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′
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=
′

=a

r

r

  Hence, δ2 = 16.01°. The failure envelope is shown in Figure 9.47.

Part c: Point a on the isotropic stress line represents the point where 
′ = ′ ′ = ′ = ′σ σ σ σ σa r(or 1 2 3). The stress paths of the test are plotted in 

Figure 9.47.
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√2σŕ (kN/m2)

Figure 9.47  �Stress paths for tests 1–6 in Example 9.4.



454  Advanced Soil Mechanics﻿

Example 9.5

For a saturated clay soil, the following are the results of some consoli-
dated drained triaxial tests at failure:

Test no. ′ =
′ + ′

p
σ σ1 3

2
( )kN/m2 ′ =

′ − ′
q

σ σ1 3

2
( )kN/m2

1 420 179.2
2 630 255.5
3 770 308.0
4 1260 467.0

Draw a p′ versus q′ diagram, and from that, determine c and ϕ for the soil.

Solution

The diagram of q′ versus p′ is shown in Figure 9.48; this is a straight 
line, and its equation may be written in the form

	 q m p' '= + tanα 	 (E9.3)

Also

	

′ − ′
= +

′ + ′σ σ φ σ σ φ1 3 1 3

2 2
ccos sin 	 (E9.4)

Comparing Equations E9.3 and E9.4, we find m = c cos ϕ or c = m/cos ϕ 
and tan α = sin ϕ. From Figure 9.48, m = 23.8 kN/m2 and α = 20°. So

	 φ = ° = °−sin (tan ) .1 20 21 34

and

	
c m= =

°
=
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ṕ  (kN/m2)

Figure 9.48  �Plot of q′ versus p′ diagram.
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9.15 � HVORSLEV’S PARAMETERS

Considering cohesion to be the result of physicochemical bond forces (thus 
the interparticle spacing and hence void ratio), Hvorslev (1937) expressed 
the shear strength of a soil in the form

	 s c= +e etanσ' φ 	 (9.48)

where ce and ϕe are “true cohesion” and “true angle of friction,” respec-
tively, which are dependent on the void ratio.

The procedure for determination of the aforementioned parameters 
can be explained with the aid of Figure 9.49, which shows the relation 
of the moisture content (i.e., void ratio) with effective consolidation 
pressure. Points 2 and 3 represent normally consolidated stages of a 
soil, and point 1 represents the overconsolidation stage. We now test 
the soil specimens represented by points 1, 2, and 3 in an undrained 
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Figure 9.49  �Determination of ce and ϕe: (a) plot of e, and moisture content vs. σ′c; 
(b) effective stress Mohr’s circles.
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condition. The effective-stress Mohr’s circles at failure are given in 
Figure 9.49b.

The soil specimens at points 1 and 2 in Figure 9.49a have the same mois-
ture content and hence the same void ratio. If we draw a common tangent 
to Mohr’s circles 1 and 2, the slope of the tangent will give ϕe, and the 
intercept on the shear stress axis will give ce.

Gibson (1953) found that ϕe varies slightly with void ratio. The true angle 
of internal friction decreases with the plasticity index of soil, as shown in 
Figure 9.50. The variation of the effective cohesion ce with void ratio may 
be given by the relation (Hvorslev, 1960)

	 c c Bee exp= −0 ( )	 (9.49)

where
c0 is the true cohesion at zero void ratio
e is the void ratio at failure
B is the slope of plot of ln ce versus void ratio at failure

Example 9.6

A clay soil specimen was subjected to confining pressures σ σ3 3= ′  in a 
triaxial chamber. The moisture content versus ′σ3 relation is shown in 
Figure 9.51a.

A normally consolidated specimen of the same soil was sub-
jected  to a consolidated undrained triaxial test. The results are as 
follows: σ3 = 440 kN/m2; σ1 = 840 kN/m2; moisture content at failure, 
27%; ud = 240 kN/m2.
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Figure 9.50  �Variation of true angle of friction with plasticity index. (After Bjerrum, L. 
and Simons, N.E., Comparison of shear strength characteristics of normally 
consolidated clay, in Proc. Res. Conf. Shear Strength Cohesive Soils, Am. Soc. of 
Civ. Eng., 711–726, 1960.)
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An overconsolidated specimen of the same soil was subjected to a 
consolidated undrained test. The results are as follows: overconsoli-
dation pressure, ′ =σc 500 kN /m 2; σ3 = 100 kN/m2; σ1 = 434 kN/m2; 
ud = –18 kN/m2; initial and final moisture content, 27%.

Determine ϕe, ce for a moisture content of 27%; also determine ϕ.

Solution

For the normally consolidated specimen,

	
′ = − =σ3 440 240 200 kN /m 2
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Figure 9.51  �Determination of Hvorslev’s parameters: (a) plot of moisture content vs. σ′3; 
(b) plot of Mohr’s circles (w = 27%).
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′ = − =σ1 840 240 600 kN /m 2
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The failure envelope is shown in Figure 9.51b.
For the overconsolidated specimen

	
′ = − − =σ3 100 18 118( ) kN /m 2

	
′ = − − =σ1 434 18 452( ) kN /m 2

Mohr’s circle at failure is shown in Figure 9.51b; from this

	 ce = 110 kN/m2 ϕe = 15°

9.16 � RELATIONS BETWEEN MOISTURE 
CONTENT, EFFECTIVE STRESS, AND 
STRENGTH FOR CLAY SOILS

9.16.1 � Relations between water content and strength

The strength of a soil at failure (i.e., (σ1 − σ3)failure or ( )′ − ′σ σ1 3 failure) is dependent 
on the moisture content at failure. Henkel (1960) pointed out that there is a 
unique relation between the moisture content w at failure and the strength of 
a clayey soil. This is shown in Figures 9.52 and 9.53 for Weald clay.

For normally consolidated clays, the variation of w versus log (σ1 − σ3)failure 
is approximately linear. For overconsolidated clays, this relation is not linear 
but lies slightly below the relation of normally consolidated specimens. The 
curves merge when the strength approaches the overconsolidation pressure. 
Also note that slightly different relations for w versus log (σ1 − σ3)failure are 
obtained for axial compression and axial extension tests.

9.16.2 � Unique effective stress failure envelope

When Mohr’s envelope is used to obtain the relation for normal and shear 
stress at failure, from triaxial test results, separate envelopes need to be 
drawn for separate preconsolidation pressures, ′σc, as shown in Figure 9.54. 
For a soil with a preconsolidation pressure of ′σc1, s = c1 + σ′ tan ϕc(l); simi-
larly, for a preconsolidation pressure of ′σc2, s = c2 + σ′ tan ϕc(2).

Henkel (1960) showed that a single, general failure envelope for nor-
mally consolidated and preconsolidated (irrespective of preconsolidation 
pressure) soils can be obtained by plotting the ratio of the major to minor 
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effective stress at failure against the ratio of the maximum consolidation 
pressure to the average effective stress at failure. This fact is demonstrated 
in Figure 9.55, which gives results of triaxial compression tests for Weald 
clay. In Figure 9.55
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sssatfailure
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==
′ + ′σ σa r2
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The results shown in Figure 9.55 are obtained from normally consolidated 
specimens and overconsolidated specimens having a maximum preconsoli-
dation pressure of 828 kN/m2. Similarly, a unique failure envelope can be 
obtained from extension tests. Note, however, that the failure envelopes for 
compression tests and extension tests are slightly different.
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Figure 9.52  �Water content versus (σ1 − σ3)failure for Weald clay—extension tests. 
(After Henkel, D.J., The shearing strength of saturated remolded clays, 
in Proc. Res. Conf. Shear Strength of Cohesive Soils, Am. Soc. Civ. Eng., 
533–554, 1960.)
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9.16.3 � Unique relation between water 
content and effective stress

There is a unique relation between the water content of a soil and the effec-
tive stresses to which it is being subjected, provided that normally con-
solidated specimens and specimens with common maximum consolidation 
pressures are considered separately. This can be explained with the aid of 
Figure 9.56, in which a Rendulic plot for a normally consolidated clay is 
shown. Consider several specimens consolidated at various confining pres-
sures in a triaxial chamber; the states of stress of these specimens are repre-
sented by the points a, c, e, g, etc., located on the isotropic stress lines. When 
these specimens are sheared to failure by drained compressions, the corre-
sponding stress paths will be represented by lines such as ab, cd, ef, and gh. 
During drained tests, the moisture contents of the specimens change. We 
can determine the moisture contents of the specimens during the tests, such 
as w1, w2, …, as shown in Figure 9.56. If these points of equal moisture 
contents on the drained stress paths are joined, we obtain contours of stress 
paths of equal moisture contents (for moisture contents w1, w2, …).

Now, if we take a soil specimen and consolidate it in a triaxial chamber 
under a state of stress as defined by point a and shear it to failure in an und-
rained condition, it will follow the effective stress path af, since the mois-
ture content of the specimen during shearing is w1. Similarly, a specimen 
consolidated in a triaxial chamber under a state of stress represented by 
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Figure 9.55  �Plot of ′ ′σ σ1 3(failure) (failure)/  against Jm/Jf for Weald clay—compression tests. 
(After Henkel, D.J., The shearing strength of saturated remolded clays, in 
Proc. Res. Conf. Shear Strength of Cohesive Soils, Am. Soc. Civ. Eng., 533–554, 
1960.)
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point c (moisture content w2) will follow a stress path ch (which is the stress 
contour of moisture content w2) when sheared to failure in an undrained 
state. This means that a unique relation exists between water content and 
effective stress.

Figures 9.57 and 9.58 show the stress paths for equal water contents for 
normally consolidated and overconsolidated Weald clay. Note the similar-
ity of shape of the stress paths for normally consolidated clay in Figure 9.58. 
For overconsolidated clay, the shape of the stress path gradually changes, 
depending on the OCR.

9.17 � CORRELATIONS FOR EFFECTIVE 
STRESS FRICTION ANGLE

It is difficult in practice to obtain undisturbed samples of sand and gravelly soils 
to determine the shear strength parameters. For that reason, several approxi-
mate correlations were developed over the years to determine the soil friction 
angle based on field test results, such as standard penetration number (N) and 
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cone penetration resistance (qc). In granular soils, N and qc are dependent on 
the effective-stress level. Schmertmann (1975) provided a correlation between 
the standard penetration resistance, drained triaxial friction angle obtained 
from axial compression tests (ϕ = ϕtc), and the vertical effective stress ( ).′σ0  
This correlation can be approximated as (Kulhawy and Mayne, 1990)

	
φ
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where pa is atmospheric pressure (in the same units as ′σ0 ). In a similar 
manner, the correlation between ϕtc, ′σ0, and qc was provided by Robertson 
and Campanella (1983), which can be approximated as (Kulhawy and 
Mayne, 1990)
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Figure 9.57  �Weald clay—normally consolidated. (After Henkel, D.J., The shearing 
strength of saturated remolded clays, in Proc. Res. Conf. Shear Strength of 
Cohesive Soils, Am. Soc. of Civ. Eng., 533–554, 1960.)
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Kulhawy and Mayne (1990) also provided the approximate relations 
between the triaxial drained friction angle ⟨ϕtc⟩ obtained from triaxial 
compression tests with the drained friction angle obtained from other types 
of tests for cohesionless and cohesive soils. Their findings are summarized 
in Table 9.4.

Following are some other correlations generally found in the recent literature.

•	 Wolff (1989)

	 ϕtc = 27.1 + 0.3N1 − 0.00054(N1)2 (for granular soil)

•	 Hatanaka and Uchida (1996)

	 φtc (forgranularsoil)= +20 201N
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•	 Ricceri et al. (2002)

	

φ
σtc
c

o

forsiltw ith low plasti
= +

′


















−tan . . log1 0 38 0 27 q
ccity,

poorly graded sand,and silty
sand

















•	 Ricceri et al. (2002)

	
φtc

D

D

forsiltw ith low plasticity,poorly
grade

= +
+

31
0 236 0 066

K
K. . dd sand,and siltysand











		  where KD is the horizontal stress index in the dilatometer test.

9.18 � ANISOTROPY IN UNDRAINED 
SHEAR STRENGTH

Owing to the nature of the deposition of cohesive soils and subsequent 
consolidation, clay particles tend to become oriented perpendicular to the 
direction of the major principal stress. Parallel orientation of clay particles 
could cause the strength of the clay to vary with direction, or in other 
words, the clay could be anisotropic with respect to strength. This fact can 
be demonstrated with the aid of Figure 9.59, in which V and H are verti-
cal and horizontal directions that coincide with lines perpendicular and 

Table 9.4  �Relative values of drained friction angle

Test type

Drained friction angle

Cohesionless soil Cohesive soil

Triaxial compression 1.0ϕtc 1.0ϕtc

Triaxial extension 1.12ϕtc 1.22ϕtc

Plane strain compression 1.12ϕtc 1.10ϕtc

Plane strain extension 1.25ϕtc 1.34ϕtc

Direct shear tan−1[tan(1.12ϕtc)cos ϕcυ] tan−1[tan(1.1ϕtc)cos ϕult]

Source:	 Compiled from Kulhawy, F.H. and Mayne, P.W., Manual on Estimating Soil Properties in 
Foundation Design, Electric Power Research Institute, Palo Alto, CA, 1990.
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parallel to the bedding planes of a soil deposit. If a soil specimen with its 
axis inclined at an angle i with the horizontal is collected and subjected to 
an undrained test, the undrained shear strength can be given by

	
S iu() = −σ σ1 3

2
	 (9.52)

where Su(i) is the undrained shear strength when the major principal stress 
makes an angle i with the horizontal.

Let the undrained shear strength of a soil specimen with its axis vertical 
(i.e., Su(i = 90°)] be referred to as Su(V) (Figure 9.59a); similarly, let the und-
rained shear strength with its axis horizontal (i.e., Su(i = 0°)] be referred to as 
Su(H) (Figure 9.59c). If Su(V) = Su(i) = Su(H), the soil is isotropic with respect to 
strength, and the variation of undrained shear strength can be represented 
by a circle in a polar diagram, as shown by curve a in Figure 9.60. However, 
if the soil is anisotropic, Su(i) will change with direction. Casagrande and 
Carrillo (1944) proposed the following equation for the directional varia-
tion of the undrained shear strength:

	
S S S S ii H V Hu u u u

2 sin( ) = + −( ) ( ) ( )[ ] 	 (9.53)

When Su(V) > Su(H), the nature of variation of Su(i) can be represented by 
curve b in Figure 9.60. Again, if Su(V) < Su(H), the variation of Su(i) is given by 
curve c. The coefficient of anisotropy can be defined as
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Figure 9.59  �Strength anisotropy in clay with direction of major principal stress: (a) i = 90°; 
(b) i = i; (c) i = 0°.
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In the case of natural soil deposits, the value of K can vary from 0.75 to 
2.0. K is generally less than 1 in overconsolidated clays. An example of the 
directional variation of the undrained shear strength Su(i) for a clay is shown 
in Figure 9.61.

Richardson et al. (1975) made a study regarding the anisotropic strength of 
a soft deposit of marine clay in Thailand. The undrained strength was deter-
mined by field vane shear tests. Both rectangular and triangular vanes were 
used for this investigation. Based on the experimental results (Figure 9.62), 
Richardson et al. concluded that Su(i) can be given by the following relation:

	

S S S
S i S i
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H V

H V
u()

u( ) u( )

u( ) u( )

=
+2 2 2 2sin cos

	 (9.55)

9.19 � SENSITIVITY AND THIXOTROPIC 
CHARACTERISTICS OF CLAYS

Most undisturbed natural clayey soil deposits show a pronounced reduction of 
strength when they are remolded. This characteristic of saturated cohesive soils 
is generally expressed quantitatively by a term referred to as sensitivity. Thus

	
Sensitivity u(undisturbed)

u(rem olded)
= S

S
	 (9.56)
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Figure 9.60  �Directional variation of undrained strength of clay.
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The classification of clays based on sensitivity is as follows:

Sensitivity Clay

≈1 Insensitive
1–2 Low sensitivity
2–4 Medium sensitivity
4–8 Sensitive
8–16 Extra sensitive
>16 Quick

The sensitivity of most clays generally falls in a range 1–8. However, 
sensitivity as high as 150 for a clay deposit at St Thurible, Canada, was 
reported by Peck et al. (1951).

The loss of strength of saturated clays may be due to the breakdown of 
the original structure of natural deposits and thixotropy. Thixotropy is 
defined as an isothermal, reversible, time-dependent process that occurs 
under constant composition and volume, whereby a material softens as a 
result of remolding and then gradually returns to its original strength when 
allowed to rest. This is shown in Figure 9.63. A general review of the thixo-
tropic nature of soils is given by Seed and Chan (1959).
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Figure 9.61  �Directional variation of undrained shear strength of Welland Clay, Ontario, 
Canada. (After Lo, K.Y., Stability of slopes in anisotropic soils, J. Soil Mech. 
Found. Eng. Div. Soc. Civ. Eng., 91(SM4), 85, 1965.)



Shear strength of soils  469

Figure 9.64, which is based on the work of Moretto (1948), shows the 
thixotropic strength regain of a Laurentian clay with a liquidity index of 
0.99 (i.e., the natural water content was approximately equal to the liquid 
limit). In Figure 9.65, the acquired sensitivity is defined as

	
Acquired sensitivity= u()

u(rem olded)

S
S

t 	 (9.56a)

where Su(t) is the undrained shear strength after a time t from remolding.
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Figure 9.62  �Vane shear strength polar diagrams for a soft marine clay in Thailand. 
(a) Depth = 1 m; (b) depth = 2 m; (c) depth = 3 m; (d) depth = 4 m. (After 
Richardson, A.M. et al., In situ determination of anisotropy of a soft clay, in 
Proc. Conf. In Situ Meas. Soil Prop., vol. 1, Am. Soc. Civ. Eng., 336–349, 1975.)
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Acquired sensitivity generally decreases with the liquidity index (i.e., the 
natural water content of soil), and this is demonstrated in Figure 9.65. It 
can also be seen from this figure that the acquired sensitivity of clays with 
a liquidity index approaching zero (i.e., natural water content equal to the 
plastic limit) is approximately one. Thus, thixotropy in the case of overcon-
solidated clay is very small.
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There are some clays that show that sensitivity cannot be entirely 
accounted for by thixotropy (Berger and Gnaedinger, 1949). This means 
that only a part of the strength loss due to remolding can be recovered 
by hardening with time. The other part of the strength loss is due to the 
breakdown of the original structure of the clay. The general nature of the 
strength regain of a partially thixotropic material is shown in Figure 9.66.
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Figure 9.65  �Variation of sensitivity with liquidity index for Laurentian clay. (After Seed, 
H.B. and Chan, C.K., Trans. Am. Soc. Civ. Eng., 24, 894, 1959.)
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Seed and Chan (1959) conducted several tests on three compacted clays 
with a water content near or below the plastic limit to study their thixo-
tropic strength-regain characteristics. Figure 9.67 shows their thixotropic 
strength ratio with time. The thixotropic strength ratio is defined as follows:

	
Thixotropicstrength ratio u()

u(com pacted at 0)
=

=

S
S

t

t
	 (9.57)

where Su(t) is the undrained strength at time t after compaction.
These test results demonstrate that thixotropic strength regain is also 

possible for soils with a water content at or near the plastic limit.
Figure 9.68 shows a general relation between sensitivity, liquidity index, 

and effective vertical pressure for natural soil deposits.

9.20 � VANE SHEAR TEST

The field vane shear test is another method of obtaining the undrained shear 
strength of cohesive soils. The common shear vane usually consists of four 
thin steel plates of equal size welded to a steel torque rod (Figure 9.69a). To 
perform the test, the vane is pushed into the soil and torque is applied at the 
top of the torque rod. The torque is gradually increased until the cylindrical 
soil of height H and diameter D fails (Figure 9.69b). The maximum torque 
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Figure 9.67  �Increase of thixotropic strength with time for three compacted clays. (After 
Seed, H.B. and Chan, C.K., Trans. Am. Soc. Civ. Eng., 24, 894, 1959.)
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Figure 9.68  �General relation between sensitivity, liquidity index, and effective vertical 
stress.
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Figure 9.69  �Vane shear test: (a) vane shear apparatus; (b) test in soil.



474  Advanced Soil Mechanics﻿

T applied to cause failure is the sum of the resisting moment at the top, MT, 
and bottom, MB, of the soil cylinder, plus the resisting moment at the sides 
of the cylinder, MS. Thus

	 T M M M= + +S T B 	 (9.58)

However

	
M D H D S M M D D SS u T B uand= = =π π

2 4
2
3 2

2

(assuming uniform undrained shear strength distribution at the ends; see 
Carlson [1948]). So

	

T S D H D D D= 





+






















π π π
u 2

2
4

2
3 2

2

or

	
S T

D H Du /2 /6)
=

+π( 2 3 	 (9.59)

If only one end of the vane (i.e., the bottom) is engaged in shearing the 
clay, T = MS + MB. So

	
S T

D H Du /2 /12)
=

+π( 2 3 	 (9.60)

Standard vanes used in field investigations have H/D = 2. In such cases, 
Equation 9.59 simplifies to the form

	
S T

Du = 0 273 3. 	 (9.61)

The American Society for Testing and Materials (1992) recommends the 
following dimensions for field vanes:

D (mm) H (mm) Thickness of blades (mm)

38.1 76.2 1.6
50.8 101.6 1.6
63.5 127.0 3.2
92.1 184.2 3.2
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If the undrained shear strength is different in the vertical [Su(V)] and 
horizontal [Su(H)] directions, then Equation 9.59 translates to

	
T D H S D SV H= +





π 2

2 6u( ) u( ) 	 (9.62)

In addition to rectangular vanes, triangular vanes can be used in the field 
(Richardson et al., 1975) to determine the directional variation of the und-
rained shear strength. Figure 9.70a shows a triangular vane. For this vane

	

S T

L i
iu() = 4

3
3 2π cos

	 (9.63)

The term Su(i) was defined in Equation 9.52.
Silvestri and Tabib (1992) analyzed elliptical vanes (Figure 9.70b). For 

uniform shear stress distribution,

	
S C T

au =
8 3 	 (9.64)

where C = f(a/b). The variation of C with a/b is shown in Figure 9.71.

L

2iH 2a 2b

(a) (b)

Figure 9.70  �(a) Triangular vane and (b) elliptical vane.
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Bjerrum (1972) studied a number of slope failures and concluded that the 
undrained shear strength obtained by vane shear is too high. He proposed 
that the vane shear test results obtained from the field should be corrected 
for the actual design. Thus

	
S Su design u field vane( ) ( )= λ 	 (9.65)

where λ is a correction factor, which may be expressed as

	 λ  17 54 log(PI)= −. .0 	 (9.66)

where PI is the plasticity index (%).
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Figure 9.71  �Variation of C with a/b (Equation 7.62).
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Morris and Williams (1994) gave the following correlations of λ:

	 λ = + >−118 57 PI 58 PI. .. ( )e 0 0 0 	 (9.67)

and

	 λ = + >−7 1 57 LL 28 LL. .. ( )0 0 00 0e 	 (9.68)

where LL is the liquid limit (%).

9.20.1 � Correlations with field vane shear strength

The field vane shear strength has been correlated with the preconsolida-
tion pressure and the OCR of the clay. Using 343 data points, Mayne and 
Mitchell (1988) derived the following empirical relationship for estimating 
the preconsolidation pressure of a natural clay deposit:

	
′ =σc S7 04 0 83. [ ].

u(field vane) 	 (9.69)

where
′σc is the preconsolidation pressure (kN/m2)

Su(field vane) is the field vane shear strength (kN/m2)

The OCR can also be correlated to Su(field vane) according to the equation

	
O CR u(field vane)

o
=

′
β

σ
S

	 (9.70)

where ′σo is the effective overburden pressure.
The magnitudes of β developed by various investigators are given later 

(also see Chapter 8)

•	 Mayne and Mitchell (1988)

	 β = −22 0 48[ (% )] .PI 	 (9.71)

		  where PI is the plasticity index.
•	 Hansbo (1957):

	
β = 222

w(% )
	 (9.72)

		  where w is the natural moisture content.
•	 Larsson (1980):

	
β =

+
1

0 08 0 0055. . [( )% ]PI
	 (9.73)
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9.21 � RELATION OF UNDRAINED SHEAR STRENGTH (Su) 
AND EFFECTIVE OVERBURDEN PRESSURE (p′)

A relation between Su, p′, and the drained friction angle can also be derived 
as follows. Referring to Figure 9.72a, consider a soil specimen at A. The 
major and minor effective principal stresses at A can be given by p′ and Kop′, 
respectively (where Ko is the coefficient of at-rest earth pressure). Let this 
soil specimen be subjected to a UU triaxial test. As shown in Figure 9.72b, 
at failure the total major principal stress is σ1 = p′ + ∆σ1; the total minor 
principal stress is σ3 = Kop′ + ∆σ3; and the excess pore water pressure is 
∆u. So, the effective major and minor principal stresses can be given by 

′ = −σ σ1 1 ∆u and ′ = −σ σ3 3 ∆u, respectively. The total- and effective-stress 
Mohr’s circles for this test, at failure, are shown in Figure 9.72c. From this, 
we can write

	

S
c

u

/cot ( )
sin

φ σ σ
φ

+ ′ + ′
=

1 3 2

where ϕ is the drained friction angle, or

	

S c

c

u

    

= +
′ + ′

= +
′ + ′

− ′





+ ′

cos sin

cos sin

φ σ σ φ

φ σ σ σ φ σ

1 3

1 3
3 3

2

2
ssinφ

However

	

′ + ′
− ′ =

′ − ′
=σ σ σ σ σ1 3

3
1 3

2 2
Su

So,

	 S c Su u= + + ′cos sin sinφ φ σ φ3

	 S cu( sin ) cos sin1 3− = + ′φ φ σ φ 	 (9.74)
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	 ′ = − = ′ + −σ σ σ3 3 3∆ ∆ ∆u K p uo 	 (9.75)

However (Chapter 5)

	 ∆u = B∆σ3 + Af(∆σ1 − ∆σ3)

For saturated clays, B = 1. Substituting the preceding equation into 
Equation 9.75

	

′ = ′ + − + −

= ′ − −

σ σ σ σ σ

σ σ

3 3 3 1 3

1 3

K p A

K p A

o f

o f

∆ ∆ ∆ ∆

∆ ∆

[ ( )]

( ) 	 (9.76)
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ṕ +Δσ1
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Figure 9.72  �Relation between the undrained strength of clay and the effective overbur­
den pressure: (a) soil specimen at A with major and minor principal stresses; 
(b) specimen at A subjected to a UU triaxial test; (c) total and effective stress 
Mohr’s circles.
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Again,

	

S p K p

S p K p

u
o

u o    or 2

= − =
′ + − ′ +

= − + ′ − ′

σ σ σ σ

σ σ

1 3 1 3

1 3

2 2
( ) ( )

( ) (

∆ ∆

∆ ∆ ))

) ( )    or ( 1 u o∆ ∆σ σ− = − ′ − ′3 2S p K p 	 (9.77)

Substituting Equation 9.77 into Equation 9.76, we obtain

	 ′ = ′ − + ′ −σ3 2 1K p S A A p Ko u f f o( )	 (9.78)

Substituting of Equation 9.78 into the right-hand side of Equation 9.74 and 
simplification yields

	
S c p K A K

Au
o f o

f
= + ′ + −

+ −
cos sin [ ( )]

( )sin
φ φ

φ
1

1 2 1
	 (9.79)

For normally consolidated clays, c = 0; hence, Equation 9.79 becomes

	

S
p

K A K
A

u o f o

f′
= + −

+ −
sin [ ( )]

( )sin
φ

φ
1

1 2 1
	 (9.80)

There are also several empirical relations between Su and p′ suggested by 
various investigators. These are given in Table 9.5 (Figure 9.73).

Table 9.5  �Empirical equations related to Su and p′

Reference Relation Remarks

Skempton (1957) Su(VST)/p′ = 0.11 + 0.0037 PI For normally consolidated clay

Chandler (1988) S pu(VST) c/  PI′ = +0 11 0 0037. . Can be used in overconsoildated 
soil; accuracy ±25%; not valid 
for sensitive and fissured clays

Jamiolkowski 
et al. (1985)

S pu c/ ′ = ±0 23 0 04. . For low overconsolidated clays

Mesri (1989) S pu c/ ′ = 0 22.

Bjerrum and 
Simons (1960)

S pu / f(Ll)′ = See Figure 9.73; for normally 
consolidated clays

Ladd et al. (1977)
( )
( )

(
S p
S p
u overconsolidated

u normally consolidated

0./
/

OCR)
′

′
= 88

Notes:	 PI, plasticity index (%); Su(VST), undrained shear strength from vane shear test; ′pc , preconsolida­
tion pressure; LI, liquidity index; and OCR, overconsolidation ratio.
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Example 9.7

A soil profile is shown in Figure 9.74. From a laboratory consolida-
tion test, the preconsolidation pressure of a soil specimen obtained 
from a depth of 8 m below the ground surface was found to be 140 
kN/m2. Estimate the undrained shear strength of the clay at that 
depth. Use Skempton’s and Ladd et al.’s relations from Table 9.5 and 
Equation 9.66.

Solution

	

γ γ γ
sat(clay)

s w s w

s

19

= +
+

= +
+

=

G w G
w G1

2 7 9 81 1 0 3
1 0 32 7

( . )( . )( .)
.( . )

..02 kN /m 3

The effective overburden pressure at A is

	 p′ = 3 (17.3) + 5 (19.02 − 9.81) = 51.9 + 46.05 = 97.95 kN/m2

2 3 410
0

0.1

0.2

0.3

0.4

S M Pr

Liquidity index

Figure 9.73  �Variation of Su/p′ with liquidity index (see Table 9.5 for Bjerrum and Simon’ 
relation).
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Sand

Figure 9.74  �Undrained shear strength of a clay deposit.
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Thus, the OCR is

	
O CR = =140

97 95
1 43

.
.

From Table 9.5 (Ladd et al.’s relationship)

	

S
p

S
p

u

O C

u

N C

0.8O CR)
′









 =

′








 ( 	 (E9.5)

However, from Table 9.5 (Skempton’s relationship)

	

S
p

u(VST)

N C

 PI
′









 = +0 11 0 037. . 	 (E9.6)

From Equation 9.66

	

S S Su u(VST) u(VST)PI)]

     [1.7

= = −

= −

λ [ . . log(

( . )log(

1 7 0 54

0 54 522 31 0 986− =)] .S Su(VST) u(VST)

	
S

S
u(VST)

u=
0 986.

	 (E9.7)

Combining Equations E9.6 and E9.7

	

S
p

u

N C

 PI
0 986

0 11 0 0037
.

. .
′









 = +

	

S
p
u

N C
′









 = + − =( . )[ . . ( )] .0 986 0 11 0 0037 52 31 0 185 	 (E9.8)

From Equations E9.5 and E9.6

	 Su(OC) = (0.185)(1.43)0.8(97.95) = 24.12 kN/m2

9.22 � CREEP IN SOILS

Like metals and concrete, most soils exhibit creep, that is, continued defor-
mation under a sustained loading (Figure 9.75). In order to understand 
Figure 9.75, consider several similar clay specimens subjected to standard 
undrained loading. For specimen no. 1, if a deviator stress (σ1 − σ3)1 < 
(σ1 − σ3)failure is applied, the strain versus time (∈ versus t) relation will be 
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similar to that shown by curve 1. If specimen no. 2 is subjected to a devia-
tor stress (σ1 − σ3)2 such that (σ1 − σ3)failure > (σ1 − σ3)2 > (σ1 − σ3)1, the strain 
versus time relation may be similar to that shown curve 2. After the occur-
rence of a large strain, creep failure will take place in the specimen.

In general, the strain versus time plot for a given soil can be divided into 
three parts: primary, secondary, and tertiary. The primary part is the tran-
sient stage; this is followed by a steady state, which is secondary creep. The 
tertiary part is the stage during which there is a rapid strain, which results 
in failure. These three steps are shown in Figure 9.75. Although the second-
ary stage is referred to as steady-state creep, in reality a true steady-state 
creep may not really exist (Singh and Mitchell, 1968).

It was observed by Singh and Mitchell (1968) that for most soils (i.e., 
sand, clay—dry, wet, normally consolidated, and overconsolidated) the 
logarithm of strain rate has an approximately linear relation with the 
logarithm of time. This fact is illustrated in Figure 9.76 for remolded San 
Francisco Bay mud. The strain rate is defined as

	
�∈= ∆

∆
ε
t

	 (9.81)

where
�∈ is the strain rate
ε is the strain
t is the time

Primary
creep
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Curve 2

Tertiary
creep

Failure
(σ1 – σ3)2
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σ3

Curve 1St
ra

in

Time

Figure 9.75  �Creep in soils.
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From Figure 9.76, it is apparent that the slope of the log �∈ versus log t 
plot for a given soil is constant irrespective of the level of the deviator 
stress. When the failure stage due to creep at a given deviator stress level is 
reached, the log �∈ versus log t plot will show a reversal of slope as shown 
in Figure 9.77.

Figure 9.78 shows the nature of the variation of the creep strain rate 
with deviator stress D = σ1 − σ3 at a given time t after the start of the creep. 
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Figure 9.76  �Plot of log �∈ versus log t during undrained creep of remolded San Francisco 
Bay mud. (After Singh, A. and Mitchell, J.K., J. Soil Mech. Found. Eng. Div., 
ASCE, 94(SM1), 21, 1968.)
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Figure 9.77  �Nature of variation of log �∈ versus log t for a given deviator stress showing 
the failure stage at large strains.
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For small values of the deviator stress, the curve of log �∈ versus D is convex 
upward. Beyond this portion, log �∈ versus D is approximately a straight 
line. When the value of D approximately reaches the strength of the soil, 
the curve takes an upward turn, signaling impending failure.

For a mathematical interpretation of the variation of strain rate with 
the deviator stress, several investigators (e.g., Christensen and Wu, 1964; 
Mitchell et al., 1968) have used the rate-process theory. Christensen and 
Das (1973) also used the rate-process theory to predict the rate of erosion 
of cohesive soils.

The fundamentals of the rate-process theory can be explained as fol-
lows. Consider the soil specimen shown in Figure 9.79. The deviator stress 
on the specimen is D = σ1 − σ3. Let the shear stress along a plane AA in 

Failure

lo
g 
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ra
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 ra

te
, 

Deviator stress, D = σ1 – σ3

Figure 9.78  �Variation of the strain rate �∈ with deviator stress at a given time t after the 
start of the test.
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Figure 9.79  �Fundamentals of rate-process theory.
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the specimen be equal to τ. The shear stress is resisted by the bonds at the 
points of contact of the particles along AA. Due to the shear stress τ the 
weaker bonds will be overcome, with the result that shear displacement 
occurs at these localities. As this displacement proceeds, the force carried 
by the weaker bonds is transmitted partly or fully to stronger bonds. The 
effect of applied shear stress can thus be considered as making some flow 
units cross the energy barriers as shown in Figure 9.80, in which ∆F is equal 
to the activation energy (in cal/mol of flow unit). The frequency of activa-
tion of the flow units to overcome the energy barriers can be given by

	
′ = −





= −





k kT
h

F
RT

kT
h

F
N kT

exp exp∆ ∆
	 (9.82)

where
k′ is the frequency of activation
k is Boltzmann’s constant = 1.38 × 10−16 erg/K = 3.29 × 10−24 cal/K
T is the absolute temperature
h is Plank’s constant = 6.624 × 10−27 erg/s
∆F is the free energy of activation, cal/mol
R is the universal gas constant
N is Avogadro’s number = 6.02 × 1023

Now, referring to Figure 9.81 when a force f is applied across a flow unit, 
the energy-barrier height is reduced by fλ/2 in the direction of the force and 
increased by fλ/2 in the opposite direction. By this, the frequency of activa-
tion in the direction of the force is

	
′ = − −



�k

kT
h

F N f
kT

exp ∆ / /λ 2
	 (9.83)
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Figure 9.80  �Definition of activation energy.
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and, similarly, the frequency of activation in the opposite direction becomes

	
�′ = − +



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k kT
h

F N f
kT

exp ∆ / /λ 2
	 (9.84)

where λ is the distance between successive equilibrium positions.
So, the net frequency of activation in the direction of the force is equal to
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The rate of strain in the direction of the applied force can be given by

	
� � �∈= ′ − ′( )x k k 	 (9.86)

where x is a constant depending on the successful barrier crossings. So
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Figure 9.81  �Derivation of Equation 7.86.
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In the previous equation

	
f

S
= τ

	 (9.88)

where
τ is the shear stress
S is the number of flow units per unit area

For triaxial shear test conditions as shown in Figure 9.79

	
τ σ σ
m ax = = −D

2 2
1 3 	 (9.89)

Combining Equations 9.88 and 9.89

	
f D

S
=
2

	 (9.90)

Substituting Equation 9.90 into Equation 9.87, we get
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For large stresses to cause significant creep—that is, D > 0.25 [Dmax = 0.25 
(Mitchell et al., 1968)] the magnitude of Dλ/4kST is greater than 1. So, in 
that case

	
sinh D

kST
D
kST

λ λ
4

1
2 4

≈ 





exp 	 (9.92)

Hence, from Equations 9.91 and 9.92
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�∈= A BDexp( )	 (9.94)

where
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B
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The quantity A is likely to vary with time because of the variation of x and ∆F 
with time. B is a constant for a given value of the effective consolidation pressure.

Figure 9.82 shows the variation of the undrained creep rate �∈ with the 
deviator stress D for remolded illite at elapsed times t equal to 1, 10, 100, 
and 1000 min. From this, note that at any given time the following apply:

	 1.	For D < 49 kN/m2, the log �∈ versus D plot is convex upward following 
the relation given by Equation 9.91, �∈ = 2A sinh (BD). For this case, 
Dλ/4SkT < 1.

	 2.	For 128 kN/m2 > D > 49 kN/m2, the log �∈ versus D plot is approxi-
mately a straight line following the relation given by Equation 9.94, 
�∈ = AeBD. For this case, Dλ/4SkT > 1.

	 3.	For D > 128 kN/m2, the failure stage is reached when the strain rate rap-
idly increases; this stage cannot be predicted by Equations 9.91 or 9.94.

Table 9.6 gives the values of the experimental activation energy ∆F for 
four different soils.
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Figure 9.82  �Variation of strain rate with deviator stress for undrained creep of 
remolded illite. (After Mitchell, J.K. et al., J. Soil Mech. Found. Eng. Div., ASCE, 
95(SM5), 1219, 1969.)
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9.23 � OTHER THEORETICAL CONSIDERATIONS: 
YIELD SURFACES IN THREE DIMENSIONS

Comprehensive failure conditions or yield criteria were first developed for 
metals, rocks, and concrete. In this section, we will examine the application 
of these theories to soil and determine the yield surfaces in the principal 
stress space. The notations ′σ1, ′σ2, and ′σ3 will be used for effective princi-
pal stresses without attaching an order of magnitude—that is, ′σ1, ′σ2, and 

′σ3 are not necessarily major, intermediate, and minor principal stresses, 
respectively.

Von Mises (1913) proposed a simple yield function, which may be stated as

	
F Y= ′ − ′( ) + ′ − ′( ) + ′ − ′( ) − =σ σ σ σ σ σ1 2

2
2 3

2
3 1

2 22 0 	 (9.97)

where Y is the yield stress obtained in axial tension. However, the octahe-
dral shear stress can be given by the relation

	
τ σ σ σ σ σ σoct = ′ − ′( ) + ′ − ′( ) + ′ − ′( )1

3 1 2
2

2 3
2

3 1
2

Thus, Equation 9.97 may be written as

	 3 22 2τoct = Y

	
or  octτ = 2

3
Y 	 (9.98)

Equation 9.98 means that failure will take place when the octahedral 
shear stress reaches a constant value equal to 2 3/ Y. Let us plot this 

Table 9.6  �Values of ∆F for some soils

Soil ∆F (kcal/mol)

Saturated, remolded illite; water content 
30%–43%

25–40

Dried illite, samples air-dried from 
saturation, then evacuated over desiccant

37

Undisturbed San Francisco Bay mud 25–32
Dry Sacramento River sand ∼25

Source:	 After Mitchell, J.K. et al., J. Soil Mech. Found. Eng. Div., ASCE, 
95(SM5), 1219, 1969.
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on the octahedral plane ′ + ′ + ′ =( )σ σ σ1 2 3 const , as shown in Figure 9.83. 
The locus will be a circle with a radius equal to τoct /= 2 3Y  and with 
its center at point a. In Figure 9.83a, Oa is the octahedral normal stress 

′ + ′ + ′( ) = ′σ σ σ σ1 2 3 3/ oct; also, ab = τoct and O b = ′ +σ τoct oct
2 2 . Note that the 

locus is unaffected by the value of ′σoct. Thus, various values of ′σoct will 
generate a circular cylinder coaxial with the hydrostatic axis, which is a 
yield surface (Figure 9.83b).

Another yield function suggested by Tresca (1868) can be expressed in 
the form

	 σ σm ax m in− = 2k 	 (9.99)

Equation 9.99 assumes that failure takes place when the maximum 
shear stress reaches a constant critical value. The factor k of Equation 
9.99 is defined for the case of simple tension by Mohr’s circle shown 
in Figure 9.84. Note that for soils this is actually the ϕ = 0 condition. 
In Figure 9.84, the  yield function is plotted on the octahedral plane 

′ + ′ + ′ =( )σ σ σ1 2 3 const . The locus is a regular hexagon. Point a is the point 
of intersection of the hydrostatic axis or isotropic stress line with octa-
hedral plane, and so it represents the octahedral normal stress. Point 
b represents the failure condition in compression for ′ > ′ = ′σ σ σ1 2 3, and 
point e represents the failure condition in extension with ′ = ′ > ′σ σ σ2 3 1. 
Similarly, point d represents the failure condition for ′ > ′ = ′σ σ σ3 1 2, point g 
for ′ = ′ > ′σ σ σ1 2 3, point f for ′ > ′ = ′σ σ σ2 3 1, and point c for ′ = ′ > ′σ σ σ3 1 2. 

Octahedral plane
σ1́ + σ2́ + σ3́ = constant

Isotropic
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Yield surface
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σ 1́
= σ 2́

= σ 3́

σ 1́

b
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O
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Figure 9.83  �Yield surface—Von Mises criteria: (a) plot of Equation 9.98 on the octahedral 
plane; (b) yield surface.
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Since the locus is unaffected by the value of ′σoct, the yield surface will be 
a hexagonal cylinder.

We have seen from Equation 9.20 that, for the Mohr–Coulomb condition 
of failure, ′ − ′( ) = + ′ + ′( ) ′ − ′( ) = +σ σ φ σ σ φ σ σ φ1 3 1 3 1 3

22 2c ccos sin [ cos,or
 

′ +( ′ )σ σ φ1 3
2sin ]. In its most general form, this can be expressed as

	

′ − ′( ) − + ′ + ′( ) { }
× ′ − ′( ) − + ′

σ σ φ σ σ φ

σ σ φ

1 2
2

1 2

2

2 3
2

2

2

c

c

cos sin

cos σσ σ φ

σ σ φ σ σ φ

2 3

2

3 1 3 1
2

2

+ ′( ) { }
× ′ − ′( ) − + ′ + ′( ) { }

sin

cos sinc == 0 	 (9.100)

When the yield surface defined by Equation 9.100 is plotted on the octa-
hedral plane, it will appear as shown in Figure 9.85. This is an irregu-
lar hexagon in section with nonparallel sides of equal length. Point a in 
Figure 9.85 is the point of intersection of the hydrostatic axis with the octa-
hedral plane. Thus, the yield surface will be a hexagonal cylinder coaxial 
with the isotropic stress line.

Figure 9.86 shows a comparison of the three yield functions described 
previously. In a Rendulic-type plot, the failure envelopes will appear in a 
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e
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b
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df
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σ 1́≥σ 2́≥ σ 3́

σ 1́–σ 3́= 2k
σ 1́≥σ 3́≥ σ 2́

σ 1́–σ 2́= 2k

σ 2́ σ 3́

Figure 9.84  �Yield surface—Tresca criterion.
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manner shown in Figure 9.86b. At point a, ′ = ′ = ′ = ′σ σ σ σ1 2 3  (say). At point b, 
′ = ′ + ′ = ′ +σ σ σ θ1 ba absin , where θ = −cos ( ).1 1 3/  Thus

	
′ = ′ +σ σ1

2
3
ab 	 (9.101)

	
′ = ′ = ′ −

′
= ′ − = ′ −σ σ σ σ θ σ2 3 2 2

1
6

aa ab abcos
	 (9.102)

For the Mohr–Coulomb failure criterion, ′ − ′ = + ′ + ′( )σ σ φ σ σ φ1 3 1 32ccos sin . 
Substituting Equations 9.101 and 9.102 in the preceding equation, we obtain

	
′ + − ′ +









 =σ σ φ2

3
1
6

2ab ab ccos + ′ + + ′ −








σ σ φ2

3
1
6

ab ab sin

or

	

ab c2
3

1
6

2
3

1
6

2+

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


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 − −
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Figure 9.85  �Mohr–Coulomb failure criterion.
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Figure 9.86  �(a) Comparison of Von Mises, Tresca, and Mohr–Coulomb yield functions; 
(b) failure envelopes in a Rendulic type plot.
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or ab c3
6

1 1
3

2−





= + ′sin ( cos sin )φ φ σ φ
	

(9.103)

Similarly, for extension (i.e., at point e1)

	
′ = ′ − ′′ = ′ − = ′ −σ σ σ θ σ1 1 1 1

2
3

ea ae aesin 	 (9.104)

	
′ = ′ = ′ +

′′
= ′ + = ′σ σ σ σ θ σ2 3

1
12 2

1
6

aa ae aecos
	 (9.105)

Now ′ − ′ = + ′ + ′σ σ φ σ σ φ3 1 3 12ccos ( )sin . Substituting Equations 9.104 and 
9.105 into the preceding equation, we get

	

ae c1
2
3

1
6

2
3

1
6

2+








 + −























= + ′sin ( cos sin )φ φ σ φ 	 (9.106)

or

	
ae c1

3
6

1 1
3

2+





= + ′sin ( cos sin )φ φ σ φ 	 (9.107)

Equating Equations 9.103 and 9.107

	

ab
ae1

1 1
3

1 1
3

=
+

−

sin

sin

φ

φ
	 (9.108)

Table 9.7 gives the ratios of ab to ae1 for various values of ϕ. Note that this 
ratio is not dependent on the value of cohesion, c.

It can be seen from Figure 9.86a that the Mohr–Coulomb and the Tresca 
yield functions coincide for the case ϕ = 0.
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Von Mises’ yield function (Equation 9.97) can be modified to the form

	

′ − ′( ) + ′ − ′( ) + ′ − ′( ) = + ′ + ′ + ′( )





σ σ σ σ σ σ σ σ σ1 2
2

2 1
2

3 1
2 2

1 2 3

2

3
c k

oor  + oct′ − ′( ) + ′ − ′( ) ′ − ′( ) = + ′σ σ σ σ σ σ σ1 2
2

2 3
2

3 1
2

2
2( )c k 	 (9.109)

where 
k2 is a function of sin ϕ 
c is cohesion 

Equation 9.109 is called the extended Von Mises’ yield criterion.
Similarly, Tresca’s yield function (Equation 9.99) can be modified to the form

	

′ − ′( ) − + ′





× ′ − ′( ) − + ′ 

× ′

σ σ σ

σ σ σ

σ

1 2
2

3
2

2 3 3
2

3

( )

( )

c k

c k

oct

oct

−− ′( ) − + ′



σ σ1

2
3

2( )c k oct 	 (9.110)

where
k3 is a function of sin ϕ
c is cohesion

Equation 9.110 is generally referred to as the extended Tresca criterion.

9.24 � EXPERIMENTAL RESULTS TO COMPARE 
THE YIELD FUNCTIONS

Kirkpatrick (1957) devised a special shear test procedure for soils, called the 
hollow cylinder test, which provides the means for obtaining the variation in 
the three principal stresses. The results from this test can be used to compare 
the validity of the various yield criteria suggested in the preceding section.

Table 9.7  �Ratio of ab to ae1 
(Equation 9.108)

ϕ ab ae/ 1

40 0.647
30 0.715
20 0.796
10 0.889
0 1.0
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A schematic diagram of the laboratory arrangement for the hollow cyl-
inder test is shown in Figure 9.87a. A soil specimen in the shape of a 
hollow cylinder is placed inside a test chamber. The specimen is encased 
by both an inside and an outside membrane. As in the case of a triaxial 
test, radial pressure on the soil specimen can be applied through water. 
However, in this type of test, the pressures applied to the inside and out-
side of the specimen can be controlled separately. Axial pressure on the 

Piston

Cap

Soil
specimen

(a)

Pore
water

σi

σo

σi

riro

σo

σθ

σr

(b)

Figure 9.87  �Hollow cylinder test: (a) schematic diagram; (b) relationship for principal 
stresses in the soil specimen.
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specimen is applied by a piston. In the original work of Kirkpatrick, the 
axial pressure was obtained from load differences applied to the cap by 
the fluid on top of the specimen (i.e., piston pressure was not used; see 
Equation 9.117).

The relations for the principal stresses in the soil specimen can be 
obtained as follows (see Figure 9.87b). Let σo and σi be the outside and 
inside fluid pressures, respectively. For drained tests, the total stresses σo 
and σi are equal to the effective stresses, ′σo and ′σi. For an axially symmetri-
cal case, the equation of continuity for a given point in the soil specimen 
can be given by

	

d
dr r

′
+

′ − ′
=σ σ σθr r 0 	 (9.111)

where
′σr and ′σθ are the radial and tangential stresses; respectively

r is the radial distance from the center of the specimen to the point

We will consider a case where the failure in the specimen is caused by 
increasing ′σi and keeping ′σo constant. Let

	 ′ = ′σ λσθ r 	 (9.112)

Substituting Equation 9.112 in Equation 9.111, we get

	

d
dr r

′
+

′ −( ) =σ σ λr r 1 0

	
or r

r

1
1λ

σ
σ−

′
′

= ∫∫ d dr
r

	 ′ = −σ λ
r

1Ar 	 (9.113)

where A is a constant.
However, ′ = ′σ σr o at r = ro, which is the outside radius of the specimen. So

	
A

r
=

′
−

σ
λ
o

o
1 	 (9.114)
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Combining Equations 9.113 and 9.114

	
′ = ′ 








−

σ σ
λ

r o
o

1
r
r

	 (9.115)

Again, from Equations 9.112 and 9.115

	
′ = ′ 








−

σ λσθ

λ

o
o

1
r
r

	 (9.116)

The effective axial stress ′σa can be given by the equation

	
′ =

′ ( ) − ′ ( )
−

=
′ − ′

−
σ

σ π σ π
π π

σ σ
a

o o
2

i i
2

o
2

i
2

o o
2

ii
2

o i
2

r r

r r
r r
r r2 	 (9.117)

where ri is the inside radius of the specimen.
At failure, the radial and tangential stresses at the inside face of the speci-

men can be obtained from Equations 9.115 and 9.116:

	
′ = ′( ) = ′ 








−

σ σ σ
λ

rinside i failure o
i

o

1

( )
r
r

	 (9.118)

	
or i

o failure
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1′
′







 = 





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−
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r

	 (9.119)

	
′ = ′( ) = ′ 








−

σ σ λσθ θ

λ

( )inside failure o
i

o

1
r
r

	 (9.120)

To obtain ′σa at failure, we can substitute Equation 9.118 into Equation 
9.117

	

′( ) =
′ − ′ ′( ) 

−

=
′

σ
σ σ σ

σ

a failure

o o i i o

o i

o o

/ /
/

/

( )
( )

[(

r r

r r

r r

2

2 1

ii o i

o i

/
/
) ( ) ]

( )

2 1

2 1
−

−

−r r
r r

λ

	 (9.121)
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From the earlier derivations, it is obvious that for this type of test (i.e., 
increasing ′σi to cause failure and keeping ′σo constant) the major and minor 
principal stresses are ′σr and ′σθ. The intermediate principal stress is ′σa. 
For granular soils the value of the cohesion c is 0, and from the Mohr–
Coulomb failure criterion

	

M inorprincipalstress
M ajorprincipalstress failure









 = −1 sinn

sin

sin
sin

φ
φ

σ
σ

φ
φ

θ

1

1
1

+

′
′







 = −

+
or

r failure

	 (9.122)

Comparing Equations 9.112 and 9.122

	

1
1

45
2

2−
+

= ° −





=sin
sin

tanφ
φ

φ λ 	 (9.123)

The results of some hollow cylinder tests conducted by Kirkpatrick 
(1957) on a sand are given in Table 9.8, together with the calculated values 
of λ, ′( )σa failure, ′( )σr failure, and ′( )σθ failure.

A comparison of the yield functions on the octahedral plane and the 
results of Kirkpatrick is given in Figure 9.88. The results of triaxial 

Table 9.8  �Results of Kirkpatrick’s hollow cylinder test on a sand

Test no.
( )′σi failurea 
(kN/m2)

′σob 
(kN/m2)

λ (from 
Equation 
9.119)c

′σθ( )inside  
at failured 
(kN/m2)

′σθ( )outside  
at failuree 
(kN/m2)

′σa (from 
Equation 9.117) 

(kN/m2)

1 146.3 99.4 0.196 28.7 19.5 72.5
2 187.5 129.0 0.208 39.0 26.8 91.8
3 304.2 211.1 0.216 65.7 45.6 153.9
4 384.2 265.7 0.215 82.5 57.1 192.9
5 453.7 316.0 0.192 87.0 60.7 222.9
6 473.5 330.6 0.198 93.8 65.4 234.9
7 502.9 347.1 0.215 107.8 74.6 247.7
8 532.4 372.7 0.219 116.6 81.6 268.4
9 541.2 378.1 0.197 106.3 74.5 263.6

a	 ( )′ = ′σ σi failure r(inside) at failure.
b	 ( )′ = ′σ σo r(outside) at failure.
c	 For these tests, ro = 50.8 mm and ri = 31.75 mm.
d	 ′ = ′σ λ σθ(inside) i failure( ) .
e	 ′ = ′σ λ σo(outside) o failure( ) .
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compression and extension tests conducted on the same sand by Kirkpatrick 
are also shown in Figure 9.88. The experimental results indicate that the 
Mohr–Coulomb criterion gives a better representation for soils than the 
extended Tresca and Von Mises criteria. However, the hollow cylinder tests 
produced slightly higher values of ϕ than those from the triaxial tests.

Wu et al. (1963) also conducted a type of hollow cylinder shear test with sand 
and clay specimens. In these tests, failure was produced by increasing the inside, 
outside, and axial stresses on the specimens in various combinations. The axial 
stress increase was accomplished by the application of a force P on the cap 
through the piston as shown in Figure 9.87. Triaxial compression and extension 
tests were also conducted. Out of a total of six series of tests, there were two 
in which failure was caused by increasing the outside pressure. For those two 
series of tests, ′ > ′ > ′σ σ σθ a r. Note that this is opposite to Kirkpatrick’s tests, in 
which ′ > ′ > ′σ σ σθr a . Based on the Mohr–Coulomb criterion, we can write (see 
Equation 9.21) ′ = ′σ σm ax m in N + 2cN1/2. So, for the case where ′ > ′ > ′σ σ σθ a r,

	 ′ = ′ +σ σθ rN cN2 1 2/ 	 (9.124)

Mohr–Coulomb

Kirkpatrick

Extended
Von Mises

Extended
Tresca

Triaxial compression
Triaxial extension
Hollow cylinder–outside
Hollow cylinder–inside

σ1́

σ2́ σ3́

= 38°

Figure 9.88  �Comparison of the yield functions on the octahedral plane along with the 
results of Kirkpatrick.



502  Advanced Soil Mechanics﻿

The value of N in the previous equation is tan2(45° + ϕ/2), and so the λ in 
Equation 9.112 is equal to 1/N. From Equation 9.111

	

d
dr r

′
=

′ − ′σ σ σθr r

Combining the preceding equation and Equation 9.124, we get

	

d
dr r

N cN′
= ′ − + 

σ σr
r

1 1 2 1 2( ) / 	 (9.125)

Using the boundary condition that at r = ri, ′ = ′σ σr i, Equation 9.125 gives 
the following relation:
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Also, combining Equations 9.124 and 9.126
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At failure, ′ = ′( ) ⋅σ σroutside o failure( )  So
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
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
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2
1

1 2 1 1 2cN
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r

cN
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	 (9.128)

For granular soils and normally consolidated clays, c = 0. So, at failure, 
Equations 9.126 and 9.127 simplify to the form

	
′( ) = ′( ) = ′ 








−

σ σ σr outsideatfailure o failure i
o

i

r
r

N 1

	 (9.129)

	
and outsideatfailure i

o

i
′( ) = ′ 








−

σ σθ N r
r

N 1

	 (9.130)

	
H ence M inorprincipaleffectivestress

M ajo
r

failure

′
′







 =σ

σθ rrprincipaleffectivestress
= =1
N

λ 	 (9.131)

Compare Equations 9.112 and 9.131.
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Wu et al. also derived equations for ′σr and ′σθ for the case ′ > ′ > ′σ σ σθa r. 
Figure 9.89 shows the results of Wu et al. plotted on the octahedral plane 

′ + ′ + ′ =σ σ σ1 2 3 1. The Mohr–Coulomb yield criterion has been plotted by 
using the triaxial compression and extension test results. The results of 
other hollow cylinder tests are plotted as points. In general, there is good 
agreement between the experimental results and the yield surface predicted 
by the Mohr–Coulomb theory. However, as in Kirkpatrick’s test, hollow 
cylinder tests indicated somewhat higher values of ϕ than triaxial tests in 
the case of sand. In the case of clay, the opposite trend is generally observed.
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Chapter 10

Elastic settlement 
of shallow foundations

10.1 � INTRODUCTION

The increase of stress in soil layers due to the load imposed by various 
structures at the foundation level will always be accompanied by some 
strain, which will result in the settlement of the structures.

In general, the total settlement S of a foundation can be given as

	
S S S S= + +e p s

where
Se is the elastic settlement
Sp is the primary consolidation settlement
Ss is the secondary consolidation settlement

In granular soils elastic settlement is the predominant part of the set-
tlement, whereas in saturated inorganic silts and clays the primary con-
solidation settlement probably predominates. The secondary consolidation 
settlement forms the major part of the total settlement in highly organic 
soils and peats. In this chapter, the procedures for estimating elastic set-
tlement will be discussed in detail. Consolidation settlement calculation 
procedures will be discussed in Chapter 11.

10.2 � ELASTIC SETTLEMENT OF FOUNDATIONS ON 
SATURATED CLAY (POISSON’S RATIO ν = 0.5)

Janbu et al. (1956) proposed a generalized equation for average elastic set-
tlement for uniformly loaded flexible foundation supported by a saturated 
clay soil in the form

	
S qB

Ee(average)= =µ µ ν1 0 0 5( .)	 (10.1)
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where
μ1 is the correction factor for finite thickness of elastic soil layer H, as 

shown in Figure 10.1
μ0 is the correction factor for depth of embedment of foundation Df, 

as shown in Figure 10.1
B is the width of rectangular loaded foundation or diameter of circular 

loaded foundation
E is the modulus of elasticity of the clay soil
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Figure 10.1  �Variation of μ0 and μ1 for use in Equation 10.1. (Based on Christian, J.T. and 
Carrier, III, W.D., Can. Geotech. J., 15(1), 124, 1978.)
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Christian and Carrier (1978) made a critical evaluation of Equation 10.1, 
the details of which will not be presented here. However, they suggested 
that for Poisson’s ratio ν = 0.5, Equation 10.1 could be retained for elastic 
settlement calculations with a modification of the values of μ1 and μ0. The 
modified values of μ1 are based on the work of Giroud (1972), and those for 
μ0 are based on the work of Burland (1970). These are shown in Figure 10.1.

The undrained secant modulus E of clay soils can generally be expressed as

	 E S= β u 	 (10.2)

where Su is undrained shear strength. Duncan and Buchignani (1976) compiled 
the results of the variation of β with plasticity index PI and overconsolidation 
ratio OCR for a number of soils. Table 10.1 gives a summary of these results.

10.3 � ELASTIC SETTLEMENT OF FOUNDATIONS 
ON GRANULAR SOIL

Various methods available at the present time to calculate the elastic settle-
ment of foundations on granular soil can be divided into three general cat-
egories. They are as follows:

	 1.	Methods based on observed settlement of structures and full-scale pro-
totypes: These methods are empirical in nature and are correlated with 
the results of the standard in situ tests such as the standard penetration 
test (SPT) and the cone penetration test (CPT). They include, for example, 

Table 10.1  �Variation of β with plasticity index 
and overconsolidation ratio

OCR PI range Range of β

1 PI < 30 1500–600
30 < PI < 50 600–300
PI > 50 300–125

2 PI < 30 1450–575
30 < PI < 50 575–275
PI > 50 275–115

4 PI < 30 975–400
30 < PI < 50 400–185
PI > 50 185–70

6 PI < 30 600–250
30 < PI < 50 250–115
PI > 50 115–60

Source:	 Compiled from Duncan, J.M., and 
Buchignani,  A.N., Department of Civil Engineering 
University of California, Berkley,1976.
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procedures developed by Terzaghi and Peck (1948, 1967), Meyerhof (1956, 
1965), Peck and Bazaraa (1969), and Burland and Burbidge (1985).

	 2.	Semi-empirical methods: These methods are based on a combina-
tion of field observations and some theoretical studies. They include, 
for example, the procedures outlined by Schmertmann (1970), 
Schmertmann et al. (1978), and Akbas and Kulhawy (2009).

	 3.	Methods based on theoretical relationships derived from the theory of 
elasticity: The relationships for settlement calculation available in this 
category contain the term modulus of elasticity E and Poisson’s ratio ν.

The general outlines for some of these methods are given in the following 
sections.

10.4 � SETTLEMENT CALCULATION OF FOUNDATIONS 
ON GRANULAR SOIL USING METHODS 
BASED ON OBSERVED SETTLEMENT OF 
STRUCTURES AND FULL-SCALE PROTOTYPES

The methods suggested by Terzaghi and Peck (1948, 1967), Meyerhof 
(1965), and Burland and Burbidge (1985) are elaborated upon in the fol-
lowing sections.

10.4.1 � Terzaghi and Peck’s method

Terzaghi and Peck (1948) proposed the following empirical relationship between 
the settlement (Se) of a prototype foundation measuring B × B in plan and the 
settlement of a test plate [Se(1)] measuring B1 × B1 loaded to the same intensity: 

	

S
S B B

e

e /() [ ( )]1 1
2

4
1

=
+

	 (10.3)

Although a full-sized footing can be used for a load test, the normal prac-
tice is to employ a plate with B1 in the order of 0.3–1 m.

Terzaghi and Peck (1948, 1967) proposed a correlation for the allowable 
bearing capacity, field standard penetration number N, and the width of the 
foundation B corresponding to a 25 mm settlement based on the observa-
tion given by Equation 10.3. This correlation is shown in Figure 10.2 (for 
depth of foundation equal to zero). The curves shown in Figure 10.2 can be 
approximated by the relation

	
S q

N
B

B .e(m m )=
+







3
0 3

2

	 (10.4)
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where
q is the bearing pressure (kN/m2)
B is the width of foundation (m)

If corrections for ground water table location and depth of embedment are 
included, then Equation 10.4 takes the form

	
S C C q

N
B

B .e W D=
+







3
0 3

2

	 (10.5)

where
CW is the ground water table correction
CD is the correction for depth of embedment = 1 − (Df /4B)
Df is the depth of embedment

The magnitude of CW is equal to 1.0 if the depth of water table is greater 
than or equal to 2B below the foundation, and it is equal to 2.0 if the 
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depth of water table is less than or equal to B below the foundation. The 
N value that is to be used in Equations 10.4 and 10.5 should be the average 
value of N up to a depth of about 3B to 4B measured from the bottom of 
the foundation.

10.4.2 � Meyerhof’s method

In 1956, Meyerhof proposed relationships for the elastic settlement of 
foundations on granular soil similar to Equation 10.4. In 1965, he com-
pared the predicted (by the relationships proposed in 1956) and observed 
settlements of eight structures and suggested that the allowable pressure q 
for a desired magnitude of Se can be increased by 50% compared to what 
he recommended in 1956. The revised relationships including the correc-
tion factors for water table location CW and depth of embedment CD can 
be expressed as

	
S C C . q

N
Be W D (for 1.22m )= ≤1 25

	 (10.6)

and

	
S C C q

N
B

B .
Be W D (for 1.22m )=

+






>2
0 3

2

	 (10.7)

	 C W = 1 0. 	 (10.8)

and

	
C . D

BD
f= −1 0

4
	 (10.9)

10.4.3 � Method of Peck and Bazaraa

Peck and Bazaraa (1969) recognized that the original Terzaghi and 
Peck method (see Section 10.4.1) was overly conservative and revised 
Equation 10.5 to the following form:

	
S C C q

N
B

B .e W D=
+







2
0 31

2

	 (10.10)



Elastic settlement of shallow foundations  515

where
Se is in mm
q is in kN/m2

B is in m
N1 is the standard penetration number corrected to a standard effective 

overburden pressure of 75 kN/m2

	
C B

BW
at0.5 below thebottom ofthefoundation
at0.5 below theb

=
′

σ
σ
0

0 oottom ofthefoundation
	 (10.11)

where
σ0 is the total overburden pressure

′σ0 is the effective overburden pressure

	
C . . D

q

.

D
f= −









1 0 0 4
0 5

γ
	 (10.12)

where γ is the unit weight of soil.
The relationships for N1 are as follows:

	
N N

.1
2(for 75 kN /m )=

+ ′
′ ≤4

1 0 04 0
0σ

σ 	 (10.13)

and

	
N N

. .1
2(for 75 kN /m )=

+ ′
′ >4

3 25 0 01 0
0σ

σ 	 (10.14)

where ′σ0 is the effective overburden pressure (kN/m2).

10.4.4 � Method of Burland and Burbidge

Burland and Burbidge (1985) proposed a method for calculating the elastic 
settlement of sandy soil using the field standard penetration number N. The 
method can be summarized as follows:

Step 1: Determination of variation of standard penetration number with 
depth

Obtain the field penetration numbers N with depth at the location of the 
foundation. The following adjustments of N may be necessary, depending 
on the field conditions:

For gravel or sandy gravel

	 N N(a) ≈ 1 25. 	 (10.15)
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For fine sand or silty sand below the ground water table and N > 15

	 N N(a) ≈ + −15 0 5 15.( )	 (10.16)

where N(a) is the adjusted N value.

Step 2: Determination of depth of stress influence (z′)
In determining the depth of stress influence, the following three cases may 
arise:

Case I: If N [or N(a)] is approximately constant with depth, calculate z′ from

	

′
= 








z
B

. B
B

.

R R
1 4

0 75

	 (10.17)

where
BR is the reference width = 0.3 m
B is the width of the actual foundation (m)

Case II: If N [or N(a)] is increasing with depth, use Equation 10.17 to cal-
culate z′.

Case III: If N [or N(a)] is decreasing with depth, calculate z′ = 2B and z′ = 
distance from the bottom of the foundation to the bottom of the soft soil 
layer (=z″). Use z′ = 2B or z′ = z″ (whichever is smaller).

Step 3: Determination of depth of stress influence correction factor α
The correction factor α is given as

	
α =

′
−

′






≤H
z

H
z

2 1 	 (10.18)

where H is the thickness of the compressible layer.

Step 4: Calculation of elastic settlement

The elastic settlement of the foundation Se can be calculated as

	 a.	For normally consolidated soil

	

S
B
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N N

. L B
. L B.

e

R (a)or
/
/

=
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
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		  where
L is the length of the foundation
pa is the atmospheric pressure (≈ 100 kN/m2)
N
_
 or N

_
(a) is the average value of N or N(a) in the depth of stress 

increase

	 b.	For overconsolidated soil (q ≤ ′σc; where ′σc is the overconsolidation 
pressure)
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	 c.	For overconsolidated soil ( )q > ′σc
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Example 10.1

A shallow foundation measuring 1.75 m × 1.75 m is to be constructed 
over a layer of sand. Given Df = 1 m; N is generally increasing with 
depth, N

_
 in the depth of stress influence = 10; q = 120 kN/m2. The sand 

is normally consolidated. Estimate the elastic settlement of the founda-
tion. Use the Burland and Burbidge method.

Solution

From Equation 10.17
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From Equation 10.19

	

S
B

. .
N N

. L B
. L B.

e

R (a)or
/
/

=










 +



0 14 1 71 1 25
0 251 4α

[ ]
( )
( )
























2 0 7B
B

q
p

.

R a



518  Advanced Soil Mechanics﻿

For this case, α = 1
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Se ≈ 0.0118 m = 11.8 mm

Example 10.2

Solve Example 10.1 using Meyerhof’s method.

Solution

From Equation 10.7
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10.5 � SEMI-EMPIRICAL METHODS FOR SETTLEMENT 
CALCULATION OF FOUNDATIONS 
ON GRANULAR SOIL

In the following sections, we will discuss the strain influence factor method 
suggested by Schmertmann et al. (1978) and the L1−L2 method developed 
by Akbas and Kulhawy (2009) for calculation of settlement of foundations 
on granular soil.

10.5.1 � Strain influence factor method

Based on the theory of elasticity, the equation for vertical strain εz at a 
depth below the center of a flexible circular load of diameter B has been 
expressed as (Equation 4.40)

	
ε ν νz

q
E

A B= + − ′ + ′( )[( ) ]1 1 2 	 (4.40)
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or

	
I E

q
A Bz = = + − ′ + ′ε ν νz ( )[( ) ]1 1 2 	 (10.22)

where
A′ and B′ = f(z/B)
q is the load per unit area
E is the modulus of elasticity
ν is the Poisson’s ratio
Iz is the strain influence factor

Schmertmann et al. (1978) proposed a simple variation of Iz with depth 
below a shallow foundation that is supported by a granular soil. This varia-
tion of Iz is shown in Figure 10.3. Referring to this figure.

z0

σ0́

B
IzIz(peak)

qDf

zp

z

Figure 10.3  �Nature of strain influence diagram suggested by Schmertmann et al. (1978).
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•	 For square or circular foundation:

	 I zz = =0 0.1 at

	
I z z Bz( ) .peak pat 5= = 0

	 I z z Bz = = =0 0at 2

•	 For foundation with L/B ≥ 10:

	 I zz = =0 0.2 at

	
I z z Bz( )peak pat = =

	 I z z Bz = = =0 0at 4

where L is the length of foundation. For L/B between 1 and 10, inter-
polation can be done. Also

	
I q
z( )

.

. .peak
0

= +
′







0 5 0 1
0 5

σ 	
(10.23)

The value of ′σ0 in Equation 10.23 is the effective overburden pressure at a 
depth where Iz(peak) occurs. Salgado (2008) gave the following interpolation 
for Iz at z = 0, zp, and z0 (for L/B = 1 to L/B ≥ 10):

	
I L

Bz z( ) . . .at = = + −



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≤0 0 1 0 0111 1 0 2
	

(10.24)
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(10.25)

	

z
B

L
B

0 = + −



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≤2 0 222 1 4.
	

(10.26)

The total elastic settlement of the foundation can now be calculated as

	

S C C q I
E

zz
B

e
0

= ∑1 2

2

∆
	

(10.27)
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where
q is the net effective pressure applied at the level of the foundation
q0 is the effective overburden pressure at the level of the foundation

	 C1 is the correction factor for em bedm ent of foundation = −1 0.. q q5 0( )/
� (10.28)

	
C 2 is the correction factor to account for creep in soil= +1 00 2 0 1. tlog( .)/
� (10.29)

t is the time, in years

Noting that stiffness is about 40% larger for plane strain compared to axi-
symmetric loading, Schmertmann et al. (1978) recommended that

	 E q= 2 5. c (forsquareand circularfoundations)	 (10.30)

and

	 E q= 3 5. c (forstrip foundation)	 (10.31)

where qc is the cone penetration resistance.
For rectangular foundation with L × B plan, Terzaghi et al. (1996) sug-

gested that

	

E
E

L
B

L B

L B

( / )

( / )
. log .

=
= + 



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≤
1

1 0 4 1 4 	 (10.32)

Example 10.3

Consider a rectangular foundation 2 m × 4 m in plan at a depth of 
1.2 m in a sand deposit as shown in Figure 10.4a. Given γ = 17.5 kN/m3; 
q = 124 k/m2; and the following approximated variation of qc with z:

z (m) qc (kN/m2)

0–0.5 2250
0.5–2.5 3430
2.5–5.0 2950

Estimate the elastic settlement of the foundation using the strain influ-
ence factor method.
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Solution

From Equation 10.25
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From Equation 10.26
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From Equation 10.24, at z = 0
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From Equation 10.23
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5.0
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6300
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0.675 Iz

1
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q = 124 kN/m2
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1.0
0.5B = 2 m
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z (m) z (m)

1.2 m

1.12

(b)

Figure 10.4  (a) Rectangular foundation in a sand deposit; (b) variation of E and Iz with depth.
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The plot of Iz versus z is shown in Figure 10.4b. Again, from 
Equation 10.32

	
E L

B
EL B L B( / ) ( / ). log . log (= +
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=1 0 4 1 0 4 4

2
21 .. ) .5 2 8× =q qc c

Thus, the approximate variation of E with z is as follows:

z (m) qc (kN/m2) E (kN/m2)

0–0.5 2250 6300
0.5–2.5 3430 9604
2.5–5.0 2950 8260

The plot of E versus z is shown in Figure 10.4b.
The soil layer is divided into four layers as shown in Figure 10.4b. 

Now the following table can be prepared.

Layer no. ∆z (m) E (kN/m2) Iz at middle of layer
I
E
zz ∆  (m3/kN)

1 0.50 6300 0.236 1.87 × 10−5

2 0.62 9604 0.519 3.35 × 10−5

3 1.38 9604 0.535 7.68 × 10−5

4 1.94 8260 0.197 4.62 × 10−5

Total 17.52 × 10−5
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Assume the time for creep is 10 years. So

	
C 2 1 0 2 10

0 1
1 4= + 





=. log
.

.

Hence
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10.5.2 � Field tests on load−settlement 
behavior: L1−L2 method

Akbas and Kulhawy (2009) evaluated 167 load–settlement relationships 
obtained from field tests. Figure 10.5 shows a generalized relationship of 
load Q versus settlement Se from these field tests, which they referred to as 
the L1–L2 method. From this figure, note that (a) Q L1 is the load at settle-
ment level S Le( )1 ; (b) QT is the load at settlement level Se(T); and (c) Q L2 is the 
load at settlement level S Le( )2 , which is the ultimate load (≈Qu).

The field test results yielded the mean value of S Le( )1  to be 0.23% of the 
width of the foundation, B. Similarly, the mean value of S Le( )2 s was 5.39% 
of B. The final analysis showed a nondimensional load–settlement relation-
ship as given in Figure 10.6. The mean plot can be expressed as

	

Q
Q

S B
S BL2 0 69 1 68

=
+

e

e

/
/. ( ) .

	 (10.33)

In order to find Q for a given settlement level, one needs to know that Q L2 = 
Qu = ultimate bearing capacity for which the following is recommended.

Final linear region

Transition region

Initial linear region

Se(L1)
0

QL1

QT

QL2

0 Se(L2)Se(T )

Lo
ad

Settlement

Figure 10.5  �General nature of the load versus settlement plot observed from the field 
(L1−L2 method).
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	 1.	For B > 1 m:

	

Q Q Q BN F F F

Q

qN F F FL
q

2
1
2

= + = +u u s d c s d c

u

γ
γ γ γ γγ

γ

� ������� �������
q q q q

QQ q
u

� ������ ������ 	 (10.34)

		  where
Nγ, Nq are the bearing capacity factors
Fγs, Fqs are the shape factors
Fγd, Fqd are the depth factors
Fγc, Fqc are the compressibility factors

	 2.	For B ≤ 1 m:

	
Q Q

B
QL

q
2 = +u

u

γ

	 (10.35)

In order to determine Q u
γ  and Q q

u, see Vesic (1973) or a foundation engi-
neering book (e.g., Das, 2011).
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Figure 10.6  �Nondimensional plot of Q QL/ 2 versus Se/B (Equation 10.33).
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10.6 � SETTLEMENT DERIVED FROM 
THEORY OF ELASTICITY

The following sections describe two methods of elastic settlement calcula-
tion derived from the theory of elasticity. They are

•	 Steinbrenner’s (1934) and Fox’s (1948) theory
•	 Theory of Mayne and Poulos (1999)

10.6.1 � Settlement based on theories of 
Steinbrenner (1934) and Fox (1948)

Consider a foundation measuring L × B (L = length; B = width) located at a 
depth Df below the ground surface (Figure 10.7). A rigid layer is located at 
a depth H below the bottom of the foundation. Theoretically, if the founda-
tion is perfectly flexible (Bowles, 1987), the settlement may be expressed as

	
S q B

E
IIe(flexible) s f= ′ −( )α 1 2v

	 (10.36)

where
q is the net applied pressure on the foundation
v is the Poisson’s ratio of soil
E is the average modulus of elasticity of the soil under the foundation, 

measured from z = 0 to about z = 4B
B′ = B/2 for center of foundation

= B for corner of foundation

z Rigid
foundation
settlement

Foundation B × L

Flexible
foundation
settlement H

Dfq

Soil

Rock

v = Poisson,s ratio
E = Modulus of elasticity

Figure 10.7  �Elastic settlement of flexible and rigid foundations.
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11 2
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	 (10.37)
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fdepthfactor Fox 1948 and= = 





( , ) , ,v 	 (10.43)

α is a factor that depends on the location on the foundation where settle-
ment is being calculated.

Note that Equation 10.36 is in a similar form as Equation 4.48.

To calculate settlement at the center of the foundation, we use

α = 4

	
′ =m L

B
and

	
′ =n H

B( )/2

To calculate settlement at a corner of the foundation, use

α = 1

	
′ =m L

B
and

	
′ =n H

B
The variations of F1 and F2 with m′ and n′ are given in Tables 10.2 through 
10.5, respectively. The variation of If with Df/B and v is shown in Figure 10.8 
(for L/B = 1, 2, and 5), which is based on Fox (1948).
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Table 10.2  �Variation of F1 with m′ and n′

n′
m′

1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 3.5 4.0

0.25 0.014 0.013 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.010
0.50 0.049 0.046 0.044 0.042 0.041 0.040 0.038 0.038 0.037 0.037
0.75 0.095 0.090 0.087 0.084 0.082 0.080 0.077 0.076 0.074 0.074
1.00 0.142 0.138 0.134 0.130 0.127 0.125 0.121 0.118 0.116 0.115
1.25 0.186 0.183 0.179 0.176 0.173 0.170 0.165 0.161 0.158 0.157
1.50 0.224 0.224 0.222 0.219 0.216 0.213 0.207 0.203 0.199 0.197
1.75 0.257 0.259 0.259 0.258 0.255 0.253 0.247 0.242 0.238 0.235
2.00 0.285 0.290 0.292 0.292 0.291 0.289 0.284 0.279 0.275 0.271
2.25 0.309 0.317 0.321 0.323 0.323 0.322 0.317 0.313 0.308 0.305
2.50 0.330 0.341 0.347 0.350 0.351 0.351 0.348 0.344 0.340 0.336
2.75 0.348 0.361 0.369 0.374 0.377 0.378 0.377 0.373 0.369 0.365
3.00 0.363 0.379 0.389 0.396 0.400 0.402 0.402 0.400 0.396 0.392
3.25 0.376 0.394 0.406 0.415 0.420 0.423 0.426 0.424 0.421 0.418
3.50 0.388 0.408 0.422 0.431 0.438 0.442 0.447 0.447 0.444 0.441
3.75 0.399 0.420 0.436 0.447 0.454 0.460 0.467 0.458 0.466 0.464
4.00 0.408 0.431 0.448 0.460 0.469 0.476 0.484 0.487 0.486 0.484
4.25 0.417 0.440 0.458 0.472 0.481 0.484 0.495 0.514 0.515 0.515
4.50 0.424 0.450 0.469 0.484 0.495 0.503 0.516 0.521 0.522 0.522
4.75 0.431 0.458 0.478 0.494 0.506 0.515 0.530 0.536 0.539 0.539
5.00 0.437 0.465 0.487 0.503 0.516 0.526 0.543 0.551 0.554 0.554
5.25 0.443 0.472 0.494 0.512 0.526 0.537 0.555 0.564 0.568 0.569
5.50 0.448 0.478 0.501 0.520 0.534 0.546 0.566 0.576 0.581 0.584
5.75 0.453 0.483 0.508 0.527 0.542 0.555 0.576 0.588 0.594 0.597
6.00 0.457 0.489 0.514 0.534 0.550 0.563 0.585 0.598 0.606 0.609
6.25 0.461 0.493 0.519 0.540 0.557 0.570 0.594 0.609 0.617 0.621
6.50 0.465 0.498 0.524 0.546 0.563 0.577 0.603 0.618 0.627 0.632
6.75 0.468 0.502 0.529 0.551 0.569 0.584 0.610 0.627 0.637 0.643
7.00 0.471 0.506 0.533 0.556 0.575 0.590 0.618 0.635 0.646 0.653
7.25 0.474 0.509 0.538 0.561 0.580 0.596 0.625 0.643 0.655 0.662
7.50 0.477 0.513 0.541 0.565 0.585 0.601 0.631 0.650 0.663 0.671
7.75 0.480 0.516 0.545 0.569 0.589 0.606 0.637 0.658 0.671 0.680
8.00 0.482 0.519 0.549 0.573 0.594 0.611 0.643 0.664 0.678 0.688
8.25 0.485 0.522 0.552 0.577 0.598 0.615 0.648 0.670 0.685 0.695
8.50 0.487 0.524 0.555 0.580 0.601 0.619 0.653 0.676 0.692 0.703
8.75 0.489 0.527 0.558 0.583 0.605 0.623 0.658 0.682 0.698 0.710
9.00 0.491 0.529 0.560 0.587 0.609 0.627 0.663 0.687 0.705 0.716
9.25 0.493 0.531 0.563 0.589 0.612 0.631 0.667 0.693 0.710 0.723
9.50 0.495 0.533 0.565 0.592 0.615 0.634 0.671 0.697 0.716 0.719
9.75 0.496 0.536 0.568 0.595 0.618 0.638 0.675 0.702 0.721 0.735

10.00 0.498 0.537 0.570 0.597 0.621 0.641 0.679 0.707 0.726 0.740
20.00 0.529 0.575 0.614 0.647 0.677 0.702 0.756 0.797 0.830 0.858
50.00 0.548 0.598 0.640 0.678 0.711 0.740 0.803 0.853 0.895 0.931

100.00 0.555 0.605 0.649 0.688 0.722 0.753 0.819 0.872 0.918 0.956
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Table 10.3  �Variation of F1 with m′ and n′

n′
m′

4.5 5.0 6.0 7.0 8.0 9.0 10.0 25.0 50.0 100.0

0.25 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
0.50 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036
0.75 0.073 0.073 0.072 0.072 0.072 0.072 0.071 0.071 0.071 0.071
1.00 0.114 0.113 0.112 0.112 0.112 0.111 0.111 0.110 0.110 0.110
1.25 0.155 0.154 0.153 0.152 0.152 0.151 0.151 0.150 0.150 0.150
1.50 0.195 0.194 0.192 0.191 0.190 0.190 0.189 0.188 0.188 0.188
1.75 0.233 0.232 0.229 0.228 0.227 0.226 0.225 0.223 0.223 0.223
2.00 0.269 0.267 0.264 0.262 0.261 0.260 0.259 0.257 0.256 0.256
2.25 0.302 0.300 0.296 0.294 0.293 0.291 0.291 0.287 0.287 0.287
2.50 0.333 0.331 0.327 0.324 0.322 0.321 0.320 0.316 0.315 0.315
2.75 0.362 0.359 0.355 0.352 0.350 0.348 0.347 0.343 0.342 0.342
3.00 0.389 0.386 0.382 0.378 0.376 0.374 0.373 0.368 0.367 0.367
3.25 0.415 0.412 0.407 0.403 0.401 0.399 0.397 0.391 0.390 0.390
3.50 0.438 0.435 0.430 0.427 0.424 0.421 0.420 0.413 0.412 0.411
3.75 0.461 0.458 0.453 0.449 0.446 0.443 0.441 0.433 0.432 0.432
4.00 0.482 0.479 0.474 0.470 0.466 0.464 0.462 0.453 0.451 0.451
4.25 0.516 0.496 0.484 0.473 0.471 0.471 0.470 0.468 0.462 0.460
4.50 0.520 0.517 0.513 0.508 0.505 0.502 0.499 0.489 0.487 0.487
4.75 0.537 0.535 0.530 0.526 0.523 0.519 0.517 0.506 0.504 0.503
5.00 0.554 0.552 0.548 0.543 0.540 0.536 0.534 0.522 0.519 0.519
5.25 0.569 0.568 0.564 0.560 0.556 0.553 0.550 0.537 0.534 0.534
5.50 0.584 0.583 0.579 0.575 0.571 0.568 0.585 0.551 0.549 0.548
5.75 0.597 0.597 0.594 0.590 0.586 0.583 0.580 0.565 0.583 0.562
6.00 0.611 0.610 0.608 0.604 0.601 0.598 0.595 0.579 0.576 0.575
6.25 0.623 0.623 0.621 0.618 0.615 0.611 0.608 0.592 0.589 0.588
6.50 0.635 0.635 0.634 0.631 0.628 0.625 0.622 0.605 0.601 0.600
6.75 0.646 0.647 0.646 0.644 0.641 0.637 0.634 0.617 0.613 0.612
7.00 0.656 0.658 0.658 0.656 0.653 0.650 0.647 0.628 0.624 0.623
7.25 0.666 0.669 0.669 0.668 0.665 0.662 0.659 0.640 0.635 0.634
7.50 0.676 0.679 0.680 0.679 0.676 0.673 0.670 0.651 0.646 0.645
7.75 0.685 0.688 0.690 0.689 0.687 0.684 0.681 0.661 0.656 0.655
8.00 0.694 0.697 0.700 0.700 0.698 0.695 0.692 0.672 0.666 0.665
8.25 0.702 0.706 0.710 0.710 0.708 0.705 0.703 0.682 0.676 0.675
8.50 0.710 0.714 0.719 0.719 0.718 0.715 0.713 0.692 0.686 0.684
8.75 0.717 0.722 0.727 0.728 0.727 0.725 0.723 0.701 0.695 0.693
9.00 0.725 0.730 0.736 0.737 0.736 0.735 0.732 0.710 0.704 0.702
9.25 0.731 0.737 0.744 0.746 0.745 0.744 0.742 0.719 0.713 0.711
9.50 0.738 0.744 0.752 0.754 0.754 0.753 0.751 0.728 0.721 0.719
9.75 0.744 0.751 0.759 0.762 0.762 0.761 0.759 0.737 0.729 0.727

10.00 0.750 0.758 0.766 0.770 0.770 0.770 0.768 0.745 0.738 0.735
20.00 0.878 0.896 0.925 0.945 0.959 0.969 0.977 0.982 0.965 0.957
50.00 0.962 0.989 1.034 1.070 1.100 1.125 1.146 1.265 1.279 1.261

100.00 0.990 1.020 1.072 1.114 1.150 1.182 1.209 1.408 1.489 1.499
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Table 10.4  �Variation of F2 with m′ and n′

n′
m′

1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 3.5 4.0

0.25 0.049 0.050 0.051 0.051 0.051 0.052 0.052 0.052 0.052 0.052
0.50 0.074 0.077 0.080 0.081 0.083 0.084 0.086 0.086 0.0878 0.087
0.75 0.083 0.089 0.093 0.097 0.099 0.101 0.104 0.106 0.107 0.108
1.00 0.083 0.091 0.098 0.102 0.106 0.109 0.114 0.117 0.119 0.120
1.25 0.080 0.089 0.096 0.102 0.107 0.111 0.118 0.122 0.125 0.127
1.50 0.075 0.084 0.093 0.099 0.105 0.110 0.118 0.124 0.128 0.130
1.75 0.069 0.079 0.088 0.095 0.101 0.107 0.117 0.123 0.128 0.131
2.00 0.064 0.074 0.083 0.090 0.097 0.102 0.114 0.121 0.127 0.131
2.25 0.059 0.069 0.077 0.085 0.092 0.098 0.110 0.119 0.125 0.130
2.50 0.055 0.064 0.073 0.080 0.087 0.093 0.106 0.115 0.122 0.127
2.75 0.051 0.060 0.068 0.076 0.082 0.089 0.102 0.111 0.119 0.125
3.00 0.048 0.056 0.064 0.071 0.078 0.084 0.097 0.108 0.116 0.122
3.25 0.045 0.053 0.060 0.067 0.074 0.080 0.093 0.104 0.112 0.119
3.50 0.042 0.050 0.057 0.064 0.070 0.076 0.089 0.100 0.109 0.116
3.75 0.040 0.047 0.054 0.060 0.067 0.073 0.086 0.096 0.105 0.113
4.00 0.037 0.044 0.051 0.057 0.063 0.069 0.082 0.093 0.102 0.110
4.25 0.036 0.042 0.049 0.055 0.061 0.066 0.079 0.090 0.099 0.107
4.50 0.034 0.040 0.046 0.052 0.058 0.063 0.076 0.086 0.096 0.104
4.75 0.032 0.038 0.044 0.050 0.055 0.061 0.073 0.083 0.093 0.101
5.00 0.031 0.036 0.042 0.048 0.053 0.058 0.070 0.080 0.090 0.098
5.25 0.029 0.035 0.040 0.046 0.051 0.056 0.067 0.078 0.087 0.095
5.50 0.028 0.033 0.039 0.044 0.049 0.054 0.065 0.075 0.084 0.092
5.75 0.027 0.032 0.037 0.042 0.047 0.052 0.063 0.073 0.082 0.090
6.00 0.026 0.031 0.036 0.040 0.045 0.050 0.060 0.070 0.079 0.087
6.25 0.025 0.030 0.034 0.039 0.044 0.048 0.058 0.068 0.077 0.085
6.50 0.024 0.029 0.033 0.038 0.042 0.046 0.056 0.066 0.075 0.083
6.75 0.023 0.028 0.032 0.036 0.041 0.045 0.055 0.064 0.073 0.080
7.00 0.022 0.027 0.031 0.035 0.039 0.043 0.053 0.062 0.071 0.078
7.25 0.022 0.026 0.030 0.034 0.038 0.042 0.051 0.060 0.069 0.076
7.50 0.021 0.025 0.029 0.033 0.037 0.041 0.050 0.059 0.067 0.074
7.75 0.020 0.024 0.028 0.032 0.036 0.039 0.048 0.057 0.065 0.072
8.00 0.020 0.023 0.027 0.031 0.035 0.038 0.047 0.055 0.063 0.071
8.25 0.019 0.023 0.026 0.030 0.034 0.037 0.046 0.054 0.062 0.069
8.50 0.018 0.022 0.026 0.029 0.033 0.036 0.045 0.053 0.060 0.067
8.75 0.018 0.021 0.025 0.028 0.032 0.035 0.043 0.051 0.059 0.066
9.00 0.017 0.021 0.024 0.028 0.031 0.034 0.042 0.050 0.057 0.064
9.25 0.017 0.020 0.024 0.027 0.030 0.033 0.041 0.049 0.056 0.063
9.50 0.017 0.020 0.023 0.026 0.029 0.033 0.040 0.048 0.055 0.061
9.75 0.016 0.019 0.023 0.026 0.029 0.032 0.039 0.047 0.054 0.060

10.00 0.016 0.019 0.022 0.025 0.028 0.031 0.038 0.046 0.052 0.059
20.00 0.008 0.010 0.011 0.013 0.014 0.016 0.020 0.024 0.027 0.031
50.00 0.003 0.004 0.004 0.005 0.006 0.006 0.008 0.010 0.011 0.013

100.00 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.005 0.006 0.006
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Table 10.5  �Variation of F2 with m′ and n′

n′
m′

4.5 5.0 6.0 7.0 8.0 9.0 10.0 25.0 50.0 100.0

0.25 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053
0.50 0.087 0.087 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088
0.75 0.109 0.109 0.109 0.110 0.110 0.110 0.110 0.111 0.111 0.111
1.00 0.121 0.122 0.123 0.123 0.124 0.124 0.124 0.125 0.125 0.125
1.25 0.128 0.130 0.131 0.132 0.132 0.133 0.133 0.134 0.134 0.134
1.50 0.132 0.134 0.136 0.137 0.138 0.138 0.139 0.140 0.140 0.140
1.75 0.134 0.136 0.138 0.140 0.141 0.142 0.142 0.144 0.144 0.145
2.00 0.134 0.136 0.139 0.141 0.143 0.144 0.145 0.147 0.147 0.148
2.25 0.133 0.136 0.140 0.142 0.144 0.145 0.146 0.149 0.150 0.150
2.50 0.132 0.135 0.139 0.142 0.144 0.146 0.147 0.151 0.151 0.151
2.75 0.130 0.133 0.138 0.142 0.144 0.146 0.147 0.152 0.152 0.153
3.00 0.127 0.131 0.137 0.141 0.144 0.145 0.147 0.152 0.153 0.154
3.25 0.125 0.129 0.135 0.140 0.143 0.145 0.147 0.153 0.154 0.154
3.50 0.122 0.126 0.133 0.138 0.142 0.144 0.146 0.153 0.155 0.155
3.75 0.119 0.124 0.131 0.137 0.141 0.143 0.145 0.154 0.155 0.155
4.00 0.116 0.121 0.129 0.135 0.139 0.142 0.145 0.154 0.155 0.156
4.25 0.113 0.119 0.127 0.133 0.138 0.141 0.144 0.154 0.156 0.156
4.50 0.110 0.116 0.125 0.131 0.136 0.140 0.143 0.154 0.156 0.156
4.75 0.107 0.113 0.123 0.130 0.135 0.139 0.142 0.154 0.156 0.157
5.00 0.105 0.111 0.120 0.128 0.133 0.137 0.140 0.154 0.156 0.157
5.25 0.102 0.108 0.118 0.126 0.131 0.136 0.139 0.154 0.156 0.157
5.50 0.099 0.106 0.116 0.124 0.130 0.134 0.138 0.154 0.156 0.157
5.75 0.097 0.103 0.113 0.122 0.128 0.133 0.136 0.154 0.157 0.157
6.00 0.094 0.101 0.111 0.120 0.126 0.131 0.135 0.153 0.157 0.157
6.25 0.092 0.098 0.109 0.118 0.124 0.129 0.134 0.153 0.157 0.158
6.50 0.090 0.096 0.107 0.116 0.122 0.128 0.132 0.153 0.157 0.158
6.75 0.087 0.094 0.105 0.114 0.121 0.126 0.131 0.153 0.157 0.158
7.00 0.085 0.092 0.103 0.112 0.119 0.125 0.129 0.152 0.157 0.158
7.25 0.083 0.090 0.101 0.110 0.117 0.123 0.128 0.152 0.157 0.158
7.50 0.081 0.088 0.099 0.108 0.115 0.121 0.126 0.152 0.156 0.158
7.75 0.079 0.086 0.097 0.106 0.114 0.120 0.125 0.151 0.156 0.158
8.00 0.077 0.084 0.095 0.104 0.112 0.118 0.124 0.151 0.156 0.158
8.25 0.076 0.082 0.093 0.102 0.110 0.117 0.122 0.150 0.156 0.158
8.50 0.074 0.080 0.091 0.101 0.108 0.115 0.121 0.150 0.156 0.158
8.75 0.072 0.078 0.089 0.099 0.107 0.114 0.119 0.150 0.156 0.158
9.00 0.071 0.077 0.088 0.097 0.105 0.112 0.118 0.149 0.156 0.158
9.25 0.069 0.075 0.086 0.096 0.104 0.110 0.116 0.149 0.156 0.158
9.50 0.068 0.074 0.085 0.094 0.102 0.109 0.115 0.148 0.156 0.158
9.75 0.066 0.072 0.083 0.092 0.100 0.107 0.113 0.148 0.156 0.158

10.00 0.065 0.071 0.082 0.091 0.099 0.106 0.112 0.147 0.156 0.158
20.00 0.035 0.039 0.046 0.053 0.059 0.065 0.071 0.124 0.148 0.156
50.00 0.014 0.016 0.019 0.022 0.025 0.028 0.031 0.071 0.113 0.142

100.00 0.007 0.008 0.010 0.011 0.013 0.014 0.016 0.039 0.071 0.113
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Figure 10.8  �Variation of If with Df/B, L/B, and ν: (a) ν = 0; (b) ν = 0.3; (c) ν = 0.4; (d) ν = 0.5.
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Due to the nonhomogeneous nature of soil deposits, the magnitude of E 
may vary with depth. For that reason, Bowles (1987) recommended using a 
weighted average of E in Equation 10.36, or

	
E

E z
z
i

=
∆∑ ()

	 (10.44)

where
E(i) is the soil modulus of elasticity within a depth ∆z
z– is the H or 5B, whichever is smaller

For a rigid foundation

	 S Se rigid e flexible  center 93( ) ( , ).≈ 0 	 (10.45)

Example 10.4

A rigid shallow foundation 1 m × 2 m is shown in Figure 10.9. Calculate 
the elastic settlement at the center of the foundation.

Solution

Given B = 1 m and L = 2 m. Note that z– = 5 m = 5B. From Equation 10.44

	
E

E z
z
i

=
∆

= + + =∑ () ( , )( ) (, )() ( , )( ) ,10 000 2 8 000 1 12 000 2
5

10 400 2kN /m

10,000

1 m q = 150 kN/m2

8,000

Rock

v = 0.3
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5
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3

2

1

0
1 m × 2 m E (kN/m2)

z (m)

Figure 10.9  �Elastic settlement for a rigid shallow foundation.
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For the center of the foundation
	 α = 4

	
′ = = =m L

B
2
1

1

and

	
′ = = =n H

B( ) ( )/ /2
5
1 2

10

From Tables 10.2 and 10.4, F1 = 0.641 and F2 = 0.031. From 
Equation 10.37

	
I F Fs = + −

−
= + −

−
=1 2

1 2
1

0 641 2 0 3
1 0 3

0 031 0 716v
v

. .
.
( . ) .

Again, Df /B = 1/1 = 1, L/B = 2, and v = 0.3. From Figure 10.8b, 
If = 0.709. Hence

	

S q B
E

IIe(flexible) s f= ′ −

= ×





−



( )

( ) .
,

α 1

150 4 1
2

1 0 3
10 400

2

2

v







= =

( . )( . )

. .

0 716 0 709

0 0133 13 3m m

Since the foundation is rigid, from Equation 10.45 we obtain

	 Se rigid 93 133 12 4 m m( ) ( . )( .) .= =0

10.6.2 � Improved equation for elastic settlement

Mayne and Poulos (1999) presented an improved formula for calculating 
the elastic settlement of foundations. The formula takes into account the 
rigidity of the foundation, the depth of embedment of the foundation, the 
increase in the modulus of elasticity of the soil with depth, and the loca-
tion of rigid layers at a limited depth. To use Mayne and Poulos’s equa-
tion, one needs to determine the equivalent diameter Be of a rectangular 
foundation, or

	
B BL
e = 4

π
	 (10.46a)

where
B is the width of foundation
L is the length of foundation
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For circular foundations

	 B Be = 	 (10.46b)

where B is the diameter of foundation.
Figure 10.10 shows a foundation with an equivalent diameter Be located 

at a depth Df below the ground surface. Let the thickness of the founda-
tion be t and the modulus of elasticity of the foundation material be EF. 
A rigid layer is located at a depth H below the bottom of the foundation. 
The modulus of elasticity of the compressible soil layer can be given as

	 E E kz= +o 	 (10.47)

With the preceding parameters defined, the elastic settlement below the 
center of the foundation is

	
S qB I II

Ee
e G F E

o
= ( )1 2− v 	 (10.48)

where IG is the influence factor for the variation of E with depth

	
= ′ =






f E

kB
H
B

β o

e e
,

IF is the foundation rigidity correction factor
IE is the foundation embedment correction factor

Rigid layer

Compressible
soil layer

E
H

q

t

Be

EF

Df
Eo

E

E = Eo + kz

v

Depth, z

Figure 10.10  �Improved equation for calculating elastic settlement—general parameters.
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Figure 10.11 shows the variation of IG with β′ = Eo/kBe and H/Be. The foun-
dation rigidity correction factor can be expressed as

	
I

E E B k tBF
f o e e/ / /

= +
+ +

π
4

1
4 6 10 2 2 3. ( [ ( ) ])( )

	 (10.49)

Similarly, the embedment correction factor is

	
I

B DE
e f/

= −
− +

1 1
3 5 1 22 0 4 1 6. exp( . .)[( ) . ]v

	 (10.50)

Figures 10.12 and 10.13 show the variation of IE and IF with terms expressed 
in Equations 10.49 and 10.50.
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Figure 10.11  �Variation of IG with β′.
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Example 10.5

For a shallow foundation supported by a silty clay as shown in 
Figure 10.10,

Length = L = 1.5 m
Width = B = 1 m
Depth of foundation = Df = 1 m
Thickness of foundation = t = 0.23 m
Load per unit area = q = 190 kN/m2

EF = 15 × 106 kN/m2

The silty clay soil has the following properties:

H = 2 m
v = 0.3
Eo = 9000 kN/m2

k = 500 kN/m2/m

Estimate the elastic settlement of the foundation.
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2

kEo +

Figure 10.12  �Variation of rigidity correction factor IF with flexibility factor KF 
(Equation 10.49).
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Solution

From Equation 10.46, the equivalent diameter is

	
B BL
e m= = =4 4 1 5 1 1 38

π π
( )( .)() .

so

	
β′ = = =E

kB
o

e

9000
500 1 38

13 04
( )( . )

.

and

	

H
Be

= =2
1 38

1 45
.

.

From Figure 10.11, for β′ = 13.04 and H/Be = 1.45, the value of IG ≈ 0.74.
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Figure 10.13  �Variation of embedment correction factor IE with Df /Be (Equation 10.50).
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From Equation 10.49

I
E E B k tBF
f o e e/ / /

= +
+ +

= +
+ ×

π

π

4
1

4 6 10 2 2

4
1

4 6 1015 10 90

3

6

. ( [ ( ) ])( )

. [ 000 1 38 2 500 2 0 23 1 38
0 7873+

=
( . )( )][( )( . ) . ]

.
/

From Equation 10.50

	

I
B DE
e f/

= −
− +

= −

1 1
3 5 1 22 0 4 1 6

1 1
3 5 1 22 0 3

. exp( . .)[( ) . ]

. exp[( . )( .)

v

−− +
=

0 4 1 38 1 1 6
0 907

. ][( . ) . ]
.

/

From Equation 10.48

	
S qB I I I

Ee
e G F E

o
= −( )1 2v

So, with q = 190 kN/m2, it follows that

	
Sc m m m= − = ≈( )( . )( . )( . )( . )( . ) .190 1 38 0 74 0 787 0 907

9000
1 0 3 0 014 142
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Chapter 11

Consolidation settlement 
of shallow foundations

11.1 � INTRODUCTION

As mentioned in Chapter 10, the total settlement of a shallow foundation, 
in general, is the sum of the elastic settlement (Se) and the consolidation 
settlement (Sc) of the soil supporting the foundation. The procedures for esti-
mating the elastic settlement were treated in Chapter 10. It was also pointed 
out that the total consolidation settlement is the sum of the settlements occur-
ring from primary consolidation (Sp) and secondary consolidation (Sc). Or

	
S S Sc p s= + 	 (11.1)

In this chapter, we will consider the procedures for estimation of Sp and Ss.

11.2 � ONE-DIMENSIONAL PRIMARY CONSOLIDATION 
SETTLEMENT CALCULATION

Based on Equation 8.89 in Section 8.9, the settlement for one-dimensional 
consolidation can be given by

	
S H e

e
Hp t t= ∆ = ∆

+1 0
	 (8.89)

where

	
∆ =

′ + ∆
′

e C c fornorm ally consolidated clays)log (σ σ
σ

0

0
	 (8.90)

	
∆ =

′ + ∆
′

′ + ∆ ≤ ′e C r cforoverconsolidated clays,log ( )σ σ
σ

σ σ σ0

0
0 	 (8.91)
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∆ =

′
′

+
′ + ∆

′
′ < ′ < ′ + ∆e C Cr

c
c

c
0forlog log ( )σ

σ
σ σ

σ
σ σ σ σ

0

0
0c 	 (8.92)

where ′σc is the preconsolidation pressure.
When a load is applied over a limited area, the increase of pressure due to 

the applied load will decrease with depth, as shown in Figure 11.1. So, for 
a more realistic settlement prediction, we can use the following methods.

Method A

	 1.	Calculate the average effective pressure ′σ0 on the clay layer before 
application of the load under consideration.

	 2.	Calculate the increase of stress due to the applied load at the top, mid-
dle, and bottom of the clay layer below the center of the foundation. 
This can be done by using theories developed in Chapters 3 and 4. 
The average increase of stress below the center of the foundation in 
the clay layer can be estimated by Simpson’s rule

	
∆ = ∆ + ∆ + ∆σ σ σ σav t m b

1
6

4( )	 (11.2)

		  where ∆σt, ∆σm, and ∆σb are stress increases at the top, middle, and 
bottom of the clay layer, respectively. For circular foundations, the 
magnitude of the average stress increase ∆σav can also be obtained by 
a method developed by Saikia (2012) using this procedure. Figure 11.2 

Variation of Δσ

G.W.T.

Δσl

Δσb

q

Δσm
Hl

z

Figure 11.1  �Calculation of consolidation settlement—method A.
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0.6

0.4

0.2
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z1
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8
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Figure 11.2  �Average stress increase below a circular foundation.
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gives the variation of ∆σav/q with z1/R and z2/R, where z1 and z2 are the 
vertical distances between the bottom of the foundation and the top 
and bottom of the clay layer, respectively.

	 3.	Using ′σ0 and σav calculated earlier, obtain ∆e from Equations 8.90, 
8.91, or 8.92, whichever is applicable.

	 4.	Calculate the settlement by using Equation 8.89.

Method B

	 1.	Better results in settlement calculation may be obtained by dividing a 
given clay layer into n layers as shown in Figure 11.3.

	 2.	Calculate the effective stress ′σ0()i at the middle of each layer.
	 3.	Calculate the increase of stress at the middle of each layer ∆σi due to 

the applied load.
	 4.	Calculate ∆ei for each layer from Equations 8.90, 8.91, or 8.92, 

whichever is applicable.
	 5.	Total settlement for the entire clay layer can be given by

	

S S e
e

Hi

i

n

i

i n

ip p= ∆ =
+

∆
==

=

∑∑ ∆
1 011

	 (11.3)

q
G.W.T.

Layer 1

Clay

Δσ(n)

Δσ(1)ΔH1

ΔH2

ΔHn

Δσ(2) 2

n

Figure 11.3  �Calculation of consolidation settlement—method B.
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Example 11.1

A circular foundation 2 m in diameter is shown in Figure 11.4a. 
A normally consolidated clay layer 5 m thick is located below the foun-
dation. Determine the primary consolidation settlement of the clay. 
Use method B (Section 11.2).

Solution

We divide the clay layer into five layers, each 1 m thick. Calculation of 
′σ0()i: The effective stress at the middle of layer 1 is

	
′ = + − + − =σ0 1 171 5 19 9 81 0 5 18 5 9 81 0 5 34 44() ( ) ( )( ) ( )( ). . . . . . . kN /m 2

(a)

Hl = 5 m

Sand
G.W.T.

Sand

1 m

0.5 m

0.5 m

Circular foundation
diameter, B = 2 m

γ = 17 kN/m3

q = 150 kN/m2

γsat = 19 kN/m3
z

γsat = 18.5 kN/m3

Cc = 0.16
e0 = 0.85

Normally consolidated clay

16.66

10.46

7.14

29.93

2 2

3 3

4 4

5 5

6 6

z = 1 m z = 1 m

63.59
34.44

σ0(i) (kN/m2)

43.13

51.82

60.51

69.2

Δσi (kN/m2)

(b) (c)

Figure 11.4  �Consolidation settlement calculation from layers of finite thickness: (a) soil 
profile; (b) variation of ∆σi with depth; (c) variation of σ0( )i  with depth.
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The effective stress at the middle of the second layer is

	
′ = + − = + =σ0 2 34 44 18 5 9 81 1 34 44 8 69 43 13( ) . . . . . .( )() kN /m 2

Similarly

	
′ = + =σ0 3 43 13 8 69 51 81( ) . . . kN /m 2

	
′ = + =σ0 4

251 82 8 69 60 51( ) . . . kN /m

	
′ = + =σ0 5

260 51 8 69 69 2( ) . . . kN /m

Calculation of ∆σi: For a circular loaded foundation, the increase of 
stress below the center is given by Equation 4.32, and so

	
∆σi q

b z
= −

+








1 1
12 3 2[( ) ]//

where b is the radius of the circular foundation, 1 m. Hence

	
∆σ1 2 3 2

2150 1 1
1 1 5 1

63 59= −
+









=
[( .) ]

.//
kN /m

	
∆σ2 2 3 2

2150 1 1
1 2 5 1

29 93= −
+









=
[( .) ]

.//
kN /m

	
∆σ3 2 3 2

2150 1 1
1 3 5 1

16 66= −
+









=
[( .) ]

.//
kN /m

	
∆σ4 2 3 2

2150 1 1
1 4 5 1

10 46= −
+









=
[( .) ]

.//
kN /m

	
∆σ5 2 3 2

2150 1 1
1 5 5 1

7 14= −
+









=
[( .) ]

.//
kN /m
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Calculation of primary consolidation settlement: The steps in the cal-
culation are given in the following table (see also Figure 11.4b and c):

Layer ∆Hi (m) ′σ0( ) 2/i ( )kN m ∆σi (kN/m2) ∆ea
∆ ∆e
e

m
1 0+

Hi ( )

1 1 34.44 63.59 0.0727 0.0393
2 1 43.13 29.93 0.0366 0.0198
3 1 51.82 16.66 0.0194 0.0105
4 1 60.51 10.46 0.0111 0.0060
5 1 69.2 7.14 0.00682 0.0037

∑ = 0.0793

a
c

0( )

0( )
c∆

∆
e

i

=
′ +

′
=C Ci ilog ; .

σ σ
σ

0 16

So, Sp = 0.0793 m = 79.3 mm.

Example 11.2

Solve Example 11.1 using Method A and Equation 11.2.

Solution

From Equation 4.32

	
∆σ = −

+








q
b z

1 1
12 3 2[( ) ] //  

Hence

	
∆σt  

2

/
kN /m= −

+








=150 1 1
1 1 1

96 972 3 2[( ) ]
./

	
∆σm  

2

/
kN /m= −

+








=150 1 1
1 3 5 1

16 662 3 2[( .) ]
./

	
∆σb  

2

/
kN /m= −

+








=150 1 1
1 6 1

6 042 3 2[( ) ]
./

	

∆ ∆ ∆ ∆σ σ σ σav t m b

2kN /m

= + +

= + + =

1
6

4

1
6
96 97 4 16 66 6 04 28 28

( )

[ . ( )( . ) . ] .

Also

	
′ = + − + 





− =σ0 1 5 17 0 5 19 9 81 5
2

18 5 9 81 51 82( .)( ) ( .)( . ) ( . . ) . kN /m 22
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Combining Equations 8.89 and 8.90

	

S C H
ep

c

m m

=
+

′ +
′









=
+

+

1

0 16 5000
1 0 85

51 82

0

0

0
log

( . )( )
.

log .

σ σ
σ

∆

228 28
51 82

81 79.
.

.





= m m

Example 11.3

Refer to Example 11.2. Calculate ∆σav using Figure 11.2.

Solution

For this case

	

z
b
1 1

1
1= =

	

z
b
2 6

1
6= =

From Figure 11.2 for z1/b = 1 and z2/b = 6, the value of ∆σav/q ≈ 0.175. So

	 ∆σav = (0.175)(150) = 26.25 kN/m2 (close to that in Example 11.2)

Example 11.4

Calculate the primary consolidation settlement of the 3 m thick clay 
layer (Figure 11.5) that will result from the load carried by a 1.5 m 
square footing. The clay is normally consolidated. Use Equation 11.2.

Solution

For normally consolidated clay, combining Equations 8.89 and 8.90, 
we have

	
S C H

ep
c=
+

′ +
′







1 0

0

0
log σ σ

σ
∆

where

	 Cc = 0.009(LL − 10) = 0.009(40 − 10) = 0.27

	 H = 3000 mm

	 e0 = 1.0

′ = × + − + −σ γ γ γ0 4 5 1 5 9 81 3
2

9 81. .[ . ] [ .dry(sand) sat(sand) sat(clay) ]]

. . .( . . ) .( . . ) .= × + − + − =4 5 15 7 1 518 9 9 81 1 517 3 9 81 95 52 kN /m 2
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In order to calculate ∆σ, we can prepare the following table:

z (m) ′ =m L
B

1

a

B (m) ′ =n z
B

1
2/

b

I9 (Table 4.11) ∆σ = qIqc (kN/m2)

4.5 1 1.5 6 0.051 20.17
6.0 1 1.5 8 0.029 11.47
7.5 1 1.5 10 0.019 7.52
a	 Equation 4.46.
b	 Equation 4.47.
c
	 q = =890

2 25
395 6

.
. .kN/m2

Footing size
1.5 m × 1.5 m

Groundwater table

1.5 m

890 kN

1.5 m

3 m

3 m

Dry sand
γdry = 15.7 kN/m3

γsat = 18.9 kN/m3

Clay
γsat = 17.3 kN/m3

e0 = 1.0
LL = 40

Figure 11.5  Consolidation settlement calculation for a shallow foundation.
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We calculate (Equation 11.2)

	
∆σav

2kN /m= + + =20 17 4 11 47 7 52
6

12 26. ( )( . ) . .

Substituting these values into the settlement equation gives

	
Sp m m=

+
+





=( . )( )log . .
.

.0 27 3000
1 1

95 52 12 26
95 52

21 3

11.3 � SKEMPTON–BJERRUM MODIFICATION FOR 
CALCULATION OF CONSOLIDATION 
SETTLEMENT

In one-dimensional consolidation tests, there is no lateral yield of the soil 
specimen and the ratio of the minor to major principal effective stresses, Ko, 
remains constant. In that case, the increase of pore water pressure due to an 
increase of vertical stress is equal in magnitude to the latter; or

	 ∆ ∆u = σ 	 (11.4)

where
∆u is the increase of pore water pressure
∆σ is the increase of vertical stress

However, in reality, the final increase of major and minor principal stresses 
due to a given loading condition at a given point in a clay layer does not main-
tain a ratio equal to Ko. This causes a lateral yield of soil. The increase of pore 
water pressure at a point due to a given load is (Figure 11.6) (see Chapter 5)

	 ∆ ∆ ∆ ∆u A= + −σ σ σ3 1 3( )

Skempton and Bjerrum (1957) proposed that the vertical compression of 
a soil element of thickness dz due to an increase of pore water pressure ∆u 
may be given by

	
dS m udzp = υ∆ 	 (11.5)

where mυ is coefficient of volume compressibility (Section 8.2), or

	
dS m A dz m A A dzp = + − = + −





υ υσ σ σ σ σ
σ

[ ( )] ( )∆ ∆ ∆ ∆ ∆
∆3 1 3 1

3

1
1

The preceding equation can be integrated to obtain the total primary 
consolidation settlement:

	

S m A A dz
H

p

t

= + −



∫ υ σ σ

σ
∆ ∆

∆1

0

3

1
1( ) 	 (11.6)
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For conventional one-dimensional consolidation (Ko condition),

	

S e
e
dz e

e
dz m dz

H H H

p(oed)

t t t

=
+

=
+

=∫ ∫ ∫∆ ∆
∆

∆ ∆
1

1
10

0
1 0

1

0

1

0
σ

σ συ 	 (11.7)

(Note that Equation 11.7 is the same as that used for settlement calculation 
in Section 11.2.) Thus

	

Settlem entratio,

=
/

circle
p

p(oed)
ρ

σ σ συ

=

+ −

S
S

m A A d∆ ∆ ∆1 3 1 1[ ( )( )] zz

m dz

dz

dz
A A

A A M

H

H

H

H

0

1
0

3
0

1
0

1

1

1

t

t

t

t
=

=

∫
∫

∫
∫

+ −

+ −

υ σ

σ

σ

∆

∆

∆
( )

( ) 	 (11.8)

Center line

ClayΔσ3

Δσ3

Δσ1

Δu

Ht

z

B

Figure 11.6  �Development of excess pore water pressure below the centerline of a 
circular loaded foundation.
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where

	

M
dz

dz

H

H1

3
0

1
0

= ∫
∫

∆

∆

σ

σ

t

t

	
(11.9)

We can also develop an expression similar to Equation 11.8 for con-
solidation under the center of a strip load (Scott, 1963) of width B. From 
Chapter 5,

	

∆ ∆ ∆ ∆

∆

u A

S m udz
H

= + −



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+








 − =
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σ σ σ υ
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3 1

0

3
2

1
3

1
2

0 5( .3

c
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So,
t

== + −



∫ m N N dz

H

υ σ σ
σ

∆ ∆
∆1

3

1
0

1( )
t

	 (11.10)

where

	
N A= −



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+3
2

1
3

1
2

Hence

	

Settlem entratio,

=
/

strip
p

p(oed)
ρ

σ σ συ

=

+ −

S
S

m N N dz∆ ∆ ∆1 3 11[ ( )( )]
00

1
0

21

H

H
m dz

N N M

t

t

=

∫
∫

+ −

υ σ∆

( ) 	 (11.11)

where

	

M
dz

dz

H

H2

3
0

1
0

= ∫
∫

∆

∆

σ

σ

t

t

	
(11.12)
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The values of ρcircle and ρstrip for different values of the pore pressure 
parameter A are given in Figure 11.7.

It must be pointed out that the settlement ratio obtained in Equations 
11.8 and 11.11 can only be used for settlement calculation along the axes 
of symmetry. Away from the axes of symmetry, the principal stresses are no 
longer in vertical and horizontal directions.

It is also important to know that the settlement ratios given in Figure 11.7 
are for normally consolidated clays. Leonards (1976) considered the set-
tlement ratio ρcir(OC) for three-dimensional consolidation effect in the field 
for a circular foundation located over overconsolidated clay. Referring to 
Figure 11.6

	
S Sp circle(O C) p(oed)= ρ 	 (11.13)

where

	
ρcircle(O C) O CR= 






f B

H
,

t
	 (11.14)
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Pore water pressure parameter, A

Figure 11.7  �Settlement ratio for strip and circular loading.
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O CR overconsolidation ratio c= =

′
′

σ
σ0

	 (11.15)

′σc is the preconsolidation pressure
′σ0 is the present effective overburden pressure

The interpolated values of ρcircle(OC) from the work of Leonards (1976) are 
given in Table 11.1.

The settlement ratio equations (Equations 11.8, 11.11, and 11.13) have 
been developed assuming that the foundation is located on the top of the 
clay layer. In most practical situations, this may not be true. So, an approxi-
mate procedure needs to be adopted to obtain an equivalent foundation 
on the clay layers so that the settlement ratio relationships can be used. 
This approximate procedure of load distribution is usually referred to as 
the 2:1 stress distribution procedure. The 2:1 stress distribution procedure 
can be explained using Figure 11.8 as follows. When a foundation measur-
ing B × L is subjected to a stress increase of q, the load spreads out along 
planes 2V:1H. Thus, the load at a depth z on the top of a clay layer will be 
distributed over an area B′ × L′.

	 B B z′ = + 	 (11.16)

Table 11.1  �Variation of ρcircle(OC) with OCR and B/Ht

OCR

ρcircle(OC)

B/Ht = 4.0 B/Ht = 1.0 B/Ht = 0.2

1 1 1 1
2 0.986 0.957 0.929
3 0.972 0.914 0.842
4 0.964 0.871 0.771
5 0.950 0.829 0.707
6 0.943 0.800 0.643
7 0.929 0.757 0.586
8 0.914 0.729 0.529
9 0.900 0.700 0.493

10 0.886 0.671 0.457
11 0.871 0.643 0.429
12 0.864 0.629 0.414
13 0.857 0.614 0.400
14 0.850 0.607 0.386
15 0.843 0.600 0.371
16 0.843 0.600 0.357
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and

	 L L z′ = + 	 (11.17)

So, the load per unit area q′ at a depth z will be

	
′ =

+ +
q qBL

B z L z( )( )
	 (11.18)

The application of this 2V:1H load distribution concept is shown in 
Examples 11.5 and 11.6.

Example 11.5

The average representative value of the pore water pressure parameter 
A (as determined from triaxial tests on undisturbed samples) for the 
clay layer shown in Figure 11.9 is about 0.6. Estimate the consolida-
tion settlement of the circular tank.

Solution

The average effective overburden pressure for the 6 m thick clay layer 
is ′ = − =σ0

26 2 19 24 9 81 28 29( )( . . ) . ./ kN /m  We will use Equation 11.2 to 
obtain the average pressure increase:

	
∆ ∆ ∆ ∆σ σ σ σav t m b= + +1

6
4( )

	 ∆σt
21  kN /m= 00

Stress = q΄=

Stress = q

B z

B + z

L

L+z

(B + z) (L + z)
qBL

Figure 11.8  �2:1 Stress distribution.
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From Equation 4.32
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S m 210 m mp(oed)
t

e

eH
e

=

=
+

=
+

= =

.

.
.

.∆ ×

From Figure 11.7, the settlement ratio ρcircular is approximately 0.73 
(note that Ht/B = 2), so

	 Sp = ρcircular Sp(oed) = 0.73 (210) = 153.3 mm

6 m

G.W.T.
q = 100 kN/m2

= 3 m

Circular tank
diameter

γsat = 19.24 kN/m3

Cc = 0.2
e0 = 1.08

Normally consolidated clay

Rock

Figure 11.9  �Consolidation settlement under a circular tank.
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Example 11.6

Refer to Example 11.4. Assume that the clay is overconsolidated. Given 
OCR = 3, swell index (Cr) ≈ 1 4/ Cc.

	 a.	Calculate the primary consolidation settlement Sp.
	 b.	Assuming the three-dimensional effect, modify the settlement 

calculated in Part a.

Solution

Part a:

From Example 11.4, ′σ0 = 95.52 kN/m2. Since OCR = 3, the preconsolida-
tion pressure ′σc = (OCR) ′( )σ0  = (3)(95.52) = 286.56 kN/m2. For this case

	 ′ + = + < ′σ σ σ0 95 52 12 26∆ av c. .

So, Equations 8.89′ and 8.91′ may be used. Or

	

S C H
ep

r av
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=
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′ + ′
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
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
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+
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1
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( . )( )log .

σ σ
σ

∆

112 25
95 52

5 3.
.

.





= m m

Part b:

Assuming that the 2:1 method of stress increase holds good, the area of 
distribution of stress at the top of the clay layer will have dimensions of

	 B′ = width = B + z = 1.5 + 4.5 = 6 m

	 L′ = width = L + z = 1.5 + 4.5 = 6 m

The diameter of an equivalent circular area Beq can be given as

	

π
4

2B B Leq = ′ ′

	
B B L
eq m=

′ ′
= =4 4 6 6 6 77

π π
( )()() .

	

B
H
eq

t
= =6 77

3
2 26. .

From Table 11.1, for OCR = 3 and Beq/Ht = 2.26, ρcircle(OC) ≈ 0.95. Hence

	 S Sp circle(O C) p(oed) m m= = =ρ ( . )( .) .0 95 5 3 5 04
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11.4 � SETTLEMENT CALCULATION 
USING STRESS PATH

Lambe’s (1964) stress path was explained in Section 9.14. Based on 
Figure 9.45, it was also concluded that (1) the stress paths for a given nor-
mally consolidated clay are geometrically similar, and (2) when the points 
representing equal axial strain (∈1) are joined, they will be approximate 
straight lines passing through the origin.

Let us consider a case where a soil specimen is subjected to an oedometer 
(one-dimensional consolidation) type of loading (Figure 11.10). For this 
case, we can write

	 ′ = ′σ σ3 1K o 	 (11.16)

where Ko is the at-rest earth pressure coefficient and can be given by the 
expression (Jaky, 1944)

	 K o 1 sin= − φ 	 (11.17)

For Mohr’s circle shown in Figure 11.10, the coordinates of point E can be 
given by

	
′ =

′ − ′
=

′ −q Kσ σ σ1 3 1

2
1
2
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ea

r s
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σ 1́
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O

σ1́σ3́ = Koσ1́
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K o l
ine

Normal stress

Figure 11.10  �Determination of the slope of the Ko line.
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where β is the angle that the line OE (Ko line) makes with the normal 
stress axis.

Figure 11.11 shows a q′ versus p′ plot for a soil specimen in which the Ko 
line has also been incorporated. Note that the Ko line also corresponds to 
a certain value of ∈1.

To obtain a general idea of the nature of distortion in soil specimens 
derived from the application of an axial stress, we consider a soil speci-
men. If ′ = ′σ σ1 3 (i.e., hydrostatic compression) and the specimen is sub-
jected to a hydrostatic stress increase of ∆σ under drained conditions 
(i.e., ∆σ = ∆σ′), then the drained stress path would be EF, as shown in 
Figure 11.12. There would be uniform strain in all directions. If ′ = ′σ σ3 1K o  
(at-rest pressure) and the specimen is subjected to an axial stress increase 
of ∆σ under drained conditions (i.e., ∆σ = ∆σ′), the specimen deformation 
would depend on the stress path it follows. For stress path AC, which is 
along the Ko line, there will be axial deformation only and no lateral defor-
mation. For stress path AB, there will be lateral expansion, and so the 
axial strain at B will be greater than that at C. For stress path AD, there 

Note: tan α = sin

K f  
lin

e

K o lin
e

q΄

Є1

β
α

p΄

Figure 11.11  �Plot of p′ versus q′ with Ko and Kf lines.
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will be some lateral compression, and the axial strain at D will be more 
than at F but less than that at C. Note that the axial strain is gradually 
increasing as we go from F to B.

In all cases, the effective major principal stress is σ1 + ∆σ′. However, the 
lateral strain is compressive at F and zero at C, and we get lateral expan-
sion at B. This is due to the nature of the lateral effective stress to which the 
specimen is subjected during the loading.

In the calculation of settlement from stress paths, it is assumed that, for 
normally consolidated clays, the volume change between any two points on 
a p′ versus q′ plot is independent of the path followed. This is explained in 
Figure 11.13. For a soil specimen, the volume changes between stress paths 
AB, GH, CD, and CI, for example, are all the same. However, the axial 

A–C

A–B

C

D

F

q΄

A

A

B

E E–F

K o l
ine

A–D

σ1́ σ 1́+Δσ p΄

Figure 11.12  �Stress path and specimen distortion.
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A B p΄

Figure 11.13  �Volume change between two points of a p′ versus q′ plot.
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strains will be different. With this basic assumption, we can now proceed 
to determine the settlement.

For ease in understanding, the procedure for settlement calculation will 
be explained with the aid of an example. For settlement calculation in a nor-
mally consolidated clay, undisturbed specimens from representative depths 
are obtained. Consolidated undrained triaxial tests on these specimens at 
several confining pressures, σ3, are conducted, along with a standard one-
dimensional consolidated test. The stress–strain contours are plotted on 
the basis of the consolidated undrained triaxial test results. The standard 
one-dimensional consolidation test results will give us the values of com-
pression index Cc. For example, let Figure 11.14 represent the stress–strain 
contours for a given normally consolidated clay specimen obtained from an 
average depth of a clay layer. Also, let Cc = 0.25 and e0 = 0.9. The drained 
friction angle ϕ (determined from consolidated undrained tests) is 30°. From 
Equation 11.18
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+


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−tan 1 1
1

K
K
o

o

and Ko = 1 − sin ϕ = 1 − sin 30° = 0.5. So
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+
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Figure 11.14  �Use of stress path to calculate settlement.
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Knowing the value of β, we can now plot the Ko line in Figure 11.14. Also note 
that tan α = sinϕ. Since ϕ = 30°, tan α = 0.5. So α = 26.57°. Let us calculate 
the settlement in the clay layer for the following conditions (Figure 11.14):

	 1.	Insituaverageeffectiveoverburdenpressure kN /m= ′ =σ1
275 .

	 2.	Total thickness of clay layer = Ht = 3 m.

Owing to the construction of a structure, the increase of the total major 
and minor principal stresses at an average depth are

	 ∆σ1
24 kN /m= 0

	 ∆σ3
225 kN /m=

(assuming that the load is applied instantaneously). The in situ minor prin-
cipal stress (at-rest pressure) is σ σ σ3 3 1 0 575 37 5= ′ = ′ = =K o

2kN /m.( ) . .
So, before loading
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2
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2
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′ − ′
= − =q

σ σ1 3

2
75 37 5

2
18 75. . kN /m 2

The stress conditions before loading can now be plotted in Figure 11.14 
from the previously mentioned values of p′ and q′. This is point A.

Since the stress paths are geometrically similar, we can plot BAC, which 
is the stress path through A. Also, since the loading is instantaneous (i.e., 
undrained), the stress conditions in clay, represented by the p′ versus q′ plot 
immediately after loading, will fall on the stress path BAC. Immediately 
after loading
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With this value of q′, we locate point D. At the end of consolidation
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The preceding values of p′ and q′ are plotted as point E. FEG is a geometrically 
similar stress path drawn through E. ADE is the effective stress path that a 
soil element, at average depth of the clay layer, will follow. AD represents the 
elastic settlement, and DE represents the consolidation settlement.

For elastic settlement (stress path A to D)

	 Se = [(∈1 at D) − (∈1 at A)]Ht = (0.04 − 0.01)3 = 0.09 m

For consolidation settlement (stress path D to E), based on our previ-
ous assumption, the volumetric strain between D and E is the same as the 
volumetric strain between A and H. Note that H is on the Ko line. For 
point A, ′ =σ1 75kN /m 2, and for point H, ′ =σ1 118kN /m 2. So, the volumet-
ric strain, ∈υ, is

	
∈υ=

+
=

+
= =∆e

e
C

1
118 75

1 0 9
0 25 118 75

1 9
0 026

0

c / /log( )
.

. log( )
.

.

The axial strain ∈1 along a horizontal stress path is about one-third the 
volumetric strain along the Ko line, or

	
∈ ∈1

1
3

1
3
0 026 0 0087= = =υ ( . ) .

So, the primary consolidation settlement is

	
S Hp t87 87(3) 261m= = =0 00 0 00 0 0. . .

and hence the total settlement is

	
S Se p 9 261 116 m+ = + =0 0 0 0 0. . .

Another type of loading condition is also of some interest. Suppose that 
the stress increase at the average depth of the clay layer was carried out in 
two steps: (1) instantaneous load application, resulting in stress increases 
of ∆σ1 = 40 kN/m2 and ∆σ3 = 25 kN/m2 (stress path AD), followed by 
(2) a gradual load increase, which results in a stress path DI (Figure 11.14). 
As mentioned earlier, the undrained shear along stress path AD will pro-
duce an axial strain of 0.03. The volumetric strains for stress paths DI and 
AH will be the same; so ∈υ = 0.026. The axial strain ∈1 for the stress path 
DI can be given by the relation (based on the theory of elasticity)

	

∈
∈
1

0

1 2
1 1 2

= + −
− +
K KK
K K
o o

o( )( )
	 (11.19)

where K = ′ ′σ σ3 1/  for the point I. In this case, ′ =σ3 42kN /m 2 and 
′ =σ1 123kN /m 2. So

	
K = =42

123
0 341.
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Hence, the total settlement due to the loading is equal to
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11.5 � COMPARISON OF PRIMARY CONSOLIDATION 
SETTLEMENT CALCULATION PROCEDURES

It is of interest at this point to compare the primary settlement calculation 
procedures outlined in Sections 11.2 and 11.3 with the stress path tech-
nique described in Section 11.4 (Figure 11.15).

Based on the one-dimensional consolidation procedure outlined in 
Sections 11.2, essentially we calculate the settlement along the stress path 
AE, that is, along the Ko line. A is the initial at-rest condition of the soil, 
and E is the final stress condition (at rest) of soil at the end of consolida-
tion. According to the Skempton–Bjerrum modification, the consolidation 
settlement is calculated for stress path DE. AB is the elastic settlement. 

CB

D E

K o li
ne

q́

A

σ 0́ σ 0́+ Δσ ṕ

Figure 11.15  �Comparison of consolidation settlement calculation procedures.
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However, Lambe’s stress path method gives the consolidation settlement 
for stress path BC. AB is the elastic settlement. Although the stress path 
technique provides us with a better insight into the fundamentals of settle-
ment calculation, it is more time-consuming because of the elaborate labo-
ratory tests involved.

A number of works have been published that compare the observed and 
the predicted settlements of various structures. Terzaghi and Peck (1967) 
pointed out that the field consolidation settlement is approximately one-
dimensional when a comparatively thin layer of clay is located between 
two stiff layers of soil. Peck and Uyanik (1955) analyzed the settlement 
of eight structures in Chicago located over thick deposits of soft clay. 
The  settlements of these structures were predicted by the method out-
lined in Section 11.2. Elastic settlements were not calculated. For this 
investigation, the ratio of the settlements observed to that calculated had 
an average value of 0.85. Skempton and Bjerrum (1957) also analyzed the 
settlements of four structures in the Chicago area (auditorium, Masonic 
temple, Monadnock block, Isle of Grain oil tank) located on overcon-
solidated clays. The predicted settlements included the elastic settlements 
and the consolidation settlements (by the method given in Section 11.3). 
The ratio of the observed to the predicted settlements varied from 0.92 
to 1.17. Settlement analysis of Amuya Dam, Venezuela (Lambe, 1963), by 
the stress path method, showed very good agreement with the observed 
settlement.

However, there are several instances where the predicted settlements 
vary widely from the observed settlements. The discrepancies can be attrib-
uted to deviation of the actual field conditions from those assumed in the 
theory, difficulty in obtaining undisturbed samples for laboratory tests, 
and so forth.

11.6 � SECONDARY CONSOLIDATION SETTLEMENT

The coefficient of secondary consolidation Cα was defined in Section 8.7 as

	
C H H

tα = ∆
∆

t t/
log

where
t is the time
Ht is the thickness of the clay layer

It has been reasonably established that Cα decreases with time in a 
logarithmic manner and is directly proportional to the total thickness of 
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the clay layer at the beginning of secondary consolidation. Thus, secondary 
consolidation settlement can be given by

	
S C H t

ts ts
p

= α log 	 (11.20)

where
Hts is the thickness of the clay layer at the beginning of secondary con-

solidation = Ht − Sc

t is the time at which secondary compression is required
tp is the time at the end of primary consolidation

Actual field measurements of secondary settlements are relatively scarce. 
However, good agreement of measured and estimated settlements has 
been reported by some observers, for example, Horn and Lambe (1964), 
Crawford and Sutherland (1971), and Su and Prysock (1972).

11.7 � PRECOMPRESSION FOR IMPROVING 
FOUNDATION SOILS

In instances when it appears that too much consolidation settlement is 
likely to occur due to the construction of foundations, it may be desirable 
to apply some surcharge loading before foundation construction in order 
to eliminate or reduce the postconstruction settlement. This technique 
has been used with success in many large construction projects (Johnson, 
1970). In this section, the fundamental concept of surcharge application 
for elimination of primary consolidation of compressible clay layers is 
presented.

Let us consider the case where a given construction will require a per-
manent uniform loading of intensity σf, as shown in Figure 11.16. The total 
primary consolidation settlement due to loading is estimated to be equal to 
Sp(f). If we want to eliminate the expected settlement due to primary con-
solidation, we will have to apply a total uniform load of intensity σ = σf + σs. 
This load will cause a faster rate of settlement of the underlying compress-
ible layer; when a total settlement of Sp(f) has been reached, the surcharge 
can be removed for actual construction.

For a quantitative evaluation of the magnitude of σs and the time it should 
be kept on, we need to recognize the nature of the variation of the degree 
of consolidation at any time after loading for the underlying clay layer, as 
shown in Figure 11.17. The degree of consolidation Uz will vary with depth 
and will be minimum at midplane, that is, at z = H. If the average degree of 
consolidation Uav is used as the criterion for surcharge load removal, then 
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after removal of the surcharge, the clay close to the midplane will continue 
to settle, and the clay close to the previous layer(s) will tend to swell. This 
will probably result in a net consolidation settlement. To avoid this prob-
lem, we need to take a more conservative approach and use the midplane 
degree of consolidation Uz = H as the criterion for our calculation. Using the 
procedure outlined by Johnson (1970)
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and
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where
′σ0 is the initial average in situ effective overburden pressure

Sp(f) and Sp(f+s) are the primary consolidation settlements due to load 
intensities of σf and σf + σs, respectively

However

	
S U Sp f f s p f s() ( ) ( )= + + 	 (11.23)

where U(f+s) is the degree of consolidation due to the loading of σf + σs. As 
explained earlier, this is conservatively taken as the midplane (z = H) degree 
of consolidation. Thus

	
U S

S( )
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( )
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p f

p f+s
= 	 (11.24)

Combining Equations 11.21, 11.22, and 11.24
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The values of U(f+s) for several combinations of σ σf/ ′0 and σs/σf are given 
in Figure 11.18. Once U(f+s) is known, we can evaluate the nondimensional 
time factor Tυ from Figure 8.4. (Note that U(f+s) = Uz at z = H of Figure 8.4, 
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based on our assumption.) For convenience, a plot of U(f+s) versus Tυ is given 
in Figure 11.19. So, the time for surcharge load removal t = t′ is

	
′t T H

C
= υ

υ

2
	 (11.26)

where
Cυ is the coefficient of consolidation
H is the length of the maximum drainage path

A similar approach may be adopted to estimate the intensity of the sur-
charge fill and the time for its removal to eliminate or reduce postconstruc-
tion settlement due to secondary consolidation.
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Figure 11.18  �Variation of U(f+s) with σs/σf and σ σf/ ′0.



570  Advanced Soil Mechanics﻿

Example 11.7

The soil profile shown in Figure 11.20 is in an area where an airfield is 
to be constructed. The entire area has to support a permanent surcharge 
of 58 kN/m2 due to the fills that will be placed. It is desired to eliminate 
all the primary consolidation in 6 months by precompression before the 
start of construction. Estimate the total surcharge (q = qs + qf) that will 
be required for achieving the desired goal.

Solution

	
t t T H

C
T tC

H
= ′ = =

′υ

υ
υ

υ
2

2or
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Figure 11.19  �Plot of U(f+s) versus Tυ.
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So

	
Tυ = × × × × =

−( )( . )
( )

.6 30 24 60 9 7 10
225

0 497
2

2

From Figure 11.19, for Tυ = 0.497 and U(f+s) ≈ 0.62

	
′ = + − =σ0 17 31 5 2 2519 24 9 81 47 17.( .) . ( . . ) . kN /m 2
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From Figure 11.18, for U(f+s) = 0.62 and σ σf/ ′ =0 1 23. ,
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Figure 11.20  �Soil profile for precompression.
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So

	 σ σs f
2l17 117 58 67 86 kN /m= = =. . ( ) .

Thus

	 σ σ σ= + = + =f s
258 67 86 12586 kN /m. .

11.8 � PRECOMPRESSION WITH SAND DRAINS

The concept of accelerating consolidation settlement by including sand 
drains was presented in Section 8.14. In the presence of sand drains, to 
determine the surcharge that needs to be applied at the ground surface, we 
refer to Figure 11.16 and Equation 11.25. In a modified form, for a combi-
nation of vertical and radial drainage, Equation 11.25 can be rewritten as

	
U v,r
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f s f
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1 1
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0

σ σ
σ σ σ σ

	 (11.27)

The notations σf, ′σ0, and σs are the same as those in Equation 11.25; how-
ever, the left-hand side of Equation 11.27 is the average degree of consoli-
dation instead of the degree of consolidation at midplane. Both radial and 
vertical drainage contribute to the average degree of consolidation. If Uυ,r 
can be determined at any time t = t′ (see Figure 11.16), the total surcharge 
σf + σs may be easily obtained from Figure 11.18.

For a given surcharge and duration t = t′, the average degree of consolida-
tion can be obtained from Equation 8.191. Or

	 U U Uυ υ,r r= − − −1 1 1( )( )

The magnitude of Uυ can be obtained from Equations 8.35 and 8.36, and 
the magnitude of Ur can be obtained from Equation 8.169.

Example 11.8

Redo Example 11.7 with the addition of sand drains. Assume rw = 0.1 m, 
de = 3 m (see Figure 8.37), Cυ = Cυ,r, and the surcharge is applied instan-
taneously. Also assume that this is a no-smear case.

Solution

From Example 11.7, Tυ = 0.497. Using Equation 8.35, we obtain

	
U T

υ
υ= × = × =4 100 4 0 497 100 79 5

π π
( )( . ) . %
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Also

	
n d

r
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2 0 1
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Again (Equation 8.161)
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From Table 8.8, for n = 15 and Tr = 0.28, the value of Ur is about 68%. 
Hence

	 U U Uυ υ,r r= − − − = − − − = =1 1 1 1 1 0 795 1 0 68 0 93 93( )( ) ( . )( . ) . %

From Example 11.7

	

σ
σ
f

′
=

0
1 23.

For σ σf ′ =0 1 23.  and Uυ,r = 93%, the value of σs/σf ≈ 0.124 (Figure 11.18). 
Hence

	 σ σs f
2kN /m= = =0 124 0 12458 7 19. . ( ) .

So

	 σ σ σ= + = + =f s
265.19 kN /m58 7 19.
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Appendix: Calculation of Stress at 
the Interface of a Three-Layered 
Flexible System

The procedure for calculating vertical stress at the interface of a three-
layer flexible system was discussed in Section 4.11. The related variables 
K1, K2, A, H, ZZ1 and ZZ2 were also defined there. Figures A.1 through 
A.32 give the plots of the variation of ZZ1 and ZZ2 with A, H, K1 and K2 
(Peattie, 1962).
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Figure A.1  �Values of ZZ1 for K1 = 0.2 and K2 = 0.2. (After Peattie, K.R., Stress and strain 
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.2  �Values of ZZ1 for K1 = 0.2 and K2 = 2.0. (After Peattie, K.R., Stress and strain 
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.3  �Values of ZZ1 for K1 = 0.2 and K2 = 20.0. (After Peattie, K.R., Stress and strain 
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.4  �Values of ZZ1 for K1 = 0.2 and K2 = 200.0. (After Peattie, K.R., Stress and 
strain factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.5  �Values of ZZ1 for K1 = 2.0 and K2 = 0.2. (After Peattie, K.R., Stress and strain 
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.6  �Values of ZZ1 for K1 = 2.0 and K2 = 2.0. (After Peattie, K.R., Stress and strain 
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.7  �Values of ZZ1 for K1 = 2.0 and K2 = 20. (After Peattie, K.R., Stress and strain 
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.) 
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Figure A.8  �Values of ZZ1 for K1 = 2.0 and K2 = 200.0. (After Peattie, K.R., Stress and strain 
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.9  �Values of ZZ1 for K1 = 20.0 and K2 = 0.2. (After Peattie, K.R., Stress and strain 
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.10  �Values of ZZ1 for K1 = 20 and K2 = 2.0. (After Peattie, K.R., Stress and strain 
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.11  �Values of ZZ1 for K1 = 20.0 and K2 = 20.0. (After Peattie, K.R., Stress and 
strain factors for three-layer systems, Bulletin 342, Highway Research 
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Figure A.12  �Values of ZZ1 for K1 = 20.0 and K2 = 200.0. (After Peattie, K.R., Stress 
and strain factors for three-layer systems, Bulletin 342, Highway Research 
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Figure A.13  �Values of ZZ1 for K1 = 200.0 and K2 = 0.2. (After Peattie, K.R., Stress 
and strain factors for three-layer systems, Bulletin 342, Highway Research 
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Figure A.14  �Values of ZZ1 for K1 = 200.0 and K2 = 2.0. (After Peattie, K.R., Stress and 
strain factors for three-layer systems, Bulletin 342, Highway Research 
Board, 1962.)
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Figure A.15  �Values of ZZ1 for K1 = 200.0 and K2 = 20. (After Peattie, K.R., Stress and 
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Figure A.16  �Values of ZZ1 for K1 = 200.0 and K2 = 200.0. (After Peattie, K.R., Stress 
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Figure A .17  �Values of ZZ2 for K1 = 0.2 and K2 = 0.2. (After Peattie, K.R., Stress and 
strain factors for three-layer systems, Bulletin 342, Highway Research 
Board, 1962.)
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F igure A .18  �Values of ZZ2 for K1 = 0.2 and K2 = 2.0. (After Peattie, K.R., Stress and 
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Figure A.19  �Values of ZZ2 for K1 = 0.2 and K2 = 20.0. (After Peattie, K.R., Stress and 
strain factors for three-layer systems, Bulletin 342, Highway Research Board, 
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Figure A.20  �Values of ZZ2 for K1 = 0.2 and K2 = 200.0. (After Peattie, K.R., Stress 
and strain factors for three-layer systems, Bulletin 342, Highway Research 
Board, 1962.)
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Figure A .21  �Values of ZZ2 for K1 = 2.0 and K2 = 0.2. (After Peattie, K.R., Stress and 
strain factors for three-layer systems, Bulletin 342, Highway Research 
Board, 1962.)
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Figure A .22  �Values of ZZ2 for K1 = 2.0 and K2 = 2.0. (After Peattie, K.R., Stress and 
strain factors for three-layer systems, Bulletin 342, Highway Research 
Board, 1962.)
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Figure A .23  �Values of ZZ2 for K1 = 2.0 and K2 = 20.0. (After Peattie, K.R., Stress 
and strain factors for three-layer systems, Bulletin 342, Highway Research 
Board, 1962.)
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Figure A.24  �Values of ZZ2 for K1 = 2.0 and K2 = 200.0. (After Peattie, K.R., Stress and 
strain factors for three-layer systems, Bulletin 342, Highway Research 
Board, 1962.)
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Figure A.25  �Values of ZZ2 for K1 = 20.0 and K2 = 0.2. (After Peattie, K.R., Stress and 
strain factors for three-layer systems, Bulletin 342, Highway Research 
Board, 1962.)
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Figure A.26  �Values of ZZ2 for K1 = 20.0 and K2 = 2.0. (After Peattie, K.R., Stress and 
strain factors for three-layer systems, Bulletin 342, Highway Research 
Board, 1962.)
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Figure A.27  �Values of ZZ2 for K1 = 20.0 and K2 = 20.0. (After Peattie, K.R., Stress 
and strain factors for three-layer systems, Bulletin 342, Highway Research 
Board, 1962.)
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Figure A.28  �Values of ZZ2 for K1 = 20 and K2 = 200.0. (After Peattie, K.R., Stress and 
strain factors for three-layer systems, Bulletin 342, Highway Research 
Board, 1962.)
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Figure A.29  �Values of ZZ2 for K1 = 200.0 and K2 = 0.2. (After Peattie, K.R., Stress 
and strain factors for three-layer systems, Bulletin 342, Highway Research 
Board, 1962.)
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Figure A.30  �Values of ZZ2 for K1 = 200.0 and K2 = 2.0. (After Peattie, K.R., Stress and 
strain factors for three-layer systems, Bulletin 342, Highway Research 
Board, 1962.)
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Figure A.31  �Values of ZZ2 for K1 = 200.0 and K2 = 20.0. (After Peattie, K.R., Stress 
and strain factors for three-layer systems, Bulletin 342, Highway Research 
Board, 1962.)
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