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Preface

This textbook is intended for use in an introductory graduate level course
that broadens (expands) the fundamental concepts acquired by students in
their undergraduate work. The introductory graduate course can be fol-
lowed by advanced courses dedicated to topics such as mechanical and
chemical stabilization of soils, geoenvironmental engineering, finite ele-
ment application to geotechnical engineering, critical state soil mechanics,
geosynthetics, rock mechanics, and others.

The first edition of this book was published jointly by Hemisphere
Publishing Corporation and McGraw-Hill Book Company of New York
with a 1983 copyright. Taylor & Francis Group published the second and
third editions with 1997 and 2008 copyrights, respectively. Compared to
the third edition, the text is now divided into 11 chapters. Stresses and
displacements in a soil mass are now presented in two chapters with two-
dimensional problems in Chapter 3 and three-dimensional problems in
Chapter 4. Permeability and seepage are now presented in two separate
chapters (Chapters 6 and 7). Similarly, the settlement of shallow founda-
tions is now presented in two chapters—elastic settlement in Chapter 10
and consolidation settlement in Chapter 11. Several new example problems
have been added. ST units have been used throughout the text.

Some major changes in this edition include the following:

e In Chapter 1, “Soil aggregate, plasticity, and classification,” a
more detailed description of the relationships between the maxi-
mum and minimum void ratios of granular soils is provided. The
American Association of State Highway and Transportation Officials
(AASHTO) soil classification system has been added to this chapter.
Sections on soil compaction procedures in the laboratory, along with
recently developed empirical relationships for maximum dry unit
weight and optimum moisture content obtained from Proctor com-
paction tests, have been summarized.

e Chapter 4, “Stresses and displacements in a soil mass: Three-
dimensional problems,” has new sections on vertical stress due to a

XVii
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Preface

line load of finite length; vertical stress in Westergaard material due
to point load; line load of finite length; circularly loaded area; and
rectangularly loaded area.

The fundamental concepts of compaction of clay soil for the construc-
tion of clay liners in waste disposal sites as they relate to permeability
are discussed in Chapter 6, “Permeability.”

Several new empirical correlations for overconsolidation ratio and
compression index for clay soils have been added to Chapter 8,
“Consolidation.”

Chapter 9, “Shear strength of soils,” provides additional discussion
on the components affecting friction angle of granular soils, drained
failure envelopes, and secant residual friction angles of clay and clay
shale. Also added to this chapter are some new correlations between
field vane shear strength, preconsolidation pressure, and overconsoli-
dation ratio of clay soils.

Chapter 10, “Elastic settlement of shallow foundations,” has been
thoroughly revised and expanded.

Discussion related to precompression with sand drains has been added
to Chapter 11, “Consolidation settlement of shallow foundations.”
The parameters required for the calculation of stress at the interface
of a three-layered flexible system have been presented in graphical
form in the Appendix, which should make interpolation easier.
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Chapter |

Soil aggregate, plasticity,
and classification

1. INTRODUCTION

Soils are aggregates of mineral particles; and together with air and/or water
in the void spaces, they form three-phase systems. A large portion of the
earth’s surface is covered by soils, and they are widely used as construction
and foundation materials. Soil mechanics is the branch of engineering that
deals with the engineering properties of soils and their behavior under stress.

This book is divided into 11 chapters: “Soil Aggregate, Plasticity, and
Classification,” “Stresses and Strains: Elastic Equilibrium,” “Stresses and
Displacement in a Soil Mass: Two-Dimensional Problems,” “Stresses
and Displacement in a Soil Mass: Three-Dimensional Problems,” “Pore
Water Pressure due to Undrained Loading,” “Permeability,” “Seepage,”
“Consolidation,” “Shear Strength of Soil,” “Elastic Settlement of Shallow
Foundations,” and “Consolidation Settlement of Shallow Foundations.”
This chapter is a brief overview of some soil properties and their
classification. It is assumed that the reader has been previously exposed
to a basic soil mechanics course.

1.2 SOIL: SEPARATE SIZE LIMITS

A naturally occurring soil sample may have particles of various sizes. Over
the years, various agencies have tried to develop the size limits of gravel,
sand, silt, and clay. Some of these size limits are shown in Table 1.1.

Referring to Table 1.1, it is important to note that some agencies classify
clay as particles smaller than 0.005 mm in size, and others classify it as par-
ticles smaller than 0.002 mm in size. However, it needs to be realized that
particles defined as clay on the basis of their size are not necessarily clay
minerals. Clay particles possess the tendency to develop plasticity when
mixed with water; these are clay minerals. Kaolinite, illite, montmorillonite,
vermiculite, and chlorite are examples of some clay minerals.
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Table 1.1 Soil: separate size limits

Agency Classification Size limits (mm)
U.S. Department of Agriculture (USDA) Gravel >2
Very coarse sand 2-1
Coarse sand 1-0.5
Medium sand 0.5-0.25
Fine sand 0.25-0.1
Very fine sand 0.1-0.05
Silt 0.05-0.002
Clay <0.002
International Society of Soil Mechanics and Gravel >2
Foundation Engineering (ISSMFE)
Coarse sand 2-0.2
Fine sand 0.2-0.02
Silt 0.02-0.002
Clay <0.002
Federal Aviation Administration (FAA) Gravel >2
Sand 2-0.075
Silt 0.075-0.005
Clay <0.005
Massachusetts Institute of Technology (MIT) Gravel >2
Coarse sand 2-0.6
Medium sand 0.6-0.2
Fine sand 0.2-0.06
Silt 0.06-0.002
Clay <0.002
American Association of State Highway and Gravel 76.2-2
Transportation Officials (AASHTO) Coarse sand 2-0.425
Fine sand 0.425-0.075
Silt 0.075-0.002
Clay <0.002
Unified (U.S. Army Corps of Engineers, Gravel 76.2-4.75
U.S. Bureau of Reclamation, and American Coarse sand 4.75-2
Society for Testing and Materials) Medium sand 2-0.425
Fine sand 0.425-0.075

Silt and clay (fines) <0.075

Fine particles of quartz, feldspar, or mica may be present in a soil in the
size range defined for clay, but these will not develop plasticity when mixed
with water. It appears that it is more appropriate for soil particles with
sizes <2 or 5 pm as defined under various systems to be called clay-size
particles rather than clay. True clay particles are mostly of colloidal size
range (<1 pm), and 2 pm is probably the upper limit.
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1.3 CLAY MINERALS

Clay minerals are complex silicates of aluminum, magnesium, and iron.
Two basic crystalline units form the clay minerals: (1) a silicon—-oxygen
tetrahedron, and (2) an aluminum or magnesium octahedron. A silicon—
oxygen tetrahedron unit, shown in Figure 1.1a, consists of four oxygen
atoms surrounding a silicon atom. The tetrahedron units combine to
form a silica sheet as shown in Figure 1.2a. Note that the three oxygen
atoms located at the base of each tetrahedron are shared by neighbor-
ing tetrahedra. Each silicon atom with a positive valence of 4 is linked
to four oxygen atoms with a total negative valence of 8. However, each
oxygen atom at the base of the tetrahedron is linked to two silicon atoms.
This leaves one negative valence charge of the top oxygen atom of each
tetrahedron to be counterbalanced. Figure 1.1b shows an octahedral unit
consisting of six hydroxyl units surrounding an aluminum (or a magne-
sium) atom. The combination of the aluminum octahedral units forms a
gibbsite sheet (Figure 1.2b). If the main metallic atoms in the octahedral
units are magnesium, these sheets are referred to as brucite sheets. When
the silica sheets are stacked over the octahedral sheets, the oxygen atoms
replace the hydroxyls to satisfy their valence bonds. This is shown in
Figure 1.2c.

Some clay minerals consist of repeating layers of two-layer sheets. A two-
layer sheet is a combination of a silica sheet with a gibbsite sheet, or a
combination of a silica sheet with a brucite sheet. The sheets are about
7.2 A thick. The repeating layers are held together by hydrogen bonding
and secondary valence forces. Kaolinite is the most important clay mineral
belonging to this type (Figure 1.3). Other common clay minerals that fall
into this category are serpentine and halloysite.

The most common clay minerals with three-layer sheets are illite and
montmorillonite (Figure 1.4). A three-layer sheet consists of an octahedral
sheet in the middle with one silica sheet at the top and one at the bottom.

O Oxygen

@ Silicon

O Hydroxyl

. Aluminum or
magnesium

Figure 1.1 (a) Silicon—oxygen tetrahedron unit and (b) aluminum or magnesium octa-
hedral unit.
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® and O Silicon

Qand(D Oxygen

. Aluminum

O and (\:\/ Hydroxyl

@ Aluminum
® O Silicon

Figure 1.2 (a) Silica sheet, (b) gibbsite sheet, and (c) silica—gibbsite sheet. (After Grim, R.E.,
J. Soil Mech. Found. Div., ASCE, 85(2), 1-17, 1959.)

Repeated layers of these sheets form the clay minerals. Illite layers are
bonded together by potassium ions. The negative charge to balance the
potassium ions comes from the substitution of aluminum for some sili-
con in the tetrahedral sheets. Substitution of this type by one element for
another without changing the crystalline form is known as isomorphous
substitution. Montmorillonite has a similar structure to illite. However,
unlike illite, there are no potassium ions present, and a large amount of
water is attracted into the space between the three-sheet layers.

The surface area of clay particles per unit mass is generally referred to
as specific surface. The lateral dimensions of kaolinite platelets are about
1,000-20,000 A with thicknesses of 100-1,000 A. Illite particles have lateral
dimensions of 1000-5000 A and thicknesses of 50-500 A. Similarly, mont-
morillonite particles have lateral dimensions of 1000-5000 A with thick-
nesses of 10-50 A. If we consider several clay samples all having the same
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Y|
»

A number of
S repeating layers of

<«— Gibbsite sheet kaolinite form a
| G | kaolinite particle

<— Silica sheet

Elementary kaolinite layer

S
| o |
S
Figure 1.3 Symbolic structure for kaolinite.
S
S G
G S
S Water layers
S
S
G
G
S
S
Potassium Water layers
ions
S S
G G
S S

(a) (b)

Figure 1.4 Symbolic structure of (a) illite and (b) montmorillonite.

mass, the highest surface area will be in the sample in which the particle sizes
are the smallest. So it is easy to realize that the specific surface of kaolinite
will be small compared to that of montmorillonite. The specific surfaces
of kaolinite, illite, and montmorillonite are about 15, 90, and 800 m?/g,
respectively. Table 1.2 lists the specific surfaces of some clay minerals.
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Table 1.2 Specific surface area and cation exchange capacity
of some clay minerals

Cation exchange

Clay mineral Specific surface (m?/g)  capacity (me/100 g)
Kaolinite 10-20 3
lllite 80-100 25
Montmorillonite 800 100
Chlorite 5-50 20
Vermiculite 5-400 150
Halloysite (4H,0) 40 12
Halloysite (2H,0) 40 12

Clay particles carry a net negative charge. In an ideal crystal, the positive
and negative charges would be balanced. However, isomorphous substitu-
tion and broken continuity of structures result in a net negative charge at
the faces of the clay particles. (There are also some positive charges at the
edges of these particles.) To balance the negative charge, the clay particles
attract positively charged ions from salts in their pore water. These are
referred to as exchangeable ions. Some are more strongly attracted than
others, and the cations can be arranged in a series in terms of their affinity
for attraction as follows:

AP >ca®>M g >NH;>K'>H">Na" >Li

This series indicates that, for example, Al** ions can replace Ca?* ions, and
Ca?* ions can replace Na* ions. The process is called cation exchange. For
example,

Nag,+CaCl > Cagy tNaCl

Cation exchange capacity (CEC) of a clay is defined as the amount of
exchangeable ions, expressed in milliequivalents, per 100 g of dry clay.
Table 1.2 gives the CEC of some clays.

1.4 NATURE OF WATER IN CLAY

The presence of exchangeable cations on the surface of clay particles was
discussed in the preceding section. Some salt precipitates (cations in excess
of the exchangeable ions and their associated anions) are also present on
the surface of dry clay particles. When water is added to clay, these cations
and anions float around the clay particles (Figure 1.5).
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+ 4 - A
+ o+ o+
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= Cations
[
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+ -+ - 5
o
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Anions
-+ - %
Surface of >
clay particle Distance from surface of clay particle
Figure 1.5 Diffuse double layer.
Oxygen

Figure 1.6 Dipolar nature of water: (a) unsymmetrical arrangement of hydrogen atoms;
(b) dipole.

At this point, it must be pointed out that water molecules are dipolar,
since the hydrogen atoms are not symmetrically arranged around the oxygen
atoms (Figure 1.6a). This means that a molecule of water is like a rod with
positive and negative charges at opposite ends (Figure 1.6b). There are three
general mechanisms by which these dipolar water molecules, or dipoles, can
be electrically attracted toward the surface of the clay particles (Figure 1.7):

a. Attraction between the negatively charged faces of clay particles and
the positive ends of dipoles

b. Attraction between cations in the double layer and the negatively
charged ends of dipoles. The cations are in turn attracted by the nega-
tively charged faces of clay particles

c. Sharing of the hydrogen atoms in the water molecules by hydrogen
bonding between the oxygen atoms in the clay particles and the oxy-
gen atoms in the water molecules
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Clay G Case (a)
particle

Dipole
Cation
Case (b)
Dipole
Cation
Case (c)
Hydrogen

Figure 1.7 Dipolar water molecules in diffuse double layer.

The electrically attracted water that surrounds the clay particles is known
as double-layer water. The plastic property of clayey soils is due to the
existence of double-layer water. Thicknesses of double-layer water for typi-
cal kaolinite and montmorillonite crystals are shown in Figure 1.8. Since
the innermost layer of double-layer water is very strongly held by a clay

particle, it is referred to as adsorbed water.

‘}OO A Double-layer wate{

10 A Adsorbed

water

*~ Double-

Kaolinite
layer water,

crystal 200 A

/Adsorbed water >
— Montmorillonite

/ / crystal
g /

Figure 1.8 Clay water () typical kaolinite particle, 10,000 by 1,000 A and (b) typical
montmorillonite particle, 1,000 by 10 A. (After Lambe, T.W., Trans. ASCE,

125, 682, 1960.)

(b)
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1.5 REPULSIVE POTENTIAL

The nature of the distribution of ions in the diffuse double layer is
shown in Figure 1.5. Several theories have been presented in the past
to describe the ion distribution close to a charged surface. Of these, the
Gouy-Chapman theory has received the most attention. Let us assume
that the ions in the double layers can be treated as point charges, and
that the surface of the clay particles is large compared to the thickness

of the double layer. According to Boltzmann’s theorem, we can write
that (Figure 1.9)

—v,.ed
=N, ex 1.1
n, +0)EXP KT (1.1)
—v_ed
n_ =n_g,exp KT (1.2)

where
n, is the local concentration of positive ions at a distance x
n_is the local concentration of negative ions at a distance x
7. "_( are the concentration of positive and negative ions away from
the clay surface in the equilibrium liquid
@ is the average electric potential at a distance x (Figure 1.10)
v,, v_ are ionic valences
e is the unit electrostatic charge, 4.8 x 10-1° esu
K is the Boltzmann constant, 1.38 x 10-1¢ erg/K
T is the absolute temperature

Clay
particle

B‘— Ions

) PR g P

Figure 1.9 Derivation of repulsive potential equation.
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S

0

Potential, ®

v

Distance from surface of clay, x
Figure 1.10 Nature of variation of potential ® with distance from the clay surface.

The charge density p at a distance x is given by
p=v,en, —ven (1.3)
According to Poisson’s equation

d’®  —4np
dx’ A

(1.4)

where A is the dielectric constant of the medium.
Assuming v, = v_and n, = n_, = n,, and combining Equations 1.1
through 1.4, we obtain

d’® s8mnyve ., ., ved
> = sinh
dx A KT

(1.5)

It is convenient to rewrite Equation 1.5 in terms of the following nondi-
mensional quantities

_ 2 (1.6)
KT
zzLeq)o (1.7)

KT
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and
£ = 1x (1.8)
where @, is the potential at the surface of the clay particle and

2
K2 :87‘;;72"2(@-2) (1.9)

Thus, from Equation 1.5

2
Z&Z — sinhy (1.10)

The boundary conditions for solving Equation 1.10 are

1. AtE =0,y =0and dy/de =0
2. AtE=0,y =gz, thatis, ® = @,

The solution yields the relation

o €?+1)+ ?-1p"
€?+1)- *-1p*

(1.11)

Equation 1.11 gives an approximately exponential decay of potential. The
nature of the variation of the nondimensional potential y with the nondi-
mensional distance is given in Figure 1.11.

For a small surface potential (<25 mV), we can approximate Equation 1.5 as

2
P _ o (1.12)
dx
® = Dy ™ (1.13)

Equation 1.13 describes a purely exponential decay of potential. For this
condition, the center of gravity of the diffuse charge is located at a distance
of x = 1/x. The term 1/x is generally referred to as the double-layer thickness.

There are several factors that will affect the variation of the repulsive
potential with distance from the surface of the clay layer. The effect of
the cation concentration and ionic valence is shown in Figures 1.12 and
1.13, respectively. For a given value of ®, and x, the repulsive potential ®
decreases with the increase of ion concentration 7, and ionic valence v.

When clay particles are close and parallel to each other, the nature of
variation of the potential will be as shown in Figure 1.14. Note for this case
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Nondimensional potential, y

|
0 1 2 3

Nondimensional distance, £

Figure 1.1l Variation of nondimensional potential with nondimensional distance.

Potential, ®

v

Distance from clay particle, x

Figure 1.12 Effect of cation concentration on the repulsive potential.
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Potential, @

v

Distance from clay particle, x

Figure .13 Effect of ionic valence on the repulsive potential.

Clay Clay
particle particle
>

x

Figure 1.14 Variation of ® between two parallel clay particles.
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21>29> 23
ve(Dd
~ Yd =
i KT

v

E=xd

Figure I.15 Nature of variation of the nondimensional midplane potential for two paral-
lel plates.

thatat x = 0, ® = @, and at x = d (midway between the plates), ® = ®, and
d®/dx = 0. Numerical solutions for the nondimensional potential y = y,
(i.e., ® = ®,) for various values of z and & = «xd (i.e., x = d) are given by
Verweg and Overbeek (1948) (see also Figure 1.15).

1.6 REPULSIVE PRESSURE

The repulsive pressure midway between two parallel clay plates (Figure 1.16)
can be given by the Langmuir equation

p=2n,KT (ooshvemd - 1) (1.14)
KT
where p is the repulsive pressure, that is, the difference between the osmotic
pressure midway between the plates in relation to that in the equilibrium
solution. Figure 1.17, which is based on the results of Bolt (1956), shows
the theoretical and experimental variation of p between two clay particles.
Although the Guoy—Chapman theory has been widely used to explain
the behavior of clay, there have been several important objections to this
theory. A good review of these objections has been given by Bolt (1955).
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Clay V4 V4 Clay

particle 4—|—> particle
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Figure 1.16 Repulsive pressure midway between two parallel clay plates.
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Figure 1.17 Repulsive pressure between sodium montmorillonite clay particles. (After
Bolt, G.H., Geotechnique, 6, 86, 1956.)
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1.7 FLOCCULATION AND DISPERSION
OF CLAY PARTICLES

In addition to the repulsive force between the clay particles, there is an
attractive force, which is largely attributed to the Van der Waal force. This
is a secondary bonding force that acts between all adjacent pieces of matter.
The force between two flat parallel surfaces varies inversely as 1/x> to 1/x*,
where x is the distance between the two surfaces. Van der Waal’s force is
also dependent on the dielectric constant of the medium separating the sur-
faces. However, if water is the separating medium, substantial changes in the
magnitude of the force will not occur with minor changes in the constitution
of water.

The behavior of clay particles in a suspension can be qualitatively visual-
ized from our understanding of the attractive and repulsive forces between
the particles and with the aid of Figure 1.18. Consider a dilute suspension of
clay particles in water. These colloidal clay particles will undergo Brownian
movement and, during this random movement, will come close to each

Repulsive force

Net force

v

Distance between
particles, x

Attractive force

v

Figure 1.18 Dispersion and flocculation of clay in a suspension.
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Figure 1.19 (a) Dispersion and (b) flocculation of clay.

other at distances within the range of interparticle forces. The forces of
attraction and repulsion between the clay particles vary at different rates
with respect to the distance of separation. The force of repulsion decreases
exponentially with distance, whereas the force of attraction decreases as
the inverse third or fourth power of distance, as shown in Figure 1.18.
Depending on the distance of separation, if the magnitude of the repulsive
force is greater than the magnitude of the attractive force, the net result will
be repulsion. The clay particles will settle individually and form a dense
layer at the bottom; however, they will remain separate from their neigh-
bors (Figure 1.19a). This is referred to as the dispersed state of the soil. On
the contrary, if the net force between the particles is attraction, flocs will be
formed and these flocs will settle to the bottom. This is called flocculated
clay (Figure 1.19b).

1.7.1 Salt flocculation and nonsalt flocculation

We saw in Figure 1.12 the effect of salt concentration, 7., on the repulsive
potential of clay particles. High salt concentration will depress the double
layer of clay particles and hence the force of repulsion. We noted earlier
in this section that the Van der Waal force largely contributes to the force
of attraction between clay particles in suspension. If the clay particles are
suspended in water with a high salt concentration, the flocs of the clay par-
ticles formed by dominant attractive forces will give them mostly an orien-
tation approaching parallelism (face-to-face type). This is called a salt-type
flocculation (Figure 1.20a).

Another type of force of attraction between the clay particles, which is
not taken into account in colloidal theories, is that arising from the elec-
trostatic attraction of the positive charges at the edge of the particles and
the negative charges at the face. In a soil-water suspension with low salt
concentration, this electrostatic force of attraction may produce a floccula-
tion with an orientation approaching a perpendicular array. This is shown
in Figure 1.20b and is referred to as nonsalt flocculation.



18 Advanced Soil Mechanics

(a) (b)

Figure 1.20 (a) Salt and (b) nonsalt flocculation of clay particles.

1.8 CONSISTENCY OF COHESIVE SOILS

The presence of clay minerals in a fine-grained soil will allow it to be remolded
in the presence of some moisture without crumbling. If a clay slurry is dried,
the moisture content will gradually decrease, and the slurry will pass from
a liquid state to a plastic state. With further drying, it will change to a
semisolid state and finally to a solid state, as shown in Figure 1.21. In 1911,
A. Atterberg, a Swedish scientist, developed a method for describing the
limit consistency of fine-grained soils on the basis of moisture content.
These limits are the liquid limit, the plastic limit, and the shrinkage limit.

The liquid limit is defined as the moisture content, in percent, at which
the soil changes from a liquid state to a plastic state. The moisture contents
(in percent) at which the soil changes from a plastic to a semisolid state
and from a semisolid to a solid state are defined as the plastic limit and
the shrinkage limit, respectively. These limits are generally referred to as
the Atterberg limits. The Atterberg limits of cohesive soil depend on sev-
eral factors, such as the amount and type of clay minerals and the type of
adsorbed cation.

Moisture
» content
decreasing
Liquid Plastic Semisolid Solid
state state state state
Liquid Plastic Shrinkage
limit limit limit

Figure 1.2] Consistency of cohesive soils.
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1.8.1 Liquid limit

The liquid limit of a soil is generally determined by the Standard
Casagrande device. A schematic diagram (side view) of a liquid limit
device is shown in Figure 1.22a. This device consists of a brass cup and a
hard rubber base. The brass cup can be dropped onto the base by a cam
operated by a crank. To perform the liquid limit test, one must place a
soil paste in the cup. A groove is then cut at the center of the soil pat with
the standard grooving tool (Figure 1.22b). By using the crank-operated
cam, the cup is lifted and dropped from a height of 10 mm. The moisture
content, in percent, required to close a distance of 12.7 mm along the
bottom of the groove (see Figure 1.22¢ and d) after 25 blows is defined as
the liquid limit.

="
46.8 O
L 27 rrfm Y

on

(a) (b)

Section

Figure 1.22 Schematic diagram of (a) liquid limit device, (b) grooving tool, (c) soil pat at
the beginning of the test, and (d) soil pat at the end of the test.
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Figure 1.23 Flow curve for the determination of the liquid limit for a silty clay.

It is difficult to adjust the moisture content in the soil to meet the required
12.7 mm closure of the groove in the soil pat at 25 blows. Hence, at least three
tests for the same soil are conducted at varying moisture contents, with the
number of blows, N, required to achieve closure varying between 15 and 35.
The moisture content of the soil, in percent, and the corresponding number of
blows are plotted on semilogarithmic graph paper (Figure 1.23). The relation-
ship between moisture content and log N is approximated as a straight line.
This line is referred to as the flow curve. The moisture content corresponding
to N = 25, determined from the flow curve, gives the liquid limit of the soil.
The slope of the flow line is defined as the flow index and may be written as

Wi;—W;

L=—"—""°" 1.15
g, N ;) ( )

where
I} is the flow index
w is the moisture content of soil, in percent, corresponding to N, blows
w, is the moisture content corresponding to N, blows

Note that w, and w, are exchanged to yield a positive value even though the
slope of the flow line is negative. Thus, the equation of the flow line can be
written in a general form as

w =-I; ogN +C (1.16)

where C is a constant.
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From the analysis of hundreds of liquid limit tests in 1949, the U.S. Army
Corps of Engineers, at the Waterways Experiment Station in Vicksburg,
Mississippi, proposed an empirical equation of the form

() (1.17)
- ' 25 '

where
N is the number of blows in the liquid limit device for a 12.7 mm
groove closure
why, is the corresponding moisture content
tan p = 0.121 (but note that tan B is not equal to 0.121 for all soils)

Equation 1.17 generally yields good results for the number of blows
between 20 and 30. For routine laboratory tests, it may be used to deter-
mine the liquid limit when only one test is run for a soil. This procedure
is generally referred to as the one-point method and was also adopted by
ASTM under designation D-4318 (ASTM, 2010). The reason that the one-
point method yields fairly good results is that a small range of moisture
content is involved when N = 20-30.

Another method of determining the liquid limit, which is popular in
Europe and Asia, is the fall cone method (British Standard—BS 1377).
In this test, the liquid limit is defined as the moisture content at which a
standard cone of apex angle 30° and weight of 0.78 N (80 gf) will penetrate
a distance d = 20 mm in 5 s when allowed to drop from a position of point
contact with the soil surface (Figure 1.24a). Due to the difficulty in achiev-
ing the liquid limit from a single test, four or more tests can be conducted at
various moisture contents to determine the fall cone penetration, d, in 5 s.
A semilogarithmic graph can then be plotted with moisture content w ver-
sus cone penetration d. The plot results in a straight line. The moisture
content corresponding to d = 20 mm is the liquid limit (Figure 1.24b). From
Figure 1.24b, the flow index can be defined as

WL (3 )-wi(® )

= 1.18
Tec bgd, - byd, (1.18)

where w,, w, are the moisture contents at cone penetrations of d; and d,,
respectively.

1.8.2 Plastic limit

The plastic limit is defined as the moist content, in percent, at which the soil
crumbles when rolled into threads of 3.2 mm diameter. The plastic limit
is the lower limit of the plastic stage of soil. The plastic limit test is simple
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Figure 1.24 (a) Fall cone test and (b) plot of moisture content versus cone penetration
for determination of liquid limit.

and is performed by repeated rolling of an ellipsoidal size soil mass by hand
on a ground glass plate. The procedure for the plastic limit test is given by
ASTM Test Designation D-4318 (ASTM, 2010).

As in the case of liquid limit determination, the fall cone method can be
used to obtain the plastic limit. This can be achieved by using a cone of
similar geometry, but with a mass of 2.35 N (240 gf). Three to four tests at
varying moist contents of soil are conducted, and the corresponding cone
penetrations d are determined. The moisture content corresponding to a cone
penetration of d = 20 mm is the plastic limit. Figure 1.25 shows the liquid
and plastic limit determined by the fall cone test for Cambridge Gault clay
reported by Wroth and Wood (1978).
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Figure 1.25 Liquid and plastic limits for Cambridge Gault clay determined by the fall cone test.

The difference between the liquid limit and the plastic limit of a soil is
defined as the plasticity index, PI

PI=LL-PL (1.19)
where
LL is the liquid limit

PL is the plastic limit

Sridharan et al. (1999) showed that the plasticity index can be correlated
to the flow index as obtained from the liquid limit tests. According to their
study

PIE )=4.12L (3 ) (1.20)

and

PI& )=0.74Tc (% ) (1.21)
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1.9 LIQUIDITY INDEX

The relative consistency of a cohesive soil can be defined by a ratio called
the liquidity index LI. It is defined as

Wy —PL _wy -PL

LT =
LL-PL PI

(1.22)

where wy is the natural moisture content. It can be seen from Equation
1.22 that, if wy = LL, then the liquidity index is equal to 1. Again, if
wy = PL, the liquidity index is equal to 0. Thus, for a natural soil deposit
which is in a plastic state (i.e., LL > wy > PL), the value of the liquidity
index varies between 1 and 0. A natural deposit with wy > LL will have a
liquidity index greater than 1. In an undisturbed state, these soils may be
stable; however, a sudden shock may transform them into a liquid state.
Such soils are called sensitive clays.

1.10 ACTIVITY

Since the plastic property of soil is due to the adsorbed water that
surrounds the clay particles, we can expect that the type of clay minerals
and their proportional amounts in a soil will affect the liquid and plastic
limits. Skempton (1953) observed that the plasticity index of a soil lin-
early increases with the percent of clay-size fraction (percent finer than
2p by weight) present in it. This relationship is shown in Figure 1.26.

Soil 1

Soil 2

Plasticity index

v

Percentage of clay-size fraction (<2p)

Figure 1.26 Relationship between plasticity index and percentage of clay-size fraction
by weight.
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Table 1.3 Activities of clay minerals

Mineral Activity (A)
Smectites -7
llite 0.5-1
Kaolinite 0.5
Halloysite (4H,0) 0.5
Halloysite (2H,0) 0.1
Attapulgite 0.5-1.2
Allophane 0.5-1.2

The average lines for all the soils pass through the origin. The correla-
tions of PI with the clay-size fractions for different clays plot separate
lines. This is due to the type of clay minerals in each soil. On the basis
of these results, Skempton defined a quantity called activity, which is the
slope of the line correlating PI and percent finer than 2p. This activity A
may be expressed as

PT
B (percentage of clay-size fraction by w eight)

A (1.23)

Activity is used as an index for identifying the swelling potential of clay
soils. Typical values of activities for various clay minerals are given in
Table 1.3.

Seed et al. (1964a) studied the plastic property of several artificially pre-
pared mixtures of sand and clay. They concluded that, although the rela-
tionship of the plasticity index to the percent of clay-size fraction is linear
(as observed by Skempton), it may not always pass through the origin. This
is shown in Figure 1.27. Thus, the activity can be redefined as

PT
A=
percentofclay-sizefraction —C”’

(1.24)

where C’ is a constant for a given soil. For the experimental results shown
in Figure 1.27, C’' = 9.

Further works of Seed et al. (1964b) have shown that the relationship
of the plasticity index to the percentage of clay-size fractions present in a
soil can be represented by two straight lines. This is shown qualitatively
in Figure 1.28. For clay-size fractions greater than 40%, the straight line
passes through the origin when it is projected back.
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O Commercial bentonite
® Bentonite/kaolinite—4:1
A Bentonite/kaolinite—1.5:1
A Kaolinite/bentonite—1.5:1
B Kaolinite/bentonite—4:1
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Figure 1.27 Relationship between plasticity index and clay-size fraction by weight for
kaolinite/bentonite clay mixtures. (After Seed, H.B. et al., J. Soil Mech. Found.
Eng. Div., Am. Soc. Civ. Eng., 90(SM4), 107, 1964.)

I.11 GRAIN-SIZE DISTRIBUTION OF SOIL

For a basic understanding of the nature of soil, the distribution of
the grain size present in a given soil mass must be known. The grain-
size distribution of coarse-grained soils (gravelly and/or sandy) is
determined by sieve analysis. Table 1.4 gives the opening size of some
U.S. sieves.
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Figure 1.28 Simplified relationship between plasticity index and percentage of clay-size
fraction by weight. (After Seed, H.B. et al., J. Soil Mech. Found. Eng. Div., Am.
Soc. Civ. Eng., 90(SM6), 75, 1964.)

Table 1.4 U.S. standard sieves

Sieve no. Opening size (mm)
3 6.35
4 4.75
6 3.36
8 2.38
10 2.00
16 1.19
20 0.84
30 0.59
40 0.425
50 0.297
60 0.25
70 0.21
100 0.149
140 0.105
200 0.075
270 0.053

The cumulative percent by weight of a soil passing a given sieve is referred
to as the percent finer. Figure 1.29 shows the results of a sieve analysis for a
sandy soil. The grain-size distribution can be used to determine some of the
basic soil parameters, such as the effective size, the uniformity coefficient,
and the coefficient of gradation.
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Figure 1.29 Grain-size distribution of a sandy sail.

The effective size of a soil is the diameter through which 10% of the total
soil mass is passing and is referred to as D,,. The uniformity coefficient C,
is defined as

_Deo

Cy,=
Do

(1.25)

where Dy, is the diameter through which 60% of the total soil mass is passing.
The coefficient of gradation C_is defined as

= Ox) (1.26)
0600 10)

where Dy, is the diameter through which 30% of the total soil mass is passing.
A soil is called a well-graded soil if the distribution of the grain sizes
extends over a rather large range. In that case, the value of the uniformity
coefficient is large. Generally, a soil is referred to as well graded if C,, is larger
than about 4-6 and C_ is between 1 and 3. When most of the grains in a soil
mass are of approximately the same size—that is, C, is close to 1—the soil is
called poorly graded. A soil might have a combination of two or more well-
graded soil fractions, and this type of soil is referred to as a gap-graded soil.
The sieve analysis technique described earlier is applicable for soil grains
larger than No. 200 (0.075 mm) sieve size. For fine-grained soils, the pro-
cedure used for determination of the grain-size distribution is hydrometer
analysis. This is based on the principle of sedimentation of soil grains.
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1.12 WEIGHT-VOLUME RELATIONSHIPS

Figure 1.30a shows a soil mass that has a total volume V and a total weight W.
To develop the weight—volume relationships, the three phases of the soil mass,
that is, soil solids, air, and water, have been separated in Figure 1.30b. Note that

W =W +W, (1.27)
and, also

V =V ,+V, +V, (1.28)

V, =V, +V, (1.29)
where

W. is the weight of soil solids
W, is the weight of water

V. is the volume of the soil solids
V., is the volume of water

V. is the volume of air

The weight of air is assumed to be zero. The volume relations commonly
used in soil mechanics are void ratio, porosity, and degree of saturation.

Void ratio e is defined as the ratio of the volume of voids to the volume
of solids:

v
=" 1.30
ey, (1.30)

Weight Volume Weight Volume
5 ry

=~

Soil
solids

Tle—g—re—F—
| |
! I
s <l <

Figure 1.30 Weight—volume relationships for soil aggregate: (a) soil mass of volume V;
(b) three phases of the soil mass.



30 Advanced Soil Mechanics

Porosity n is defined as the ratio of the volume of voids to the total volume:
n=—"> (1.31)

Also, V=V, +V,
and so

V, V, g e

BTNV, VNt WAL Lte

(1.32)

Degree of saturation S, is the ratio of the volume of water to the volume
of voids and is generally expressed as a percentage:

S.@ )=:;—w><100 (1.33)

v

The weight relations used are moisture content and unit weight. Moisture
content w is defined as the ratio of the weight of water to the weight of soil
solids, generally expressed as a percentage:

W@ )=?TW><100 (1.34)

S

Unit weight v is the ratio of the total weight to the total volume of the soil
aggregate:

W
= 1.35
e (1.35)

This is sometimes referred to as moist unit weight since it includes the
weight of water and the soil solids. If the entire void space is filled with
water (i.e., V, = 0), it is a saturated soil; Equation 1.35 will then give us the
saturated unit weight y,,..

The dry unit weight v, is defined as the ratio of the weight of soil solids
to the total volume:

W,
A%

(1.36)

Ya =

Useful weight—volume relations can be developed by considering a soil
mass in which the volume of soil solids is unity, as shown in Figure 1.31.
Since V, = 1, from the definition of void ratio given in Equation 1.30, the
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Figure 1.3] Weight—volume relationship for V, = I.

volume of voids is equal to the void ratio e. The weight of soil solids can
be given by

We=GYuVs=GgY, (EhoeV,=1)

where
G, is the specific gravity of soil solids
Y. is the unit weight of water (9.81 kN/m?)

From Equation 1.34, the weight of water is W, = wW, = wG.y,,. So the
moist unit weight is

y=W7=Ws+Ww :Gsyw +wWG Yy :Gs'yw(l+w) (1.37)
\Y Vs+Vy, l1+e 1+e

The dry unit weight can also be determined from Figure 1.31 as

B_GSYW

= = 1.38

T4 \% l+e ( )
The degree of saturation can be given by

Sr:Vl:WWA{W ZWGS’YWWW :WGS (1.39)

A% Vs e e
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For saturated soils, S, = 1. So, from Equation 1.39,
e=wG, (1.40)

By referring to Figure 1.32, the relation for the unit weight of a saturated
soil can be obtained as

W W+W, GgYy T €Yy
Yo = —— = = Ol T (1.41)
v v l1+e

Basic relations for unit weight such as Equations 1.37, 1.38, and 1.41 in
terms of porosity 7 can also be derived by considering a soil mass that has a
total volume of unity as shown in Figure 1.33. In this case (for V = 1), from
Equation 1.31, V, =n.So, V.= V-V, =1 -n.
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Figure 1.32 Weight—volume relation for saturated soil with V, = |.

g B
|

Wo=wGy,(1-n) | _ _ Water  _
V=1
(

Ws = Gst n) Soil Vs (1 _ }’l)

solids

Figure 1.33 Weight—volume relationship for V = I.
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The weight of soil solids is equal to (1 - #)G,y,, and the weight of water
W, = wW, = w(1l - n)Gy,,. Thus, the moist unit weight is

W _W sTW _ (l_nps’Yw +w (]-_nps’Yw

v v 1
=Gst (1—n)(1+w) (142)
The dry unit weight is
W
Ya = v = (l_nr;s’Yw (1.43)

If the soil is saturated (Figure 1.34),

WestWy,
’Yst:T:(l_nps’Yw‘{'n'Yw :I.Gs_nGs_l)]Yw (144)
Table 1.5 gives some typical values of void ratios and dry unit weights

encountered in granular soils.

- _ — A
— ~ Water = ~

szn)/w _ _ o Vv=}’l

- V=
Soil
V.=(1-n)
W= Gst(l -n) solids s

v

Figure 1.34 Weight—volume relationship for saturated soil with V = 1.

Table 1.5 Typical values of void ratios and dry unit weights for granular soils

Void ratio, e Dry unit weight, y,
Soil type Maximum ~ Minimum  Minimum (kN/m3)  Maximum (kN/m?3)
Gravel 0.6 0.3 16 20
Coarse sand 0.75 0.35 15 19
Fine sand 0.85 0.4 14 19
Standard Ottawa sand 0.8 0.5 14 17
Gravelly sand 0.7 0.2 15 22
Silty sand | 0.4 13 19

Silty sand and gravel 0.85 0.15 14 23
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Example 1.1

For a soil in natural state, given e = 0.8, w = 24%, and G, = 2.68.

a. Determine the moist unit weight, dry unit weight, and degree of
saturation.

b. If the soil is completely saturated by adding water, what would
its moisture content be at that time? Also, find the saturated unit
weight.

Solution
Part a:

From Equation 1.37, the moist unit weight is

_Garw @tw)
K l+e
Since y,, = 9.81 kN/m3,

_ 268)081)0+024) _
v 1+038

18.11kN fn 3

From Equation 1.38, the dry unit weight is

_ Gy _ @EBYOBY)_ |, s

T 1+e 1+08

Ya

From Equation 1.39, the degree of saturation is

024)e '68)>< 100=2804%

S.(3 )= WGS><100=
e

Part b:

From Equation 1.40, for saturated soils, ¢ = wG,, or

W@ )= 2x100= 2% x100=2985%
G 268

s

From Equation 1.41, the saturated unit weight is

’Yszt=Gst T _ 9'81(2'68+0'8)=18.97kN/m3
l+e 1+08
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1.13 RELATIVE DENSITY AND RELATIVE
COMPACTION

Relative density is a term generally used to describe the degree of compac-
tion of coarse-grained soils. Relative density D, is defined as

Cnax — €

D,=—"==2 (1.45)
Enax ~ Gnm
where
€nax 18 the maximum possible void ratio

€in 18 the minimum possible void ratio
e is the void ratio in natural state of soil

Equation 1.45 can also be expressed in terms of dry unit weight of the soil:

GgYw G oY
max)=———"— or gup=—"—-1 (1.46)
e 1+ e Yafm ax)
Similarly,
GYw
Gnax =, .~ 1 (1.47)
Ya m M)
and
e= Sl 4 (1.48)
Ya

where y,(max), y,(min), and y, are the maximum, minimum, and natural-
state dry unit weights of the soil. Substitution of Equations 1.46 through
1.48 into Equation 1.45 yields

Drz{vd(max)}[ Ya=Tamin) ] (1.49)
Ya Yamax)—Ya@mm)

Relative density is generally expressed as a percentage. It has been used
by several investigators to correlate the angle of friction of soil, the soil
liquefaction potential, etc.

Another term occasionally used in regard to the degree of compaction of
coarse-grained soils is relative compaction, R, which is defined as

R.= g\d : (1.50a)
Ya @ ax
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Comparing Equations 1.49 and 1.50a,

Ro

= o (1.50b)
l_Dr(l_Ro)

(o}

where R, = y4(min)/y,(max).
Lee and Singh (1971) reviewed 47 different soils and gave the approxi-
mate relation between relative compaction and relative density as

R,=80+02D, (1.50¢)

where D, is in percent.

1.14 RELATIONSHIP BETWEEN e, .., AND e

max min

The maximum and minimum void ratios for granular soils described in
Section 1.13 depend on several factors such as

Grain size

Grain shape

Nature of grain-size distribution

Fine content F, (i.e., fraction smaller than 0.075 mm)

Following are some of the correlations now available in the literature related
to e, and e, of granular soils.

max min

e Clean sand (F, = 0%-5%)

Miura et al. (1997) conducted an extensive study of the physical characteris-
tics of about 200 samples of granular material, which included mostly clean
sand, some glass beads, and lightweight aggregates (LWA). Figure 1.35
shows a plot of e, versus e,;, obtained from that study, which shows that

€nax = 162615 (1.51)

Cubrinovski and Ishihara (2002) analyzed a large number of clean sand
samples based on which it was suggested that

€nax = 0072+153e,4 (1.52)

The data points upon which Equation 1.52 is based and an additional 55 data
points for clean sand given by Patra et al. (2010) are shown in Figure 1.36.
From this figure, it appears that Equation 1.51 may be taken as a good aver-
age approximation. The difference in the angularity or roundness of the
particles of different soils is another major factor causing the scatter.
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Figure 1.35 Plot of e, versus e, based on the results of Miura et al. (1997).

# Cubrinovski and Ishihara (2002)
© Patra et al. (2010)

1.5 =

Range

emax

e

min

Figure 1.36 Plot of e, versus e, for clean sand.
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Based on best-fit linear regression lines, Cubrinovski and Ishihara (2002)
also provided the following relationships for other soils:

e Sand with fines (5% < F. < 15%)

G = 025+1376, (1.53)
e Sand with fines and clay (15% < F. < 30%; P. = 5%-20%)

G =044+1216, 5 (1.54)
e Silty soils (30% < F. < 70%; P. = 5%-20%)

G =044+132e, 5 (1.55)

where
F. is the fine fraction for which grain size is smaller than 0.075 mm
P. is the clay-size fraction (<0.005 mm)

Based on a very large database, Cubrinovski and Ishihara (1999, 2002) devel-
oped a unique relationship between e, — e, and median grain size D,. The
database included results from clean sand, sand with fines, and sand with clay,
silty soil, gravelly sand, and gravel. This relationship is shown in Figure 1.37.
In spite of some scatter, the average line can be given by the relation

min

o — s =023+ 000 (1.56)

Dsomm)

It appears that the upper and lower limits of e, — e,.;, versus D, as shown
in Figure 1.37 can be approximated as

e Lower limit

a6y =016+ 0045 (1.57)
Dsofmm )
e Upper limit
6y =029+ 2079 (1.58)
Dsofmm )

1.15 SOIL CLASSIFICATION SYSTEMS

Soil classification is the arrangement of soils into various groups or subgroups to
provide a common language to express briefly the general usage characteristics
without detailed descriptions. At the present time, two major soil classification
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1.0 7
O Clean sands (F,= 0% —5%)
4 Sands with fines (5% < F.< 15%)
® Sands with clay (15% < F,<30%, P, = 5% —20%)
o i k& & A Silty soils (30% < F.< 70%, P, = 5% ~20%)
& g <& Gravelly sands (F,< 6%, P = 17% —36%)
A 4 O Gravels
£ A a
2 A \
& :
| A ‘,' '
é 0.6 A A
A
:; ‘\\f 0.06
151 ‘A .
g \ 5 'max ~ €min = 0.23 + D‘SO
L
§ 0.4 -
o
2
0.2
0.0 e e e e r—r—

0.1 1.0 10

Median grain size, D5, (mm)

Figure 1.37 Plot of e, — €,.;, versus median grain size (Ds;). (Redrawn after Cubrinovski
and Ishihara, Soils Found., 42(6), 65-78, 2002.)

systems are available for general engineering use. They are the unified system
and the American Association of State Highway and Transportation Officials
(AASHTO) system. Both systems use simple index properties such as grain-
size distribution, liquid limit, and plasticity index of soil.

1.15.1 Unified system

The unified system of soil classification was originally proposed by A.
Casagrande in 1948 and was then revised in 1952 by the Corps of Engineers
and the U.S. Bureau of Reclamation. In its present form [also see ASTM
D-2487, ASTM (2010)], the system is widely used by various organizations,
geotechnical engineers in private consulting business, and building codes.

Initially, there are two major divisions in this system. A soil is classified
as a coarse-grained soil (gravelly and sandy) if more than 50% is retained
on a No. 200 sieve and as a fine-grained soil (silty and clayey) if 50% or
more is passing through a No. 200 sieve. The soil is then further classified
by a number of subdivisions, as shown in Table 1.6.
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Figure 1.38 Plasticity chart.
Example 1.2

For a soil specimen, given the following,

Passing No. 4 sieve = 92% Passing No. 40 sieve = 78%
Passing No. 10 sieve = 81%  Passing No. 200 sieve = 65%
Liquid limit = 48 Plasticity index = 32

classify the soil by the unified classification system.

Solution

Since more than 50% is passing through a No. 200 sieve, it is a fine-
grained soil, that is, it could be ML, CL, OL, MH, CH, or OH. Now, if
we plot LL = 48 and PI = 32 on the plasticity chart given in Figure 1.38,
it falls in the zone CL. So the soil is classified as CL.

1.15.2 AASHTO classification system

This system of soil classification was developed in 1929 as the Public Road
Administration Classification System. It has undergone several revisions,
with the present version proposed by the Committee on Classification of
Materials for Subgrades and Granular Type Roads of the Highway Research
Board in 1945 [ASTM (2010) Test Designation D-3282].

The AASHTO classification system in present use is given in
Table 1.7. According to this system, soil is classified into seven major
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Table 1.7 Classification of highway subgrade materials

General classification

Granular materials (35% or less of total sample passing No.
200 sieve)

Group classification

A-1 A2

A-l-a  A-I-b A3 A-2-4  A-25 A-2-6 A-2-7

Sieve analysis (percent
passing)

No. 10

No. 40

No. 200

Characteristics of
fraction passing

No. 40

Liquid limit

Plasticity index

Usual types of
significant
constituent materials

General subgrade
rating

50 max.
30 max. 50 max. 50 min.
15 max. 25 max. 10 max. 35 max. 35 max. 35 max. 35 max.

40 max. 4| min. 40 max. 4| min.
6 max. NP 10 max. [0max. Il min. |l min.

Stone fragments, Fine Silty or clayey gravel and sand
gravel,and sand  sand

Excellent to good

General classification

Silt—clay materials (more than 35% or total sample passing No.

200 sieve)
A-7
A-7-52
Group classification ~ A-4 A-5 A-6 A-7-6°
Sieve analysis (percent
passing)
No. 10
No. 40
No. 200 36 min. 36 min. 36 min. 36 min.
Characteristics of
fraction passing
No. 40
Liquid limit 40 max. 41 min. 40 max. 41 min.
Plasticity index 10 max. 10 max. I'l min. Il min.
Usual types of Silty soils Clayey soils

significant
constituent materials

General subgrade
rating

Fair to poor

@ For A-7-5,PI < LL - 30.
> For A-7-6,Pl > LL — 30.
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groups: A-1 through A-7. Soils classified into Groups A-1, A-2, and A-3 are
granular materials, where 35% or less of the particles pass through the No.
200 sieve. Soils where more than 35% pass through the No. 200 sieve are
classified into groups A-4, A-5, A-6, and A-7. These are mostly silt and clay-
type materials. The classification system is based on the following criteria:

1. Grain size
Gravel: Fraction passing the 75 mm sieve and retained on No. 10 (2 mm)
U.S. sieve
Sand: Fraction passing the No. 10 (2 mm) U.S. sieve and retained on
the No. 200 (0.075 mm) U.S. sieve
Silt and clay: Fraction passing the No. 200 U.S. sieve
2. Plasticity: The term silty is applied when the fine fractions of the soil
have a plasticity index of 10 or less. The term clayey is applied when
the fine fractions have a plasticity index of 11 or more.
3. If cobbles and boulders (size larger than 75 mm) are encountered, they
are excluded from the portion of the soil sample on which classifica-
tion is made. However, the percentage of such material is recorded.

To classify a soil according to Table 1.7, the test data are applied from
left to right. By the process of elimination, the first group from the left into
which the test data will fit is the correct classification.

For the evaluation of the quality of a soil as a highway subgrade material,
a number called the group index (GI) is also incorporated with the groups
and subgroups of the soil. The number is written in parentheses after the
group or subgroup designation. The group index is given by the equation

GI= F-35)[02+0.005CLL - 40)]+0.01F — 15)@I-10) (1.59)

where
F is the percent passing the No. 200 sieve
LL is the liquid limit
PI is the plasticity index

The first term of Equation 1.59—that is, (F - 35)[0.2 + 0.005(LL - 40)]—
is the partial group index determined from the liquid limit. The second
term—that is, 0.01(F - 15) (PI — 10)—is the partial group index deter-
mined from the plasticity index. Following are the rules for determining
the group index:

1. If Equation 1.59 yields a negative value for GI, it is taken as 0.

2. The group index calculated from Equation 1.59 is rounded off to the
nearest whole number (e.g., GI = 3.4 is rounded off to 3; GI = 3.5 is
rounded off to 4).
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3. There is no upper limit for the group index.

4. The group index of soils belonging to groups A-1-a, A-1-b, A-2-4,
A-2-5, and A-3 is always 0.

5. When calculating the group index for soils that belong to groups
A-2-6 and A-2-7, use the partial group index for PI, or

GI=0.01F —15)PI-10) (1.60)

In general, the quality of performance of a soil as a subgrade material is
inversely proportional to the group index.

Example 1.3
Classify the following soil by the AASHTO classification system.

Passing No. 10 sieve: 100%
Passing No. 40 sieve: 92%
Passing No. 200 sieve: 86%
Liquid limit (LL): 70
Plasticity index (PI): 32

Solution

Percent passing the No. 200 sieve is 86%. So, it is a silty clay material
(i.e., A-4, A-5, A-6, or A-7) as shown in Table 1.7. Proceeding from left
to right, we see that it falls under A-7. For this case, PI = 32 < LL - 30.
So, this is A-7-5. From Equation 1.59

GI=(F-35)[02+0.005CL—40)1+001F —15)@I-10)
Now, F = 86; LL = 70; PI = 32; so

GI=@6-35)02+0.005(70—40)+0.0186—15)32-10)

=3347 =33

Thus, the soil is A-7-5(33).

1.16 COMPACTION

Compaction of loose fills is a simple way of increasing the stability and
load-bearing capacity of soils, and this is generally achieved by using
smooth-wheel rollers, sheepsfoot rollers, rubber-tired rollers, and vibratory
rollers. In order to write the specifications for field compaction, Proctor
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compaction tests are generally conducted in the laboratory. A brief descrip-
tion of the Proctor compaction test procedure is as follows:

1.16.1 Standard Proctor compaction test

A standard laboratory soil compaction test was first developed by Proctor
(1933), and this is usually referred to as the standard Proctor test (ASTM des-
ignation D-698). The test is conducted by compaction of three layers of soil in
a mold that is 944 cm? in volume. Each layer of soil is subjected to 25 blows by
a hammer weighing 24.6 N with a 304.8 mm drop. From the known volume
of the mold, weight of moist compacted soil in the mold, and moisture content
of the compacted soil, the dry unit weight of compaction can be determined as

W eightofm oistsoilin themold
Volim eof themold

'Ym oist —

— Ym oist

Ya 1+w

where
Ymoise 18 the moist unit weight of compacted soil
Y4 is the dry unit weight of compacted soil
w is the moisture content of soil

The test can be repeated several times at various moist contents of soil.
By plotting a graph of y, against the corresponding moisture content, the
optimum moisture content v, and the maximum dry unit weight v,y
can be obtained (Figure 1.39). Also plotted in Figure 1.39 is the variation of

Yzav VS- W

Dry unit weight, yq

I
w,
v opt

v

Moisture content, w (%)

Figure 1.39 Nature of variation of v, versus w.
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the dry unit weights, assuming the degree of saturation to be 100%. These
are the theoretical maximum dry unit weights that can be attained for a
given moisture content when there will be no air in the void spaces. With
the degree of saturation as 100%

e=wGg (1.61)

The maximum dry unit weight at a given moisture content with zero air
voids can be given by (Equation 1.38)

_Gst _ Gst — ’Yw (1.62)

T e 1+wG, (6.)+w

where v,,, is the zero-air-void unit weight (dry).
For standard Proctor compaction test, the compaction energy E can be
expressed as

_ 45N blow )@ layers)(25blow s/layer)(0 3048m )

E
©44/10°m°

=593,294N -m /0 =~ 593kN 4m /n °

1.16.2 Modified Proctor compaction test

With the development of heavier compaction equipment, the standard
Proctor test has been modified for better representation of field conditions.
In the modified Proctor test (ASTM designation D-1577), the same mold
as in the standard Proctor test is used. However, the soil is compacted in
5 layers, with a 44.5 N hammer giving 25 blows to each layer. The height
of drop of the hammer is 457.2 mm. Hence, the compactive effort in the
modified Proctor test is equal to

_ @5bbw s/layer)® layers)(44 5N blow )0 4572m )
©44/10°%)m*

E

=2,694,041N m /> = 2604 kN -m /n >

The maximum dry unit weight obtained from the modified Proctor test
will be higher than that obtained from the standard Proctor test due to the
application of higher compaction energy. It will also be accompanied by a
lower optimum moisture content compared to that obtained from the stan-
dard Proctor compaction test.
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1.17 EMPIRICAL RELATIONSHIPS FOR PROCTOR
COMPACTION TESTS

Omar et al. (2003) presented the results of modified Proctor compaction
tests on 311 soil samples. Of these samples, 45 were gravelly soil (GP,
GP-GM, GW, GW-GM, and GM), 264 were sandy soil (SP, SP-SM,
SW-SM, SW, SC-SM, SC, and SM), and two were clay with low plasticity
(CL). Based on the tests, the following correlations were developed:

Pamax) = [4,804,574G .~ 195 55@CLY +156,971R #4Y° -9,527,830"
(1.63)

NWope)=1195X10 QLY —1.964G,—6.617X10° R#4)+ 7651
(1.64)

where
Pd(max) 18 the maximum dry density
W, 1s the optimum moisture content (%)
G, is the specific gravity of soil solids
LL is the liquid limit, in percent
R#4 is the percent retained on No. 4 sieve

For granular soils with less than 12% fines (i.e., finer than No. 200 sieve),
relative density may be a better indicator for end product compaction speci-
fication in the field. Based on laboratory compaction tests on 55 clean sands
(less than 5% finer than No. 200 sieve), Patra et al. (2010) provided the
following relationships:

D,=ADs; (1.65)

A =0216IE —0.850 (1.66)

B=-0.03InE + 0306 (1.67)
where

D, is the maximum relative density of compaction achieved with com-
paction energy E, kN-m/m?
D;, is the median grain size, mm

Gurtug and Sridharan (2004) proposed correlations for optimum mois-
ture content and maximum dry unit weight with the plastic limit PL of
cohesive soils. These correlations can be expressed as
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Wope(® )= [L.95— 0 38(gE)]@L) (1.68)
Yagmax) KN 03 )= 22 686" 0183 orc®) (1.69)
where

PL is the plastic limit, %
E is the compaction energy, kN-m/m?

For modified Proctor test, E ~ 2700 kN/m3. Hence,

Wopt(®3 )= 065(PL)

Yamaxy &N )= 22 £8e 0 012F)

Osman et al. (2008) analyzed a number of laboratory compaction test
results on fine-grained (cohesive) soil, including those provided by
Gurtug and Sridharan (2004). Based on this study, the following cor-
relations were developed:

Wope(® )= (199—0.165NE)@T) (1.70)

Yamaxy &N f07)= L =M W o (3 ) (1.71)
where

L=1434+1195hE (1.72)

M =-0.19+0073IE (1.73)

W, is the optimum moisture content, %

PI is the plasticity index, %
Yd(may 18 the maximum dry unit weight, kN/m?
E is the compaction energy, kN-m/m?

DiMatteo et al. (2009) analyzed the results of 71 fine-grained soils and pro-

vided the following correlations for optimum moisture content w,, and max-
imum dry unit weight y,,,,, for modified Proctor tests (E = 2700 kN-m/m?)

Wope(® )=—0 .86(L.L)+3.04(I(';L)+2.2 (1.74)
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Yaman®N f°)=40316(w 57" ) T )-2 4 (1.75)

where
LL is the liquid limit, %
PI is the plasticity index, %
G, is the specific gravity of soil solids

Example 1.4

For a sand with 4% finer than No. 200 sieve, estimate the maximum
relative density of compaction that may be obtained from a modified
Proctor test. Given Dg, = 1.4 mm.

Solution

For the modified Proctor test, E = 2696 kN-m/m?>.
From Equation 1.66

A=0216ME—0.850=(0216)In 2696 }+0.850 = 0.856
From Equation 1.67
B=-0.03nE+0.306=—(0.03) 2696)+0.306 = 0.069

From Equation 1.65

D,=ADj, = (0856)1 4)°" =0.836=836%

Example 1.5

For a silty clay soil given LL = 43 and PL = 18. Estimate the maximum
dry unit weight of compaction that can be achieved by conducting
modified Proctor test. Use Equation 1.71.

Solution
For the modified Proctor test, E = 2696 kN-m/m?3.
From Equations 1.72 and 1.73

L=1434+1.195InE =1434+1.195In(2696)=23.78

M =-0.19+0073nE=-0.19+0.073In2696)=0.387
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From Equation 1.70

Wopt ¢ )= (1 99-0.165IE)@I)
=[199-0.165I (2696)]@3—18)

=17.16%

From Equation 1.71

Yamax) =L =M Wope = 23.78— 0 387)(17.16)=17 .14 kN fu
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Chapter 2

Stresses and strains

Elastic equilibrium

2.1 INTRODUCTION

An important function in the study of soil mechanics is to predict the
stresses and strains imposed at a given point in a soil mass due to cer-
tain loading conditions. This is necessary to estimate settlement and to
conduct stability analysis of earth and earth-retaining structures, as well
as to determine stress conditions on underground and earth-retaining
structures.

An idealized stress—strain diagram for a material is shown in Figure 2.1.
At low stress levels, the strain increases linearly with stress (branch ab),
which is the elastic range of the material. Beyond a certain stress level, the
material reaches a plastic state, and the strain increases with no further
increase in stress (branch bc). The theories of stresses and strains presented
in this chapter are for the elastic range only. In determining stress and
strain in a soil medium, one generally resorts to the principles of the theory
of elasticity, although soil in nature is not fully homogeneous, elastic, or
isotropic. However, the results derived from the elastic theories can be judi-
ciously applied to the problem of soil mechanics.

2.2 BASIC DEFINITION AND SIGN
CONVENTIONS FOR STRESSES

An elemental soil mass with sides measuring dx, dy, and dz is shown in
Figure 2.2. Parameters 6,, 6,, and o, are the normal stresses acting on the
planes normal to the x, y, and z axes, respectively. The normal stresses are
considered positive when they are directed onto the surface. Parameters
Toys Tyws Tyo> Toys Tows and T, are shear stresses. The notations for the shear
stresses follow.

53
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Elastic Plastic

b c

Stress

v

Strain

Figure 2.1 |dealized stress—strain diagram.
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Figure 2.2 Notations for normal and shear stresses in a Cartesian coordinate system.
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If 7; is a shear stress, it means the stress is acting on a plane normal to
the 7 axis, and its direction is parallel to the j axis. A shear stress 7 is con-
sidered positive if it is directed in the negative j direction while acting on
a plane whose outward normal is the positive i direction. For example, all
shear stresses are positive in Figure 2.2. For equilibrium

Ty =Ty (2.1)
Tez =Tz (2.2)
Ty =Ty (2.3)

Figure 2.3 shows the notations for the normal and shear stresses in
a polar coordinate system (two-dimensional case). For this case, o, and
oy are the normal stresses, and t,, and 714, are the shear stresses. For
equilibrium, 7,4 = 14, Similarly, the notations for stresses in a cylindri-
cal coordinate system are shown in Figure 2.4. Parameters o,, 6,4, and
o, are the normal stresses, and the shear stresses are 7,y = 6,,, 6y, = 6,0,

and 7,, = T,

v
®

Figure 2.3 Notations for normal and shear stresses in a polar coordinate system.
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Figure 2.4 Notations for normal and shear stresses in cylindrical coordinates.
2.3 EQUATIONS OF STATIC EQUILIBRIUM
Figure 2.5 shows the stresses acting on an elemental soil mass with sides

measuring dx, dy, and dz. Let y be the unit weight of the soil. For equilib-
rium, summing the forces in the x direction

YF,=|o,— (5x+acx dx || dydz+| 14— Tm+m—mdz dxdy
0x 0z
+|:‘cyx—(’cyx+atyxdy):|dxdz:0
dy

0G, +81yx +81:,X _

ox dy Fre

or
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Figure 2.5 Derivation of equations of equilibrium.
Similarly, along the y direction, ¥F, = 0, or
00, 0Ty  OT
T Xy F = (2.5)

Wax 9z

Along the z direction

YF,=|0,— <52+a(YZ dz ||dxdy+| Ty, — sz+arx2 dx ||dydz
0z 0x

+ [Tyz _[Tyz + aaTYZ dy):| dxdz+ 'Y(dXdde)= 0
Y

The last term of the preceding equation is the self-weight of the soil mass.
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Thus

an +%+ﬂ
dz dx dy

Equations 2.4 through 2.6 are the static equilibrium equations in the
Cartesian coordinate system. These equations are written in terms of total
stresses.

They may, however, be written in terms of effective stresses as

6, =0 + u=0; + Y,h (2.7)

where
o, is the effective stress
u is the pore water pressure
Y., is the unit weight of water
b is the pressure head

Thus

00, 0O, oh

AL 2.
0x 0% MR 0x (2.8)
Similarly

d6, 90, oh

90y _9% ., oh 2.

dy  dy +7, 3y (2.9)
and

J0, 802+ oh (2.10)

0z B 0z YWE

Substitution of the proper terms in Equations 2.4 through 2.6 results in

00, 0Ty  OT oh

g Oy Oy 90 2.11
8x+ay+82+y8x ( )
90y, Ity Ty, 00 _, (2.12)
dy 0x 0z dy
aGZ_’_aTXZ_’_a’CYZ_’_’YW%_Y;:o (2.13)

dz dx dy dz

where v’ is the effective unit weight of soil. Note that the shear stresses will
not be affected by the pore water pressure.
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> X
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Figure 2.6 Derivation of static equilibrium equation for a two-dimensional problem in
Cartesian coordinates.

In soil mechanics, a number of problems can be solved by two-dimensional
stress analysis. Figure 2.6 shows the cross-section of an elemental soil prism
of unit length with the stresses acting on its faces. The static equilibrium equa-
tions for this condition can be obtained from Equations 2.4 through 2.6 by
substituting 7, = 7,, = 0, 7,, = 7,, = 0, and do,/dy = 0. Note that 7, =7_,. Thus

Xy

Jdo, 01

X0 2.14
ox " Jz ( )
do, 0T

2 0 _y= 215
0z * ox v ( )

Figure 2.7 shows an elemental soil mass in polar coordinates. Parameters
o, and o, are the normal components of stress in the radial and tangential
directions, and t,, and 7,4 are the shear stresses. In order to obtain the static
equations of equilibrium, the forces in the radial and tangential directions
need to be considered. Thus

S, = [crrde —~ (Gr + aacr dr)(r+ dr)de]
r

+ [ce drsind® /2 +(69 + aa(;’de)drsjndeﬁ}

07Tq
+| T d dO /2 —| Tg, +——
[9 YCooSs [9 ae

do )droosde /2:| +Y(@dbdr)cosd =0
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v

Figure 2.7 Derivation of static equilibrium equation for a two-dimensional problem in
polar coordinates.

Taking sin d6/2 ~ d6/2 and cos d6/2 = 1, neglecting infinitesimally small
quantities of higher order, and noting that d(c,7)/dr = #(do,/dr) + o, and
To, = T,9, the previous equation yields

do, 10T, O©,—0Cg
r+f7+7r —_ e:o 2.16
Jr rdo r yoos ( )

Similarly, the static equation of equilibrium obtained by adding the com-
ponents of forces in the tangential direction is

100 0Tn 2Ty .
i i e 6=0 2.17
rodd oJr r ysn ( )

The stresses in the cylindrical coordinate system on a soil element are
shown in Figure 2.8. Summing the forces in the radial, tangential, and
vertical directions, the following relations are obtained:

90, 19Ty 0Tz  O:=Co _ (2.18)
Jdr rd@® Odz r
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Figure 2.8 Equilibrium equations in cylindrical coordinates.

It , 100y , 0Te; | 2T
dr rodb Odz r

=0 (2.19)

0T, 10Ty, 00, Ty
2+ la 2.2
ar+r80+az+r ¥=0 (2.20)

2.4 CONCEPT OF STRAIN

Consider an elemental volume of soil as shown in Figure 2.9a. Owing to
the application of stresses, point A undergoes a displacement such that its
components in the x, y, and z directions are u, v, and w, respectively. The
adjacent point B undergoes displacements of u# + (du/dx)dx, v + (dv/dx)dx,
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4 o

(@) (b)

Figure 2.9 Concept of strain: (a) elemental volume of soil measuring dx dy dz; (b) rotation
of sides AB and AC of the elemental volume.

and w + (dw/dx)dx in the x, y, and z directions, respectively. So, the change
in the length AB in the x direction is # + (du/dx)dx — u = (Ju/dx)dx. Hence,
the strain in the x direction, g, can be given as

l(audx)— Ju (2.21)

€,= — =—
dx| ox 0x

Similarly, the strains in the y and z directions can be written as

e,= ov (2.22)
dy
ow

et (2.23)

where €, and €, are the strains in the y and z directions, respectively.

Owing to stress application, sides AB and AC of the element shown in
Figure 2.9a undergo a rotation as shown in Figure 2.9b (see A’B” and A’C").
The small change in angle for side AB is «,, the magnitude of which may
be given as [(dv/0x)dx](1/dx) = dv/dx, and the magnitude of the change in
angle a, for side AC is [(du/dy)dy|(1/dy) = du/dy. The shear strain v,, is
equal to the sum of the change in angles «;, and a,. Therefore

Ju dv
_ 2.24
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Similarly, the shear strains y,, and y,, can be derived as

ou oJw
= +

’YXZ_E a (225)
and
v ow
YYZ_E-’-TY (2.26)

Generally, in soil mechanics, the compressive normal strains are considered
positive. For shear strain, if there is an increase in the right angle BAC
(Figure 2.9b), it is considered positive. As shown in Figure 2.9b, the shear
strains are all negative.

2.5 HOOKE’S LAW

The axial strains for an ideal, elastic, isotropic material in terms of the
stress components are given by Hooke’s law as

Ju 1
Exza—XZE[(Sx—V(GY+GZ)] (2.27)
eyzg;:;[cy—v(cxwz)] (2.28)
and
ezzaa—“; =é[oz—v(ox+cy)] (2.29)
where

E is the Young’s modulus
v is the Poisson’s ratio

Form the relation given by Equations 2.27 through 2.29, the stress com-
ponents can be expressed as

VvVE
Oy=—"———
L+ v)d-2v)

€x+ey+ez)+l_E+_V€x (2.30)

VE

E
_ = 2.31
(l+V)(1—2V)EX+€Y+EZ)+l+Vey ( )

Oy
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VE
6,=————————
L+v)d-2v)

Ex+ey+ez)+lfvez (2.32)

The shear strains in terms of the stress components are

Ty
Vay :?Y (2.33)
T
= (2.34)
¥ G
and
Tyz
Yyz = Gy (2.35)

where shear modulus

__E
2Q+v)

(2.36)

2.6 PLANE STRAIN PROBLEMS

A state of stress generally encountered in many problems in soil mechanics
is the plane strain condition. Long retaining walls and strip foundations
are examples where plane strain conditions are encountered. Referring to
Figure 2.10, for the strip foundation, the strain in the y direction is zero
(i.e., €, = 0). The stresses at all sections in the xz plane are the same, and the
shear stresses on these sections are zero (i.e., 7,, =7,, = 0 and 1, = 7, = 0).
Thus, from Equation 2.28

1
Ey: OZE[Gy_V(Gx'i_Gz)]

Gy, =V(Ox+0;) (2.37)

Substituting Equation 2.37 into Equations 2.27 and 2.29

’ [ox —"oz] (2.38)
1-v
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k N Strip foundation

Figure 2.10 Strip foundation: plane strain problem.

and

_ 2
e, =17V [oz—"cx} (2.39)

Since 7,, =0 and 7, = 0
Yiy=0 7Yy.=0 (2.40)

and

a
»
N

(2.41)

Vxz =

2.6.1 Compatibility equation

The three strain components given by Equations 2.38, 2.39, and 2.41 are
functions of the displacements # and w and are not independent of each
other. Hence, a relation should exist such that the strain components give
single-valued continuous solutions. It can be obtained as follows. From
Equation 2.21, €, = du/dx. Differentiating twice with respect to z

%, d2*u

= - 2.42
0z2  09x 02 ( )
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From Equation 2.23, €, = dw/dz. Differentiating twice with respect to x

d’e, Jdw

0%’ 9z0%

(2.43)

Similarly, differentiating vy, (Equation 2.25) with respect to x and z

0*Y,, _ d’u o’w

= _+-2 (2.44)
0xdz 0xdz° 0x° 0z
Combining Equations 2.42 through 2.44, we obtain
2 2 2
0°e,  0°€, 0™y (2.45)

927 " 0x* 0x0z

Equation 2.45 is the compatibility equation in terms of strain compo-
nents. Compatibility equations in terms of the stress components can also
be derived. Let E’ = E/(1 - v?) and v’ = v/(1 - v). So, from Equation 2.38,
€, = 1/E'(o, - v'o,). Hence

d*e 1(d% d’c
x_ 1] 90x_y90s 2.46
07’ E{ 0z’ M 0z ] ( )
Similarly, from Equation 2.39, €, = (1/E’)(s, - v's,). Thus
d%e, 1(d%c d%c
2o 1] 9029 0x 2.47
ox’ E'(ax2 Vox J ( )
Again, from Equation 2.41
Yo = 22 = 20EV), 204 V) (2.48)

G E E

0%z _ 20+V) 071y,

0x0z E’ 0x0dz

Substitution of Equations 2.46 through 2.48 into Equation 2.45 yields

2’1,
0x0z

(2.49)

d°c, N d’c, [ 9%, N 0o,
0z  0%? 0z  0%?

]= 2@1+V)
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From Equations 2.14 and 2.15

0 (00, 0Ty, 0 (00, 0Ty
— + +— + -y |=0
x| dx 0dz dz| dz  0dx

or

2°t d%c, d% )
2 X2 = - X 2+ — 2.50
0x02 (ax2 - 97’ ]+E)zm ( )

Combining Equations 2.49 and 2.50

22 92 B ,. 0
(axz +822J(Gx+52)— (1+V)aZ(Y)

For weightless materials, or for a constant unit weight vy, the previous
equation becomes

90° 9
[axz +aZZJ(GX+GZ)=O (2.51)

Equation 2.51 is the compatibility equation in terms of stress.

2.6.2 Stress function

For the plane strain condition, in order to determine the stress at a given
point due to a given load, the problem reduces to solving the equations of
equilibrium together with the compatibility equation (Equation 2.51) and
the boundary conditions. For a weight-less medium (i.e., y = 0), the equa-
tions of equilibrium are

Jdo, 0T

x ¥ =0 2.14
0x " 0z ( )
do, 0T

24 * =90 2.15
0z * 0x ( )

The usual method of solving these problems is to introduce a stress func-
tion referred to as Airy’s stress function. The stress function ¢ in terms of
x and z should be such that

G.=o? (2.52)
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82
G, = ax"j (2.53)
82
sz:_axg)z (2.54)

The aforementioned equations will satisfy the equilibrium equations. When
Equations 2.52 through 2.54 are substituted into Equation 2.51, we get

2! 2! 2!
ax(i)-’-zax2 ;)zz +87(‘11):O (2.59)

So, the problem reduces to finding a function ¢ in terms of x and z such that
it will satisfy Equation 2.55 and the boundary conditions.

2.6.3 Compatibility equation in polar coordinates

For solving plane strain problems in polar coordinates, assuming the
soil to be weightless (i.e., y = 0), the equations of equilibrium are (from
Equations 2.16 and 2.17)

d0, lactucr—ce:o

dr r do r

18& a’cr_e 279 -0
rdd oJdr r

The compatibility equation in terms of stresses can be given by

0° 19 10°
or ror r* 96’

](Gr+09)=0 (2.56)

The Airy stress function ¢ should be such that

_109, 10%
T r8r+ ¥ 06° 2.57)
Co =a—¢ (2.58)

or’
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32 me an) o5

™= 250 roroe  orl roe

The previous equations satisfy the equilibrium equations. The compat-
ibility equation in terms of stress function is

0 10 19° 9% 100 109°% |_ 2.60
{81‘2+r8r+1‘2862]{81‘2+r8r+12892) 0 (2.60)

Similar to Equation 2.37, for the plane strain condition

G, = V(0, + Gp)

Example 2.1

The stress at any point inside a semi-infinite medium due to a line load
of intensity g per unit length (Figure 2.11) can be given by a stress
function

0=Ax mn'l(zj
X

where A is a constant. This equation satisfies the compatibility equa-
tion (Equation 2.55). (a) Find o,, o,, 6,, and 7,,. (b) Applying proper
boundary conditions, find A.

Line load,
q/unit length
v >

Figure 2.11 Stress at a point due to a line load.
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Solution

Part a:

(0] =Axtan'1(z)
X

The relations for o,, o, o, and 7, are given in Equations 2.52
through 2.54.

roL0) 1 1 A
— =AX —=
0z 1+ @kf x 1+ @AY

s _0% _  2Az’
* 9z &+ 2°Y
82
.
ox
87¢_A 4z Az At 2. AXZ
ox x [+ @AY K X ®+7Z)
s _0%_ A z Az 28X’z
* 9%’ 1+ @kY x* xX*+7Z & +2°)
_ Az Az + 2A%°z _ 2a7
X*+2 ¥+Z &+ & +2°y
aZ
T =— 0
0x 0z
o0 12z  Axz
xR T )
® +2z)
% A 1 Ax 2Ax7°

0xdz 1+ @kf x X +2 & +2°)
or

2% 2Ax7

0xdz &+ 22y
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_ 9% __ 2Ax7
0x0z &+ 22 Y

Tz =

6, = VO, +0,)=v| - 22 zx? _ 2a7
yo o W+Zf 2y
__ 2Azv (x2+zz)=— 2Azv

(x2+zz)2 (x2+zz)

Part b: Consider a unit length along the y direction. We can write

+oo

T 2AZ
q= J ©.)d)Ex)= I_de

—oo

_ 277 X + dx "~
27% | x*+ 2 X+ 2

oo

oo

1

=—Az[ = 2+1anlx) =-A@A2+n/2)=-An
X"+ 2z V4 V4

So

2gx°z 2qz° _ 2gx?

= = T =
* 11',(x2+zz)2 : 11:(x2+zz)2 i 11:(x2+zz)2

We can see that at z = 0 (i.e., at the surface) and for any value of x # 0,
c,, 6,, and 1., are equal to zero.

2.7 EQUATIONS OF COMPATIBILITY
FOR THREE-DIMENSIONAL PROBLEMS

For three-dimensional problems in the Cartesian coordinate system as

shown in Figure 2.2, the compatibility equations in terms of stresses are
(assuming the body force to be zero or constant)

2
1 06 (2.61)
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2
vig,+ + 99 (2.62)
1+v oy
1 9’0
VZGZ‘F?vaZZ = (2.63)
1 9’0
Vg, + - 22 2.64
T 1+ vodxdy ( )
2
vig,+ L 90 _g (2.65)
1+vdydz
1 9%
Vi, +—— =0 2.66
K 1+v0dx0z ( )
where
V2 0> 9° 0°

ox oy’ o7
and

®=0,+0,+0,

The compatibility equations in terms of stresses for the cylindrical coor-
dinate system (Figure 2.4) are as follows (for constant or zero body force):

1 9°0 _

Vo, +
1+v oz’

(2.67)

Vo, +—— =5+ S (0 +0,)=0 (2.68)

1 (100 1 9% 49 2
Vz"e*m(rar*faez ]+f£;(;e_f(°e+6‘): ° (.69

1 00 1, 2 0T,

v+ L
R T e T

=0 (2.70)
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1 0 (100 4 2 0
V? — |- |- Tw—— - 0eg—0,)=0 .
Tre+l+v8r(r86 J J:"ZTIﬁ r* 90 o = 0x) 2.71)
2
Vi, + 1 1090 +EMJ_E=0 (2.72)

1+vrofdz r o0 1

2.8 STRESSES ON AN INCLINED PLANE
AND PRINCIPAL STRESSES FOR
PLANE STRAIN PROBLEMS

The fundamentals of plane strain problems are explained in Section 2.5.
For these problems, the strain in the y direction is zero (i.e., T,, = 7,, = 0;
T,, =T, = 0) and 6, is constant for all sections in the plane.

If the stresses at a point in a soil mass (i.e., 6, 6,, 6,, T,..(= T,,)) are known
(as shown in Figure 2.12a), the normal stress ¢ and the shear stress T on
an inclined plane BC can be determined by considering a soil prism of unit
length in the direction of the y axis. Summing the components of all forces

in the 7 direction (Figure 2.12b) gives

XF,=0
6 dA = (o, cos 0)(dA cos 0) + (o, sin 0)(dA sin 6)
+ (T, sin 0)(dA cos 0) + (1., cos 0)(dA sin 0)

where dA is the area of the inclined face of the prism. Thus

6 =0,c0¢ 0+0,sh’0+ 21,,sin6cos

=(Gx+"z )+(GX;GZ )00526+szsjr129 (2.73)

2
Similarly, summing the forces in the s direction gives

YF,=0
TdA =—(0,sinB)dA cosb)+ (¢, 00s0)dA sin6)
+ (T4, c0s0)(dA cosb)— (T4, sn0)dA sinb)

T=—0, SO cos + G, sin O cos + Ty, (cos’ 6 — sin* 0)

- ‘EXZOOSZG—(GX;Gz)sjnZG (2.74)

Note that 6, has no contribution to ¢ or 7.
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z Principal plane

I
I
/ :
I
Unit o, :
length !
= |

A C !

<
<
-
Q

4 ‘\6< AB=BC cos 6
AC=BCsin

B
(b)

Figure 2.12 (a) Stresses on an inclined plane for the plane strain case; (b) soil prism of
unit length in the direction of y-axis.

2.8.1 Transformation of stress components from
polar to Cartesian coordinate system

In some instances, it is helpful to know the relations for transformation of
stress components in a polar coordinate system to a Cartesian coordinate sys-
tem. This can be done by a principle similar to that demonstrated earlier for
finding the stresses on an inclined plane. Comparing Figures 2.12 and 2.13,
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v
z

Figure 2.13 Transformation of stress components from polar to Cartesian coordinate
system.

it is obvious that we can substitute o, for o,, o, for o,, and t,, for 1, in
Equations 2.73 and 2.74 to obtain o, and ., as shown in Figure 2.13. So

0, = 6,sI* 0 + 6y o’ 0 + 27,4 SO cosO (2.75)

Typ = —Op SO c0SO + G, SN O COSO + T, (COS” O — sIN° O) (2.76)
Similarly, it can be shown that

6, = 6,005 0 + Gy sin’ B — 27,4 SN B cosO (2.77)

2.8.2 Principal stress

A plane is defined as a principal plane if the shear stress acting on it is zero.
This means that the only stress acting on it is a normal stress. The normal
stress on a principal plane is referred to as the principal stress. In a plane
strain case, 6, is a principal stress, and the xz plane is a principal plane.
The orientation of the other two principal planes can be determined by
considering Equation 2.74. On an inclined plane, if the shear stress is zero,
it follows that

szooszez(%;%]sme
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27T,
Ox—0;

tan 20 = (2.78)

From Equation 2.78, it can be seen that there are two values of 6 at right
angles to each other that will satisfy the relation. These are the directions
of the two principal planes BC' and BC” as shown in Figure 2.12. Note
that there are now three principal planes that are at right angles to each
other. Besides c,, the expressions for the two other principal stresses can
be obtained by substituting Equation 2.78 into Equation 2.73, which gives

(2.79)
(2.80)

where 6,;, and o5, are the principal stresses. Also
Oy1) + Opp) = Ox + O, (2.81)

Comparing the magnitude of the principal stresses, Gp(1) > Oy = G0 > Opp3)e
Thus 6,), 6, and o, are referred to as the major, intermediate, and
minor principal stresses. From Equations 2.37 and 2.81, it follows that

Gy = V[Opa)+ Op@)] (2.82)

2.8.3 Mohr’s circle for stresses

The shear and normal stresses on an inclined plane (Figure 2.12) can also
be determined graphically by using Mohr’s circle. The procedure to con-
struct Mohr’s circle is explained later.

The sign convention for normal stress is positive for compression and
negative for tension. The shear stress on a given plane is positive if it tends
to produce a clockwise rotation about a point outside the soil element, and
it is negative if it tends to produce a counterclockwise rotation about a point
outside the element (Figure 2.14). Referring to plane AB in Figure 2.12a,
the normal stress is +o, and the shear stress is +t,,. Similarly, on plane
AC, the stresses are +6, and -t,,. The stresses on planes AB and AC can
be plotted on a graph with normal stresses along the abscissa and shear
stresses along the ordinate. Points B and C in Figure 2.15 refer to the stress
conditions on planes AB and AC, respectively. Now, if points B and C are
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Figure 2.14

Shear stress
(+ve)

(-ve)

Figure 2.15

Negative
shear stress

Positive }
shear stress @

Sign convention for shear stress used for the construction of Mohr’s circle.

Positive
shear stress

|
Op(1) g
5
>
P; Normal stress
e (+ve)
< o g
< o, »
< o, >
Mohr’s circle.

joined by a straight line, it will intersect the normal stress axis at O’. With
O’ as the center and O'B as the radius, if a circle BP; CP; is drawn, it will
be Mohr’s circle. The radius of Mohr’s circle is

(2.83)
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Any radial line in Mohr’s circle represents a given plane, and the
coordinates of the points of intersection of the radial line and the circumfer-
ence of Mohr’s circle give the stress condition on that plane. For example,
let us find the stresses on plane BC. If we start from plane AB and move
an angle 0 in the clockwise direction in Figure 2.12, we reach plane BC. In
Mohr’s circle in Figure 2.15, the radial line O’B represents the plane AB.
We move an angle 26 in the clockwise direction to reach point F. Now the
radial line O’F in Figure 2.15 represents plane BC in Figure 2.12. The coor-
dinates of point F will give us the stresses on the plane BC.

Note that the ordinates of points P, and P; are zero, which means
that O’P; and O'P; represent the major and minor principal planes, and
OP, = o, and OP; = 5,3

2
O0,+0 0,—O 2
0,0)=0P =00"+0'P, = "2 Z+ ( X Z)sz

2
, ., 0440 G,—0 )
Gp(3)=OP3=OO -0 P3= x2 Z— ( x2 z)"l‘TXZ

The previous two relations are the same as Equations 2.79 and 2.80. Also
note that the principal plane O’P, in Mohr’s circle can be reached by moving
clockwise from O’B through angle BO'P, = tan™! 21, /(c, - 6,)]. The other
principal plane O’P; can be reached by moving through angle 180° + tan-!
[27,./(6, - ©,)] in the clockwise direction from O’B. So, in Figure 2.12, if
we move from plane AB through angle (1/2) tan™! |27 /(c, - ©,)], we will
reach plane BC’, on which the principal stress 6, acts. Similarly, moving
clockwise from plane AB through angle 1/2{180° + tan™! [21_/(c, - 6,)]} =
90° + (1/2) tan™' 27, /(c, - ©,)] in Figure 2.12, we reach plane BC”, on
which the principal stress o, acts. These are the same conclusions as
derived from Equation 2.78.

2.8.4 Pole method for finding stresses
on an inclined plane

A pole is a unique point located on the circumference of Mohr’s circle. If a
line is drawn through the pole parallel to a given plane, the point of inter-
section of this line and Mohr’s circle will give the stresses on the plane. The
procedure for finding the pole is shown in Figure 2.16.

Figure 2.16a shows the same stress element as Figure 2.12. The corre-
sponding Mohr’s circle is given in Figure 2.16b. Point B on Mohr’s circle
represents the stress conditions on plane AB (Figure 2.16a). If a line is drawn
through B parallel to AB, it will intersect Mohr’s circle at P. Point P is the
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v

(@)

Shear stress

(b)

Figure 2.16 Pole method of finding stresses on an inclined plane: (a) stress element;

(b) corresponding Mohr’s circle.

pole for Mohr’s circle. We could also have found pole P by drawing a line
through C parallel to plane AC. To find the stresses on plane BC, we draw
a line through P parallel to BC. It will intersect Mohr’s circle at F, and the
coordinates of point F will give the normal and shear stresses on plane AB.

Example 2.2

The stresses at a point in a soil mass are shown in Figure 2.17 (plane
strain case). Determine the principal stresses and show their direc-
tions. Use v = 0.35.

Solution

Based on the sign conventions explained in Section 2.2,

G,=+100kN M2, G,=+50kN m?, and T, =-25KkN f?

2
6,+0 6,-0 ,
Op = x2 Z+ ( X2 z)"'rxz

2
504100 -
= i\/(so 2100) 4+ 25f = (75+3536)kN fu 2

o, = 110.36 kN/m? 6,3 = 39.64 kN/m?

Sy = V10,0 + O] = (0.35)(110.36 + 39.34) = 52.5 kN/m?
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> x 6,=100 kN/m?
B K 2 C
/
/
/
/
//
k{zs; K T, =25 kN/m?
/
Y 2250 %/ 5. = 50 kN/m2
v 4 *
oy
z !y
Vs
/17
5/
A
/ 2 »
/
/
/
/ 110.36 kN/m?

39.64 kN/m?

Figure 2.17 Determination of principal stresses at a point.

From Equation 2.78

en20 2be _ @€25)
0;,—0, (0-100)

20 =tan ()= 45° and 225° 0 0 = 22 5° and 112 5°

Parameter Spi) 'is acting on the xz plane. The directions of 6,;, and 6,
are shown in Figure 2.17.

Example 2.3
Refer to Example 2.2.

a. Determine the magnitudes of 6,;) and c,,;) by using Mohr’s circle.
b. Determine the magnitudes of the normal and shear stresses on
plane AC shown in Figure 2.17.

Solution

Parta: For Mohr’scircle, on plane AB,6,=50kN/m?andt,,=-25 kN/m?.
On plane BC, o, = +100 and 7, +25 kN/m?. For the stresses, Mohr’s
circle is plotted in Figure 2.18. The radius of the circle is

0'H =0 If + ®If =25 +25” = 3536 kN A >
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H (100, 25)

P,
>
>

Normal stress

Shear stress
e}

All units are in kN/m?

Figure 2.18 Mohr’s circle for stress determination.

G, = 00"+ O'P =75 +35.36 =110.36 kN/m?
6,5 = 00"+ O'P; =75 - 35.36 = 39.64 kN/m?

The angle GO'Py = 20 = tan™'(JG/O’]) = tan"'(25/25) = 45°. So, we
move an angle 6 = 22.5° clockwise from plane AB to reach the minor
principal plane, and an angle 6 = 22.5 + 90 = 112.5° clockwise from
plane AB to reach the major principal plane. The orientation of the
major and minor principal stresses is shown in Figure 2.17.

Part b: Plane AC makes an angle 35°, measured clockwise, with plane
AB. If we move through an angle of (2)(35°) = 70° from the radial line
O’'G (Figure 2.18), we reach the radial line O’K. The coordinates of K
will give the normal and shear stresses on plane AC. So

7=0'Ksin25° = 35.36 sin25° = 14.94 kN/m?

6=00"-0Kcos25°=75-35.36 cos25° = 42.95 kN/m?
Note: This could also be solved using Equations 2.73 and 2.74:

= txzcoszﬁ—(cxgcz )sinze

where
T, = =25 kN/m?
0 =35°

o, = +50 kN/m?
6, = +100 kN/m? (watch the sign conventions)
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So

1= —2500370—[50_2100)51'1'170 =-855— (23 49)

=14 94 kN A2

(5:(6"+Gz )+(GX;GZ )oosze+rxzsm29

2

= ( >0 +2100 J+(5°_21°° Joos70+ 25)sin70

=75-855-2349=4296 kN fn?

2.9 STRAINS ON AN INCLINED PLANE
AND PRINCIPAL STRAIN FOR
PLANE STRAIN PROBLEMS

Consider an elemental soil prism ABDC of unit length along the y direction
(Figure 2.19). The lengths of the prism along the x and z directions are AB =
dx and AC = dz, respectively. When subjected to stresses, the soil prism is
deformed and displaced. The length in the y direction still remains unity.
A'B"D"C" is the deformed shape of the prism in the displaced position.

)

dz dl

Figure 2.19 Normal and shear strains on an inclined plane (plane strain case).
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If the normal strain on an inclined plane AD making an angle 6 with the
x axis is equal to €,

A'D"=AD (l+e)=dld +¢€) (2.84)
where AD = dl.

Note that the angle B"A’C” is equal to (/2 - y,,). So the angle A’'C"D" is
equal to +(n/2 +v,,). Now

@D’ =@'C"f+ DY -2@'C”)C"D")00S(N 2 + Yxz) (2.85)
A'C”"=AC (H€e,)=dz(l+€,)=dlsnb)l+<,) (2.86)
C’D”"=A'B"=dx( +€,)=dlcosb)l+€,) (2.87)

Substitution of Equations 2.84, 2.86, and 2.87 into Equation 2.85 gives

@+€) @l = [dleinO)(+€,)] + [dlcosh) @+ €, )T
+2(d1y (inB)(cosO) L+ €, )@ €,) SNV, (2.88)

Taking sin v,, = y,, and neglecting the higher order terms of strain such as
g2 €2 £2 £ Yxz £ Yz £ xE€ 2Yxz» Equation 2.88 can be simplified to

1+2e = (+2€,)sn’* 0+ 1+ 2€,)cos’ B+ 2Y,, sin 6 cosd

e:excosze+ezsjnze+%sjn29 (2.89)

or

Ex tE€,  Ex—
c= X Z+ X
2 2

€. 00526+%sir126 (2.90)

Similarly, the shear strain on plane AD can be derived as
'Y='YXZCOSZG—€X—EZ)SjI126 (291)
Comparing Equations 2.90 and 2.91 with Equations 2.73 and 2.74, it

appears that they are similar except for a factor of 1/2 in the last terms of
the equations.
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The principal strains can be derived by substituting zero for shear strain
in Equation 2.91. Thus

tan20 = 'x= (2.92)
€x—€y

There are two values of 0 that will satisfy the aforementioned relation.
Thus, from Equations 2.90 and 2.92, we obtain

2 2
ep=€x+eZi\/(€X‘EZ) +(7) (2.93)
2 2 2

where €, = principal strain. Also note that Equation 2.93 is similar to
Equations 2.79 and 2.80.

2.10 STRESS COMPONENTS ON AN INCLINED
PLANE, PRINCIPAL STRESS, AND OCTAHEDRAL
STRESSES: THREE-DIMENSIONAL CASE

2.10.1 Stress on an inclined plane

Figure 2.20 shows a tetrahedron AOBC. The face AOB is on the xy plane
with stresses 6, t,,, and 7., acting on it. The face AOC is on the yz plane
subjected to stresses 6,, T,,, and t,,. Similarly, the face BOC is on the xz

i > x

Normal to plane ABC;
unit vector =§

Figure 2.20 Stresses on an inclined plane—three-dimensional case.
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plane with stresses o, T,,, and 7,,. Let it be required to find the x, y, and z

components of the stresses acting on the inclined plane ABC.
Let i, j, and k be the unit vectors in the x, y, and z directions, and let s
be the unit vector in the direction perpendicular to the inclined plane

ABC:
S= C0S(s,X )i+ cos(s,y )} oos(s,z)k (2.94)

If the area of ABC is dA, then the area of AOC can be given as dA(s-i) =
dA cos(s, x). Similarly, the area of BOC = dA(s+j) = dA cos(s, y), and the
area of AOB = dA(s-k) = dA cos(s, z).
For equilibrium, summing the forces in the x direction, YF, = 0:
Do dA = [0, cos(s, X) + T, cos(s, y) + T,, cos(s, 2)|dA
or

Psx = Ox COS(S,X)+ Ty COS(S,Y)+ T COS(S,Z) (2.95)

where p,, is the stress component on plane ABC in the x direction.
Similarly, summing the forces in the y and z directions

Py = Txy COS(S,X)+ Oy, COS(S,Y )+ T,y COS(S,Z) (2.96)

Ps = Txz COS(S,X)+ Ty, COS(S,y)+ O, COS(S,2) (2.97)

where p_, and p,, are the stress components on plane ABC in the y and z
directions, respectively. Equations 2.95 through 2.97 can be expressed in
matrix form as

psx Gx Tyx sz @S(S,X
Py =|Txy Oy  Tgyl||COS(S,Y (2.98)
p& sz Tyz Gz cos(s,z

The normal stress on plane ABC can now be determined as

O = P COS(S,X)+ Py COS(S,Y )+ Pe COS(S,2)
=0, 00 (5,%)+ 0, 00 (5,y)+ 0, 0 (5,2)+ 2T,, COS(S,X) COS(S,Y)

+ 27, COS(S,Y)C0S(S,2)+ 27T, COS(S,X)COS(S,2) (2.99)
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The shear stress t on the plane can be given as

r=\/(pé<+p§y+p§z)—cz (2.100)
2.10.2 Transformation of axes

Let the stresses in a soil mass in the Cartesian coordinate system be given
If the stress components in a new set of orthogonal axes (x;, y,, z;) as

shown in Figure 2.21 are required, they can be determined in the following
manner. The direction cosines of the x,, y,, and z, axes with respect to the
x, v, and z axes are shown:

Following the procedure adopted to obtain Equation 2.98, we can write
pxlx

Ox Tyx Txllk
Pxiy| = Txy Oy Toy|M 1
lez sz Tyz Gz n

(2.101)

where py,, /Pyyrand py,, are stresses parallel to the x, y, and z axes and are
acting on the plane perpendicular to the x, axis (i.e., y,z, plane).

¥ %

Figure 2.21 Transformation of stresses to a new set of orthogonal axes.
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We can now take the components of p,,x /Pyysand p,,, to determine the

normal and shear stresses on the y,z, plane, or
le = ]1px1x +m lpxly + nlpxlz

TXlYl = ]prlx +m 2px1y + n2pxlz

Txiz = ]3px1x +m 3Px,y + N3Py, 2

In a matrix form, the previous three equations may be expressed as

(% 1 m, N1 || Py, x
Tayy | = L m, ;|| Pxy
Tx1 21 ]3 m; n; px1z

(2.102)

In a similar manner, the normal and shear stresses on the x,z; plane
(e, Oy, /Tyx » @0d Ty,5 ) and on the x,y, plane (ie., G, T,y , and T, ) can
be determined. Combining these terms, we can express the stresses in the

new set of orthogonal axes in a matrix form. Thus

O Tyx Tax 1 m; n;||Oy Tyx Tl &
TX1Y1 0Y1 TZIY] = ]2 m, n Txy Gy sz m
TXI 2 TY121 0-21 ]3 m, Ny||Txz Tyz G|

xz°

Note: t,,=1,,T,=T,,and T, =71

Solution of Equation 2.103 gives the following relations:
6, = ¥o,+m{c, +nic, + 2m nT, + 2n 47, + 24m T,
oy, = L0, +m 30, + ni0, + 2m ,n, Ty, + 20, LT, + 2Lm 5T,
6, = Lo, +mio, + nic, + 2m 3nsTy, + 2n;LT,, + 21m 5T,
T

xiyr TY1X1 = ]1]26)( +m;m ZGy +nmn,G, + Q’ﬂ 1y +mom )Tyz

+ L + 0L )0, + Gm, 4+ Lmy )T,

L
m;

n,

L
mj

nj

(2.103)

(2.104)

(2.1095)

(2.106)

(2.107)
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Txlzl = Tlel = ]1]36)( +m m 3Gy + n1n30'z + m 11‘13 +m 31'11 )Tyz

+ L+ 03k )T, + Gms + Lmy )Ty, (2.108)

nz = Tay, = L0y + MM 30, +N,N30, + M ,Nn; +m3n, )Ty,

+ 2L + 03k )T + M3+ Lm )Ty, (2.109)

2.10.3 Principal stresses

The preceding procedure allows the determination of the stresses on any
plane from the known stresses based on a set of orthogonal axes. As dis-
cussed earlier, a plane is defined as a principal plane if the shear stresses act-
ing on it are zero, which means that the only stress acting on it is a normal
stress. This normal stress on a principal plane is referred to as a principal
stress. In order to determine the principal stresses, refer to Figure 2.20, in
which x, y, and z are a set of orthogonal axes. Let the stresses on planes
OAC, BOC, and AOB be known, and let ABC be a principal plane. The
direction cosines of the normal drawn to this plane are /, m, and 7 with
respect to the x, y, and z axes, respectively. Note that

Pim?+n?=1 (2.110)

If ABC is a principal plane, then the only stress acting on it will be a
normal stress c,. The x, y, and z components of o, are ¢,/, 6,m, and o,n.
Referring to Equations 2.95 through 2.97, we can write

ol=cl+t,m+1,n

or
©Ox —Op I+ Ty +7T,n =0 (2.111)
Similarly
Tyylt Gy —Opm +T,n=0 (2.112)

Ty l+ Ty + (0, — O, =0 (2.113)
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From Equations 2.110 through 2.113, we note that /, 7, and 7 cannot all be
equal to zero at the same time. So

©x—0p) Tyx T
Tay ©y—05p) Ty |=0 (2.114)
Txz Tyz ©.-0p
or
0, - L0+ Lo, — L =0 (2.115)
where
L, =0,+0,+0, (2.116)
I, = 0,0y + 0,0, + 0,0, — Tay — Top — Ty (2.117)
I = 0,0,0, + 2T,y TysTyz — Oy Tog — OyTay — O, Tay (2.118)

I,, I,, and I; defined in Equations 2.116 through 2.118 are independent of
direction cosines and hence independent of the choice of axes. So, they are
referred to as stress invariants.

Solution of Equation 2.115 gives three real values of o,. So there are
three principal planes and they are mutually perpendicular to each other.
The directions of these planes can be determined by substituting each ¢, in
Equations 2.111 through 2.113 and solving for [, 72, and 7, and observing
the direction cosine condition for I? + m? + n? = 1. Note that these values
for [, m, and # are the direction cosines for the normal drawn to the plane
on which o, is acting. The maximum, intermediate, and minimum values
of o, are referred to as the major principal stress, intermediate principal
stress, and minor principal stress, respectively.

2.10.4 Octahedral stresses

The octahedral stresses at a point are the normal and shear stresses acting
on the planes of an imaginary octahedron surrounding that point. The
normals to these planes have direction cosines of +1y/3 with respect to
the direction of the principal stresses (Figure 2.22). The axes marked 1, 2,
and 3 are the directions of the principal stresses 6, ), 6, and o,;. The
expressions for the octahedral normal stress o, can be obtained using

oct
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Toct

Normal to octahedral plane,

C
V() + (Po)* + () direction cosine 1/v/3, 1/~/3, 1/+/3

v
3

Figure 2.22 Octahedral stress.

Equations 2.95 through 2.97 and 2.99. Now, compare planes ABC in
Figures 2.20 and 2.22. For the octahedral plane ABC in Figure 2.22

Pa = Opq)l (2.119)
Ps2 = Opeym (2.120)
Pss = Oppd (2.121)

where pg, p.,, and p.; are stresses acting on plane ABC parallel to the
principal stress axes 1, 2, and 3, respectively. Parameters [, 72, and # are the
direction cosines of the normal drawn to the octahedral plane and are all
equal to 1A/3. Thus, from Equation 2.99

2 2 2
Goct = L 0pq) T M iCpp)+ N0y,

1
=§[Gpa,+09(z)+0p(3)] (2.122)
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The shear stress on the octahedral plane is
(2.123)

Toe = \[@a) + @) + o) I- Ol

where 1, is the octahedral shear stress, or

(2.124)

1
Toct = 3\/[‘5;:(1) —Gpe) I + [Op@) = Opey I + [Opp)— Opey T

The octahedral normal and shear stress expressions can also be derived
as a function of the stress components for any set of orthogonal axes x, y, z.

From Equation 2.116

I, = const= G, + Oy + G, = Oy, + Opp)+ Opg, (2.125)
So
1 1
Goct=§[cp(1)+cp(2)+cp(3)]=be+cy+cz) (2.126)
Similarly, from Equation 2.117
I, = const= (0,0, + 0,0, + 6,0, )— Toy — Toy — Toz
= 050 0p@) T OpeOpe) T OpeOpa) (2.127)
Combining Equations 2.124, 2.125, and 2.127 gives
(2.128)

Toctzé\/(cyx_cy)z"_ (Gy_cz)z+ (Gz_Gx)2+6ﬁcf(y+6T§z+6't>2<z

Example 2.4
The stresses at a point in a soil mass are as follows:

o, = 50 kN/m? 7., = 30 kN/m?
6, = 40 kN/m? T,. = 25 kN/m?
T, = 25 kN/m?

o, = 80 kN/m?
Determine the normal and shear stresses on a plane with direction

cosines [ =2/3,m =2/3,and n = 1/3.
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Solution

From Equation 2.98

P Ox Txy Txz 1
Py|=|Txy Oy Ty m

P Txz Tyz O.||n

The normal stress on the inclined plane (Equation 2.99) is

G =pul+p,m+pen
= > + o,m* + o n? + 2t Im + 2t mn + 21 In
= 50(2/3)% + 40(2/3)> + 80(1/3)> + 2(30)(2/3)(2/3)
+2(25)(2/3)(1/3) + 2(25)(2/3)(1/3) = 97.78 kN/m?

Doe = 0,0 + Tom + Tm = 50(2/3) + 30(2/3) + 25(1/3)
=33.33+20 + 8.33 = 61.66 kN/m>

Doy = Tl + 0m + 1, = 30(2/3) + 40(2/3) + 25(1/3)
=20 +26.67 + 8.33 = 55 kN/m?

Do =Tl + T, m + o, = 25(2/3) + 25(2/3) + 80(1/3)
=16.67 + 16.67 + 26.67 = 60.01 kIN/m?

The resultant stress is

p=Jp§+p§,+p; =/61.66%+552+60.012 =1022 kN fn?

The shear stress on the plane is

1=/p’—0> =410222-97.78> =29.73 kN n >

Example 2.5

At a point in a soil mass, the stresses are as follows:

c,=25kN/m?> 1, =30 kN/m>
6,=40kN/m? 1, =-6kN/m?
6,=17kN/m> 7, =-10 kN/m?

Determine the principal stresses and also the octahedral normal and
shear stresses.
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Solution
From Equation 2.114

©x—0p) Ty Tox

Toy ©y—0p) Ty |=0

Txz Ty ©.—0p

@5-0,) 30 -10

30 @40-o,) -6 |=0)-820%+10690,—-800=0
-10 -6 Q7 -0,

The three roots of the equation are
G, = 65.9 kN/m?
Gy = 15.7 kN/m?

_ 2
Gy = 0.4 kKN/m
1
Goct = 3 [Opa)tOpe)t+0pp)]

=§(65.9+15.7+0.4):27.33 kN /n 2

1
Toct = 5\/[(5;)(1)‘%(2)]2 +[Ope) =~ Ope T + Ope)~ Opy T

=§\/(65-9—15-7)Z+(15.7—0.4)2+(0.4—65.9)2 =2797 kN fn?

2.11 STRAIN COMPONENTS ON AN INCLINED
PLANE, PRINCIPAL STRAIN, AND OCTAHEDRAL
STRAIN: THREE-DIMENSIONAL CASE

We have seen the analogy between the stress and strain equations derived
in Sections 2.7 and 2.8 for the plane strain case. Referring to Figure 2.20,
let the strain components at a point in a soil mass be represented by €, €,
€., Yay» Yyes and v,,. The normal strain on plane ABC (the normal to plane

ABC has direction cosines of [, 72, and 1) can be given by

e=Ye,+m’%, +n’,+ Iy, +mny,, + hy,

(2.129)
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This equation is similar in form to Equation 2.99 derived for normal stress.
When we replace €,, €, €,, 1,,/2, V,./2, and v,,/2, respectively, for 6,, 5,, 5,
T,y Ty» and T, in Equation 2.99, Equation 2.129 is obtained.

If the strain components at a point in the Cartesian coordinate system
(Figure 2.21) are known, the components in a new set of orthogonal axes
can be given by (similar to Equation 2.103)

Vv

1 1
€x1 E’YX1Y1 E Tz
1 1
E’YX1Y1 €y E Yoz
1 1
nylzl E Tz €z
€ ! it ! i
X ~ixy ~ ixz
3, m;, m ) 2 i 1 L L
=} m, n nyy €y Eyyz m; m, m; (2.130)
L m; Ds) |4 1 n; m, N3
~ ixz ~lyz €,
5 v 5 Ty

The equations for principal strains at a point can also be written in a
form similar to that given for stress (Equation 2.115) as

el-Jel+ge, -3 =0 (2.131)

where €, is the principal strain

g =€, +€, +€, (2.132)
Yoy | _((Vee | (Vs |
J, =€,€, +E€,€, +E€,6, —( ;y) —(;’ZJ —(;z) (2.133)
2 2 2
Jszexeyez_'_nyszsz_ex(szJ _ey(sz) —GZ[YXYJ (2.134)
4 2 2 2

J15 ]2, and J; are the strain invariants and are not functions of the direction
cosines.
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The normal and shear strain relations for the octahedral planes are

1
eoct=§EPO)+€P(2)+eP(3)] (2.135)
2
Yoct = Sx/Epa) —€pe)] T Epe)y —€pe T + Epp) — o0y T (2.136)
where
€. is the octahedral normal strain

oct

Yoe: 18 the octahedral shear strain
€, €p(2)» €p(3) are the major, intermediate, and minor principal strains,
respectively

Equations 2.135 and 2.136 are similar to the octahedral normal and shear
stress relations given by Equations 2.126 and 2.128.






Chapter 3

Stresses and displacements
in a soil mass

Two-dimensional problems

3.1 INTRODUCTION

Estimating the increase in stress at various points and the associated
displacement caused in a soil mass due to external loading using the theory
of elasticity is an important component in the safe design of the foundations
of structures. The ideal assumption of the theory of elasticity, namely that the
medium is homogeneous, elastic, and isotropic, is not quite true for most nat-
ural soil profiles. It does, however, provide a close estimation of geotechnical
engineers and, using proper safety factors, safe designs can be developed.

This chapter deals with two-dimensional problems (plane strain cases)
involving stresses and displacements induced by various types of loading.
The expressions for stresses and displacements are obtained on the assump-
tion that soil is a perfectly elastic material. Problems relating to plastic
equilibrium are not treated in this chapter.

Stresses and displacements related to three-dimensional problems are
treated in Chapter 4.

3.2 VERTICAL LINE LOAD ON THE SURFACE
Figure 3.1 shows the case where a line load of g per unit length is applied at

the surface of a homogeneous, elastic, and isotropic soil mass. The stresses
at a point P defined by  and 0 can be determined by using the stress function

¢:grgsjn9 (3.1)
T

In the polar coordinate system, the expressions for the stresses are as follows:

_10¢ 1 9%

cor 2 00° (2.57)

97
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q/unit length

O zg—ﬁ (2.58)
and
__9(1d0

Substituting the values of ¢ in the previous equations, we get

O, =1(qesine)+r12(qrcose+qrcose—qresjneJ

r\ T T T
-29 L0 (3.2)
nr
Similarly
G =0 (3.3)

and

1o =0 (3.4)



Stresses and displacements in a soil mass 99

The stress function assumed in Equation 3.1 will satisfy the compatibility
equation:

0% 19 109° |9%_ 199 109%)_
(81‘2+r8r+r2 862](81‘2+r8r+r2892 =0 (2.60)

Also, it can be seen that the stresses obtained in Equations 3.2 through 3.4
satisfy the boundary conditions. For 0 = 90°, 7> 0, 6, = 0, and at 7 = 0, o, is theo-
retically equal to infinity, which signifies that plastic flow will occur locally.
Note that o, and 6, are the major and minor principal stresses at point P.

Using the earlier expressions for 6,, 64, and 1,4, we can derive the stresses
in the rectangular coordinate system (Figure 3.2):

0, = 6,008 0+ Gy sin’ B — 27,4 s B cosh (2.77)
or,
3 3
.= dogp=— 23 z__|=-_29%_ (3.5)
nr 71:\/x2+z2 \/x2+z2 nE’ +2z° )
Similarly
G, = 0,.sin? 0+ 6y 008’ 0+ 21,5 sNO oSO (2.75)
or,
2gx’z
o, =——7"——— 3.6
7t(x2 + zz)2 (3.6)
q/unit length

z
N
r\
A O,
N z
NTox

T

NN
N
r= s 22 Ox 2 Ox

cos 0= Tax
Y x2+z2 ——X——Pp
c
. z
sin 0 = d
X+ 22

Figure 3.2 Stresses due to a vertical line load in rectangular coordinates.



100 Advanced Soil Mechanics

Table 3.1 Values of o,/(q/z), 6,/(q/z), and t,,/(q/z)
(Equations 3.5 through 3.7)

xlz c,/(q/z) c,/(q/z) T,,/(q/2)
0 0.637 0 0

0.1 0.624 0.006 0.062
0.2 0.589 0.024 0.118
0.3 0.536 0.048 0.161
0.4 0.473 0.076 0.189
0.5 0.407 0.102 0.204
0.6 0.344 0.124 0.207
0.7 0.287 0.141 0.201
0.8 0.237 0.151 0.189
0.9 0.194 0.157 0.175
1.0 0.159 0.159 0.159
1.5 0.060 0.136 0.090
2.0 0.025 0.102 0.051
3.0 0.006 0.057 0.019

and
Ty, = —Op SN0 c0SO + G, SN O COSO + T, (COS’O — SINO) (2.76)
or,
2 2
Typ = — 2 (3.7)
nx +2°)

For the plane strain case

Gy, =V({Ox+0;) (3.8)

The values for 6., 6,, and 7, in a nondimensional form are given in Table 3.1.

3.2.1 Displacement on the surface (z = 0)

By relating displacements to stresses via strain, the vertical displacement w
at the surface (i.e., z = 0) can be obtained as

21-v?
w=—

B q]n‘x‘+c (3.9)

where
E is the modulus of elasticity
v is Poisson’s ratio
C is a constant
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q,=30 kN/m q1=20 kN/m

—— 4 m——>

e—2m

Figure 3.3 Two line loads acting on the surface.

The magnitude of the constant can be determined if the vertical displace-
ment at a point is specified.

Example 3.1

For the point A in Figure 3.3, calculate the increase of vertical stress o,
due to the two line loads.

Solution

The increase of vertical stress at A due to the line load ¢; = 20 kN/m:

From Table 3.1, for x/z = 1, 6,/(q/z) = 0.159. So

Gy = 0.159[‘11): 0.159(220J= 159 kN fn?
Z

The increase of vertical stress at A due to the line load ¢, = 30 kN/m:

. 6
GJven,Ez—m=3
zZ 2m

From Table 3.1, for x/z = 3, 6./(q/z) = 0.006. Thus

6.0,=0006[ 2 |=0.006( 32 |=0.09 kN 4 ?
@) z 2

So, the total increase of vertical stress is

6,=0,0)+0=159+0.09=168kN
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q/unit length

Rigid layer

Figure 3.4 Vertical line load on a finite elastic layer.

3.3 VERTICAL LINE LOAD ON THE
SURFACE OF A FINITE LAYER

Equations 3.5 through 3.7 were derived with the assumption that the homoge-
neous soil mass extends to a great depth. However, in many practical cases, a
stiff layer such as rock or highly incompressible material may be encountered
at a shallow depth (Figure 3.4). At the interface of the top soil layer and the
lower incompressible layer, the shear stresses will modify the pattern of stress
distribution. Poulos (1966) and Poulos and Davis (1974) expressed the verti-
cal stress o, and vertical displacement at the surface (w at z = 0) in the forms:

q
0, =—1I 3.10
mh { )
W =0 = T:i: Iz (3.11)

where I, and I, are influence values.
I, is a function of z/h, x/h, and v. Similarly, I, is a function of x/h and v. The
variations of I, and I, are given in Tables 3.2 and 3.3, respectively, for v = 0.

3.4 VERTICAL LINE LOAD INSIDE
A SEMI-INFINITE MASS

Equations 3.5 through 3.7 were also developed on the basis of the
assumption that the line load is applied on the surface of a semi-infinite
mass. However, in some cases, the line load may be embedded. Melan
(1932) gave the solution of stresses at a point P due to a vertical line load of
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Table 3.2 Variation of [, (v = 0)

z/h

x/h 0.2 0.4 0.6 0.8 1.0

0 9.891 5.157 3.641 2.980 2.634
0.1 5.946 4516 3.443 2.885 2.573
0.2 2.341 3.251 2.948 2.627 2.400
0.3 0918 2.099 2.335 2.261 2.144
0.4 0.407 1.301 1.751 1.857 1.840
0.5 0.205 0.803 1.265 1.465 1.525
0.6 0.110 0.497 0.889 1.117 1.223
0.8 0.032 0.185 0.408 0.592 0.721
1.0 0.000 0.045 0.144 0.254 0.357
I.5 -0.019 -0035 -0.033 -0.018 0.010
20 -0.013 -0.025 -0.035 -0.041 -0.042
4.0 0.009 0.009 0.008 0.007 0.006
8.0 0.002 0.002 0.002 0.002 0.002

Table 3.3 Variation of I, (v = 0)

x/h I,
0.1 3.756
02 2.461
03 1.730
04 .244
0.5 0.896
06 0.643
0.7 0.453
0.8 0313
1.0 0.126
1.5 -0.012
2.0 -0.017
40 -0.002
8.0 0

q per unit length applied inside a semi-infinite mass (at point A, Figure 3.5).
The final equations are given as follows:

-4
‘on

1 {(z—d)3 @+d)[z+df +2dz] 8dzd+ z)x’
4 + 4 -
2Q-v)| = 5 5
1-2v z—d_’_3z+d_4zx2
aa-v)| # iy 5

!

(3.12)
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Figure 3.5 Vertical line load inside a semi-infinite mass.

~ q{ 1 |:(z—d)x2 , +d)e’ +2d°)-2dx"  8dzd+ z)x2:|

“Tml2a-v| A 7 v
1-2v(d-z z+3d 4z’
+4(l—v)[ v + > + 2 )} (3.13)
9 1 (z—d)z+zz—2dz—d2+8dz(d+z)2
Yon|2a-v) oy g g
1-2v|1 1 4zd+2)
+4(1—V)[112 2 +7]’2_4 :l} (3.14)

Figure 3.6 shows a plot of ¢,/(q/d) based on Equation 3.12.

3.5 HORIZONTAL LINE LOAD ON THE SURFACE

The stresses due to a horizontal line load of ¢ per unit length (Figure 3.7)
can be evaluated by a stress function of the form

0 =319 c0s0 (3.15)
T
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1.0

0.8

0.6

0.4

Figure 3.6 Plot of c,/(q/d) versus x/d for various values of z/d (Equation 3.12).

z

\2 =15

2

A
N

T~
/‘§

7

L/

q/unit length

(=]
—

x
d

Figure 3.7 Horizontal line load on the surface of a semi-infinite mass.
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Proceeding in a similar manner to that shown in Section 3.2 for the case
of vertical line load, we obtain the stresses at a point P defined by r and 0 as

29 .
6r=—qsm6
nr
g =0
TIQZO

In the rectangular coordinate system,

2 Xz
Gzziqﬁ
T X +z)2
2 X
6X=7q 2 2
T X +z)2
_2q X’z
Tee =777 22
T X" +2°)

For the plane strain case, 6, = v(c, + G,).

Some values of 5,, 5,

Table 3.4 Values of c,/(q/2), 6,/(q/z), and 7,,/(q/z)

(Equations 3.19 through 3.21)

x/z c,/(q/z) c,/(q/z) 7,,/(q/2)
0 0 0 0

0.1 0.062 0.0006 0.006
0.2 0.118 0.0049 0.024
0.3 0.161 0.0145 0.048
0.4 0.189 0.0303 0.076
0.5 0.204 0.0509 0.102
0.6 0.207 0.0743 0.124
0.7 0.201 0.0984 0.141
0.8 0.189 0.1212 0.151
0.9 0.175 0.1417 0.157
1.0 0.159 0.1591 0.159
1.5 0.090 0.2034 0.136
2.0 0.051 0.2037 0.102
3.0 0.019 0.1719 0.057

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

and 1, in a nondimensional form are given in Table 3.4.
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3.6 HORIZONTAL LINE LOAD INSIDE
A SEMI-INFINITE MASS

If the horizontal line load acts inside a semi-infinite mass as shown in
Figure 3.8, Melan’s solutions for stresses at a point P(x, z) may be given as
follows:

_qx{ 1 |:(z—d)2 _dz—zz+6dz+8dzx2]

3 2Q-v) 5 iy 5

1-2v| 1 1 4zd+2)

- — 3.22
4a—v)[ﬁ R ]} 1522

qx{ 1 [xz x* + 8dz+ 6d° 8dz(d+z)2]
Ox=—""y——+|—F— +

n|2a-v) | % 5 5

1-2v|(1 3 4z@d+2)

+ —+—-—-——-> 3.23
4(1—v)|:rf g oy }} 3.23)

d 2

l q/unit length
A—>

r

P(x, z)

Figure 3.8 Horizontal line load inside a semi-infinite mass.
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Txz =

q{ 1 |:(z—d)x2+(2dz+x2)(d+z)+8dz(d+z)xz]

n|2a-v)| g 5
1-2v(z-d 3z+d 4zd+zy

+ + + 3.24
4(l—V)( ¥ g 5y )} 524

3.7 UNIFORM VERTICAL LOADING ON AN
INFINITE STRIP ON THE SURFACE

Figure 3.9 shows the case where a uniform vertical load of ¢ per unit area
is acting on a flexible infinite strip on the surface of a semi-infinite elastic
mass. To obtain the stresses at a point P(x, z), we can consider an elemen-
tary strip of width ds located at a distance s from the centerline of the load.
The load per unit length of this elementary strip is g-ds, and it can be
approximated as a line load.

The increase of vertical stress, 6,, at P due to the elementary strip loading
can be obtained by substituting x — s for x and ¢q - ds for ¢ in Equation 3.5, or

do, = 2qds z’

(3.29)

i [(x—s)2+zz]2

Figure 3.9 Uniform vertical loading on an infinite strip.
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The total increase of vertical stress, 6,, at P due to the loaded strip can be
determined by integrating Equation 3.25 with limits of s = b to s = -=b; so

+b

ZqJ' z’
.= |do.= " | —5——-d
© .[6 T [(x—s)z-i-zz]2 S

-b

22 .2
q z tan? z 2bz(x" -z —Db%) :| (3.26)

==|tan"’ - —
n[ x—-b x+b & +2Z°-Db*Y +4b*Z’
In a similar manner, referring to Equations 3.6 and 3.7,

+b
QJ‘ x—sfz ds
[

wJ[x-sf+2°T
“b

Oy = Jdcx =

(3.27)

=|:1an_l b—m_l b4 + 2bz(x? — z2* —b?) ]
x—

x+b @+ 2 b’y +4b’7
+b 5 5

. _QJ‘ x—s)z . 4bgxz

¥ or [x—sf+2°T T+ 2 —b’} +4b*Z ]

-b

(3.28)

Equations 3.26 and 3.27 are for x > b. However, for x = 0 to x < b,
the term tan™' (z/(x - b)) becomes negative. For such cases, replace tan-!
(z/(x - b)) with  + tan™' (z/(x - b)). Also note that, due to symmetry, the
magnitudes of 6,, 6,, and 1., are the same at =x for a given value of z.

The expressions for 6,, 6,, and t,, given in Equations 3.26 through 3.28
can be presented in a simplified form:

6, = 3o+ sino.coso + 28)] (3.29)
T

6, = Lo shocos@E + 28)] (3.30)
T

T = 3 [sinoshn o + 28)] (3.31)
T

where o and § are the angles shown in Figure 3.9.

(Note: The angle 8 is positive measured counterclockwise from the vertical
drawn at P.)

Tables 3.5 through 3.7 give the values of 6,/q, 6,/q, t../q for various val-
ues of x/b and z/b.
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Table 3.5 Values of c,/q (Equation 3.26)

z/b

x/b

0.0

0.1

0.2

03

0.4

05

0.6

0.7

038

0.9

1.0

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.40
3.50
3.60

3.70
3.80

1.000
1.000
0.997
0.990
0.977
0.959
0.937
0910
0.881
0.850
0818
0.787
0.755
0.725
0.696
0.668
0.642
0617
0.593
0.571
0.550
0.530
0.511
0.494
0.477
0.462
0.447
0.433
0.420
0.408
0.396
0.385
0.374
0.364
0.354
0.345
0.337

0.328
0.320

1.000
1.000
0.997
0.989
0.976
0.958
0.935
0.908
0.878
0.847
0.815
0.783
0.752
0.722
0.693
0.666
0.639
0.615
0.591
0.569
0.548
0.529
0.510
0.493
0.476
0.461
0.446
0.432
0.419
0.407
0.395
0.384
0.373
0.363
0.354
0.345
0.336

0.328
0.320

1.000
0.999
0.996
0.987
0.973
0.953
0.928
0.899
0.869
0.837
0.805
0.774
0.743
0.714
0.685
0.658
0.633
0.608
0.585
0.564
0.543
0.524
0.506
0.489
0.473
0.458
0.443
0.430
0417
0.405
0.393
0.382
0.372
0.362
0.352
0.343
0.335

0.327
0.319

1.000
0.999
0.995
0.984
0.966
0.943
0915
0.885
0.853
0.821
0.789
0.758
0.728
0.699
0.672
0.646
0.621
0.598
0.576
0.555
0.535
0517
0.499
0.483
0.467
0.452
0.439
0.425
0413
0.401
0.390
0.379
0.369
0.359
0.350
0.341
0.333

0.325
0.317

1.000
0.999
0.992
0.978
0.955
0.927
0.896
0.863
0.829
0.797
0.766
0.735
0.707
0.679
0.653
0.629
0.605
0.583
0.563
0.543
0.524
0.507
0.490
0.474
0.460
0.445
0.432
0419
0.407
0.396
0.385
0.375
0.365
0.355
0.346
0.338
0.330

0.322
0.315

1.000
0.998
0.988
0.967
0.937
0.902
0.866
0.831
0.797
0.765
0.735
0.706
0.679
0.654
0.630
0.607
0.586
0.565
0.546
0.528
0.510
0.494
0.479
0.464
0.450
0.436
0.424
0.412
0.400
0.389
0.379
0.369
0.360
0.351
0.342
0.334
0.326

0318
0.311

1.000
0.997
0.979
0.947
0.906
0.864
0.825
0.788
0.755
0.724
0.696
0.670
0.646
0.623
0.602
0.581
0.562
0.544
0.526
0510
0.494
0.479
0.465
0.451
0.438
0.426
0414
0.403
0.392
0.382
0.372
0.363
0.354
0.345
0.337
0.329
0.321

0314
0.307

1.000
0.993
0.959
0.908
0.855
0.808
0.767
0.732
0.701
0.675
0.650
0.628
0.607
0.588
0.569
0.552
0.535
0.519
0.504
0.489
0.475
0.462
0.449
0.437
0.425
0414
0.403
0.393
0.383
0.373
0.364
0.355
0.347
0.339
0.331
0.323
0.316

0.309
0.303

1.000
0.980
0.909
0.833
0.773
0.727
0.691
0.662
0.638
0617
0.598
0.580
0.564
0.548
0.534
0519
0.506
0.492
0.479
0.467
0.455
0.443
0.432
0.421
0410
0.400
0.390
0.381
0.372
0.363
0.355
0.347
0.339
0.331
0.324
0317
0310

0.304
0.297

1.000
0.909
0.775
0.697
0.651
0.620
0.598
0.581
0.566
0.552
0.540
0.529
0517
0.506
0.495
0.484
0.474
0.463
0.453
0.443
0.433
0.423
0413
0.404
0.395
0.386
0.377
0.369
0.360
0.352
0.345
0.337
0.330
0.323
0316
0310
0.304

0.298
0.292

0.000
0.500
0.500
0.499
0.498
0.497
0.495
0.492
0.489
0.485
0.480
0.474
0.468
0.462
0.455
0.448
0.440
0.433
0.425
0417
0.409
0.401
0.393
0.385
0.378
0.370
0.363
0.355
0.348
0.341
0.334
0.327
0.321
0.315
0.308
0.302
0.297

0.291
0.285
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Table 3.5 (continued) Values of ¢,/q (Equation 3.26)
x/b
zb 00 0. 0.2 03 04 05 06 07 08 09 1.0

390 0313 0313 0312 0310 0.307 0.304 0301 0.296 0.291 0.286 0.280
4.00 0.306 0.305 0.304 0.303 0.301 0.298 0.294 0.290 0.285 0.280 0.275
4.10 0299 0.299 0298 0.296 0.294 0.291 0.288 0.284 0.280 0.275 0.270
420 0292 0.292 0291 0.290 0.288 0.285 0.282 0.278 0.274 0.270 0.265
430 0286 0286 0285 0.283 0.282 0.279 0276 0273 0.269 0.265 0.260
440 0280 0.280 0.279 0.278 0.276 0.274 0.271 0.268 0.264 0.260 0.256
450 0274 0274 0273 0.272 0270 0.268 0.266 0.263 0.259 0.255 0.25]
4.60 0268 0.268 0.268 0.266 0.265 0.263 0.260 0.258 0.254 0251 0.247
470 0263 0.263 0.262 0.261 0.260 0.258 0.255 0.253 0.250 0.246 0.243
480 0258 0.258 0.257 0.256 0.255 0.253 0.251 0.248 0.245 0242 0.239
490 0253 0.253 0252 0.251 0.250 0.248 0.246 0.244 0.241 0.238 0.235
5.00 0.248 0.248 0.247 0.246 0245 0.244 0.242 0.239 0.237 0234 0.23]

I.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 20

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.10 0.091 0.020 0.007 0.003 0.002 0.001 0.001 0.000 0.000 0.000
0.20 0.225 0.091 0.040 0.020 0.011 0.007 0.004 0.003 0.002 0.002
0.30 0.301 0.165 0.090 0.052 0.031 0.020 0.013 0.009 0.007 0.005
040 0.346 0.224 0.141 0.090 0.059 0.040 0.027 0.020 0.014 0.011
0.50 0.373 0.267 0.185 0.128 0.089 0.063 0.046 0.034 0.025 0.019
0.60 0.391 0.298 0.222 0.163 0.120 0.088 0.066 0.050 0.038 0.030
0.70 0.403 0.321 0.250 0.193 0.148 0.113 0.087 0.068 0.053 0.042
0.80 0411 0.338 0.273 0.218 0.173 0.137 0.108 0.086 0.069 0.056
0.90 0.4l6 0.351 0.291 0.239 0.195 0.158 0.128 0.104 0.085 0.070
1.00 0419 0.360 0.305 0256 0214 0.177 0.147 0.122 0.101 0.084
.10 0420 0.366 0316 0271 0230 0.194 0.164 0.138 0.116 0.098
120 0419 0371 0325 0282 0243 0.209 0.178 0.152 0.130 O0.111
1.30 0417 0373 0331 0291 0254 0221 0.191 0.166 0.143 0.123
1.40 0414 0374 0335 0298 0.263 0.232 0.203 0.177 0.155 0.135
1.50 0411 0374 0338 0303 0271 0240 0213 0.188 0.165 0.146
1.60 0.407 0.373 0339 0307 0.276 0.248 0.221 0.197 0.175 0.155
1.70 0.402 0.370 0.339 0309 0281 0254 0.228 0.205 0.183 0.164
1.80 0.396 0.368 0.339 0311 0284 0258 0.234 0.212 0.191 0.172
1.90 0.391 0.364 0.338 0312 0286 0262 0.239 0.217 0.197 0.179
2.00 0.385 0.360 0.336 0.3I1 0.288 0.265 0.243 0222 0.203 0.185
2.10 0379 0.356 0.333 0.3I1 0.288 0.267 0.246 0226 0.208 0.190
220 0.373 0.352 0.330 0.309 0.288 0.268 0.248 0.229 0.212 0.195
230 0.366 0.347 0.327 0.307 0.288 0.268 0.250 0232 0215 0.199
(continued)
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Table 3.5 (continued) Values of ¢,/q (Equation 3.26)

x/b

zIb 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

240 0360 0.342 0323 0.305 0287 0.268 0251 0.234 0217 0.202
250 0.354 0.337 0320 0.302 0.285 0.268 0251 0.235 0.220 0.205
260 0347 0332 0316 0.299 0.283 0.267 0251 0.236 0.221 0.207
270 0341 0327 0312 0.296 0281 0.266 0251 0.236 0.222 0.208
280 0.335 0.321 0.307 0.293 0.279 0.265 0.250 0.236 0.223 0.210
290 0329 0316 0303 0.290 0276 0.263 0249 0.236 0223 0.211
3.00 0323 0311 0299 0286 0.274 0.261 0.248 0.236 0.223 0.211
3.10 0317 0306 0.294 0283 0.271 0.259 0.247 0.235 0.223 0.212
320 0311 0301 029 0279 0.268 0.256 0.245 0.234 0.223 0.212
330 0.305 0.296 0.286 0.275 0.265 0.254 0.243 0.232 0.222 0.211
340 0.300 0291 0.281 0.271 0.261 0.251 0.241 0.231 0.221 0.211
3.50 0.294 0.286 0.277 0.268 0.258 0.249 0.239 0.229 0.220 0.210
3.60 0.289 0281 0.273 0.264 0.255 0.246 0.237 0.228 0.218 0.209
3.70 0.284 0276 0.268 0.260 0.252 0.243 0.235 0.226 0.217 0.208
3.80 0.279 0272 0.264 0.256 0.249 0.240 0.232 0.224 0.216 0.207
390 0.274 0267 0.260 0.253 0.245 0.238 0.230 0.222 0.214 0.206
400 0.269 0263 0256 0.249 0.242 0.235 0.227 0220 0.212 0.205
4.10 0264 0.258 0.252 0.246 0.239 0.232 0.225 0.218 0.211 0.203
420 0260 0254 0248 0.242 0.236 0.229 0.222 0216 0.209 0.202
4.30 0255 0.250 0.244 0.239 0.233 0.226 0.220 0.213 0.207 0.200
440 0251 0.246 0241 0.235 0229 0.224 0.217 0211 0.205 0.199
450 0.247 0242 0237 0232 0226 0.221 0.215 0209 0203 0.197
460 0243 0.238 0234 0.229 0223 0.218 0.212 0207 0.201 0.195
470 0.239 0235 0230 0.225 0.220 0.215 0.210 0205 0.199 0.194
480 0235 0.231 0227 0.222 0.217 0213 0.208 0202 0.197 0.192
490 0.231 0227 0223 0219 0215 0.210 0.205 0200 0.195 0.190
5.00 0.227 0224 0.220 0216 0.212 0.207 0.203 0.198 0.193 0.188

Table 3.6 Values of 6,/q (Equation 3.27)
x/b
z/b 0 0.5 1.0 1.5 2.0 2.5

0 1.000 1.000 0 0 0 0

05 0450 0392 0347 0285 O0.171 0.110
1.0 0.182 0.186 0.225 0.214 0.202 0.162
1.5 0080 0.099 0.142 0.181 0.185 0.165
20 0.041 0.054 0.091 0.127 0.146 0.145
25 0230 0.033 0060 0.08% 0.126 0.121
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Table 3.7 Values of t,,/q (Equation 3.28)

z/b 0

0.5

1.0

1.5

2.0

2.5

0 —
0.5 —
1.0 —
1.5 —
2.0 —
2.5 —

0.127
0.159
0.128
0.096
0.072

0.300
0.255
0.204
0.159
0.124

0.147
0.210
0.202
0.175
0.147

0.055
0.131
0.157
0.157
0.144

0.025
0.074
0.110
0.126
0.127

6b

8b

100

12b

Figure 3.10 lsobars for c,/q below a strip load.

4b

6b

Using the relationships given in Equation 3.26, isobars for ¢,/q can be
drawn. This is shown in Figure 3.10.

3.7.1 Vertical displacement at the surface (z = 0)

The vertical surface displacement relative to the center of the strip load can

be expressed as

W 20 (X)_WZ:O (XZ 0):

2q@-v°)

TE

&-b)h|x—b -

+b)h|x—b/+2bhb
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Example 3.2

Refer to Figure 3.9. Given B = 4 m. For point P,z =1 mand x = 1 m.
Determine 6,/q, 6,/q, and 1, /q at P. Use Equations 3.26 through 3.28.
Solution
6./q Calculation
Givenb=B/2=4/2=2

z=1m

From Equation 3.26, since x < b

o, a2 1z 2bz(x’ — 2> —b?%)
=—|(n+tan ———tan T 2. 2 2 2,2
q =« x-b X+b & +Z b’} +4b’z
-1 Z a1 e
tan =tan =-45°=-0.785rad
x—b 1-2
-1 z -1 1 o
=tan ——=1843°=0322rad
x+b 1+2
2bz(x’ -2z°-b*) _  @)@e*-1°-2°) _
@ +2° -bPf +4b’Z @2 +12-2%F + @)R*)@?)
Hence
C.

— 1 —0785-0322-(08)]= 0902
q T

c,/q Calculation
From Equation 3.27

z a2z 2bz(x’ — 2* —b?%)
x-b x+b & +2Z°-b?f +4b’Z

— Ll n-0.785-0322+ 0.8)]= 0392
'

t,../q Calculation
From Equation 3.28

Ter _ 4bgxz’ _ @e)n)e’) _
q 7w +z-b’f+4b’Z’] n[a®+1°-22F + @)R*)a*)

127
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3.8 UNIFORM STRIP LOAD INSIDE
A SEMI-INFINITE MASS

Strip loads can be located inside a semi-infinite mass as shown in Figure 3.11.
The distribution of vertical stress o, due to this type of loading can be deter-
mined by integration of Melan’s solution (Equation 3.12). This has been
given by Kezdi and Rethati (1988). The magnitude of o, at a point P along
the centerline of the load (i.e., x = 0) can be given as

q b(z+ 2d) 1 b bz
O, =— 724‘@1 +ﬁ
n | @+2df +b z+2d Z*+b
PSS RN At PRAPFR b b
z 2V @+2dY+b> Z+b

v+12(@z+2d)dbz+d)
+ 2 2
2v @ +b°Y

} (forx =0) (3.33)

Figure 3.12 shows the influence of d/b on the variation of c,/q.

_Arj
}

z+2d

¢
<

® P(0,2)

v
z

Figure 3.11 Strip load inside a semi-infinite mass.
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QQ

0 0.2 0.4 0.6 0.8 1.0

5/3 /)

SIEN

ST

5

Figure 3.12 Plot of c,/q versus z/b (Equation 3.33).

3.9 UNIFORM HORIZONTAL LOADING ON
AN INFINITE STRIP ON THE SURFACE

If a uniform horizontal load is applied on an infinite strip of width 2b as
shown in Figure 3.13, the stresses at a point inside the semi-infinite mass can
be determined by using a similar procedure of superposition as outlined in
Section 3.7 for vertical loading. For an elementary strip of width ds, the load
per unit length is g - ds. Approximating this as a line load, we can substitute g -
ds for g and x - s for x in Equations 3.19 through 3.21. Thus, at a point P(x, z)

s=+b
2q J‘ x—s)2’ 4bgxz’
6,=|do,=— ds= 3.34
J T b[(x—s)2+zz]2 S T [+ 22 —Db?f + 4b%Z* ] ( )
s=+b
GXZJ‘dezﬁ J 7(}{_25)3 —ds
m J [x-sf+z i

(3.35)

2 2
:q[2303bg(x+b)2+z 4bxz :|
T

®+bf + 2 - &+ 22 —b*Y + 4b* 2
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[¢«—B-= 2b—>|
q/unit area fes "VF_/

\\\\\
P(x, z)
v
z
Figure 3.13 Uniform horizontal loading on an infinite strip.
5 s=+b )2
sz=J.dez -4 ks Zz ds
n J oI sf+2°T
2_ 232
_9a tan-t z — tant z 22bz§x 2z b l ! (3.36)
b x-b x+b @&+ Z -b°Y +4b’z

For x = 0 to x < b, the term tan™' (z/(x - b)) in Equation 3.36 will be nega-
tive. So, it should be replaced by & + tan! (z/(x - b)). For a given value of z,
the magnitude of t,, is the same at +x.

The expressions for stresses given by Equations 3.34 through 3.36 may
also be simplified as follows:

6, = 2 [shosnE+25)] (3.37)
'
q R, .

Gx =—|2303log—; —sihosin @+ 25) (3.38)
T RZ

Ty, = [0 — s cos(E + 28)] (3.39)
T

where Ry, R,, a, and § are as defined in Figure 3.13. The angle § is positive
measured counterclockwise from the vertical drawn at P.
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Table 3.8 Values of 6,/q (Equation 3.34)

x/b
zlb 0 0.5 1.0 1.5 2.0 2.5
0 _ _ _ _ _ _
05 — 0.127 0300 0.147 0.055 0.025
1.0 — 0.159 0255 0.210 0.131 0.074
1.5 — 0.128 0.204 0.202 0.157 0.110
20 — 009 0.159 0.175 0.157 0.126
25 — 0.072 0.124 0.147 0.144 0.127

The variations of 6,, 6,, and 1., in a nondimensional form are given in
Tables 3.8 through 3.10.

3.9.1 Horizontal displacement at the surface (z = 0)

The horizontal displacement # at a point on the surface (z = 0) relative to

the center of the strip loading is of the form

Uz (X)— Upo X = 0)=

Example 3.3

Refer to Figure 3.13. Given B = 4 m. For point P, z = 1 m. Determine

2q@-v*)
TE

(x—b)In|x—b|—

&+b)h|x—b/+2bb

6./q, 6./9, and 7, /g at x = +1 m.

Solution

Calculation for o,lq
Given b =B/2 =2 m

z=1m

x==+lm

From Equation 3.34

G,

4bxz?

@)R)e1)a?)

{o 127atx=1m

—0.J27atx=-1m

a4 mE+Z D +4bPZ ] m{ELY + 17— 27 [+ @)@%)aA%)}
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Table 3.10 Values of t,,/q (Equation 3.36)
x/b
z/b 0 0.5 1.0 1.5 2.0

0 1.000 1.000 © 0 0

0.5 0959 0902 0497 0.08% 0.019
1.0 0818 0735 0480 0.214 0.084
1.5 0688 0607 0448 0.271 0.146
20 0550 0510 0409 0288 0.185
25 0462 0436 0370 0285 0.205

Calculation for o,/q
From Equation 3.35

o, 1 (x+b)2+z2 4bxz*

—=—12303b -

q TC|: g(x—b)2+z2 &%+ 22 —b?f + 4b*Z°
Atx=+1m

m=1[2303bg<1+2>+12_ @) 2}20385

q =« @-2y+1° [@*)+1°-2°T+@)R")a*)
Atx=-1m

Ox _ 1|y 303pg CLF2IHL @e)e’)

q = F1-2Y+1° [P +17 -2+ @)@*)@%)

=-0385

Calculation of T, at x = =1 m

Note: x < b. From Equation 3.36

Tz 1 .z 1 2z 2bz(x2—zz—b2)
== ant—2 —tn _
q |:Tc+ x—b x+b (x2+zz—b2)2+4bzz2
2 2 2
et L o L @@OE -1 -2%)
n 1-2 1+2 @ +1°-2°F + @)@*)e)

— 1 r-0.785-0322+ 0.8)]= 0902
'
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3.10 TRIANGULAR NORMAL LOADING ON AN
INFINITE STRIP ON THE SURFACE

Figure 3.14 shows a vertical loading on an infinite strip on width 2b. The
load increases from zero to g across the width. For an elementary strip of
width ds, the load per unit length can be given as (¢/2b)s - ds. Approximating
this as a line load, we can substitute (q/2b)s - ds for g and x - s for x in
Equations 3.5 through 3.7 to determine the stresses at a point (x, z) inside
the semi-infinite mass. Thus

s=2b

_ (1Y2a z’sds
GZ_JdGZ_(ZbJ( T )J‘O [(x—sf+2T
:q(xa_sjnza) (3.41)
2\ b

2

b
(,xzjdcxz LY 2a)[ e=sfasds
2b | = 0[(x—s)+z]2

2n| b

2
zq(xoc—2.303;bg§lz+sj1128j (3.42)

2

Figure 3.14 Linearly increasing vertical loading on an infinite strip.
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Table 3.11 Values of c,/q (Equation 3.41)

zlb
x/b 0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0
-3 0 0.0003 0.00I8 0.00054 0.0107 0.0170 0.0235 0.0347 0.0422
-2 0 0.0008 0.0053 0.0140 0.0249 0.0356 0.0448 0.0567 0.0616
-1 0 0.0041 0.0217 0.0447 0.0643 0.0777 0.0854 0.0894 0.0858
0 0O 0.0748 0.1273 0.1528 0.1592 0.1553 0.1469 0.1273 0.1098
I 05 04797 0.4092 0.334] 0.2749 0.2309 0.1979 0.1735 0.1241
2 05 04220 03524 0.2952 0.2500 0.2148 0.1872 0.1476 0.1211
3 0 00152 0.0622 0.1010 0.1206 0.1268 0.1258 0.1154 0.1026
4 0 00019 00119 0.0285 0.0457 0.0596 0.0691 0.0775 0.0776
5 0 0.0005 0.0035 0.0097 0.0182 0.0274 0.0358 0.0482 0.0546

2b

1Y 2g x— s)z’ds
= d = _ _ s
T J. T (Zb][ T )J. [(xk—sf+2°T

0

q=(1+00528—zoc) (3.43)
2T b

For Equations 3.41 through 3.43, the angle & is positive in the counter-
clockwise direction measured from the vertical drawn at P.
Nondimensional values of 6, (Equation 3.41) are given in Table 3.11.

3.10.1 Vertical deflection at the surface

For this condition, the vertical deflection at the surface (z = 0) can be
expressed as

Woo=| L |22 | 202 mjob— x— X 1 227X
br E 2 X

Example 3.4

—b(b+x)} (3.44)

Refer to Figure 3.15. For a linearly increasing vertical loading on an
infinite strip, given b = 1 m; g = 100 kN/m?. Determine the vertical
stress Ao, at P (-1 m, 1.5 m).

Solution

Refer to Figure 3.15. Also note that 2b = 2 m.
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q =
100
kN/m?

L 4

Figure 3.15 Linearly increasing load.
o, = mnl(lj ]: 2657°

o, = mn‘l(lsz 56 3°

o=0,—0; =563—-2657=29.73°

03 =90—-0, =90-563=33.7°
d=—@0;+0)=—(33.7+29.73)=-6343°
20=-126.86°

From Equation 3.41

GZ:1[X(x—sin25)=1[(_1)(n><29.73)—sin(—12686)]
g 2n{b 2| 1 {180

= 1 [F0519— (0.8)]=0.0447
2r

c,=0.0447)Q)t 0.0447)100)= 447 kN /n >
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3.11 VERTICAL STRESS IN A SEMI-INFINITE
MASS DUE TO EMBANKMENT LOADING

In several practical cases, it is necessary to determine the increase of vertical
stress in a soil mass due to embankment loading. This can be done by the
method of superposition as shown in Figure 3.16 and described later.

The stress at A due to the embankment loading as shown in Figure 3.16a
is equal to the stress at A due to the triangular loading shown in Figure 3.16b
minus the stress at A due to the triangular loading shown in Figure 3.16¢.

Referring to Equation 3.41, the vertical stress at A due to the loading
shown in Figure 3.16b is

T bAr (:E)/a)q o t+0oy)

Similarly, the stress at A due to the loading shown in Figure 3.16¢ is

b )1
a T

Thus the stress at A due to embankment loading (Figure 3.16a) is

q[(a+b) b ]
C,=— 1+ 0)——0;
b1 a a

or
6,=1Lg (3.45)
N
AR
le— a—ple— b—»| o oaat
1
| T % £
: q7© q © b
| ' } ;
! \ 4
N \ N | N b |
AN \ : ¢ NG > b_’l \ II
\\ \\ o« | \\ 1 \\ |
\\ \ 2 \\ ! \ 1
NP AN : z N CON
e : NG
N
N \\ ! A K h \ :
\\\\: AN \:
\N \\l \l
A A A

Figure 3.16 Vertical stress due to embankment loading: (a) embankment loading with
an angle of a; + «, at A; (b) triangular loading with an angle o, + «, at A;
(c) triangular loading with angle o, at A.



Stresses and displacements in a soil mass 125

where I is the influence factor,

l|(a+b b 1 (ab
I3=|:( )((X1+a2)_(x2:|=f(:)
T a a T zZz z

The values of the influence factor for various a/z and b/z are given in
Figure 3.17.

b
—=a
0.50 3.0 i -
2.0
138 ::::::;.--///,E %,2}:;
. v I A2
~ s
— AL
e O
: = 4 4
~—~r"°'8/////// 7
L..—-O.7’l // d '/
0.35 ==as A4 Al /
‘ s AN Vl/
T 1 N
] s A | X ULV
0.30 __,..1-"'" /, /I' /
047 4 i
< 0.25 BAR
sl
LT UMK
0.20 - /’ f
0.2/ / /
0.15 L A Y
_,..--1-""'1""/ / /
017 Vs
0.10 b
—_—-—r__________..-—""’ /
0.05 0./
'
"f
__._'_._._,_,-l-'-
06 0.1 1.0 10.0
a
z

Figure 3.17 Influence factors for embankment load. (After Osterberg, J.O., Influence
values for vertical stresses in semi-infinite mass due to embankment loading,
Proc. 4th Int. Conf. Soil Mech. Found. Eng., vol. |, p. 393, 1957.)
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Example 3.5

A 5 m-high embankment is to be constructed as shown in Figure 3.18.
If the unit weight of compacted soil is 18.5 kN/m?, calculate the verti-
cal stress due solely to the embankment at A, B, and C.

Solution

Vertical Stress at A: ¢ = yH = 18.5 x 5 = 92.5 kN/m? using the method
of superposition and referring to Figure 3.19a.

G =030yt Oz

For the left-hand section, b/z = 2.5/5 = 0.5 and a/z = 5/5 = 1. From
Figure 3.17, I; = 0.396. For the right-hand section, b/z = 7.5/5 = 1.5 and
alz = 5/5 = 1. From Figure 3.17, I, = 0.477. So

Gm = 0396+0.477)925)=80.75 kN fn 2
Vertical stress at B: Using Figure 3.19b
Omp =0zq)+ Oz ¥ 0.0

For the left-hand section, b/z = 0/10 = 0, a/z = 2.5/5 = 0.5. So, from
Figure 3.17, I; = 0.14. For the middle section, b/z = 12.5/5 = 2.5, a/z =
5/5 = 1. Hence, I; = 0.493. For the right-hand section, I; = 0.14 (same
as the left-hand section). So

G = 0.14)185%25)+ (0493)185x5)— (0.14)(18 5% 2 5)

=(0493)92 5)=455kN /n?

|<—10m—>|

T 1:1 Slope
l y=18.5kN/m3

T

5m

AN S S

Figure 3.18 Stress increase due to embankment loading (not to scale).

1:1 Slope
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2.5m
[5mde—>| [ 75m —de5mP] [<_—_1/2-5Tm—>|¢5m»| 2.5 mpf
T ? 1 ,/
5m | ® 5m /‘an 5m G;lm
v v |y | J v
S*m: ! 5*m 25 mp : e 2.5 m
% S
Oz1) | Oz2) Oy 1) ! Oy 043)
(a) (b)
f[¢—10m —»f €5 mple—5 m—p
T T \o)
1
: 5m S) 5m
I l l
1
I
e x
150 5m
A4

1
1
Cf
(1) Oz(2)

Figure 3.19 Calculation of stress increase at A, B, and C (not to scale): (a) vertical stress
at A, (b) vertical stress at B, (c) vertical stress at C.

1

GZ
(c)

Vertical stress at C: Referring to Figure 3.19¢
O =0,0,+04p,

For the left-hand section, b/z = 20/5 =4, a/z = 5/5 = 1. So, I, = 0.498.
For the right-hand section, b/z = 5/5 = 1, a/z = 5/5 = 1. So, I; = 0.456.
Hence

Ox = 0498—0456)925)+ 3.89 kN 2
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Chapter 4

Stresses and displacements
in a soil mass

Three-dimensional problems

4.1 INTRODUCTION

In Chapter 3, the procedure for estimating stress and displacement for
plane strain cases was discussed. This chapter relates to the calculation
of stress and displacement for three-dimensional problems based on the
theory of elasticity.

4.2 STRESSES DUE TO A VERTICAL
POINT LOAD ON THE SURFACE

Boussinesq (1883) solved the problem for stresses inside a semi-infinite
mass due to a point load acting on the surface. In rectangular coordinates,
the stresses at a point P(x,y,z) may be expressed as follows (Figure 4.1):

302

Saley 4.1)
30 |x%z 1-2v[ 1 R + Z)x° |

[RR+2z) R'R+zf R’

30 g 1—2vr 1 R + z)y? zq

o, =21Yz, _@Rrzy = (4.3)
2t | R 3 |[RR+z) R'R+z)y R
30 | xyz 1-2v (2R + 2)xy

Y 21t|:R5 3 R38+z)2:| 44)
30 yZ

= on RS *3)

129
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Figure 4.I Concentrated point load on the surface (rectangular coordinates).

_30 yZ

¥ 2;m R®

where
Q is the point load

R =\/zz-i-r2
r=x*+y

v 1s Poisson’s ratio

In cylindrical coordinates, the stresses may be expressed as follows

(Figure 4.2):

) z
2nR°®

z

r

Q|:3zr2_ 1-2v ]

C2n

R° RR+2)
Q 1 z
= — —2 - —_——
%=t V)[R(R+z) R3]
= 30 rz?

2mR°
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i

v
z

Figure 4.2 Concentrated point load (vertical) on the surface (cylindrical coordinates).

Equation 4.1 (or [4.7]) can be expressed as

c,=1, (4.11)

NN‘IO

where I, is the nondimensional influence factor:

2 —5/2
L =3l1+(r) ] (4.12)
27 z

Table 4.1 gives the values of I, for various values of r/z.

4.3 DEFLECTION DUE TO A CONCENTRATED
POINT LOAD AT THE SURFACE

The deflections at a point due to a concentrated point load located at the
surface are as follows (Figure 4.1):

0 (1+V)|:XZ_ (1—2V)X] (4.13)

uzjexdx: 3
2tE |R® RR+2)
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Table 4.1 Value of I, (Equation 4.12)

rlz I,

0 0.4775

0.2 0.4329

0.4 0.3294

0.6 0.2214

0.8 0.1386

1.0 0.0844

1.2 0.0513

1.4 0.0317

1.6 0.0200

1.8 0.0129

2.0 0.0085

2.5 0.0034
v:jeydy:w[yf—a_zwy} (4.14)

2tE |R® RR+2)
1 +v)| 22 2Q-v

w = jezdz = E[GZ -V, +0Cp )] =2 2(1nE )[R3 - (1R ):| (4.15)

4.4 HORIZONTAL POINT LOAD ON THE SURFACE

Figure 4.3 shows a horizontal point load O acting on the surface of a semi-
infinite mass. This is generally referred to as Cerutti’s problem. The stresses
at a point P(x, vy, z) are as follows:

3 2
= Sn}lii 16l
Q0 x |3%¥° (1—2v)R2— x2(3R+z)
== = —1-2 3- )
O 2nR3{R2 d-2v+ R+zf || R°R+2) (417)

0 x |3y a-2vR*[. V*BR+z)
=2 XY g 3- 418
O 27'CR3{R2 A-2vp R+zf | R’R+2) (*.18)



Stresses and displacements in a soil mass 133

Q I »
A R Oz >
Noe e * s
RN 1%

\\ S 4

_____\___.(

x |

\ |

\ |z

A
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\I
¥P(x,y,z)

v
z

Figure 4.3 Horizontal point load on the surface.

2 _ 2 2
o= Q{{“‘z L @-2vR [1— X BRY Z’]} (4.19)
2nR* | R R +zf R°R+2z)
= 30 ¥’z (4.20)
¥ 2m R® '
30 xyz
-3 4.21
¥ 2m R® ( )
Also, the displacements at point P can be given as
2 2
u:Q(Hv)l[Xz+l+ @-2vR [1— X ﬂ (4.22)
2t E R|R R +2) RR +2)
_ 2
_9 (1+V>X13’[1_(1 2VR } (4.23)
2n E R R+ zf

W :Q(HV)X2|:Z+(1_2V)R] (4.24)
2n E R’|R R+2)
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4.5 VERTICAL STRESS DUE TO A LINE
LOAD OF FINITE LENGTH

Figure 4.4 shows a flexible line load of length L, and the load per unit
length is equal to g. In order to determine the vertical stress at P due to the
line load, we consider an elementary length dy of the line load. The load
on the elementary length is then equal to g-dy. The vertical stress increase
do, due to the elemental load at P can be obtained using Equation 4.1, or

3
do, = 3“;% (4.25)
where
R°= @ +y*+2°)" (4.26)

Thus, the total stress increase o, at P due to the entire line load of length L
can be given as

L 3
G, = f do, =f T (4.27)

2@ +y*+2°y?  z

0

A

K=

Figure 4.4 Line load of length L on the surface of a semi-infinite soil mass.
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where
3
1 3n n
L= 2 2 12 - 2 - 2 (4.28)
2n(mf+1) \/m1+n1+l \/m1+n1+1
m, =2 (4.29)
n =2 (4.30)
z

Figure 4.5 shows a plot of the variation of I with »z, and #,.

0.34 I T T T T
L my=0 ]
0.1
0.3
0.2
— 0.3 —
0.4
0.5

0.2

B 0.6

0.7

0.8

/5
/

0.1

T ——

X
i

Figure 4.5 Variation of Iy with m, and n,.
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Example 4.1

Refer to Figure 4.4. Givena =3 m, L =4.8 m, ¢ = 50 kN/m. Determine
the increase in stress, c,, due to the line load at

a. Point with coordinates (0, 0, 6 m)
b. Point with coordinates (0, 2.4 m, 6 m)

Solution
Part a:
m,=2=3_05
z 6
L 4
n1=—=—'8=0.8
b4 6

From Figure 4.5, for m, = 0.5 and n, = 0.8, the value of I; is about
0.158. So

czzg@):%o(o.158):1.32kN/fn2
zZ

Part b:

As shown in Figure 4.6, the method of superposition can be used.
Referring to Figure 4.6,

G, =0.1)+ 0.,

For obtaining o, (Figure 4.6a),

m1—§=0.5
6
nl—h—ﬁZOA
z 6

From Figure 4.5, I5, = 0.1. Similarly, for o, (Figure 4.6b)

m,=05
L, 2
n1=—2=—4=0.4
z 6

So, I5, ~ 0.1. Hence

50
o, :%[15(1)"’ Leyl=— 01+01)=167KN A
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q="50kN/m

q=50kN/m
1) 5

»

Ly=24m

Figure 4.6 Stress due to a line load: (a) determination of z(l); (b) determination of z(2).

4.6 STRESSES BELOW A CIRCULARLY LOADED
FLEXIBLE AREA (UNIFORM VERTICAL LOAD)

Integration of the Boussinesq’s equation given in Section 4.2 can be adopted
to obtain the stresses below the center of a circularly loaded flexible area.
Figure 4.7 shows a circular area of radius b being subjected to a uniform
load of g per unit area. Consider an elementary area dA. The load over
the area is equal to g-dA, and this can be treated as a point load. To deter-
mine the vertical stress due to the elementary load at a point P, we can

substitute g+ dA for Q and VP +2* for R in Equation 4.1. Thus

Gq-dr )’
do,=—— 4.31
2ne? + 22y~ *.31)
Since dA = rd0 dr, the vertical stress at P due to the entire loaded area
may now be obtained by substituting for dA in Equation 4.31 and then
integrating

b
3q Z’rd@dr z’
o [ ] mwzq{l‘w} (452

6=0 r=0
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g per unit area

Diameter =
B=2b

Figure 4.7 Stresses below the center of a circularly loaded area due to uniform
vertical load.

Proceeding in a similar manner, we can also determine 6, and o, at point P as

3
6r=ce=% 14 2v— 2(1++")Z 42 } (4.33)

A detailed tabulation of stresses below a uniformly loaded flexible circu-
lar area was given by Ahlvin and Ulery (1962). Referring to Figure 4.8, the
stresses at point P may be given by

6,=q@’+B) (4.34)
G, =g2VA'+C + 1 —2V)F] (4.35)
Gg =q[2VvA’—-D + - 2V)E] (4.36)
Tp =Tx=dG (4.37)

where A’, B’, C, D, E, F, and G are functions of s/b and z/b; the values of
these are given in Tables 4.2 through 4.8.
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—§————o

Load = g per unit area

i
v

z
[e———s—»pe l
P

Figure 4.8 Stresses at any point below a circularly loaded area.

Note that o, is a principal stress, due to symmetry. The remaining two
principal stresses can be determined as

_ 0:10.)%0.- 0.7 + RTaY (4.38)

Op 5

Example 4.2

Refer to Figure 4.8. Given that ¢ = 100 kN/m?, B = 2b = 5 m, and
v =0.45, determine the principal stresses at a point defined by s = 3.75 m
andz = 5 m.

Solution
s/b =3.75/2.5 = 1.5; 2/b = 5/2.5 = 2. From Tables 4.2 through 4.8

A’ =0.06275
B’ =0.06371
C=-0.00782
D =0.05589
E =0.04078
F=10.02197

G =0.07804
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Stresses and displacements in a soil mass 147

So

6,=q@ +B’)=1000.06275+0.06371)=12.65kN f°

Go =q[2vA'—D + 1—2VE It
=100{2(0 45)(0.06275)-0.05589+ [L— 2)0 45)P 04078}
=0.466kN fn?

6. =q2VA'+C + (- 2V)F]
=100[0.90.06275)—-0.00782+0.10.02197)]=5.09kN /n 2

T,=qG = 100)0.07804)= 7 8kN fu >

Gy = 0466kN M’ =G, (interm ed iateprincipalstress)

o - 1265+5.09)%,/12.65-5.09) + 2x7 8y
? 2
17.74+1734

2

Opy=1754 kN ? (naprprincipalstress)
Opey =02 kN /n? (n inor principal stress)

4.7 VERTICAL DISPLACEMENT DUE TO UNIFORMLY
LOADED CIRCULAR AREA AT THE SURFACE

The vertical displacement due to a uniformly loaded circular area at a point
(Figure 4.9) can be determined by using the same procedure we used previ-
ously for a point load, which involves determination of the strain €, from the
equation

€=+ 0.~ VO +G0)] (4.39)
and determination of the settlement by integration with respect to z.

The relations for 6,, 6,, and o, are given in Equations 4.34 through 4.36.
Substitution of the relations for ¢, 6,, and 6, in the preceding equation for
strain and simplification gives (Ahlvin and Ulery, 1962)

1- ’ ’
€= q?v[(l—Zv)A +B'] (4.40)

where ¢ is the load per unit area. A’ and B’ are nondimensional and are
functions of z/b and s/b; their values are given in Tables 4.2 and 4.3.
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[{¢———B=2b—>
Radius
Circular area; =b

Load/unit area =g

Lot

la
s e

Figure 4.9 Elastic settlement due to a uniformly loaded circular area.

The vertical deflection at a depth z can be obtained by integration of
Equation 4.40 as

w = qb[ L+@Q- v)I7:| (4.41)

where
I, = A’ (Table 4.2)
b is the radius of the circular loaded area

The numerical values and I, (which is a function of z/b and s/b) are given
in Table 4.9.

From Equation 4.41, it follows that the settlement at the surface (i.e., at
z=0)is

1-v*

W om0y = Gb I (4.42)
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Example 4.3

Consider a uniformly loaded flexible circular area on the surface of a
sand layer 9 m thick as shown in Figure 4.10. The circular area has a
diameter of 3 m. Also given g = 100 kN/m?; for sand, E = 21,000 kN/m?
and v =0.3.

a. Use Equation 4.41 and determine the deflection of the center of
the circular area (z = 0).

b. Divide the sand layer into these layers of equal thickness of 3 m
each. Use Equation 4.40 to determine the deflection at the center
of the circular area.

Solution
Part a:
From Equation 4.41

w = 3a+v),

E [ER*’Q—V)L]

Whet =W (z=0,5=0) —-w (z=9m ,s=0)

—3m—|

Flexible

l l l q =100 kN/m?

. Sand
E =21,000 kN/m?>
v=0.3

Figure 4.10 Elastic settlement calculation for a layer of finite thickness.
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Forz/b=0and s/b=0,1,=1and I, =2;so

100Q+03)
Weo,e0)=———— @S5 -0321=0013m =13mm
(2=0, 5=0) 21,000 as)ae 2]

Forz/b=9/1.5=6 and s/b =0, I, = 0.01361 and I, = 0.16554; so

1000+ 03)Q 5)
Wgom, o0y = 22V 160 01361)+ L—03)0.16554
(@=9m , 5=0) 21,000 [60O +a 0 1

=0.00183m =183mm

Hence, w,,, =13 - 1.83 = 11.17 mm.

Part b:
From Equation 4.40
_gad+v)

. —-2vA'+B’
€ E[(l VIA'+B]

Layer 1: From Tables 4.2 and 4.3, for z/b = 1.5/1.5 = 1 and s/b = 0,
A’"'=0.29289 and B’ = 0.35355

1000 +03)
2= —————[1—-0.6)0.29289)+0.35355]=0.00291
€zq) 21,000 @ )O ) ]
Layer 2: Forz/b=4.5/1.5=3ands/b=0,A’=0.05132 and B’ =0.09487

oo 120Y03) 14 6)0.05132)+ 0.094871= 0.00071

21,000
Layer 3: Forz/b=7.5/1.5=5and s/b=0,A’=0.01942 and B’ = 0.03772

€.0= 1008+03) 1 6)0.01942)+0.03772]= 0.00028
21,000

The final stages in the calculation are tabulated as follows:

Strain at the center

Layeri  Layer thickness Az; (m) of the layer €,, €, Az; (m)
I 3 0.00291 0.00873
3 0.00071 0.00213
3 3 0.00028 0.00084
20.0117 m

=11.7 mm
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4.8 VERTICAL STRESS BELOW A RECTANGULAR
LOADED AREA ON THE SURFACE

The stress at a point P at a depth z below the corner of a uniformly loaded
(vertical) flexible rectangular area (Figure 4.11) can be determined by inte-
gration of Boussinesq’s equations given in Section 4.2. The vertical load
over the elementary area dx dy may be treated as a point load of magnitude
q-dx-dy. The vertical stress at P due to this elementary load can be evalu-
ated with the aid of Equation 4.1:

dxdyz’
do, =PI
2nE’ +y* +2°)

The total increase of vertical stress at P due to the entire loaded area
may be determined by integration of the previous equation with horizontal
limits of x =0 tox = L and y = 0 to y = B. Newmark (1935) gave the results
of the integration in the following form:

c,=q% (4.43)
Ig_i 2mn(m2++n2+1)1/2m2+n2+2+t‘_m_12mn(mz+n2+1)1/2
ar| m?+n*+m’n’+1 m?+n’+1 m?2+n’-m?n?+1
(4.44)
where
m:B/Z
n:L/Z

The values of I for various values of 72 and 7 are given in Table 4.10.

< L »

Uniform vertical load:. :*
:|'7:. q/unitarea +%:

Figure 4.11 Vertical stress below the corner of a uniformly loaded (normal) rectangular area.
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The arctangent term in Equation 4.44 must be a positive angle in radians.
When m? + n* + 1 < m?n?, it becomes a negative angle. So, a term = should
be added to that angle.

For equations concerning the determination of o,, °,, 7., T, and t,,,
the reader is referred to the works of Holl (1940) and Giroud (1970).

The use of Table 4.10 for determination of the vertical stress at any point
below a rectangular loaded area is shown in Example 4.4.

In most cases, the vertical stress below the center of a rectangular area is
of importance. This can be given by the relationship

Ac =qL
where
_2 m1n; 1+,12n'12 +,22n;2 . s m;
T \/1+m§2+n’12 (1+n1 )(ml +n] ) \/m’12+n’12\/1+n§2
(4.45)
m)=2 (4.46)
B
, z
n; = (4.47)
B/2)

The variation of I, with 772, and 7, is given in Table 4.11.

Example 4.4

A distributed load of 50 kN/m? is acting on the flexible rectangular
area 6 x 3 m as shown in Figure 4.12. Determine the vertical stress at
point A, which is located at a depth of 3 m below the ground surface.

Solution

The total increase of stress at A may be evaluated by summing the
stresses contributed by the four rectangular loaded areas shown in
Figure 4.12. Thus

G, =d@g)t+ )+ Tse)+ Tsw))

L 4 B 1
n(1,=—1=—5=1.5 m(1)=—1=—5=05
z 3 z 3
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Table 4.11 Variation of I, with mj and n

,
n

2

3

4

5

6

7

8

9

10

0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00

0.994
0.960
0.892
0.800
0.701
0.606
0.522
0.449
0.388
0.336
0.179
0.108
0.072
0.051
0.038
0.029
0.023
0.019

0.997
0.976
0.932
0.870
0.800
0.727
0.658
0.593
0.534
0.481
0.293
0.190
0.131
0.095
0.072
0.056
0.045
0.037

0.997
0.977
0.936
0.878
0.814
0.748
0.685
0.627
0.573
0.525
0.348
0.241
0.174
0.130
0.100
0.079
0.064
0.053

0.997
0.977
0.936
0.880
0817
0.753
0.692
0.636
0.585
0.540
0.373
0.269
0.202
0.155
0.122
0.098
0.081
0.067

0.997
0.977
0.937
0.881
0.818
0.754
0.694
0.639
0.590
0.545
0.384
0.285
0.219
0.172
0.139
0.113
0.094
0.079

0.997
0.977
0.937
0.881
0.818
0.755
0.695
0.640
0.591
0.547
0.389
0.293
0.229
0.184
0.150
0.125
0.105
0.089

0.997
0.977
0.937
0.881
0.818
0.755
0.695
0.641
0.592
0.548
0.392
0.298
0.236
0.192
0.158
0.133
0.113
0.097

0.997
0.977
0.937
0.881
0.818
0.755
0.696
0.641
0.592
0.549
0.393
0.301
0.240
0.197
0.164
0.139
0.119
0.103

0.997
0.977
0.937
0.881
0.818
0.755
0.696
0.641
0.593
0.549
0.394
0.302
0.242
0.200
0.168
0.144
0.124
0.108

0.997
0.977
0.937
0.881
0.818
0.755
0.696
0.642
0.593
0.549
0.395
0.303
0.244
0.202
0.171
0.147
0.128
0.112

L1:L3

LZ:L4

B,=B,

BS:B4

Figure 4.12 Distributed load on a flexible rectangular area.
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From Table 4.10, I, = 0.131. Similarly

L, _15 B
Noy=——2="=05 mg="—"=05 T=0084
z 3 z

ng=15 mg=05 Is=0.131

ng=05 my=05 L, =0085
So

6,=500.131+0.084+0.131+0.084)=215 kN fn°

4.9 DEFLECTION DUE TO A UNIFORMLY
LOADED FLEXIBLE RECTANGULAR AREA

The elastic deformation in the vertical direction at the corner of a uni-
formly loaded rectangular area of size L x B (Figure 4.11) can be obtained
by proper integration of the expression for strain. The deflection at a
depth z below the corner of the rectangular area can be expressed in the
form (Harr, 1966)

1-2
w (oomer):%(l—vz ){110 —( 3’)111} (4.48)

where

1 J14mP?+n* +m7 po | Y1+m72+n7? +1

IL,= | miz niz = lmin miz niz (4.49)
T \/l+ml +n;°—mj; \/1-i-ml +n;° -1

Li="tan| mln — (4.50)
T n1\/1+ml +nj

, L

mi;=— (4.51)
B

n =2 (4.52)
B

Values of I,, and I,; are given in Tables 4.12 and 4.13.



Stresses and displacements in a soil mass

157

Table 4.12 Variation of I,

Value of m/
n I 2 3 4 5 6 7 8 9 )
0.00 1.122 1532 1783 1964 2.105 2220 2318 2403 2477 2.544
025 1.095 1510 1.763 1944 2085 2200 2298 2383 2458 2525
050 1.025 1452 1.708 1.890 2.032 2.148 2246 2331 2406 2473
075 0933 1371 1632 1816 1959 2076 2.174 2259 2334 240l
100 0838 1282 1547 1734 1878 1995 2094 2.179 2255 2322
125 0751 1.192 1461 1650 1796 1914 2013 2099 2.175 2242
150 0.674 1.106 1378 1570 1717 1836 1936 2022 2098 2.166
175 0.608 1.026 1299 1493 1641 1762 1.862 1949 2025 2093
200 0552 0954 1226 1421 1571 1692 1794 1881 1958 2.026
225 0504 0888 1.158 1354 1.505 1.627 1.730 1817 1.894 1963
250 0463 0829 1.095 1291 1444 1567 1670 1758 1.836 1.904
275 0427 0776 1037 1233 138 1510 1613 1702 1.780 1.850
300 0396 0728 0984 1.179 1332 1457 1561 1650 1.729 1.798
325 0369 0686 0935 1.128 1281 1406 1511 1601 1.680 1.750
350 0346 0647 0.889 1.081 1234 1359 1465 1555 1.634 1.705
375 0325 0612 0848 1.037 1.189 1315 1421 1511 1591 1.662
400 0306 0580 0.809 0.995 1.147 1273 1379 1470 1550 1.621
425 0289 0551 0774 0957 1.107 1233 1339 1431 1511 1.582
450 0274 0525 0741 0921 1.070 1.195 1301 1393 1474 1545
475 0260 0501 0710 0.887 1034 1.159 1265 1358 1438 1510
500 0248 0479 0.682 0855 1.001 1.125 1.231 1323 1404 1477
525 0237 0458 0.655 0825 0.969 1.093 1.199 1291 1372 [1.444
550 0227 0440 0631 0797 0939 1062 1.167 1260 1341 1413
575 0217 0422 0608 0770 0911 1.032 1.137 1230 1311 1.384
6.00 0208 0406 0586 0745 0884 1.004 1.109 1201 1282 1.355
625 0200 0391 0566 0722 0858 0977 1082 1.173 1255 1.328
650 0.193 0377 0547 0699 0834 0952 1055 1.147 1228 1.30I
675 0.186 0364 0529 0678 0810 0927 1.030 1.121 1203 1275
700 0.179 0352 0513 0658 0788 0904 1.006 1.097 1.178 1.25I
725 0.173 0341 0497 0639 0767 0881 0983 1073 1.154 1227
750 0.168 0330 0482 0621 0747 0.860 0960 1.050 1.131 1.204
775 0.162 0320 0.468 0604 0728 0839 0939 1.028 1.109 I.I8I
8.00 0.158 0310 0455 0588 0710 0820 0918 1.007 1.087 1.160
825 0.153 0301 0442 0573 0.692 0801 0899 0987 1.066 1.139
850 0.148 0293 0430 0558 0676 0783 0.879 0967 1.046 1.118
875 0.144 0285 0419 0544 0660 0765 0.861 0948 1.027 1.099
9.00 0.140 0277 0408 0531 0.644 0748 0.843 0930 1.008 1.080
925 0.137 0270 0398 0518 0630 0732 0.826 0912 0990 1.06l
950 0.133 0263 0388 0506 0616 0717 0810 0895 0972 1.043
975 0.130 0257 0379 0494 0602 0702 0794 0878 0955 1.026
1000 0.126 0251 0.370 0483 0.589 0688 0778 0.862 0938 1.009
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Table 4.13 Variation of I,

n’

Value of my

2

3

4

5

6

7

8

9

10

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
225
2.50
2.75
3.00
3.25
3.50
3.75
4.00
425
4.50
4.75
5.00
5.25
5.50
5.75
6.00
6.25
6.50
6.75
7.00
7.25
7.50
7.75
8.00
825
8.50
8.75
9.00
9.25
9.50
9.75
10.00

0.098
0.148
0.166
0.167
0.160
0.149
0.139
0.128
0.119
0.110
0.102
0.096
0.090
0.084
0.079
0.075
0.071
0.067
0.064
0.061
0.059
0.056
0.054
0.052
0.050
0.048
0.046
0.045
0.043
0.042
0.040
0.039
0.038
0.037
0.036
0.035
0.034
0.033
0.032
0.032

0.103
0.167
0.202
0.218
0.222
0.220
0.213
0.205
0.196
0.186
0.177
0.168
0.160
0.152
0.145
0.138
0.132
0.126
0.121
0.116
0.111
0.107
0.103
0.099
0.096
0.093
0.089
0.087
0.084
0.081
0.079
0.077
0.074
0.072
0.070
0.069
0.067
0.065
0.064
0.062

0.104
0.172
0.212
0.234
0.245
0.248
0.247
0.243
0.237
0.230
0.223
0.215
0.208
0.200
0.193
0.186
0.179
0.173
0.167
0.161
0.155
0.150
0.145
0.141
0.136
0.132
0.128
0.124
0.121
0.117
0.114
0.111
0.108
0.105
0.103
0.100
0.098
0.095
0.093
0.091

0.105
0.174
0.216
0.241
0.254
0.261
0.263
0.262
0.259
0.255
0.250
0.244
0.238
0.232
0.226
0.219
0.213
0.207
0.201
0.195
0.190
0.185
0.179
0.174
0.170
0.165
0.161
0.156
0.152
0.149
0.145
0.141
0.138
0.135
0.132
0.129
0.126
0.123
0.120
0.118

0.105
0.175
0.218
0.244
0.259
0.267
0.271
0.273
0.272
0.269
0.266
0.262
0.258
0.253
0.248
0.243
0.237
0.232
0.227
0.221
0.216
0.211
0.206
0.201
0.197
0.192
0.188
0.183
0.179
0.175
0.171
0.168
0.164
0.160
0.157
0.154
0.151
0.147
0.145
0.142

0.105
0.175
0.219
0.246
0.262
0.271
0.277
0.279
0.279
0.278
0.277
0.274
0.271
0.267
0.263
0.259
0.254
0.250
0.245
0.241
0.236
0.232
0.227
0.223
0.218
0.214
0.210
0.205
0.201
0.197
0.193
0.190
0.186
0.182
0.179
0.176
0.172
0.169
0.166
0.163

0.105
0.175
0.220
0.247
0.264
0.274
0.280
0.283
0.284
0.284
0.283
0.282
0.279
0.277
0.273
0.270
0.267
0.263
0.259
0.255
0.251
0.247
0.243
0.239
0.235
0.231
0.227
0.223
0.219
0.216
0.212
0.208
0.205
0.201
0.198
0.194
0.191
0.188
0.185
0.182

0.105
0.176
0.220
0.248
0.265
0.275
0.282
0.286
0.288
0.288
0.288
0.287
0.285
0.283
0.281
0.278
0.276
0.272
0.269
0.266
0.263
0.259
0.255
0.252
0.248
0.245
0.241
0.238
0.234
0.231
0.227
0.224
0.220
0.217
0.214
0.210
0.207
0.204
0.201
0.198

0.105
0.176
0.220
0.248
0.265
0.276
0.283
0.288
0.290
0.291
0.291
0.291
0.290
0.288
0.287
0.285
0.282
0.280
0.277
0.274
0.271
0.268
0.265
0.262
0.259
0.256
0.252
0.249
0.246
0.243
0.240
0.236
0.233
0.230
0.227
0.224
0.221
0.218
0.215
0.212

0.105
0.176
0.220
0.248
0.266
0.277
0.284
0.289
0.292
0.293
0.294
0.294
0.293
0.292
0.291
0.289
0.287
0.285
0.283
0.281
0.278
0.276
0.273
0.270
0.267
0.265
0.262
0.259
0.256
0.253
0.250
0.247
0.244
0.241
0.238
0.235
0.233
0.230
0.227
0.224
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i
I e
B/2 1 : Corner of
I small rectangles
|
B2 2 | 4
|
|

fe—— L2 —dle— L/2 —>

Figure 4.13 Determination of settlement at the center of a rectangular area of dimen-
sions L % B.

For surface deflection at the corner of a rectangular area, we can substi-
tute z/8 = nj = 0 in Equation 4.48 and make the necessary calculations; thus

W (comer)= % -V )L, (4.53)

The deflection at the surface for the center of a rectangular area (Figure 4.13)
can be found by adding the deflection for the corner of four rectangular
areas of dimension L/2 x B/2. Thus, from Equation 4.48

W (center)= 4[qczBE/2):|(1_VZ Mo 2%3(1_‘72 Mo (4.54)

Example 4.5

Consider a flexible rectangular area measuring 3 m x 6 m (B x L)
on the ground surface. The flexible area is subjected to a loading
q = 100 kN/m?. A rock layer is located 6 m below the ground surface.
Determine the deflection at the surface below the center of the loaded
area. Use E = 18,000 kN/m? and v = 0.3.

Solution
W (center)=w (centeratz=0)-w (centeratz=6m)

From Equation 4.54

B
W (centeratz = 0)=q? a-v>),
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From Table 4.12, for m7 =2 and n] = 0, the value of I, is 1.532.
Hence

00)@3)

-03%)1532)=0.0232m =232mm
18,000 ¢ e )

w (centeratz=0)=

w(center at z = 6 m) = (4)[w(corner) at z = 6 m of a rectangular area
measuring B’ x L' =B/2x L/2=1.5m x 3 m

For this case

»_ L 3m
ml:f,:i:z
B 15m

B 15

From Table 4.12, I,, = 0.580; and from Table 4.13, I,; = 0.138. For one
of the rectangular areas measuring B’ x I, from Equation 4.48

w eomen= 3 0wt 10-(22 i |
:wx (]__032 )[058_(1_2X0’3)0.138:|
1-03

2)@8,000)
=00019m =19mm

So, for the center of the rectangular area measuring B x L
w(center at g = 6 m) = (4)(1.9) = 7.6 mm

Hence
w(center) =23.2 - 7.6 = 15.6 mm

4.10 STRESSES IN A LAYERED MEDIUM

In the preceding sections, we discussed the stresses inside a homogeneous
elastic medium due to various loading conditions. In actual cases of soil
deposits, it is possible to encounter layered soils, each with a different
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GZ
0 0.2 0.4 0.6 0.8 1.0
0
Radius = b 100 //
Load = it | ——120
oad = g/unit area =50 L0
1
3 2
h E; z
il b L
E,
2
E,
Based on Burmister (1958)
v solution (Note: /1 = b)
z 3 ‘ ‘

(a) (b)

Figure 4.14 (a) Uniformly loaded circular area in a two-layered soil E, > E, and (b) verti-
cal stress below the centerline of a uniformly loaded circular area.

modulus of elasticity. A case of practical importance is that of a stiff soil
layer on top of a softer layer, as shown in Figure 4.14a. For a given loading
condition, the effect of the stiff layer will be to reduce the stress concentra-
tion in the lower layer. Burmister (1943) worked on such problems involv-
ing two- and three-layer flexible systems. This was later developed by Fox
(1948), Burmister (1958), Jones (1962), and Peattie (1962).

The effect of the reduction of stress concentration due to the presence of
a stiff top layer is demonstrated in Figure 4.14b. Consider a flexible circu-
lar area of radius b subjected to a loading of g per unit area at the surface
of a two-layered system. E, and E, are the moduli of elasticity of the top
and the bottom layer, respectively, with E, > E,; and b is the thickness of
the top layer. For h = b, the elasticity solution for the vertical stress o, at
various depths below the center of the loaded area can be obtained from
Figure 4.14b. The curves of c,/q against /b for E,/E, = 1 give the simple
Boussinesq case, which is obtained by solving Equation 4.32. However,
for E,/E, > 1, the value of o,/q for a given z/b decreases with the increase
of E,/E,. It must be pointed out that in obtaining these results it is assumed
that there is no slippage at the interface.

The study of the stresses in a flexible layered system is of importance in
highway pavement design.
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4.11 VERTICAL STRESS AT THE INTERFACE
OF A THREE-LAYER FLEXIBLE SYSTEM

Peattie (1962) prepared a number of graphs for determination of the vertical
stress o, at the interfaces of three-layer systems (Figure 4.15) below the
center of a uniformly loaded flexible circular area. These graphs are pre-
sented in Figures A.1 through A.32 (see the Appendix). In the determination
of these stresses, it is assumed that Poisson’s ratio for all layers is 0.5. The
following parameters have been used in the graphs:

K, = 2L (4.55)
E,
K, =2 (4.56)
E,
A= (4.57)
h,
g = (4.58)
h,

For determination of the stresses 6, and o,, (vertical stresses at interfaces
1 and 2, respectively), we first obtain ZZ, and ZZ, from the graphs. The
stresses can then be calculated from

6, =4d@Z,) (4.59a)

Uniformly loaded circular area

Radius=b
Load = g/unit area

i
T i =05
h | E,
l 021 l 0,
> " Interface 1
T | €0,
P ! v,=0.5
2 | E2
l Gzz l — O'r’
Y 2 Interface 2
T |+,
hg=oo ! v3=0.5
| | E
1
1

Figure 4.15 Uniformly loaded circular area on a three-layered medium.
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Uniformly loaded
circular area
Radius b=0.6 m

#‘ q =100 kN/m?
Stiff clay

1.5m
v

O,
A4

!

E;=10,000 kN/m?

Medium stiff clay
E,=6666 kN/m?

Soft clay
E5=1666.5 kN/m?

Figure 4.16 Flexible circular load on layered soil.

and

622 =q(ZZ2)

Typical use of these graphs is shown in Example 4.6.

Example 4.6

A flexible circular area is subjected to a uniformly distributed load of
100 kN/m? as shown in Figure 4.16. Determine the vertical stress 6, at

the interface of the stiff and medium-stiff clay.

Solution
_E._ 10,000,
E, 6,666
E, 6,666
Kzziz =
E; 16665
a=2_-0%_4,
h, 3
g=_15_ 45
h, 3

From the figures given in the Appendix, we can prepare the following table:

7z,

K, K, =02 K,=20 K,=20
02 029 027 0.25
20 0.16 0.15 0.15

200 0054 0042 0037

(4.59b)
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Based on the results of this table, a graph of ZZ, against K, for various
values of K| is plotted (Figure 4.17). For this problem, K, = 4. So, the
values of ZZ, for K, = 4 and K, = 0.2, 2.0, and 20.0 are obtained
from Figure 4.17 and then plotted as in Figure 4.18. From this graph,
Z7Z,=0.16 for K, = 1.5. Thus

0, =1000.16)=16kN f’

0.5
0.4 |
03 @— K, =02 ,
\0\:\'
02 ! -
3 P 1K =2.0
g e ' ¢
on |
2 |
;} 0.1 — : _|
N 0.08 |- | _
|
0.06 - ! _
0.05 |- : -
1 K,=20.0
0.04 - |
|
0.03 —1 ' ' '
0.2 2.0 4.0 20.0
K, (log scale)

Figure 4.17 Plot of ZZ, vs. K,.

0.5

0.4 - -
K,=4

0.3 .

02

o
=
I

Z, (log scale)

Z.
4
=
53

T

0.06 —
0.05 -

0.04 —

| |
0.15 0.2 1.5 2.0 20.0

0.03 L1

K, (log scale)

Figure 4.18 Plot of ZZ, vs. K.
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4.12 VERTICAL STRESS IN WESTERGAARD MATERIAL
DUE TO A VERTICAL POINT LOAD

Westergaard (1938) proposed a solution for the determination of the
vertical stress due to a point load Q in an elastic solid medium in which
there exist alternating layers with thin rigid reinforcements (Figure 4.19a).
This type of assumption may be an idealization of a clay layer with thin
seams of sand. For such an assumption, the vertical stress increase at a
point P (Figure 4.19b) can be given as

0 1 3/2
o= o0t S (4.60)
21z | n? + @k
lQ
Thin rigid
reinforcement
(a)
Q
v >
NIRRT »x
/o N e . .
. .o = .l ° ¢ .. . .r/
A R N I
A . e e, o '. o/
.. '.v'.\.o.' .Y
. . . \. . /
."0 ."..o\\.-7/
SN DR A TSN
T c
z z
I
y
) v,

Figure 4.19 Westergaard’s solution for vertical stress due to a point load. (Note:
v = Poisson’s ratio of soil between the rigid layers.) (a) Westergaard type
material; (b) Vertical stress at P due to a point load Q.



166 Advanced Soil Mechanics

where
1-2v
= 4.61
=55 (4.61)
v = Poisson’s ratio of the solid between the rigid reinforcements
r=x*+y
Equation 4.60 can be rewritten as
G, = (QZJIU (4.62)
z
where
, 13”2
1 r
I12 = 2 [] +1 (4.63)
21N nz

Table 4.14 gives the variation of I}, with v.
In most practical problems of geotechnical engineering, Boussinesq’s
solution (Section 4.2) is preferred over Westergaard’s solution.

Table 4.14 Variation of I, (Equation 4.63)

’IZ

rlz v=0 v=20.2 v=04
0 03183 0.4244 0.9550
0.1 0.3090 0.4080 0.8750
0.2 0.2836 0.3646 0.6916
0.3 0.2483 0.3074 0.4997
0.4 0.2099 0.2491 0.3480
0.5 0.1733 0.1973 0.2416
0.6 0.1411 0.1547 0.1700
0.7 0.1143 0.1212 0.1221
0.8 0.0925 0.0953 0.0897
0.9 0.0751 0.0756 0.0673
1.0 0.0613 0.0605 0.0516
1.5 0.0247 0.0229 0.0173

2.0 0.0118 0.0107 0.0076
2.5 0.0064 0.0057 0.0040
3.0 0.0038 0.0034 0.0023
4.0 0.0017 0.0015 0.0010
5.0 0.0009 0.0008 0.0005
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4.13 SOLUTIONS FOR VERTICAL STRESS
IN WESTERGAARD MATERIAL

The Westergaard material was explained in Section 4.12, in which the
semi-infinite mass is assumed to be homogeneous, but reinforced internally
so that no horizontal displacement can occur. Following are some solutions
to obtain stress at a point due to surface loading on Westergaard material.

a. Vertical Stress (c,) due to a Line Load of Finite Length
Referring to Figure 4.4, the stress at P

o, =31 . s (4.64)
Z2m|my +M (mf+n12+n2)
where
n= 1-2v
2-2v
a
m,;=—
z
L
n ==
pA

b. Vertical Stress (6,) due to a Circularly Loaded Area
Referring to Figure 4.7, the vertical stress at P

=y | (465)

Table 4.15 gives the variation of ¢,/q for v = 0.
c. Vertical Stress (c,) due to a Rectangularly Loaded Area
Referring to Figure 4.11, the vertical stress at P

05
_ 1 1 1
C,= ;E{ootl[nz (mz+an+ n“(m 2,2 n } (4.66)

where
B
m=—
z
L
n=—
z

Figure 4.20 shows the variation of ¢,/q with 7 and 7.
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Table 4.15 Variation of c,/q for v=0
(Equation 4.65)

b/z c,/q
0 0
0.1 0.0099
0.2 0.0378
0.3 0.0794
0.4 0.1296
0.5 0.1835
0.6 0.2375
0.7 0.2893
0.8 0.3377
0.9 0.3822
1.0 0.4227
2.0 0.6667
3.0 0.7706
4.0 0.8259
5.0 0.8599
0.25 T T T T T T T T T T TTTTT
B = oo
0.20
0.15
o' | :
0.10
0.05
0/ L 111 L0 1
0.01 0.1 1.0 10.0

n

Figure 4.20 Variation of 6,/q (Equation 4.66) with m and n. (Note: v=0.)
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4.14 DISTRIBUTION OF CONTACT
STRESS OVER FOOTINGS

In calculation vertical stress, we generally assume that the foundation of a
structure is flexible. In practice, this is not the case; no foundation is per-
fectly flexible, nor is it infinitely rigid. The actual nature of the distribution
of contact stress will depend on the elastic properties of the foundation and
the soil on which the foundation is resting.

Borowicka (1936, 1938) analyzed the problem of distribution of contact
stress over uniformly loaded strip and circular rigid foundations resting on
a semi-infinite elastic mass. The shearing stress at the base of the founda-
tion was assumed to be zero. The analysis shows that the distribution of
contact stress is dependent on a nondimensional factor K, of the form

3
1{1-v2 ) E: )T
K=~ o Il (4.67)
6{1-v:i |\ Ec \ b
where
v, is the Poisson’s ratio for soil
v; is the Poisson’s ratio for foundation material

E;, E, are the Young’s modulus of foundation material and soil,
respectively

{H alfw dth forstrip foundation
b=

R adiusforcircularfoundation

T is the thickness of foundation

Figure 4.21 shows the distribution of contact stress for a circular founda-
tion. Note that K, = 0 indicates a perfectly flexible foundation, and K, =
means a perfectly rigid foundation.

4.14.1 Foundations of clay

When a flexible foundation resting on a saturated clay (¢ = 0) is loaded with
a uniformly distributed load (g/unit area), it will deform and take a bowl
shape (Figure 4.22). Maximum deflection will be at the center; however,
the contact stress over the footing will be uniform (¢ per unit area).

A rigid foundation resting on the same clay will show a uniform settle-
ment (Figure 4.22). The contact stress distribution will take a form such as
that shown in Figure 4.22, with only one exception: the stress at the edges
of the footing cannot be infinity. Soil is not an infinitely elastic material;
beyond a certain limiting stress [q, .y ], plastic flow will begin.

max)]
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i [¢———— Diameter=2b ————»|
T

i)

1
1
|
1
1
1
1
1
1
; Contact stress, g,

Il

4
s 7l Contact stress

i

[N / ..
PNy /,’ E// (rigid)
1

~—__ -~ Contact stress
(flexible)

—=—p|

Settlement profile
(flexible)

Settlement profile
(rigid)

Figure 4.22 Contact pressure and settlement profiles for foundations on clay.

4.14.2 Foundations on sand

For a flexible foundation resting on a cohesionless soil, the distribution of
contact pressure will be uniform (Figure 4.23). However, the edges of the
foundation will undergo a larger settlement than the center. This occurs
because the soil located at the edge of the foundation lacks lateral-confining
pressure and hence possesses less strength. The lower strength of the soil at
the edge of the foundation will result in larger settlement.
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e~ Contact stress
L ST (rigid)
e i’ N
A
? /// AN Contact stress
i / \ | (flexible)
! \
Sl

Settlement profile
Settlement profile (rigid)
(flexible)

Figure 4.23 Contact pressure and settlement profiles for foundations on sand.

A rigid foundation resting on a sand layer will settle uniformly. The con-
tact pressure on the foundation will increase from zero at the edge to a
maximum at the center, as shown in Figure 4.23.

4.15 RELIABILITY OF STRESS CALCULATION
USING THE THEORY OF ELASTICITY

Only a limited number of attempts have been made so far to compare theo-
retical results for stress distribution with the stresses observed under field
conditions. The latter, of course, requires elaborate field instrumentation.
However, from the results available at present, fairly good agreement is
shown between theoretical considerations and field conditions, especially
in the case of vertical stress. In any case, a variation of about 20%-30%
between the theory and the field conditions may be expected.
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Chapter 5

Pore water pressure due
to undrained loading

5.1 INTRODUCTION

In 1925, Terzaghi suggested the principles of effective stress for a saturated
soil, according to which the total vertical stress o at a point O (Figure 5.1)
can be given as

oc=0+u (5.1)
where
6 =hY+hYe: (5.2)

o’ is the effective stress

u = porew ater pressure = h,Y, (5.3)
Y is the unit weight of water

Combining Equations 5.1 through 5.3 gives

0’'=0c-u= (Y+hYe) Y, =hy+hyY (5.4)

where v’ is the effective unit weight of soil = Ve — Vs -
In general, if the normal total stresses at a point in a soil mass are 6,, 6,,
and o; (Figure 5.2), the effective stresses can be given as follows:

Directonl: o,=0,-u
Directon 2: 6, =0,—-u
Directon 3: o3 =0;—u
where
0, 05, and o5 are the effective stresses

u is the pore water pressure, hy;,

173
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—

+ R P
hy »* Dry unit weight =y
Saturated i
hy unit weight =y,
Oe :

Figure 5.1 Definition of effective stress.

1
A
01 b O3
h
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3

Figure 5.2 Normal total stresses in a soil mass.

A knowledge of the increase of pore water pressure in soils due to var-
ious loading conditions without drainage is important in both theoreti-
cal and applied soil mechanics. If a load is applied very slowly on a soil
such that sufficient time is allowed for pore water to drain out, there
will be practically no increase of pore water pressure. However, when
a soil is subjected to rapid loading and if the coefficient of permeability
is small (e.g., as in the case of clay), there will be insufficient time
for drainage of pore water. This will lead to an increase of the excess
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hydrostatic pressure. In this chapter, mathematical formulations for the
excess pore water pressure for various types of undrained loading will
be developed.

5.2 PORE WATER PRESSURE DEVELOPED DUE
TO ISOTROPIC STRESS APPLICATION

Figure 5.3 shows an isotropic saturated soil element subjected to an isotro-
pic stress increase of magnitude Ac. If drainage from the soil is not allowed,
the pore water pressure will increase by Au.

The increase of pore water pressure will cause a change in volume of the
pore fluid by an amount AV,. This can be expressed as

AV, =nV . Au (5.5)

where
n is the porosity
C, is the compressibility of pore water
V. is the original volume of soil element

The effective stress increase in all directions of the element is Ac’ = Ac — Au.

The change in volume of the soil skeleton due to the effective stress increase
can be given by

AV =3CYV,A0 = 3C YV, (AG — Au) (5.6)

A
Ao—+—>» | @ <+«F—Ac
Ay > 2
v
Ao f
|
Ao

3

Figure 5.3 Soil element under isotropic stress application.
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> o<|<

,
Y

Figure 5.4 Definition of C_: volume change due to uniaxial stress application with zero
excess pore water pressure. (Note: V is the volume of the soil element at any
given value of ¢".)

In Equation 5.6, C_ is the compressibility of the soil skeleton obtained from
laboratory compression results under uniaxial loading with zero excess
pore water pressure, as shown in Figure 5.4. It should be noted that com-
pression, that is, a reduction of volume, is taken as positive.

Since the change in volume of the pore fluid, AV,, is equal to the change
in the volume of the soil skeleton, AV, we obtain from Equations 5.5 and 5.6

nV,C,Au = 3C.V,(Ac - Au)

and hence
Au_p_ 1 (5.7)
Ac 1+nC,/3C.)

where B is the pore pressure parameter (Skempton, 1954).
If the pore fluid is water,

C, = C,, = compressibility of water

and

r._c, - 30V
E

where E and v are the Young’s modulus and Poisson’s ratio with respect to
changes in effective stress. Hence

1

B=— -~ (5.8)
1+nCw /Csk)
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Table 5.1 Soils considered by Black and Lee (1973) for evaluation of B

Void B at 100%
Soil type Description ratio Cy saturation
Soft soil Normally consolidated clay =2 ~0.145 x 1072 m2/kN 0.9998
Medium soil ~ Compacted silts and clays ~0.6  =~0.145 x 1073 m%kN 0.9988
and lightly
overconsolidated clay
Stiff soil Overconsolidated stiff ~0.6  ~0.145 x 10™* m?/kN 0.9877

clays, average sand of
most densities
Very stiff soil ~ Dense sands and stiff clays, =0.4 =0.145 x 107> m?kN 0.9130
particularly at high
confining pressure

5.3 PORE WATER PRESSURE PARAMETER B

Black and Lee (1973) provided the theoretical values of B for various types
of soil at complete or near complete saturation. A summary of the soil types
and their parameters and the B values at saturation that were considered by
Black and Lee is given in Table 5.1.

Figure 5.5 shows the theoretical variation of B parameters for the soils
described in Table 5.1 with the degree of saturation. It is obvious from this
figure that, for stiffer soils, the B value rapidly decreases with the degree of
saturation. This is consistent with the experimental values for several soils
shown in Figure 5.6.

As noted in Table 5.1, the B value is also dependent on the effective iso-
tropic consolidation stress (c”) of the soil. An example of such behavior in
saturated varved Fort William clay as reported by Eigenbrod and Burak
(1990) is shown in Figure 5.7. The decrease in the B value with an increase
in ¢’ is primarily due to the increase in skeletal stiffness (i.e., C).

Hence, in general, for soft soils at saturation or near saturation, B = I.

5.4 PORE WATER PRESSURE DUE
TO UNIAXIAL LOADING

A saturated soil element under a uniaxial stress increment is shown in
Figure 5.8. Let the increase of pore water pressure be equal to Au. As
explained in the previous section, the change in the volume of the pore
water 1s

AV, =nV,C Au
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Figure 5.5 Theoretical variation of B with degree of saturation for soils described in
Table 5.1. (Note: Back pressure = 207 kN/m?, Ac = 138 kN/m?.)
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Figure 5.6 Variation of B with degree of saturation.
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Figure 5.7 Dependence of B values on the level of isotropic consolidation stress
(varved clay) for (a) regular triaxial specimens before shearing, (b) regular
triaxial specimens after shearing, (c) special series of B tests on one single
specimen in loading, and (d) special series of B tests on one single specimen
in unloading. (After Eigenbrod, K.D. and Burak, J.P., Geotech. Test. J., 13(4),
370, 1990.)
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Figure 5.8 Saturated soil element under uniaxial stress increment.
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The increases of the effective stresses on the soil element in Figure 5.8 are

Direction 1: Ac’ = Ac - Au
Direction 2: A¢’ =0 - Au =-Au
Direction 3: Ac’ =0 - Au =-Au

This will result in a change in the volume of the soil skeleton, which may
be written as

AV =C ¥, (AG — Au)+C ¥V, CAul-C V, (~Au) (5.9)

where C, is the coefficient of the volume expansibility (Figure 5.9). Since
AV, = AV

nV,C,Au = C.V,(Ac - Au) - 2C.V,Au

or
Au _ A= Ce (5.10)
AG nC,+C.+2C,
where A is the pore pressure parameter (Skempton, 1954).
If we assume that the soil element is elastic, then C. = C,, or
1 (5.11)

A=— "
nCp/Cc)+3

Again, as pointed out previously, C, is much smaller than C,. So
C,/C, = 0, which gives A = 1/3. However, in reality, this is not the case,

& >
< »

-0’ +0’

Figure 5.9 Definition of C,: coefficient of volume expansion under uniaxial
loading.



Pore water pressure due to undrained loading 18l

that is, soil is not a perfectly elastic material, and the actual value of A
varies widely.

The magnitude of A for a given soil is not a constant and depends on the
stress level. If a consolidated drained triaxial test is conducted on a satu-
rated clay soil, the general nature of variation of Ao, Au, and A = Au/Ac
with axial strain will be as shown in Figure 5.10. For highly overconsoli-
dated clay soils, the magnitude of A at failure (i.e., A;) may be negative.
Table 5.2 gives the typical values of A at failure (=A;) for some normally
consolidated clay soils. Figure 5.11 shows the variation of A; with overcon-
solidation ratio for Weald clay. Table 5.3 gives the typical range of A values
at failure for various soils.

4 ———— Overconsolidated
Normally consolidated
© 277N
\
< d \
%‘ // \
\
= / \
b7 /
A
<
< |1
i
)
.
- - >
(a) Axial strain
A
3
<
[
-
5
wy
wy
[}
-
a
-
[}
8
S -~
2 7N
I
\
~ < >
N
N
~
~—_
(b) Axial strain
A
7 N N
A < >

Axial strain

(c)

Figure 5.10 Variation of Ac, Au, and A for a consolidated drained triaxial test in
clay: (a) plot of Ac vs. axial strain; (b) plot of Au vs. axial strain; (c) plot
of A vs. axial strain.
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Table 5.2 Values of A; for normally consolidated clays

Clay Type Liquid limit ~ Plasticity index  Sensitivity — A;

Natural soils
Toyen Marine 47 25 8 1.50

47 25 8 1.48
Drammen Marine 36 16 4 1.2
36 16 4 2.4

Saco River Marine 46 17 10 0.95
Boston Marine — — — 0.85
Bersimis Estuarine 39 18 6 0.63
Chew Stoke Alluvial 28 10 — 0.59
Kapuskasing Lacustrine 39 23 4 0.46
Decomposed Talus ~ Residual 50 18 | 0.29
St. Catherines Till (7) 49 28 3 0.26

Remolded soils
London Marine 78 52 | 0.97
Weald Marine 43 25 | 0.95
Beauharnois Till (7) 44 24 | 0.73
Boston Marine 48 24 | 0.69
Beauharnois Estuarine 70 42 | 0.65
Bersimis Estuarine 33 13 | 0.38

Source: After Kenney, T.C., . Soil Mech. Found. Eng. Div., 85(SM3), 67, 1959.

1.0 T T T T T
Based on Simons (1960)

—0.4 I I I I
1 2 5 10 20 50 100

Overconsolidation ratio

Figure 5.11 Variation of A; with overconsolidation ratio for Weald clay.
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Table 5.3 Typical values of A at failure

Type of soil A
Clay with high sensitivit E—Il
Y 8 Y 4 2
Normally consolidated clay %—I
Overconsolidated clay —% -0
Compacted sandy clay 1.3
2 4

Direction of
consolidation

Direction of
major principal
stress

Figure 5.12 Directional variation of major principal stress application.
5.5 DIRECTIONAL VARIATION OF A,

Owing to the nature of deposition of cohesive soils and subsequent con-
solidation, clay particles tend to become oriented perpendicular to the
direction of the major principal stress. Parallel orientation of clay par-
ticles could cause the strength of clay and thus A; to vary with direc-
tion. Kurukulasuriya et al. (1999) conducted undrained triaxial tests
on kaolin clay specimens obtained at various inclinations i as shown in
Figure 5.12. Figure 5.13 shows the directional variation of A; with over-
consolidation ratio. It can be seen from this figure that A; is maximum
between a = 30°-60°.

5.6 PORE WATER PRESSURE UNDER
TRIAXIAL TEST CONDITIONS

A typical stress application on a soil element under triaxial test conditions
is shown in Figure 5.14a (Ao, > Ac;). Au is the increase in the pore water
pressure without drainage. To develop a relation between Au, Ac,, and Ao,
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Liquid limit = 83.8%
Plastic limit = 32.6%
Moisture content =57.7%

0.5
3
0.4 8 n
. 03 _
18
02 | -

a (deg)

Figure 5.13 Variation of A; with a and overconsolidation ratio (OCR) for kaolin clay based
on the triaxial results of Kurukulasuriya et al. Soils Found., 39(1), 21-29, 1999.
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i i
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> .Au — Aos Aoy .Aub — Aoy
/ ”
T Aoy
Ao, Aoy
(b)

v

Ao, — Aoy
()

Figure 5.14 Excess pore water pressure under undrained triaxial test conditions: (a)
triaxial test condition; (b) application of isotropic stress Acs; (c) application

of axial stress Ao, — Acs.
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we can consider that the stress conditions shown in Figure 5.14a are the
sum of the stress conditions shown in Figure 5.14b and c.
For the isotropic stress Ac; as applied in Figure 5.14b,
Aub = BAG3 (5.12)

(from Equation 5.7), and for a uniaxial stress Ac,-Ac; as applied in
Figure 5.14c,

Au, = A (AC,; — AG3) (5.13)
(from Equation 5.10). Now,

Au = Ay, + Au, =BAG; + A AG, — AG3) (5.14)
For saturated soil, if B = 1; then

Au= AG;+ A (AG, —AG;) (5.15)

5.7 HENKEL'S MODIFICATION OF PORE
WATER PRESSURE EQUATION

In several practical considerations in soil mechanics, the intermediate and
minor principal stresses are not the same. To take the intermediate princi-
pal stress into consideration (Figure 5.15), Henkel (1960) suggested a modi-
fication of Equation 5.135:

_ Ao, +AG, + Ac,

Au 3 +a\/(Acsl—A<52)2+(Acsz—Acs;;)er(Ac53—Ac51)2
(5.16)
Ao, (Major principal stress)
I
! Ao (Minor principal
| stress)
T
e Au
Ao, — MG <+—+— Ao, (Intermediate
/L'_ —— = principal stress)
///
Aoy | 7 ?

Figure 5.15 Saturated soil element with major, intermediate, and minor principal stresses.
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or
AU = AGyo + 3aAT . (5.17)

where
a is Henkel’s pore pressure parameter
Ao, and At are the increases in the octahedral normal and shear
stresses, respectively

In triaxial compression tests, Ac, = Ac;. For that condition,
AG, + 2A
Au=¥+ a2 (AG, — AG;) (5.18)
For uniaxial tests as in Figure 5.14¢, we can substitute Ac, - Ac; for Ao,

and zero for Ao, and Ac; in Equation 5.16, which will yield

Auzwwua\/i(ml—mg

or

Au:(;+ aﬁJ(Aol—Ao3) (5.19)

A comparison of Equations 5.13 and 5.19 gives

A= 1+a 2
3

or

1 1
a_ﬁ(A_s) (5.20)

The usefulness of this more fundamental definition of pore water pressure
is that it enables us to predict the excess pore water pressure associated with
loading conditions such as plane strain. This can be illustrated by deriving
an expression for the excess pore water pressure developed in a saturated
soil (undrained condition) below the centerline of a flexible strip loading of
uniform intensity, g (Figure 5.16). The expressions for o, 6,, and 6, for such

x5 2yd
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~ Load per unit area=¢g
- —> X

o, 4o,

Figure 5.16 Estimation of excess pore water pressure in saturated soil below the center-
line of a flexible strip loading (undrained condition).

loading are given in Chapter 3. Note that ¢, > 6, > 6., and 6, = v(c, + G,).
Substituting o, 6,, and o, for 6, 6,, and o5 in Equation 5.16 yields

6,+V0,+06,)+0, 1 1
Au = = _ =
oositvoten 3 1)
N0, — V0. +6,)f + [VO, + 0y )~ Oy F + Ox — 0.}
Forv=0.5
J3 1) 1
A — _ _—— J— —_ .
u 0x+[ 5 (A 3J+2 ©.—0y) (5.21)

If a representative value of A can be determined from standard triaxial
tests, Au can be estimated.

Example 5.1

A uniform vertical load of 145 kN/m? is applied instantaneously over
a very long strip, as shown in Figure 5.17. Estimate the excess pore
water pressure that will be developed due to the loading at A and B.
Assume that v = 0.45 and that the representative value of the pore
water pressure parameter A determined from standard triaxial tests
for such loading is 0.6.
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Strip load
[¢———4m—] 145 kN/m?

Figure 5.17 Uniform vertical strip load on ground surface.

Solution
The values of 6, 6,, and 7, at A and B can be determined from Tables

x5 20

3.5 through 3.7.
o AtA:x/b=0,z2/b=2/2=1,and hence
1. 6,/ =0.818,s50 6, = 0.818 x 145 = 118.6 kN/m?

2. 6,/q =0.182, s0 6, = 26.39 kN/m?
3. 1./9=0,s07,.=0

Note that in this case o, and o, are the major (c,) and minor (c;) prin-
cipal stresses, respectively.
This is a plane strain case. So, the intermediate principal stress is

6, =0 () + 03) = 0.45(118.6 + 26.39) = 65.25 kN/m?

From Equation 5.20

So

_0;+0,+0;
3

_ 118.6+6525+2639
3

Au +a\/(61—62)2+((52—(53)2+(03—61)2

+O.189\/(118.6—65.25)2 +(6525-2639Y + (2639-118.6)

=9151kN /n?
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o AtB:x/b=2/2=1,2/b=2/2=1,and hence
1. 6,/g = 0.480, so 6, = 0.480 x 145 = 69.6 kN/m?
2. 6,/q =0.2250,s0 6, = 0.2250 x 145 = 32.63 kN/m?
3. 1,/q=0.255,s0 1., = 0.255 x 145 = 36.98 kN/m?

Calculation of the major and minor principal stresses is as follows:

2
C,+0 0,—0O
01,03 = 22 =+ ( 22 ")Hiz

2
_ 69.6+232.63i\/(69.6—232.63] +36.98°

Hence
6, =92.46 kN/m? o5 =9.78 kN/m?
o, = 0.45(92.46 + 9.78) = 46 kN/m?

_9246+9.78+46
3

Au

+0.189\/(92.46—46)2 +@6-9.78F+(9.78—9246)

=68.6 kN fu?

5.8 PORE WATER PRESSURE DUE
TO ONE-DIMENSIONAL STRAIN
LOADING (OEDOMETER TEST)

In Section 5.4, the development of pore water pressure due to uniaxial load-
ing (Figure 5.8) is discussed. In that case, the soil specimen was allowed to
undergo axial and lateral strains. However, in oedometer tests the soil spec-
imens are confined laterally, thereby allowing only one directional strain,
that is, strain in the direction of load application. For such a case, referring
to Figure 5.8,

AV, =nV,C Au
and

AV = C .V (Ao - Au)
However, AV, = AV. So

nV,C,Au = C.V,(Ac - Au)
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or
Ao _o_ 1 (5.22)
Ac 1+nC, L)

If C, < C, the ratio C,/C, = 0; hence C = |. Lambe and Whitman (1969)

reported the following C values:

Vicksburg buckshot clay slurry  0.99983
Lagunillas soft clay 0.99957
Lagunillas sandy clay 0.99718

Veyera et al. (1992) reported the C values in reloading for two poorly graded
sands (i.e., Monterrey no. 0/30 sand and Enewetak coral sand) at various
relative densities of compaction (D,). In conducting the tests, the specimens
were first consolidated by application of an initial stress ©%), and then the
stress was reduced by 69 kN/m?2. Following that, under undrained condi-
tions, the stress was increased by 69 kN/m? in increments of 6.9 kIN/m?2.
The results of those tests for Monterey no. 0/30 sand are given in Table 5.4.

Table 5.4 C values in reloading for
Monterrey no. 0/30 sand

Relative Effective confining
density D, (%)  pressure o, (kN/m?) C
[ 86 1.00
6 172 0.85
6 345 0.70
27 86 1.00
27 172 0.83
27 345 0.69
27 690 0.56
46 86 1.00
46 172 0.8l
46 345 0.66
46 690 0.55
65 86 1.00
65 172 0.79
65 345 0.62
65 690 0.53
85 86 1.00
85 172 0.74
85 345 0.61
85 690 051

Source:  Compiled from the results of Veyera,
G.E. et al., Geotech.Test. J., 15(3), 223, 1992.
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From Table 5.4, it can be seen that the magnitude of the C value can
decrease well below 1.0, depending on the soil stiffness. An increase in the
initial relative density of compaction as well as an increase in the effective
confining pressure does increase the soil stiffness.
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Chapter 6

Permeability

6.1 INTRODUCTION

Any given mass of soil consists of solid particles of various sizes with
interconnected void spaces. The continuous void spaces in a soil permit
water to flow from a point of high energy to a point of low energy.
Permeability is defined as the property of a soil that allows the seepage of
fluids through its interconnected void spaces. This chapter is devoted to the
study of the basic parameters involved in the flow of water through soils.

6.2 DARCY’S LAW

In order to obtain a fundamental relation for the quantity of seepage
through a soil mass under a given condition, consider the case shown in
Figure 6.1. The cross-sectional area of the soil is equal to A and the rate of
seepage 1s ¢.

According to Bernoulli’s theorem, the total head for flow at any section
in the soil can be given by

Totalhead = E levation head + pressure head + velocity head (6.1)

The velocity head for flow through soil is very small and can be neglected.
The total heads at sections A and B can thus be given by

Totalhead atA =z, +h,

Totalhead atB = z; + hy
where

z, and zy are the elevation heads
h, and by, are the pressure heads

193
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l Datum

Figure 6.1 Development of Darcy’s law.

The loss of head Ab between sections A and B is
Ah = (zy +hg)— (za +hs) (6.2)
The hydraulic gradient i can be written as

. Ah
i=—
L
where L is the distance between sections A and B.

Darcy (1856) published a simple relation between the discharge velocity
and the hydraulic gradient:

v=ki (6.4)

where
v is the discharge velocity
i is the hydraulic gradient
k is the coefficient of permeability

Hence, the rate of seepage g can be given by
g=ki (6.5)

Note that A is the cross-section of the soil perpendicular to the direction
of flow.
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The coefficient of permeability k has the units of velocity, such as cm/s or
mm/s, and is a measure of the resistance of the soil to flow of water. When
the properties of water affecting the flow are included, we can express k by
the relation

K (@ &)= K;’g (6.6)

where
K is the intrinsic (or absolute) permeability, cm?
p is the mass density of the fluid, g/cm?
g is the acceleration due to gravity, cm/s?
p is the absolute viscosity of the fluid, poise [i.e., g/(cm-s)]

It must be pointed out that the velocity v given by Equation 6.4 is the
discharge velocity calculated on the basis of the gross cross-sectional area.
Since water can flow only through the interconnected pore spaces, the
actual velocity of seepage through soil, v, can be given by

v, = (6.7)

v

n

where 7 is the porosity of the soil.
Some typical values of the coefficient of permeability are given in

Table 6.1. The coefficient of permeability of soils is generally expressed at a

temperature of 20°C. At any other temperature T, the coefficient of perme-

ability can be obtained from Equation 6.6 as

Kao _ P20)lr)
ke P )ilo)

where
kr, kyo are the coefficient of permeability at T°C and 20°C, respectively
Prs Pao are the mass density of the fluid at T°C and 20°C, respectively
Wy Koo are the coefficient of viscosity at T°C and 20°C, respectively

Table 6.1 Typical values of coefficient of permeability for various soils

Material Coefficient of permeability (mm/s)
Coarse 10-103

Fine gravel, coarse, and medium sand 102—10

Fine sand, loose silt 1074-102

Dense silt, clayey silt 105—10*

Silty clay, clay 108—1073




196 Advanced Soil Mechanics

Table 6.2 Values of p/j,,

Temperature T (°C)  py/py Temperature T (°C)  pr/py

10 1.298 21 0.975
I 1.263 22 0.952
12 1.228 23 0.930
13 1.195 24 0.908
14 I.165 25 0.887
I5 1.135 26 0.867
16 1.106 27 0.847
17 1.078 28 0.829
18 1.051 29 0811
19 1.025 30 0.793
20 1.000

Since the value of p,y/pr is approximately 1, we can write

W)
20 20) ( )

Table 6.2 gives the values of p;/j,, for a temperature T varying from 10°C
to 30°C.

6.3 VALIDITY OF DARCY’S LAW

Darcy’s law given by Equation 6.4, v = ki, is true for laminar flow through
the void spaces. Several studies have been made to investigate the range
over which Darcy’s law is valid, and an excellent summary of these works
was given by Muskat (1937). A criterion for investigating the range can be
furnished by the Reynolds number. For flow through soils, Reynolds num-
ber R, can be given by the relation

R, = PP (6.9)

where
v is the discharge (superficial) velocity, cm/s
D is the average diameter of the soil particle, cm
p is the density of the fluid, g/cm3
u is the coefficient of viscosity, g/(cm-s)



Permeability 197

For laminar flow conditions in soils, experimental results show that

R, = 2PP <4 (6.10)
u

with coarse sand, assuming D = 0.45 mm and k = 100D? = 100(0.045)? =
0.203 cm/s. Assuming i = 1, then v = ki = 0.203 cm/s. Also, p.r = 1 glem?,
and pyooc = (10-°)(981) g/(cm-s). Hence

R, = 0203000)D) _ 93, 4
@0")e86)

From the previous calculations, we can conclude that, for flow of water
through all types of soil (sand, silt, and clay), the flow is laminar and
Darcy’s law is valid. With coarse sands, gravels, and boulders, turbulent
flow of water can be expected, and the hydraulic gradient can be given by
the relation

i= av+bv? (6.11)

where a and b are experimental constants (e.g., see Forchheimer [1902]).

Darcy’s law as defined by Equation 6.4 implies that the discharge veloc-
ity bears a linear relation with the hydraulic gradient. Hansbo (1960)
reported the test results of four undisturbed natural clays. On the basis of
his results (Figure 6.2),

v=kd-1) i>{ (6.12)

Equation 6.13 = Equation 6.12

e

Discharge velocity, v

v

Hydraulic gradient, i

Figure 6.2 Variation of v with i (Equations 6.12 and 6.13).
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Figure 6.3 Discharge velocity—gradient relationship for four clays. (After Tavenas, F.
et al,, Can. Geotech. J., 20(4), 629, 1983b.)

and
v=ki i<i (6.13)

The value of 7 for the four Swedish clays was about 1.6. There are several
studies, however, that refute the preceding conclusion.

Figure 6.3 shows the laboratory test results between v and i for four clays
(Tavenas et al., 1983a,b). These tests were conducted using triaxial test
equipment, and the results show that Darcy’s law is valid.

6.4 DETERMINATION OF THE COEFFICIENT
OF PERMEABILITY IN THE LABORATORY

The three most common laboratory methods for determining the coeffi-
cient of permeability of soils are the following:

1. Constant-head test
2. Falling-head test

3. Indirect determination from consolidation test

The general principles of these methods are given later.
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6.4.1 Constant-head test

The constant-head test is suitable for more permeable granular materials.
The basic laboratory test arrangement is shown in Figure 6.4. The soil spec-
imen is placed inside a cylindrical mold, and the constant-head loss » of
water flowing through the soil is maintained by adjusting the supply. The
outflow water is collected in a measuring cylinder, and the duration of the
collection period is noted. From Darcy’s law, the total quantity of flow O
in time ¢ can be given by

Q =gt=kiAt

where A is the area of cross-section of the specimen. However, i = b/L,
where L is the length of the specimen, and so O = k(h/L)At. Rearranging
gives

k=2L (6.14)
hAt

Once all the quantities on the right-hand side of Equation 6.14 have been
determined from the test, the coefficient of permeability of the soil can be
calculated.

Water
Porous

supply
% / stone /— Constant

water level

— < / L {
T / I \ i W
e ST Overflow
h KRN Constant
Soil L water level
LA 2 =
Porous
stone Collection
E of water

Figure 6.4 Constant-head laboratory permeability test.
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6.4.2 Falling-head test

The falling-head permeability test is more suitable for fine-grained soils.
Figure 6.5 shows the general laboratory arrangement for the test. The
soil specimen is placed inside a tube, and a standpipe is attached to the
top of the specimen. Water from the standpipe flows through the speci-
men. The initial head difference b, at time ¢ = 0 is recorded, and water
is allowed to flow through the soil such that the final head difference at
time t = tis b,.
The rate of flow through the soil is

q=ki = kEA - _.—% (6.15)

where
b is the head difference at any time ¢
A is the area of specimen
a is the area of standpipe
L is the length of specimen

From Equation 6.15

t h
R

Ak h
0

hy

_ v
A =
Yy
hy A Porous
stone
Iy
vV Vv
Porous
stone

Figure 6.5 Falling-head laboratory permeability test.
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or

k= 2303Ebg% (6.16)
2

The values of a, L, A, ¢, b, and b, can be determined from the test, and
the coefficient of the permeability k for a soil can then be calculated from
Equation 6.16.

6.4.3 Permeability from consolidation test

The coefficient of permeability of clay soils is often determined by the con-
solidation test, the procedures of which are explained in Section 8.5. From
Equation 8.25

where
T, is the time factor
C, is the coefficient of consolidation
H is the length of average drainage path
¢ is time

The coefficient of consolidation is (see Equation 8.15)

k
C,=
’Ywml)

where
Yy 1s the unit weight of water
m, is the volume coefficient of compressibility

Also

Ae
m,=———
Acl+e)

where
Ae is the change of void ratio for incremental loading
Ao is the incremental pressure applied
e is the initial void ratio
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Combining these three equations, we have

_ Tos At (6.17)

tAc(l+e)
For 50% consolidation, T, = 0.197, and the corresponding ¢;, can be esti-
mated according to the procedure presented in Section 8.10. Hence

2
K = 0.197y,AeH

(6.18)
tAG(L+e)

6.5 VARIATION OF THE COEFFICIENT OF
PERMEABILITY FOR GRANULAR SOILS

For fairly uniform sand (i.e., small uniformity coefficient), Hazen (1911)
proposed an empirical relation for the coefficient of permeability in the form

k@ )= cD (6.19)

where
c is a constant that varies from 1.0 to 1.5
D, is the effective size, in millimeters, and is defined in Chapter 1

Equation 6.19 is based primarily on observations made by Hazen on loose,
clean filter sands. A small quantity of silts and clays, when present in a
sandy soil, may substantially change the coefficient of permeability.

Casagrande proposed a simple relation for the coefficient of permeability
for fine to medium clean sand in the following form:

k: l.4€2k035 (6.20)

where
k is the coefficient of permeability at a void ratio e
kg5 is the corresponding value at a void ratio of 0.85

A theoretical solution for the coefficient of permeability also exists in the
literature. This is generally referred to as the Kozeny—Carman equation,
which is derived later.

It was pointed out earlier in this chapter that the flow through soils finer
than coarse gravel is laminar. The interconnected voids in a given soil mass
can be visualized as a number of capillary tubes through which water can
flow (Figure 6.6).
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/K Flow of water

through tortuous
channels in soil;
length=1L,;

« L >

Figure 6.6 Flow of water through tortuous channels in soil.

According to the Hagen—Poiseuille equation, the quantity of flow of
water in unit time, g, through a capillary tube of radius R can be given by

_ %S

R’a (6.21)
8L

9

where
Y. 1s the unit weight of water
p is the absolute coefficient of viscosity
a is the area cross-section of tube
S is the hydraulic gradient

The hydraulic radius Ry of the capillary tube can be given by

2

R, = area _ TR _R (6.22)
wettedperineter 27TR 2
From Equations 6.21 and 6.22
q=1YSgz, (6.23)
0
For flow through two parallel plates, we can also derive
R Y (6.24)

_3u
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So, for laminar flow conditions, the flow through any cross section can
be given by a general equation

q=zLjR§a (6.25)

where C, is the shape factor. Also, the average velocity of flow v, is given by

v, = 3= YuSpo (6.26)
a Cc4u

For an actual soil, the interconnected void spaces can be assumed to be
a number of tortuous channels (Figure 6.6), and for these, the term S in
Equation 6.26 is equal to Ab/AL,. Now

R, —_ e _ (aea)@ength) _ volme
? perin eter (perim eter)(length) surfacearea

1
B (surfacearea)/(volum eofpores)

(6.27)

If the total volume of soil is V, the volume of voids is V, = nV, where n is
porosity. Let S, be equal to the surface area per unit volume of soil (bulk).
From Equation 6.27

_ volme _nv _n (6.28)
surfacearea SV S,

Ry
Substituting Equation 6.28 into Equation 6.26 and taking v, = v, (where v,
is the actual seepage velocity through soil), we get

2
v, = CY“ S% (6.29)
a

It must be pointed out that the hydraulic gradient 7 used for soils is the
macroscopic gradient. The factor § in Equation 6.29 is the microscopic
gradient for flow through soils. Referring to Figure 6.6, i = Ab/AL and
S = Ab/AL,. So

;o Ah ALy _
AL, AL

(6.30)
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or

S:

2+ (6.31)
T
where T is tortuosity, AL,/AL.
Again, the seepage velocity in soils is
v, = 24 _ Vg (6.32)

nAL n

where v is the discharge velocity. Substitution of Equations 6.32 and 6.31
into Equation 6.29 yields

v Yo in?
‘L)S:—T = —
n CUT Sy
or
3
= Y D (6.33)
cus’T

In Equation 6.33, S, is the surface area per unit volume of soil. If we define
S, as the surface area per unit volume of soil solids, then

SVs =SV (6.34)

where V, is the volume of soil solids in a bulk volume V, that is,

Ve = (]-_ny
So

s = _ SV _ S (6.35)

Vg @-ny 1-n
Combining Equations 6.33 and 6.35, we obtain
_ Y om
CusiT? @-ny
3
1 v e (6.36)

= — i
CSiT? u 1+e
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where e is the void ratio. This relation is the Kozeny—Carman equation
(Kozeny, 1927, 1933; Carman, 1956). Comparing Equations 6.4 and 6.36,
we find that the coefficient of permeability is

3
=1 W e (6.37)
C.S2T2 u 1+e
The absolute permeability was defined by Equation 6.6 as
K =k
Y
Comparing Equations 6.6 and 6.37,
3
L e (6.38)

K=—>_——
cSiT?1+e

The Kozeny—Carman equation works well for describing coarse-
grained soils such as sand and some silts. For these cases, the coefficient
of permeability bears a linear relation to ¢3/(1 + ¢). However, serious dis-
crepancies are observed when the Kozeny—Carman equation is applied to
clayey soils.

For granular soils, the shape factor C; is approximately 2.5, and the tor-
tuosity factor T is about J2.

From Equation 6.20, we write that

ko< & (6.39)
Similarly, from Equation 6.37

e3

1+e

K oc (6.40)

Amer and Awad (1974) used the preceding relation and their experimen-
tal results to provide

e3
l+e

k:ch 12032C3“6 (6.41)

where
D, is the effective size
C, is a uniformity coefficient
C, 1s a constant
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Another form of relation for the coefficient of permeability and void ratio
for granular soils has also been used, namely

e2

Koo ——
1+e

(6.42)

For comparison of the validity of the relations given in Equations 6.39
through 6.42, the experimental results (laboratory constant-head test) for
a uniform Madison sand are shown in Figure 6.7. From the plot, it appears
that all three relations are equally good.

More recently, Chapuis (2004) proposed an empirical relationship for k
in conjunction with Equation 6.40 as

3 0.7825
X (an /é)=2.4622|:Dfoe:| (6.43)
l1+e

where Dy, is the effective size (mm).

The preceding equation is valid for natural, uniform sand and gravel to
predict k that is in the range of 10-'=10-3 cm/s. This can be extended to
natural, silty sands without plasticity. It is not valid for crushed materials
or silty soils with some plasticity.

Mention was made in Section 6.3 that turbulent flow conditions may
exist in very coarse sands and gravels and that Darcy’s law may not be valid

0.7 T T T T T
~ ¢ Y
S 06| l+e p -
o &2 /a
”x _____ T s
- l+e
< 05f v -
+ —_— 62 ./, L
< /
‘\E - ’ _|
N 0.4 iy -
s o 6
(=1 | ’/O
<] 4 -
— [ e —
g 03 ,/ 0,90 ee
2 o’
= / le
= 02 , /9’ e e .
a) ’
s | _____ / 7
£ s
= / 7 |
g0 /2 ! i
7 I
s |
Z
0 I I | I I

0 0.1 0.2 0.3 0.4 0.5 0.6
k (mm/s)

Figure 6.7 Plot of k against permeability function for Madison sand.



208 Advanced Soil Mechanics

for these materials. However, under a low hydraulic gradient, laminar flow
conditions usually exist. Kenney et al. (1984) conducted laboratory tests
on granular soils in which the particle sizes in various specimens ranged
from 0.074 to 25.4 mm. The uniformity coefficients of these specimens, C,,
ranged from 1.04 to 12. All permeability tests were conducted at a relative
density of 80% or more. These tests showed that, for laminar flow condi-
tions, the absolute permeability can be approximated as

Kmm?)=0.05-1p2 (6.44)
where D; is the diameter (mm) through which 5% of soil passes.

6.5.1 Modification of Kozeny—-Carman
equation for practical application

For practical use, Carrier (2003) modified Equation 6.37 in the following
manner. At 20°C, y,/p for water is about 9.33 x 10* (1/cm-s). Also, (C,T?)
is approximately equal to 5. Substituting these values into (6.37), we obtain

1Y &
k(an/é)=1.99><104(J € (6.45)
S, ) 1+e
Again
sS=SF(1) (6.46)
Daﬁf an
with
= 100% (6.47)

D YET I

where f; is the fraction of particles between two sieve seizes, in percent
(Note: larger sieve, l; smaller sieve, s)

D @ifam )= D ym )P °x D g (am )f° (6.48)

SF is the shape factor
Combining Equations 6.45 through 6.48

2 3
k @ &)=1.99x10* 100% [1) (eJ (6.49)

Zﬁ/Dh xD Y
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The magnitude of SF may vary between 6 and 8, depending on the angularity
of the soil particles.

Carrier (2003) further suggested a slight modification of Equation 6.49,
which can be written as

2 3
k @ A)=1.99x10* 100% Rl (6.50)
Zﬁ_/(D]()iA04XD21595) SF 1+e

Example 6.1

The results of a sieve analysis on sand are given as follows:

Fraction of particles between
Sieve no  Sieve opening (cm)  Percent passing  two consecutive sieves (%)

30 0.06 100 4
40 0.0425 96 1
60 0.02 84
100 0.015 50 :g
200 0.0075 0

Estimate the hydraulic conductivity using Equation 6.50. Given: the
void ratio of the sand is 0.6. Use SF = 7.

Solution

For fraction between Nos. 30 and 40 sieves

£ 4

D%_AO4><D 0.595 = (0-06)0A04X(0¢0425)0595 =81'62
For fraction between Nos. 40 and 60 sieves
& = 12 =440.76

D%.404><D 0595 (0'0425)0.404><(0.02)0595
Similarly, for fraction between Nos. 60 and 100 sieves

£ _ 34 _
D%AoélngiSQS - (0'02)0.404><(0.015)0595 =20095

And, for between Nos. 100 and 200 sieves

£ _ 50 _
D%AoélngiSQS - (0.015)0‘404><(0.0075)0595 =501338
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100% ~ 100
Zfl/(DOAMXDows) 81.62+440.76+20095+5013.8
] L s

~ 00133

From Equation 6.50

2 3
1 06
k=@.99%x10%)0.0133)| = =0.0097am A&
¢ )0 )2(7)[1+0.6)

Example 6.2

Refer to Figure 6.7. For the soil, (a) calculate the “composite
shape factor,” CgSiT? of the Kozeny-Carman equation, given
Hooec = 10.09 x 1073 poise, (b) If C, = 2.5 and T =+/2, determine ..
Compare this value with the theoretical value for a sphere of diameter
D,;=0.2 mm.

Solution

Part a:

From Equation 6.37,

I S P
CSiT? 1 1+e

3
c.gir? = Tu €/ATE) /(]l:e)

The value of [e3/(1 + e)]/k is the slope of the straight line for the plot of
e’/(1 + e) against k (Figure 6.7). So

e/l+e) 015
k 003am &

_@gsm’)e8lan )

c.sir? 5
10.09%X10 " poise

6)=486x10°an ?

Part b:
(Note the units carefully.)

486x10° 486x10°
S, = 86 20 - |486x10 =3118am?/m?
c.T 25x (/27
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For D,; = 0.2 mm

_ Surface area of a sphere of radinis0.01 an
Volum eof sphereof radins0.01 am

s

4T 01y 3

= = =300am® fm?
@ArO01Y 001 an

This value of S, = 300 cm?/cm?® agrees closely with the estimated value
of S, = 311.8 cm?/cm?.

6.6 VARIATION OF THE COEFFICIENT OF
PERMEABILITY FOR COHESIVE SOILS

The Kozeny—Carman equation does not successfully explain the variation of
the coefficient of permeability with void ratio for clayey soils. The discrepancies
between the theoretical and experimental values are shown in Figures 6.8 and
6.9. These results are based on consolidation—permeability tests (Olsen, 1961,
1962). The marked degrees of variation between the theoretical and the experi-
mental values arise from several factors, including deviations from Darcy’s law,

10_5 T T T
Sodium illite 2
¢ 101N NaCl
Sodium illite 1
106 | S 107N NaCl

=
E 107
ot
108
1070
0.2 0.4 0.6 0.8
Porosity, n

Figure 6.8 Coefficient of permeability for sodium illite. (After Olsen, H.W., Hydraulic
flow through saturated clay, ScD thesis, Massachusetts Institute of Technology,
Cambridge, MA, 1961.)
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Ratio of measured to predicted flow
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Porosity, n

Figure 6.9 Ratio of the measured flow rate to that predicted by the Kozeny—Carman
equation for several clays. Notes: curve |: sodium illite, 10™' N NaCl; curve 2:
sodium illite, 10™* N NaCl; curve 3: natural kaolinite, distilled water H,O;
curve 4: sodium Boston blue clay, 10" N NaCl; curve 5: sodium kaolinite
and 1% (by weight) sodium tetraphosphate; curve 6: calcium Boston blue
clay, 10™* N NaCl. (After Olsen, H.W., Hydraulic flow through saturated clay,
ScD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1961.)

high viscosity of the pore water, and unequal pore sizes. Olsen developed a

model to account for the variation of permeability due to unequal pore sizes.
Several other empirical relations were proposed from laboratory and field

permeability tests on clayey soil. They are summarized in Table 6.3.

Example 6.3

For a normally consolidated clay soil, the following values are given:

Void ratio k (cmls)

I.1 0.302 x 1077
0.9 0.12 x 1077
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Table 6.3 Empirical relations for the coefficient of permeability in clayey soils

Investigator Relation Notation Remarks
Mesri and logk=C,loge+C, C,, C; = constants Based on artificial
Olson (1971) and remolded
soils
Taylor (1948) logk =logk, — L€ ko = coefficient of C, = 0.5¢, (Tavenas
k in situ permeability etal., 1983a,b)
at void ratio e,
k = coefficient of
permeability at void
ratio e
C, = permeability
change index
Samarsinghe | _ C, e’ C, = constant Applicable only to
etal. (1982) I+e log [k(I + €)] = log normally
C,+nloge consolidated
clays
Raju et al. € 99234 0.204logk kisin cm/s Normally
(1995) e e, = void ratio at consolidated
liquid limit = w; G, clay

Tavenas et al.
(1983a,b)

k=f

W, = moisture
content at liquid
limit

f = function of void
ratio,and Pl + CF

Pl = plasticity index
in decimals

CF = clay
size fraction in
decimals

See Figure 6.10

Estimate the hydraulic conductivity of the clay at a void ratio
of 0.75. Use the equation proposed by Samarsinghe et al. (1982; see

Table 6.3; see also Figure 6.10).

Solution

kzc{ € )
1+e

X _(f/a+e)

k,

(8/+e)
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Based on Tavenas et al. (1983a,b) PI+CF=1.25 ¥
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Figure 6.10 Plot of e versus k for various values of Pl + CF (See Table 6.3).

0302x10”’ _@ay/a+1a)
0.12x107 (09 /1+09)

2517=092.1)Q109)
2782 = (1222)

L. bgR782)_ 0444 _
bgd 222) 0.087

SO
5.1
k=c,| =
l+e
To find C,
. 1.62
0302x1077 =C, @1y = 1526 C,
1+1.1 21
-7
c, = 0302x10)@d)_ 4 59,907

1.626
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Hence

eS.l
k::@39x10”cn${ J
1+e

At a void ratio of 0.75

0.75°"
1+0.75

k=(039><107an/s)( J=0514><108an/s

6.7 DIRECTIONAL VARIATION OF PERMEABILITY
IN ANISOTROPIC MEDIUM

Most natural soils are anisotropic with respect to the coefficient of perme-
ability, and the degree of anisotropy depends on the type of soil and the
nature of its deposition. In most cases, the anisotropy is more predominant
in clayey soils compared to granular soils. In anisotropic soils, the directions
of the maximum and minimum permeabilities are generally at right angles
to each other, maximum permeability being in the horizontal direction.
Figure 6.11a shows the seepage of water around a sheet pile wall.
Consider a point O at which the flow line and the equipotential line are

4
Yy
h k, m
v b
¥ y
// /, "
4 s
/ 7
’ e
/ e
/
7 s
//
7’ o
e
v
10) P > X
Equipotential ‘h
line o
Flow Equipotential
line line

(a) (b)

Figure 6.11 Directional variation of the coefficient of permeability: (a) seepage of water
around a sheet pile wall; (b) flow and equipotential lines at O.
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as shown in the figure. The flow line is a line along which a water particle
at O will move from left to right. For the definition of an equipotential
line, refer to Section 7.2. Note that in anisotropic soil, the flow line and
equipotential line are not orthogonal. Figure 6.11b shows the flow line
and equipotential line at O. The coefficients of permeability in the x and z
directions are k, and k,, respectively.

In Figure 6.11, m is the direction of the tangent drawn to the flow line
at O, and thus that is the direction of the resultant discharge velocity.
Direction 7 is perpendicular to the equipotential line at O, and so it is the
direction of the resultant hydraulic gradient. Using Darcy’s law,

Vy =—kh% (6.51)
ox

v, =k, P (6.52)
dz

vy =k, B (6.53)
om

. (6.54)
on

where

ky is the maximum coefficient of permeability (in the horizontal x

direction)

k, is the minimum coefficient of permeability (in the vertical z direction)
ks kg are the coefficients of permeability in 72, # directions, respectively

Now, we can write

oh _oh oh .
o axoosoc+aZSJnOL (6.55)

From Equations 6.51 through 6.53, we have

dh v, oh_ v, oh v,

x k 0dz k,  om  k,

Also, v, = v,, cos a and v, = v,, sin a.
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Substitution of these into Equation 6.55 gives

U V% g0 - 2sing
Ky kn
or
Un _ VUn o+ Om sinar
ko Kk
SO
.2
1__cosa, sino (6.56)
ky ky k,

The nature of the variation of k, with « as determined by Equation 6.56
is shown in Figure 6.12. Again, we can say that

V, =V, o + v, sinP (6.57)
Combining Equations 6.51, 6.52, and 6.54

oh . oh oh .
kﬁa—n—khaxcosﬁ+kvaz sinf3 (6.58)

Figure 6.12 Directional variation of permeability.
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However
odh Jh
F a—noosB (6.59)
and
oh @ .
% n sinf3 (6.60)

Substitution of Equations 6.59 and 6.60 into Equation 6.58 yields

ks = k, co’ + k, sin’B (6.61)

The variation of k; with f is also shown in Figure 6.12. It can be seen that,
for given values of k, and k,, Equations 6.56 and 6.61 yield slightly differ-
ent values of the directional permeability. However, the maximum differ-
ence will not be more than 25%.

There are several studies available in the literature providing the experi-
mental values of k,/k,. Some are given in the following:

Soil type ky/k, Reference
Organic silt with peat  1.2-1.7  Tsien (1955)

Plastic marine clay 1.2 Lumb and Holt (1968)
Soft clay 1.5 Basett and Brodie (1961)
Soft marine clay 1.05 Subbaraju (1973)

Boston blue clay 0.7-3.3  Haley and Aldrich (1969)

Figure 6.13 shows the laboratory test results obtained by Fukushima and
Ishii (1986) related to k,, and k, on compacted Maso-do soil (weathered
granite). All tests were conducted after full saturation of the compacted soil
specimens. The results show that k, and k&, are functions of molding mois-
ture content and confining pressure. For given molding moisture contents
and confining pressures, the ratios of k,/k, are in the same general range as
shown in the preceding table.

6.8 EFFECTIVE COEFFICIENT OF PERMEABILITY
FOR STRATIFIED SOILS

In general, natural soil deposits are stratified. If the stratification is continu-
ous, the effective coefficients of permeability for flow in the horizontal and
vertical directions can be readily calculated.
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Figure 6.13 Variation of k, and k, for Masa-do soil compacted in the laboratory.

6.8.1 Flow in the horizontal direction

Figure 6.14 shows several layers of soil with horizontal stratification. Owing
to fabric anisotropy, the coefficient of permeability of each soil layer may
vary depending on the direction of flow. So, let us assume that ky kn, /Kn, .-
are the coefficients of permeability of layers 1, 2, 3, ..., respectively, for flow
in the horizontal direction. Similarly, let k, ,k,, Xk, ,..., be the coefficients
of permeability for flow in the vertical direction.
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Figure 6.14 Flow in horizontal direction in stratified soil.

Considering a unit length of the soil layers at right angle to the cross-
section as shown in Figure 6.14, the rate of seepage in the horizontal direc-
tion can be given by

g=ai+@+g+-+a, (6.62)

where
q is the flow rate through the stratified soil layers combined
d1> 9254535 ---» 18 the rate of flow through soil layers 1,2, 3, ..., respectively

Note that for flow in the horizontal direction (which is the direction of
stratification of the soil layers), the hydraulic gradient is the same for all
layers. So

a =k, H,
b =ky, H
(6.63)
ds =kh3i'I 3
and

= kepHl (6.64)
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where
i is the hydraulic gradient
k. is the effective coefficient of permeability for flow in horizontal
direction
H,, H,, H; are the thicknesses of layers 1, 2, 3, respectively
H=H,+H,+H;+ ...

Substitution of Equations 6.63 and 6.64 into Equation 6.62 yields
kepH =kn Hi+kn, Ho+ky Hy+-

Hence

1
Koy = (ko Bt b, By + ki H o+ ) (6.65)

6.8.2 Flow in the vertical direction

For flow in the vertical direction for the soil layers shown in Figure 6.15,

V=V, =V, =V3 ==, (6.66)

»
1

|
<

Figure 6.15 Flow in vertical direction in stratified soil.
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where v,, v,, v;, ... are the discharge velocities in layers 1, 2, 3, ...,
respectively; or

V= Kapiz ko d =Koy b =Ko b = . (6.67)
where
k.., is the effective coefficient of permeability for flow in the vertical
direction

K, /Ky, /Ky, ... are the coefficients of permeability of layers 1, 2, 3, ...,
respectively, for flow in the vertical direction
i1, 15,13, ... are the hydraulic gradient in soil layers 1, 2, 3, ..., respectively

For flow at right angles to the direction of stratification
Total head loss = (head loss in layer 1) + (head loss in layer 2) + -
or
H=3iH,+iH,+3H;+ - (6.68)
Combining Equations 6.67 and 6.68 gives

L) V] L] v
H :7H1+7H2+7H3+"‘

ke ki, k, ky,
or

H
Hiky, +Hoky, +Hsk, +:

Kew) (6.69)

Varved soils are excellent examples of continuously layered soil.
Figure 6.16 shows the nature of the layering of New Liskeard varved clay
(Chan and Kenny, 1973) along with the variation of moisture content and
grain size distribution of various layers. The ratio of kg, /k., for this soil
varies from about 1.5 to 3.7. Casagrande and Poulos (1969) provided the
ratio R, /k., for a varved clay that varies from 4 to 40.

6.9 DETERMINATION OF COEFFICIENT
OF PERMEABILITY IN THE FIELD

It is sometimes difficult to obtain undisturbed soil specimens from the
field. For large construction projects, it is advisable to conduct permeability
tests in situ and compare the results with those obtained in the laboratory.
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Figure 6.16 Variations of moisture content and grain size across thick-layer varves
of New Liskeard varved clay. (After Chan, H.T. and Kenney, T.C., Can.

Geotech. |., 10(3), 453, 1973.)

Several techniques are presently available for determination of the coefficient
of permeability in the field, such as pumping from wells and borehole tests,
and some of these methods will be treated briefly in this section.

6.9.1 Pumping from wells

6.9.1.1 Gravity wells

Figure 6.17 shows a permeable layer underlain by an impermeable stra-
tum. The coefficient of permeability of the top permeable layer can be
determined by pumping from a well at a constant rate and observing the
steady-state water table in nearby observation wells. The steady state is
established when the water levels in the test well and the observation wells
become constant. At steady state, the rate of discharge due to pumping can

be expressed as

q = kA
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Figure 6.17 Determination of the coefficient of permeability by pumping from wells—
gravity well.

From Figure 6.17, i = dh/dr (this is referred to as Dupuit’s assumption)
and A = 2nrh. Substituting these into the previous equation for rate of dis-
charge gives

dh
=k—2nrh
d dr

ok
2T ' hah

q
by

5
dr _

r
1

So

_ 2303q[bog(s A)]

k
nh —hf)

(6.70)

If the values of r,, 7,, by, b5, and g are known from field measurements,

the coefficient of permeability can be calculated from the simple relation

given in Equation 6.70. According to Kozeny (1933), the maximum radius

of influence, R (Figure 6.17), for drawdown due to pumping can be given by

n o[22t [ax
n T

(6.71)
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where
n is the porosity
R is the radius of influence
t is the time during which discharge of water from well has been

established
Also note that if we substitute b, = b atr, =r,and b, = Hat r, = R, then

K = 2303a[bgR )]
- 2 2
TE " —hy)

(6.72)

where H is the depth of the original groundwater table from the imperme-
able layer.

The depth b at any distance r from the well (,, < 7 < R) can be determined
from Equation 6.70 by substituting b, = b, atr, =r,and b, = b atr, =r. Thus

K = 2303qlbg(r/, )]

Tk’ -hi)
or
h= \/23’03‘1 by L +n? (6.73)
nk bl

It must be pointed out that Dupuit’s assumption (i.e., that i = dh/dr) does
introduce large errors in regard to the actual phreatic line near the wells during
steady-state pumping. This is shown in Figure 6.17. For » > H - 1.5H, the phre-
atic line predicted by Equation 6.73 will coincide with the actual phreatic line.

The relation for the coefficient of permeability given by Equation 6.70
has been developed on the assumption that the well fully penetrates the per-
meable layer. If the well partially penetrates the permeable layer as shown
in Figure 6.18, the coefficient of permeability can be better represented by
the following relation (Mansur and Kaufman, 1962):

q=nk[(H_—S)2_tz] 14030+ 1%% | 188 (6.74)
2303gR 4 ) H H .

The notations used on the right-hand side of Equation 6.74 are shown in
Figure 6.18.

6.9.1.2 Artesian wells

The coefficient of permeability for a confined aquifer can also be determined
from well pumping tests. Figure 6.19 shows an artesian well penetrating
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Figure 6.18 Pumping from partially penetrating gravity wells.
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Figure 6.19 Determination of the coefficient of permeability by pumping from wells—
confined aquifer.



Permeability 227

the full depth of an aquifer from which water is pumped out at a constant
rate. Pumping is continued until a steady state is reached. The rate of water
pumped out at steady state is given by

q=kin = k% 27T (6.75)
r

where T is the thickness of the confined aquifer, or

j Jh 2T g (6.76)

Solution of Equation 6.76 gives

__ 9bgEA)
2.727T by, —hy)

Hence, the coefficient of permeability k can be determined by observing the
drawdown in two observation wells, as shown in Figure 6.19.

If we substitute b, = b, at r, = r, and b, = H at r, = R in the previous
equation, we get

__ d9bgR k) (6.77)
2727TH —hy,) ’

6.9.2 Auger hole test

Van Bavel and Kirkham (1948) suggested a method to determine k from
an auger hole (Figure 6.20a). In this method, an auger hole is made in
the ground that should extend to a depth of 10 times the diameter of
the hole or to an impermeable layer, whichever is less. Water is pumped
out of the hole, after which the rate of the rise of water with time is
observed in several increments. The coefficient of permeability is cal-
culated as

L, dh
Sd dt

k=0617—"- (6.78)
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Figure 6.20 Auger hole test: (a) auger hole; (b) plot of S with h/d and r, /d.

ryld=0.02

Based on Spangler and Handy

(1973)

6
_—— _v ____________
= n
4
“dh
3
2
h
0
I 0

(b)

where

7, 1s the radius of the auger hole

0.2

0.4

d is the depth of the hole below the water table

S is the shape factor for auger hole

hld

1.0

dh/dt is the rate of increase of water table at a depth / measured from

the bottom of the hole

The variation of § with r,/d and h/d is given in Figure 6.20b (Spangler
and Handy, 1973). There are several other methods of determining the field
coefficient of permeability. For a more detailed description, the readers are
directed to the U.S. Bureau of Reclamation (1961) and the U.S. Department
of the Navy (1971).

Example 6.4

Refer to Figure 6.18. For the steady-state condition, 7, = 0.4 m,
H =28 m,s=8m,and ¢ =10 m. The coefficient of permeability of the
layer is 0.03 mm/s. For the steady-state pumping condition, estimate

the rate of discharge ¢ in m*min.
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Solution

From Equation 6.74

q:TCk[(H——S)Z—tZ] 1+ 0_30_;,_1071;’ s]nli'ss
2303[bgR 4 )] H H

k =0.03 mm/s = 0.0018 m/min

So

2 2
_ m0.0018)[28-8)' —10 ]{1+[030+ (102)(0.4)]s].nl.8(8)}

2 303[bgR N 4)] 28
T
_ 08976 adian
bgR N 4)

From the equation for g, we can construct the following table:

R (m) q (m’)

25 0.5

30 0.48
40 0.45
50 043

100 0.37

From the aforementioned table, the rate of discharge is approximately
0.45 m3/min.

6.10 FACTORS AFFECTING THE COEFFICIENT

OF PERMEABILITY

The coefficient of permeability depends on several factors, most of which
are listed in the following:

1.
2.
3.

Shape and size of the soil particles.

Void ratio. Permeability increases with increase in void ratio.

Degree of saturation. Permeability increases with increase in degree
of saturation.

. Composition of soil particles. For sands and silts, this is not impor-

tant; however, for soils with clay minerals, this is one of the most
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important factors. Permeability depends on the thickness of water
held to the soil particles, which is a function of the cation exchange
capacity, valence of the cations, and so forth. Other factors remain-
ing the same, the coefficient of permeability decreases with increasing
thickness of the diffuse double layer.

5. Soil structure. Fine-grained soils with a flocculated structure have
a higher coefficient of permeability than those with a dispersed
structure.

6. Viscosity of the permeant.

7. Density and concentration of the permeant.

6.11 ELECTROOSMOSIS

The coefficient of permeability—and hence the rate of seepage—through
clay soils is very small compared to that in granular soils, but the drainage
can be increased by the application of an external electric current. This phe-
nomenon is a result of the exchangeable nature of the adsorbed cations in
clay particles and the dipolar nature of the water molecules. The principle
can be explained with the help of Figure 6.21. When dc electricity is applied
to the soil, the cations start to migrate to the cathode, which consists of a
perforated metallic pipe. Since water is adsorbed on the cations, it is also
dragged along. When the cations reach the cathode, they release the water,
and the subsequent build up of pressure causes the water to drain out.

— Water

Ground surface

Anode ‘ Cathode

Figure 6.21 Principles of electroosmosis.
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This process is called electroosmosis and was first used by L. Casagrande
in 1939 for soil stabilization in Germany (See Casagrande, 1952).

6.11.1 Rate of drainage by electroosmosis

Figure 6.22 shows a capillary tube formed by clay particles. The surface
of the clay particles has negative charges, and the cations are concentrated
in a layer of liquid. According to the Helmholtz—Smoluchowski theory
(Helmholtz, 1879; Smoluchowski, 1914; see also Mitchell, 1970, 1976),
the flow velocity due to an applied dc voltage E can be given by

_DCE

.= (6.79)
41 L

where
v, is the flow velocity due to applied voltage
D is the dielectric constant
{ is the zeta potential
1 is the viscosity
L is the electrode spacing

Equation 6.79 is based on the assumptions that the radius of the capil-

lary tube is large compared to the thickness of the diffuse double layer sur-
rounding the clay particles and that all the mobile charge is concentrated

Potential difference, E

0+ o+ o+ o+
| \«— Distribution
! of velocity _

Concentration Weall of
of cations capillary
near the wall | L | tube

Figure 6.22 Helmholtz—Smoluchowski theory for electroosmosis.



232 Advanced Soil Mechanics

near the wall. The rate of flow of water through the capillary tube can be
given by

d. = av, (6.80)

where a is the area of cross section of the capillary tube.
If a soil mass is assumed to have a number of capillary tubes as a result of
interconnected voids, the cross-sectional area A, of the voids is

A,=nA
where
A is the gross cross-sectional area of the soil

n is the porosity

The rate of discharge g through a soil mass of gross cross-sectional area
A can be expressed by the relation

D E

=A,Vo=NAV.,=n—>—A 6.81
q n s L (6.81)
or,
d=kiA (6.82)
where

k. = n(D{/4nn) is the electroosmotic coefficient of permeability
i. is the electrical potential gradient

The units of k, can be cm?/(s- V) and the units of 7, can be V/cm.

In contrast to the Helmholtz—Smoluchowski theory (Equation 6.79),
which is based on flow through large capillary tubes, Schmid (1951) pro-
posed a theory in which it was assumed that the capillary tubes formed by
the pores between clay particles are small in diameter and that the excess
cations are uniformly distributed across the pore cross-sectional area
(Figure 6.23). According to this theory

v,= FAFE (6.83)
& L

where
7 is the pore radius
A, is the volume charge density in pore
F is the Faraday constant
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Figure 6.23 Schmid theory for electroosmosis.

Based on Equation 6.83, the rate of discharge g through a soil mass of
gross cross-sectional area A can be written as

—HIZAOFEA—keJ'eA
d 8n L

where
7 is porosity

(6.84)

k. = n(r?A_F/8n) is the electroosmotic coefficient of permeability

Without arguing over the shortcomings of the two theories proposed,
our purpose will be adequately served by using the flow-rate relation
as g = k.i.A. Some typical values of k, for several soils are as follows

(Mitchell, 1976):

Material Water content (%) k. (cm?/(s-V))
London clay 52.3 58 x 107°
Boston blue clay 50.8 5.1 % 10°°
Kaolin 67.7 57x 107
Clayey silt 31.7 50x% 10°°
Rock flour 27.2 45x10°°
Na-Montmorillonite 170 2.0x 107
Na-Montmorillonite 2000 12.0 x 107>
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These values are of the same order of magnitude and range from 1.5 x 10-3
to 12 x 10-° cm?/(s- V) with an average of about 6 x 10-5 cm?/(s- V).

Electroosmosis is costly and is not generally used unless drainage by
conventional means cannot be achieved. Gray and Mitchell (1967) have
studied the factors that affect the amount of water transferred per unit
charge passed, such as water content, cation exchange capacity, and free
electrolyte content of the soil.

6.12 COMPACTION OF CLAY FOR CLAY
LINERS IN WASTE DISPOSAL SITES

When a clay soil is compacted at a lower moisture content, it possesses
a flocculent structure. Approximately at the optimum moisture content
of compaction, the clay particles have a lower degree of flocculation.
A further increase in the moisture content at compaction provides a
greater degree of particle orientation; however, the dry unit weight
decreases because the added water dilutes the concentration of soil solids
per unit volume.

Figure 6.24 shows the results of laboratory compaction tests on a clay
soil as well as the variation of the coefficient of permeability of the com-
pacted clay specimens. From the laboratory test results shown, the follow-
ing observations can be made:

1. For a given compaction effort, the coefficient of permeability &
decreases with the increase in molding moisture content, reach-
ing a minimum value at about the optimum moisture content (i.e.,
approximately where the soil has a higher dry unit weight with the
clay particles having a lower degree of flocculation). Beyond the
optimum moisture content, the coefficient of permeability increases
slightly.

2. For similar compaction effort and dry unit weight, a soil will have a
lower coefficient of permeability when it is compacted on the wet side
of the optimum moisture content.

Benson and Daniel (1990) conducted laboratory compaction tests by
varying the size of clods of moist clayey soil. These tests show that, for
similar compaction effort and molding moisture content, the magnitude of
k decreases with the decrease in clod size.

In some compaction work in clayey soils, the compaction must be
done in a manner so that a certain specified upper level of coefficient
of permeability of the soil is achieved. Examples of such works are
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Figure 6.24 Test on clay soil: (a) modified Proctor compaction curve; (b) variation of k
with molding moisture content.

compaction of the core of an earth dam and installation of clay liners
in solid-waste disposal sites.

To prevent groundwater pollution from leachates generated from solid-
waste disposal sites, the U.S. Environmental Protection Agency (EPA)
requires that clay liners have a hydraulic conductivity of 107 cm/s or less.
To achieve this value, the contractor must ensure that the soil meets the fol-
lowing criteria (U.S. Environmental Protection Agency, 1989):

1. The soil should have at least 20% fines (fine silt and clay-sized
particles).

2. The plasticity index (PI) should be greater than 10. Soils that have a
PI greater than about 30 are difficult to work with in the field.
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3. The soil should not include more than 10% gravel-sized particles.
4. The soil should not contain any particles or chunks of rock that are
larger than 25-30 mm.

In many instances, the soil found at the construction site may be some-
what nonplastic. Such soil may be blended with imported clay minerals
(like sodium bentonite) to achieve the desired range of coefficient of per-
meability. In addition, during field compaction, a heavy sheepsfoot roller
can introduce larger shear strains during compaction that create a more
dispersed structure in the soil. This type of compacted soil will have an
even lower coefficient of permeability. Small lifts should be used during
compaction so that the feet of the compactor can penetrate the full depth
of the lift.

The size of the clay clods has a strong influence on the coefficient of per-
meability of a compacted clay. Hence, during compaction, the clods must
be broken down mechanically to as small as possible. A very heavy roller
used for compaction helps to break them down.

Bonding between successive lifts is also an important factor; otherwise,
permeant can move through a vertical crack in the compacted clay and then
travel along the interface between two lifts until it finds another crack to
travel down.

In the construction of clay liners for solid-waste disposal sites where
it is required that & < 10-7 ¢cm/s, it is important to establish the mois-
ture content—unit weight criteria in the laboratory for the soil to be
used in field construction. This helps in the development of proper
specifications.

Daniel and Benson (1990) developed a procedure to establish the mois-
ture content—unit weight criteria for clayey soils to meet the coefficient of
permeability requirement. The following is a step-by-step procedure to
develop the criteria.

Step 1: Conduct Proctor tests to establish the dry unit weight versus mold-
ing moisture content relationships (Figure 6.25a).

Step 2: Conduct permeability tests on the compacted soil specimens (from
Step 1) and plot the results as shown in Figure 6.25b. In this figure, also
plot the maximum allowable value of & (i.e., k).

Step 3: Replot the dry unit weight-moisture content points (Figure 6.25¢)
with different symbols to represent the compacted specimens with & > &k,

and k S kall'

Step 4: Plot the acceptable zone for which k is less than or equal to k,,
(Figure 6.25¢).
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Chapter 7

Seepage

7.1 INTRODUCTION

In many practical cases, the nature of the flow of water through soil is
such that the velocity and gradient vary throughout the medium. For these
problems, calculation of flow is generally made by use of graphs referred to
as flow nets. The concept of the flow net is based on Laplace’s equation of
continuity, which describes the steady flow condition for a given point in
the soil mass. In this chapter, we will derive Laplace’s equation of continu-
ity and study its applications as related to problems such as the flow under
hydraulic structures and seepage through earth dams.

7.2 EQUATION OF CONTINUITY

To derive the equation of continuity of flow, consider an elementary
soil prism at point A (Figure 7.1b) for the hydraulic structure shown in
Figure 7.1a. The flows entering the soil prism in the x, y, and z directions
can be given from Darcy’s law as

gy = KA, = kx%dydz (7.1)
ox
. oh
dy, = kA, = kYa—dxdz (7.2)
y
g =kia, =k P axay (7.3)
0z
where

4+ 4,5 q. are the flow entering in directions x, y, and z, respectively

k., ky, k. are the coefficients of permeability in directions x, y, and z,
respectively

b is the hydraulic head at point A

241
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q,+dq,

—t—> 4 +dg,

Flow at point A

y
(a) (b)

Figure 7.1 Derivation of continuity equation: (a) hydraulic structure; (b) flow in an
elementary soil prism at A.

The respective flows leaving the prism in the x, y, and z directions are

dx +dg, = ke (i + di A,

oh 9’h
=ky| — dx |[dyd 7.4
E)x+8x2 XJ yaz (7.4)
2
g, +dg, =k, @4_8 l3dy dxdz (7.5)
Jdy 0y
2
q,+dq, =k, %+a—?dz dxdy (7.6)
Jdz 0z

For steady flow through an incompressible medium, the flow entering
the elementary prism is equal to the flow leaving the elementary prism. So,

Oy +dy +d; = @ +dax)+ @ +dgy )+ @+ da,)
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Substituting Equations 7.1 through 7.6 in the preceeding equation we obtain

0°h . d°h _ 0°h _

kx8x2+kyﬁ+kza7_o (7.7)

For two-dimensional flow in the xz plane, Equation 7.7 becomes

2 2
Oh I, (7.8)

Ky
0x? 0z’

If the soil is isotropic with respect to permeability, k, = k, = k, and the
continuity equation simplifies to

0°h 0%h
—=0 7.9
ox? - 0z (7.9)

This is generally referred to as Laplace’s equation.

7.2.1 Potential and stream functions

Consider a function ¢(x, z) such that

00 oh

oy, =k 7.10

ox v ox ( )
and

00 oh

Loy, =-k-—— 711

0z v 0z ( )

If we differentiate Equation 7.10 with respect to x and Equation 7.11
with respect to z and substitute in Equation 7.9, we get

0
ax‘l’ +37? —0 (7.12)

Therefore, ¢(x, z) satisfies the Laplace equation. From Equations 7.10 and 7.11

¢ ,z)=-khx,z)+ £(z) (7.13)
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and
0,2)= -kh(x,2)+ gx) (7.14)
Since x and z can be varied independently, f(z) = g(x) = C, a constant. So
0(x,z)= —kh(x,z)+C

and
1
h(X,Z)Zil_C -0, 2)] (715)

If h(x, z) is a constant equal to b, Equation 7.15 represents a curve in
the xz plane. For this curve, ¢ will have a constant value ¢,. This is an
equipotential line. So, by assigning to ¢ a number of values such as ¢,

b5, d3, ..., we can get a number of equipotential lines along which b = b,
h,, b, ..., respectively. The slope along an equipotential line ¢ can now
be derived:
do =20 ax+ 94, (7.16)
ox Jz

If ¢ is a constant along a curve, d¢ = 0. Hence

dz) __00Ax _ 0y
E R T 7

Again, let y(x, z) be a function such that

dy_  __0n

= = 11
0z U az (7.18)
and
oy ah
_9Y oy = 7.1
ox Ve az (719)

Combining Equations 7.10 and 7.18, we obtain

90 _ oy
0x 0z
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2 2
Iy _ 9% (7.20)
0z  0x0z

Again, combining Equations 7.11 and 7.19

_ 00 _ oy
Jz 0x

%0 _0°
T oxdz ax\'; (7.21)

From Equations 7.20 and 7.21

2 2 2 2
IOy o'y _ 9% 9% _

ox? 07’ 0xdz  0xJy

So y(x, z) also satisfies Laplace’s equation. If we assign to y(x, z) various
values y, ¥y, s, ..., we get a family of curves in the xz plane. Now

ay =Y axs Vg, (7.22)
ox Bz

For a given curve, if y is constant, then dy = 0. Thus, from Equation 7.22

dz) _owhx _ v, (7.23)
dx aw,Gz Vy ’

Note that the slope (dz/dx),, is in the same direction as the resultant velocity.
Hence, the curves y =y, y,, 3, ... are the flow lines.

From Equations 7.17 and 7.23, we can see that at a given point (x, z) the
equipotential line and the flow line are orthogonal.

The functions ¢(x, z) and y(x, z) are called the potential function and the
stream function, respectively.

7.3 USE OF CONTINUITY EQUATION FOR
SOLUTION OF SIMPLE FLOW PROBLEM

To understand the role of the continuity equation (Equation 7.9), consider a
simple case flow of water through two layers of soil as shown in Figure 7.2.
The flow is in one direction only, that is, in the direction of the x axis. The
lengths of the two soil layers (L, and L) and their coefficients of perme-
ability in the direction of the x axis (k, and k) are known. The total heads
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Figure 7.2 One-directional flow through two layers of soil.

at sections 1 and 3 are known. We are required to plot the total head at any
other section for 0 < x < L, + Lj.
For one-dimensional flow, Equation 7.9 becomes

0°h _

2 =0 (7.24)

Integration of Equation 7.24 twice gives
h=C,x+C; (7.25)

where C; and C, are constants.
For flow through soil A, the boundary conditions are

1. Atx=0,h=h,
2. Atx=L,,h=h,

However, b, is unknown (b, > b,). From the first boundary condition and
Equation 7.25, C, = h,. So

h:C2X+h1 (7.26)

From the second boundary condition and Equation 7.235,

-h
hZZCZLA+hl or CZ:L)
La
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So

h —h,
La

h=- Xx+h 0<x<L, (7.27)

For flow through soil B, the boundary conditions for solution of C, and C,
in Equation 7.25 are

1.Atx=LA,b=h2
2.Atx=L,+ Ly h=0

From the first boundary condition and Equation 7.25, b, = C,L, + C,, or
C1=h2—C2LA (7.2.8)

Again, from the secondary boundary condition and Equation 7.285,
0=C,(Ly+Lg)+Cy,or

C,=—-C,({La+Lg) (7-29)
Equating the right-hand sides of Equations 7.28 and 7.29,
h, —C,Ly =—C,@a + L)
C,=—— (7.30)
and then substituting Equation 7.30 into Equation 7.28 gives
C1=h2+thA=h2(1+LAJ (7.31)
Lg Lg

Thus, for flow through soil B,

hz_:szrhz(HLA) Lr $X<L, +1L; (7.32)
B B

With Equations 7.27 and 7.32, we can solve for b for any value of x from
0 to L, + Ly, provided that b, is known. However

q = rate of flow through s0ilA = rate of flow through soilB
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So
q=k (hl_hz)A —k (hz)A (7.33)
La Ls
where
ks and kg are the coefficients of permeability of soils A and B,
respectively

A is the area of cross section of soil perpendicular to the direction of flow
From Equation 7.33

Ky hy
h, = 7.34
L (kn Ln +ks Lip) (7.34)

Substitution of Equation 7.34 into Equations 7.27 and 7.32 yields, after
simplification,

ksx
h=h|l-——— |rx=0L 7.35
1( kALB+kBLAJ( rX a) ( )
k
h= hl[kALB.:kBLA (L'A +LB _X)] (brX:LA o (LA +LB )) (736)

7.4 FLOW NETS

7.4.1 Definition

A set of flow lines and equipotential lines is called a flow net. As discussed
in Section 7.2, a flow line is a line along which a water particle will travel.
An equipotential line is a line joining the points that show the same piezo-
metric elevation (i.e., hydraulic head = h(x, z) = constant). Figure 7.3 shows
an example of a flow net for a single row of sheet piles. The permeable
layer is isotropic with respect to the coefficient of permeability, that is,
k, = k, = k. Note that the solid lines in Figure 7.3 are the flow lines and the
broken lines are the equipotential lines. In drawing a flow net, the bound-
ary conditions must be kept in mind. For example, in Figure 7.3,

1. AB is an equipotential line.
2. EF is an equipotential line.
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U/S Water level
— Constant hydraulic
T - head along an
equipotential line
3m
D/S
Water level h
A F
Permeable
layer
G % = H

Impermeable layer

Figure 7.3 Flow net around a single row of sheet pile structures.

3. BCDE (i.e., the sides of the sheet pile) is a flow line.
4. GH is a flow line.

The flow lines and the equipotential lines are drawn by trial and error. It
must be remembered that the flow lines intersect the equipotential lines
at right angles. The flow and equipotential lines are usually drawn in
such a way that the flow elements are approximately squares. Drawing
a flow net is time consuming and tedious because of the trial-and-error
process involved. Once a satisfactory flow net has been drawn, it can be
traced out.

Some other examples of flow nets are shown in Figures 7.4 and 7.5 for
flow under dams.

7.4.2 Calculation of seepage from a flow
net under a hydraulic structure

A flow channel is the strip located between two adjacent flow lines. To
calculate the seepage under a hydraulic structure, consider a flow channel
as shown in Figure 7.6.

The equipotential lines crossing the flow channel are also shown, along
with their corresponding hydraulic heads. Let Ag be the flow through the
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=5 Determine maximum

exit gradient from this
/ element (Section 7.10)

Permeable
layer

Impermeable layer

10 m
Scale
Figure 7.4 Flow net under a dam.
v Water level
=&
Toe filter

Permeable layer

\

I
1 \

| 1 | 1
\ ! !

X X X X X X X X X X X

Figure 7.5 Flow net under a dam with a toe filter.

flow channel per unit length of the hydraulic structure (i.e., perpendicular
to the section shown). According to Darcy’s law

=k(hs;h4)(b3x1)=... (7.37)
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Figure 7.6 Flow through a flow channel.

If the flow elements are drawn as squares, then

L=hb
L=hb
L=b,

So, from Equation 7.37, we get

hl—h2=h2—h3=h3—h4=~--=Ah=Ni (7.38)
d

where
Ab is the potential drop (= drop in piezometric elevation between two
consecutive equipotential lines)
b is the total hydraulic head (= difference in elevation of water between
the upstream and downstream side)
N, is the number of potential drops

Equation 7.38 demonstrates that the loss of head between any two con-

secutive equipotential lines is the same. Combining Equations 7.37 and
7.38 gives

Aq=k (7.39)

d
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If there are N; flow channels in a flow net, the rate of seepage per unit
length of the hydraulic structure is

q=N Aq=kh =t (7.40)

d

Although flow nets are usually constructed in such a way that all flow ele-
ments are approximately squares, that need not always be the case. We could
construct flow nets with all the flow elements drawn as rectangles. In that
case, the width-to-length ratio of the flow nets must be a constant, that is

b _b, by

—n (7.41)
e

For such flow nets, the rate of seepage per unit length of hydraulic structure
can be given by

g=khXfp (7.42)
Ny
Example 7.1

For the flow net shown in Figure 7.4

a. How high would water rise if a piezometer is placed at (i) A (ii) B
(iii) C?

b. If k& = 0.01 mm/s, determine the seepage loss of the dam in
m?>/(day - m).

Solution

The maximum hydraulic head » is 10 m. In Figure 7.4, N, = 12,
Ab = h/Ny=10/12 = 0.833.

Part af(i).

To reach A, water must go through three potential drops. So head lost
is equal to 3 x 0.833 = 2.5 m. Hence, the elevation of the water level in
the piezometer at A will be 10 - 2.5 = 7.5 m above the ground surface.

Part a(i1).

The water level in the piezometer above the ground level is 10 -
5(0.833) = 5.84 m.

Part aiii).

Points A and C are located on the same equipotential line. So water in

a piezometer at C will rise to the same elevation as at A, that is, 7.5 m
above the ground surface.
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Part b:

The seepage loss is given by g = kh(N¢/N,). From Figure 7.4, N; = 5 and
Ny =12. Since

0.01
1000

k=0.01lmm /s=( )(60><60><24)=0.864m/day

q= 0.864(10)(152J: 36m’/day-m)

7.5 HYDRAULIC UPLIFT FORCE
UNDER A STRUCTURE

Flow nets can be used to determine the hydraulic uplifting force under
a structure. The procedure can best be explained through a numerical
example. Consider the dam section shown in Figure 7.4, the cross section of
which has been replotted in Figure 7.7. To find the pressure head at point D
(Figure 7.7), we refer to the flow net shown in Figure 7.4; the pressure head is
equal to (10 + 3.34 m) minus the hydraulic head loss. Point D coincides with
the third equipotential line beginning with the upstream side, which means
that the hydraulic head loss at that point is 2(h/N,) = 2(10/12) = 1.67 m. So

Pressure head at D = 13.34 - 1.67 = 11.67 m
Similarly

Pressure head at E = (10 + 3.34) - 3(10/12) = 10.84 m
Pressure head at F = (10 + 1.67) — 3.5(10/12) = 8.75 m

Wv

F G
i 1 6+7 m \
I . I
E H
. A i I
11.67 1 1.67 1 1.67 11.67 1
:q-m->:<-m ;:: 18.32 m —*m-b!—m—bl
L ! ! L
£
A
Zy| 3
gZ| =
5
2
4
~

L—

Figure 7.7 Pressure head under the dam section shown in Figure 7.4.
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(Note that point F is approximately midway between the fourth and the
fifth equipotential lines starting from the upstream side.)

Pressure head at G = (10 + 1.67) - 8.5(10/12) = 4.56 m
Pressure head at H = (10 + 3.34) - 9(10/12) = 5.84 m
Pressure head at I = (10 + 3.34) - 10(10/12) = 5 m

The pressure heads calculated earlier are plotted in Figure 7.7. Between
points F and G, the variation of pressure heads will be approximately
linear. The hydraulic uplift force per unit length of the dam, U, can now
be calculated as

U =Y, (areaofthepressureheaddiagram ) 1)

:931H?157;1034Ja57H(1034;835)a57)

+(875;456)GSSZH(456ZSB4JG57)

+(53§+5)a574

=981(188+1636+12192+8.68+9.05)

=17149KkN

7.6 FLOW NETS IN ANISOTROPIC MATERIAL

In developing the procedure described in Section 7.4 for plotting flow nets, we
assumed that the permeable layer is isotropic, that is, Byo.ioncal = Ryertical = R-
Let us now consider the case of constructing flow nets for seepage through
soils that show anisotropy with respect to permeability. For two-dimensional
flow problems, we refer to Equation 7.8:

0°h . 9’h _
0x’ 0z

ky

where

kx = khorizontal

k

2= kvertical
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This equation can be rewritten as

0°h 0°h
Let ¥’ = \/k, k. x, then
0°h d°h
ki = 0 (7.44)

Substituting Equation 7.44 into Equation 7.43, we obtain

L9 (7.45)

Equation 7.45 is of the same form as Equation 7.9, which governs the
flow in isotropic soils and should represent two sets of orthogonal lines
in the x'z plane. The steps for construction of a flow net in an anisotropic
medium are as follows:

. To plot the section of the hydraulic structure, adopt a vertical scale.

. Determine \/kz/k,{ = \/kvml/khoﬁmml

. Adopt a horizontal scale such that scale,orponm = Kz Ky (6CaE ertiar)

. With the scales adopted in steps 1 and 3, plot the cross section of the
structure.

5. Draw the flow net for the transformed section plotted in step 4 in the

same manner as is done for seepage through isotropic soils.
6. Calculate the rate of seepage as

AW =

q= kxkzh% (7.46)

d

Compare Equations 7.39 and 7.46. Both equations are similar except for
the fact that k£ in Equation 7.39 is replaced by \/k;k, in Equation 7.46.

Example 7.2

A dam section is shown in Figure 7.8a. The coefficients of permeability
of the permeable layer in the vertical and horizontal directions are
2 x 10-2 and 4 x 102 mm/s, respectively. Draw a flow net and calculate
the seepage loss of the dam in m3/(day - m).
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vV
=
10 m

v

Permeable
layer 12.5m
| I |
LHGH i i

(a) Impermeable layer

10+m

Horizontal scale =12.5 x V2=17.68 m

L 1
(b) Vertical scale=12.5m

Figure 7.8 Construction of flow net under a dam: (a) section of the dam; (b) flow net.

Solution

From the given data
k, =2x107’mm A= 1.728 m day
ke =4x107°mm A= 3456 m Hay
and b = 10 m. For drawing the flow net,

) 2x107 )
H orizontalscale= m (verticalscale)
X

1
= —— (verticalscale
N (e )

On the basis of this, the dam section is replotted, and the flow net drawn
as in Figure 7.8b. The rate of seepage is given by g=/kk,h@ A 4).
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From Figure 7.8b, N, = 8 and N; = 2.5 (the lowermost flow channel has
a width-to-length ratio of 0.5). So

q=./1.728)3 456)10)2 58)=7637m */day-m )

Example 7.3

A single row of sheet pile structure is shown in Figure 7.9a. Draw a
flow net for the transformed section. Replot this flow net in the natu-
ral scale also. The relationship between the permeabilities is given as
k, = 6k,.
Solution

For the transformed section
. /kz .
H orizontalscale= T (verticalscale)
1 .
= ﬁ (verticalscale)

The transformed section and the corresponding flow net are shown in
Figure 7.9b.

Figure 7.9¢ shows the flow net constructed to the natural scale. One
important fact to be noticed from this is that when the soil is anisotro-
pic with respect to permeability, the flow and equipotential lines are
not necessarily orthogonal.

7.7 CONSTRUCTION OF FLOW NETS
FOR HYDRAULIC STRUCTURES ON
NONHOMOGENEOUS SUBSOILS

The flow net construction technique described in Section 7.4 is for the
condition where the subsoil is homogeneous. Rarely in nature do such
ideal conditions occur; in most cases, we encounter stratified soil depos-
its (such as those shown in Figure 7.12 later in the chapter). When a flow
net is constructed across the boundary of two soils with different perme-
abilities, the flow net deflects at the boundary. This is called a transfer
condition. Figure 7.10 shows a general condition where a flow channel
crosses the boundary of two soils. Soil layers 1 and 2 have permeabilities
of k, and k,, respectively. The dashed lines drawn across the flow channel
are the equipotential lines.
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12.5m
| I—

Scale

Vertical scale

10 m
| I

Horizontal scale =
10x V6 = 24.5m

\
N 4 L ] L
X X X X X X X X X

(b) Impermeable layer

I

(c) Scale

Figure 7.9 Flow net construction in anisotropic soil: (a) sheet pile structure; (b) flow net
in transformed scale; (c) flow net in natural scale.
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Figure 7.10 Transfer condition.

Let Ab be the loss of hydraulic head between two consecutive equipoten-
tial lines. Considering a unit length perpendicular to the section shown, the
rate of seepage through the flow channel is

or
ko b/ (7.47)
k. b/A

where

I, and b, are the length and width of the flow elements in soil layer 1
[, and b, are the length and width of the flow elements in soil layer 2

Referring again to Figure 7.10

1 =AB sin0, = AB coso, (7.48a)
L, =AB sin0, = AB cos0,, (7.48b)
b, =AC cos0; =AC siho, (7.48¢)
b, =AC cosf, = AC shno, (7.48d)

From Equations 7.48a,c

b, cosB, sho,

1 sin6, ooso,
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or

b,

1 tan6,

= 13110(1 (7.49)

Also, from Equations 7.48b,d

b, ocosB, sho,

L sin®, ocoso,

or

b, _ ~ tana, (7.50)

Combining Equations 7.47, 7.49, and 7.50

k _ @nb6; _tana,
kz 131192 ‘anO(l

(7.51)

Flow nets in nonhomogeneous subsoils can be constructed using the
relations given by Equation 7.51 and other general principles outlined in
Section 7.4. It is useful to keep the following points in mind while con-
structing the flow nets:

1. If k, > k,, we may plot square flow elements in layer 1. This means
that [, = b, in Equation 7.47. So, k,/k, = b,/l,. Thus, the flow elements
in layer 2 will be rectangles and their width-to-length ratios will be
equal to k,/k,. This is shown in Figure 7.11a.

2. If k, < k,, we may plot square flow elements in layer 1 (i.e., [, = b,).
From Equation 7.47, k,/k, = b,/l,. So, the flow elements in layer 2 will
be rectangles. This is shown in Figure 7.11b.

An example of the construction of a flow net for a dam section resting on a
two-layered soil deposit is given in Figure 7.12. Note that k; = 5 x 102 mm/s
and k, = 2.5 x 1072 mm/s. So

k _ 5.0x107 _,_ tano, _ t@nb,
k, 25x107 tano; t@nb,

In soil layer 1, the flow elements are plotted as squares, and since k,/k, = 2,
the length-to-width ratio of the flow elements in soil layer 2 is 1/2.
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Square elements Square elements
Li=b li=by

Figure 7.11 Flow channel at the boundary between two soils with different coefficients
of permeability: (a) k, > ky; (b) k; < k,.

[¢———15m—p]

Layer 1
ky=5x102mm/s

Layer 2 // ,
ky=2.5x 1/0*2 mm/s’

1 1
X X X X

I
X
-
—"’
~<—§
/

\
I
X X

Figure 7.12 Flow net under a dam resting on a two-layered soil deposit.
7.8 NUMERICAL ANALYSIS OF SEEPAGE

7.8.1 General seepage problems

In this section, we develop some approximate finite difference equations
for solving seepage problems. We start from Laplace’s equation, which was
derived in Section 7.2. For two-dimensional seepage

2 2
*h | 0% _
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| | » X

|<— Ax—»n(— Ax—> » /4

12
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4
v

Figure 7.13 Hydraulic heads for flow in a region.

Figure 7.13 shows a part of a region in which flow is taking place. For
flow in the horizontal direction, using Taylor’s series, we can write

axp (o), exf(on)
1'IO—FAX(GX) (8x } 31 (ax3l+ (7.53)

and

AxY [ 0°h Axy( o°h
R O F T

Adding Equations 7.53 and 7.54, we obtain

3 2AxY [ 0°h 2Ax)
h +h; = 2hy + 1 [ale 41 (ax ]+ (7.55)
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Assuming Ax to be small, we can neglect the third and subsequent terms on

the right-hand side of Equation 7.55. Thus

0’h | h +h;—2h
ox* |  QAxY

Similarly, for flow in the z direction we can obtain
0’h ) _ hy+h,—2h
0z" ) Azy
Substitution of Equations 7.56 and 7.57 into Equation 7.52 gives

h, + h, — 2h, h, +h, — 2h,
+ =
Axy Az

If k, = k, = k and Ax = Az, Equation 7.58 simplifies to

0

ky k,

hy+h,+hy+h, —4hy =0

or

1
hozz(hl"'hz"'h:s"'hzx)

(7.56)

(7.57)

(7.58)

(7.59)

Equation 7.59 can also be derived by considering Darcy’s law, g = kiA.
For the rate of flow from point 1 to point 0 through the channel shown in

Figure 7.14a, we have

Qo = k%Az
Similarly

dy3 = k%Az

Qoo = k%Ax

dos =k Bo — hy AX

Az

(7.60)

(7.61)

(7.62)

(7.63)
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Figure 7.14 Numerical analysis of seepage: (a) derivation of Equation 7.59; (b) derivation of
Equation 7.69; (c) derivation of Equation 7.71; (d) derivation of Equation 7.77.

Since the total rate of flow into point 0 is equal to the total rate of flow
out of point 0, g;, - go. = 0. Hence

@0+ D2-0)— Qo3+ d-4)=0 (7.64)

Taking Ax = Az and substituting Equations 7.60 through 7.63 into
Equation 7.64, we get

1
hozza'l1+h2+h3+h4)

If the point 0 is located on the boundary of a pervious and an impervious
layer, as shown in Figure 7.14b, Equation 7.59 must be modified as follows:

h,—hy Az
L=k Az 7.65
di-0 Ax 2 ( )
Gy = ko2 A2 (7.66)

Ax 2
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Gy = kTP Ay (7.67)
Az

For continuity of flow
o —do-3—U-2=0 (7.68)
With Ax = Az, combining Equations 7.65 through 7.68 gives

h—h _hy—h
2 2

—(ho—h;)=0

h b
242 4h,-2h =0
ot Th hy

or
1
h, =—Z (y, +2h, + h;) (7.69)

When point 0 is located at the bottom of a piling (Figure 7.14c), the equa-
tion for the hydraulic head for flow continuity can be given by

o + a0 — o-3 — Do-2 o2 = 0 (7.70)

Note that 2’ and 2" are two points at the same elevation on the opposite
sides of the sheet pile with hydraulic heads of h, and hy, respectively. For
this condition, we can obtain (for Ax = Az), through a similar procedure to
that mentioned earlier,

hy :i[h1+;m2r+h2~)+h3+m] (7.71)

7.8.2 Seepage in layered soils

Equation 7.59, which we derived earlier, is valid for seepage in homogeneous
soils. However, for the case of flow across the boundary of one homoge-
neous soil layer to another, Equation 7.59 must be modified. Referring to
Figure 7.14d, since the flow region is located half in soil 1 with a coefficient
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of permeability k; and half in soil 2 with a coefficient of permeability k,,
we can say that

Key =%0<1+k2) (7.72)

Now, if we replace soil 2 by soil 1, the replaced soil (i.e., soil 1) will have
a hydraulic head of hy in place of h,. For the velocity to remain the same

o Do ho _y e (7.73)
Az Az
or
k,
h4»:?(h4—h0)+h0 (7.74)
1
Thus, based on Equation 7.52, we can write
kytko Bythy =2y by thy 2Ry 7.75)
2 Axy Azy

Taking Ax = Az and substituting Equation 7.74 into Equation 7.75

;&+b{m+m_2m}rkl{m+[fmr4m+m}4m}=o

Axy QAxy
(7.76)
or
1 2k; 2k,
=—|h+ h, + h; + 7.77
ho 4(1 et k1+k2h4] (7.77)

The application of the equations developed in this section can best be
demonstrated by the use of a numerical example. Consider the problem of
determining the hydraulic heads at various points below the dam as shown
in Figure 7.12. Let Ax = Az = 1.25 m. Since the flow net below the dam will
be symmetrical, we will consider only the left half. The steps for determining
the values of / at various points in the permeable soil layers are as follows:

1. Roughly sketch out a flow net.

2. Based on the rough flow net (step 1), assign some values for the hydrau-
lic heads at various grid points. These are shown in Figure 7.15a. Note
that the values of b assigned here are in percent.
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3. Consider the heads for row 1 (i.e., i = 1). The b for i = 1 and
j=1,2,...,22 are 100 in Figure 7.15a; these are correct values based
on the boundary conditions. The b, fori=1andj =23, 24, ...,28
are estimated values. The flow condition for these grid points is sim-

ilar to that shown in Figure 7.14b, and according to Equation 7.69,
(hy +2hy + bh;) =4b, =0, or

G300+ 2hger,5 + g 30))— 4hg 5 = 0 (7.78)

Since the hydraulic heads in Figure 7.15 are assumed values,
Equation 7.78 will not be satisfied. For example, for the grid point
i=1 andj = 23, h(i,/-l) = 100, //J(,-J-) = 84, h(i,/+1) = 68, and //J(,-”’/-) =78.If
these values are substituted into Equation 7.78, we get [68 + 2(78) +
100] - 4(84) = -12, instead of zero. If we set =12 equal to R (where R
stands for residual) and add R/4 to b ;, Equation 7.78 will be satis-
fied. So the new, corrected value of b ; is equal to 84 + (-3) = 81, as
shown in Figure 7.15b. This is called the relaxation process. Similarly,
the corrected head for the grid point i = 1 and j = 24 can be found as
follows:

B4+2(67)+61]-468)=7 =R

S0, by 24 = 68 + 7/4 = 69.75 ~ 69.8. The corrected values of b, ,5,
b1 26, and by 57 can be determined in a similar manner. Note that
has = 50 is correct, based on the boundary condition. These are
shown in Figure 7.15b.

4. Consider the rows i = 2, 3, and 4. The b, fori=2, ..., 4 and j = 2,
3, ..., 27 should follow Equation 7.59; (b, + b, + b5 + b,) = 4h,=0; or

(Big31) T D15+ B0y + B y) = 4Ry = 0 (7.79)

To find the corrected heads b, ;, we proceed as in Step 3. The resid-
ual R is calculated by substituting values into Equation 7.79, and the
corrected head is then given by /; + R/4. Owing to symmetry, the
corrected values of b, ,5 for i = 2, 3, and 4 are all 50, as originally
assumed. The corrected heads are shown in Figure 7.15b.

5. Consider row i = 5 (forj =2, 3, ..., 27). According to Equation 7.77

2k 2k,
L h,+hy+ 2

hl +
kl + k2 k1 + k2

h, — 4hy = 0 (7.80)
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Since k; = 5 x 102 mm/s and k, = 2.5 x 102 mm/s

2k 26)x1072
L 20) — =1333
k+k, G+25)x10
-2
2k, _ 2@ 5)x10 0667

ki+k, B+25)x107
Using the aforementioned values, Equation 7.80 can be rewritten as
Rg51)+1333he 05+ Ny 50y + 06670 5 — 4hg 5 =0

As in step 4, calculate the residual R by using the heads in
Figure 7.15a. The corrected values of the heads are given by b, , + R/4.
These are shown in Figure 7.15b. Note that, owing to symmetry, the
head at the grid point 7 = 5 and j = 28 is 50, as assumed initially.

6. Consider the rows i = 6, 7, ..., 12. The b for i = 6, 7, ..., 12 and
j=2,3, ..., 27 can be found by using Equation 7.79. Find the cor-
rected head in a manner similar to that in step 4. The heads atj = 28
are all 50, as assumed. These values are shown in Figure 7.15b.

7. Consider row i = 13. The h;; for i = 13 and j = 2, 3, ..., 27 can be
found from Equation 7.69, (b, + 2h, + b;) = 4h, = 0, or

W0y + 2he,9+ hyyay—4hg 5 =0

With proper values of the head given in Figure 7.15a, find the resid-
ual and the corrected heads as in step 3. Note that b ;3 55 = 50 owing
to symmetry. These values are given in Figure 7.15b.

8. With the new heads, repeat steps 3 through 7. This iteration must be
carried out several times until the residuals are negligible.

Figure 7.15¢ shows the corrected hydraulic heads after 10 iterations. With
these values of b, the equipotential lines can now easily be drawn.

7.9 SEEPAGE FORCE PER UNIT
VOLUME OF SOIL MASS

Flow of water through a soil mass results in some force being exerted on the
soil itself. To evaluate the seepage force per unit volume of soil, consider
a soil mass bounded by two flow lines ab and c¢d and two equipotential
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Figure 7.16 Seepage force determination.

lines ef and gh, as shown in Figure 7.16. The soil mass has unit thick-
ness at right angles to the section shown. The self-weight of the soil mass
is (length)(width)(thickness)(y,) = (L)(L)(1)(Yes) = L*Ys.- The hydrostatic
force on the side ef of the soil mass is (pressure head)(L)(1) = by, L. The
hydrostatic force on the side gh of the soil mass is b, Ly,,. For equilibrium

AF = hyy, L + LYo, sina — hyY, L (7.81)

However, b, + L sin a = b, + Ah, so
h, =h, +L sno—Ah (7.82)

Combining Equations 7.81 and 7.82

AF = hyy,L + L*Yg, sino. — (y + L sino. — Ah)y, L

or
AF =L’ (ot — ¥y )snOL+ Ahy, L = L’y siho +Ahy,L (7.83)
eﬁ'efctk]j(]e_yi?ht ség:age

direction of flow
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where ¥’ = y,,. - Y From Equation 7.83, we can see that the seepage force
on the soil mass considered is equal to Aby, L. Therefore

Ahy, L

LZ

Seepageforceperunitvolum eofsoilm ass =

An _

= i 7.84
Yo =Tel (7.84)

where i is the hydraulic gradient.

7.10 SAFETY OF HYDRAULIC STRUCTURES
AGAINST PIPING

When upward seepage occurs and the hydraulic gradient i is equal to 7,
piping or heaving originates in the soil mass:

=t
Yw
;7 _ _ =Gst+er_ =Gs_1)Yw
V= Nae ™Y l1+e T l1+e
So
jﬂ:l:Gsi_l (7.85)
Yo l+e

For the combinations of G, and e generally encountered in soils, i, varies
within a range of about 0.85-1.1.
Harza (1935) investigated the safety of hydraulic structures against

piping. According to his work, the factor of safety against piping, Fs, can
be defined as

F; = i (7.86)
Jexit

where i, is the maximum exit gradient. The maximum exit gradient can
be determined from the flow net. Referring to Figure 7.4, the maximum
exit gradient can be given by Ah/l (Ab is the head lost between the last
two equipotential lines, and [ the length of the flow element). A factor
of safety of 3-4 is considered adequate for the safe performance of the
structure. Harza also presented charts for the maximum exit gradient of
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Figure 7.17 Critical exit gradient (Equation 7.87).

dams constructed over deep homogeneous deposits (see Figure 7.17). Using
the notations shown in Figure 7.17, the maximum exit gradient can be
given by

=3

La=C (7.87)
B

A theoretical solution for the determination of the maximum exit gradi-
ent for a single row of sheet pile structures as shown in Figure 7.3 is avail-
able (see Harr, 1962) and is of the form

s 1 maxinum hydraulic head
i depth of penetration of shestpile

(7.88)
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Lane (1935) also investigated the safety of dams against piping and sug-
gested an empirical approach to the problem. He introduced a term called
weighted creep distance, which is determined from the shortest flow path:

L, = th +2Lv (7.89)

3

where
L, is the weighted creep distance
ZL, = Ly + Ly, + - is the sum of horizontal distance along shortest
flow path (see Figure 7.18)
XL,=L, + L, + - is the sum of vertical distances along shortest flow
path (see Figure 7.18)

Once the weighted creep length has been calculated, the weighted creep
ratio can be determined as (Figure 7.18)

W eighted creep ratio —_Dw (7.90)
H 1 H 2

For a structure to be safe against piping, Lane (1935) suggested that the
weighted creep ratio should be equal to or greater than the safe values
shown in Table 7.1.

‘ 1
— I ot ; !
< h, >
Ly,
1
LV] )
l l Permeable layer
X X X X XX

Impermeable layer

Figure 7.18 Calculation of weighted creep distance.
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Table 7.1 Safe values for the weighted creep ratio

Material Safe weighted creep ratio
Very fine sand or silt 85

Fine sand 7.0

Medium sand 6.0

Coarse sand 5.0

Fine gravel 4.0

Coarse gravel 3.0

Soft to medium clay 2.0-3.0

Hard clay 1.8

Hard pan 1.6

If the cross section of a given structure is such that the shortest flow path
has a slope steeper than 45°, it should be taken as a vertical path. If the
slope of the shortest flow path is less than 45°, it should be considered as a
horizontal path.

Terzaghi (1922) conducted some model tests with a single row of sheet
piles as shown in Figure 7.19 and found that the failure due to piping takes
place within a distance of D/2 from the sheet piles (D is the depth of pen-
etration of the sheet pile). Therefore, the stability of this type of structure
can be determined by considering a soil prism on the downstream side of

H
et T gn Possible
: el failure zone
Permeable :
layer
X X X X X X X X X

Impermeable layer

Figure 7.19 Failure due to piping for a single-row sheet pile structure.
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unit thickness and of section D x D/2. Using the flow net, the hydraulic
uplifting pressure can be determined as

U=%wa h, (7.91)

where b, is the average hydraulic head at the base of the soil prism. The sub-
merged weight of the soil prism acting vertically downward can be given by

w'=1yp? (7.92)
2
Hence, the factor of safety against heave is

w’'  1yp? DYy

F, = = =
U ;Y%Dh, hy,

(7.93)

A factor of safety of about 4 is generally considered adequate.

For structures other than a single row of sheet piles, such as that shown
in Figure 7.20, Terzaghi (1943) recommended that the stability of several
soil prisms of size D/2 x D’ x 1 be investigated to find the minimum factor
of safety. Note that 0 < D’ < D. However, Harr (1962, p. 125) suggested
that a factor of safety of 4-5 with D’ = D should be sufficient for safe per-
formance of the structure.

Permeable layer

X X X X X X
Impermeable base

Figure 7.20 Safety against piping under a dam.
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Example 7.4

A flow net for a single row of sheet piles is given in Figure 7.3.

a. Determine the factor of safety against piping by Harza’s method.
b. Determine the factor of safety against piping by Terzaghi’s
method (Equation 7.93).

Assume y' = 10.2 kN/m?.

Solution
Part a:
he= Ap=3705_3705 4 419m
L Ng 6

The length of the last flow element can be scaled out of Figure 7.3 and
is approximately 0.82 m. So
0417

Lo = =0509
=T 82

(We can check this with the theoretical equation given in Equation 7.88:

. (1) e-05)]_
(2] 522) o5

which is close to the value obtained earlier.)

Y _102kN A4’
Yo 981kN m’

=1.04

So, the factor of safety against piping is

i 104

= =204
Jxz 0509

Part b:

A soil prism of cross section D x D/2, where D = 1.5 m, on the down-
stream side adjacent to the sheet pile is plotted in Figure 7.21a. The
approximate hydraulic heads at the bottom of the prism can be evalu-
ated by using the flow net. Referring to Figure 7.3 (note that N, = 6)

ha :%(3—05):1251“

2
hy =+ G-05)=0833m

he =%(3—05)=0.75m
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»!
gl

N\

Soil

D=15m prism\

(b)

Figure 7.21 Factor of safety calculation by Terzaghi’s method: (a) hydraulic head at the
bottom prism measuring D x D/2; (b) use of filter in the downstream side.

B o.375(1.25+o.75

h, = +0833|=0917m
0.75 2

g DY _ 15x102 _
hy, 0917x981

s

The factor of safety calculated here is rather low. However, it can be
increased by placing some filter material on the downstream side above
the ground surface, as shown in Figure 7.21b. This will increase the
weight of the soil prism (W’; see Equation 7.92).

Example 7.5

A dam section is shown in Figure 7.22. The subsoil is fine sand. Using
Lane’s method, determine whether the structure is safe against piping.

Solution

From Equation 7.89
PR
Lw = T+2LV
ZLh =6+10=16m

ZLV:1+(8+8)+1+2:20m

L, =1—36+20=25.33m
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—— 10m —»|

Figure 7.22 Safety against piping under a dam by using Lane’s method.

From Equation 7.90

L, _ 2533
H,-H, 10-2

=3.17

W eighted creep ratio =

From Table 7.1, the safe weighted creep ratio for fine sand is about 7.
Since the calculated weighted creep ratio is 3.17, the structure is unsafe.

7.11 FILTER DESIGN

When seepage water flows from a soil with relatively fine grains into a
coarser material (e.g., Figure 7.21b), there is a danger that the fine soil par-
ticles may wash away into the coarse material. Over a period of time, this
process may clog the void spaces in the coarser material. Such a situation
can be prevented by the use of a filter or protective filter between the two
soils. For example, consider the earth dam section shown in Figure 7.23.
If rockfills were only used at the toe of the dam, the seepage water would
wash the fine soil grains into the toe and undermine the structure. Hence,

Soil to be
protected

Figure 7.23 Use of filter at the toe of an earth dam.
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for the safety of the structure, a filter should be placed between the fine soil
and the rock toe (Figure 7.23). For the proper selection of the filter material,
two conditions should be kept in mind:

1. The size of the voids in the filter material should be small enough to
hold the larger particles of the protected material in place.

2. The filter material should have a high permeability to prevent build up
of large seepage forces and hydrostatic pressures.

Based on the experimental investigation of protective filters, Terzaghi and
Peck (1948) provided the following criteria to satisfy the above conditions:

Disey < y_5 (to satisfy condition 1) (7.94)
Dgse)
Dise)y 5 45 o satisfy condition 2) (7.95)
Dis@

where

D5 is the diameter through which 15% of filter material will pass
D is the diameter through which 15% of soil to be protected will pass
Dysp, is the diameter through which 85% of soil to be protected will pass

The proper use of Equations 7.94 and 7.95 to determine the grain-size
distribution of soils used as filters is shown in Figure 7.24. Consider the soil

100 T I : I I I I
o 0.11 mm

80 - -
3
& 60 - Curve a (soil to N
z Range of be protected)
% a0 L good filter |
A 9

Curve ¢ 5D _
o D)=
20 - 0.045 mm 09 mm ]
e —————— .009 mm
0 | | | |

5 1.0 05 0.1 0.05 0.01 0.005 0.002

Grain-size distribution (mm)

Figure 7.24 Determination of grain-size distribution of soil filters using Equations 7.94
and 7.95.
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used for the construction of the earth dam shown in Figure 7.23. Let the
grain-size distribution of this soil be given by curve a in Figure 7.24. We can
now determine 5Dy and SD 5 and plot them as shown in Figure 7.24.
The acceptable grain- 51ze dlStI‘lbuthH of the filter material will have to lie
in the shaded zone.

Based on laboratory experimental results, several other filter design
criteria have been suggested in the past. These are summarized in
Table 7.2.

Table 7.2 Filter criteria developed from laboratory testing

Investigator Year Criteria developed
Bertram 1940 M < 6; M <9
DBS(B) DSS(B)
U.S. Corps of 1948 Diso 5; Dsoy 25; Disy _ 59
Engineers Dese) Dsogy 15(8)
Sherman 1953 For Cypase) <1.5: Disy <6; Dise <20; Dsory <25
85(B) 15(B) 50(B)
Forl.5< Cypase) < 4.0': Dise 5, Diso 5q, Doom _ 59
85(B) D, 5(B) 50(B)
For Cyase) > 4.0 : Disey 5, D _ 49, Do _ s
85(B) DIS(B) DSO(B)
D D
Leatherwood and 1954 —0 <4 20 .53
Peterson Dese) DSO(B)
Karpoff 1955 Uniform filter: 5 < 20 < g
50(B)

Well-graded filter:12 < 220 _ 5g; 12 < 250 4904
50(8) Dis@

parallel grain-size curves

Zweck and 1957  Base of medium and coarse uniform sand: 5 < ——~ Dsog <10
Davidenkoff D50(B)

Base of fine uniform sand: 5 < ——" Dsoq <I5
50(B)

Base of well-graded fine sand: 5 < Dsory <25
50(8)

Note:  Dyy), diameter through which 50% of the filter passes; Dy, diameter through which 50% of
the soil to be protected passes; C,, uniformity coefficient.
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7.12 CALCULATION OF SEEPAGE THROUGH AN
EARTH DAM RESTING ON AN IMPERVIOUS BASE

Several solutions have been proposed for determination of the quantity of
seepage through a homogeneous earth dam. In this section, some of these
solutions will be considered.

7.12.1 Dupuit’s solution

Figure 7.25 shows the section of an earth dam in which ab is the phreatic
surface, that is, the uppermost line of seepage. The quantity of seepage
through a unit length at right angles to the cross-section can be given by
Darcy’s law as g = kiA.

Dupuit (1863) assumed that the hydraulic gradient i is equal to the slope
of the free surface and is constant with depth, that is, i = dz/dx. So

dz dz
=k— Wl=k—
q ] [@)d)] ] z

d Hj

Jqu: J.kzdz
0 Hy
k
qd—E(le—H 22)
or
_k 2 2
q= (ai-u3) (7.96)
z
A
: dz
i dx
H iPhreatic _L_+_
1 line =
l ’ v
X4 X X X '\I XX X X

Impermeable base

[« d >

Figure 7.25 Dupuit’s solution for flow through an earth dam.
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Equation 7.96 represents a parabolic free surface. However, in the deri-
vation of the equation, no attention has been paid to the entrance or exit
conditions. Also note that if H, = 0, the phreatic line would intersect the

impervious surface.

7.12.2 Schaffernak’s solution

For calculation of seepage through a homogeneous earth dam. Schaffernak
(1917) proposed that the phreatic surface will be like line ab in Figure 7.26,
that is, it will intersect the downstream slope at a distance [ from the imper-
vious base. The seepage per unit length of the dam can now be determined
by considering the triangle bcd in Figure 7.26:

gq=kA; A= pd)Q)=1sip
From Dupuit’s assumption, the hydraulic gradient is given by i = dz/dx =
tanp. So

d .
q=kzdf= k)@sif)@np) (7.97)

or

H

[ 2az= j (LsinB tan B )dx

Isinf3 JoosB

1 . .
S @ ? - T sin’B)= AsihP)tanP)@d - loosP)

dx
Parabolic
free surface b /‘\

XXX X X X
d

®

A

T —>
=l

Impermeable base

Figure 7.26 Schaffernak’s solution for flow through an earth dam.
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. 2
La2_ran?f)= 15" P - 1008p)
2 oosf

2 2
H fxsz_loosB:]d_leOSB
2sin’P 2
2
Foosp—2:d+ 1 PP g
sin® 3

| 2d#\[4d® — 41 * o B)/sin’ B

2cosp (7.98)

SO

d d? H?2

cosf \ o B - sin’ B (7.99)

1=

Once the value of [ is known, the rate of seepage can be calculated from the
equation g = k[ sin B tan p.
Schaffernak suggested a graphical procedure to determine the value of [.
This procedure can be explained with the aid of Figure 7.27:

1. Extend the downstream slope line bc upward.

2. Draw a vertical line ae through the point a. This will intersect the
projection of line bc (step 1) at point f.

3. With fc as diameter, draw a semicircle fhc.

Impermeable surface

Figure 7.27 Graphical construction for Schaffernak’s solution.
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XXX X XX X X X X X XC X XX
| d N Impermeable
layer
fe—A—>

Figure 7.28 Modified distance d for use in Equation 7.99.

4. Draw a horizontal line ag.

5. With ¢ as the center and cg as the radius, draw an arc of a circle, gh.
6. With f as the center and fF as the radius, draw an arc of a circle, hb.
7. Measure bc = 1.

Casagrande (1937) showed experimentally that the parabola ab shown in
Figure 7.26 should actually start from the point a’ as shown in Figure 7.28.
Note that aa’ = 0.3A. So, with this modification, the value of d for use in
Equation 7.99 will be the horizontal distance between points a’ and c.

7.12.3 L. Casagrande’s solution

Equation 7.99 was obtained on the basis of Dupuit’s assumption that the
hydraulic gradient 7 is equal to dz/dx. Casagrande (1932) suggested that this
relation is an approximation to the actual condition. In reality (see Figure 7.29)

., dz
i==2

= 7.100
ds ( )

For a downstream slope of p > 30°, the deviations from Dupuit’s assump-
tion become more noticeable. Based on this assumption (Equation 7.100),
the rate of seepage is g = kiA. Considering the triangle bcd in Figure 7.29,

i=%—snB A= pd)0)= lsnp
ds

So

q:k%z:klsinzﬁ (7.101)
S
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A
—»{ 0.3A |&—
a’ a
= | A
I ' ds
: : dz
H y I dx b,
: : Phreatic \
1 | surface l
P AN
X 4x—x %= X Xy ¢ X X
e d >
— A —

Figure 7.29 L. Casagrande’s solution for flow through an earth dam (Note: length of the
curve a’bc = §).

or
J zdz| (sin®*B)ds

1sinp 1

where s is the length of the curve a’bc. Hence

%mz—fsmzﬁ)ﬂsmzﬁ(s—l)

H * - Psin’B = 21ssin’ B - 2Psin’B

2
H® (7.102)

sin®

P -2Is+

The solution to Equation 7.102 is

-5 |¢- B (7.103)
sin” 3

With about a 4%-5% error, we can approximate s as the length of the
straight line a’c. So

s=+d? +H? (7.104)
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Combining Equations 7.103 and 7.104

1=Vd>+H? —\Jd’ —H 2ot B (7.105)
Once [ is known, the rate of seepage can be calculated from the equation
q = klsin®B

A solution that avoids the approximation introduced in Equation 7.105 was
given by Gilboy (1934) and put into graphical form by Taylor (1948), as
shown in Figure 7.30. To use the graph

1. Determine d/H

2. For given values of d/H and B, determine m
3. Calculate I = mH/sin B

4. Calculate g = kl sin?

dlH

Figure 7.30 Chart for solution by L. Casagrande’s method based on Gilboy’s solution.
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Zone I1

X X X X
Impermeable base

¢ >

< L »|

Figure 7.31 Pavlovsky’s solution for seepage through an earth dam.
7.12.4 Pavlovsky’s solution

Pavlovsky (1931; also see Harr, 1962) also gave a solution for calculation
of seepage through an earth dam. This can be explained with reference to
Figure 7.31. The dam section can be divided into three zones, and the rate
of seepage through each zone can be calculated as follows.

7.12.4.1 Zone I (area agOf)

In zone I the seepage lines are actually curved, but Pavlovsky assumed that
they can be replaced by horizontal lines. The rate of seepage through an
elementary strip dz can then be given by

dg=kidA

da = dz)@)=dz

i= Lossofhead,} _ 1
Lengthofflow  (#H4— z)ootf,

So
h;

ki ki Hy
4 J- 4 # 4 — z)cot; cotf;, Ha-h

0



290 Advanced Soil Mechanics

However, [, = H - h,. So

k@ —-h) Hgy
g= In (7.106)
cotf; He—hy

7.12.4.2 Zone Il (area Ogbd)

The flow in zone IT can be given by the equation derived by Dupuit (Equation
7.96). Substituting b, for H,, b, for H,, and L for d in Equation 7.96, we get

k

a=-(n'-ni) (7.107)
where
L=B+(I'Id_h2)th2 (7.108)

7.12.4.3 Zone Ill (area bcd)

As in zone I, the stream lines in zone III are also assumed to be horizontal:

h

q=k[ 92 - K (7.109)
A cotff, coth,
Combining Equations 7.106 through 7.108
B B ’
h, = +Hg—,|| — = +H4 | —h 7.110
2= ot a \/(cotﬁz d] ) ( )
From Equations 7.106 and 7.109
Hoby Hae _ Mo (7.111)

cotf; Hg—h - cotf,

Equations 7.110 and 7.111 contain two unknowns, b, and /,, which can
be solved graphically (see Example 7.6). Once these are known, the rate of
seepage per unit length of the dam can be obtained from any one of the
Equations 7.106, 7.107, and 7.109.
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7.12.5 Seepage through earth dams with k, # k,

If the soil in a dam section shows anisotropic behavior with respect to
permeability, the dam section should first be plotted according to the trans-
formed scale (as explained in Section 7.6):

All calculations should be based on this transformed section. Also, for cal-
culating the rate of seepage, the term k in the corresponding equations

should be equal to \k.k,.

Example 7.6

The cross section of an earth dam is shown in Figure 7.32. Calculate
the rate of seepage through the dam [¢ in m3/(min-m)] by (a) Dupuit’s
method; (b) Schaffernak’s method; (¢) L. Casagrande’s method; and
(d) Pavlovsky’s method.

Solution

Part a: Dupuit’s method.

From Equation 7.96
_ k 2 2
q= E(H 1—Hj )
0.3 x50 =5 m—>]

25m 2

k=3x10"* m/min

X
X
X
X
X
X
X
X

X X X X X X
Impermeable layer

[e——50m——H10me—5m—Pe¢——— 60m——P

Figure 7.32 Seepage through an earth dam.
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From Figure 7.32, H, = 25 m and H, = 0; also, d (the horizontal dis-
tance between points g and ¢) is equal to 60 + 5 + 10 = 75 m. Hence

_ 3x107*
2x75

@5F =125x10"*m*/m in-m )

Part b: Schaffernak’s method.
From Equations 7.97 and 7.99

d g2 H?2

a= k)@shP)@npP); 1= wosp \cofp sn’P

Using Casagrande’s correction (Figure 7.28), d (the horizontal distance
between a’ and ¢) is equal to 60 + 5 + 10 + 15 = 90 m. Also

B:m’1%=2657° H =25m

So

9% 90 Y ( 25 Y
c0s26 57° c0s26 57° sin2657°

=100 .63—\/(100 63F - 6589Y =16.95m

q = (3 x10-%)(16.95)(sin 26.57°)(tan 26.57°) = 11.37 x 10~* m3/(min - m)
Part c: L. Casagrande’s method.

We will use the graph given in Figure 7.30.

d=90m H =25m g=ﬂ=3.6 B=2657°
H 25

From Figure 7.30 for p = 26.57° and d/H = 3.6, m = 0.34, and

_mH _ 034@5) _

1=——F=— =19.0m
shf sin2657°

q =klsin? = (3 x 10-4) (19.0) (sin 26.57°)2 = 11.4 x 10-* m*/(min - m)

Part d: Pavlovsky’s method.
From Equations 7.110 and 7.111

2
h, = B +Hq-— B +Hy | -0
cotf, cotf,
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H—hlh Hy _ h
ootf, Hy—h  ocotf,

From Figure 7.32, B = § m, cot B, = cot 26.57° = 2, H; = 30 m, and
H =25 m. Substituting these values in Equation 7.110, we get

2
h=2+30— /[ 2+30 | —n2
2 2

or

hy = 325-4/1056 25— h? (E7.1)

Similarly, from Equation 7.111

25—-hy n 30 h,

2 30-h, 2

or

30
30—hy

h, = @5—h ) (E7.2)

Equations E7.1 and E7.2 must be solved by trial and error:

h, (m)  h, from Equation E7.1 (m)  h, from Equation E7.2 (m)

2 0.062 1.587
4 0.247 3.005
6 0.559 4.240
8 1.0 5.273
10 1.577 6.082
12 2297 6.641
14 3.170 6.915
16 4211 6.859
18 5.400 6.414
20 6.882 5.493

Using the values of b, and b, calculated in the preceding table, we
can plot the graph as shown in Figure 7.33 and from that, b, = 18.9 m
and b, = 6.06 m. From Equation 7.109

9.09x10*m’>/min-m)

kh, Bx107*)6.06)
q: = 2 =

cotf,
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hy (m)

Equation E7.2

T
Equation E7.1

0
10

Figure 7.33 Plot of h, against h,.

7.13 PLOTTING OF PHREATIC LINE FOR
SEEPAGE THROUGH EARTH DAMS

For construction of flow nets for seepage through earth dams, the phreatic
line needs to be established first. This is usually done by the method pro-
posed by Casagrande (1937) and is shown in Figure 7.34a. Note that aefb
in Figure 7.34a is the actual phreatic line. The curve a’efb’c’ is a parabola
with its focus at ¢. The phreatic line coincides with this parabola, but with
some deviations at the upstream and the downstream faces. At a point a,
the phreatic line starts at an angle of 90° to the upstream face of the dam

and aa’ = 0.3A.

The parabola a’efb'c’ can be constructed as follows:

1. Let the distance cc’ be equal to p. Now, referring to Figure 7.34b,
Ac = AD (based on the properties of a parabola), Ac=+/x* + 2*, and

AD =2p + x. Thus

Vx*+2Z° =2p+x

20
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z
A
Directrix
¢ d »
—»{0.3A [¢—
v a’ a
T = e .
W
H <A/
3/
Coefficient of b '\; .
permeability = k B ¥ AN
x < —
[f——A—> ¢ se
7/
— ple
—» P
(a)
z
A
Directrix
Alx, z)
—— - D
\
\
\
\
\
\
\
\
X <4
©0° /¢
/*p*HP*

(b)
Figure 7.34 Determination of phreatic line for seepage through an earth dam: (a) phre-
atic line; (b) parabola with the focus at c’.

At x = d, z = H. Substituting these conditions into Equation 7.112 and

rearranging, we obtain

p%(m _d) (7.113)

Since d and H are known, the value of p can be calculated.
2. From Equation 7.112

X+ 7' = 4p° + x* + 4px
2 a2
Z-4p° (7.114)

ip
With p known, the values of x for various values of z can be calculated
from Equation 7.114, and the parabola can be constructed.
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~
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0.3

AN
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0.1

0
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Figure 7.35 Plot of Al/(I + Al) against downstream slope angle. (After Casagrande, A.,
Seepage through dams, in Contribution to Soil Mechanics 1925—1940, Boston
Society of Civil Engineering, Boston, MA, p. 295, 1937)

To complete the phreatic line, the portion ae must be approximated
and drawn by hand. When p < 30°, the value of / can be calculated from
Equation 7.99 as

d d? H?

1= cosp \cof B sn’P

Note that [ = bc in Figure 7.34a. Once point b has been located, the curve
fb can be approximately drawn by hand.

If B > 30°, Casagrande proposed that the value of Al can be determined
by using the graph given in Figure 7.35. In Figure 7.34a, b'b = Al and bc = .
After locating the point b on the downstream face, the curve fb can be
approximately drawn by hand.

7.14 ENTRANCE, DISCHARGE, AND
TRANSFER CONDITIONS OF LINE OF
SEEPAGE THROUGH EARTH DAMS

A. Casagrande (1937) analyzed the entrance, discharge, and transfer con-
ditions for the line of seepage through earth dams. When we consider the
flow from a free-draining material (coefficient of permeability very large;
k, = oo into a material of permeability k,, it is called an entrance). Similarly,
when the flow is from a material of permeability k, into a free-draining
material (k, = o), it is referred to as discharge. Figure 7.36 shows various
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Entrance conditions

B<90° B=90°
Horizontal

Horizontal

k1:°° Eﬁ

k=
1 k
B/V
X X X XXX X X
(@) (b)
Discharge conditions
B<90° B=90°
k2 = o0
k
! B
X X X X X X
(d) (e)
Vertical
i
|
I
ky i
p=180°\
{'\I
X~ X j k2 =
(8
Transfer conditions
o
ky o ky o %2
» X ® f
2 2
X X X X X X /—\A X
ki <k, ky >k, ky>ky
0y =270"-0;—0 0y =270"-0;— A =0y=0
(h) ) ()
k
1 X
®

ky<ky

) a;=0y=0

Figure 7.36 Entrance, discharge, and transfer conditions: (a) entrance, § < 90°% (b)
entrance, p = 90% (c) entrance, > 90° (d) discharge, p < 90°; (e) discharge,
B = 90°% (f) discharge, p > 90°% (g) discharge, p = 180° (h) transfer, k, < k,,
o, =270°—a,—w; (i) transfer, k, > k,, a, = 270°—a, —w; (j) transfer, k, > k,, o, =
a, =w; (k) transfer, k;, < k,, ay = a, = 0. (After Casagrande, A., Seepage
through dams, in Contribution to Soil Mechanics 1925—-1940, Boston Society
of Civil Engineering, Boston, MA, p. 295, 1937))
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entrance, discharge, and transfer conditions. The transfer conditions show
the nature of deflection of the line of seepage when passing from a material
of permeability k, to a material of permeability k,.

Using the conditions given in Figure 7.36, we can determine the nature of
the phreatic lines for various types of earth dam sections.

7.15 FLOW NET CONSTRUCTION FOR EARTH DAMS

With a knowledge of the nature of the phreatic line and the entrance, dis-
charge, and transfer conditions, we can now proceed to draw flow nets for
earth dam sections. Figure 7.37 shows an earth dam section that is homo-
geneous with respect to permeability. To draw the flow net, the following
steps must be taken:

1. Draw the phreatic line, since this is known.

. Note that ag is an equipotential line and that gc is a flow line.

3. It is important to realize that the pressure head at any point on the
phreatic line is zero; hence, the difference of total head between any
two equipotential lines should be equal to the difference in elevation
between the points where these equipotential lines intersect the phre-
atic line.

Since loss of hydraulic head between any two consecutive equipo-
tential lines is the same, determine the number of equipotential drops,
N, the flow net needs to have and calculate Ah = h/N,,.

4. Draw the head lines for the cross section of the dam. The points of
intersection of the head lines and the phreatic lines are the points
from which the equipotential lines should start.

[\

N;=23
Ny =10

II|‘<

Ah
Al Head line
Ah

An__ Head line
Ah

Ah

Impermeable layer

Figure 7.37 Flow net construction for an earth dam.
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5. Draw the flow net, keeping in mind that the equipotential lines and
flow lines must intersect at right angles.

6. The rate of seepage through the earth dam can be calculated from the
relation given in Equation 7.40, g = kh(N¢/N,).

In Figure 7.37, the number of flow channels, N, is equal to 2.3. The top
two flow channels have square flow elements, and the bottom flow channel
has elements with a width-to-length ratio of 0.3. Also, N, in Figure 7.37 is
equal to 10.

If the dam section is anisotropic with respect to permeability, a trans-
formed section should first be prepared in the manner outlined in Section
7.6. The flow net can then be drawn on the transformed section, and the
rate of seepage obtained from Equation 7.46.

Figures 7.38 and 7.39 show some typical flow nets through earth dam
sections.

A flow net for seepage through a zoned earth dam section is shown in
Figure 7.40. The soil for the upstream half of the dam has a permeabil-
ity k,, and the soil for the downstream half of the dam has a permeability
k, = Sk,. The phreatic line must be plotted by trial and error. As shown
in Figure 7.11b, here the seepage is from a soil of low permeability

N;=15

Impermeable layer

Figure 7.38 Typical flow net for an earth dam with rock toe filter.

Impermeable layer

Figure 7.39 Typical flow net for an earth dam with chimney drain.
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-
Ah
Ah
N Ak
Ah
915 .-,‘ Ah
X X X X X X X X X X X X X X

Number of full Impermeable layer

flow channels h h
=k; —N, =k, —N,
=0 M 175 e

Nyy=2-2/3  Njp=8/15

Figure 740 Flow net for seepage through a zoned earth dam.

(upstream half) to a soil of high permeability (downstream half). From
Equation 7.47
k_b/A

ke b/

If b, =1, and k, = 5k, b,/l, = 1/5. For that reason, square flow elements
have been plotted in the upstream half of the dam, and the flow elements in
the downstream half have a width-to-length ratio of 1/5. The rate of seep-
age can be calculated by using the following equation:

h h
=k —Ngy=k,—N 7.115
q lNd £0a) sz @) ( )
where
Ny is the number of full flow channels in the soil having a perme-
ability k,
Ny, is the number of full flow channels in the soil having a perme-
ability k,
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Chapter 8

Consolidation

8.1 INTRODUCTION

When a soil layer is subjected to a compressive stress, such as during the
construction of a structure, it will exhibit a certain amount of compres-
sion. This compression is achieved through a number of ways, including
rearrangement of the soil solids or extrusion of the pore air and/or water.
According to Terzaghi (1943), “a decrease of water content of a saturated
soil without replacement of the water by air is called a process of con-
solidation.” When saturated clayey soils—which have a low coefficient
of permeability—are subjected to a compressive stress due to a founda-
tion loading, the pore water pressure will immediately increase; however,
because of the low permeability of the soil, there will be a time lag between
the application of load and the extrusion of the pore water and, thus, the
settlement. This phenomenon, which is called consolidation, is the subject
of this chapter.

To understand the basic concepts of consolidation, consider a clay layer
of thickness H, located below the groundwater level and between two
highly permeable sand layers as shown in Figure 8.1a. If a surcharge of
intensity Ao is applied at the ground surface over a very large area, the pore
water pressure in the clay layer will increase. For a surcharge of infinite
extent, the immediate increase of the pore water pressure, Au, at all depths
of the clay layer will be equal to the increase of the total stress, Ac. Thus,
immediately after the application of the surcharge

Au = Ac

Since the total stress is equal to the sum of the effective stress and the pore
water pressure, at all depths of the clay layer the increase of effective stress
due to the surcharge (immediately after application) will be equal to zero
(i.e., Ac’ = 0, where Ac’ is the increase of effective stress). In other words,
at time ¢ = 0, the entire stress increase at all depths of the clay is taken by

303
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v Ground water table
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Au Ao’
(b) (c)

Figure 8.1 Principles of consolidation: (a) soil profile; (b) variation of Au with depth;
(c) variation of Ac” with depth.

the pore water pressure and none by the soil skeleton. It must be pointed
out that, for loads applied over a limited area, it may not be true that the
increase of the pore water pressure is equal to the increase of vertical stress
at any depth at time ¢ = 0.

After application of the surcharge (i.e., at time ¢ > 0), the water in the
void spaces of the clay layer will be squeezed out and will flow toward
both the highly permeable sand layers, thereby reducing the excess pore
water pressure. This, in turn, will increase the effective stress by an equal
amount, since A¢’ + Au = Ac. Thus, at time ¢ > 0

Ac’ >0
and

Au < Ac
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Theoretically, at time = o, the excess pore water pressure at all depths of
the clay layer will be dissipated by gradual drainage. Thus, at time # = o

Ao’ = Ao
and

Au=0

Following is a summary of the variation of Ao, Au, and Ac’ at various
times. Figure 8.1b and ¢ show the general nature of the distribution of Au
and Ac’ with depth.

Total stress ~ Excess pore water  Effective stress

Time,t increase, Ac pressure, Au increase, Ac’
0 Ao Ao 0

>0 Ao <Ac >0

oo Ac 0 Ac

This gradual process of increase in effective stress in the clay layer due
to the surcharge will result in a settlement that is time-dependent, and is
referred to as the process of consolidation.

8.2 THEORY OF ONE-DIMENSIONAL
CONSOLIDATION

The theory for the time rate of one-dimensional consolidation was first
proposed by Terzaghi (1925). The underlying assumptions in the derivation
of the mathematical equations are as follows:

1. The clay layer is homogeneous.

2. The clay layer is saturated.

3. The compression of the soil layer is due to the change in volume
only, which in turn is due to the squeezing out of water from the void
spaces.

. Darcy’s law is valid.

. Deformation of soil occurs only in the direction of the load application.

6. The coefficient of consolidation C, (Equation 8.15) is constant during

the consolidation.

“» A

With the assumptions described earlier, let us consider a clay layer of thick-
ness H, as shown in Figure 8.2. The layer is located between two highly
permeable sand layers. When the clay is subjected to an increase of verti-
cal pressure, Ao, the pore water pressure at any point A will increase by u.
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v

Figure 8.2 Clay layer undergoing consolidation.

Consider an elemental soil mass with a volume of dx-dy-dz at A; this is simi-
lar to the one shown in Figure 7.1b. In the case of one-dimensional consolida-
tion, the flow of water into and out of the soil element is in one direction only,
that is, in the z direction. This means that q,, g,, dq,, and dg,, in Figure 7.1b
are equal to zero, and thus the rate of flow into and out of the soil element
can be given by Equations 7.3 and 7.6, respectively. So

@, + dq,)— g, = rate of change of volum e of soilelem ent= %lt (8.1)
where
V =dxdydz (8.2)

Substituting the right-hand sides of Equations 7.3 and 7.6 into the left-hand
side of Equation 8.1, we obtain
0°h

ov
k——dxdydz=— 8.3
a7 Y T ¢ (8.3)

where k is the coefficient of permeability (k, in Equations 7.3 and 7.6).
However

h= % (8.4)
YV
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where v,, is the unit weight of water. Substitution of Equation 8.4 into 8.3
and rearranging gives

Kou_ 1 v
Yo 027 dxdydz ot

(8.5)

During consolidation, the rate of change of volume is equal to the rate of
change of the void volume. So

ov _ av,

9V (8.6)
ot dt
where V, is the volume of voids in the soil element. However
V, = eVg (8.7)
where
V. is the volume of soil solids in the element, which is constant
e is the void ratio
So
alzvs%: v @:dxdydz% (8.8)
ot ot l+edt l+e ot
Substituting the aforementioned relation into Equation 8.5, we get
2
kdu_ 1 de (8.9)

Y, 022 1l+eodt

The change in void ratio, de, is due to the increase of effective stress;
assuming that these are linearly related, then

de=—a,d(AT’) (8.10)

where a,, is the coefficient of compressibility. Again, the increase of effective
stress is due to the decrease of excess pore water pressure, du. Hence

de= a,du (8.11)

Combining Equations 8.9 and 8.11 gives

kou_ a du_ ou
Y. 02 l+eodt ot

(8.12)
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where
m, :c:oef_Eic::'altofvo]umec:ompl'msibﬂily:1i (8.13)
+e
Jdu k 9% 9%u
— = — =C, 8.14
ot  7y,m, 0z 0z’ ( )
where
C, = coefficientof consolidation = k (8.15)
YwIy

Equation 8.14 is the basic differential equation of Terzaghi’s consolida-
tion theory and can be solved with proper boundary conditions. To solve
the equation, we assume # to be the product of two functions, that is, the
product of a function of z and a function of #, or

u="F(@2)G () (8.16)
So

g—‘; = F(Z)a%G t=F@EE't) (8.17)
and

azu 82 ”

0F 9 FEE O=F@E ) (8.18)

From Equations 8.14, 8.17, and 8.18
FEE )=C.F @F ©)
or

F)_ G't) (8.19)
F@z) C.G 0

The right-hand side of Equation 8.19 is a function of z only and is inde-

pendent of #; the left-hand side of the equation is a function of # only and is
independent of z. Therefore, they must be equal to a constant, say, —-B2. So

F’(2)= —B’F (2) (8.20)
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A solution to Equation 8.20 can be given by
F(z)=A,00sBz+ A, sinBz (8.21)

where A, and A, are constants.
Again, the right-hand side of Equation 8.19 may be written as

G’(t)=-B*C .G (t) (8.22)
The solution to Equation 8.22 is given by
G (t)= A; exp(BC,b) (8.23)
where A, is a constant. Combining Equations 8.16, 8.21, and 8.23

u= (A, c0sBz+ A, snBz)A; exp(B°C,t)

= (A, cOSBz+ A, shB z)exp B>C,t) (8.24)
where
A=A A,
As = A2A3

The constants in Equation 8.24 can be evaluated from the boundary
conditions, which are as follows:

1. At time ¢ = 0, # = u, (initial excess pore water pressure at any depth)
2.u=0atz=0
3.u=0atz=H =2H

Note that H is the length of the longest drainage path. In this case, which is
a two-way drainage condition (top and bottom of the clay layer), H is equal
to half the total thickness of the clay layer, H..

The second boundary condition dictates that A, = 0, and from the third
boundary condition we get

As;sin2BH=0 or 2BH=n=n

where 7 is an integer. From the previous equation, a general solution of
Equation 8.24 can be given in the form

n=co 22
Ansjnm@{p(“t%) (8.25)
2H 4

n=1

where T, is the nondimensional time factor and is equal to C #/H?>.
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To satisfy the first boundary condition, we must have the coefficients of
A, such that

w— . nmz
u; = ;An s’ (8.26)

Equation 8.26 is a Fourier sine series, and A, can be given by

2H
A=+ j u,sin M gz (8.27)
H 2
0
Combining Equations 8.25 and 8.27
S nnz nnz n’m’T
u= = | uysh=—"2dz |sin——exp| ———> 8.28
3| Jenipras o el T 523

So far, no assumptions have been made regarding the variation of #; with
the depth of the clay layer. Several possible types of variation for #; are
shown in Figure 8.3. Each case is considered later.

8.2.1 Constant u; with depth
If u; is constant with depth—that is, if #; = u,, (Figure 8.3a)—then, referring

to Equation 8.28

2H
1 . 2
— J uism%dz =% (L — cosnm)
H 2H nw

> 1

= uO
So
- 2 . nmz —n’n’T,
u= E —oosnm)sh——exp| ———— 8.29
=~ nr ¢ ) 2H p( 4 ( )

Note that the term 1 - cos nx in the previous equation is zero for cases when
n is even; therefore, u is also zero. For the nonzero terms, it is convenient to
substitute 7 = 27 + 1, where m1 is an integer. So, Equation 8.29 will now read
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Figure 8.3 Variation of u; with depth: (a) u; constant with depth (two-way drainage);
(b) u; constant with depth (drainage at top); (c) u; constant with depth (drain-
age at bottom); (d) linear variation of u, (two-way drainage); (e) sinusoidal
variation of u; (two-way drainage); (f) half sinusoidal variation of u; (two-way
drainage); (g) triangular variation of u; (two-way drainage); (h) triangular varia-
tion of u, (drainage at top)-base at bottomy; (i) triangular variation of u; (drainage
at bottom)-base at top; (j) triangular variation of u; (drainage at top)-base at
top; (k) triangular variation of u; (drainage at bottom)-base at bottom.
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~ 2w . @m +1yz

=)y 2 - +1 Pl
u m2=0(2m+1)n[ cos(2m ytlsin Py

2,
y @{p[—(Zm +1¢m TD:|
4
or

m:NZuo . Mz 2

= Y —sih—— M °T, 8.30
u ZM s “exp(M 'T,) (8.30)

where M = (2m + 1)n/2. At a given time, the degree of consolidation at any
depth z is defined as

_ Excess porew ater pressure dissipated

z

Thital excess pore w ater pressure

_w-u_, u_Ac _Ac (8.31)

u; u; u; )

where Ac’ is the increase of effective stress at a depth z due to consolidation.
From Equations 8.30 and 8.31.

L N2 Mz
U,=1 ZSM sin”“ap (M 'T,) (8.32)

Figure 8.4 shows the variation of U, with depth for various values of the
nondimensional time factor T,; these curves are called isochrones. Example
8.1 demonstrates the procedure for calculation of U, using Equation 8.32.

Example 8.1

Consider the case of an initial excess hydrostatic pore water that is
constant with depth, that is, #; = u, (Figure 8.3c). For T, = 0.3, deter-
mine the degree of consolidation at a depth H/3 measured from the top
of the layer.

Solution

From Equation 8.32, for constant pore water pressure increase

2 .M
U, =1—Z—sm—zexp(—M 1)
i M H
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T

Figure 8.4 Variation of U, with z/H and T,.

1.0

2.0

1.0~

Here, z = H/3, or z/H = 1/3, and M = 2m + 1)n/2. We can now make

a table to calculate U..

. zIH
T,
m

M

Mz/H

2/M

. exp(-M?T,)

. sin(Mz/H)

. (2IM)[exp(-M?T,)
sin(Mz/H)]

0O ®NO VA WN —

1/3
0.3

/2
/6
1.273
0.4770
0.5
0.3036

1/3

03

|

3n/2
/2
0.4244
0.00128
1.0
0.0005

=0 2 =0.3041
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Using the value of 0.3041 calculated in step 9, the degree of consolida-
tion at depth H/3 is

Ugarsy = 1 - 0.3041 = 0.6959 = 69.59%
Note that in the previous table we need not go beyond m = 2, since the

expression in step 9 is negligible for m > 3.

In most cases, however, we need to obtain the average degree of consoli-
dation for the entire layer. This is given by

(198 t)J. tuld'z_ (19§ t)J. tUdZ
U = : 0

He (8.33)
(193 t)j udz
0

The average degree of consolidation is also the ratio of consolidation settle-
ment at any time to maximum consolidation settlement. Note, in this case,
that H, = 2H and u; = u,,.

Combining Equations 8.30 and 8.33

U =1—Z%exp(—M o) (8.34)
m=0

Terzaghi suggested the following equations for U,, to approximate the
values obtained from Equation 8.34:

2
ForU, = 0% —53% : T,=1| a® (8.35)
2| 100

ForU, =53% —100% : T, =1.781-0.933 [bg@00-U 4% )] (8.36)

Sivaram and Swamee (1977) gave the following equation for U,, varying
from 0% to 100%:

Un% _ @T AY°
100  [1+ @T, kP59

(8.37)
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or

_ (/A)Un3% A00Y
[l_Uav% Aoo)5-6 f357

(8.38)

v

Equations 8.37 and 8.38 give an error in T, of less than 1% for 0% < U,, <
90% and less than 3% for 90% < U,, < 100%. Table 8.1 gives the variation
of T, with U,, based on Equation 8.34.

It must be pointed out that, if we have a situation of one-way drainage
as shown in Figure 8.3b and ¢, Equation 8.34 would still be valid. Note,
however, that the length of the drainage path is equal to the total thickness
of the clay layer.

8.2.2 Linear variation of u;

The linear variation of the initial excess pore water pressure, as shown in
Figure 8.3d, may be written as

H -2
H

U;j=Up—u

(8.39)

Substitution of the earlier relation for #; into Equation 8.28 yields

— 2H
| 1 H-2z). nnz . nnz —n’n®T,

0

The average degree of consolidation can be obtained by solving Equations
8.33 and 8.40:

m =oo

2
Uav=1—ZPexp(—M 1)

m=0

This is identical to Equation 8.34, which was for the case where the excess
pore water pressure is constant with depth, and so the same values as given
in Table 8.1 can be used.

8.2.3 Sinusoidal variation of u,

Sinusoidal variation (Figure 8.3e) can be represented by the equation

Tz
= n—— 8.41
u uostH ( )
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Table 8.1 Variation of T, with U,,

Value of T,

u; = uy = const (Figure 8.3a through c)

U =ug — UI(H z }(Figure 8.3d) u, = o sin = (Figure 8.3e)
U.(%) 2H
0 0 0
| 0.00008 0.0041
2 0.0003 0.0082
3 0.00071 0.0123
4 0.00126 0.0165
5 0.00196 0.0208
6 0.00283 0.0251
7 0.00385 0.0294
8 0.00502 0.0338
9 0.00636 0.0382
10 0.00785 0.0427
Il 0.0095 0.0472
12 0.0113 0.0518
13 0.0133 0.0564
14 0.0154 0.0611
15 0.0177 0.0659
16 0.0201 0.0707
17 0.0227 0.0755
18 0.0254 0.0804
19 0.0283 0.0854
20 0.0314 0.0904
21 0.0346 0.0955
22 0.0380 0.101
23 0.0415 0.106
24 0.0452 0.111
25 0.0491 0.117
26 0.0531 0.122
27 0.0572 0.128
28 0.0615 0.133
29 0.0660 0.139
30 0.0707 0.145
31 0.0754 0.150
32 0.0803 0.156
33 0.0855 0.162
34 0.0907 0.168
35 0.0962 0.175
36 0.102 0.181
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Table 8.1 (continued) Variation of T, with U,,

Value of T,

u; = uy = const (Figure 8.3a through c)

u =up — U [
Un(%)

H-z

)(Figure 8.3d) U =ug sin;—; (Figure 8.3¢)

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6l
62
63
64
65
66
67
68
69
70
71

0.107
0.113
0.119
0.126
0.132
0.138
0.145
0.152
0.159
0.166
0.173
0.181
0.188
0.196
0.204
0.212
0.221
0.230
0.239
0.248
0.257
0.267
0.276
0.286
0.297
0.307
0318
0.329
0.304
0.352
0.364
0.377
0.390
0.403
0417

0.187
0.194
0.200
0.207
0214
0.221
0.228
0.235
0.242
0.250
0.257
0.265
0.273
0.281
0.289
0.297
0.306
0.315
0.324
0.333
0.342
0.352
0.361
0.371
0.382
0.392
0.403
0414
0.425
0.437
0.449
0.462
0.475
0.488
0.502

(continued)
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Table 8.1 (continued) Variation of T, with U,,
Value of T,

u; = uy = const (Figure 8.3a through c)

Ui =Up — [
U.(%)

H-z

)(Figure 8.3d) U =ug sin;—:l (Figure 8.3¢)

72 0431 0.516
73 0.446 0.531
74 0.461 0.546
75 0.477 0.562
76 0.493 0.578
77 0.511 0.600
78 0.529 0.614
79 0.547 0.632
80 0.567 0.652
8l 0.588 0.673
82 0.610 0.695
83 0.633 0.718
84 0.658 0.743
85 0.684 0.769
86 0.712 0.797
87 0.742 0.827
88 0.774 0.859
89 0.809 0.894
90 0.848 0.933
91 0.891 0.976
92 0.938 1.023
93 0.993 1.078
94 1.055 1.140
95 1.129 1.214
96 1.219 1.304
97 1.336 1.420
98 1.500 1.585
99 1.781 1.866
100 oo oo

The solution for the average degree of consolidation for this type of
excess pore water pressure distribution is of the form

2,
U, = 1—@<p(_"4T“J (8.42)

The variation of U,, for various values of T, is given in Table 8.1.
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8.2.4 Other types of pore water pressure variation

Figure 8.3f through k shows several other types of pore water pressure
variation. Table 8.2 gives the relationships for the initial excess pore water
pressure variation (#;) and the boundary conditions. These could be solved
to provide the variation of U,, with T, and they are shown in Figure 8.5.

Example 8.2

Owing to certain loading conditions, the excess pore water pressure in
a clay layer (drained at top and bottom) increased in the manner shown
in Figure 8.6a. For a time factor T, = 0.3, calculate the average degree
of consolidation.

Solution

The excess pore water pressure diagram shown in Figure 8.6a can be
expressed as the difference of two diagrams, as shown in Figure 8.6b
and c. The excess pore water pressure diagram in Figure 8.6b shows a
case where u; varies linearly with depth. Figure 8.6¢ can be approxi-
mated as a sinusoidal variation.

Table 8.2 Relationships for u; and boundary conditions

Figure u; Boundary conditions
8.3f U cos:—; Timet=0,u =y,
u=0atz=2H
u=0atz=0
8.3g For z <H, o , t=0,u=uy
H u=0atz=2H
Forz>H, 2uo—u—°z u=0acz=0
H
8.3h uo—“ﬁz t=0u=u,
u=0atz=H
u=uyatz=0
8.3i ”ﬁz t=0u=u,
u=ugatz=H
u=0atz=0
8.3j uﬁoz t=0,u=uy,
u=ujatz=H
u=0atz=0
8.3k uo—”ﬁ"z t=0u=u,
u=0atz=H

u=uyatz=0
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Figure 8.5 Variation of U,, with T, for initial excess pore water pressure diagrams shown
in Figure 8.3.

The area of the diagram in Figure 8.6b is
1
A, = 6(2)(15+5)= 60 kN

The area of the diagram in Figure 8.6¢ is

6

2=6
A, = 22sjn£dz= Iz sin 2 dz
v 2H 6

0

6 s

6
= (2)(6)(—005“2) “120)-2 sk
T ), T
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Pervious
e e e ui(l(N/mZ)

6m=2H=H,
Clay

Pervious

@

F--12

(O]
Figure 8.6 Calculation of average degree of consolidation (T, = 0.3): (a) soil profile and

excess pore water pressure; (b) excess pore water pressure as a linear distri-
bution; (c) excess pore water pressure as a sinusoidal distribution.

The average degree of consolidation can now be calculated as follows:

|ForFigure8.6b | |ForFigure8.60|
v !
U, T, =03)= U@ =03 -Uqs @y =030,
A, —A,
T 7

[Wetam ofrigums 2

From Table 8.1 for T, = 0.3, U,, = 61% for area A;; U,, = 52.3% for
area A,.
So

1(60)— (7 64)52 2
u, - 6160)-( 64523 326043 _ ) o
60-7.64 5236
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Example 8.3

A uniform surcharge of ¢ = 100 kN/m? is applied on the ground sur-
face as shown in Figure 8.7a.

a. Determine the initial excess pore water pressure distribution in
the clay layer.

b. Plot the distribution of the excess pore water pressure with depth
in the clay layer at a time for which T, = 0.5.

Solution

Part a: The initial excess pore water pressure will be 100 kN/m? and
will be the same throughout the clay layer (Figure 8.7a).

Sand
G.W.T.

|||<

. Sand

cl
R «— ;=100 kKN/m? )

wnt
3

5m=H=H,

(a) Rock
A
Lo T T T T
og L T,=05 i
0.6 |- | E
o) N
w
04 —
0.2 -
0 I I I I 0 I I >
0 02 04 06 08 1.0 0 20 40
(b) u, (c) u (KN/m?)

Figure 8.7 Excess pore water pressure distribution: (a) soil profile and plot of initial
excess pore water pressure with depth; (b) plot of U, with z/H at T, = 0.5;
(c) plot of u with zat T, = 0.5.
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Part b: From Equation 8.31, U, = 1-u/u;,, or u = u,(1 - U,). For T, = 0.5,

the values of U, can be obtained from the top half of Figure 8.4 as

shown in Figure 8.7b, and then the following table can be prepared:
Figure 8.7c shows the variation of excess pore water pressure with

depth.

zIH z(m) u u=u(l - U,) (kNIm?

z

0 0 0.63 37
0.2 | 0.65 35
0.4 2 0.71 29
0.6 3 0.78 22
0.8 4 0.89 I
1.0 5 | 0

Example 8.4

Refer to Figure 8.3e. For the sinusoidal initial excess pore water pres-
sure distribution, given

;= 50 sjn(m)kN '
2H
Assume H; = 2H = 5 m. Calculate the excess pore water pressure at the

midheight of the clay layer for T, = 0.2, 0.4, 0.6, and 0.8.

Solution

From Equation 8.28

neoo 2H
1 J‘ . NNz . NNz —n’nT,
uzz — | u;sih——dz || sh—— |exp| ———
H 2H 2H 4
n=1 0
term A

Let us evaluate the term A
2H
1 . nmz
A=— | uysh—dz
H 2H
0

or
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Note that the integral mentioned earlier is zero if 7 # 1, and so the only
nonzero term is obtained when 7 = 1. Therefore

28
:ﬂ sjnzﬂdzzﬂﬂ =50
H 2H H
0

A
Since only for # = 1 is A not zero

_ 2
u= SOSJ'nEa(p Ty
2H 4

At the midheight of the clay layer, z = H, and so
_ 2 _ 2
u=50s:'n£exp nTy =50exp Ty
2 4 4

The values of the excess pore water pressure are tabulated as follows:

. 2
T, u=50 exp(’:T“](kN/mz)

0.2 30.52
0.4 18.64
0.6 11.38
0.8 6.95

8.3 DEGREE OF CONSOLIDATION UNDER
TIME-DEPENDENT LOADING

Olson (1977) presented a mathematical solution for one-dimensional consoli-
dation due to a single ramp load. Olson’s solution can be explained with the
help of Figure 8.8, in which a clay layer is drained at the top and at the bot-
tom (H is the drainage distance). A uniformly distributed load ¢ is applied at
the ground surface. Note that g is a function of time, as shown in Figure 8.8b.

The expression for the excess pore water pressure for the case where
u; = u 1s given in Equation 8.30 is

m =oo

2u, . Mz 2
uzZ—sm—@z M “T
" H P v)

m=0

where T, = C t/H>.
As stated earlier, the applied load is a function of time:

a=f() (8.43)

where ¢, is the time of application of any load.
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Figure 8.8 One-dimensional consolidation due to single ramp load: (a) soil profile;
(b) ramp loading; (c) variation of U,, (%) with T, and T_.. (After Olson, R. E.,
J. Geotech. Eng. Div., ASCE, 103(GT]l), 55, 1977.)

For a differential load dg applied at time #,, the instantaneous pore pres-
sure increase will be du; = dq. At time ¢, the remaining excess pore water
pressure du at a depth z can be given by the expression

m =co 2
du=22;uismmexp{ MC, m}

H H?
m=0
m=co v 2 _
=) 2 M Z g T ETE) (8.44)
o M H H
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The average degree of consolidation can be defined as

He
0qe— @ /H t)jo udZ  gementattinet
de Settlem entattinet= oo

(8.45)

Uy =

where ag. is the total load per unit area applied at the time of the analy-
sis. The settlement at time ¢ = o is, of course, the ultimate settlement.
Note that the term g, in the denominator of Equation 8.45 is equal to
the instantaneous excess pore water pressure (#; = ¢.) that might have
been generated throughout the clay layer had the stress g, been applied
instantaneously.

Proper integration of Equations 8.44 and 8.45 gives the following:

For T, < T,
< 29 . Mz 2
= —=-sin——[1— M “T, 8.46
u m:0M3Tcsm g L expt )] (8.46)
and
T, 2O 1 R
Uy,=—911-— Y —[1- M “T, 8.47
TC{ TD;MJ exp( )1} (8.47)
For T, > T,
u=m§ 2% (oM 2T, )—1]sin - Zexp M 2T,) (8.48)
&y PT, © H b '
and
U =1—£I§i[exp(1v1 ’T.)—1lexp M *T.) (8.49)
av Tcm=0 M 1 c c .
where
Cok
To=2 (8.50)

Figure 8.8c shows the plot of U,, against T, for various values of T..
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Example 8.5

Based on one-dimensional consolidation test results on a clay, the
coefficient of consolidation for a given pressure range was obtained
as 8 x 103 mm?/s. In the field, there is a 2 m-thick layer of the same
clay with two-way drainage. Based on the assumption that a uniform
surcharge of 70 kN/m? was to be applied instantaneously, the total
consolidation settlement was estimated to be 150 mm. However, dur-
ing the construction, the loading was gradual; the resulting surcharge
can be approximated as

q kN An2)=2—gt<days)

for # < 60 days and
q = 70 kN/m?
for ¢ > 60 days. Estimate the settlement at # = 30 and 120 days.

Solution

T. = (8.50)

Now, t. = 60 days = 60 x 24 x 60 x 60 s; also, H, =2 m = 2H (two-way
drainage), and so H =1 m = 1000 mm. Hence

_ @X107°)60Xx24x60x60)

T =0.0414
© 1000y
At t = 30 days
-3
7, = Cub_ BX107)B0x24x60x60) 0o

H 2 1000y

From Figure 8.8c, for T, = 0.0207 and T. = 0.0414, U,, ~ 5%. So
Settlement = (0.05)(150) = 7.5 mm
At ¢t =120 days

o _ 8x107°)A20x24x60x60)

=0.083
v 1000y

From Figure 8.8c¢ for T, = 0.083 and T. = 0.0414, U,, = 27%. So

Settlement = (0.27)(150) = 40.5 mm
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8.4 NUMERICAL SOLUTION FOR ONE-DIMENSIONAL
CONSOLIDATION

8.4.1 Finite difference solution

The principles of finite difference solutions were introduced in Section 7.8.
In this section, we will consider the finite difference solution for one-
dimensional consolidation, starting from the basic differential equation of
Terzaghi’s consolidation theory:

Jdu _ 0%u
ot

(8.51)

Let uyg, tg, and zi be any arbitrary reference excess pore water pressure,
time, and distance, respectively. From these, we can define the following
nondimensional terms:

N ondin ensionalexcess pore w ater pressure: u = el (8.52)
Ug
. . . — t
N ondin ensional tim e:tzg (8.53)
N ondin ensionaldepth:z = z (8.54)
Zq

From Equations 8.52, 8.53, and the left-hand side of Equation 8.51

Ju uz Jdu
— = 8.55
Jt & dt ( )

Similarly, from Equations 8.52, 8.53, and the right-hand side of
Equation 8.51

’u_ | w d’u
022 " Z2 9z?

C, (8.56)

From Equations 8.55 and 8.56

u 0u | u 0’u

% ot " Z 9z’
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or

10u_c, o
t 0t Z 02°

(8.57)

If we adopt the reference time in such a way that & =z £, then
Equation 8.57 will be of the form

Jdu _9d’u

== 8.58

ot 0z’ (8.55)
The left-hand side of Equation 8.58 can be written as

ou_ 1 _ _

So = ap Goese — o) (8.59)

where Upz and Uy g, are the nondimensional pore water pressures at
point 0 (Figure 8.9a) at nondimensional times ¢ and ¢ + At. Again, similar to
Equation 7.56:

aza: 1
0z (AzY

U+ Use—2Uox) (8.60)

Equating the right sides of Equations 8.59 and 8.60 gives

1 _ _ 1 _ _
— gy tiat — W)= T+ U3 —2Upx
AT Qo at 0E) (AE)z (L 3t 0fE)
or
_ At _ _ _ _
Upgsat = 5 Mg+ Uz — 2Upe )+ Wog (8.61)
Azy

For Equation 8.61 to converge, At and Az must be chosen such that A7/(AZ)?
is less than 0.5.

When solving for pore water pressure at the interface of a clay layer
and an impervious layer, Equation 8.61 can be used. However, we need
to take point 3 as the mirror image of point 1 (Figure 8.9b); thus #, ; = iz; ;.
So, Equation 8.61 becomes

Ut = o QU — 20p )+ o (8.62)
Azy
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1 1
Az Az Clay
0 0
2 4 2 4
Impervious
Az Az layer
(@) 3 (b) 3
1
Layer 1
Az Cop ki

0 Interface

AZ Layer 2
Cuz' k2

(c) 3

Figure 8.9 Numerical solution for consolidation: (a) derivation of Equation 8.61;
(b) derivation of Equation 8.62; (c) derivation of Equation 8.66.

8.4.2 Consolidation in a layered soil

It is not always possible to develop a closed-form solution for consolida-
tion in layered soils. There are several variables involved, such as different
coefficients of permeability, the thickness of layers, and different values of
coefficient of consolidation. Figure 8.10 shows the nature of the degree of
consolidation of a two-layered soil.

In view of the earlier description, numerical solutions provide a better
approach. If we are involved with the calculation of excess pore water
pressure at the interface of two different types (i.e., different values of C,)
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Pervious
T Clay layer 1
H/2 k,
Interface Co)
H,=H
Clay layer 2
H/2 ko ="k
Cu(2)= %Cv(l)
(a) Impervious
1.0 | |
CU(l)t
AT
T,=0.08
0.16
T ool ___ AL /L]
N 0.5
0.31
0.62 |
0.94
1.25
1.88
o | | | |
0 0.2 0.4 0.6 0.8 1.0
(b) u,

Figure 8.10 Degree of consolidation in two-layered soil: (a) soil profile; (b) variation
of U, with z/H and T,. (After Luscher, U., J. Soil Mech. Found. Div., ASCE,
91(SMI), 190, 1965.)

of clayey soils, Equation 8.61 will have to be modified to some extent.
Referring to Figure 8.9¢, this can be achieved as follows (Scott, 1963).
From Equation 8.14

kou_, 0
c, ot 07
T T

Change D ifference betw een
nvolume the rate of flow
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Based on the derivations of Equation 7.76

’u 1| k k 2k 2k
kilzlzi 12 + 2 : U et 2 Uz — 2Ug s (8.63)
0Z 2| Az} @Azf || k+k, k +k,
where
k, and k, are the coefficients of permeability in layers 1 and 2,
respectively

uy,, 1y, and u; , are the excess pore water pressures at time ¢ for points
0, 1, and 3, respectively

Also, the average volume change for the element at the boundary is

kou 1k Xk |1
— = — *+— | Qo — .
c, ot Z[Cul c., JAt(uo't At~ U ) (8.64)

where u,, and u,,,, are the excess pore water pressures at point 0 at times ¢
and t + At, respectively. Equating the right-hand sides of Equations 8.63
and 8.64, we get

k: k. 1
[1 + ZJ (Wo trae — Uo )

C, C., JAt
1 2k 2k
:72&1"‘](2 - .t i UWye—2Ug s
A z) ki +k ki +k,
or
a _ At ki +k, 2k, a o+ 2k, @ — 20 4w

0 jtrAL Azf Ko+ o | Kot Ky 1t —— 3t 0t 0t

or
Ug At = At 021 Ltk Ay 2k U 2kz Use—2Uox [+ Upp
Azy 1+ k: A )Cy, £, )| kit k; ki +k;

(8.65)
Assuming 14 =C,, /& and combining Equations 8.52 through 8.54 and
8.65, we get
1+k, k& At
1+ 0{2 kl)CIH /Cl)z ) (AE)Z
X( 2k, 2k,

o+ U3+ —2Upz |+ gz 8.66
I +k, 1€ I +k, 3t o,t) 0t ( )

Up t+at =
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Example 8.6

A uniform surcharge of g = 150 kN/m? is applied at the ground surface
of the soil profile shown in Figure 8.11a. Using the numerical method,
determine the distribution of excess pore water pressure for the clay
layers after 10 days of load application.

Solution

Since this is a uniform surcharge, the excess pore water pressure
immediately after the load application will be 150 kN/m? through-
out the clay layers. However, owing to the drainage conditions, the
excess pore water pressures at the top of layer 1 and bottom of layer 2
will immediately become zero. Now, let zg = 8 m and uy = 1.5 kN/m?2.

So,Z=(8m)/(8 m) =1and &z

2 025

4 0.50

6 0.75

(150 kN/m?)/(1.5 kN/m?) = 100.

Clay 1
ky=2.8 x 107 mm/s
C,,=0.26 m*/day

Clay 2
ky=2x10" mm/s

=0.38 m%/day

T G T

Time (days)
0 : o1
0 0 0
100 67.5 56.13
100 100 70.98 Interface
100 52.5 50.12
0 0 0

z(m) z

Figure 8.1 Numerical solution for consolidation in layered soil: (a) soil profile; (b) varia-
tion of pore water pressure with depth and time.
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Figure 8.10b shows the distribution of # at time ¢ = 0; note that
AZ =2/8 =0.25. Now

Let At = 5 days for both layers. So, for layer 1

__C,At_0266)

M==25 2+ =00203
Aﬁl’z = 0'02023 =0325 (<05)
Azf 025
For layer 2
Ny = EmAt_0386)_ 5597
A 8
A‘Ez)z _ 0.02927 —0475 (<05)
Azy 025
For ¢ = 5 days
Atz =0
ﬁO,?+At =
Atz =0.25
_ Aty _ _ _ _
o t+at = (A;l))z (r+Usz— 20 )+ U

=0325[0+100-2@00)}+100=675 (8.61)

At Z = 0.5 (Note: this is the boundary of two layers, so we will use
Equation 8.66)

1+k, &y Aty
1+ (& A1 )Co, £4,) A2
X( 2k, _ 2k,

u + ﬁ3’;_ - ZEO,E + ﬁO,T:
k +k, k +k,

Up g+t =

_ 1+ 2/28)
1+ @x026)/28x038)

0325)

00)+
2+2.8(l ) 2+238

X[zxzs 2x2 (100)—2(100)]+100
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or
oot = (L152)0 325)(116.67 +83 33— 200)+ 100 = 100
Atz =0.75
Uo £+t = % Qg+ Ue—200z)t+ Uos
= 0A475[100+0—2@00)}+100=525
Atz=1.0

uO,f+Af =0

For ¢ = 10 days

Atz =0
Uy 7ar =0
Atz =0.25

Uy zat = 0.325[0+100—-2675)]+675=56.13
Atz =0.5

2x2 2%2
8 675)+
2+28 2+28

ao,;+AE=(1.152)(o.325)[ (525)—2(100ﬂ+100

= (1.152)0325)(78.75+43.75—200)+100 = 70 98

Atz =0.75

Tyzene = 0A75[100+0—2(52.5)]+52.5=50.12
Atz =1.0

o a7 =0

The variation of the nondimensional excess pore water pressure is
shown in Figure 8.11b. Knowing u = (#)(uy) = u (1.5) kIN/m?, we can
plot the variation of # with depth.

Example 8.7

For Example 8.6, assume that the surcharge ¢ is applied gradually.
The relation between time and ¢ is shown in Figure 8.12a. Using the
numerical method, determine the distribution of excess pore water
pressure after 15 days from the start of loading.
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Solution

As mentioned earlier, zg = 8 m, uy = 1.5 kN/m?. For At = 5 days

—m}; —0325 2% _g47s
Az) azy

The continuous loading can be divided into step loads such as
60 kN/m? from 0 to 10 days and an added 90 kN/m? from the tenth
day on. This is shown by dashed lines in Figure 8.12a.

A
250
200
&
£ 150
Z, |
4 |
= 100 |
|
|
50
0 I I I I I >
5 10 15 20 25
(a) Time (days)
Time (days)
0 5 10 15
2
0 0 0 0 u (kN/m?)
0 0 >
22.45
60
57.6
9 0.25 40 27 8245 576 | N 86.4
28.4
60
4 0.50 40 40 88.4 L2 | 124.8
20.05
60
40 21 80.05 46.0
6 0/55—m—— =2 e ——— %90
g 1000 0 0 0
z(m) Zz
b)

Figure 8.12 Numerical solution for ramp loading: (a) ramp loading; (b) variation of pore
water pressure with depth and time.
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At t =0 days

N
Il
o

u=0

z=025 u=60/15=40

Atz =0.25, from Equation 8.61

o 7,47 = 0.325[0 + 40 - 2(40)] + 40 =27
Atz = 0.5, from Equation 8.66

o erat = 1 .532)0 325)

[2><2.8 2
X

@0)+ Xzz.s @0)— 2(40)]+ 40 =40

2+238 2+

Atz = 0.75, from Equation 8.61

Ty 1.a7 = 0.475[40 + 0 = 2(40)] + 40 = 21
Atz=1

ZE

At ¢t =10 days
Atz =0

Atz =0.25, from Equation 8.61
Tl o7 = 0.325[0 + 40 — 2(27)] + 27 = 22.45

At this point, a new load of 90 kIN/m? is added, so # will increase by an
amount 90/1.5 = 60. The new 7 5, 57 is 60 + 22.45 = 82.45. Atz = 0.5,

from Equation 8.66

o eest = (L152)0 325)

% 2x238 2
2+28 2+

@7)+ X223 (21)—2(40)]+4o =284
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New #, 7,7 = 28.4 + 60 = 88.4

Atz = 0.75, from Equation 8.61
yz.a7 = 0.475[40 + 0 - 2(21)]+ 21 = 20.05
New # 7,57 = 60 + 20.05 = 80.05

Atz =1
u=0

At t =15 days
Atz =0

=0
Atz =0.25
Hozoar = 0.325[0 + 88.4 — 2(82.45)] + 82.45 = 57.6

Atz =0.5

Uo,erat = (1:152)0 325)

2X28 2X2
X 245)+ 0.05)-2@884)(+884 =832
[2+2.8(8 ) 2+2.8¢3 )-26 ):|

Atz =0.75

o 7oar = 0.475[88.4 + 0 — 2(80.05)]+ 80.05 = 46.0
Atz =1

u=0

The distribution of excess pore water pressure is shown in Figure 8.12b.

8.5 STANDARD ONE-DIMENSIONAL
CONSOLIDATION TEST AND INTERPRETATION

The standard one-dimensional consolidation test is usually carried out
on saturated specimens about 25.4 mm thick and 63.5 mm in diameter
(Figure 8.13). The soil specimen is kept inside a metal ring, with a porous
stone at the top and another at the bottom. The load P on the specimen is
applied through a lever arm, and the compression of the specimen is mea-
sured by a micrometer dial gauge. The load is usually doubled every 24 h.
The specimen is kept under water throughout the test.
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Micrometer
dial gauge @ Load

h 4
v
e Water
Porous stone 3"
LT
Soil Brass
specimen ring
v
N R
Porous stone :

Figure 8.13 Consolidometer.

For each load increment, the specimen deformation and the correspond-
ing time ¢ are plotted on semilogarithmic graph paper. Figure 8.14a shows a
typical deformation versus log ¢ graph. The graph consists of three distinct
parts:

1. Upper curved portion (stage I). This is mainly the result of precom-
pression of the specimen.

2. A straight-line portion (stage II). This is referred to as primary con-
solidation. At the end of the primary consolidation, the excess pore
water pressure generated by the incremental loading is dissipated to
a large extent.

3. A lower straight-line portion (stage III). This is called secondary
consolidation. During this stage, the specimen undergoes small
deformation with time. In fact, there must be immeasurably small
excess pore water pressure in the specimen during secondary
consolidation.

Note that at the end of the test, for each incremental loading, the stress on
the specimen is the effective stress ’. Once the specific gravity of the soil
solids, the initial specimen dimensions, and the specimen deformation at
the end of each load have been determined, the corresponding void ratio
can be calculated. A typical void ratio versus effective pressure relation
plotted on semilogarithmic graph paper is shown in Figure 8.14b.

8.5.1 Preconsolidation pressure

In the typical e versus log ¢’ plot shown in Figure 8.14b, it can be seen
that the upper part is curved; however, at higher pressures, e and log ¢’



340 Advanced Soil Mechanics

Sample deformation

<+—

» Time (log scale)

—
0
=

»
»

Void ratio, e

» o (logscale)

(b)

Figure 8.14 (a) Typical specimen deformation versus log-of-time plot for a given
load increment and (b) typical e versus log ¢’ plot showing procedure for
determination of o, and C..

bear a linear relation. The upper part is curved because when the soil
specimen was obtained from the field, it was subjected to a certain maxi-
mum effective pressure. During the process of soil exploration, the pres-
sure is released. In the laboratory, when the soil specimen is loaded,
it will show relatively small decrease of void ratio with load up to the
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maximum effective stress to which the soil was subjected in the past.
This is represented by the upper curved portion in Figure 8.14b. If the
effective stress on the soil specimen is increased further, the decrease
of void ratio with stress level will be larger. This is represented by the
straight-line portion in the e versus log ¢’ plot. The effect can also be
demonstrated in the laboratory by unloading and reloading a soil speci-
men, as shown in Figure 8.15. In this figure, cd is the void ratio—effective
stress relation as the specimen is unloaded, and dfgh is the reloading
branch. At d, the specimen is being subjected to a lower effective stress
than the maximum stress o} to which the soil was ever subjected. So, df
will show a flatter curved portion. Beyond point f, the void ratio will
decrease at a larger rate with effective stress, and gh will have the same
slope as be.

Based on the previous explanation, we can now define the two conditions
of a soil:

1. Normally consolidated. A soil is called normally consolidated if the
present effective overburden pressure is the maximum to which the
soil has ever been subjected, that iS, O} et = Cpastm axinum -

2. Overconsolidated. A soil is called overconsolidated if the present
effective overburden pressure is less than the maximum to which the
soil was ever subjected in the past, that is, G}t < Opastm axinum «

Void ratio (e)

Reloading
branch

Unloading
branch

h

»
»

o1 o' (log scale)

Figure 8.15 Plot of void ratio versus effective pressure showing unloading and reloading
branches.
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In Figure 8.15, the branches ab, cd, and df are the overconsolidated state

ofa

soil, and the branches bc and /b are the normally consolidated state of

a soil.

In the natural condition in the field, a soil may be either normally consol-
idated or overconsolidated. A soil in the field may become overconsolidated
through several mechanisms, some of which are listed in the following
(Brummund et al., 1976):

Removal of overburden pressure
Past structures

Glaciation

Deep pumping

Desiccation due to drying
Desiccation due to plant lift
Change in soil structure due to secondary compression
Change in pH

Change in temperature

Salt concentration

Weathering

Ion exchange

Precipitation of cementing agents

The preconsolidation pressure from an e versus log ¢’ plot is generally
determined by a graphical procedure suggested by Casagrande (1936), as
shown in Figure 8.14b. The steps are as follows:

1

[ NGV ]

(o)

. Visually determine the point P (on the upper curved portion of the e

versus log ¢’ plot) that has the maximum curvature.

. Draw a horizontal line PQ.

. Draw a tangent PR at P.

. Draw the line PS bisecting the angle QPR.

. Produce the straight-line portion of the e versus log ¢’ plot backward

to intersect PS at T.

. The effective pressure corresponding to point T is the preconsolida-

tion pressure Of.

In the field, the overconsolidation ratio (OCR) can be defined as

ocr=2¢ (8.67)

o

where o), = present effective overburden pressure.



Consolidation 343

8.5.1.1 Empirical correlations for preconsolidation pressure

There are some empirical correlations presently available in the literature to
estimate the preconsolidation pressure in the field. Following are a few of
these relationships. However, they should be used cautiously.

Stas and Kulhawy (1984)

Oe _ jgaar1szy (rclaysw ith sensitivity between 1 and 10)  (8.68)

Pa

where
p. is the atmospheric pressure (=100 kIN/m?)
LI is the liquidity index
Hansbo (1957)

6:: :(X(VST)S\J(VST) (869)
where
S.vst) = undrained shear strength based on the vane shear test
222

O ysr) = an em pirical coefficient= LG )

where LL is the liquid limit.
Mayne and Mitchell (1988) gave a correlation for oygr) as

(X(VST) =22p1°*® (8.70)

where PI is the plasticity index (%).
Nagaraj and Murty (1985)

oo, = 1322 (e, /&) 0.04631g0, 8.7
0.188

where
e, is the void ratio at the present effective overburden pressure, ¢’
e, is the void ratio of the soil at liquid limit
0. and o}, are in kN/m?

=[LL@ 1@
% 100 | °

G, is the specific gravity of soil solids
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8.5.1.2 Empirical correlations for overconsolidation ratio

Similar to the preceding correlations for preconsolidation pressure, the
overconsolidation ratio (OCR) in the field has been empirically correlated
by various investigators. Some of those correlations are summarized in the
following.

The overconsolidation has been correlated to field vane shear strength

[Su(VST)] as

0CR = puusn (8.72)
(¢

o

where G, is the effective overburden pressure.
The magnitudes of B developed by various investigators are given in the
following:

* Mayne and Mitchell (1988)
B=22pP1% ) °* (8.73)
where PI is the plasticity index.
e Hansbo (1957)

222

= 8.74
B v @) (8.74)
where w is the moisture content.
e Larsson (1980)
B = 1 (8.75)
0.08+0.0055@1

Kulhawy and Mayne (1990) have also presented the following three
correlations:

o

OCR :(Pf)loﬂ“-mm (8.76)
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OCR = 10[1—25LI—125bg(c;@a)] (8.77)

where LI is the liquidity index.

= Pa
OCR =058N [GQJ (8.78)

where N is the field standard penetration resistance.
Mayne and Kemper (1988) provided a correlation between OCR and the
cone penetration resistance ¢, in the form

101
0CR =037(q°‘,"°) (8.79)

where 6, and o, are total and effective vertical stress, respectively.

8.5.2 Compression index

The slope of the e versus log ¢’ plot for normally consolidated soil is referred
to as the compression index C.. From Figure 8.14b

Co=— 272 - A,e, (8.80)
logo, —ogs;  Jog(o, 1)

For undisturbed normally consolidated clays, Terzaghi and Peck (1967)
gave a correlation for the compression index as

C.=0.009(LL-10)

Based on the laboratory test results, several empirical relations for C,
have been proposed, some of which are given in Table 8.3.

Based on the modified Cam clay model, Wroth and Wood (1978) have
shown that

P13 )] (8.81)

C.=~05G,
100

where PI is the plasticity index.
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Table 8.3 Empirical relations for C_

Reference Relation Comments
Terzaghi and Peck (1967) C.=0.009(LL - 10) Undisturbed clay
C.=0.007(LL — 10) Remolded clay
LL = liquid limit (%)
Azzouz et al. (1976) C.=0.0lwy Chicago clay
wy = natural moisture content (%)
C.=0.0046(LL - 9) Brazilian clay
LL = liquid limit (%)
C.= 1.21+1.005(e, — 1.87) Motley clays from

Sao Paulo city
e, = in situ void ratio
C. = 0.208¢, + 0.0083 Chicago city
e, = in situ void ratio

C.=0.0115wy Organic soil, peat
wy = natural moisture content (%)
Nacci et al. (1975) C.=0.02 + 0.014(Pl) North Atlantic clay

Pl = plasticity index (%)

238
Rendon-Herrero (1983) C.=0.141 GL'Z(HGeo }

G, = specific gravity of soil solids

€, = in situ void ratio

LL
Nagaraj and Murty (1985) C.= 0'2343(ﬁ )Gs

G, = specific gravity of soil solids
LL = liquid limit (%)

Park and Koumoto (2004) C.=———°
371.747 - 4.275n,

n, = in situ porosity of soil

If an average value of G, is taken to be about 2.7 (Kulhawy and Mayne,
1990)

_PI

C.=
74

(8.82)

Burland (1990) showed that there exists a good relationship between
e; and ¥ in the form

C¥=0256e -0.04 (8.83)

where e, is the void ratio at liquid limit (LL).



Consolidation 347

= Soo = Soog 2 — €00 ~ Sio00 (8.84)
1000 kN /n
b 2

100 kN /fn

@]
*
|

where ey, and e,,,, are void ratios at vertical effective pressures of 100 and
1000 kN/m?2, respectively.

Example 8.8

For a clay soil, given LL = 54% and specific gravity of soil solids
G, = 2.71. Determine the value of ¢} based on Equation 8.83.

Solution

From Equation 1.40
e=wG,

Fore=e,w =LL. Hence

e =[LL(% ))Gs)z(m)(z.n): 1463

100 100

From Equation 8.83

C*=0256e, —0.04=(0256)1463)-0.04=0335

8.6 EFFECT OF SAMPLE DISTURBANCE
ON THE e VERSUS LOG ¢’ CURVE

Soil samples obtained from the field are somewhat disturbed. When con-
solidation tests are conducted on these specimens, we obtain e versus log ¢’
plots that are slightly different from those in the field. This is demonstrated
in Figure 8.16.

Curve I in Figure 8.16a shows the nature of the e versus log ¢’ variation
that an undisturbed normally consolidated clay (present effective overbur-
den pressure 65; void ratio ¢,) in the field would exhibit. This is called the
virgin compression curve. A laboratory consolidation test on a carefully
recovered specimen would result in an e versus log ¢’ plot such as curve II.
If the same soil is completely remolded and then tested in a consolidometer,
the resulting void ratio—pressure plot will be like curve III. The virgin com-
pression curve (curve I) and the laboratory e versus log ¢’ curve obtained
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e Tt =7

Virgin compression
\ -
\/ curve slope = C,

Laboratory
(undisturbed
sample)

"\ Remolded

Void ratio

79 S L
1
|
1

»
»

(a) oy o’ (log scale)

a 1 \_ Field recompression
slope, C,

\ Virgin compression
N & curveslope=C,
N Laboratory
(undisturbed
sample)

Void ratio

Laboratory
unloading
slope=C,

0.4ey |-——--

4

(b) og o o’ (log scale)'

Figure 8.16 Effect of sample disturbance on the e versus log 6" curve: (a) normally con-
solidated soil; (b) overconsolidated soil.

from a carefully recovered specimen (curve II) intersect at a void ratio of
about 0.4¢, (Terzaghi and Peck, 1967).

Curve I in Figure 8.16b shows the nature of the field consolidation
curve of an overconsolidated clay. Note that the present effective over-
burden pressure is 05, the corresponding void ratio ¢,, ', the preconsoli-
dation pressure, and bc a part of the virgin compression curve. Curve Il is
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Table 8.4 Typical values of C_and C,

of some natural clays
Soil C. C. C/C,

Boston blue clay 035 007 5

Chicago clay 0.4 007 57
New Orleans clay 0.3 005 6
Montana clay 021 0.05 42

the corresponding laboratory consolidation curve. After careful testing,
Schmertmann (1953) concluded that the field recompression branch (ab
in Figure 8.15b) has approximately the same slope as the laboratory
unloading branch, cd. The slope of the laboratory unloading branch is
referred to as C,. The range of C, is approximately from one-fifth to one-
tenth of C.. Table 8.4 gives typical values of C_and C, of some natural
clays.

Based on the modified Cam clay model, Kulhawy and Mayne (1990)
have shown that

PI

=— 8.85
370 ( )

r

8.7 SECONDARY CONSOLIDATION

It has been pointed out previously that clays continue to settle under sus-
tained loading at the end of primary consolidation, and this is due to the
continued readjustment of clay particles. Several investigations have been
carried out for qualitative and quantitative evaluation of secondary con-
solidation. The magnitude of secondary consolidation is often defined by
(Figure 8.14a)

AH M

o= (8.86)
gt - bgy

where C, is the coefficient of secondary consolidation.

Mesri (1973) published an extensive list of the works of various investi-
gators in this area. Figure 8.17 details the general range of the coefficient
of secondary consolidation observed in a number of clayey soils. Secondary
compression is greater in plastic clays and organic soils. Based on the
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Figure 8.17 Coefficient of secondary consolidation for natural soil deposits:
I, Whangamarino clay; 2, Mexico City clay; 3, calcareous organic silt; 4, Leda
clay; 5, Norwegian plastic clay; 6, amorphous and fibrous peat; 7, Canadian
muskeg; 8, organic marine deposits; 9, boston blue clay; 10, Chicago blue clay;
11, organic silty clay; o, organic silt, etc. (After Mesri, G., J. Soil Mech. Found.
Div., ASCE, 99(SMI), 123, 1973.)

coefficient of secondary consolidation, Mesri (1973) classified the second-
ary compressibility, and this is summarized as follows:

C, Secondary compressibility
<0.002 Very low
0.002-0.004 Low

0.004-0.008 Medium
0.008-0.016 High

0.016-0.032 Very high
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5 T T T T T
4 _
Sedimented
X
< 3+ -
o0
2
d Remolded at
V)
< liquid limit
oo _
U{S
Preloaded to
1+ 192 kN/m? N
0 | | | | |
5 10 50 100 500 1000 4000

Consolidation pressure (kN/m?)

Figure 8.18 Coefficient of secondary compression for organic Paulding clay. (After
Mesri, G., J. Soil Mech. Found. Div., ASCE, 99(SMI), 123, 1973.)

In order to study the effect of remolding and preloading on secondary com-
pression, Mesri (1973) conducted a series of one-dimensional consolidation
tests on an organic Paulding clay. Figure 8.18 shows the results in the form
of a plot of Ae/(Alog t) versus consolidation pressure. For these tests, each
specimen was loaded to a final pressure with load increment ratios of 1 and
with only sufficient time allowed for excess pore water pressure dissipation.
Under the final pressure, secondary compression was observed for a period
of 6 months. The following conclusions can be drawn from the results of
these tests:

1. For sedimented (undisturbed) soils, Ae/(Alog#) decreases with the
increase of the final consolidation pressure.

2. Remolding of clays creates a more dispersed fabric. This results in a
decrease of the coefficient of secondary consolidation at lower con-
solidation pressures as compared to that for undisturbed samples.
However, it increases with consolidation pressure to a maximum
value and then decreases, finally merging with the values for normally
consolidated undisturbed samples.

3. Precompressed clays show a smaller value of coefficient of secondary
consolidation. The degree of reduction appears to be a function of the
degree of precompression.
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Table 8.5 Values of C /C_ for natural oils
Soil C.C

/e
Whangamarino clay 0.03-0.04
Calcareous organic silt 0.035-0.06
Amorphous and fibrous peat 0.035-0.083
Canadian muskeg 0.09-0.10
Leda clay 0.03-0.055
Peat 0.075-0.085
Post-glacial organic clay 0.05-0.07
Soft blue clay 0.026
Organic clays and silts 0.04-0.06
Sensitive clay, Portland 0.025-0.055
Peat 0.05-0.08
San Francisco Bay mud 0.04-0.06
New Liskeard varved clay 0.03-0.06
Nearshore clays and silts 0.055-0.075
Fibrous peat 0.06—0.085
Mexico City clay 0.03-0.035
Hudson River silt 0.03-0.06
Leda clay 0.025-0.04
New Haven organic clay silt 0.04-0.075

Source: Compiled from Mesri, G. and Godlewski, PM.,
J. Geotech. Eng., ASCE, 103(5),417, 1977.

Mesri and Godlewski (1977) compiled the values of C,/C, for a number
of naturally occurring soils. A summary of this is given in Table 8.5. From
this study, it appears that, in general,

e C,/C.~0.04 =0.01 (for inorganic clays and silts)
e C,/C.~0.05 = 0.01 (for organic clays and silts)
e C,/C.~0.075 = 0.01 (for peats)

8.8 GENERAL COMMENTS ON
CONSOLIDATION TESTS

Standard one-dimensional consolidation tests as described in Section 8.5 are
conducted with a soil specimen having a thickness of 25.4 mm in which the
load on the specimen is doubled every 24 h. This means that Ac/c’ is kept at
1 (Ao is the step load increment, and o’ the effective stress on the specimen
before the application of the incremental step load). Following are some general
observations as to the effect of any deviation from the standard test procedure.
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Effect of load-increment ratio Ac/c’. Striking changes in the shape of the
compression—time curves for one-dimensional consolidation tests are gen-
erally noticed if the magnitude of Ac/c’ is reduced to less than about 0.25.
Leonards and Altschaeffl (1964) conducted several tests on Mexico City
clay in which they varied the value of Ac/c’ and then measured the excess
pore water pressure with time. The general nature of specimen deformation
with time is shown in Figure 8.19a. From this figure it may be seen that,
for Ac/c’ < 0.235, the position of the end of primary consolidation (i.e., zero
excess pore water pressure due to incremental load) is somewhat difficult
to resolve. Furthermore, the load-increment ratio has a high influence on
consolidation of clay. Figure 8.19b shows the nature of the e versus log ¢’
curve for various values of Ac/c’. If Ac/c’ is small, the ability of individual
clay particles to readjust to their positions of equilibrium is small, which
results in a smaller compression compared to that for larger values of Ac/c’.

29 025
o

Specimen height

@ Excessive pore
water pressure =0

v

() Time

Void ratio, e

v

(b) o’ (log scale)

Figure 8.19 Effect of load-increment ratio: (a) effect of Ac/c” on the consolidation curve;
(b) effect of Ac/c” on e-log 6" plot.
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Effect of load duration. In conventional testing, in which the soil speci-
men is left under a given load for about a day, a certain amount of sec-
ondary consolidation takes place before the next load increment is added.

If the specimen is left under a given load for more than a day, additional
secondary consolidation settlement will occur. This additional amount of sec-
ondary consolidation will have an effect on the e versus log ¢’ plot, as shown in
Figure 8.20. Curve a is based on the results at the end of primary consolidation.
Curve b is based on the standard 24 h load-increment duration. Curve c refers
to the condition for which a given load is kept for more than 24 h before the
next load increment is applied. The strain for a given value of ¢’ is calculated
from the total deformation that the specimen has undergone before the next
load increment is applied. In this regard, Crawford (1964) provided experimen-
tal results on Leda clay. For his study, the preconsolidation pressure obtained
from the end of primary e versus log 6’ plot was about twice that obtained from
the e versus log ¢’ plot where each load increment was kept for a week.

Effect of specimen thickness. Other conditions remaining the same, the pro-
portion of secondary to primary compression increases with the decrease of
specimen thickness for similar values of Ac/c’.

Void ratio, e

b a

v

o’ (log scale)

Figure 8.20 Effect of load duration on the e versus log ¢’ plot: (a) end of primary
consolidation, (b) 24 h load increment duration, and (c) more than
24 h load duration.



Consolidation 355

Sedimentation

Equilibrium-
void ratio plot

Y

g

_g 10,000 Years 10,000 Year

§ secondary consolidation
€ bmmmm e

v

o’ (log scale)
Figure 8.21 Effect of secondary consolidation.

Effect of secondary consolidation. The continued secondary consolidation of a
natural clay deposit has some influence on the preconsolidation pressure 6. This
fact can be further explained by the schematic diagram shown in Figure 8.21.

A clay that has recently been deposited and comes to equilibrium by its own
weight can be called a “young, normally consolidated clay.” If such a clay,
with an effective overburden pressure of 65 at an equilibrium void ratio of
ey, is now removed from the ground and tested in a consolidometer, it will
show an e versus log ¢’ curve like that marked curve a in Figure 8.21. Note
that the preconsolidation pressure for curve a is 65. On the contrary, if the
same clay is allowed to remain undisturbed for 10,000 years, for example,
under the same effective overburden pressure o5, there will be creep or sec-
ondary consolidation. This will reduce the void ratio to e,. The clay may
now be called an “aged, normally consolidated clay.” If this clay, at a void
ratio of e, and effective overburden pressure of G5, is removed and tested in
a consolidometer, the e versus log ¢’ curve will be like curve b. The precon-
solidation pressure, when determined by standard procedure, will be 7.
Now, o}, = 6} > 05 This is sometimes referred to as a quasi-preconsolida-
tion effect. The effect of preconsolidation is pronounced in most plastic
clays. Thus, it may be reasoned that, under similar conditions, the ratio
of the quasi-preconsolidation pressure to the effective overburden pressure
o, 6, will increase with the plasticity index of the soil. Bjerrum (1972) gave
an estimate of the relation between the plasticity index and the ratio of
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quasi-preconsolidation pressure to effective overburden pressure ©% 675 | for
late glacial and postglacial clays. This relation is shown as follows:

Plasticity index =G, /G%

20 1.4
40 1.65
60 1.75
80 1.85
100 1.90

8.9 CALCULATION OF ONE-DIMENSIONAL
CONSOLIDATION SETTLEMENT

The basic principle of one-dimensional consolidation settlement calculation is
demonstrated in Figure 8.22. If a clay layer of total thickness H, is subjected
to an increase of average effective overburden pressure from o}, to o, it will
undergo a consolidation settlement of AH,. Hence, the strain can be given by

AH
e="2"
H.

(8.87)

where € is strain. Again, if an undisturbed laboratory specimen is subjected
to the same effective stress increase, the void ratio will decrease by Ae.
Thus, the strain is equal to

c= 2e (8.88)

_1+eb

where ¢, is the void ratio at an effective stress of o.

Field Laboratory
Initial average effective pressure = o, Initial effective pressure = o,
Final average effective pressure = 0} Final effective pressure = o}
RN Y i
AH|, | - .. Ae
- Volume of
void = ey

Figure 8.22 Calculation of one-dimensional consolidation settlement.



Consolidation 357

Thus, from Equations 8.87 and 8.88

AH = (8.89)
1+eg
For a normally consolidated clay in the field (Figure 8.23a)
o Oy + Ac
Ae=C.lbg— =C.bg——— (8.90)
Go 0

© o _f_ o Virgin compression
S A lope, C,
3 f slope, C,
g [T rTTTTTTT
> |
I
"
! ! .
@) op o} o’ (log scale)

Recompression
slope, C,

I
o [T :
) i o - .
= i ! i Virgin compression
= i ! i slope, C,
< i U

i Lo

—no—> |

| B ‘
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© 1
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=) 1
e - -
! i i
! I I .

© oo o, o} o’ (log scale)

Figure 8.23 Calculation of Ae: (a) Equation 8.90; (b) Equation 8.91; (c) Equation 8.92.
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For an overconsolidated clay, (1) if o] < o/ (i.e., overconsolidation pres-
sure) (Figure 8.23b)

Ae=C, g% ¢ g AS (8.91)
and (2) if o < o, < o (Figure 8.23¢)
Ae=Ae + A =C, g% +C g 22 TAC (8.92)
G0 Gc

The procedure for calculation of one-dimensional consolidation settlement
is described in more detail in Chapter 11.

8.10 COEFFICIENT OF CONSOLIDATION

For a given load increment, the coefficient of consolidation C, can be deter-
mined from the laboratory observations of time versus dial reading. There
are several procedures presently available to estimate the coefficient of con-
solidation, some of which are described later.

8.10.1 Logarithm-of-time method

The logarithm-of-time method was originally proposed by Casagrande and
Fadum (1940) and can be explained by referring to Figure 8.24.

1. Plot the dial readings for specimen deformation for a given load
increment against time on semilog graph paper as shown in
Figure 8.24.

2. Plot two points, P and O, on the upper portion of the consolidation
curve, which correspond to time ¢, and t,, respectively. Note that
t, = 4t,.

3. The difference of dial readings between P and Q is equal to x. Locate
point R, which is at a distance x above point P.

4. Draw the horizontal line RS. The dial reading corresponding to this
line is d,,, which corresponds to 0% consolidation.

5. Project the straight-line portions of the primary consolidation and
the secondary consolidation to intersect at T. The dial reading cor-
responding to T is d,, that is, 100% primary consolidation.
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Figure 8.24 Logarithm-of-time method for determination of C,.

6.

Determine the point V on the consolidation curve that corresponds to
a dial reading of (d,, + d;(()/2 = ds,. The time corresponding to point V
is t5, that is, time for 50% consolidation.

7. Determine C, from the equation T, = C #/H?. The value of T, for

U

U,, = 50% is 0.197 (Table 8.1). So

2
c, = 97H" (8.93)

o

8.10.2 Square-root-of-time method

The steps for the square-root-of-time method (Taylor, 1942) are as follows:

1.

(O8]

Plot the dial reading and the corresponding square-root-of-time v/t as
shown in Figure 8.25.

. Draw the tangent PQ to the early portion of the plot.
. Draw a line PR such that OR = (1.15)(0Q).
. The abscissa of the point S (i.e., the intersection of PR and the con-

solidation curve) will give \/t (i.e., the square root of time for 90%
consolidation).

. The value of T, for U,, = 90% is 0.848. So

0.848H ?
o

v

(8.94)
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}\ N »
o \/Q Q R VTime "

Figure 8.25 Square-root-of-time method for determination of C,.

8.10.3 Su’s maximum-slope method
1. Plot the dial reading against time on semilog graph paper as shown in

Figure 8.26.
2. Determine d,, in the same manner as in the case of the logarithm-of-

time method (steps 2—4).

Dial reading

v

Time (log scale)

Figure 8.26 Maximum-slope method for determination of C.
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3. Draw a tangent PQ to the steepest part of the consolidation curve.
4. Find b, which is the slope of the tangent PQ.
5. Find d, as
h
dy,=dy+——U, (8.95)
0.688

where d,, is the dial reading corresponding to any given average degree
of consolidation, U,

6. The time corresponding to the dial reading d, can now be determined,
and

C, = (8.96)

Su’s method (1958) is more applicable for consolidation curves that do not
exhibit the typical S-shape.

8.10.4 Computational method

The computational method of Sivaram and Swamee (1977) is explained in
the following steps:

1. Note two dial readings, d, and d,, and their corresponding times, ¢,
and t,, from the early phase of consolidation. (“Early phase” means
that the degree of consolidation should be less than 53%.)

2. Note a dial reading, d;, at time ¢, after considerable settlement has
taken place.

3. Determine d, as

di—dy |
d, = & (8.97)
e
t
4. Determine d,,, as
dy—d
leO :do_ 0 3 0179 (8.98)

l_l(do—da)(ﬁ—\/ﬁ)r
d-dNe
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5. Determine C, as

2
T d]__dz H
vE 8.99

4(%—%@—@) 52

where H is the length of the maximum drainage path.

8.10.5 Empirical correlation

Based on laboratory tests, Raju et al. (1995) proposed the following empiri-
cal relation to predict the coefficient of consolidation of normally consoli-
dated uncemented clayey soils:

— / -3
C\):[1+eb(1.23 0.276bg(50)]|:(;())0353:| (8.100)
e, 0
where
C, is the coefficient of consolidation (cm?/s)
o), is the effective overburden pressure (kN/m?)
e, is the void ratio at liquid limit
Note that
LLG )
- G. 8.101
& [ 100 ] ( )
where

LL is the liquid limit
G, is the specific gravity of soil solids

8.10.6 Rectangular hyperbola method

The rectangular hyperbola method (Sridharan and Prakash, 1985) can be
illustrated as follows. Based on Equations 8.32 and 8.34, it can be shown
that the plot of T,/U,, versus T, will be of the type shown in Figure 8.27a. In
the range of 60% < U,, < 90%, the relation is linear and can be expressed as

av —

T =8208%x107°T, +244x107° (8.102)

av

Using the same analogy, the consolidation test results can be plotted in
graphical form as t/AH, versus ¢t (where ¢ is time and AH, is specimen defor-
mation), which will be of the type shown in Figure 8.27b. Now the follow-
ing procedure can be used to estimate C,.
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Equation 8.102

v

fe—o—

v

b) a Time (£)

Figure 8.27 Rectangular hyperbola method for determination of C: (a) plot of T /U,
vs. T;; (b) plot of t/AH, vs. t.

1. Identify the straight-line portion, bc, and project it back to d.
Determine the intercept, D.

2. Determine the slope 7 of the line bc.

3. Calculate C, as

2
C, = os(mﬂ]
D

where H is the length of maximum drainage path. Note that the unit
of m is L-' and the unit of D is TL-'. Hence, the unit of C, is

ChHe’) _

2m-1
o LT
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OR = (1.33)(0Q)

AH,

\ AN
\ \\
N \,
5 hQ R R
loo t
AH, AH,

Figure 8.28 AH, — t/AH, method for determination of C,.

8.10.7 AH, - tIAH, method
According to the AH, - ¢/AH, method (Sridharan and Prakash, 1993),

1. Plot the variation of AH, versus t/AH, as shown in Figure 8.28 (Note:
t is time and AH, compression of specimen at time 2.)

2. Draw the tangent PQ to the early portion of the plot.

3. Draw a line PR such that

OR =(1.33)(0Q)

4. Determine the abscissa of point S, which gives #,,/AH, from which #,,
can be calculated.
5. Calculate C, as

_ 0848H?

C
b to

(8.103)

8.10.8 Early-stage log t method

The early-stage log ¢t method (Robinson and Allam, 1996), an exten-
sion of the logarithm-of-time method, is based on specimen deforma-
tion against log-of-time plot as shown in Figure 8.29. According to this
method, follow the logarithm-of-time method to determine d,. Draw a
horizontal line DE through d,. Then, draw a tangent through the point
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&

<— Deformation (increasing)

114

Time (t) (log scale)

Figure 8.29 Early stage log t method.

of inflection F. The tangent intersects line DE at point G. Determine the
time ¢ corresponding to G, which is the time at U,, = 22.14%. So

_ 0.0385H°?

Cy
t22_14

In most cases, for a given soil and pressure range, the magnitude of C, deter-
mined using the logarithm-of-time method provides the lowest value. The
highest value is obtained from the early stage log t method. The primary rea-
son is that the early-stage log # method uses the earlier part of the consolida-
tion curve, whereas the logarithm-of-time method uses the lower portion of
the consolidation curve. When the lower portion of the consolidation curve
is taken into account, the effect of secondary consolidation plays a role in the
magnitude of C,. This fact is demonstrated for several soils in Table 8.6.

Several investigators have also reported that the C, value obtained from
the field is substantially higher than that obtained from laboratory tests
conducted using conventional testing methods (i.e., logarithm-of-time and
square-root-of-time methods). Table 8.7 provides some examples of this as
summarized by Leroueil (1988). Hence, the early-stage log ¢t method may
provide a more realistic value of fieldwork.

Example 8.9
The results of an oedometer test on a normally consolidated clay are
given as follows (two-way drainage):

o' (kN/m?) e

50 1.01
100 0.90
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Table 8.6 Comparison of C, obtained from various methods (based
on the results of Robinson and Allam, 1996) for the
pressure range ¢’ between 400 and 800 kN/m?

Soil C‘)(esm) (cmZ/s) CU(Icm) C\)(scm)
Red earth 12.80 x 1074 1.58 1.07
Brown soil 1.36 x |07* 1.05 0.94
Black cotton soil 0.79 x 107* 1.41 1.23
lllite 6.45 x |07 1.55 1.1

Bentonite 0.022 x |07 1.47 1.29
Chicago clay 741 x 10 1.22 I.15

Note: esm: early-stage log t method; Itm: logarithm-of-time method; stm:
square-root-of-time method.

Table 8.7 Comparison between the coefficients of consolidation determined in
the laboratory and those deduced from embankment settlement
analysis as observed by Leroueil (1988)

Site Cu(lab) (m?s) Cu(in situ) (m?/sec) C\)(Iab)/ Coin sicu)
Ska-Edeby IV 50x 107° 1.0 x 1077 20
Oxford (1) 4-57
Donnington 4-7
Oxford (2) 3-36
Avonmouth 6—47
Tickton 7-47
Over causeway 3-12
Melbourne 200
Penang 1.6 x 1078 I.1 x 10 70
Cubzac B 20x% 108 20x% 107 10
Cubzac C 1.4 %108 43 x 107 31
A-64 75x%x 108 20x% 10°® 27
Saint-Alban 1.0x 108 8.0 x 1078 8
R-7 6.0 x 107° 2.8 x 107 47
Matagami 8.0x 107 85x |08 10
Berthierville 40x 108 3-10

The time for 50% consolidation for the load increment from 50 to 100
kN/m? was 12 min, and the average thickness of the sample was 24 mm.
Determine the coefficient of permeability and the compression index.

Solution
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For U,, = 50%, T, = 0.197. Hence

Cc.@2)

0197 =
@4ry

C,=00236am?/min=0.0236x10"m?/mn

k k

CD = =
m DYw [Ae/AG(l + e-\v )]Yw

For the given data, Ae = 1.01 = 0.90 = 0.11; Ac = 100 - 50 = 50 kN/m?

Yo = 981kN m>; and e,=@.01+09)2=0955. So

k=c,— 2 4 —00236x10%)— 211 les1
AG(+ey) 50(@+0.955)
= 02605%10'm /n in
. A 1.01-
Compression index = C, = - 101-09 =0365

" bgE, 61) 1g@0050)

8.11 ONE-DIMENSIONAL CONSOLIDATION
WITH VISCOELASTIC MODELS

The theory of consolidation we have studied thus far is based on the assump-
tion that the effective stress and the volumetric strain can be described by
linear elasticity. Since Terzaghi’s founding work on the theory of consoli-
dation, several investigators (Taylor and Merchant, 1940; Taylor, 1942;
Tan, 1957; Gibson and Lo, 1961; Schiffman et al., 1964; Barden, 1965,
1968) have used viscoelastic models to study one-dimensional consolida-
tion. This gives an insight into the secondary consolidation phenomenon
that the Terzaghi’s theory does not explain. In this section, the work of
Barden is briefly outlined.

The rheological model for soil chosen by Barden consists of a linear
spring and nonlinear dashpot as shown in Figure 8.30. The equation of
continuity for one-dimensional consolidation is given in Equation 8.9 as

carera_de
Yo 0Z° ot
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Figure 8.30 Rheological model for soil. L: Linear spring; N: Nonlinear dashpot.

Void ratio

Ae=a,Ao
a,,= Coefficient of

e
Ae \ compressibility
e,

Ao

/

o} o1+Ac’  Effective stress
=01+ Ao

Figure 8.31 Nature of variation of void ratio with effective stress.

Figure 8.31 shows the typical nature of the variation of void ratio with
effective stress. From this figure, we can write that

a7e _&7e, ui1 (8.104)
ay Y
where
& 7& _ A¢’ = total effective stress increase the soil will be subjected to
a,
at the end of consolidation
e-—e

=~ = effective stress increase in the soil at some stage of consolidation

(i.e., the stress carried by the soil grain bond, represented by the
spring in Figure 8.30)
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u is the excess pore water pressure
T is the strain carried by film bond (represented by the dashpot in
Figure 8.30)

The strain T can be given by a power-law relation:

de 1/n
=Db| —
gt

where 7 > 1, and b is assumed to be a constant over the pressure range Ac.
Substitution of the preceding power-law relation for t in Equation 8.104
and simplification gives

PN
e-e =3a,/u+b 5t (8.105)

Now, lete - e, =¢'. So

o€ de

g= _ 9% (8.106)
ot ot
z=—2 (8.107)
H
where H is the length of maximum drainage path, and
a= - (8.108)
Ac
The degree of consolidation is
u,=—2"° (8.109)
8-
and
A=1-Uu,=°"2-_°_ (8.110)
a-& aAc

Elimination of # from (8.9) and (8.105) yields

’ 7\ ’
k‘“e)azle—b(ae) ] oc (8.111)

Yo 0Z|a \ot) | ot
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Combining Equations 8.107, 8.110, and 8.111, we obtain

aZ
928

{x—[a”b“(Ag')ln ax]lm}_ aH’, oA _m,H®, oL _H?J\

at k(l+e) dt kQ@+e) ot C, ot
(8.112)
where
m, is the volume coefficient of compressibility
C, the coefficient of consolidation

The right-hand side of Equation 8.112 can be written in the form

2
oh _H” A (8.113)
JT, C, ot
where T, is the nondimensional time factor and is equal to C #/H?>.
Similarly defining
/\n—1
7, = 189 (8.114)
a,b
we can write
TR (o )
b"Acy " —| = 8.115
[an Ao’y aJ (aTs) ( )
T, in Equations 8.114 and 8.1135 is defined as structural viscosity.
It is useful now to define a nondimensional ratio R as
roTv_Coa b (8.116)

T, H? @Ac' )y

From Equations 8.112, 8.113, and 8.115

92 aa Y|
_ - 11
0z’ {K (BTS) :| dT, 8.117)

Note that Equation 8.117 is nonlinear. For that reason, Barden suggested
solving the two simultaneous equations obtained from the basic Equation 8.9.

d%a _ oA
0z IT,

(8.118)
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and

1 n [ J—
_E()L_u)n_ P (8.119)

Finite-difference approximation is employed for solving the previous two
equations. Figure 8.32 shows the variation of A and i with depth for a clay
layer of height H, = 2H and drained both at the top and bottom (for 7 = 5,
R =10-*). Note that for a given value of T, (i.e., time ), the nondimensional
excess pore water pressure decreases more than A (i.e., void ratio).

For a given value of T,, R, and 7, the average degree of consolidation can
be determined as (Figure 8.32)

1
U, = 1—de§ (8.120)
0

Figure 8.33 shows the variation of U,, with T, (for # = 5). Similar results
can be obtained for other values of 7. Note that in this figure the beginning
of secondary consolidation is assumed to start after the midplane excess
pore water pressure falls below an arbitrary value of # = 0.01 Ac. Several
other observations can be made concerning this plot:

1. Primary and secondary consolidation are continuous processes and
depend on the structural viscosity (i.e., R or T,).

2. The proportion of the total settlement associated with the secondary
consolidation increases with the increase of R.

3. In the conventional consolidation theory of Terzaghi, R = 0. Thus, the
average degree of consolidation becomes equal to 100% at the end of
primary consolidation.

4. As defined in Equation 8.116

_Cua, D"
H? A )P!

The term b is a complex quantity and depends on the electrochemical envi-
ronment and structure of clay. The value of b increases with the increase of
effective pressure 6’ on the soil. When the ratio Ac’/c’ is small, it will result
in an increase of R, and thus in the proportion of secondary to primary
consolidation. Other factors remaining constant, R will also increase with
decrease of H, which is the length of the maximum drainage path, and thus
so will the ratio of secondary to primary consolidation.
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zIH

1.00 0.75 0.50 0.25 0
(@) u

1.00 0.75 0.50 0.25 0
(b) A

Figure 8.32 (a) Plot of Z against i for a two-way drained clay layer; (b) plot of Z against

A for a two-way drained clay layer. (After Barden, L., Geotechnique, 15(4),
345, 1965.)
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Primary

Secondary

n=>5

Uy, (%)

O
Terzaghi theory P) \ T~ T~
R=0 \\ T~ T

100 : : —==- I oo
0.01 0.1 10 10.0 100.0

T, (log scale)

Figure 8.33 Plot of degree of consolidation versus T, for various values of R (n = 5).
(After Barden, L., Geotechnique, 15(4), 345, 1965.)

8.12 CONSTANT RATE-OF-STRAIN
CONSOLIDATION TESTS

The standard one-dimensional consolidation test procedure discussed in
Section 8.5 is time-consuming. At least two other one-dimensional consoli-
dation test procedures have been developed in the past that are much faster
yet give reasonably good results. The methods are (1) the constant rate-of-
strain consolidation test and (2) the constant-gradient consolidation test.
The fundamentals of these test procedures are described in this and the next
sections.

The constant rate-of-strain method was developed by Smith and Wahls
(1969). A soil specimen is taken in a fixed-ring consolidometer and sat-
urated. For conducting the test, drainage is permitted at the top of the
specimen, but not at the bottom. A continuously increasing load is applied
to the top of the specimen so as to produce a constant rate of compres-
sive strain, and the excess pore water pressure #, (generated by the con-
tinuously increasing stress ¢ at the top) at the bottom of the specimen is
measured.

8.12.1 Theory

The mathematical derivations developed by Smith and Wahls for obtaining
the void ratio—effective pressure relation and the corresponding coefficient
of consolidation are given later.
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The basic equation for continuity of flow through a soil element is given
in Equation 8.9 as

Lazu: 1 de
Yo 02 l+eodt

The coefficient of permeability at a given time is a function of the average
void ratio e in the specimen. The average void ratio is, however, continu-
ously changing owing to the constant rate of strain. Thus

k=kE)=£(t) (8.121)

The average void ratio is given by

1 H
éz—J-edz
H
0

where H (= H,) is the sample thickness. (Note: z = 0 is the top of the speci-
men and z = H is the bottom of the specimen.)

In the constant rate-of-strain type of test, the rate of change of volume
is constant, or

N _ _Rra (8.122)
dt
where
V is the volume of the specimen
A is the area of cross-section of the specimen
R is the constant rate of deformation of upper surface

The rate of change of average void ratio e can be given by

de_1av __1_.__, (8.123)
dt v, dt Vv,

where r is a constant.
Based on the definition of & and Equation 8.121, we can write

€en = g2+ (8.124)

where
e, is the void ratio at depth z and time ¢
e, is the initial void ratio at the beginning of the test
g(2) is a function of depth only
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The function g(z) is difficult to determine. We will assume it to be a
linear function of the form

)

where b is a constant. Substitution of this into Equation 8.124 gives

b( z—05H
e<z,t)=eb—rc[1—r(z - )} (8.125)

Let us consider the possible range of variation of b/r as given in
Equation 8.125:

1. 1If blr = 0,

Qop) =& It (8.126)

This indicates that the void is constant with depth and changes with
time only. In reality, this is not the case.

2. If b/r = 2, the void ratio at the base of the specimen, that is, at z = H,
becomes

Qg =6 (8.127)

This means that the void ratio at the base does not change with time at
all, which is not realistic.

So the value of b/r is somewhere between 0 and 2 and may be taken as
about 1.

Assuming b/r # 0 and using the definition of the void ratio as given by
Equation 8.125, we can integrate Equation 8.9 to obtain an equation for
the excess pore water pressure. The boundary conditions are as follows: at
z2=0,u =0 (at any time); and at z = H, du/dz = 0 (at any time). Thus

uzmw{m[l+%—b1+zf_[ﬂa+%q
k rtbt) 2rt | rtpt)
X[H (+e)

_ _Hi+ter)
bt hl+e)-zh(l+eg) bt ]n(1+er):|} (8.128)
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where

o =a,—rt(1—lb) (8.129)
2r

o :eb_n(Hlb) (8.130)
2r

Equation 8.128 is very complicated. Without losing a great deal of accu-
racy, it is possible to obtain a simpler form of expression for # by assuming
that the term 1 + ¢ in Equation 8.9 is approximately equal to 1 + ¢~ (note
that this is not a function of z). So, from Equations 8.9 and 8.125

u_[ v |9 |, b(z-05H
azz_[k(l+e)}at{a) r{l r( H )}} (8.3

Using the boundary condition # = 0 at z = 0 and du/dt = 0 at z = H, Equation
8.131 can be integrated to yield

u:[ er}[(Hz_zz]_b[zz_fﬂ (8.132)
k@d+e) 2 r| 4 6H

The pore pressure at the base of the specimen can be obtained by substi-
tuting z = H in Equation 8.132:

2
. =Ywm(l—lb] (8.133)
kd+e)\ 2 12r

The average effective stress corresponding to a given value of #,_; can be
obtained by writing

O =G 2 y (8.134)
U,-n

where
O, is the average effective stress on the specimen at any time
o is the total stress on the specimen
u,, is the corresponding average pore water pressure
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1 H
u —J. udz
v - HJo (8.135)

Substitution of Equations 8.132 and 8.133 into 8.135 and further simplifi-
cation gives

1 1

S- bk
Yo :i 214 (8.136)
uz=H ~ /i-

2 12(b )

Note that for b/r = 0, u,/u,_;; = 0.667; and for blr = 1, u /u,_;; = 0.700.
Hence, for 0 < b/r < 1, the values of u, /u,_;; do not change significantly. So,
from Equations 8.134 and 8.136

1 1

- bk
Gl =06— % Uy (8.137)

S~ bk

2 12(b )

8.12.2 Coefficient of consolidation

The coefficient of consolidation was defined previously as

_ k@d+e)
a&Yw

Cy

We can assume 1 + e = 1 + ¢, and from Equation 8.133

2
_ aiwgl (1_110) (8.138)

c, = B’ (1—”’) (8.139)
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8.12.3 Interpretation of experimental results

The following information can be obtained from a constant rate-of-strain
consolidation test:

. Initial height of specimen, H,

. Value of A

. Value of V,

. Strain rate R

. A continuous record of u,_p

. A corresponding record of o (total stress applied at the top of the
specimen)

AN LN D WD =

The plot of e versus 6, can be obtained in the following manner:

1. Calculate r = RA/V,.

. Assume b/r ~ 1.

3. For a given value of u,_y;, the value of 6 is known (at time ¢ from the
start of the test), and so 6%, can be calculated from Equation 8.137.

4. Calculate AH = Rt and then the change in void ratio that has taken
place during time ¢

\S}

Ae=?{—H(1+eo)

i

where H, is the initial height of the specimen.

5. The corresponding void ratio (at time #) is e = ¢, — Ae.

6. After obtaining a number of points of o}, and the corresponding e,
plot the graph of e versus log 6%,.

7. For a given value of o7, and e, the coefficient of consolidation Cv
can be calculated by using Equation 8.139 (Note that H in Equation
8.139 is equal to H; - AH).

Smith and Wahls (1969) provided the results of constant rate-of-strain
consolidation tests on two clays—Massena clay and calcium montmoril-
lonite. The tests were conducted at various rates of strain (0.0024%/min—
0.06%/min) and the e versus log ¢’ curves obtained were compared with
those obtained from the conventional tests.

Figures 8.34 and 8.35 show the results obtained from tests conducted
with Massena clay.

This comparison showed that, for higher rates of strain, the e versus log ¢’
curves obtained from these types of tests may deviate considerably from
those obtained from conventional tests. For that reason, it is recommended
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O 0.06%/min
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Figure 8.34 CRS tests on Massena clay—plot of Ae versus oj,. (After Smith, R.E. and
Wahls, H.E., J. Soil Mech. Found. Div., ASCE, 95(SM2), 519, 1969.)
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Figure 8.35 CRS tests on Massena clay—plot of C, versus Ae. (After Smith, R.E. and
Wahls, H.E., J. Soil Mech. Found. Div., ASCE, 95(SM2), 519, 1969.)



380 Advanced Soil Mechanics

that the strain rate for a given test should be chosen such that the value of
u,_/c at the end of the test does not exceed 0.5. However, the value should
be high enough that it can be measured with reasonable accuracy.

8.13 CONSTANT-GRADIENT CONSOLIDATION TEST

The constant-gradient consolidation test was developed by Lowe et al.
(1969). In this procedure, a saturated soil specimen is taken in a con-
solidation ring. As in the case of the constant rate-of-strain type of test,
drainage is allowed at the top of the specimen and pore water pressure
is measured at the bottom. A load P is applied on the specimen, which
increases the excess pore water pressure in the specimen by an amount
Au (Figure 8.36a). After a small lapse of time #,, the excess pore water
pressure at the top of the specimen will be equal to zero (since drainage
is permitted). However, at the bottom of the specimen, the excess pore
water pressure will still be approximately Au (Figure 8.36b). From this
point on, the load P is increased slowly in such a way that the difference
between the pore water pressures at the top and bottom of the specimen
remains constant, that is, the difference is maintained at a constant Au
(Figure 8.36¢ and d). When the desired value of P is reached, say at time %5,
the loading is stopped and the excess pore water pressure is allowed to dis-
sipate. The elapsed time #, at which the pore water pressure at the bottom
of the specimen reaches a value of 0.1Au is recorded. During the entire

z=H=H,
z=0 L
e Aubl e A e Aunf e A b > [+
t=0 t 12 t ¢, 0.1Au
(@) b (b > @ *
(e)
Development Dissipation
|<— of parabolic—>|<— Controlled-gradient tests —>|<— of pore water —’I
pattern pressure
0.08H> (1.1-0.08)H>
f= ty—ty= ———————
1 c. 4~ 13 C,

Figure 8.36 Stages in controlled-gradient test variation of pore water pressure in depth:
(a) at time t = 0; (b) at time ¢, ; (c) at time t,; (d) at time t;; (e) at time t,.
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test, the compression AH, that the specimen undergoes is recorded. For
complete details of the laboratory test arrangement, the reader is referred
to the original paper of Lowe et al. (1969).

8.13.1 Theory

From the basic Equations 8.9 and 8.10, we have

kdu__ a o (8.140)
Yo 0Z° l+e ot

or

Since o’ = 6 - u
aaci _ %_% (8.142)

For the controlled-gradient tests (i.e., during the time ¢, to ¢, in Figure 8.36),
ou/dt = 0. So

do’_do (8.143)
ot odt

Combining Equations 8.141 and 8.143
Jo 9%u
L - ¢, 8.144
ot 0z ( )

Note that the left-hand side of Equation 8.144 is independent of the vari-
able z and the right-hand side is independent of the variable ¢. So both sides
should be equal to a constant, say A,. Thus

0 _

9 _p 8.145
Pk (8.145)
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and

Ju A
7—_71 +A2
0z N
and
A, Z
u= _717+A22+ A3
c, 2

(8.146)

(8.147)

(8.148)

The boundary conditions are as follows (note that z = 0 is at the bottom

of the specimen):

1. At z=0,0u/dz=0
2. Atz = H, u = 0 (note that H = H; one-way drainage)
3. Atz=0,u=Au

From the first boundary condition and Equation 8.147, we find that

A, =0.So

A, z
———+A;
C, 2

From the second boundary condition and Equation 8.149

2

AH
A3:
2C,
A, Z A H?
oru=-———+———
C, 2 C, 2

From the third boundary condition and Equation 8.151

A, H?

Au =
C, 2

(8.149)

(8.150)

(8.151)
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or

_ 2C,Au

=5 (8.152)
Substitution of this value of A, into Equation 8.151 yields
ZZ
u=Au 1—? (8.153)

Equation 8.153 shows a parabolic pattern of excess pore water pressure
distribution, which remains constant during the controlled-gradient test
(time ¢, — t; in Figure 8.36). This closely corresponds to Terzaghi isochrone
(Figure 8.4) for T, = 0.08.

Combining Equations 8.145 and 8.152, we obtain

fele) A= 2C,Au

1

ot H?
2

orc, =%2HA (8.154)
u

8.13.2 Interpretation of experimental results

The following information will be available from the constant-gradient test:

1. Initial height of the specimen H; and height H, at any time during the test

. Rate of application of the load P and thus the rate of application of
stress 06/t on the specimen

. Differential pore pressure Au

. Time t,

. Time ¢,

. Time ¢,

[\

N L AW

The plot of e versus 6%, can be obtained in the following manner:

1. Calculate the initial void ratio e,,.
2. Calculate the change in void ratio at any other time ¢ during the test as

AH AH
Ae=——(+e)=——"@+
Hi(l &) Hi(l &)

where AH = AH, is the total change in height from the beginning of
the test. So, the average void ratio at time 7 is e = ¢, - Ae.
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3. Calculate the average effective stress at time ¢ using the known total
stress ¢ applied on the specimen at that time:

’
Oay =0 — Uy

where u,, is the average excess pore water pressure in the specimen,
which can be calculated from Equation 8.153.

Calculation of the coefficient of consolidation is as follows:

1. At time £,

_0.08H?
Tk

2. Attime f; <t <ty

_AcH?
At 2Au

(8.154)

v

Note that Ac/At, H, and Au are all known from the tests.

3. Between time ¢, and ¢,

_ L1-0.08H?2 _ 1.02H2
b bt bt

8.14 SAND DRAINS

In order to accelerate the process of consolidation settlement for the con-
struction of some structures, the useful technique of building sand drains
can be used. Sand drains are constructed by driving down casings or hol-
low mandrels into the soil. The holes are then filled with sand, after which
the casings are pulled out. When a surcharge is applied at ground surface,
the pore water pressure in the clay will increase, and there will be drain-
age in the vertical and horizontal directions (Figure 8.37a). The horizontal
drainage is induced by the sand drains. Hence, the process of dissipation of
excess pore water pressure created by the loading (and hence the settlement)
is accelerated.
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Figure 8.37 (a) Sand drains and (b) layout of sand drains.
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The basic theory of sand drains was presented by Rendulic (1935) and
Barron (1948) and later summarized by Richart (1959). In the study of sand
drains, we have two fundamental cases:

1. Free-strain case. When the surcharge applied at the ground surface is
of a flexible nature, there will be equal distribution of surface load.
This will result in an uneven settlement at the surface.

2. Equal-strain case. When the surcharge applied at the ground surface
is rigid, the surface settlement will be the same all over. However, this
will result in an unequal distribution of stress.

Another factor that must be taken into consideration is the effect of
“smear.” A smear zone in a sand drain is created by the remolding of clay
during the drilling operation for building it (see Figure 8.37a). This remold-
ing of the clay results in a decrease of the coefficient of permeability in the
horizontal direction.

The theories for free-strain and equal-strain consolidation are given
later. In the development of these theories, it is assumed that drainage takes
place only in the radial direction, that is, no dissipation of excess pore
water pressure in the vertical direction.

8.14.1 Free-strain consolidation with no smear

Figure 8.37b shows the general pattern of the layout of sand drains. For
triangular spacing of the sand drains, the zone of influence of each drain
is hexagonal in plan. This hexagon can be approximated as an equivalent
circle of diameter d,. Other notations used in this section are as follows:

1. r, = radius of the equivalent circle = d,/2
2. r,, = radius of the sand drain well

3. r. = radial distance from the centerline of the drain well to the farthest

S
point of the smear zone. Note that, in the no-smear case, r,, = 7,

w

The basic differential equation of Terzaghi’s consolidation theory for
flow in the vertical direction is given in Equation 8.14. For radial drainage,
this equation can be written as

ou 9’u 19du

——=Cyp| =+ 8.155

ot [81‘2 - rarJ ( )
where

u is the excess pore water pressure
r is the radial distance measured from the center of the drain well
C,, is the coefficient of consolidation in radial direction
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For solution of Equation 8.155, the following boundary conditions are used:

1. Attime t = 0, u = u,
2. Attimet>0,u=0atr=r,
3. Atr=r,0u/ldr=0

With the aforementioned boundary conditions, Equation 8.155 yields the
solution for excess pore water pressure at any time ¢ and radial distance 7:

= Y SELOPOR) g g, (8.156)

e oc[n U 2 omn)-U 2 (oc)]
In Equation 8.156
LB (8.157)
L,

U3 0)= & 0o @) Y: @)% @) (8.158)

U,@n)=J @n), @)Y, @n)J @) (8.159)

uo(“r): Jo[“r)xo (oa)—Yo(“r]Jo@c) (8.160)
% 5 5

where
Jo is the Bessel function of first kind of zero order
J, is the Bessel function of first kind of first order
Y, is the Bessel function of second kind of zero order
Y, is the Bessel function of second kind of first order
oy, 0, ... are roots of Bessel function that satisfy J,(azn)Y,(a) = Y, (o)

Jola) =0

T, = T in e factor for radial fow =%;t (8.161)

e

In Equation 8.161

k
Cor= 2
m .Yy

(8.162)

where &, is the coefficient of permeability in the horizontal direction.



388 Advanced Soil Mechanics

0
——
§§\
20 NS
N
N \QEQ\\ “
N "<
\ 20
40
= 15
§ 10
60 \
5 N
\\
80 \ S
N
UL
~ N
100 ~ ™
0.01 0.1 1.0

T,

r

Figure 8.38 Free strain—variation of degree of consolidation U, with time factor T,.

The average pore water pressure #,, throughout the soil mass may now
be obtained from Equation 8.156 as

o=co

4U12(0€) 2.2
W= ~402n°T, 8.163
oo =8 2 ocz(nz—1)[n2U§(om)—Uf(oc)1eXp( o) ( !

01 02 ...

The average degree of consolidation U, can be determined as

U,=1-—
u;

(8.164)

Figure 8.38 shows the variation of U, with the time factor T..

8.14.2 Equal-strain consolidation with no smear

The problem of equal-strain consolidation with no smear (r, = r,) was
solved by Barron (1948). The results of the solution are described later
(refer to Figure 8.37).
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The excess pore water pressure at any time # and radial distance r is given by

4u, r) -«
— av, ]n Il _1
u diFm)[]é (r”) Y :| (8.165)
where
n? 3n?-1
= hn)- 8.166
Fo)= 5 e (8.166)

u,, = average value of pore w ater pressure throughout the clay layer

=uge (8.167)
=0T (8.168)
F@)

The average degree of consolidation due to radial drainage is

U= l—exp|:;8(:;:| (8.169)

Table 8.8 gives the values of the time factor T, for various values of U,.
For r./r, > 5, the free-strain and equal-strain solutions give approximately
the same results for the average degree of consolidation.

Olson (1977) gave a solution for the average degree of consolidation U,
for time-dependent loading (ramp load) similar to that for vertical drain-
age, as described in Section 8.3.

Referring to Figure 8.8b, the surcharge increases from zero at time ¢ = 0
to q = q. at time ¢ = .. For t > t_, the surcharge is equal to g.. For this case

r_Cut
T = = 4T, (8.170)
g
and
s, = Curle (8.171)

For T/<T,.

/_i _ ’
y, =T 2 [ ,GXP(ATr)] (8.172)

Tr
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Table 8.8 Solution for radial-flow equation (equal vertical strain)

Degree of Time factor T, for value of n(= r./r,)
consolidation
U.(%) 5 10 15 20 25
0 0 0 0 0 0
| 0.0012 0.0020 0.0025 0.0028 0.0031
2 0.0024 0.0040 0.0050 0.0057 0.0063
3 0.0036 0.0060 0.0075 0.0086 0.0094
4 0.0048 0.0081 0.0101 0.0115 0.0126
5 0.0060 0.0101 0.0126 0.0145 0.0159
6 0.0072 0.1222 0.0153 0.0174 0.0191
7 0.0085 0.0143 0.0179 0.0205 0.0225
8 0.0098 0.0165 0.0206 0.0235 0.0258
9 0.0110 0.0186 0.0232 0.0266 0.0292
10 0.0123 0.0208 0.0260 0.0297 0.0326
I 0.0136 0.0230 0.0287 0.0328 0.0360
12 0.0150 0.0252 0.0315 0.0360 0.0395
13 0.0163 0.0275 0.0343 0.0392 0.0431
14 0.0177 0.0298 0.0372 0.0425 0.0467
I5 0.0190 0.0321 0.0401 0.0458 0.0503
16 0.0204 0.0344 0.0430 0.0491 0.0539
17 0.0218 0.0368 0.0459 0.0525 0.0576
I8 0.0232 0.0392 0.0489 0.0559 0.0614
19 0.0247 0.0416 0.0519 0.0594 0.0652
20 0.0261 0.0440 0.0550 0.0629 0.0690
21 0.0276 0.0465 0.0581 0.0664 0.0729
22 0.0291 0.0490 0.0612 0.0700 0.0769
23 0.0306 0.0516 0.0644 0.0736 0.0808
24 0.0321 0.0541 0.0676 0.0773 0.0849
25 0.0337 0.0568 0.0709 0.0811 0.0890
26 0.0353 0.0594 0.0742 0.0848 0.0931
27 0.0368 0.0621 0.0776 0.0887 0.0973
28 0.0385 0.0648 0.810 0.0926 0.1016
29 0.0401 0.0676 0.0844 0.0965 0.1059
30 0.0418 0.0704 0.0879 0.1005 0.1103
31 0.0434 0.0732 0.0914 0.1045 0.1148
32 0.0452 0.0761 0.0950 0.1087 0.1193
33 0.0469 0.0790 0.0987 0.1128 0.1239
34 0.0486 0.0820 0.1024 0.1171 0.1285
35 0.0504 0.0850 0.1062 0.1214 0.1332
36 0.0522 0.0881 0.1100 0.1257 0.1380

w
~N

0.0541 0.0912 0.1139 0.1302 0.1429
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Table 8.8 (continued) Solution for radial-flow equation (equal vertical strain)

Degree of Time factor T, for value of n(= r,Ir,)

consolidation

U.(%) 5 10 15 20 25
38 0.0560 0.0943 0.1178 0.1347 0.1479
39 0.579 0.0975 0.1218 0.1393 0.1529
40 0.0598 0.1008 0.1259 0.1439 0.1580
41 0.0618 0.1041 0.1300 0.1487 0.1632
42 0.0638 0.1075 0.1342 0.1535 0.1685
43 0.0658 0.1109 0.1385 0.1584 0.1739
44 0.0679 0.1144 0.1429 0.1634 0.1793
45 0.0700 0.1180 0.1473 0.1684 0.1849
46 0.0721 0.1216 0.1518 0.1736 0.1906
47 0.0743 0.1253 0.1564 0.1789 0.1964
48 0.0766 0.1290 0.1611 0.1842 0.2023
49 0.0788 0.1329 0.1659 0.1897 0.2083
50 0.0811 0.1368 0.1708 0.1953 0.2144
51 0.0835 0.1407 0.1758 0.2020 0.2206
52 0.0859 0.1448 0.1809 0.2068 0.2270
53 0.0884 0.1490 0.1860 0.2127 0.2335
54 0.0909 0.1532 0.1913 0.2188 0.2402
55 0.0935 0.1575 0.1968 0.2250 0.2470
56 0.0961 0.1620 0.2023 0.2313 0.2539
57 0.0988 0.1665 0.2080 0.2378 0.2610
58 0.1016 0.1712 0.2138 0.2444 0.2683
59 0.1044 0.1759 0.2197 0.2512 0.2758
60 0.1073 0.1808 0.2258 0.2582 0.2834
6l 0.1102 0.1858 0.2320 0.2653 0.2912
62 0.1133 0.1909 0.2384 0.2726 0.2993
63 0.1164 0.1962 0.2450 0.2801 0.3075
64 0.1196 0.2016 0.2517 0.2878 0.3160
65 0.1229 0.2071 0.2587 0.2958 0.3247
66 0.1263 0.2128 0.2658 0.3039 0.3337
67 0.1298 0.2187 0.2732 0.3124 0.3429
68 0.1334 0.2248 0.2808 0.3210 0.3524
69 0.1371 0.2311 0.2886 0.3300 0.3623
70 0.1409 0.2375 0.2967 0.3392 0.3724
71 0.1449 0.2442 0.3050 0.3488 0.3829
72 0.1490 0.2512 0.3134 0.3586 0.3937
73 0.1533 0.2583 0.3226 0.3689 0.4050
74 0.1577 0.2658 0.3319 0.3795 04167

(continued)
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Table 8.8 (continued) Solution for radial-flow equation (equal vertical strain)

Degree of Time factor T, for value of n(= r,Ir,)
consolidation
U.(%) 5 10 15 20 25
75 0.1623 0.2735 0.3416 0.3906 0.4288
76 0.1671 0.2816 0.3517 0.4021 0.4414
77 0.1720 0.2900 0.3621 0.4141 0.4546
78 0.1773 0.2988 0.3731 0.4266 0.4683
79 0.1827 0.3079 0.3846 0.4397 0.4827
80 0.1884 0.3175 0.3966 0.4534 0.4978
8l 0.1944 0.3277 0.4090 0.4679 0.5137
82 0.2007 0.3383 0.4225 0.4831 0.5304
83 0.2074 0.3496 0.4366 0.4992 0.5481
84 0.2146 0.3616 04516 0.5163 0.5668
85 0.2221 0.3743 0.4675 0.5345 0.5868
86 0.2302 0.3879 0.4845 0.5539 0.6081
87 0.2388 0.4025 0.5027 0.5748 0.6311
88 0.2482 0.4183 0.5225 0.5974 0.6558
89 0.2584 0.4355 0.5439 0.6219 0.6827
90 0.2696 0.4543 0.5674 0.6487 0.7122
9l 0.2819 0.4751 0.5933 0.6784 0.7448
92 0.2957 0.4983 0.6224 07116 0.7812
93 0.3113 0.5247 0.6553 0.7492 0.8225
94 0.3293 0.5551 0.6932 0.7927 0.8702
95 0.3507 0.5910 0.7382 0.8440 0.9266
96 0.3768 0.6351 0.7932 0.9069 0.9956
97 0.4105 0.6918 0.8640 0.9879 1.0846
98 0.4580 0.7718 0.9640 1.1022 1.2100
99 0.5391 0.9086 1.1347 1.2974 1.4244
For T, >T,.
1 ’ ’
U,=1- aT [expAT)-1]expAT/) (8.173)
where
A= 2 (8.174)
Fn)

Figure 8.39 shows the variation of U, with T/ and Ty, for » = 5 and 10.
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Figure 8.39 Olson’s solution for radial flow under single ramp loading for n = 5 and 10
(Equations 8.172 and 8.173).
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8.14.3 Effect of smear zone on radial consolidation

Barron (1948) also extended the analysis of equal-strain consolidation
by sand drains to account for the smear zone. The analysis is based on
the assumption that the clay in the smear zone will have one boundary
with zero excess pore water pressure and the other boundary with an
excess pore water pressure that will be time-dependent. Based on this
assumption

u=l,uav|:]n(rJ— ro® +kh(“2 e jlnS] (8.175)
m L 272 k| n

where k, is the coefficient of permeability of the smeared zone.

g=5 (8.176)
X,
2 2 2 Q2
n'=—" Zh(n)_3+ Sz+kh[n 25 ]hs (8.177)
n°-S S 4 4n ks n
m

The average degree of consolidation is given by the relation

U,=1-"= =l—a<p(_8TrJ (8.179)

’
u; m

8.15 NUMERICAL SOLUTION FOR RADIAL
DRAINAGE (SAND DRAIN)

As shown previously for vertical drainage (Section 8.4), we can adopt the
finite-difference technique for solving consolidation problems in the case of
radial drainage. From Equation 8.155

ou d’u 19du
= =Cy +-2=
ot orf ror
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Let uy, tg, and 7y be any reference excess pore water pressure, time, and

radial distance, respectively. So

. . __u
N ondin ensibnalexcess porew ater pressure=u = —
Ug

N ondin ensibnaltine=t = i

N ondin ensibnalradialdistance=r = xr
i}

Substituting Equations 8.180 through 8.182 into 8.155, we get

19u_c,(0%u, 13u
t, 0t ¥ |9dr® Tor

Referring to Figure 8.40

Ju 1
—— = T —1u
9t AT o E+a% o)
d0*u 1
= +u 2y,
07 (Af)z (VS 3E 0)

and

——Ar—>t——Ar—>p|

4

Figure 8.40 Numerical solution for radial drainage.

(8.180)

(8.181)

(8.182)

(8.183)

(8.184)

(8.185)

(8.186)



396 Advanced Soil Mechanics

If we adopt ty in such a way that 14 =C, A and then substitute
Equations 8.184 through 8.186 into 8.183, then

At

U, AT = H

= Usg—Wg —
W+t " =20z |+ 05z 8.187
|: 1% 3t 2@ /AT) 0,t:| 0.t ( )

Equation 8.187 is the basic finite-difference equation for solution of the
excess pore water pressure (for radial drainage only).

Example 8.10

For a sand drain, the following data are given: , = 0.38 m, 7, = 1.52 m,
7y =7, and C,, = 46.2 x 10-* m?/day. A uniformly distributed load of
50 kN/m? is applied at the ground surface. Determine the distribution
of excess pore water pressure after 10 days of load application assum-
ing radial drainage only.

Solution

Letrp=0.38m, Ar=0.38 m,and At =5 days.So7,=r/ry=1.52/0.38 = 4;
AT = Ar/rg =0.38/0.38 = 1

CuAt _ 462x107)G)

At = =0.16
¢ ¥ 038y

Aj—. _ 0.126 —016

Aary Q)

Let up = 0.5 kN/m2. So, immediately after load application,
u=50/0.5 = 100.

Figure 8.41 shows the initial nondimensional pore water pressure
distribution at time # = 0. (Note that at 7 = 1h, # = 0 owing to the
drainage face.)

At § days: # = 0,7 = 1. From Equation 8.187

Use Uit

2@ AT)

|:u1,t+u3,t+ —2u0,t:|+uo,t

100-0
2@N)

uo,t+At:o.1s[o+1oo+ —2(100)]+100:88
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Figure 8.4] Excess pore water pressure variation with time for radial drainage.

At7=3

100-100

u0,t+At=0.16|:100+100+ —2(100)]+100=1oo

Similarly at7 =4
#y7.a7 = 100

(note that, here, #;; = %, 7)
At 10 days, at7=1,u

At7=2

0.

Tozeat = 0 .16[0+ 100+ 20

—2@8)|+88=79.84=80
26+

At7=3

100-88

u0,t+At=0.16|:88+100+ ) —2(100):|+100=98.4

At7=4
7 =100
u=1uxuyg=0.5ukN/m?

The distribution of nondimensional excess pore water pressure is
shown in Figure 8.41.
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8.16 GENERAL COMMENTS ON
SAND DRAIN PROBLEMS

Figure 8.37b shows a triangular pattern of the layout of sand drains. In
some instances, the sand drains may also be laid out in a square pattern.
For all practical purposes, the magnitude of the radius of equivalent circles
can be given as follows:

Triangular pattern

= (0 525)drain spacing) (8.188)
Square pattern
% = 0 565)drain spacing) (8.189)

Prefabricated vertical drains (PVDs), also referred to as wick or strip
drains, were originally developed as a substitute for the commonly used
sand drain. With the advent of materials science, these drains began to be
manufactured from synthetic polymers such as polypropylene and high-
density polyethylene. PVDs are normally manufactured with a corrugated
or channeled synthetic core enclosed by a geotextile filler as shown sche-
matically in Figure 8.42. Installation rates reported in the literature are on
the order of 0.1-0.3 m/s, excluding equipment mobilization and setup time.
PVDs have been used extensively in the past for expedient consolidation
of low-permeability soils under surface surcharge. The main advantage of

Polypropylene
core

Geotextile
fabric

Figure 8.42 Prefabricated vertical drain (PVD).
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PVDs over sand drains is that they do not require drilling; thus, installation
is much faster. For rectangular flexible drains, the radius of the equivalent
circles can be given as

r = b+a)
T

(8.190)

where
a is width of the drain
b is the thickness of the drain

The relation for average degree of consolidation for vertical drainage
only was presented in Section 8.2. Also the relations for the degree of con-
solidation due to radial drainage only were given in Sections 8.14 and 8.15.
In reality, the drainage for the dissipation of excess pore water pressure

takes place in both directions simultaneously. For such a case, Carrillo
(1942) has shown that

Uyr=1-@-Uy)Q-U,) (8.191)

where

U, is the average degree of consolidation for simultaneous vertical and
radial drainage

U, is the average degree of consolidation calculated on the assumption
that only vertical drainage exists (note the notation U,, was used
before in this chapter)

U, is the average degree of consolidation calculated on the assumption
that only radial drainage exists

Example 8.11

A 6-m-thick clay layer is drained at the top and bottom and has some
sand drains. The given data are C, (for vertical drainage) = 49.51 x
10-* m/day; k, = k3 d, = 0.45 m; d. = 3 m; r, = 7, (i.e., no smear at the
periphery of drain wells).

It has been estimated that a given uniform surcharge would cause
a total consolidation settlement of 250 mm without the sand drains.
Calculate the consolidation settlement of the clay layer with the same
surcharge and sand drains at time ¢ = 0, 0.2, 0.4, 0.6, 0.8, and 1 year.

Solution
Vertical drainage: C, = 49.51 x 10-* m/day = 1.807 m/year.

C,t 1807xt
H 2 62y

T, = =02008t= 02t (E8.1)
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Table 8.9 Steps in calculation of consolidation settlement

T, u, T, | —exp U= S. =
(Equation  (Table (Equation [-8T./F(n)] I=(-U,) 250xU
t(Year) E8.1) 81) I-U, E82) =U, I-U, (1-u,) (mm)
0 0 0 | 0 0 | 0 0
0.2 0.04 022 0.78 0.04 0.235 0.765 0.404 101
0.4 0.08 032 0.68 0.08 0414 0.586 0.601 150.25
0.6 0.12 039 061 0.12 0.552 0.448 0.727 181.75
0.8 0.16 045 0.55 0.16 0.657 0.343 0.812 203
| 0.2 0.505 0.495 0.2 0.738 0.262 0.870 2175
Radial drainage:
T _ 15m o
L, 0225m
n’ 3n*-1 .
F, = 1 hn)- e (equalstrain case)
= M n (667)- M
6677 -1 4667)

=194-0.744=1.196
Since k, = k,, C, = C,,. So

1 X
7, = ot 1BOTXE_ 4 5¢ (ES.2)
a3

The steps in the calculation of the consolidation settlement are shown
in Table 8.9. From Table 8.9, the consolidation settlement at # = 1 year
is 217.5 mm. Without the sand drains, the consolidation settlement at
the end of 1 year would have been only 126.25 mm.
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Chapter 9

Shear strength of soils

9.1 INTRODUCTION

The shear strength of soils is an important aspect in many foundation
engineering problems such as the bearing capacity of shallow foundations and
piles, the stability of the slopes of dams and embankments, and lateral earth
pressure on retaining walls. In this chapter, we will discuss the shear strength
characteristics of granular and cohesive soils and the factors that control them.

9.2 MOHR-COULOMB FAILURE CRITERION

In 1900, Mohr presented a theory for rupture in materials. According to
this theory, failure along a plane in a material occurs by a critical combina-
tion of normal and shear stresses, and not by normal or shear stress alone.
The functional relation between normal and shear stress on the failure
plane can be given by

s= £0) (9.1)

where
s is the shear stress at failure
o is the normal stress on the failure plane

The failure envelope defined by Equation 9.1 is a curved line, as shown in
Figure 9.1.
In 1776, Coulomb defined the function f(c) as

s=c+otand (9.2)

where
¢ is cohesion
¢ is the angle of friction of the soil
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Equation 9.2

C
®

Equation 9.1

s
-

Shear stress

v

Normal stress

Figure 9.1 Mohr—Coulomb failure criterion.

Equation 9.2 is generally referred to as the Mohr—Coulomb failure crite-
rion. The significance of the failure envelope can be explained using Figure
9.1. If the normal and shear stresses on a plane in a soil mass are such that
they plot as point A, shear failure will not occur along that plane. Shear
failure along a plane will occur if the stresses plot as point B, which falls on
the failure envelope. A state of stress plotting as point C cannot exist, since
this falls above the failure envelope; shear failure would have occurred
before this condition was reached.

In saturated soils, the stress carried by the soil solids is the effective
stress, and so Equation 9.2 must be modified:

s=c+ O—u)tand =c+0oc tanod (9.3)

where
u is the pore water pressure
o’ is the effective stress on the plane

The term ¢ is also referred to as the drained friction angle. For sand,
inorganic silts, and normally consolidated clays, ¢ = 0. The value of ¢ is
greater than zero for overconsolidated clays.

The shear strength parameters of granular and cohesive soils will be
treated separately in this chapter.
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9.3 SHEARING STRENGTH OF GRANULAR SOILS

According to Equation 9.3, the shear strength of a soil can be defined as
s = ¢ + ¢’ tan ¢. For granular soils with ¢ = 0,

s=c'tano (9.4)

The determination of the friction angle ¢ is commonly accomplished by
one of two methods: the direct shear test or the triaxial test. The test pro-
cedures are given later.

9.3.1 Direct shear test

A schematic diagram of the direct shear test equipment is shown in
Figure 9.2. Basically, the test equipment consists of a metal shear box into
which the soil specimen is placed. The specimen can be square or circular
in plan, about 19-25 cm? in area, and about 25 mm in height. The box is
split horizontally into two halves. Normal force on the specimen is applied
from the top of the shear box by dead weights. The normal stress on the
specimens obtained by the application of dead weights can be as high as
1035 kN/m?2. Shear force is applied to the side of the top half of the box
to cause failure in the soil specimen. (The two porous stones shown in
Figure 9.2 are not required for tests on dry soil.) During the test, the shear
displacement of the top half of the box and the change in specimen thick-
ness are recorded by the use of horizontal and vertical dial gauges.

Normal force

|

ot s e e G faas
i

Loading

Y]
s

orous

Shear
force

Figure 9.2 Direct shear test arrangement.
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Figure 9.3 Direct shear test results in loose, medium, and dense sands.

Figure 9.3 shows the nature of the results of typical direct shear tests in
loose, medium, and dense sands. Based on Figure 9.3, the following obser-
vations can be made:

1. In dense and medium sands, shear stress increases with shear dis-
placement to a maximum or peak value t,, and then decreases to an
approximately constant value t_, at large shear displacements. This
constant stress T, is the ultimate shear stress.

2. For loose sands, the shear stress increases with shear displacement to
a maximum value and then remains constant.

3. For dense and medium sands, the volume of the specimen initially
decreases and then increases with shear displacement. At large values
of shear displacement, the volume of the specimen remains approxi-
mately constant.

4. For loose sands, the volume of the specimen gradually decreases to a
certain value and remains approximately constant thereafter.
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Figure 9.4 Determination of peak and ultimate friction angles from direct shear tests.

If dry sand is used for the test, the pore water pressure u is equal to
zero, and so the total normal stress o is equal to the effective stress ¢’. The
test may be repeated for several normal stresses. The angle of friction ¢
for the sand can be determined by plotting a graph of the maximum or
peak shear stresses versus the corresponding normal stresses, as shown
in Figure 9.4. The Mohr—Coulomb failure envelope can be determined
by drawing a straight line through the origin and the points representing
the experimental results. The slope of this line will give the peak friction
angle ¢ of the soil. Similarly, the ultimate friction angle ¢, can be deter-
mined by plotting the ultimate shear stresses t_, versus the corresponding
normal stresses, as shown in Figure 9.4. The ultimate friction angle ¢,
represents a condition of shearing at constant volume of the specimen.
For loose sands, the peak friction angle is approximately equal to the
ultimate friction angle.

If the direct shear test is being conducted on a saturated granular soil,
time between the application of the normal load and the shearing force
should be allowed for drainage from the soil through the porous stones.
Also, the shearing force should be applied at a slow rate to allow complete
drainage. Since granular soils are highly permeable, this will not pose a
problem. If complete drainage is allowed, the excess pore water pressure is
zero, and so 6 = ¢".

Some typical values of ¢ and ¢, for granular soils are given in Table 9.1.

The strains in the direct shear test take place in two directions, that is, in
the vertical direction and in the direction parallel to the applied horizontal
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Table 9.1 Typical values of ¢ and ¢, for granular soils

Type of soil $ (deg) e, (deg)
Sand: Round grains
Loose 28-30
Medium 30-35 26-30
Dense 35-38
Sand:Angular grains
Loose 30-35
Medium 35-40 30-35
Dense 40-45
Sandy gravel 34-48 33-36

shear force. This is similar to the plane strain condition. There are some
inherent shortcomings of the direct shear test. The soil is forced to shear in
a predetermined plane—that is, the horizontal plane—which is not neces-
sarily the weakest plane. Second, there is an unequal distribution of stress
over the shear surface. The stress is greater at the edges than at the center.
This type of stress distribution results in progressive failure (Figure 9.5).

In the past, several attempts were made to improve the direct shear test.
To that end, the Norwegian Geotechnical Institute developed a simple
shear test device, which involves enclosing a cylindrical specimen in a rub-
ber membrane reinforced with wire rings. As in the direct shear test, as the
end plates move, the specimen distorts, as shown in Figure 9.6a. Although
it is an improvement over the direct shear test, the shearing stresses are not
uniformly distributed on the specimen. Pure shear as shown in Figure 9.6b
only exists at the center of the specimen.

Normal
1 force

Shear
force

Figure 9.5 Unequal stress distribution in direct shear equipment.
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9.3.2 Triaxial test

-

Figure 9.6 (a) Simple shear and (b) pure shear.

A schematic diagram of triaxial test equipment is shown in Figure 9.7. In
this type of test, a soil specimen about 38 mm in diameter and 76 mm
in length is generally used. The specimen is enclosed inside a thin rubber
membrane and placed inside a cylindrical plastic chamber. For conducting
the test, the chamber is usually filled with water or glycerin. The specimen
is subjected to a confining pressure o, by application of pressure to the fluid

Pressure gauge

Rubber
ring

Water

Air release —p
valve

v

Rubber
ring

v

Axial load

A

A

-

To cell pressure control

Loading ram

Top cap
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in a rubber
membrane
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Sealing ring

Connections for drainage or
pore pressure measurement

Figure 9.7 Triaxial test equipment. (After Bishop, A.W. and Bjerrum, L., The relevance
of the triaxial test to the solution of stability problems, in Proc. Res. Conf.
Shear Strength of Cohesive Soils, Am. Soc. of Civil Eng., pp. 437-501, 1960.)



410 Advanced Soil Mechanics

in the chamber. (Air can sometimes be used as a medium for applying the
confining pressure.) Connections to measure drainage into or out of the
specimen or pressure in the pore water are provided. To cause shear failure
in the soil, an axial stress Ac is applied through a vertical loading ram. This
is also referred to as deviator stress. The axial strain is measured during the
application of the deviator stress. For determination of ¢, dry or fully satu-
rated soil can be used. If saturated soil is used, the drainage connection is
kept open during the application of the confining pressure and the deviator
stress. Thus, during the test, the excess pore water pressure in the specimen
is equal to zero. The volume of the water drained from the specimen during
the test provides a measure of the volume change of the specimen.

For drained tests, the total stress is equal to the effective stress. Thus, the
major effective principal stress is 67 = 6; = 65 + Ag;the minor effective princi-
pal stress is 65 = 0;;and the intermediate effective principal stress is 65 = 07.

At failure, the major effective principal stress is equal to o; + Aoy,
where Ac; is the deviator stress at failure, and the minor effective princi-
pal stress is o5. Figure 9.8b shows the nature of the variation of Ac with
axial strain for loose and dense granular soils. Several tests with similar
specimens can be conducted by using different confining pressures o;.
The value of the soil peak friction angle ¢ can be determined by plotting
effective-stress Mohr’s circles for various tests and drawing a common tan-
gent to these Mohr’s circles passing through the origin. This is shown in
Figure 9.9a. The angle that this envelope makes with the normal stress axis
is equal to ¢. It can be seen from Figure 9.9b that

sno- 2 - 17022
oa (01+0%)~2
or
o= sint 82=93 (9.5)
0, +0; failire

However, it must be pointed out that in Figure 9.9a the failure envelope
defined by the equation s = ¢’ tan ¢ is an approximation to the actual
curved failure envelope. The ultimate friction angle ¢, for a given test can
also be determined from the equation

0 = s [01‘“”_03] (9.6)

4 7
O1)t O3

where 6 &) = 03 + AG . For similar soils, the friction angle ¢ determined by
triaxial tests is slightly lower (0°-3°) than that obtained from direct shear tests.
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Figure 9.8 Drained triaxial test in granular soil: (a) application of confining pressure and
(b) application of deviator stress.

The axial compression triaxial test described earlier is of the conventional
type. However, the loading process on the specimen in a triaxial chamber
can be varied in several ways. In general, the tests can be divided into two
major groups: axial compression tests and axial extension tests. The follow-
ing is a brief outline of each type of test (refer to Figure 9.10).

9.3.3 Axial compression tests

1. Radial confining stress o, constant and axial stress o, increased. This
is the test procedure described earlier.

2. Axial stress o, constant and radial confining stress o, decreased.

3. Mean principal stress constant and radial stress decreased.
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For drained compression tests, o, is equal to the major effective principal
stress 07, and o, is equal to the minor effective principal stress 65, which
is equal to the intermediate effective principal stress 65 . For the test listed
under item 3, the mean principal stress, that is, ©+0, +03)/43, is kept con-
stant. Or, in other words, 67 +0% + 065 = J=0,+ 20, is kept constant by
increasing o, and decreasing o,.

9.3.4 Axial extension tests

1. Radial stress o, kept constant and axial stress o, decreased.
2. Axial stress o, constant and radial stress o, increased.
3. Mean principal stress constant and radial stress increased.

For all drained extension tests at failure, o, is equal to the minor effective
principal stress 63, and o, is equal to the major effective principal stress o7,
which is equal to the intermediate effective principal stress 65.

The detailed procedures for conducting these tests are beyond the scope
of this text, and readers are referred to Bishop and Henkel (1969). Several
investigations have been carried out to compare the peak friction angles
determined by the axial compression tests to those obtained by the axial
extension tests. A summary of these investigations is given by Roscoe et al.
(1963). Some investigators found no difference in the value of ¢ from com-
pression and extension tests; however, others reported values of ¢ deter-
mined from the extension tests that were several degrees greater than those
obtained by the compression tests.

9.4 CRITICAL VOID RATIO

We have seen that for shear tests in dense sands, there is a tendency of
the specimen to dilate as the test progresses. Similarly, in loose sand, the
volume gradually decreases (Figures 9.3 and 9.8). An increase or decrease
of volume means a change in the void ratio of soil. The nature of the
change of the void ratio with strain for loose and dense sands is shown in
Figure 9.11. The void ratio for which the change of volume remains con-
stant during shearing is called the critical void ratio. Figure 9.12 shows
the results of some drained triaxial tests on washed Fort Peck sand. The
void ratio after the application of o5 is plotted in the ordinate, and the
change of volume, AV, at the peak point of the stress—strain plot is plot-
ted along the abscissa. For a given o,, the void ratio corresponding to
AV =0 is the critical void ratio. Note that the critical void ratio is a func-
tion of the confining pressure o;. It is, however, necessary to recognize



414 Advanced Soil Mechanics

»
»

Void ratio

Critical void ratio

sand
Strain
Figure 9.11 Definition of critical void ratio.
Based on Taylor (1948)

0.8 —
Y]
R
E
9
S
>
=
£ 05 (kN/m?) = 104

0.7 —

Specimen diameter = 35 mm
0.6 | | | | |

-3 -2 -1 0

1

2 3

Change of volume at peak point, AV (cm?)
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that whether the volume of the soil specimen is increasing or decreasing,
the critical void ratio is reached only in the shearing zone, even if it is gen-
erally calculated on the basis of the total volume change of the specimen.

The concept of critical void ratio was first introduced in 1938 by A.
Casagrande to study liquefaction of granular soils. When a natural deposit
of saturated sand that has a void ratio greater than the critical void ratio is
subjected to a sudden shearing stress (due to an earthquake or to blasting,
for example), the sand will undergo a decrease in volume. This will result in
an increase in pore water pressure #. At a given depth, the effective stress is
given by the relation ¢’ = 6 - u. If o (i.e., the total stress) remains constant
and u increases, the result will be a decrease in ¢'. This, in turn, will reduce
the shear strength of the soil. If the shear strength is reduced to a value
which is less than the applied shear stress, the soil will fail. This is called
soil liquefaction. An advanced study of soil liquefaction can be obtained
from the work of Seed and Lee (1966).

9.5 CURVATURE OF THE FAILURE ENVELOPE

It was shown in Figure 9.1 that Mohr’s failure envelope (Equation 9.1)
is actually curved, and the shear strength equation (s = ¢ + ¢ tan ¢) is
only a straight-line approximation for the sake of simplicity. For a drained
direct shear test on sand, ¢ = tan-'(t,,,,/6’). Since Mohr’s envelope is actu-
ally curved, a higher effective normal stress will yield lower values of ¢.
This fact is demonstrated in Figure 9.13, which is a plot of the results of
direct shear tests on standard Ottawa Sand. For loose sand, the value of
¢ decreases from about 30° to less than 27° when the normal stress is
increased from 48 to 768 kN/m?2. Similarly, for dense sand (initial void ratio
approximately 0.56), ¢ decreases from about 36° to about 30.5° due to a
16-fold increase of o'.

For high values of confining pressure (greater than about 400 kN/m?),
Mohr’s failure envelope sharply deviates from the assumption given by
Equation 9.3. This is shown in Figure 9.14. Skempton (1960, 1961) intro-
duced the concept of angle of intrinsic friction for a formal relation between
shear strength and effective normal stress. Based on Figure 9.14, the shear
strength can be defined as

s=k+0'tany (9.7)

where  is the angle of intrinsic friction. For quartz, Skempton (1961) gave
the values of k = 950 kN/m? and y =~ 13°.
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Table 9.2 Experimental values of ¢,

Reference Material ¢, (deg)
Lee (1966) Steel ball, 2.38 mm diameter 7
Glass bollotini 17
Medium-to-fine quartz sand 26
Feldspar (25-200 sieves) 37
Horne and Deere (1962) Quartz 24
Feldspar 38
Calcite 34
Rowe (1962) Medium-to-fine quartz sand 26

9.6 GENERAL COMMENTS ON THE FRICTION
ANGLE OF GRANULAR SOILS

The soil friction angle determined by the laboratory tests is influenced by
three major factors. They are

* Mineral friction (¢,): The experimental values of ¢, for several soils
are shown in Table 9.2.

e Particle reorientation

e Expansion (i.e., dilation)

The contributions of the three factors on medium-to-fine quartz sand are
shown in Figure 9.15 (Rowe, 1962). At high confining pressure, there is a
fourth major factor which is grain crushing. Thus

o=, +P (9.8)

where B is a function of particle reorientation, dilation, and grain crushing.

Figure 9.16 shows the contributions of the four factors schematically as
discussed by Lee and Seed (1968).

The value of tan ¢ in triaxial compression tests is not greatly affected
by the rate of loading. For sand, Whitman and Healy (1963) compared the
tests conducted in 5 min and in 5§ ms and found that tan ¢ decreases at the
most by about 10%.

9.7 SHEAR STRENGTH OF GRANULAR SOILS
UNDER PLANE STRAIN CONDITIONS

The results obtained from triaxial tests are widely used for the design of
structures. However, under structures such as continuous wall footings, the
soils are actually subjected to a plane strain type of loading, that is, the
strain in the direction of the intermediate principal stress is equal to zero.



418 Advanced Soil Mechanics

32 Dilatancy

effect
28 - Particle reorientation

24 — ¢p

20 —

Friction angle (deg)

12 —

0 1 1 1 1 1
45 44 42 40 38 36

Initial porosity, n (%)

34

Figure 9.15 Rowe’s study of the variation of ¢, and ¢ for medium-to-fine quartz sand.

_- (+)
/ Ou
/;/

Mohr’s
envelope at
high confining
pressure
Grain
2 crushing
@ Mohr’s P
B
2] 7
Z envelope ,
151 at low , (0] -
& confining —, T T
- -
pressure -
— -
-
Dilatancy
Dilatancy )

v

Normal stress

Figure 9.16 Mohr’s envelopes at low and high confining pressures—contributions of ¢,,

dilatancy, and grain crushing.



Shear strength of soils 419

0, = Major principal stress
Strain =¢€;
(Note: €; is compression)

v

B <+——4— 0, =Intermediate

principal stress
Strain=€5=0
03=Minor / H
principal stress
Strain = €3

(Note: €3 is expansion)
Figure 9.17 Plane strain condition.

Several investigators have attempted to evaluate the effect of plane strain
type of loading (Figure 9.17) on the angle of friction of granular soils. A sum-
mary of the results obtained was compiled by Lee (1970). To discriminate the
plane strain drained friction angle from the triaxial drained friction angle,
the following notations have been used in the discussion in this section:

¢, = drained friction angle obtained from plane strain tests
¢, = drained friction angle obtained from triaxial tests

Lee (1970) also conducted some drained shear tests on a uniform sand
collected from the Sacramento River near Antioch, California. Drained tri-
axial tests were conducted with specimens of diameter 35.56 mm and height
86.96 mm. Plane strain tests were carried out with rectangular specimens
60.96 mm high and 27.94 x 71.12 mm in cross-sectional area. The plane
strain condition was obtained by the use of two lubricated rigid side plates.
Loading of the plane strain specimens was achieved by placing them inside
a triaxial chamber. All specimens, triaxial and plane strain, were aniso-
tropically consolidated with a ratio of major to minor principal stress of 2:

0} (consoldation)
6% (consolidation )

k. = (9.9)

The results of this study are instructive and are summarized in the following:

1. For loose sand having a relative density of 38%, at low confining
pressure, ¢, and ¢, were determined to be 45° and 38°, respectively.
Similarly, for medium-dense sand having a relative density of 78%,
¢, and ¢, were 48° and 40°, respectively.
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Figure 9.18 Initial tangent modulus from drained tests on Antioch sand. (After Lee, K.L.,
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J. Soil Mech. Found. Div., ASCE, 96(SM3), 901, 1970.)

At higher confining pressure, the failure envelopes (plane strain and
triaxial) flatten, and the slopes of the two envelopes become the same.
Figure 9.18 shows the results of the initial tangent modulus, E, for
various confining pressures. For given values of 6%, the initial tangent
modulus for plane strain loading shows a higher value than that for
triaxial loading, although in both cases, E increases exponentially
with the confining pressure.

. The variation of Poisson’s ratio v with the confining pressure for plane

strain and triaxial loading conditions is shown in Figure 9.19. The
values of v were calculated by measuring the change of the volume of
specimens and the corresponding axial strains during loading. The
derivation of the equations used for finding v can be explained with
the aid of Figure 9.17. Assuming compressive strain to be positive, for
the stresses shown in Figure 9.17

AH =H €, (9.10)

AB=Be, (9.11)

AL=Le, (9.12)
where

H, L, B are the height, length, and width of the specimen

AH, AB, AL are the changes in height, length, and width of speci-
men due to application of stresses

€,, €,, €, are the strains in the direction of major, intermediate,
and minor principal stresses
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Figure 9.19 Poisson’s ratio from drained tests on Antioch sand. (After Lee, K.L., J. Soil
Mech. Found. Div., ASCE, 96(SM3), 901, 1970.)

The volume of the specimen before load application is equal to V= LBH,
and the volume of the specimen after the load application is equal to
V - AV. Thus

AV =V — ¥ —AV )=LBH — . —AL)B—AB)H —AH )

=LBH —LBH (-€,)(1-¢€,)1-€3) (9.13)

where AV is change in volume. Neglecting the higher-order terms such as
€,E,, €,€;, €;€,, and €,€,€;, Equation 9.13 gives

u:AV—Vze1+e2+e3 (9.14)

where v is the change in volume per unit volume of the specimen.
For triaxial tests, €, = €;, and they are expansions (negative sign). So, €, =
€, = -v €. Substituting this into Equation 9.14, we get v = €, (1 - 2v), or

V= ;(1— D) (for triaxial test cond itions) (9.15)
€
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With plane strain loading conditions, €, = 0 and €; = -v €,. Hence, from
Equation 9.14,v =€, (1 - v), or

V= - (for plane strain conditions) (9.16)

€,

Figure 9.19 shows that for a given value of 65, Poisson’s ratio obtained
from plane strain loading is higher than that obtained from triaxial loading.

Hence, on the basis of the available information at this time, it can be
concluded that ¢, exceeds the value of ¢, by 0°~8°. The greatest difference
is associated with dense sands at low confining pressures. The smaller dif-
ferences are associated with loose sands at all confining pressures, or dense
sand at high confining pressures. Although still disputed, several sugges-
tions have been made to use a value of ¢ = ¢p = 1.1¢,, for calculation of
the bearing capacity of strip foundations. For rectangular foundations, the
stress conditions on the soil cannot be approximated by either triaxial or
plane strain loadings. Meyerhof (1963) suggested for this case that the fric-
tion angle to be used for calculation of the ultimate bearing capacity should
be approximated as

0 =(1 J—oan}bt (9.17)

L
where
L; is the length of foundation
B, the width of foundation

After considering several experiment results, Lade and Lee (1976) gave
the following approximate relations:

0o =150.—17 ¢, >34° (9.18)

Oy =0 0; < 34° (9.19)

9.8 SHEAR STRENGTH OF COHESIVE SOILS

The shear strength of cohesive soils can generally be determined in the labo-
ratory by either direct shear test equipment or triaxial shear test equipment;
however, the triaxial test is more commonly used. Only the shear strength
of saturated cohesive soils will be treated here. The shear strength based
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on the effective stress can be given by (Equation 9.3) s = ¢ + ¢’ tan ¢. For
normally consolidated clays, ¢ = 0, and for overconsolidated clays, ¢ > 0.

The basic features of the triaxial test equipment are shown in Figure 9.7.
Three conventional types of tests are conducted with clay soils in the
laboratory:

1. Consolidated drained test or drained test (CD test or D test)
2. Consolidated undrained test (CU test)
3. Unconsolidated undrained test (UU test)

Each of these tests will be separately considered in the following sections.

9.8.1 Consolidated drained test

For the consolidated drained test, the saturated soil specimen is first sub-
jected to a confining pressure 65 through the chamber fluid; as a result, the
pore water pressure of the specimen will increase by #.. The connection to
the drainage is kept open for complete drainage, so that #_ becomes equal
to zero. Then, the deviator stress (piston stress) Ac is increased at a very
slow rate, keeping the drainage valve open to allow complete dissipation
of the resulting pore water pressure #,. Figure 9.20 shows the nature of
the variation of the deviator stress with axial strain. From Figure 9.20,
it must also be pointed out that, during the application of the deviator
stress, the volume of the specimen gradually reduces for normally con-
solidated clays. However, overconsolidated clays go through some reduc-
tion of volume initially but then expand. In a consolidated drained test,
the total stress is equal to the effective stress, since the excess pore water
pressure is zero. At failure, the maximum effective principal stress is
0} = 0, = 0; + Ao, where Ao, is the deviator stress at failure. The mini-
mum effective principal stress is 65 = 0;.

From the results of a number of tests conducted using several specimens,
Mohr’s circles at failure can be plotted as shown in Figure 9.21. The values
of ¢ and ¢ are obtained by drawing a common tangent to Mohr’s circles,
which is the Mohr-Coulomb envelope. For normally consolidated clays
(Figure 9.21a), we can see that ¢ = 0. Thus, the equation of the Mohr-
Coulomb envelope can be given by s = ¢’ tan ¢. The slope of the failure
envelope will give us the angle of friction of the soil. As shown by Equation
9.5, for these soils

smq,(c] or G;:c;mz(4so+¢)
failure 2

oy + 6

Figure 9.22 shows a modified form of Mohr’s failure envelope of pure clay
minerals. Note that it is a plot of ©] — 0} Jamwe 2 Versus 0] + 65 a2 -
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Figure 9.20 Consolidated drained triaxial test in clay: (a) application of confining pres-
sure and (b) application of deviator stress.

For overconsolidated clays (Figure 9.21b), ¢ # 0. So, the shear strength
follows the equation s = ¢ + ¢’ tan ¢. The values of ¢ and ¢ can be deter-
mined by measuring the intercept of the failure envelope on the shear stress
axis and the slope of the failure envelope, respectively. To obtain a general
relation between 67, 6%, ¢, and ¢, we refer to Figure 9.23 from which

Shq):i&:i: (0'1—0'3,)/2’
bO +0a cooth+ (01 +035)2

o1 (—sin)= 2c cosh + 65 (L + sn o) (9.20)
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Figure 9.21 Failure envelope for (a) normally consolidated and (b) overconsolidated clays
from consolidated drained triaxial tests.

or

, , 1+sing  2ccosd
0, =03 : + .
l-sih¢ 1-sho

o, =c;m2(450+2)+ 2¢c 13n(45°+2) (9.21)

Note that the plane of failure makes an angle of 45° + ¢/2 with the major

principal plane.
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If a clay is initially consolidated by an encompassing chamber pressure of
0. = 0, and allowed to swell under a reduced chamber pressure of 65 = 6%,
the specimen will be overconsolidated. The failure envelope obtained from
consolidated drained triaxial tests of these types of specimens has two dis-
tinct branches, as shown in Figure 9.24. Portion ab of the failure envelope
has a flatter slope with a cohesion intercept, and portion bc represents a
normally consolidated stage following the equation s = ¢’ tan ¢,,.
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Figure 9.24 Failure envelope of a clay with preconsolidation pressure of G.

It may also be seen from Figure 9.20 that at very large strains the deviator
stress reaches a constant value. The shear strength of clays at very large strains
is referred to as residual shear strength (i.e., the ultimate shear strength). It
has been proved that the residual strength of a given soil is independent of
past stress history, and it can be given by the equation (see Figure 9.25)

(9.22)

— S
Stesidual = O 1311¢th
A
wv
wv
[
3
w
=~
<
(5]
<
wI
2
&
A ) A
o ST
& @ oX o
o° =5 S
S
o
s
S e‘é"éo
c
_+_ ¢ uie o} o1=03+Aoy; R

Figure 9.25 Residual shear strength of clay.

Normal stress
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(i.e., the ¢ component is 0). For triaxial tests

Our = sml(MJ (9.23)
O + 03 residual

where 67 = 6% + AC,x.

The residual friction angle in clays is of importance in subjects such as
the long-term stability of slopes.

The consolidated drained triaxial test procedure described earlier is of
the conventional type. However, failure in the soil specimens can be pro-
duced by any one of the methods of axial compression or axial extension
as described in Section 9.3 (with reference to Figure 9.10), allowing full
drainage condition.

9.8.2 Consolidated undrained test

In the consolidated undrained test, the soil specimen is first consolidated
by a chamber-confining pressure o;; full drainage from the specimen is
allowed. After complete dissipation of excess pore water pressure, #., gen-
erated by the confining pressure, the deviator stress Ao is increased to cause
failure of the specimen. During this phase of loading, the drainage line
from the specimen is closed. Since drainage is not permitted, the pore water
pressure (pore water pressure due to deviator stress #,) in the specimen
increases. Simultaneous measurements of Ac and #, are made during the
test. Figure 9.26 shows the nature of the variation of Ac and u, with axial
strain; also shown is the nature of the variation of the pore water pressure
parameter A (A = uy/Ac; see Equation 5.11) with axial strain. The value of
A at failure, Ay, is positive for normally consolidated clays and becomes
negative for overconsolidated clays (also see Table 5.2). Thus, A; is depen-
dent on the overconsolidation ratio (OCR). The OCR for triaxial test con-
ditions may be defined as

OCR =— (9.24)

where o, = 6, is the maximum chamber pressure at which the specimen
is consolidated and then allowed to rebound under a chamber pressure
of o;.

The typical nature of the variation of A; with the OCR for Weald clay is
shown in Figure 5.11.
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Figure 9.26 Consolidated undrained triaxial test: (a) application of confining pressure
and (b) application of deviator stress.
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At failure

Total major principal stress = 6, = 65 + Ac;
Total minor principal stress = o,

Pore water pressure at failure = 2, = A¢Ac;
E ffective m apr principalstress= 6, — A/AG; = G}
Effectivem inor principalstress= 65 — A/AG; = G

Consolidated undrained tests on a number of specimens can be conducted
to determine the shear strength parameters of a soil, as shown for the case
of a normally consolidated clay in Figure 9.27. The total-stress Mohr’s cir-
cles (circles A and B) for two tests are shown by dashed lines. The effective-
stress Mohr’s circles C and D correspond to the total-stress circles A and B,
respectively. Since C and D are effective-stress circles at failure, a common
tangent drawn to these circles will give the Mohr—Coulomb failure enve-
lope given by the equation s = ¢’ tan ¢. If we draw a common tangent to the
total-stress circles, it will be a straight line passing through the origin. This
is the total-stress failure envelope, and it may be given by

s=0tandq (9.25)

where ¢, is the consolidated undrained angle of friction.
The total-stress failure envelope for an overconsolidated clay will be of
the nature shown in Figure 9.28 and can be given by the relation

S=Cy + G tand,, (9.26)
A
e
Jo¥ e
w e(\\l 0‘16\0?
5] oS (\Q gee’
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Figure 9.27 Consolidated undrained test results—normally consolidated clay.
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Figure 9.28 Consolidated undrained test—total stress envelope for overconsolidated clay.

where c_, is the intercept of the total-stress failure envelope along the shear
stress axis.

The shear strength parameters for overconsolidated clay based on effec-
tive stress, that is, ¢ and ¢, can be obtained by plotting the effective-stress
Mohr’s circle and then drawing a common tangent.

As in consolidated drained tests, shear failure in the specimen can be pro-
duced by axial compression or extension by changing the loading conditions.

9.8.3 Unconsolidated undrained test

In unconsolidated undrained triaxial tests, drainage from the specimen
is not allowed at any stage. First, the chamber-confining pressure o5 is
applied, after which the deviator stress Ao is increased until failure occurs.
For these tests,

Total major principal stress = 6; +Ac; = o,
Total minor principal stress = o;

Tests of this type can be performed quickly, since drainage is not allowed.
For a saturated soil, the deviator stress failure, Aoy, is practically the same,
irrespective of the confining pressure o5 (Figure 9.29). So the total-stress
failure envelope can be assumed to be a horizontal line, and ¢ = 0. The
undrained shear strength can be expressed as

_ Aos
2

s=S, (9.27)
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Figure 9.29 Unconsolidated undrained triaxial test.

This is generally referred to as the shear strength based on the ¢ = 0

concept.
The fact that the strength of saturated clays in unconsolidated und-

rained loading conditions is the same, irrespective of the confining pres-

sure

o, can be explained with the help of Figure 9.30. If a saturated clay

specimen A is consolidated under a chamber-confining pressure of o,
and then sheared to failure under undrained conditions, Mohr’s circle at

Shear stress

A
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x\“e%‘ S
QK@C 57
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[ o o o3+ Aog \o; 03+ Acrf,+ Aoy
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Figure 9.30 Effective and total stress Mohr’s circles for unconsolidated undrained tests.
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failure will be represented by circle no. 1. The effective-stress Mohr’s circle
corresponding to circle no. 1 is circle no. 2, which touches the effective-
stress failure envelope. If a similar soil specimen B, consolidated under a
chamber-confining pressure of o, is subjected to an additional confining
pressure of Ac; without allowing drainage, the pore water pressure will
increase by Au_.. We saw in Chapter 5 that Au_ = BAc; and, for saturated
soils, B = 1. So, Au_ = Ac,.

Since the effective confining pressure of specimen B is the same as speci-
men A, it will fail with the same deviator stress, Ac;. The total-stress Mohr’s
circle for this specimen (i.e., B) at failure can be given by circle no. 3. So, at
failure, for specimen B,

Total minor principal stress = 6; + Ao,
Total minor principal stress = 6; + Aoy + Ac;

The effective stresses for the specimen are as follows:

Effective major principal stress = (65 + Aoy + Acy) — (Au, + AAcy)
= (03 + Aoy) — AAcy;

=0, -AAG:=0]

Effective minor principal stress = (65 + Ac;) — (Au, + AAcy)

=0;-AAC: =0

The aforementioned principal stresses are the same as those we had for
specimen A. Thus, the effective-stress Mohr’s circle at failure for specimen
B will be the same as that for specimen A, that is, circle no. 1.

The value of Ao, could be of any magnitude in specimen B; in all cases,
Ao would be the same.

Example 9.1

Consolidated drained triaxial tests on two specimens of a soil gave the
following results:

Confining pressure  Deviator stress at failure

Test no. 65 (kN/m?) Ao (kNIm?)
I 70 4404
2 92 474.7

Determine the values of ¢ and ¢ for the soil.
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Solution

From Equation 9.21, o, = o; tan? (45°+®/2) + 2¢ tan (45°+d/2).
For test 1, 6; = 70 kN/m?; 6, = 65 + Ac; = 70 + 440.4 = 510.4 kN/m?2. So,

5104=170 m2(45°+42’)+2cmn(45°+2) (E9.1)
Similarly, for test 2, 63 = 92 kN/m?; 6, = 92 + 474.7 = 566.7 kN/m2.
Thus

566.7 =92 m2(45°+2j+2cm[45°+2) (E9.2)

Subtracting Equation E9.1 from Equation E9.2 gives

563=22 mnz(45°+i’]

1/2
o= 2{@1(52623) - 450} =26°

Substituting ¢ = 26° in Equation E9.1 gives

o 5104-70tan’(@5°+26/2) 5104-70Q56)

1035 kN /n 2
2t@n@5°+25/2) 20 6)

Example 9.2

A normally consolidated clay specimen was subjected to a consoli-
dated undrained test. At failure, 6; = 100 kN/m?, 6, = 204 kN/m2, and
uy = 50 kN/m2. Determine ¢, and ¢.

Solution

Referring to Figure 9.31

smq)m:i:‘01_53)/2=°1_G3=2°4_1°°=£
a ©:+03)2 o,+0; 204+100 304
Hence
Poy = 20°
Again
sm:g_c’l—c’a

0c O1+0%
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Figure 9.31 Total- and effective-stress Mohr’s circles.

03 =100-50=50kN /n >
07 =204—-50=154 kN /n?

So

. 154-50 104
SJn(I) = - _-""
154+54 204

Hence

¢ =30.7°

9.9 UNCONFINED COMPRESSION TEST

The unconfined compression test is a special case of the unconsolidated
undrained triaxial test. In this case, no confining pressure to the specimen
is applied (i.e., o5 = 0). For such conditions, for saturated clays, the pore
water pressure in the specimen at the beginning of the test is negative (capil-
lary pressure). Axial stress on the specimen is gradually increased until the
specimen fails (Figure 9.32). At failure, 65 = 0 and so

0, =03 +A6f:AGf:qu (9.28)

where g, is the unconfined compression strength.
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Figure 9.32 Unconfined compression strength.

Table 9.3 Consistency and unconfined
compression strength of clays

Consistency q, (kNIm?)
Very soft 0-24
Soft 24-48
Medium 48-96
Stiff 96-192
Very stiff 192-383
Hard >383

Theoretically, the value of Ac; of a saturated clay should be the same as
that obtained from unconsolidated undrained tests using similar specimens.
Thus, s = S, = q,/2. However, this seldom provides high-quality results.

The general relation between consistency and unconfined compression
strength of clays is given in Table 9.3.

9.10 MODULUS OF ELASTICITY AND POISSON’S
RATIO FROM TRIAXIAL TESTS

For calculation of soil settlement and distribution of stress in a soil mass, it
may be required to know the magnitudes of the modulus of elasticity and
Poisson’s ratio of soil. These values can be determined from a triaxial test.
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Figure 9.33 shows a plot of 67 — 0 versus axial strain € for a triaxial test,
where o5 is kept constant. The definitions of the initial tangent modulus
E, and the tangent modulus E, at a certain stress level are also shown in
the figure. Janbu (1963) showed that the initial tangent modulus can be
estimated as

, n
E, = Kp{%] (9.29)
a

where

0% is the minor effective principal stress

p. is the atmospheric pressure (same pressure units E; and 673)

K is the modulus number

n is the exponent determining the rate of variation of E; with %

For a given soil, the magnitudes of K and # can be determined from the
results of a number of triaxial tests and then plotting E; versus 63 on log-log
scales. The magnitude of K for various soils usually falls in the range of
300-2000. Similarly, the range of 7 is between 0.3 and 0.6.

The tangent modulus E, can be determined as

B, = a“’lai:’” (9.30)
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Duncan and Chang (1970) showed that

2ccosh + 20, sno

a

. 4 4 2 4 n
Et:[l_Rf(l_San))(Gl_G3)} Kpa[c:iJ (9'31)

where R; is the failure ratio. For most soils, the magnitude of R; falls
between 0.75 and 1.

For drained conditions, Trautman and Kulhawy (1987) suggested that

K z300+900(¢2_25J (9.32)

OO

The approximate values of 7 and R; are as follows (Kulhawy et al., 1983):

Soil type n R
GW 1/3 0.7
SP 173 0.8
SW 12 0.7
SP 12 0.8
ML 2/3 0.8

The value of Poisson’s ratio (v) can be determined by the same type of
triaxial test (i.e., 6; constant) as

Ae, — Ae,
vV=—=""

(9.33)
2Ae,
where
A€, is the increase in axial strain
A€, is the volumetric strain = A€, + 2A€,
A€, is the lateral strain
So
Ac, — (e, + 2A Ae,
— Ea (Aea Er):— € (9.34)

2Ae, Ae,

For undrained loading of saturated cohesive soil

v=0.5
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For drained conditions, Poisson’s ratio may be approximated as (Trautman
and Kulhawy, 1987)

v=0.1+0.3(¢02_250) (9.35)

00

9.11 FRICTION ANGLES ¢ AND ¢,

Figure 9.34 shows plots of the friction angle ¢ versus plasticity index PI of
several clays compiled by Kenney (1959). In general, this figure shows an
almost linear relationship between sin ¢ and log (PI).

Figure 9.35 shows the variation of the magnitude of ¢, for several clays
with the percentage of clay-size fraction present. ¢, gradually decreases
with the increase of clay-size fraction. At very high clay content, ¢,
approached the value of ¢, (angle of sliding friction) for sheet minerals.
For highly plastic sodium montmorillonites, the value of ¢, can be as
low as 3°-4°.

Stark and Eid (1994) evaluated the residual friction angle of 32 clays and
clay shales using the torsional ring shear tests. Based on those tests, the

ult
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Figure 9.34 Relationship between sin ¢ and plasticity index for normally consolidated
clays. (After Kenney, T.C., Proc. Am. Soc. Civ. Eng., 85(SM3), 67, 1959.)
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Figure 9.35 Variation of ¢, with percentage of clay content. (After Skempton, AW.,
Geotechnique, 14, 77, 1964.)

effect of clay mineralogy on ¢, is shown in Figure 9.36a. It can be seen that
¢, decreases with increasing liquid limit; also ¢, decreases with increas-
ing activity. Figure 9.36a also shows that the drained residual failure enve-
lope can be nonlinear. The relation between ¢, (secant residual friction
angle) and liquid limit of clays with varying clay-size fractions is shown in
Figure 9.36b. From this figure, it appears that there is a definite relation
between ¢, liquid limit, and the clay-size fraction.

9.12 EFFECT OF RATE OF STRAIN ON THE
UNDRAINED SHEAR STRENGTH

Casagrande and Wilson (1949, 1951) studied the problem of the effect of
rate of strain on the undrained shear strength of saturated clays and clay
shales. The time of loading ranged from 1 to 10* min. Using a time of
loading of 1 min as the reference, the undrained strength of some clays
decreased by as much as 20%. The nature of the variation of the und-
rained shear strength and time to cause failure, ¢, can be approximated by
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Figure 9.36 (a) Drained failure envelopes; (b) plot of secant residual friction angle ver-

sus liquid limit. Note: LL, liquid limit; A, activity; CF, clay size fraction.
(Redrawn after Stark, T.D. and Eid, H.T., J. Geotech. Eng. Div., ASCE, 120(5),
856, 1994.)

a straight line in a plot of S, versus log #, as shown in Figure 9.37. Based on
this, Hvorslev (1960) gave the following relation:

t
Su = Su(a)|:1_ Pa bg(ta ):|

where

(9.36)

S, is the undrained shear strength with time, #, to cause failure
S is the undrained shear strength with time, #,, to cause failure
p, is the coefficient for decrease of strength with time
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Figure 9.37 Effect of the rate of strain on undrained shear strength.

In view of the time duration, Hvorslev suggested that the reference time
be taken as 1000 min. In that case

tm in
o= 1-p, B )
Suty S”"“’[ P bg(lOOOmJ'n]:| ©.37)

where
Sy 1s the undrained shear strength at time 1000 min

P is the coefficient for decrease of strength with reference time of
1000 min

The relation between p, in Equation 9.36 and p,, in Equation 9.37 can
be given by

Pn = Po (9.38)
1-p.bog[@000 m in )/t m In)]
For ¢, = 1 min, Equation 9.38 gives
P1
= 9.39
P =15, (9.39)

Hvorslev’s analysis of the results of Casagrande and Wilson (1951) yielded
the following results: general range p, = 0.04-0.09 and p,, = 0.05-0.13;
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Cucaracha clay-shale p; = 0.07-0.19 and p,, = 0.09-0.46. The study of
the strength—time relation of Bjerrum et al. (1958) for a normally consoli-

dated marine clay (consolidated undrained test) yielded a value of p,, in
the range 0.06-0.07.

9.13 EFFECT OF TEMPERATURE ON
THE UNDRAINED SHEAR STRENGTH

A number of investigations have been conducted to determine the effect of
temperature on the shear strength of saturated clay. Most studies indicate
that a decrease in temperature will cause an increase in shear strength.
Figure 9.38 shows the variation of the unconfined compression strength
(q, = 28,) of kaolinite with temperature. Note that for a given moisture

44 |
e 75°F
0 100°F
— e 125°F —
o 150°F
40 — —
g
= Q
=]
8
=1
3 - ]
Q
I
2
1]
)
=
36 — —
2 | | | |
70 100 200 400 700

Unconfined compressive strength (kN/m?)

Figure 9.38 Unconfined compression strength of kaolinite—effect of temperature.
(After Sherif, M.A. and Burrous, C.M. Temperature effect on the uncon-
fined shear strength of saturated cohesive soils, Special Report 103,
Highway Research Board, 267-272, 1969.)
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Figure 9.39 Effect of temperature on shear strength of San Francisco Bay mud. (After
Mitchell, J.K., J. Soil Mech. Found. Eng. Div., ASCE, 90(SMI), 29, 1964.)

content, the value of g, decreases with increase of temperature. A similar
trend has been observed for San Francisco Bay mud (Mitchell, 1964), as
shown in Figure 9.39. The undrained shear strength (S, = (5, - 05)/2) varies
linearly with temperature. The results are for specimens with equal mean
effective stress and similar structure. From these tests
ds, 2
—2 =059 kN /m* °C 9.40
ar @*°C) (9.40)
Kelly (1978) also studied the effect of temperature on the undrained
shear strength of some undisturbed marine clay samples and commercial
illite and montmorillonite. Undrained shear strengths at 4°C and 20°C

were determined. Based on the laboratory test results, Kelly proposed the
following correlation:

ASy 001024 0.007478, pvange, (9.41)
AT

where
Su(averagc) = (Su(4°C) + Su(20°C))/2’ in kN/mZ

T is the temperature in °C
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Example 9.3

The following are the results of an unconsolidated undrained test: 65 = 70
kN/m2, 6, = 210 kN/m?2. The temperature of the test was 12°C. Estimate
the undrained shear strength of the soil at a temperature of 20°C.

Solution

- 210-70
Su(12°C)=61203= 2 =70kN fn?

From Equation 9.41
AS, = AT[0.0102 + 0.00747S

u(average)]

Now

AT =20-12=8°C
and

AS, = 8[0.0102 + 0.00747(70)] = 4.26 kN/m?
Hence

Supoec) = 70 - 4.26 = 65.74 kN/m?

9.14 STRESS PATH

Results of triaxial tests can be represented by diagrams called stress paths.
A stress path is a line connecting a series of points, each point representing
a successive stress state experienced by a soil specimen during the progress
of a test. There are several ways in which the stress path can be drawn, two
of which are discussed later.

9.14.1 Rendulic plot

A Rendulic plot is a plot representing the stress path for triaxial tests origi-
nally suggested by Rendulic (1937) and later developed by Henkel (1960).
It is a plot of the state of stress during triaxial tests on a plane Oabc, as
shown in Figure 9.40.

Along Oa, we plot \/2_(5;, and along Oc, we plot o, (0 is the effec-
tive radial stress and o, the effective axial stress). Line Od in Figure 9.41
represents the isotropic stress line. The direction cosines of this line are
1Af3, 1Af3, 1A/3.Line Od in Figure 9.41 will have slope of 1 vertical to v2
horizontal. Note that the trace of the octahedral plane (] + 6} + 65= const)
will be at right angles to the line Od.

In triaxial equipment, if a soil specimen is hydrostatically consolidated
(ie., 0, = 0%), it may be represented by point 1 on the line Od. If this speci-
men is subjected to a drained axial compression test by increasing o7 and
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Figure 941 Rendulic diagram.
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keeping o} constant, the stress path can be represented by the line 1-2.
Point 2 represents the state of stress at failure. Similarly

Line 1-3 will represent a drained axial compression test conducted by
keeping o, constant and reducing o7.

Line 1-4 will represent a drained axial compression test where the mean
principal stress (or J= 6 + 6} + 6% ) is kept constant.

Line 1-5 will represent a drained axial extension test conducted by keep-
ing o), constant and reducing o/,

Line 1-6 will represent a drained axial extension test conducted by
keeping o/, constant and increasing o7.

Line 1-7 will represent a drained axial extension test with J= 6} + 6} + 65
constant (ie., J= 0, + 20’ constant).

Curve 1-8 will represent an undrained compression test.

Curve 1-9 will represent an undrained extension test.

Curves 1-8 and 1-9 are independent of the total stress combination,
since the pore water pressure is adjusted to follow the stress path shown.

If we are given the effective stress path from a triaxial test in which failure
of the specimen was caused by loading in an undrained condition, the pore
water pressure at a given state during the loading can be easily determined.
This can be explained with the aid of Figure 9.42. Consider a soil specimen
consolidated with an encompassing pressure o, and with failure caused in
the undrained condition by increasing the axial stress o,. Let acb be the
effective stress path for this test. We are required to find the excess pore

Ud(failure) A

0,0,

v

V20, V20,

Figure 942 Determination of pore water pressure in a Rendulic plot.
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water pressures that were generated at points c and b (i.e., at failure). For this
type of triaxial test, we know that the total stress path will follow a vertical
line such as ae. To find the excess pore water pressure at ¢, we draw a line ¢f
parallel to the isotropic stress line. Line cf intersects line ae at d. The pore
water pressure u, at ¢ is the vertical distance between points ¢ and d. The
pore Water pressure i at b can similarly be found by drawing bg paral-
lel to the isotropic stress line and measuring the vertical distance between
points b and g.

9.14.2 Lambe’s stress path

Lambe (1964) suggested another type of stress path in which are plot-
ted the successive effective normal and shear stresses on a plane making
an angle of 45° to the major principal plane. To understand what a stress
path is, consider a normally consolidated clay specimen subjected to a con-
solidated drained triaxial test (Figure 9.43a). At any time during the test,

lAc
+ =0,
%

»
»

2
&
®
—
5
<
wv
o
by :
B
D ]
\ I
< |
_________ Z — \ !
i N
a AN
’ \ ’ ’
i O3(f) ! \\ %1 O1(f) R
o A C Normal stress

(b)

Figure 9.43 Definition of stress path: (a) sample under loading; (b) definition of K; line.
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the stress condition in the specimen can be represented by Mohr’s circle
(Figure 9.43b). Note here that, in a drained test, total stress is equal to
effective stress. So

05 = 03 (m inor principal stress)
0, = 03+ AG = 6 (M ajpr principal stress)

At failure, Mohr’s circle will touch a line that is the Mohr—Coulomb failure
envelope; this makes an angle ¢ with the normal stress axis (¢ is the soil
friction angle).

We now consider the effective normal and shear stresses on a plane mak-
ing an angle of 45° with the major principal plane. Thus

E ffective nom alstress, p = % —; 9 (9.42)

6; — 0%

5 (9.43)

Shear stress, d =

The point on Mohr’s circle having coordinates p’ and g’ is shown in
Figure 9.43b. If the points with p’ and g’ coordinates of all Mohr’s circles
are joined, this will result in the line AB. This line is called a stress path.
The straight line joining the origin and point B will be defined here as the
K; line. The K; line makes an angle a with the normal stress axis. Now

— E — @;(f)_cg(f))ﬁ (9 44)
ocC (G,l(f) + G’3(f) )/2

where 0} and 0%, are the effective major and minor principal stresses at
failure.
Similarly

_bc _ Ole— )2

sino = 1~ (9.45)
ocC Ol *+036)/2
From Equations 9.44 and 9.45, we obtain
tano = sing (9.46)

For a consolidated undrained test, consider a clay specimen consolidated
under an isotropic stress 03 = 0% in a triaxial test. When a deviator stress
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Figure 9.44 Stress path for consolidated undrained triaxial test: (a) sample under loading;
(b) effective-stress path.

Ao is applied on the specimen and drainage is not permitted, there will be
an increase in the pore water pressure, Au (Figure 9.44a):

Au=AAc (9.47)

where A is the pore water pressure parameter.
At this time, the effective major and minor principal stresses can be given

by

M inor effective principalstress= 65 = 6; — Au

M ajpr effective principalstress= 07 = 6, — Au = (05 + AG)— Au

Mohr’s circles for the total and effective stress at any time of deviator stress
application are shown in Figure 9.43b. (Mohr’s circle no. 1 is for total stress
and no. 2 for effective stress.) Point B on the effective-stress Mohr’s circle
has the coordinates p’ and g'. If the deviator stress is increased until failure
occurs, the effective-stress Mohr’s circle at failure will be represented by
circle no. 3, as shown in Figure 9.43b, and the effective-stress path will be
represented by the curve ABC.

The general nature of the effective-stress path will depend on the value
of A. Figure 9.45 shows the stress path in a p’ versus g’ plot for Lagunilla
clay (Lambe, 1964). In any particular problem, if a stress path is given in a
p’ versus g’ plot, we should be able to determine the values of the major and
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Figure 9.45 Stress path for Lagunilla clay. (After Lambe, T.W., Soil Mech. Found. Div.,
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Figure 946 Determination of major and minor principal stresses for a point on a

stress path.

minor effective principal stresses for any given point on the stress path. This
is demonstrated in Figure 9.46, in which ABC is an effective stress path.
From Figure 9.45, two important aspects of effective stress path can be

summarized as follows:

1. The stress paths for a given normally consolidated soil are geometri-

cally similar.

2. The axial strain in a CU test may be defined as €, = AL/L, as shown in
Figure 9.44a. For a given solil, if the points representing equal strain in
a number of stress paths are joined, they will be approximately straight
lines passing through the origin. This is also shown in Figure 9.45.
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Example 9.4

Given here are the loading conditions of a number of consolidated
drained triaxial tests on a remolded clay (¢ = 25°, ¢ = 0).

Consolidation Type of loading applied
Test no.  pressure (kN/m?) to cause failure
I 400 o, increased; 6, constant
2 400 ©, constant; 6, increased
3 400 o, decreased; 6, constant
4 400 o, constant; 6, decreased
5 400 G, * 20, constant; increased
64 and decreased o,
6 400 6, + 20, constant; decreased

64 and increased o,

a. Draw the isotropic stress line.
b. Draw the failure envelopes for compression and extension tests.
c. Draw the stress paths for tests 1-6.

Solution

Part a: The isotropic stress line will make an angle 0 = cos™ 1A/3 with
the o}, axis, so 8 = 54.8°. This is shown in Figure 9.47 as line Oa.
Part b:

J J s .
. G,—O [ 1+sin
sin¢ = ,1 ,3 or —,1 =— ¢
01%+03 Joire 03 Jomre 1-sin¢

where 67 and o are the major and minor principal stresses. For com-
pression tests, 6y = 0, and 63 = 6%. Thus

G,a =1+SZ!1’125 — 246
O: Jome 1—sin25°

or (o)), =246(c%) .

The slope of the failure envelope is

_ 0. _ 2460

t@and, = =174
o 2

Hence, 8, = 60.1°. The failure envelope for the compression tests is
shown in Figure 9.47.
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Figure 9.47 Stress paths for tests |-6 in Example 9.4.

For extension tests, 07 = 6, and 65 = 64.So

G, T 1+shn25

(Gaj _ 17825 4406 or o) =04060,
failire
The slope of the failure envelope for extension tests is

o, 04060,

o, 2

Hence, 8, = 16.01°. The failure envelope is shown in Figure 9.47.

=0287

tand, =

Part c: Point a on the isotropic stress line represents the point where
0, = 0.(0r6; =65 =03). The stress paths of the test are plotted in
Figure 9.47.

Test no. ~ Stress path in Figure 9.47

| ab
2 ac
3 ad
4 ae
5 af
6 ag
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Example 9.5

For a saturated clay soil, the following are the results of some consoli-
dated drained triaxial tests at failure:

,_0/+0}

Testno. p (kN/m?) ¢’ = % (kN/m?)
| 420 179.2
2 630 255.5
3 770 308.0
4 1260 467.0

Draw a p’ versus ¢’ diagram, and from that, determine ¢ and ¢ for the soil.

Solution

The diagram of g’ versus p’ is shown in Figure 9.48; this is a straight
line, and its equation may be written in the form

g'=m+p'tana (E9.3)
Also
o, + 0%

=coosd+ sind (E9.4)

Comparing Equations E9.3 and E9.4, we find 2 = ¢ cos ¢ or ¢ = m/cos ¢
and tan a = sin ¢. From Figure 9.48, m = 23.8 kN/m? and « = 20°. So

¢ =sin' (@n20°)=21.34°

and
238
c= 0 = = 2555kN /2
coso.  cos21 .34°
560
420
E
Z 280
S
140 +—
2
0 23.8 l(N/Im A A A
0 T 280 560 840 1120 1260

P (kN/m?)

Figure 9.48 Plot of q’ versus p’ diagram.
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9.15 HVORSLEV’S PARAMETERS

Considering cohesion to be the result of physicochemical bond forces (thus
the interparticle spacing and hence void ratio), Hvorslev (1937) expressed
the shear strength of a soil in the form

S=C.+0 'tand, (9.48)
where ¢, and ¢, are “true cohesion” and “true angle of friction,”
tively, which are dependent on the void ratio.

The procedure for determination of the aforementioned parameters
can be explained with the aid of Figure 9.49, which shows the relation
of the moisture content (i.e., void ratio) with effective consolidation
pressure. Points 2 and 3 represent normally consolidated stages of a
soil, and point 1 represents the overconsolidation stage. We now test
the soil specimens represented by points 1, 2, and 3 in an undrained

respec-

A
24
o |3
S| 8§
= O
=g
2|2
(] 17)
> |3
L >
»
(a) Consolidation pressure, o,
A
w)
(9]
—
5
w)
—~
]
(5]
=
w

v

$ Effective normal stress, o’

(b)

Figure 9.49 Determination of ¢, and ¢, (a) plot of e, and moisture content vs. ¢;;
(b) effective stress Mohr’s circles.
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Figure 9.50 Variation of true angle of friction with plasticity index. (After Bjerrum, L.
and Simons, N.E., Comparison of shear strength characteristics of normally
consolidated clay, in Proc. Res. Conf. Shear Strength Cohesive Soils, Am. Soc. of
Civ. Eng., 711-726, 1960.)

condition. The effective-stress Mohr’s circles at failure are given in
Figure 9.49b.

The soil specimens at points 1 and 2 in Figure 9.49a have the same mois-
ture content and hence the same void ratio. If we draw a common tangent
to Mohr’s circles 1 and 2, the slope of the tangent will give ¢,, and the
intercept on the shear stress axis will give c,.

Gibson (1953) found that ¢, varies slightly with void ratio. The true angle
of internal friction decreases with the plasticity index of soil, as shown in
Figure 9.50. The variation of the effective cohesion ¢, with void ratio may
be given by the relation (Hvorslev, 1960)

C. =G exp (-Be) (9.49)

where
¢, 1s the true cohesion at zero void ratio
e is the void ratio at failure
B is the slope of plot of In ¢, versus void ratio at failure

Example 9.6

A clay soil specimen was subjected to confining pressures 6; = 05 in a
triaxial chamber. The moisture content versus o5 relation is shown in
Figure 9.51a.

A normally consolidated specimen of the same soil was sub-
jected to a consolidated undrained triaxial test. The results are as
follows: o5 = 440 kN/m?; 6, = 840 kN/m?; moisture content at failure,
27%; ug = 240 kIN/m?2.
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Figure 9.5 Determination of Hvorslev’s parameters: (a) plot of moisture content vs. c3;
(b) plot of Mohr’s circles (w = 27%).

An overconsolidated specimen of the same soil was subjected to a
consolidated undrained test. The results are as follows: overconsoli-
dation pressure, 6% =500 kN fn?; o5 = 100 kN/m?2; 6, = 434 kN/m?;
uy = =18 kN/m?; initial and final moisture content, 27%.

Determine ¢, ¢, for a moisture content of 27%; also determine ¢.

Solution

For the normally consolidated specimen,

053 =440-240=200kN fn?
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07 =840—-240 =600 kN /’

o= 97% |- gy 600-200)_
0, +03 600+ 200
The failure envelope is shown in Figure 9.51b.
For the overconsolidated specimen

65 =100— (18)=118 kN fn >

G, = 434— (-18)= 452 kN fu
Mohr’s circle at failure is shown in Figure 9.51b; from this

¢, = 110 kN/m?2 ¢, = 15°

9.16 RELATIONS BETWEEN MOISTURE
CONTENT, EFFECTIVE STRESS, AND
STRENGTH FOR CLAY SOILS

9.16.1 Relations between water content and strength

The strength of a soil at failure (i.e., (6] = 6;3)1i1ure OF 01 — O3 Jmimre) 1S dependent
on the moisture content at failure. Henkel (1960) pointed out that there is a
unique relation between the moisture content w at failure and the strength of
a clayey soil. This is shown in Figures 9.52 and 9.53 for Weald clay.

For normally consolidated clays, the variation of w versus log (6, = 63)i1ure
is approximately linear. For overconsolidated clays, this relation is not linear
but lies slightly below the relation of normally consolidated specimens. The
curves merge when the strength approaches the overconsolidation pressure.
Also note that slightly different relations for w versus log (6, = 63)siure ar€
obtained for axial compression and axial extension tests.

9.16.2 Unique effective stress failure envelope

When Mohr’s envelope is used to obtain the relation for normal and shear
stress at failure, from triaxial test results, separate envelopes need to be
drawn for separate preconsolidation pressures, O, as shown in Figure 9.54.
For a soil with a preconsolidation pressure of of,, s = ¢; + ¢’ tan ¢,); simi-
larly, for a preconsolidation pressure of G, s = ¢, + 6’ tan ¢,,,.

Henkel (1960) showed that a single, general failure envelope for nor-
mally consolidated and preconsolidated (irrespective of preconsolidation
pressure) soils can be obtained by plotting the ratio of the major to minor
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Figure 9.52 Water content versus (6, = O3)uiue fOr Weald clay—extension tests.
(After Henkel, D.J., The shearing strength of saturated remolded clays,

in Proc. Res. Conf. Shear Strength of Cohesive Soils, Am. Soc. Civ. Eng.,
533-554, 1960.)

effective stress at failure against the ratio of the maximum consolidation
pressure to the average effective stress at failure. This fact is demonstrated
in Figure 9.55, which gives results of triaxial compression tests for Weald
clay. In Figure 9.55

J, =m axin um consolidation pressure= o,

Je

average effective stress at failure

4 4 4
_ O1@iure) T 02 @iure) + O3 i)
3

_ 0L+20%
3

The results shown in Figure 9.55 are obtained from normally consolidated
specimens and overconsolidated specimens having a maximum preconsoli-
dation pressure of 828 kIN/m?2. Similarly, a unique failure envelope can be
obtained from extension tests. Note, however, that the failure envelopes for
compression tests and extension tests are slightly different.
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Figure 9.53 Water content versus (6, = O3)piure fOr Weald clay—compression tests.
(After Henkel, D.J., The shearing strength of saturated remolded clays,

in Proc. Res. Conf. Shear Strength of Cohesive Soils, Am. Soc. Civ. Eng.,
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Figure 9.54 Mohr’s envelope for overconsolidated clay.
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Figure 9.55 Plot of Gjgiure)/Oimiure) against J /J; for Weald clay—compression tests.
(After Henkel, D.J., The shearing strength of saturated remolded clays, in
Proc. Res. Conf. Shear Strength of Cohesive Soils, Am. Soc. Civ. Eng., 533-554,
1960.)

9.16.3 Unique relation between water
content and effective stress

There is a unique relation between the water content of a soil and the effec-
tive stresses to which it is being subjected, provided that normally con-
solidated specimens and specimens with common maximum consolidation
pressures are considered separately. This can be explained with the aid of
Figure 9.56, in which a Rendulic plot for a normally consolidated clay is
shown. Consider several specimens consolidated at various confining pres-
sures in a triaxial chamber; the states of stress of these specimens are repre-
sented by the points g, c, e, g, etc., located on the isotropic stress lines. When
these specimens are sheared to failure by drained compressions, the corre-
sponding stress paths will be represented by lines such as ab, cd, ef, and gh.
During drained tests, the moisture contents of the specimens change. We
can determine the moisture contents of the specimens during the tests, such
as w,, w,, ..., as shown in Figure 9.56. If these points of equal moisture
contents on the drained stress paths are joined, we obtain contours of stress
paths of equal moisture contents (for moisture contents w, w,, ...).

Now, if we take a soil specimen and consolidate it in a triaxial chamber
under a state of stress as defined by point a and shear it to failure in an und-
rained condition, it will follow the effective stress path af, since the mois-
ture content of the specimen during shearing is w,. Similarly, a specimen
consolidated in a triaxial chamber under a state of stress represented by
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Figure 9.56 Unique relation between water content and effective stress.

point ¢ (moisture content w,) will follow a stress path ch (which is the stress
contour of moisture content w,) when sheared to failure in an undrained
state. This means that a unique relation exists between water content and
effective stress.

Figures 9.57 and 9.58 show the stress paths for equal water contents for
normally consolidated and overconsolidated Weald clay. Note the similar-
ity of shape of the stress paths for normally consolidated clay in Figure 9.58.
For overconsolidated clay, the shape of the stress path gradually changes,
depending on the OCR.

9.17 CORRELATIONS FOR EFFECTIVE
STRESS FRICTION ANGLE

Itis difficult in practice to obtain undisturbed samples of sand and gravelly soils
to determine the shear strength parameters. For that reason, several approxi-
mate correlations were developed over the years to determine the soil friction
angle based on field test results, such as standard penetration number (N) and
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Figure 9.57 Weald clay—normally consolidated. (After Henkel, D.J., The shearing
strength of saturated remolded clays, in Proc. Res. Conf. Shear Strength of
Cohesive Soils, Am. Soc. of Civ. Eng., 533-554, 1960.)

cone penetration resistance (). In granular soils, N and g, are dependent on
the effective-stress level. Schmertmann (1975) provided a correlation between
the standard penetration resistance, drained triaxial friction angle obtained
from axial compression tests (¢ = ¢,.), and the vertical effective stress ©5).
This correlation can be approximated as (Kulhawy and Mayne, 1990)

034
O = mn"l[lz e 21\(]) 30,5 ):| (for granular soils) (9.50)
0 /Ma

where p, is atmospheric pressure (in the same units as o). In a similar
manner, the correlation between ¢,., 65, and g. was provided by Robertson
and Campanella (1983), which can be approximated as (Kulhawy and
Mayne, 1990)

0

O = ‘anl[0.9+0.38bg(qf)] (for granular soils) (9.51)
(&
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Figure 9.58 Weald
828 kN/m?2. (After Henkel, D.J., The shearing strength of saturated remolded

clays, in Proc. Res. Conf. Shear Strength of Cohesive Soils, Am. Soc. Civ. Eng.,
533-554, 1960.)

Kulhawy and Mayne (1990) also provided the approximate relations
between the triaxial drained friction angle (¢p,) obtained from triaxial
compression tests with the drained friction angle obtained from other types
of tests for cohesionless and cohesive soils. Their findings are summarized

in Table 9.4.
Following are some other correlations generally found in the recent literature.

e Wolff (1989)
¢, =271+ 0.3N, - 0.00054(N,)? (for granular soil)

e Hatanaka and Uchida (1996)

Ox =+/20N; +20 (for granular soil)
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Table 9.4 Relative values of drained friction angle

Drained friction angle

Test type Cohesionless soil Cohesive soil
Triaxial compression 1.0, .00,

Triaxial extension 1120, 1.22¢,

Plane strain compression  1.12¢,. 1.10¢,.

Plane strain extension 1.25¢,, 1.34¢,,

Direct shear tan~'[tan(l.12¢,)cos ¢, ] tan~'[tan(].l1d,)cos ]

Source:  Compiled from Kulhawy, FH.and Mayne, PW.,, Manual on Estimating Soil Properties in
Foundation Design, Electric Power Research Institute, Palo Alto, CA, 1990.

whereN ; = ﬁN

’
o

= standard penetration num ber corrected to a standard

value of 6}, equalto one atm ospheric pressure

(Note: 0, is vertical stress in kN/m?2.)
e Ricceri et al. (2002)
forsiltw ith ow plasticity,
O = ta\n"l[o 38+027 bg(q,cﬂ poorly graded sand, and silty
c

° sand

e Ricceri et al. (2002)

N K, for silttw ith Jow plasticity, poorly
0236+ 0.066K, graded sand, and silty sand

where Ky, is the horizontal stress index in the dilatometer test.

9.18 ANISOTROPY IN UNDRAINED
SHEAR STRENGTH

Owing to the nature of the deposition of cohesive soils and subsequent
consolidation, clay particles tend to become oriented perpendicular to the
direction of the major principal stress. Parallel orientation of clay particles
could cause the strength of the clay to vary with direction, or in other
words, the clay could be anisotropic with respect to strength. This fact can
be demonstrated with the aid of Figure 9.59, in which V and H are verti-
cal and horizontal directions that coincide with lines perpendicular and
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Figure 9.59 Strength anisotropy in clay with direction of major principal stress: (a) i = 90°;
(b)i=1i;(c)i=0°

parallel to the bedding planes of a soil deposit. If a soil specimen with its
axis inclined at an angle i with the horizontal is collected and subjected to
an undrained test, the undrained shear strength can be given by

G, — 03
Su = 5

(9.52)
where S, is the undrained shear strength when the major principal stress
makes an angle i with the horizontal.

Let the undrained shear strength of a soil specimen with its axis vertical
(i.e., Sy - 90 be referred to as Sy, (Figure 9.59a); similarly, let the und-
rained shear strength with its axis horizontal (i.e., S,;_ -] be referred to as
S (Figure 9.59¢). If S = S, = S, the soil is isotropic with respect to
strength, and the variation of undrained shear strength can be represented
by a circle in a polar diagram, as shown by curve a in Figure 9.60. However,
if the soil is anisotropic, S,; will change with direction. Casagrande and
Carrillo (1944) proposed the following equation for the directional varia-
tion of the undrained shear strength:

Su(y = Sue)* [Sup)— Sum)lsin’i (9.53)

When Sy, > S, the nature of variation of S, can be represented by
curve b in Figure 9.60. Again, if Sy, < S, y), the variation of S is given by
curve c¢. The coefficient of anisotropy can be defined as

_ Suw)
Sag)

K (9.54)



Shear strength of soils 467

v

Figure 9.60 Directional variation of undrained strength of clay.

In the case of natural soil deposits, the value of K can vary from 0.75 to
2.0. K is generally less than 1 in overconsolidated clays. An example of the
directional variation of the undrained shear strength S, for a clay is shown
in Figure 9.61.

Richardson et al. (1975) made a study regarding the anisotropic strength of
a soft deposit of marine clay in Thailand. The undrained strength was deter-
mined by field vane shear tests. Both rectangular and triangular vanes were
used for this investigation. Based on the experimental results (Figure 9.62),
Richardson et al. concluded that S, can be given by the following relation:

Su@ Suw)
(S sin? i+ 82y 008 i

Sug = (9.55)

9.19 SENSITIVITY AND THIXOTROPIC
CHARACTERISTICS OF CLAYS

Most undisturbed natural clayey soil deposits show a pronounced reduction of
strength when they are remolded. This characteristic of saturated cohesive soils
is generally expressed quantitatively by a term referred to as sensitivity. Thus

Sensitivity — —itndiubel) (9.56)
Su(r.a‘nolied)
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Figure 9.6 Directional variation of undrained shear strength of Welland Clay, Ontario,
Canada. (After Lo, K.Y., Stability of slopes in anisotropic soils, J. Soil Mech.
Found. Eng. Div. Soc. Civ. Eng., 91(SM4), 85, 1965.)

The classification of clays based on sensitivity is as follows:

Sensitivity Clay

=| Insensitive

1-2 Low sensitivity
2-4 Medium sensitivity
4-8 Sensitive

8-16 Extra sensitive
>|6 Quick

The sensitivity of most clays generally falls in a range 1-8. However,
sensitivity as high as 150 for a clay deposit at St Thurible, Canada, was
reported by Peck et al. (1951).

The loss of strength of saturated clays may be due to the breakdown of
the original structure of natural deposits and thixotropy. Thixotropy is
defined as an isothermal, reversible, time-dependent process that occurs
under constant composition and volume, whereby a material softens as a
result of remolding and then gradually returns to its original strength when
allowed to rest. This is shown in Figure 9.63. A general review of the thixo-
tropic nature of soils is given by Seed and Chan (1959).
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Figure 9.62 Vane shear strength polar diagrams for a soft marine clay in Thailand.
(a) Depth = | m; (b) depth = 2 m; (c) depth = 3 m; (d) depth = 4 m. (After
Richardson, A.M. et al., In situ determination of anisotropy of a soft clay, in
Proc. Conf. In Situ Meas. Soil Prop., vol. I, Am. Soc. Civ. Eng., 336349, 1975.)

Figure 9.64, which is based on the work of Moretto (1948), shows the
thixotropic strength regain of a Laurentian clay with a liquidity index of
0.99 (i.e., the natural water content was approximately equal to the liquid
limit). In Figure 9.65, the acquired sensitivity is defined as

Aoquired sensitivity=

Suey

Su(ran olded)

(9.56a)

where S, is the undrained shear strength after a time ¢ from remolding.
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Figure 9.64 Acquired sensitivity for Laurentian clay. (After Seed, H.B. and Chan, C.K.,
Trans. Am. Soc. Civ. Eng., 24, 894, 1959.)

Acquired sensitivity generally decreases with the liquidity index (i.e., the
natural water content of soil), and this is demonstrated in Figure 9.65. It
can also be seen from this figure that the acquired sensitivity of clays with
a liquidity index approaching zero (i.e., natural water content equal to the
plastic limit) is approximately one. Thus, thixotropy in the case of overcon-
solidated clay is very small.
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Figure 9.65 Variation of sensitivity with liquidity index for Laurentian clay. (After Seed,
H.B. and Chan, C.K., Trans. Am. Soc. Civ. Eng., 24, 894, 1959.)

There are some clays that show that sensitivity cannot be entirely
accounted for by thixotropy (Berger and Gnaedinger, 1949). This means
that only a part of the strength loss due to remolding can be recovered
by hardening with time. The other part of the strength loss is due to the
breakdown of the original structure of the clay. The general nature of the
strength regain of a partially thixotropic material is shown in Figure 9.66.

A

Undisturbed

Hardened

Shear strength

Remolding
Remolding

Remolded

v

Time

Figure 9.66 Regained strength of a partially thixotropic material.
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Figure 9.67 Increase of thixotropic strength with time for three compacted clays. (After
Seed, H.B. and Chan, C.K,, Trans. Am. Soc. Civ. Eng., 24, 894, 1959.)

Seed and Chan (1959) conducted several tests on three compacted clays
with a water content near or below the plastic limit to study their thixo-
tropic strength-regain characteristics. Figure 9.67 shows their thixotropic
strength ratio with time. The thixotropic strength ratio is defined as follows:

Thixotropic strength ratio = . Se (9.57)

(com pacted att=0)

where S, is the undrained strength at time ¢ after compaction.

These test results demonstrate that thixotropic strength regain is also
possible for soils with a water content at or near the plastic limit.

Figure 9.68 shows a general relation between sensitivity, liquidity index,
and effective vertical pressure for natural soil deposits.

9.20 VANE SHEAR TEST

The field vane shear test is another method of obtaining the undrained shear
strength of cohesive soils. The common shear vane usually consists of four
thin steel plates of equal size welded to a steel torque rod (Figure 9.69a). To
perform the test, the vane is pushed into the soil and torque is applied at the
top of the torque rod. The torque is gradually increased until the cylindrical
soil of height H and diameter D fails (Figure 9.69b). The maximum torque
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Figure 9.69 Vane shear test: (a) vane shear apparatus; (b) test in soil.
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T applied to cause failure is the sum of the resisting moment at the top, My,
and bottom, My, of the soil cylinder, plus the resisting moment at the sides
of the cylinder, M. Thus

T=Mg+M,+M,; (9.58)
However
D nD? 2D
MS:TCDH?Su and My=Mjz= E;Su

(assuming uniform undrained shear strength distribution at the ends; see
Carlson [1948]). So

2
T =nsul(nDH D)+ Z[ED ZD):l
2 4 32

or

T
Su_TI:(DZH 2+D3 k)

(9.59)

If only one end of the vane (i.e., the bottom) is engaged in shearing the
clay, T = Mg + My. So

T
MO ’H 2+D3AN2)

S, (9.60)

Standard vanes used in field investigations have H/D = 2. In such cases,
Equation 9.59 simplifies to the form

s, = 0273% (9.61)

The American Society for Testing and Materials (1992) recommends the
following dimensions for field vanes:

D (mm) H (mm)  Thickness of blades (mm)

38.1 76.2 1.6
50.8 101.6 1.6
63.5 127.0 32

92.1 184.2 32
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If the undrained shear strength is different in the vertical [S,y] and
horizontal [S, ;] directions, then Equation 9.59 translates to

H D
T :TED2|:ZSU(V)+GSuCH )} (9.62)

In addition to rectangular vanes, triangular vanes can be used in the field
(Richardson et al., 1975) to determine the directional variation of the und-
rained shear strength. Figure 9.70a shows a triangular vane. For this vane

T
Se=g (9.63)

—nllcod i
3

The term S, ;) was defined in Equation 9.52.
Silvestri and Tabib (1992) analyzed elliptical vanes (Figure 9.70b). For
uniform shear stress distribution,

T
=C 9.64
S 8a’ ( )

where C = f(a/b). The variation of C with a/b is shown in Figure 9.71.

!

N 7
\

|

1€
&
€

(a) (b)

Figure 9.70 (a) Triangular vane and (b) elliptical vane.
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Figure 9.71 Variation of C with a/b (Equation 7.62).

Bjerrum (1972) studied a number of slope failures and concluded that the
undrained shear strength obtained by vane shear is too high. He proposed
that the vane shear test results obtained from the field should be corrected
for the actual design. Thus

Sugesizn) = MSu it vane) (9.65)
where )\ is a correction factor, which may be expressed as
A = 17-054 g @PI) (9.66)

where PI is the plasticity index (%).
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Morris and Williams (1994) gave the following correlations of A:
A=1.18e"%%®D 1057 PI>5 (9.67)

and
A=7.01e°C) 4 057 LL > 20 (9.68)

where LL is the liquid limit (%).

9.20.1 Correlations with field vane shear strength

The field vane shear strength has been correlated with the preconsolida-
tion pressure and the OCR of the clay. Using 343 data points, Mayne and
Mitchell (1988) derived the following empirical relationship for estimating
the preconsolidation pressure of a natural clay deposit:

6::: 7'04[Su(fe'kivane)fB3 (9'69)

where
o, is the preconsolidation pressure (kN/m?)
S u(field vane) 18 the field vane shear strength (kN/m?)

The OCR can also be correlated to S, g1 vane) according to the equation

0CR = p uerivane) (9.70)

4
o

where G, is the effective overburden pressure.
The magnitudes of f developed by various investigators are given later
(also see Chapter 8)

e Mayne and Mitchell (1988)
B=22P1% )I°* (9.71)

where PI is the plasticity index.
e Hansbo (1957):

222

= 9.72
B v @) (9.72)
where w is the natural moisture content.
e Larsson (1980):
B ! (9.73)

T 0.08+0.0055[@D5% ]
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9.21 RELATION OF UNDRAINED SHEAR STRENGTH (S,)
AND EFFECTIVE OVERBURDEN PRESSURE (p')

A relation between S, p’, and the drained friction angle can also be derived
as follows. Referring to Figure 9.72a, consider a soil specimen at A. The
major and minor effective principal stresses at A can be given by p’ and K p’,
respectively (where K is the coefficient of at-rest earth pressure). Let this
soil specimen be subjected to a UU triaxial test. As shown in Figure 9.72b,
at failure the total major principal stress is 6, = p’ + Acy; the total minor
principal stress is 6; = K p' + Ac;; and the excess pore water pressure is
Au. So, the effective major and minor principal stresses can be given by
07 =0, —Au and 65 = 05 — Au, respectively. The total- and effective-stress
Mohr’s circles for this test, at failure, are shown in Figure 9.72¢. From this,
we can write

SLI =
coot + (O} +05)2

sin¢
where ¢ is the drained friction angle, or

4 4
oL +0; .
Sa =ccos¢+%smq)

So,

S, = ccosd + S, sin¢ + 65 sin

S, —sinh)= ccosd + 0 sin O (9.74)
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Figure 9.72 Relation between the undrained strength of clay and the effective overbur-

den pressure: (a) soil specimen at A with major and minor principal stresses;
(b) specimen at A subjected to a UU triaxial test; (c) total and effective stress

Mohr’s circles.

03 =0;—-Au=K,p +Ac; —Au (9.75)

However (Chapter 5)
Au = BAo; + A(Ac, - Aoc;)
For saturated clays, B = 1. Substituting the preceding equation into

Equation 9.75

65 =K.p +AC; — [AG; + A:(AG; — AG;)]

=Ko.p —A:(AG, — AC3) (9.76)
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Again,
_6.-0; _ [ +A0;)- K.p +As;)
S, = =
2 2
or 2S,=(AG;—AG;)+ (@ —Kop)
or (Ac;—Ac;)=28,— ( —K.p) (9.77)

Substituting Equation 9.77 into Equation 9.76, we obtain
03 =Kop —25,A¢+ AP (1-K,) (9.78)

Substituting of Equation 9.78 into the right-hand side of Equation 9.74 and
simplification yields

_ coosp+p'sing Ko +Ar@L—Ko)]

S 1+ RA¢—1)sing

(9.79)

For normally consolidated clays, ¢ = 0; hence, Equation 9.79 becomes

S, _ sing Ko +Ac0-Ko)] (9.80)

p 1+ RA:—1)sing

There are also several empirical relations between S, and p’ suggested by
various investigators. These are given in Table 9.5 (Figure 9.73).

Table 9.5 Empirical equations related to S, and p’

Reference Relation Remarks
Skempton (1957) S, ysry/p’ = 0.11 +0.0037 PI For normally consolidated clay
Chandler (1988) Suvsty/pe = 0.11+0.0037 PI Can be used in overconsoildated

soil; accuracy +25%; not valid
for sensitive and fissured clays

Jamiolkowski S./pc =0.23£0.04 For low overconsolidated clays
et al. (1985)

Mesri (1989) Su/pe =0.22

Bjerrum and S./p" = f(Ll) See Figure 9.73; for normally
Simons (1960) consolidated clays

Ladd et al. (|977) (Su /P )overconsolidated — (OCR)08

/
(Su /P )normally consolidated

Notes: PI, plasticity index (%); S,sr), undrained shear strength from vane shear test; p-, preconsolida-
tion pressure; LI, liquidity index; and OCR, overconsolidation ratio.
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Figure 9.73 Variation of S /p’ with liquidity index (see Table 9.5 for Bjerrum and Simon’
relation).

Example 9.7

A soil profile is shown in Figure 9.74. From a laboratory consolida-
tion test, the preconsolidation pressure of a soil specimen obtained
from a depth of 8 m below the ground surface was found to be 140
kN/m2. Estimate the undrained shear strength of the clay at that
depth. Use Skempton’s and Ladd et al.’s relations from Table 9.5 and

Equation 9.66.

Solution

_GaYw twGgyw _ @T7)P81)A+03)
Vet 1+wG, 1+03Q.7)

=19.02 kN

The effective overburden pressure at A is

p’ =3 (17.3) + 5 (19.02 - 9.81) = 51.9 + 46.05 = 97.95 kN/m?

y=17.3 kN/m>
v GWT.

Clay

Gy=2.7
w=30%
LL=52
PL=31

Figure 9.74 Undrained shear strength of a clay deposit.
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Thus, the OCR is

ocr =40 _143
9795

From Table 9.5 (Ladd et al.’s relationship)

DRI
P e P he

However, from Table 9.5 (Skempton’s relationship)

(S““’ml =0.1+0.037 PI (E9.6)
P c

From Equation 9.66

S, = 7\-5\101511) =[.7-054bgPI)Syysr)

=[1.7-054)bgE2-31)Byysr) = 0.986S,ysr)

Sy
=— E9.7
Suwsr) 0986 ( )

Combining Equations E9.6 and E9.7

S| Z0.11+0.0037 PI
09867 | _

(S‘ll = (0.986)[0.11+0.0037(62—31)]=0.185 (E9.8)
C

’

From Equations E9.5 and E9.6

Suoc) = (0.185)(1.43)08(97.95) = 24.12 kN/m?

9.22 CREEP IN SOILS

Like metals and concrete, most soils exhibit creep, that is, continued defor-
mation under a sustained loading (Figure 9.75). In order to understand
Figure 9.75, consider several similar clay specimens subjected to standard
undrained loading. For specimen no. 1, if a deviator stress (6, - 03); <
(61 = 03)aiture 18 applied, the strain versus time (€ versus #) relation will be
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Figure 9.75 Creep in soils.

similar to that shown by curve 1. If specimen no. 2 is subjected to a devia-
tor stress (6, — 63), such that (6, - 6;3)qiie > (61 — 03), > (6, = 63);, the strain
versus time relation may be similar to that shown curve 2. After the occur-
rence of a large strain, creep failure will take place in the specimen.

In general, the strain versus time plot for a given soil can be divided into
three parts: primary, secondary, and tertiary. The primary part is the tran-
sient stage; this is followed by a steady state, which is secondary creep. The
tertiary part is the stage during which there is a rapid strain, which results
in failure. These three steps are shown in Figure 9.75. Although the second-
ary stage is referred to as steady-state creep, in reality a true steady-state
creep may not really exist (Singh and Mitchell, 1968).

It was observed by Singh and Mitchell (1968) that for most soils (i.e.,
sand, clay—dry, wet, normally consolidated, and overconsolidated) the
logarithm of strain rate has an approximately linear relation with the
logarithm of time. This fact is illustrated in Figure 9.76 for remolded San
Francisco Bay mud. The strain rate is defined as

e= A8 (9.81)
At
where
¢ is the strain rate
e is the strain
t is the time
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01

Strain rate, € (% per min)

Deviator stress =
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24.5 kN/m?
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0.01
Remolded San Francisco Bay mud
water content = 52%
0.001 :
0.1 1

Time (min)
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Figure 9.76 Plot of log € versus log t during undrained creep of remolded San Francisco
Bay mud. (After Singh, A. and Mitchell, J.K., J. Soil Mech. Found. Eng. Div.,

ASCE, 94(SM1), 21, 1968.)

From Figure 9.76, it is apparent that the slope of the log € versus log ¢
plot for a given soil is constant irrespective of the level of the deviator
stress. When the failure stage due to creep at a given deviator stress level is
reached, the log € versus log ¢ plot will show a reversal of slope as shown

in Figure 9.77.

Figure 9.78 shows the nature of the variation of the creep strain rate
with deviator stress D = 6, - 65 at a given time ¢ after the start of the creep.

log ¢

D=0,-03

Deviator stress=

Failure

log ¢

Figure 9.77 Nature of variation of log € versus log t for a given deviator stress showing

the failure stage at large strains.
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Failure

log strain rate, €

Deviator stress, D=0, - 03

Figure 9.78 Variation of the strain rate € with deviator stress at a given time t after the
start of the test.

For small values of the deviator stress, the curve of log € versus D is convex
upward. Beyond this portion, log € versus D is approximately a straight
line. When the value of D approximately reaches the strength of the soil,
the curve takes an upward turn, signaling impending failure.

For a mathematical interpretation of the variation of strain rate with
the deviator stress, several investigators (e.g., Christensen and Wu, 1964;
Mitchell et al., 1968) have used the rate-process theory. Christensen and
Das (1973) also used the rate-process theory to predict the rate of erosion
of cohesive soils.

The fundamentals of the rate-process theory can be explained as fol-
lows. Consider the soil specimen shown in Figure 9.79. The deviator stress
on the specimen is D = 6, - 6;. Let the shear stress along a plane AA in

lD:cl—ch
i
A
=
03 ———>| «—— 03

fos
TD:O'I—O':;

Figure 9.79 Fundamentals of rate-process theory.
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AF=
IActivation
energy

Potential energy

| | |

[ A T —A 1
A = Distance between the successive

equilibrium positions

Distance

Figure 9.80 Definition of activation energy.

the specimen be equal to 1. The shear stress is resisted by the bonds at the
points of contact of the particles along AA. Due to the shear stress t the
weaker bonds will be overcome, with the result that shear displacement
occurs at these localities. As this displacement proceeds, the force carried
by the weaker bonds is transmitted partly or fully to stronger bonds. The
effect of applied shear stress can thus be considered as making some flow
units cross the energy barriers as shown in Figure 9.80, in which AF is equal
to the activation energy (in cal/mol of flow unit). The frequency of activa-
tion of the flow units to overcome the energy barriers can be given by

kT AF kT AF
K=" exp| - 25 |= 5% exp| -2 9.82
R G R Gy 082

where
k'’ is the frequency of activation
k is Boltzmann’s constant = 1.38 x 10-1¢ erg/K = 3.29 x 10-** cal/K
T is the absolute temperature
b is Plank’s constant = 6.624 x 10-7 erg/s
AF is the free energy of activation, cal/mol
R is the universal gas constant
N is Avogadro’s number = 6.02 x 10?3

Now, referring to Figure 9.81 when a force f is applied across a flow unit,
the energy-barrier height is reduced by fA/2 in the direction of the force and
increased by fA/2 in the opposite direction. By this, the frequency of activa-
tion in the direction of the force is

/=kT@<p(_AF/N —f?»/QJ (9.83)
- h kT



Shear strength of soils 487

—>f
Before RN After
\ . .
application \ application
of force f \\,/_ of force f
\
>~
oo
3
=
m
R
fA2 ‘\\ L
| A |
Displacement

Figure 9.81 Derivation of Equation 7.86.

and, similarly, the frequency of activation in the opposite direction becomes

k,szexp(_ AF N +xf/z) (9.84)
< h kT

where M is the distance between successive equilibrium positions.
So, the net frequency of activation in the direction of the force is equal to

kT kT
h RT 2kT

The rate of strain in the direction of the applied force can be given by

kT|: ( AF/N—f?L/Z) [ AF /N +fx/2)]
expl-————— |-e=p| —

é=x(K-K) (9.86)

where x is a constant depending on the successful barrier crossings. So

&= 2kaexp(—AFJsjnh(ﬂJ (9.87)
h RT 2kT
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In the previous equation

T
F="
S
where
T is the shear stress
S is the number of flow units per unit area

For triaxial shear test conditions as shown in Figure 9.79

D _0,—-0;

2 2

Tmax -

Combining Equations 9.88 and 9.89

-0
25

Substituting Equation 9.90 into Equation 9.87, we get

. kT AF ) ., DA
€ =2x—exp| —— |shh
h RT 4kST

For large stresses to cause significant creep—thatis, D > 0.25 [D

(9.88)

(9.89)

(9.90)

(9.91)

=0.25

(Mitchell et al., 1968)] the magnitude of DA/4kST is greater than 1. So, in

that case

DA 1 DA
sinh = —exp
4kST 2 4kST

Hence, from Equations 9.91 and 9.92

. kT AF DA
E=x—exp| ——— |exp| ———
h RT 4kST

€=Aexp@BD)
where
kT ( AF)
A=xXx—exp| ———
h RT
and
A

(9.92)

(9.93)

(9.94)

(9.95)

(9.96)
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Figure 9.82 Variation of strain rate with deviator stress for undrained creep of
remolded illite. (After Mitchell, J.K. et al., J. Soil Mech. Found. Eng. Div., ASCE,
95(SM5), 1219, 1969.)

The quantity A is likely to vary with time because of the variation of x and AF
with time. B is a constant for a given value of the effective consolidation pressure.
Figure 9.82 shows the variation of the undrained creep rate € with the
deviator stress D for remolded illite at elapsed times ¢ equal to 1, 10, 100,
and 1000 min. From this, note that at any given time the following apply:

1. For D < 49 kN/m?, the log € versus D plot is convex upward following
the relation given by Equation 9.91, € = 2A sinh (BD). For this case,
DMA4SET < 1.

2. For 128 kN/m? > D > 49 kN/m?, the log € versus D plot is approxi-
mately a straight line following the relation given by Equation 9.94,
€ = AePP. For this case, DM4SET > 1.

3. For D > 128 kN/m?2, the failure stage is reached when the strain rate rap-
idly increases; this stage cannot be predicted by Equations 9.91 or 9.94.

Table 9.6 gives the values of the experimental activation energy AF for
four different soils.
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Table 9.6 Values of AF for some soils

Soil AF (kcallmol)

Saturated, remolded illite; water content 25-40
30%—43%

Dried illite, samples air-dried from 37
saturation, then evacuated over desiccant

Undisturbed San Francisco Bay mud 25-32

Dry Sacramento River sand ~25

Source:  After Mitchell, J.K. et al., J. Soil Mech. Found. Eng. Div., ASCE,
95(SM5), 1219, 1969.

9.23 OTHER THEORETICAL CONSIDERATIONS:
YIELD SURFACES IN THREE DIMENSIONS

Comprehensive failure conditions or yield criteria were first developed for
metals, rocks, and concrete. In this section, we will examine the application
of these theories to soil and determine the yield surfaces in the principal
stress space. The notations 67, 67, and ¢} will be used for effective princi-
pal stresses without attaching an order of magnitude—that is, 67, 0%, and
o are not necessarily major, intermediate, and minor principal stresses,
respectively.

Von Mises (1913) proposed a simple yield function, which may be stated as

F:(0'1—0’2)2+(G’2—6’3)2+(6’3—6’1)2—2Y2:0 (9.97)

where Y is the yield stress obtained in axial tension. However, the octahe-
dral shear stress can be given by the relation

1 4 J J 4 J J
Toet = 5\/(01 ~6,)" +(0y=05)" +(c -0’
Thus, Equation 9.97 may be written as

312, =2Y?

Or Toet = \/g Y (9.98)

Equation 9.98 means that failure will take place when the octahedral
shear stress reaches a constant value equal to /2 3y. Let us plot this



Shear strength of soils 491

ba =273y

Toct =V2/3Y

9
Octahedral plane I e
C SN
0]+05+05=constant S
%
>
03

Yield surface

Isotropic
stress line

(b)

Figure 9.83 Yield surface—Von Mises criteria: (a) plot of Equation 9.98 on the octahedral
plane; (b) yield surface.

on the octahedral plane (0} + 0% + 0% = const), as shown in Figure 9.83.
The locus will be a circle with a radius equal to Toe = J25Y and with
its center at point a. In Figure 9.83a, Oa is the octahedral normal stress
(07 +0%+0%) B=0bi also, ab = 1, and 0 b=+/0/2. + 1. Note that the
locus is unaffected by the value of Goe. Thus, various values of Gox will
generate a circular cylinder coaxial with the hydrostatic axis, which is a
yield surface (Figure 9.83b).

Another yield function suggested by Tresca (1868) can be expressed in
the form

Onax — Onin = 2K (9.99)

Equation 9.99 assumes that failure takes place when the maximum
shear stress reaches a constant critical value. The factor k& of Equation
9.99 is defined for the case of simple tension by Mohr’s circle shown
in Figure 9.84. Note that for soils this is actually the ¢ = 0 condition.
In Figure 9.84, the yield function is plotted on the octahedral plane
(07 + 0%+ 0% = const). The locus is a regular hexagon. Point a is the point
of intersection of the hydrostatic axis or isotropic stress line with octa-
hedral plane, and so it represents the octahedral normal stress. Point
b represents the failure condition in compression for 67 > ¢, = 6%, and
point e represents the failure condition in extension with 6% = 6% > 0].
Similarly, point d represents the failure condition for 6% > 67 = 6%, point g
for o} =0} >0}, point f for o, > 6% =0}, and point ¢ for 65 =0} > 65,
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Figure 9.84 Yield surface—Tresca criterion.

Since the locus is unaffected by the value of G4, the yield surface will be
a hexagonal cylinder.

We have seen from Equation 9.20 that, for the Mohr—Coulomb condition
of failure, (07-0%)=2coosy+ (0} +0%)sho,or(c]- 6'3)2 = [2ccosd +
(o7 + o3)sind T .In its most general form, this can be expressed as

{(cs'1 A [ 2cc0s0 + (0} + %) s:'nd)]}2
x{(c’z —c5’3)2 —[2ccosq>+(cs’2 +c’3)sjnq)]}2

x{(c ~ 1) ~[ 2ccosd + (% + ;) sg |} = 0 (9.100)

When the yield surface defined by Equation 9.100 is plotted on the octa-
hedral plane, it will appear as shown in Figure 9.85. This is an irregu-
lar hexagon in section with nonparallel sides of equal length. Point a in
Figure 9.85 is the point of intersection of the hydrostatic axis with the octa-
hedral plane. Thus, the yield surface will be a hexagonal cylinder coaxial
with the isotropic stress line.

Figure 9.86 shows a comparison of the three yield functions described
previously. In a Rendulic-type plot, the failure envelopes will appear in a
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Figure 9.85 Mohr—Coulomb failure criterion.

manner shown in Figure 9.86b. At point a, 67 = 0, = 65 = ¢ (say). At point b,
0, =06 +bad =06 + absh®, where 0 = oos"l(l/x/g)‘ Thus

o) = c’+\Eab (9.101)

G == - B g b _o 14 (9.102)

1
V2 V2 V6

For the Mohr—Coulomb failure criterion, 67 — 0% = 2ccos + (67 + 63 ) sin¢.
Substituting Equations 9.101 and 9.102 in the preceding equation, we obtain

’ 2— ’ 1 — _ ’ 37 /_ii .
[G+\/:ab—6+\/gab)—2coos¢+[6+\/:ab+6 \/gab]smq)

or

— 2 1 2 1 . ’ s
abl[ 3 +\/EJ—(\/;—\/E]SJH¢:| = 2(cosh+ 0 sind)
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Figure 9.86 (a) Comparison of Von Mises, Tresca, and Mohr—Coulomb yield functions;
(b) failure envelopes in a Rendulic type plot.
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or ab3(1—;sjnq)): 2(ccosd + 0 sind) (9.103)

J6

Similarly, for extension (i.e., at point e,)

0,=0-ga =0'—ag snB=0" - %ael (9.104)

(9.105)

Now 0% -0} =2coosd + (O +07)sino. Substituting Equations 9.104 and
9.105 into the preceding equation, we get

aql[ﬁ+\%)+[£—\/lg)sm¢:|=2(ccos¢+6'sin¢) (9.106)

or

ael3(1+;sm¢J= 2(ccosd + 6’ sing) (9.107)

NG

Equating Equations 9.103 and 9.107

1.
b 1+§sm¢
— T 1 (9.108)
ag 1—§sjnq>

Table 9.7 gives the ratios of ab to ag for various values of ¢. Note that this
ratio is not dependent on the value of cohesion, c.

It can be seen from Figure 9.86a that the Mohr—Coulomb and the Tresca
yield functions coincide for the case ¢ = 0.
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Table 9.7 Ratio of ab to ae,
(Equation 9.108)

b ab/ae,

40 0.647

30 0715

20 0.79

10 0.889
0 1.0

Von Mises’ yield function (Equation 9.97) can be modified to the form

2
(04— ) +(0s — L) + (s =) = [c+k32(o; ) +cg)]
or (o} - 0'2)2 +(0) - 6'3)2 +(oh - 6’1)2 = C+k,000) (9.109)
where

k, is a function of sin ¢
¢ is cohesion

Equation 9.109 is called the extended Von Mises’ yield criterion.
Similarly, Tresca’s yield function (Equation 9.99) can be modified to the form

[(6'1 ~0,) — e+ kscéct)z]
x[ (65— 65) — e+ ke |
X[ (04 =01)" - e+ kol | (9.110)

where
ks is a function of sin ¢
¢ is cohesion

Equation 9.110 is generally referred to as the extended Tresca criterion.

9.24 EXPERIMENTAL RESULTS TO COMPARE
THE YIELD FUNCTIONS

Kirkpatrick (1957) devised a special shear test procedure for soils, called the
hollow cylinder test, which provides the means for obtaining the variation in
the three principal stresses. The results from this test can be used to compare
the validity of the various yield criteria suggested in the preceding section.
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A schematic diagram of the laboratory arrangement for the hollow cyl-
inder test is shown in Figure 9.87a. A soil specimen in the shape of a
hollow cylinder is placed inside a test chamber. The specimen is encased
by both an inside and an outside membrane. As in the case of a triaxial
test, radial pressure on the soil specimen can be applied through water.
However, in this type of test, the pressures applied to the inside and out-
side of the specimen can be controlled separately. Axial pressure on the

Piston

Cap

&\\\ AN\

(b)

Figure 9.87 Hollow cylinder test: (a) schematic diagram; (b) relationship for principal
stresses in the soil specimen.
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specimen is applied by a piston. In the original work of Kirkpatrick, the
axial pressure was obtained from load differences applied to the cap by
the fluid on top of the specimen (i.e., piston pressure was not used; see
Equation 9.117).

The relations for the principal stresses in the soil specimen can be
obtained as follows (see Figure 9.87b). Let 6, and o; be the outside and
inside fluid pressures, respectively. For drained tests, the total stresses o,
and o; are equal to the effective stresses, 6, and 6% For an axially symmetri-
cal case, the equation of continuity for a given point in the soil specimen
can be given by

4 4 4

do’, L 0==0%

=0 (9.111)
dr r

where
0, and o} are the radial and tangential stresses; respectively
7 is the radial distance from the center of the specimen to the point

We will consider a case where the failure in the specimen is caused by
increasing ¢} and keeping o, constant. Let

Cp = MO (9.112)
Substituting Equation 9.112 in Equation 9.111, we get

&4_ Gr(l—K)

=0
dr r
1 do. J‘dr
or —— =
r—1J o) r
o, = AP (9.113)

where A is a constant.
However, 07 = 6}, at 7 = r,, which is the outside radius of the specimen. So

= 9.114
A B ( )
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Combining Equations 9.113 and 9.114
=
6'r=0({rJ (9.115)

Again, from Equations 9.112 and 9.115

A—1
o) = xo;(r) (9.116)
L

The effective axial stress 67, can be given by the equation

, _O6(m2)-0i(n?) o2 o
S (9.117)

where 7; is the inside radius of the specimen.
At failure, the radial and tangential stresses at the inside face of the speci-
men can be obtained from Equations 9.115 and 9.116:

A—1
Oepmnstie) = (04) pgre = o;(riJ (9.118)
by
, A—1
or (24| =% (9.119)
Go failire L
A—1
Chnsie) = (06) e = 7»6;(2) (9.120)

To obtain o, at failure, we can substitute Equation 9.118 into Equation
9.117

oo ay—(ois)]
(02)aae = 7 -1

’ 2 —\
_ Oolle Ay — G ) ") (9.121)
6 A —1
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From the earlier derivations, it is obvious that for this type of test (i.e.,
increasing G to cause failure and keeping o/, constant) the major and minor
principal stresses are o) and 4. The intermediate principal stress is 0.
For granular soils the value of the cohesion ¢ is 0, and from the Mohr-
Coulomb failure criterion

M inor principalstress _1l-sin¢
M aprprincipalstress |~ 1+sin¢
or [So| _1izsho (9.122)
O: Jome Ltsing

Comparing Equations 9.112 and 9.122

P@I’zmz(%o_q’):x (9.123)
l1+sind 2

The results of some hollow cylinder tests conducted by Kirkpatrick
(1957) on a sand are given in Table 9.8, together with the calculated values
of &, (04) e+ (0%) g iand (06) o -

A comparison of the yield functions on the octahedral plane and the
results of Kirkpatrick is given in Figure 9.88. The results of triaxial

Table 9.8 Results of Kirkpatrick’s hollow cylinder test on a sand

i A (from G’S(inside) G’e(outside) oA (from
(1) saturea Ocb Equation  at failure®  at failures  Equation 9.117)

Testno. (kN/m?)  (kNIm?)  9.119)¢ (kN/m?) (kN/m?) (kN/m?)
I 146.3 99.4 0.196 28.7 19.5 72.5
2 187.5 129.0 0.208 39.0 26.8 91.8
3 304.2 211.1 0.216 65.7 45.6 153.9
4 384.2 265.7 0.215 82.5 57.1 192.9
5 453.7 316.0 0.192 87.0 60.7 2229
6 473.5 330.6 0.198 93.8 65.4 2349
7 502.9 347.1 0.215 107.8 74.6 247.7
8 5324 372.7 0.219 116.6 81.6 268.4
9 541.2 378.1 0.197 106.3 74.5 263.6

’ , .
Z (67)tilure = Oriinside 2t failure.
4 4 .
(05) = Ortouside at failure.
¢ For these tests,r, = 50.8 mm and r, = 31.75 mm.
d ’ — 7\’ s
O(inside) = (Gi)failure~
’ 4
¢ Go(ou(side] = 7‘(00 )failure-
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Figure 9.88 Comparison of the yield functions on the octahedral plane along with the
results of Kirkpatrick.

compression and extension tests conducted on the same sand by Kirkpatrick
are also shown in Figure 9.88. The experimental results indicate that the
Mohr—Coulomb criterion gives a better representation for soils than the
extended Tresca and Von Mises criteria. However, the hollow cylinder tests
produced slightly higher values of ¢ than those from the triaxial tests.

Wu et al. (1963) also conducted a type of hollow cylinder shear test with sand
and clay specimens. In these tests, failure was produced by increasing the inside,
outside, and axial stresses on the specimens in various combinations. The axial
stress increase was accomplished by the application of a force P on the cap
through the piston as shown in Figure 9.87. Triaxial compression and extension
tests were also conducted. Out of a total of six series of tests, there were two
in which failure was caused by increasing the outside pressure. For those two
series of tests, Gy > 0, > 67, Note that this is opposite to Kirkpatrick’s tests, in
which 6%, > 67, > 64. Based on the Mohr—Coulomb criterion, we can write (see
Equation 9.21) Gpax = G n N + 2cN'2. So, for the case where 6§ > 67, > 6%,

Gy = O'N + 2N 7 (9.124)
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The value of N in the previous equation is tan?(45° + ¢/2), and so the A in
Equation 9.112 is equal to 1/N. From Equation 9.111

4 4
dGr — 6'6 — Oy
dr r

Combining the preceding equation and Equation 9.124, we get

7
do.

1. )
. —;[Gr(N ~1)+2av 7] (9.125)

Using the boundary condition that at = r,, 67, = 6%, Equation 9.125 gives
the following relation:

12 N -1 172
o= (o;+ 2 }[r] 2 (9.126)

N -1 o] N -1

Also, combining Equations 9.124 and 9.126

372 ! 12
op = (o’i+ 2N J(r) _ 2 (.127)
N-1 )z N -1
At failure, G,r(omsiie) = (G;)faﬂure SO
, N B T
o1 [ L) 2 ” 9.128

For granular soils and normally consolidated clays, ¢ = 0. So, at failure,
Equations 9.126 and 9.127 simplify to the form

N -1
(05 suetteatminee = (05) mie = 0'{];) (9.129)
N -1
and (Gé) tside at faila =oN (J’éj (9.130)
ou ea re n
H ence G,r :M mf)rpr.lncnlpalefﬁact.wesm:i:k (9.131)
06 Jone M aprprincpaleffectivestress N

Compare Equations 9.112 and 9.131.
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Figure 9.89 Results of hollow cylinder tests plotted on octahedral plane of + 6, + 03 =1.
(After Wu, T.H. etal., J. Soil Mech. Found. Eng. Div., ASCE, 89(SMI), 145, 1963.)

Wau et al. also derived equations for 0% and 06 for the case G, > Gj > G’
Figure 9.89 shows the results of Wu et al. plotted on the octahedral plane
67+ 03 +05 =1. The Mohr—Coulomb yield criterion has been plotted by
using the triaxial compression and extension test results. The results of
other hollow cylinder tests are plotted as points. In general, there is good
agreement between the experimental results and the yield surface predicted
by the Mohr—Coulomb theory. However, as in Kirkpatrick’s test, hollow
cylinder tests indicated somewhat higher values of ¢ than triaxial tests in
the case of sand. In the case of clay, the opposite trend is generally observed.
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Chapter 10

Elastic settlement
of shallow foundations

10.1 INTRODUCTION

The increase of stress in soil layers due to the load imposed by various
structures at the foundation level will always be accompanied by some
strain, which will result in the settlement of the structures.

In general, the total settlement S of a foundation can be given as

S=8S.+S+5

where
S, is the elastic settlement
S, is the primary consolidation settlement
S, is the secondary consolidation settlement

In granular soils elastic settlement is the predominant part of the set-
tlement, whereas in saturated inorganic silts and clays the primary con-
solidation settlement probably predominates. The secondary consolidation
settlement forms the major part of the total settlement in highly organic
soils and peats. In this chapter, the procedures for estimating elastic set-
tlement will be discussed in detail. Consolidation settlement calculation
procedures will be discussed in Chapter 11.

10.2 ELASTIC SETTLEMENT OF FOUNDATIONS ON
SATURATED CLAY (POISSON’S RATIO v = 0.5)

Janbu et al. (1956) proposed a generalized equation for average elastic set-
tlement for uniformly loaded flexible foundation supported by a saturated
clay soil in the form

B
S.(average)= i, - V=05) (10.1)
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where

p, is the correction factor for finite thickness of elastic soil layer H, as
shown in Figure 10.1

W, is the correction factor for depth of embedment of foundation D,
as shown in Figure 10.1

B is the width of rectangular loaded foundation or diameter of circular
loaded foundation

E is the modulus of elasticity of the clay soil

Length=L
L EY
=3
v
X X X X
1.0
2 09
\
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Figure 10.] Variation of p, and , for use in Equation 10.1. (Based on Christian, ).T. and
Carrier, lll, W.D., Can. Geotech. J., 15(1), 124, 1978.)
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Table 10.] Variation of  with plasticity index
and overconsolidation ratio

OCR PI range Range of p
| Pl <30 1500-600
30<PI<50 600-300
Pl > 50 300-125
2 Pl <30 1450-575
30<PI<50 575-275
Pl > 50 275-115
4 Pl <30 975-400
30<PI<50 400-185
Pl > 50 185-70
6 Pl <30 600-250
30<PI<50 250-115
Pl > 50 115-60

Source:  Compiled from  Duncan, )M, and
Buchignani, A.N., Department of Civil Engineering
University of California, Berkley,1976.

Christian and Carrier (1978) made a critical evaluation of Equation 10.1,
the details of which will not be presented here. However, they suggested
that for Poisson’s ratio v = 0.5, Equation 10.1 could be retained for elastic
settlement calculations with a modification of the values of p, and p,. The
modified values of p, are based on the work of Giroud (1972), and those for
W, are based on the work of Burland (1970). These are shown in Figure 10.1.

The undrained secant modulus E of clay soils can generally be expressed as

E =Bs, (10.2)

where S, is undrained shear strength. Duncan and Buchignani (1976) compiled
the results of the variation of  with plasticity index PI and overconsolidation
ratio OCR for a number of soils. Table 10.1 gives a summary of these results.

10.3 ELASTIC SETTLEMENT OF FOUNDATIONS
ON GRANULAR SOIL

Various methods available at the present time to calculate the elastic settle-
ment of foundations on granular soil can be divided into three general cat-
egories. They are as follows:

1. Methods based on observed settlement of structures and full-scale pro-
totypes: These methods are empirical in nature and are correlated with
the results of the standard in situ tests such as the standard penetration
test (SPT) and the cone penetration test (CPT). They include, for example,
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procedures developed by Terzaghi and Peck (1948, 1967), Meyerhof (1956,
1965), Peck and Bazaraa (1969), and Burland and Burbidge (1985).

2. Semi-empirical methods: These methods are based on a combina-
tion of field observations and some theoretical studies. They include,
for example, the procedures outlined by Schmertmann (1970),
Schmertmann et al. (1978), and Akbas and Kulhawy (2009).

3. Methods based on theoretical relationships derived from the theory of
elasticity: The relationships for settlement calculation available in this
category contain the term modulus of elasticity E and Poisson’s ratio v.

The general outlines for some of these methods are given in the following
sections.

10.4 SETTLEMENT CALCULATION OF FOUNDATIONS
ON GRANULAR SOIL USING METHODS
BASED ON OBSERVED SETTLEMENT OF
STRUCTURES AND FULL-SCALE PROTOTYPES

The methods suggested by Terzaghi and Peck (1948, 1967), Meyerhof
(1965), and Burland and Burbidge (1985) are elaborated upon in the fol-
lowing sections.

10.4.1 Terzaghi and Peck’s method

Terzaghi and Peck (1948) proposed the following empirical relationship between
the settlement (S,) of a prototype foundation measuring B x B in plan and the
settlement of a test plate [S, ;] measuring B, x B, loaded to the same intensity:

Se _ 4
Seqy [+ @B

(10.3)

Although a full-sized footing can be used for a load test, the normal prac-
tice is to employ a plate with B, in the order of 0.3-1 m.

Terzaghi and Peck (1948, 1967) proposed a correlation for the allowable
bearing capacity, field standard penetration number N, and the width of the
foundation B corresponding to a 25 mm settlement based on the observa-
tion given by Equation 10.3. This correlation is shown in Figure 10.2 (for
depth of foundation equal to zero). The curves shown in Figure 10.2 can be
approximated by the relation

2
3q B
=2 10.4
S @m) N(B+0.3) (10-4)
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Figure 10.2 Terzaghi and Peck’s recommendations for allowable bearing capacity for
25 mm settlement variation with B and N.

where
q is the bearing pressure (kIN/m?2)
B is the width of foundation (m)

If corrections for ground water table location and depth of embedment are
included, then Equation 10.4 takes the form

2
3q B
S.=Cy Cp — 10.5

TP N (B+0.3J (10.5)

where
Cy is the ground water table correction
Cp, is the correction for depth of embedment = 1 - (D;/4B)
Dy is the depth of embedment

The magnitude of Cy is equal to 1.0 if the depth of water table is greater
than or equal to 2B below the foundation, and it is equal to 2.0 if the
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depth of water table is less than or equal to B below the foundation. The
N value that is to be used in Equations 10.4 and 10.5 should be the average
value of N up to a depth of about 3B to 4B measured from the bottom of
the foundation.

10.4.2 Meyerhof’s method

In 1956, Meyerhof proposed relationships for the elastic settlement of
foundations on granular soil similar to Equation 10.4. In 1965, he com-
pared the predicted (by the relationships proposed in 1956) and observed
settlements of eight structures and suggested that the allowable pressure g
for a desired magnitude of S, can be increased by 50% compared to what
he recommended in 1956. The revised relationships including the correc-
tion factors for water table location Cy and depth of embedment C, can
be expressed as

5.=Cy Co 12 mrp<122m) (10.6)
and
s.=CycCp,29f_B 2 (rB >122m) (10.7)
N |B+03
Cy =10 (10.8)
and
D¢
Cob=10—-——= 10.9
b 1B (10.9)

10.4.3 Method of Peck and Bazaraa

Peck and Bazaraa (1969) recognized that the original Terzaghi and
Peck method (see Section 10.4.1) was overly conservative and revised
Equation 10.5 to the following form:

2
s.=c, chq( B ) (10.10)
N,;{B+03
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where
S. 1s in mm
q is in kN/m?
Bisinm
N, is the standard penetration number corrected to a standard effective
overburden pressure of 75 kN/m?

_ 0, at05 B below thebottom of the foundation

Cuw 7 : (10.11)
0, at0.5 B bebbw thebottom of the foundation
where
o, is the total overburden pressure
o, is the effective overburden pressure
D 0.5
c,=10-04| Pt (10.12)
q
where v is the unit weight of soil.
The relationships for N, are as follows:
4N 2
N,=————— (forop, <75kN fn?) (10.13)
1+0.040,
and
4N , )
(orog > 75kN Mm?) (10.14)

'~ 32540010,

where o7 is the effective overburden pressure (kIN/m?2).

10.4.4 Method of Burland and Burbidge

Burland and Burbidge (1985) proposed a method for calculating the elastic
settlement of sandy soil using the field standard penetration number N. The
method can be summarized as follows:

Step 1: Determination of variation of standard penetration number with
depth
Obtain the field penetration numbers N with depth at the location of the
foundation. The following adjustments of N may be necessary, depending
on the field conditions:

For gravel or sandy gravel

N 4 = 125N (10.15)
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For fine sand or silty sand below the ground water table and N > 15
N @ =15+05N —15) (10.16)

where N, is the adjusted N value.

Step 2: Determination of depth of stress influence (z')

In determining the depth of stress influence, the following three cases may
arise:

Case I: If N [or N, | is approximately constant with depth, calculate 2’ from

, B 0.75
z :14(} (10.17)
By By

where

By is the reference width = 0.3 m
B is the width of the actual foundation (m)

Case II: If N [or N, is increasing with depth, use Equation 10.17 to cal-
culate z".

Case III: If N [or N, is decreasing with depth, calculate 2’ = 2B and 2’ =
distance from the bottom of the foundation to the bottom of the soft soil
layer (=2”). Use 2’ = 2B or 2’ = 2" (whichever is smaller).

Step 3: Determination of depth of stress influence correction factor o

The correction factor « is given as
azﬂ,(z—H,Jg (10.18)

where H is the thickness of the compressible layer.

Step 4: Calculation of elastic settlement

The elastic settlement of the foundation S, can be calculated as

a. For normally consolidated soil

Se _ 0140 1.71 [ 125¢.8) ]2 B 3 41 (10.19)
Br [ﬁorﬁ(a,]lA 025+ @ AB)] | Br 2
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where
L is the length of the foundation
p. is the atmospheric pressure (= 100 kN/m?)
N or N, is the average value of N or Ny, in the depth of stress
increase

. For overconsolidated soil (g < of; where o is the overconsolidation
pressure)

Se _ 00470 057 [ 125¢.8) T B\ (a (10.20)
B [ oxn ,“ [LO25+ @B)] { Ba

. For overconsolidated soil (g > o%)

2 0.7 ,
Se:0.140c{ 057 AH 1.25@/13)}(3) (q—o.sch
Bg [N orN T 025+ @MB)| | B Pa

(10.21)

Example 10.1

A shallow foundation measuring 1.75 m x 1.75 m is to be constructed
over a layer of sand. Given D; = 1 m; N is generally increasing with
depth, N in the depth of stress influence = 10; g = 120 kN/m2. The sand
is normally consolidated. Estimate the elastic settlement of the founda-
tion. Use the Burland and Burbidge method.

Solution

From Equation 10.17

, B 0.75
L ]
B By

Depth of stress influence

B 0.75 175 0.75
Z=14|— Z=04)03) —2| =~158m
Bx 03

From Equation 10.19

2 0.7
Se:0.140({1.71 AH 125@/13)](13]
By [N orN o1 025+ @LAB)| | Bx

+)
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For this case, a = 1

171 171 _ el

N @0yt

Hence

% (0.14)(1)(0.068)[ <125><1-75/1.75>]2(1-75)” (120]

03 025+@.751.75)] | 03 100
S.~0.0118 m = 11.8 mm
Example 10.2

Solve Example 10.1 using Meyerhof’s method.

Solution

From Equation 10.7

2
2 B
se=cwcnq( ]

N |B+03
Cy =1
Cp=10-2f-1- =
4B @)@ .75)
2
S.= @1)0857) @)a20) 175 =1499mm =15mm
10 1.75+03

10.5 SEMI-EMPIRICAL METHODS FOR SETTLEMENT
CALCULATION OF FOUNDATIONS
ON GRANULAR SOIL

In the following sections, we will discuss the strain influence factor method
suggested by Schmertmann et al. (1978) and the L;-L, method developed
by Akbas and Kulhawy (2009) for calculation of settlement of foundations
on granular soil.

10.5.1 Strain influence factor method

Based on the theory of elasticity, the equation for vertical strain €, at a
depth below the center of a flexible circular load of diameter B has been
expressed as (Equation 4.40)

sz=%+v)[(1—2v)A’+B’] (4.40)
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or

&,E
q

L= = @1+V)[@-2vA'+B’] (10.22)

where
A’ and B’ = fz/B)
q is the load per unit area
E is the modulus of elasticity
v is the Poisson’s ratio
I, is the strain influence factor

Schmertmann et al. (1978) proposed a simple variation of I, with depth
below a shallow foundation that is supported by a granular soil. This varia-
tion of I, is shown in Figure 10.3. Referring to this figure.

Figure 10.3 Nature of strain influence diagram suggested by Schmertmann et al. (1978).
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e For square or circular foundation:

=01 atz=0
Lpexy atz=12z,=05B

ILL=0 atz=1z =2B
e For foundation with L/B > 10:

LL=02 atz=0
Lpex)y atz=2z =B

L=0 atz=1z =4B

where L is the length of foundation. For L/B between 1 and 10, inter-
polation can be done. Also

05
L, pes) = o.5+0.1(‘{) (10.23)
Go

The value of of in Equation 10.23 is the effective overburden pressure at a
depth where I .1, occurs. Salgado (2008) gave the following interpolation

peak)
for I atz =0, z,, and 2, (for L/B =1 to L/B > 10):

Iz(atz=0,=0.1+0.0111(;—1)s 02 (10.24)
2P=o.5+o.0555(L—1)s1 (10.25)
B B

Zy L

=2+0.222[—1)s4 (10.26)
B B

The total elastic settlement of the foundation can now be calculated as

2B
S.=CC qu%Az (10.27)
0
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where
q is the net effective pressure applied at the level of the foundation
q, is the effective overburden pressure at the level of the foundation

C, isthe correction factor for em bedm entof oundation =1-05(q, 4)
(10.28)

C, is the correction factor to acocount for creep in soil=1+02 og(t/N.1)
(10.29)

t is the time, in years

Noting that stiffness is about 40% larger for plane strain compared to axi-
symmetric loading, Schmertmann et al. (1978) recommended that

E=25q. (rsguareand circular oundations) (10.30)
and
E=35q. (forstdp foundation) (10.31)

where g, is the cone penetration resistance.
For rectangular foundation with L x B plan, Terzaghi et al. (1996) sug-
gested that

M=1+0.4bg£ <14 (10.32)
Ewpo B

Example 10.3

Consider a rectangular foundation 2 m x 4 m in plan at a depth of
1.2 min a sand deposit as shown in Figure 10.4a. Given y = 17.5 kN/m?;
g = 124 k/m?; and the following approximated variation of g, with z:

z (m) q. (kN/m?)
0-0.5 2250
0.5-2.5 3430
2.5-5.0 2950

Estimate the elastic settlement of the foundation using the strain influ-
ence factor method.
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— q=124kN/m>

y=17.5 kN/m>

20+ )

3.0+

4.0 +

501+

v

(b)
Figure 10.4 (a) Rectangular foundation in a sand deposit; (b) variation of E and I, with depth.

Solution
From Equation 10.25

%: 0.5+0.0555(;—1)= 0.5+0.0555(‘21—1)z 056

z,= 056)Q2)=112m
From Equation 10.26

:‘=2+0222(I];—1):2+o.222(2—1)=2.22

%= (222)2)=444m

From Equation 10.24, at 2 =0
L 4
I = 0.1+0.0111(B—l)= 0.l+0.0111(2—1): 0.11
From Equation 10.23

124 °°
} - 0675

05
q
=05+0d| 2| =o05+0a|— =
Triosk) (c{,) [(1.2+112)(175)
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The plot of I, versus z is shown in Figure 10.4b. Again, from
Equation 10.32

Emm):[l"’o-‘lbg;)(Emﬁ—l)) :[1"‘0‘4]09[;1)] @ 5%q.)=238q.

Thus, the approximate variation of E with z is as follows:

z(m)  q (kN/m?) E (kNim?)

0-0.5 2250 6300
0.5-2.5 3430 9604
2.5-5.0 2950 8260

The plot of E versus z is shown in Figure 10.4b.
The soil layer is divided into four layers as shown in Figure 10.4b.
Now the following table can be prepared.

Layerno. Az (m) E (kN/m?) I, at middle of layer %Az (m3IkN)

| 0.50 6300 0.236 1.87 x 1073
2 0.62 9604 0.519 3.35x%x 107
3 1.38 9604 0.535 7.68 x 107
4 1.94 8260 0.197 4.62 x 107

Total 17.52 x 1075

se=c1cz<q>Z%Az

17 5x1
c,=1-05| % |=1-05(172*12 | 915
q 124

Assume the time for creep is 10 years. So
10
C,=1+02bg| — |=14
’ 9[0.1]

Hence

Se= (0915)1 4)(124)17 52x107°)=2783%10°m =273 mm
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10.5.2 Field tests on load—settlement
behavior: L,—-L, method

Akbas and Kulhawy (2009) evaluated 167 load-settlement relationships
obtained from field tests. Figure 10.5 shows a generalized relationship of
load Q versus settlement S, from these field tests, which they referred to as
the L,~L, method. From this figure, note that (a) Qy, is the load at settle-
ment level Sy, 3 (b) O is the load at settlement level S, r); and (c) @, is the
load at settlement level Sq,., which is the ultimate load (=Q,).

The field test results yielded the mean value of S, to be 0.23% of the
width of the foundation, B. Similarly, the mean value of Seg, s was 5.39%
of B. The final analysis showed a nondimensional load—settlement relation-
ship as given in Figure 10.6. The mean plot can be expressed as

Q _ 5. (10.33)
0., 0696.B)+168

In order to find Q for a given settlement level, one needs to know thatQ ;, =
Q, = ultimate bearing capacity for which the following is recommended.

Q;
Qil - —
T -
, . Final linear region
L 1 / -
v A\
= ’l./ Transition region
1
5 J
QL1 Initial linear region
0 . . .
0 Ser,) Se(T) Se(Ly)

Settlement

Figure 10.5 General nature of the load versus settlement plot observed from the field
(L,—L, method).
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2.00 ——— — . :

wsoE =T

Normalized load, Q/ QLz
5
3

078 F-———f-—->
|
L r
050 i
0.42 !
A 1
1 I
] I
013t | |
0 ! ! 1 1 1
0231 2 28 4 5396 8 10

Normalized settlement, S./B (%)

Figure 10.6 Nondimensional plot of Q/Q, versus S./B (Equation 10.33).

1. For B>1m:

1
QLz :QLY1+QS :E’YBNYESE‘YdE‘YC+quEISFL|]dE]C (10-34)
Qq

QY

where
N,, N, are the bearing capacity factors
F,, F,, are the shape factors
F,q4, F,q are the depth factors
F,. F,. are the compressibility factors

yes

2.For B<1m:

o=

e

=2 +07 (10.39)
B

Qu,

In order to determine Q! and Q g, see Vesic (1973) or a foundation engi-
neering book (e.g., Das, 2011).
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10.6 SETTLEMENT DERIVED FROM
THEORY OF ELASTICITY

The following sections describe two methods of elastic settlement calcula-
tion derived from the theory of elasticity. They are

e Steinbrenner’s (1934) and Fox’s (1948) theory
e Theory of Mayne and Poulos (1999)

10.6.1 Settlement based on theories of
Steinbrenner (1934) and Fox (1948)

Consider a foundation measuring L x B (L = length; B = width) located at a
depth D; below the ground surface (Figure 10.7). A rigid layer is located at
a depth H below the bottom of the foundation. Theoretically, if the founda-
tion is perfectly flexible (Bowles, 1987), the settlement may be expressed as

2

Semexpe) = A OB’ » V1L, (10.36)

where
q is the net applied pressure on the foundation
v is the Poisson’s ratio of soil
E is the average modulus of elasticity of the soil under the foundation,
measured from z = 0 to about z = 4B
B’ = B/2 for center of foundation
= B for corner of foundation

z Rigid Flexible
foundation foundation
settlement settlement H

v = Poisson’s ratio
E = Modulus of elasticity

Figure 10.7 Elastic settlement of flexible and rigid foundations.
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L = Shape factor (Steinbrenner,1934)= F, + -2V F, (10.37)
1
Fi=—@,+A;) (10.38)
T
n,
F,= t@n A, (10.39)
2
72 72 72
Aozm']n(l+\/m +1)Vn” +n (10.40)
m'(l-%\/m'2 +n”+ 1)
(m'+\/m'2 Jrl)\/1+n'2
A,=h (10.41)
m’+vym?+n?+1
m,
A, = (10.42)
’ 0 +Vm2+n?+1
I, = depth factor Fox,1948)= f(];f,v,and;) (10.43)

o is a factor that depends on the location on the foundation where settle-
ment is being calculated.

Note that Equation 10.36 is in a similar form as Equation 4.48.

To calculate settlement at the center of the foundation, we use

a=4
, L
m =
B
and
, H
n=——
B/2)
To calculate settlement at a corner of the foundation, use
a=1
, L
m =
B
and
, H
n =
B

The variations of F, and F, with 7' and #’ are given in Tables 10.2 through
10.5, respectively. The variation of I; with D¢/B and v is shown in Figure 10.8
(for L/B =1, 2, and 5), which is based on Fox (1948).
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Table 10.2 Variation of F, with m” and n’

n’ 1.0 1.2 1.4 1.6 1.8 2.0 25 3.0 35 4.0

0.25 0.014 0.013 0012 o.0II o.0II o.0II 0.010 0.010 0.010 0.0I0
0.50 0.049 0.046 0.044 0.042 0.041 0.040 0.038 0.038 0.037 0.037
0.75 0.095 0.090 0.087 0.084 0.082 0.080 0.077 0.076 0.074 0.074
1.00 0.142 0.138 0.134 0.130 0.127 0.125 0.121 0.118 O0.[16 O0.I15
125 0.186 0.183 0.179 0.176 0.173 0.170 0.165 0.161 0.158 0.157
1.50 0224 0.224 0.222 0219 0216 0213 0207 0203 0.199 0.197
.75 0257 0.259 0.259 0.258 0255 0253 0247 0.242 0.238 0.235
200 0285 029 0292 0292 0291 0289 0284 0.279 0.275 0.27]
225 0309 0317 0321 0323 0323 0322 0317 0313 0308 0.305
250 0.330 0.341 0347 0350 0351 0351 0.348 0.344 0.340 0.336
275 0.348 0361 0369 0374 0377 0378 0.377 0.373 0.369 0.365
3.00 0363 0379 0389 0.396 0.400 0.402 0.402 0400 0396 0.392
325 0376 0394 0406 0415 0420 0423 0426 0424 0421 0418
3.50 0.388 0.408 0.422 0431 0438 0.442 0447 0447 0444 0441
375 0399 0420 0436 0447 0454 0460 0.467 0458 0466 0.464
400 0408 0431 0448 0460 0469 0476 0.484 0487 0486 0.484
425 0417 0440 0458 0472 048] 0484 0495 0.514 0.515 0.515
450 0424 0450 0469 0484 0495 0503 0516 0.521 0.522 0.522
475 0431 0458 0478 0494 0506 0515 0.530 0.536 0.539 0.539
500 0437 0465 0487 0503 0516 0526 0.543 0.551 0.554 0.554
525 0443 0472 0494 0512 0.526 0.537 0.555 0.564 0.568 0.569
550 0448 0478 0501 0520 0.534 0.546 0.566 0.576 0.581 0.584
575 0453 0483 0508 0527 0542 0.555 0.576 0.588 0.594 0.597
6.00 0457 0489 0514 0534 0550 0.563 0.585 0.598 0.606 0.609
6.25 0461 0493 0519 0540 0.557 0570 0.594 0.609 0.617 0.621
6.50 0465 0498 0524 0546 0563 0.577 0.603 0.618 0.627 0.632
6.75 0468 0502 0529 0551 0569 0584 0.610 0.627 0.637 0.643
7.00 0471 0.506 0.533 0.556 0.575 0590 0618 0.635 0.646 0.653
725 0474 0.509 0.538 0.561 0.580 0596 0.625 0.643 0.655 0.662
750 0477 0.513 0.541 0.565 0.585 0601 0631 0650 0.663 0.671
775 0480 0.516 0.545 0.569 0589 0606 0637 0.658 0.671 0.680
800 0482 0.519 0.549 0.573 0594 0611 0643 0664 0.678 0.688
825 0485 0522 0552 0577 0598 0615 0.648 0.670 0.685 0.695
850 0487 0524 0555 0580 0.601 0619 0.653 0.676 0.692 0.703
875 0489 0527 0558 0583 0605 0623 0.658 0.682 0.698 0.710
9.00 0491 0529 0560 0587 0.609 0.627 0.663 0.687 0.705 0.716
925 0493 0531 0563 0589 0612 0631 0.667 0.693 0.710 0.723
9.50 0495 0533 0565 0592 0615 0634 0.671 0.697 0.716 0.719
9.75 0496 0536 0568 0595 0618 0.638 0.675 0.702 0.721 0.735
10.00 0498 0.537 0.570 0.597 0.621 0.641 0.679 0.707 0.726 0.740
20.00 0.529 0.575 0.614 0.647 0677 0.702 0.756 0.797 0.830 0.858
50.00 0.548 0.598 0.640 0.678 0.711 0740 0.803 0.853 0.895 0.93I
100.00 0.555 0.605 0649 0.688 0.722 0.753 0.819 0.872 0918 0.956
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Table 10.3 Variation of F, with m’ and n’

n’ 45 5.0 6.0 7.0 8.0 9.0 100 250 50.0 100.0

025 0.010 0.010 0.010 o0.0l0 000 00I0 0.010 0.010 0.010 o0.010
0.50 0.036 0.036 0.036 0036 0036 0.036 0.036 0.036 0.036 0.036
0.75 0.073 0.073 0.072 0.072 0.072 0.072 0.071 0.07I 0.071 0.071
1.00 0.114 0.113 o0.112 0.112 0.112 Oo.I1t1 o.rtf 0.r1o0o 0o.110 0.110
125 0.155 0.154 0.153 0.152 0.152 0.I5] 0.I51 0.I150 0.150 0.150
1.50 0.195 0.194 0.192 0.191 0.190 0.190 0.189 0.188 0.188 0.188
.75 0233 0.232 0229 0228 0227 0226 0225 0223 0223 0.223
200 0269 0267 0264 0262 0261 0260 0.259 0.257 0.256 0.256
225 0302 0300 0296 0294 0.293 0.291 0291 0.287 0.287 0.287
250 0333 0331 0327 0324 0322 0321 0320 0316 0315 03I5
275 0362 0359 0355 0352 0350 0.348 0.347 0.343 0.342 0.342
3.00 0389 0386 0.382 0.378 0.376 0.374 0.373 0.368 0367 0367
325 0415 0412 0407 0403 0401 0399 0397 0391 0390 0.390
3.50 0438 0435 0430 0427 0424 0421 0420 0413 0412 0411
375 0461 0458 0453 0449 0446 0443 0441 0433 0432 0432
400 0482 0479 0474 0470 0466 0464 0462 0453 0451 0451
425 0516 0496 0484 0473 0471 0471 0470 0.468 0.462 0.460
450 0.520 0.517 0513 0508 0505 0.502 0499 0489 0487 0487
475 0.537 0535 0530 0526 0523 0519 0517 0.506 0.504 0.503
500 0.554 0552 0548 0543 0540 0.536 0.534 0.522 0.519 0519
525 0.569 0568 0564 0560 0.556 0.553 0.550 0.537 0.534 0.534
550 0.584 0583 0579 0575 0571 0568 0.585 0.551 0.549 0.548
575 0597 0597 0594 0590 0.586 0.583 0.580 0.565 0.583 0.562
6.00 0611 0610 0608 0604 0601 0598 0.595 0.579 0.576 0.575
6.25 0.623 0623 0621 0618 0615 0611 0.608 0.592 0.589 0.588
6.50 0.635 0635 0634 0631 0628 0625 0.622 0.605 0.601 0.600
6.75 0.646 0.647 0646 0644 0641 0637 0.634 0.617 0.613 0612
7.00 0.656 0.658 0.658 0.656 0.653 0.650 0.647 0.628 0.624 0.623
725 0.666 0.669 0.669 0.668 0.665 0.662 0659 0.640 0.635 0.634
750 0.676 0.679 0.680 0.679 0.676 0.673 0670 0.651 0.646 0.645
775 0.685 0.688 0.690 0.689 0.687 0.684 0681 0661 0.656 0.655
8.00 0.694 0.697 0.700 0.700 0.698 0.695 0.692 0.672 0.666 0.665
825 0.702 0.706 0.710 0.710 0.708 0.705 0.703 0.682 0.676 0.675
850 0.710 0714 0719 0719 0.718 0.715 0.713 0.692 0.686 0.684
875 0717 0722 0727 0728 0.727 0725 0.723 0.701 0.695 0.693
9.00 0.725 0.730 0.736 0.737 0.736 0.735 0.732 0.710 0.704 0.702
925 0.731 0.737 0744 0746 0.745 0.744 0.742 0.719 0.713 0.711
9.50 0.738 0.744 0.752 0.754 0.754 0.753 0.751 0.728 0.721 0.719
9.75 0.744 0.751 0.759 0.762 0.762 0.761 0.759 0.737 0.729 0.727
10.00 0.750 0.758 0.766 0.770 0.770 0.770 0.768 0.745 0.738 0.735
20.00 0.878 0.896 0.925 0945 0959 0969 0977 0982 0.965 0.957
50.00 0962 0989 1.034 1.070 1.100 1.125 1.146 1.265 1.279 1.26l
100.00 0.990 1.020 1.072 [.114 [1.150 1.182 1.209 1.408 1.489 1499
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Table 10.4 Variation of F, with m" and n’

’

m
n’ 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 35 4.0
0.25 0.049 0.050 0.051 0.051 0.05I 0.052 0.052 0.052 0.052  0.052
0.50 0.074 0.077 0.080 0.08] 0.083 0.084 0.086 0.086 0.0878 0.087
0.75 0.083 0.089 0.093 0.097 0.099 0.101 0.104 0.106 0.107 0.108
1.00 0.083 0.091 0.098 0.102 0.106 0.109 O0.114 0.117 0.119 0.120
1.25 0.080 0.089 0.096 0.102 0.107 O.I11 0.118 0.122 0.125  0.127
1.50 0.075 0.084 0.093 0.099 0.105 O0.110 0.118 0.124 0.128  0.130
1.75 0.069 0.079 0.088 0.095 0.0l 0.107 0.117 0.123 0.128  0.131
2.00 0.064 0.074 0.083 0.090 0.097 0.102 O0.114 0.121 0.127  0.131
225 0.059 0.069 0.077 0.085 0.092 0.098 0.110 0.119 0.125  0.130
250 0.055 0.064 0.073 0.080 0.087 0.093 0.106 0.5 0.122  0.127
275 0.051 0.060 0.068 0.076 0.082 0.089 0.102 O.Il1 0.119 0.125
3.00 0.048 0.056 0.064 0.071 0.078 0.084 0.097 0.108 0.116 0.122
325 0.045 0.053 0.060 0.067 0.074 0.080 0.093 0.104 0.112 0.119
3.50 0.042 0.050 0.057 0.064 0.070 0.076 0.089 0.100 0.109 O0.Il6
3.75 0.040 0.047 0.054 0.060 0.067 0.073 0.086 0.096 0.105 0.113
4.00 0.037 0.044 0.051 0.057 0.063 0.069 0.082 0.093 0.102 0.0
425 0.036 0.042 0.049 0.055 0.061 0.066 0.079 0.090 0.099 0.107
450 0.034 0.040 0.046 0.052 0.058 0.063 0.076 0.086 0.096 0.104
475 0.032 0.038 0.044 0.050 0.055 0.061 0.073 0.083 0.093 0.101
5.00 0.031 0.036 0.042 0.048 0.053 0.058 0.070 0.080 0.090 0.098
525 0.029 0.035 0.040 0.046 0.051 0.056 0.067 0.078 0.087  0.095
5.50 0.028 0.033 0.039 0.044 0.049 0.054 0.065 0.075 0.084 0.092
575 0.027 0.032 0.037 0.042 0.047 0.052 0.063 0.073 0.082  0.090
6.00 0.026 0.031 0.036 0.040 0.045 0.050 0.060 0.070 0.079  0.087
6.25 0.025 0.030 0.034 0.039 0.044 0.048 0.058 0.068 0.077  0.085
6.50 0.024 0.029 0.033 0.038 0.042 0.046 0.056 0.066 0.075 0.083
6.75 0.023 0.028 0.032 0.036 0.041 0.045 0.055 0.064 0.073  0.080
7.00 0.022 0.027 0.031 0.035 0.039 0.043 0.053 0.062 0.071 0.078
725 0.022 0.026 0030 0034 0038 0.042 0.051 0.060 0.069 0.076
7.50 0.021 0.025 0.029 0.033 0.037 0.041 0.050 0.059 0.067 0.074
7.75 0.020 0.024 0.028 0.032 0.036 0.039 0.048 0.057 0.065 0.072
8.00 0.020 0.023 0.027 0.031 0.035 0.038 0.047 0.055 0.063 0.071
825 0.019 0.023 0.026 0.030 0.034 0.037 0.046 0.054 0.062  0.069
850 0.018 0.022 0.026 0.029 0.033 0.036 0.045 0.053 0.060 0.067
875 0.018 0.021 0.025 0.028 0.032 0.035 0.043 0.051 0.059  0.066
9.00 0.017 0.021 0.024 0.028 0.031 0.034 0.042 0.050 0.057  0.064
9.25 0.017 0.020 0.024 0.027 0.030 0.033 0.041 0.049 0.056 0.063
9.50 0.017 0.020 0.023 0.026 0.029 0.033 0.040 0.048 0.055 0.06l
9.75 0.016 0.019 0.023 0.026 0.029 0.032 0.039 0.047 0.054 0.060
10.00 0.016 0.019 0.022 0.025 0.028 0.031 0.038 0.046 0.052  0.059
20.00 0.008 0.010 0.0II 0.013 0.014 00I6 0.020 0.024 0.027 0.031
50.00 0.003 0.004 0.004 0.005 0.006 0.006 0.008 0.010 0011l 0.013
100.00 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.005 0.006 0.006
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Table 10.5 Variation of F, with m" and n’

n’ 4.5 5.0 6.0 7.0 8.0 9.0 100 250 500 100.0

0.25 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053
0.50 0.087 0.087 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088
0.75 0.109 0.109 0.109 0.110 0.110 0.110 0.110 Oo.111 O.111 0.l
1.00 0.121 0.122 0.123 0.123 0.124 0.124 0.124 0.125 0.125 0.125
125 0.128 0.130 0.131 0.132 0.132 0.133 0.133 0.134 0.134 0.134
1.50 0.132 0.134 0.136 0.137 0.138 0.138 0.139 0.140 0.140 0.140
1.75 0.134 0.136 0.138 0.140 0.141 0.142 0.142 0.144 0.144 0.145
200 0.134 0.136 0.139 0.14]1 0.143 0.144 0.145 0.147 0.147 0.148
225 0.133 0.136 0.140 0.142 0.144 0.145 0.146 0.149 0.150 0.150
250 0.132 0.135 0.139 0.142 0.144 0.146 0.147 0.151 0.151 0.151
275 0.130 0.133 0.138 0.142 0.144 0.146 0.147 0.152 0.152 0.153
3.00 0.127 0.131 0.137 0.141 0.144 0.145 0.147 0.152 0.153 0.154
325 0.125 0.129 0.135 0.140 0.143 0.145 0.147 0.153 0.154 0.154
3.50 0.122 0.126 0.133 0.138 0.142 0.144 0.146 0.153 0.155 0.155
375 0.119 0.124 0.131 0.137 0.141 0.143 0.145 0.154 0.155 0.155
400 O.116 0.121 0.129 0.135 0.139 0.142 0.145 0.154 0.I55 0.156
425 0.113 0.119 0.127 0.133 0.138 0.141 0.144 0.154 0.156 0.156
450 0.110 0.116 0.125 0.131 0.136 0.140 0.143 0.154 0.156 0.156
475 0.107 0.113 0.123 0.130 0.135 0.139 0.142 0.154 0.156 0.157
500 0.105 O.1f1 0.120 0.128 0.133 0.137 0.140 0.154 0.156 0.157
525 0.102 0.108 O0.118 0.126 0.131 0.136 0.139 0.154 0.156 0.157
550 0.099 0.106 O0.116 0.124 0.130 0.134 0.138 0.154 0.156 0.157
575 0.097 0.103 O0.113 0.122 0.128 0.133 0.136 0.154 0.157 0.157
6.00 0.094 o0.101 O.Ill 0.120 0.126 0.131 0.135 0.153 0.157 0.157
6.25 0.092 0.098 0.109 0.118 0.124 0.129 0.134 0.153 0.157 0.158
6.50 0.090 0.096 0.107 O0.116 0.122 0.128 0.132 0.153 0.157 0.158
6.75 0.087 0.094 0.105 0.114 0.121 0.126 0.131 0.153 0.157 0.158
700 0.085 0.092 0.103 O0.112 0.119 0.125 0.129 0.152 0.157 0.158
725 0.083 0.090 o0.101 0.110 0.117 0.123 0.128 0.152 0.157 0.158
750 0.081 0.088 0.099 0.108 O0.115 0.121 0.126 0.152 0.156 0.158
775 0.079 0.086 0.097 0.106 0.114 0.120 0.125 0.15] 0.156 0.158
8.00 0.077 0.084 0.095 0.104 0.112 0.118 0.124 0.15] 0.156 0.158
825 0.076 0.082 0093 0.102 0.110 0.117 0.122 0.150 0.156 0.158
850 0.074 0.080 0.091 0.10I 0.108 0.115 0.121 0.150 0.156 0.158
875 0.072 0.078 0.089 0.099 0.107 0.114 0.119 0.150 0.156 0.158
9.00 0.071 0.077 0.088 0.097 0.105 0.112 0.118 0.149 0.156 0.158
9.25 0.069 0.075 0.086 0096 0.104 0.110 0.116 0.149 0.156 0.158
9.50 0.068 0.074 0.085 0.094 0.102 0.109 0.115 0.148 0.156 0.158
9.75 0.066 0.072 0.083 0092 0.100 0.107 0.113 0.148 0.156 0.158
10.00 0.065 0.071 0.082 0.091 0.099 0.106 O0.112 0.147 0.156 0.158
20.00 0.035 0.039 0.046 0.053 0.059 0.065 0.071 0.124 0.148 0.156
50.00 0.014 0.016 0.019 0.022 0.025 0.028 0.031 0.071 0.113 0.142
100.00 0.007 0.008 0.010 0.011 0.013 0.014 0.0l6 0.039 0071 O0.113
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(©) D;/B (d) D;/B

Figure 10.8 Variation of I with D¢/B, L/B, and v: (a) v=0; (b) v=0.3; (c) v=0.4; (d) v=0.5.
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Due to the nonhomogeneous nature of soil deposits, the magnitude of E
may vary with depth. For that reason, Bowles (1987) recommended using a
weighted average of E in Equation 10.36, or

ZE(i)AZ
o (10.44)
4

where
E is the soil modulus of elasticity within a depth Az
Z is the H or 5B, whichever is smaller

For a rigid foundation

Se(rigt) = 0 93Sg e, center) (10.45)
Example 10.4

A rigid shallow foundation 1 m x 2 m is shown in Figure 10.9. Calculate
the elastic settlement at the center of the foundation.

Solution
Given B=1mand L =2 m. Note thatZ =5 m = 5B. From Equation 10.44

L DUBeAZ_ 10,000)@)+ €000))+ (2,000)@) _

10,400 kN /n 2
Z 5

le q =150 kN/m?

l l Imx2m E(KN/m?)
vyv vv og——
i

|
1-4¢10,000-+!
I

1
2 i 4
48,000

R

Figure 10.9 Elastic settlement for a rigid shallow foundation.



534 Advanced Soil Mechanics

For the center of the foundation
ax=4

gL
B

m E:1
1

and

n’:Hi:i:]_O
B/2) @72)

From Tables 10.2 and 10.4, F, = 0.641 and F, = 0.031. From
Equation 10.37

1-2v 2—-0
=F+ F,=0641+
= ! 1-v z 1-0

3
031)=0.716
3 0 )
Again, D¢/B = 1/1 = 1, L/B = 2, and v = 0.3. From Figure 10.8b,
I; = 0.709. Hence
1-v*
E

1) 1-03%
= (150)(4><2)(10 200 ](0.716)(0.709)

Segexpe) = AOB) LI

=00133m =133m

Since the foundation is rigid, from Equation 10.45 we obtain

Sewigi) = 093)133)=124mm

10.6.2 Improved equation for elastic settlement

Mayne and Poulos (1999) presented an improved formula for calculating
the elastic settlement of foundations. The formula takes into account the
rigidity of the foundation, the depth of embedment of the foundation, the
increase in the modulus of elasticity of the soil with depth, and the loca-
tion of rigid layers at a limited depth. To use Mayne and Poulos’s equa-
tion, one needs to determine the equivalent diameter B, of a rectangular
foundation, or

B, = | Bk (10.46a)
T

where
B is the width of foundation
L is the length of foundation
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e E PR

Compressible T
soil layer H FoE,+ke
E
' l
Rigid layér N
v

Depth, z

Figure 10.10 Improved equation for calculating elastic settlement—general parameters.

For circular foundations

B.=B (10.46D)

where B is the diameter of foundation.

Figure 10.10 shows a foundation with an equivalent diameter B, located
at a depth D; below the ground surface. Let the thickness of the founda-
tion be ¢ and the modulus of elasticity of the foundation material be E.
A rigid layer is located at a depth H below the bottom of the foundation.
The modulus of elasticity of the compressible soil layer can be given as

E =E,+kz (10.47)

With the preceding parameters defined, the elastic settlement below the
center of the foundation is

5= 9BL LT

- Q-v) (10.48)

where I is the influence factor for the variation of E with depth
E H
=f|f="2 —
(B kB, 'B. )

I is the foundation rigidity correction factor
I} is the foundation embedment correction factor
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L E B B B N B
>30 100 7]
5.0
0.8 =
2.0
06l 0 _|
9

Figure 10.11 Variation of I with f".

Figure 10.11 shows the variation of I, with ' = E /kB, and H/B,.

dation rigidity correction factor can be expressed as

L=2+ -
4 46+10E€:/E,+ B RK]RLB.)

Similarly, the embedment correction factor is

1
. 35exp22v—04)[B.D)+16]

=1

The foun-

(10.49)

(10.50)

Figures 10.12 and 10.13 show the variation of I and I with terms expressed

in Equations 10.49 and 10.50.
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1.00 — TTTT T T 1T T T 1T T 1711
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= 0.85—
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’ E,+ TG k| Be

= Flexibility factor
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0.70 N T A T T A T 1 N A N A O
0.0012 4 0.01 0.1 1 10 100
KF

Figure 10.12 Variation of rigidity correction factor [ with flexibility factor K
(Equation 10.49).

Example 10.5

For a shallow foundation supported by a silty clay as shown in
Figure 10.10,

Length=L=1.5m

Width=B=1m

Depth of foundation = D; = 1 m
Thickness of foundation =#=0.23 m
Load per unit area = g = 190 kN/m?
Ep = 15 x 10 kN/m?

The silty clay soil has the following properties:

H=2m

v=0.3
E,=9000 kN/m?
k =500 kN/m?2/m

Estimate the elastic settlement of the foundation.
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1.00

0.95 =
0.90 =
v=0.5
0.4
= 0.85 —
0.3
0.2
0.80
0.1
0.75 0
0.70 ' ' '
0 5 10 15 20
Dy
B

Figure 10.13 Variation of embedment correction factor I¢ with D,/B, (Equation 10.50).

Solution

From Equation 10.46, the equivalent diameter is

Be:\/4BL :\/(4)(15)&):138111

b T
SO
g Fo_ 9000 _
kB. (500)Q 38)
and
B_ 2 145
B, 138

From Figure 10.11, for p’ = 13.04 and H/B, = 1.435, the value of I = 0.74.
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From Equation 10.49

IF=E+ ! 3
4 4-6+10cEf/1.-Eo+ (Beﬁk])(z't/Be)

1
Z+ 4.6+10[15x10°/9000+ (1 38/2)(500)][2)0 23)/'1 387

=0.787

From Equation 10.50

1
 35expL22v—04)[B. D )+16]

=1

1
- =0
35exp[(L22)03)-04][1 38/4)+16]

907

From Equation 10.48

_GBLLL

Se -V
. a=v)

So, with ¢ = 190 kN/m?2, it follows that

_ (190)( 38)0.74)0787)0 907)

1-03%)=0014m =~14mm
9000

Se
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Chapter |1

Consolidation settlement
of shallow foundations

11. INTRODUCTION

As mentioned in Chapter 10, the total settlement of a shallow foundation,
in general, is the sum of the elastic settlement (S,) and the consolidation
settlement (S,) of the soil supporting the foundation. The procedures for esti-
mating the elastic settlement were treated in Chapter 10. It was also pointed
out that the total consolidation settlement is the sum of the settlements occur-
ring from primary consolidation (S,) and secondary consolidation (S,). Or

S.=S +8S, (11.1)
In this chapter, we will consider the procedures for estimation of S, and S..
11.2 ONE-DIMENSIONAL PRIMARY CONSOLIDATION
SETTLEMENT CALCULATION

Based on Equation 8.89 in Section 8.9, the settlement for one-dimensional
consolidation can be given by

Ae
=AH.= H 8.89
Sp S liglt ( )
where
Ae=C.lbg % +,AG (for nom ally consolidated clays) (8.90)
Go
Ae=C.lg % +,AG (for overconsolidated clays, 6, + Ao < o%) (8.91)
Go

541
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T — Agy

¢ Ao, Variation of Ao

Figure I1.] Calculation of consolidation settlement—method A.

7 J
c G, + AC
’C+chg 4 4

0 c

Ae=C.lg (broj < 6%, < 65 + Ao) (8.92)

where o is the preconsolidation pressure.

When a load is applied over a limited area, the increase of pressure due to
the applied load will decrease with depth, as shown in Figure 11.1. So, for
a more realistic settlement prediction, we can use the following methods.

Method A

1. Calculate the average effective pressure of on the clay layer before
application of the load under consideration.

2. Calculate the increase of stress due to the applied load at the top, mid-
dle, and bottom of the clay layer below the center of the foundation.
This can be done by using theories developed in Chapters 3 and 4.
The average increase of stress below the center of the foundation in
the clay layer can be estimated by Simpson’s rule

Acav:%(Acst+ 4AG, +AGy) (11.2)

where Ac,, Ac,,, and Ao, are stress increases at the top, middle, and
bottom of the clay layer, respectively. For circular foundations, the
magnitude of the average stress increase Ac,, can also be obtained by
a method developed by Saikia (2012) using this procedure. Figure 11.2
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1.0

0.8 —

0.6 —

Zyp=0

Z1/b

Figure 11.2 Average stress increase below a circular foundation.
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gives the variation of Ac,,,q with z,/R and z,/R, where z, and z, are the
vertical distances between the bottom of the foundation and the top
and bottom of the clay layer, respectively.

3. Using o and o,, calculated earlier, obtain Ae from Equations 8.90,
8.91, or 8.92, whichever is applicable.

4. Calculate the settlement by using Equation 8.89.

Method B

1. Better results in settlement calculation may be obtained by dividing a
given clay layer into 7 layers as shown in Figure 11.3.

2. Calculate the effective stress 64, at the middle of each layer.

3. Calculate the increase of stress at the middle of each layer Ac; due to
the applied load.

4. Calculate Ae; for each layer from Equations 8.90, 8.91, or 8.92,
whichever is applicable.

5. Total settlement for the entire clay layer can be given by

S = ZASP iHeO H (11.3)

Figure 11.3 Calculation of consolidation settlement—method B.
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Example 11.1

A circular foundation 2 m in diameter is shown in Figure 11.4a.
A normally consolidated clay layer 5 m thick is located below the foun-
dation. Determine the primary consolidation settlement of the clay.
Use method B (Section 11.2).

Solution

We divide the clay layer into five layers, each 1 m thick. Calculation of
Goa: The effective stress at the middle of layer 1 is

Chay=17@ 5)+ 19-981)05)+ 185-9.81)05)= 34 44 kN fn 2

Circular foundation
diameter, B=2 m
—

¢ =150 kN/m?

1m ”
i i i ii Sand
I 05m _GWT. Y=171N/m’
_ v

.+ Sand Ysat=19 kN/m3

Normally consolidated clay
Hi=5m Year = 18.5 kKN/m3
C.=0.16
en=0.85

z=1m Ac; (kN/m?) z=1m o) (kN/m?)
>
34.44
63.59
2+ 2
59,93 43.13

3

51.82
4 -

60.51
51
69.2
6

(c)

Figure 11.4 Consolidation settlement calculation from layers of finite thickness: (a) soil
profile; (b) variation of Ac; with depth; (c) variation of Gy, with depth.
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The effective stress at the middle of the second layer is
Chay=3444+(185-981)1)=3444+8.69=4313KkN A >
Similarly

Cbe =43.13+869=5181kN f°
Obu)=5182+869=6051kN fn?

G5 =6051+8.69=692kN n°

Calculation of Ac;: For a circular loaded foundation, the increase of
stress below the center is given by Equation 4.32, and so

1
AG. = I S
% q{l [ao/sz”}

where b is the radius of the circular foundation, 1 m. Hence

Ac; = 150{1—W}= 6359 kN fn’
Ao, = 150{1—M}= 29 93 kN /n 2
AG, =150{1_[(135;+1f/2}= 16 .66 kN /n >
Ao, :150{1_[(1/45;+1]”2}: 1046 kN /fn°
AGs = 150{1—M}=7.14 kN fn °
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Calculation of primary consolidation settlement: The steps in the cal-
culation are given in the following table (see also Figure 11.4b and ¢):

J A
Layer  AH,(m) ~ Gog(kKNIm?) Ao, (kNm?Y) At € AH, (m)
€o

| | 34.44 6359 00727 0.0393

2 | 43.13 2993 0.0366 00198

3 | 51.82 1666 00194 0.0105

4 | 60.51 1046 00111 0.0060

5 | 69.2 7.14 000682  0.0037

Y = 0.0793
*fe=Clog S0 TS ¢ o6
Oog)

So, SP =0.0793 m =79.3 mm.

Example 11.2
Solve Example 11.1 using Method A and Equation 11.2.

Solution

From Equation 4.32

1
Ac=qil-—
o q{ [bk)2+1]3/2}

Hence
AGt—ISO{l [(1/1)“]3,2} 9697 kN fu ?
{ (135)+1]3’2} 1666 kN fu ?
A0b=150{ (l/6)+1]3/2} 6.04 kN /n ?

1
AG,, = E Ao+ 4Ac, +Acy)

:%[96.97 + (4)(16.66)+6.04]= 28 28 kKN fn 2
Also

o, =(@15)A7)+ 05)A9— 931)+( ](18.5 9.81)=51.82 kN /n 2
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Combining Equations 8.89 and 8.90

s, = C.H bg(c" +’AGJ
l+eg (o

_ 016)6000mm) (51.82+28.28

=81.79mm
1+0.85 51.82 ]

Example 11.3
Refer to Example 11.2. Calculate Ao, using Figure 11.2.

Solution

For this case

a_1_,
b 1
% _6_,
b 1

From Figure 11.2 for z,/b = 1 and z,/b = 6, the value of Ac,,/q = 0.175. So

Ac,, = (0.175)(150) = 26.25 kN/m? (close to that in Example 11.2)

Example 11.4

Calculate the primary consolidation settlement of the 3 m thick clay
layer (Figure 11.5) that will result from the load carried by a 1.5 m
square footing. The clay is normally consolidated. Use Equation 11.2.

Solution
For normally consolidated clay, combining Equations 8.89 and 8.90,
we have
C.H Gy +AG
== b

S 1+e g[ G J
where

C.=0.009(LL - 10) = 0.009(40 - 10) = 0.27

H=3000 mm

e, =1.0

S 3
Op = 4 SXdey(sand)+ 1 S[Ysat(sand)_ 9 '81]+E [YSaUbe)_ 9 '81]

=45%x157+150189-9.81)+150173-9.81)=9552kN fn?
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890 kN

Footing size

Dry sand
*Y 15mx15m

Yary=157 kKN/m® l

Ysat=17.3 KN/m? i W
$5e =10 AR

* - ~
el LL=40 -

Figure 11.5 Consolidation settlement calculation for a shallow foundation.

In order to calculate Ao, we can prepare the following table:

a b
z(m) m== B(m) n=-2 I (Table4.ll) Ao =qls (kNim?
B B/2 9
4.5 | 1.5 6 0.051 20.17
6.0 | 1.5 8 0.029 11.47
7.5 | 1.5 10 0.019 7.52

2 Equation 4.46.
® Equation 4.47.

¢ q= 890 _ 395.6kN/m?.
2.25
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We calculate (Equation 11.2)

2017+ @)1147)+752

AGav
6

=1226 kKN fn 2

Substituting these values into the settlement equation gives

Sp:

027)000), (9552+12.26
1+1 9552

]=21.3mm

11.3 SKEMPTON-BJERRUM MODIFICATION FOR
CALCULATION OF CONSOLIDATION
SETTLEMENT

In one-dimensional consolidation tests, there is no lateral yield of the soil
specimen and the ratio of the minor to major principal effective stresses, K_,
remains constant. In that case, the increase of pore water pressure due to an
increase of vertical stress is equal in magnitude to the latter; or

Au=Ac (11.4)
where

Au is the increase of pore water pressure
Ao is the increase of vertical stress

However, in reality, the final increase of major and minor principal stresses
due to a given loading condition at a given point in a clay layer does not main-
tain a ratio equal to K. This causes a lateral yield of soil. The increase of pore
water pressure at a point due to a given load is (Figure 11.6) (see Chapter 5)

AU.:AG3+A(A01_AG3)

Skempton and Bjerrum (1957) proposed that the vertical compression of
a soil element of thickness dz due to an increase of pore water pressure Au
may be given by

ds, = m,Audz (11.5)
where m, is coefficient of volume compressibility (Section 8.2), or

ds, =m,[AC; + A AC; — AG;)Hz=m ,AC, |:A + 203

(]}

(1—A)j|dz

The preceding equation can be integrated to obtain the total primary
consolidation settlement:

sp=J.muAcl[A+iz3 a—A)]dz (11.6)
1
0
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Center line

—— b ——f
I

A 4
X X X X X X X

Figure 11.6 Development of excess pore water pressure below the centerline of a
circular loaded foundation.

For conventional one-dimensional consolidation (K, condition),

Hye

AGldz:meAcldz (11.7)
0

H

t He
Ae Ae 1
Soioe) = z= |-
l+e AG;, 1+ g,
0 0

(Note that Equation 11.7 is the same as that used for settlement calculation
in Section 11.2.) Thus

Settlem ent rato , P i = Se
Sp0ea)
He
j m,AG; [A + AG; AG, )1 - A)Hz
—J0
= i
J m,Ac,dz
0
He
J- Ac,ydz
=A+(@1-A)L
J. Ac,dz
0

=A+(Q-AM, (11.8)
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where
Ht
J. AG;dz
M, = Ol-lti (11.9)
Ac,dz
0

We can also develop an expression similar to Equation 11.8 for con-
solidation under the center of a strip load (Scott, 1963) of width B. From
Chapter 5,

Au=A63+|:\/2§(A—;)+;:|(A61—AG3) v=05

He Hy

So, S.= J-mUAudzz J.m\,A($1|:N +@1l—-N )AG3:|dz (11.10)
AG,
0 0
where
w3 ( _1)+1
2 3 2
Hence

Settlem entratio , Peyy, = S
Spoed)

He

J m,AG; [N + (- N )Ao; /Ac,; )Hz
—9J0

He
J m ,Ac,dz
0

=N +Q-N M, (11.11)

where

He
j AG-dz
—Jo

He

Ac,dz
0

(11.12)
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Pcircular and pstrip

Circle
&~ === Strip

0.4 2 J

0.2
0.2 0.4 0.6 0.8 1.0 1.2

Pore water pressure parameter, A

o

Figure 11.7 Settlement ratio for strip and circular loading.

The values of p. and p,;, for different values of the pore pressure
parameter A are given in Figure 11.7.

It must be pointed out that the settlement ratio obtained in Equations
11.8 and 11.11 can only be used for settlement calculation along the axes
of symmetry. Away from the axes of symmetry, the principal stresses are no
longer in vertical and horizontal directions.

Itis also important to know that the settlement ratios given in Figure 11.7
are for normally consolidated clays. Leonards (1976) considered the set-
tlement ratio p,;, o, for three-dimensional consolidation effect in the field
for a circular foundation located over overconsolidated clay. Referring to
Figure 11.6

Sp = Peircieo ¢ 1Sp oed) (11.13)

where

Peicepc) = f(o CR I; J (11.14)

t
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Table I1.1 Variation of p.eoc) With OCR and B/H,

Pcircie(oc)

OCR BIH, = 4.0 BIH, = 1.0 BIH, = 0.2

| I | |

2 0.986 0.957 0.929

3 0.972 0914 0.842

4 0.964 0.871 0.771

5 0.950 0.829 0.707

6 0.943 0.800 0.643

7 0.929 0.757 0.586

8 0914 0.729 0.529

9 0.900 0.700 0.493
10 0.886 0.671 0.457

I 0.871 0.643 0.429
12 0.864 0.629 0.414
13 0.857 0.614 0.400
14 0.850 0.607 0.386
I5 0.843 0.600 0.371

16 0.843 0.600 0.357

O CR = overconsolidation ratio = zf (11.15)
0

o, is the preconsolidation pressure
o) is the present effective overburden pressure

The interpolated values of p;,..oc) from the work of Leonards (1976) are
given in Table 11.1.

The settlement ratio equations (Equations 11.8, 11.11, and 11.13) have
been developed assuming that the foundation is located on the top of the
clay layer. In most practical situations, this may not be true. So, an approxi-
mate procedure needs to be adopted to obtain an equivalent foundation
on the clay layers so that the settlement ratio relationships can be used.
This approximate procedure of load distribution is usually referred to as
the 2:1 stress distribution procedure. The 2:1 stress distribution procedure
can be explained using Figure 11.8 as follows. When a foundation measur-
ing B x L is subjected to a stress increase of g, the load spreads out along
planes 2V:1H. Thus, the load at a depth z on the top of a clay layer will be
distributed over an area B’ x L.

B'=B+z (11.16)
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Stress=¢q

N —P

gBL

Stress=¢q'= ————
(B+2) (L+2)

Figure 11.8 2:| Stress distribution.

and
L'=L+z (11.17)
So, the load per unit area g’ at a depth z will be

P gBL

= = 11.1
d B+z)L +2) ( 8)

The application of this 2V:1H load distribution concept is shown in
Examples 11.5 and 11.6.

Example 11.5

The average representative value of the pore water pressure parameter
A (as determined from triaxial tests on undisturbed samples) for the
clay layer shown in Figure 11.9 is about 0.6. Estimate the consolida-
tion settlement of the circular tank.

Solution

The average effective overburden pressure for the 6 m thick clay layer
is 0y = 6/2)1924-981)=2829kN fn > We will use Equation 11.2 to
obtain the average pressure increase:

1
AG,, = E Ao+ 4Ac, +Acy)

AG. =100 kN /n ?
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Circular tank
diameter

— =3m —p|

l l l l | :lq:w()kl\j_/fz' G,W‘T.“

Normally consolidated clay

Year = 19.24 kN/m?

6m
C,=02
ep=1.08
¥
XX X XX X X X X
Rock

Figure 11.9 Consolidation settlement under a circular tank.

From Equation 4.32

A6b=100{1—[a:”6;+1f0}==8£9kNlnz

AG =%[100+4(28.45)+8.69]= 37.1kN fu?

Ae:chgLIAGa"zo.Zb 2829+374 =0.073
A 2829
e =1.08

AeH . 0.073x6
l1+e 14108

=021m =210mm

Speed) =

From Figure 11.7, the settlement ratio pg,.,., is approximately 0.73
(note that H/B = 2), so

S, = Peircutar Spoe = 0.73 (210) = 153.3 mm



Consolidation settlement of shallow foundations 557

Example 11.6

Refer to Example 11.4. Assume that the clay is overconsolidated. Given
OCR = 3, swell index (C,) ~ 1/4C,.

a. Calculate the primary consolidation settlement S,.
b. Assuming the three-dimensional effect, modify the settlement
calculated in Part a.

Solution
Part a:

From Example 11.4, 65 = 95.52 kN/m?2. Since OCR = 3, the preconsolida-
tion pressure 0% = (OCR) (07) = (3)(95.52) = 286.56 kN/m?. For this case

G +AC, =9552+1226< 0,

So, Equations 8.89" and 8.91" may be used. Or

s, = C.H bg(cﬁlAcaV]
1+g O
_ ©027/4)8000), (9552+1225)_, ,
1+1 9552
Part b:

Assuming that the 2:1 method of stress increase holds good, the area of
distribution of stress at the top of the clay layer will have dimensions of

B ' =width=B+z=1.5+4.5=6m
L'=width=L+z=15+45=6m

The diameter of an equivalent circular area B, can be given as

2 17

EB =BL

4 e

B, = [4BL _ [@)6)6) _¢ 19 m
T T

Bj:&lzz_ZG

H. 3

From Table 11.1, for OCR = 3 and B, /H, = 2.26, p (00 = 0.95. Hence

Sp = Peickeoc) Speeay = 0 95)G 3)=5.04mm
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11.4 SETTLEMENT CALCULATION
USING STRESS PATH

Lambe’s (1964) stress path was explained in Section 9.14. Based on
Figure 9.45, it was also concluded that (1) the stress paths for a given nor-
mally consolidated clay are geometrically similar, and (2) when the points
representing equal axial strain (€,) are joined, they will be approximate
straight lines passing through the origin.

Let us consider a case where a soil specimen is subjected to an oedometer
(one-dimensional consolidation) type of loading (Figure 11.10). For this
case, we can write

&, =K.0, (11.16)

where K, is the at-rest earth pressure coefficient and can be given by the
expression (Jaky, 1944)

K, =1-sind (11.17)

For Mohr’s circle shown in Figure 11.10, the coordinates of point E can be
given by

,_01-05 _010-K,)

2 2
A 045=K,0;
e
NS
§ \Lo
B
v
-
[+
=
%) E
Bl o5=K.0, o}
0} >

Normal stress

Figure 11.10 Determination of the slope of the K, line.
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o= 01 +05 _ 61@+Ko)
2 2

Thus

B=tan| L :mn"l(l_KOJ (11.18)
1+K,

where B is the angle that the line OE (K, line) makes with the normal
stress axis.

Figure 11.11 shows a g’ versus p’ plot for a soil specimen in which the K
line has also been incorporated. Note that the K, line also corresponds to
a certain value of €.

To obtain a general idea of the nature of distortion in soil specimens
derived from the application of an axial stress, we consider a soil speci-
men. If o} =0} (i.e., hydrostatic compression) and the specimen is sub-
jected to a hydrostatic stress increase of Ac under drained conditions
(i.e., Ao = Ac’), then the drained stress path would be EF, as shown in
Figure 11.12. There would be uniform strain in all directions. If 65 = K0}
(at-rest pressure) and the specimen is subjected to an axial stress increase
of Ac under drained conditions (i.e., Ac = Ac’), the specimen deformation
would depend on the stress path it follows. For stress path AC, which is
along the K line, there will be axial deformation only and no lateral defor-
mation. For stress path AB, there will be lateral expansion, and so the
axial strain at B will be greater than that at C. For stress path AD, there

q' A

Note: tan o =sin ¢

Figure I1.11 Plot of p’ versus q" with K, and K; lines.
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o) 0,+Ac p

\4

’

Figure 11.12 Stress path and specimen distortion.

will be some lateral compression, and the axial strain at D will be more
than at F but less than that at C. Note that the axial strain is gradually
increasing as we go from F to B.

In all cases, the effective major principal stress is 6, + Ac’. However, the
lateral strain is compressive at F and zero at C, and we get lateral expan-
sion at B. This is due to the nature of the lateral effective stress to which the
specimen is subjected during the loading.

In the calculation of settlement from stress paths, it is assumed that, for
normally consolidated clays, the volume change between any two points on
a p’ versus g’ plot is independent of the path followed. This is explained in
Figure 11.13. For a soil specimen, the volume changes between stress paths
AB, GH, CD, and CI, for example, are all the same. However, the axial

’

q A
oL
A\
1S
0%
F Ty
1
E D
C
H
G
A B p’

Figure 11.13 Volume change between two points of a p’ versus q’ plot.
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strains will be different. With this basic assumption, we can now proceed
to determine the settlement.

For ease in understanding, the procedure for settlement calculation will
be explained with the aid of an example. For settlement calculation in a nor-
mally consolidated clay, undisturbed specimens from representative depths
are obtained. Consolidated undrained triaxial tests on these specimens at
several confining pressures, 6;, are conducted, along with a standard one-
dimensional consolidated test. The stress—strain contours are plotted on
the basis of the consolidated undrained triaxial test results. The standard
one-dimensional consolidation test results will give us the values of com-
pression index C_. For example, let Figure 11.14 represent the stress—strain
contours for a given normally consolidated clay specimen obtained from an
average depth of a clay layer. Also, let C. = 0.25 and ¢, = 0.9. The drained
friction angle ¢ (determined from consolidated undrained tests) is 30°. From
Equation 11.18

1-K
=m—1 o
oo ()
and K, =1 -sin ¢ =1 - sin 30° = 0.5. So

B=m1(i‘gi)= 18.43°
—+

130 T T T
In situ stress before load
application in field

lc 1=75kN/m?

100 - -
= ) .
o3=K,0, « RS
§

—~ 26.57°

N

g

g S

= 10 11843

0.2%= €=
Axial strain

0 42 50 75 100 118 123 150 200
p ' (kKN/m)

Figure 11.14 Use of stress path to calculate settlement.
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Knowing the value of B, we can now plot the K|, line in Figure 11.14. Also note
that tan « = sin¢. Since ¢ = 30°, tan o = 0.5. So a = 26.57°. Let us calculate
the settlement in the clay layer for the following conditions (Figure 11.14):

1. Tnsituaverageeffectiveoverburden pressure = 6, = 75 kN /n .
2. Total thickness of clay layer = H, = 3 m.

Owing to the construction of a structure, the increase of the total major
and minor principal stresses at an average depth are

AG, = 40 kN /n 2

AG; = 25 kN /n 2

(assuming that the load is applied instantaneously). The in situ minor prin-
cipal stress (at-rest pressure) is 63 = 63 = K07 = 05(75)= 37 5 kN /n 2.
So, before loading

,:01203 _ 75+237'5=56.25kN/fn2

= 01;(’3 = 75_2375:18.75kN/fn2

The stress conditions before loading can now be plotted in Figure 11.14
from the previously mentioned values of p’ and ¢'. This is point A.

Since the stress paths are geometrically similar, we can plot BAC, which
is the stress path through A. Also, since the loading is instantaneous (i.e.,
undrained), the stress conditions in clay, represented by the p’ versus g’ plot
immediately after loading, will fall on the stress path BAC. Immediately
after loading

6,=75+40=115kN m?and 6, =375+25=625kN fn?

, ©,—0, - 115-625
So,q:(51203:(51203: 5 =26.25kN/f(12

With this value of g’, we locate point D. At the end of consolidation

6,=0,=115kN m? 0©3=05=625KkN fn?

, Oy+03 115+62
SO,P=61203= 526 S _ 8875 kN fn>

and q'= 26 25 kN /n 2
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The preceding values of p’ and g’ are plotted as point E. FEG is a geometrically
similar stress path drawn through E. ADE is the effective stress path that a
soil element, at average depth of the clay layer, will follow. AD represents the
elastic settlement, and DE represents the consolidation settlement.

For elastic settlement (stress path A to D)

S.=[(g, at D) - (g, at A)]H, = (0.04 - 0.01)3 = 0.09 m

For consolidation settlement (stress path D to E), based on our previ-
ous assumption, the volumetric strain between D and E is the same as the
volumetric strain between A and H. Note that H is on the K, line. For
point A, 67 = 75kN n *,and for point H, 67 = 118kN /u *. So, the volumet-
ric strain, €,, is

. __Ae _C.bg@18/75)_025bgd18/5)_
Y lte 1+09 19

0.026

The axial strain €, along a horizontal stress path is about one-third the
volumetric strain along the K| line, or

1 1
€1= €= 0.026)=0.0087

So, the primary consolidation settlement is

S, =0.0087H.=0.00873)=0.0261m

and hence the total settlement is

S.+S5,=0.09+0.0261=0.116m

Another type of loading condition is also of some interest. Suppose that
the stress increase at the average depth of the clay layer was carried out in
two steps: (1) instantaneous load application, resulting in stress increases
of Ao, = 40 kN/m? and Acy = 25 kN/m? (stress path AD), followed by
(2) a gradual load increase, which results in a stress path DI (Figure 11.14).
As mentioned earlier, the undrained shear along stress path AD will pro-
duce an axial strain of 0.03. The volumetric strains for stress paths DI and
AH will be the same; so €, = 0.026. The axial strain €, for the stress path
DI can be given by the relation (based on the theory of elasticity)

e, 1+K,-2KK,

€1 _ (11.19)
€ (@-K,)A+2K)

where K =036, for the point I. In this case, o5 =42kN m?* and
6, =123kN A 2. So
42

K=—+-=0341
123
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€_ & _1405-20341)05)_, .o
€, 0026 (—-05)1+202341)]

or
€,= (0.026)138)=0.036

Hence, the total settlement due to the loading is equal to

S=[€,; albngAD )+ €, alongD I)H .

= (0.03+0.036H ,=0.066H .

11.5 COMPARISON OF PRIMARY CONSOLIDATION
SETTLEMENT CALCULATION PROCEDURES

It is of interest at this point to compare the primary settlement calculation
procedures outlined in Sections 11.2 and 11.3 with the stress path tech-
nique described in Section 11.4 (Figure 11.15).

Based on the one-dimensional consolidation procedure outlined in
Sections 11.2, essentially we calculate the settlement along the stress path
AE, that is, along the K, line. A is the initial at-rest condition of the soil,
and E is the final stress condition (at rest) of soil at the end of consolida-
tion. According to the Skempton-Bjerrum modification, the consolidation
settlement is calculated for stress path DE. AB is the elastic settlement.

q' A
S
Q)
B C o
N \‘\
\\ N
N
SNDTEN
N
A <. N
Ay ~ AY
Y ~ N
AY Y N
Y A N
Y N A
N Ay AY
N N N
N N N
>
o) oo+ Ac

P

Figure 11.15 Comparison of consolidation settlement calculation procedures.



Consolidation settlement of shallow foundations 565

However, Lambe’s stress path method gives the consolidation settlement
for stress path BC. AB is the elastic settlement. Although the stress path
technique provides us with a better insight into the fundamentals of settle-
ment calculation, it is more time-consuming because of the elaborate labo-
ratory tests involved.

A number of works have been published that compare the observed and
the predicted settlements of various structures. Terzaghi and Peck (1967)
pointed out that the field consolidation settlement is approximately one-
dimensional when a comparatively thin layer of clay is located between
two stiff layers of soil. Peck and Uyanik (1955) analyzed the settlement
of eight structures in Chicago located over thick deposits of soft clay.
The settlements of these structures were predicted by the method out-
lined in Section 11.2. Elastic settlements were not calculated. For this
investigation, the ratio of the settlements observed to that calculated had
an average value of 0.85. Skempton and Bjerrum (1957) also analyzed the
settlements of four structures in the Chicago area (auditorium, Masonic
temple, Monadnock block, Isle of Grain oil tank) located on overcon-
solidated clays. The predicted settlements included the elastic settlements
and the consolidation settlements (by the method given in Section 11.3).
The ratio of the observed to the predicted settlements varied from 0.92
to 1.17. Settlement analysis of Amuya Dam, Venezuela (Lambe, 1963), by
the stress path method, showed very good agreement with the observed
settlement.

However, there are several instances where the predicted settlements
vary widely from the observed settlements. The discrepancies can be attrib-
uted to deviation of the actual field conditions from those assumed in the
theory, difficulty in obtaining undisturbed samples for laboratory tests,
and so forth.

11.6 SECONDARY CONSOLIDATION SETTLEMENT

The coefficient of secondary consolidation C, was defined in Section 8.7 as

_AH H.
Alogt

o

where
t is the time
H. is the thickness of the clay layer

It has been reasonably established that C, decreases with time in a
logarithmic manner and is directly proportional to the total thickness of
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the clay layer at the beginning of secondary consolidation. Thus, secondary
consolidation settlement can be given by

S.=C,H Ebgi (11.20)

where
H,, is the thickness of the clay layer at the beginning of secondary con-
solidation = H, - S,
t is the time at which secondary compression is required
t, is the time at the end of primary consolidation

Actual field measurements of secondary settlements are relatively scarce.
However, good agreement of measured and estimated settlements has
been reported by some observers, for example, Horn and Lambe (1964),
Crawford and Sutherland (1971), and Su and Prysock (1972).

11.7 PRECOMPRESSION FOR IMPROVING
FOUNDATION SOILS

In instances when it appears that too much consolidation settlement is
likely to occur due to the construction of foundations, it may be desirable
to apply some surcharge loading before foundation construction in order
to eliminate or reduce the postconstruction settlement. This technique
has been used with success in many large construction projects (Johnson,
1970). In this section, the fundamental concept of surcharge application
for elimination of primary consolidation of compressible clay layers is
presented.

Let us consider the case where a given construction will require a per-
manent uniform loading of intensity o, as shown in Figure 11.16. The total
primary consolidation settlement due to loading is estimated to be equal to
S, If we want to eliminate the expected settlement due to primary con-
solidation, we will have to apply a total uniform load of intensity ¢ = o, + ©,.
This load will cause a faster rate of settlement of the underlying compress-
ible layer; when a total settlement of S has been reached, the surcharge
can be removed for actual construction.

For a quantitative evaluation of the magnitude of 6, and the time it should
be kept on, we need to recognize the nature of the variation of the degree
of consolidation at any time after loading for the underlying clay layer, as
shown in Figure 11.17. The degree of consolidation U, will vary with depth
and will be minimum at midplane, that is, at z = H. If the average degree of
consolidation U,, is used as the criterion for surcharge load removal, then
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Figure 11.17 Choice of degree of consolidation for calculation of precompression.
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after removal of the surcharge, the clay close to the midplane will continue
to settle, and the clay close to the previous layer(s) will tend to swell. This
will probably result in a net consolidation settlement. To avoid this prob-
lem, we need to take a more conservative approach and use the midplane
degree of consolidation U, _j; as the criterion for our calculation. Using the
procedure outlined by Johnson (1970)

H. O, +0¢
- . Tog| S0t 0t 11.21
el it po{ ) e
and
H. Oy +0:+0,
=] — 5 fo log| 22T OO 11.22
Sp(f)(1+a))c 9( s, ) ( )
where

0y is the initial average in situ effective overburden pressure
S,n and S are the primary consolidation settlements due to load
intensities of o; and o; + o, respectively

However
Spie) = U (ers)Spiers) (11.23)

where Uy, is the degree of consolidation due to the loading of o; + o,. As
explained earlier, this is conservatively taken as the midplane (z = H) degree
of consolidation. Thus

U ey = S (11.24)

Combining Equations 11.21, 11.22, and 11.24

bg[l+ ©:65)]

, (11.25)
og{l+ ©O:60)1+ O 6¢)1}

U (frs) —

The values of Uy, for several combinations of ¢4} and o /o are given
in Figure 11.18. Once Uy, is known, we can evaluate the nondimensional
time factor T, from Figure 8.4. (Note that U, = U, at 2 = H of Figure 8.4,
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Figure 11.18 Variation of U, with 6 /c;and G &%,

based on our assumption.) For convenience, a plot of U, versus T, is given
in Figure 11.19. So, the time for surcharge load removal t = ¢’ is

=T (11.26)
Cy
where

C, is the coefficient of consolidation
H is the length of the maximum drainage path

A similar approach may be adopted to estimate the intensity of the sur-
charge fill and the time for its removal to eliminate or reduce postconstruc-
tion settlement due to secondary consolidation.
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Figure 11.19 Plot of Uy, versus T,.

Example 11.7

The soil profile shown in Figure 11.20 is in an area where an airfield is
to be constructed. The entire area has to support a permanent surcharge
of 58 kN/m? due to the fills that will be placed. It is desired to eliminate
all the primary consolidation in 6 months by precompression before the
start of construction. Estimate the total surcharge (g = g, + g;) that will
be required for achieving the desired goal.

Solution

For two-way drainage

H =%=225m =225

We are given that

Y =6x30x24X60min
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T Coarse sand
15m y=17.3 kN/m>

Normally consolidated clay
Ysat = 19.24 kKN/m3
4.5m C.=03

C,=9.7x1072 cm?/min

ey=1.0

Sand and gravel

Figure 11.20 Soil profile for precompression.

So

_ 6x30x 24%x60)0.7x1072)

B @25y

=0497

From Figure 11.19, for T, = 0.497 and Uy, = 0.62
0, =173(05)+2250924—9.81)=47.17 kN fn>
G:=58kN /i’ (given)

So

Or_ 58 _123
o, 4717

From Figure 11.18, for U, = 0.62 and 6: 6, =123,

Q

= =117



572 Advanced Soil Mechanics

So
6s=1176:=1.1768)=67.86 kN fun >
Thus

0=0:+0,=58+67.86=125.86 kN /n>

11.8 PRECOMPRESSION WITH SAND DRAINS

The concept of accelerating consolidation settlement by including sand
drains was presented in Section 8.14. In the presence of sand drains, to
determine the surcharge that needs to be applied at the ground surface, we
refer to Figure 11.16 and Equation 11.25. In a modified form, for a combi-
nation of vertical and radial drainage, Equation 11.25 can be rewritten as

og[l+ ©:/6)]

= , (11.27)
ogfl+ ©:60)1+ Cs6:)]}

vr

The notations o;, Gy, and o, are the same as those in Equation 11.25; how-
ever, the left-hand side of Equation 11.27 is the average degree of consoli-
dation instead of the degree of consolidation at midplane. Both radial and
vertical drainage contribute to the average degree of consolidation. If U, ,
can be determined at any time ¢ = #’ (see Figure 11.16), the total surcharge
o; + 6, may be easily obtained from Figure 11.18.

For a given surcharge and duration # = ', the average degree of consolida-
tion can be obtained from Equation 8.191. Or

U\),r=1_ A-U,)a-U,)

The magnitude of U, can be obtained from Equations 8.35 and 8.36, and
the magnitude of U, can be obtained from Equation 8.169.

Example 11.8

Redo Example 11.7 with the addition of sand drains. Assume 7,, = 0.1 m,
d. =3 m (see Figure 8.37), C, = C, ,, and the surcharge is applied instan-
taneously. Also assume that this is a no-smear case.

Solution
From Example 11.7, T, = 0.497. Using Equation 8.35, we obtain

U, = &X100= wx100=795%
T T
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Also

o __ 3 _ 45
2, @)0.3)

Again (Equation 8.161)

Cof  ©7x1072 an’®/fnin)EX30x24X60m in)

x . ~028
d? @00am )

T, =

From Table 8.8, for n = 15 and T, = 0.28, the value of U, is about 68%.
Hence

Uy,=1-(@-U,)1-U,)=1-(@1-0.795)1—0.68)=093=93%

From Example 11.7

O 123
0

Foro:/c, =123and U, ,=93%, the value of 6,/c;~ 0.124 (Figure 11.18).
Hence

6:=0.1240:=0.12458)=7.19 kN fn 2
So

6=0:;+0,=58+7.19=65.19 kN /n>
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Appendix: Calculation of Stress at
the Interface of a Three-Layered
Flexible System

The procedure for calculating vertical stress at the interface of a three-
layer flexible system was discussed in Section 4.11. The related variables
K, K,, A, H, ZZ, and ZZ, were also defined there. Figures A.1 through
A.32 give the plots of the variation of ZZ, and ZZ, with A, H, K, and K,
(Peattie, 1962).
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Figure A.l Values of ZZ, for K, = 0.2 and K, = 0.2. (After Peattie, K.R., Stress and strain
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.2 Values of ZZ, for K, = 0.2 and K, = 2.0. (After Peattie, K.R., Stress and strain
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.3 Values of ZZ, for K, = 0.2 and K, = 20.0. (After Peattie, K.R., Stress and strain
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.4 Values of ZZ, for K, = 0.2 and K, = 200.0. (After Peattie, K.R., Stress and
strainfactorsforthree-layersystems,Bulletin342,HighwayResearchBoard, 1962.)
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Figure A.5 Values of ZZ, for K, = 2.0 and K, = 0.2. (After Peattie, K.R., Stress and strain
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.6 Values of ZZ, for K, = 2.0 and K, = 2.0. (After Peattie, K.R., Stress and strain
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.7 Values of ZZ, for K, = 2.0 and K, = 20. (After Peattie, K.R., Stress and strain
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.8 Values of ZZ, for K, =2.0 and K, =200.0. (After Peattie, K.R., Stress and strain
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.9 Values of ZZ, for K, =20.0 and K, = 0.2. (After Peattie, K.R., Stress and strain
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.10 Values of ZZ, for K, = 20 and K, = 2.0. (After Peattie, K.R., Stress and strain
factors for three-layer systems, Bulletin 342, Highway Research Board, 1962.)
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Figure A.1l Values of ZZ, for K, = 20.0 and K, = 20.0. (After Peattie, K.R., Stress and
strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.12 Values of ZZ, for K, = 20.0 and K, = 200.0. (After Peattie, K.R., Stress
Board, 1962.)
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Figure A.13 Values of ZZ, for K, = 200.0 and K, = 0.2. (After Peattie, K.R., Stress
and strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.14 Values of ZZ, for K, = 200.0 and K, = 2.0. (After Peattie, K.R., Stress and
strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.15 Values of ZZ, for K, = 200.0 and K, = 20. (After Peattie, K.R., Stress and
strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.16 Values of ZZ, for K, = 200.0 and K, = 200.0. (After Peattie, K.R., Stress
and strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.17 Values of ZZ, for K, = 0.2 and K, = 0.2. (After Peattie, K.R., Stress and
strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.18 Values of ZZ, for K, = 0.2 and K, = 2.0. (After Peattie, K.R., Stress and
strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.19 Values of ZZ, for K, = 0.2 and K, = 20.0. (After Peattie, K.R., Stress and
strain factors for three-layer systems, Bulletin 342, Highway Research Board,

1962.)
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Figure A.20 Values of ZZ, for K, = 0.2 and K, = 200.0. (After Peattie, K.R., Stress
and strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.21 Values of ZZ, for K, = 2.0 and K, = 0.2. (After Peattie, K.R., Stress and
strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.22 Values of ZZ, for K, = 2.0 and K, = 2.0. (After Peattie, K.R., Stress and
strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.23 Values of ZZ, for K, = 2.0 and K, = 20.0. (After Peattie, K.R., Stress
and strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.24 Values of ZZ, for K, = 2.0 and K, = 200.0. (After Peattie, K.R., Stress and
strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.25 Values of ZZ, for K, = 20.0 and K, = 0.2. (After Peattie, K.R., Stress and
strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.26 Values of ZZ, for K, = 20.0 and K, = 2.0. (After Peattie, K.R., Stress and
strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.27 Values of ZZ, for K, = 20.0 and K, = 20.0. (After Peattie, K.R., Stress
and strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.28 Values of ZZ, for K, = 20 and K, = 200.0. (After Peattie, K.R., Stress and
strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.29 Values of ZZ, for K, = 200.0 and K, = 0.2. (After Peattie, K.R., Stress
and strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.30 Values of ZZ, for K, = 200.0 and K, = 2.0. (After Peattie, K.R., Stress and
strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.31 Values of ZZ, for K, = 200.0 and K, = 20.0. (After Peattie, K.R., Stress
and strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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Figure A.32 Values of ZZ, for K, = 200.0 and K, = 200.0. (After Peattie, K.R., Stress
and strain factors for three-layer systems, Bulletin 342, Highway Research
Board, 1962.)
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