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Preface 

81 999 Kluwer Academic I Plenum Publishers, New York 
233 Spring Street, New York, N.Y. 10013 
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All rights reserved 

No part of this book may be reproduced, stored in a data retrieval system, or transmitted in any 
form or by any means, electronic, mechanical, photocopying, microfilming, recording, or 

otherwise, without written permission from the Publisher 
d Printed in the United States of America 

Quelli che s'innamoran di pratica sanza scienzia, 
son come ' I  nocchieri ch'entra in navilio sanza timone o bussola, 

che mai ha la certezza dove si vada. 
Leonardo da Vmci, Codex G, Bibliorh2que de l'lnsritur de France, Paris. 

This books stems from its ancestor Digital Transmission Theory, published by 
Prentice-Hall in 1987 and now out of print. Following the suggestion of several 
colleagues who complained about the unavailability of a textbook they liked and 
adopted in their courses, two out of its three former authors have deeply revised 
and updated the old book, laying a strong emphasis on wireless communications. 
We hope that those who liked the previous book will find again its flavor here, 
while new readers, untouched by nostalgia, will judge it favorably. 

In keeping Gith the clicht "every edition is an addition," we started plan- 
ning what new topics were needed in a textbook trying to provide a substantial 
covering of the discipline. However, we immediately became aware that an in- 
depth discussion of the many things we deemed appropriate for inclusion would 
quickly make this book twice the size of the previous one. It would certainly be 
nice to write, as in the MahBbh&ata, "what is in this book, you can find some- 
where else; but what is not in it, you cannot find anywhere." Yet such a book, 
like Borges' map drawn to 1:l scale, would not hit the mark. For this reason we 
aimed at writing an entirely new book, whose focus was on (although not totally 
restricted to) wireless digital transmission, an area whose increasing relevance 
in these days need not be stressed. Even with this shift in focus, we are aware 
that many things were left out, so that the reader should not expect an encyclope- 
dic coverage of the discipline, but rather a relatively thorough coverage of some 
important parts of it. 

Some readers may note with dismay that in a book devoted, at least partially, 
to wireless communications, there is no description of wireless systems. If we 
were to choose an icon for this book, we would choose Carroll's Cheshire Cat of 
Wonderland. As Martin Gardner notes in his "Annotated Alice," the phrase "grin 
without a cat" is not a bad description of pure mathematics. Similarly, we think 
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of this phrase as a good description of "communication theory" as contrasted 
to "communication systems." A book devoted to communication systems alone 
would be a cat without a grin: thus, due to the practical impossibility of deliver- 
ing both, we opted for the grin. Another justification is that, as the Cheshire Cat 
is identified only by its smile, so we have characterized communications by its 
theoretical foundations. 

Our goal is primarily to provide a textbook for senior or beginning-graduate 
students, although practicing engineers will probably find it useful. We agree 
with Plato, who in his Seventh Letter contrasts the dialectic method of teaching, 
exemplified by Socrates' personal, interactive mode of instruction, with that af- 
forded by the written word. Words can only offer a shallow form of teaching: 
when questioned, they always provide the same answer, and cannot convey ulti- 
mate truths. Instruction can only take place within a dialogue, which a book can 
never offer. Yet, we hope that our treatment is reflective enough of our teaching 
experience so as to provide a useful tool for self-study. 

We assume that the reader has a basic understanding of Fourier transform 
techniques, probability theory, random variables, random processes, signal trans- 
mission through linear systems, the sampling theorem, linear modulation meth- 
ods, matrix algebra, vector spaces, and linear transformations. However, ad- 
vanced knowledge of these topics is not required. 

This book can serve as a text in either one-semester or two-semester courses 
in digital communications. We outline below some possible, although not ex- 
haustive, roadmaps. 

1. A one-term basic course in digital communications: 
Select review sections in Chapters 2 , 3 , 4 ,  and 5, parts of Chapters 7 and 9. 

2. A one-term course in advanced digital communications: 
Select review sections in Chapters 4 and 5, then Chapters 6, 7, 8, 9, and 
13. 

3. A one-term course in information theory and coding: 
Chapters 3, 9, 10, 1 1,  12, and parts of 13. 

4 .  A two-term course sequence in digital communications and coding: 
(A) Select review sections in Chapters 2, 3 ,4 ,  5,6,  and 7. 
(B) Chapters 9, 10, 1 1 ,  12, 13, and 14. 

History tells us that Tolstoy's wife, Sonya, copied out "War and Peace" seven 
times. Since in these days wives are considerably less pliable than in 19th- 
century Russia, we produced the whole book by ourselves using LATj: this 
implies that we are solely responsible not only for technical inaccuracies, but 
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also for typos. We would appreciate it if the readers who spot any of them would 
write to us at <benedetto, biglieri>@polito. it. An errata file will be 
kept and sent to anyone interested. 

As this endeavor is partly the outcome of our teaching activity, it owes a great 
deal to our colleagues and students who volunteered to read parts of the book, 
correct mistakes, and provide criticism and suggestions for its improvement. We 
take this opportunity to acknowledge Giuseppe Caire, Andrea Carena, Vittorio 
Cuni, G. David Forney, Jr., Roberto Garello, Roberto Gaudino, J0m Justesen, 
Guido Montorsi, Giorgio Picchi, Pierluigi Poggiolini, S. Pas Pasupathy, Fabrizio 
Pollara, Bixio Rimoldi, Giorgio Taricco, Monica Visintin, Emanuele Viterbo, 
and Peter Willett. Participation of E.B. in symposia with Tony Ephremides, Ken 
Vastola, and Sergio Verdb, even when not strictly related to digital communica- 
tions, was always conducive to scholarly productivity. Luciano Brino drew most 
of the figures with patience and skill. 
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1. Introduction and motivation 

I F;;sac;sT Bulk data / 
bansmission . , 

Message delivery 

Transmission of @ SP@ 
I I  computer programs /I 7 -i=- 1 minute +/ 

Terminal inquiry systems 

Number of Bits Sent 

Figure 1.1: Desirable delivery or response time and quantity of data for typical use of 
data transmission 

delivery time of the order of tens of minutes or longer may be acceptable. How- 
ever, when a person-computer dialogue is taking place, the responses must be 
returned to the person quickly enough so as not to impede his or her train of 
thoughts. Response times between 100 milliseconds and 2 seconds are fine, but 
whoever has tried to download files using the Internet knows that the delays in- 
volved are often significantly longer. In real-time systems, where a machine or 
a process is being controlled, response times can vary from a few milliseconds 
to some seconds. Fig. 1.1 shows some of the common requirements for delivery 
times or response times and the amounts of data transmitted. 

The block labeled "terminal dialogue systems," for example, indicates a re- 
sponse time from 1 to 10 seconds, and a message size ranging from 1 character 
(8 bits) to about 30,000 characters (around 240,000 bits), corresponding roughly 
to a JPEG picture. The transmission speed required by the communication link 
equals the number of transmitted bits (reported in the horizontal axis of Fig. 1.1) 
divided by the delivery time of one-way messages (reported in the vertical axis 
of Fig. 1.1). Straight lines on the figure correspond to a given speed, and some 
of them are also indicated. For most of the applications shown in the figure, the 
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Figure 1.2: Local area networks, metropolitan are networks (MAN), and wide area ner- 
works (WAN) interconnected through various telecommunication links. 

speeds allowed on telephone channels (up to, say, 64,000 bits per second) are 
sufficient. Of course, this concerns individual applications. We know, on the 
other hand, that the traffic incoming from several sources is often multiplexed to 
efficiently exploit the capacity of a single digital carrier. An impressive exam- 
ple of this is the up-to-date capacities of wave-division multiplexed fiber optic 
systems, which can convey more than 1 terabit per second in a single fiber! 

A common form of digital communication nowadays consists of people sit- 
ting in front of a terminal (normally a personal computer) exchanging informa- 
tions with other terminals (or a mainframe computer) or down-loading informa- 
tion from a provider. A community of users in a limited area is interconnected 
through a local area network (LAN) offering a variety of services like comput- 
ing resources, voice and facsimile communication, teleconferencing, electronic 
mail, and access to distant Internet information providers. 

Different LANs can exchange information over a packet-switched long-dis- 
tance telecommunication network (e.g., through the Asynchronous Transfer Mo- 
de). Geographic networks of this kind are Metropolitan Area Networks (MAN) 
and Wide Area Networks (WAN), which can connect several nodes through high - - 
capacity links in a ring or d a r  topology. This scenario can be represented as in 
Fig. 1.2. 
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Figure 1.3: Point-to-point communication link between two computers. 

In a geographic network, the communication engineer must solve a variety 
of global problems, such as designing the topological structure of the network, 
its link capacity allocation, and the routing and flow control procedures. as well 
as local problems, such as the choice of the multiplexing scheme, the number of 
message sources per concentration point, the access technique (polling, random 
access, etc.), and the buffer size. The final system choices will be the result 
of a trade-off between costs and performance, such as the (average, maximum) 
response time and the specified reliability. 

The exchange of information in a packet-switched network is governed by a 
layered protocol architecture, such as that described, for example, in theISOIOS1 
reference model. Level 1 of this layered architecture concerns the point-to-point 
communication between two nodes of the network. According to the physical 
medium that connects the nodes, different problems are encountered to establish 
a reliable link. Moreover, to access one of the nodes of the packet-switched 
network, the user may have to exploit the dialed public telephone network or a 
leased voice line. 

Let us isolate and examine in greater detail one communication link in the 
system of Fig. 1.2, for example, the one denoted as "point-to-point link," which 
establishes a connection between two computers.' It is shown magnified in 
Fig. 1.3. To be transmitted on the physical channel, the digital stream emit- 
ted by the transmitting computer must be converted into a sequence of wave- 
forms suited to the channel. This operation is performed by a device known as 
a modem, short for modulator/demodulator. The modem converts the data into a 
signal whose range of frequencies matches the available bandwidth of the chan- 
nel. Besides data, the terminal and the modem exchange various line-control 
signals according to a standardized interface. At the other side, a modem con- 
verts the received waveforms into a digital stream that is sent to the receiving 

'very similar considerations could be applied to different forms of point-to-point connections, 
like, for example, those regarding a mobile and base station in a wireless communication system. 
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Figure 1.4: Functional block diagram of apoint-to-point digital communication system. 

- 

computer through a tr0ansmission control unit that supervises the communication 
and implements the various layers of the ISOIOSI reference model. 

The design of this point-to-point communication link is related to the choices 
made for the network in terms of available speeds, response times, multiplexing 
and access techniques. In particular, matching the sources of information to the 
channel speed may involve source encoding (like P E G  or MPEG for still and 
moving images, respectively), channel bandwidth and the choice of modulation 
schemes. The response time and the access techniques pose constraints on the 
modem setup time, that is, on the choice of the synchronization and adaptive 
equalization algorithms. The transmission quality is usually given in terms of bit 
errorprobability, which, in turn, depends on channel encoding ( e m r  control), 
the transmittedpower and the modulation schemes. 

This book is devoted to the theory of point-to-point digital communication. 
To resort to a more general and abstract context, let us expand the point-to-point 
connection of Fig. 1.3 into the functional block diagrams of Fig. 1.4. We only 
consider discrete information sources. When a source is analog in nature, such 
as a microphone activated by speech or a TV camera scanning a scene, we as- 
sume that a process of sampling, quantizing and coding takes place within the 
source, so that the output is a sequence of discrete symbols or letters. Discrete 
information sources are characterized by a source alphabet, a source rare (ex- 
pressed in symbols per second), and a probability law governing the emission 
of sequences of symbols, or messages. From these parameters we can construct 
a probabilistic model of the information source and define a source information 
rate (denoted by R,) in bits (binary digits) per second. The input to the second 
block of Fig. 1.4, the source encoder, is then a sequence of discrete symbols oc- 

SOURCE 
ENCODER 

-) 
CHANNEL 
ENCODER 

-+ MODULATOR - 



6 I .  Introduction and motivation 

curring at a certain rate. The source encoder converts the symbol sequence into 
a binary sequence by assigning code words to the symbols of the input sequence 
according to a specified rule. This encoding process has the goal of reducing the 
redundancy of the source (i.e., of obtaining an output data rate approaching R,). 
At the receiver, the source decoder will convert the binary output of the channel 
decoder into a symbol sequence that is passed to the user. 

Because the redundancy of the source information has been removed, the 
binary sequence at the output of the source encoder is highly vulnerable to er- 
rors occumng during the process of transmitting the information to its desti- 
nation. The channel encoder introduces a controlled redundancy into the binary 
sequence so as to achieve highly reliable transmissions. At the receiver, the chan- 
nel decoder recovers the information-bearing bits from the coded binary stream. 
Both the encoder and decoder can operate either in block mode or in a continuos 
sequential mode. 

The communication channel provides the electrical connection between the 
source and the destination. The channel may be a pair of wires, a telephone link, 
an optical fiber, or free space over which the signal is radiated in the form of 
electromagnetic waves. In all cases, communication channels introduce various 
forms of impairments. Having finite bandwidths, they distort the signal in am- 
plitude and phase. Moreover, the signal is attenuated and corrupted by unwanted 
additive andor multiplicative random signals referred to as noise or fading. For 
these reasons, an exact replica of the transmitted signal cannot be obtained at 
the receiver input. The primary objective of a good communication system de- 
sign is to counteract the effects of noise and distortion so as to achieve a faithful 
estimate of the transmitted signal. 

The modulator converts the input binary stream into a waveform sequence 
suitable for transmission over the available channel. Being a powerful tool in 
the hands of the designer, modulation will receive considerable attention in this 
book. It involves a large number of choices, such as the number of waveforms, 
their shape, duration, and bandwidth, the power (average andor peak), and more, 
allowing great flexibility in the system design. At the receiver, the demodulator 
extracts the binary sequence (hard demodulation) or suitably sufficient statistics 
(soft demodulation) from the received waveforms. Due to the impairment intro- 
duced by the channel, this process entails the possibility of errors between the 
input sequence to the modulator and the the output sequence from the demodu- 
lator (in the case of hard decoding), or a poor sufficient statistics (in the case of 
soft demodulation). A result of both types of degradation is a nonzero bit error 
probability. It is the goal of the channel decoder to exploit the redundancy in- 
troduced by the channel encoder to retrieve the transmitted information either by 
correcting the binary errors of the demodulator (hard decoding), or by suitably 
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processing the sufficient statistics (soft decoding). 

In practical point-to-point communication systems, other functional blocks 
exist, which for simplicity are not shown in Fig. 1.4. They are, for example, 
the adaptive equalizer, which reduces the channel distortions, the carrier and 
clock synchronizers, which allow coherent demodulation and proper sampling 
of the received signals, scramblers and descramblers, which are used to prevent 
unwanted strings of symbols at the channel input, and enciphering and decipher- 
ing devices, which ensure secure communication. Some of these blocks will be 
decribed in the book. 

The book is organized as follows. Chapter 2 reviews the main results from the 
theory of random processes, spectral analysis, and detection theory, which can 
be considered as prerequisites to the remaining chapters. In Chapter 3 we look at 
probabilistic models for discrete information sources and communication chan- 
nels. The main results from classical information theory are introduced as a con- 
ceptual background and framework for the successive material. Chapter 4 is de- 
voted to memoryless waveform transmission over additive Gaussian noise chan- 
nels. By using results from detection theory, optimum demodulator structures are 
derived, and the calculation of their error probabilities is presented. A distinction 
is made between coherent and noncoherent demodulation. In Chapter 5, the main 
modulation techniques employed for digital transmission are described, and their 
performances are compared in terms of error probability, energy, and bandwidth 
efficiency. Chapter 6 presents some modulation schemes specifically intended 
for transmission on wireless channels. In Chapter 7 we show how to evaluate 
the performance of systems affected by intersymbol inte$erence, derive the op- 
timization criteria for the overall system transfer function, and, finally, discuss 
the maximum-likelihood receiver structure. Chapter 8 is devoted to receivers for 
intersymbol-interference channels: adaptive receivers and channel equalization 
are covered. Chapter 9 deals with carrier and clock synchronization problems in 
modems. Chapter 10 describes linear block codes applied to improve the chan- 
nel reliability, by error detection and correction. The most important classes of 
block codes and a few decoding techniques are described. The first part of Chap- 
ter 1 1  is devoted to linear convolutional codes. Their performance in terms of bit 
error probability is analyzed, and the maximum-likelihood decoding algorithm, 
the celebrated Viterbi algorithm, is described in detail (Appendix F is also de- 
voted to it and to a maximum-a-posteriori decoding algorithm). The second part 
of Chapter 11 deals with concatenated codes, and particular attention is paid to 
the recently discovered, high-performance turbo codes. Chapter 12 covers the 
important topic of'trellis-coded modulation, a technique to improve the chan- 
nel reliability that merges modulation and channel coding in a very successful 
manner. Chapter 13 introduces models of fading channels and describes tech- 
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niques for analysis and design of coding schemes operating on them. Finally, 
Chapter 14 deals with digital ,transmission over nonlinear channels. 

A mathematical introduction 

Signal theory, system theory, probability, and stochastic processes are the basic 
mathematical tools for the analysis and design of digital communication systems. 
Since a comprehensive treatment of all these topics requires several volumes, 
rather than attempting a comprehensive survey we devote this chapter to a selec- 
tion of some points that are especially important in the developments that follow. 
The topics selected and the depth of their presentation were decided according 
to two criteria. First, where possible, laborious and sophisticated mathematical 
apparatuses have been omitted. This entails a certain loss of rigor, but it should 
improve the presentation of the subject matter. Second, those topics most likely 
to be familiar to the reader are reviewed very quickly, whereas more attention is 
devoted to certain specialized points of particular relevance for applications. 

The topics covered in this chapter are deterministic and random signal the- 
ory for both discrete- and continuous-time models, linear and nonlinear system 
theory, and detection theory. Extensive bibliographical notes at the end of the 
chapter will guide the reader wishing to become more conversant with a specific 
topic. 

2.1. Signals and systems 

In this section we briefly present the basic concepts of the theory of linear and 
certain nonlinear systems. We begin with the time-discrete model for signals and 
systems and continue with the time-continuous model. To provide a higher level 
of generality to our presentation, we introduce and extensively employ complex 
time functions. The reasons for their use are explained in Section 2.4. 
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2.1.1. Discrete signals and systems 

A discrete-time signal is a sequence of real or complex numbers, denoted by 
( x , ) : ~ , ,  , defined for every integer index n ranging in the interval nl 5 n 5 n2. 
The index n is usually referred to as the discrete time. Whenever nl = -ca 
and n2 = oo, or when the upper and lower indexes need not be specified, we 
shall simply write ( x , ) .  A time-discrete system, or for short a discrete system, 
is a mapping of a sequence ( x , ) ,  called the input of the system, into another 
sequence ( y , ) ,  called the output or response. We write 

for the general element of the sequence ( y , ) .  
A discrete system is linear if, for any pair of input signals ( x k ) ,  (x: )  and for 

any pair of complex numbers A', A", the following holds: 

Equation (2.2) means that if the system input is a linear combination of two 
signals, its output is the same linear combination of the two responses. 

A discrete system is time-invariant if the rule by which an input sequence is 
transformed into an output sequence does not change with time. Mathematically, 
this is expressed by the condition 

for all integers k. This is tantamount to saying that, if the input is delayed by k 
time units, the output is delayed by the same quantity. 

If (6,) denotes the "unit impulse" sequence 

and S  is a linear, time-invariant discrete system, its response (h , )  to the input 
(6,)  is called the (discrete) impulse response of the system. Given a linear, 
time-invariant discrete system with impulse response (h , ) ,  its response to any 
arbitrary input ( x , )  can be computed via the discrete convolution 
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Figure 2.1: Transversal-filter implementation of a time-invariant discrete system with 
memory L. 

It may happen that the system output at time e, say yt, depends only on a certain 
subset of the input sequence. In particular, the system is said to be causal if yt 
depends only on (x,):=-,. This means that the output at any given time depends 
only on the past and present values of the input, and not on its future values. In 
addition, the system is said to have afinite memory L if yt depends only on the 
finite segment (x , , ) := ( -~  of the past input. When L = 0, and hence yt depends 
only on xt ,  the system is called mernoryless. For a linear time-invariant system, 
causality implies h,  = 0 for all n < 0. A linear time-invariant system with 
finite memory L has an impulse response sequence (h , )  that may be nonzero 
only for 0 5 n 5 L. For this reason, a finite-memory system is often referred 
to also as afinite impulse response (FIR) system. A system with memory L can 
be implemented as in Fig. 2.1. The blocks labeled D denote unit-delay elements 
(i.e., systems that respond to the input x ,  with the output y, = x , - ~ ) .  A cascade 
of such unit-delay elements is called a shifr register, and the resulting structure is 
called a tapped delay line, or transversal, filter. Here the function S( . ) defining 
the input-output relationship has L + 1 arguments. When the system is linear, 
S( . ) takes the form of a linear combination of its arguments: 

In this case, the structure of Fig. 2.1 becomes the linear transversal filter of 
Fig. 2.2. 

Discrete Volterra systems 

Consider a time-invariant, nonlinear discrete system with memory L, and assume 
that the function S( . ) is sufficiently regular to be expanded in a Taylor series in 
a neighborhood of the origin x,  = 0, X,-I  = 0, . . . , x,-L = 0. We have the 
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representation 

Figure 2.2: Linear discrete transversal filtex 

L L L L L  

+ x x hii)zn-izn-j + x x x h i ~ i ~ , , - ~ z , - ~ z , - ~  + . . . (2.7) 
i=O j=O i=O j = O  k=O 

called a discrete Volterra series. It is seen that the system is completely charac- 
terized by the coefficients of the expansion, say 

h 0  h ,  h h i ,  . . . i, j, k = 0,1,2,  . . , L, 

which are proportional to the partial derivatives of the function S( . ) at the ori- 
gin. These are called the system's Volterra coefficients. The expansion (2.7) can 
be generalized to systems with infinite memory, although in the computational 
practice only a finite number of terms will be retained. In general the Volterra 
system representation involves an infinite number of infinite summations. Thus, 
if a truncation of the series is not performed, we must associate with each series a 
suitable convergence condition to guarantee that the representation is meaningful 
(see, e.g., Rugh, 1981). 

Example 2.1 Consider the discrete system shown in Fig. 2.3 and obtained by cascad- 
ing a linear, time-invariant, causal system with impulse response (h,) to a memoryless 
nonlinear system with input-output relationship yn = g(wn). Assume that g ( . )  is an 
analytic function, with a Taylor series expansion in the neighborhood of the origin 

2.1. Signals and systems 

Figure 2.3: A discrete nonlinear system. 

The input-output relationship for the system of Fig. 2.3 is then 

so that the Volterra coefficients for the system are: 

The following should be observed. Fist, if g( . ) is a polynomial of degree K, the coef- 
ficients ~ K + I ,  a K + l ,  . . . , in (2.8) are zero, so that only a finite number of summations 
will appear in (2.9). Second, if the impulse response sequence (h,) is finite (i.e., the 
linear system of Fig. (2.3) has a finite memory), then all the summations in (2.9) will 
include only a finite number of terms. 0 

Discrete signals and systems in the transform domain 

Given a sequence (x , ) ,  we define its Fourier transform 3[(zn)]  as the function 
of the frequency f defined as 

where j = fi. X ( f )  is a periodic function of f with period 1, so it is cus- 
tomary to consider it only in the interval -1/2 5 f 5 1/2. The inverse Fourier 
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transform yields the elements of the sequence (x , )  in terms of X  ( f ) :  

The Fourier transform H ( f )  of the impulse response (h,) of a linear time- 
invariant system is called the frequency response, or transferfunction, of the 
system. We call I H  ( f )  1 the amplitude and arg[H( f )] the phase of the transfer 
function. The derivative of a r g [ H ( f ) ]  taken with respect to f is called the group 
delay of the system. A basic property of the Fourier transform is that the re- 
sponse of a linear, time-invariant discrete system with transfer function H ( f )  to 
a sequence with Fourier transform X ( f )  has the Fourier transform H  ( f  ) X (  f ) .  

2.1.2. Continuous signals and systems 

A continuous-time signal is a real or complex function x ( t )  of the real variable 
t  (the time). Unless otherwise specified, the time is assumed to range from -m 
to m. A continuous-time system is a mapping of a signal x ( t ) ,  the system input, 
into another signal y ( t ) ,  called the output or response. We write 

~ ( t )  = S[x(t)l  (2.12) 

A continuous-time system is linear if for any pair of input signals x t ( t ) ,  x"(t) 
and for any pair of complex numbers A', A", the following holds: 

SIA1x'(t) + A"x" ( t ) ]  = A'S[xl(t)] + AUS[x"(t)] (2.13) 

A continuous-time system is time-invariant if (2.12) implies 

for all 7. Let b( t )  denote the delta function, characterized by the sifringproperty 

valid for every function m(t) continuous at the origin. The response h ( t )  of a 
linear, time-invariant continuous system to the input b( t )  is called the impulse 
response of the system. For a system with a known impulse response h ( t ) ,  the 
response y( t )  to any input signal x ( t )  can be computed via the convolution inte- 
gral 

2.1. Signals and systems 

Figure 2.4: Linear continuous transversal filter: 

It may happen that the system output y( t )  at time t  depends on the input x ( t )  
only through the values taken by x ( t )  in the time interval I. If I = (-m, t ] ,  the 
system is said to be causal. If I = ( t  - to ,  t ] ,  0 < to < m, the system is said 
to have afinite memory to. If I = { t )  (i.e., the output at any given time depends 
only on the input at the same time), the system is called memoryless. It is easily 
seen from (2.16) that, for a linear time-invariant system, causality is equivalent 
to having h ( t )  = 0 for all t  < 0. A general time function h ( t )  with the latter 
property is sometimes called causal. 

A linear system is said to be stable if its response to any bounded input is 
bounded. A linear, time-invariant system is stable if and only if its impulse 
response is absolutely integrable. 

Example 2.2 Figure 2.4 represents a linear, time-invariant continuous system with fi- 
nite memory. The blocks labeled T are delay elements, that is, systems with impulse 
response 6( t  - T). A cascade of such elements is called a (continuous) tapped delay 
line and the structure of Fig. 2.4 a linear transversal filter. The system has an impulse 
response 

and a memory LT. 
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Figure 2.5: A conrinuous nonlinear system. 

Continuous Volterra systems 

To motivate our general discussion of Volterra series, consider as an example the 
time-invariant, nonlinear continuous system shown in Fig. 2.5. Assume that the 
first block represents a linear time-invariant system with impulse response h ( t )  
and that g ( .  ) is a function as in Example 2.1, so (2.8) holds. The input-output 
relationship for this system can thus be expanded in the form 

By defining 

Eq. (2.18) can be rewritten as 

Equations (2.19) and (2.20) represent the input-output relationship of the system 
of Eig. 2.5. More generally, (2.20) without the definitions (2.19), that is, for a 
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general set of functions ho,  h l ( t ) ,  hz(t1, t z ) ,  . . . , provides an input-output rela- 
tionship for nonlinear time-invariant continuous systems. The RHS of (2.20) is 
called a Volterra series, and the functions ho, h l ( t ) ,  h 2 ( t l ,  t 2 ) ,  . . . , are called the 
Volterra kernels of the system. As a linear, time-invariant continuous system is 
completely characterized by its impulse response, so a nonlinear system whose 
input-output relationship can be expressed as a Volterra series is completely char- 
acterized by its Volterra kernels. It can be observed that the first-order kernel 
h l ( t )  is simply the impulse response of a linear system. The higher-order ker- 
nels can thus be viewed as higher-order impulse responses, which characterize 
the various orders of nonlinearity of the system. The zero-order term ho accounts 
for the response to a zero input. 

It can be shown (see Problem 2.6) that a time-invariant system described by 
a Volterra series is causal if and only if, for all k, 

hk ( t l ,  t Z ,  . . . , t k )  = 0 for all ti < 0, z = 1,2, . . . , k (2.21) 

A Volterra series expansion can be made simpler if it is assumed that the system 
kernels are symmetric functions of their arguments. That is, for every k 2 2 any 
of the k! possible permutations of the k arguments of h k ( t l ,  t 2 , .  . . , t k )  leaves 
the kernel unchanged. It can be proved (see Problem 2.5) that the assumption of 
symmetric kernels does not entail any loss of generality. 

Volterra series can be viewed as "Taylor series with memory." As such they 
share with Taylor series some limitations, a major one being slow convergence. 
Moreover, the complexity in computation of the kth term of a Volterra series 
increases quickly with increasing k. Thus, it is expedient to use Volterra series 
only when the expansion (2.20) can be truncated to low-order terms, i.e., the 
system is "mildly nonlinear." 

Continuous signals and systems in the transform domain 

With the notation X  ( f )  = F [ x ( t ) ]  we shall denote the Fourier transform of the 
signal x ( t ) ;  that is, 

~ ( f )  = lW x(t)e-j2.ft  d t  (2.22) 
-m 

Given its Fourier transform X  ( f ) ,  the signal x ( t )  can be recovered by computing 
the inverse Fourier transform F 1 [ X  ( f  )]: 

The Fourier transform of a signal is also called the amplitude spectrum of the 
signal. If h ( t )  denotes the impulse response of a linear, time-invariant system, 
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its Fourier transform H (  f )  is called the frequency response, or transferfunction, 
of the system. We call I H (  f )  1 the amplitude and arg [ H (  f  )] the phase of the 
transfer function. The derivative of arg [ H (  f  )] taken with respect to f  is called 
the group delay of the system. It is seen from (2.22) that, when x ( t )  is a real 
signal, the real part of X ( f )  is an even function o f f ,  and the imaginary part is 
an odd function o f f .  It follows that for a real x ( t )  the function I X ( f ) l  is even, 
and arg [ X (  f  )] is odd. 

An important property of Fourier transform is that it relates products and 
convolutions of two signals x ( t ) ,  y ( t )  with convolutions and products of their 
Fourier transforms X  ( f )  and Y ( f  ) : 

and 

In particular, (2.25) implies that the output y ( t )  of a linear, time-invariant 
system with a transfer function H ( f )  and an input signal x ( t )  has the amplitude 
spectrum 

Y ( f )  = H ( f ) X ( f ) .  (2.26) 

Example 2.2 (continued) The transfer function of the system shown in Fig. 2.4 is 
obtained by taking the Fourier transform of (2.17): 

It is left as an exercise for the reader to derive the conditions for which this system ex- 
hibits a linear phase. 0 

Example 2.3 An important family of linear systems is provided by the Butterworth 
filters. The transfer function of the nth-order low-pass Butterworth filter with cutoff 
frequency f c  is 

1 

H ( f )  = D n ( j f / f c )  
(2.28) 

where 
'n(Zi+n-1) /2n Dn(s )  fi [s - e' 1 (2.29) 

i=l 

2.2. Random processes 

Figure 2.6: Amplitude of the transferfunction of low-pars Butterworthfilters of various 
orders. 

is an nth degree polynomial. Expressions of these polynomials for some values of n are 

Figure 2.6 shows the amplitude ( H ( f ) l  of the transfer function of the low-pass Butter- 
worth filters for several values of their order n. It is seen that the curves of all orders pass 
through the 0.707 point at f = f,. As n + m, I H ( f ) J  approaches the ideal low-pass 
('brickwall") characteristics: 

IH(f ) l  = { 1, I f  l < f c  
0, elsewhere. 

2.2. Random processes 

2.2.1. Discrete-time processes 

A discrete-time random process, or random sequence, is a sequence (&,) of real 
or complex random variables (RV) defined on some sample space. The index n 
is usually referred to as the discrete time. A discrete-time process is completely 
characterized by providing the joint cumulative distribution functions (cdf) of 
the N-tuples & + I ,  . . . , of RVs extracted from the sequence, for all 
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integers i and N ,  N > 0. If the process is complex, these joint distributions are 
the joint 2N-dimensional distributions of the real and imaginary components of 
&+I, . . . . The simplest possible case occurs when the RVs in the sequence 
are independent and identically distributed (iid). In this case the joint cdf of any 
N-tuple of RVs factors into the product of individual marginal cdfs. For a real 
process, 

N 

Fci+l,ci+l,-.,t+N (xi+l r xi+2r ' ' ' , xi+N) =  xi+^) (2.32) 
j=1  

where F e ( .  ) is the common cdf of the RVs. Thus, a sequence of iid RVs is 
completely characterized by the single function Fe(. ). 

A random sequence is called stationary if for every N the joint distribution 
function of . . . , does not depend on i. In other words, a stationary 
random sequence is one whose probabilistic properties do not depend on the 
time origin, so that for any given integer k the sequences ( E n )  and (En+k) are 
identically distributed. An iid sequence extending from n = -m to +m is an 
example of a stationary sequence. 

The mean of a random sequence ( E n )  is the sequence ( E n )  of mean values 

The autocorrelation of (5,) is the two-index sequence (T,,,) such that 

For a stationary sequence, 

(a) pn does not depend on n, and 

(b) T, , ,  depends only on the difference n - m. Thus, the autocomelation 
sequence has a single index. 

Conditions (a) and (b), which are necessary for the stationarity of the se- 
quence (En), are generally not sufficient. If (a) and (b) hold true, we say that 
( E n )  is wide-sense (WS) stationary. Notice that wide-sense stationarity is ex- 
ceedingly simpler to check for than stationarity. Thus, it is always expedient to 
verify whether wide-sense stationarity is enough to prove the properties that are 
needed. In practice, although stationarity is usually invoked, wide-sense station- 
arity is often sufficient. 
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Markov chains 

For any real sequence of independent RVs, we have, for every n, 

where FCn 1 cn-l ,b-a, . . . ,~o (. . .) denotes the conditional cdf of the random variable 
En given all the "past" RVs . . ,to. Equation (2.35) reflects the fact 
that En is independent of the past of the sequence. A first-step generalization 
of (2.35) can be obtained by considering a situation in which, for any n, 

that is, En depends on its past only through E n - , .  
When (2.36) holds, is called a discrete-time (first-order) Markovpro- 

cess. If in addition every En can take only a finite number of possible values, say 
the integers 1, 2, . . . , q, then ( E n )  is called a (finite) Markov chain, and the val- 
ues of 5, are referred to as the states of the chain. To specify a Markov chain, 
it suffices to give, for all times n > 0 and j ,  k = 1 , 2 , .  . . , q, the probabilities 
P{En = j )  and P{En+l = k I En = j ) .  The latter quantity is the probability that 
the process will move to state k at time n + 1 given that it was in state j at time 
n. This probability is called the one-step transition probabili~firnction of the 
Markov chain. 

A Markov chain is said to be homogeneous (or to have stationary transition 
probabilities) if the transition probabilities P{Ee+, = k I & = j )  depend only 
on the time difference m and not on C. We then call 

the m-step transition probability function of the homogeneous Markov chain 
((n)?=o. In other words, p$') is the conditional probability that the chain, be- 
ing in state j at time C, will move to state k after m time instants. The one-step 
transition probabilities p$) are simply written pjk:  

These transition probabilities can be arranged into a q x q transition matrix P :  

Pll P12 . . ' P l q  

p , P21 P22 . . ' P2q [ ;; . . - Pqq 1 
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The elements of P satisfy the conditions 

and 
4 C p j k = l r  i = 1 , 2 ,  ..., q 

k=l 
(i.e., the sum of the entries in each row of P equals 1). Any square matrix that 
satisfies conditions (2.40) and (2.41) is called a stochastic matrix or a Markov 
matrix. 

For a homogeneous Markov chain (&,)T=o, let wF) denote the unconditional 
probability that state k occurs at time n; that is, 

w$) = P{& = k), k = 1 , 2 , .  . . , q (2.42) 

The row q-vector of probabilities wp), 

,(4 = [wp) w p  . . . w p ]  (2.43) 

is called the state distribution vector at time n. With w(O) denoting the initial 
state distribution vector, at time 1 we have 

or, in matrix notation, 
w(l) = w(o)p 

Similarly, we obtain 

and, iterating the process, 

More generally, we have 
,(e+m) = , (e)pm 

Equation (2.48) shows that the elements of Pm are the m-step transition proba- 
bilities defined in (2.37). This proves in particular that a homogeneous Markov 

chain (&,)$=, is completely described by its initial state distribution vector w(O) 
and its transition probability matrix P.  In fact, these are sufficient to evaluate 
P{&, = j) for every n 2 0 and j = 1 , 2 , .  . . , q, which, in addition to the ele- 
ments of P,  characterize a Markov chain. 

Consider now the behavior of the state distribution vector w(") as n -t co. If 
the limit 

w = n+w lim w(") (2.49) 

exists, the vector w is called the stationary distribution vector. A homogeneous 
Markov chain such that w exists is called regular. It can be proved that a homo- 
geneous Markov chain is regular if and only if all the eigenvalues of P with unit 
magnitude are identically 1.  If, in addition, 1 is a simple eigenvalue of P (i.e., 
a simple root of the characteristic polynomial of P), then the Markov chain is 
said to befully regular. For a fully regular chain, the stationary state distribution 
vector is independent of the initial state distribution vector and can be evaluated 
by finding the unique solution of the system of homogeneous linear equations 

subject to the constraints 

Also, for a fully regular chain the limiting transition probability matrix 

exists and has identical rows, each row being the stationary distribution vector 
w: 

r w 1  

LwJ 
The existence of PW in the fo& (2.53) is a sufficient, as well as necessary, 
condition for a homogeneous Markov chain to be fully regular. 

Example 2.4 Consider a digital communication system transmitting the symbols 0 and 
1. Each symbol passes through several blocks. At each block there is a probability 1 - p ,  
p < 112, that the symbol at the output is equal to that at the input. Let to denote the 
symbol entering the first block and (,, n 2 1, the symbol at the output of the nth block 
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of the system. The sequence to,  tl, t 2 , .  . ., is then a homogeneous Markov chain with 
transition probability matrix 

The n-step transition probability matrix is 

The eigenvalues of P are 1 and 1 - 2p, so for p # 0 the chain is fully regular. its 
stationary distribution vector is w = [$  $1, and 

which shows that as n -t a symbol entering the system has the same probability 112 

of being received correctly or incorrectly. 0 

Shift-register state sequences 

An important special case of a Markov chain arises from the consideration of a 
stationary random sequence (a,) of independent random variables, each taking 
on values in the set {al, a 2 , .  . . , aM)  with probabilities pk = P{an = ak), 
k = 1, . . . , M ,  and of the sequence ( u , ) ~ = ~ ,  with 

If we consider an L-stage shift register fed with the sequence (a,) p i g .  2.7), 
a, represents the content (the "state") of the shift register at time n (i.e., when 
a, is present at its input). For this reason, (a,) is called a shifr-register stare 
sequence. Each a, can take on M L  values, and it can be verified that (a,) 
forms a Markov chain. To derive its transition matrix, we shall first introduce 
a suitable ordering for the values of a,. This can be done in a natural way by 
first ordering the elements of the set {al, az, . . . , aM)  (a simple way to do this 
is to stipulate that ai precedes a j  if and only if i < j) and then inducing the 
following "lexicographical" order among the L-tuples aj, , a,, , . . . , aj,: 

(aj,, aj,, . . . , a,,) precedes (ail ,  a i l , .  . . , ai,) 

jl < ill  or 
jl = il and jz < i2, or 

( jl = i l l  jZ = i2 ,  and j3  < i 3 ,  etc. 

2.2. Random processes 

Figure 2.7: Generating a shift-register sequence. 

Once the state set has been ordered according to the rule (2.55), each state 
can be represented by an integer number expressing its position in the ordered 

I set. Thus, if z represents the state (a,,, a,,, . . . ,a,,) and j represents the state 
i (a,, , a,,, . . . , a,,) the one-step transition probability p,, is given by I 

where 6ij denotes the Kronecker symbol (bii = 1 and bij = 0 for i # j). 

Example 2.5 Assume M = 2, a1 = 0, a2 = 1, and L = 3. The shift register has eight 
states, whose lexicographically ordered set is 

The transition probability matrix of the corresponding Markov chain is 

As one can see, from state (xyz) the shift register can move only to states (wxy), with 
probability pl if w = 0 and pz if w = 1. 0 

(000) (001) (010) (011) (100) (101) (110) (111) 

Consider now the m-step transition probabilities. These are the elements of 
the matrix Pm. Since the shift register has L stages, its content after time n + m, 

p =  

- p 1  0 0 0 pz 0 0 0 -  
P l o o o p z o o o  
0 P 1 0 0 0 p 2 0 0  
O P l O  0 o p z o  0 
o o P l o o o p 2 o  
o o P l o o o p z O  
o O o p l o o o p ~  

- 0  0 0 p1 0 0 0 pz 



26 2. A mathematical introduction 

m > L, is independent of its content at time n. Consequently, the states on+,, 
m 2 L, are independent of a,; so, f o r m  3 L, 

Thus, PL = PL+l = . - ., and PL has identical rows. We can write 

which shows, in particular, that the shift-register state sequence defined in (2.54) 
is a fully regular Markov chain. 

Example 2.5 (continued) We have, by direct computation from (2.57) or using (2.58). 
that p3 has the structure (2.53), with w, the stationary distribution vector, being equal 

2.2.2. Continuous-time processes 

A continuous-time random process (or random continuous signal) is a family 
of real or complex signals <(t)  defined on some probability space. At any N -  
tuple of times t l ,  t z ,  . . . , t N ,  the quantities <(tl) ,  <(t2), . . . , < ( t ~ )  are RVs. Con- 
sequently, a random process can be described by providing the joint distribution 
functions of the N RVs <(tl) ,  <(t2),  . . . , <(tN)  for all integers N and N-tuples of 
time instants. 

A continuous-time random process is called stationary if for every N ,  for any 
N-tuple ( t l ,  t z ,  . . . , t N )  and for every real 7 ,  the N-tuples of RVs [(t l) ,  [(tz),  
. . . , < ( t ~ )  and <(tl + T ) ,  <(t2 + 7) .  . . . , <(tN + 7 )  are identically distributed. 
Stated in another way, a stationary random process is one whose probabilistic 
properties do not depend on the time origin. Thus, for any given the processes 
( ( t )  and [ ( t  + 7 )  are identically distributed. 

The mean of the process <(t)  is the deterministic signal 

~ ( t )  i2 E[<(t)l (2.61) 

The autocorrelation of <(t) is the function 

For a stationary process, 
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(a) p(t) does not depend on time, and 

(b) ~ ( ( t ~ ,  tz) depends only on the difference t l  - t2 .  Consequently, we can 
write 

%(ti - t2) 2 E[<(ti)E*(t~)] (2.63) 

Conditions (a) and (b) are generally not sufficient for the stationarity of <(t).  
If (a) and (b) hold true, we say that <(t) is wide-sense (WS) stationary. A random 
process <(t) is called cyclostationary with period T if its probabilistic properties 
do not change when the time origin is shifted by a multiple of T; that is, we 
consider <(t + kT),  k  an integer, instead of <(t).  Wide-sense cyclostationariry 
can also be defined as follows: [ ( t )  is WS cyclostationary if 

(a) p(t) is a periodic function of time with period T ,  and 

(b) the autocorrelation of the process has the property 

k any integer. Equation (2.64) can be interpreted by saying that RC(t+r, t), 
when considered as a function o f t ,  is periodic with period T .  

Example 2.6 Consider the deterministic finite-energy signal s ( t )  and a WS stationary 
sequence (a,) of random variables with correlation (r,). The random signal 

is WS cyclostationary with period T. In fact 

is periodic with period T. Moreover. 

and it can be verified that (2.64) holds. 0 

Some important properties of stationary and cyclostationary processes are 
the following: 
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(a) If a stationary (cyclostationary) process is passed through a stable time- 
invariant system, it retains its stationarity (cyclostationarity). 

(b) The sum of two stationary processes is a stationary process. The sum 
of a cyclostationary process and a stationary process is a cyclostationary 
process. 

(c) Let ( ( t )  be a WS cyclostationary process with period T ,  and let d t )  denote 
the randomly translated process 

where 6' is a random variable statistically independent of ( ( t )  and uni- 
formly distributed in the interval (0, T ) .  Then the process ( ( t )  is WS sta- 
tionary. 

Gaussian processes 

A real random process ( ( t )  is called Gaussian if, for any given time instant t ,  ( ( t )  
is a Gaussian random variable. Formally, ( ( t )  is a Gaussian process if for any 
N-tuple t l ,  t 2 , .  . . , tN  of time instants, N any integer 2 1, the row N-vector of 

A 
random variables = [<(tl),  ( ( t 2 ) ,  . . . , ( ( t N ) ]  has a Gaussian distribution, that 
is, a probability density function of the form 

where p is the mean vector 

and A is the N x N covariance matrix 

Now, let ( ( t )  be a complex random process, and let 

where (p( t ) ,  ( ~ ( t )  are real processes. The process <(t) is called Gaussian if the 
joint distribution of t p ( t1 ) ,  (p( t2) ,  . . . , < P ( ~ N ) ,   ti), < ~ ( h ) ,  . . . . < Q ( ~ N )  is 
2N-dimensional Gaussian for any N-tuple of time instants and for any integer 
N 2 1. 

Gaussian processes have the following properties: 
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(a) The output of any linear system whose input is a Gaussian process is still 
Gaussian. 

(b) Let ( ( t )  be a WS stationary real Gaussian process. Then <(t) is stationary. 

(c) Let { ( t )  be a WS stationary complex Gaussian process. Then { ( t )  is sta- 
tionary if and only if the average E[((t l ) (( t2)]  is a function only of the 
time difference t l  - t2. 

Property (c) deserves some comments. Wide-sense stationarity of ( ( t )  im- 
plies that E[((t)(*(s)]  is a function of t  - s, and E[((t)] is a constant. For 
the stationarity, one must show that E[(p(t)(p(s)], E[ (p ( t ) (~ ( s ) ] ,  E[ (Q(~) (Q(s ) ]  
all depend only on the difference t  - s. But this is equivalent to showing that 
E[((t)(*(s)] and E[((t)((s)] depend only on t  - s. To verify the latter prop- 
erty, it is sometimes useful to apply Grettenberg's theorem (Grettenberg, 1965). 
It states that for a complex Gaussian process ( ( t )  with mean zero we have 
E[((t)((s)] = 0  if and only if, for all 0 5 6' 5 2a, the processes ( ( t )  and 
$@((t) are identically distributed; that is, ( ( t )  is invariant under phase rotations. 

2.3. Spectral analysis of deterministic and random signals 

In the representation of signals in the Fourier transform domain, one associates 
with each frequency f a measure of its contribution to the signal. This repre- 
sentation is particularly useful when the signal is transformed by a linear time- 
invariant system, because in this case each of the frequency components of the 
signal is independently weighted by the system transfer function, according to 
the rule (2.26) (it holds for discrete and continuous signals). In this section we 
extend this concept to the spectral analysis of certain energetic quantities that one 
may want to associate with a given signal, such as its energy or its power (to be 
suitably defined). Specifically, assume that, for a given signal (, either discrete 
or continuous, deterministic or random, we have defined a nonnegative energetic 
quantity I Ie .  The density spectrum of II{  is a frequency function, say V c ( f ) ,  car- 
rying information regarding how much of II{ is associated with each frequency 
f .  The function V { ( f )  is nonnegative, and the two following properties hold: 

(a) The integral of V { ( f )  gives I I { :  

(b) Let I I ,  be the same energetic quantity defined at the output of a linear, 
time-invariant system with transfer function H ( f )  and input ( ( t ) .  Then 
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In (2.70) and (2.71), I = (-w,  w )  if E is a continuous-time signal, and I = 
( -112 ,112)  if E is a discrete-time signal. 

Let us now specialize this general definition to some cases of practical inter- 
est. 

Energy density spectrum: Continuous detenninistic signals 

Given a continuous deterministic signal x ( t ) ,  we define its energy as the quantity 

provided that the integral in (2.72) is finite. In the transform domain, the energy 
of a signal x ( t )  whose Fourier transform is X (  f )  can be expressed in the form 

Equality (2.73) is a special case of Parseval's theorem. This states that for two 
signals x l ( t ) ,  x2( t )  with Fourier transforms X l (  f  ), X2( f  ), respectively, the fol- 
lowing holds: 

z l ( t ) z ; ( t )  d t  = Im X l ( f  df (2.74) 
-m 

The function 
& ( f )  Ix(f)12 (2.75) 

is the energy (density) spectrum of x ( t ) .  It is easily seen that with this definition 
both (2.70) and (2.71) hold. 

Power density spectrum: Continuous detenninistic signals 

For a continuous aperiodic deterministic signal x ( t )  whose energy is not finite, 
define its average power as the quantity 

provided that this limit exists. If we define the truncated signal 

the average power of x ( t )  can be written 
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where Ea denotes the energy of x a ( t ) .  Hence, for the signal x ( t )  we define its 
power (density) spectrum as the function 

where lXa ( f )12  is the energy spectrum of the truncated signal (2.77). 
For aperiodic signal x ( t )  with period T ,  its average power is defined as 

Define its Fourier-series expansion 

where 

Its power spectrum is then given by 

Average power density spectrum: Discrete stationary random signals 

Consider a WS stationary random sequence ( E n )  with autocorrelation ( r , ) .  Its 
average power is defined as 

The (average) power (density) spectrum !&(f )  of ( E n )  is the Fourier transform 
of the autocorrelation sequence ( r , ) ;  that is, 

Let us show that with this definition (2.70) holds. We have 

and TO equals E{1(n(2)  because of (2.34) and the assumption of WS stationarity. 
Property (2.71) can be proved similarly. 
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Average power density spectrum: Continuous stationary random signals 

Let ( ( t )  be a WS stationary continuous random process with autocorrelation 
function R{(r). Its average power is defined as 

P{ E{I<(t)12) (2.83) 

The (average) power (density) spectrum Gc( f )  of ( ( t )  is the Fourier transform 
of the autocorrelation function R{(r): 

In this situation, (2.71) takes the form 

where ~ ( t )  is the response of a linear time-invariant system with transfer function 
H ( f )  to the input ( ( t ) .  

Example 2.7 (White noise) A process with autocorrelation function 

has a power spectrum 

Such a process is called a white noise. In practice, this process is not realizable, as its 
power ?{ is not finite. However, this process can be very useful in instances where the 
actual process has an approximately constant spectral density over a frequency range 
wider than the bandwidth of the system under consideration. On the other hand, the 
observation of any process will be made through a measuring device whose bandwidth 
is finite: consequently, when we observe a constant spectral density it is mathematically 
convenient to assume that the underlying process (which we do not, and cannot, observe) 
is a white noise. 

At the output of a linear time-invariant system with transfer function H ( f )  we get 
the average power 

which is finite provided that the integral in the RHS converges. In this situation, it is 
customary to define the equivalent noise bandwidth of the system as 
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Figure 2.8: Equivalent noise bandwidth for (a) low-pass systems, and (b)  bandpass 
systems. 

Notice the presence of the factor 112 in (2.89). which can be interpreted by saying 
that the bandwidth is only defined for positive frequencies. This convention is assumed 
throughout this book for every possible definition of the bandwidth of a signal or a 
system. For linear systems with a real impulse response, IH( f ) l  is an even function. 
Hence, the factor 1/2 can be omitted in the RHS of (2.89) and the integration carried out 
from 0 to 03. With definition (2.89). the power at the output of a linear, time-invariant 
system with equivalent noise bandwidth Beq and whose input is a white noise with power 
spectral density No/2 turns out to be 

Equation (2.90) shows that Beq can be interpreted as the bandwidth of a system with a 
rectangular transfer function, whose amplitude squared is max I ~ ( f ) l ' .  Fig. 2.8 illus- 
trates this fact for a low-pass and a bandpass system. 

For example, the low-pass Butteworth filten defined in Example 2.3 have an equiv- 
alent noise bandwidth 
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From (2.91) it is easily seen that, as n + co, Be, + f,, f ,  being the cutoff fI=q~ency 
of the filter. 0 

Average power density spectrum: Continuous nonstationary random signals 

Consider now a nonstationary continuous random process ( ( t ) .  Clearly, defini- 
tion (2.83) is not valid anymore because in general E { l ( ( t ) 1 2 }  varies with time. 
In this situation, the definition of average power that should be used is 

that is, the time average of the mean value of the instantaneous power I((t)12. 
With this definition, a spectral density function that satisfies properties (2.70) 
and (2.71) can also be defined for nonstationary processes, provided that we 
restrict our attention to an appropriate subclass of processes. This subclass is 
that of hannonizable processes (Lotve, 1963, pp. 474-477). Roughly speaking, 
a process is hannonizable if we can define its Fourier transform: 

Equation (2.93) defines a new random process in the variable f .  In certain cases, 
a proper interpretation of (2.93) requires some care. In fact, (2.93) is an equality 
in the sense of distribution theory (i.e., it becomes an equality if a linear operator 
is applied to both sides and the order of integrations is reversed in the RHS). 
Incidentally, this is the correct way to interpret equalities like 

Hannonizable processes are a first-step generalization of WS stationary random 
processes. It has been shown (Cambanis and Liu, 1970) that, under some mild 
conditions, any random process obtained at the output of a linear system is har- 
monizable. The system may be randomly time variant and the input process need 
not be stationary, or even hannonizable. 

For a hannonizable process ( ( t ) ,  the power spectrum can be obtained as fol- 
lows. Compute first the function 

Consider then the bisector f l  = f 2  of the plane ( f l ,  f 2 )  and the line masses of 
r ( ( f 1 ,  f 2 )  located on it. The distribution of these line masses provides us with 
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a function Gc( f  ), the power spectrum of ( ( t ) .  Specifically, if r e (  f l ,  f 2 )  can be 
written in the form 

where A , ( f l ,  f 2 )  has no line masses located on the bisector f l  = f 2 ,  then 
G c ( f )  is the required spectrum. [It may happen that Gc( f )  is identically zero; 
in this case the process has finite energy.] Using (2.93), it can easily be seen that 
r ( ( f 1 ,  f 2 )  can be written in a form equivalent to (2.94): 

Equation (2.96) shows that r ( ( f 1 ,  f 2 )  is the two-dimensional Fourier transform 
of the autocorrelation function of the process ( ( t ) .  This is tantamount to saying 
that R c ( r l ,  r 2 )  is the inverse Fourier transform of r e (  f l ,  f 2 ) :  

Example 2.8 Let ( ( t )  be WS stationary. Its autocorrelation function depends only on 
7 1  - 7 2 .  Thus, (2.96) yields 

which is consistent with (2.84) (as it should be). Also notice that, using (2.97). one sees 
that Re (71, 72)  depends on the difference 7 1  - 7 2  only if r e (  f l ,  f 2 )  has the form 

(see Fig. 2.9). 0 

Example 2.9 Let ( ( t )  be a WS cyclostationary process with period T. Using the prop- 
erty (2.64). it is seen that RC(71,  7 2 )  can be expanded in the Fourier series 

where 
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Figure 2.9: Thefunction r C ( f 1 ,  f 2 )  for a wide-sense stationary process. 

Using (2.96). we get 

where G , (  . ) is the Fourier transfo~m of g,( . ). -cm < n < cm. Equation (2.102) 
shows that r C ( f l ,  f 2 )  consists of line masses located on the lines f i  = f2 + n/T, 
-cm < n < cm, which are parallel to the bisector of the plane ( f l ,  f 2 ) .  This situation is 
shown qualitatively in Fig. 2.10. 

The power spectrum of ( ( t )  is then 

It can also be shown that the power spectrum (2.103) can be obtained by considering the 
WS stationary process (2.65) and using (2.84). 0 

2.3.1. Spectral analysis of random digital signals 

In Chapter 4, devoted to the transmission of digital information using continuous 
signals, the following random process will be considered: 
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Figure 2.10: Thefunction r C ( f 1 ,  f 2 )  for a wide-sense cyclostationary process. 

This is called a digitally modulated random signal, or for short a digital signal. 
The sequence ( a , )  of discrete RVs is WS stationary, and will be referred to as 
the sequence of source symbols. The sequence ( a , )  is a stationary sequence of 
discrete random variables referred to as the states of the modulator. The random 
waveforms s ( t ;  a , ,  a , )  take values in a set { s i ( t ) ) Z ,  of deterministic, finite- 
energy signals. They are output sequentially by the modulator, one every T 
seconds, in accordance with the values of the source symbols and the modulator 
states. 

Several special cases of (2.104) are of interest. If the modulator states a, do 
not appear in (2.104), the modulator is called memolyless, and we have 

If in addition 

s ( t ;  a n )  = a n  4 t ) ,  

that is, the waveforms of the set { s i ( t ) ) Z ,  are scalar multiples of one and the 
same signal s ( t ) ,  the modulator is called linear, and we have 

Here we evaluate the power density spectrum of the signal (2.104), which is 
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generally nonstationary. The Fourier transform of <(t) is given by 

where S ( f ;  an, an), the Fourier transform of s(t; an,  an), takes values in the 

set {Si( f ))&, with S i ( f )  fi 3[s i ( t ) ] ,  i = I ,2 , .  . . ,M. Thus, from (2.94) we 
get 

As the sequences (a,), (an) are stationary, the expectation in the last line 
of the previous equation depends only on L and not on n. Thus, recalling the 
equality (see, e.g., Jones, 1966, p. 135) 

we obtain 

2 6 ( f i  - f 2  - - 
m=-m T 

Compare now (2.1 10) with (2.95). It is apparent that the power spectrum of ( ( t )  
is given by 

1 
G c ( f )  = , C ~ e ( f ) e - j ~ " ~ ~  (2.111) 

where 
Ge(f )  f E { S ( f ;  on+(, an+OS( f ;  on, 0,)) (2.112) 

It is customary, in the computation of spectral densities, to separate their con- 
tinuous part from their discrete part (line spectrum). This can be done in our 
situation by defining 
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(this does not depend on n because of stationarity) and rewriting (2.1 11) in the 
form 

where (2.109) was used again. The second term in the RHS of (2.114) is a line 
spectrum with lines spaced 1/T Hz apart. The first term is line-free if G e ( f )  - 
Gm( f )  tends to zero fast enough as f! + m for all f .  We shall assume in the 
following that this is the case. 

Equation (2.1 14) can be rewritten in a slightly different form by observing 
that, from definition (2.1 12), it follows that 

Thus, denoting by $ ) ( f )  and G f ) (  f )  the continuous and the discrete part of the 
power spectrum, respectively, we finally get 

where 

and 

We shall now proceed to specialize (2.1 16)-(2.118) to a number of cases of prac- 
tical interest. 

Linearly modulated digital signals 

When the modulator is linear, that is, (2.104) reduces to (2.116)-(2.118), from 
(2.112) we get, with S ( f )  denoting the Fourier transform of s(t),  

"I* 

(2.120) 
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and 

E { a e ~ k )  = &e-, + 1pI2 (2.121) 

with po = 1 and pw = 0, then the power spectrum of ( ( t )  is given by 

where 

and 

It is seen from (2.124) that p = 0 is a sufficient condition for G < ( f )  to have no 
lines in its spectrum. 

When the random variables a, are uncorrelated (i.e.. pc = we get 
from (2.123) 

!$)(I) = $1s(f)l2 (2.125) 

Notice from (2.123) the two factors that separately influence the shape of $ ) (  f ) .  
The first is the waveform s ( t )  through its energy spectrum. The second is the cor- 
relation of the sequence (a,), which appears in the bracketed factor of (2.123). 
If this factor is rewritten as 

it is seen that it turns out to be the Fourier transform of the sequence (p,). In 
practice, the fact that ( & ( f )  depends on two independent factors provides a de- 
gree of freedom that can be used to shape the signal spectrum. Indeed, a given 
spectrum can be obtained by choosing appropriately the waveform s ( t ) ,  or the 
correlation of (a,),  or both. 

Example 2.10 Perhaps the simplest way to introduce correlation in a discrete sequence 
is to pass it through a linear system. Thus, let (P,) denote a sequence of iid RVs with 
EPn = 0 and EIP,I2 = 1. and let (a,) denote a new sequence with 

where (h,) is the impulse response of a linear, time-invariant system. In this situation a 
simple computation shows that 
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Thus, the power spectrum of (2.107), when (a,) is as in (2.126). is 

E d f )  = $s(f  )121Wf~)12. 

where H( f )  is the transfer function of the discrete linear system: 

~ ( f )  L? x hme-j2amf (2.129) 
m 

It is immediately apparent from (2.128) that the same power spectrum for ( ( t )  could be 
obtained by using, instead of (a,), the sequence (P,) and a signal whose Fourier trans- 
formis S ( f ) H ( f T ) .  0 

Nonlinearly modulated digital signals 

We shall now consider the computation of the power spectrum of the digital 
signal ( ( t )  expressed by (2.104) when the sequence (a,) is assumed to have a 
special structure. In particular, we assume that (a,) is an iid sequence, and that 
(a,) depends on (a,) as follows: 

where g( . ) is a completely known deterministic function. Equation (2.130) de- 
scribes in which state the encoder is forced to move at time n + 1, when at time 
n it was in state a ,  and the source symbol is a,. The modulator uses the value 
of the pair a,, a ,  to choose the waveform s ( t ;  a,, a,) from the set { s i ( t ) ) K l ,  
which is then output sequentially. 

For this model of a digital signal to be fully specified, it is sufficient to pro- 
vide the function g( . ) and the mapping between pairs a,, a ,  and waveforms of 
the set { s i ( t ) ) K l .  We assume, hereafter, that a ,  takes on the q values E l ,  C2,  
. . . , C,, and a, takes on the L values a l ,  a2,. . . , aL  (q and L both finite). Thus, 
our description of ( ( t )  can be done through two L x q tables whose rows are 
labeled a l ,  a2,  . . . , a~ and whose columns are labeled E l ,  C2 ,  . . . , C,. In the first 
table we display the waveforms corresponding to the pairs (a;,  C j ) ,  and in the 
second the values of g(ai,  C j ) .  An equivalent representation is in the form of a 
state diagram. This is a directed graph consisting of q vertexes, each represent- 
ing one state; an oriented branch is drawn from state Ci to state C j  if and only if 
there is a source symbol ak such that g(ak ,  Xi) = C j .  The branch is then labeled 
by ak and by the waveform, say s L ( t ) ,  corresponding to the pair ( a k ,  Xi) (see 
Fig. 2.1 1). Before proceeding further, we provide some examples of nonlinearly 
modulated digital signals and their representations. 
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Figure 2.1 1: Element of the state-diagram representation of a modulated digital signal. 

Figure 2.12: Representation of the bipolar-encoded digital signal: Tabular form and 
state diagram. 

Example 2.11 ("Bipolar-encoded" digital signal) The modulator has q = 2 states, 

say C+ and C-, and the source is binary; that is, a E {O,l). The modulator responds 
to a source symbol 0 with a zero waveform and to a source symbol 1 with the waveform 
s ( t )  or -s ( t ) ,  according to whether its state is C+ or C-, respectively. Source symbol I 
makes the modulator change its state. The tabular and state-diagram representations of 
this signal are provided in Fig. 2.12. 0 

Example 2.12 ('CMiller-encoded" digital signal) The modulator has M = 4 wave- 

forms, q = 4 states, and the source is binary. Figure (2.13) describes this digital signal. 
0 
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Figure 2.13: Representation of the Miller-encoded digital signal: Tabular form, wave- 
forms, and state diagram. 

Example 2.13 ("TCM" digital signal) The modulator has M = 8, q = 4, and the 
source is quaternary. The available signals are 

Fig. 2.14 describes the resulting digital signal. 0 

For our future computations, the following quantities must be defined: 

(a) The state transition matrices Ek, k = 1,2, . . . , L, which are the q x q 



2. A mathematical introduction 

Figure 2.14: Representation of the TCM digital signal: ( a )  Tabular form; ( b )  state dia- 
gram. 

matrices whose entry [EkIij is equal to 1 if g(ak,  C i )  = C j ,  and zero oth- 
erwise. In clarification, the matrix Ek has a 1 in row i and column j if the 
source symbol ak forces a transition of the modulator from state Ci to state 
C j .  Otherwise, it has a zero. 

(b) The row q-vectors s k ( f ) ,  k = 1 , 2 , .  . . , L, whose q entries are the Fourier 
transforms of the waveforms of the set { s i ( t ) ) g l ,  according to the rule 
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[ ~ k ( f ) ] i  = 3 [ s ( t ;  ak, & ) I .  That is, s k ( f )  includes the amplitude spectra 
of the modulator waveforms corresponding to the source symbol ak for the 
different modulator states. 

Example 2.11 (continued) In this case, letting a1 = 0 and a2 = 1 ,  we have 

and 
s 1 ( f )  = [O 01, s z ( f )  = S ( f )  [ l  - 11 

where S( f )  is the Fourier transform of s ( t ) .  

Example 2.12 (continued) In this case, letting al = 0, a2 = 1 ,  we have 

and 
s l ( f ) = S ( f ) [ - l - %  - 1 - 2  I + %  I + % ]  

s z ( f ) = S ( f ) [ l - %  - l + 2  1 - 2  - I + % ]  

where 
A T  sin n  f TI2  

S ( f )  = , 
n f  TI2  

and 
e - i r f T  

Example 2.13 (continued) In this case, letting ai = i - 1 ,  i = 1,2,3 ,4 ,  we have 

and 
~ l ( f )  = S ( f )  [wO w1 w2 w3]  
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We want now to evaluate the power spectrum of the digital signal (2.104). 
The assumption that (a,) is an iid sequence, along with (2.130), implies that the 
state sequence (a,) is a homogeneous Markov chain. In fact, the probability that 
the encoder is in a given state at time n + 1 depends only on the state an and on 
the symbol an, and not on the preceding states an-l, an-2, . . . . The transition 
matrix of this chain has entries 

A [PI,, = P{U,,+~ = Cj 1 an = Ci) 
= P{g(on, an) = Cj I an = Ci) 

where, as already defined, 

Thus, the transition matrix P is a linear combination of the matrices Ek: 

We assume that the Markov chain is fully regular, and that its starting time is 
n = -m. This implies that, for any finite n, w(") = w .  Thus, the transition ma- 
trix P provides a complete characterization of the sequence of modulator states; 
in particular, the stationary state probabilities 

A 
wi = P{an = C,) (2.134) 

are obtained as the entries of vector w computed from (2.50) and (2.51). 
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Let us now define four quantities that play an important role in the expression 
of the power spectral density we are seeking. The first is the average value, taken 
over the source symbols, of the vectors sk ( f )  : 

The ith component of c2( f )  is then the average amplitude spectrum of the wave- 
forms available to the modulator when it is in state Xi .  

The second is the q-vector cl ( f )  whose jth component is the average ampli- 
tude spectrum of the waveforms that, when output by the modulator, force it to 
state Cj. 

This jth component of cl ( f )  is then given by 

(recall from the definition of Ek that [Ek]ij = 1 only if the source symbol ak 
takes the modulator from state Ci to state C j )  If we define the q x q diagonal 
matrix 

A 
D = diag (wl ,  w2, . . . , w,) (2.137) 

we have from (2.136) 
L 

C I  ( f )  = C ~ k ~ k ( f ) D E k  (2.138) 
k=l 

Our third quantity is the average amplitude spectrum of the waveforms available 
from the modulator: 

Finally, the fourth quantity of interest is the average energy spectrum of the 
waveforms available from the modulator: 
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Before proceeding further, we evaluate these four quantities in a few exam- 
ples. 

Example 2.11 (continued) Assuming that the source symbols 0 and 1 are equally 
likely, we have 

so that 

Moreover, 

and 

Example 2.13 (continued) Assuming that the source symbols 0 and 1 are equally 
likely, we have 

Thus, w = [4 a a a], and 

2.3. Spectral analysis of deterministic and random signals 49 

Example 2.13 (continued) Assuming that the source symbols 0, 1, 2, 3, are equally 
likely, we have 

Moreover, 

and 

Consider now the computation of the power spectrum. This will be under- 
taken by applying (2.1 16)-(2.118). From (2.112) we have, for C > 0, 

The probabilities appearing in (2.141) can be put in the form 

As the source symbols are independent, we have 

P{a,+e = ah, an+( = C j  I a, = ak ,  a, = z , )  

= Ph P{an+e = C j  I a, = a k ,  an = C,) 
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Fore = 0, we get instead 

By combining together equations (2.141) to (2.144), we have 

I L L  

C C phpks;(f )~Ekpe-'s; l ( f  ), e > 0 
h=l k=l G d f ) =  L (2.145) 
C P ~ S ;  ( f  )D4, ( f )  , e = o  
h=l 

and, using definitions (2.135) to (2.140), 

Also, from (2.113) and the definition (2.139) of ~ ( f ) ,  we get 

or, equivalently, if (2.146) is used, 

In conclusion, the continuous and discrete parts of the power spectrum of our 
digital signal are given by 

and 

where 
m 

~ ( f )  2 ~ [ p e - 1  - pm],-jz~fU (2.151) 
e=i 

Whenever there exists a finite N such that PN = Pm [e.g., when (a,) is a 
shift-register state sequence], A ( f )  involves a finite number of terms, and its 
computation is straightforward. If such an N does not exist, we need a technique 
to evaluate the RHS of (2.15 1). 
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Observe that, from the equality pkPm = Pm, we have 

for all k > 0. Thus 

where the last equality holds because the matrix ( P k - P m )  has all its eigenvalues 
with magnitude less than 1 (see Cariolaro and Tronca, 1974, for a proof). 

It is seen from (2.153) that the matrix A ( f ) ,  necessary to evaluate the RHS 
of (2.149), can be computed for each value of f by inverting a q x q matrix. This 
procedure is computationally inefficient because, if the spectrum value is needed 
for several f ,  many matrix inversions must be performed. For a more efficient 
technique, observe that A ( f )  is an analytic function of the matrix 

so that A ( f )  can be written in the form of a polynomial in A  whose coefficients 
depend on f ,  say, 

The expansion (2.155) is not unique, unless we restrict K to take on its minimum 
possible value (i.e., the degree of the minimal polynomial of A) .  Here we assume 
that the reader is familiar with the basic results of matrix calculus, as summarized 
in Appendix B. In this situation, equating the RHS of (2.153) and (2.155). we 

get 
K-1 

[ e ' 2 " f T ~ - A ]  C Pi(f)Ai  - I =  O (2.156) 
i=O 

As the LHS of (2.156) is a polynomial in A  having degree K ,  its coefficients 
must be proportional to those of the minimal polynomial of A.  Denoting this 
minimal polynomial by 
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and equating the coefficients of A,, i = 0,. . . , K, in (2.156) and in the identity 
K 
C 6 i ~ i  = 0 (2.158) 
i=O 

we get the coefficients /3,(f), i = 0,. . . , K - 1, needed to compute A ( f )  ac- 
cording to (2.155). This procedure allows one to express A( f )  as a closed-form 
function o f f ,  which can be computed for each value of f with modest compu- 
tational effort. 

Although the use of the minimal polynomial of A  to obtain the representa- 
tion (2.155) leads to the most economical way to compute the spectrum, every 
polynomial A(X) such that (2.158) holds can be used instead of the minimal 
polynomial. In particular, the use of the characteristic polynomial of A  (which 
has degree q) leads to a relatively simple computational algorithm (due to Fad- 
deev and first applied to this problem by Cariolaro and Tronca, 1974). According 
to this technique, A ( f )  can be given the form 

where A(X) is now the characteristic polynomial of A, and B( . ) is a q x q matrix 
polynomial: 

B(X) = Xq-'Bo + X9-2B1 + . . . -t Bq-1 (2.160) 

The polynomials B( . ) and A ( .  ) can be computed simultaneously by using the 
following recursive algorithm (Gantmacher, 1959). Starting with 6, = 1 and 
Bo = I, let 

for k = 1 ,2 ,  . . . , q. At the final step, B, must be equal to the null matrix, and 
60 = 0, because the matrix A  has a zero eigenvalue. 

Example 2.11 (continued) In this case P = Pw; thus, from (2.151) we have 

so that 
1 

Sc(f)  = ~ ( " ( f )  = - ~ S ( f ) l ~ ( l  2T -cos2nfT) 
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Example 2.12 (continued) We have 

1 1  -1 1 - 1 1  

Application of the Faddeev algorithm gives 

and 
B3 = 0 

Thus, using (2.149) and (2.159). we get 

Example 2.13 (continued) From (2.149) we get 

A special case 

We finally observe an important special case of the digital signal considered. If 
the modulator has only one state, or, equivalently, the waveform emitted at time 
nT depends, in a one-to-one way, only on the source symbol at the same instant, 
we have, from (2.149) and (2.150) and after some computations, 
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and 

Spectrum of z(t) 
- - - - - -  I -  Spectrum of y(t) 

where {Si(  f )}gl  are the Fourier transforms of the waveforms available from the 
modulator. 

2.4. Narrowband signals and bandpass systems 

When the signal x ( t )  is real, its Fourier transform X ( f )  shows certain symme- 
tries around the zero frequency. In particular, the real part of X (  f )  is an even 
function of f ,  and its imaginary part is odd. As a consequence, to be in a PO- 

sition to reconstruct x ( t ) ,  it is sufficient to specify X ( f )  only for f >_ 0. NOW 
suppose that x ( t )  is passed through a linear, time-invariant system whose trans- 
fer function is the step function QU( f ) ,  Q a constant. At the output of this system 
we observe a signal from which ~ ( t )  can be recovered without information loss. 
The impulse response of this system is 

Figure 2.15: Spectra of a bareband signal z(t) and of a narrowband signal y(t). 

Example 2-14 Let x(t) = cos(2nfot +4). Its Hilben transform is i ( t )  = sin(2nfot + 
4). so the corresponding analytic signal turns out to be d(t) = exp(j(2nfot + 4)). We 
see from this simple example that the analytic signal representation is a generalization 
of the familiar complex representation of sinusoidal signals. 

0 

Among the properties of analytic signals, two are worth mentioning here. 

so its response to x ( t )  is ~ / 2  . [x ( t )  + jjc^(t)], where (a) The operation transforming the real signal x( t )  into the analytic signal 
L(t) is linear and time invariant. In particular, if x ( t )  is a Gaussian random 
process, i ( t )  is a Gaussian random process. 

is called the Hilbert transform of x( t ) .  Notice that, because of the singularity 
in the integrand, the meaning of the RHS of (2.166) has to be made precise. 
Specifically, the integral is defined as the Cauchy principal value. The choice 
Q = 2  yields 

x ( t )  = %[d(t)]  (2.167) 

(b) Consider two real signals r ( t )  and y(t), and their product 

Assume that r ( t )  is a baseband signal. that is, its (amplitude or energy or 
power) spectrum is zero for 1 f 1 > f l  and y(t) is a narrowband signal, that 
is, its spectrum is nonzero only for f 2  < 1 f 1 < f i ,  f r  > f l  (see Fig. 2.15). 
With these assumptions, from our definition of an analytic signal it follows 
that 

where x ( t ) ,  the system output, is 

Equation (2.167) shows that the original signal x ( t )  can be recovered from the 
output of a system with transfer function 2 u ( f )  by simply taking its real part. 
The complex signal d ( t )  is called the analytic signal associated with x ( t ) .  

that is, i ( t )  is the product of the real signal r ( t )  and the analytic signal 
associated with y(t). 
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Figure 2.16: (a) Specrrum of a narrowband signal; (b) spectrum of irs compler envelope. 
(Figures nor ro scale.) 

Example 2.15 (Amplitude modulation of a sinusoidal carrier) Let y ( t )  = cos 2?rfot, 
and let r (t) be a deterministic baseband signal whose Fourier transform Z( f )  is confined 
to the interval (- f l ,  f l) ,  f l  < fo. The analytic signal associated with their product is 

;(t) = z(t)eJZrfot (2.17 1) 

which shows that the amplitude spectrum of 5(t) is Z( f - fo), that is, it is obtained by 
translating the amplitude spectrum of z(t) around the frequency fo. 0 

2.4.1. Narrowband signals: Complex envelopes 

A narrowband signal is one whose spectrum is to a certain extent concentrated 
around a nonzero frequency. We define a real signal to be narrowband if its 
(amplitude or energy or power) spectrum is zero for ( f  1 $ ( f l ,  f z ) ,  where ( f l ,  f 2 )  

is a finite frequency interval not including the origin (see Fig. 2.16 (a)). On the 
other hand, a signal whose spectrum is concentrated around the origin of the 
frequency axis is referred to as a baseband signal. For a given narrowband signal 
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and a frequency fo E ( f , ,  f i ) ,  the analytic signal ?(t) can be written, according 
to the result of Example 2.15, in the form 

q t )  = z(t)ei2"f0t (2.172) 
where Z(t) is a (generally complex) signal whose spectrum is zero for f > f 2 -  fo 
and f < f1  - fo (see Fig. 2.16 (b)). 

The signal Z(t) is called the complex envelope associated with the real signal 
x(t).  From (2.172) we have the following representation for a narrowband x(t): 

x(t)  = R[?(t)] 
= xc(t) cos 27r fot - xs(t) sin 27r fot (2.173) 

where 

xC(t) 4 R[i-(t)] = R[?(t)e-jzrfot I 
= x(t) cos 27r fot + 2(t)  sin 27r fot (2.174) 

and 
A xd( t )  = S[Z(t)] = S[i-(t)e-j2*fot I 
= -x(t) sin 27r fot + 2(t)  cos 27r fot (2.175) 

are baseband signals. Equation (2.173) and direct computation prove that xc(t) 
and x,(t) can be obtained from x(t) by using the circuitry shown in Fig. 2.17. 
There the filters are ideal low-pass. 

From (2.172) it is also possible to derive a vector representation of the nar- 
rowband signal x(t).  To do this we define, at any time instant t ,  a two-dimensional 
vector whose components are the in-phase and quadrature components of Z(t), 
that is, xc(t) and x,(t) (see Fig. 2.18). The magnitude of this vector is 

A,(t) IZ(t)j = 4- (2.176) 

(see Fig. 2.19), and its phase is 

A x ( t )  p,(t) = arg [Z(t)] = tan-' L (2.177) 
xc ( t )  

The time functions A,(t) and p,(t) + 27rfot are called, respectively, the in- 
stantaneous envelope and the instantaneous phase of x(t) .  The instantaneous 
frequency of x(t)  is defined as 1/27r times the derivative of the instantaneous 
phase; that is, 

where the primes denote time derivatives. From (2.173) to (2.177) the following 
representation of the narrowband signal x(t) can also be derived: 
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qw cos 2M0 t 

$ x, 0) 

sin 2M0 t 

Figure 2.17: Obtaining the real and imaginary parts of the complex envelope of the 
narrowband signal x ( t ) .  

X, ( t )  IN-PHASE 

Figure 2.18: Vector representation of the narrowband signal x ( t ) .  

Narrowband random processes 

Consider now a real narrowband, WS stationary random process v(t), and the 
complex process 

t ( t )  v(t) + jD(t). (2.1 80) 

The possible representations of v(t) are 

I v(t) = vc(t) cos 27r fot - v,(t) sin 27r fot (2.1 82) 

2.4. Narrowband signak and bandpass systems 

Figure 2.19: Obtaining the instantaneous envelope of the narrowband signal x ( t ) .  

and 

v(t) = A&) m[2xfo t  + cp,(t)] (2.183) 
where 

= 4 t )  + jv, (t) (2.184) 

is the complex envelope of v(t). 
, The power spectrum of t ( t )  can be easily evaluated by observing that t ( t )  

can be thought of as the output of a linear, time-invariant system with transfer 
I function 2u( f )  whose input is v(t). Thus, its power spectrum equals the power 

spectrum of v(t) times the squared magnitude of the transfer function: 

Equation (2.185) shows that the spectral density of t ( t )  is equal to four times 
the one-sided spectral density of v(t). Consider then the complex envelope G(t). 
From (2.184), its autocorrelation is 

and hence 

'&(f) = Gc(f + fo) (2.187) 
which shows that the power spectral density of the complex envelope G(t) is the 
version of G;(f) translated around the origin (see Fig. 2.20). Consider finally 
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Figure 2.20: Representations of a ~ r r o w b a n d  white noise process u ( t ) :  ( a )  Power 
spectrum of u( t ) ;  (b)power spectrum of the analytic signal t ( t ) ;  ( c )  power spectrum of 
the co.mplex envelope fi( t);  ( d )  power spectra of the real and imaginary parts of f i ( t ) .  

2.4. Narrowband signals and bandpass systems 6 1 

v,(t) and u,(t), the real and imaginary parts of the complex envelope. It can be 
shown (see Problem 2.20) that the following equalities hold: 

where 
Ru.uC (7) i E[vS(t + 7)uC(t)] (2.191) 

From (2.188) to (2.191) we can draw the following conclusions: 

(a) As Ri(0) = EIfi(t)I2 is a real quantity, Eqs. (2.190) and (2.191) show that 

E[v&)vc(t)I = 0 (2.192) 
That is, for any given t ,  u,(t) and v,(t) are uncorrelated RVs. As a special 
case, if u(t) is a Gaussian process, u,(t) and uc(t) are independent RVs for 
any given t .  

(b) From (2.185) and (2.186) it follows that 

Similarly, from (2.188), (2.190), and result (a) we have 

~Ifi(t)I' = 2 E [ ~ , ( t ) ] ~  = 2E[uf(t)] (2.194) 

Thus, 

E[uC(t)l2 = ~ [ u f ( t ) ]  = E[u2 ( t ) ]  (2.195) 
That is, the average power of v,(t) and u,(t) equals that of the original 
process u(t).  

(c) If the power spectrum of the process u(t) is symmetric around the fre- 
quency fo, from (2.187) it follows that the power spectrum of fi(t) is 
an even function. This implies that Ri(r) is real for all T, SO (2.190) 
and (2.191) yield 

E[u,(t + r)u,(t)] = 0 for all T (2.196) 

This means that the processes uc(t) and u,(t) are uncorrelated [or indepen- 
dent when u(t) is Gaussian]. Thus, in this situation, 
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Example 2.16 Let x( t )  be a bandpass real signal, and let Qz(  f )  be the power density 
spectrum of its complex envelope. From (2.185) and (2.187) we have 

Recalling the fact that Q,( f )  must be an even function of f ,  the last equality yields 

As an example, consider the signal 

where Elan] = 0 and E[a,,+,a;] = a~bo,,. 
From (2.122)-(2.124) we obtain the power spectrum of the complex envelope of 

x(t):  
2 

Qdf  = $ls(f ) I 2 .  
Hence, the power spectrum of the signal is 

Narrowband white noise 

As we shall see in later chapters, in problems concerning narrowband signals 
contaminated by additive noise it is usual to assume, as a model for the noise, 
a Gaussian process with a power density spectrum that is constant in a finite 
frequency interval and zero elsewhere. This occurs because a truly white noise 
would have an infinite power (which is physically meaningless), and because any 
mixture of signal plus noise is always observed at the output of a bandpass filter 
that is usually not wider than the band occupied by the signal. Thus, in practice, 
we can assume that the noise has a finite bandwidth, an assumption entailing no 
loss of accuracy if the noise has a bandwidth much wider than the filter's. 

A narrowband white noise is a real, zero-mean, stationary random process 
whose power density spectrum is constant over a finite frequency interval not 
including the origin. In Fig. 2.20 we showed the power spectrum of a narrowband 
white noise with a power spectral density No/2 in the band B centered at fo. 

2.4. Narrowband signals and bandpass systems 

2.4.2. Bandpass systems 

The complex envelope representation of narrowband signals can be extended to 
the consideration of bandpass systems (i.e., systems whose response to any input 
signal is a narrowband signal). In the following we shall see how to character- 
ize the effects of a bandpass system directly in terms of complex envelopes. In 
other words, assume that y(t) is the response of a bandpass system to the nar- 
rowband signal x(t) .  We want to characterize a system whose response to Z(t) ,  
the complex envelope of x ( t ) ,  is exactly tj(t), the complex envelope of y(t). 

Bandpass linear systems 

First, consider a bandpass linear, time-invariant system with impulse response 
h(t] and transfer function H ( f ) .  The analytic signal representation aof h( t )  
is h(t )  = h(t )  + j^h(t), which corresponds to the transfer function H ( f )  = 
2H( f)u( f ) .  If x ( t )  is the narrowband input signal and y(t) the response, the 
analytic signal $( t )  can be obtained by passing x( t )  into the cascade of the lin- 
ear system under consideration and a filter with a transfer function 2u( f )  (see 
Fig. 2.21 (a)). In a cascade of linear transformations, the order of the operations 
can be reversed without altering the final result, so we can substitute the scheme 
of Fig. 2.21 (b) for that of Fig. 2.21 (a). Next, observe that i ( t )  has a Fourier 
transform equal to zero for f < 0. Hence, we can substitute a system with 
transfer function H(  f )  for another system having a transfer function H( f )u( f )  
without alttring the output. The latter system (see Fig. 2.21 (c)) has an impulse 
response i h ( t ) ,  input i ( t ) ,  and output $(t ) .  These signals are related by the 
convolution integral 

This equation becomes particularly useful if both i ( t )  and h(t )  are expressed in 
terms of their complex envelopes. We get 

which shows that $( t )  is a narrowband signal, centered at fo, with complex en- 
velope 

In conclusion, the complex envelope of the response of a bandpass linear, time- 
invariant system with impulse response h(t )  to a given narrowband signal x ( t )  
can be obtained by passing the complex envelope i ( t )  through the low-pass 
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Figure 2.21: Three equivalent schemes to represent the analytic signal associated with 
the output of a linear system. 

equivalent system whose impulse response is i k ( t ) ,  or, equivalently, whose trans- 
fer function is H (  f + f o ) u (  f + f o )  (see Fig. 2.22). Notice that only if H ( f )  is 
symmetric around f o  will the low-pass equivalent system have a real impulse re- 
sponse. A nonreal impulse response will induce in the output signal a shift of the 
phase and a correlation between the in-phase and quadrature components. These 
effects are usually undesired. 

Example 2.17 Let 
s ( t )  = z(t)ei2rfot (2.201) 

where the Fqurier transform of z(t) is zero for If 1 > B, B < fo. Consider an LRC 
parallel resonator. Its transfer function is 

The corresponding impulse response is, for t  > 0, 

2.4. Narrowband signals and bandpass systems 

Figure 2.22: (a)  Transferfunction of a bandpass linear system; (b)  transfer&mction of 
a low-pars equivalent linear system. 

where - 

is the "quality factor" of the circuit, and 

If Q >> 1, the computation of h(t) becomes very easy. In fact, the second term in 
the RHS of (2.203) can be disregarded. Additionally, we can safely assume that the 
exponential factor exp {-nfotl2Q) is a bandlimited signal. Thus, from (2.203). we 
have 

I 2Af0e-*fot/2~ $2rfot t 2 0, (2.204) 
Q 

where 
1 

fo = --t- 2 n m  

In conclusion, 

h ( q  2 Pnfo e - r f ~ t 1 2 ~  
Q 7 t 2 o  
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Notice that the approximations in the computation of i ( t )  make the Fourier transform 
of (2.205) symmetric around the origin of the frequency axis. 0 

Bandpass memoryless nonlinear systems 

We shall now examine a class of nonlinear systems that are often encountered 
in radio-frequency transmission. We are especially interested in nonlinear time- 
invariant systems whose input signal bandwidth is so narrow that the system's 
behavior is essentially frequency-independent. Moreover, the system is assumed 
to be bandpass. This in turn means that it can be thought of as being followed by 
a zonalfilter whose aim is to stop all the frequency components of the output not 
close to the center frequency of the input signal. For a simple example of such a 
system, consider a sinusoidal signal x ( t )  = A cos 277 fot sent into a time-invariant 
nonlinear system. Its output includes a sum of several harmonics centered at 
frequencies 0, f o ,  2 f o ,  . . . . If only the harmonic at f o  is retained at the output, 
the observed output signal is a sinusoid y( t )  = F ( A )  cos[277 fot + cp(A)]. If we 
consider the complex envelopes 5 ( t )  = A and y( t )  = F ( A )  exp[jcp(A)],  we see 
that the system operation for sinusoidal inputs can be characterized by the two 
functions F( . ) and c p ( . ) .  In the following we shall prove that this result holds 
true even when the input signal is a more general narrowband signal. 

Consider a narrowband signal x ( t ) ,  with a spectrum centered at f o .  Its ana- 
lytic signal representation can be given the form 

where A,(t)  and cp,(t) are baseband signals. Letting 

we rewrite (2.206) as 
q t )  = A,(t)  e ~ * = ( ~ )  

Consider then the effect of a nonlinear memoryless system whose input-output 
relationship is assumed to have the form 

where S e [ . ]  is an even function of $ , ( t ) ,  and S o [ . ]  is an odd function. It is 
seen that y ( t ) ,  when expressed as a function of $,( t ) ,  is periodic with period 277. 
Thus, we can expand y ( t )  in a Fourier series: 
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.f 

Figure 2.23: Spectrum of the output of a memoryless nonlinear system whose input is a 
narrowband signal centered at frequency fo .  

where 

The quantity c t (A)  is generally complex. Its real and imaginary part are, respec- 
tively, 

R[C!(A)] = $ [ S.[A cos $1 cos .!$ d$ (2.212) 

and 
1 2" 

8 [ c e ( A ) ]  = i;; 1 S,[A sin $ 1  sin C$ d$ 

From the definition (2.207) of & ( t ) ,  we see how (2.210) expresses the fact 
that the spectrum of y( t )  includes several spectral components, each centered 
around the frequencies f Cfo, e = 0 ,  1,. . .. Figure 2.23 illustrates qualitatively 
this situation. Notice that we must assume that the signals ce[A, ( t ) ]  have spectra 
that do not significantly extend beyond the interval (- fo /2 ,  fo /2 ) .  

The assumption that the memoryless system is bandpass implies that only 
one of the spectral components of y( t )  can survive at the system output (i.e., 
that centered at f f o ) .  The analytic-signal representation of the output of such a 
bandpass memoryless system is then 

where 
c(A)  A 2c1(A) (2.215) 

As c ( A )  is generally a complex number, we can put it in the form 

C(A)  = F(A)&*) (2.216) 
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Figure 2.24: Representation of a bandpars memoryless nonlinear system. 

or, in terms of complex envelopes, 

Comparing the last equation with the complex envelope of the input signal, 

f ( t )  = ~ , ( t ) & ~ ' ( ~ )  (2.219) 

we can see that the effect of a bandpass memoryless nonlinear system is to alter 
the amplitude and to shift the phase of the input signal according to a law that 
depends only on the values of its instantaneous envelope. This shows, in partic- 
ular, that the system can be characterized by assigning the two functions F[ -1 ,  
cp[.],  which describe the so-called AMIAM conversion and AMPM conversion 
effects of the system (AM denotes amplitude modulation and PM phase modu- 
lation). These functions can be determined experimentally by taking as an input 
signal a single sinusoid with a frequency close to fo and an envelope A, and by 
measuring, for different values of A, the output envelope F ( A )  and the output 
phase shift cp(A). Notice that, for the validity of this nonlinear system model, 
the functions F ( A )  and cp(A) should not depend appreciably on the frequency of 
the test sinusoid as it varies within the range of interest. 

Finally, notice that the system we are dealing with can be represented as in 
Fig. 2.24, where S, and So denote memoryless nonlinear devices. From this 
scheme it is seen that only if So is present can the system show an AMJPM 
conversion effect. 
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Example 2.18 (Polynomial-law devices) Consider a nonlinear system whose input- 
output relationship is 

y ( t )  = C z f ( t )  (2.220) 
t an integer greater than 1. 1f zit) is written in the form 

z( t)  = 92[Z(t)ei2"jot] 

1 = - [ ~ ( t ) p l o t  + ~ * ( ~ ) ~ - j 2 " f o t  
2 I (2.221) 

we get 

d ( t )  = $ 6 (:) [ q t ) ] k  [~* (~) ]~ -k$2~(2k-~) jo t  (2.222) 
k=O 

When y ( t )  is filtered through a zonal filter, all its frequency components other than those 
centered at f fo will be removed. Thus, only the terms with 2k - t = f 1 will contribute 
to the system output. This shows, in particular, that only when t is odd can the output of 
the zonal filter be nonzero. For t odd, the complex envelope of the system output is then 

More generally, if the system is polynomial, i.e., 
L 

~ ( t )  = Caczf( t ) ,  
i=l 

we shall get, for L odd, 

Notice that polynomial-law devices with real coefficients never exhibit M M  conver- 
sion. 0 

2.5. Discrete representation of continuous signals 

In this section we consider the problem of associating a continuous signal with a 
discrete representation. In other words, we wish to represent a given continuous 
signal in terms of a (possibly finite) sequence. The representation may be exact 
or only approximate, in which case it will be chosen on the basis of acomprornise 
between accuracy and simplicity. 

As we shall see in later chapters, this representation makes it possible to 
impart a geometric interpretation to a signal set, and hence to visualize it by 
extracting from it the features that are relevant when the signals are used for 
modulation. 
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2.5.1. Orthonormal expansions of finite-energy signals 

A fundamental type of discrete representation is based on sets of signals called 
orthonormal. To define these sets, consider first the notion of the scalar pmd- 
uct between two finite-energy signals x ( t )  and y(t): it is denoted by ( x , Y )  and 
defined as the value of the integral 

If X (  f )  and Y ( f )  denote the Fourier transforms of x ( t )  and y ( t ) ,  respectively, 
and we let 

( X ,  Y )  = X ( f ) Y * ( f )  df (2.227) - m 

Parseval's equality relates the scalar products defined in the time and in the fre- 
quency domain: 

( x ,  Y )  = (x,  y )  (2.228) 

If ( x ,  y) = 0, or equivalently ( X ,  Y) = 0 ,  the signals x ( t )  and y( t )  are called 
orthogonal. From the definitions of scalar product and of orthogonality, it im- 
mediately follows that ( x ,  X )  = EZ, the energy of x ( t ) ,  and that the energy of the 
sum of two orthogonal signals equals the sum of their energies. 

Suppose now that we have a sequence ($i(t))iEl of orthogonal signals; that 
is, 

where I is a finite or countable index set. 
If Ei = 1 for all i E I, the signals of this sequence are called orthonormal. 

Obviously, an orthonormal sequence can be obtained from an orthogonal one 
by dividing each $;(t) by &. Given an orthonormal sequence, we wish to 
approximate a given finite-energy signal x ( t )  with a linear combination of signals 
belonging to this sequence, that is, with the signal 

A suitable criterion for the choice of the constants ci appearing in (2.230), and 
hence of the approximation f ( t ) ,  is to minimize the energy of the error signal 

Thus, the task is to minimize 

2.5. Discrete representation of continuous signals 

with respect to ci, i E I .  By completing the square, we can also write 

As the middle term in the RHS of (2.233) is nonnegative, Ee is minimized if the 
ci are chosen such as to render this term equal to zero. This is achieved for 

m 

ci = ( x ,  $i) = / -m ~ ( t ) $ : ( t )  dt, i E I (2.234) 

The minimum value of &, is then given by 

When c;, i E I, are computed using (2.234), the signal f ( t )  of (2.230) is called 
the projection of x ( t )  onto the space spanned by the signals of the sequence 
($i(t))iEl, that is, on the set of signals that can be expressed as linear combina- 
tions of the $;(t). This denomination stems from the fact that, if (2.234) holds, 
the error e( t )  is orthogonal to every $i(t), i E I ,  and hence to f ( t ) .  In fact, 

(See Fig. 2.25 for a pictorial interpretation of this property in the case I = {1,2).) 

An important issue with this theory is the investigation of the conditions un- 
der which = 0. When this happens, the sequence ($Ji( t)) ,Er is said to be 
complete for the signal x ( t ) ,  and from (2.235) we have the equality 

In this case we write 

~ ( t )  = C ci$i(t) 
i E 1  

although this equality is not to be interpreted in the sense that its RHS and LHS 
are equal for every t ,  but rather in the sense that the energy of their difference is 
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Figure 2.25: P ( t )  is the projection of x ( t )  onto rk, the signal space spanned by $ l ( t )  
and +2(t) .  

zero. This fact is often expressed by saying that the RHS and LHS of (2.237) are 
equal almost everywhere. 

In conclusion, once an orthonormal signal set has been chosen, a signal z ( t )  
can be represented by the sequence ( c ~ ) ~ ~ ~  defined by (2.234). This representa- 
tion is exact (in the sense just specified) if the orthonormal set is complete with 
respect to z ( t ) .  

Example 2.19 (The complex Fourier series) The orthonormal sequence 

is complete for every complex signal x ( t )  defined in the interval (-T/2,  T /2 )  and hav- 
ing bounded variation with finitely many discontinuity points. The expansion 

with 

is the familiar complex Fourier-series representation. 
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Gram-Schmidt procedure 

Because of the importance of orthonormal signal sequences, algorithms for con- 
structing these sequences are of interest. One such algorithm, which is compu- 
tationally convenient because of its iterative nature, is called the Gram-Schmidt 
orthogonalization procedure. Let a sequence (4 i ( t ) )C1  of finite-energy signals 
be given. We assume these signals to be linearly independent, i.e., to be such 
that any linear combination CEl c&(t) is zero almost everywhere only if all 
the q are zero. An orthonomal sequence ( $ ~ ~ ( t ) ) : ,  is generated by using the 
following algorithm (see Problem 2.21). 

We first define the auxiliary signal $( ( t )  equal to ( t ) :  

then we normalize it to obtain the first orthonormal signal: 

By subtracting from 42 ( t )  its projection onto $ J ~  ( t )  we obtain a signal orthogonal 
to $ J ~  ( t ) ,  as shown in Fig. 2.26: 

that we normalize to obtain the second orthonormal signal: 

By proceeding this way, we obtain the entire set of orthonormal signals. The 
general step of the algorithm is then: 

for i = 1,2, .  . . , N (when i = 1 the sum in the first equality is empty). 

Geometric representation of a set of signals 

The theory of orthonormal expansions of finiteenergy signals shows that a sig- 
nal z ( t )  can be represented by the (generally complex) sequence (ci)iE1 of scalar 
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Figure 2.26: Generating a signal orthogonal to lCll  ( t ) .  

products (2.234). once an orthonomal sequence that is complete for x ( t )  has 
been provided. Now, if we consider a given sequence ( $ i ( t ) ) z l  of N orthonor- 
mal real signals, it will be complete for any real x ( t )  that can be written as a 
linear combination of the $i ( t ) ,  that is, in the f o m  

a 
Thus, every such signal can be represented by the real N-vector x  = ( x i ,  . . . , X N ) ,  

or, equivalently, by a point in the N-dimensional Euclidean space (i.e., the space 
of all real ordered N-tuples) whose coordinate axes correspond to the signals 
$ i ( t ) ,  i  = 1 , .  . . , N .  

Consider now a set { x i ( t ) ) z l  of real signals. Can we find an orthonomal 
sequence that is complete for these M signals? If so, we can represent x i ( t ) ,  
x 2 ( t ) ,  . . . , x M ( t )  as M vectors or as M points in a Euclidean space of suitable 
dimensionality. If the signals in the set { x i ( t ) ) ~ ,  are linearly independent, it 
suffices to apply to it the Gram-Schmidt procedure to find such an orthonomal 
sequence. In fact, (2.240) shows that each of the $ i ( t )  is expressed as a linear 
combination of signals in { x i ( t ) ) z l ;  hence, each of the x , ( t )  can be expressed 
as a linear-combination of the $ i ( t ) .  Suppose, instead, that only N signals in 
{ x i ( t ) ) z l  are linearly independent, and hence M - N of them can be expressed 
as linear combinations of the remaining signals. In this case, the Gram-Schmidt 
procedure can still be used, but it will produce only N < M nonzero orthonomal 
signals. Every x i ( t )  is then represented by the N-vector 
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where 
a 

~ , j = ( x i , $ ~ ) ,  i = l ,  ..., M ,  j = l ,  . . . ,  N (2.244) 
or, equivalently, as a point in the N-dimensional Euclidean space whose coor- 
dinate axes correspond to the nonzero orthonomal signals found through the 
Gram-Schmidt procedure. In this situation, we say that the signal set {xi(t))iM_, 
has dirnensionali~ N. 

Example 2.20 Consider the four signals 

xi( t )  = cos [ ~ t  + ( 2  - l ) ~ / 2 ]  t tE ( 0 , 2 ) ,  i  = 1 , 2 , 3 , 4  (2.245) 

Using the Gram-Schmidt procedure, we get 

$1 ( t )  = cos 7rt 

&( t )  = - sin nt 

and 
1Cl3(t) = 1Cl4(t) = 0  

which shows that the signal set (2.245) has dimensionality 2 and is represented by the 
four vectors: 

The reader should observe that the M-signal set 

x i ( t )  = cos[nt + 2(i - l )7r /M],  t  tE (0 ,  2) ,  i = 1 , 2 , .  . . , M (2.246) 

has dimensionality 2, and can also be represented using the same orthonomal basis. 

Computing signal distances and scalar products 

Based on the procedure just developed, a real-signal set { x i ( t ) ) E l  defined for 
0 5 t  < T can be represented by a set of vectors x ,  = ( x i l ,  . . . , X ~ N )  in the N -  
dimensional Euclidean space. By using (2.242) and orthonormality of the signals 
$ i ( t ) ,  it can be easily proved that the following holds for any i = 1 , .  . . , M: 

which shows that the energy of a signal equals the squared length of the vec- 
tor representing it. This equivalence between signal energy and distance of the 
vector from the origin is a very useful relation. 
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Moreover, we have 

As two signals are orthogonal if their scalar product vanishes, we visualize or- 
thogonal signals by two vectors perpendicular to each other. 

Finally, 

The latter quantity is the (Euclidean) distance between signals zi(t), ~ k ( t ) ,  and 
is equal to the squared distance between the two vectors 4, xk. 

Sampling expansion of bandlimited signals 

Consider now the set of signals x(t) strictly bandlimited in the frequency interval 
(-B, B),  that is, such that their Fourier transform X ( f )  is identically zero for 
If 1 2 B. An orthonormal basis for any such z(t)  can be found as follows. 
Expand X( f )  in a Fourier series according to (2.238) and (2.239). Then take the 
inverse Fourier transform to get an expansion for x(t). This procedure yields 

and finally 

sin 2rB[t - i/(2B)] 
= m. ' %B[t - i/(BB)] 

(2.252) 
1=-m 

which is an expansion valid for every z( t )  with bandwidth B. Observing further 
that the integral in the RHS of (2.251) is proportional to the inverse Fourier 
transform of X( f )  computed for t  = i/(2B), ci can be put in the form 

This shows that the coefficients of the series expansion (2.252) are the samples 
of the signal z( t )  taken at the time instants i / (2B),  -co < i  < co. Explicitly, 
from (2.250) and (2.253) we obtain 

and hence, by taking the inverse Fourier transform. 

Equation (2.255) shows that every finite-energy signal with bandwidth B can 
be fully recovered from the knowledge of its samples taken at the rate of 2B sam- 
ples per second. More generally, as any signal bandlimited in (-B, B)  is also 
bandlimited in (-B', B'), where B' > B, we can say that any finite-energy band- 
limited signal can be represented by using the sequence of its samples, provided 
that they are taken at a rate not less than 2B. This minimum sampling rate of 
2B is usually called the Nyquist sampling rate for z(t) .  If z(t)  is a narrowband 
signal, it should be observed that it is convenient to apply the sampling expan- 
sion (2.255) to its complex envelope instead of the signal itself. This results in a 
much lower Nyquist frequency and, hence, in a more economical representation. 

Observe now that (2.255) can also be written in the form 

Now, sin(2rBt)/(2rBt) can be interpreted as the impulse response of a linear, 
time-invariant system with frequency response 

that is, an ideal low-pass filter with cutoff frequency B. Thus, (2.256) suggests 
how to implement a system that recovers z( t )  from its samples. The sequence 
of samples is used to modulate linearly a train of impulses, which is then passed 
through an ideal low-pass filter (see Fig. 2.27). 

A frequency-domain interpretation of the reconstruction of a sampled signal 
can also be provided. Let the signal z(t)  be sampled every T, seconds, and 
observe that we can write 

m 

) (  - ) = ( t )  E d(t - iT,) (2.258) 
a=-m 1=-m 
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Figure 2.27: Recovering a bandlimited signal x(t) from its samples. H(f)  is an ideal 
low-pass filter with cutoff frequency B. 

The spectrum of this signal is obtained by taking the convolution of X ( f )  with 
the Fourier transform of a train of impulses with period T,. This is given by 

[use (2.109)]. Thus, the spectrum of (2.258) is 

which is periodic with period 1/T, (see Fig. 2.28). 
The original signal can be recovered from Xs(f)  by using the ideal low- 

pass filter whose transfer function H ( f )  is shown in Fig. 2.28, provided that the 
translated copies of X (  f )  forming Xs( f )  do not overlap. This condition holds if 

1 
and only if B < - - B, that is, 

Ts 

fs > 2B (2.260) 

A 
where f, = 1/T, is the sampling rate. 

If (2.260) does not hold (i.e., the signal is sampled at a rate lower than 
Nyquist's), x(t) cannot be recovered exactly from its samples. The signal ob- 
tained at the output of the ideal low-pass filter has the Fourier transform 
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Figure 2.28: Sampling and reconstructing a bandlimited signal: frequency domain rep- 
resentation. 

It is important to observe that if this situation occurs (i.e., the signal is "un- 
dersampled), even the phase of the sampling process affects the shape of the 
reconstructed signal. Specifically, if the sampled signal is 



where 8 is a constant smaller than T,, at the output of the low-pass filter we get 
a signal whose Fourier transform is 

If the bandwidth of x(t) does not exceed 1/ (2T,), then (2.262) gives the spectrum 
of x(t) (as it should). Otherwise, the shape of the signal recovered will also 
depend on the value of O. 

2 BT-theorem and the uncertainty principle 

The sampling expansion (2.255), which is valid for any x(t) bandlimited in 
the interval (-B, B), when applied to a signal vanishing outside the time in- 
terval (0, T) has nonzero terms occurring only for 0 < il(2B) < T (i.e., for 
2 = 0,1,2, . . . ,2BT). Thus, any bandlimited and time limited x(t) is completely 
specified by 2BT + 1 - 2BT constants. For real signals, this fact can be sum- 
marized by saying that "the space of real signals of duration T and bandwidth B 
has dimension 2BT." 

However, this argument is fallacious, because no bandlimited signal (besides 
the trivial null signal) can have a finite duration. The proof of this property 
is based on the fact that a signal x(t) whose amplitude spectrum vanishes for 
I f  1  > B can be written as 

Now, if we allow t in (2.263) to be a complex variable, this extended x(t) is 
an entire function oft .  In other words, x(t) has no singularities in the finite t 
plane, and its Taylor series expansion about every point has an infinite radius of 
convergence. Thus, any x(t) vanishing on any interval of the time axis would 
have all its derivatives zero at some interior point of the interval. Hence, its 
Taylor series expansion would require it to be identically zero. 

This impossibility for a signal to be simultaneously bandlimited and time 
limited is a special case of the unceltaintyprinciple for a signal and its Fourier 
transform. One way to describe this principle is the following (stated without 
proof). Define two quantities a E [0, 11 and E [0, 11 that measure the fraction 
of the signal energy concentrated in the time interval (-T/2, T/2) and in the 
frequency interval (- B ,  B),  respectively: 
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and 

Figure 2.29: Thefunction c(Xo) of the uncertainty principle. 

where E, denotes the energy of the signal x(t). The uncertainty principle states 
that 

nBT 2 c(Xo) (2.266) 

where 
xo = C O S ~ ( B ~  + e2), C O S ~  el = a, C O S ~  e2 = a (2.267) 

and the function c( . ) is shown in Fig. 2.29. Notice that c(Xo) + m as Xo + 1. 
With a signal both time limited and bandlimited, we should have a = = 1 

for a finite product BT. But this would be in conflict with (2.266), because in 
this case Xo = 1, and hence c(Xo) = m. 

Example 2.21 For an example of the application of the uncertainty principle, deter- 
mine the minimum value of the product TBT for a = /3 = 0.95. From (2.267) we 
get 01 = 02 = 0.2255 and Xo = cos2 0.4510 = 0.81. The curve in Fig. 2.29 yields 
c(Xo) 2 1.6. 0 

Let us now return to our 2BT theorem. Although it is not strictly true in 
the form stated at the beginning of this section, it can be reformulated in a more 
rigorous manner. To this end, we must recognize the inherent physical limi- I l 1  

tations of measuring equipment, and the consequent inability of measuring an 
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energy smaller than the energy resolution of this equipment. Thus, denote by e 
the smallest amount of energy that we could measure. We say that a real signal 
x(t) is time limited to (-T/2, T /2)  at level e if 

and is bandlimited with bandwidth B at level e if 

Conditions (2.268) and (2.269) indicate that the energy lying outside the time in- 
terval (-T/2, T /2)  and the frequency range (-B,  B)  is less than we can mea- 
sure. Furthermore, a set S of real signals is said to have dimension N at level e 
if there is a set of N signals {$~~(t)):,  such that, for each x(t) E S, there exist 
al, az, . . . , a~ such that 

and there is no set of N - 1 functions that will approximate every x(t) E S in this 
manner. In words, every signal in S can be so well approximated in (-T/2, T /2)  
by a linear combination of $l ( t ) ,  . . . , $ ~ ~ ( t )  that we could not measure the en- 
ergy of the difference between the signal and its approximation. With these 
definitions, we have the following theorem, due to Slepian (1976): 

Theorem 2.1 Let S, be the set of real signals time limited to (-T/2, T /2)  at 
level E and bandlimited to (- B,  B )  at level E .  Let N = N(B,  T ,  e ,  el)  be the 
approximate dimension of S, at level el. Then, for every e' > E ,  

lim IN(B,  T ,  e ,  e') = 2B, lim IN(B, T ,  e ,  e') = T (2.271) 
T+w T B+W 2B 

This "2BT-theorem" renders precise the concept that for large BT the space 
of signals of approximate duration T and approximate bandwidth B has approx- 
imate dimension 2BT. The proof of the theorem will not be reported here: the 
interested reader is referred to Slepian (1976). 

2.5.2. Orthonormal expansions of random signals 

We shall now briefly consider the problem of associating a discrete representa- 
tion with a random signal ( ( t ) .  Quite generally, we look for a series expansion 
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of the form 

where $ ~ ~ ( t ) ,  -m < i < m, are deterministic random functions, yi are random 
variables, and the equality is to be interpreted in the sense that 

lim E ( ( t )  - I y&(t) = 0 
+ 1 i=-* 

Various constraints may be imposed on ( ( t ) ,  $i(t), and the random sequence 
(yi) ,  thus obtaining different families of expansions. In the Karhunen-Lodve 
expansion, ( ( t )  is a WS stationary process defined in the finite interval (0, T ) ,  
{ $ ~ ~ ( t ) ) z ,  is a set of finite-energy orthogonal signals, and the coefficients yi are 
uncorrelated random variables. 

If the process ( ( t )  is bandlimited, in the sense that its power spectrum Gt ( f )  
vanishes outside the interval ( -B,  B) ,  we have the sampling expansion 

w i  sin 2nB(t - i l (2B))  
(( ' )  = r=-w .I ( 2 ~ )  2nB(t - i l (2B))  

The coefficients (( iI(2B))  are uncorrelated if and only if Gt ( f )  is constant over 
(-B,  B).  

More general classes of series representations of WS stationary random pro- 
cesses were derived by Masry, Liu, and Steiglitz (1968) and Campbell (1969). 
Similar results were obtained by Cambanis and Liu (1970) for harmonizable pro- 
cesses, and for an even more general class of processes (the "weakly continuous" 
processes) by Cambanis and Masry (1971). 

2.6. Elements of detection theory 

In this section we examine the problem of recognizing a signal chosen at ran- 
dom (with known probabilities) from a finite known set {si(t))K1 once it has 
been perturbed by a random disturbance in the form of a noise process v(t) in- 
dependent of the signal and added to it. More specifically, the problem is to 
decide which one, among the signals sl ( t ) ,  sz(t), . . . , s~ ( t ) ,  has given rise to 
the observed signal y(t), when it is known that y(t) has the form 

for some j ,  1 5 j 5 M. Signals and noise may be either real or complex (i.e., 
complex envelopes of narrowband time functions). It will be assumed here that 
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u ( t )  is a white Gaussian process, with power spectral density N o / 2  (real signals) 
or 2No (complex envelopes). The signals dealt with have a finite energy and a 
finite duration. Also, their starting and ending times are known to the observer. 
We assume that s i ( t ) ,  1 5 i 5 M, are defined in the interval 0  5 t  < T and that 
y ( t )  is observed in the same interval. 

This problem, called a detection problem, is central in digital transmission 
theory. It will be provided further motivation in Chapter 4, which includes a 
number of applications. 

2.6.1. Optimum detector: One real signal in noise 

We shall consider first, for simplicity's sake, the case in which there are only 
two signals, one of which is zero. Thus, the task is to decide between the two 
hypotheses 

where s ( t )  is a finite-energy real signal. The decision is based on the observation 
of y ( t )  for 0  5 t  < T ,  and we want it to be made in such a way that the proba- 
bility of a wrong decision is minimized. In words, we say that HI (respectively, 
Ho) is tme when the observed signal contains (respectively, does not contain) 
4 ) .  

A basic step in our derivation of the optimum detector is the discrete repre- 
sentation of the signals involved, which allows us to avoid further consideration 
of time functions. To do this, we expand y ( t )  in an orthonormal series and rep- 
resent it using the sequence of its coefficients. As a basis for this expansion, 
we choose any complete sequence of real signals ( $ i ( t ) ) g l ,  orthonormal in the 
interval ( 0 ,  T )  and such that ?Irl(t) = s ( t ) / a  (see Problem 2.22). Hence, s ( t )  
will be represented by the sequence (G, 0 , 0 , .  . .) and v ( t )  by the sequence 
(y, vz, v3,. . .), where 

T . f /o v ( t ) & ( t )  d t ,  i = 1 , 2 , .  . 

By direct calculation it can be shown that E { v i }  = 0 ,  i = 1 , 2 ,  . . ., and 

2.6. Elements of detection theory 85 

Since ui, i = l , 2 , .  . ., are Gaussian RVs, (2.278) shows that they are indepen- 
dent. In terms of these discrete representations, we can formulate our decision 
problem as follows. Decide between the hypotheses 

on the basis of the observation of the quantities 

Consider now a cmcial point. Under both hypotheses Ho and H I ,  the observed 
quantities Y2, Y3,. . ., are equal to v2, y, .. . , respectively, and these are inde- 
pendent of each other and K .  Thus, the observation of Y2,  &, . . ,, does not add 
any information to the decision process, and hence it can be based solely on the 
observation of 

(Notice that the assumption of a Gaussian noise is cmcial here. Without it, 
Y2, Y3,  . . . would only be uncorrelated with Y l ,  rather than independent of it.) 

In conclusion, the problem is reduced to the decision between the two hy- 
potheses 

upon observation of Yl as defined in (2.281). The quantity Yl is called the suf- 
ficient statistics for deciding between Ho and H I ,  because it extracts from the 
observed signal y  ( t )  all that is required to perform the decision. All other infor- 
mation about y ( t )  is irrelevant to the decision process. 

Since the decision is based only on the observation of the scalar quantity 
Yl, the optimum detector will first compute the scalar product (2.281) of the 
observed signal y ( t )  and s ( t ) .  Then it will choose either Ho or HI according to 
the value taken by Y l .  If we denote by S1 and So = R - S1 two subsets of the 
real line R, the decision rule is 

choose Ho if yl E So 
choose HI if yl E S1 

where yl is the observed value of the random variable Yl. Hence, the optimum 
decision mle can be specified by choosing So and S1 in such a way that the 



86 2. A mathematical introduction 

average error probability is minimized. The error probability is given by 

P ( e )  = 

= L P ~ ~ Y ~ I H ~ ( Y  I HI) dy + L P O ~ Y ~ H ~ ( Y  I HO) d~ 

= ~ P ~ ~ Y ~ ~ H ~ ( Y  I HI) dy - 1 pofvrln1(y I ~ 1 )  dy + L P O ~ Y ~ ~ H ~ ( Y  I HO) dy 

= PI - L l b l f ~ l ~ , ( ~  1 HI) - P O ~ Y ~ ~ H ~ ( Y  1 Ho)] dy (2.284) 

A A 
where po = P{Ho}, p1 = {HI} are the a priori probabilities that Ho is true [i.e., 
the observed signal does not contain s(t)] and H1 is true [i.e., the observed signal 
contains s(t)], respectively. To minimize P(e ) ,  we should maximize the contri- 
bution to the integral of the term in brackets in the last expression of (2.284). 
This can be done by including in S1 all the values y taken on by K such that 
P ~ ~ Y ~ ~ H ~  (Y I HI) > pO fYIIHo(y I HO) and in So the remaining values. Values 
of Yl such that the integrand is zero do not affect the value of P(e) ,  and hence 
may be included in either So or S1 arbitrarily. If we define the Iikelihood ratio 
between hypotheses Ho and Hl as 

A(Y) 2 

the decision rule becomes 

choose Ho if A(yl) < 5 
Pl 

choose H1 if A(yl) > 5 (2.286) 
Pl 

In conclusion, the optimum detector consists of a device that computes the 
likelihood ratio A(yl) and compares its value with the threshold po/pl. Explic- 
itly, we have 

so that, using (2.281), 
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Because of the likelihood ratio's structure, it is customary to define the Iog- 
Iikelihood ratio as the logarithm of A( . ): 

so (2.288) becomes 

and the decision rule becomes 

Po choose Ho if X(yl) < In - 
Pl 

choose H1 if X(yl) > In 5 Pl (2.291) 

An important special case occurs when po = pl (i.e., the two hypotheses are 
equally likely). In such a case, the decision is made by comparing X(yl) against 
a zero threshold. Moreover, from (2.290) it is seen that the value of the constant 
No is not relevant to the decision. Hence, when po = pl the decision procedure 
does not depend on the spectral density of the noise. This simplification and the 
fact that the a priori probabilitiespo andpl might be unknown justify the frequent 
use of the simplified decision rule (called the marimum Iikelihood, or M L ,  rule): 

choose Ho if X(yl) < 0 
choose H1 if X(yl) > 0 (2.292) 

although it gives minimum error probability only when po = pl. The rule (2.291) 
is referred to as the marimum a posterioriprobability, or MAP, rule. The struc- 
ture of the ML detector is shown in Fig. 2.30. 

Example 2.22 (The integrate and-dump receiver) A simple special case of the gen- 
eral ML detector previously considered arises when the signal s ( t )  has a constant ampli- 
tude A in the interval 0 5 t  < T .  The task is then to decide between the two hypotheses 

upon observation of y( t )  for 0 5 t  < T .  In this case. E3 = A'T, and from (2.281) we 
have 

1 T 
Yl = - f i b  Y(W (2.294) 
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Figure 2.30: ML detection of a real signal s(t) in white Gaussian noise. 

Equation (2.294) shows that the sufficient statistics for the detection are computed by 
averaging out the noise from the observed signal. This is obtained by integrating y(t) 
over the observation interval. 

Consider the performance of this detector when po = pl. The RV 

is Gaussian, with mean zero and variance No/2. Thus, the error probability under Ho 
(i.e., the probability of choosing HI when Ho is true) is 

P(e I Ho) = P{X(Yl) > 0 I Ho) 
= P {y > A f i / 2 )  

where erfc ( . ) is the complementary error function (see Appendix A). Similarly, the 
error probability under H1 is 

so that . 

If we define the signal-to-noise ratio 
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it is seen that, as P(e) is a monotone decreasing function of q, the error probability will 
decrease by increasing the level A, or by increasing the duration T of the observation 
interval, or by decreasing the noise spectral density. 0 

Matched filter 

Consider again (2.281). This equation shows that the sufficient statistics can be 
obtained, apart from a constant factor, as the output at time t  = T of a linear, 
time-invariant filter whose impulse response is 

In fact, with this definition we have 

A filter whose impulse response is (2.300), or, equivalently, whose transfer func- 
tion is 

H ( f )  & s*(f)e-j2"fT (2.302) 

where S ( f )  A F[s(t)] ,  is called the filter matched to the s i g ~ l  s(t).  Thus, we 
can say that a matched filter whose output is sampled at t  = T extracts from the 
observed signal y(t) the sufficient statistics for our decision problem. 

An important property of the matched filter is that it maximizes the signal-to- 
noise ratio at its output, in the following sense. When the filter input is the sum of 
the signal s(t) plus white noise v(t) ,  at time t  = T i t s  output will be made up of , 

two terms. The first is the signal part JTm H(f)S(f)ej2"fT df, where H ( f )  is the 
transfer function of the filter. The second is the noise part, a Gaussian RV with 
mean zero and variance (No/2) /-wm I H(f)I2 d f .  If we define the signal-to-noise 
ratio at the filter output 

(i.e., the ratio between the instantaneous power of the signal part and the vari- 
ance of the noise part), we can show that C2 is maximized if H ( f )  has the 
form (2.302); that is, if the filter is matched to the signal s(t).  The proof is based 
on Schwarz's inequality, which states that if A ( . )  and B( .) are two complex 
functions, then 

II AB'12 5 l IAI2 l PI2 (2.304) 
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with equality if and only if A = aB', where a is any complex constant. Us- 
ing (2.304) in (2.303), we get 

Thus, the maximum value of the signal-to-noise ratio C 2  is obtained for 

Since a can be any constant, we can set a = 1 without loss of optimality, SO 

that the filter sought is indeed the matched filter as defined by (2.302). Notice 
that this filter may be physically unrealizable, in which case it is necessary to 
approximate it. Also, its response to the input s ( t )  is, at time t  = T :  

that is, the energy of s ( t ) .  

2.6.2. Optimum detector: M real signals in noise 

We now want to solve the most general problem stated at the beginning of this 
section, that is, to decide among the M hypotheses 

upon observation of y ( t )  in the time interval ( 0 , T ) .  The M real signals s j ( t ) ,  
j = 1 , .  . . , M ,  are known and have a finite duration and a finite energy. Us- 
ing the Gram-Schmidt procedure, we can determine an orthonormal signal set 
{ $ i ( t ) ) E l ,  N < M ,  such that each s j ( t ) ,  j = 1 , 2 , .  . . , M ,  can be expressed 
as a linear combination of these signals. Also, consider a complete orthonormal 
signal sequence such that its first N signals are I l l ( t ) ,  . . . , $ ~ ( t )  (see Problem 
2.22). Denote with ( G i ( t ) ) z l ,  this sequence, and define 

and 4, Y, as in (2.277) and (2.280), respectively. The decision problem can be 
formulated in a discrete form as follows. Choose among the M hypotheses 
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j = 1 , 2 , .  . . , M ,  on the basis of the observation of the values taken by the RVs 
Y l ,  Y z ,  . . . . As the noise components V N + I ,  VN+Z, . . . , are independent of ul ,  . . . , 
V N ,  and of the hypothesis, observation of YN+~.  YN+Z, . . . , does not add any 
information to the decision process. Thus, it can be based solely on the observa- 

a tion of K ,  Y z ,  . . . , YN. By defining the row N-vectors Y = [K, Yz, . . . , Y N ] ,  
a a 

Y = [ul ,  14, . . . , vN], and sj = [ s j l ,  sjz, . . . , s jN] ,  j = 1 , .  . . , M ,  (2.310) can 
be reduced to the vector form 

Thus, the optimum detector sought for will operate as follows; 

choose Hi if y E Si (2.312) 

where y denotes the observed value of the random vector Y, and S1, S2, . . . , SM 
is a partition of the N-dimensional vector space such that the rule (2.312) gives 
a minimum of the average error probability 

a 
where pj = P { H i )  , j = 1 ,2 , .  . . , M .  It is seen from (2.313) that P ( e )  is 
minimized if every S j  is chosen in such a way that 

By combining (2.312) and (2.314), we obtain the MAP decision rule. In this 
situation the M-dimensional regions S j  are called the MAP decision regions. In 
the special case where the hypotheses Hi are equally likely, that is, pi = 1/M, 
j = 1 , 2  ,..., M,(2.314)becomes 

z  E S j  if and only if f y I ~ ,  ( z  I Hi) = m,w f y I H i ( z  I Hi)  (2.315) 

which corresponds to the maximum-likelihood (ML) decision rule (accordingly, 
the Si are called the ML decision regions). Although it minimizes the average 
error probability only for equally likely H j ,  (2.315) is the most used detection 
rule, so in the following we shall mostly confine our attention to ML detection. 

By defining the auxiliary hypothesis 

(2.315) can also be written in the form 
, . , m ,  

z  E S j  if and only if A, ( z )  = max Ai ( z )  (2.317) 
I 
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where we define the likelihood ratios 

Thus, the ML decision rule is 

choose Hj if A j ( y )  = m,vAi(y)  (2.3 19) 

where, as usual, y denotes the observed value of Y .  That is, the ML detector 
operates by computing the M likelihood ratios Al(y ) ,  A&), . . . , ~ M ( Y ) ,  and 
then choosing the hypothesis that corresponds to the largest among them. Let US 

now compute explicitly the likelihood ratios (2.318). By observing that, under 
hypothesis Hj,  j = 0,1,. . . , M ,  Y is a Gaussian random vector with mean 
sj (or zero for j = 0), independent components, and variance No12 for each 
component, we have, for j = 1,. . . , M ,  

where as usual lx12 = xx' = EL, 2; denotes the squared modulus of the row 
vector x. Consideration of the log-likelihood ratios 

allows us to rewrite (2.319) in the following simple form: 

1 
choose H, if ys; - -lsj12 = 

2 

A different expression for the log-likelihood ratio can be derived as follows. 
Because m 

Y ( t )  = C Yi$i(t) (2.323) 
i=l 

and 
N 

s j ( t )  = C sjt$t(t) (2.324) 
!=I 

we have 

N 
= c Y i s j i  

i=l 

A = Y s j  

2.6. Elements of detection theory 

and 

so that 

In Chapter 4 the structures of the optimum detectors based on (2.320) and (2.327) 
will be reexamined and discussed. 

2.6.3. Detection problem for complex signals 

We shall now focus our attention on the problem of detecting complex signals 
in Gaussian noise. This situation occurs when we are dealing with narrowband 
signals that we want to describe using complex envelopes. Let us first consider 
the detection of a single complex signal in noise, that is, the decision among the 
hypotheses 

where t E (0, T ) ,  and y(t) ,  v ( t ) ,  and s( t )  are complex envelopes of narrowband 
signals (for notational simplicity, we omit the tilde). In particular, we have 

where v( t )  is a complex Gaussian noise process with power spectral density 
2No, and vc(t) ,  vs( t )  are independent, white Gaussian baseband processes with 
power spectral density No (see Fig. 2.20). Hence, ( 1 / a ) v C ( t )  and (l /&)v,(t)  
have spectral density No/2, and the energy of ( l / a ) s ( t )  is the same as the 
real signal with which it is associated. Choose now a real orthonormal sequence 
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where we define the likelihood ratios 

Thus, the ML decision rule is 
r 

choose Hj if A,(y) = mlaxAi(y) (2.3 19) 

where, as usual, y denotes the observed value of Y .  That is, the ML detector 
operates by computing the M likelihood ratios Al(y) ,  A&), . . . , AM(Y),  and 
then choosing the hypothesis that corresponds to the largest among them. Let us 
now compute explicitly the likelihood ratios (2.318). By observing that, under 
hypothesis HI, j  = 0,1, .  . . , M ,  Y is a Gaussian random vector with mean 
s, (or zero for j  = 0), independent components, and vanance No12 for each 
component, we have, for j  = 1,. . . , M ,  

where as usual IxI2 = XX' = xL1 zf denotes the squared modulus of the row 
vector x. Consideration of the log-likelihood ratios 

allows us to rewrite (2.319) in the following simple form: 

1 
choose Hj if ysj - -lsj12 = (2.322) 

2 

A different expression for the log-likelihood ratio can be derived as follows. 

N 
= cY;.sji 

i= I 

A = Y s j  

2.6. Elements of detection theory 

and 

so that 

In Chapter 4 the structures of the optimum detectors based on (2.320) and (2.327) 
will be reexamined and discussed. 

2.63. Detection problem for complex signals 

We shall now focus our attention on the problem of detecting complex signals 
in Gaussian noise. This situation occurs when we are dealing with narrowband 
signals that we want to describe using complex envelopes. Let us first consider 
the detection of a single complex signal in noise, that is, the decision among the 
hypotheses 

where t  E (0, T ) ,  and y(t) ,  v ( t ) ,  and s( t )  are complex envelopes of narrowband 
signals (for notational simplicity, we omit the tilde). In particular, we have 

4) = vc(t)  + j 4 )  (2.330) 

~ ( t )  = yC ( t )  + jyS ( t )  (2.331) 

where v( t )  is a complex Gaussian noise process with power spectral density 
2No, and vc(t), v s ( t )  are independent, white Gaussian baseband processes with 
power spectral density NO (see Fig. 2.20). Hence, ( 1 / a ) v C ( t )  and ( l / f i ) v s  ( t )  
have spectral density &/2, and the energy of (l /&)s(t)  is the same as the 
real signal with which it is associated. Choose now a real orthonormal sequence 
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( t ) ,  $sl ( t ) ,  & ( t ) ,  &2(t), . . .), complete for any real signal in the time in- 
terval (0, T), with & ( t )  = sc( t )  and $s l ( t )  = ss( t ) .  By formulating our detec- 
tion problem in a discrete form, we have 

n where y  = yc + jy,. Through computations similar to those that led to (2.327), 
it can be shown that the likelihood ratio between Ho and HI can also be written 
in the form 

where This result can be extended to the problem of detecting one out of M complex 
signals in noise. In this case the likelihood ratio among the hypotheses 

and 

(where all the signals are complex) is given by 
I 

T 

A J ( Y )  = exP ( $ 8 1  Y * ( t ) s ~ ( t )  dt - L / T  1sJ(t)l2 dt} (2.343) 
No 0 

The proof of (2.343) is left to the reader. 

Discarding the data irrelevant to the decision process, (2.332) can be put in the 
equivalent form 2.6.4. Summarizing the detection procedure 

From the above discussion we have learned that the detection procedure consists 
of two basic steps: 

1 1. Computation of the sufficient statistics, which consists of distilling from 
the observation what is sufficient to make the decision in an optimal way. 

a a a 
where Yl = Ycl + jYsl, y = ucl + jusl, and sl = scl + jssl. In this situation, 
the decision regions So and S1 are two dimensional, and the likelihood ratio 

2. Use of the sufficient statistics for the detection. 

I 

For example, in the case of one real signal in white Gaussian noise the sufficient 
statistics is 6 in (2.281), a scalar quantity extracted from the signal y( t )  ob- 
served. The decision rule is based on yl, the observed value of Y l ,  and is given 
for example by (2.291). 

This distinction between the two steps of the detection procedure may be 
especially relevant when a suboptimum detection rule is sought: for example, 
for simplicity's sake one of the two steps may not be optimum. 

is equal to 
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2.7. Bibliographical notes 

Several excellent books cover the area of signal and system theory. In most 
of them the reader can find further details regarding the topics covered in this 
chapter. Continuous-time and discrete-time deterministic signals and systems 
are treated extensively by Oppenheim, Willsky, and Young (1983). Discrete-time 
signals and systems are studied, among others, in Schwartz and Shaw (1975), 
Oppenheim and Schafer (1989), Proakis and Manolakis (1992). Papoulis (1977) 
covers both continuous- and discrete-time systems and deterministic and random 
signals. Gallager (1995) covers discrete random processes. 

Volterra series were first studied by the Italian mathematician Vito Volterra 
around 1880 as a generalization of the Taylor series of a function. His work in 
this area is summarized in Volterra (1959). The application of Volterra series 
to the analysis of nonlinear systems with memory was suggested by Norbert 
Wiener. Extensive treatments of Volterra series as applied to the description of 
nonlinear systems can be found in Schetzen (1980) and Rugh (1981). Basic work 
in this area is represented by the paper of Flake (1963), whereas a relatively 
recent good review is found in Schetzen (1981). Applications are covered by 
Weiner and Spina (1980), and, among others, in the papers by Bedrosian and 
Rice (1971) and Benedetto, Biglieri, andDaffara (1976 and 1979). 

Probability theory and random processes, at the level needed for this book, 
are covered by Panen (1962), Papoulis (1965), and Davenport (1970). A com- 
prehensive treatment of cyclostationary processes can be found in the disserta- 
tion by Hurd (1969) and in the papers by Gardner and Franks (1975) and Gardner 
(1978). Complex random processes are covered extensively by Miller (1974). 
Further details on Markov chains can be found in the classic book by Feller 
(1968) or in Kemeny and Snell(1960). The two volumes by Gantmacher (1959) 
on matrix theory include a treatment of Markov chains based on their matrix de- 
scription. The reader is warned, however, that the nomenclature in Markov chain 
theory varies in the literature. 

Fourier series and Fourier transforms are covered by Bracewell (1978), Dym 
and McKean (1972), and Papoulis (1962). Arsac (1966) emphasizes generalized 
functions. The approach to the computation of the power density spectrum of a 
random process t ( t )  based on the function rc( fi , f2 )  is described in some detail 
in Blanc-Lapierre and Fortet (1968) and in Papoulis (1965). Spectral analysis of 
digital signals based on a Markov chain model was first discussed by Huggins 
(1957) and Zadeh (1957). Since then, several authors have expanded on the basic 
results. For a comprehensive and detailed discussion of this topic, see Cariolaro, 
Pierobon, andTronca (1983) and Galko and Pasupathy (1981), where the whole 
treatment is given a firm mathematical basis. 

For a more detailed treatment of narrowband signals and bandpass systems 
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than was possible here, the reader is referred to Schwartz, Bennett, and Stein 
(1966, pp. 29-45) and Franks (1969, pp. 79-97, 195-200), or to the papers of 
k e n s  (1957), Dugundji (1958), and Bedrosian (1962). Different possible defi- 
nitions for the envelope of a narrowband signal are discussed and compared in 
Rice (1982). Bandpass nonlinear systems are introduced in Blachman (1971) 
(see also Blachman, 1982). 

Orthonormal expansions of finite-energy signals and the Gram-Schmidt or- 
thogonalization procedure are dealt with by Franks (1969), including an intro- 
duction to the Karhunen-Ldve expansion and to the sampling theorem for ran- 
dom processes. 

A profound treatment of detection theory can be found in the classics by Van 
Trees (1968) and Helstrom (1968). For the computation of the likelihood ratio 
in signal-detection problems, see also Turin (1969) and Kailath (1971). In the 
latter paper the case of nonwhite Gaussian noise is treated using the techniques 
of "reproducing-kernel Hilbert spaces." 

2.8. Problems 

2.1 A given (discrete or continuous) system may or may not be linear, time-invariant, 
memoryless, or causal. Determine which of these properties hold and which do 
not for each of the following systems, described by their input-output relation- 
ships. In particular, when a system is not memoryless determine the length if its 
memory. 

(a) yn = 2xn+1. 

(b) Yn = nxn 

(c) yn = 1 + zL0 ajxn-i 
A 

( d )  yn = XL,, ,~] (LzJ = integer part of z )  

A 
(e) yn = xn[ l  - d n ] ,  bn = 1 for n = 0, and 0 elsewhere 

(0 Yn = 2; 

(9) y( t )  = 1 + J!, h(t  - .r)x(.r) d.r 

(i) y( t )  = x( t  - T )  - x( t  + T )  

cj) y ( t )  = /"= x-7- dr 

(k) y( t )  = 

( I )  y ( t )  = J_M, x(.r)e-JZntT d~ 
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2.2 Find the Fourier transform of the sequence (x,), for 

A 
(a) y, = 6,, 6, = 1 for n = 0, and 0  elsewhere 

1, O S n s N - 1  
(dl 2, = 0, elsewhere 

(e) x ,  = (-l), 

2.3 Given the discrete linear time-invariant system whose input-output relationship is 
described by the difference equation 

compute its transfer function H ( f )  and its impulse response (h,). Determine the 
response of the system to the input 

2.4 Parseval equality: Prove that 

where X (  f )  denotes the Fourier transform of the sequence (2,). 

2.5 Prove that for a continuous or discrete time-invariant Volterra system there is no 
loss of generality if it is assumed that the kernels describing the system are sym- 
metric (i.e., any permutation of their arguments leaves the kernels unchanged). 

2.6 Prove that a continuous time-invariant Volterra system is causal if and only if 
(2.21) holds for all k. Provide the corresponding condition for the kernels of a 
discrete time-invariant Volterra system. 

2.7 Find'the Volterra kernels for the continuous nonlinear system obtained by cascad- 
ing a memoryless nonlinearity and a linear time-invariant system with impulse 
response h ( t )  (Fig. 2.3 1). It is assumed that 

2.8. Problems 

Figure 2.3 1 : See Problem 2.7. 

Figure 2.32: See Problem 2.8. 

Find the input-output relationship of the system of Fig. 2.32, where x ( t )  is a 
low-pass signal whose spectrum is zero for If 1 > f l ,  and H (  f )  denotes an ideal 
bandpass filter centered at fo, f o  >> f l  . 

Consider a finite-energy signal s ( t )  defined for It1 5 T/2 ,  and its Fourier trans- 
A form S (  f ) .  Denoting by d k ) ( t )  the kth derivative of s ( t ) ,  [ d O ) ( t )  = s ( t ) ] ,  show 

Consider then the signal 

and find a so as to get Js(f)I2 = O(f  - 6 ) .  

Discrete matchedfilter: Let the input of a discrete linear time-invariant system 
with transfer function H (  f )  be the real sequence (2,) = ( s ,  +w,), where (s,) is 
a deterministic sequence with Fourier transform S (  f ) ,  and (w,) is a sequence of 
independent, identically distributed random variables. If (y,) denotes the system 
response to (s,) and (v,) the system response to (w,), find H ( f )  such as the 
ratio yg/E[vi] is a maximum. 
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2.11 For a homogeneous Markov chain ((,) with transition probability matrix P, given 
an integer N and an N-tuple of integers kl < kz < -.  . < k ~ ,  express the 
probability P{G, = i l ,  G ,  = i2,  . . . ,&, = i N )  in terms of the entries of P 
and of the initial state distribution vector w(O). 

2.12 Prove that, if the transition matrix P of a fully regular homogeneous Markov 
chain is doubly stochastic, i.e.. the sum of its entries in each row and column 
equals 1 ,  then its stationary distribution vector w has equal components. 

2.13 Let ( ( t )  be a WS stationary random process and R € ( T )  its autocorrelation func- 
tion. Prove that, given n 2 1, for any n-tuple of time instants 7 1 ,  T Z ,  . . . , T, 

and for any n-tuple of complex numbers a l ,  az, . . . , a, the following inequality 
holds: 

n n 

z x a ; a j ~ € ( r i  - rj)  2 0  
k l  j=1 

2.14 Consider the linearly modulated digital signal 
m 

( ( t )  = z a,s(t  - nT)  
n=-m 

where (a,) is a sequence of independent, identically distributed random variables 
taking on values f 1  with equal probabilities. Compute ~ [ ( ' ( t ) ]  and show that it 
is a periodic signal with period T .  

2.15 Let ( ( t )  be a WS cyclostationary process with period T .  Consider a random linear 
system whose output is q ( t )  = ( ( t  - Q ) ,  Q  a random variable independent of ( ( t )  
and uniformly distributed in the interval (0 ,  T ) .  Prove that q( t )  is WS stationary. 
Hint: Consider r,( f l ,  f2).  

2.16 Evaluate the power density spectrum of the digital signal 
m 

( ( t )  = x s ( t - n c  a,) 
n=-m 

where (a,) is a sequence of independenf identically distributed random variables 
taking on values 1.2, 3,4 with equal probabilities, 

s ( t ;  a , )  5 /3Ar( t )  + j/311r ( t -  i) 
with r ( t )  defined for t  E ( - T / 2 ,  2'12). and f i ,  /3: are obtained from an accord- 
ing to the following table: 

-1 - 1  

2.8. Problems 101 

Specialize the result to the cases (which will be treated in detail in later chapters) 

r ( t )  = 1  (offset PSK) 

A 
r ( t )  = cos -t  (MSK) 

T 

r ( t )  = cos ( T  i t  - 1 4 sin %t) T  (SFSK) 

and plot the resulting power spectra for ( f  TI 5 10. 

2.17 FSK digitd signals: Find the power spectral density of the signal 

where 

(a , )  is a sequence of independent, identically distributed random variables taking 
on values f 1  with equal probabilities, and 

s ( t )  = 1, O l t < T  
0,  elsewhere 

(This refers to CPFSK modulated signals. They will be treated in Chapter 6.) 

2.18 Evaluate the power spectral density of the digital signal 

where g(t) is a signal with duration T 5 T ,  and (a , )  is a sequence of independent, 
identically distributed random variables taking on the M values ( ~ / M ) ( 2 i  - 1 ) .  
i  = 1 , .  . . , M ,  with equal probabilities. 

219 Prove the following properties of the Hilbert transform Z(t) of the signal z ( t ) :  

(a) If z ( t )  is an even function oft. then Z(t) is an odd function. 

(b) If z ( t )  is an odd function oft,  then Z(t) is an even function. 

(c) The Hilbert transform of Z(t) is equal to - z ( t ) .  

(d) The energy of Z(t) is equal to the energy of z ( t ) .  

(e) The energy of z ( t )  + jZ(t)  is equal to twice the energy of z ( t ) .  

(0 tZjcd~) = t222(7). 
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(g) E[P(t + r )x ( t ) ]  is equal to $ , ( T ) ,  the Hilbert transform pf the autocom- 
lation function of x( t ) ,  and E[x(t + T ) ?  ( t ) ]  is equal to -R~ .T(T) .  

2.20 Prove the equalities (2.188) and (2.189). Hint: Compute R,,, ( 7 )  by using (2.182). 

2.21 Show that the Gram-Schmidt procedure (2.240)-(2.241) generates an orthonor- 
ma1 set of signals. 

2.22 Consider a given orthonormal signaI set { I I , ~ ( ~ ) ) : , .  Prove that it is possible to 
find a complete orthonormal signal sequence such that its first elements are $i ( t ) ,  
. . . , $ ~ ( t ) .  

2.24 Let x,(t) be a continuous-time signal and (x,) the sequence of its samples taken 
n 

every T :  that is, xn = xc(nT). If X ( j )  denotes the Fourier transform of the 
sequence (x,) ,  and X,( j )  the Fourier transform of the continuous-time signal 

2.25 Generalize (2.259) to the case in which the sampling waveform, instead of being 
a train of ideal impulses, is the periodic signal C?=-,p(t - nT),  where p(t) 
is a rectangular pulse with duration 7 < T .  Can the original signal x(t)  still be 
recovered exactly from the product signal x(t)  C?=-,p(t - nT)? 

2.26 Marched filter for nonwhite noise: Consider a continuous linear time-invariant 
system whose input is the sum of a deterministic signal s ( t )  and a WS stationary 
noise v ( t )  whose power spectral density B,(j)  is nonzero for all j .  Find the 
transfer function of the system that maximizes the ratio between the instantaneous 
power of the signal part and the variance of the noise part at its output. 

Basic results from information 
theory 

I In this chapter we deal with information sources and communication channels. 

I 
The main part of the treatment is devoted to the discrete case. Only at the end of 
the chapter do we present a brief description of continuous sources and channels, 
aimed at obtaining the capacity of the bandlimited Gaussian channel. 

The first part of the chapter defines a discrete stationary source and shows 
how the quantity of information that is emitted from the source can be measured. 

I In general, the source output (the message) consists of a sequence of symbols 
chosen from a finite set, the alphabet of the source. A probability distribution is 
associated with the source alphabet, and a probabilistic mechanism governs the 
emission of successive symbols in the message. Generally, different messages 
convey different quantities of information; thus an average information quantity, 
or entropy, must be defined for the source. The unit of measure for the informa- 
tion is taken to be the bit, that is, the information provided by the emission of i one among two equally likely symbols. The entropy of the source represents the 
minimum average number of binary symbols (digits) that is necessary to repre- 
sent each symbol in the message. The source output can thus be replaced by a 

I 
string of binary symbols conveying the same quantity of information and having 
an average number of digits per symbol of the original source as close as desired 
to the source entropy. The block in the system that implements this function is 
called the source encoder. 

The communication channel is the physical medium used to connect the 
source of information with its user. In the second part of the chapter we define 
discrete memoryless channels and study their properties. Discrete memoryless 
channels are specified by a probability law linking symbols of the channel input 
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alphabet to symbols of the channel output alphabet. A basic point is the knowl- 
edge of the maximum average information flow that can reliably pass through the 
channel. This leads to the definition of the channel capacity and to the problem 
of computing it. Both topics are addressed in this chapter. 

The final part of the chapter is devoted to a presentation of the channel coding 
theorem and its converse. They provide a link between the concepts of entropy of 
a source and capacity of a channel and assess precisely what reliable transmission 
means and how it can be achieved. 

The main goal of this chapter is to provide a general frame to the subsequent 
material, which deals with specific aspects of data transmission systems. It also 
assesses the theoretical limits in performance that can be obtained over a binary 
channel and an additive Gaussian channel. 

3.1. Introduction 

The goal of every communication system is the reproduction of a message emit- 
ted from a source into a place where the user of the information is located. The 
distance between the source and the user may be either considerable, as in the 
case of intercontinental transmission, or very small, as in the storage and retrieval 
of data using the disk unit of a computer (in this case, the distance between 
transmitter and receiver may be considered in time). However, irrespective of 
distance, there exists between the source and the user a communicating channel 
affected by various disturbances, like noise and distortions. 

The presence of the disturbed channel makes the exact reproduction of the 
message emitted from the source at the user's premises an impossible achieve- 
ment. Nevertheless, the designer of a communication system will always be 
asked to provide the user with an "as close as possible" replica of the original 
message. A closer insight into the characteristics of the user better specifies, 
case by case, the meaning of "as close as possible," that is, the specification of 
a user-oriented criterion of acceptability. For example, in the case of speech 
communication in the area of service communications, one is normally satisfied 
when the listener can understand the semantic content of what the speaker is 
saying. Quite often, however, in the domain of public telephone services, the 
listener wishes to recognize the identity and mood of the speaker through the 
pitch and inflection of his or her voice, and this gives rise to a more stringent 
criterion of acceptability. Hence, as illustrated in these examples, different user 
requirements may lead to different criteria of acceptability and, consequently, to 
different bandwidth requirements for speech transmission. 

As explained, the problem of noise in the communication channel creates the 
need for user-sensitive specifications of criteria of acceptability in the design of 
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L m E R  'a' 

Figure. 3.1: Class of equivalence relative to the letter "a" in handwritten texts. 

t 

Figure 3.2: Quantiuztion process in PCM. 

communication systems. This can be accomplished in the following fashion. The 
possible source outputs in a given time interval are partitioned into equivalence 
classes on the basis of a certain criterion of acceptability. This permits one to 
regard such source outputs as a set of equivalence classes where the source out- 
puts residing in the same equivalence class are indistinguishable with respect to 
the acceptability criterion. Thus, the communication system, in this regard, can 
be reduced to the transmission of the specific class to which the source output 
belongs in each successive time interval. 

In Fig. 3.1, one possible class of equivalence is depicted for the transmission 
of written texts, where the criterion of acceptability is merely the semantic intel- 
ligibility of the message. The class represents different ways of writing the letter 
"a". 

Another well-known example is the quantization process performed in con- 
nection with pulse-coded modulation (PCM). In Fig. 3.2, the process is schemat- 
ically outlined. 

The source waveform is first sampled every T seconds. Each sample is then 
quantized, (that is, the closest value in a finite pre-selected set is substituted for 
it), and kept constant for T seconds. 

From here on we shall assume that the criterion of acceptability had been es- 
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tablished, yielding a finite number of equivalence classes, say M ,  in a specified 
time interval. The transmission of information then consists in the communica- 
tion of a sequence of integer numbers chosen in the set {1,2, . . . , M )  from the 
source to the user. The user, upon receiving the indication of the equivalence 
class, generates the representative (which he knows) of the class so as to restore 
an information close to the original. 

3.2. Discrete stationary sources 

Consider a finite alphabet X formed by the M  symbols { x i ) &  and define a 
message as a sequence of symbols such as (z,)r==,. A discrete stochastic source 
is a device emitting messages through the selection of symbols from the alphabet 

A 
X according to a probability distribution {p i )& ,  where pi = P ( x i ) .  From a 
probabilistic point of view, one can regard the whole set of messages as a discrete 
random process, that is, a sequence (J,)r==, of random variables (RVs), each 
taking values in the set X with the probability distribution { p i } .  

We shall assume that the source is stationary; that is, 

P{'$il = 2 1 , .  . . ,  t i k  = ~ k )  = P{( i l+h = 5 1 , .  . . r <ik+h = xk}  (3.1) 

for all nonnegative integers il, . . . , ik, h and all X I , .  . . , xk E X .  In this case, 
the message sequence forms a discrete-time stationary random process with the 
properties described in Chapter 2. 

3.2.1. A measure of information: entropy of the source alphabet 

The quantity of information carried by one particular symbol of the source alpha- 
bet is strictly related to its uncertainty. Increased uncertainty should correspond 
to more information. As an example, the letter size in a newspaper headline is 
larger when the news is unexpected like "Life found on Mars!" than in the case of 
"A new government in Italy." It is then fairly natural that the information content 
of the ith symbol, denoted by I ( x i ) ,  be a decreasing function of its probability 

I ( z j )  > I ( x ~ ) ,  if pj < pi (3.2) 

and that the information content associated with the emission of two independent 
symbols be the sum of the two individual informations: 

If P ( x i , x j ) = P ( x i ) P ( x j )  then I ( x i , x j ) = I ( x i ) + I ( x j )  (3.3) 

A definition of the information content satisfying both (3.2) and (3.3) is 
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In (3.4) the base of the logarithm (indicated with a) is unspecified. Its choice 
determines the unit of measure assigned to the information content. If the natural 
(base e) logarithm is used, then the unit is called nat. When the base is 2, the unit 
is widely known as bit (a contraction of the words "binary digit"). The use of bit 
is based on the fact that the correct identification of one out of two equally likely 
symbols conveys an amount of information equal to I ( x l )  = I ( x z )  = log, 2 = 1 
bit. Unless otherwise specified, we shall use the base 2 in this chapter and write 
log to mean log2. 

The definition (3.4) allows one to associate with each symbol of the source 
alphabet its information content. A characterization of the whole alphabet can 
be obtained by defining the average information content of X 

which is called the entropy of the source alphabet and is measured in bitlsymbol. 

Example 3.1 The source alphabet consists of four possible symbols with probabilities 
pl = i , p 2  = a , p 3  = pq = %. To compute the entropy of the source alphabet, we apply 
definition (3.5) 

If the source alphabet consists of M equally likely symbols, we have 

When the source alphabet consists of two symbols with probabilities p  and q = 1 - p  
the alphabet entropy is 

In Fig. 3.3 the function H ( p )  is plotted. 
It can be seen that the maximum occurs for p  = 0.5, that is, when the two symbols 

are equally likely. 0 

The last result of Example 3.1, that is, the maximization of the source entropy 
for equally likely symbols, is fairly general, as will be stated in the following 
theorem. 
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H(P) 4 

Figure 3.3: Plot of the entropy function H ( p )  of a binary source with P ( x l )  = p and 
P(x2) = 1 - p. 

Theorem 3.1 

The entropy H(X) of a source alphabet with M symbols satisfies the inequality 

H(X) 5 log M (3.7) 

with equality when the symbols are equally likely. V 

Proof of Theorem 3.1 

To prove the theorem, consider the difference 

Making use of the inequality 

l n y l y - 1  

in the RHS of (3.8), we obtain 

3.2. Dbcrete stationary sources 

3.2.2. Coding of the source alphabet 

For a given source, we are now able to compute the information content of each 
symbol in the source alphabet and the entropy of the alphabet itself. Suppose 
now that we want to transmit each symbol using a binary channel, that is, a 
channel able to communicate only binary symbols. Before being delivered to the 
channel, each symbol must be represented by a finite string of digits, called the 
code word. Leaving aside the problem of possible channel errors, efficient com- 
munication would involve transmitting a symbol in the shortest possible time, 
which, in turn, means representing it with a code word as short as possible. As 
usual, we are interested in average quantities, so our goal will be that of mini- 
mizing the average length of a code word 

where n; is the length (number of digits) of the code word representing the sym- 
bol z i ,  and n is the random variable representing its length (that is, assuming the 
value n; with probability pi, i = 1,2, ..., M). 

The minimization of (3.10) must be accomplished according to an important 
constraint on the assignment of code words to the alphabet symbols. To under- 
stand the necessity of this constraint, consider the following code: 

Symbol Code word 

2 3  

2 4  100 

In it, the binary sequence 010010 could correspond to any one of the five 
messages 2 1 x 3 2 2 2 1 ,  2 1 2 3 2 1 2 3 ,  2 1 2 4 2 3 ,  2 2 2 1 2 1 2 3 ,  or 2 2 2 1 2 2 2 1 .  The code 
is ambiguous, or not uniquely decipherable. It then seems natural to require that 
the code be uniquely decipherable, which means that every finite sequence of 
binary digits corresponds to, at most, one message. A condition that ensures 
unique decipherability is to require that no code word be a prefix of a longer 
code word. Codes satisfying this constraint are called prefir codes. The codes 
described in the sequel are of this kind. 

A very useful graphical representation of a code satisfying the prefix con- 
straint is that which associates to each code word a terminal node in a binary 
tree, like the one of Fig. 3.4. 

Starting from the root of the tree, the two branches leading to the first-order 
nodes correspond to the choice between 0 and 1 as the first digit in the code 
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nodes L x 4  
2" order 

3* order 

Figure 3.4: Binary tree associated with a binary source code. 

words. The two branches stemming from each of the first-order nodes corre- 
spond to the second digit of the code words, and so on. Since code words are 
assigned only to terminal nodes, no code word can be a prefix of another code 
word. A tree is said to be of order n if it contains nodes up to the n-th order. A 
necessary and sufficient condition for a given code to satisfy the prefix constraint 
is given in the following theorem. 

Theorem 3.2 

Kraft inequality. A necessary and sufficient condition for the existence of a 
binary prefix code with word lengths n l ,  n2, . . . , n~ is the following: 

Proof of Theorem 3.2 

We prove first that (3.1 1) is a necessary condition. Since the code satisfies the 
prefix constraint, it is embedded in a tree of order 

The presence in the tree of a terminal node of order ni eliminates 2^-^' of the 
possible nodes of order n. Thus, for the code to be embedded in the tree, the sum 
of all nodes of order n eliminated by terminal nodes associated with code words 
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must be less than or equal to the number of nodes of order n in the tree; that is, 

Dividing both sides of the last inequality by 2  ̂yields (3.1 1). 
To prove that (3.1 1) is a sufficient condition for the existence of a prefix code, 

let us assume that the n,'s are arranged in nondecreasing order, nl 5 n2 5 . . . 5 
n ~ .  Choose as the first terminal node in the code tree any node of order nl in 
a tree of order n~ containing all branches. All nodes in the tree of each order 
greater than or equal to nl  are still available for use as terminal nodes in the 
code tree, except for the fraction 2-"l that stems from the chosen node. Next, 
choose any available node of order nz as the next terminal node in the code tree. 
All nodes in the tree of each order greater than or equal to n2 are still available 
except for the fraction 2-nl+2-n2 that stem from either of the two chosen nodes. 
Continuing in this way, after the assignment of the j-th terminal node in the code 

I tree, the fraction of nodes eliminated by previous choices is 2-"*. From 
(3.11), this fraction is always strictly less than 1 for j < M, and thus there is 

1 always a node available to be assigned to the next code word. QED 

Since we are using a binary code, the maximum information content of each 
digit in the code word is 1 bit. So the average information content in each code 
word is, at most, equal to ii. On the other hand, to uniquely specify a symbol of 

I the source alphabet, we need an average amount of information equal to H(X) 

I 
bits. Hence we can intuitively conclude that 

ii 2 H(X) (3.13) 

1 Comparing the definitions (3.5) and (3.10) of H(X) and ii, it can be seen that the 
condition (3.13) can be satisfied with the equal sign if and only if (the "if' part 
is straightforward, for the "only if" proof see Fano (1961)): 

pi=2-"'  i = 1 , 2 ,  ..., M (3.14) 

In this case, (3.1 1) also becomes an equality. 

Example 3.2 The following is an example of a code satisfying (3.13) with the equal 

I sign and obeying the prefix constraint. 

Symbol pi Code word I+- 
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Computing the value of A defined in (3.10). one obtains 

In general, condition (3.14) with n; integers is not satisfied. So we cannot 
hope to attain the lower bound for f i  as in the previous example. However, a 
code satisfying the prefix constraint can be found whose ii obeys the following 
theorem. 

Theorem 3.3 

A binary code satisfying the prefix constraint can be found for any source alpha- 
bet of entropy H(X) whose average code word length f i  satisfies the inequality 

Proof of Theorem 3.3 

An intuitive proof of the lower bound has already been given when introducing 
(3.13). Let us now choose for the code word representing the symbol xi a number 
of bits n; corresponding to the smallest integer greater than or equal to I ( x ; ) .  So 
we have 

I ( x ; )  5 n; < I ( x , )  + 1 (3.15) 

Multiplying (3.15) by pi and summing over i, we obtain 

To complete the proof of the theorem, we have to show that the code satisfies 
the prefix constraint, that is, the lengths ni's of the code words obey the Kraft 
inequality (311 1). Recalling the definition (3.4) of I ( x , ) ,  the left-hand inequality 
of (3.15) leads to pi > 2-"'; so, summing over i, we obtain 

QED 

3.2. Discrete stationary sources 

Pi Xi 

0.5 X 1  0 I 

Figure 3.5: Tree generated by the Hufian encoding procedure for a source with sir 
symbols. 

The last step in our description of the source alphabet coding is the con- 
struction of a code uniquely decipherable that minimizes the average code word 
length. We shall present a method for the construction of such optimal codes 
due to Huffman. The proof of optimality will be omitted; the interested reader 
can find it in any book specifically devoted to information theory, as for exam- 
ple McEliece (1977). The Huffman procedure will be described step by step. 
The reader is referred to Fig.3.5, in which the steps can be spotted in the tree 
originated by the encoding procedure. 

Step 1 Have the M symbols ordered according to nonincreasing values of their 
probabilities. 

Step 2 Group the last two symbols X M - I  and X M  into an equivalent "symbol," 
with probability p ~ - ~  + p ~ .  

Step 3 Repeat steps 1 and 2 until only one "symbol" is left. 

Step 4 Looking at the tree originated by the preceding steps (see Fig. 3 3 ,  asso- 
ciate the binary symbols 0 and 1 to each pair of branches departing from 
intermediate nodes. The code word of each symbol can be read as the 
binary sequence encountered when starting from the root of the tree and 
reaching the terminal node associated with the symbol at hand. 
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For the example of Fig. 3.5, the code words obtained using the Huffman 
procedure are 

The average length ii and the entropy H(X) are 2.1 digitslsymbol and 2.086 
bitslsymbol, respectively; they satisfy Theorem 3.3, and no other code can do 
better. 

Example 3.3 For the code shown in Fig. 3.5, use the tree to decode the received se- 
quence 1100101100110. Starting from the root of the tree, we follow the branches at 
each intermediate node according to the binary digits in the received sequence, until a 
terminal node (and hence a symbol) is reached. Then we restart the procedure. The 
decoded sequence is X 4 X l X 3 X 2 X 4 .  0 

* 
The reader is invited to repeat the decoding procedure of Example 3.3, as- 

suming that an error had been introduced by the channel in the first position. This 
permits us to verify the catastrophic effect of error propagation in these variable- 
length codes. On the other hand, the goal of the source coding is the reduction of 
redundancy of the source alphabet, and not the protection against channel errors. 
This is the scope of channel encoding, as we will see in Chapters 10-12. 

So far, we have seen how a code word can be efficiently assigned to each 
symbol xi of the source alphabet X. The main result is represented by Theo- 
rem 3.3. In fact, the lower bound of the Theorem can be approached as closely 
as desired if we are allowed to encode block of symbols instead of single sym- 
bols. Suppose we take a sequence of independent observations of X and assign 
a code word to the resulting group of symbols. In other words, we construct a 
code for a new alphabet Y=Xu containing M u  symbols, denoted yi. The proba- 
bility of yi is then given by the product of the probabilities corresponding to the 
v symbols of X that specify yi. By Theorem 3.3, we can construct a code for Y 
whose average code word length ii, satisfies 
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Every symbol in Y is made by v independent symbols of the original alphabet 
X; so the entropy of Y is H(Y) = vH(X) (see Problem 3.2). Thus, from (3.17) 
we get 

1 
H(X) 5 5 < H(X) + - 

v v 
(3.18) 

But ii,/v is the average number of digitslsymbol of X; so, from (3.18), it 
follows that it can be made arbitrarily close to H(X) by choosing v sufficiently 
large. 

The efficiency 6 of a code is defined as 

and its redundancy is (1-6). 

Example 3.4 Given the source alphabet X = { x l ,  x 2 , x 3 } ,  with p l  = 0.5, p 2  = 0.3, 
and p 3  = 0.2, we want to construct the new alphabet Y = X 2  = i y l ,  y 2 ,  . . . , y g } ,  ob- 
tained by grouping the symbols x i  two by two. 

Code word 
~ ( Y I )  = P ( x ~ x ~ )  = P ( x l ) P ( x l )  = 0.25 

The reader is invited to construct the Huffman codes for block lengths v = 1 and 
v = 2 and compare the average numbers of digitslsymbol obtained in both cases, using 

I the preceding definition of code efficiency. 0 

3.2.3. Entropy of stationary sources 

Although our definition of a discrete stationary source is fairly general, we have 
so far considered in detail only the information content and the encoding of the 
source alphabet. Even when describing the achievement of the block encoding 
of the source, we made the assumption of independence between the symbols 
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forming each block. Of course, when the messages emitted by the source are ac- 
tually a sequence of independent random variables, then the results obtained for 
the source alphabet also hold true for the source message. In practice, however, 
this is rarely the case. Thus we need to extend our definition of the information 
content of the source alphabet to the information content of the source, which 
will involve consideration of the statistical dependence between symbols in a 
message. Let us consider a message emitted by the source, like (z,)?=~, and 
try to compute the average information needed to specify each symbol zn in the 
message. The information content of the first symbol zo is, of course, the entropy 
H ( X o ) l  

The information content of the second symbol zl ,  having specified z o ,  is the 
A 

conditional entropy H ( X I  I X o )  based on the conditional information I ( z  I y)  = 
1% ( l l P ( z  I Y)) 

In general, the information content of the ith symbol, given the previous h sym- 
bols in the message, is obtained as 

It thus seems fairly intuitive to define the information content of the source, or 
its entropy H,(X), as the information content of any symbol produced by the 
source, given that we have observed all previous symbols. Given a stationary 
information source (&,)?=o, its entropy H,(X) is then defined as 

To gain a deeper insight into the meaning and properties of H,(X), we shall 
prove the following theorem. 

'We are using the notation Xi to denote the alphabet pertaining to the i-th symbol in the 
message. Usually all Xi's refer to the same set X, nevertheless. it is notationally convenient to 
keep them distinct. 

Theorem 3.4 

The conditional entropy H ( X l  I X o )  satisfies the inequality 

H ( X 1  I Xo) l H ( X 1 )  

V 

Proof of Theorem 3.4 

To prove the theorem, consider the difference 

and use in the RHS the inequality (3.9) so as to get 

The relationship (3.22) becomes an equality when El and to are independent 
random variables. In this case, in fact, P ( z l  I z o )  = P ( z 1 ) .  A shrewd extension 
of Theorem 3.4 and the exploitation of the stationarity of the sequence (&,)go 
allow one to write 

SO the sequence H ( X n  I X n - l , .  . . , , X o ) ,  n = 1 , 2 , .  . ., is nonincreasing, and 
since the terms of the sequence are nonnegative, the limit H,(X) exists. More- 
over, it satisfies the following inequality: 

where the RHS inequality becomes an equality when the symbols in the sequence 
are independent. 

The entropy of an information source is difficult to compute in most cases. 
We will describe how this is achieved for a particular class of sources, the sta- 
tionary Markov sources. A stationary Markov source is an information source 
whose output can be modeled as a finite-state, fully regular Markov chain (see 
Section 2.2.1). The properties of a stationary Markov source can be described as 
follows: 
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(i) At the beginning of each symbol interval, the source is in one of q possible 
states {S j ) ;= , .  During each symbol interval, the source changes state, say 
from Sj  to Sk, according to a transition probability pjk whose value is 
independent of the particular symbol interval. 

(ii) The change of the state is accompanied by the emission of a symbol xi ,  
chosen from the source alphabet X, which depends only on the present 
state Sj  and the next state Sk .  

(iii) The state Sj  and the emitted symbol xi uniquely determine the next state 
s k .  

In other words, the current symbol emitted by the source depends on the past 
symbols only through the state of the source. The stationary Markov model for 
information sources is a useful approximation in many physical situations. The 
interested reader is referred to Ash (1967, Chapter 6) for a detailed exposition of 
the subject. Here, we will illustrate the concept with an example. 

Example 3.5 Let a stationary information source (<n)r=o be characterized by the 
property P(xn ( xn-1,. . . , xo) = P(xn  I x , - ~ ) ;  that is, each symbol in the sequence 
depends only on the previous one. We assume that the alphabet X is formed by three 
symbols, say the letters A, B, and C. The probabilities P(xn I xn-1) are given as 
follows: 

This source can be represented by using the directed graph of Fig. 3.6, where each 
state represents the last emitted symbol and the transitions are identified by their prob- 
abilities and the presently emitted symbols. It can be verified that this source satisfies 
properties (i), (ii), and (iii), and thus it is a stationary Markov source. 0 

Let us compute now the source entropy H m ( X ) .  Defining the entropy of the 
state S j  as 

where Mj represents the number of symbols available at the state S j ,  and denot- 
ing by { ~ i ) ~ = ~  the components of the stationary distribution vector (2.49), the 
followjng basic theorem can be proved (see, e.g., Ash, 1967, Chapter 6). 

3.2. Discrete stationary sources 

Figure 3.6: Graph representation of a stationary Markov source with alphabet X = 
{ A ,  B,  C). 

Theorem 3.5 

The entropy Hm(X) of a stationary Markov source is given by 

Example 3.6 With reference to the Markov source of Example 3.5, computing the sta- 
tionary distribution vector and applying (3.25) we obtain the entropy H,(X) = 1.441. 
0 

Encoding stationary Markov sources 
The inequalities (3.23) and (3.24) show that the average information content 

of a source emitting nonindependent symbols decreases as the message length 
increases. If we define the entropy of a block of successive symbols of a source 
message as 
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and apply the way of reasoning that led to (3.18), we find that a code can be 
devised for blocks of u consecutive source symbols whose average number of 
bits per symbol satisfies the inequality 

Moreover, using (3.23) and some easy algebra, it can be proved that the sequence 
H(XY)/u, u = 1,2 , .  . . , is nonincreasing, and its limit is H,(X); that is, 

Thus we can see that increasing u (the block length) makes the code more effi- 
cient at each step, and, as u goes to infinity, the average length ii,/u approaches 
the source entropy H,(X) as close as desired; that is, 

The price that must be paid for this increased efficiency lies in the complexity 
of the encoder, whose input alphabet size increases exponentially with u, and in 
the decoding delay. In fact, before obtaining the first symbol in every block, one 
must wait for the decoding of the entire block of u symbols at the output of the 
source decoder. 

Turning our attention to the particular case of Markov sources, we can apply 
the Huffman procedure to encode the symbols of the alphabet for each state 
Sj. This may require using a different set of code words for each state of the 
source. The performance of such a coding procedure is easily obtained. Using 
Theorem 3.3 and denoting by ii(Sj) the average number of digitslsymbol of the 
alphabet used in the state Sj, we obtain 

Thus, the average length of a code word is 

and satisfies the inequality 

where 13.25) has been taken into account. 
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Example 3.7 Let us use the statedependent Huffman procedure to encode the Markov 
source of Example 3.5 and compute its efficiency. Using the treeencoding procedure 
for the three symbols that can be emitted from the source in any state, we obtain the 
following code 

The average number of digiwsymbol is 

3 

n = C wjn(sj) = 1.5054 
j=1 

Using the result of Example 3.6 we can compute the efficiency e, of the code, which is 
defined as 

and is equal to 0.957 in this case. 0 

The source encoders we have described so far require the knowledge of the 
source statistics, something that is often completely, or at least partially, unavail- 
able in practice. As a consequence, universal coding schemes have been deeply 
studied, which encode efficiently a broad class of sources in an adaptive fashion. 
The best known, and widely applied, scheme is the Lempel-Ziv algorithm. This 
important algorithm is not described here for space reasons; the interested reader 
is referred to the original paper (Ziv and Lempel, 1977), or, for a general and 
comprehensive treatment of source encoding algorithms, to the book by Bell et 
al. (1990). 

Information rate of a stationary source 
In our definition of a discrete stationary source at the beginning of Section 3.2, 
time was not taken into account. To overcome this, we need to place the events 
forming a source message in correspondence with a sequence of points on the 
time axis. In particular, let us assume that the source emits the symbols forming 
a message at equally spaced time instants, and that the time period between two 
consecutive emissions is T,. Thus we can define the average information rate of 
the source, R,, as 

A Hm(X) ,.,it/s R, = - (3.27) 
T, 
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Figure 3.7: Model of the additive noise channel. 

As we shall see later, the appearance of time in our paradigm is strictly related 
to the bandwidth of the channel that will be used to convey the information. 

3.3. Communication channels 

The communication channel is the physical medium used to connect the source 
of information (in general, the transmitter) and its user (the receiver). As we saw 
in Chapter 1, according to the block diagram of Fig. 1.4, different kinds of chan- 
nels can be specified, depending on the sec,tions of the system we are observing. 
Between the output of the modulator and the input of the demodulator, for exam- 
ple, we have a continuous channel, which can be modeled in its simplest form 
by the additive channel shown in Fig. 3.7. 

In it, x ( t )  is the information signal emitted by the modulator, n ( t )  represents 
the noise added to the signal on the channel, and y ( t )  is the received signal. The 
channel is completely characterized by the probability distribution of the noise. 
If we now observe the block diagram of Fig. 1.4 between the channel encoder 
output and the decoder input, we have a discrete channel, which accepts symbols 
xi belonging to the input alphabet X of the channel encoder and returns symbols 
yj belonging to its own output alphabet Y. When X and Y contain the same 
symbols, yj is an estimate of the jth transmitted symbol x j .  

In the following, we shall see how to characterize a communication channel 
and how to compute the rate at which the information can be reliably transmitted 
through it. 

3.3.1. Discrete memoryless channel 

A discrete channel is characterized by an input alphabet X = { x i ) z ,  an output 
alphabet Y = {yj)y!.l, and by a set of conditional probabilities 

Figure 3.8: Model of a discrete memoryless channel. 

Figure 3.9: The binary channel model. 

a 
where pij = P ( y j  I x i )  represents the probability of receiving the symbol yj 
given that the symbol xi has been transmitted. We assume that the channel is 
memoiyless, that is 

where X I , .  . . , xn and y l ,  . . . , yn represent n  consecutive transmitted and re- 
ceived symbols, respectively. A graphical model of the discrete memoryless 
channel is shown in Fig. 3.8. 

Each arrow represents a transition from one of the symbols of the input al- 
phabet to one of the symbols of the output alphabet, that is, the transmission of 
a symbol belonging to X and the reception of a symbol belonging to Y. Each 
transition is labeled with its conditional probability. The sum of all the transition 
probabilities labeling the arrows stemming from the same input symbol is equal 
to 1. 

Example 3.8 The binary channel It is a special case of the discrete channel when 
N x  = N y  = 2, as depicted in Fig. 3.9. The average error probability P(e) is defined as 
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and can be computed as 

P(e)  = P(z l )P(y2  ( z l )  + P(z2)P(y l  I z 2 )  = P(z1)plz + P(z21~21 (3.29) 

If the two transition probabilities pl2 and p2l are equal, say, to p, the channel is called 
binary symmetric channel (BSC) and (3.29) becomes 

It is customary to arrange the conditional probabilities { p i j )  into the channel 
matrix 

A P = 

That is, the sum of the elements in each row of P is 1. The average error proba- 
bility is defined by extension of (3.28) for Nu = Nx = N ,  as 

. . . PlNy 

. . . p2Ny 

. . .  . 

... . 

... . 

... PNXNY - 

whereas the probability of correctly receiving the symbol transmitted over the 
channel is given by 

(3.30) 

Example 3.9 The noiseless channel For this channel, we have Nx = Nu = N, and 
the conditional probabilities p,j satisfy the relationship 

In (3.30) the numbers pij represent probabilities, so they satisfy the inequality 
0 5 p;j 5 1,  and, obviously, the relationship 

1, i = j  
Pi j  = ( 0 ,  i i j  

In words, the symbols of the input alphabet are in a one-to-one correspondence with the 
symbols of the output alphabet. It can be easily verified that in this case P(e)  = 0, as it 
is intuitive. 0 

Example 3.10 The useless channel For this channel, we have Nx = Ny = N, and 
the output symbols are independent from the input ones, or 

p ( ~ j  1 z i )  = p ( ~ j ) ,  Vj,i (3.34) 

Regarding matrix P, it is evident that (3.34) is verified if and only if P has identical 
rows. 0 

A noiseless channel and a useless channel represent extremes of possible chan- 
nel behavior. The output symbol of a noiseless channel uniquely specifies the 
input symbol, whereas a useless channel completely "scrambles" all input sym- 
bols, so that the received symbol gives no useful information to decide upon the 
transmitted one. 

Example 3.11 The symmetric c h a ~ e l  For this channel, each row of the matrix P 
contains the same set of numbers {p j ) r~ l ,  and each column contains the same set of 
numbers { q ; ) z .  The following matrices provide examples of symmetric channels 

According to the input and output channel alphabets X and Y and to their prob- 
abilistic dependence specified by the channel matrix P, we can define five en- 
tropies. 

(i) The input entropy H(X), 

which measures the average information content of the input alphabet. 
Particular forms of P lead to cases of interest. 
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(ii) The output entropy H(Y), 

which measures the average information content of the output alphabet. 

(iii) The joint entropy H(X,Y), 

which measures the average information content of a pair of input and 
output symbols, or the average uncertainty of the communication system 
formed by the input alphabet, the channel, and the output alphabet as a 
whole. 

(iv) The conditional entropy H(Y 1 X), 

which measures the average information quantity needed to specify the 
output symbol y when the input symbol x is known. 

(v) The conditional entropy H(X I Y), 

which measures the average information quantity needed to specify the in- 
put symbol x when the output (or received) symbol y is known. This condi- 
tional entropy represents the average amount of information that has been 
lost on the channel, and it is called equivocation. The term equivocation 
seems appropriate if one realizes that for a noiseless channel H(X I Y) = 0 
(the received symbol uniquely determines the transmitted one), whereas 
for a useless channel we find that H(X I Y) = H(X). In this case the un- 
certainty about the transmitted symbol remains unaffected by the reception 
of an output symbol (all the information has been lost on the channel). 

Using these definitions and (3.22), it can be verified that the following rela- 
tionships between the entropies just defined hold true: 
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H(X 1 Y) 5 H(X) (3.41) 

H(Y 1 X) 5 H(Y) (3.42) 
The reader is invited to verify some of the following results by applying the 
definitions and properties (3.35) to (3.42) (see Problem 3.17). 

Example 3.9 (continued) 

H ( X  I Y )  = O 

H ( Y  I X )  = O 

and 

H ( X ,  Y )  = H ( X ) H ( Y )  

Example 3.10 (continued) 

H ( X  ( Y )  = H ( X )  (3.46) 

H ( Y  ( X )  = H ( Y )  (3.47) 
and 

H ( X ,  Y )  = H ( X )  + H ( Y )  (3.48) 
Equation (3.46) says that all transmitted information is lost on the channel. 

0 

Example 3.11 (continued) An important property of the symmetric channel is that 
H ( Y  ( X )  is independent of the input probabilities P ( x i )  and depends only on the 
channel matrix P. To show this, let us write 

where 

~ccording to the definition of symmetry, all the rows of P are permutations of the same 
set of numbers {Pj)y.l. Thus 



and inserting (3.51) into (3.49) gives 
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which does not depend on the input probabilities P(zi) ,  i = 1,. . . , Nx.  

3.3.2. Capacity of the discrete memoryless channel 

We have seen that a part of the information H(X) that must be transmitted over 
the channel is lost because of the noise present in the channel itself. This part 
is measured by the channel equivocation H(X I Y). Thus, it seems natural to 
define the average infomationflow (also known as mutual infomation between 
X and Y) I(X; Y) through the channel as 

Using (3.40), the following alternative forms can be derived: 

Comparing (3.53) and the first equality of (3.54), it is apparent that I(X; Y) = 
I(Y; X). 

Example 3.12 Let us compute I(X; Y) for the BSC with error probability p = 0.1 and 
equally likely input symbols. Because P(xl)  = P(xz)  = 0.'5, the output symbols yl 
and yz are also equally likely. Thus we have 

H(X) = H(Y) = 1 bit/symbol 

TO compute I(X; Y) using (3.54), we need the joint entropy H(X, Y) given by (3.37). 
The joint probabilities P(xi,  yj) are easily computed as 

Thus we have 
H(X,Y) = 1.469 

and in conclusion 
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Figure 3.10: Plot of the average infomation pow through a BSC as afunction of the 
input probability P(xl).  The errorprobability p of the channel is the parameter: 

The result shows that almost one half of the information is lost on the channel. How 
does this result compare with the intuitive remark that, on the average, only ten percent 
of the received bits are in error if p = 0.1 ? 0 

Let us consider again the BSC and see how I(X; Y) depends on the probabil- 
ity distribution of the input symbols. Using the form 

and computing H(Y I X) using (3.49). we get 

where H(p) was defined in (3.6). In Fig. 3.10 the plot of I(X; Y) versus P(x l )  
for different values of p is shown. It can be observed that the maximum value of 
I(X; Y), no matter what the value of p is, is obtained for P ( x l )  = 0.5, that is, 
when the input symbols are equally likely. Then, fixing P(x l )  = 0.5, we obtain 
a value for I(X; Y) that depends only on the channel and represents the muximum 
infomationflow through a BSC. It is given by 
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Figure 3.11: Capacity of the BSC as afunction of the error probability p. 

where P ( x )  is the set of all possible probability distributions of the input sym- 
bols. The maximum value of I ( X ;  Y )  is called channel capacity C and is plotted 
in Fig. 3.11. The capacity is maximum when p  is equal to 0 or equal to I ,  since 
both these situations lead to a noiseless channel. For p  = 0.5, the capacity is 
zero, since the output symbols turn out to be independent from the input sym- 
bols, and no information can flow through the channel. Note that, due to the 
symmetry of the channel, H ( p )  = H ( l  - p). 

Based on the result obtained for the BSC, we can now define similarly the ca- 
pacity C of a discrete memoryless channel as the maximum information I ( X ;  Y )  
that can be transmitted through the channel. Recalling the first equality of (3.54), 
we obtain 

The meaning of the channel capacity and its significance are not completely 
apparent so far. It will be proved later in this chapter that reliable transmission 
through the channel is not possible when the average number of bits per channel 
symbol is greater than the channel capacity. The analytical computation of the 
channel capacity is difficult in most cases. However, numerical algorithms are 
available, such as those due to Arimoto and Blahut (see Viterbi and Omura, 
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1979, Appendix 3C). It becomes simpler in the particular cases of Examples 3.9 
to 3.11. 

Example 3.9 (continued) Using the result (3.43). we can write 

C = rnax [H(X) - H(X ( Y)] = 
P(4 

Hence no information is lost on the channel. As a matter of fact, the information flow 
through the channel equals the average quantity of information H(X) that is needed to 
specify an input symbol. 0 

Example 3.10 (continued) Using (3.46). we get 

C = H(X) - H(X I Y) = 0 

Hence no information can flow through the channel. 

Example 3.11 (continued) We have proved that the conditional entropy H(Y I X) 
does not depend on the input probability distribution. Thus, the problem of maximizing 
I(X; Y) = H(Y) - H(Y I X) reduces to the problem of maximizing the output entropy 
H(Y). We know that H(Y) 5 log Ny, where the equal sign refers to the case of equally 
likely outputs, that is, 

We prove that the output symbols are equally likely when the inputs are equally likely. 
In fact, if 

1 
P(z.)  - -, i = 1, ..., Nx ' - N X  

we have 

But the term ~2 pij is the sum of the entries of the jth column of the channel matrix 
P, and, by definition of symmetric channels, it does not depend on j. Thus all symbols 
y E Y have the same probability, and the capacity of a symmetric channel is given by 

NY 
C = log N y  + 1 pj logpj bit/symbol (3.58) 

j=l 

0 



3. Basic resultsjiom information theory 

Figure 3.12: The binary erasure channel model. 

Example 3.13 The capacity of the symmetric channel whose matrix is 

can be computed using (3.58) with Ny = 4, and yields 

1 1 1  1 
C = 2 + 2(- log - + - log -) 2. 0.082 bit/symbol 

3  3 6  6  

Example 3.14 Consider a channel with NX = Ny = N and probabilities p;j E P 
given by 

Pij = 

The rows and columns of P are in this case permutations of the N numbers 

Thus the channel is symmetric, and its capacity C is given by 

The capacity of the BSC is obtained as a particular case of (3.59) with N = 2. 0 

Example 3.15 The binary erasure channel (BEC) Consider the channel of Fig. 3.12. 
The outputs yl and yz correspond to the input symbols xl and 22, whereas ys refers to 
an aplbiguous output for which no decision about the transmitted symbol will be taken. 
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Figure 3.13: The capacity ofthe binary erasure channel. 

This model represents a practical digital transmission system (see Problem 3.21). Let us 
compute its capacity. The channel matrix is the following: 

It does not satisfy the symmeby conditions, so (3.58) cannot be applied. Starting from 
the first equality of (3.54), it is shaightfonvard to show that I(X; Y) is given by (3.55) 
also in this case. Therefore, the capacity C is obtained for the input distribution that 
maximizes H(Y). Denoting P(x1) by a and computing H(Y), we get 

H(Y) = -plogp- (1 -p) log(l-p)  

-a(l - p) log a - (1 - a ) ( l  - p) log(1 - a )  (3.60) 

which is seen to have a maximum for a = 0.5. So the capacity is obtained for equally 
likely input symbols, and it is given by 

Comparing the plot of C shown in Fig. 3.13 with the capacity of the BSC of Fig. 3.11, 
we can see that erasing the received symbol when the information is not reliable can 
improve the information flow through the channel. Thls is true even in a more realistic 
situation when the probabilities P(yz I xl) and P(yl 1 x2) are different from zero (see 
Problem 3.21). 0 

We have seen that the channel capacity of the BEC is achieved with equally likely 
input symbols, although the channel is not s y b e t r i c  according to our definition. 
However, by inspection of Fig. 3.12, we can see that the structure of the channel 
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exhibits a clear symmetry with respect to the inputs. To cope with situations like 
this, it is possible to generalize the definition of symmetric channels. The reader 
is referred to Gallager (1968, Chapter 4) for useful theorems on the computation 
of channel capacity in some particular cases of interest. 

3.3.3. Equivocation and error probability 

In Section 3.3.2 we have defined the average error probability P(e)  of a discrete 
channel and its equivocation H(X I Y ) .  Both can be used as measures of the 
channel quality, and certainly they are not independent quantities. In the fol- 
lowing, we shall derive a relationship between them. Let us refer to a channel 
matrix P, with Nx = Ny = N. Recalling the definition of error probability 
already given in (3.31) 

N N  

P(e)  = C C P(xi,  Y j )  

Let us define now the entropy H(e)  as 

a H(e)  = -P(e) log P(e)  - [l - P(e)]  log[l - P(e)] (3.63) 

that is, consider H(e) as the entropy of a binary alphabet with symbol probabili- 
ties P(e)  and 1 - P(e) ,  which corresponds to the amount of information needed 
to specify if an error has occurred during the transmission on a channel with error 
probability P(e).  We can prove the following theorem. 

Theorem 3.6 

Fano's inequality. Given a discrete memoryless channel whose input and out- 
put alphabets X and Y have the same number N of symbols, and with error 
probability P(e) ,  the following inequality holds: 

H(X I Y )  5 H(e) + P(e)  log(N - 1 )  (3.64) 

Proof of Theorem 3.6 

To prove the theorem, we use the definition (3.39) of the equivocation H(X I Y )  
to write 
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and the definition (3.31) of P(e) to get 

N N  

i d  j=1 

P(e)  ) + 5 P(Xi, yJ log = P("' log 
( ( N  - I ) P ( X ~  I Y,) i=l 

Applying now the inequality (3.9) to the RHS of (3.66). we obtain & )c x - 4 

The inequality (3.64) can also be given an intuitive interpretation. Detecting 
whether or not an error has occurred, upon receiving a symbol y E Y ,  removes an 
uncertainty equal to H(e). If no error occurred, the remaining uncertainty about 
the transmitted symbol is zero. If an error occurred, an event that has probability 
P(e) ,  we still have to decide which of the remaining N - 1 symbols has been 
transmitted to make a correct decision. The uncertainty about this choice cannot 
exceed log(N - 1). 

In Fig. 3.14 the function H(e) + P(e) log(N - 1 )  is plotted versus P(e).  
Since H &  I Y )  = H(X) - I f X ; Y ) ,  the theorem provides a lower bound to 

\ m ,  \ ,  \ 

the error probability in terms of the excess of entropy of the input alphabet X 
with respect to the information flow through the channel. Considering now that 
I(X; Y )  2 C ,  (3.64) can be written as 

The curve C+H(e)+P(e) log(N- 1) = 0 is reported in Fig. 3.15. It can be seen 
by inspection that the region of the allowed pairs ( P ( e ) ,  H(X))  contains points 
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the pair P(e), H(X1Y) 
2- 

Figure 3.14: Plot of thehnction H(e) + P(e) log (N-1) versus P(e). 

Figure 3.15: Plot of thehnction C + H(e) + P(e) log (N-1) versus P(e). 

with abscissa P(e) = 0 only if H(X) 5 C. In other words, if the entropy of the 
input alphabet exceeds the channel capacity, it is impossible to transmit the infor- 
mation through the channel with arbitrarily small error probability. This result 
is a simplified version of the converse to the fundamental theorem of information 
theory, that will be discussed later on. If we identify the input alphabet of the 
channel with the output alphabet of the source encoder, the previously described 
situation refers to a communication system in which the symbols at the output 
of the source encoder are sent directly through the channel: no channel encoding 
is performed. We shall now include the channel encoder into our system and 
extend the previous results. 

Let us consider the system shown in Fig. 3.16 in which the block labeled 
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CHANNEL 

CHANNEL f-l 

Figure 3.16: Model of a discrete communication system. 

"source" represents the cascade of the source itself and the source encoder. 
Suppose for simplicity that the output of the source is a sequence of binary sym- 
bols emitted every T, seconds. The channel encoder is a binary block encoder 
(to be described in detail in Chapter 10). It transforms blocks of k consecu- 
tive source digits (words) into blocks of n digits belonging to the input channel 
alphabet X. An encoding rate R, can be defined as 

Since n symbols must be transmitted over the channel every k . T, seconds, the 
channel must be used every Tc = RcT, seconds. Denoting with W the set of 2k 
messages at the input of the channel encoder and with Z the set of 2k messages 
at the output of the channel decoder, we can apply the Fano inequality to these 
two sets, obtaining 

where H,(e) is the entropy of a binary alphabet with symbol probabilities P,(e) 
and 1 - Pw(e), and where the subscript w in Pw(e) denotes "word" and Pw(e) 
represents the average probability of decoding a word erroneously, that is, of 
incorrectly recognizing the transmitted code word. Moreover, since H(W 1 Z) = 
H(W) - I(W; Z), and taking into account that the following inequality holds 
true (data-processing theorem; see Viterbi and Omura, 1979, Chapter 1 for a 
proof; roughly speaking, it states that it is impossible to increase the information 
content of a message by processing it in some way), 
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we get 
H(W I Z )  2 H(W) - I(X;Y) (3.7 1) 

Since the transmission of each block of k bits involves using n times the channel, 
we can also write 

I(X;Y) 5 nC (3.72) 

so that, inserting (3.72) into (3.71) and the result into (3.70), we obtain 

The inequality (3.73) is the converse to the coding theorem. Since the alphabet 
W is obtained by grouping k consecutive symbols at the output of the source, the 
entropy H(W) is given by 

H(W) = kH,(L) (3.74) 

where H,(L) is the entropy of the source. Thus, inequality (3.73) states that 
the probability of erroneously decoding a sequence of k source symbols cannot 
be made arbitrarily small when the encoding rate R, is greater than the ratio 
C/H,(L). A lower bound to the error probability can be derived from (3.73) 
and (3.74) as follows: 

Now, letting k and n go to infinity and keeping constant their ratio R, yields 

Previous considerations refer to the word error probability. We want to ex- 
tend them to the bit error probability, that is, the probability that a source binary 
symbol will be delivered erroneously to the user. With reference to the notations 
of Fig. 3.16, the bit error probability is defined a .  Pb(e) P[<i # X i ] ,  i.e., the 
probability that a single source digit is in error after channel decoding. Assum- 
ing for simplicity that the binary source symbols are independent, identically 
distributed, equally likely RVs, we can apply Theorem 3.6 to obtain 

where Hb(e) is the entropy of a binary alphabet with symbol probabilities &(e)  
and 1 - Pb(e). Moreover, using (3.76) it can be proved that 
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Finally, observing that, owing to the data processing theorem, the following 
chain of inequalities holds : 

I(W; Z )  < I(X; Y )  5 nC (3.78) 

Combining it with (3.77), we obtain 

The bound (3.79) is a decreasing function of the bit error probability through the 
denominator of the RHS. This is not surprising, as it merely means that the more 
reliably we want to communicate, the slower we must communicate. 

From (3.79) we can also derive a lower bound to the bit error probability, 
analogous to (3.75), in the form 

which states once again that we cannot communicate reliably at rates above the 
channel capacity. 

Channel coding theorem 
We have seen in the previous subsection that there exists a lower bound to the 
error probability, different from zero, when the encoding rate R, is greater than 
the channel capacity C. This is the "negative" result known as the converse to 
the coding theorem. When the encoding rate R, is smaller than C the system 
behavior is dictated by the channel coding theorem, which will be stated here 
without proof. It was proved in 1948 by C. E. Shannon, and the interested reader 
is referred to his original paper (Shannon, 1948) or to one of the many books 
available, for example, Gallager (1968, Chapter 5). 

Theorem 3.7 

Given a binary information source, with entropy H,(L) bitslsymbol and a dis- 
crete, memoryless channel with capacity C, there exists a code of rate R, = kln 
for which the word error probability is bounded by 

Pw ( e )  < 2-nE(R) ,  R = RcHm(L) (3.81) 

where E(R) is a convex U, decreasing, nonnegative function of R for 0 5 R 5 C. 
V 

1 

A typical behavior of the function E(R) is shown in Fig. 3.17. Based on 
(3.81). we can undertake three different actions to improve the performance of a 
digital communication system. 
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Figure 3.17: Typical behavior of the function E(R). 

Figure 3.18: Increasing the value of thefunction E(R) by decreasing R, = kln. 

(i) Decrease R by decreasing R, = k/n. This means increasing the redun- 
dancy of the code and, for a given source emission rate, using the channel 
more often. In other words, we need a channel with a larger bandwidth 
(see Chapter 5 for a thorough discussion of this point). What happens is 
shown in Fig. 3.18. We move from R1 to R2, so that E(R) increases and 
the RHS in (3.81) decreases. 

(ii) Increase the channel capacity C by increasing the signal-to-noise ratio over 
the channel. This situation is depicted in Fig. 3.19. The operating point 
moves from the previous function El (R) to the new function E2(R), thus 
decreasing the RHS of (3.81). 

(iii) Increase n, while keeping the ratio R, = k/n constant. This third ap- 
proach does not require any intervention on the bandwidth andlor signal- 
to-noise ratio of the channel. It allows one to improve the performance 
of the communication system by simply increasing the length of the code 
words, and thus at the expense of a greater complexity of the encoder- 
decoder pair and of a longer delay in reconstructing the decoded sequence. 

Figure 3.19: Increasing the value of thefunction E(R) by increasing the capacity C of 
the channel. 

Figure 3.20: Block diagram of a time-discrete additive Gaussian channel. 

While (i) and (ii) were well-known remedies to counteract the disturbances 
in a communication system, the use of the third way is one of the major achieve- 
ments of Shannon's theory. 

3.3.4. Additive Gaussian channel 

In this section we shall consider a communication channel that is amplitude- 
continuous and time-continuous. Starting from the discrete channels considered 
so far, this situation will be approached in two steps. First, we shall examine the 
time-discrete, amplitude-continuous Gaussian channel shown in Fig. 3.20. Every 
T, seconds the source transmits a symbol chosen from a possibly uncountable al- 
phabet. The channel disturbance has the form of an unwanted noise added to the 
signal to be transmitted. The assumption that the noise is Gaussian, which is 
highly desirable from a mathematical point of view, also turns out to be reason- 
able in a wide variety of physical settings. After the analysis of this simplified 
case has been completed, we shall extend the results to the time-continuous chan- 
nel, in which the transmission of information will be allowed to be continuous 
in time. The derivation of the main result will be done in a heuristic manner, 
avoiding all mathematical subtleties. The unsatisfied reader is invited to quench 
hidher thirst for rigor in Ash (1967, Chapter 3). For the channel of Fig. 3.20, 
we have 77 = ( + u, where ( and 77 are RVs representing the input and output 
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symbols and taking values z E X , y E Y with the probability density functions 
(pdf's) fc(z) and f,(y), respectively, and v is a zero-mean Gaussian RV repre- 
senting the noise. Denoting the noise variance with a;, we have v N(0,  a;), 
and the output q, given ( = 2, is N ( z ,  a;). Our goal is the evaluation of the 
channel capacity; thus we need to extend our definition of the information mea- 
sure to the continuous case. 

Measure of information in the continuous case 

Let ( be a continuous RV taking values in X with pdf fc(z). We define its entropy 
H(X) as 

(3.82) 

Although (3.82) seems a straightforward extension of the definition (3.5) given 
in the discrete case, some differences arise. The main one consists in the fact 
that H(X) defined in (3.82) may be arbitrarily large, positive, or negative (see 
Problem 3.30). In the same way as for (3.82), we can define for two random 
variables ( and q having a joint probability density function fc,(z, y), the joint 
entropy H(X,Y), and the conditional entropies H(X I Y) and H(Y ( X) as 

Assuming now that both H(X) and H(Y) are finite, the following relationships 
hold true, as in the discrete case: 

In all the preceding relationships, inequalities become equalities if ( and q are 
statistically independent. 

In the discrete case, we have proved (Theorem 3.1) that the entropy is maxi- 
mized by equally likely symbols. In the continuous case, the following theorem 
holds. 
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Theorem 3.8 

Let ( be a continuous RV with pdf fc(z). If ( has finite variance a:, then H(X) 
exists and satisfies the inequality 

with equality if and only if ( N(P, a;) . v 
For the proof, see Problem 3.31. 

Capacity of the discrete-time Gaussian channel 

Suppose that the continuous RV's ( and q represent the input and output 
symbols for the channel of Fig. 3.20. As we did for the discrete channel, we 
define the average information flow through the channel as 

and the channel capacity C as 

a C = max I(X; Y) 
k(4 

We lcnow that, given ( = 2, q N ( z ,  a;). Thus 

and 
C = max H(Y) = log(2rea:) 

k(z) (3.89) 

By Theorem 3.8, H(Y) is maximum when q is Gaussian, and this in turn happens 
if and only if ( is Gaussian. Therefore, the capacity C is attained for a Gaussian 
input (, say ( N(O,a:), and its value is given by 

1 1 
C = - log [ 2 ~ e ( a i  + a;)] - - log (2~ea;) = 

2 2 

Capacity of the bandlimited Gaussian channel 

We have treated up to this point only time-discrete channels. On the other hand, 
many channels of practical interest are time-continuous, in the sense that their 
inputs and outputs are time-continuous functions. To extend the result (3.90) to 
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this new situation, let us suppose that the channel input signals are strictly band- 
limited to the frequency interval (-B, B)  Hz. Then, by the sampling theorem 
(see Section 2.5.1), we can represent each signal using (at least) 2B samples per 
second. Each sample has a variance a: equal to the signal power 'P. Moreover, 
the noise is assumed to be a white Gaussian random process, with two-sided 
power spectral density No/2, sampled every 1 /28  seconds. Hence its power is 
a: = (No/2) . (2B) = NoB. As a consequence, the result (3.90) becomes 

bit/(channel use) 

Recalling the definition (3.27) of the source rate R, in bitsis, we can define the 
energyper information bit of a transmitter with average power 'P 

Substituting (3.92) into (3.91) yields 

bitf(channe1 use) 

If the system includes a channel encoder with rate R,, we shall present to the 
channel a bit flow with rate R,/Rc. We will see in Chapter 6 that the minimum 
value of B required to transmit reliably this rate of information (the so called 
Nyquist bandwidth) is B = &, so that (3.93) becomes 

1 
C = - 2 log (1 + 2R,fb/No) bitf(channe1 use) (3.94) 

Finally, by means of (3.79). we obtain the inequality 

Equation (3.95), with equality substituted for the inequality, yields the relation- 
ship between the bit error probability and the signal-to-noise ratio per informa- 
tion bit, for a given code rate. It is plotted in Figure 3.21 for various values of Rc. 
For a given code rate, only the region above the respective curve is admissible 
for the pair (Pb(e), Eb/No). 

Letting Pb(e) = 0, i.e., Hb(e) = 0 in (3.91), and solving with respect to 
&b/No, yields 
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1 ,  . . . . , . , . 

Figure 3.21: Plot of the points (&b/NO, Pb(e)) satisfying (3.95) with equality for vari- 
ous values of the code rate R,. The curve pertaining to the uncoded binary antipodal 
modulation (see Chapter 4 )  is also shown. 

Equation (3.96), with equality substituted for the inequality, yields the relation- 
ship between the signal-to-noise ratio per bit which is required to obtain a re- 
liable transmission as a function of the code rate. It is plotted as curve (A) in 
Figure 3.22, where we also plotted two other curves. The first of these, curve 
(B), stems from the capacity of the Gaussian channel constrained to a binary in- 
put. Such a capacity, which is denoted as C 2 ,  to make explicit the continuous 
unconstrained output, has been derived in Chapter 4 of the book by McEliece 
(1977). It is given by 

C zSc - 2RcEb NO JZ;; /* -a e-u212 log cosh (F + yJF) dy (3.97) 

For small signal-to-noise ratios, the capacity C2,, approaches the capacity C of 
the unconstrained Gaussian channel, which proves that binary-input quantization 
does not hurt for low signal-to-noise ratios. The third curve, curve (C), refers to 
the capacity of the binary-input, binary-output channel obtained from a Gaus- 
sian channel through a double binary quantization of both input and output. Its 
capacity, denoted with obvious notation as C2,2, coincides with the capacity of 
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Figure 3.22: Plot of the p o i ~ s  (R,, &*/No) satisfying (3.96) (curve (A), unconstrained 
Gaussian channel), and derivedfmm (3.97) (curve (B), binary-input Gaussian channel), 
andfmm (3.56) (curve (C), binary-inplrt, binary-output Gaussian channel) versus the 
code rate R,. 

the binary symmetric channel given in (3.56) 

C2, = 1 + p logp + (1 - P )  log(l  - P )  (3.98) 

with the following expression for the transition probability p, obtained assuming 
the most efficient modulation scheme (binary antipodal, see Chapter 4) over the 
additive Gaussian noise channel and a code with rate R, (see Chapter 10): 

Comparing curve (A) with curve (C), we notice a degradation of about 2 dB for 
low sign&to-noise ratios; this is the price to be paid for using binary output 
quantization. 

To pass from the capacity expressed in bit per channel use to its expression 
in bit per second, we simply need the consideration that we need 2B samples per 
second to represent a signal with bandwidth B Hz, so  that we are using 2B times 
per second a discrete-time Gaussian channel with capacity C given by (3.91). 
THUS, finally, we obtain the capacity C, in bitls of a bandlimited white Gaussian 
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channel as 

C, = B log (I + 6) bit/s (3.100) 

The result (3.100) is  of fundamental importance, since it gives the upper limit 
that can be reached when information is to be reliably transmitted over Gaus- 
sian channels. The designer of a digital communication system tries to choose 
the system parameters in such a way as to approach the capacity C, as closely 
as possible with a preassigned error probability. In Chapter 5 the modulation 
schemes most widely used in digital transmission systems will be compared, 
among themselves and with respect to the limit given by C, in (3.100). 

Example 3.16 Most of today's telephone connections use a transmission medium that 
is almost entirely digital, with a fairly short analog local loop connecting the subscriber 
at one end to this medium via a digital central office. Such high quality telephone lines 
have a signal-to-noise ratio of about 37 dB, i z . ,  PINO B = lo3.', and a bandwidth of 
about 3500 Hz. 

Computing the capacity C, of such a channel, considered in a first approximation as 
an additive Gaussian channel, we obtain, through (3.100) 

Let us compare this theoretical capacity with the data rate achievable by today's off- 
the-shelf modulator-demodulators (modems). The last standard approved by the Inter- 
national Telecommunications Union is contained in the Recommendation V.34. It is a 
modem using multilevel amplitude and phase modulation combined with channel cod- 
ing and shaping to provide roughly a 5 dB gain. The highest data rate provided by 
V.34 modems is 33,600 bitfs and represents a dramatic improvement over the previous 
V.32 bis standard (1990) of 14,400 bitfs. The gap between the achieved data rate of 
33,600 bitfs and the channel capacity (43,020 bitfs) is due to several reasons, such as the 
nonGaussianness of the channel, other disturbances, implementation losses, etc. 

The highly sophisticated V.34 modem incorporates most of the state-of-the-art the- 
oretical achievements of the last years in the field, like trellis-coded modularion (see 
Chapter 12), signal shaping through shell mapping (see Chapter 5). adaptive equaliza- 
tion and preceding (see Chapter 8).  

Presently, the V.34 modems are being superseded in the market by PCM (pulse- 
coded modulation) modems that advertise speeds around 50 kbitfs. These modems are 
not based on the classic additive Gaussian channel model, but rather exploit the fact 
that in many applications a digital connection to the network can be made (for further 
information, see Humblet and Troulis, 1996). 0 





150 3. Basic resultsfrom infonnatwn theory 

Example 3.17 Consider a source with rate R, whose output enters a block channel 
encoder with rate R, = 0.5. To compute the lower bound (3.105) we need the spectral 
efficiency r. The data rate at the output of the channel encoder (and at the input of 
the channel) is equal to R,/Rc digitsis, R, being the encoding rate. Using the Nyquist 
bandwidth (see Chapter 7) B = R,/(2Rc) ,  we get 

Substituting r = 1 in (3.105) yields 

3.4. Bibliographical notes 

This chapter has no presumptions of originality, as its material simply summa- 
rizes results discussed in greater depth in the many excellent textbooks available 
on the subject of information theory. All of them stem from the pioneering work 
of C. E. Shannon that was published in his fundamental paper of 1948 (Shannon, 
1948); see also the collection of all papers by Shannon edited by Sloane and 
Wyner (1993). 

As students first, as researchers and teachers later, the authors have been 
especially familiar with the classical books by Fano (1961), Ash (1967), Gallager 
(1968), and Cover and Thomas (1991). We are indebted to these books for the 
development of topics in this chapter. In the following, we give some suggestions 
to the reader wishing to go deeper into the subject. 

Berger (1971) wrote an advanced book dealing wholly with the source cod- 
ing theorem, its generalizations, and its practical applications. Chapter 3 of 
McEliece (1977) is devoted to a modem and original presentation of discrete 
memory!ess sources and their rate-distortion functions. Source coding and re- 
cent advances in rate-distortion theory are also treated extensively in Viterbi and 
Omura (1979, Chapters 7 and 8). A comprehensive and highly informative book 
on source encoding is the one by Bell et al. (1990). In this chapter, we have de- 
scribed the Huffman source coding algorithm. Although it has found ubiquitous 
applications, the Huffman coding procedure has some drawbacks: the source 
statistics must be known, and, because of the code word's variable length, there 
i i  a mismatch between source and channel rates that requires buffering at the 
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transmitter. Moreover, the algorithm is not designed to take advantage of long se- 
quences of the same characters. An alternative source coding technique remedies 
some of the deficiencies of the Huffman coding algorithm. It is the LempeI-Ziv 
algorithm, described in Ziv and Lempel(1977). The Lempel-Ziv algorithm is in- 
trinsically adaptive to the source and can efficiently encode frequently-occurring 
groups of source symbols. 

For the subject of discrete channels with memory (not covered in this chap- 
ter), see Ash (1967, Chapter 7), Gallager (1968, Chapter 4), and Viterbi and 
Omura (1979, Chapter 2). The continuous-time Gaussian channel, briefly men- 
tioned here, is treated in detail in Fano (1961, Chapter 5), Gallager (1968, Chap- 
ter 8), and Ash (1967, Chapter 8). 

3.5. Problems 

Problems marked with an asterisk should be solved with the aid of a computer. 

3.1 For the third source alphabet of Example 3.1 show by direct differentiation that 
the entropy has a maximum for p = 0.5. 

3.2 For the source of Problem 3.1, consider sequences of two outputs as a single 
output of an extended source with alphabet 

Under the hypothesis that consecutive outputs from the source are statistically 
independent, show directly that H ( X ~ )  = 2 . H(X).  Generalize the result to the 
case of an extended source Xu. 

3.3 A source emits a sequence of independent symbols from an alphabet X consisting 
of five symbols 2 1 , .  . . ,q, with probabilities a,  i ,  i, A,  A, respectively. Find 
the entropy of the source alphabet 

3.4 A black and white TV picture consists of 525 lines of picture infonnation. As- 
sume that each line consists of 525 picture elements and that each element can 
have 256 different brighmess levels. Pictures are repeated at the rate of 30 per 
second. What is the average rate of infonnation conveyed by a TV set assuming 
independence? 

3.5 Consider two discrete sources with alphabets X1 and X2, having MI and M2 
symbols, respectively, and probability distributions {pi)z and { q i ) z l .  From 
these sources a new source is formed, with MI + M2 symbols: the first MI 
symbols have probability distribution { ~ p i ) Z ,  while the last M2 symbols have 
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probability distribution {(I  - x ) ~ ~ ) Z ,  , 0 < X < 1. Find the entropy of the new 
source and the value of X that maximizes it. 

3.6 Given a source of alphabet X with M symbols and probability distribution {pi)&, 
group the last m symbols to form a new source X' with M' = M - m + 1 symbols 
and probability distribution { q i ) z ;  such that 

QM' = P M ~  f PM1+l f . .. f PM 

Show that the entropy of the new source satisfies the inequality H(XJ) I H(X). 

3.7 A binary source with alphabet X and symbols { x i ,  22) has probabilities P { x l )  = 
0.1 and P { x z )  = 0.9. Construct the Huffman codes corresponding to the sources 
Xu , ( v  = 1,2,3,4), obtained by grouping the outputs of X in words of length v. 
For every value of v ,  find the efficiency of the encoding scheme. 

3.8 Given the source with alphabet X having symbols {xi)&,, and probability distri- 
bution 

find three binary codes satisfying the prefix constraint such that: 

(a) The average number of digitslsymbol 6 is minimized; 

(b) The maximum number of digits in every code word is minimized; 

(c) The average number of digitskymbol A is minimized subject to the con- 
straint that the maximum length of the code words is 4. 

3.9 Consider a source alphabet with N symbols, and two probability distributions 
{ P I , P ~ , P ~  ,..., P N )  and { P ; , & , P ~  ,... , P N )  
where 

, A p > O ,  p1 >p2 
Pz = PZ f AP 

show that the entropy of the alphabet is greater for the second probability distri- 
bution provided that > pz. Hint: Applying the inequality In x 5 x - 1, with 
x = qi/pi, show that the following inequality holds true: 

where {pi)? and {qi)" probability distributions. 

3.5. Problems 

Figure 3.24: See Problem 3.10 

3.10 In Fig. 3.24, the representations of symbols O,1,. . . ,9 are shown. A two-dimensional 
field with 4 x 6 positions (white or black) is used. Find the redundancy of this 
code under the hypothesis that the symbols are equally likely. 

3.11 A binary source with alphabet X having symbols { z 1 , z 2 )  has a probability dis- 
tribution (pl = 0.005,pz = 0.995). The outputs from the source are grouped in 
blocks of 100 each, and a code word is associated only with those blocks contain- 
ing no more than three symbols X I .  Assuming that the symbols from the source 
are statistically independent 

(a) Find the minimum code word length for a fixed-length code; 

(b) Find the probability that a block is not encoded. 

3.12 A source has an alphabet of four symbols. The probabilities of the symbols and 
two possible sets of binary code words for the source are as follows: 

Symbol 1 P ( x i )  I Code I I Code 11 
xl 1 0.4 1 1 I 1  

I For each code, answer the following questions: 

(a) Does the code satisfy the prefix condition? 

(b) Is the code uniquely decipherable? . 

(c) What is the mutual information provided about the source symbol by the 
specification of the first digit of the code word? 

3.13 For the source of Example 3.5, compute the entropy and check the result of Ex- 
ample 3.6. 
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Figure 3.25: See Problem 3. I4 

3.14 It is desired to re-encode more efficiently the output of the Markov source illus- 
trated in Figure 3.25. 

(a) Find the entropy H,(X) of the source. 

(b) Construct the Markov diagram for pairs of symbols. 

(c) Construct the optimum binary code for all pairs of symbols and evaluate the 
resulting code efficiency. 

3.15 Consider a stationary source with a ternary alphabet X  = {21,22, z3), for which 
the probability of each symbol depends only on the preceding symbol. The prob- 
abilities of the possible ordered symbol pairs are given in the following table: 

Determine the optimum binary code words and the resulting code efficiency for 
the following encoding schemes: 

The sequence is divided into successive pairs of symbols and each pair is 
represented by a code word. 

A Markov model for the source is devised, and a state-dependent code is 
used to encode each symbol. 

3.16 The state diagram of a Markov source is given in Fig. 3.26. and the symbol prob- 
abilities for each state are as follows: 

3.5. Problems 

Figure 3.26: See Pmblem 3.16 

Figure 3.27: See Problem 3.18 

(a) Evaluate the source entropy H ,  ( X ) .  

(b) Construct an optimum set of binary code words for each state and evaluate 
the resulting code efficiency. 

3.17 Prove the results (3.43) to (3.48). 

3.18 The symbols from a source with alphabet X  = (21, 22, 23) and probability distri- 
bution {f, f, $1 are sent independently through the channels shown in Fig. 3.27. 

Evaluate H ( X ) ,  H ( Y ) ,  H ( Z ) ,  H ( X  ( Y ) ,  and H ( X  I 2 ) .  

3.19 A channel with input alphabet X. output alphabet Y, and channel matrix PI is 
cascaded with a channel with input alphabet Y, output alphabet 2, and channel 
matrix P 2  (Fig. 3.28). 

Under the hypothesis of independent transmissions over the two channels, find 
the channel matrix P of the equivalent channel with input X and output 2. 

3.20 Prove that the cascade of n BSC's is still a BSC. Under the hypothesis that the 
n channels are equal, evaluate the channel matrix and the error probability of the 
equivalent channel and let n -+ co. 
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Figure 3.28: See Problem 3.19 

SOURCE 

Figure 3.29: See Problem 3.21 

3.21 Consider the transmission system shown in Fig. 3.29. A modulator associates 
with the two symbols X I ,  x2 emitted by the two source voltages of +1 and -1 V, 
respectively. A Gaussian noise represented by the RV v is added to the modulator 
output, with v N N ( 0 , l ) .  The decision device can operate in two ways: 

(a) It compares the received voltage with the threshold zero and decides that 
XI has been transmitted when the threshold is exceeded or that x2 has been 
transmitted when the threshold is not exceeded. 

(b) It compares the received voltage with two thresholds, +6 and -6. When 
+d is exceeded, it decides for XI; when -6 is not exceeded, it decides for 
xz; if the voltage lies between -6 and +6, it does not decide and erases the 
symbol. 

Compute and plot the capacity of the two discrete channels resulting from the 
application of decision schemes (a) and (b). Plot the second one as a function of 
6. 

3.22 For the two situations depicted in Fig. 3.30, show that I(X;Y) = I(X; Z). Verify 
also that in the first case H(Y) > H(Z). whereas in the second case H(Y) < 
H(Z). 

3.23 Compute the capacity C of the channel shown in Fig. 3.31. 

Figure 3.30: See Problem 3.22 

3.5. Problems 

Figure 3.3 1: See Problem 3.23 
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Figure 3.32: See Problem 3.27 

Cascading n such channels. compute the capacity C,, of the equivalent channel 
and let n+ m. 

3.24 Consider the cascade of two BSC channels. Prove that the capacity of the equiv- 
alent channel cannot exceed the capacity of each single channel. 

3.25 Consider the BEC channel with channel matrix given in (3.60). Compute and plot 
H(X I Y) as a function of P(xl).  

3.26 (*) Write a computer program implementing the Arimoto-Blahut algorithm (see 
Viterbi and Omura, 1979, Appendix 3C) to find the capacity of a discrete channel. 

3.27 Find the capacity and an optimizing input probability assignment for each of the 
discrete channels shown in Fig. 3.32 (Gallager, 1968). 

3.28 (*) Compute the capacity of the channels of Problem 3.27 using the program de- 
veloped in Problem 3.26 and compare the results with those obtained analytically 
in Problem 3.27. 
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3.29 Let < be a continuous RV uniformly distributed in the interval X = (0, b). Com- 
pute its entropy H(X). 

3.30 Show that the entropy H(X) of the RV < having probability density function: 

is infinite. 

3.31 Prove Theorem 3.8. Hint: Prove first that the following inequality holds: 

where f.~(x) and f,(x) are arbitrary probability density functions. Then apply it 
by considering an arbitrary probability density function fc(x) with finite variance 
of, and a Gaussian density function 

3.32 Compute the upper limit of the capacity (3.100) of a bandlimited Gaussian chan- 
nel as B -+ m. 

3.33 Prove the inequality (3.105) of Theorem 3.10. 

Waveform transmission over the 
Gaussian channel 

In this chapter we introduce digital modulation as a way of delivering to the user 
digital information generated by the source. A physical communication channel 
is available, which may consist of a pair of wires, a coaxial cable, an optical 
fiber, a radio link, or a combination of these. Therefore, it is necessary to convert 
the sequence of source symbols into waveforms that match the physical proper- 
ties of the transmission medium. What is called digital modulation (or digital 
signaling) is indeed the mapping of digital sequences into a set of waveforms. 

The digitalmodulator is the functional device that achieves such mapping. In 
its simplest possible form the mapping is one-to-one between binary digits and 
a set of two waveforms. This type of transmission is called binary modulation, 
or binary signaling. More generally, the modulator may map into waveforms 
blocks of h binary digits at a time, and hence need a set of M = 2h different 
waveforms. This type of transmission is called M-ary (or multilevel) modulation. 

All physical channels corrupt the information-bearing waveforms with dif- 
ferent impairments such as distortions, interferences, and various types of noise. 
At the receiving side, the corrupted waveforms are processed by the digital de- 
modulator. Its task is inverse to the modulator, since it estimates which particular 
waveform was actually transmitted by the modulator, and hence recovers from it 
an estimate of the source information. In order for the source information to be 
delivered to the user as reliably as possible, the design of the demodulator must 
account for the impairments introduced by the channel. This chapter deals with 
only one of these impairments, namely, Gaussian noise added to the signal. 

A central role in this chapter is played by the evaluation of the performance 
of the modulator-demodulator pair. We are interested in assessing how well a 
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Figure 4.1: The channel model assumed in this chaprel: 

SOURCE 

given modulation scheme does its job of carrying information through a channel 
in a reliable way by making the most efficient use of the basic resources avail- 
able, namely, power, bandwidth, and complexity. While these concepts will be 
made clear later on, we mention from the onset of this chapter that a good digi- 
tal modulation/demodulation scheme should deliver information to the end user 
with a low error probability, low bandwidth occupancy for a given transmission 
rate, and low power expenditure. In addition, the complexity, and hence the cost, 
of the modulator/demodulator pair (in short, of the modem) should be made as 
low as possible. 

+ MODU- 
MAPPER ---t LATOR 

4.1. Introduction 

The channel model considered in this chapter is reproduced in Fig. 4.1. A source 
produces a sequence of independent, identically distributed binary symbols with 
an information rate R, = 1/T, bitls (the subscript s stands for source). These 
binary digits are grouped in blocks of length h, that shall be referred to as source 
symbols. The M = 2h symbols occur with probabilities pi, i = 1,. . . , M ,  
assigned to the set of symbols { m i ) E 1 .  For simplicity's sake, we assume that all 
the symbols are equally likely, so that pi = 1/M for all i. However, the reader 
should be warned that this assumption may not hold in some instances, as for 
example during the transmission of a preamble message intended to establish a 
communication, or the like. 

In the simplest form of a digital modulation scheme, the modulator maps 
each symbol onto a set of M waveforms, that are transmitted sequentially over 
the channel. The resulting composite signal generated by the modulator is writ- 
ten v l ( t ) ,  where the subscript < denotes the entire sequence of source symbols. 
Since the transmission of one symbol requires a time T = hT,, the rate 1/T at 
which the signals are transmitted over the channel is called the signaling rate. 

4.1. Zntroduction 

This is given by 
1 1  R, -- T; = hT, - log, M 

and is measured in (M-ary) symbols per second. 
A great variety of digital modulation schemes (or mapping rules) is available, 

and an effort will be made here to present them in a unifying conceptual frame. 
We start with some simple examples. 

Example 4.1 The modulator uses M signals { s i ( t ) } E 1  with duration T = hT,. 
Fig. 4.2 shows an example of transmitted waveforms for M = 2, M = 4, and M = 8. 
For M = 2 we have 

s l ( t )  = + A ,  s2(t)  = - A ,  0  5 t  < T, 

For M = 4 we have 

s l ( t )  = -3A, ~ 2 ( t )  = -A,  s s ( t )  = +A,  ~ 4 ( t )  = +3A, 0  _< t  < 2T8 

and for M = 8 we have 

s i ( t )  = (2i - 9 )A ,  i = 1 8 O _ < t  <3T8 

We observe that in general each signal has duration hT,, i.e., for a given source rate its 
time span is proportional to h. 0 

A basic point may be raised from the sheer consideration of this simple exam- 
ple. That is, how should we pick one among these various modulation schemes? 
Or, does any of them perform better than the others? As we shall see, we cannot 
say in general that there is an optimum choice of M: rather, this choice is the 
result of a tradeoff between complexity and power and bandwidth efficiency. 

In this example it turns out that, when the source rate 1/T8 is kept constant, 
the waveforms with M = 8 require less bandwidth than those with M = 2, since 
the pulse duration in the former case is longer. In general, increasing M reduces 
the bandwidth occupancy, and hence increases the bandwidth efficiency of the 
modulation scheme. On the other hand, if the average signal power spent for 
transmission is kept constant as M varies, we see that in the presence of noise 
it will be a harder task for a demodulator to distinguish between signals when 
M is large, because their amplitude levels are closer. Making signal levels as 
separated in the case M = 8 as they are for M = 2, and hence keeping the error 
probability at about the same level, would require increasing the average signal 
power. Thus, increasing M decreases the power efficiency of this modulation 
scheme. 
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binary source sequence 
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Figure 4.2: Three examples of memoryless modulation schemes. Fmm top to bonom: 
Binary modulation, quaternary modulation, and octonary modulation. 

1  

0  -A 

The tradeoff involved in the selection of M should be evident now. If this 
modulation scheme is to be used for a transmission system where bandwidth 
is at a premium (called a "bandwidth-limited" system) we should use a larger 
value of M. If power is at a premium (a "power-limited" system) we should 
use a lower value of M. Other considerations-among them, implementation 
complexity~ccur as well, but the above describes the basic tradeoff the system 

. . .  + A l : m 1 1  . . .  . , . b 

. . .  . . 1 I - l  . , .  I t . . . . . . . . . . . .  

designer is faced with. 
The simpIe exampIe above describes one among the various modulation sche- 

mes available to the designer, one which is suitable for a baseband system. For 
radio systems, a favorite scheme consists of associating messages to M possible 
phases of a sinusoid, called the carrier. This modulation scheme, called M-ary 
phase-shij? keying (PSK), will be described at length in the following. Here we 
limit ourselves to observe that it transmits over the channel a constant-envelope 
signal, and hence is a good choice for applications in which power amplifiers 
are operated at or near saturation for best power efficiency, and hence are non- 
linear because of W A M  and AMPM conversions (see Section 2.4.2). This 
nonlinearity would distort any signal with a time-varying envelope. 

We hasten to observe here that the modulation model considered so far, i.e., 
one in which there is a memoryless, one-to-one correspondence among source 
symbols and modulator signals, although it is the most important, is by no mean 
the only one. To motivate what we call "modulations with memory," we describe 
here a simple special case of continuous-phase modulation (CPM), that will be 
discussed in more depth in Chapter 6. 

w : : : : : : : : " '  . . ,  

T = 4 : : : : : : : : : : :  

4.1.1. A simple modulation scheme with memory 

Consider 2-PSK, i.e., a binary modulation scheme in which binary source sym- 
bols "0" and "1" are associated with two phases, 0 and a, of a sinusoid. The 
signal sent through the channel is shown in Fig. 4.3. Its power density spectrum 
can be easily calculated by using the techniques described in Chapter 2. Here 
it suffices to say that the resulting spectral occupancy may be just too wide for 
certain applications (e.g., some mobile-radio systems). Now, Fourier theory sug- 
gests to us a reason for this: it is known that the presence of discontinuities in 
a signal widens its spectrum, and the PSK signal exhibits jumps in its phase at 
each occurrence of a pair 01 or 10 in the source sequence. 

Based on this observation, we expect that a narrower spectrum will be ob- 
tained if these discontinuities are smoothed in some way. This is obtained for 
example as shown in Fig. 4.4. In this modulation scheme the transmission of 
a source "0" makes the phase of a sinusoid increase linearly by a/2, while the 
transmission of a "1" makes it decrease by the same amount. The resulting phase 
trajectory is now continuous, and hence we expect it to yield a narrower spec- 
trum than 2-PSK. Notice that we can do even more than linear phase transitions: 
smoother phase trajectories can be obtained by shaping them in other forms, as 
we shall see in our general presentation of CPM (Chapter 6). 

At this point we can add the observation that this modulation scheme is not 
memoryless anymore: in fact, rather than associating two different waveforms 
to the binary source symbols, at time kT (say) we transmit a waveform whose 
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binary source sequence 

Figure 4.3: Evolution of the trammined signal and of the phase in binary PSK. 

shape depends not only on the source symbol emitted at kT, but also on the 
phase reached by the signal at the same instant. We say that the modulator has 
memory. As we shall see, the presence of this memory has a strong impact on 
the structure of the optimum demodulator. 

4.1.2. Coherent vs. incoherent demodulation 

We are now ready to start our discussion of the demodulators' structures and 
their performance, but first we need to introduce a further classification. AS 
mentioned before, throughout this chapter we shall be considering that the signal 
received at the output of the channel is corrupted by AWGN n(t) with power 
spectral density No/2 .  Two different cases will be considered here, giving rise 
to different families of demodulators. In the first, we assume that the receiver 
has complete knowledge of the set of possible transmitted signals. We call this 
receiver a coherent receiver. We can write the received signal in the form 

In the second case we consider a typical situation arising in bandpass communi- 
cation systems. In these we may not be able to assume that the signals used by 

4.1. Introduction 

binary source sequence 

I I I I I 
I waveform I I I 
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Figure 4.4: A simple modulation scheme with memory. The transmitted signal is phase- 
continuous. 

the modulator are fully known, because the exact phase of the carrier sinusoid 
used by the modulator is unknown. We write the received signal in the form 

where 0 is a random variable modeling the uncertainty on the phase angle of the 
transmitted signal. A demodulator that operates without any knowledge of 0 will 
be called incoherent. 
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4.1.3. Symbol error probability 

The purpose-of the demodulator is to process the received signal ~ ( t )  to produce 
an estimate i$ of the transmitted sequence i$, and consequently an estimate ?iik of 
each transmitted symbol. The performance of the modulator/demodulator pair 
will be evaluated through the symbol errorprobability 

We are interested in the demodulator that achieves the minimum value of 
P(e). We call it optimum in this sense. For simplicity, we shall assume through- 
out the chapter that the transmitted messages are equally likely, so that, as shown 
in Section 2.6, minimum error probability is achieved with a maximum likeli- 
hood (ML) receiver. We shall deal with three different cases: 

1. Memoryless modulators and coherent receivers. Each generated waveform 
has a duration strictly limited to the time interval T ,  and the modulator is 
memoryless. 

2. Memoryless modulators and incoherent receivers. Each generated wave- 
form still has a duration limited to the interval T and the modulator is 
again memoryless, but the receiver has an uncertainty due to a random 
phase angle as in (4.2). 

3. Modulators with memory. These will be considered in Chapter 6. 

4.2. Memoryless modulation and coherent demodulation 

The memoryless nature of the modulation process implies that the waveforms 
available at the modulator are strictly limited to the time interval T .  While we 
shall restrict ourselves to this situation throughout this chapter, we hasten to say 
that the theory developed here is also valid in some instances when those wave- 
forms have a longer duration. In fact, this theory also applies, mutatis mutandis, 
whenever the quantities obtained at the channel output by processing the re- 
ceived signal in a single symbol interval are sufficient statistics for the decision 
on that symbol. This situation occurs, for instance, with the infinite-duration 
raised-cosine pulses of Chapter 7. 

The demodulator outputs one realization of the random process 

4.2. Memoryless modulation and coherent demodulation I67 

depending on the K-symbol sequence i$. The log-likelihood ratio for i$, based on 
the observation of the noisy signal ~ ( t )  = v<(t) + n(t) ,  is given by (see Section 
2.6.1) 

The optimum demodulator chooses the sequence 2 that maximizes A< in (4.5); 
that is, 

In the following, with a slight abuse of notation we shall denote by A< the quan- 
tity (4.5) multiplied by the inessential constant No/2. Thus, insertion of (4.4) 
into (4.5) shows that the ML sequence must maximize the quantity 

By recalling that s(t; & )  has duration T ,  (4.7) can be rewritten in the form 

where 

form a sequence of independent random variables under our assumptions that Ik 
are independent and the noise is white. 

From (4.8) we can conclude that the ML sequence 2 is obtained as an ML 
symbol-by-symbol decision, i.e., in each time interval T the quantities A<, in (4.9) 
are maximized separately. In fact, under our assumptions the maximum value of 
the sum (4.8) corresponds to the sum of the maximum values of its components 
(see Appendix F). Considering this fact, without any loss of generality from now 
on we shall examine modulator and demodulator by restricting ourselves to the 
time interval (0, T )  corresponding to k = 0. 

The quantities in (4.9) are a set of sufficient statistics of the received signal 
~ ( t ) .  This, as discussed in Section 2.6, means that all we need to know about 
the received signal ~ ( t )  to allow an ML decision is contained in these quantities. 
Since the RV (0 can take on M different values, each signal s(t; lo) comes from 
a set {si(t)}E1 of different waveforms of duration T .  Therefore, the RV A<, 
becomes, for i = 1 ,2 ,  . . . , M ,  



4. Waveform transmission over the Gaussian channel 

Figure 4.5: Correlator implementation of the optimum coherent receiver for memoiyless 
modulation and transmission over the AWGN channel. 

where 

and Ei denotes the energy of the ith signal. 
The block diagram of the ML demodulator is shown in Fig. 4.5. in the form 

usually refemd to as a correlation demodulator. For simplicity it refers to the 
demodulation of the first symbol to. 

An equivalent method to get the quantities (4.10) is to replace the bank of cor- 
relators with a bank of M filters, each matched to one of the signals {s i ( t ) }g , .  
The filter matched to si( t )  has an impulse response hi( t )  = si(T - t ) ,  SO that 
the output of this filter at t  = T,  when the input is r ( t ) ,  gives exactly the inte- 
gral in (4.10). The block diagram of this matched-IJnr demodulator is shown 
in Fig. 4.6. This version of the optimum demodulator shows that a bank of M 
matched filters supplies the sufficient statistics for our decision problem. 

A simpler version of the optimum demodulator can be obtained by represent- 
ing the signals { * ( t ) } g ,  in the orthonormal basis {Jl,(t)}~=,. N < M, by using 
the Gram-Schmidt procedure (see Section 2.5). We get 
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Figure 4.6: Matched-filter implementation of the optimum coherent receiver for memo- 
iyless modulation and transmission over the AWGN channel. 

By inserting (4.12) in (4.10), after some algebra we get 

where 

Thus, to construct the sufficient statistics needed by the demodulator we may use 
the N quantities r j ,  j = 1,. . . , N ,  the projections of r ( t )  onto the orthonormal 
basis {Jlj(t)}jN_, spanning the N-dimensional signal space. The components of 
the received signal that are orthogonal to this space are irrelevant to the deci- 
sion process. The block diagram of the demodulator based on (4.13) is shown 
in Fig. 4.7. There is no difference in performance between this demodulator and 
that of Fig. 4.5; however, it contains only N rather than M correlators, which 
entails a reduction in complexity, which is considerable when M is much larger 
than N .  
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Figure 4.7: Correlator implementation of the optimum coherent receiver for memory- 
less modulation and transmission over the AWGN channel. The modulator signals are 
represented as h e a r  combinations of N basis signals { q j ( t ) ) g l .  

Example 4.2 Let us reconsider in this example the binary modulation scheme of EX- 
ample 4.1. By defining the unit-energy function 

we can write the two elements of the binary signal set in the form (4.12). that is, for 
O I t < T ,  

s l ( t )  = A O $ ( t )  
s2( t )  = -AO$(~) (4.15) 

The computation of the quantities in (4.13) yields 

where 

The sufficient statistics is represented now by the RV r ,  the component of r ( t )  along 
$( t ) .  Inspection of (4.16) leads us to conclude that the decision is based on the sign of 
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Figure 4.8: Optimum coherent receiver for a binary modulation scheme. 

Figure 4.9: Demodulating quaternary PSK. Only two correlators are needed to deter- 
mine the quantities rl and rz upon which the optimum decision can be based. 

the value taken on by r: for positive r  we have X I  > X 2 .  whereas for negative r  we have 
X 2  > X I .  The block diagram of the optimum demodulator is shown in Fig. 4.8. 0 

Example 4.3 (Quaternary PSK) As we have seen in Example 2.20 the quaternary 
PSK signal set has 2 dimensions. If the signals are, for 0 5 t  < T .  

and the carrier frequency fo is much larger than 1 / T ,  the inverse of the signal dura- 
tion, then the orthonormal basis functions are $l ( t )  = m c o s  2*fot and &(t)  = 
- m s i n 2 n  fot. The energy of the four signals is the same, so that the demodulator 
decision can be based on the two quantities rl and r2, obtained as shown in Fig. 4.9. It 
can also be seen that only the signs of rl and r2 are relevant to the decision process, so 
that the multiplicative factor m is actually immaterial. The reader may want to ob- 
serve that the demodulator structure of Fig. 4.9 works with any value of M, since every 
M-ary PSK signal set has two dimensions. 0 
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4.2.1. Geometric interpretation of the optimum demodulator 

By defining the three vectors 

where 

we represent the signals ~ ( t ) ,  s ( t )  and n ( t )  as points in an N-dimensional Eu- 
clidean space. The coordinates of these points are the projections of the corre- 
sponding signals onto the basis of the space, and, as we know, these are all we 
need to make a decision in the optimal way. We may write 

to express the fact that in the additive white-Gaussian-noise channel the signal 
vector is perturbed by a Gaussian-noise vector, with independent components, to 
generate the observation r. 

Now, recall that the sufficient statistics to be used by the demodulator are 

If we complete the square by subtracting the term 

(which is independent of i and hence does not alter the decision) we obtain the 
new sufficient statistics 

The significance of the last equality lies in the fact that now, by using (2.249), 
we can interpret the maximization of I: over i as the search for the value of i 
that minimizes J : [ T ( ~ )  - s i ( t ) l Z  d t .  Now, since the components of ~ ( t )  lying 
outside of the signal space spanned by the s i ( t )  are irrelevant to the decision 
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Figure 4.10: Geometry of the minimum-distance decision rule, corresponding to opti- 
mwn demodulation. 

(see Section 2.6.1) this minimization is tantamount to the minimization of the 
squared Euclidean distance Ir - s i lZ  between r and one of the vectors s i ,  where 
r represents the projection of ~ ( t )  in that signal space. 

In geometrical terms, the optimum (ML) demodulator l o o k  for the transrnit- 
ted signal vector which lies closer to the received signal vector it is a minimum- 
distance demodulator. We may interpret this by saying that in a sense the opti- 
mum demodulator trusts the channel: that is, it assumes that the transmitted 
signal is the one most similar (in a Euclidean-distance sense) to the received 
waveform. 

This geometrical view is illustrated in Fig. 4.10 for a two-dimensional signal 
space. The receiver decides in favor of s; because this is the signal closest to the 
received vector r. 

Decision regions 

Let us push our geometrical interpretation a little further with the aid of Fig. 4.11. 
Each point of the N-dimensional Euclidean space RN is a possible received vec- 
tor r, and the demodulator can be thought of as a (many-to-one) mapping of the 
received vectors into the signal vectors. Specifically, denote by Ri, i = 1, . . . , M, 
the regions of RN such that if r lands in RN then the optimum demodulator's 
choice is s i .  These regions form a partition of RN, and are called ML decision 
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Figure 4.11: Maximum-likelihood decision regions in a WO-dimensional signal set with 
three points s,, sj, and s k .  

regions or Voronoi regions. Formally, 

The ML decision rule can therefore be put in the form 

choose B = si whenever r € & (4.21) 

which is interpreted by saying that the demodulator partitions R N  into M de- 
cision regions &, the sets of points closer to s, than to any other signal-vector 
point. These regions are bounded by hyperplanes that are the loci of the points 
equidistant from two neighbor signals. 

We note in passing that in the event Ir - s, 1 = Ir - s, I (i.e., when the received- 
signal point lies on a boundary hyperplane) the ambiguity between s, and s, may 
be resolved without loss of optimality by tossing a coin. In fact, this event occurs 
with probability zero, and the error probability is not affected by the decision 
made when it occurs. 

Summary of optimum demodulation 

Before proceeding with the evaluation of the error probability for optimum de- 
modulators, we summarize here our assumptions and the different aspects under 

which these demodulators may syn .  We have assumed that the signal re- 
ceived in the interval t € (0, T )  is 

where i is an integer in the set {l.,, . , M), that the source chooses at random, 
with probability 1/M for all i ;&pendently of the choices made in other 
time intervals. Also, n(t)  is GaIL..&n noise with flat power spectral density 
N0/2. 

The optimum demodulator opfirtas equivalently in one of the following 
forms: 

1. It looks for the maximum o \ r r ~ j  among the M quantities 

where Ej denotes the enero,y the signal s j ( t ) .  A demodulator operat- 
ing this way must calculate evc1.y T seconds these M integrals (by using 
correlators, or matched filters) before searching for the largest. 

2. It looks for the maximum ovct. ,I  umong the M quantities 

N 1 
C 83krk - Z&j 
k.-l 

which are constructed by compt~ting once for all the quantities 

and every T seconds the N q~lrr~uties 

The latter computation require% -?: matched filters or correlators, which 
makes this second demodulator ::fire attractive when N < M .  

3. By defining (and computing) t ; ~  -V-vectors r = ( T I ,  . . . , T N )  and sj = 
( s j l ,  . . . , s j N ) ,  it looks for the , s tor  sj that minimizes the squared Eu- 
clidean distance Ir - sj12. 

4. By defining the M decision r e q f i s  
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4.2.2. Error probability evaluation 

Under the usual assumption of equally likely symbols, the symbol error proba- 
bility (4.3) can be written as 

where P (c  I sj) is the probability of a correct decision when the transmitted 
signal is sj. Thus, the computation of P(e) requires the computation of the set 
of probabilities {P(c ( sj))&. Similarly, we can write, with obvious meaning 
of the symbols, 

* M 

Now, a correct decision on s j  occurs whenever the noise vector n does not 
move s j  out of its decision region Rj: thus, 

Further, observe that, given sj, r is a conditionally Gaussian random vector with 
independent components, variance No/2 along each component, and mean value 
sj: in fact, r is generated by adding to s j  a Gaussian zero-mean noise vector n 
with independent components. Consequently, from (4.24) we obtain P (c  I sj)  
by integrating over Rj the probability density function of r given sj. We have 

The last equality shows that the error probability is expressed in the form 
of an integral extended to a region centered at sj. The integrand function has 
a spherical symmetry around sj, that is, it takes constant values over spherical 
surfaces centered at sj. This observation allows us to conclude that the error 
probability P ( c  I sj) depends only on the shape and the size of the decision re- 
gion Rj, and not on its location in space. Every transformation that modifies the 
signal constellation by leaving its decision regions invariant in shape and size 
does not change its error probability. Thus, rotations, translations, or reflections 
of the signal constellation do not change P(e) (at least for an optimum demodu- 
lator). 

For example, the three constellations of Fig. 4.12 have the same error prob- 
ability. However, we hasten to observe that this does not imply that they be all 
equivalent from the point of view of communication efficiency. In fact, we are 
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Figure 4.12: Three quaternary signal constellations that have the same error probability 
for transmission over the AWGN channel. 

interested in achieving a given P(e), i.e., a preassigned reliability, with the low- 
est expenditure of energy. The average energy required for transmission of a 
constellation with equally-likely signal vectors {s,)Z, is 

We recognize that (4.26) is precisely the definition of the moment of inertia 
around the origin for a set of M equal point masses located at the signal points. 
Thus, & is minimized if their center of gravity is at the origin. This condition can 
be stated mathematically as 

M 
CS;=O (4.27) 
i= 1 

so that a signal set satisfying (4.27) requires the minimum average energy. (Since 
the third constellation of Fig. 4.12 uses, on the average, more energy than the 
other two, it should be regarded as less efficient.) 

Uniform signal sets 

We conclude these considerations about error probability by defining a geomet- 
rically uniform signal set as one whose decision regions are all congruent, in 
the sense that all of them can be obtained from a single one by translations and 
rotations. For this signal set all the signals generated by the modulator are on an 
equal footing, in the sense that they have the same error probability: for all pairs 

,,,,#, 

i, j we have P (e  I s;) = P ( e  1 si), and consequently 
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non-minimum-energy minimum-energy 
configuration configuration 

Figure 4.13: Geometric representation of a binary signaling scheme. General configu- 
ration and minimwn-energy (antipodal) configuration The two configurations have the 
same error probability, but different energies. 

for any i. We say that this signal constellation has the uniform error property. 

4.2.3. Exact calculation of error probability 

In spite of the fact that (4.25) has a compact expression, its calculation is, in but 
a few instances, a formidable task that cannot be carried out to obtain a closed- 
form solution. In this section we deal with these simpler (yet very important) 
cases. 

Binary signals 

Whenever the modulator has only two signals, i.e., when M = 2, the error 
probability can be computed in closed form. A general configuration of two 
signal vectors is shown in Fig. 4.13. The two decision regions are the half-planes 
separated by the axis of the segment joining the two signal points. Since they are 
congruent, every binary signal set is uniform. 

To compute its error probability, it is convenient to modify the signal-space 
basis so that $1 ( t )  is parallel to the line joining sl with s2, and the midpoint of 
the two signal vectors is at the origin. This can be accomplished by rotating and 
translating the signal set, which, as we know, does not change P(e) .  We have 
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where the last equality stems from a result of Appendix A, and d denotes the 
Euclidean distance between sl and s2: 

The last equality in (4.29) shows the important fact that in the coherent demod- 
ulation of two equally likely signals transmitted on the AWGN channel the error 
probability depends only on the Euclidean distance between the two signals, and 
not on their other features. 

Let us compute this distance by relating it to the signal set. From (4.30) we 
have 

(4.31) 

By defining the correlation coefficient of the two signals as their normalized 
scalar product 

A 1 
p = - lT sl ( t )  s2(t)  dt 

-0 

we can also write 
d2 = El + E2 - 2 p m  (4.33) 

By combining (4.33) and (4.29) we can compute P(e)  in a closed form that 
depends on the energy of the signals, their correlation coefficient, and the power 
spectral density of the noise. Here we specialize this general result to the case of 
equal-energy signals, i.e., El = E2 = E .  We obtain 

Antipodal signals. Since, by Schwarz's inequality 

the correlation coefficient takes values Ipl 5 1 .  The maximum value of error 
probability is achieved by p = 1, which corresponds to sl = s2, a situation 
hardly attractive for signal transmission as it yields P(e)  = 112. On the contrary, 
p = - 1 ,  corresponding to 

sl ( t )  = -s2 ( t )  (4.35) 
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A 
Figure 4.14: Ermr pmbabilig as a findon of q = &/No for binnry antipoh1 and 
orthogonal signals. 

(and hence to sl = -s2) provides the minimum error probability (equivalently. 
the minimum energy expenditure for a given P(e)).  Signals such that (4.35) 
holds are called antipodal. For these 

-. 

The corresponding curve is shown in Fig. 4.14. 

Binary orthogonal signals. Two orthogonal signals are shown in Fig. 4.15. In 
this case p = 0, and therefore the error probability is given by 

. -. 

Its curve is plotted in Fig. 4.14. There is a 3 4 8  penalty in the signal energy to be 
paid with respect to the antipodal c a x .  In fact. by comparing (4.36) with (4.37). 
we see that to achieve the same error probability with orthogonal signals as for 
antipodal signals, the energy of the latter must be doubled because of the factor 
2;showing up in the argument of the error function. 
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Figure 4.15: Geometric representation of binary orthogonal signals. 

A bandpass binary constellation. Consider a binary constellation generated 
by shifting up and down by an amount fd the frequency of a canier cos(27~ fot): 

We assume that (fo f fd)T >> 1, SO that we have approximately 

The correlation coefficient is, from its definition (4.32): 

sin 47~  fdT 
P = 

47TfdT 

The behavior of p as a function of 27~ fdT is shown as in Fig. 4.16. Eq. (4.34) 
yields the minimum error probability when p achieves its minimum value, that 
is, when p -- -0.22. In this situation, 

Rectangular signal sets 

The integral (4.25) yields a closed-form P(e)  also for two-dimensional signal I 

constellations whose decision regions are bounded by orthogonal straight lines 
parallel to the coordinate axes. Let us start with a simple example of this calcu- 
lation. 
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Figure 4.16: Correlation coeflcient of the two signals sl ( t )  = A cos[%( fo  - fd)t]  and 
32(t) = A C O S [ ~ K (  fo  + fd) t ] .  

Figure 4.17: Geometric representation of 4-PSK signals. 

Error probability of 4-PSK. This signal constellation is shown in Fig. 4.17. 
This includes four points located symmetrically on a circumference. Its decision 
regions are the four quadrants of the plane, so that this constellation is uniform. 
Consequently, by using the independence of the two noise components nl and 
n2, we have 
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where (see Appendix A) 

with 

and d the Euclidean distance between two neighboring signals. In conclusion, 

where p is given by (4.38). 
A more complex situation occurs when the decision regions of a two-dimensional 

constellation are still bounded by straight lines parallel to the coordinate axes, 
but they are not congruent. The calculations that follow illustrate this case, cor- 
responding to a signal set which is not geometrically uniform. 

Error probability of 1CQAM. This signal constellation is shown in Fig. 4.18. 
It consists of 16 points located in the plane to form a square grid. It has three 
different types of decision regions, namely, that pertaining to the four comer 
signals s l ,  S 4 ,  S13.  and s16, that pertaining to the eight signals s2, s3, ss,  sg ,  sg ,  
s12, slr, and sl5, and that pertaining to the four internal signals s6, S T ,  slot and 
s l l .  By defining 

91 2 P(c  I s1) 

it should be an easy matter to derive from (4.22) that in this case 

1 
p(c) = - (491 + 892 + 49s) 

16 

Specifically, we have 

q, = P{nl  < d / 2 )  P{nz > - d / 2 )  = ( 1  - p)2  

where p is again as in (4.38). Moreover, 

92 = P { - d / 2  < nl < d/2)P{n2  > - d / 2 )  
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t "  

Figure 4.18: A two-dimensional signal set with 16 points and decision regions bounded 
by straight lines parallel to the coordinate axes: 16-QAM. 

with 

and 
P { n 2  > - d / 2 }  = 1  - p  

Thus, 
92 = (1 - 2p)( l  - P )  

Finally, 

9, = P { - d l 2  < nl < d / 2 ) P { - d / 2  < nz < d / 2 }  = (1 - 2 ~ ) '  

In conclusion, from the latter calculations and (4.40) we obtain 

and hence 
9 2  P ( e )  = 3p - -p 4 

*. 8 

We observe here, also for later use, that for p  << 1, i.e., p2 << p  (a situation that 
wi. should always occur for reliable transmission) we have 
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It is interesting to interpret (4.43). The term p, defined in (4.38), represents the 
probability that in binary modulation a signal will be mistaken for another signal 
lying at distance d  from it. Further, observe that in this constellation the four 
comer signals similar to sl have 2 nearest neighbors (i.e., signals at distance 
d  away), the eight signals similar to sz have 3 nearest neighbors, and the four 
signals similar to s ~  have 4 nearest neighbors. The average number of nearest 
neighbors in this constellation is then 

Thus, it is tempting to interpret (4.43) by saying that the error probability 
is approximately equal, for low enough noise, to the product of the binary error 
probability p  computed for the minimum distance of the constellation, multiplied 
by a factor equal to the average number of signals at the minimum distance. This 
satisfies the intuition that, when the noise is low, an error will occur by mistaking 
the transmitted signal for one of its nearest neighbors. The larger the number of 
these nearest neighbors, the larger the error probability. 

If we return for a moment to the error probability for 4-PSK we can see that 
this interpretation makes sense also in that case. In fact, from (4.39) we have 

and every 4-PSK signal has exactly two nearest neighbors at distance d.  Later 
on we shall prove that this approximation is valid in general. 

Error probability of orthogonal signal sets. Another important signal config- 
uration allows one to obtain an expression for P ( e )  which is nearly closed-form. 
This is the set of M orthogonal signals with equal energies, that is, 

This signal set has dimensionality N = M. The two-dimensional case was 
shown in Fig. 4.15, whereas the case M = 3  is shown in Fig. 4.19. The de- 
cision regions may be hard to visualize for M > 2, but the decision rule can 
be described in a simple way. Assume that sl is transmitted, and consider the 
two-dimensional space spanned by sl and sk, for any k = 2 , .  . . , M pig.  4.20). 
It is seen that the received signal point r belongs to the decision region R1 when 
the received signal component rl  is greater than ~ k ,  k = 2 , .  . . , M. Thus, in 
the M-dimensional space the decision region R1 is bounded by the hyperplanes 
rl  = rz, rl = rg, . . . , T I  = r ~ .  The same argument holds for the other decision 
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t "  

Figure 4.19: Geometric representation of three orthogonal signals. 

Figure 4.20: Decision regions for a pair of orrhogonal signals. 

regions, which are congruent and thus make this signal constellation geometri- 
cally uniform. 

Consequently, we have 

P(c)  = P(c  ( s l )  = P{rl  > T z ,  T l  > T Q ,  . . . , T 1  > T M  I ~ 1 )  (4.44) 

To compute this probability we observe that, when sl is transmitted, the random 
variables T I ,  . . . , T M  are independent Gaussian with equal variance No12 and 
mean values 
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The main difficulty in this computation arises from the fact that the events T I  > ri 
are not independent. However, they are conditionally independent for given T I ,  

so that we can write 

= 4, {[1 - ierfC (%)I , 

Our final step is taken by observing that the conditional pdf of rl is given by 
( ~ N O ) - ' / ~  e x p [ - ( a  - & ) 2 / ~ o ] .  We obtain the equation 

The integral in (4.45) cannot be further simplified, but it can be easily computed 
numerically. 

A brief discussion of this result allows a first glance at the problem of com- 
paring modulation schemes with different values of M (Chapter 5 contains a 
thorough discussion of this point). By looking at the integral in the right-hand 
side of (4.43, one may observe that, since the quantity in square brackets is 
smaller than 1, a small value of M gives a smaller error probability for the same 
value of &/No. On the other hand, notice that the greater is M, the higher is the 
information content of each signal, which in fact conveys h = log, M bits. The 
transmission of a single binary digit requires an energy E l  log, M. Given this, 
a reasonable question is: for a given value of the noise power spectral density 
N0/2, what happens to the error probability P(e )  when M is increased but the 
energy expenditure per transmitted bit, Eb = E l  log2 M ,  is kept constant? The 
answer is obtained by plotting P(e)  vs. the latter quantity. From Fig. 4.21 it can 
be seen that, at least for low error probabilities, increasing the size M of the 
signal set requires less energy per bit to obtain the same error probability. 

4.3. Approximations and bounds to P(e) 

In most practical cases the probability of error cannot be computed in closed 
form. An example was already encountered in the case of orthogonal signals. 
Another example stems from M-PSK, with M = 2h and h > 2. When an exact, 
closed-form expression is not available, we resort to approximations (we are 
especially interested in approximations that are good for low error-probability 
values) or to bounds. Approximations and bounds are useful only if they require 
simple computations. Moreover, we require the bounds to be "tight," that is, that 
the gap between upper and lower bound be small enough as to give a reasonable 
approximation to the unknown true value. 
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Figure 4.21: Error probabiliry for coherent detection of M orthogonal signals. Here 

~b f &/NO 

4.3.1. An ad hoc technique: Bounding P(e) for M-PSK 

Consider M-PSK, whose M signal points are evenly distributed along a circum- 
ference with radius fi. Fig. 4.22 shows 8-PSK, along with the decision region 
of signal sl. Since the constellation is uniform irrespectively of M,  we write 

where S1 is the complement of R1. Now, observe that S1 is the union of the two 
half-planes S', and S'; (Fig. 4.23). We can write the pair of inequalities 

The inequality on the right stems from the fact that the probability of a union of 
events cannot exceed the sum of the probabilities of the single events. That on 
the left stems from the fact that S', is a subset of S1 (obviously, we could use S'; 
instead, but the end result would not change). 

To compute the probabilities in (4.46) we choose to represent the noise vec- 
tor with a coordinate system ($J;, $I;) obtained by rotating the original axes by 
?TIM. This operation does not change the noise statistics-which has a spherical 
symmetry- but simplifies our calculations. Fig. 4.24 shows that the probability 
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Figure 4.22: Geometric representation of M-PSK for M = 8. The decision region of sl 
is also shown 

Figure 4.23: S1, the complement of the decision region R1, can be erpressed as the 
union of the two haIf-planes Si and Sf. 

that the received vector be in S; does not depend on the component nl ,  and is 
equal to the probability that n2 take on a value exceeding f i s i n a l ~ .  Thus, 
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Figure 4.24: Rotating the coordinate mes: the noise component along $; becomes 
irrelevant. 

Because of the symmetry of the problem, the probability P{r E Sy 1 s l )  takes 
on the same value as above, and consequently from (4.46) and (4.47) we have 
the following upper and lower bounds to P(e): 

We observe that upper and lower bounds in (4.48) differ only by factor of 2, 
which is usually adequate for applications. Moreover, notice that the upper 
bound has the form D . 0.5 erfc(d/2fl),  where d = 2 f i s i n  ?r/M is the min- 
imum distance between signal points in M-PSK and fi = 2 is the number of 
nearest neighbors. Based on our discussion in previous section, which will be 
made more precise soon, we may expect that the upper bound to P(e )  in (4.48) 
be a good approximation to the true value. In fact, the upper bound turns out to 
be closer to P(e)  than the lower bound. 

4.3.2. The union bound 

We start by defining a quantity which will prove central in all the discussions 
that follow, the painvise error probability P i s ,  + sj}. This is the probability 
that, when s, is transmitted, s j  will be closer than s, to the received vector r ,  i.e., 
s j  will be preferred to s, by the demodulator. The reason for its name is that if 
the transmission system uses only two signals, viz., s, and sj,  then P ( e  I s,) = 
P i s ,  + sj}. This can be easily computed from (4.29): 

4.3. Approximations and bounds to P(e) 

is the Euclidean distance between si and sj. 
For a general M-ary modulation scheme, if si is transmitted an error occurs 

if one or more of the signals other than & are preferred to it by the demodulator. 
Since the probability of a union of events cannot exceed the sum of the individual 
probabilities, we have the union bound 

P ( e  I si) 5 C P{si + sj) (4.50) 
s ~ f s i  

By combining the results (4.49) and (4.50) we obtain the union bound in the 
explicit form: 

1 
P ( e  I si) 5 x lerfc 

j#i 
By further averaging (4.51) over the signal set, we get 

We notice that for the computation of (4.52) it suffices to know all the distances 
dij among signals in the constellation. 

An important observation is that the union bound becomes tighter and tighter 
as No decreases, i.e., when P(e)  decreases, so that for low enough error proba- 
bilities it provides a good approximation to their exact values. On the other hand, 
for large P(e )  values its approximation may be very loose. (Actually, nothing 
prevents the value of a union bound to exceed 1 for high noise values.) The latter 
fact may not be overly bad in system design, because, after all, if we use an upper 
bound in lieu of the true P(e )  we keep ourselves on the safe side. 

4.3.3. The union-Bhattacharyya bound 

A simpler form of the union bound (4.52) can be obtained by using a bound to 
the pairwise error probability in lieu of its exact value. Since (Appendix A) 

from (4.52) we obtain the union-Bhattacharyya bound 
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Figure 4.25: Errorprobability of 4-PSK. Comparison A of true value, ad hoc bounds, and 

union-Bhaitacharyya upper bound. Here qb = Eb/No. 

Use of (4.53) may be convenient for signal sets whose distance enumerator can 
be computed in closed form. This is defined as the polynomial T ( Z )  in the 
indeterminate Z such that the presence of a term aZ6 indicates that among the 
squared distances q j ,  i, j = 1,. . . , M, j # i, there are a of them taking the 
value 6. Then the union-Bhattacharyya bound takes the especially simple form 

Example 4.4 As an example, consider 4-PSK as in Fig. 4.17. Every signal has two 
neighbors at squared distance d2, and one at squared distance 2d2. Thus, the distance 
enumerator is 

T ( Z )  = 4(2Zda + zZda) 
and the union-Bhattacharyya bound gives 

P ( ~ )  5 2e -@/4N0  + e-da/2N0 

For illustration's sake, this is plotted in Fig. 4.25 as a function of &/No, where Eb is the 
energy per bit, equal to E/2. 

0 

The usefulness of the union-Bhattacharyya bound will appear in full in our dis- 
cussion of error probabilities of convolutional codes and trellis-coded modula- 
tion (Chapters 11-12). 

4.3. Approximations and bounds to P(e) 

4.3.4. A looser upper bound 

From the union bound we may obtain a simpler but looser bound that requires 
only the knowledge of a single parameter of the signal constellation. This derives 
from the observation that the function erfc(-)  decreases monotonically as its 
argument increases, so that if we define the minimum (Euclidean) distance of the 
constellation as the smallest distance between any two signals: 

dmin = min dij 
i#j (4.55) 

we have 

and consequently from (4.52) we obtain 

where the last equality derives from the observation that the two summations 
involve M ( M  - 1) terms. This upper bound is obviously looser than the union 
bound from which it derives. Its simplicity derives from its depending on a single 
parameter of the constellation, d ~ , .  

4.3.5. A lower bound 

As we have seen in our derivation of the union bound, when s; is transmitted 
an error occurs if one or more of the following events occur: "The demodulator 
prefers to si the signal sj, j # i." These events have probabilities P(s; + sj). 

Now, if an event is the union of sub-events, its probability is lower-bounded 
by each one of the probabilities of these sub-events, so that, for all j # i, 

P ( e  I s,) 2 P(s; + sj) 

Consequently, we have 

P ( e  1 s;) 1 m+x P(s i  + sj) 
3 2% 
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Since erfc(.) is monotone decreasing, its maximum value is achieved when its , . 
argument is minimum, so that we may write 

/ ierfc (5) , if si has at least one signal at d i n .  
P ( e  I si) > 

I 0, otherwise. 

By averaging (4.58) over the signal set, we obtain 

where vmin denotes the number of signals that have at least one neighbor at dis- 
tance dmin. Notice that vmin/M is the fraction of such signals. 

Example 4.5 Consider M-ary orthogonal signals. Here all signals have a neighbor at 
distance dmin = m, so that vmin = M, and we have the lower bound 

By comparing this lower bound with the union upper bound, obtained from (4.52) by 
observing that dij = dmin for all i and j # i: 

we see that the difference between the two bounds increases with M. 

4.3.6. Significance of dmin 

From the definition of vmin we immediately have 

vmin 1 2 

so that (4.59) yields 
1 

P(e)  2 - erfc - 
i M (2%) 
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By combining this simplest form of lower bound with the correspondingly sim- 
ple upper bound (4.56), that is, 

we may appreciate the significance of the parameter dmin. In fact, knowledge 
of it allows us to obtain both upper and lower bounds to the error probability of 
any M-ary signal set, these bounds differing only for a multiplicative constant. 
For this reason, we may say that dmin is the single most important parameter 
that determines the quality of a signal constellation, especially for low noise. In 
these conditions, constellations with the same average energy may be compared 
on the basis of their minimum distances, because it is expected that the one with 
the largest value of dmin has the lowest error probability. Thus, maximization of 
dmin has become a popular design criterion for signal constellations. 

We hasten to add a word of caution here: especially when the error proba- 
bility is not very small, maximizing dmin may not be tantamount to minimizing 
P(e) .  The next subsection reveals that the number of nearest neighbors also 
plays a relevant role in determining P(e)  (see also Problem 4.17 at the end of 
this Chapter). 

4.3.7. An approximation to error probability 

A useful approximation to P ( e  I si), especially valid for intermediate P ( e )  val- 
ues, will now be derived. This approximation was anticipated at the end of our 
derivation of the exact error probability of 16-QAM. 

Recall the union bound in the form (4.51): 

As No + 0, or, equivalently, as d i i / f l  grows to infinity, the function erfc(.) 
becomes very steep (in a logarithmic scale), so that in the summation at the right- 
hand side of (4.62) the only significant terms are those whose argument includes 
dmin. If v, denotes the number of signals at distance dmin from si, we have 

-. 
where the quirky notation 5 means an approximate upper bound, one that be- 
comes closer and closer to a true upper bound as No (and hence P(e) )  approaches 
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zero. By averaging over the transmitted signals we obtain 
M 

where 

is the average number of nearest neighbors of the signals in the constellation. 
From (4.64) we can see that, besides dmin, at least another parameter should 

be accounted for to evaluate the performance of a signal constellation at inter- 
mediate values of P(e) .  This is the average number of nearest neighbors in the 
constellation. As a rule of thumb, we may say that, for P(e )  values around 
doubling the value of D is equivalent to losing about .2 dB in the ratio e i n / N o .  
(See Problem 4.18 at the end of this Chapter.) The latter quantity, as we shall see 
in the next chapter, is related to the signal-to-noise ratio. 

4.4. Incoherent demodulation of bandpass signals 

The case that will be addressed in this section arises in practical situations where 
bandpass signals are transmitted, and the demodulator does not have a precise 
knowledge of the phase of the oscillator that generates the carrier signal at the 
transmitter side. Consequently, there is an uncertainty at the receiver side, mod- 
eled by a random phase e of which only the pdf is assumed to be known. 

The modulator is assumed to be memoryless, with signals limited to a time 
interval of duration T .  As in our analysis of coherent demodulation, without 
loss of generality we restrict our attention to the signal transmitted in the in- 
terval (0, T ) ,  that we model by using analytic-signal notations as developed in 
Section 2.4: 

where the complex-envelope signals i ( t ;  C) are chosen from the set {&(t )}E, .  
To account for the fact that the receiver knows the carrjer frequency fo, but 

not its phase, we write the signal received in (0,  T )  as 

where we have defined 

i ~ ( t ;  to, e)  = L [ q t ;  <0)t9(2rf0t+e) I (4.68) 
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The coherent-demodulator solution discussed so far in this chapter implies 
estimating 8, then using its value for demodulation. Here we examine a different 
solution, which consists of designing a demodulator that operates without the 
assumption that 0 is known. To achieve this goal, we first evaluate the likelihood 
ratios of the transmitted signals conditioned on the value of 8, and then average 
over it to obtain likelihood ratios independent of the carrier-phase value. 

The conditional likelihood ratio can be written as 

(4.69) 
where 

s,(t; 8)  4 !R{i,(t)deeizrfot 1 (4.70) 
By taking the expectation of Ai(0) with respect to 0, i.e., by multiplying it by the 
pdf fe( .  ) and integrating from -n to n, we obtain the unconditional likelihood 
ratio: 

where &i denotes the energy of the signal s;(t; e ) ,  which does not depend on the 
phase 8. 

The latter expression may be simplified by defining the complex quantities 

which allow us to write 
! 

2vCLI,', A~ = exp (-$-) 
exp { g  [x } f e z  z  i = 1 ,2 , .  . . , M 

(4.73) 
These are the quantities upon which the optimum incoherent demodulator oper- 
ates to make its decisions. 

When there is no a priori information about the distribution of 8, this lack of 
knowledge is reflected by the choice of the uniform pdf, that is, 

By using this pdf in (4.73), and recalling the definition of the modified Bessel 
##,,, function of the first kind, Io( - ) (see Appendix A), we get 
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and the log-likelihood ratio for each decision becomes 

a 
where c, = -&,/No. 

Thus, the key quantities that the demodulator has to compute are the magni- 
tudes of L,. Let us examine in some detail how this can be done. From defini- 
tion (4.72). we have 

Due to definition (4.70), the term in square brackets in the integrand is the con- 
jugate of the analytic signal associated with *( t ;  6). Thus, by defining Z,(t; 6 )  
as the Hilbert transform of the latter, we have 

1 T  
~ie-3' = 6 ~ ( t )  [r.(t; 6)  - j&(t; 6)]  dt 

It follows that ILi(2 may be constructed by summing the squares of the real part 

and of the imaginary part 

The signals s,(t; O), affected by the uncertainty 6, are available to the demodula- 
tor. Their Hilbert transforms can be generated by using a device that shifts these 
by ~ / 2 .  

4.4.1. Equal-energy signals 

An important special case occurs when equal-energy signals are transmitted. In 
this case the constants c, are all equal and can be omitted from (4.75). Then, since 
Io( . ) is monotone increasing for nonnegative arguments, the ML decisions can 
be based on the simpler quantities 

Notice also the important fact that if the energies are not equal, the value of No 
should also be known for optimum demodulation. 

The block diagram of the optimum incoherent demodulator for equal-energy 
signaling is shown in Fig. 4.26. This is called a correlation &modulator. 

4.4. Incoherent demodulation of bandpass signals 

Phase 
shift 

Figure 4.26: Block diagram of the correlator receiver for incoherent demodulation of 
bandpass signals with equal energies. 

4.4.2. On-off signaling 

Consider binary modulation with the signals 
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Figure 4.27: Optimum receiver for the case of incoherent demodulation of binary on-off 
signals. 

Here s l ( t )  has energy zero, while s2( t )  has energy &. From (4.75) we get 

and 

Comparing X I  to X 2  to choose the largest is tantamount to comparing X2 with 0, 
or, equivalently, IL2I2 against a suitable threshold value v, according to the block 
diagram of Fig. 4.27. 

We now determine v. lL212 takes value v when the two signals s l ( t )  and 
sz( t)  are equally likely, i.e, when 

Thus, v is the solution of the equation 

which also shows that the optimum threshold, say v,,,, depends on the values of 
&>nd of No (the estimate of the latter may not be an easy task). For small enough 

4.4. Incoherent demodulation of bandpass signals 

Figure 4.28: Optimum decision regions for binary on-off signaling and incoherent de- 
modulation 

No (which corresponds, as we shall see, to small enough emor probability) we 
may use the approximation Io(z) sr: eZ,  which gives 

Error probability 

Since the demodulator operation is based on the envelope of the received signal, 
it should be immediately realized that the boundary between the two decision 
regions is a circle of radius (see Fig.4.28). The two coordinates of the ' I /  
received vector are given by 

and - 

as it can be seen by observing that L2 = 7-1 + jr2. 
<$ 

Given a transmitted signal si( t )  and a given value of 9, these two random 
variables are conditionally Gaussian and independent with variance No/2. When 
s l ( t )  is transmitted E[rl I s l ,  91 = E[r2 I s l ,  91 = 0. while when s2( t )  is 
transmitted we have 
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The error probability P(e I s l )  is the probability that a point with coordinates 
(r l ,  r2)  will be out of the circle with radius 6, that is, 

Moving to polar coordinates a1 = p cos 4 and a2 = p sin 4, we have 

Similarly, 

dal daz 

(4.81) 

Moving again to polar coordinates, after integration with respect to the angular 
coordinate 4 we get 

an integral that can be expressed in closed form in terms of the Marcum's Q- 
function (see Appendix A). Specifically, we obtain 

Combination of (4.80) with (4.83), yields the final expression for the error prob- 
ability: 

P ( e ) = l { e x p ( - z ) + l - Q ( g , @ ) )  2 (4.84) 

Notice that the above expression for error probability also holds for non- 
optimum threshold values, i.e., with vopt changed into v. 

4.4.3. Equal-energy binary signals 

Assume two signals with equal energy E and correlation coefficient 
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(Notice the difference between this definition and (4.32). The factor 2 in the 
denominator of (4.85) accounts for the fact that the energy of the complex en- 
velope is twice the energy of the real signal, so that we obtain p = 1 when 
s1 ( t )  = sz ( t ) ) .  

When sl ( t )  is transmitted, the received signal r ( t )  has complex envelope 

By assuming foT >> 1, the terms at 2fo  can be dropped from (4.72), so that we 
obtain, for i = 1,2, 

1 T 
L. . - - - 2a /0 i ( t ) q ( t )  dt (4.88) 

Notice that, since the sufficient statistics (4.76) is based on the squared magni- 
tude of ILil, there is no loss of optimality if we use instead of Li the rotated 
quantity Lie-je. Using (4.86) and (4.85) in (4.88), we get 

where, given 8, nl and nz are conditionally Gaussian complex random variables, 
defined by 

T 
ni P --&e-j0/0 f i( t)si(t)  dt 

and hence such that 

E{ni 1 0) = 0, (4.90) 

~ { ( n ~ ( '  ( 8) = No, i = 1,2,  (4.91) 

E{+z IS) = NOP (4.92) 

Notice from last equation that nl and nz need not be independent, due to the fact 
that they are obtained by projecting white Gaussian noise on axes that may not 
be orthogonal. L 

Thus, 

Calculation of (4.93) is complicated by the fact that the two random variables 
involved are generally not independent, as observed before. However, by using 
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Figure 4.29: Error probability for incoherent detection of binary signals. Here tl = 
&/No- 

again the Marcum Q-function (see Problem 4.15) we can obtain a closed-form 
expression for P(e I s l ) .  Moreover, it is an easy matter to check that P(e I s1) = 
P(e 1 s2), so that 

where 

This error probability is plotted versus &/No in Fig. 4.29. The minimum value 
of P(e) is achieved when (p(  = 0, i.e., for orthogonal signals. In this case, we 
have, by using a result from Appendix A, 

4.4.4. Equal-energy M-ary orthogonal signals 

The results of the last subsection can be easily generalized to a constellation of 
M orthogonal signals. These may be conveniently generated by picking M sinu- 
sbidal signals with duration T, with frequencies located symmetrically around a 
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canier frequency fo ,  and such that the correlation between any pair o 
zero. 

f signals is 

By duplicating the calculations that lead to (4.89), we have, under the as- 
sumption that q ( t )  was transmitted, and for j  = 1, . . . , M ,  

Now the noise components ni are independent. If we define the normalized 
envelope Rj as 

(4.97) 

then this has a conditional pdf which is a Rice pdf when i = j ,  and Rayleigh pdf 
when i # j ,  viz., for a 2 0, 

f ~ ~ l s ~  ( a  1 si) = 

We now have 

a e x " - k ( a 2 + ~ ) ) 1 ~  ( a E ) ,  j = i ,  
(4.98) 

a exp (-g) , j + i  

As a consequence of the independence of the noise components in (4.96), the 
envelopes R, are independent as well. Thus, from (4.98) we have, by duplicating 
the arguments that led us to (4.43, 

P(C I si) = 1- a exp [-k ( a 2  + g)] 
10 ( a g )  [I - exp (-:)I M-l da (4.100) 

We observe that the RHS of (4.100) is independent of the transmitted vector si. 
Therefore, it provides the unconditional probability P(c) of a correct decision. 
Moreover, this can be brought to a closed form by using the binomial expansion 
for the bracketed term raised to power (M - 1) and then integrating termwise. I 

P 

The final expression for the error probability is found to be 

For M = 2 this result agrees with (4.99, as it should. The curves of (4.101) are 
shown in Fig. 4.30 as a function of &/No. 
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1 

Figure 4.30: Error probability for incoherent detection of M orthogonal signals. Here 
17 = &/No. 

4.5. Bibliographical notes 

Much of the material in this chapter is classical in detection and modulation 
theory and, as such, it can be found in most of the textbooks available on this 
subject. 

The authors are indebted to the excellent books by Wozencraft and Jacobs 
(1965) and Van Trees (1968). The first, in particular, emphasizes the geomet- 
ric viewpoint. For the theory of signal spaces, the book by Franks (1969) is a 
recommended reading. The paper by Arthurs and Dym (1962) contains a clear 
presentation, in a geometric context, of the problems of coherent and incoherent 
demodulation of memoryless signals. 

A more detailed analysis of the phase coherence of the receiver and of its 
effects on the demodulated signals can be found in the books by Viterbi (1966) 
and Simon, Hinedi, and Lindsey (1995) and in Viterbi (1965). The problem 
of incoherent demodulation of two equal-energy signals appears in Helstrom 
(1958); here we have followed closely the general derivation presented in the 
book by Schwartz, Bennett, and Stein (1966). 

4.6. Problems 

Problems marked with an asterisk should be solved with the aid of a computer. 
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4.1. Given an orthonomal basis {l/ , j(t)}gl.  show that the RVs ni defined in (4.18) 
are independent, zero-mean Gaussian with covariance No/2, where No/2 is the 
power spectral density of the white Gaussian random process n( t ) .  

4.2. Consider the three binary modulation schemes for the AWGN channel whose 
signals, defined in (0, T ) ,  are the following: 

Assume fi - f2 = n / T  and fl = m / T ,  n and m two nonzero integers. 

(a) Represent geometrically each scheme. 

(b) Compute their error probabilities. 

(c) Comment on the relative efficiency of each scheme with regard to the uti- 
lization of the average transmitted energy. 

4.3. Consider a binary antipodal modulation scheme whose signals have distance d 
and are not equally likely. Define pl = P(s1) and pz = P(s2) ,  the a priori prob- 
abilities of the two signals, and show that the optimum demodulator of Fig. 4.8 
must set its threshold to the value 

In words, the boundary of the two decision regions is not at the origin, but is 
shifted closer to the signal with the lower probability. Find the resulting expres- 
sion of error probability. 

4.4. Assume a binary antipodal modulation scheme. 

(a) Evaluate the error probability of the demodulator of Fig. 4.8 when the deci- 
sion threshold has an offset A with respect to the optimum (zero) value. 

*(b) For some values of A/G plot error probability curves, and compare with 
Fig. 4.15. 

4.5. In this problem we analyze the degradation in performance of a binary demodula- 
tor due to the use of a filter different from the optimum matched filter. The system 
is shown in Fig. 4.31. Assume 
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Figure 4.31: A suboptimum receiver: 

and n(t) a Gaussian noise process with power spectral density No/2. The opti- 
mum demodulator would require a matched filter, i.e, one with impulse response 

( t ) =  0 5 t ~ T  

Assume instead an approximation of a simple RC filter with impulse response 
h(t) = e-*%=(t). 

(a) Compute the error probability of this nonoptimum demodulator. 

(b) Find the value of A that minimizes the error probability found in (a). 

(c) Evaluate the increase of transmitted energy required to get the same error 
probability as with the optimum demodulator. 

4.6. W o  antipodal signals are transmitted over the AWGN channel. The optimum 
receiver achieves an error probability of 0.1 when f i  = 1. 

(a) Compute the capacity of the binary symmetric channel generated by this 
transmission scheme (see Section 3.3.2). 

*(b) Modify the receiver by introducing two thresholds at f A, so that an erasure 
is declared when the received signal component has an absolute value less 
than A. Derive the discrete equivalent binary erasure channel and compute 
its capacity as a function of A. 

Compare the two cases, and comment on them. 

4.7. ~ s s u m e  a binary modulation scheme with signals, defined over (0, T) ,  

8l(t) = 0, 

s2(t) = g s i n  2rr f2t, f2  = m/T, m an integer 

and consider coherent and incoherent demodulation. 
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(a) Obtain for each scheme its equivalent binary discrete channel, and deter- 
mine its parameters as functions of &/No. 

*(b) For both schemes, plot the channel capacity versus &/No. 

4.8. The two equally likely signals, defined in (0, T), 

8l(t) = f i cOS2r r f l t ,  

are transmitted over an AWGN channel with noise power spectral density No/2. 

Assume T = 2 ms and fi = 1 MHz. Consider the two cases A f = 500 Hz and 
Af = 1kHz. 

(a) Compute the error probability for coherent demodulation. 

(b) Compute the error probability for incoherent demodulation. 

4.9. (Wozencraft and Jacobs, 1965) The eight equally likely signals shown in Fig. 4.32 
are transmitted over an AWGN channel with noise power spectral density No/2. 

(a) Compute the error probability achieved by the optimum coherent demodu- 
lator. 

(b) Interpret the result by using a binary symmetric channel model. 

4.10. (Lindsey and Simon, 1973) Consider the following set of M equally likely sig- 
nals, with foT  >> 1: 

The average energy of this signal set is 

(a) Show that the union bound (4.52) can be put in the form 

l M  
P(e)  5 - C C erfc djk 

i=l jfi 

*(b) Consider the four signal sets of Fig. 4.33 and compare their error probabil- 
ities by using the expression found in part (a). 
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Figure 4.32: Signal set of an octonary modulation scheme. 

4.11. Define a configuration of biorthogonal signals as a set of M  = 2 N  signals in 
an N-dimensional signal space obtained by augmenting an original orthogonal 
signal set with the opposite -si of each signal s,. The case of N = 2 is shown in 
Fig. 4.34. Paralleling the calculations'that lead to (4.45). show that for biorthog- 
onal signals 

4.12. Given a set of M  equally likely orthogonal signals of energy &, show that a signal 
set with the same error probability but minimum average energy can be obtained 
by translating its origin by 

M 1,  

The resulting set of signals {si - a)gl is called a simpler. Show that the simplex 
set has an average energy &(l - l / M ) .  

4.13. (Wozencraft and Jacobs, 1965) Assume that a set of M  equal-energy signals sat- 

4.6. Problems 

Figure 4.33: Four octonary signal sets. 

1: 

Figure 4.34: A biorthogonal signal set with M  = 4. N = 2. 

isfies the condition 

These signals are said to be equally correlated. 

(a) Prove that 
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Hint: Consider zgl si . I r 
(b) Verify that the minimum value of p is achieved by a simplex set (see Prob- 

lem 4.12). 

(c) Prove that, for any p, the signal set has the same error probability as the 
simplex signal set with energy 

Hint: Consider the set {si - a)&, with a = (1/M) rgl si. 
(d) Verify, as a consequence of part (c), that this signal set has the same error 

probability as an orthogonal signal set with energy 

4.14. Prove (4.90X4.92). 

4.15. This problem consists of a step-by-step derivation of (4.94). Define the two RVs 

and apply the following linear transformation: 

where 
WP) S(P) = ,m=-, sinm=- 

1 - IP I  ' I PI IPI 

(a) Show that the two RVs tl and t2 are Gaussian and independent. 

(b) Show that R1 = Jtll and R2 = It2( are independently distributed Rician 
random variables with pdf given by 

4.6. Problems 

(c) Show that (4.93) can be rewritten as 

P(e) = P{la12 > 1z1I2) = p{1t2l2 > Itl12) = P{R2 > R1) 

Hint: Write lti12 = tfti. 

(d) Use the results of Appendix A to get 

(e) Finally, use the definitions of part (b) to show that in our case 

4.16. Assume an M-ary modulation scheme with signals given by 

cos 2n fot, 0 < t < T,  i = 1,2,.  . . , M 

and Ai = ( i  - 1)d. Consider an incoherent envelope demodulator that uses the 
following nonoptimum thresholds 

(a) By extending to this case the analysis that led to the calculation of error 
probability for on-off signals, show that for i = 1,2,.  . . , M, 

(b) Show that, with E the average energy of the signal set, we have 

Hint: Use the equality 
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t(c) Plot the error probability 

versus the ratio &/No.  

4.17. This problem shows that the maximization of the minimum Euclidean distance 
does not necessarily lead to a signal constellation with minimum error probability 
over the AWGN channel. 

Consider the unit-energy one-dimensional quaternary constellation with signal 
vectors sl = a, s2 = -a, ss = b, and s4 = -b, where a2 f b2 = 1/2 and b > a. 

(a) Compute the exact value of the error probability for coherent demodulation. 

t(b) Determine the optimum values of a and b as a function of NO, the power 
spectral density of the noise. In particular, verify that as No -t 0 the min- 
imum distance dmi, of the constellation is maximized, while for large No 
the best constellation has a -t 0. 

4.18. By using (4.64) and an exponential approximation to the complementary error 
function, prove that for P(e) values around doubling the value of fi is equiv- 

alent to losing about 0.2 dB in the ratio d i i , / ~ o .  

4.19. Consider the binary transmission system based on the signal pair 

where T < T. For a given value of fd, find the value of the correlation coefficient 
p that minimizes the error probability, and the corresponding value of P(e). 

4.20. (*) Consider incoherent detection of M-ary orthogonal signals. Compare numer- 
ically the resulting error probability with that of coherent detection, and observe 
the performance degradation due to the lack of knowledge of the carrier phase. 
By focusing on the binary case, observe how this degradation becomes monoton- 
ically smaller as the ratio &/No increases. 

Digital modulation schemes 

This chapter is devoted to the study of a number of important classes of digital 
modulation schemes. The concepts and the tools developed in Chapter 4 will be 
extensively used to analyze their performance. Transmission over the additive 
Gaussian noise channel is assumed throughout this chapter. The effect of other 
impairments other than Gaussian noise, viz., intersymbol interference and fad- 
ing, will be examined in later chapters, while modulations aimed specifically at 
the wireless channel will be dealt with in Chapter 6. 

Here we aim at assessing how each modulation scheme uses the resources 
available, that is, power, bandwidth, and complexity, to achieve a preassigned 
performance quality as expressed in terms of error probability. Several con- 
straints and theoretical limitations generate conflicts among the designer's de- 
sired goals. Therefore, the whole conceptual framework of this Chapter is final- 
ized at clarifying the tradeoffs that are fundamental to the choice of a modulation 
scheme. 

5.1. Bandwidth, power, error probability 

As in Chapter 4, we assume transmission over the additive white Gaussian noise 
(AWGN) channel with a two-sided noise power spectral density No/2.  We de- 
note by P the average power of the digital signal at the receiver front-end. As 
we assume for simplicity that the transmission channel introduces no attenua- 
tion, then P is also the average power of the signal observed at the transmitter 
output. 

In this section we define the parameters that will be useful to assess the per- 
formance of a digital modulation scheme, that is, bandwidth (and bandwidth 
efficiency), signal-to-noise ratio (and power efficiency), and error probability. 
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Figure 5.1: Powerdensiry spectnun of a PSK signal. 

5.1.1. Bandwidth 

Consider first, for motivation's sake, an M-PSK signal whose elementary wave- 
forms have duration T and amplitude A. The power density spectrum of such a 
signal is, as computed in Section 2.3, 

where 

The latter function, plotted in Fig. 5.1 on a logarithmic scale, is seen to consist 
of a main lobe surrounded by smaller sidelobes. Spectra of signals obtained at 
the output of different modulators have a similar appearance. If the spectrum 
had a finite support, i.e., it were nonzero only on a finite frequency interval, then 
it would be an easy matter to define the spectrum occupancy as the width of its 
support. However, for digital modulations employing finite-duration elementary 
waveforms (as is the case of the schemes described in Chapter 4). the power den- 
sities extend in frequency from -co to co, thus making it necessary to stipulate 
a conventional definition of bandwidth. 
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The bandwidth of a real signal accounts only for the positive frequencies of 
its spectrum. Then we may use a number of different definitions: 

(a) Null-to-null bandwidth. This measures the width of the main spectral lobe. 
It is simple to evaluate whenever the first two nulls around the carrier fre- 
quency enclose the main lobe, which in turn contains most of the signal 
power. 

(b) Fractional power-containment bandwidth. This is the frequency interval 
that contains (1 - c) of the signal power in positive frequencies (which 
is 50% of the total signal power). This definition is useful for wireless 
systems that share a common frequency band: for example, if a signal has 
99.9% of its power in the bandwidth B allocated to it, then 0.1% of its 
power falls out of B, thus interfering with adjacent channels. 

(c) Bounded power-spectral-density bandwidth. The criterion that specifies 
this bandwidth states that everywhere outside B the power spectral den- 
sity does not exceed a certain threshold (for example, 50 dB below its 
maximum value). 

(d) Equivalent noise bandwidth. Originally defined for linear, time-invariant 
systems (see (2.89)), this measures the dispersion of the power spectral 
density around the carrier frequency. 

The definitions above depend on the modulation scheme and on the specific 
signals used to implement it. Since in the following we shall be interested in a 
comparison among modulation schemes that leaves out of consideration the ac- 
tual signals and focuses instead on the geometric features of the signal constella- 
tions, it is convenient to use an "abstract" definition of bandwidth. Let us recall 
from the 2BT-theorem of Chapter 2 that the dimensionality of a set of signals 
with duration T and bandwidth W is approximately N = 2WT. This motivates 
our definition of the "Shannon bandwidth" of a signal set with N dimensions as 

This bandwidth can of course be expressed in Hz, but it may be more appropriate 
in several instances to express it in dimensionsper second. The Shannon band- 
width is the minimum amount of bandwidth that the signal needs, in contrast to 
the definitions above. Any of them, which can be called Fourier bandwidths of 
the modulated signal, expresses the amount of bandwidth that the signal actu- 
ally uses. In most cases, Shannon bandwidth and Fourier bandwidth differ little: 
however, there are examples of modulated signals ("spread-spectrum" signals) 
whose Fourier bandwidth is much larger than their Shannon bandwidth. 
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Figure 5.2: Power-containment bandwidth of PSK and MSK. 

Example 5.1 (PSK) An M-PSK signal has 2 dimensions, so that W = 1/T. Its 
null-to-null bandwidth is 2/T, its equivalent noise bandwidth is 1/T, while its power- 
containment bandwidth is plotted in Fig. 5.2. In the same figure the power-containment 
bandwidth of another modulation scheme, MSK, to be described in Chapter 6, is also 
shown for future reference. 0 

Note that in general, for any sensible definition of the bandwidth W ,  we have 
W = a/T,  which reflects the fundamental fact from Fourier theory that the time 
duration of a signal is inversely proportional to its bandwidth occupancy. The 
actual value of CY depends on the definition of bandwidth and on the signals used 
by the modulator. 

5.1.2. Signal-to-noise ratio 

In our discussion of Section 4.1 we have seen that the information rate of the 
'source, R,, is related to the number of waveforms used by the memoryless mod- 
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ulator, M, and to the duration of these waveforms, T, by the equality 

This is the rate in biVs that can be accepted by the modulator. The average power 
expended by the modulator is 

E p = -  
T 

where E is the average energy of the modulator signals. Each signal carries 
log, M information bits. Thus, defining Eb as the average energy expended by 
the modulator to transmit one bit, so that E = Eb log, M ,  we have 

We define the signal-to-noise ratio as the ratio between the average signal power 
and the average noise power. The latter equals (No/2) .2W = No W ,  where now 
W is the equivalent noise bandwidth of the receiving filter, i.e., of the filter at the 
receiving front-end whose task, in our channel model, is to limit the noise power 
while leaving the signal undistorted. We have 

Bandwidth efficiency and asymptotic power efficiency 

Expression (5.6) shows that the signal-to-noise ratio is the product of two quan- 
tities, viz., &b/No. the energy per bit divided by twice the power spectral den- 
sity, and R,/W, the bandwidth (or spectral) efficiency of a modulation scheme. 
In fact the latter, measured in biVs/Hz, tells us how many bits per second are 
transmitted in a given bandwidth W .  For example, if a system transmits data 
at a rate of 9,600 biVs in a 4,800 Hz-wide system, then its spectral efficiency is 
R, = 2 biVs/Hz. The higher the bandwidth efficiency, the more efficient the use 
of the available bandwidth made by the modulation scheme. 

We also observe that if W denotes the Shannon bandwidth then R,/ W may 
also be measured in biVdimension. We have 

Since two-dimensional modulation schemes are especially important in applica- 
tions, often the spectral efficiency is measured in bits per dimension pair. 

We now define the asymptotic power efficiency y of a modulation scheme 
as follows. From (4.65) we know that for high signal-to-noise ratios the error 
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probability is approximated by a complementary error function whose argument 
is d ~ . / 2 f i .  Define 7 as the quantity satisfying 

that is, 
&in 7 = -  (5.8) 
4Eb 

In words, 7 expresses how efficiently a modulation scheme makes use of the 
available signal energy to generate a given minimum distance. Thus we may 
say that, at least for high signal-to-noise ratios, a modulation scheme is better 
than another (having a comparable average number of nearest neighbors 0) if its 
asymptotic power efficiency is greater. 

For example, the antipodal binary modulation of Chapter 4 has f i  = 4 
and d ~ ,  = 2 f i ,  so that 7 = 1, This may serve as a baseline figure. 

5.13. Error probability 

Most of the calculations in Chapter 4 were based on symbol error probability. 
TO allow comparisons among modulation schemes with different values of M ,  
and hence whose signals carry different numbers of bits, a better performance 
measure is the bit e m r  probability Pb(e), often also referred to as bit-emr rate 
(BER). This is the probability that a bit emitted by the source will be received 
erroneously by the user. 

In general, it can be said that the calculation of P(e )  is a far simpler task than 
the calculation of Pb(e). Moreover, the latter depends also on the mapping of 
the source bits onto the signals in the modulator's constellation. A simple bound 
on Pb(e) can be derived by observing that, since each signal carries log2 M bits, 
one symbol error produces at least one bit error and at most log, M bit errors. 
Therefore. 

Since (5.9) is valid in general, we should try to keep Pb(e) as close as possible to 
its lower bound. One way of achieving this goal is to choose the mapping in such 
a way that, whenever a symbol error occurs, the signal erroneously chosen by the 
demodulator differs from the transmitted one by the least number of bits. Since 
for high signal-to-noise ratios we may expect that errors occur by mistaking a 
signal for one of its nearest neighbors, then a reasonable pick is a mapping such 
that neighboring signal points correspond to binary sequences that differ in only 
one digit. When this is achieved we say that the signals are Gray-mapped, and we 
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approximate Pb(e) by its lower bound in (5.9). In the following we shall provide 
examples of Gray-mapped signal constellations, but we hasten to observe here 
that exact Gray-mapping is not possible for every conceivable constellation. 

5.1.4. 'Itade-offs in the selection of a modulation scheme 

In summary, the evaluation of a modulation scheme may be based on the fol- 
lowing three parameters: the bit error probability Pb(e), the signal-to-noise ratio 
EbINo necessary to achieve Pb(e), and the bandwidth efficiency RJW. The 
first tells us about the reliability of the transmission, the second measures the 
efficiency in power expenditure, and the third measures how efficiently the mod- 
ulation scheme makes use of the bandwidth. For low error probabilities, we may 
simply consider the asymptotic power efficiency 7 and the bandwidth efficiency. 

The ideal system achieves a small Pb(e) with a low Eb/No and a high RJW: 
now, Shannon's theory as discussed in Chapter 3 places bounds on the values of 
these parameters that can be achieved by any modulation scheme. In addition, 
complexity considerations force us to move further apart from the theoretical 
limits. Consequently, complexity should also be introduced among the pararne- 
ters that force the trade-off in the selection of a modulation scheme. 

5.2. Pulse-amplitude modulation (PAM) 

This is a linear modulation scheme, also referred to as amplitude-shift keying 
(ASK). A sequence ,$ of K source symbols is carried by the signal 

where the RVs tk take on values in the set of equally-spaced amplitudes {ai)& 
given by 

d 
a i = ( 2 i - 1 - M ) - ,  z = l , 2  ,..., M 

2 (5.1 1) 

Consequently, the waveforms used by the modulator are a set of scalar multiples 
of a single waveform: { s i ( t ) }E1  = {a i }E1s( t ) .  If ~ ( t )  is a unit-energy pulse, 
it plays the role of a basis signal in an orthonormal expansion, which shows that 
this signal set is one-dimensional. The geometrical representation of PAM signal 
sets for d = 2, M = 4 and M = 8, is shown in Fig. 5.3, where the signals are 
Gray-mapped. 

The simplest form of optimum demodulator has only one correlator, or matched 
filter (with impulse response s(T - t ) ) .  Its output is sampled, then compared to a 
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Figure 5.3: Geomerrical represenrarion of Gray-mapped PAM signal sers. 

set of M - 1  thresholds, located at the midpoints of adjacent signal points. There- 
sult of these comparisons provides the minimum-distance (and hence maximum- 
likelihood) decision. 

5.2.1. Error probability 

The symbol error probability of PAM with coherent demodulation can be eval- 
uated as shown in Section 4.2.3. Explicitly, we have the probability of a correct 
decision 

1 
p ( c )  = M [%I ( M  - 2161 

where ql is the correct-decision probability for the two outer points of the con- 
stellation, and q2 is the same probability for the ( M - 2 )  inner points. By defining 

we have ql = 1 - p  and 92 = 1 - 2p, so that 

and finally 

, 

5.2. Pulse-amplitude modulation (PAM) 

Figure 5.4: Symbol error probabililies of M-ary PAM. Here vb = Eb/N0. 

To express P ( e )  as a function of &/NO, observe that the average signal en- 
ergy is, from (5.11). 

Thus 

The error probabilities for several values of M are plotted in Fig. 5.4. The 
asymptotic power efficiency is the factor multiplying &/No in the argument of 
erfc(. ). For this scheme we have 

3 log, M  
TPAM = - M 2  - 1 

which can be seen to decrease when M  increases. 
In PAM the average energy of the transmitted signal differs from the peak 

energy Ep. which is the energy of the maximum-amplitude signal. When design 
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constraints are put on the peak transmitted power, we may want to express P(e)  
in terms of E, = ( M  - 1),&/4. From (5.12) we obtain 

For example, for M = 4 we find that E, is 2.55 dB larger than E. 

5.2.2. Power spectrum and bandwidth efficiency 

The power spectral density of the PAM signal is obtained from (2.125) as 

where S ( f )  is the Fourier transform of s( t) .  Notice that here and in the fol- 
lowing, when dealing with power spectral densities, we extend the summation 
in (5.10) from -oo to oo, so as to avoid edge effects and render the signal wide- 
sense cyclostationary. 

The Shannon bandwidth of this modulation scheme is W = 1/2T,  so that its 
bandwidth efficiency is ($1 = 2 log, M 

PAM 

This increases with M .  
In conclusion, for PAM, increasing M improves bandwidth efficiency but 

decreases power efficiency. 

5.3. Phase-shift keying (PSK) 

This is a linear modulation scheme in which the source symbols shift the phase 
of a camer signal. A sequence of K symbols is represented by the signal 

where Ck = $ 4 ~ ~  and each discrete phase q5k takes values in the set 

with a an arbitrary constant phase. In the following the modulator waveform 
s ( t )  is assumed to be uT( t ) ,  a rectangular pulse of amplitude A and duration 
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T ,  so that the envelope of a PSK signal is constant (but other waveforms are 
possible). We can write explicitly 

k=O 
= I ( t )  cos 27r fot - Q ( t )  sin 27r fot (5.20) 

where we have defined the in-phase and quadrature components of the PSK 
signal: 

A ~~ - 

Q(t)  = A x sin 4k u ~ ( t  - k T )  

The PSK signal set is represented geometrically in Fig. 5.5 for M = 2, M = 
4, and M = 8. In all cases the signals are Gray-mapped. We have seen in 
Example 2.20 that the PSK signal set is two-dimensional. The modulators of 
2-PSK and 4-PSK are shown in Figs. 5.6 and 5.7. 

5.3.1. Error probability 

Consider coherent demodulation of PSK. For illustration purposes, the structure 
of the demodulator of 4-PSK is shown in Fig. 5.8. 

Binary PSK 

The exact error probability of binary PSK is determined by observing that 2- 
PSK is an antipodal modulation scheme. Hence, by using the result (4.37), and 
observing that for a binary scheme Eb = E, we obtain 

Quaternary PSK 

The error probability of quaternary PSK (CPSK, or QPSK) was determined ex- 
plicitly in Subsection 4.2.3. By observing that now Eb = E/2 and dmi, = a = 
2Eb, from (4.39)-(4.40) we have 
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f 1, Figure 5.5: Geometrical representation of Gray-rnapped PSK signal sets. 

M-ary PSK 

For general M-ary PSK we may use the upper and lower bound to P(e)  derived 
in Subsection 4.3.1. Here Eb = E l  log, M,  and from (4.49) we have 

(Ji 

The err& probabilities for several values of M are plotted in Fig. 5.9. 
The asymptotic power efficiency of PSK is given by 

7r 
yps, = sinZ - . log, M 

M 

- ,  which can be seen to decrease as M increases, M > 2. (Notice how for both 
M = 2 and M = 4 we have y = 1). 

5.4. Quadrature amplitude modulation (QAM) 

GENERATOR 

Source 

symbols 

Figure 5.6: Binary PSK modulator. 
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5.3.2. Power spectrum and bandwidth efficiency 

The power spectral density of the PSK signal is expressed by (5.1)-(5.2). Since 
N = 2, the Shannon bandwidth of this modulation scheme is W = 1/T, so that 
its bandwidth efficiency is 

( )  PSK = log, M 
(5.25) 

This increases with M. 
In conclusion, for PSK (as for PAM) increasing M improves bandwidth effi- 

ciency but decreases power efficiency. 

5.4. Quadrature amplitude modulation (QAM) 

This is a linear modulation scheme such that the source symbols determine the 
amplitude as well as the phase of a carrier signal. Contrary to PSK, the signal 
envelope is not constant. A sequence of K symbols is represented by the signal 
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Figure 5.7: Quote- PSK modulator 

where the discrete RV Jk is defined as 

J k  2 J L  + jJl  = A&@L 

and s ( t )  is a baseband complex signal with duration T. When the latter is a 
rectangular pulse of unit amplitude, i.e., s ( t )  = u ~ ( t ) ,  we can rewrite (5.26) as 

K-1 

q ( t )  = {JL cos 2sfot - J[  sin 2sfot)  uT(t - kT) (5.27) 
k=O 

5.4. Quadrature amplitude modulation (QAM) 

W0 PHASE 

TO SERIAL 

Figure 5.8: Quaternary PSK demodulator 

which expresses the transmitted signal in the form of a pair of orthogonal carriers 
modulated by a set of discrete amplitudes. This family of signal constellations is 
two-dimensional, and its modulator and demodulator have the same structure of 
those of PSK. 

Several QAM families may be selected. Fig. 5.10 shows two constellations 
with M = 8 and M = 16. These are obtained by choosing a set of discrete 
amplitude levels (in number of 2 and 4, respectively), and four equally-spaced 
phase values in each. Another choice, way more popular, consists of picking an 
infinite grid of regularly spaced points, with coordinates (nl + 1/2, n2 + 1/2),  
nl and n2 two relative integers (that is, n1 E Z and n2 E Z), and carving out of 
it a finite constellation with M points (for example, under the constraint that the 
average energy be minimized). 

This infinite grid can be thought of as generated by translating the so-called 
square lanice Z2 with points (nl ,  nz), nl and n2 any two relative integers. This 
lattice, as well as its translated version, has minimum distance 1. Three square 
constellations obtained from the translated lattice Z2 + (i, $) with M = 4, 
M = 16, and M = 64 are shown in Fig. 5.11. When M is not a power of 
4, the corresponding constellation is not square, and can be given the shape of 
a cross to reduce its minimum average energy. Two examples of these "cross 
constellations" are shown in Fig. 5.12 for M = 32 and M = 128. 

Another constellation can be obtained by picking signal points from the lat- 
tice D2. This is derived from Z2 by removing one out of two points in a checker- 
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Figure 5.9: Symbol error probabilities of PSK. Here 17b = Eb/No. 

board fashion, so that the minimum distance among the remaining points is max- 
imized. In formulas, Dz is the set of the integer pairs (nl, n2) with even sum 
nl + nz. The lattice Dz, whose minimum distance is a, and an 8-point constel- 
lation carved from Dz + (6, 6) are shown in Figs. 5.13 and 5.14, respectively. 

5.4.1. Error probability 

Square constellations carved from ZZ + (i, $) 

The symbol error probability of M-points square constellations carved from 
ZZ + (i, i) can be easily derived from the observation that they consist of the 
cross-product of two independent PAM constellations with signals each 
and an average energy one half that of the QAM constellation (so that &b is the 
same for both constellations). To see this, note that a square constellation can 
be demodulated independently on the two coordinate axes, corresponding to the 
in-phase and quadrature components. 

Thus, the probability of correct detection in this M-signal QAM equals the 
'square of the probability of a correct detection for a PAM constellation with 

5.4. Quadrature amplitude modulation (QAM) 

Figure 5.10: Two QAM constellations with M = 8 and M = 16. 

Figure 5.11: Three square Q A M  constellations carvedfrom the translated lattice Z + 
1 1  (z, 5). 

signals obtained by projecting the former on one coordinate axis. If p denotes 
the symbol error probability in each PAM constellation, we have 
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Figure 5.12: Two cross constellations carvedf im the translated lanice Z + (i, 4). 

Figure 5.13: The lattice D2, obtained from the square lattice by removing every second 
point in a checkerboard fashion. 

where, from (5.13) with M changed into a ,  

' A simple upper bound to P(e)  (which is also an approximation useful for 

5.4. Quadrature amplitude modulation (QAM) 

Figure 5.14: An 8-point signal constellation carvedfiom D2 + (i, i). 

large M and large Eb/No) can be obtained by writing P(e)  < 2 p  and observing 
that (1 - I/-) < 1 in (5.28X5.29). Equivalently, we may observe again that 
a square constellation can be thought of as the product of two PAM with a 
signals and half the energy. By using (5.12) we obtain 

Moreover, the average number of nearest neighbors is approximately 4 (it is 
lower for the outer points of the constellation, and exactly 4 for all inner points). 
Thus, from (4.64) we have 

Cross constellations carved from Z2 + ( f ,  f )  

To construct a cross constellation with M = 25+2a signals we may use the 32- 
square template of Fig. 5.15. We scale it, by partitioning each square into four 
squares, p times. The cross constellation is then the set of 25+2a points from 
Z2 + (f , f )  located in the middle of the resulting squares. 

For the error probability of cross constellations no exact result is available. 
However, for large enough M the approximation (5.30) still holds. In fact, the 
average number of nearest neighbors is still about 4, while the average energy is 
slightly lower than for square constellations. To justify the latter statement, we 
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Figure 5.15: Template for a 32-point QAM cross constellation. 

observe that for large M the average energy of the constellation, that is, 

can be thought of as the discrete approximation to the integral 

where the integration is performed over the domain that encloses the constel- 
lation. For example, if it is performed over the square with side a d m i .  (and 
hence area Md;,) that encloses the square constellation with M points, it yields 
the approximation E = Mdki,/6. For the cross constellation described above, 
we obtain & w 31/32. Mdkin/6, a good approximation even for moderate values 
of M .  For example, M = 128 yields the approximate value 20.67 d:,, while 
the true value obtained from direct computation is & = 20.5 di in.  We conclude 
that the average energy of a cross constellation is lower than that of a square 
constellation by a factor 31/32, i.e., 0.14 dB. 

The-error probabilities for square constellations with several values of M are 
plotted in Fig. 5.16. 

5.4.2. Asymptotic power efficiency 

From (5.30) the asymptotic power efficiency of QAM is given by 

, 3 log, M 
YQAM = 5 

5.4. Quadrature amplitude modulation (QAM) 

Figure 5.16: Symbol error probabilities of square constellations carved from Z 2  + 
1 1  (?, ?). Here q b  = &/NO. 

which can be seen to decrease when M increases. 

It is instructive to compare the asymptotic power efficiencies of PSK and 
QAM. We expect the latter to be larger, since QAM does not suffer from the 
constraint of having all its signal points on a circumference for constant enve- 
lope. By taking the ratio between (5.32) and (5.24) we obtain 

For large M ,  this ratio approaches 

and hence increases linearly with M. For example, for M = 64 the ratio between 
the two efficiencies is close to 10 dB, and for M = 256 is close to 15.9 dB. 
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5.43. Power spectrum and bandwidth efficiency 

The power spectral density of the QAM signal is given by (5.1), where now 

and S( f )  is the Fourier transform of the complex signal S ( t ) .  
Since N = 2, the Shannon bandwidth of this modulation scheme is W = 

1/T, so that its bandwidth efficiency is the same as for PSK: 

As for PAM and PSK, this increases with M .  
In conclusion, for QAM, increasing M improves bandwidth efficiency but 

decreases power efficiency. 

5.4.4. QAM and the capacity of the two-dimensional channel 

We have seen that, in the absence of a constant-energy constraint, QAM is more 
efficient than PSK. In this section we shall examine how this modulation scheme 
compares with the limiting performance predicted by information theory. 

Recall from Chapter 3 the expression of the capacity of the additive white 
Gaussian noise (AWGN) channel, expressed in bitIslHz: 

By recalling (5.34) we may write 

Eb SNR = log2 M - 
No 

Let us define the normalized SNR as 

SNRo = SNR 2- (5.36) 

where r2 denotes the transmission rate in bits per dimension pair. Now, consider 
QAM with M = 2'2 equally likely signals. Its symbol error probability over the 
AWGN channel is given by (5.30), which can be rewritten, for large M, in the 
form 

e a 2 e c  ( )  = 2 e c  ( )  (5.37) 
4 

5.4. Quadrature amplitude modulation (QAM) 

0 2 4 6 8 10 
normalized SNR (dB) 

Figure 5.17: Symbol errorprobability vs. normalized SNR for QAM. The Shannon limit 
is also shown 

This expression of error probability can be compared with the Shannon capacity 
bound derived from (5.35). This states that for large SNR there exists a coding/ 
modulation scheme which achieves, over the AWGN channel, arbitrarily low 
error probabilities provided that 

This implies that arbitrarily low error probabilities can be achieved for any nor- 
malized SNRo > 1 (i.e., 0 dB). Fig. 5.17 compares the symbol error probability 
achieved by QAM with the Shannon bound. From this figure we may observe 
that for an error rate of the order of there is a SNR gap of about 6 dB, which 
becomes 7.5 dB at and about 9 dB at lo-'. As we shall see later, most of 
this gap can be filled by a combination of coded modulation and shaping. 
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5.5. Orthogonal frequency-shi 
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ft keying (FSK) 

This is a nonlinear modulation scheme such that the source symbols determine 
the frequency of a constant-envelope carrier. Specifically, it is assumed that 
the modulator consists of a set of M separate oscillators tuned to the desired 
frequencies.' 

A sequence of K symbols is represented by the signal 

where the discrete RV & takes values in the set (22 - 1 - M I & ,  and hence 2 fd 
is the separation between adjacent frequencies. 

The transmitter uses the signals 

They have common energy E = A 2 T / 2 ,  and a constant envelope. 
By choosing appropriately the frequency separation, the signals can be made 

orthogonal. Specifically, we have 

T T /n s i ( t )  y ( t )  dt = A' / cos 2 r f i t  . cos 2nf j t  dt 
0 

- - - A2T sin 2 ~ (  f i  + f j ) T  +- A2T sin 4n(z - j) fdT 
2 2T(f i  + f j ) T  2 4 ~ ( i  - j )  fdT 

We assume that the product foT of carrier frequency and symbol interval is so 
large that the first term in the last expression can be disregarded. Thus, the scalar 
product of two distinct waveforms is zero whenever 4n fdT is a nonzero multiple 
of T .  The minimum frequency separation yielding orthogonal signals is 

'Another practical possibility is the use of a single oscillator whose frequency is modulated 
by source bits. The resulting FSK signal is phase-continuous, and the absence of abrupt phase 
fransitions yields a narrower power density spectrum. See Chapter 6 for further details. 

5.5. Orthogonal frequency-shift keying (FSK) 

Figure 5.18: Symbol error probability of orrhogonal FSK. Here rp, = Eb/NO. 

5.5.1. Error probabiIity 

By bounding the symbol error probability with the union bound of Example 4.5, 
we obtain 

(See Fig. 5.18). 
For this modulation scheme the bit error probability can be easily related to 

P ( e ) .  Choose a position in the (log, M)-tuple of bits associated with any signal. 
Then M / 2  signals have a 0 there, and M / 2  have a 1 .  We have an error in that 
position if the demodulator selects one out of the M / 2  signals with the wrong 
bit there. Now, when the demodulator makes an error, all the M - 1 incorrect 
signals have the same probability of being selected, because all are at the same 
distance dmi, from the transmitted signal and the noise is spherically symmetric. 
In conclusion, 
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55.2. Asymptotic power efficiency 

From (5.43) the asymptotic power efficiency of orthogonal FSK is given by 

1 
TFSK = log2 M (5.44) 

and increases with M. 

55.3. Power spectrum and bandwidth efficiency 

By using eqs. (2.164) and (2.165) under the assumption that all signals are 
equally likely to be transmitted, we obtain the power density spectrum of the 
FSK signal as 

and 

where as usual Si( f) denotes the Fourier transform of signal s i ( t ) ,  i = 1,. . . , M .  

Example 5.2 Consider binary FSK signaling, with 

sl ( t )  = A  cos 2a(fo - fd)t  and s2(t)  = A  cos 2a(fo + fd)t 

The corresponding complex envelopes are 

Sl(t) = ~e-j2"fdt and S2(t) = ~ 2 ~ ~ f ~ ~  

and their Fourier transforms are 

S l ( f )  = g(f  + f d )  and S 2 ( f )  = g(f  - f d )  

where g ( f )  is the &insform of the rectangular pulse A u ~ ( t ) :  

The power density spectrum of the complex envelope of the modulated signal is given 
by 

5.5. Orthogodfrequency-shifC keying (FSK) 

I I,. 

Figure 5.19: Power density spectrum of binaiy FSK (continuous part). ./I, 

Finally, the power spectrum of the real signal can be obtained from 

A ( f )  = a {dC)(f  - f o )  + @ ( - f  - f o ) d d ) ( f  - f o )  + dd)(-f - l o ) }  

Curves showing the continuous part of the spectrum of FSK for some values of 2  fdT 
'.,,r,l( 

can be found in Fig. 5.19. Table 5.1 lists the amplitudes of the line spectrum for the same 
values of 2  fdT.  0 

#Y' 

In interpreting the results described above for the power density spectrum of #,.d*, 

FSK, one should keep in mind that they were obtained under the fundamental as- ..*"* 
sumption, made in this chapter, that the modulation scheme is memoryless. This 
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Table 5 .1:  Discrete power densiry spectrum for the signals of Example 5.2: Coefficients 
of the line components in dB. 

implies, as briefly mentioned at the beginning of this section, that the pulses at 
different frequencies be generated independently: in particular, no phase depen- 
.dence among them is assumed. This model fits a situation in which the modu- 
lated signal is obtained by switching at a rate 1 / T  among M different oscillators 
that generate signals with the same initial phase in each symbol interval. This 
may occur when the signal waveforms are generated digitally. 

Bandwidth efficiency. Here N = M ,  so that the Shannon bandwidth of this 
modulation scheme is W = M/2T, and its bandwidth efficiency is 

We note that, unlike with PAM, PSK, and QAM, by increasing M the bandwidth 
efficiency of orthogonal FSK decreases. On the other hand, its power efficiency 
increases. 

5.6. Multidimensional signal constellations: Lattices 

In this section we focus our attention on a special case of multidimensional sig- 
nals, those generated by lattices. Lattices are infinite constellations with a high 
degree of symmetry, and lattice signaling, which has recently been receiving con- 
siderable attention for theoretical analyses as well as for applications, is deemed 
to provide excellent trade-offs between performance and implementation com- 
plexity for digital communication systems. We give here an overview of some of 
the aspects of lattice theory that are most relevant to applications. 

The idea is to consider an N-dimensional lattice A, and to carve a finite set 
of signals S out of it by retaining only the elements of A that lie in a finite region 

R. One then derives the properties of S from the properties of A and those of R. 
We start by listing some parameters useful for assessing the quality of a mul- 

tidimensional constellation. 

Bit rate and minimum distance. Let S denote an N-dimensional signal con- 
stellation, (St the number of its points, and q(x) the probability of transmitting 
the signal x E S .  Its bit rate is the number of bits per dimension carried by each 
signal, that is, log2 J S ( / N .  Its normalized bit rate is the number of bits carried 
per dimension pair: 

The normalized minimum distance of the constellation S is the ratio between 
dki, and the average signal energy E ,  where 

Figure of merit. The constellationjgure of merit of S is the ratio between 
d k i ,  and the average energy of S per dimension pair: 

The constituent constellation. Assume the N-dimensional constellation to be 
generated by transmitting N/v consecutive v-dimensional elementary signals 
(in typical wireline modems v = 2, with QAM as elementary signals). If the 
projections of S onto coordinate pairs (1,2), (3,4), . . . , ( N  - 1, N )  are identical, 
we call this common constellation the constituent 2 - 0  constellation of S. This is 
denoted by S2, and the induced probability distribution by q2( . ). We desire that 
the size (Sz( be as small as possible. With this definition of S2 we have 

which shows that IS21 is lower bounded by 

Thus, we may define the constellation expansion ratio of S as 

In designing a multidimensional constellation, one should keep its expansion 
ratio as close as possible to the lower bound of 1. 
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Peak-to-average energy ratio. The peak-to-average energy ratio (PAR) is a 
measure of the dynamic range of the signals transmitted by a two-dimensional 
modem, and it measures the sensitivity of a signal constellation to nonlineari- 
ties and other signaldependent perturbations. Peak power is measured in the 
constituent (two-dimensional) constellation. The PAR is given by 

where E;, is the peak energy of the signals in S2, and E2 is their average energy: 

Example 5.3 The baseline one-dimensional PAM constellation (with M 2 2 signals) 
has a bit rate per dimension pair 

/ 3 = 2 1 0 g 2 M 2 2  

and a figure of merit, from (5.12): 

Example 5.4 Consider the infinite set A of 4-dimensional signals with semi-integer 

coordinates. We denote this set z4 + (i, i, i, i). W~thin this set we carve a finite con- 
stellation S obtained as follows. We choose a representative signal in A, and form a 
class of signals by applying to it all permutations and all changes of the signs of their 
coordinates. All the vectors in one class have the same energy as their representative. 
The union of a finite number of classes gives a constellation. We consider here the con- 
stellation with IS1 = 512 obtained as the union of the 7 classes shown in Table 5.2. 
The projections of S on two dimensions are identical. The constituent constellation 52 
is shown in Fig. 5.20. It should also be observed (the calculations are left as an exer- 
cise) that if the signals in S are equally likely, this is not the case for the signals in Sz. 

5.6. Multidimensional signal constellations: M c e s  

Table 5.2: Comtruction of a 4-0 constellation with 512 signals carved from Z4 + 
(I I 1 1). 

2'  2 '  2 '  2 

5.6.1. Lattice constellations 

In general, a lattice A in the Euclidean N-space RN is defined as an infinite set 
of N-vectors closed under ordinary addition and multiplication by integers. This 
"group" property makes a lattice look the same no matter from which one of its 
points it is observed. The simplest lattice is the only one-dimensional lattice 2, 
the set of relative integers. 

A basis for A is a set of m vectors al, - . . , a,,, in RN such that 

In words, each lattice point can be expressed as a linear combination, with in- 
teger coefficients, of m basis vectors. Under these conditions A is said to be 
m-dimensional (usually we have m = N). 

Two lattices are equivalent if one of them can be obtained from the other by 
a rotation, reflection, or scaling. If A is equivalent to A', we write 

If dmi, is the minimum distance between any two points in the lattice, the 
kissing number T is the number of adjacent lattice points located at dmin, i.e., 
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Figure 5.20: 2-dimensional constituent constellation. 

the number of nearest neighbors of any lattice point. This name comes from the 
fact that if each lattice point is surrounded by a sphere with radius d m i n / 2 ,  these 
spheres will touch, or "kiss," 7 similar spheres. 

The coding gain of a lattice 

Each lattice point has a polyhedron surrounding it that contains the points of the 
N-dimensional space closer to it than to any other lattice point. This is called the 
Voronoi region of the lattice. The regularity of the lattice entails that all Voronoi 
regions are congruent. The coding gain -y,(A) of the lattice A is defined as 

where V(A) is the fundamental lattice volume. This is defined as the volume of 
the Voronoi region of any of the lattice points, or, equivalently, the reciprocal of 
the number of lattice points per unit volume (for example, V(ZN) = 1). The 
main properties of -y,(A) are listed in Forney (1988, pp. 1128-1129). 

Transformation of lattices 

Given a lattice A with vectors x ,  new lattices can be generated by the following 
operations. 

Figure 5.21: The lattice z2.  

5.6. Multidimenswnal signal constellations: Lattices 

4 

Scaling: If T is any real number, then TA is the lattice with vectors TX. 

. . . . . . . . . . . . . . . 
- - - -  - - . . . . 

Orthogonal transfomation: If T is a scaled orthogonal transfomation of 
Rn, then TA is the lattice with vectors Tx .  

I ) .  . . . 
I ) . .  . . 

. I ) . .  . . 
I ) .  . . . 

- - - -  
I ) .  . . . 

Direct product: The n-fold direct product of A with itself, i.e., the set of 
all nN-tuples (XI, xz, . . . , x,), where each xi  is in A, is a lattice denoted 
by An. 

. . . . . . . . 

5.6.2. Examples of lattices 

The lattice Z N  

The set Z N  of all N-tuples with integer coordinates is called the cubic lattice, 
or integer lattice. Its Voronoi region is a hypercube with unit edge length. Its 
minimum distance is dmin = 1, and its kissing number is 7 = 2N. For example, 
ZZ is shown in Fig. 5.21. 

The N-dimensional lattice AN 

AN is the set of all vectors with ( N  + 1) integer coordinates whose sum is zero. 
This lattice may be viewed as the intersection of ZN+l and a hyperplane cutting 
the origin. Its minimum distance is dmi ,  = a, and its kissing number is 7 = 
N ( N +  1). Fig. 5.22 shows A2, called the "hexagonal" lattice because its Voronoi 
regions are hexagons. 
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Figure 5.22: The 2-dimensional hexagonal lattice Az. 

The N-dimensional lattice DN 

DN is the set of all N-dimensional points whose integer coordinates have an 
even sum. It may be viewed as a punctured version of ZN, in which the points are 
colored alternately black and white with a checkerboard coloring, and the white 
points (those with odd sums) are removed (see Fig. 5.13). We have dmin = fi. 
and T = 2N(N - 1). 

D4 represents the densest lattice packing in R4. This means that if unit- 
radius, Cdimensional spheres with centers in the lattice points are used to pack 
R4, then D4 is the lattice with the largest number of spheres per unit volume. 

The Gosset lattice E8 

E8 consists of the points 

1 
{ ( x l ; ~ ~ , x 8 ) :  V x i € Z o r V x i € Z + -  X X ~ = O  mod2) 2' i=1 

In words, E8 consists of the 8-vectors whose components are all integers, or all 
halves of odd integers, and whose sum is even. 

This lattice has dmi, = and T = 240. The 240 nearest neighbors of the 

origin (the point 08) are the 112 points obtained by permuting the components 
-of ( f  1)'06, and the 128 points (f where the number of minus signs is even. 
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If we build a sphere with radius JZ/2 centered at any point of E8, we obtain an 
arrangement of spheres in the 8-dimensional space such that 240 spheres touch 
any given sphere. It can be shown that it is impossible to do better in R8, and 
that the only 8-D lattice with T = 240 is E8. 

Other lattices 

The description and the properties of other important lattices, like the 16-di- 
mensional Barnes-Wall lattice A16 and the 24-dimensional Leech lattice Az4, are 
outside the scope of this book and can be found, for example, in Chapter 4 of 
Conway and Sloane (1988). 

5.7. Caning a signal constellation out of a lattice 

We now study how a finite signal constellation Scan be obtained from an infinite 
lattice A, and some of the properties of the resulting constellation. We shall 
denote with S(A, 72) a constellation obtained from A (or from its translate A +a) 
by retaining only the points that fall in the region 72 with volume V(R). The 
resulting constellation has 

points, provided that V(72) >> V(A), i.e., that JSI is large enough. 
In order to express the figure of merit of the constellation S(A, a ) ,  we need I '  

to introduce the definition of the shape gain -y,(R) of the region R.  This is 
defined as the reduction in average energy (per dimension pair) required by a 
constellation bounded by R compared to that which would be required by a 
constellation bounded by an N-dimensional cube of the same volume V(R). In 
formulas, the shape gain is the ratio between the normalized second moment of 
any N-dimensional cube (which is equal to 1/12) and the normalized second 
moment of R: 

where 

The main properties of -y,(R) are listed in Fomey and Wei (1989). 
* Here we can quote without proof the following important result: The figure 

of merit of the constellation S(A, R )  having normalized bit rate P is given by . *11' 



Name 

Integer lattice 
Cubic lattice 
Hexagonal lattice 
Schllfli 
Gosset 
Barnes-Wall 
Leech 
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A N Kissing y,(A) 

1.51 

Es 240 3.01 
AI6 16 4,320 4.52 
A2, 24 196,560 6.02 

Table 5.3: Parameters of important lattices. 

where CFMo is the figure of merit of the one-dimensional PAM constellation 
(chosen as the baseline), y,(A) is the coding gain of the lattice A (see (5.50)), 
and y 8 ( R )  is the shape gain of the region R .  The approximation holds for large 
constellations. 

This result shows that, at least for large constellations, the gain from shaping 
by the region R is almost completely decoupled from the coding gain due to 
A - or, more generally, the gain due to the use of a code. Thus, for a good 
design it makes sense to optimize separately yc(A) (i.e., the choice of the lattice) 
and y 8 ( R )  (i.e., the choice of the region). 

The values of yc for some important lattices are summarized in Table 5.3. 

5.7.1. Spherical constellations 

The maximum shape gain achieved by an N-dimensional region R is that of a 
sphere C .  If R is its radius and N = 2n, it has 

and n 
lr12dr = -R2V(C)  

n + l  

so that 

As N -t oo, y8(C) approaches 7rel6, or 1.53 dB. The last figure is thus the max- 
imum achievable shaping gain. A problem with spherical constellations is that 
the complexity of the encoding procedure (mapping input symbols to signals) 
may be too high. 

5.7. Canting a signal constellation out of a lattice 

Figure 5.23: Partitioning a 2 - 0  constellation into equal-size rings, 

The main goal of N dimensional constellation design is to obtain a shape 
gain as close to that of the N sphere as possible, while maintaining reasonable 
implementation complexity and other desirable constellation features. 

5.7.2. Shell mapping 

In shell mapping (Laroia, Farvardin, and Tretter, 1994), the component two- 
dimensional signal constellation S2 is partitioned into M rings 00, . . . , 
each containing the same number of points (Fig. 5.23). Then some of the bits 
are used to select rings, while other select points in those rings. An important 
feature of shell mapping is that it integrates shaping and mapping. 

The basic idea is as follows. Each of the M rings is assigned a "cost" ci, 
i = 0 , .  . . , M - 1, which approximates the average energy of the points in the 
ring (c, = i provides a good approximation). Let S: denote the 2N-dimensional 
constellation consisting of all possible combinations of signal points in the com- 
ponent 2-D constellation S2. To send b bits in N symbols, we use the 2b lowest- 
cost points in S y ,  where the cost of a point is the sum of the costs in the 2-D 
rings. This is done with a sequence of table look-ups and arithmetic operations. 

The shell-mapping method naturally chooses a 2b-point signal constellation 
S that approximates a 2N-dimensional sphere. For example, when b/N = 8 and 
IS1 = 256, with shell mapping we obtain a shape gain of 0.2 dB. For IS/ = 320 
we obtain a shape gain of 0.8 dB. By using larger constellations, shaping gains 
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approaching 1.0 dB can be obtained. 

5.73. Error probability 

Assume that a finite constellation carved from a lattice is used for digital trans- 
mission over the AWGN channel. From (4.65) we have 

On the other hand, since all lattice points have at least one neighbor at distance 
d,i,, (4.60) yields . . 

By comparing the last two inequalities, we can see that the lower bound and 
the approximate upper bound to error probability for lattice signaling differ by a 
factor T ,  which may be rather large for high-dimensional lattices (see Table 5.3 
above). When a finite constellation is used, (5.54) can still be considered a good 
approximation to P(e)  if the constellation size and the signal-to-noise ratio are 
both large. 

5.8. No perfect carrier-phase recovery 

So far in this chapter we have assumed that coherent demodulation is performed, 
i.e., that the carrier phase is perfectly known at the receiver. When this assump- 
tion is not valid because no carrier phase estimation is performed, an alternative 
detection method, described in Chapter 4, is incoherent demodulation. In this 
section we shall consider a situation in which the receiver achieves an imperfect 
knowledge of the carrier phase. To understand how this can occur, consider for 
illustration sake the transmission of a 4-PSK signal with phases (0, f ~ / 2 ,  7r). 
Observation of the received signal under an imperfect synchronization between 
transmitter and receiver carrier-frequency generators will show that its phases 
belong to the set ( 0 ,  f 7r/2 + 0 ,  T + 0 ) .  Based upon this observation, it may 
seem at first that one can easily align the received phases with those transmitted: 
it suffices to shift the former by -8. However, things are not so simple: in fact, 
any shift 0 + k7r/2, k any integer, produces the same received signal constella- 
tion, so that sheer observation of the latter is not sufficient to estimate the rotation 
induced by the carrier-phase misalignment between transmitter and receiver. We 
may say that this misalignment has the form 8 + k7r/2, where 0 can be estimated 
(techniques for doing so will be discussed in Chapter 9). while the remaining 
germ, the phase ambiguity, remains to be corrected. In general, with M-PSK the 
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phase ambiguity introduced by this process, which we denote by cp ,  is equal to a 
multiple of 27rlM. 

Two techniques can be used to resolve this phase ambiguity: 

1. Apreamble, i.e., a fixed symbol sequence known by the receiver, is sent at 
the beginning of the transmission (and whenever it may be assumed that 
the receiver carrier has lost its coherence). Observation of this sequence is 
used to remove the ambiguity: in fact, any nonzero value of cp  will cause 
the received symbols to differ from the fixed preamble. 

2. Dzfferential!encoding is used, i.e., the information to be transmitted is as- 
sociated with phase differences rather than with absolute phases. 

Here we describe the latter technique, which generates the so-called differen- 
tially-encoded PSK. The model of a channel introducing the phase ambiguity cp  

can be easily constructed by assuming that, when the phase sequence is 
transmitted, the corresponding received phases are (0,  + cp)?==,. (We neglect the 
noise here.) We start our discussion with a simple example. 

Example 5.5 Consider transmission of binary PSK. Assume the transmitted phases to 
be 

(0 ,  0 ,  T ,  0 ,  a, T ,  0,  0 ,  a, 0 , .  . .) 
If the channel is affected by the phase ambiguity cp = T ,  we receive 

and hence all of the received bits differ from those transmitted. a 

The example above shows that, while all the bits are received erroneously 
(which incidentally would be detected by observing that the preamble received 
differs from the preamble transmitted), the phase transitions between adjacent 
bits are left invariant by the presence of an ambiguity. Thus, if the information 
bits are associated with these differences rather than with absolute phases, the 
ambiguity has no effect on the information received. 

Example 5.5 (Continued) Before modulation, transform the source phases (On)?=o 
into the dzi$erentially encoded phase sequence (O:)?=o according to the rule 

where it is assumed that OL1 = 0. Thus, if the uncoded phase sequence is 
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the differentially encoded sequence is 

Assume again that the channel is affected by the phase ambiguity cp = n. We receive 

Now, we dzferentially decode the received phase sequence by inverting (5.56): 
- * . .  
On=O:+O:-l modn (5.57) 

where a hat denotes phase estimates. We obtain the phase sequence 

as it should be. 
It can be seen that (5.56) and (5.57) correspond to modulo-2 operations on the source 

bits corresponding to the BPSK phases. 0 

TO explain in general terms the differential codinglencoding procedure, we 
use here z-transform notations, which corresponds to describing a semi-infinite a 
sequence (zn)?==, through the power series X(z)  = C?=oznz-n. With this 
notation, we write the transmitted phase sequence as 

and the received sequence as 

(we are still neglecting the effect of the additive Gaussian noise). 
To get rid of the ambiguity term cp/(l - z-') we may multiply the received 

signal (5.58) by (1-z-I). This is accomplished by the circuit shown in Fig. 5.24, 
called a differential decoder. In the time domain, this circuit subtracts from the 
phase received at any instant the phase that was received in the preceding symbol 
period: since both phases are affected by the same ambiguity cp, this is removed 
by the difference (except for the phase at time 0). The received sequence is now 
(1 - z-')Q(z) + cp, which shows that the ambiguity is now removed (except 
at the initial time n = 0, as reflected by the term cp multiplying zO). Now, 
.the information term Q(z) is multiplied by (1  - z-'): to recover it exactly we 

5.8. No perfect cam'er-phase recovery 

Figure 5.24: Differential decoder: 

Figure 5.25: Differential encoder: 

must divide @(z), before transmission, by (1 - z-'), as shown in Fig. 5.24. 
This operation is called differential encoding. The overall channel, including 
differential encoder and decoder, is shown in Fig. 5.26. 

In conclusion, with differential encoding the receiver may consist of a co- 
herent demodulator (with imperfect phase recovery) followed by a differential 
decoder, as described hereafter. Another possibility is to incorporate the differ- 
ential decoder into the demodulator, i.e., to design a demodulator which directly 
outputs a phase difference. The latter avoids any estimate of the carrier phase. 
In the following we analyze the error performance of both receivers applied to 
PSK. 

5.8.1. Coherent demodulation of differentially-encoded PSK (DCPSK) 

What is new here with respect to nondifferential PSK is that each decision made 
on a transmitted symbol requires a pair of M-ary phase decisions. Let us denote 
the phases received in two adjacent intervals /3k-l and Pk. Introduce the phase 
gk representing the received signal's phase displacement from the transmitted 
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Figure 5.26: Differential encoding and decoding for a channel affected by a phase am- 
biguity p. 

one, including the effect of the phase ambiguity cp: 

To evaluate the symbol error probability, we consider all possible ways of 
making a correct decision on the kth transmitted symbol. A correct decision is 
made if and only if the difference between $'k and $ J ~ - ~  is close enough to zero. 
Specifically, a correct decision is made if and only if one of the M following 
exhaustive and mutually exclusive events occurs: 

for i = O , l , .  . . , ( M  - 1). 
To evaluate the probability of these events, notice that the RVs $'k and $'k-1 

are statistically independent (they only depend on independent noise samples). 
If their pdf is denoted by f*(. ), and 

we have 
P ( c ~ )  = p: 

and finallv 
M - 1  

P(e)  = 1 - p: (5.60) 
i = O  

A pictorial interpretation of the quantities involved in (5.60) is shown in Fig. 5.27. 
The pdf f*( . ) is obtained in Problem 5.6. 

5.8. No perfect carrier-phase recovery 

Figure 5.27: Pictorial intepretation of the quantities involved in the derivation of error 
probability for drfferentially-encoded quaternary PSK. 

It is interesting to relate the symbol error probability (5.60), corresponding 
to differentially-encoded, coherently-demodulated PSK (DECPSK), to that of 
coherently-demodulated PSK (CPSK). Due to our definition of probabilities pi, 
we may write the latter in the form 

P(e)lcpsK = 1 - PO 

Introducing (5.61) into (5.60), we obtain 

. , 
For high signal-to-noise ratios, po is the dominant term in the right-hand side 
of (5.60). and (5.62) becomes 

Thus, for low error probabilities differential encoding doubles the symbol error 
probability. This is the price to pay for removing the phase ambiguity. It should /I 

be intuitive that with DECPSK symbol errors tend to occur in pairs: in fact, when 
a demodulated absolute phase is mistaken, it causes an error in two adjacent 

*I' intervals. 
,111 

Example 5.6 Specialization of (5.62) to binary and quaternary PSK yields formally I-s  

simple results. With M = 2, the only term in the summation of (5.62) is pl,  which 
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from (5.59) becomes 

and therefore 

For quaternary signals, by observing that the in-phase and quadrature signals are 
independent, from (4.38)44.39) we obtain 

5.8.2. Differentially-coherent demodulation of differentially encoded PSK 

Coherent demodulation of PSK requires the local generation of a reference car- 
rier. This may be undesirable either because of the additional complexity re- 
quired or because some applications do not afford sufficient time for carrier ac- 
quisition. An approach that avoids the need for a reference carrier consists in 
accomplishing the demodulation by looking at the phases of the received signal 
in two adjacent symbol intervals and estimating their difference. If the informa- 
tion phases have been differentially encoded at the transmitter, then the observed 
phase difference at the receiver allows the recovery of the information and the 
removal of the phase ambiguity. The signal are still in the form (5.20), but now 
the information is encoded into phase differences, taking values in the set 

with iP equal either to 0 or to T I M .  
The demodulator's block diagram is shown in Fig. 5.28. It can be proved to 

be optimum, in the ML sense, for the estimation of the phase differences of the 
received signal (see Problem 5.7). The phase ambiguity of the received signal is 

5.8. No perfect carrier-phase recovery 
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Figure 5.28: Block diagram of the diyerentially-coherent demodulator of PSK 

removed under the assumption that it remains constant in two adjacent symbol 
intervals. 

To evaluate the error probability of this receiver we resort to a bounding 
technique. Let the received signal in the kth time interval be written as 

where 
T(t) = A P k  + ii(t), k T  5 t < (k + l ) T  

and ii(t) is the complex envelope of a narrowband Gaussian noise as described 
in Section 2.4. 

The delayed and shifted replica of ~ ( t )  can be be written as 

and in (5.66) we have assumed that foT is an integer. If this were not the case, 
the phase shifter of Fig. 5.28 should be adjusted to compensate for this phase 
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shift. The receiver bases its decision on the difference between the phases of the 
signals (5.65) and (5.66), that is, on 

When we send a phase difference belonging to the set (5.64), the values taken on 
by ADk, in the absence of noise, are in the set 

A correct decision is made if the point representing the signal ?(t)?b(t)  lies 
inside a sector of width 2=/M centered around the correct value of A& 

We can observe that the problem exhibits the same kind of symmetry as for 
coherent detection of PSK: therefore, we may compute the error probability by 
limiting our consideration to i = 1 in (5.68). By proceeding as in Section 4.3.1, 
we obtain the upper bound 

where we have defined the two phase thresholds 

For computational purposes that we shall clarify soon, inequality (5.69) can be 
given the following form: 

Let us now define, at the kth decision instant t  = t k ,  kT 5 tk < (k + 1)T,  the 
following RVs: 

It is immediately verified that 
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Using (5.73), we can finally express (5.71) in the form 

P(e) < 1 - P { X ( Z ~ Z ; )  < 0 )  + P {X(zlz;)  < 0 )  (5.74) 

By using the identity 

in (5.74), we obtain 

The four random variables involved in the right-hand side of (5.76) are in- 
dependent and have a Rice distribution. With the details of the computation 
deferred to Problem 5.8, we obtain 

where 

and Q( . , .) is the Marcum Q function (see Appendix A). For high values of 
&*/No, the bound (5.77) is very tight. When M also is large, by using the asymp- 
totic expansion, valid forb >> 1 and b >> b - a: 

we obtain 

P(e) N erfc -- sin ;ii) 
(lOg;M: . = 

Specialization of the above results to the binary case leads to an especially 
simple result. In this case the exact value of P(e) can be written as 

P(e) = P{,  < ADk < 27~) (5.78) 

and therefore, since (Appendix A) 

Q ( x , O ) = l ,  Q ( O , X ) = ~ " ' / ~  

we have, from the same calculations that led to (5.77): 

1 P(e )  = - e - E b / N ~  
2 

Error probability curves are plotted in Fig. 5.29. 
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Figure 5.29: Symbol error probabili~ of differential demodulation of differentidly- 
encoded M-ary PSK (solid lines). Error probabilities of CPSK are also shown for 
comparison (dashed lines). Here qb = %/No. 

5.8.3. Incoherent demodulation of orthogonal FSK 

Incoherent demodulators results in an even simpler implementation than for 
differentially-coherent detection. For error probability results related to orthog- 
onal FSK we refer the reader to our discussion in Section 4.4. 

5.9. Digital modulation trade-offs 

As mentioned at the onset of this chapter, the choice of a digital modulation 
scheme aims at the best trade-off among error probability, bandwidth efficiency, 
power efficiency, and complexity. This section summarizes the results of the 
chapter. For our purposes, it is interesting to compare the performance of actual 
modulations with the ultimate performance achievable over the AWGN channel. 
The latter is obtained from the channel capacity formula (5.35), which yields, 
when R. = C:  

5.9. Digital modulation trade-offs 

Figure 5.30: Error-plane perjonnance plot for PAM, PSK, QAM. , 

This expression shows that &/No must increase exponentially with C / W .  On 
the other hand, if C/  W + 0, then 

which is -1.6 dB. This result indicates that reliable transmission, with as low an 
error probability as desired, is possible over the AWGN channel only if &b/No > 
-1.6 dB.  

Fig. 5.30 shows qualitatively the trade-offs among error probability, power 
efficiency, and bandwidth efficiency. Reference is made here to modulations like 
PAM, PSK, and QAM, such that when M is increased their power efficiency 
decreases, while their bandwidth efficiency increases. Moving along line A (that 
is, changing the value of M while P(e)  remains constant) can be viewed as 

, y# ' trading power efficiency for bandwidth efficiency. Similarly, line B shows how 
P(e)  can be traded off for &b/No, with fixed bandwidth. Movement along line 
C illustrates trading bandwidth efficiency for error probability, while &b/& is 
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fixed. Notice that movement along B corresponds to changing the signal energy, 
while movement along A or C requires changing the modulation size (which 
typically implies a different equipment complexity). 

The bandwidth efficiency-power efficiency chart is a useful tool for the com- 
parison of different modulation schemes. By selecting a value of bit error prob- 
ability, a modulation/demodulation scheme can be represented in this chart as a 
point, whose abscissa is the value of Lb/N0 necessaq to achieve such Pb(e) and 
whose ordinate is its bandwidth efficiency R,/W. Fig. 5.31 shows such chart for 
Pb(e) = The Shannon capacity curve shows the bound to reliable trans- 
mission of any conceivable modulation scheme. It is customary to divide the 
achievable region in this chart in a bandwidth-limited region (R,/W > 1) and a 
power-limited region (R,/W < 1). In the former, the system bandwidth is at a 
premium, and should be traded for power (i.e., &b/No). PSK and QAM are effec- 
tive modulation schemes in this region, as their bandwidth efficiency increases 
by increasing the size of their constellation. On the other hand, FSK schemes 
operate in the power-limited region: they make inefficient use of bandwidth, but 
trade bandwidth for a reduction of Eb/No necessary to achieve a given Pb(e). 

The choice of a modulation scheme that achieves a target Pb(e) will be guided 
by this chart. 

5.10. Bibliographical notes 

The discussion on bandwidth in Section 5.1.1 is taken from Amoroso (1980). 
The definition of Shannon bandwidth is due to Massey (1995). Further details 
on modulation performance, receiver implementation, etc., can be found, among 
others, in the book by Simon, Hinedi, and Lindsey (1995). The paper by Forney 
et al. (1984) contains many details and advances on QAM, as well an extensive 
bibliography on the subject. The material of Section 5.4.4 is taken from Forney 
and Ungerboeck (1998). 

The literature on lattices is extremely abundant, but most of it is written by 
mathematicians for mathematicians. A thorough treatment of this topic can be 
found in the encyclopedic book by Conway and Sloane (1988) from which most 
of thematerial in this chapter was taken; but see also Forney (1988). 

The presentation of the final section on digital modulation trade-offs was 
inspired by the tutorial paper by Sklar (1983). 

5.11. Problems 

' Problems marked with an asterisk should be solved with the aid of a computer. 

5.11. Problems 

I 1  I I I I I I I 
I I I I t -2 0 2 4 6 8 10 12 14 16 18 20 Zb/N0 (dB) 

Figure 5.31: Bandwidth eficiency-power eficiency chart of modulation schemes. Here 
W is the Shannon bandwidth, and Pb(e) = 

5.1. A coherent M-ary PAM transmission scheme is used with the constraint that the 
peak power of each signal be not greater than 1 mW. The noise power spectral 
density No12 is 0.25 pWiHz. A bit error probability Pb(e) < is required. 

(a) Compute the maximum possible transmission speed in bit/s for M = 2, 
M = 4, and M = 8. 

(b) Which one of the three schemes requires the minimum value of Eb (energy 
per bit)? 

5.2. Consider the 64-point signal constellation of Fig. 5.32. This is obtained from a 
square constellation by moving to the axes the four points with highest energy. 
The resulting constellation is "more circular" and hence more power-efficient 
than the mother constellation. Evaluate the amount of improvement in power 
efficiency with respect to the square constellation. 
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Figure 5.32: A 64-point constellation. 

5.3. (a) Prove that the error probability for M-ary PSK can be written in the form 

(b) By comparing the above equation with (5.21), derive an integral expression 
for the complementary error function. 

5.4. Assume that we want to m s m i t  (h + 112) bits per symbol. To this purpose 
we use a signal constellation with ah inner points taken from the square lattice 
and 2h-1 outer points drawn from the same lattice with the goal of maximum 
symmetry and minimum average power. Two examples are shown in Fig. 5.33 for 
h = 4 (24 points) and h = 5 (48 points). The transmission goes as follows. 

1. Group the source bits into blocks of 2h + 1 bits to be sent with two wave- 
- forms (h + 112 bits per symbol). 

2. The first bit determines whether or not any outer point is to be used. 

3. If not, the remaining 2h bits are used to select two inner points for trans- 
mission in two successive periods. 

4. If yes, one additional bit selects which of the two signals should be an outer 
point and the remaining h - 1 and h bits select, respectively, the outer and 
the inner point to be sent. 

5.11. Problems 

Figure 5.33: Two constellations for the transmission of (h + 112) bits per symbol. 

On the average, one outer point is transmitted every other four transmissions. 

(a) Compute the average energy of the two signal sets of Fig. 5.33 and verify 
that the transmission of the additional 112 bit per symbol requires about 
1.5 dB more energy. 

(b) Generalize this scheme to transmit h + 2-' bitkymbol, with t an integer 
greater than 1. 

5.5. Consider an 8-PSK constellation. By assuming a large signal-to-noise ratio, show 
that some mappings of three bits to PSK signals yield a different Pb(e) for differ- 
ent bits (this effect is known as "unequal error protection"). Find the mappings 
that yield equal error probabilities for the three bits, and the mappings that yield 
the largest ratio between the maximum and the minimum bit error probability. 

5.6. Consider transmission of a PSK signal with energy & over the AWGN channel 
with power spectral density No/2. 

(a) Prove that the probability density function of the difference $ between the 
transmitted and the received phase is given by 

for -7r 5 x < T.  
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(b) By using the approximation, valid for x >> 1, 

derive from the above an approximate expression for the error probability 
of coherently-demodulated M-ary PSK. 

5.7. This problem is proposed in order to show that the demodulator of Fig. 5.28 is a 
maximum-likelihood detector of phase differences. 

(a) F i t ,  consider (2.315) and notice that the ML receiver looks for the max- 
imum conditional pdf fIIsj(r I s j ) ,  where r is the vector of the received 
signal that contains the sufficient statistics. 

(b) The pair of received signals used in the detection of the transmitted signal 
sj is the following: 

where n(t) is a white Gaussian noise. Notice that the hypothesis on signal 
sj means that the phase difference is 

(c) Show that the received signal points coordinates in the plane with axes 

dl(t) = G c o s 2 ~ f o t ,  &(t) = - f i s i n 2 n  fot 

have the form 

a 
(d) Define the vector r = [rll, rl2, rzl, rzz] of the received signals and show 

that the conditional pdf is given by 

5.11. Problems 

where 

(e) Assume that the phase ambiguity cp has a uniform distribution and average 
it out. You will get 

where l o ( . )  is the modified Bessel function of order 0. Choosing the max- 
imum pdf is equivalent to choosing the maximum of (c' + D'), since A 
does not depend on Aq5j and l o ( . )  is a monotone increasing function of its 
argument when the latter is nonnegative. 

(f) Switch to polar coordinates, and show that 

where 

AD = arp(r2) - xg(r1) 

and 

ri = [ril, r i ~ ]  

(g) Decide on the optimality of the receiver. 

5.8. In this problem we outline the computations that yield the result (5.77). Let us 
start from (5.74). 

(a) Compute first P{R(zlz;) < 0). Define the two Gaussian random variables 

zl + zz 21 - 22  
(12 = - 

2 7712 = - 2 

and show that they are independent under the assumption 

E{?l*(tk)fi(tk - T)) = 0 
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A A 
The random variables R1 = lE121 and R2 = (q12( are independent Rician 
with pdf given by 

x a? + x2 
jR (x) = exp - i ~ o  (7) 

"i 20; 

with 0 L. x < oo, i = 1,2, and 

1 No 
01 = 5E{lqi2 - ~{%r) l ' }  = - 2 T  = 0: 

Use formulas of Appendix A to get 

where 
A a; a = -  A a: b = -  
0: +0z7 0: + 0; 

Following the same procedure, show that 

5.9. Consider octonary PSK with coherent demodulation and Gray mapping as in 
Fig. 5.5. 

(a) Draw a block diagram of the optimum receiver with a logic device that 
makes decisions based only on the sign of the received signal components. 

(b) (*) Compute the capacity of the equivalent discrete transmission channel 
by using for P (e )  the upper bound (5.23). Assume that &/No is so high 
that only errors between signals that are adjacent in the signal space may be 
taken into account. Compare this capacity with that of binary and quater- 
nary PSK as a function of Eb/NO. 

(c) Compute the exact (closed-form) expression of the bit error probability 

+ %(el. 

5.11. Problems 27 1 

5.10. With this problem we want to show that PAM achieves capacity as R,/W + 
oo. Use first the expression (3.100) for channel capacity, and show that if the 
transmitted power is increased by a factor 4n (i.e., P' =_4nP) then 

That is, the bandwidth efficiency increases by 2n bit/s/Hz. Take now the error 
probability (5.13) and show that the same increase of power corresponds to 

Reach a conclusion as n + oo. 
5.11. With this problem we want to show that orthogonal FSK achieves capacity as 

R3/W + 0. Start from (4.45), and write the error probability in the form 

A 
where q = &/No. Use the following two bounds: 

( 1  - [I- ierfc (%)I M-l} < v e r f c  (5) < ~ e - " / ~  x large 

Therefore, 

Optimize xo, and show that xo = J2 log2 M In 2. Using simple exponential 
bounds for the two integrals, show that 

where qb = q/ log2 M.  Notice that P(e) + 0 as M + oo provided that qb > ln 2 
("Shannon bound"). 
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Modulations for the wireless 
channel 

This chapter describes a number of digital modulation schemes that may be 
thought of as being derived from PSK, in the sense that they retain the single 
most attractive feature of PSK-its constant envelope-but reduce certain unde- 
sired effects. One of these is the bandwidth occupancy of PSK, which may be 
excessive for applications, like wireless systems, that call for a highly efficient 
use of bandwidth. As we shall see, constraining phase-shift keying to preserve 
phase continuity may have a beneficial effect on spectrum occupancy: the result- 
ing modulation scheme, called CPM (for continuous-phase modulation) will be 
described later in this chapter. Another undesired effect follows from filtering a 
PSK signal. Consider for simplicity the QPSK modulator described in Chapter 
5. Here the carrier phase changes only once every 2T3 seconds, 1/T3 being the 
source binary rate. When only one of the two quadrature components, either 
in-phase (I) or quadrature (Q), changes its sign, a phase shift o f f  90" occurs. A 
change in both components generates a phase shift of 180". These phase jumps, 
which are ideally instantaneous, are shown in the phasor diagram of Fig. 6.l(a). 
Usually, the transmitted QPSK signal is bandlimited by a bandpass filter so as to 
reduce the out-of-band spectral sidelobes and prevent interference with adjacent 
channelsi moreover, any practical modulator will exhibit reactive components 
which generate a filtering effect. A consequence of this filtering is that the ban- 
dlimited QPSK signal no longer exhibits a constant envelope. In fact, the occa- 
sional 180" phase shifts occur now in a nonzero time and cause the envelope to 
approach zero, as shown qualitatively in Fig. 6.2. This effect is highly undesir- 
able when the signal undergoes nonlinear power amplification (see Chapter 14 
for further details). Actually, a nonlinear amplifier operated at saturation tends 

Figure 6. 1 : Phasor diagrams of (a) QPSK signals; (b) OQPSK signals; (c) MSK signals. 

to restore the constant envelope of the signal, but at the same time it enhances 
the out-of-band spectral sidelobes. Thus, the filtering action at the transmitter is 
destroyed. 

We proceed now with the description of a family of modulation schemes, 
derived from quaternary PSK and intended to limit this deleterious effect. 
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QPSK - ideal 

QPSK - filtered 

Figure 6.2: Qualitative description offiltering effects over a QPSK signal. The dashed 
line shows the envelope. 

6.1. Variations on the QPSK theme 

6.1.1. Offset QPSK 

A reduction of the envelope fluctuations of QPSK signals is made possible by the 
simple device of delaying the Q-channel digits by T, seconds relative to the I- 
channel, as shown in Fig. 6.3. The resulting modulation scheme is called offset 
QPSK (OQPSK), or sometimes staggered QPSK, because the two quadrature 
components are offset in time by a bit period T,. This solution eliminates the 
possibility of 180" phase changes. In fact, phase changes of only f 90" can occur 
every T,. This feature is shown pictorially in the phasor diagram of Fig. 6.l(b). 
As a result, the ratio of the maximum to the minimum value of the envelope of 
filtered OQPSK signals is with this simplified model, while for standard 
QPSK it is infinity. Therefore, it may be expected that the undesired envelope 
variations of QPSK due to filtering are greatly reduced, as is the dynamic range 
required from the power amplifier. 

The complex envelope of the transmitted signal can be written as follows. 
Define Ek = ( G k ,  &+I ); then 

q ( t )  = A C s(t - 2kT,; E k )  (6.1) 
k  

where 
s(t;  E k )  = & k f  ( t )  + j & k + l f  ( t  - Ts) 

6.1. Variations on the QPSK theme 

Z( t )  for 

-1 

Z( t )  for P p ' ;  MsK 

Figure 6.3: In-phase and quadrature components of QPSK, OQPSK, and MSK signals. 

and the t k l s  are independent random variables taking values f 1 with equal prob- 
abilities. Eqs. (6.1)-(6.3) imply that the data sequence (tk) is split into even 
symbols Gk and odd symbols & k f l .  These determine the sign of the shaping 
waveforms, which are translates of a unit square pulse with duration 2T,. The 
coherent receiver for OQPSK is identical to that of QPSK, with the only change 
being the delay of the I-stream by T, so that the two pulses carrying the even 
and odd symbols are realigned in time. Consequently, the error performance of 
this modulation is identical to that of QPSK. 
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Power spectral density 

The power spectral density of the transmitted signal is not affected by the delay 
incurred by one of the quadrature components, and hence is the same as for 
QPSK. To prove this, observe that transforming (6.2) we obtain 

We are in the conditions of validity of (2.164)-(2.165), where Si ( f ) ,  2 = 1 , 2 , 3 , 4 ,  
denote the four realizations of S ( f ;  Ek). Recall that the binary source symbols 
are independent and equally likely. Then, by observing that the four different 
realizations of S ( f ;  E k )  sum to zero, we have from (6.4) 

and finally 
2 

sin 27~ f T, 

6.1.2. Minimum-shift keying (MSK) 

This modulation scheme will be discussed in greater length later on, and the 
reason for its name will be explained. For the time being, we view it as a mod- 
ification of OQPSK, obtained by shaping the transmitted pulse. The modulated 
signal retains the form (6.1)-(6.2), but now 

so that 
7Tt 

f(t - T,) = sin (-) . 0 5 t 5 2T8 (6.7) 
2T3 

Therefore, MSK is a form of offset QPSK with a half-sinusoid amplitude shaping 
pulse. The shaping waveforms cause the phase transitions shown in Fig. 6 . l ( ~ ) .  

Power spectral density 

By duplicating the calculations done for OPSK, where now 
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Figure 6.4: Power density spectra of QPSK (and OPSK), and MSK. 

we obtain the power density spectrum 

The power spectrum of the real MSK signal is shown in Fig. 6.4 along with the 
spectrum of OPSK (and hence of QPSK). It can be noticed how the main lobe of 
MSK is wider than that of OPSK, and its sidelobes decrease more steadily than 
those of OPSK. In fact, from the analytical expression of the spectra, it is seen 
that as the frequency increases the power density spectrum of OPSK decreases as 
l/ f ', while that of MSK decreases as l/ f ". The power-containment bandwidths 
of MSK and PSK are compared in Fig. 5.2. 

MSK as a digital frequency modulation 

We shall now show that MSK can be viewed as a special form of FSK. To do 
this, let us focus for a moment our attent~on on the real part of the complex 
envelope of the transmitted signal, corresponding to the even-index symbol se- ,,I) ' 

quence ( h k ) .  In our formulation of MSK, transmission of the all-1 sequence , U P  

corresponds to an in-phase part of the complex envelope consisting of a train of 
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positive arcs of a sinusoid. Now, consider a slightly different version of MSK, 
in which the values taken on by Gk are alternately changed in sign. The trans- 
mitted signal that corresponds to the all-1 sequence is now the "freewheeling" 
sinusoid cos at/PT,. A similar consideration holds for the imaginary part. Now, 
the signal resulting from this modified version of MSK retains the same features 
of the original version: the only difference between the two is a change in sign 
of every other source symbols, which does not alter the statistical properties of 
the source sequence, and hence of the modulated signal. 

We can write the real signal transmitted in this modified form of MSK as 

q ( t )  = I ( t )  cos 2a fot - Q(t) sin 2a fot (6.9) 

where now 

By defining 

b (t) ' z <2k u2T, (t - 2kTs) 
k 

and 

CQ(~) z E2k+1 u2Ta [t - (2k - 1)TsI 
k 

we can write, after some simple trigonometry, 

where 
a 1 a 1 

f i = f o + - - ,  fz=fo--  (6.15) 
4T, 4Ta 

Now, observe that both CI(t) and CQ(t) keep a constant value (depending on the 
source symbol) over a 2T,-interval, and that over a Ta-interval this pair can take 
on four possible values, corresponding to the four waveforms for q ( t )  shown in 
Table 6.1. 

This shows that MSK can be interpreted as a form of frequency-shift keying 
with frequencies fl and f2; notice further that two signals with the frequencies f l  

and f2  given in (6.15) are orthogonal, and their frequency spacing is the smallest 
for orthogonality, as shown in (5.42) (see also Fig. 4.16). This is the reason why 
this modulation scheme is called minimum-shift keying. 

Perusal of Table 6.1 also shows that in an interval with duration T, there are 
four possible signals: each of them has two other signals orthogonal to it, and 
oqe antipodal. This is a biorthogonal signaling scheme, not unlike QPSK. 

6.1. Variations on the QPSK theme 

I -1 -1 1 -Acos2aflt  1 
Table 6.1: Shapes of v g ( t )  during an interval of duration T, as afinction of the pair of 
source symbols emitted during the same interval. 

6.1.3. Pseudo-octonary QPSK (a/4-QPSK) 

This is a modulation scheme derived from QPSK, offering a tradeoff between 
the latter and OQPSK in terms of density of phase transitions. 

While QPSK uses four camer phases and has a maximum phase transition 
of 180°, and OQPSK has a maximum phase transition of 90°, pseudo-octonary 
QPSK, usually referred to as a/4-QPSK, uses 8 phases to carry 2 information 
bits per modulated symbol, and has a maximum phase transition between two 
adjacent symbols of 135". This modulation is easily amenable to differentially- 
coherent demodulation. 

The idea here is to use two different QPSK signal constellations shifted by 
a/4,  and to move from one to the other in every symbol interval. This guar- 
antees a phase transition of at least a / 4  in each interval, which eases symbol 
synchronization (see Chapter 9). 

The complex envelope of the transmitted signal is 

with 

where ( ~ k  E (0, f a/2, a ) ,  and f (t) = U~T, (t). The signal may be differentially 
encoded, allowing it to be differentially demodulated. In this case it is called 
a/4-DQPSK. Let Ak = ok - ok-l denote the difference between the phases 
transmitted in two adjacent intervals: this difference takes on the four values 
{&a/4, &3a/4). The signal-space diagrams for OQPSK and a/4-QPSK are 
shown in Fig. 6.5, with the continuous lines indicating the possible transitions 
among phases. Notice that the phase transitions never pass through the origin. 
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Figure 6.5: Signal-space diagrams of OQPSK (a)  and ~ / 4 - Q P S K  (b). 

Power density spectrum 

By using (6.16) it is easy to show that the power density spectrum is the same as 
for QPSK. In fact, by duplicating the spectrum calculation for OQPSK, we have 

Demodulation 

Coherent demodulation can be achieved by feeding a standard QPSK demod- 
ulator with a received signal sequence shifted by ?r/4 every 2T,. A differen- 
tial demodulation scheme is shown in Fig. 6.6. The received signal, after being 
bandpass-filtered, is sent to a coherent demodulator which separates the in-phase 
and quadrature components and samples them synchronously to derive the two 
sequences (wk) and (zk). These samples are then processed to obtain the two 
new sequences 

and 

6.2. Continuous-phase modulation 

s a b l e  
every 

2T, 
J 

Figure 6.6: Differential demodulation of ~ /4 -DQPSK.  

Detected - 
data 

to be used for decisions. With Oo denoting the unknown initial camer phase, 
which (as usual with differential detection) is assumed to remain practically con- 
stant during a pair of symbol intervals, we may write, under the simplifying 
assumption that there is no noise, wk = cos(Ok - 00) and zk = sin(Ok - Oo), so 
that 

and, similarly, 

The decision device outputs SI = 1 if z k  > 0 (and SI = 0 otherwise), SQ = 1 if 
yk > 0 (and SQ = 0 otherwise). A parallel-to-serial converter (denoted P -+ S 
in Fig. 6.6) outputs the stream of detected binary data. 

6.2. Continuous-phase modulation 

We now describe an exceedingly general family of modulations, which retain the 
basic feature of PSK (and of FSK) of having a constant envelope, while decreas- 
ing the spectrum occupancy of the latter by smoothing the phase transitions of 
the transmitted signal. 
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Figure 6.7: 7imepulse g ( t )  with duration T and area ID, and its integral q ( t ) .  

The general expression for a constant-envelope, phase-modulated signal is 

where E8 is the energy per symbol of the signal, ( denotes the source-symbol 
sequence, T is the symbol interval, and Oo is the initial phase of the carrier. If we 
examine the evolution of the information-bearing phase O(t; () for PSK, we note 
that this is a piecewise-constant function with jumps taking place at every phase 
transition. A major cause for the wide spectral occupancy of PSK can be seen 
in the discontinuities in its phase function: in fact, smoother signals have a more 
compact spectrum. To reduce spectral occupancy, one may think of smoothing 
out the phase discontinuities, which is precisely the idea underlying continuous- 
phase modulation (CPM). Here the phase O(t; () is generated as the integral of 
another time function: by choosing the latter regular enough (i.e., without delta 
functions), a continuous phase is easily obtained. 

For example, let us start with an M-ary PAM signal 

where Jn = f 1, f 3, .  . . , f ( M  - 1) and g(t) is a rectangular signal with dura- 
tion T ;  its area is chosen to be 112 for later convenience (see Fig. 6.7). Next, 
generate a signal whose instantaneous frequency (apart from a factor 2n, this is 
the derivative of the signal phase) is 

where fd is the peak frequency deviation when the signals are binary (Jn = f 1). 
This is equivalent to generating the modulated signal 

6.2. Continuous-phase modulation 
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Figure 6.8: Evolution of the phase of a CPM signal in one symbol interval. 

By comparing (6.17) with (6.19), we have, apart from the initial carrier phase: 

Let us determine the evolution of the phase B(t; () within the symbol interval 
[nT, (n + l)T]. From Fig. 6.8 we have, by computing the integral in the latter 
equation, 

that is, 
e(t; () = On + 2nhJnq(t - nT) (6.22) 

where we have made the positions 

with h = 2fdT (the "modulation index") and q(t) the integral of g(t) (see 
Fig. 6.7). - .  

The signal we have obtained by combining (6.17) with (6.22) is a special 
case of CPM called continuous-phase FSK (CPFSK). The reason for its name is 
that the instantaneous frequency of uc(t) varies every T according to the source 
symbol, while its phase is continuous. The most general version of CPM will 
be described later: it allows g(t) to take a nonrectangular shape and a duration 
greater than T. However, before doing this we take a closer look at this simpler 
version. 

As a further concession to simplicity, let us assume a binary source, that is, 
Jk = f1. The phase tree of binary CPFSK is shown in Fig. 6.9, under the 
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Figure 6.9: Evolution of the phase of binary CPFSK 

assumption that at t = 0 the phase is 0 (that is, Bo = 0). This is the ensemble 
of all the phase trajectories, and completely describes the signal except for the 
camer frequency fo and its initial phase Bo. It is seen from the figure that the 
phase is continuous. At the beginning of each symbol interval it is allowed to 
increase (if tk = +I)  or to decrease (if Ek = -1) by the quantity hlr. If for 
example h = 112, at the end of each symbol interval the possible values taken 
on by the signal phase are (after reduction modulo 2a) 0, f a/2,  and a = -T. 

The phases that differ by an integer multiple of 2a are physically indistin- 
guishable. Thus, when after reduction mod 2a the values taken on by 8(t; i$) 

at the end of each interval are of finite number, the phase tree can be made to 
collapse into a phase trellis, as shown in Fig. 6.10 for h = 112. This figure 
should be interpreted as wrapped on a cylinder, because the ordinates -s and lr 
are actually one and the same, as are the pairs of points labeled A and B. 

6.2.1. Time-varying vs. time-invariant trellises 

From Fig. 6.10 we observe that at the end of each symbol interval only two phase 
values are alternately allowed: either f a / 2  or 0, a. This phase trellis is time- 
varying, in the sense that the phase trajectories in the even-numbered symbol 
intervals are not time translations of those in odd-numbered symbol intervals. 

6.2. Continuous-phase modulation 

Figure 6.10: Trellis of the phase of binary CPFSK with h = 112. 

Now, this can be a nuisance when the trellis is used for demodulation. As we 
shall soon see, the Viterbi algorithm can be used for demodulating CPM, and the 
complexity of the algorithm increases if the trellis is not time-invariant. 

One way of making the trellis time-invariant is the following. If we measure 
the phase relative to the lowest phase trajectory in Fig. 6.10, this new "tilted 
phase, defined by 

lrt 
*(t; 0 = v ;  0 + 

has the phase tree and the phase trellis shown in Fig. 6.1 1 and 6.12, respectively. 
The trellis of Fig. 6.12 is now time invariant, i.e., the phase trajectories in any 
two symbol intervals (after a T-second transient due to our constraint of having 
zero phase at the origin) are time translates of one another. 

A different method to obtain a time-invariant trellis is the following. Observe 
from (6.22) that 8(t; E )  depends separately on 8, and on &: the phase starts at 
value 8, at time nT,  and the value of <,, forces its transition to the value en+, = 
8, + lrh& at time (n + l )T.  Thus, we may list as states all the values that 8, can 
possibly take, irrespective of the value of n;  they are joined by branches labeled 
by the values of En. It can be seen that this "natural" construction leads to a higher 
number of states than with the tilted-phase trellis: for example, binary CPFSK 
with h = 112 has a tilted-phase trellis with two states (Fig. 6.12), while it has 4 
states (corresponding to the phases 0, f lr/2, lr) with the latter construction. 

What can be done with the tilted-phase trellis can also be done with the natu- 



6. Modulations for the wireless channel 

t w cr, D 

Figure 6.1 1: 'Tilted-phase tree of binary CPFSK with h = 1/2. 

Figure 6.12: 'Tilted-phase trellis of binary CPFSK with h = 112. 

ral phase trellis, because the two are equivalent. However, the use of the former 
can often simplify analyses and realizations of CPM (Rimoldi, 1988). In the fol- 
lowing, the tilted-phase trellis will be used to evaluate the power-density spec- 
trum of a special case of CPM, and to derive a number of equivalent realizations 
of MSK receivers. 

6.2.2. General CPM 

We are now ready to generalize the simple case examined so far, and derive a 
more general version of CPM. Since our goal is to smooth out the phase trajecto- 
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ries in order to achieve a more compact power spectrum for the modulated signal, 
we may consider phase transitions that are even smoother than those provided by 
CPFSK. Specifically, while the transmitted signal retains the form (6.17)-(6.18), 
now the "frequency pulse" g( t ) ,  a time function with area 112, is not necessarily 
rectangular, and its duration is generally LT, L  an integer 2 1. If L  = 1, we talk 
offill response CPM, otherwise of partial response CPM. The integral of g( t )  I 

is the "phase pulse" q( t )  

which takes value zero for t  5 0 and 1/2 for t  2 LT. 'I : 

By generalizing previous calculations, from (6.20) we have, for the evolution 
of 6 ( t ;  t) in the interval nT 5 t  5 ( n  + 1)T: 

In the second line of last equation, the first term represents the contribution to 
the phase at t  of the "exhausted" phase pulses, while the second term describes 
the behavior of the pulses that are still evolving toward their final value 112. Let 
us further analyze &(t ) .  We have 

We observe that the first term in the last line is a function of the past source sym- 
bols (tn-1, &-2, . . . , & , - ~ + 1 ) ,  while the remaining term is a function of tn alone, 
the present symbol. Using the expression just derived, we can again represent 
the evolution of the phase 6 ( t ,  E )  by using a trellis. However, in the present case 
6, is not sufficient to describe this evolution, due to the contribution of "non- 
exhausted" pulses. A trellis whose states are in one-to-one correspondence with 
the values taken on by the phase at the end of each symbol interval is also not 
sufficient. Here we need, according to (6.24), a state-trellis, which describes the 
transitions among the states 
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The value of In forces a transition between a pair of states an -t an+l. 
How many states are there in the state-trellis? The L - 1 variables . . . , 

&,-L+l, that we assume to be M-ary and statistically independent, can take on 
a total of ML-I values. This figure is to be multiplied by the number of values 
that 8, can possibly take to yield the number of states. 

Assume that h is a rational number: 
m 

h = -  
P 

with m and p relatively prime integers. We see from (6.24) that 8, is a sum of 
integers multiplied by ah .  Such a sum can take on all the positive and negative 
integer values. Consider first the case of m even. The sequence of possible 
values of 8, is: m m m 

0,  r -  2a-, 3a-;. .  
P P P 

After p different terms, (the last among them being ( p  - l ) a m / p ) ,  we obtain 
w m l p  = mr, which is congruent to 0 under our assumption of even m. Simi- 
larly, for odd m, we have the sequence 

that includes 2p terms, which then keep on reproducing themselves mod 2a. In 
conclusion, the number of states is given by 

pML-l m even 
s = {  2 p ~ L - 1  m odd 

Example 6.1 The state-trellis of a binary full-response CPM scheme (that is, M = 2. 
L = 1) with h = 112 (that is, m = 1 and p = 2) has S = 4 x 2' = 4 states. If, with 
M = 2, L is increased to 2 and the modulation index is changed to h = 314, the number 
of states is increased to S = 16. Specifically, an = (On, <,,-I), with On taking on the 8 
values 0, f a/4,  f a/2,  f 3 ~ 1 4 ,  and a ,  while = f I .  0 

The final step in studying the state-trellis of CPM is taken by examining the 
structure of its transitions from one state to the next. By recalling from (6.24) 
that . 

n-L 

the new state becomes 
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Example 6.1 (Continued) Consider again the case of Example 6.1 above, with h = 
314, M = 2, and L = 2. Assume that On = 3a/4 and = -1, that is, an = 
( 3 ~ 1 4 ,  - 1) .  We have 

This means that the new state can be either (0, +1)  or (0, - I ) ,  according to the value 
of the symbol output by the source at time n. Fig. 6.13 shows the complete trellis, 
constructed by repeating, mutatis mutandis, the calculations above. 0 

Tilted-phase trellis for general CPM 

Although only the "natural" trellis was considered in previous calculations, a 
tilted-phase trellis for general CPM can also be constructed. The tilted phase is 
defined as 

$(t;  () 8( t ;  () + a h ( M  - 1 ) t l T  (6.28) 

Consideration of the modified data sequence 

taking values in the set {0 ,1 ,  . . - , M - 11, allows one to obtain a time-invariant 
trellis, as before (see Problem 6.9 for details). 

6.2.3. Power spectrum of full-response CPM 

In this section we deal with the power spectral density of CPM. Since the general 
theory is rather complicated, here for simplicity's sake we limit ourselves to M -  
ary full-response (L = 1) CPM whose modulation index h is a rational number 
of the form h = J I M .  Let us write the complex envelope of the signal u( ( t )  
in (6.17): 

By introducing the tilted phase (6.28) and the modified data sequence (6.29). we 
can also write 

4(t) = /$ exp jj2n f h t  + $(ti x)] 

where 

f h  4 - h ( M  - 1) /2T  
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Figure 6.13: State-trellis of a CPM scheme with M = 2, L = 2, and h = 314. 

6.2. Continuous-phase modulation 29 1 

We use the technique described in Section 2.3, which requires only the straight- 
forward computation of a few relevant quantities and makes the computation 
rather easy. 

4 
Observe that for L = 1  the tilted phase (6.28) may be written in the form 

where 
A 

~ ( t )  = sh (M - 1) t lT  - 2nh(M - l )q ( t )  (6.33) 

is a symbol-independent term. The transitions among the states $, are driven by 
the symbols xn, and we can write 

where the sum has to be reduced modulo the number S  of states, which we label 
from 0 to S  - 1. Under our assumption of independent and equally likely source 
symbols, the state sequence of CPM described by its tilted-phase trellis forms a 
fully regular Markov chain with S  states. 

Consider the calculation of the quantities defined in Section 2.3. From (6.34) 
we may see that the matrices Ek have the form 

where El is the matrix whose effect on a vector with S  components is to cycli- 
cally shift its components by one step to the left. Thus 

where I denotes the S  x S  identity matrix, and among the M  matrices Ek there 
are M I S  matrices equal to El, MIS  matrices equal to E2, and so on. Thus, the 
transition probability matrix of the Markov chain is 

where J denotes the S  x S  matrix all of whose elements are 1. Since PP = P, 
we have 

W 

P r n = P =  
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where 1 

w = -  [I 1 ... 11 

(notice that E: = 1) and 

.[2rfht+4"hkp(t)+w(t)l  
a k ( f )  3 { ~ e ~  (6.35) 

We can write 
~ ~ ( f )  = ~ k ( f ) [ l  Eh c:, ... 4 - l l  

In conclusion, we obtain 
d f )  = 0 

and 

Hence; there is no discrete spectrum, and 
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If desired, (6.36) can be given a more compact form by defining the vector 

and the matrix H(f) whose entry i ,  j is bij + ( 2 / ~ ) e - j ~ " ( f  - f h ) T ~ A ,  for i, j = 
0,. . . , M - 1, and with hij denoting the Kronecker symbol. These definitions 
yield 

Notice that the calculation of (6.37) requires only the computation of the Fourier 
transforms a k  ( f )  defined in (6.35). 

Example 6.2 (CPFSK) Eq. (6.36) can be specialized to CPFSK by letting q ( t )  = 
t/2T, and consequently w ( t )  = 0 from (6.33). Direct calculation shows that 

where 

Thus, 

sin ?r( f - fh)T 
ao(fT) = A T  

.(f - fh)T 

The general case of partial-response CPM will not be dealt with in detail (see 
the bibliographical notes at the end of this chapter for references to the compu- 
tation of general spectra). Here it suffices to observe that the power spectrum of 
CPM generally depends on the values of h, L, and M, and on the shape of the 
frequency pulse g ( t ) .  Small values of h generate a small bandwidth occupancy, 
as do smooth pulses. For example, the raised-cosine pulse 

I 0, otherwise 
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- 
Raised-cosine 1 2 1 0.5 1 1.1 1.6 
Rectangular 1 2 1 0.7 1 1.2 1 2.1 - 

Raised-cosine ( 2 ( 0.7 ( 1 . 1  1.9 1 
Table 6.2: Power-containment bandwidth as a fraction of 1/T,  for some CPM schemes. 
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Figure 6.14: Structure o f a  modulator for continuous-phase signals. 

L an integer 2 1, results into a CPM scheme whose bandwidth occupancy is 
smaller than that of CPFSK. As L increases, the pulse g( t )  becomes smoother, 
and the bandwidth occupancy is reduced, at the price of an increase of the num- 
ber of trellis states, and hence of the demodulator complexity if the Viterbi al- 
gorithm is used (see below). Some values of power-containment bandwidth are 
shown in Table 6.2. 

L 
1 
2 

6.2.4. Modulators for CPM 

h 

0.5 
0.5 

A general modulator for CPM is shown in Fig. 6.14. The data, after modulating 
the phase pulse q( t )  and being multiplied by 2ah, are sent into a phase modulator 
(a device which outputs a signal whose phase is equal to its input). The output 
of the latter is the CPM signal. The observation that taking the derivative of a 
signal phase, and dividing it by 2a, yields the instantaneous frequency of the 
signal, leads to the alternative structure shown in Fig. 6.15, which contains a 
frequency modulator (i.e., a voltage-controlled oscillator-see Chapter 9) .  

Other forms of modulators are possible-some of them will be described at 
the end of this chapter for the special case of MSK. 

6.2. Continuous-phase modulation 

MODULATOR 

Figure 6.15: Alternative structure of a modulatorfor continuous-phase signals. 

6.2.5. Demodulating CPM 

From the theory developed in Section 4.2, we understand that optimum demod- 
ulation of CPM in additive white Gaussian noise consists of selecting the data 
sequence < that, upon observation of the received signal r ( t ) ,  minimizes the in- 
tegral 

I - 

where Z is the observation interval. We can represent this graphically by looking 
at the trellis that represents, for a given CPM scheme, the set of allowable phase 
trajectories. There is a one-to-one correspondence between an allowable phase 
trajectory and a data sequence <: thus, the problem of demodulating CPM can 
be viewed as the problem of choosing, among all the phase trajectories, the one 
closest to the phase trajectory of r ( t ) ,  in the sense that (6.39) is minimized. 
Fig. 6.16 illustrates this qualitatively. 

The evolution of the modulated-signal phase can be described through its 
state-trellis, and the demodulation performed through the Viterbi algorithm. We 
start by expanding the square in (6.39): by doing this we are left with three 

-.-- 
terms, only one of which depends on < under the-usual assumption of a large 
enough camer frequency. Thus, minimizing (6.39) is equivalent to maximizing 
the scalar product 

Let us first split this term into a sum of contributions, each coming from one 
symbol interval [nT,  (n + l ) T ] :  

After observing r ( t ) ,  we may label each branch of the CPM state-trellis with 
the value of the above integral. We are left with a trellis all of whose branches 
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Figure 6.16: Continuous lines: Possible phase trajectories of a CPM signal. Dashed 
line: Phase trajectory of the received signal r ( t ) .  

carry a label, and the demodulation problem consists of choosing the trajectory 
in the CPM trellis whose sum of labels is a maximum. This problem can be 
solved by using the Viterbi algorithm as described in Appendix F. An important 
consequence of this is the fact that the demodulator complexity is proportional 
to the number of trellis states. 

Later in this chapter we shall examine the demodulator operation in more 
depth in one special case. 

Truncating the Viterbi algorithm 

Consider the transmitted signal corresponding to a sequence 5 = ( J o ,  . . . , J K - I )  

of information symbols taking values in the set { & I ,  k 3 , .  . . , k ( M  - 1 ) ) .  The 
Viterbi algorithm outputs the maximum-likelihood decision on the whole trans- 
mitted sequence after observing the whole received signal. Since K ,  and hence 
the observation length, may be so large as to make impractical both the path 
storage and the decision delay implied by ideal implementation of the Viterbi 
algorithm, the truncated version of the algorithm (see Appendix F) is used in 
practice. That is, practical Viterbi processors force a decision at time t = N T ,  
N < K .  This is done by making a decision on the first source symbol Jo  based 
on the observation of the signal received up to t  = N T .  After the decision is 
made for to, the process is repeated for J1  at time t = (N + 1 ) T ,  and so forth. 
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Error probability of CPM 

As we learned in Section 4.3, the pairwise error probability of the two signals as- 
d sociated with the symbol sequences 5 and .$ depends on the minimum Euclidean 

distance between the two signals. That is, recalling (6.17) we have 

Since from (6.22) and (6.23) B(t; 5 )  is related linearly to the source symbols J ,  
we may also write 

Thus, by defining the minimum Euclidean distance as the limit 

A .  
d k n  = lim min d2[v t ( t ) ,  v t ( t ) j  

K+w t#E 
(6.43) 

the error probability of CPM can be expressed, following (4.64), as 

where we have defined the normalized squared minimum distance 

and P is the average number of signals at distance d i i ,  from any signal. The 
approximation (6.44) is increasingly better as &/No grows. 

,,,,,I 

I , # , # #  Computing dmin 

Let us examine the problem of calculating dmin, the quantity that dominates 
the error performance of CPM for high signal-to-noise ratios. Consider a pair 
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of phase trajectories B(t; 5 )  and B(t; 2 )  that differ in the first symbol (that is, 
to # to). After some time intervals in which symbols may or may not differ, 
eventually the two trajectories merge and coincide. We define this situation as 
a merge. In general, it can be seen that for frequency pulses g(t) of duration 
LT a merge cannot occur before (L + 1 )  symbol intervals from the start of the 
phase trajectory. Now, dmi, cannot exceed the Euclidean distance d B  between 
two signals whose phase trajectories merge: actually, other merges are possible 
after (L + 2 )  or more symbol intervals from the star€, and nothing prevents the 
corresponding squared distance to be smaller than that corresponding to the first 
merge. Only for full-response CPM is the value of dmin found for the first merge, 
so that dmin = d B .  (see Aulin and Sundberg, 1981) 

Example 6.3. Assume L = 1 and, for the moment, M = 2. The two symbol sequences 

correspond to two phase trajectories that merge after 2 symbol intervals. Assume rect- 
angular pulses, and a modulation index h. From (6.42) we have 

It can be verified that this bound is maximized when h = 0.715, which gives d i  = 
4.87E3. For h = 112 (which corresponds to MSK, as we shall see soon) we have 

A 
d i  = 4E3, and hence the normalized value 6; = d i / 4 E b  = 1. With L = 1, it can be 
shown that dLin = d i :  this proves that the asymptotic power efficiency of MSK is the 
same as that of traditional binary and quaternary PSK. 

For M > 2, d i  can be obtained by considering the two symbol sequences 

which yields the value 

For example, with h = 112 we obtain 6; = log2 M. 0 
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We hasten to recall here that d i  is only an upper bound to d?,,, and that 
in several cases it is not actually achieved. In general, d i ,  depends on M ,  h, 
the frequency-pulse shape, and L in a very complex way. The text of Ander- 
son et al. (1986) provides many examples of actual values of d i i n .  Sundberg 
(1986) also provides charts showing the tradeoff between d i i n  and bandwidth 
occupancy of several CPM schemes. A numerical algorithm for computing the 
minimum distance is described in Saxena (1983): this is an application of the 
general algorithm described in Chapter 14. 

6.3. MSK and its multiple avatars 

In this Section we examine in more depth a special case of CPM, namely MSK, 
and we show how it can be equivalently represented as shaped offset PSK or 
as CPFSK with h = 112. Demodulation of MSK can be obtained with several 
structures, which provide further insight into this modulation scheme. 

6.3.1. MSK as CPFSK 

We show here that MSK can be viewed as a special case of CPFSK, and hence of 
CPM. Specifically, assume a binary CPM with L = 1, g(t) a rectangular pulse, 
and h = 112. By combining (6.17), (6.22), and (6.23), and by observing that 
q(t) = t/2T for 0 5 t  5 T ,  we obtain 

or, equivalently, 

The latter form shows once again that vC(t) is a frequency-modulated signal, 
obtained by shifting the carrier frequency up or down by an amount 1/4T. After 
some algebra, (6.46) can be transformed into 

FIIn f (t - 2nT) cos 21 fot - Qn f ( t  - T - 2nT) sin 21 fot] (6.47) "dt )  = T 

for nT 5 t  5 (n  + 1)T, where 
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and 

so that a t  
f ( t  - T )  = sin (?), o < t ~ 2 T  

Since under our assumptions ( E n )  is a sequence of independent random vari- 
ables taking on values k1, then the two sequences (I,) and (Q,) take on the 
same values, are mutually independent, and have independent components. We 
conclude that the signal (6.47) is mathematically equivalent to an offset QPSK 
with sinusoidally-shaped pulses, i.e., to MSK as in (6.1), (6.2). and (6.6). 

Obviously, from the above result we may obtain the power density specmm 
of MSK as a special case of (6.38). but this would come at the price of a consid- 
erable amount of algebra, which is saved if the spectmm is calculated as we did 
to derive (6.8). 

A modulator for MSK 

Use once again the tilted-phase representation (6.28) and the modified data se- 
quence (6.29), which in our case yield 

where 

is the information-carrying phase in the nth symbol interval, x ,  € {O. 1)  is the 
modified data sequence, and ,-I 

$n = C i=O xi 

with the sum reduced mod 2, represents the tilted-phase trellis state during the 
nth interval. By convention, C = 0, and in general E {O, I). &. (6.49) 

shows that in any symbol interval the informatiowarrying phase 0 ( t ;  E )  either 
remains constant (when xn E 0) or increases linearly by a .  We may interpret 
a$, as the initial phase in the nth interval, and n y ,  as the phase increment. 

Eq (6.49) makes explicit the fact that the signal transmitted during the nth 
interval is completely specified by the source symbol x,, and by the state $n. 

This suggests the implementation of the MSK modulator shown in Fig. 6.17. In 
this figure, the modulator is memoryless because at any given time it outputs a 

6.3. MSK and its multiple avatms 

L-------------------L_______________________________~L_______________________________~~~~~~~~~ 

Memoryless 
MSK 
signal 

Figure 6.17: Implementation of MSK modulator: MSK ar CPFSK. 

A Table 6.3: lnpur-ou@w relationship for the m e m o ~ l e s s  mapper in DMSK Here f l  = 
fo + 1 /2T. 

signal depending only on its inputs at the same time; it can be viewed as a table 
look-up device. 

The discrete system whose input is the source symbol xn and whose output is 
the pair (x,, $,) has transfer function [ I ,  z b l / ( l  - I - ' ) ] .  (This is expressed in 
terms of z-transform-the reader more familiar with D-transforms should sim- 
ply change z-' into D.) 

Differential MSK 

If we precode MSK by passing the source symbols into the discrete system 
with transfer function 1 - z-' (the precoder), the continuous-phase encoder of 
Fig. 6.17 is changed into one whose transfer function is [ I -  z-',  2 - I ] ,  or, equiv- 
alently, [ l  + z-',  z-'1 (because modulo-2 addition and subtraction are the same 
operation). The resulting modulator is shown in Fig. 6.18, while the relation 

between source inputs and mapper outputs is shown in Table 6.3. What we 
obtain is called differential MSK (DMSK). In a sense, DMSK is more natu- 
ral than MSK: in fact, up to a time shift the information sequence equals the 
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Memoryless 

Modulator 

Figure 6.18: Implementation of DMSK modulator: 

state sequence. For this reason in the balance of this section we shall focus our 
attention on DMSK. However, any transmitter and receiver for DMSK can be 
transformed into a transmitter and receiver for MSK by doing a simple invertible 
operation on the information sequence: specifically, by pre-multiplying the input 
by 1/(1  - % - I )  andpost-multiplying the output by 1 -%-I, respectively. Observe 
finally that by looking at the transmitted signal one cannot distinguish between 
MSK and DMSK, as the waveforms generated are the same in both modulations. 

State trellis diagram 

Here we use the tilted-phase trellis diagram, which allows us to represent MSK 
with only two states. This trellis for both MSK andDMSK is shown in Fig. 6.19. 
It has branches labeled by the transmitted signals, and describes the operation of 
the transmitter. The trellis of Fig. 6.20 shows the branch metrics, and hence 
is used by the receiver for maximum-likelihood detection. The correspondence 
between state pairs and transmitted symbols is summarized in Table 6.3. 

The branch metric An(si), i = 0,1,2,3,  is the correlation between the re- 
ceived signal r ( t )  and si ( t  - n T ) ,  namely, 

6.3.2. Massey's implementation 

Here we show how MSK can be seen as a modulation scheme whose optimum 
demodulator needs to process the received signal over only two symbol intervals. 
Specifically, we derive sufficient statistics for the estimate of T), that is obtained 
from the received signal in three adjacent symbol intervals, i.e., in ( n  - l ) T  5 
t  < ( n  + l ) T .  This derivation is based on the fact that s2( t )  = -so(t) and 
sg(t) = - s l ( t ) ,  which imply 

I An(s2) = -&(SO)  and An(s3) = - A n ( ~ l )  (6.51) 

6.3. MSK and its multiple avatars 

Figure 6.19: Trellis diagram of MSK and DSMK. Branches are labeled by transmitted 
signals. 

Figure 6.20: Trellis diagram of MSK and DSMK. Branches are labeled by branch met- 
rics. 

Now, assume that a genie has informed the receiver that = 0 and = 0. 
In these conditions, the maximum-likelihood receiver does its job by choosing 
between the two signal pairs corresponding to the pairs of branches joining those 
two states, viz., (so, so) and ( s l ,  s3) (see Fig. 6.20). The decision rule between 
the two alternatives is 

& = 0 if and only if An-1 (so) + &(so)  2 An-l(sl) + An(sg) (6.52) 

Thus, this genie-aided receiver needs only to process the received signal over 
two symbol intervals before making a decision on the most likely trellis state. 
We now show that the genie information is irrelevant, and hence (6.52) is always 
a maximum-likelihood rule for the estimate of &. Suppose for example that the 
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Figure 6.21: Massey's optimal receiver for DMSK. 

genie information to the receiver was that = 0 and = 1. The choice 
here is between the signal pairs (so,  s l )  and (s l ,  sz), which corresponds to the 
decision rule 

$n = 0 if and only if An-l(s0) + X,(sl) 2 A,-l(s1) + X,(sz) (6.53) 

which, because of (6.51), is equivalent to (6.52). A similar conclusion holds for 
the case = 1 and = 0, as well as for the case = 1 and = 1. 

It is convenient from now on to replace $, E (0, 1) with T, E {f l ) ,  defined 
A 

by T, = 1 - 2$,. The rule (6.52) then becomes 

? = 1 if and only if Xn~l(so)+X,(s~)-X,-l(sl)+X,(sl) L 0 (6.54) 

This rule is implemented by the receiver of Fig. 6.21. This in turn suggests the 
implementation of the DMSK transmitter in the form shown in Fig. 6.22. 

6.3.3. Rimoldi's implementation 

The task of the correlators in Massey's receiver is to compute Xn(so) and X,(sl). 
Another possibility, first suggested by Rimoldi (1994), is to have correlators 
computing the two quantities X,(so) f X,(sl), as in Fig. (6.23). The correspond- 
ing transmitter structure is shown in Fig. 6.24. An interesting interpretation of 
this transmitter structure is that the information symbol rn is transmitted twice: 
first it amplitude modulates [so(t)  -sl  ( t ) ] ,  then it amplitude modulates the signal, 
orthogonal to the former one, [so(t) + sl ( t ) ] .  

6.3. MSK and its multiple avatars 

+ 

Figure 6.22: Massey's transmitter for DMSK. 

%,(t) - S ,  (1)  

Figure 6.23: Rimoldi's receiver for DMSK. 

6.3.4. De Buda's implementation 

A third way of implementing (6.54) is to compute the left-hand side of that in- 
equality by means of a single integral as follows: 

where 
A 

~ ( t )  = so(t) - s l ( t )  +so(t - T )  + s l ( t  - T )  (6.56) 

A difficulty here is that the integration in (6.55) must be camed out on two 
adjacent symbol intervals, which cannot be done with a single integrator (it can 
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1 '  z [so (2) - S ,  ('1 1 
1 signal 
T [ ~ O ( ' ) , + ~ ,  ( 0 1  

Figure 6.24: Rimoldj's transmitter for DMSK. 

Figure 6.25: De Buda's receiver for DMSK. 

only provide the result for o d d - o r  even-symbol intervals). This difficulty can 
be overcome by using a second integral to obtain (6.55) for even-or  odd- 
symbol intervals. The resulting receiver is shown in Fig. 6.25. 

6.3.5. Amoroso and Kivett's implementation 

In previous implementation, a second integrator was called for because of the 
impossibility of computing the left-hand side of (6.54) for every n by means of 
a sjngle integrator. This difficulty can be circumvented by using a matched filter 

6.4. GMSK 

Figure 6.26: Amoroso and Kivett's receiver for DMSK. 

with impulse response 

A { ;j2T - t ) ,  t  E (0, 2T) 
h(t)  = otherwise 

The resulting receiver is shown in Fig. 6.26. 

6.4. GMSK 

Gaussian MSK (GMSK) is a CPM scheme with L > 1, whose design is aimed 
at obtaining an especially compact spectrum, and hence a modulation scheme 
applicable to wireless systems. It has h  = 112 and M = 2 ,  like MSK, but the 
frequency pulse g(t) is selected here by passing the rectangular pulse of MSK, 
which has duration T ,  through a filter whose impulse response is Gaussian, viz., 

where 

or, equivalently, whose transfer function is 

(in practice, g(t) will be truncated in a window with suitable finite duration). 
The actual filtered pulse g(t) is obtained by integrating h(t) in the interval (t  - 
T / 2 ,  t + T / 2 ) ,  which yields 

+ T / S ) )  - erf ( ~ t ( t  - T / 2 ) ) ]  
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Figure 6.27: Shape of a Gaussian-filtered rectangular frequency pulse, for three values 
of the bandwidth-controlling parameter P: MSK corresponds to P + m. 

It is easily seen that J-mm h(t) dt = 1, and that the variance of h(t), interpreted 
as a probability density function, is proportional to T2/p2. Thus, by decreasing 
the value of the parameter ,d the variance is increased, i.e., the smoothness of 
the filtered frequency pulse increases, and the bandwidth occupancy decreases. 
Fig. 6.27 shows the filtered frequency pulse with ,8 = ca, which corresponds 
to MSK, with P = 0.3 (which was selected for the second-generation European 
cellular radio standard GSM), and with P = 0.2 (which was selected for the 
wireless standard called DECT). The actual value of ,8 is selected as a result 
of a compromise between spectral occupancy, which calls for low values, and 
complexity of the Viterbi demodulator, which calls for high values. In fact, a 
smoother pulse obtained by decreasing P results in a longer duration, and hence 
in an increase of the number of states of the demodulator. 

The calculation of the power spectral density of GMSK, as in general that 
of CPM with L > 1, is complicated, and will not be discussed here (see, e.g., 
Ganison, 1975). Table 6.4 shows the power-containment bandwidth of GMSK 
for some values of p.  It can be observed that a smaller value of p results into a 
modulated signal spectrally more compact. 

6.5. Bibliographical notes 309 

WT, 1 90% ( 99% 1 99.9% 1 99.99% 1 
GMSK (P = 0.2) 1 0.52 1 0.79 1 0.99 1 1.22 1 

Table 6.4: Fractional power-containment bandwidth as afraction of 1/T, for GMSK 
and MSK. 

GMSK (P = 0.25) 
GMSK (P = 0.5) 

MSK 

6.5. Bibliographical notes 

Gronemeyer and McBride (1976) compare the performance of MSK and OQPSK. 
Most of the results on CPM can be found in the book by Anderson, Aulin, and 
Sundberg (1986). The representation of CPM using the tilted phase is due to 
Rirnoldi (1988). although the choice of phase reference which makes the trellis 
time-invariant was introduced by Amoroso and Kivett (1977) and by Morales- 
Moreno and Pasupathy (1984). The derivation of the power density spectrum of 
full-response CPM with modulation index h = J I M  is taken from Biglieri and 
Visintin (1990). For a more general calculation, see pp. 209 ff. of Proakis (1995) 
or Anderson, Aulin, and Sundberg (1986). Multi-h CPM is a type of CPM where 
the modulation index h in each symbol interval is cyclically picked from a set 
{hl, h2 , .  . . , hH) of rational numbers. Multi-h CPM may exhibit a more com- 
pact spectrum than single-h CPM. Tamed-frequency modulation (TFM) is an- 
other special type of partial-response CPM, introduced by De Jager and Dekker 
(1978). 

Although in our presentation we have described only maximum-likelihood 
detection of CPM, other simpler demodulators have been proposed. Symbol-by- 
symbol detectors were described by de Buda (1972) for coherent demodulation, 
and by Osbome and Luntz (1974) and Schonhoff (1976) for noncoherent de- 
modulation. The presentation of the equivalence between MSK and CPFSK in 
Section 6.3.1 is drawn from Stuber (1996). 

MSK was invented by Doelz and Heald (1961). Later, De Buda (1972) and 
Amoroso and Kivett (1977) introduced "fast FSK" and "serial MSK," respec- 
tively. While the original invention introduced MSK as OQPSK with shaping 
done by a "full-wave rectified sine wave," Pasupathy (1979) defined another 
version of MSK with shaping by "unrectified sine wave." (The latter version is 
sometimes-and curiously-referred to as MSK-Type I, with the former one be- 
ing called MSK-Type 11.) Pasupathy's MSK actually tums out to be the OQPSK 
version of Amoroso and Kivett's serial MSK, a fact pointed out and proved by 
Peebles (1987). A coded-modulation view of MSK is described in Leib and Pa- 
supathy (1993), where Ungerboeck's set-partitioning concept (see Chapter 12) is 

0.57 
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1.09 
1.33 
2.76 

1.37 
2.08 
5.60 
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applied to provide some novel insight about MSK. The same paper summarizes 
how different versions of MSK have different focus on continuity of phase (such 
as squared Euclidean distance being proportional to Hamming distance, etc.). 
Our presentation of the various forms of MSK transmitters and receivers closely 
follows Rimoldi (1994), which in turn draws from de Buda (1972), Amoroso and 
Kivett (1977), and Massey (1980). 

GMSK was introduced in Murota and Hirade, 1981. In that paper, power 
density spectrum, eye pattern, and error probability plots are obtained experi- 
mentally or by computer simulation. 

6.6. Problems 

6.1 Compute the power spectral density of SFSK, obtained by letting 

fi(t) = f "(t) = cos 

6.2 As f -t oo, the asymptotic behavior of the power spectral density of offset PSK, 
MSK, and SFSK (Problem 6.1) is 0 ( f  -2), O(f -4), and ~ ( f  -6), respectively. 
How can this asymptotic behavior be inferred from the expression off (t) in (6.2)? 
Derive a general form of a pulse f (t) which gives a power spectrum decreasing 
asymptotically as f -K. 

6.3 Using (6.38). prove that for M large enough the power density spectrum of M-ary 
CPFSK with modulation index h = JIM depends on J but not on M. 

6.4 Derive a demodulator for n/4-DQPSK, equivalent in performance to that shown 
in Fig. 6.6, which does not include local oscillators but requires a delay line. 

6.5 Derive the squared Euclidean distance d i  for partial-response CPM with rectan- 
gular pulses and L = 2. Compare the values obtained by considering the merges 
at t = 3T and those at t = 4T. 

6.6 Derive an explicit expression for the signal s(t) in (6.56), and use it to prove 
that de Buda's receiver implementation is equivalent to the implementation of a 
receiver for MSK as shaped offset PSK. Derive also a transmitter based on de 
Buda's implementation. 

6.7 Derive a transmitter for MSK based on Amoroso and Kivett's serial implementa- 
tion. 

6.8 In Amoroso and Kivett's implementation of the MSK receiver (Fig. 6.26) the 
signal s(t) has duration 2T, and therefore pulse translates overlap. Show that this 
has no effect on the matched filter. 
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6.9 Prove that, with the definitions (6.28) and (6.29). after an initial transient the 
tilted-phase trellis is time-invariant. 



Intersymbol interference channels 

Chapter 3 has set the theoretical limits of digital modulation schemes transmitted 
over the additive white Gaussian noise (AWGN) channel. In Chapters 4 and 5 
we have derived the optimal receiver structures for the most common modulation 
schemes, evaluated their performance over the AWGN channel, and shown how 
they compare to the theoretical limits. 

Although in many practical situations the AWGN channel is not a realis- 
tic model, in most cases the performance of the different modulation schemes 
on such a channel can be considered as an upper bound of the actual perfor- 
mance. Moreover, in a Gaussian noise environment, the symbol error probabil- 
ity depends only on one parameter, the signal-to-noise ratio. Thus, meaningful 
comparisons among different modulation schemes can be obtained with only a 
moderate computational effort. Finally, it is hoped (and often true) that the hi- 
erarchy among different systems obtained on an AWGN channel is maintained 
over real channels, although the absolute performance may change. 

In this chapter we shall consider a more realistic model of the system that 
includes additional impairments degrading the overall performance. Emphasis 
will be placed on the intersymbol interference (ISI) caused by linear distortion 
introduced by the finite bandwidth and the nonideal characteristics of the de- 
vices used in the system, such as filters and amplifiers. In addition to ISI, other 
factors affecting the system performance will be given some consideration, such 
as cochannel and interchannel interferences, which arise in systems sharing a 
common medium (e.g., in frequency-division multiplexing, FDM). 

We shall focus on memoryless coherent modulation schemes whose repre- 
sentative signal points lie in a one- or two-dimensional space. This choice per- 
mits a unified treatment of different modulation schemes exploiting the concept 

' of analytic signal introduced in Section 2.4, and encompasses a wide range of 
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practical cases. The first part of the chapter is focused on the performance anal- 
ysis of digital transmission schemes in the presence of ISI. The first section of 
the chapter presents a unifying analysis of coherent digital systems. Besides its 
effects on performance, IS1 also complicates their computation. The second sec- 
tion of the chapter deals with this subject. It presents some methods that permit 
a reasonably fast and accurate evaluation of the error probability; the analytical 
details can be found in Appendix E. 

The second part of the chapter examines some design problems related to the 
transmission of linearly modulated signals over a time-dispersive channel, that 
is, a channel perturbed by ISI. The first problem we take into consideration is 
the design of a system in which the receiver is constrained to the form of a linear 
filter followed by a sampler and a detector that makes decisions on a sample-by- 
sample basis. Two design criteria will be considered under this constraint. The 
first is the elimination of IS1 from the sequence of samples to be processed by 
the detector, and the second is the minimization of the joint effects of IS1 and 
noise on the same sequence. 

If the receiver structure is not constrained, an optimum receiver can be de- 
signed performing maximum-likelihood (ML) estimation of the information se- 
quence. This is the subject of the third part of this chapter. 

7.1. Analysis of coherent digital systems 

In this section we analyze the coherent modulation schemes whose signal points 
lie in one or two-dimensional spaces, like PAM, M-PSK, and QAM. Their per- 
formance on the AWGN channel, as well as modulator's and demodulator's 
block diagrams, were described in Chapter 5. 

A block diagram of the transmission system we consider here is shown in 
Fig. 7.1. The bit stream at the output of the information source is first sent to 
a serial-to-parallel converter that groups the binary digits in blocks of length h. 
Then the signal enters the modulator, which performs a memoryless mapping 
between the M = 2h input sequences and its alphabet of M waveforms. A 
waveform is emitted by the modulator every T. As we know from Chapter 2 
and Chapter 4, each waveform can be represented in this case as a point in a one 
or two-dimensional Euclidean space, characterized by two real coordinates or, 
equivalently, by a complex number. The modulated signal is transmitted over 
the channel, in which Gaussian noise is added. The bandpass filter in Fig.7.1 
represents, without loss of generality, the cascade of the transmitter filter, the 
channel filter, and the receiving filter.' The received signal is fed to the camer 

'Obviously, the fact of including the receiving filter into the bandpass filter of Fig. 7.1 mod- 
ifies the spectral density of the additive Gaussian noise, which is not white anymore, as it  has 
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DEMODU- 
DETECrOR 

CARRlER 
RECOVERY RECOVERY 

Figure 7.1: Block diagram of a transmission system with coherent receiver. 

recovery device, which supplies the reference carrier to the coherent demodu- 
lator. The main features of the carrier recovery devices will be studied later in 
Chapter 9. Here, we assume that the recovered carrier phase is affected by a jitter 
B(t), whose variations with time are so slow that it can be considered as a random 
variable (RV) with known probability density function (pdf). Successively, the 
demodulated signal is sampled at the symbol rate 1 / T ,  in correspondence of the 
sampling instant provided by the timing recovery device (this topic too will be 
treated in Chapter 9). Finally, the detector makes a decision on which signal was 
transmitted based on samples thus obtained and according to decision regions 
tailored to the particular modulation scheme. 

A general representation of the modulated signal v ( t )  is as follows: 

v ( t )  = v p ( t )  cos 27r fot - vQ(t)  sin 27r fot (7.1) 

where fo is the carrier frequency and2 

vQ( t )  = x aQnsP(t - n T )  + x apnsQ(t - n T )  (7.3) 
n n 

In (7.2) and (7.3), ap, and aQn are the coordinates of the signal point in the n-th 
signaling interval [nT, (n + 1)T]  and can take M values in the sets Ap and AQ. 
The waveforms s p ( t )  and sQ(t )  are suitable baseband shaping functions. The 
representation (7.1) includes the case of a baseband signal, for which f o  = 0 and 
aqn = 0. 

been filtered by the receiving filter. 
2From here on the symbol C, will denote summation over all integers n from -co to +W. 

Analysis of coherent digital systems 

scheme 

CPSK 

Table 7.1: Coordinates of signal points and shaping functions for coherent rnodulation 
schemes. 

Example 7.1 In the case of M-ary PAM modulation (see Section 5.2). we have Ap = 
((2k - M - l )d /2 )K1 .  sQ(t) = 0, and, for instance, sp(t)  = uT( t ) ,  where uT(t)  is a 
rectangular waveform of unit amplitude in (0 ,  T) and zero elsewhere. 0 

The sets Ap,AQ and sp( t ) ,  sQ(t)  for the different modulation schemes are re- 
ported in Table 7.1., where Ak, 4 k  represent the amplitude and phase of the 
two-dimensional signal points. In the case of a single-sideband pulse amplitude 
modulation (PAM-SSB), i.e., of a bandpass PAM signal in which only half of 
the bandwidth around the carrier is transmitted, sQ(t )  is obtained as the Hilbert 
transform of sp( t ) .  According to the theory of the complex envelope representa- 
tion of bandpass signals, developed in Section 2.4, we can represent v ( t )  in (7.1) 
by its complex envelope G(t) 

Moreover, the bandpass filtering operated by the channel on v ( t )  can be rep- 
resented by the filtering operated by the low-pass equivalent channel on G(t). 
Thus, defining 

!?(t) ' g ~ ( ~ )  + jgQ(t) (7.5) 

so that g(t)  = 8 [ij(t)ej2"fot] is the impulse response of the bandpass filter in 
Fig. 7.1, we can write the complex envelope of the received signal r ( t )  as 

where fi(t) = np( t )  + jnQ(t)  is the complex envelope of the bandpass Gaussian 
noise process, and n p ( t ) ,  nQ(t )  are baseband Gaussian processes whose samples 
are Gaussian RVs with zero mean and variance ui.  The variance ui is obtained as 
NoB,,, No/2 being the two-sided power spectral density of the white noise and 
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Be, the equivalent noise bandwidth of the receiving filter. Using now (7.2),(7.3), 
and (7.4), we can write 

,(t) = C anS(t - n T )  (7.7) 
n 

having defined 

Thus, finally, the received signal 7 ( t )  can be given the following expression: 

where 

h(t)  k h p ( t )  + jhQ( t )  = Iz ( t )  2 * l ( t )  (7.11) 

From here on, (a,) is assumed to be a sequence of independent identically dis- 
tributed RVs. Recalling (7.5) and (7.8), the convolution in (7.1 1) gives rise to 

Example 7.2 Consider a PAM transmission and a bandpass filter whose transfer func- 
tion G( f )  satisfies the following symmetry conditions for every f :  

G$(fo + f )  = G$(fo - f )  
~ : ( f o + f )  = - G : ( f o - f )  

where GR and GI are the real and imaginary parts of the transfer function 

To compute h ( t )  according to (7.11). we need j ( t ) ,  that is, the inverse Fourier transform 
of G+( f + f o )  But G+( f + f o )  exhibits the symmetries of G+( f )  around the origin 
f = 0, and this makes B(t) = gp(t) real. Thus we have 

- 1 
, h( t )  = - s ( t )  * gp( t )  , (real), for PAM-DSB 

2 
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Figure 7.2: Demodulation of a two-dimemiom1 modulation scheme. 

The actual signal that enters the demodulator of Fig. 7.1 can be obtained simply 
as r ( t )  = !R{7(t)ej2"f0'}. The task performed by the demodulator is represented 
by the block diagram of Fig. 7.2. 

In fact, this is the general form of the demodulator, which simplifies and 
reduces to the upper branch when a one-dimensional modulation scheme like 
PAM is used.3 It can be proved (see Problem 7.1) that the two outputs rDp( t )  
and rDQ(t )  from the branches of the demodulator of Fig. 7.2 are the same as the 
outputs of the system shown in Fig. 7.3. At its input, the complex envelope of 
r  ( t )  is presented. 

The presence of nonideal low-pass filters in the demodulator could also be 
easily accounted for by including their transfer functions in the overall low-pass 
equivalent filter represented by h(t)  in (7.1 1). Then we can immediately write 
the expressions of the demodulated signals. For the sake of clarity, let us con- 
sider separately the one and two-dimensional cases. 

PAM modulation 
The demodulated signal is given by 

3 ~ l s o  for M, however, two branches of the demodulator are needed when a single-sideband 
(PAM-SSB) modulation is used. 



7. Intersymbol interfrence channels 

Figure 7.3: Equivalenr demodularor, in rhe complex envelope represenration, of a two- 
dimensio~l modulation scheme. 

In (7.14). for given 8,  the baseband random process v p ( t )  = n p ( t )  C O S ~  - 
n Q ( t )  sin 8 is Gaussian, with zero mean and variance ui, like n p ( t )  and nq( t )  
(see Problem 7.2). Equation (7.14) makes evident the different sensitivities of 
DSB and SSB to the phase jitter. In fact, suppose that the channel transfer func- 
tion G( f )  satisfies the symmetry conditions of Example 7.2. Then, h Q ( t )  is equal 
to zero for the PAM-DSB modulation. In this case, the presence of the phase jit- 
ter reduces to an attenuation of the received signal by cos 8. However, for SSB 
systems, h Q ( t )  is not zero. Thus, the second summation in the RHS of (7.14) 
contributes to the performance degradation. 

Two-dimensional modulations 

The two demodulated signals are given by 

where v p ( t )  is the same as before, and v Q ( t )  = n p ( t )  sin 8 + n Q ( t )  cos 8 is a 
conditionally Gaussian baseband process with zero mean and variance oi. More- 
over, samples of v p ( t )  and v Q ( t ) ,  taken at the same time instant, are conditionally 
independent RVs (see Problem 7.2). 

Example 7.3 Consider a QAM system without phase jitter (0 = 0) and a band- 
pass transfer function G( f )  exhibiting the symmemes of Example 7.2. Using (7.12) 
and (7.13). we have 

1 
, h p ( t )  = - s ( t )  * gp( t )  2 
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hQ(t )  = 0 

and, from (7.15) and (7.16). 

In the detector, decisions on the transmitted an are taken by comparing sam- 
pled values of T D P ( ~ )  and T D Q ( ~ )  (or only ~ g p ( t )  in the PAM case) with suit- 
able thresholds. In other words, the receiver is the same as the one described 
in Chapter 4 for the Gaussian channel. The sampling times form a sequence 
(to + zT)E-,, where 0 5 to 5 T is the optimum (in some sense) timing instant 
depending on the impulse response h ( t ) .  Assuming that the sequence ( a  ) is ' sta- 
tionary, the processes ~ ~ p ( t )  and T D Q ( ~ )  are cyclostationary random processes 
with period T (see Section 2.2.2). Thus, the performance of the system does 
not depend on the particular signaling interval. We shall consider the sampling 
instant to. 

The following shorthand notation will be used in this chapter for all the time 
functions: 

a 
yn = y(t0 - nT) , for all integers n (7.17) 

The sampled demodulated signals are then given by the following expressions: 

PAM modulation 

TDO = ao(hp0 cos 8 - hQo sin 8 )  + an(hpn cos 8 - hQn sin 8 )  + up0 (7.18) 
n f  0 

Two-dimensional modulations 

T D P ( % )  = (apnhpn - a Q n h Q n ) ~ 0 S 8  (7.21) 
- ( a p n h ~ n  + aQnhpn) sin 8 " 

TDQ (an )  = (apnhQn + aQnhpn) cos 8 (7.22) , -8 

+ (apnhpn - aQnhQn) sin 8 
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Figure 7.4: Elrample of low-pass equivalent impulse response. 

Figure 7.5: Successive component waveforms of the received signal. 

In (7.18). (7.19). and (7.20), the term with n = 0 has been given special 
consideration as it contains the required information about the symbol a0 on 
which we are deciding. The summations in the RHS represent the contribution 
(unwanted!) to the sample taken at t = to of the past and future symbols in 
the sequence (a,) .  These terms are called intersymbol interference (ISI), and 
may represent a major cause of impairment to system performance. Looking 
at (7.18)-(7.22), an important fact can be observed. Even in the absence of 
phase jitter, we have an interaction between the in-phase and quadrature channels 
whenever hQ(t)  is not zero at the sampling instants. This happens when the 
transfer function of the channel G(f)  does not satisfy the symmetry conditions 
of Example 7.2. 

Example 7.4 Consider a binary PAM system, with d = 2 and sp( t )  = u ~ ( t ) ,  trans- 
mitted over a channel with Q ( t )  = 2 ~ e - ~ / ~ ,  t 2 0. Using (7.1 1). we have (see Fig. 7.4) 

Using now (7.14), and assuming that the transmitted sequence (an) is +1, -1, -1, +1, 
and 0 = 0, we obtain, by summing the various contributions of Fig. 7.5, and in the ab- 
sence of noise, the received signal rD( t )  shown in Fig. 7.6. 0 
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Figure 7.6: Received signal for the impulse response of Fig. 7.4 corresponding to the 
binary data sequence + I , - 1 , - l , + l ,  in the absence of noise. 

Figure 7.7: Construction of the eye diagram for the signal of Fig. 7.4. 

An effective way of displaying the qualitative effects of IS1 is the construc- 
tion of the eye pattern, or eye diagram. It consists of slicing the demodulated 
signal (in the absence of noise) in segments of T seconds duration and super- 
imposing the various slices in the interval (0, T) as in Fig. 7.7, which refers to 
Example 7.4. The eye diagram is obtained by observing the data signal through 
an oscilloscope,'whose time axis is synchronized at the symbol rate. For a binary 
PAM modulation, the typical aspect of the eye pattern is as in Fig. 7.8, where the 
sampling instant is shown to correspond with the maximum eye opening, yield- 
ing the greatest protection against the noise. In Fig. 7.8, the amplitude peak 
distortion is also indicated. It is defined as the maximum value assumed by the 
IS1 over all the possible transmitted sequences (a,) .  Using (7.14), with 6 = 0, 
we can write it as 

The concept of eye diagram and peak distortion can be generalized to the mul- 
tilevel PAM and two-dimensional modulation systems. The general form of the 
overall low-pass equivalent impulse response h(t )  is shown in Table 7.2, together 
with the expressions of T ~ p o  and TDQO. 
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Figure 7.8: Example of eye diagram for binary PAM modulation. 

Table 7.2: Low-pass equivalent impulse responses and in-phase and quadrature samples 
of the received signal for coherent modulation schemes. The acronyms DSB and SSB 
mean double sideband and single sideband, respectively. 

' o w  

0 

I 

We have proved that the system shown in Fig. 7.9 permits us to obtain the 
real and imaginary parts of the demodulated signal r ~ ( t )  of Fig. 7.1. Note that 
in Fig. 7.9 the modulating and demodulating carriers have disappeared. Besides 
its great simplicity and conciseness, this result proves to be very useful in the 
computer simulation of bandpass digital transmission systems. In fact, using the 
model of Fig. 7.9, the frequency at which signals must be sampled before being 
processed by the computer is related to the bandwidth of the modulating signal, 
and not to the carrierfrequency, which is usually much larger. 

To conclude this part, let us summarize step by step how the signal analysis 
we have just described can be done. This analysis is the preliminary step in the 
computation of the error probability, as we shall see in the next sections. 

%PO 

2 P.  (hp. cos 8 - hQ8 sin 8) + vpo 

Modulation 
scheme 

PAM-DSB 

-x (np. hpl +%hp.) sin 8 + vpO 

'Step 1 Given the modulation scheme and the shaping filter s(t), use Table 7.1. 

+x (apm hp. - aQnhQn) r i d  + vm 

7.2. Evaluation of the error probability 

h~ 

s. gp 

SOURCE n(t) 
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ha 

l * # ~  

Figure 7.9: Equivalent block diagram of a linear digital transmission system using com- 
plex envelope representation. 

to obtain the transmitted signal v(t) of (7.2) to (7.4). 

Step 2 Cascade the bandpass transmitter, channel, and receiver filters to obtain 
the transfer function G( f ) .  

Step 3 Compute the low-pass equivalent impulse response 3(t) by taking the 
inverse Fourier transform of G+( f + fo) ,  and use it in the convolutions 
(7.12) and (7.13) to obtain the real and imaginary parts of h(t). 

Step 4 Find the expressions of r ~ p o  and TDQO in Table 7.1. as a function of ap,, 
a ~ , ,  (Table 7.1 .), and hp, hQ computed in Step 3. 

The computational tools normally used in a digital computer to evaluate the con- 
volutions in Step 3 are the fast Fourier transform in the frequency domain and 
the state variable technique or the bilinear z-transform in the time domain. The 
interested reader is invited to consult the Bibliographical Notes at the end of this 
chapter for relevant references. 

7.2. Evaluation of the error probability 

The received signal, after demodulation and sampling, enters the decision device, 
which locates it in one of the decision regions and chooses the corresponding 
point in the signal space as the transmitted one. In practice, the decision regions 
are coincident with the optimum ones under the criterion of minimum Euclidean 
distance (i.e., optimum for the AWGN channel) described in Section 4.2. Thus, 
computing the error probability for a given transmitted signal point entails evalu- 
ating the probability that the point (rDPO, rDQO) lies in a suitable two-dimensional 
region, depending on the particular modulation scheme adopted. The computa- 
tion is usually performed in two steps: 
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Step 1 Compute the probability that a point lies in a two-dimensional (or one- 
dimensional in the PAM case) region, taking advantage of the fact that the 
RVs rDp0 and rDoo are conditionally independent Gaussian RVs. This 
probability is precisely the e m r  probability conditioned on IS1 and phase 
jitter 8. 

Step 2 Compute the expectation of the result obtained in Step 1 with respect 
to (a) the two RVs (one for PAM) representing the IS1 affecting the in- 
phase and quadrature components of the received signal and (b) the ran- 
dom phase 8. 

As we shall see, Step 1 can be achieved analytically in an exact or approx- 
imate manner for almost all coherent modulation schemes. Indeed, there is no 
difference from the AWGN channel case discussed in detail in Chapters 4 and 
5. What really complicates the computation is Step 2. Although in most cases 
all the values assumed by the IS1 RVs could be exhaustively enumerated and the 
conditional e m r  probabilities computed, such a procedure, in fact, may often 
take an extremely long time, and hence be impractical. For the sake of sim- 
plicity, we shall first verify this conclusion and show how to circumvent it with 
reference to the PAM transmission system. 

7.2.1. PAM modulation 

The sampled received signal's expression was given in (7.18). where the symbols 
forming the sequence (a,) can take the values shown in Table 7.1. with equal 
probabilities 1/M. With the following shorthand notations: 

the received signal r ~ o  becomes 

Assuming M even and ha(@) > 0, the decisions at the receiver are made by 
comparing  DO with the following thresholds: 
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Thus, following the analysis of Section 5.2 and Steps 1 and 2, the error probabil- 
ity is easily expressed as 

( I .L I )  
where EX and Ee denotes average over the RVs X ,  representing the ISI, and 8, 
respectively. We shall discuss later how to perform the average with respect to 
8. The problem, then, is the computation of the conditional expectation with 
respect to the RV X ( 8 )  for a given 8, that is, of the integral 

For simplicity, in (7.28) we have dropped the coefficient ( M  - 1) lM and the 
dependence on 8. In the integral (7.28), X and f x ( x )  represent, respectively, the 
range and the pdf of the RV X .  

Some facts about the RV X 

Looking at (7.25) and (7.26), the RV X is seen to be the sum of a number, say 
N, of RVs X,. The number N depends on the duration of the impulse response 
h( t )  through its samples h,. In principle, N may be infinite. However, in prac- 
tice, only a finite number of samples significantly contribute to the performance 
degradation. A thorough discussion on the convergence of X to a random vari- 
able, and on the existence of a pdf for it, can be found in Campbell and Wittke 
(1997) and the references therein. 

The structure of X (see (7.25) and (7.26)) is such that one is tempted to 
invoke the central limit theorem and assume that it converges to a Gaussian RV 
as N + oo. Unfortunately, the central limit theorem cannot be applied as, in 
practice, the range of X is almost always a bounded interval, and its variance is 
limited (see Ldve,  1963, p. 277). In fact, the largest value taken by X cannot 
exceed 

The value xsup is assumed by X with our assumption that (a,) is a sequence 
of independent RVs. When PJ is infinite, xsup is still bounded if the asymptotic 
decay of the impulse response h( t )  is faster than l l t .  In the practice this is 
always the case. What happens when we try to apply the central limit theorem to 
this case is shown in the following example. 
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Example 7.5 Consider a PAM transmission system for which x,,, < hod/2. This 
means that the eye pattern of the system is open, i.e., that the peak distortion is less than 
half the separation between two adjacent signal levels, and, consequently, that we can 
transmit with zero error probability in the absence of noise. Applying the central limit 
theorem (which leads to the Gaussian assumption for X), the RV X is treated like a 
Gaussian RV, with zero mean and variance a: = E{x~), independent of the noise. 
Thus, the sum X + upo N(0, a: + a:), and the integral in (7.28) becomes 

dho 
IG = erfc ( ) 

2 ~ 5 4 -  

Now, increasing the signal-to-noise ratio in the channel by letting a, -t 0, we get 

which leads to an asymptotic error probability value different from zero (error floor). 
This clearly contrasts with the hypothesis z,,, < hod/2. However, when IS1 is small, 
this asymptotic value may be so low that in the region of interest the curve for the Gaus- 
sian assumption gives a reasonable approximation of the error probability. 

0 

Exact value of the integral I 

Henceforth, we shall suppose that N is finite. Although this is not always true, 
in practice it is possible to find a finite N large enough to make immaterial the 
error due to the truncation of h(t) .  In Prabhu (1971), the problem of bounding 
the error due to the impulse response truncation was examined. 

The RV X is then a discrete RV, assuming values {xi)f=.,, with probabilities 
{pi) f ' , , ,  and its pdf f x ( z )  can be written as 

Inserting (7.30) into (7.28), we immediately get 

and the problem is solved. The ease in obtaining the true value of I should 
nevertheless make the reader suspicious. In fact, what often renders (7.31) very 
' complex to compute is the number L, which can be extremely large. Suppose, 
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for example, that we have an octonary PAM with a channel memory N = 20. 
Then L is given by 

L = M~ =820 cx 1 . 1 5 . 1 0 ~ ~  

If we could use an extremely fast computer able to compute a million comple- 
mentary error functions in 1 second, it would take only slightly less than 42 
thousand years to compute the exact value of I. That alone seems a good mo- 
tivation for the large amount of research done in this area in the seventies and 
later. 

Many methods have been proposed in the literature to obtain approximations 
of I in (7.28), with different trade-offs between accuracy and computer time. 
Here, we propose the simplest upper bound, known as the worst-case bound, 
and the Gauss quadrature rules (GQR) method, described in Appendix E, since 
it has emerged as one of the most efficient in approximating integrals like I in 
(7.28). 

Worst-case bound 

The worst-case bound is an upper bound to I in (7.28) computed through the 
substitution of the RV X with the constant value x,,, defined in (7.29). Thus, 
we have 

I 5 erfc 

Since erfc (.) is a monotonically decreasing function, the RHS of (7.32) is clearly 
an upper bound to the RHS of (7.28). The term (d/2)ho - x,,, is precisely 
the semi-opening of the eye diagram at the sampling instant. The worst-case 
bound is very easily computed. The approximation involved is reasonable when 
one interfering sample is dominant with respect to the others. Otherwise, the 
bound becomes too loose. A better upper bound based on the Chernoff bound is 
described in Saltzberg (1968) (see also Problem 7.3) and will be used later in the 
examples. 

The Gauss quadrature rules technique 

The method of GQR is described in detail in Appendix E. Its use has now become 
classical, owing to its being one of the best compromises between accuracv and 
computer time. Essentially, it allows one to compute an approximation of I in 
(7.28) in the form 
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The {x~)$~ and {wj)&=, are called, respectively, the abscissas and the weights 
of the quadrature rule. They can be obtained through a numerical algorithm 
based on the knowledge of the first 2 5  moments of RV X. Comparing (7.33) 
with the exact value (7.31) of I, one immediately realizes the similarity. The 
great difference lies in the value of J in (7.33), which is usually much less than 
the value of L in (7.31). The tightness of the approximation depends on J (i.e., 
on the number 2 J of known moments). Computational experience shows that a 
value of J between 5 and 10 leads to very good approximations of the true value 
of I. The same method of GQR can be used to evaluate the average with respect 
to the RV 0 in (7.27), once the moments of B are known. An efficient algorithm 
to evaluate the moments pk of the RV X 

without resortinp to the pdf of X is explained in Appendix E. 

Example 7.6 In this example the methods described to compute the error probability 
in the presence of IS1 will be applied. for the sake of comparison, to the case of binary 
PAM transmission, with 8 = 0 and 

The impulse response of (7.35) is that of an ideal low-pass filter with cutoff frequency 
1/(2T). The transfer function of the filter satisfies the Nyquist criterion (see Sec- 
tion 7.3). and, thus, it does not give rise to IS1 when properly sampled at the time instants 
t = 0, f T, f 2T,. . .. We will suppose that the timing recovery circuit is not ideal, so the 
sampling instants will be t, = to + n T ,  n = -m, . . . , m, with to # 0, and we define 

A 
the normalized sampling time deviation A = to/T. 

The methods discussed for computing the error probability are the worst-case bound 
(curve labeled (1) in Fig. 7.10), the Chemoff bound (curves labeled (2)). the series ex- 
pansion described in Appendix E (curve labeled (3)). and the GQR (curve labeled (4)). 
In Figure 7.10 the error probability is plotted as a function A of A for a signal-to-noise 

ratio at the nominal sampling instant (to = 0) SNR= 1/(2ai) of 15 dB. The impulse 
response has been huncated to N = 50. The curve (3). relative to the series expansion 
method, stops at A = 0.15, since the summation of the series exhibits numerical in- 
stability for larger values of A. This is visualized in Figure 7.1 1, where the exact error 
probability, computed through (7.31) for N = 10, and the error probability estimated 
either with the series expansion or with the GQR method are reported for A = 0.2 as 
a function of J ,  the number of terms used in the series or the GQR. The curve giving 
the results of the series expansion method ends with J = 8, since the successive nine- 
term approximation yields a negative value for P(e ) .  The processing time required for 

7.2. Evnluation of the error probabilily 

Figure 7.10: Error probability for binary PAM as afunction of the normalized sampling 
time deviation A. The impulse response (with SO interfering samples) is that of an ideal 
low-parsfilrer with cutofffiequency 1/(2T). The labels of the curves are as follows: ( I )  
worsr-case boM (2) Chenwff bound, (3) series qansion method, (4) GQR method, 
SNR = IS dB. 

the computation on a desk-top computer is less than a few seconds for all the methods 
described. It is practically constant with N for the worst-case bound, whereas with the 
other methods it grows linearly with N. 

0 

7.2.2. Two-dimensional modulation schemes 

Expressions of the sampled in-phase and quadrature received signals were given 
in (7.19) and (7.20). The error probability will involve in general, as a final step, 
the average with respect to the RV 0, as for PAM. For simplicity, let us assume 
0 = 0. With the following shorthand notations: 
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Figure 7.11: Error probability of the system of Example 7.6 for A = 0.2 as afunction 
of the number of terms used in the series erpansion or in the GQR. Labels of curves as 
in Figure 7.10. The exact value is also given. 

the in-phase and quadrature received signals become 

The decisions at the receiver are made through a rule that partitions the two- 
dimensional space of the received signal points into M regions Rk. The error 
probability can be immediately derived from (4.24) in the form 

M 
where roo is the received vector with components T D P O ,  TDQO, and d = {cYI;)~,~ 

'is the set of values assumed by ao. The probabilities in the RHS of (7.40) can be 
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computed in two steps 

The first step consists in evaluating the conditional probability in the right-hand 
side of (7.41). The received vector r ~ o ,  conditioned on crk, X p ,  X Q ,  is a Gaus- 
sian vector with independent components rDpo and r ~ g o .  Thus, the evaluation 
of (7.41) involves integration of a bivariate Gaussian RV with independent com- 
ponents within the region Rk. This problem has been discussed in Chapter 5 for 
the most important two-dimensional coherent modulation schemes. If we define 

A 
Dk(ak, X P ,  X Q )  = P { ~ D o  E Rk I a0 = crk, X p ,  X Q )  

the second step to get the probability in the LHS of (7.41) becomes the evaluation 
of the integral 

where X and f x , ~ ,  ( x p ,  X Q )  represent the joint range and pdf of X p  and X Q ,  
respectively. 

In Appendix E the method of cubature mles is outlined to approximate in- 
tegrals like (7.42) on the basis of the knowledge of a certain number of joint 
moments of the RVs X p  and XQ. These moments can be computed using an 
extension of the recursive algorithm already explained for the one-dimensional 
case (see Problem 7.6). In some cases, owing to the symmetry of the modula- 
tion scheme, the two-dimensional problem can be reduced to the product of two 
one-dimensional problems, or even to a single one-dimensional problem. An 
example is provided by the case of M-ary phase modulation M-PSK. 

M-PSK modulation 

The complete symmetry of the signal set allows us to simplify the error proba- 
bility (7.40) as 

In (7.43) we have assumed that the phase zero has been transmitted (see Ta- 
ble 7.1.), and have defined the phase of the received vector roo as ,,. 

A ~ D Q O  ,I,. 

= tan-' - 
T D P O  

(7.44) 
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A straightforward extension of the bounding technique that led to (5.23) for the 
AWGN channel results in the following bounds for the error probability: 

where 

x;+x 
Il = 1 1 erfc (-) ~ A ( A ) ~ A  

2~ J Z a n  

A is the random variable accounting for IS1 

and 

A 4 A [hpn sin ($ + 6.) + ha. COS (G + h)] 
n#o 

Looking at (7.48) and (7.49), we can see that the evaluation of the bounds to the 
error probability for M-PSK modulation has been reduced to the computation of 
two one-dimensional integrals like (7.28). Thus, all the methods introduced in 
the PAM case directly apply; in particular, we can apply the GQR method. 

Example 7.7 Consider a binary PSK modulation scheme that uses a channel modeled 
as a third-order Butterworth filter (see Example 2.3) with 3-dB bandwidth Bo. In Fig- 
ure 7.12 the error probability computed using the GQR technique is plotted as a function 
of the number of points J of the quadrature formula. 

The dashed line is the exact value of P ( e )  obtained by means of (7.31). The number 
of interfering samples has been chosen equal to 20. It can be seen that even with a small 
value of J the GQR offers a high accuracy. The difference in the computer times needed 
to obtain the two curves (the exact and the GQR ones) of Figure (7.12) is enormous, 
and such as to prevent the use of the direct enumeration when the number of phases 
increases. In Figure 7.13 the signal-to-noise ratio &/NO necessary to obtain an error 
probability of for quaternary PSK is plotted as a function of the normalized band- 
width 2BoT. The two curves refer to the Chernoff bound and to the GQR methods. The 
asymptotic value represents the case of no ISI. It can be seen that the Chemoff bound is 
rather loose, and leads to an asymptotic difference of about 1 dB in signal-to-noise ratio. 

0 
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Figure 7.12: Error probability as afunction of the number of points of the quadrature 
rule for a binary PSK system with third-order Butterworthfilter: The dashed line repre- 
sents the exact value. 

Example 7.8 In this example we want to show how the computational techniques that 
have been presented in this chapter can be extended to the analysis and design of a dig- 
ital transmission system operating in a Frequency-Division-Multiplexing (FDM) multi- 
channel environment. The system model employing M-PSK modulation is presented 
in Figure 7.14. The attention is focused on one particular channel (the useful channel), 
disturbed by two adjacent channels, working at the same signaling rate, giving rise to 
interchannel interference, and by one channel at the same frequency. This schematic 
model suits wireless communication systems employing FDMA and frequency reuse 
(for example, the widely used GSM standard), or any fixed point-to-point system em- 
ploying FDM and making use of two orthogonal polarizations to increase the bandwidth 
efficiency (like in some radio-relay links). The transmitter filters are assumed to have 
the same transfer function, except for the frequency location. In other words, let 

be the transfer function of the i-th channel transmitter filter for positive frequencies, 
where f d  is the frequency spacing between two adjacent channels. For simplicity. we 
shall assume that G j ( f )  satisfies the symmetry conditions of Example 7.2 with respect 
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Figure 7.13: Signal-to-noise ratio Eb/No necessary to obtain a symbol error probability 
P(e) = for a quaternary PSK system with third-order Buttenvorth filter as a 
function of the normalized 3-dB bandwidth 2BoT. The dashed line refers to the Chernoff 
bound and the continuous one to the Gauss quadrature rules. 

Figure 7.14: Block diagram modeling a 4-channel FDM system. The figure shows the 
useful channel, two adjacent and one co-frequency interfering channels. 
, 
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to its center frequency fo + i fd, fo being the carrier frequency of the useful signal. If 

is the complex envelope of the useful signal at the modulator output, the a-th interfering 
signal can be written as 

where the meaning of the symbols is as follows: 

V;. is the magnitude of the signal in the ith channel. 

.ri accounts for the possible misalignment of signaling intervals in different chan- 
nels. It may be modeled as a uniformly distributed RV in the interval (0, T) .  

Bi is a RV uniformly distributed in the interval (O,2n) and accounts for the lack 
of coherence among the different carriers. 

(dm,) is the sequence of information phases pertaining to the i-th channel. 

The bounding technique described for the case of M-PSK with IS1 can be applied here 
for estimating the error probability. Moreover, the GQR method can also handle this sit- 
uation, provided that the error probability conditioned on given values of r, and 8, is first 
computed and the averages over r, and 8, are performed later using standard quadrature 
rules. From the system engineer's viewpoint, the main design parameters are the fre- 
quency spacing fd between adjacent channels, the amount of co-channel interference 
that the system can tolerate, the choice of the transmitter and receiver filters (types and 
bandwidths), and the signal-to-noise ratio required to get a desired value of the error 
probability. The choice of these parameters is usually accomplished through a cut-and- 
try approach. which requires repeated analyses of the system and, hence, the availability 
of a tool to quickly evaluate system performance. 

As usual in PSK, we shall assume that the shaping function s ( t )  is rectangular. Both 
the transmitter and receiver filters are assumed to be Buttenvorth. Consider now the 
following parameters defining the system: 

nT, nR: the order of transmitter and receiver filters, respectively. 

( B e q T ) ~ ,  ( B e q T ) ~ :  equivalent noise bandwidths of the transmitter and receiver 
filters normalized to the symbol period T .  

D = fdT: frequency spacing between two adjacent channels normalized to the 
symbol period T .  

Eb/No: signal-to-noise ratio per transmitted bit of information, No/2 being the 
two-sided power spectral density of the noise. 
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Figure 7.15: Quaternary PSKsystem: signal-to-noise ratio &/No necessary to obtain a 
P(e)  = as afunction of the normalized equivalent noise bandwidth of the receiving 

filter. The parameters are as follows: n~ = 6, ( B e q T ) ~  = 2.5, and D = 1.6. 

The results that follow have been obtained by choosing as the sampling instant t o  the 
time value corresponding to the maximum of the impulse response of the overall system 
without interchannel and cochannel interferences. 

Interchannel interference 
Two symmetrically located interfering channels are present at the same power level as 
the one interfered with. The modulation is assumed to be quaternary PSK. The first 
parameter considered for optimization is the normalized bandwidth of the receiver filter. 
In Figure 7.15 the signal-to-noise ratio necessary to obtain an error probability equal to 

is plotted as a function of the normalized receiver filter bandwidth. The symbol 
intervals in the three channels are first assumed to be time-aligned (i.e., rj = 0 for both 
interfering channels). It can be seen that a value of the normalized bandwidth around 1.1 
is optimum. In the remaining curves of this example, the normalized receiver bandwidth 
will be assumed equal to 1.1. Let us now consider the choice of the channel spacing. 
In Figure 7.16 the signal-to-noise ratio necessary to obtain an error probability of 
is plotted as a function of the normalized channel spacing D. The three curves refer to 
different values of the transmitter filter bandwidths (the value ca means absence of the 
transmitter filter). It is seen that the presence of a transmitter filter with bandwidth equal 
to 2.4 significantly improves the performance of the system. 

, This result is confirmed by Figure 7.17, where the only difference is represented by 
the fact that there is a random misalignment among the modulating bit streams. Thus 
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Figure 7.16: Quaternary PSK system: signal-to-noise ratio &./No necessary to ob- 

tain a P(e)  = as a function of the normalized frequency displacement of rwo 
symmetrically located intqtering channels modulated by time-aligned bit stream. The 
parameters are as follows: n~ = 6, nR = 2, (BeqT)R = 1.1. 

the final error probability is evaluated through an average over the RV ri. 

Cochannel interference 
Finally, in Figure 7.18, the presence of one interfering channel at the same frequency 

as the useful one is considered. The modulating bit stream on the interfering channel 
is supposed to have a random misalignment. The curves plot the signal-to-noise ratio 

necessary to obtain an error rate of as a function of the attenuation of the interfer- 
ing channel. It is seen that the attenuation has to be of the order of 14, 16, or 20 dB for 
the cases of binary, quaternary, and octonary PSK, respectively, to ensure a negligible 
performance degradation as compared with the case of no interference. a 

7.3. Eliminating intersymbol interference: the Nyquist crite- 
rion 

In this section we will derive the conditions under which intersymbol interfer- 
ence (ISI) can be eliminated in a linearly modulated (one- or two-dimensional) 
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Figure 7.17: Quaternary PSK system: same situation as in Figure 7. I6 excepr for the 
random misalignment between the modulating bit streams of the interfering and inter- 
fered channels. 

system. Consider the transmission model of Fig. 7.19. 
The source and the modulator are modeled assuming that the data to be trans- 

mitted form a stationary random sequence (al) of independent, identically dis- 
tributed (iid) real or complex random variables (RVs) with zero mean and vari- 
ance 

a: ~ l a ~ l ~  (7.53) 

The data sequence (ae) is sent to a linear modulator. For mathematical conve- 
nience, as it has been done in the previous part of the chapter, this is modeled as 
the cascade of a modulator having the ideal impulse b(t) as its basic waveform, 
and of a shaping filter with an impulse response s(t) and a frequency response 
S ( f ) .  The number of symbols to be transmitted per second (i.e., the signaling 
rate) is denoted by 1/T. Thus, the modulated signal is CE-, aeb(t - CT), and 
the signal sent to the channel is CZ-, aes(t - CT). 

The channel section is represented by a time-invariant linear system having 
known transfer function C( f )  and impulse response c(t) and a generator of ad- 
ditive noise. The noise process w(t) is assumed to be Gaussian, independent of 
the data sequence, to have zero mean, finite power, and a known power density 
spkctmm G,(f). Thus, the signal observed at the output of the channel section 
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Figure 7.18: Cochannel interjCerence effects in binary, quaternary and ocronary PSK 
systems. The signal-to-noise ratio &/No necessary to obtain a P(e)  = is 
plotted as a function of the anenuation of the interfering channel. The modulating 
bit streams are assumed to be randomly misaligned. The parameters are as follows: 
nR = 2 ,  (BeqT)T = oo, (B,qT)R = 1.1. 

> TRANSMITTER ' CHANNEL ' 
SECTION -- SECTION - 

Figure 7.19: Model for the transmission of linearly modulated data over a time- 
dispersive channel. 

can be written as 
m 

~ ( t )  = aep(t - CT) + w(t) (7.54) 
e=-co 

where p(t) is the response of the noiseless part of the channel to the waveform 0 
s(t) or, equivalently, the convolution 

% 5 "  

~ ( t )  = s(t) * c(t) (7.55) 
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Figure 7.20: Sampling receiver for the transmission system of Fig. 7.19. 

Our aim is the design of a receiver (see Fig. 7.20) having the form of a linear 
filter (hereafter referred to as the receiving filter) followed by a sampler. After 
linear filtering, the received signal is sampled every T and the resulting sequence 
(xt) is sent to a detector. The detector makes decisions, on a sample-by-sample 
basis, according to the minimum-distance rule described in Section 4.2. The 
criterion considered in the design of the receiver shown in Fig. 7.20 concerns 
the elimination of IS1 from the sampled sequence (zt). Such a criterion, known 
as the Nyquist criterion, will define the constraints on the overall system trans- 
fer function S(f)C(f)U(f) .  As should be obvious, the elimination of IS1 only 
concerns the cascade S (  f)C(f )U(f ), leaving open the choice of how to par- 
tition the overall transfer function between transmitter and receiver (i.e., how 
to choose S (  f )  and U( f )  once the product S (  f )C( f )U( f )  has been specified). 
One can then give the burden of eliminating IS1 to the receiving filter U(f), or 
choose both S (  f )  and U ( f )  so as to meet the specified needs for their product: in 
this case, S (  f )  and U( f )  can be chosen so as to minimize the effects of additive 
noise at the detector input, and hence to minimize the probability of error for the 
transmission system under the constraint of no ISI. 

With reference to the transmission system shown in Fig. 7.19 and the sam- 
pling receiver of Fig. 7.20, denote by q(t) the convolution 

and by n(t) the convolution 

where u(t) is the impulse response of the receiving filter. Thus, at the sampler 
input we have 

00 

x(t) = C akq(t - kT) + n(t) (7.58) 
k=-m 

and hence, at its output 
m 

xt = 1 akqt-k + n k  
k=-m 

where the signal and noise samples are defined by 
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and to + U, -oo < e < 00, are the sampling instants. In what follows, for 
the sake of clarity, we will assume to = 0. For error-free transmission, allow- 
ing for a delay of D symbol intervals between transmission and reception of a 
given symbol, we must satisfy the condition that xt is equal to at-D. However, 
from (7.59) we obtain 

The factor q~ of (7.61) is a complex number representing a constant change of 
scale, and possibly a phase shift if the channel is bandpass (see Section 7.1): un- T ,  

der the hypothesis of a known channel, it can be easily compensated for. Thus, 
we assume q~ = 1. The second term of (7.61) represents the contribution of ISI. 
As noted previously in this chapter, it depends on the entire transmitted sequence 
(ak), as weighted by the samples qt-k of the impulse response of the overall chan- 
nel. This is the effect of the tails and precursors of the waveforms overlapping the 
one carrying the information symbol at-D. The third term in (7.61) represents 

I 

the effect of the additive noise. The sample sequence ( x ~ )  must be processed to 
get an estimate (&) of the transmitted symbols sequence. Of course, a reasonable 
way to do this is to perform symbol-by-symbol decisions (i.e., to use only xt to 
obtain an estimate of at-D, -oo < e < oo). This procedure is the simplest, but 
suboptimum as the samples xt given by (7.61) are correlated due to the effect 
of ISI. Hence, for an optimum decision the whole sequence ( x ~ )  should be pro- 
cessed. In the framework proposed, what seems at first a reasonable approach to 
the problem of optimizing the transmission system is trying to eliminate the IS1 
term in (7.61). If this is achieved, the problem is reduced to a situation in which 
only additive Gaussian noise is present. Hence, a symbol-by-symbol decision 
rule based on the minimum distance is optimum under the constraint of no ISI. 
We shall examine this solution. 

To avoid the appearance of the IS1 term in (7.61) the overall channel impulse 
response sample sequence (9,) should satisfy the condition 

This condition can also be expressed by observing that, with AT(t) denoting a 
periodic train of delta functions spaced T apart, that is, 

Equation (7.62) is equivalent to 
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Figure 7.21: Eliminating IS1 fmm the samples of rhe channel ouipur. 

q(t)  . AT(t) = 6(t - DT) 

(see Fig. 7.21). Taking the Fourier transform of both sides of (7.64). with the 
definition 

& ( f  i W t ) ]  = S ( f  ) C ( f  ) U ( f )  (7.65) 

we get 
1 
, ~ ( f )  * ~ + ( f )  = exp(-j2nfDT) (7.66) 

The effect of convolving Q ( f )  with the train A l l T ( f )  of spectral lines spaced 
1/T Hz apart is to obtain a train of replicas of Q ( f )  spaced 1/T Hz apart 
(Fig. 7.22). By denoting this convolution by Q,( f ) :  

Eq. (7.66) requires that Qeq( f )  have a constant magnitude and a linear phase.4 It 
is easily seen that, for any Q (  f ), Q,( f )  is a periodic function of f with period 
1/T. Thus, without loss of generality, we can confine our consideration of this 

41t may be worthwhile to notice that the condition of constant magnitude and linear phase 
ensures no distortion also in the analog domain, where, on the other hand, the condition concerns 
the true transfer function Q( f ) ,  instead of its aliased version Q,,(f). 
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Figure 7.22: Convolurion of &( f) wirh a train of spectral lines in rhefiequency domain 

function to the fundamental interval [ -1/ (2T) ,  1 / (2T)] ,  and express condition 
(7.66) in the form 

Condition (7.68) for the removal of IS1 is called the (first) Nyquist criterion and 
the interval [ -1/ (2T) ,  1/(2T)] the Nyquist interval. This criterion says that, 
if the frequency response Q ( f )  of the overall channel is cut in slices of width 
1/T and these are piled up in the Nyquist interval with the proper phases (see 
Fig. 7.23), IS1 is eliminated from the sample sequence (xe) when the resulting 
equivalent spectrum Qeq( f )  has a constant magnitude and a linear phase. Look- 
ing at the achievable data rate, if the modulator uses M amplitude levels and a 
baseband (or single-sideband) transmission, we can transmit up to log, M bits in 
a 1/(2T) bandwidth without ISI. 

7.3.1. The raised-cosine spectrum 

If Q ( f )  is nonzero outside the Nyquist interval, many classes of responses sat- 
isfy (7.68). Thus, the Nyquist criterion does not uniquely specify the shape of 
the frequency response Q( f ). On the contrary, if Q( f )  is limited to an interval 
smaller than Nyquist's, it is impossible for (7.68) to hold. Thus, IS1 cannot be 
removed from the received signal. If Q( f )  is exactly bandlimited in the Nyquist 
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Figure 7.23: Conrtmction of Q q ( f )  in the Nyquist interval [-1/ (2T) ,  1 / (2T)] .  Here 
Q,,( f )  is assumed to be real. 

interval, (7.68) requires that 

Q,(f) = T . exp(-j2rf DT), I f  l I & 
Q ( f  = { 0 ,  elsewhere (7.69) 

That is, the'only transfer function Q( f )  satisfying the Nyquist criterion is the 
"brickwall" frequency response of the ideal low-pass filter with delay DT. 

With Q( f )  as in (7.69), the overall channel impulse response q(t) becomes 

a noncausal function (for any finite D) that decays for large t  as lit. The transfer 
function (7.69) poses two serious problem. First, it is not physically realizable 
because of its sudden instantaneous jump to 0 at f = 1/(2T) (as the Latin say- 
ing goes, natura non facit saltus). The second drawback comes from the fact that 
every real-world system will exhibit errors in the timing synchronization causing 
erroneous sampling times. Even a minimum sampling error would cause the eye 
pattern to close simply because the series CEO=_, q(r + kT) is not absolutely 
summable for T # 0 when q(t) is as in (7.70) (see Section 7.2.1). For this rea- 
son, it becomes mandatory to trade a wider bandwidth for a reduced sensitivity 
to inaccuracies in sampling times (and possibly for an easier implementation). 
Since it is recognized that the problem with the impulse response (7.70) is due 
to its slow rate of decay, and since the rate of decay of a pulse is intimately re- 
lated to the discontinuities of its Fourier transform, it is reasonable to investigate 
classes of responses that satisfy the Nyquist criterion with a minimum of dis- 
continuities, considering also the discontinuities in the derivatives. This can be 
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1 

'I. 

Figure 7.24: Exumple of a real Q( f )  satisfying the Nyquist criterion. 

obtained, for example, as shown in Fig. 7.24. Let a,  0 5 a I 1, be the allowed 
relative amount of bandwidth in excess of Nyquist's; that is, let Q( f )  be strictly 
bandlimited to the interval 1 f j _< (1  + a)/(2T). Letting D = 0 for simplicity, 
choose 

(b) Q ( f )  real, decaying from T tozero for ( 1  -a)/(2T) I If 1 5 (l+a)/(2T),  
and exhibiting symmetry with respect to the points of abscissa f 1/(2T) 
and ordinate T/2. This roll-off spectrum must be chosen in such a way 
that it presents a minimum of discontinuities at If 1 = ( 1  + a)/(2T),  the 
band edges. 

The choice of a sinusoidal form for the roll-off spectrum leads to the raised 
cosine transfer function defined as follows: 

T,  
l - a  

IflI ,, 
l f a  

If12 - 2T 
(7.71) 

The impulse response corresponding to a raised cosine spectrum is 

and decays asymptotically as l / t3  fort -+ co. 
Fig. 7.25 shows the raised cosine spectra and the corresponding impulse re- 

sponses for a = 0.25, 0.5 and 1.0. In Fig. 7.26 we show the inner envelopes of 
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Figure 7.25: (a)  Raised cosine spectra; (b)  impulse response of raised cosine filters. 

the corresponding eye patterns for binary transmission with symbols f 1. It is 
seen from Fig. 7.26 that the immunity to erroneous sampling instants increases 
with a. In particular, with a 100% roll-off, open-eye transmission is possible 
even with a sampling time error approaching 0.5 T in absolute value. With 
smaller values of a,  the margin against erroneous sampling decreases, and is 
zero when a = 0 (corresponding to the brickwall frequency response). 

Notice also that q( t )  in (7.72) is not causal and hence not physically realiz- 
able. However, approximate realizations can be obtained by considering a delay 
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Figure 7.26: Inner envelopes of eye patterns resulting from antipodal binary transmis- 
sion over a channel with a raised-cosine transferfunction. 

D  so large that a causal approximation to q(t - D )  gives a performance satis- 
factorily close to that predicted by the theory. Raised cosine spectra are often 
considered for practical modem applications. 

7.3.2. Optimum design of the shaping and receiving filters 

Assume now that Q( f )  has been chosen so as to satisfy the Nyquist criterion, so 
that freedom from IS1 is assured by taking the shaping filter and the receiving 
filter such that 

S ( f  ) C ( f  ) U ( f  = Q ( f  (7.73) 

Thus, for a given C (  f )  the actual design of S (  f )  and U (  f )  still leaves a degree of 
freedom, as only their product is specified. This freedom can be taken advantage 
of by imposing one further condition, that is, the minimization of the effect of 
the noise at the sampler input or, equivalently, the minimization of the error 
probability (in fact, in the absence of ISI, errors are caused only by the additive 
noise). 

The average noise power at the receiving filter output is, from (7.57) 

Minimization of u: without constraints would lead to the trivial solution IU( f )  ( = 
0, which is not compatible with (7.73). To avoid this situation, we constrain the 
signal power at the channel input to a finite value, which poses a constraint on 
S (  f ) .  This, in turn, prevents (through (7.73)) U( f )  from assuming too small 
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values. Since the overall channel frequency response is the fixed function Q ( f ) ,  
the signal power spectral density at the shaping filter output is, from (2.128), 

Thus, in this section we shall consider the mean-square error (MSE) criterion 
for system optimization; this choice allows IS1 and noise to be taken jointly into 
account, and in most practical situations leads to values of error probability very 
close to their minimum. 

Consider again the system model shown in Figs. 7.19 and 7.20. Instead of 
constraining the noiseless samples to be equal to the transmitted symbols, we can 
take into account the presence of additive noise and try to minimize the mean- 
squared difference between the sequence of transmitted symbols ( a f )  and the 
sampler outputs (xf) .  By allowing for a channel delay of D symbol intervals, we 
shall determine the shaping filter S ( f )  and the receiving filter U ( f )  so that the 
mean-square value of 

and the corresponding signal power is 

Minimization of a: under the constraint (7.76) can be performed using the La- 
grange-multiplier and variational techniques (see Appendix c).  Omitting an un- 
essential factor, the minimizing U( f )  is given by the equation is minimized. This will result in a system that, although not specifically designed 

for optimum error performance, should provide a satisfactory performance even 
in terms of error probability. 

We begin by deriving an expression for the MSE at the detector input, defined 
as 

A E = E ~ E ~ J '  = EJzt - 2 (7.80) 

From (7.61), E( can be given the form 

and the corresponding shaping filter is obtained through 

In (7.77) and (7.78) it is assumed that Q( f )  is zero at those frequencies for which 
the denominators are zero. Notice that the phase characteristics of U( f )  are not 
specified, and are therefore arbitrary (of course, S ( f )  in (7.78) is such that Q ( f )  
has a linear phase, as required by the Nyquist criterion). In the special case of 
white noise and C(  f )  = constant, it is seen from (7.77) and (7.78) that U(  f )  and 
S ( f )  can be identical apart from an irrelevant scale factor, so only one design 
has to be implemented for both filters. 

so that, due to the independence of the terms summed up in the RHS, we obtain 

7.4. Mean-square error optimization 
Now we want to express E by using frequency-domain quantities. By assuming 
as usual that to is equal to zero, we get In the last section we saw how a system free of IS1 can bk designed. After 

choosing the overall channel transfer function, the optimum design of shaping 
and receiving filters was achieved by minimizing the noise power at the sam- 
pler's input. Although this procedure sounds reasonable, it does not guarantee 
minimization of the error probability. In fact, it might happen that, by trading a 
small IS1 for a lower additive noise power, a better error performance is obtained. 
On the other hand, system optimization under the criterion of a minimum error 
probability is a rather complex task. This suggests that we look for a criterion 
leading to a more manageable problem. 

and consequently, by direct calculation, 
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Thus, (7.82) can be rewritten, using also (7.74), in the form 

We observe that the MSE is the sum of two terms. The first (enclosed in square 
brackets) represents the overall channel IS1 power, while the second represents 
the contribution of the additive noise power. These terms are not independent, 
as any change in U ( f )  would also affect Q ( f ) .  Qualitatively, it can be said that, 
if the bandwidth of the receiving filter U (  f )  is reduced in order to decrease the 
value of the noise term, this will result in a corresponding increase of the overall 
channel ISI. 

Example 7.9 Consider a baseband transmission system with white Gaussian noise 
having power spectral density No/2, data with 02 = 1, s(t) = uT(t),  a channel mod- 
eled through a fourth-order low-pass Butterworth filter with 3-dB frequency Bc, and a 
second-order low-pass Butterworth receiving filter with 3-dB frequency Bu. In Fig. 7.27 
the dashed lines represent the contribution of the noise (which augments with increasing 
Bu and No) and the continuous lines the contribution of the overall IS1 MSE (which 
augments with decreasing Bu and Bc) The total MSE E is obtained by summing up 
the two contributions, which results in a minimum for an optimum value of Bu. 0 

7.4.1. Optimizing the receiving filter 

We shall now consider the selection of a transfer function U ( f )  that gives a 
minimum for & when S ( f ) ,  as well as C ( f ) ,  are given. By using (7.85) and 
applying standard variational techniques (see Appendix C), it can be proved that 
a necessary and sufficient condition for U  ( f )  to minimize & is that 

be satisfied. In spite of its formidable appearance, (7.86) is amenable to a closed- 
form solution, which in turn admits an interesting interpretation. To see this, let 
us first show that the optimum receiving filter, say U o p t ( f ) ,  has the following 
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Figure 7.27: Contributions to mean-square error of intersymbol interference (continuous 
line) and additive noise (dashed line) in the situation of Example 7.9. 

expression 

where r ( f )  is a periodic function with period 1 / T ,  and 

is the transfer function of the cascade of the shaping filter and the channel (we 
assume here for simplicity that G w ( f )  is nonzero everywhere). By substitut- 
ing (7.87) into (7.86) and observing that r ( f  + k / T )  = r ( f )  for all k due to its 
periodicity, we get 
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For all the frequencies at which P( f )  vanishes, (7.86) shows that Uopt(f) must 
also be zero. so that (7.87) is true. For P ( f )  # 0, (7.89) gives 

7.4.2. Performance of the optimum receiving filter 

Let us now evaluate the MSE of a system in which S ( f )  and C ( f )  are given and 
U ( f )  has been optimized. Substituting (7.87) for U ( f )  in (7.85) and using (7.92) 
and (7.93), we get, after algebraic manipulations, 

where 

For a more compact form of the error expression, the integral appearing in (7.94) 
is rewritten as follows: 

is periodic with period 1/T,  as required. This shows that the solution to (7.86) 
has the form (7.87). Insight into the behavior of the optimum receiving filter can 
be gained by considering the special case of a channel bandlimited to the Nyquist 
interval [- 1/(2T), 1/(2T)]. In this case, (7.91) specializes to 

and, from (7.87) and (7.90) we get 

Also, using (7.91), we can express (7.95) in the form 

Equation (7.93) shows that, in the absence of noise, the optimum receiving filter 
is simply the inverse of P ( f ) .  This is an obvious result, since in this situation 
IS1 is the only contribution to the MSE, and, in turn, can be reduced to zero 
by forcing the overall channel to a flat frequency response in the Nyquist band. 
However, when Gw( f )  # 0, elimination of IS1 does not provide the best solution. 
On the contrary, for spectral regions where the denominator of the RHS of (7.93) 
is dominated by G w ( f ) ,  Uopt ( f )  (apart from a scale factor and a delay term) 
approaches the matched filter characteristics P'( f ) /Gw(  f ). 

More generally, for a channel not constrained to have a zero transfer func- 
tion outside the Nyquist interval, (7.87) can be interpreted by observing that 
P*( f )/Gw( f )  is the transfer function of a filter matched to the impulse response 
p ( t )  of the cascade of the shaping filter and the channel. Also, r ( f ) ,  being a 
periodical transfer function with period 1/T, can be thought of as the transfer 
function of a transversal filter whose taps are spaced T seconds apart. Thus, we 
can affirm that the optimum receiving filter is the cascade of a matched filter and 
a transversal filter. The former reduces the noise effects and provides the princi- 
pal correction factor when the signal-to-noise ratio is small. The latter reduces 
IS1 and in the situation of high signal-to-noise ratio attempts to suppress it. 

and, finally 

which, in conjunction with (7.91), is the expression of the MSE achievable by 
optimizing the receiving filter U ( f )  for a given channel and a given shaping 
filter. 

Example 7.10 Let us consider again Example 7.9, in which the goal is to optimize the 
receiving filter. We assume here BcT = 0.6. The MSE for such a system is depicted 
in Fig. 7.28. The dotted line refers to a second-order Butterworth receiving filter whose 
bandwidth has been chosen so as to minimize E ,  while the dashed line refers to the op- 
timum receiving filter given by (7.87). It can be observed that the effectiveness of the 
optimization increases as the noise power spectral density No decreases (i.e., the system 
performance is limited by IS1 rather than by additive noise). 0 
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Figure 7.28: Performance of the transmission system of Examples 7.9 to 7.11: MSE & 
versus the noise power spectral density No. Dotted line: the receiving filter is second- 
order Buttenvorth with 3-dB bandwidth chosen to minimize &. Dashed line: the receiv- 
ing filter has the optimum transfer function given by Eq. (7.87). Continuous line: both 
shaping and receiving filters are optimum in the MSE sense. 

7.4.3. Optimizing the shaping filter 

The final step toward system optimization can now be taken by looking for the 
optimum shaping filter S (  f ) .  To do this, E in (7.85) should be minimized with 
respect to S ( f )  subject to the power constraint at the shaping filter output 

which is the same as in (7.76). 
The resulting equation, expressing a necessary and sufficient condition for 

S (  f )  to minimize E ,  does not seem amenable to a simple closed-form solution. 
Hence, we shall omit the details of the derivation and restrict ourselves to a 
general description of the solution and an example of its application. 

-I The optimum shaping filter transfer function can be obtained as follows: 
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Step 1 For every f in the Nyquist interval [-1/(2T),  1 / (2T)] ,  determine the 
integer k f  such that IC(f + k / ~ ) l ~ / ~ ~ ( f  + k / T )  takes on its maximum 
value with respect to k. We shall define F as the set of frequencies that can 
be written in the form f + k f / T ,  f E [-1/(2T),  1/(2T)].  

Step 2 Choose X > 0 and define the subset FA of F such that, for f E FA 

Step 3 Take 

Then compute U ( f )  according to (7.87) and (7.88) and choose the phases 
of S o p t ( f ) , U ( f )  so that Q ( f )  = S, , , ( f )C(f)U(f)  is real and positive. 
Inspection of (7.85) demonstrates that the MSE depends on the phase of 
S ( f ) U ( f ) ,  but is independent of the way it is distributed between S ( f )  

m d  U ( f  1. 
Step 4 Evaluate the resulting average channel input power by substituting for 

JS(f )12 in (7.98) the expression obtained from (7.100). The value com- 
puted will generally be different from the constraint value P,  so steps (2) 
to (4) should be repeated for different values of X until the average channel 
input power is equal to P. 

From this procedure, it is seen that the optimum shaping filter, and hence the 
whole channel transfer function Q ( f ) ,  is generally bandlimited to the frequency 
set F, which has measure 1/T (this set is usually referred to as a generalized 
Nyquist set). The pulses transmitted through the channel have their energy con- 
fined in this set, whose frequencies are chosen, according to Step 1, in order to 
afford the largest possible contribution to L ( f )  in (7.91), and hence by rendering 
L ( f )  as large as possible to minimize the RHS of (7.97). This simply shows 
that the pulse energy must be allocated at those frequencies where the channel 
performs better in the sense that IC(f)  1 is large andlor Gw( f )  is small. In Step 2, 
the set F is further reduced in order to preserve only those frequencies at which 
the ratio IC(f)12/G,(f) lies above a certain level depending on the value of A. 
Actually, A, a Lagrange multiplier in the constrained optimization problem, turns 
out to be proportional to the signal-to-noise ratio, defined as the ratio of the av- 
erage transmitted power to the average noise power at the output of the receiving 
filter. 
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Example 7.11 We consider again the situations described in Examples 7.9 and 7.10, 
and try to optimize the shaping filter. The noise is white, and IC(f)12 is assumed 
to be a monotonically decreasing function of If 1 (in fact, the function has the form 
IC( f )  I 2  = [ I  + ( f  /BC)s]-l) .  Thus, it follows that kt, as already defined in Step 1, is al- 
ways zero, and hence F= [-1/(2T), 1/(2T)].  Furthermore, FA = [-1/(2T1), 1/(2Tf)] ,  
where for high X values (i.e., high signal-to-noise ratios) T = T ,  while for low X values 
(i.e., in the situation that (7.99) does not hold for a l l  f E F). T' > T. Figure 7.28 
shows the MSE obtained after optimizing both the shaping and the receiving filter in the 
situation dealt with here (continuous line). 0 

7.4.4. Information-theoretic optimization 

In Section 3 we have derived the capacity of the additive Gaussian channel, under 
the hypothesis of band-limited white Gaussian noise. Here, we will show how to 
design the transfer function of the transmitting filter S( f )  in Fig. 7.19 in order to 
maximize the capacity of the channel. 

Consider the system represented in Fig. 7.19, where w(t) is additive Gaussian 
noise with power spectral density G w ( f ) .  We want to find the transfer function 
S( f )  of the shaping (transmitting) filter that maximizes the average mutual infor- 
mation (see Section 3.3) between channel input and output, subject to the power 
constraint (7.98) at the shaping filter output, here rewritten in the form 

Define the "channel signal-to-noise ratio function" (already used in the pre- 
vious section) 

and consider, as already discussed in the previous section, that the preferred 
transmission bandwidth is the one in which q ( f )  is large. This leads to the 
following formal result for IS( f )  1 2 ,  known as the water-pouring, or water-filling 
solution (Gallager, 1968, Chapter 8): 

where B is the capacity-achieving bandwidth, i.e., the following range of fre- 
quencies f :  
, B { f  : ~ ( f )  2 1/K)  (7.104) 
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Figure 7.29: Water-pouring model for optimal energy distribution 

and K is a constant chosen so as to satisfy the constraint (7.101), i.e., the solution 
to L E Q { ~  - l/[q(f)~}df = P (7.105) 

In practice, B is often a continuous frequency interval ( f l ,  f i )  (see Fig. 7.29). 
and the optimum shaping filter is the one that "pours" more signal power where I s  

the noise-to-signal ratio is lower, and avoids sending signal power when the 
noise-to-signal ratio exceeds a certain threshold (K) that depends on the avail- 
able signal power. Capacity of the channel is achieved when the transmitted 
signal has a Gaussian statistic with power spectral density given by (7.103), and 
is equal to5 

Comparing (7.103, (7.103) and (7.106) with Fig. 7.29, we see that the power P 
Mi 

is given by the area of the shaded region, and that the appropriate power spectral 
density is given by the height of the shaded region at any given f .  This is the 
reason for the water-filling interpretation, since we can think of 1/q( f )  as being 
the bottom of a container of unit depth, and of pouring in an amount of water 
P. Assuming the region to be connected, we see that the water (power) will 
distribute itself in such a way as to achieve capacity. 

The water-pouring argument leads to a practical application for the system 
called orthogonal frequency-division multiplexing (OFDM), where the channel 
bandwidth B is divided into, say N, subbands of width A f around frequency 
fi , i = 1 , .  . . , N, in such a way that the channel signal-to-noise ratio function 
q ( f )  and, consequently, IS(f)I2, are nearly constant in each subband (see Bing- * (I 

ham, 1990). In these conditions, each subband can be considered as an ideal "1  , 

'The reader is invited to compare (7.106) with the capacity (3.91) of the additive white Gaus- 
sian noise channel. 
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band-limited AWGN channel with bandwidth A f ,  in which an optimal power 

is transmitted, with capacity 

The total expended power is then approximately P, and the total capacity 2: C. 
To approach the capacity, a code with rate matched to the capacity C, should 
be used in the ith subband. We have thus a situation in which the transmit- 
ter has a knowledge of the signal-to-noise ratio across the channel bandwidth 
(knowledge that can be acquired, for example, through some probe signals, like 
a comb of frequencies f,), and adjusts the transmitted power (and possibly the 
size of the signal constellation) in each subband based on the water-pouring so- 
lution (7.103). 

7.5. Maximum-likelihood sequence receiver 

In this section an entirely different approach will be adopted in the design of 
the optimum receiver for the system of Fig. 7.19.= In particular, we shall apply 
the theory of ML reception outlined in Chapters 2 and 4 to a channel with IS1 
and demonstrate that this approach provides a conceptually simple (although not 
always practical) solution to the optimization problem. Our assumptions are 
that the noise w(t) is white and that the filters S ( f ) ,  C ( f )  have a finite-length 
impulse response. A consequence of the latter assumption is that, before the 
addition of the noise, the waveforms at the channel output, as considered in any 
finite time interval, can only take a finite number of shapes (this number can be 
very large, but conceptually this is not a hindrance). Thus, the ML reception of 
a finite-length message is equivalent to the detection of one out of a finite set of 
waveforms in AWGN, so the theory developed in Sections 2.6 and 4.2 is valid. 
In particular, the optimum receiver consists of a bank of matched filters, one for 
each waveform. Their outputs are sampled at the end of the transmission, and 
the largest sample is used to select the most likely symbol sequence. 

In practice, however, this solution would be unacceptable due to its excessive 
complexity. In fact, for a message of K M-ary symbols, M K  matched filters 
might be necessary, with about M~ comparisons to be performed to select their 
largest sampled output. Thus, to provide a practical solution to the problem of 
ML reception, we must overcome several difficulties that appear intrinsic to it. 

'We continue here to consider the case of linear modulations and systems; this assumption, 
however, is not strictly necessary, and will be removed in Chapter 14. 
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The first is the complexity induced by the large number of matched filters needed. 
The second is that induced by the large number of comparisons necessary to 
make a decision. The third is the size of the memory required to store all the 
possible transmitted sequences and the delay involved in the detection process. 
As we shall see, satisfactory solutions can be found for these difficulties. In fact, 
only one matched filter is sufficient, due to the channel linearity. Furthermore, 
we can specify an algorithm whereby the number of computations necessary for 
the selection of the most likely symbol sequence and the memory size grow only 
linearly with respect to the message length K. Also, a suboptimum version of 
this algorithm can be adopted that allows decisions to be made about the first 
transmitted symbols with a fixed delay, without waiting for the whole sequence 
to be received. 

7.5.1. Maximum-likelihood sequence detection using the Viterbi algorithm 

The key to the ML receiver design is the expression of the log-likelihood ratio 
A for the detection of the finite sequence of symbols a = (ao, al, . . . , aK-l) based 

on the observation of the waveform 

K- l 

~ ( t )  A C aep(t - I T )  +w( t ) ,  t E I (7.108) 
e=o 

where I is a time interval long enough to ensure that p(t), p(t -T ) ,  . . . , p[t - ( K -  
1)T] are identically zero outside it. Definition (7.108) is derived from (7.54) 
by considering a finite symbol sequence instead of an infinite one. Moreover, 
for simplicity, we deal with real signals only. The extension to the complex 
case is straightforward and requires only some minor changes of notation (see 
Section 2.6). In (7.108), w(t)  denotes white Gaussian noise with power spectral 
density No/2. We also assume that the sequence length K is large enough to 
disregard certain end effects. This concept will be made more precise when the 
need arises. The log-likelihood ratio for a is then 

where u,(t) is the noiseless waveform corresponding to the symbol sequence a: 

K-1 
A ua = atp(t - CT) 

e=o 
Using (7.1 lo), we can rewrite (7.109) in the form 
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For notational simplicity, it is convenient to define the following quantities: 

and 

With the assumption of a finite duration for the waveform p(t), say 

(the value L, L << K, will be referred to hereafter as the memory of the chan- 
nel), the sequence Z!, L = 0,1, . . . , K - 1, can be obtained by sampling at times 
(L + L + l ) T  the output of a filter matched to the waveform p(t) when its input is 
the received signal r(t). Notice also that (7.114) implies that I= [0, ( K  + L)T]. 
Strictly speaking, the RHS of (7.1 13) depends on L and m separately. However, 
we assume that the choice of K makes the interval I long enough for it to depend 
on L - m only. Moreover, due to the assumption of a finite-memory channel, 
st-, can be nonzero only for a finite set of values of C - m. In fact, we have 

Finally, observe that, under the hypothesis of a known function p(t), the values of 
sk are also known. Use now (7.112) and (7.113) in (7.111). Upon multiplication 
by the constant factor No, it is seen that the ML sequence b is the one that 
minimizes the quantity7 

Now we observe that one of the results anticipated at the beginning of this section 
can be proved. In fact, all we need in order to compute A, for every vector a is 
the sample sequence ( Z ~ ) L ~ '  obtained at the output of a single matched filter. 
Precisely, this set of samples provides a sufficient statistics for r( t) .  This means 
that all we need to know about the received signal is contained in these samples. 

The ML decision requires A, to be minimized over the whole set of possible 
sequences a. Thus, the matched filter must be followed by a processor, the ML 
sequence detector, determining as the most likely transmitted data sequence, say 

'With a slight abuse of notation, we keep using X for the normalized log-likelihood ratio. 
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b, the one minimizing A,. The direct computation of A, for all possible a to find 
the minimum is impractical due to the sheer number of computations involved. 
However, a sequential algorithm is available that performs such a selection in a 
computationally efficient manner. This is the celebrated Krerbi algorithm de- 
scribed in Appendix F, and already used in Chapter 6. It performs the minimiza- 
tion of a function of several variables and is applicable to minimization problems 
that can be formulated as the search for the minimum-length path in a finite trel- 
lis. The significance of the Mterbi algorithm is that the number of computations 
required for the ML detection of a sequence of length K grows only linearly with 
K.  

We shall now show how the Mterbi algorithm can be applied to our problem. 
(From now on we shall assume that the reader is familiar with Appendix F.) 
Essentially, our task is to show that A, can be reduced to a sum of terms, each 
one corresponding to the label of a branch in a suitable trellis diagram. 

To do this, the first step is to rewrite A,, as defined in (7.116), in the form 

where (7.115) and the property s-t = st have been used. In (7.117) we have 
decomposed A, into the sum of two bracketed terms. The first is similar to the 
RHS of (7.116) (the only change is the upper summation limit), and the second 
is a function only of the L + I symbols a ~ - ~ - l ,  a ~ - L , .  . . , ~ K - I ,  not of the 
entire vector a. Our decomposition of A, into a sum of functions suitable for 
the application of the Mterbi algorithm will be based on repeated application of 11 , 
such decompositions. At this point it is convenient to define the variables 

and the quantities 

'll//llllv* 

(7.120) /I,,, , ,  8 1  
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(7.121) 
Now, observing that 

X a =  U K ( U L , .  . . , u K )  

we can rewrite (7.1 17) in the form 

and generalize the latter to show that 

Repeated application of (7.122) yields 

which is the required decomposition. 
Our next step will be to exhibit a trellis such that we can associate with its 

branches the values taken on by the functions Vk+l(uk, u k + l ) ,  k = L,  . . . , K-1. 
This task is simplified by a proper interpretation of the meaning of the variables 
u k  defined in (7.1 18). 

Recall that we have assumed the channel to have a finite memory L. This 
assumption is expressed mathematically by (7.1 14), and can be interpreted in the 
following manner. At any given time t ,  the received signal r ( t )  defined in (7.108) 
depends on a set of L + 1 consecutive symbols, say at ,  at-1,. . . , a e - ~ .  The last 
L of these symbols has been defined to form at.  

This is then called the state of the channel at time t .  The transmission of the 
symbol at when the channel state is will then bring the channel to the succeed- 
ing state ue+l = (at ,  ae+l,. . . , ae-L+i), and so forth, for symbols ae+l, ae+2,. . .. 
Thus, we have set a one-to-one correspondence between the sequence of trans- 
mitted symbols ao,  a l ,  . . . , aK-l and the sequence of states U L ,  . . . , U K .  There- 
fore, the problem of selecting the most likely symbol sequence is equivalent to 
that of selecting the most likely sequence of states. This can also be seen directly 
from (7.123). 

We are now able to define the trellis structure needed for the application 
of the Viterbi algorithm. For each value of the index I, I = L,  L + 1,. . . , K ,  
associate a set of M L  nodes where each corresponds to a value of ue. Each node 
has M branches stemming from it, one for each value taken by at. Also, the 
branches represent the transition from the state ue to the next state at+, as shown 
in Fig. 7.30. An example will help clarify these procedures. 

7.5. Maximum-likelihood sequence receiver 

Qc ae+i 
(Channel state before (Channel state after 

trasmission of the trasmission of the 
P - th symbol) P - th symbol) 

Figure 7.30: Transition from one state to the next and construction of the trellis diagram 
for application of the Viterbi algorithm; ah and a: are two possible values taken on by 
the erh data symbol. 

Figure 7.31: Trellis diagram for the situation of Example 7.12. 

Example 7.12 Assume a binary baseband modulation with symbols *1 and a chan- 
nel with a finite memory L = 2. The trellis for this situation consists of the states 
ge = (at-1, ae-2). Each state can assume four values for each e (see Fig. 7.31). and 
the branches joining adjacent states represent the structure of the state vectors. For in- 
stance, the two branches stemming from the state (ae, ae-1) = (1, -1)  connect it to the 
allowable successor states (ae+l, ae) = ( - 1 , l )  or ( 1 ,  1) .  corresponding to the symbols 
ae+l = -1 and 1, respectively. Conversely, given the state (ae+1,ae) = ( 1 ,  -1)  there 
are two allowable predecessor states (at,  at-1) = ( 1 , l )  and (1 ,  - I ) ,  corresponding to 
the symbols at-1 = 1 and -1, respectively. 0 

The ML detection problem has now been reduced to the selection of a path 
through the trellis just described once the branches joining states at and ue+l 
have been assigned the values taken by the function h+l(ue, usually re- 
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ferred to as the metric. The minimum-metric path corresponds to the most likely 
sequence of states, and hence to the most likely sequence of symbols. The Viterbi 
algorithm is then applicable as follows: 

Step 1 Observe the values of Zo at time ( L  + 1)T ,  Zl at time ( L  + 2)T, .  . ., and 
ZL-1 at time 2LT. Let 1 = L and use (7.119) to compute U L ( u ~ )  for each 
value of U L .  Store the values of UL ( U L )  . 

Step 2 Let C + C + 1. Observe the value of Zt at time ( L  + L + 1 ) T ,  and 
use (7.120) to compute V e + l ( ~ c ,  for each pair of states at, ut+l such 
that the transition from at to is allowed by the trellis structure. 

Step 3 For each state compute 

where the minimum is taken over the values of compatible with ut+l, 
A 

and uL(.) = UL(.). The quantity u ~ + ~ ( u ~ + ~ )  is the minimum length of 
the paths leading to ue+l; store this quantity and this path with minimum 
length for each value of If C = K, go to Step 5. 

Step 4 Go to Step 2. 

Step 5 Compute min,, U K  (uK); this is the minimum length of the paths through 
the trellis. The minimum-length path corresponds to the most likely se- 
quence of states. 

Example 7.13 Consider the situation of Example 7.12 and assume so = 1, 81 = 
8-1 = 0.4,sz = 3-2 = - 0 . 2 , ~ ~  = 0,Ikl > 2. AssumealsothatK = 8,and 
Zo = 1.0, Z1 = -1.2, Z2 = 0.5, Z3 = -1.5, Z4 = -0.2, z5 = 1.0, Z6 = 0.8, 
and Z7 = 0.9. Upon reception of the matched filter outputs Zo and 21, U ~ ( u 2 )  can be 
computed for the four values of 0 2 ;  we get 

Then, after receiving each value of Z!, f! = 2,. . . ,7, &+l(ue, ue+l) can be computed. 
The corresponding values are shown in Fig. 7.32 together with those of ut(ut) ,  f! = 2. 

The minimum-length paths stored in Step 3 of the algorithm are shown by the solid 
lines. Application of the Viterbi algorithm shows that the ML path joins the states 
(-1,- l ) ,  (1 , - I ) ,  ( - l , l ) ,  (1 , - I ) ,  ( - l , l ) ,  (1 , - I ) ,  and (-1, l ) .  comsponding to 
the data sequence -1, -1,1, -1,1, -1,1, -1. 0 

7.5. Maximum-likelihood sequence receiver 

u 2 ( s )  Y(s) u4(u4) u ~ ( u ~ )  u6(u6) u7( 

Figure 7.32: Branch andpath metrics for the trellis diagram of Example 7.13. 

7.5.2. Error probability for the maximum-likelihood sequence receiver 

In the following, the performance of the ML sequence receiver will be evaluated 
by computing upper and lower bounds to the probability of a symbol error 

where at denotes the Cth transmitted symbol and iic its estimate. Strictly speak- 
ing, this probability is a function of the index C as our model is not stationary 
due to the consideration of a finite symbol sequence ao, a l ,  . . . , aK-1. However, 
under the usual assumption that K is large enough, we shall disregard this diffi- 
culty and assume that the RHS in (7.125) does not depend on L. Since the ML 
sequence detection can be viewed as the choice of a path in the state trellis, for 
errors to occur it is necessary that the ML path diverge for a certain index, say L1, 
from the path representing the transmitted symbol sequence, and remerge later, 
say for index C1 + H. When this happens, we say that an error event of length 
H - 1 has taken place (Fig. 7.33). The concept of error event specifies mathe- 
matically the fact that, when a sequence is estimated, symbol errors do not occur 
independently, but in finite clumps (bursts). If we define 

and recall definition (7.1 18), it is seen that an error event starting at index C1 and 
extending up to index L1 + H, say 
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Figure 7.33: An error event of length 3. The continuous line is the path corresponding 
to the transmitted sequence of states. The dashed line corresponds to the estimated 
sequence of states. 

corresponds to a sequence of symbol errors 

(Incidentally, this shows that H 2 L, i.e., the error events are always at least as 
long as the channel memory.) If we let U be the set of all nonzero error events, 
w ( e )  the number of decision errors entailed by the error event e  (i.e., the number 
of nonzero entries in e) ,  and P i e )  the probability of e  to occur, we have 

Since the exact computation of error probability using (7.127) does not seem 
feasible, we shall resort to evaluation of upper and lower bounds to P ( e ) .  

An upper bound to P(e)  

Computation of an upper bound to P(e )  will be based on the approximate eval- 
uation of P i e )  in (7.127). Let A(e)  be the event that the transmitted sequence 
a of data symbols (with the same length of e )  is compatible with the occurrence 
of e .  Then, for e  to occur, it is necessary that A(e)  occur and that a + e  have a 
likelihood greater than any other possible sequence of source symbols, including 
a. Since this latter event is included in the event {A ,+ ,  > A , ) ,  the probability of 
e  can be upper bounded as follows: 

We shall now proceed to evaluate separately the two factors in the RHS of (7.128) ... 
For a stationary sequence of independent source symbols, we have, for an error 

Example 7.14 For example, if ae takes on values &1 with equal probabilities, only 
ae = +I  is compatible with ee = 0, only ae = -1 is compatible with ee = +2, and 
both values ae = &1 are compatible with ee = 0. Thus, P ( A ( 2 ) )  = P { A ( - 2 ) )  = 
and P{A(O))  = 1, which yields 

H - L  
P { A ( e ) }  = n ( I  - H) 

e=o 4 

More generally, it can be easily proved that, if ae can take on the M values -M + 
1, -M + 3 , .  . . , M - 1 with equal probabilities, we have 

H - L  
P { A ( e ) }  = n ( 1  - H) 

e=o 2  M 

Consider then the event {A,,,  > A,  1 A ( e ) ) .  By recalling (7.111) and us- 
ing (7.112) and (7.113), the inequality {A,,,  > A,)  can be rewritten, after some 
algebraic manipulations, in the form 

where 
H - L  H - L  

d2(e)  4 C C eeemse-m 
e=o m=o 

is called the distance of the error event, and 

are Gaussian random variables with zero mean and covariance 

The RHS of (7.132) turns out to be a Gaussian RV with zero mean and variance 
(No/2)62(e) .  Therefore, 
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Using finally (7.127). (7.128) and (7.136). we get 

where P { A ( e ) )  can be computed through (7.129). Equation (7.137), in spite 
of the considerable effort spent to derive it, is still not in a usable form, mainly 
because of the difficulty involved in enumerating the elements of U. Thus, we 
shall resort to an approximation of the RHS of (7.137). valid for small values of 
No and based on the steep decrease of the function erfc(.). It suffices to observe 
that the terms in the summation (7.137) will be dominated, as No + 0, by the 
terms involving the smallest value of d ( e ) ,  which we shall denote by dmin 

A dmin = min d ( e )  
eEU 

Hence we get the approximate upper bound 

and U(dmin) is the subset of U including the error events with distance dfi,. 
Notice, in particular, that Qt(dmin) is a constant independent of NO. 

Example 7.15 Consider abinary transmission system with equally likely symbols *1, 
and assume that U(dmin) includes the two error sequences (+2, -2) and (-2, +2). The 
set A(+2, -2) includes only the data sequence (-1. +I), and A(-2, +2) includes only 
(+I, - 1). Thus, 

1 1  
$(dm,) = 2 .  - + 2 .  - = 1 4 4 

In the same conditions, if U(dmin) = {(-2), (+2)), we have A(-2) = {(+ 1)) and A(+2) 
= (-1). so 

1 1  
Q1(dmin) = 2 + 5 = 1 

A lower bound to P ( e )  

We shall now proceed to evaluate a lower bound to the symbol error probability. 
To do this, we consider the ideal situation in which the detection process is aided 
by a genie supplying to the receiver some side information on the transmitted 
symbols. If the receiver makes its decisions by exploiting optimally the genie 
information, it is clear that it cannot be outperformed by any receiver working 
without the genie's aid. Thus, if Pc(e)  denotes the symbol error probability 
achieved by the genie-aided receiver, we have, for every real-life receiver (and 
hence for the ML sequence detector), 

Assume that the genie operates as follows: when the sequence a = (ao ,  . . . , ax-1) 
is transmitted, he chooses at random another sequence a' = a + e ,  which has 
an error on the lth symbol at (and possibly others). Then he tells the receiver 
that either a or a' was transmitted. In this situation, the task of the receiver is to 
choose one out of two known signals perturbed by white Gaussian noise. This 
can be achieved optimally with a probability of error 

Thus, the probability that the genie-aided receiver makes an incorrect decision 
on at is 

where A(e) can now be interpreted as the event that the data sequence chosen by 
the genie is compatible with e. Equivalently, P { A ( e ) }  is the ratio between the 
number of sequences at such that at = a+ e for some a ,  and the total number of 
data sequences with length K. 

By combining (7.141) and (7.142), and discarding from the summation in the 
RHS of (7.142) all those sequences e for which d ( e )  > dmi,, we have 

where 

V ( d m i n )  A ( d m i n ) p { A ( e ) }  (7.144) 
eEU 

is the probability that a data sequence chosen at random has a sequence e com- 
patible with it and such that d ( e )  = dmin. The result (7.143) generalizes the 
lower bound (4.63) obtained for symbol-by-symbol detection. 
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7.5.3. Significance of d*, and its computation 

The results obtained so far in this section, and in particular the upper and lower 
bounds (7.139) and (7.143) on error probability, show that the key parameter for 
the performance evaluation of the h4L sequence detector is the minimum distance 
dmin defined by (7.138) and (7.133) or, equivalently, by 

d i i n  5 min x x eeemse-m 
efO e m 

where (7.1 10) has been used. In words, d2,, can be viewed from (7.145) as aris- 
ing from minimization over error patterns, or from (7.146) as the square of the 
smallest possible distance between distinct signals at the output of the determin- 
istic part of the channel. It is easily seen that, in the special case of transmission 
of independent symbols over the AWGN channel without intersymbol interfer- 
ence, (7.146) reduces to the minimum distance between signal points, as defined 
in Section 4.3. Also, it is interesting to observe that inequality (7.143) provides 
a bound to the symbol error probability of any real-life receiver that can be con- 
ceived to detect a sequence of data transmitted on a channel with intersymbol 
interference. Thus, computation of dmin provides an important parameter for 
judging the quality of the channel itself. 

The direct computation of dmin involves a minimization problem that may 
be hard to solve, as the number of relevant error patterns e or, equivalently, of 
symbol sequence pairs (a, a') that have to be tested can be very large. 

Tree-search algorithms for the determination of dmin have been proposed (see 
Fredricsson, 1974; Messerschmitt, 1973; Anderson and Foschini, 1975). For 
channels with a short memory, a convenient procedure to find dmin has been pro- 
posed by Anderson and Foschini (1975). This procedure, stemming from an 
approach combining functional analysis and computer search, is based on the 
selection, from the full set of error sequences e, of a small subset of crucial se- 
quences such that at least one element of the subset attains the minimum distance. 
As a result, dmin can be obtained from (7.145) by evaluating Ce Cm eee,se-, 
f& every element of this subset and choosing the smallest value found. 
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An efficient algorithm for the computation of dmin based on dynamic pro- 
gramming will be described in Chapter 12 in the context of trellis-coded modu- 
lation. 

Example 7.17 Consider an M-ary baseband transmission with symbols - M + i ,  - M +  
3 , .  . . , M - 1 and a channel bandlimited to [ - 1 / ( 2 T ) ,  1 ( 2 T ) ]  with po = 1 ,  pl = -1. 
Thus, we have so = 2T.  81 = 8-1 = - T ,  and st  = 0, (el > 1. In this case (see Prob- 
lem 7.21), dLin = 8 T ,  which is achieved by the error events ( f  2 ,  f 2 , .  . . , f 2).  with 
length m = 1 , 2 , .  . .. Hence, using (7.131) and (7.140), we obtain 

Similarly, (7.144) yields 

The symbol error probability is then bounded as follows: 
I 

For a channel without ISI, M-ary transmission using pulses with energy 2 T  would result 
I in an error probability of 

Even with present-day technology, the implementation of an h4L sequence de- 
tector can be difficult in high-speed data transmission due to the processing re- 
quirements of the Viterbi algorithm. In fact, the number of values taken by the 
state variables ge, and hence the number of quantities to be stored and processed 
per received symbol, grows as ML, and the demand on the processor speed in- 
creases with the symbol rate for a given value of ML. For binary symbols and a 
very short channel memory (say, L = 1 to 3), there may not be any problem with 
this complexity for low-speed data transmission (see for example the case of the 
wireless communication standard GSM). However, for many real-life channels, 

7.5.4. Implementation of maximum-likelihood sequence detectors 
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M L  can be so large as to make implementation of a Viterbi receiver unfeasible 
even at low data rates. 

Also, a truly optimum receiver delays its decision on the symbol sequence 
until it has been received in its entirety. In certain cases, a decision can be made 
before the entire sequence (z~):;' has been observed and processed; this occurs 
when during the computations it is seen that all the M L  trellis paths that have 
been stored leading to the nodes corresponding to state at, (say) pass through a 
single node corresponding to state at,, el < e2. In this situation, it is said that 
a merge has occurred for t! = el, and a decision can be made on the first states 
from UL to at,. For example, in Fig. 7.32 a merge occurs for t! = 4 in the state 
(-1, 1); this is detected for t! = 6, and a decision can be taken on the states 
az, ~ 3 ,  a4. 

In general, merges occur at random, and in certain unfortunate cases they 
may never occur during the transmission of a finite sequence. Thus, in practice, 
it is necessary to force decisions about the first transmitted symbols when the 
area allocated for the paths' storage is liable to be exceeded. Qureshi (1973) has 
shown by analysis and computer simulation that in most practical situations the 
probability of additional errors due to premature decisions becomes irrelevant 
if the decisions are made after a reasonable delay. In many cases, it will be 
sufficient to choose a delay just beyond twice the channel memory L, provided of 
course that the decisions are made by selecting the sequence that has the greatest 
likelihood at the moment of the decisions. Some systems require that the data be 
organized in bursts: in those cases, each burst is decoded independently, and the 
decoding delay problem disappears, provided that the bursts are not too long. 

To limit the receiver complexity due to the channel memory length, an ap- 
proach that has often been adopted is to use a linear filter preceding the optimum 
receiver in order to reduce the channel memory to a small value. With this pre- 
filter taking care of limiting L, the Viterbi algorithm can be implemented with 
a tolerable complexity. However, any linear filtering of the received signal will 
also affect the noise. Thus, any attempt to compensate for the nulls or near nulls 
in the channel equivalent transfer function results in prefilter characteristics that, 
by trying to invert the channel transfer function, will increase the noise power at 
the receiver input. Thus, linear prefiltering designed to condition optimally the 
channel impulse response should also take into account the output noise variance. 
To do this, the desired frequency response of the combination channel-prefilter 
should be close to the channel's in those frequency intervals where the channel 
cannot be equalized without excessive noise enhancement. 

Several solutions to the problem of optimum prefilter design have been pro- 
posed. Qureshi and Newhall (1973) use a mean-square criterion to force the 
ovdrall response of the channel plus the prefilter to approximate a truncated ver- 
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sion of the original channel impulse response. Falconer and Magee (1973) show 
how the desired response can be chosen to minimize the noise variance. The 
approach of Messerschmitt (1974) is to minimize the noise variance while keep- 
ing the first nonzero sample of the desired response fixed. Beare's (1978) design 
method results in a transfer function for the cascade of the channel and the pre- 
filter that is as close as possible to that of the original channel under the constraint 
of the memory length. Notice that the process of truncating the impulse response 
of the channel will never be perfect, so that the receiver will ignore some of the 
input ISI. The performance of this "mismatched" receiver has been considered 
by Divsalar (1978). McLane (1980) has derived an upper bound to the bit error 
probability due to this residual neglected channel memory. Other approaches to 
the reduction of complexity of the optimum receiver have been taken. Vermeulen 
and Hellman (1974) and Foschini (1977) consider the choice of a reduced-state 
trellis in order to simplify the Viterbi algorithm; Lee and Hill (1977) embed a 
decision-feedback equalizer (see Chapter 8) into the receiver structure. 

7.6. Bibliographical notes 

The state-variable method to simulate linear filtering using a digital computer 
can be found in Smith (1977) and in Jeruchirn et al. (1992). The z transform and 
the FlT methods to simulate linear filtering in the time and frequency domains, 
respectively, are described in Chapters 4 and 6 of Rabiner and Gold (1975). The 
problem of digital transmission systems performance evaluation in the presence 
of additive Gaussian noise and IS1 has received considerable research attention 
from the late 1960s. The first approach was to find an upper bound to the error 
probability using the Chemoff inequality (Saltzberg, 1968; Lugannani, 1969). 
Other authors computed the error probability using a Hermite polynomials series 
expansion (Ho and Yeh, 1970,1971) or a Gram-Charlier expansion (Shimbo and 
Celebiler, 1971). A different bounding technique based on the first moments of 
the RV representing the IS1 has been described by Glave (1972) and refined by 
Matthews (1973). The Gauss quadrature rule approach to the evaluation of the 
error probability was first proposed by Benedetto, De Vincentiis, and Luvison 
(1973). Upper and lower bounds based on moments and related to the Gauss 
quadrature rules approach have been proposed by Yao and Biglieri (1980) [see 
also Appendix E). Algorithms for the recursive computation of the moments of 
the IS1 RV are described in (Prabhu, 1971) for the case of independent data 
sequences and in Cariolaro and Pupolin (1975) for the case of correlated data 
sequences. 

Although tailored for PAM modulation, almost all the aforementioned meth- 
ods have been applied to the evaluation of the symbol error probability of co- 
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herent and noncoherent modulation schemes in the presence of IS1 and adjacent 
channel interferences. A useful reference for these applications can be found in 
the second part of the IEEE reprints collection edited by Stavroulakis (1980). 

The paper by Nyquist (1928), a classic in the field of data transmission, and 
the subsequent paper by Gibby and Smith (1965), include the formulation of 
what has been named the Nyquist criterion. The generalization of Nyquist cri- 
terion to a situation in which the transmission is assumed to be affected by both 
IS1 and crosstalk interference was considered by Shnidrnan (1967) and Smith 
(1968). 

The design of signal pulses subject to criteria other than the elimination of IS1 
has been the subject of several studies. Chalk (1950) finds the time-limited pulse 
shape that minimizes adjacent-channel interference. Spaulding (1969) considers 
the design of networks whose response simultaneously minimizes IS1 and band- 
width occupancy; his procedure generates better results than the approximation 
of raised-cosine responses. Mueller (1973) designs a transversal filter whose 
impulse response is constrained to give zero IS1 and has minimum out-of-band 
energy. Mueller's theory has been generalized by Boutin et al. (1982). Franks 
(1968) selects pulses that minimize the effect of the IS1 resulting from a small 
deviation from the proper timing instants to  + eT, -ca < e < ca. 

For a receiver with the structure shown in Fig. 7.20, the most natural ap- 
proach to the optimization of the filter U ( f )  is to choose the error probability 
as a performance criterion. This was done by Aaron and Tufts (1966), whereas 
Yao (1972) provided a more efficient computational technique. A simpler ap- 
proach is to constrain the IS1 to be zero and then minimize the error probability, 
as described in Section 7.3. This was considered by Lucky et al. (1968). Yet 
another approach is to maximize the signal-to-noise ratio at the sampling instants 
(George, 1965). 

Joint optimization of shaping and receiving filters under a minimum MSE 
criterion was considered by Smith (1968) and Berger andTufts (1967) (our han- 
dling of the issue follows closely the latter paper). A different derivation of 
Berger and Tufts's results was obtained by Hansler (1971). Ericson (1971 and 
1973) proved that for every reasonable optimization criterion the optimum shap- 
ing filter is bandlimited, and that the optimum receiving filter can be realized as 
the cascade of a matched filter and a tapped-delay line. 

Nonlinear receivers have also been studied. Since maximum a posteriori or 
ML detection seems at first to lead to a receiver complexity that grows exponen- 
tially with the length K of the sequence to be detected, sequential algorithms 
were investigated in order to reduce this complexity. Chang and Hancock (1966) 
developed a sequential algorithm for a maximum a posteriori sequence detec- 
tion whose complexity grows only linearly with K. A different algorithm with 
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the same complexity has been proposed in Bahl et al. (1974) (see Appendix F). 
Abend andFritchman (1970) obtained a similar algorithm for symbol-by-symbol 
detection. The idea of using the Viterbi algorithm for ML detection of data se- 
quences for baseband transmission channels was developed, independently and 
almost simultaneously, by Fomey (1972), Kobayashi (1971), and Omura (1971). 
The case of complex symbols (i.e., carrier-modulated signals) was considered by 
Ungerboeck (1974), whereas Foschini (1975) provided a mathematically rigor- 
ous derivation of error probability bounds. Our treatment follows those of Fomey 
(1972), Ungerboeck (1974), Foschini (1975), and Hayes (1975). 

7.7. Problems 

Problems marked with an asterisk should be solved with the aid of a compute,: 

7.1 Show that the outputs of the block diagram of Fig. 7.2 are the same as those of 
the block diagram of Fig. 7.3. 

7.2 Given two independent Gaussian random processes np( t )  and nQ(t)  with zero 
mean and equal variance uZ, find the first-order pdf of the processes vp(t) = 
np(t)  cos 8 - nQ ( t )  sin 8 and vQ(t) = np( t )  sin 8 + nQ ( t )  cos 8,  where 8 is a 
constant. Prove that samples of vp( t )  and vQ(t)  taken at the same time instant 
are statistically independent. 

7.3 (*) Write a computer program implementing the recursive algorithm described in 
Section 7.2.1 to evaluate the IS1 moments in the case of multilevel PAM transmis- 
sion. 

7.4 (*) Write a computer program implementing the algorithm described in Golub 
and Welsch (1969) (see also Appendix E) to construct a Gauss quadrature rule 
starting from the first 25  moments of a RV. 

7.5 (*) Use the programs available from Problems 7.3 and 7.4 to evaluate the error 
probability for an octonary PAM system with IS1 due to a raised cosine impulse 
response h( t )  with a roll-off factor a = 0.5 (for the impulse response of raised 
cosine type, see (7.71), in the presence of a normalized sampling time deviation 
of 0.05, 0.1, 0.15, and 0.2. Assume an SNR that yields an error probability of 

at the nominal sampling instants and use a 15-sample approximation for the 
impulse response. 

7.6 Find a recursive algorithm for the computation of the joint moments of the RVs 
Xp and XQ defined in (7.36) and (7.37) assuming that the an's are iid discrete 
RVs with known moments. Hint: Generalize the procedure described in Sec- 
tion 7.2.1 for a single RV. 
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7.7 (*) For the same case of Problem 7.5, compute the Chernoff bound to the error 
probability extending the method described in Saltzberg (1968) to the multilevel 
case. 

7.8 (*) For the same case of Problem 7.5, compute the error probability using the 
series expansion method described in Ho and Yeh (1970) and in Appendix E. 

7.9 Particularize the result (7.41) to the case of 16-QAM modulation with 8 = 0. 

7.10 Extend the program developed in Problem 7.3 to the case of an M-PSK modula- 
tion scheme. 

7.11 (*) Using the program developed in Problem 7.1 1 and the results of Problems 7.4 
and 7.10, compute the error probability for a quaternary PSK modulation using 
a second-order Butterworth filter impulse response h( t )  (with a normalized 3-dB 
bandwidth of 1.1) as a function of the phase offset 8. Assume the signal-to- 
noise ratio that yields an error probability of in ideal conditions (no ISI) and 
truncate the impulse response to 10 samples. 

7.12 Consider the transmission of binary antipodal PAM signals over a linear chan- 
nel perturbed by additive Gaussian noise and an intersymbol interference X = 
c:, aihi. Assume d = 2, denote the resulting error probability by PN (e) ,  and 
the error probability without intersymbol interference by Po(e). 

(a) Prove that, if the eye pattern is open, i.e., ho > xEl (hil, then we have 
Po(e) 5 PN (e) ,  i.e., intersymbol interference increases the error probabil- 
ity. 

(b) Generalize the result of (a) by deriving an inequality involving PNJ (e) ,  N' < 
N (i.e., the error probability obtained by retaining only N' out of N inter- 
fering samples). 

(c) Show, through an example, that if the eye pattern is nor open, we may have 
Po(e) > P N ( ~ ) .  

7.13 Consider a raised-cosine transfer function Q ( f )  with roll-off a and its powers 
Q 7 ( f ) ,  0 < 7 < 1. 

(a).Compute the equivalent noise bandwidth of QT(f )  for several values of a 
and 7 [see (2.89)]. 

(b) Compute the error probability in a binary baseband PAM system modeled 
as in Figs. 7.19 and 7.20 with S ( f )  = PQT(f) ,  U ( f )  = (1 /P)&1-7( f ) ,  
symbols a, = f 1, rate 1200 bitds, and a white Gaussian noise with power 
spectral density G w ( f )  = W/Hz. The constant P is chosen so as to 

8 have a unit power at the output of the shaping filter. 
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7.14 In the system of Figs. 7.19 and 7.20, for given transfer functions S (  f )  and C(  f ), 
choose the receiving filter U( f )  so as to maximize at its output, for a given sam- 
pling instant, the ratio between the instantaneous signal power and the average 
power of IS1 plus noise. Show that this filter can be implemented in the form of a 
matched filter cascaded to a transversal filter. 

7.15 Consider a binary PAM digital transmission system. Data must be transmitted at 
a rate of 9600 bitds with a bit error probability lower than The channel 
transfer function is given by 

1 ,  I f 1  <6000 Hz 
0, elsewhere 

The noise is white Gaussian with a power spectral density Gw( f )  = W/Hz. 
Choose the shaping filter S (  f )  and the receiving filter U( f )  so as to minimize the 
average transmitted power while getting rid of the intersymbol interference at the 
sampling instants. Compute the signal power at the output of the shaping filter. 

7.16 In a binary baseband PAM system modeled as in Figs. 7.19 and 7.20, the cas- 
cade of S(  f ), C(  f ), and U ( f  ) has a raised-cosine response with roll-off a, 0 < 
a < 1. The sampling instants are affected by a constant offset of 5 percent with . -- - . . - -- - 
respect to the nominal values, so IS1 is present. Assuming that th; transmitted 
symbols are f 1 and that the noise is white Gaussian with a power spectral den- 
sity G w ( f )  = W/Hz, compute the bit error probability of the system as a 
function of a using one of the techniques described in Section 7.2. 

Consider a bandpass transmission system operating at a signaling rate of 1 /T  on 
a channel with a flat transfer function C ( f ) .  The shaping filter is fourth-order 
Butterworth with a 3-dB bandwidth Bs and the receiving filter is second-order 
Butterworth with 3-dB bandwidth Bu. Assuming a white Gaussian noise, deter- 
mine, for 1.2 < B s T  < 2, the values of BUT that give the minimum bit error 
probability for an M-ary coherent PSK modulation (M = 2,4, and 8). For every 
situation, choose the signal-to-noise ratio &/No so that this minimum probability 
is 

Consider a binary baseband PAM data-transmission system operating at a rate of 
4800 b ids  and modeled as in Figs. 7.19 and 7.20. Assume s ( t )  = uT(t) ,  

and a white Gaussian noise with power spectral density G w ( f )  = lo-' W/Hz. 

(a) Determine the shape of the receiving filter that minimizes the bit error prob- 
ability while removing IS1 at the sampling instants. 
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(b) Determine the shape of the receiving filter that minimizes the mean-square 
error at the sampler's output. 

(c) (*) Compare the error probabilities obtained with the systems designed in 
parts (a) and (b). 

7.19 Consider a filter with impulse response 

( N  an integer > 1). This can be modeled as a linear transversal filter cascaded to 
a linear system with impulse response b(t). Define the (2Nm + 1)-dimensional 
vectors 

A 
S = [S-Nm, . . . ,SO,. . . SN,,,]' 

and 

A 
with z = exp(j2n f TIN) .  Assume that b(t) has energy & and a duration 5 TIN.  

(a) Show that if s ( t )  is the impulse response of the shaping filter of a data- 
transmission system with independent and zero-mean symbols (a,) and a 
signaling rate 1/T, the power density spectrum of its output signal can be 
written in the form 2 

% l ~ ( f ) l ~ s ~ z z ~ s  T 

where B (  f )  denotes the Fourier transform of b(t). 

(b) Let PF denote the power of the signal at the output of the shaping filter in the 
frequency interval (-F, F ) .  Show that the shaping filter coefficients vector 
s that maximizes the ratio pF/pm (re>ative power in the frequency interval 
(-F, F ) )  is the eigenvector of a symmetric matrix R corresponding to the 
largest eigenvalue A,,. Determine the entries of R, and show that A,, 
coincides with the maximum value of pF/pm. 

(c) Assume that s ( t )  satisfies the Nyquist criterion for intersymbol interference- 
free transmission; that is. 

S*(/N = 0, for i = f 1, f 2,.  . . , f m 

How can this constraint be included in part (b)? 

(d) (*) Assuming b(t) = 6(t), derive the shaping filter that gives a Nyquist-type 
response with maximum relative power in the frequency interval If 1 < 2400 
Hz for m = 8 (impulse response limited in duration to I tl < 8T) and N = 4 

I (four samples per signaling interval T)  (Mueller, 1973). 
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7.20 Prove that the joint optimization of the shaping filter S( f )  and the receiving filter 
U( f )  under the power constraint (7.98) leads to filters that are strictly bandlimited 
to a generalized Nyquist set of measure 1/T. 

7.21 Assume that the channel transfer function P( f )  is bandlimited in the Nyquist 
interval (-112, 112). and denote by p,, -m < m < m, the samples, taken 
every second, of its response. 

(a) Derive an expression of the minimum distance for this channel in terms of 
the discrete convolution between the sequence (p,) and the sequence (em) 
of symbol errors. 

(b) Using the result obtained in part (a), derive the minimum distance for a 
channel with memory L = 1 when the data symbols take on the values 
0, 1 ,..., M - 1 .  

(c) Consider a channel whose impulse response samples are pm = 1/f i ,  m = 
0,1 , .  . . , n - 1, and binary symbols f 1. Derive the minimum distance for 
this channel, and verify that dmin + 0 as n + m. 

7.22 Show that, with the notations of Section 7.5, the inequality 

is a sufficient condition for the nonexistence of error events whose distance is 
smaller than that achieved by a single error. Hint: If J0 denotes the minimum 
nonzero value of leml, show that 

and use this result to prove that, if (7.148) holds, d i i n  cannot be smaller than 
60290, the minimum distance achieved by a single error. 



Adaptive receivers and channel 
equalization 

The theory developed in Chapter 7, devoted to the design of an optimum receiver 
in the presence of channel distortion, was based on the assumption of a linear 
channel and of the exact knowledge of its impulse response (or transfer function). 
While the first assumption is reasonable in many situations (and we shall see in 
Chapter 14 what to do when it is not), the latter assumption is often far from 
realistic. In fact, whereas it is generally true that the designer knows the basic 
features of the channel, this knowledge may not be accurate enough to allow 
system optimization. This occurs, for example, when the channel, although time- 
invariant, is selected at random from an ensemble, a circumstance typical of did- 
up telephone lines. Another possibility is that the channel varies randomly with 
time. This is typical of certain radio channels affected by fading, to be described 
in some depth in Chapter 13. A consequence of the above is that the receiver 
designed to cope with the effects of intersymbol interference (ISI) and additive 
noise should be self-optimizing or adaptive. That is, its parameters should be 
automatically adjusted to an optimum operating point, and should possibly keep 
track of the changing conditions. 

l k o  philosophies can be the rationale behind the design of an adaptive re- 
ceiver. The first, described in Fig. 8.1, assumes that the relevant channel parame- 
ters are first estimated, then fed to a detector which is optimum (or suboptimum, 
if the complexity of the latter is too large to be acceptable) for those parameters. 
This can be, for example, a Viterbi detector, which for ideal operation needs the 
channel impulse response samples to be known. Another approach is depicted 
in Fig. 8.2. Here a device, called an equalizer, compensates for the unwanted 
chacnel features, and presents the detector with a sequence of samples that have 

8.1. Channel model 

IDENTIFICATION rn 
SAMPLES I 

Figure 8.1: Scheme of an adaptive receiver based on the identifcation of channel pa- 
rameters. Here the detector is matched to the channel. 

SAMPLES - - CHANNEL 

OUTPUT 

Figure 8.2: Scheme of an adaptive receiver based on channel equalization. Here the 
channel (including the equalizer) is matched to the detector: 

EQUALIZER DETECTOR 

been "mopped up" from ISI. The term "equalization" describes a set of operation 
intended to eliminate ISI. Hence, the cascade of channel and equalizer is seen by 
the detector as close to an AWGN channel, and consequently the detectors de- 
scribed in Chapter 4 are close to optimum in this situation. 

8.1. Channel model 

Throughout this chapter, unless othewise specified we shall assume a channel 
model similar to that of Chapter 7. With reference to Fig. 8.3, the source symbols 
( a t )  form a stationary sequence of identically distributed, uncorrelated, zero- 
mean complex random variables with E [ ~ U ~ ( ~ ]  = 1 (the assumption of complex 
symbols is equivalent to assuming one- or two-dimensional modulations). The 
modulation scheme and the channel are both linear. The source sequence mod- 
ulates a train of ideal impulses, then passes through a transmission filter. After 
addition of noise, the signal at the output of the channel is first passed through a 
receiving filter, then sampled every T to produce the sample sequence ( x ! ) ,  and 
finally processed before detection. 
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Figure 8.3: Channel model for channel identification or equalization. 

We denote by (qe) the impulse response of the discrete system (the "discrete 
overall channel") that responds to the source sequence (ae)  with the sequence 
(2.0. For mathematical convenience, it is also assumed that this system is time- 
invariant, and has a finite memory L. Thus, the relationship between the se- 
quences (ae)  and ( xe )  is expressed by 

where the noise samples of the sequence (ne) at the output of the receiving filter 
have mean zero and E[lne12] = a:. These are independent of the source symbols. 

8.2. Channel identification 

The effect of this linear, finite-memory channel on any input sequence (a( )  is 
described in full by the L + 1 complex numbers g o , .  . . , q ~ .  Hence, with our 
assumptions, identifying the channel is tantamount to estimating their values. 

Eq. (8.1) can be rewritten in a compact vector form by introducing the col- 
umn vectors 

a 
9 = [go, 91, . . . , Q L ] I  

(8.2) 

and 
a 

ae = [at, at-1, . . . , ae-LI' (8.3) 

(the latter is the vector of source symbols that affect the output at time e). With 
these notations, (8.1) takes the form 

1' X (  = q'ae + ne (8.4) 
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so that the problem of identifying the channel can be formulated as follows: 
derive an estimate of the vector q based upon the observation of the received 
sequence (xe) and the knowledge of the transmitted symbol sequence (ae) .  

8.2.1. Using a channel-sounding sequence 

A simple solution to the channel identification problem consists of sending, be- 
fore transmission, a channel-sounding data sequence with length N and noise- 
like correlation properties, i.e., such that 

for N large enough. Disregard the effect of noise for simplicity. Upon reception 
of the sample sequence (xe) ,  the receiver computes the correlation (equivalent to 
a discrete matched filtering) 

Owing to (8.1) and to (8.5), we obtain 

so that, apart from an unessential scale factor, ye approximates the eth sample of 
the channel impulse response. This technique is used for example in the GSM 
standard for digital cellular telephony, where a channel-sounding sequence (the 
"midamble") in inserted in the center of each data burst. If the channel impulse 
response remains constant for the burst duration, optimum MLSE can in princi- 
ple be achieved. 

8.2.2. Mean-square error channel identification 

Suppose that the information data sequence (at)  is known at the receiver. If 
6 denotes an estimate of the vector in (8.2). we can construct a sequence ( 5 0  
approximating the true received sequence as follows: 

and measure the accuracy of the channel estimate by computing the mean square 
value of the error I x ~  - gel. By observing that, due to our assumptions on the 
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source sequence, E[a;ak] equals the identity matrix, this is given by 

Thus, the minimum achievable mean-square error (MSE) is a:, which corre- 
sponds to the situation ij = q, i.e., to perfect identification. 

Algorithms for minimum-MSE channel identification 

Since the condition Cj = q occurs when the MSE (8.8) is minimized, a sensible 
identification algorithm may be based on the search for this minimum. Numer- 
ical analysis offers several minimization algorithms: however, not all of them 
are applicable in a situation where the computations should be done in a very 
short time, with limited complexity, and in the presence of channel noise and 
of roundoff errors due to digital implementation of the algorithm. An algorithm 
which is widely used is the steepest-descent, or gradient, algorithm. TO under- 
stand its behavior, assume that q is a real vector, and observe that the MSE, a 
quadratic function of the estimated vector 6, can be viewed geometrically as a 
bowl-shaped surface in the (L + 1)-dimensional space. As the minimum of MSE 
corresponds to the bowl's bottom, minimizing MSE is equivalent to seeking this 
bottom. In the gradient algorithm, one starts by choosing arbitrarily an "initial" 
vector $ O ) ,  which corresponds to a point of the surface. The (L + 1)-component 
gradient vector of the MSE with respect to ^q is then computed at this point. As 
the negative of the gradient is parallel to the direction of steepest descent, a step 
is performed on the surface in the direction of the negative of the gradient. If 
the step is short enough, the new point will be closer to the bottom of the 
surface, and hence result in a better estimate of the channel. Now, the gradient 
is computed at $') and the procedure repeated. Under certain conditions (to be 
explored later), this process will eventually converge to the bottom of the bowl 
(where the gradient is zero) regardless of the choice of the initial point. 

Consider now (8.8) with a complex channel response. The gradient of the 
MSE with respect to 6 is -2(q - 6) (see Section BS), a linear function of the 
overall channel's estimated impulse response. This result is due to our choice of 
MSE as the function to be minimized: in principle, any convex function would 
do the job, but only the choice of a quadratic function yields a linear gradient. 
The gradient algorithm will then take the form 

where i$") denotes the value assumed by the estimated impulse response at the 
nth iteration step, and a is a positive constant small enough to ensure conver- 
gence of the iterative procedure. The significance of a will be discussed shortly. 
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It should be observed that (8.9) is not in an appropriate form for implement- 
ing the identification algorithm. In fact, it involves the vector q, which is obvi- 
ously not available. Using (8.7) and recalling the independence of the data at, 
we can change (8.9) to 

which is expressed in terms of the observable quantities x,, 8,. and of the vector 
a,,, assumed to be known. The difficulty now is that exact evaluation of the 
expectation in the RHS of (8.10) is not practically achievable. In fact, its explicit 
computation requires knowledge of the channel impulse response, which is not 
available. The expectation could be approximated in the form of a time average, 
computed over a sufficiently long time interval: but this would prevent real-time 
operation. Thus, in most implementations the expectation in (8.10) is simply 
removed, and only its argument kept. 

Before discussing this approximation problem, we analyze the performance 
of algorithm (8.9) or (8.10). The analysis is relatively simple, and provides more 
than a bit of insight into the behavior of the implementable algorithm, to be 
described afterwards. 

Gradient algorithm 

Consider again (8.9), rewritten in the form 

By subtracting q from both sides, and defining the estimation error dn) at the 
nth iteration as 

,(n) = a'"' - q (8.12) 
we get the simple first-order homogeneous recursion describing the evolution of 
&): 

~ ( ~ + ' ) = ( l - a ) ~ ( ~ ) ,  n = 0 , 1 ,  . . .  (8.13) 

which has the solution 
&) = (1 - a)ne(0) (8.14) 

From (8.14) it follows that -+ 0 as n -t m, i.e., the algorithm converges 
for any do), if (1 - aln -t 0 as n -+ m. The latter condition simply means that 
we must have (1 - a(  < 1, i.e., 0 < a <: 2. 

Notice also that the choice a = 1 would make the algorithm converge in a 
single step. However, even if this algorithm were implementable (and we know 
it is not, because the value of the expectation in (8.10) is not available), in the 
presence of round-off errors it would be advisable to pick a different value for a. 
In fact, iterations average out the effect of these errors. 
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Stochastic-gradient algorithm 

Let us now consider an approximation of (8.9) in a form useful for real-time 
implementation. The simplest such approximation, and by far the most widely 
used, is obtained by disregarding the expectation operator in (8.10). We obtain 
the new algorithm, usually denoted as the stochastic-gradient algorithm, 

The second term in the RHS of (8.15) obviously has the same expected value as 
the corresponding term in the gradient algorithm. Hence, it can be viewed as an 
unbiased estimate of that quantity. 

Implementation of (8.15) is shown in Fig. 8.4 for real data symbols. Each 
iteration is performed every discrete time instant, i.e., every T .  When a new 
source symbol a, is fed into the tapped delay line (TDL), the channel Output 
estimate 5, is obtained by combining linearly a,, . . . , a,-L according to (8.7). 
The error signal x, - f, is then formed, and, after multiplication by the scaling 
factor a,  this value is also multiplied by the content of the TDL, expressed by 
the vector a,,. The resulting values are used finally to update the accumulators 
containing the actual estimates Go, . . . , GL. 

Consider now the convergence of this algorithm. Its study is far more difficult 
that with the "true-gradient" algorithm (8.9). In fact, we have from (8.15) 

a version of (8.13) with the scalar (1 -a )  changed into the matrix (I-cu &a;) (I 
denotes the identity matrix). A complication arises here from a:% being a ma- 
trix with random entries, which in turn are not statistically independent of d"). 
We cannot proceed further without an approximation: a widely employed one, 
which makes the convergence analysis mathematically tractable, namely, the in- 
dependence assumption. This assumes (a,,) to be a sequence of iid zero-mean 
vectors. In spite of its being rather crude, it provides a convergence analysis 
whose results are in close agreement with those of experiments and simulations, 
provided that the step size (Y is sufficiently small (see, e.g., Ungerboeck, 1972; 
Widrow et al., 1976; Gitlin and Weinstein, 1979; Mazo, 1979; Jones et al., 1982). 

Since-in (8.16) dn) depends only on the sequence a,~, a l ,  . . . ,%-I, the inde- 
pendence assumption entails that dn) must be independent of a,,. Thus, if We 
take the expectation of both sides of (8.16), we obtain 

No random quantity appears in (8.17), so we can repeat the convergence 
analysis carried out for the true gradient algorithm. This enables us to conclude 
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Figure 8.4: Implementation of the stochastic-gradient algorithm (real source symbols a, 
are assumed). The bloch labeled T denote delay elements; the blocks labeled A denote 
accumulators. 

that the average error vector E[dn)] tends to the null vector, as n + oo, if 0 < 
CY < 2. Nonetheless, this result is incomplete, as the behavior of E[dn)] does 
not provide us with a complete picture of the convergence of the algorithm. In 
fact, nothing prevents this vector from being very close to the null vector while 
dn) itself exhibits large deviations around its average. A deeper analysis of the 
behavior of dn) is therefore called for. This can be obtained by studying the 
quadratic error E(dn)  1 2 .  

If we define 
&(") fi E ( ~ ( " ) I ~  = ~ [ ~ ( n ) t ~ ( n ) ]  (8.18) 

from (8.16) we obtain the following recursive equation: 

By defining 

ka E[lanI4] 

we have 

E [ ( 4 4 J 2 1  = (ka + L)I 
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and consequently from (8.19) 

&(,+I) = ~ [ @ t ( l  - 2a + a2(k, + L))E("']  (8.22) 

Repeated application of the latter yields 

&(,) = [I - 20 + a2(k, + L)]"E(') (8.23) 

so that the quadratic-error convergence is assured provided that the quantity in 
square brackets is less than 1. 

Example 8.1 A simple special case occurs when the random variables a, take on val- 
ues i1 with equal probabilities, and hence k,, = 1. We obtain 

&(") = [I - 2a + a Z ( ~  + l)In do) 

The quantity in brackets can be minimized with respect to the choice of a, yielding 

Notice how convergence is slowed down as L increases. 

Some further problems 

Several other features of automatic channel identification may be worth dis- 
cussing here. However, since several of them are in common with adaptive 
equalization, which we shall examine in the balance of this chapter, to avoid 
unnecessary duplications we postpone their discussion. Here we restrict our- 
selves to three problems, the first two because of their relevance, and the third 
because it is typical of adaptive channel identification. 

The first issue concerns the behavior of the stochastic-gradient algorithm 
when the channel is not stationary, i.e., when its impulse response changes with 
time. This is the problem of adaptive identification. If changes occur slowly 
enough with respect to the signaling rate, we can expect that the algorithm will 
allow the channel estimate to track continually the channel features. Another 
problem relates to the assumption that the source data sequence (a,) is known 
to the receiver. It can be solved by first sending through the channel a known 
sequence, which is expected to provide a reasonably good channel estimate. Af- 
terwards, the receiver should provide a sufficiently good performance to assume 
that most of its estimates of transmitted symbols are correct. In this situation, the 
assumption that (a,) is known becomes reasonable. 
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Finally, consider the effect on automatic identification of inaccurate knowl- 
edge of t_he true channel memory span L. Clearly, if the mL of Fig. 8.4 has a 
number L of delay elements larger than L, then at the end of the identification 
process 2 - L tap weights will take on zero values in identification. If instead 
2 < L, that is, the number of delay elements in the TDL is smaller than the 
channel memory, it can be shown (see Problem 8.2) that 2 + 1 of the channel 
impulse response samples can still be identified correctly under the assumption 
that the data symbols be uncorrelated and have mean zero. 

8.2.3. Blind channel identification 

The identification techniques described so far are based on the existence of a 
data sequence known at the receiver: channel identification is feasible since both 
input and output samples are known. When the channel is varying, to make 
identification adaptive, this training data sequence has to be sent periodically to 
update the channel estimates, thus reducing the effective transmission rate be- 
cause a fraction of transmission time is wasted for a training sequence. Another 
class of identification techniques, called blind, do not require the transmission of 
a preassigned data sequence. Instead, the statistical properties of the transmitted 
signal are exploited to cany out the identification without the receiver having 
access to the symbols being transmitted. 

A number of blind techniques are based on higher-order statistics of the 
channel output (see, for example, Giannakis, Inouye, and Mendel, 1989; Gi- 
annakis and Mendel, 1989; and Mendel, 1991). These algorithms, besides being 
computationally intensive, suffer from the fact that the estimates of higher-order 
statistics usually converge more slowly than those of second-order statistics;and 
hence the process may be too slow for applications involving rapid channel vari- 
ations such as those in mobile radio communications. 

Second-order algorithms 

A more recent class of identification algorithms use only second-order statistics, 
and hence exhibit a faster convergence; if certain mild conditions on the fre- 
quency response of the channel are satisfied, only the autocorrelation function of 
the oversampled channel output needs to be evaluated for channel identification 
(see Tong et al., 1994; Tong et al., 1995; Tugnait, 1995; Moulines et al., 1995; 
and Buisin and Biglieri, 1996). 
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Figure 8.5: The TDL equalizez 

8.3. Channel equalization 

From Chapter 7 we know how the optimum linear receiving filter is made: it 
consists of a matched filter, a sampler, and an infinite-length TDL filter. Thus, 
it makes sense to approximate this optimum filter as follows. Rather than a 
filter matched to (Q), which may be unknown, we use a filter matched to the 
transmitted signal, or a compromise filter matched to a representative of an entire 
class of received signals. The infinite-length TDL is approximated with a finite 
one, which is simple to implement, to analyze, and to adjust, mainly because of 
the linear relation between its tap weights and its output. 

In this section we study an equalizer based on an algorithm for automatically 
adjusting the coefficients of such a TDL. In the following we keep on assuming 
that the data symbols a, are uncorrelated and have mean zero. We define u: 
E[lan121. 

The TDL equalizer operating on the samples (x , )  of the received signal is 
shown in Fig. 8.5. This structure, also called a transversal filter, has N - 1 
delay elements, N taps, N weight accumulators, and N multipliers. It stores N 
samples that are linearly combined to produce the equalizer output 

where c  is the tap-weight vector 

and x ,  denotes the TDL's content at discrete time n: 
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Ideally, we would like the sequence (y,) at the output of the equalizer to 
reproduce the sequence (a,) of transmitted data symbols, except perhaps for a 
finite delay D. As we cannot expect to achieve this, even in the absence of noise, 
with a finite-length TDL, a reasonable goal would be to find c  so as to minimize 
a suitable distortion measure, with the constraints of the equalizer length and the 
delay D. If we choose as a distortion measure the ubiquitous mean-square error 
between y, (what we get) and a,-D (what we would like to get), with D a fixed 
integer, we have to minimize the MSE 

where v is a vector expressing the correlations between the source symbols and 
the channel outputs: 

A 
v = E [ a , - ~ x ; ]  (8.28) 

and X is the autocorrelation matrix of the samples stored in the TDL: 

The latter matrix is assumed to be positive definite. In fact, for every complex 
N-vector a  we have 

a t X a  = ~ [ l a ' x , l ~ ]  2 0 (8.30) 
which shows that X is at least nonnegative definite. Moreover, the RHS of (8.30) 
can be viewed as the average power at the output of an equalizer with tap weight 
vector a .  This power cannot be zero because of the random noise added to the 
samples at the channel's output. In the absence of noise and for a nonzero a ,  
(8.30) can be zero only if the samples x, are linearly dependent. With this ex- 
ception (that we want to discard), a t X a  > 0, i.e., X is positive definite, and 
hence invertible. 

To define the value of the tap-weight vector c  that minimizes (8.27), we must 
find the value of c  that yields a null value of the gradient of E(c) .  This can be 
computed by using the results of Examples B.5 and B.6: 

V E  ( c )  = 2 ( X c  - v) (8.31) 

As the gradient has a unique zero for 

we obtain the minimum MSE 

A 
Emin = &(copt) = 02 - V ' X - ~ V  

I 
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An alternative form for &(c)  is then 

This explicitly shows the quadratic nature of the functional &(c) ,  and separates 
the contribution of the minimum achievable MSE, &,in, from the term reflecting 
the nonoptimum weight setting. 

8.3.1. Performance of the infinitely long equalizer 

We shall now analyze the performance of the optimum equalizer under the as- 
sumption that the number of its tap weights tends to infinity. Mathematically, 
this allows us to approximate the Toeplitz matrix X with a circulant matrix 
whose rows are cyclic shifts of one of them (see Section B.3 for the relevant 
definitions). This approximation entails neglecting that the true X differs from a 
circulant matrix in the lower-left and the upper-right comers. Now, eigenvalues 
and eigenvectors of a circulant matrix have closed-form expressions: thus, we 
shall be able to derive explicitly copt and Emin. 

Consider the diagonal decomposition of X in the form (see (B.45)) 

where A is the diagonal matrix of the eigenvalues of X, say pa, . . . , p ~ - l ,  and 
U is the N x N unitary matrix of its eigenvectors (see Section B.4). As X is 
circulant, from Example B.3 the entries of U are 

Consider then the eigenvalues of X. From (B.39) and the definition of X, we 
obtain. as N + co, 

- 

k - N / 2  

Define now the signal xeq(t) as the time function, bandlimited in the frequency 
interval (-1/2T, 1 /2T) ,  whose sequence of samples, taken every T ,  is the equal- 
izer input (x,). From the sampling expansion (2.254) we obtain the Fourier 
transform - , 
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By applying the techniques introduced in Section 2.3.1, we can derive the power 
density spectrum of x,(t):  

The comparison of (8.38) with (8.40) shows that, as N + m, 

that is, apart from an unessential constant, the eigenvalues of X are the values 
that the power spectrum of the bandlimited signal xeq(t) takes on at equally 
spaced frequencies i / N T .  Let us now express G e q ( f )  in terms of the channel 
parameters. Using (7.58) and results from Section 2.3.1, we obtain 

where Q, ( f  ) is defined as in (7.67), and G, ( f  ) is the noise power spectral 
density at the receiver filter output. For simplicity, we have assumed that the 
noise is bandlimited in (-1/2T, 1/2T): otherwise we should write, in lieu of 
Gn ( f  ), its "aliased" version Ck G, (g + k / T ) .  

We are now ready to compute the performance of the infinite-length equal- 
izer. Using (8.32) and (8.35), we get for the optimum tap-weight vector 

Define 
a 1 N-' 

Copt ( f )  = - C [cOptIie-j2sfiT 
fi i=o 

and 

I Due to (8.36) and (8.37). premultiphcation of vector cop, by yields a 
vector whose components are Copt(k/NT) ,  k = 0, .  . . , N - 1. Similarly, pre- 
multiplication of v by the same matrix yields a vector whose components are 
V ( k / N T ) ,  k = 0, . . . , N - 1. Consequently, by observing that U t U  = I, 

*I . 
from (8.43) we obtain U ,  
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In (8.42) the pk have been expressed in terms of the channel parameters; we 
derive now an analogous expression for the V (k/NT). If we write xe explicitly 
as in (8.1), from definition (8.28) we obtain 

where the qe are the samples of the impulse response of the overall channel pre- 
ceding the sampler. Then 

and, as N -+ oo, using equality (2.109), 

By combining (8.41), (8.46). and (8.48), we get finally, fork = 0 ,1 , .  . . , N - 1, 

As N -+ w, we can assume that the transfer function of the optimum infinitely 
long equalizer is obtained from the former expression by writing f in lieu of 
i /NT: 

By comparing this result with (7.93) it can be seen that, under the minimum- 
MSE criterion, Copt ( f )  is the optimum receiving filter when Q,,( f )  = Q( f ), 
that is, when the channel is bandlimited in the interval (-1/2T, 1/2T). If the 
latter condition is not fulfilled, the TDL equalizer fails to be the optimum filter. 

8.3. Channel equalization 

We shall return to this point 
equalizer. 

later, in our discussion of the fractionally-spaced 

We are finally ready to evaluate the infinite-length equalizer performance. 
The quadratic form appearing in (8.33) is computed using (8.35): 

By taking the limit of (8.51), which can be done by using the Toeplitz distribution 
theorem (B.36), we have, as N -+ oo, 

and finallv 

This is the minimum MSE achievable by using an infinitely long TDL equalizer. 
Equation (8.53) shows how it is related to the noise power spectral density and 
to the channel transfer function (recall that the latter includes the receiving fil- 
ter, which may not be a filter matched to the received signal). For finite-length 
equalizers, it is difficult to say much about E without resorting to numerical 
computations, which, as we know, involve the transmission filter, the channel 
response, the noise power spectral density, the receiving filter, the delay D ,  and 
the number N of equalizer coefficients. 

Some considerations 

A few interesting considerations can be derived from (8.50) and (8.53), as fol- 
lows: 

(a) In the absence of noise, (8.50) reduces to 

Copt (f) = TQ&'( f)e-jZnJDT 

which shows that, apart from a delay DT,  the equalizer has a transfer func- 
tion proportional to the inverse of Qeq( f ) .  This shows that the optimum 
equalizer inverts the channel transfer function in the frequency interval 



396 8. Adaptive receivers and channel equalization 

(-1/2T, 1/2T) (it cannot operate on a wider interval because the sarn- 
ples are taken every T: more on this later). When noise dominates, i.e., 
when Gn(J) >> (ai/T)(Qeq(f)12, the equalizer transfer function is pro- 
portional to Q:q( f )/Gn( f ) ,  i.e., the optimum equalizer is a matched filter 
(see Problem 2.26,) 

(b) The maximum value that Emin can attain is a:: from (8.53) we see that 
this circumstance corresponds to a channel with a null transfer function: 
IQeq(f)l = 0. This trivial result suggests that in the presence of noise 
the performance of the linear equalizer described here is limited by large 
depressions in the frequency response of the channel. This fact can also 
be understood by observing that the equalizer will try to compensate for 
a deep null by synthesizing a large gain at the corresponding frequencies. 
But this large gain will enhance the effect of the noise at the same fre- 
quency, thus preventing perfect compensation or even leading to serious 
performance degradation. 

(c) Certain channels (e.g., the multipath radio channel of Chapter 13) may ex- 
hibit nulls in their frequency response. Other channels, not having deep 
spectral depressions in their transfer function Q(f),  may exhibit them in 
their "aliased" version Qeq( f )  (e.g., the telephone channel). It happens that 
when the channel bandwidth exceeds theNyquist interval (-1/2T, 1/2T), 
the choice of the sampling instant, which obviously does not affect lQ(f)l, 
does indeed affect IQ,( f )  1 (this was discussed in Section 2.5.1). Thus, 
for a channel whose frequency response extends beyond the Nyquist in- 
terval, inappropriate choice of the sampling epochs can produce nulls in 
the equivalent channel response. In this case, the linear TDL equalizer 
described above may be inadequate to compensate for ISI. 

(d) The minimum MSE (8.53) of the infinitely long equalizer does not show 
dependence on the allowed delay D. However, the performance of a finite 
equalizer does depend on that choice. 

8.3.2. Gradient algorithm for equalization 

We shall now describe a gradient algorithm for the automatic adjustment of the 
tap-weight values vector c to its optimum value. AS the gradient of the MSE 
was shown in (8.31) to be proportional to X c  - v, the gradient algorithm for 
equalization takes the form 
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where c(") denotes the tap-weight vector at the nth iteration step, and a is a 
positive constant small enough to insure convergence. The difficulty in the im- 
plementation of (8.54) is that the average cannot be computed in real time (see 
the discussion following (8.10)). Thus, as for automatic channel identification, 
we must resort to a stochastic gradient algorithm. However, before doing that it 
is expedient to analyze the convergence properties of the "true-gradient" algo- 
rithm (8.54). By duplicating arguments used in connection with the convergence 
analysis of the channel identification algorithm (8.10), it can be proved that the 
tap-weight error at the nth iteration, 

satisfies the recursion 

so  that 
€(n) = ( I  - OX)" ~ ( 0 )  (8.57) 

and convergence of the tap-weight error is assured for any do) provided that 

where pm, denotes the largest eigenvalue of the matrix X.  (Notice that the 
convergence analysis here is far more complex than for channel identification: 
this is due to the fact that the role of the source symbols is taken here by the 
channel outputs z,, whose autocorrelation is not the identity matrix anymore). 

Define now the excess MSE at the nth iteration step, that is, when c = dn). 
We have, using (8.34), 

Substitution of (8.57) in (8.59) yields 

or, observing that X commutes with I - a x ,  and hence with any of its powers, 

Our next step in the analysis of the convergence of A(") is based on the 
diagonal decomposition of X as in (8.35): 
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This yields 
(I - aX)'"X = U(I - ~A)'"AU-' (8.63) 

so that we finally get 

where pi('), i = 0,1, .  , . , N - 1, is the squared magnitude of the ith element of 
the vector utdO).  From (8.64) it is seen that A(") can be decomposed as the 
sum of N exponentials, all of them decaying to zero if (8.58) holds. For fast 
convergence, we may choose the step size a so as to speed up the convergence 
of the slowest-decaying exponential term in (8.64). This is done by minimizing 
the quantity 

a 
r(a)  = m+x 11 - apil (8.65) 

This "optimum" a satisfies the condition 

(see Fig. 8.6), where ,urnin is the smallest eigenvalue of X. Thus 

and 

Thus, we have proved that the maximum convergence speed is, in a sense, dom- 
inated by the eigenvalue spread prn,/prnin. In fact, the smaller this value is, 
the faster the convergence of the true-gradient algorithm that can be achieved 
by a suitable choice of the step size a .  A fast rate of convergence of the algo- 
rithm allows the equalizer to converge closely enough to its optimum setting in a 
short time; moreover, in a nonstationary environment channel variations can be 
tracked. 

Stochastic-gradient algorithm for equalization 

We shall now examine the stochastic-gradient version of algorithm (8.54): 

Fig. 8.7 shows how this algorithm can actually be implemented. For simplic- 
ity, real signals are assumed in this figure. However, it should be kept in mind 
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Figure 8.6: Choice ofthe "optimum" value of the step size a. 

that the quantities involved are generally complex, which implies that four real 
multiplications are involved in each multiplier. We assume, for the moment, that 
the source symbols a, necessary to compute the RHS of (8.69) are known at the 
receiver, and disregard the dashed box (to be described later). Every T one itera- 
tion is performed. When a new sample x, enters the TDL, a value y, is computed 
by combining linearly the N samples contained in the TDL according to (8.24). 
After subtraction of a,-D, the stochastic gradient is formed by multiplying this 
"error signal" by the samples x ,-,, i = 0,1, .  . . , N - 1. The values obtained, 
after rescaling by a factor -a, are added to the values of the tap weights stored 
in their accumulators so as to provide their updated versions. 

To analyze the convergence properties of the stochastic-gradient algorithm 
for equalization we must resort again, faute de mieux, to the simplifications al- 
lowed by the independence assumption. In our situation this consists in assum- 
ing that (x,) is a sequence of zero-mean iid vectors. Again, this simplification, 
which does not make much sense mathematically, offers results validated exper- 
imentally. 

Consider first the tap-weight vector dn). From (8.69), it depends on xo, xl, 
. . . ,x,-1. Given the independence assumption, dn) is independent of x,; thus, 
averaging both sides of (8.69) and using (8.55), we obtain 

This recursion shows that the average tap-weight error E[E(,)] converges to zero 
subject to condition (8.58) (this also shows the usefulness of the true-gradient- 
algorithm analysis). Thus, if (8.58) is satisfied, the stochastic-gradient algorithm 
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Figure 8.7: Implementation of the stochastic-gradient algorithm for channel equaliza- 
tion (real signals are assumed). 

is stable on the average (i.e., the average tap-weight vector will converge to its 
optimum value irrespective of the initial tap-weight setting). 

Consider next the evolution of the mean-square error. If we define the excess 

where 

we have, after some manipulations, 

6'") = E ly, - y$:l2 + 2RE [(c(") - copt)tx.(yg! - a , - ~ ) ]  (8.73) 

The second term in the RHS of (8.73) is zero. To show this, use (8.69) and 
the independence assumption to verify that c(") depends on x, and a,-D only 
for m < n, and hence that 

E [(cln) - c o p t ) t x ~ ( y ~ ~  - an-D)] = E [(c(,) - c ~ ~ ~ ) ~ ] E  [X:(Y$ -an-D)] (8.74) 

Moreover, 
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In conclusion, we have 

where the independence assumption has again been invoked in the last equality, 
and E(") is defined as in (8.55). It is worthwhile emphasizing that (8.76) is, in 
general, invalid if both (x,) and (a,) are not independent sequences. 

To proceed further, we first rewrite the stochastic-gradient recursion (8.69) 
in the form 

&+I) = A,E(") + b, (8.77) 

where 
a A, = I - Q X ~ X ~  (8.78) 

and 
a 

bn = -a(yOpt - ~ , -D)X .  (8.79) 

Thus, from (8.76) we obtain 

To simplify the analysis, we shall limit ourselves to the case in which the com- 
ponents of the vector x, are independent, and yo,, - a , - ~  is also independent of 
x,. Thus, recalling that E[a,] = 0 (which implies E[x,] = 0), we have X = 021, 
where a2 E{lzn12), and the middle term in (8.80) vanishes. In fact, we have 

Furthermore, the last term in (8.80) reduces to 

Finally, the matrix in the first term of the RHS of (8.80) reduces to 

where 
a 

PI = E [x;x',l2 - U;I = [E l z n 1 4  + (N - ~)u:]I (8.84) 

From the substitution of (8.81t(8.84) into (8.80) and the observation that under 
our assumptions E[E(")+E(")] = u;'6("), we finally obtain 

, 
dn+') = 76" + C Y ~ N & ~ ~ , U $  (8.85) t i ,  II 

where lll.l 

7 = (1 - a 0 2 ) ~  + (r2[E1zn1* + ( N  - 2)a:] (8.86) 
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Thus, y < 1 turns out to be a necessary and sufficient condition for the con- 
vergence of the excess MSE @). We can see, for example, that the convergence 
is adversely affected by the number N of tap weights in the equalizer, as well as 
by the fourth absolute moment of the received samples E{1~,1~). Also, if 7 < 1 
and n + oo, the excess MSE tends to its residual value 

Notice in particular from (8.87) that the excess mean-square error does not 
tend to zero, as in the true-gradient algorithm, but to a value approximately pro- 
portional to aZ, at least for small y values. This shows, for example, that the 
choice of the step size a in the stochastic-gradient algorithm entails a trade-off 
between fast convergence and small residual MSE. 

We conclude this section with the observation that, by using an iterative al- 
gorithm, the equalizer can work adaptively by tracking and compensating for 
channel changes, provided that they are sufficiently slow with respect to the set- 
tling time of the equalizer. 

8.4. Fractionally-spaced equalizers 

We have assumed so far that the signal x(t) received at the channel's output is 
first filtered and then sampled every T before being sent to the TDL with ad- 
justable weights and elementary delays T. This is an optimum procedure, as we 
have discussed in Section 7.4, if the equalizer is preceded by a filter matched 
to the channel-distorted transmitted pulse. In practice, when the channel is un- 
known the best we can do is to match the receiver filter to the undistorted trans- 
mitted pulse, or to a compromise representative of an entire class of distorted 
signals. This change, however, is far from being innocuous. We know from Sec- 
tion 2.5 that the process of sampling a signal at rate 1/T superimposes its spectral 
components spaced 1/T Hz apart (the "aliasing" effect), and hence makes the 
equalizer performance very sensitive to the choice of the sampling time, because 
this can cause the appearance of deep nulls in the equivalent channel transfer 
function. 

Another way of seeing this is by observing that the transfer function of the 
T-spaced equalizer is periodic with period 1 /T;  thus, spectral components of the 
incoming signal lying at frequencies spaced 1/T apart cannot be processed inde- 
pendently by adjusting the tap weights. Moreover, this periodicity does not allow 
the noise-frequency components lying outside the interval (-1/2T, 1/2T) to be 
suppressed. This task is assigned to the receiver filter preceding the equalizer, 
the one which should, optimally, be a matched filter. 
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Instead, assume that x(t) is sampled every T' < T ,  and consequently the 
TDL elementary delay is T'. If p denotes the excess bandwidth, that is, if the 
received signal x ( t )  is confined to the frequency interval [-(I + p)/2T, (1 + 
p)/2T], we can choose T' 5 (1 + p)-lT. With this choice, the equalizer trans- 
fer function becomes sufficiently large to accommodate the whole signal spec- 
trum. Hence, Q,(f) = Q(f);  the sampling instant becomes irrelevant, and the 
appearance of deep nulls caused by a badly chosen sampling instant is avoided. 
Finally, from (8.50) we see that the equalizer provides the optimum (MSE) re- 
ceiving filter, thus avoiding the need for a separate matched filter to suppress the 
noise (an anti-aliasing filter will be sufficient). 

It must be kept in mind that the signal at the output of the equalizer is still 
sampled at rate 1/T. But, since its input is sampled at l/T1, the equalizer acts 
on the received signal before aliasing its frequency components. In summary, 
we can say that a T-spaced TDL with symbol-rate sampling cannot perform 
matched filtering, while a TI-spaced TDL can incorporate the functions of a 
matched filter and of an equalizer. Equalizers based on this principle are called 
fractionally-spaced, and were first used in commercial telephone-line modems 
in the mid 1970s. 

A convergence analysis similar to that of Section 8.2 can be carried out for 
fractionally-spaced equalizers. Simulation of QAM in equalizers with T' = T / 2  
over typical voice-grade circuits (Qureshi, 1982) confirms the improvement, pre- 
dicted by the theory, over symbol-rate-spaced ("synchronous") equalizers. In 
particular, (a) the T /2  equalizer performs almost as well or even better than a 
synchronous equalizer with the same number of taps, and consequently twice the 
time span; (b) a receiving filter (other than the anti-aliasing filter) preceding the 
equalizer is not required with a T I 2  equalizer; and (c) for channels with severe 
band-edge distortions the T/2 equalizer outperforms the synchronous equalizer 
regardless of the choice of the sampling instant (Qureshi, 1985). 

8.5. Training the equalizer: Cyclic equalization 

So far, our analysis of the TDL equalizer performance assumed that the data se- 
quence (a,) needed to evaluate the error gradient was known at the receiver's 
front end. A widely used method to render this assumption realistic in practice 
is now described. In an initial (training, or start-up) period, a particular data 
sequence, known and available with the right time alignment at the receiver, is 
sent through the channel. This training sequence, orpreamble, may consist of 
isolated pulses, or may be a continuous sequence with a uniform power spec- 
trum (pseudo-noise sequences (Golomb, 1967) with periods significantly greater 
than N are often used to this purpose). Once the equalized channel quality has 
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become so good that decisions on transmitted symbols can be made with small 
enough error probability, the gradient is computed by replacing the estimated 
data symbol sequence (&) for the transmitted one (k) (see the dashed box in 
Fig. 8.7). Simulations and experimental evidence show that for reasonable error 
rates this replacement does not alter the convergence of the equalizer. 

In some cases, the error probability before equalization is so small that the 
training period can be avoided. The equalizer is then said to work in a "boot- 
strap" mode, this name being derived from the saying about pulling oneself up by 
one's own bootstrap. However, in most situations the equalizer must be trained 
before it can be switched to a decision-directed mode of operation. 

Concerning the selection of the training sequence, a good choice is a periodic 
sequence whose period is N, the number of TDL taps. This choice, which gives 
rise to cyclic equalization, enables us to solve a problem arising in the start-up 
procedure and concerning the best choice of the delay D to use in the defini- 
tion (8.27) of the mean-square error to be minimized. In fact, when aligning 
in time the training sequence generated locally with that sent by the source, D 
should be chosen in order to best compensate for the delay introduced by the 
channel. Cyclic equalization provides a rule to choose D such that the minimum 
MSE might not be achieved, but a relatively simple implementation is obtained, 
coupled with adequate performance. 

Consider a training sequence with period N. Assume for a moment that the 
channel is noiseless and distortionless. Thus, the received samples are just a 
delayed version of the transmitted symbol sequence. After convergence of the 
equalizer, only one of the tap weights will have anonzero value. The correspond- 
ing tap position informs us about the time shift between the received sequence 
and the one generated locally; in particular, any unit time shift in the sequence 
generated locally will cause the unique nonzero-weight tap to move by one po- 
sition in the TDL. Let us now return to a channel affected by linear distortion, 
but without noise. The received sampled sequence is once again periodic with 
period N .  One full period is stored in the TDL. After convergence, the start-up 
procedure will finish with a set of tap-weight values that needs to be only cycli- 
cally shifted for proper time alignment. As any cyclic shift between the received 
sample sequence and the data sequence generated locally causes a cyclic shift of 
the set of tap-weight values, it is not necessary to achieve time alignment before 
start-up. This can be done after start-up by cycling the tap-weight values so that 
the largest absolute value is found in a reference position (e.g., the center tap). 

An equalizer scheme based on this principle is shown in Fig. 8.8. The pe- 
riodic sequence generator outputs the training word. All tap weights are preset 
to identical values to reflect that the location of the largest weight is not known 
a priori. To begin the start-up procedure, the switch at the bottom is set to po- 
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Figure 8.8: Block diagram of a TDL equalizer with cyclic training. 

sition a. After training, the tap weight values are aligned by cyclic shifts, as 
just indicated. The equalizer can now be operated in a decision-directed mode 
by moving the switch to position a. 

It remains now to analyze the performance of cyclic equalization. Without 
noise, the sequence (x,) is periodic; hence, it has a periodic correlation, which 
makes the matrix X circulant. As a consequence, the analysis carried out in 
Section 8.2.1 and based on decomposition (8.35) becomes exact. In particular, 
from (8.49) we have 

This shows that equalization of the channel is achieved at a set of N equally 
spaced frequencies in a frequency interval of width 1/T. In other words, the in- 
verse channel response is approximated through interpolation at equally spaced 
points. Thus, equalization after start-up, although nonoptimum in the MSE sense 
for random transmitted data, can be expected to be reasonably close to the opti- 
mum when N, the number of taps in the TDL, is sufficiently large. 

Concerning the choice of the periodic symbol sequence to be employed in 
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the start-up phase, it has been proved (see Godard, 1981) that the best sequences 
in the presence of noise are those whose periodic autocorrelation 

A N-I 

Rk = C ~(n+k)  mod N a; 

is exactly zero for k # iN, i = 0,  f 1, f 2,.  . .. As sequences with this prop- 
erty can be generated for any period N by using constant-amplitude (i.e., purely 
phase-modulated) signals, they have been called constant-amplitude, zero-auto- 
correlation (CAZAC) sequences. One such sequence with N = 8 is obtained 
by repeating periodically the 4-PSK signals n/4,77r/4, 37r/4,3~/4, n/4, 3 ~ 1 4 ,  
3n/4,7n/4. 

8.6. Non-MSE criteria for equalization 

The previous sections were devoted to the analysis of equalizers based on a given 
structure, the TDL, and a given optimization criterion, the minimization of MSE. 
Although this combination has proved most fruitful in applications, it is by no 
means the only one, and considerable effort has been spent to devise and analyze 
different equalization criteria andlor structures. Hereafter we shall review some 
of the most significant solutions obtained in this framework. In particular, in 
this section we shall describe two non-MSE criteria for TDL equalization. Other 
criteria will be described a little later, in the context of blind equalization, and an- 
other equalizer structure will be discussed in next section. Notice also that a most 
sensible optimization criterion would be the minimization of error probability: 
however, this would result in nonlinear equations, exceedingly more difficult to 
solve than the linear equations arising from the minimum-MSE criterion. 

8.6.1. Zero-forcing equalization 

The first approach to automatic equalization assumed a peak-distortion criterion. 
Peak distortion can be derived from the eye pattern of the received signal, and is 
closely related to the worst-case bound to error probability (see Section 7.2). 
Consider for simplicity that a binary (f 1) stream of independent symbols is 
transmitted. Further, denote by (ht) the impulse response of the discrete-time 
system that responds to the source sequence (ac) with the equalized sequence 
(yt). In other words, (ht) is the response of the discrete-time equalized channel. 
We define the normalized peak distortion as 
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It is assumed that ho = maxk Ihkl. In words, V(c) . ho represents the maximum 
value of the intersymbol interference (ISI) affecting the equalized signal. V(c) = 
0 means that there is no ISI, whereas V(c)  2 1 denotes that the eye pattern is 
completely closed (hence reliable transmission is impossible, irrespective of the 
noise power level). 

If the tap-weight vector c is chosen so as to minimize V(c) ,  it can be ad- 
justed by using an iterative algorithm (Lucky, 1965 and 1966) that is guaranteed 
to converge whenever the unequalized eye is open. This gives the zero-forcing 
algorithm, so called because it forces the IS1 to zero. Now, the equalized chan- 
nel satisfies the zero-IS1 condition, or Nyquist's criterion, if the equalizer fre- 
quency response is (apart from an unessential linear-phase factor) TQ;l ( f) ,  the 
inverse of the aliased frequency response of the channel seen by the equalizer (a 
finite-length zero-forcing equalizer simply approximates this inverse). Since this 
criterion neglects the effects of the noise, it might excessively enhance noise at 
frequencies where IQ,,(f)l takes on small values. Nevertheless, due to their 
simplicity, zero-forcing equalizers were the first incorporated in commercial 
modems. 

8.6.2. Least-squares algorithms 

More recently, the expansion of data-transmission systems requiring quick setup 
and response has created the requirement for equalizers in which a short training 
time is a premium. This occurs, for instance, in multipoint networks, where the 
tributary terminals may transmit only when polled by the control modem. The 
messages from the tributary to a control station are often short, and the control 
modem must adjust its equalizer whenever a message is received. Quickly con- 
vergent equalization algorithms have been sought either by modifying the basic 
gradient algorithm under an MSE criterion, or by devising other performance 
criteria. The latter approach can be pursued by introducing a least squares (LS) 
criterion, that is, the sequence of cost functions 

to be minimized over the tap-weight vector dn). In words, a is sought that 
minimizes the sum of the squared errors that would be obtained if c(") were used 
with all the past received-signal samples. Algorithms matched to the cost func- 
tion (8.90), called LS algorithms, have been proved to provide fast convergence 
as required. 

By taking the gradient of (8.90) and setting it equal to the null vector, the 



408 8. Adaptive receivers and channel equalization 8.7. Non-TDL equalizer structures 409 

following equation for the optimum tap-weight vector is obtained: 

where 

and 

It should be observed that, apart from a factor l l n ,  x(") and v(") are the time- 
average counterparts of X and v, as defined respectively in (8.29) and (8.28). 
Thus, XIn) and dn) can be viewed as estimates of X ,  v. 

Solution of (8.91) by matrix inversion can be complicated by the fact that 
x("), being only an estimate of acorrelation matrix, need not be positive definite. 
Hence, its inverse may not exist. This problem can be circumvented by simply 
adding to X(") a scalar matrix 61, where 6 is a positive constant included to 
ensure that X(") is nonsingular for all n. Moreover, the cost function (8.90) 
can be slightly modified to include a feature desirable when the channel is time 
varying: by introducing a geometric attenuation factor 0 < X < 1, that is, by 
introducing the new cost function 

the present influences the tap-weight update more than the past. In fact, A 
weights recent samples more heavily, so that lA(c("))  tends to forget the old 
samples. Thus, slow channel variations with time can be tracked. For a time- 
invariant channel we may choose X = 1. In a time-varying environment X < 1, 
its actual value having no influence on the convergence rate but determining the 
tracking capabilities of the equalizer (Ling and Proakis, 1984). 

For the update of c(") several algorithms have been proposed. The Kalman 
algorithm (Godard, 1974) assures rapid start-up, but requires a number of calcu- 
lations proportional to N2,  where N is the number of taps in the TDL. A similar 
algorithm,usually referred to as the fast Kalman algorithm (Falconer and Ljung, 
1978), improves the Kalman algorithm as it achieves a lower complexity (linear 
growth with N )  without performance degradation because it is mathematically 
equivalent to the latter. These algorithms have been compared by simulation over 
several channels by Lim and Mueller (1980). Their convergence properties have 
been proved to be very similar. They require roughly one-third as many itera- 
tions as the stochastic-gradient algorithm. The price for this increase in speed 

is complexity: the fast Kalman algorithm, which has the lowest complexity, re- 
quires about 10 times as many multiplications as the stochastic gradient. Notice 
also that the fast Kalman algorithm may be unstable when implemented digitally 
with insufficient accuracy (Lim and Mueller, 1980). 

8.7. Non-TDL equalizer structures 

It is also possible to use equalizer structures that are not transversal filters. One of 
these alternative structures is obtained by using the Kalmanfilrer as an equalizer 
(Lawrence and Kaufman, 1971). The Kalman filter, a version of the minimum- 
MSE linear receiver, has a recursive structure. Comprehensive simulation results 
(Benedetto and Biglieri, 1974) have shown that the performance of this linear 
filter is not significantly better than that of a TDL of comparable complexity. 

Another equalizer structure is based on lanicefilters (Lim and Mueller, 1980). 
Among the properties of lattice filters that make them worthy of special attention 
are their fast convergence and their high insensitivity to round-off errors deriving 
from finite-precision digital implementation. 

Satorius and Pack (1981) have compared the convergence properties of lattice 
equalizers based on the minimization of MS or LS error with those of an MSE 
TDL equalizer. By simulation, the LS lattice equalizer is shown to converge in 
40 to 50 iterations where the MSE lattice equalizer needs about 120 iterations. 
These figures are independent of the eigenvalue spread of the matrix X.  On 
the other hand, an MSE TDL working with the stochastic-gradient algorithm 
requires about 600 iterations for its convergence when the eigenvalue spread 
pmax/pmin = 11, andabout 1000 when pmax/pmin = 21. Thus, not only does the 
lattice equalizer converge faster, but its convergence properties do not depend, to 
a certain extent, on the channel. The price paid for this improved performance 
is increased complexity. In fact, the LS lattice equalizer must perform 12N 
multiplications, 11 N additions, and 3 N  divisions at each step, while the TDL 
equalizer needs only 2 N  multiplications and 2 N  additions (Schichor, 1982). The 
LS lattice equalizer needs even more operations than the fast Kalman algorithm 
mentioned in Section 8.6 (which requires ION multiplications, 9 N  additions, 
and 2 N  divisions). On the other hand, the fast Kalman algorithm performs much 
the same as the LS lattice in terms of convergence speed (see Lim and Mueller, 
1980). 

8.8. Decision-feedback equalization 

In this section we examine a class of nonlinear equalizers that are especially 
useful for channels with severe distortion. The basic idea is the following. Let us 
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Figure 8.9: Qualitative impulse response of a discrete channel to be equalized. 

observe that, due to propagation delay in the transmission channel, the received 
signal sample xe is used to make a decision on the symbol that was emitted by 
the source D discrete-time instants before, say a e - ~ .  The impulse response (qe) 
of the discrete channel with input (ae)  and output (x!) is sketched qualitatively 
in Fig. 8.9. The samples qe, L < D, are called the precursors, while the samples 
qt, e > D,  are called the tails, or postcursors, of the impulse response. Assume 
for a moment that this impulse response and the source symbol at-D are known. 
Since 

w 

Ze = ae-,qm + ne (8.95) 

we can subtract the known quantities a&k-~qk+D from the samples xe+k, k # 0. 
thus eliminating all the IS1 due to symbol at-D. This is the essence of data- 
aided equalization: if a number of source symbols are correctly detected and 
the channel impulse response is known, then the IS1 can be reconstructed and 
therefore canceled from the received signal. By implementing this idea when 
the channel suffers from a large amount of amplitude distortion, we can expect 
a performance improvement with respect to standard equalization. In fact, this 
is a situation where an ordinary linear equalizer would considerably enhance the 
noise, while this data-aided equalizer would not play any role in determining the 
noise power of the equalizer output. In fact, it will just provide a weighted sum 
of noise-free symbols to be subtracted from the received symbols. The reader is 
warned, however, that the assumption of a known transmitted sequence makes 
the preceding statements only approximately true. Actually, in a real setting 
there is no hope of canceling completely the IS1 without introducing a certain 
amount of noise enhancement. This is because the minimum distance dm;, (see 

Figure 8.10: Block diagram of an ideal data-aided equalizer: 
1 

Section 7.3, which depends on the source symbol structure and on the channel, 
imposes a limit to the error performance of any conceivable receiver, and hence 
of any receiver based on data-aided equalization. 

The block diagram of an ideal data-aided equalizer is shown in Fig. 8.10. 
The IS1 canceler is a transversal filter with tap weights {ck). Denoting by S the 
index set (0, 1, . . . , D - 1, D + 1, . . . , N), the equalized signal takes the form 

Notice that S does not include the index D. This is because we want to re- 
strict the role of the canceler to remove the IS1 without altenng the useful signal 
a e - ~ q ~ .  It satisfies intuition, and can be proved, that the canceler weights {ck) 

A that minimize the MSE E = E lye - aeADI2 are 

Consider now the practical implementation of a data-aided equalizer. Since 
the source symbol sequence (a t )  appearing in Fig. 8.10 is not available at the re- 
ceiver, it must be estimated from the received samples. Thus, it must be assumed 
that, after a suitable training period, the equalizer yields an error rate so low 
that near-perfect detection is not an unrealistic assumption. Also, as the chan- 
nel is now known in advance (and can vary with time), the canceler will have 
adaptively-varying coefficients. 

! 
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Figure 8.11: Block diagram of a decision-feedback equalizel: 

PRELIMINARY 

The most popular scheme of data-aided equalization is the decision-feedback 
equalizer (DFE). In it, the set S includes only the integers D + 1,. . . , N ,  SO the 
canceler operates only on the postcursors of the channel impulse response. With 
this choice for S, we see from (8.96) that at time e the source symbols needed 
for cancellation are a c - ~ - ~ ,  ae-D-2, . . . , a e - D - ~  Since at time e a decision is 
taken on the symbols needed can be obtained from the previous decisions. 

In conclusion, a DFE is based on a canceler that takes care of the postcursors 
of the channel impulse response. Now, this cannot be self-sufficient, because 
the precursors also have to be accounted for. Hence, a preliminary equalizer 
(also called a feed-fonvardfilter) should precede the canceler. Its task may be 
viewed as the elimination of the precursors, i.e., a function complementary to the 
canceler. Since the feed-forward filter need not approximate the inverse of the 
channel transfer function, excessive noise enhancement can be avoided. 

The DFE scheme is presented in Fig. 8.11. In it, as is customary, the canceler 
is referred to as the feedback filter. Notice that the inclusion of the decision 
device into a loop renders this equalizer intrinsically nonlinear (as generally in 
all data-aided structures). 

To analyze the DFE behavior, assume that the preliminary equalizer and the 
feedback filter are TDL with lengths N and N' and weight vectors c and f ,  
respectively. Thus, the signal sample at the input of the decision device can be 
written in the form 

ye = c1ze - fl& (8.98) 

A A 
where ze = [ze ,  ze-1,. . . , Z ~ - N + ~ ] '  and iie = [he, & - I , .  . . , ~ L - N I + ~ ] ' .  BY defin- 
ing the two column vectors, with N + N' components each, 

I 
and 

EQUALIZER Eq. (8.98) can be rewritten in the more compact form 
- G I - D  

Since (8.101) bears a close resemblance to (8.24), it is not difficult to dupli- 
cate the arguments of Section 8.2 to find the vector b, and hence c and f ,  that 
minimize the MSE, and to devise a gradient algorithm for minimization. (Min- 
imization of MSE is of course not the only design criterion. For example, a 
zero-forcing criterion is also applicable (see Price, 1972).) By assuming iie = at 
for all e, we obtain 

where 
A U = E[u;ua (8.103) 

and 
A 

W = E[u~-Du;] (8.104) 

By taking the gradient of (8.102) with respect to b and setting it equal to the null 
vector, we obtain the following equation for the optimum tap-weight vector bop,: 

Since U is not necessarily positive definite, a form for bopt similar to (8.32) 
may not be available. However, a gradient algorithm can be displayed: 

which converges to a tap-weight vector achieving the minimum MSE. 
By taking the limit as N and N' both tend to infinity, an expression can be 

obtained for the minimum achievable MSE (Salz, 1973): 

1 /m 
 erni in]^^^ = exp { T /-l/2~'"Gn(f)+(u:/T)1Qeq(f)1~ & n ( f )  d f )  (8.107) 

By comparing (8.107) with (8.53), the analogous expression for the infinite- 
length linear TDL equalizer, one can prove that [&minID*~ is always less than or 
equal to the value (8.53). The equality holds only when J Q e q ( f ) J  is a constant 
and the noise is white: this fact suggests that the DFE equalizer outperforms the 
linear equalizer especially when the channel is far from flat, i.e., it causes a large 
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distortion. This is true asymptotically, and in the absence of decision errors. 
Unfortunately, however, there is no definite answer to the question of whether a 
finite-length DFE achieves a lower MSE than a linear equalizer with the same 
overall number of taps. In fact, the relative performance of the two equalizers 
depends on the actual channel characteristics, on the number of taps, and on the 
choice of the delay D (Qmshi ,  1982). Simulation results (Salz, 1973) confirm 
what is intuitively expected: the DFE is markedly superior to the linear equalizer 
with the same finite length when operating on channels with spectral nulls in the 
Nyquist interval. This is the situation where the linear equalizer suffers most 
from noise enhancement. In addition, the DFE performance is less sensitive to 
the sampling time (Qureshi, 1982). 

Finally, it must be observed that our preceding discussion was based on the 
assumption that & = at for all e, i.e., that the decision process was error-free. 
Now it is reasonable to ask to what extent the DFE performance is degraded by 
decision errors. Decision errors tend to propagate 

because they produce wrong cancellation of tails. In fact, when the feedback 
filter is fed by a wrong decision its output reflects this error during the next 
few time instants. This causes a reduced noise margin for future decisions. In 
turn, this entails a higher probability of future incorrect decisions, and so on. 
Simulation results show that this error propagation is not catastrophic: in fact, 
on typical channels errors tend to cluster in bursts short enough to only slightly 
degrade performance. 

8.9. Blind equalization 

The need for an initial training period for the equalizer, which is detrimental for 
data rate, can be avoided by using blind equalization techniques. They aim at 
providing equalizer convergence without burdening the transmitter with a train- 
ing overhead. An obvious way of doing this is to use blind identification as 
described earlier in this chapter, and exploit the channel information thus ob- 
tained to set the equalizer to its optimum value. This procedure can be repeated 
as often as needed in order to track the channel variations. 

Another approach to blind equalization is based on a non-MSE criterion: as 
we shall see, a proper choice of the distortion function to be minimized yields a 
tap-weight setting algorithm that does not depend on the transmitted data. 

The following assumptions on the source symbols are made: the RV a, are 
complex and iid. Moreover, 

E[ai]  = 0 (8.108) 

(this occurs, for example, when the real and imaginary parts of a, are uncorre- 

8.9. Blind equalization 

lated and have the same variance). Also, define 

A 
m2 = E{lanI2) (8.109) 

and 
A 

m4 = E{lan14) (8.1 10) 
Condition (8.108) implies certain symmetries in the signal constellation used by 
the digital modulator. For example, binary PSK and one-dimensional modula- 
tions are excluded. 

8.9.1. Constant-modulus algorithm 

The idea here is to force the equalizer weights to maintain a constant envelope 
on the received signal. Under the assumption 

2m; > m4 

the distortion criterion, independent of a,, is then 

If we denote by (h,), as usual in this chapter, the impulse response of the discrete 
channel extending from the source to the equalizer output, so that 

m 

Yn = C an-khk (8.113) 
k=-m 

we have, after some algebra, 

Now, (8.114) can be rewritten in the form 



416 8. Adaptive receivers and channel equalization 

We have derived (8.115) to clarify the choice of (8.112) for the distortion func- 
tion. Actually, we prove that this choice leads approximately to the same result 
as the distortion 

E1(c)  ~ [ l y n l ~  - lan1212, (8.116) 

which appears at a first glance to be sensible for constant-envelope modulations, 
i.e., constant lan12. Expanding (8.1 16). we obtain 

Now, (8.117) has a minimum when Iho12 is close to unity and the IS1 samples 
h k ,  k  # 0, are small in magnitude. Moreover, comparison of (8.1 15) and (8.117) 
shows that 

The difference (8.118) is almost independent of (h,), and hence of c, when 
the distortion term is small enough. So it can be expected that minimizing E(c)  
will also provide a minimum for E1(c) .  The condition for this to be true is that 
in (8.115) the term [4m;(hoI2 - 2m4]  does not become negative near the min- 
imum; but this is assured, because (8.111) is assumed, and near a minimum 
(ho(2  = 1. 

A stochastic-gradient algorithm can now be exhibited. Since y, = c1xn as 
usual, the gradient of E ( c )  taken with respect to the tap-weight vector c is 

so that the following stochastic-gradient algorithm can be used: 

Comparison of (8.120) with (8.69) shows that the stochastic-gradient term does 
not depend on the symbols a,, as required. Also, it can be verified that when 
clxn = an (i.e., perfect equalization is achieved) the gradient (8.119) is the null 
vector. Incidentally, this result would not hold if in lieu of m4/m2 another con- 
stant were selected in the brackets of (8.112). As a conclusion, (8.120) offers 
over (8.69) the significant advantage of not requiring a training sequence. This 
comes at the cost of a lower convergence speed. 

8.9. Blind equaliration 417 

8.9.2. Shalvi-Weinstein algorithm 

A different distortion function was suggested by Shalvi and Weinstein (1990). 
Under the assumptions that the kurtosis of the data, i.e., 

is nonzero, and that the discrete Fourier transform of the sampled channel im- 
pulse response has no zeros, i.e., 

a necessary and sufficient condition for the channel to be perfectly equalized is 
that E{Iyn12) = m2 and E{lynI4} = m 4 .  

The proof goes as follows. From the channel input-output relation 

we have, by invoking the iid assumption of the a,: 

E { I Y ~ I ~ )  = E{lan12) lhk12 and E{Y,?,) = 0 (8.121) 
k 

Moreover, by recalling definitions (8.109) and (8.110) and observing that 

m4, i = j = k = C  
E{an-iai-jan-ka;-() = m;, i = j  # k  = C, i = e # j  = k  

0, otherwise 

we have 

Thus we obtain 

E{Iynl4) = m4 C lhkI4 
k 

Now, observe that in general 

,I,.' with equality if and only if there is at most one nonzero term in the summations. 
Thus, if E{lyn12) = E{lan12) then from (8.121) we have Ck lhk12 = 1. Hence, 
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xk lhkI4 5 1 ,  and Ck ]hkI4 = 1 if and only if the impulse response has only one 
nonzero component of magnitude 1. Thus, we have obtained that if E{lyn12} = 
m2 then E{Jyn14}  5 m 4 ,  with equality if and only if the impulse response of the 
equalized channel has only one nonzero component of magnitude 1. But this is 
tantamount to saying that the channel is perfectly equalized. 

The above result suggests the following equalization criterion: 

maximize E { ( y n ( 4 }  subject to ~ { ( y ~ l ' )  =  la,(') (8.124) 

An interesting feature of this criterion, that we shall not prove here, is that 
E { ~ Y , ( ~ }  has a single global minimum over E{(y , ( ' }  = E{Ia , (2} ,  and hence, 
unlike with the constant-modulus criterion described above, a gradient algorithm 
is expected to converge to the desired response regardless of initialization. 

To apply this criterion, we need an explicit expression for the gradient of 
E ( c )  = E{lynI4} .  We have 

and hence the stochastic-gradient algorithm 

along with the normalization step 

8.9.3. Stop-and-go algorithm 

A different approach to blind equalization leads to the "stop-and-go" algorithm 
of Picchi and Prati (1987). This algorithm aims at retaining the simplicity of 
a conventional linear or DFE equalizer working in a decision-directed mode, 
while endowing it with blind convergence properties. The basic idea here is 
to stop adaptation whenever the reliability of the error signal is not high enough. 
More precisely, a binary-valued flag is generated telling the equalizer whether its 
current decision may be used to generate a reliable error signal: if not, adaptation 
is stopped for that iteration. 

8.10. More on complex equalizers 

Throughout this chapter, extensive use has been made of complex notations to 
denote samples of bandpass signals and channel responses. As a special case, 

8.10. More on complex equalizers 

EQUALIZER DECISION 

DEVICE ( 6 , )  

(e-j j(tW$f+ 8,) 1 
( DEMODULATION AND 

PHASE COMPENSATION) 

Figure 8.12: Discrete-time model of a receiver in which equalization is pelfontled after 
demodulation and carrier-phase compemation. 

(e-i ( ~ M o ~ T ) )  (e-j%) 
( DEMODULATION ) (PHASE COMPENSATION) 

Figure 8.13: Discrete-time model of a receiver in which equalimtion is pelfonned a jer  
demodulation and before carrier-phase cornpenration. 

baseband signals and channels can be handled with obvious changes in the equa- 
tions. In this section we expand briefly on certain features of two-dimensional 
equalization. 

Hitherto we have implicitly assumed that the carrier phase for demodula- 
tion has been properly estimated. This estimate can be performed in a decision- 
directed mode with the receiver arrangement of Fig. 8.12. In it, equalization is 
performed after coherent demodulation and inside the loop for decision-directed 
phase compensation (Matyas and McLane, 1974). With this arrangement, as the 
equalizer itself introduces a many-symbol-internal delay between input and out- 
put, the estimated phase sequence (&) is a delayed version of the true phase se- 
quence (0,). This delay prevents the receiver from correctly compensating any 
time-varying phase shift introduced by the channel. To avoid this impairment 
source, two different receiver structures can be used (Falconer, 1976). The first 
one, shown in Fig. 8.13, places phase compensation after the equalizer, while 
demodulation is performed using a free-running oscillator before the equalizer. 
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(,-j (2nlbnT+ gn))  
( DEMODULATION AND 

PHASE COMPENSATION) 

Figure 8.14: Discrere-time model of a receiver in which equalization ispe$omed before 
demodularion and carrier-phase compensation 

The second one (Fig. 8.14) places both demodulation and phase compensation 
after the equalizer. The latter now operates on bandpass samples. Hence, it is 
referred to as a bandpass equalizer. If equal phase compensation is assumed for 
both schemes, mathematically these structures are exactly equivalent. 

A feature of these two structures worth observing here is the tap-rotation 
property (Gitlin, Ho, and Mazo, 1973). Assume that the equalizer-input sam- 
ples are rotated by an angle cp. Then the vector x, defined in (8.26) is changed 
into x , & ~ .  Consider the effect of this phase rotation on the operation of a lin- 
ear equalizer. From definitions (8.28)-(8.29) it can be easily seen that X is left 
unchanged, whereas v is changed into ve-j'f'. In turn, this implies that the op- 
timum tap-weight vector (8.32) is changed into c,,,e-j~ (i.e., the equalizer taps 
are rotated by -cp), the net result being that when the equalizer has settled at its 
optimum the equalized output samples will not be affected by the phase rotation. 

Furthermore, consider the effect on the operation of these two equalizer struc- 
tures of two transmission impairments typical of telephone lines, phase jitter and 
frequency offset. Phase jitter acts as a real random sequence (cp,) affecting the 
phase angle of the channel-output samples. When its time constant is much larger 
than the equalizer settling time, it can be assumed to cause a constant phase shift. 
Thus, due to the tap-rotation property, it can be compensated for by the equal- 
izer. Similar considerations hold for a frequency offset (i.e., the perturbation of 
the carrier frequency fo by a small amount A f). In conclusion, the equalizer, 
due to its tap-rotation property, can track small amounts of phase jitter and fre- 
quency offset so that the phase compensation loop implicit in Figs. 8.13 and 8.14 
is not required. When phase jitter or frequency offset are significant, this phase 
compensation loop is needed. 

8.11. Tomlinson-Harashimaprecoding 

8.1 1. Tomlinson-Harashima precoding 

In this section we describe an equalization scheme that operates at the trans- 
mitter side, and hence avoids the noise enhancement caused by linear equaliza- 
tion or the error propagation caused by decision-feedback equalization. This is 
called Tomlinson-Hamhima (TH) precoding, and is in some ways inspired by 
decision-feedback equalization. There, intersymbol interference (ISI) due to pre- 
viously detected symbols is subtracted out in the receiver before detection of the 
current symbol. In TH precoding, a similar effect is achieved by operating on the 
transmitter side: the source symbols, instead of being directly sent through the 
channel, are first pre-equalized to counter the distortion that will be introduced 
there. In general, a linear pre-equalizer would exhlbit the effect of boosting the 
tran_s=??Zed power, whlch IS hlghly undesirel-for channels with a constraint on -- - - -- 
E-e-of t-TH precoding is70 introduce a nonlinear opera- 
tion that prevents the transmitted power from increasing. This precoding scheme 
is easy to implement, and can be used in conjunction with coded modulation (to 
be described in Chapter 12). 

Assume from now on that the impulse response ( q k ) z o  of the discrete chan- 
nel is causal, with qo having the largest magnitude, and is known at the trans- 
mitter. This knowledge can be achieved by sending a training sequence during a 
startup phase, and subsequently relaying the received sequence to the transmitter. 
Assume further that go = 1. 

Let the channel symbols be denoted ak, and the source symbols bk. Since the 
channel is assumed to be known at the transmitter, then a linear "zero-forcing" 
transmission filter, i.e., one obeying 

would cause complete elimination of the IS1 (or of its "postcursors," if the chan- 
nel were not causal). Ww, the difficulty with this solution is that the transmitted .' 
poyermay be increased, ar@*n-ev?nbe unbounded if the zero-forcing filter is 

, unstable. To avoid this increase, a nonlinear oper%on is introduced so thatthe - - - -  
values taken by ak are forced to be in approximately the same range as those of 
the source output bk. 

At each discrete tlme k, given the past channel symbols ak-,, i 2 1, and the 
actual source symbol bk, a symbol fk is first determined by subtracting from bk 
the IS1 due to the tail of the channel impulse response, i.e., 

The new transmitted symbol ak is then obtained by reducing the coordinates 
of f k .  If the modulation is M-ary PAM, with bk = f 1. f 3. . . . . f fM - 1'1 
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Figure 8.15: Preceding and decoding with Tomlinson-Harashima equalization 

then ak is reduced to the interval (-M, M ]  by a nonlinear transformation that 
leaves it invariant if it takes a value in this interval, otherwise it subtracts from 
it an appropriate mk, an integer multiple of 2M. Similarly, if the modulation 
is QAM with real and imaginary parts of bk taking on M values each, then ak 
is reduced to the square (-M, MI2 by subtracting an appropriate mk in 2MZ2. 
This is equivalent to a mod-2M reduction of f k ,  or of its real and imaginary part 
if fk  is a complex number. Notice that, while the source symbols bk can take on 
either M or M 2  values, the precoded symbols ak may take on many more values. 

Thus, 
ak = f k  - mk 

and hence, because of (8.127), 

which implies that x qiak-i = bk - mk (8.128) 
i 

The latter equation can be interpreted by observing that its LHS, i.e., the chan- 
nel output, consists of bk (the source symbol) minus a correction term. Since 
mk E 2MZ (PAM) or mk E 2MZ2 (QAM), the channel outputs take values in 
an extended signal constellation, whose exact range is channel-dependent. Be- 
fore decision, the channel outputs are reduced to the source-symbol range by 
reducing.them mod-2M. This is equivalent to saying that the source signal es- 
timates can be recovered from the channel output by a memoryless operation 
that folds the latter into the region (- M ,  M ]  (for one-dimensional modulations) 
or to the square (-M, MI2 (for two-dimensional modulations). If the source 
symbols bk form a PAM sequence, the memoryless operation is simply a slicer. 
Fig. 8.15 summarizes the precodingldecoding scheme resulting from Tomlinson- 
Harashima equalization. 
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Finally, observe that if the precoder is forced to choose the all-zero precoding 
sequence, that is, if mk = 0 for all k, then f k  = ak, and the transmitted sequence 
is simply 

ak = C gk-ibi 
i 

where (gk) is the impulse response of the formal channel inverse: this is still 
causal, with go = 1. The last equation is interpreted by observing that linear 
zero forcing in the transmitter is equivalent to precoding with mk = 0. 

We should also observe a "data-flipping" effect caused in the receiver by the 
nonlinear operation. Consider, for simplicity's sake, binary transmission with 
symbols f 1. Suppose that ak = +l is transmitted through the channel, and that 
the noise takes the signal out of the [-2, 2) region, causing for example the value 
2.1 to be received. Without slicing, the decision would still be correct, while the 
mod-4 operation produces the value 2.1 - 4 = - 1.9, and hence an error is made 
by the decision device. 

Transmitted power with TH precoding 

We examine now the average power transmitted with TH precoding. We may 
confine ourselves to consideration of PAM only: since in QAM the signals are 
transmitted over orthogonal carriers, the total power is obtained by summing the 
powers of the individual in-phase and quadrature parts. 

We have the following result, that we shall prove later on. The average power 
of the transmitted symbols ak is bounded above and below by 

while, as we know from (5.12), 

By comparing the last two equations we see that for a binary system the max- 
imum power penalty is 3 dB, which reduces to 0.8 dB for a quaternary system 
and tends to zero as M increases. 

We now prove (8.129). Let us define the function p[ - ] that reduces its argu- 
ment mod 2M. Then the average transmitted power can be written in the form 
(we drop the time index for simplicity): 

where Q is a random variable representing the term added to the source symbol 
b in (8.127). Since the calculation of the pdf of Q is a difficult task, we choose 
to look for the pdf's that yield a maximum and a minimum value of E[a2]. 
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The key to the solution of this problem is the observation that the RV O may 
be restricted, without loss of generality, to the interval ( -1 ,  +I]. In fact, with 
this restriction the RV p(b + 8) takes on values, with equal probabilities, in 

On the other hand, if O takes values in the interval (-1, +1] + 2,  then p ( w  + 8) 
takes on values, with equal probabilities, in 

Since 
p [ ( M - l ) + O + 2 ] = - ( M - 1 ) + O  

then p(b + 0)  has the same distribution of p(b + O + 2 ) ,  and, by the same 
argument, of p(b + O + 2 j ) ,  j any integer. 

Now, pick a pair f B of values taken by b. With the restriction of O to the 
interval ( -1 ,  11 the contribution of this pair to ~ [ a i ]  is proportional to 

E e [ p 2 ( 0  + B)]  + E e [ p 2 ( Q  - B ) ]  = E e [ ( O  + B ) ~ ]  + E e [ ( @  - B ) ~ I  
= 2 ~ [ 8 ~ ]  + 2 B 2  

Now, for 8 taking values in (-1, 11, and independently of B ,  the last quantity 
is minimized by choosing a pdf that assigns to O the value 0 with probability 1, 
and maximized by choosing a pdf that assigns to 8 the value 1 with probability 
1. Substitution of these pdf's in (8.131) yields the desired bounds (8.129). 

8.12. Bibliographical notes 

The scheme of Fig. 8.1 was first analyzed by Magee and Proakis (1973) and 
Proakis (1974). Prior to the mid-1960s, considerable research effort was directed 
to the specification of digital receivers for channels affected by ISI. The structure 
of an adaptive receiver based on the TDL, and an iterative optimization technique 
for adjusting its tap weights, eventually emerged from this work. The history of 
the TDL filter as an equalizer dates back to Nyquist (1928). The fundamental 
ideas on which automatic equalization is based were not unknown in the mid- 
1960s: see, e.g., Goldenberg and Klovsky (1959), a paper that one of the authors 
claims to be the first to describe time-domain adaptive equalization (Klovsky and 
Nikolaev, 1978, p. 40); or the papers by Kettel (1961, 1964). However, there is 
no doubt that it was R. W. Lucky's early work (Lucky, 1965,1966) that provided 
the major breakthrough in the problem of equalizing intersymbol-interference 
channels. The TDL equalizer based on an MSE criterion was first analyzed by 
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Proakis and Miller (1969) and Gersho (1969). Its convergence properties in the 
training mode were studied by, among others, Ungerboeck (1972), Mazo (1979), 
and Gardner (1984) using the "independence assumption." Our treatment of the 
subject is based on the latter paper, which contains the most comprehensive con- 
vergence analysis known to the authors. Convergence analysis of the MSE TDL 
equalizer working in the tracking mode with the stochastic-gradient algorithm 
is more complicated. For details, the reader is referred to Macchi and Eweda 
(1984) and to the references therein. 

The interest on developing adaptive algorithms with fast convergence is more 
recent. Chang (1971) and Gitlin and Magee (1977) approached this problem by 
transforming the equalizer input sequence in order to decorrelate its samples. 
Godard (1974) obtained an adaptive algorithm that has the structure of a Kalman 
filter and exhibits a particularly fast convergence. Gitlin and Magee (1977) 
showed that Godard's algorithm owes its convergence properties to its capability 
of decorrelating the equalizer inputs. The "fast Kalman algorithm," having the 
same convergence properties as Godard's, but requiring a lower complexity, was 
proposed by Falconer and Ljung (1978). Later, attention was attracted by lattice 

I filters. As lattice filters perform Gram-Schmidt orthogonalization on their input 
sequence, their application to the fast-converging algorithm problem is natural. 
An overview of the properties and applications of lattice filters can be found 
in Makhoul (1978), Friedlander (1982). and in the book by Honig and Messer- 
schmitt (1984). Application of lattice filters to adaptive equalization was first 
suggested by Satorius and Alexander (1979) and Makhoul (1978). A problem 
with adaptive lattice filters is that their outputs are uncorrelated only after the 
adaptation algorithm has reached the steady state. Thus, the equalizer conver- 
gence may not be as fast as with Godard's algorithm. An adaptive lattice algo- 
rithm whose outputs are uncorrelated at any time was discovered by Morf (1977) 
(see also Morf et al., 1977) and applied to equalization by Schichor (1982) and 
Satorius and Pack (1 98 1). Complex adaptive lattice structures are examined in 
Symons (1979). The Kalman, fast Kalman, and adaptive lattice algorithms are 
extended to complex fractionally-spaced equalizers by Muller (1981). 

The idea of fractionally-spaced TDL equalizers dates back to an unpublished 
1969 paper by Gersho, and was rediscovered a few years later (see Guidoux, 
1975; Macchi and Guidoux, 1975). Ungerboeck (1976), Qureshi and Fomey 
(1977), and Gitlin and Weinstein (1981) analyze their performance and conver- 
gence properties. 

The idea of using past decisions to cancel intersymbol interference, and I,,,1I1m 

hence the concept of decision-feedback equalization, was introduced by Austin 
,,,,,,, 

(1967). An overview of the work done in this area before 1978 is contained in 
Belfiore and Park (1979), where the derivations are based on results of linear 
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prediction and estimation theory. A unified theory of data-aided equalization is 
provided in the paper by Mueller and Salz (1981). Our treatment of the subject 
is based on it. 

Blind equalization goes back to the pioneering work by Sato (1975). The 
first approach to blind equalization based on the introduction of a new distortion 
criterion, different from MSE, was due to Sato (1975) and Godard (1980). The 
presentation of the constant-modulus algorithm here follows Godard (1980). For 
an analysis and extension of Sato's method see Benveniste and Goursat (1984), 
and for an analysis of Godard's method see Foschini (1985). Further work in this 
area was done by Picchi and Prati (1987), Shalvi and Weinstein (1990) (see also 
the set of references in this paper), Shalvi and Weinstein (1994), Johnson (1991), 
Tone. Xu, and Kailath (1994), and Tong, Xu, Hassibi, and Kailath (1995). -. 

Because, in practice, adaptive equalizers are implemented digitally, their pa- 
rameters, as well as the signal samples, are quantized to a finite number of lev- 
els. The effects of digital implementation of the TDL equalizer are examined in 
Gitlin, Mazo, and Taylor (1973) and Gitlin and Weinstein (1979). 

Proakis (1991) provides a survey of adaptive equalization techniques for 
time-division multiple access digital mobile radio systems. The development 
of adaptive equalization up to 1984 is summarized in Qureshi (1985), where an 
extensive list of references can be found. 

8.13. Problems 

Problems marked with an asterisk should be solved with the aid of a computer. 

8.1 Consider mean-square error channel identification when the source sym- 
bols at are not uncorrelated with mean zero. By defining their correlation 
matrix A = E[a;a;], and assuming A to be positive definite (which cor- 
responds to assuming that the at are linearly independent), show that the 
minimum achievable mean-square error corresponds to perfect identifica- 
tion. 

8.2 Consider the channel identification problem of Section 8.2. Assume that 
the TDL used to identify the channel has 2 delay elements, while the chan- 
nel memory span is L > 2. This situation can be dealt with by writing, in 
lieu of (8.4). 

X( = qrae + ne 

where 

and zj, q, have 2 + 1 components, and 0 is the null vector with L - Z 
entries. With these assumptions, derive an expression for the minimum 
mean-square identification error without the assumption of zero-mean, un- 
correlated source symbols. Also, when the source symbols are uncorre- 
lated and have zero mean, show the minimum MSE is achieved for G = q,. 

8.3 (*) Consider binary PAM transmission with source symbols k 1  using a 
channel bandlimited in the Nyquist interval ( - 1 / 2 T ,  1 / 2 T ) .  The impulse- 
response samples, taken every T, are 0.833, 1.0, and 0.583. The noise is 
additive Gaussian, and the receiving filter is an ideal low-pass filter with 
cutoff frequency 1/2T.  Compute the bit error probability versus Eb/No in 
the following situations: 

(a) Unequalized channel. 

(b) Channel equalized by a 5-tap minimum-MSE TDL equalizer (choose 
the optimal value for the delay D). 

(c) Same as in (b), with a 7-tap TDL. 

(d) Same as in (b), with a 15-tap TDL. 

8.4 Consider a linearly-modulated signal transmitted over a dispersive chan- 
nel. Assume that an infinitely-long zero-forcing equalizer is used that com- 
pletely eliminates ISI. 

(a) Derive the transfer function of the equalizer. 

(b) Derive an expression for the bit error probability of this transmission 
system that takes into account the noise enhancement introduced by 
the equalizer. 

8.5 (*) Consider binary PAM transmission with source symbols &1 using a 
channel bandlimited in the Nyquist interval ( - 1 / 2 T ,  1 / 2 T ) .  The channel 
has a sampled overall impulse response (h,) ,  the noise is additive Gaus- 
sian, and the receiving filter is an ideal low-pass filter with cutoff frequency 
1/2T.  Assume that the channel is equalized using a three-tap minimum- 
MSE equalizer, and compute the bit error probability versus Eb/No, with 
the delay D as a parameter, for these two situations: 

(a) (h,)  = (0.5, 1.0, 0 .5 ) .  
(b) (h,) = (1.0, 0.67, 0.45, 0.3, 0.2, 0.135). 
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8.6 Discuss the Shalvi-Weinstein algorithm in the case where E{ai) = 0, but 
the kurtosis is nonzero. 

Carrier and clock synchronization 

9.1. Introduction 

In previous chapters, when computing the performance of a digital cornrnuni- 
cation system, we assumed implicitly that the same clock controlled both the 
transmitter and the receiver operations. This means that corresponding events in 
the transmitter and receiver are synchronous (i.e., they occur at the same time 
instants, or at time instants that differ by a fixed and constant delay). 

Also, in Chapters 4 and 5, we saw that the most efficient demodulation 
schemes are coherent; they make use of the phase information of the carrier. 
Optimum demodulation requires then a local carrier at the receiver side whose 
frequency andphase are in perfect agreement with that of the transmitted signal. 
In principle, two pairs of ideal identical oscillators at the transmitter and re- 
ceiver sides could ensure the synchronization and coherence required for proper 
operation of the system. In practice, however, the signals emitted by a pair of 
oscillators with the same nominal frequency will start drifting from each other 
because of their physical inability to keep the nominal frequency with infinite 
precision. 

A good model, valid for the signals emitted by two independent oscillators 
with the same nominal frequency fo synchronized at t  = 0, is the following: 

al(t)  = A1 cos[2n fat + 81 ( t ) ]  (9.1) 

z2(t)  = A2 cos[2n fot + 82 ( t ) ]  (9.2) 

where each Oi(t) is a Wienet random process with 8,(0) = 0, zero mean, and 
variance equal to t / r i ,  i = 1,2. This random process is a nonstationary Gaus- 
sian process defined in the interval (0, m). Thus, the variance of the random 
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process representing the phase difference between the two oscillators is given by 

where we have defined the joint coherence time 712 of the two oscillators as the 
time required by them to yield a unitary variance of their phase difference. Since 
the variance (9.3) increases with time, we can conclude that a pair of indepen- 
dent oscillators cannot maintain their synchronization indefinitely. They need to 
mutually exchange certain informations, that is, to be in some way locked. In 
this chapter, we examine the fundamentals of clock and carrier synchronization 
with the aim of clarifying some very basic concepts. In pursuing this scope, we 
had to make some choices, the most important of which is to treat the subject in 
the analog (instead than in the digital) domain. The reason is that, in our opinion, 
the basic synchronization circuits (one for all, the phase-locked loop) are easier 
to understand in the analog domain. We are perfectly aware that modem imple- 
mentations (at least for low-to-medium carrier frequencies) tend today to place 
an analog-to-digital converter, equipped with an anti-aliasing filter, at the input 
of the receiver, and then to perform all operations, including synchronization, 
in the digital domain. The readers interested in implementing synchronization 
circuits in the digital domain are referred to the recent and comprehensive books 
of Mengali and D' Andrea (1997). and Meyr et al. (1997). 

9.2. Acquisition and training 

So far, we have supposed O1 (0) - 02(0) = 0. This is certainly not true when we 
switch on the modems to start the transmission. The two oscillators are com- 
pletely incoherent, and we need an initial period of time to synchronize the 0s- 
cillators before the transmission of data can be started. This is usually known as 
acquisition time or acquisition phase. At the end of the acquisition phase, the 
two oscillators are locked and data transmission starts. During the data trans- 
mission, we also need to keep the phase difference between the two oscillators 
within certain specified bounds. This operation is known as the tracking phase. 
It is needed only when the transmission time is significantly larger than the joint 
coherence time of the oscillators. When this is not the case, as in the transmission 
of characters from a terminal keyboard, we have an asynchronous transmission. 
Different levels of synchronization are often required in the system. As an ex- 
ample, consider a time-division multiplexed pulse-coded modulation system to 
transmit the voice, employing binary CPSK modulation. We need the four lev- 
els of synchronization shown in Fig. 9.1: the frame, word, symbol, and carrier 
synchronization. Here, we will only be concerned with the last two, carrier and 
syqbol synchronization. 
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1- Frame -4 

t- Symbol - 

Figure 9.1: D~ferent synchronization levels in digital transmission 

The location of carrier and clock synchronizers within a possible receiver 
structure is shown in Fig. 9.2. 

We have seen from the spectral analysis of modulated signals in Chapter 5 
that the most efficient digital modulation techniques suppress the carrier com- 
pletely; all transmitted power resides in the continuous part of the spectrum, and 
none is "wasted" on a spectral line at the carrier frequency. Also, under the 
hypothesis that the information-bearing random variables are independent and 
identically distributed, the spectrum of the digital signal is continuous and does 
not contain spectral lines at the clock frequency. Thus, any carrier or clock syn- 
chronizer will be composed of two conceptually distinct parts: (1) a suitable 
nonlinear circuit that regenerates a carrier or clock frequency from the data sig- 
nal that contains neither, and (2) a narrowband device (typically a tuned filter or 
a phase-locked loop, PLL) that separates the regenerated carrier or clock from 
background disturbances. 
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Figure 9.2: Receiver illustrating locations of synchronizers. 

CORREUTOR SEARCH FOR 
THE MAXIMUM 

Figure 9.3: Maximum-likelihood estimator for the carrier phare. 

To give a theoretically sound justification of the structure of the PLL, which 
is the most widely used circuit for synchronization purposes, let us consider 
a simplified situation in which the regenerated carrier is only affected by the 
addition of Gaussian noise; that is, 

We want to obtain the "best" estimate of the unknown phase 8 based on the 
observation of z ( t )  in an interval of length nTo, with To = l / f o  and n any 
integer. A straightforward application of detection theory (see Section 2.6) to the 
continuous case leads to the following expression for the log-likelihood function: 

where Q jsLhe RV representing the estimate of 8. The optimum unbiased esti- 
mate @ = 8 of 8 under the maximum-likelihood criterion is the one minimizing 
the RHS of (9.5) or, equivalently, solving the equation 

A block diagram of the ML estimator of 8 is presented in Fig. 9.3. To obtain an 

- 
9 
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approximate expression of the variance of th e estimat :e 8, let us assume that the 
noise power is low (and consequently the estimate error is low), so that we can 
wri te 

Substitution of (9.4) and (9.7) into (9.6) leads to 

Now, accounting for the fact that n ( t )  is a white Gaussian noise with power 
spectral density No/2,  we can easily obtain for the variance of the estimate the 
following expression: 

No ~ ( 8  - 8)2 21 - 
A2nTo (9.9) 

From (9.9), one can conclude that the variance of the estimate is inversely pro- 
portional to the signal-to-noise ratio A2/No and to the length nTo of the observa- 
tion interval. Figure 9.3 also shows that the optimum estimator has an open-loop 
structure. However, practical considerations render the solution of Fig. 9.3 im- 
practical in most cases. In fact, an estimate of the unknown phase is available 
only at the end of the observation interval. Since the phase estimate has to be 
used for coherent demodulation with the final goal of deciding on the transmit- 
ted data, these data should be stored for a time equal to nTo in order to postpone 
any decision about them. This procedure should also be repeated periodically in 
order to follow slow variations of the carrier phase during the tracking period. 

A possible way of overcoming these difficulties consists in obtaining the de- 
sired estimate using an iterative procedure. Suppose that at the end of the kth 
carrier period we have the estimate d k ,  and that we want to modify it on the 
basis of the observation of the received signal in the subsequent carrier period. 
Consider the average of the quantity (9.6) in an observation interval of length To 
conditioned on the value Jk obtained in the previous interval 

In Fig. 9.4 the behavior of this average is shown as a function of hk. If we have 
a value of 8 k  close to 8 (which is reasonable at the end of the acquisition phase), 
the average (9.10) is a good error indicator for the estimate at hand. In fact, 
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Figure 9.4: Error indicatorfunction for recursive phare estimation. 

whenever it is positive, we know that ek is greater than 0;  on the other hand, 
when it is negative, we know that bk is smaller than 0 .  Moreover, its magnitude 
tells us how far from 0  our past estimate is. A reasonable recursive algorithm to 
update our estimate is thus the following: 

ek+l = e k  - o k ~ { e ( e k ) )  (9.11) 

where e (&)  is defined as 

In (9.1 1) the similarities with the gradient algorithms described in Chapter 8 to 
recursively update the taps of an adaptive equalizer are evident. Since we are not 
able to compute the statistical average in the RHS of (9.1 l), it seems appropriate 
to modify the recursive algorithm (9.11) by replacing it with a time average 

where we have extended the influence of the past estimates to the whole time 
interval (0, kTo).  

9.3. The phase-locked loop 

A practical implementation of the recursive algorithm (9.13) is shown in the cir- 
cuit of Fig. 9.5, which is called aphase-locked loop (PLL). In it, the received sig- 
nal ~ ( t ,  0)' is multiplied by the output of a voltage-controlled oscillator (VCO), 

'Notice that we have multiplied here by the magnitude of the received signal in order to 
simplify the expressions that follow. 

9.3. The phase-locked loop 

Figure 9.5: Block diagram of a phase-locked loop. 

Figure 9.6: Equivalent block diagram of a phase-locked loop showing the relationship 
between the phuses. 

a sinusoid with magnitude equal to A k l .  This device generates a carrier whose 
frequency varies linearly with the amplitude of a control signal. The product is 
low-pass filtered and input to the VCO, whose instantaneous angular frequency 
is changed according to 

Under reasonable simplifications, it can be shown (see Problem 9.2) that the PLL 
implements a relationship like (9.13) between successive estimates of 0 .  

Let us now analyze in some detail the behavior of the PLL, which is the heart 
of many synchronization circuits. Suppose for the moment that the received 
signal is noiseless. Let us denote by h ( t )  the impulse response of the low-pass 
filter in Fig. 9.5, and suppose that it filters out the high-frequency component at 
the output of the multiplier. Thus, having defined the phase error 

we obtain the following nonlinear equation governing the behavior of the PLL: 

In Fig. 9.6 a block diagram that functionally represents (9.16) is shown. While 
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Figure 9.7: Linearized version of the block diagram of Fig. 9.6, 

in general its behavioral analysis is difficult, it simplifies drastically in the case 
of a phase error 4 ( t )  small enough to justify the approximation sin 4 2: 4,  which 
linearizes (9.16) and leads to the circuit of Fig. 9.7. Its analysis is straightforward 
using Laplace transforms. We obtain the transfer function of interest as 

where @ ( s )  is the Laplace transform of e ( t )  

9.3.1. Order of the phase-locked loop 

The order of the PLL is defined according to the degree of the denominator of 
Heq(s) ,  which in turn depends on the loop filter transfer function H ( s ) .  Thus we 
have 

First-order PLL 
H ( s )  = 1 + Heq(s) = 

Aki k2 (9.18) 
s  + Aklkz 

Second-order PLL 

1 f ST2 
H ( s )  = - + Hq(s)  = 

4Cnfns + (2nfn12 (9.19) 

ST1 s2 + 4Cn fns + (2n f n ) 2  

where the two parameters f ,  and C ,  called respectively the natural frequency and 
the damping factor of the loop, are given by 
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i 

Figure 9.8: Frequency response of a second-order loop. 

We observe that the order of the PLL corresponds to the number of perfect inte- 
grators within the loop. For a first-order PLL, we can control only one parameter, 
Aklk2, which is the 3-dB bandwidth of Hq(s) ,  whereas the second-order loop 
gives us the two parameters f ,  and C .  

The magnitude of the frequency response Heq(j2n f )  of a second-order loop 
for several values of C is plotted in Fig. 9.8. It can be seen that the loop performs 
a low-pass filtering operation on phase inputs. Using root-locus plot characteris- 
tics, it can be shown that first- and second-order loops are always stable, whereas 
third- and higher-order loops can be stable under certain conditions. Besides the 
stability considerations, it is important to know the steady-state behavior of the 
PLL (i.e., the steady-state phase and frequency errors in the presence of particu- 
lar inputs). We shall examine two different cases of input phases 

e*(t) = n t 2 ( 6 f )  + 2nt(A f )  + A @  (9.23) 

The first case is the most important in data transmission between fixed points, 
since it refers to a situation in which the received carrier presents a frequency 
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Table 9.1: Steady-state phase andfrequency errors for PLL of various ordel: 

displacement A f (e.g., due to frequency-division multiplexing) and an initial 
phase shift Ae. The second case can happen when there is a relative motion 
between transmitter and receiver, as in a mobile radio communication system. 
Using the final-value theorem of the Laplace transform (see Problem 9.1), we 
obtain the steady-state errors of Table 9.1, where A f A V B  and A@A,B represent 
the frequency and phase errors, respectively. 

All the preceding results were based on the assumption that the phase error 
is sufficiently small, thus allowing the loop to be considered linear in its op- 
eration. This assumption becomes progressively less useful as error increases 
until, finally, the loop drops out of lock and the assumption becomes unjustified. 
Through the analysis of the nonlinear model of the PLL, one can identify im- 
portant parameters like, for example, the hold-in range (i.e., the input frequency 
range over which the loop will hold lock) or the acquisition time (i.e., the time 
required by the loop to reduce the phase error under a given threshold). A de- 
tailed analysis of the behavior of the PLL without the linear assumption can be 
found in Viterbi (1966) and Lindsey (1972). 

When a Gaussian noise is present in additive form at the input of the PLL, 
an approximate linear analysis is still possible when the signal-to-noise ratio is 
sufficiently high. This leads (see Viterbi, 1966) to the functional block diagram 
of Fig. 9.9. In the figure, nl( t )  is a Gaussian noise process independent of n( t ) .  
with the same spectral properties as the input noise, i.e. with power spectral 
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0 

9.3. The phase-locked loop 
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Figure 9.9: Equivalent block diagram of a linearized PLL including noise. 

1st-order PLL 

2aA f - 
Ahkz 

03 

0 

bf 
Ahkz 

density G,l ( f )  = No. To evaluate the effect of the noise, we assume that the 
input phase B(t) is constant so that the fluctuations in the phase of the VCO 
signal can be entirely attributed to the noise. From Fig. 9.9 we can obtain the 
transfer function between the noise nl(t)  and the recovered phase d( t )  

The noise power contribution to B(t) is then 

where Be, denotes the equivalent noise bandwidth of the PLL. For first- and 
second-order PLL, it is given by the following expressions: 

B, = - Akl (first order PLL) 
4 

Be, = a  fn/z 4C (second order PLL) (9.27) 

It can be seen from (9.26) and Table 9.1 that, for a first-order PLL, the needs for 
a small steady-state phase error and a small noise bandwidth are in conflict. For 
a second-order PLL, a good compromise is achieved with the value C = 0.707. 

When the linear analysis is valid, the VCO phase error d ( t )  (the so-called 
phase jitter) is a Gaussian random process. In general, this is not true. Nonlin- 
ear analysis of a PLL has been concerned with deriving the probability density 
function (pdf) of the RV @ representing the amplitude of the phase error +( t ) .  
This pdf (see Viterbi, 1966) is found as the steady-state solution of a nonlin- 
ear stochastic partial-differential equation known as the Fokker-Planck equation. 
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Without going into the details, the resulting Tikhonov pdf is 

9.4. Carrier synchronization 

To simplify, let us consider initially a binary CPSK signal written in its bandpass 
form 

v ( t )  = vp(t)  cos(2a fot + 8) (9.29) 

where 
up ( t )  = a n u ~ ( t  - nT) (9.30) 

n 

where ~ ( t )  is the unit step function, equal to 1 for 0 5 t  5 T and 0 elsewhere, 
and the information symbols an take the values f 1. 

There are three main types of carrier synchronizers, the squaring loop, the 
remodulator, and the Costas loop. They differ in the position of the nonlinearity, 
which is entirely separated from the PLL in the squaring loop, whereas it is 
included in the phase detector for the remodulator and the Costas loop. 

The block diagram of the squaring loop is shown in Fig. 9.10. Its nonlinear- 
ity is a square-law device, so its output 

where p is the signal-to-noise ratio of the loop (the inverse of the variance (9.25)), 
and l o ( . )  is the modified Bessel function of the first kind and order zero. The 
pdf (9.28) approaches a Gaussian one for large p. 

In its essence, the PLL acts as a narrowband filter whose central frequency 
tracks the frequency of the received signal (9.4) within a reasonable range with- 
out affecting its noise bandwidth. As already stated, it requires the presence of a 
spectral line, at the frequency to be tracked, contained in the signal at its input. 
Thus, in addition to the PLL, suitable nonlinear circuits are integral portions of 
a synchronizer. In the following, we shall examine in some detail some of the 
most common carrier and clock synchronizers. Only a qualitative description of 
their behavior will be presented. The reader interested in detailed performance 
analyses may refer to the Bibliographical Notes at the end of this chapter. 

contains a spectral line at frequency 2 fo that can be tracked by a conventional 
PLL. The VCO output is divided by 2 to provide the desired carrier at frequency 
fo.  Insthe divide-by-2 operation, there is a phase indeterminacy, which makes it 

9.4. Carrier synchronization 

Figure 9.10: Block diagram of the squaring loop for carrier recovery of a binary PSK 
signal. 

v,? (I - 7) sin 2(6 - 8) w 
DELAY 

r 

Figure 9.11: Block diagram of the remodulator for carrier recovery of a binary PSK 
signal. 

impossible to decide whether the current symbol is 1 or -1. This phase arnbigu- 
ity, inherent in all phase-shift modulation techniques, can be resolved by special 
encoding, like the differential encoding described in Section 5.8. 

A remodulator synchronizer is shown in Fig. 9.11. The received signal 
is demodulated and the message vp(t)  recovered. It is used to remodulate the 
received signal so as to remove the modulation. If the baseband waveforms are 
time-aligned, the output of the balanced modulator has a pure carrier component 
that can be tracked by the PLL. The delay T in Fig. 9.11 is required to compensate 
for the delay of the low-pass filter following the demodulator. In the figure, the 
relationships explaining the behavior of the synchronizer in the absence of noise 
are also given. 

A block diagram of the Costas loop is shown in Fig. 9.12. Its behavior 
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vp(t) cos ( 2 -  8 )  - *To data 1 detector I / cos (2nf0t +2)  In sin 2(2- 8) 

sin (2nfOt +$)  

Figure 9.12: Block diagram of the Costas loop for carrier recovery of a binary PSK 
signal. 

Figure 9.13: Block diagram of the M t h  power synchronizer for carrier recovery of an 
M-ary PSK signal. 

%/ BPF 

should be explained by the relationships indicated in the figure, which are valid 
in the absence of noise. 

The carrier recovery circuits described before can be generalized to the situa- 
tion in which the digital information is transmitted via M-ary CPSK modulation. 
An Mth power synchronizer is shown in Fig. 9.13. Its operation is easily under- 
stood by simple extension of the squaring loop. Because of their wide applica- 
tions, block diagrams of the 4-PSK remodulator and the Costas loop for 4-PSK 
are shown in Figs. 9.14 and 9.15. A stable lock can be achieved at any of four 
different phases. There is an inherent fourfold ambiguity that must be resolved 

- LPF 

9.4. Carrier synchronization 

- 
DELAY y 

T 

To data 

Figure 9.14: Block diagram of the remodulator for carrier recovery of 4-PSK signals. 

To data 
detectors 

LPF 

Figure 9.15: Block diagram of the Costas loop for carrier recovery of 4-PSK signals. 

by other means, such as, for example, the differential co-decoding explained in 
Section 5.8. Both the remodulator and the Costas loop perform a multiplication 
by the demodulated message in analog form to remove modulation. Better noise 
rejection would be possible if the detected digital message were used for modu- 
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Table 9.2: Intermodularion losses of Mth-law regenerators. 

lation removal. This is done in decision-directed synchronizers. Unfortunately, a 
decision-directed synchronizer cannot acquire the carrier until symbol synchro- 
nization has been achieved. Thus, it is not suited for applications requiring fast 
acquisition. Carrier synchronization circuits based on both the remodulator and 
Costas loop can be modified to cope with more general two-dimensional modu- 
lations such as QAM. 

In general, the performance analysis of a synchronizer is very difficult be- 
cause of the presence of the nonlinear regenerator. Without going into details, 
we can write the noise-caused VCO phase jitter variance for an M-phase syn- 
chronizer as 

where M2 comes from the M-fold phase magnification, LM (pi) is the loss caused 
by noise intermodulation in the nonlinearity, and pi is the signal-to-noise ratio 
at the output of the receiving filter. The quantity within the parentheses repre- 
sents the jitter variance of an ordinary PLL (see (9.25)). For the special case of 
an Mth-power nonlinearity (Butman and Lesh, 1977), some typical losses are 
given in Table 9.2. 

9.5. Clock synchronizers 

9.5. Clock synchronizers 

We assume that carrier and clock are recovered in two distinct steps: first, the 
phase 6 of the carrier is estimated; then the timing wave is extracted from the 
demodulated baseband signal. In other words, we shall not consider the approach 
of the simultaneous estimation of the carrier and clock. This omission does 
not imply a merit judgment, since in some cases superior performance can be 
obtained with (admittedly complex) joint estimation methods. Details can be 
found in the Bibliographical Notes at the end of this chapter. 

Consider now the baseband signal obtained from the demodulator: 

where (an) is the message sequence, which is assumed to be a zero-mean station- 
ary discrete random process formed by iidrandom variables. The objective'of the 
timing synchronization circuit is to extract from rD(t) a periodic wave with pe- 
riod T (the symbol interval) and a proper phase indicating the sampling instant 
within each period. Clock synchronizers can be categorized according to the 
bandwidth of the communication system as wideband or narrowband. We are in- 
terested in the most common, and more critical from the timing synchronization 
point of view, situations where bandwidth occupancy approaches the Nyquist 
limit of 1/(2T) at baseband. More precisely, we assume that the bandwidth does 
not exceed 1/T. In this case, the pulse h(t) is spread over many symbol inter- 
vals, giving rise to intersymbol interference (ISI). As we have seen in Chapter 7, 
to avoid IS1 the pulses are usually given a Nyquist shape. This yields the elim- 
ination of IS1 at nominal sampling instants, but it is not sufficient to eliminate 
the effects of IS1 on the clock synchronizer. In general, the recovered clock is 
affected by a jitter component, called self-noise or data noise, caused by ISI. In 
many applications, this self-noise is predominant with respect to the Gaussian 
noise. For this reason, we have not included the additive Gaussian noise in the 
RHS of (9.33). 

As for carrier acquisition, the available signal rD(t) has no spectral lines at 
frequency 1/T. In fact, r ~ ( t )  is easily recognized as a cyclostationary random 
process (see Section 2.2.2) with period T,  zero mean, and mean-square value 

Equation (9.34) shows that the square of r ~ ( t )  does possess a periodic mean 
value. 

Using the "Poisson sum formula" (see (2.109) and Problem 9.3), we can 
express (9.34) in the more convenient form of a Fourier series whose coefficients 
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NONLINEARITY OR PLL GENERATOR 

The second term in the RHS of (9.39) can be disregarded as it is not passed 
through the tuned filter (or PLL). The first term can be rewritten as Figure 9.16: Block diagram of a clock synchronizel: 

27rt + bp(t) cos (T) + bQ(t) sin (F) (9.40) are obtained from H ( f ) ,  the Fourier transform of h(t)  

In (9.40) we can recognize the desired periodic component (first term), as well 
as two in-phase and quadrature disturbances (second and third components, re- 
spectively). It is precisely the quadrature component bQ(t) that produces timing 
jitter. Using (9.39), this component can be written as (see Problem 9.4) 

with 

Due to the assumption of bandwidth limitation for H ( f ) ,  only the three terms 
with ! = 0, &1 in the summation of (9.35) are different from zero. The first 
corresponds to a dc component, whereas the other two give a sinusoidal signal 
with frequency 1/T and amplitude 

where hp(t) and hQ(t) are the real and imaginary parts of h(t) .  It is evident 
from (9.41) that the timing jitter is strongly dependent on the shape of the date 
pulse h(t)  at the input of the nonlinearity. For this reason, some authors have 
suggested the insertion of a suitable prefilter before the nonlinearity of Fig. 9.16 
in order to eliminate or greatly reduce the data noise (Franks and Bubrouski, 
1974; Mengali, 1983). In particular, these authors have shown that using a tuned 
filter (or a PLL) with a transfer function exhibiting a conjugate symmetry around 
the symbol rate 1/T and a transfer function H ( f )  limited in bandwidth to the 
interval [1/ (4T) ,  3/(4T)] with a conjugate symmetry around 1/(2T) ,  one can 
completely eliminate the data noise if the nonlinearity is a square-law rectifier. 

1 
PI = Irn -m H. ( f  - ?) H ( f )  df (9.37) 

Note that the sinusoidal component at the clock frequency vanishes when H ( f )  
is strictly bandlimited in the interval [ -1/ (2T) ,  1 / (2T)] .  Thus, also in this case, 
for signals exhibiting some extra bandwidth beyond the Nyquist frequency, we 
can use a nonlinearity (e.g., a square-law rectifier) to restore the desired spec- 
tral line followed by a "tuned" filter (a narrowband filter centered around the 
timing frequency 1/T)  or a PLL that tracks the restored timing wave. Alternate 
zero-crossings of the reference waveform w(t )  are used by the pulse generator of 
Fig. 9.16 as indications of the correct sampling instants. Remembering the spec- 
tral analysis of cyclostationary processes of Section 2.3, we realize that the spec- 
trum of y(t) = r i ( t )  presents a continuous part, besides the discrete one giving 
rise to the desired spectral line. Thus, even in the absence of additive Gaussian 
noise, we have a self-noise entering the tuned filter (or PLL) of Fig. 9.16 and 
causing a fluctuation of the zero crossings of w ( t )  around the nominal sampling 
instants, the timing jitter. To better understand, consider the complex envelope 
h(t)  of h(t)  defined with respect to the frequency 1/(2T) ,  so that 

9.6. Effect of phase and timing jitter 

The first part of Chapter 7 was devoted to the computation of the symbol error 
probability conditioned on a given value of the phase jitter considered as a RV 
with a known pdf. Later, we introduced the Tikhonov pdf (see (9.28)), which 
describes the statistical behavior of the phase error at the output of a PLL. We 
mentioned that it approaches a Gaussian pdf for large values of the loop signal- 
to-noise ratio. To give a quantitative idea of the effect of the phase error on the 
average error probability, we shall consider a binary CPSK system, without ISI, 
affected by a phase error in the recovered carrier with Gaussian pdf. In this case, 
it is easily seen that the conditional bit error probability for a given value of the 
phase error 4 is 

h(t)  = P { ~ ( t )  exp ( j g ) }  

and write r i ( t )  in terms of h(t) 
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so that the average bit error probability, assuming a Gaussian pdf for the phase 
jitter 4, becomes 

Figure 9.17 shows the behavior of the average bit error probability as a function 
of the signal-to-noise ratio Eb/No. Different curves are labeled according to a 
value of the standard deviation of the phase jitter u,g in degrees. The curves 
have been obtained by calculating the conditional error probability and, then. 
averaging with respect to the phase jitter pdf using standard Gauss quadrature 
rules (see Problem 9.6). The figures show the typical errorfloor behavior, i.e., 
the fact that, for a given standard deviation, there is a lower bound to the bit error 
probability attainable by the system. For an error probability of lo-', a standard 
deviation of 10 degrees induces a penalty in the signal-to-noise ratio close to 
0.5 dB. The effect of a symbol synchronization jitter on the error probability is 
shown in Fig. 9.18. In obtaining the results shown in the figure, we have assumed 
a simplified situation in which the elementary pulse h ( t )  in (9.33) is rectangular, 
so that the only effect of the timing error is to reduce the signal-to-noise ratio 
at the output of the correlator that implements the optimum receiver for binary 
CPSK. The timing error is supposed to be a Gaussian RV. The parameter u7 
labeling the curves of Fig. 9.17 is the standard deviation, multiplied by n, of the 

A 
normalized error 7 = ( to  - i o ) / T  in the receiver symbol clock. 

When we consider a multilevel signaling scheme employing two quadrature 
carriers, the effect of the carrier jitter is enhanced, because the phase error also 
induces, as seen in Chapter 7, a cochannel interference besides the simple attenu- 
ation of the binary case. Thus, the accuracy requirements of the carrier recovery 
circuits become more stringent. 

9.7. Bibliographical notes 

A huge literature exists in the field of synchronization of digital cornrnunica- 
tion systems. The following books are focused on the phase-locked loop (PLL) 
theory and applications: Viterbi (1966), Lindsay (1972), Blanchard (1976), and 
Gardner (1979). In particular, Viterbi's exact analysis of the first-order PLL 
solving the Fokker-Planck equation has provided much insight for understand- 
ing nonlinear operations, whereas Gardner's book is very useful for practicing 
engineers. The problems related to the design and analysis of digital PLL have 
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Figure 9.17: Binary PSK bit error probabilig with impelfect carrier synchronization 
as a firnction of the signal-to-noise ratio Eb/No. The parameter labeling each curve 
represents the standard deviation of the residual phase jitter assumed to have a Gaussian 
statistics. 

not been considered in this chapter, although they are now very important be- 
cause of the widespred applications of digital circuitry. A good starting point 
for the interested reader are the tutorial papers by Gupta (1975) and Lindsey and 
Chie (1981). A survey of the peculiar methods used in the analysis of digital 
PLL without noise can be found in D'Andrea and Russo (1983). 

The general problem of carrier and clock synchronizers is faced by Stiffler 
(1971), Lindsey and Simon (1973) and Franks (1983). A comprehensive tuto- 
rial paper has been written by Franks (1980). The joint recovery of carrier and 
symbol synchronization has been analyzed by Mengali (1977), Mancianti et al. 
(1979), and Meyers and Franks (1980). The effect of imperfect synchronization 
on system performance is the subject of certain papers in Stavroulakis (1980). 
The treatment of this subject is attributable to Franks (1980), Gardner (1979), 
and Mengali (1979). 
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Figure 9.18: Binary PSK symbol error probability with imperfect timing synchronization 
as a function of the signal-to-noise ratio &*/No. The parameter labeling each curve 
represents the standard deviation of the residual, normalized timing jitter assumed to 
have Gaussian statistics, multiplied by n. 

Digital synchronization techniques, where timing, phase and frequency syn- 
chronization is achieved by operating on signal samples taken at a suitable rate, 
is the subject of the comprehensive books by Mengali and D' Andrea (1997), and 
by Meyr et al. (1997). 

9.8. Problems 

Problems marked with an asterisk should be solved with the aid of a compute,: 

9.1 Using the final-value theorem of the Laplace transform, verify the steady-state 
frequency and phase errors of Table 9.1. 

9.2 Show that the PLL of Fig. 9.5 implements a relationship like (9.13) between sue- 
. cessive estimates of 0. Hint: Start from the differential equation (9.16) and sup- 
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pose that the variations of 6(t) are so slow that it is possible to write 

9.3 (a) Show that (Poisson sum formula) 

Hint: Find first the Fourier series expansion of the periodic factor h(t - kT). 
(b) Using the result in part (a), verify (9.35). 

9.4 Derive the expression (9.41) of the quadrature data noise component bQ(t). 

9.5 In the absence of noise in the received signal, explain quantitatively the behavior 
of the remodulator and Costas loop for QPSK modulation, as from the block 
diagrams of Figs. 9.14 and 9.15. 

9.6 (*) Using standard quadrature rules, obtain the curves of Fig. 9.17. 

9.7 (*) Compute the conditional symbol error probability P(e  ( 4) for the case of 
QPSK modulation, and then average with respect to 4, assumed to be a Gaussian 
random variable with standard deviation u g ,  obtaining curves of the symbol error 
probability versus &/No for various values of u g .  

9.8 Using the result of (9.37), evaluate the magnitude of the discrete component at 
frequency 1/T at the output of a square-law device for a raised-cosine impulse 
response h(t) (see (7.71) for the expression of h(t)) as a function of the roll-off 
factor a. 



0 . 1  A taxonomy of cknnel codes 

Improving the transmission 
reliability: Block codes 

Designers of primitive digital communication systems sought to obtain low bit 
error probabilities by transmitting at high power or by using larger bandwidth 
than strictly necessary. This approach is adequate if the required error probability 
is not too low andlor the data rate is not too high: it buys performance with the 
most precious of resources: spectral bandwidth and power. 

The lesson taught by Shannon (see Section 3.3) was that high performance 
is indeed obtainable by calling a third resource into play, the system complexity. 
The concurrence of two basic facts, i.e., the sky-rocketing requirements of trans- 
mission speed and the affordability, thanks to the modem electronic technology, 
of extremely sophisticated receivers has made the Shannon dream an every-day 
reality, so that highly complex co-decoding techniques are now widely used in 
digital transmission systems to protect the information. 

Techniques to control the error probability are based on the addition of re- 
dundancy to the information sequence. Traditionally, codes aimed at improving 
the transmission reliability are called e m r  correcting codes. This concept is 
bound to a particular operating mode of the demodulator and decoder, in which 
the received signal sequence is hard-detected by the demodulator, before being 
transferred to the decoder. As a consequence, the binary sequence entering the 
decoder contains errors that the decoder may or may not be able to correct. This 
mode of operation, however, entails some degree of suboptimality, and is re- 
placed, whenever feasible, by sop-decoding, in which the demodulator derives 
the sufficient statistics in analog or quantized form, and supplies it to the decoder, 
which, in turn, performs the final task of estimating the transmitted information 
sequence. When this is the operation mode, talking of "error correcting" codes 
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CHANNEL LiJ 

Figure 10.1: Block diagram of a transmission system employing channel coding. 

USER CHANNEL 
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does not make sense, since no true correction of error takes place, but, rather, the 
pair encoder-decoder prevents errors from occurring. In this situation, it would 
better to talk of error contml codes (see Blahut, 1983). Most of the algorithms 
for decoding tree codes make use of the soft information in a straightforward 
manner. The use of soft-decision in block codes is somewhat more involved and 
generally requires significant changes in the decoding algorithms. 

For the reasons previously explained, we will generally speak of codes that 
improve the transmission reliability, or of channel codes, in the sense that these 
codes aim at protecting the information from impairments occumng during its 
transmission over the channel. 

In this chapter, we will first propose a taxonomy of the codes employed to 
protect the transmitted information, and then define and analyze linear block 
codes. In the next chapter, we will consider convolutional and concatenated 
codes. 

10.1. A taxonomy of channel codes 

* 

Consider the simple block diagram of Fig. 10.1. Using the terminology of Blahut 
(1983), we distinguish a source producing a binary sequence, the data stream: it 

j is the binary sequence emitted directly by the source, or by the source encoder. 
We assume that it is formed by independent identically distributed (iid) binary 
random variables (RVs). The data stream enters the channel encoder which maps 

j it into a code stream. For constructing the code, additional structure may be de- 
1 fined on the data stream by segmenting it into pieces called data words. Like- 
! wise, the code stream is segmented into pieces called code words. For an (n,  k)  
I 

block code, the data words consist of k bits and the code words of n bits. A 

i 

DEMODULATOR - 
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channel code C is the set of 2k n-tuples of bits, the code words x. An encoder E 
is the set of the 2k pairs ( u ,  x), where u is a data word, i.e., a k-tuple of bits, and 
x the corresponding code word. These definitions should clarify the fundamental 
difference between the notion of a code and the notion of an encoder. The code 
is a collection of code words and is independent of the way they are obtained. 
The term encoder refers to the one-to-one correspondence between data words 
and code words, and also applies to the device that implements this assignment. 
With respect to how the encoder assigns code words to data words, we say that 
the (n, k)  code is a block code when the encoder is memoryless, i.e., when to the 
same k bits in the data word there correspond the same n code word bits. The 

A 
block code is an (n ,  k )  code, and the ratio R, = k /n  is the rate of the code. Each 
data word (block) is encoded independently without interaction with earlier or 
later data words. When the correspondence between data words and code words 
has memory, i.e., the n bits of the code word do not depend only on the k bits 
of the data word, but also on some previous data words, we say that the code 
is a tree code. In this case, it is often convenient to think of infinitely long data 
streams and code streams, or sequences, which start at time zero and continue 
indefinitely in the future. A tree code breaks the data stream into segments called 
data frames, each consisting of ko data bits, ko normally a small integer. The en- 
coder is a finite-state machine that retains some memory of earlier data frames; 
in the simplest case, it simply stores the m most recent data frames unchanged. 
A single code frame consists of no bits that are computed from the mko data bits 
of the m data frames stored in the encoder memory, and the ko bits of the incom- 
ing data frame; these n bits are shifted out to the channel as the new ko data bits 

A 
enter the encoder. The ratio R, = ko/no is still called the code rate. Tree codes 
with a special memory and linearity structure, to be defined in the next chapter, 
are called convolutional codes. 

With respect to the properties of the set of code words, we distinguish be- 
tween linear and nonlinear codes. For a linear code, the set of code words (or 
code streams, for tree codes) is closed under component-wise modulo-2 addition, 
an operation denoted simply by "+" in this chapter.' This property has several 
important implications that will be made clear in the next sections. According 
to how the system makes use of the code capabilities, we distinguish between 
error detecting and error correcting codes. This does not represent a distinction 
between the codes themselves, but, rather, between the strategies followed by the 
system. 

Two different strategies can be used in the channel decoder. Conceptually, 

'Modulo-2 addition can also be defined as the addition operation in the Galois field GF(2). 
Since it is beyond the scope of this book to introduce Galois fields, we will always speak of 
modulo-2 addition. 
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these strategies can be related to Fano's inequality (see Chapter 3, (3.67)). In the 
first strategy, the decoder observes the hardly-demodulated received sequence 
and detects whether or not errors have occurred. A certain measure of uncertainty 
is eliminated, which corresponds to the term H(e) in (3.67). Error detection is 
used to implement one of two possible schemes: error monitoring or automatic 
repeat request (ARQ). In the case of error monitoring, the decoder supplies to 
the user a continuous indication regarding the quality of the received sequence, 
so that, when the reliability becomes too low, the sequence can be discarded. In 
the case of ARQ, the transmitter is asked to repeat unsuccessful transmissions. 
To this end, a feedback channel from the receiver to the transmitter must be 
available. 

The second strategy is called forward error correction (FEC). The decoder 
attempts to restore the correct transmitted sequence whenever errors are detected 
in the received sequence. In this case, an additional quantity of uncertainty must 
be removed corresponding to the term P(e) l 0 ~ ( 2 ~  - 1) of (3.67). It is intuitive 
that this strategy requires, for the same code, more complex decoding algorithms. 
The choice between the two strategies depends on the particular application and 
on the complexity of the transmission system considered. For example, the ARQ 
scheme is usually applied in the communication between computers, since a two- 
way transmission channel is available together with large memory devices that 
store the incoming information while performing, upon request, the retransmis- 
sion procedure. On the other hand, FEC is adopted when the information must 
be protected on a one-way channel, or when real-time, or strictly-controlled de- 
lays are required. Examples pertain to deep-space communication and digitized 
interactive voice transmission. 

With respect to the encoder operations, we say that the encoder E is system- 
atic when the first k bits of each code word x coincide with the k bits of the data 
word u. It is common in textbooks to say that a code, rather that its encoder, 
is systematic. In the following, we too will sometimes indulge in this impreci- 
sion. The reader is warned, though, that the concept of systematicity entails the 
mapping of data words into code words, and, thus, only pertains to the encoder. 

To analyze the benefits due to channel encoding in comparison with the un- 
coded schemes of Chapter 5, let us consider again the model of Fig. 10.1. The 
source emits binary digitsZ at a rate of R, bit/s and the encoder represents each 
data word of k source bits using n = k /R ,  bits. R, is the code rate. To keep the 
pace of the source, the transmission speed on the channel must be increased to 
the value R,/R,  binary symbols per second, and thus the required bandwidth 
must also be increased by the same factor l / R c .  As a result, the use of chan- 

'Since we make the assumption that the data stream is made of iid binary RVs (0 and l), we 
will use indifferently the words "bits" and "binary digits." 
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nel encoding decreases the bandwidth efficiency with respect to the uncoded 
transmission by a factor l /Rc .  The binary symbols produced by the channel 
encoder are presented to the modulator, and converted into a sequence of wave- 
forms using one of the modulation schemes described in Chapter 5 or 6. For 
the purposes of this preliminary discussion, we assume that the modulator uses 
an antipodal binary modulation over an AWGN channel. With this modulation 
scheme, each binary encoded symbol is mapped by the modulator into a binary 
waveform of duration T = T, = R,/R, seconds. This duration is shorter than 
that used in the uncoded case by a factor R,. Denoting with Eb the energy per 
information bit, and assuming that the transmitted power is kept constant, we 
can conclude that coding decreases the energy per channel symbol to the value 
EbR,. As a result, in case of hard decisions, more channel symbols will be incor- 
rectly demodulated than with uncoded transmission. These observations about 
coding seem rather discouraging. In fact, bandwidth efficiency is decreased and 
more errors in the demodulated sequence are to be expected. Nevertheless, in a 
well-designed coded system, the larger number of errors at the demodulator out- 
put will be compensated for by the error-comcting capabilities of the decoder. 
Therefore, a coded transmission should trade bandwidth efficiency for a better 
overall error performance, using the same transmission power, or, equivalently, 
for a smaller required power for a given error performance. The decrease in the 
required power for the coded system is refemd to as coding gain. 

Let us describe the processing that must take place at the channel output to 
achieve such a result. Consider first the case in which the demodulator is used to 
make decisions on whether each binary waveform carries a 0 or a 1. To this pur- 
pose, the demodulator output is quantized to two levels denoted by 0 and I and 
is said to make hard decisions. The sequence of binary digits from the demod- 
ulator is fed into the decoder. The decoder attempts to recover the information 
sequence by using the code word's redundancy for either detecting or correcting 
the errors that are present at the demodulator output. Such a decoding process is 
called harddecision decoding. In this model, assuming a binary antipodal coher- 
ent modulation and an AWGN channel, the combination of modulator, channel, 
and demodulator is equivalent to a binary symmetric channel (BSC). Its transi- 
tion probability is the error probability of a binary antipodal modulation scheme 
(see Chapter 4). The overall error performance of the coded scheme depends on 
the implementation of efficient algorithms for error detection and correction. 

At the other extreme, consider the case in which the unquantized output of 
the demodulator, the sufficient statistics, is fed to the decoder. This stores the 
n outputs comsponding to each sequence of n binary waveforms and builds 2' 
decision variables. With the optimum decision strategy, the cascaded demodu- 
lator and decoder perform the same operation as the optimum coherent demod- 
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ulator of Chapter 4, i.e., they choose the transmitted sequence corresponding 
to the n-bit code word which is closest, in the sense of the Euclidean distance, 
to the received sequence. Such a decoding process is called unguantized sofr- 
decision decoding. In this model, the combination of modulator, channel, and 
demodulator is equivalent to a binary-input, continuous-output channel. It is in- 
tuitive that this approach presents a higher reliability than that achieved with the 
hard-decision scheme. In fact, the decoder can take advantage of the additional 
information contained in the unquantized samples that represent each individual 
binary transmitted waveform. An intermediate case, called sofr-decision decod- 
ing, is represented by a demodulator whose output is quantized to Q levels, with 
Q > 2. In this case, the combination of modulator, channel, and demodulator is 
equivalent to a binary input, Q-ary output discrete channel. The advantage over 
the analog (unquantized) case is that all the processing can be accomplished with 
digital circuitry. Therefore, it represents an approximation of the unquantized 
soft-decision decoding. 

The advantage of a coded transmission scheme over an uncoded one is usu- 
ally measured by its coding gain. This is defined as the difference (in decibels) 
in the required value of &/NO to achieve a given bit error probability between 
a binary antipodal uncoded transmission and the encoded one. This concept is 
represented qualitatively in Fig. 10.2, where we plot the two curves expressing 
the bit error probability Pb(e) versus the signal-to-noise ratio per bit Eb/N0 for 
the uncoded and encoded systems. The typical behavior of the two curves of 
Figure 10.2 suggests two considerations: 

I 

The coding gain, which depends on the value of the bit error probability 
(and thus on the signal-to-noise ratio), increases with the signal-to-noise 
ratio and tends (for &/No -t oo and hence for Pb(e) -t 0) to an asymp- 
totic value that will be evaluated later in the chapter. 

For low values of the signal-to-noise ratio, there can be a crossing between 
the uncoded and coded curves, meaning that the coding gain becomes neg- 
ative. In other words, there is a limit to what a code can do in terms of 
improving a bad channel. 

To quantitatively assess the limits of the coding gain, we have plotted in Fig- 
ure 10.3 the curve of the binary uncoded antipodal scheme (curve A) with the two 
channel capacity limits: the first (curve B), which tends to -1.6 dB, correspond- 
ing to the infinite-bandwidth capacity limit and to soft-decision decoding, and 

,118'18, 

),,II?l, the second (curve C), which tends to 0.4 dB, the BSC capacity limit which refers 
to a hard-decision demodulator. These limits had been evaluated in Section 3.3. 

, .,, The regions between the uncoded curve and those of the capacity limits rep- 
resent the region of potential coding gains. As an example, for a bit error proba- 
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Figure 10.2: Typical behavior of the bit errorprobabili~ versus bit signal-to-noise ratio 
for uncoded and coded systems. 

Figure 10.3: Potential coding gains of coded transmission with respect to binary un- 
coded antipodal transmission. 
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bility of a potential coding gain of 11.2 dB is theoretically available in the 
case of unquantized soft-decision decoding. Another limit, the cutoff rate limit, 
will be derived when analyzing the performance of coded transmission. 

The fifty years that separate us from the channel coding theorem of Shannon 
has seen a great research effort aiming at filling the channel coding gap through 
the discovery of codes approaching the capacity limits. Until recently, these 
efforts had been very successful up to the cutoff rate limit (see Section 10.4), 
a couple of dB short of the capacity limit, but were unable to reach the region 
between cutoff rate and capacity. As we shall see at the end of next chapter, 
we now know a way to design codes that can approach to within 0.5 dB of the 
coding gain promised by the capacity limit at bit error probabilities of to 
lo-'. 

10.2. Block codes 

We will consider mainly binary codes, i.e., codes for which both the data words 
and the code words are formed by binary digits 0 and 1. This concept can be 
extended to q-ary codes, and a particularly important case occurs when q = 2b 
is a power of 2; in this case, q admits a binary representation with b  bits, and the 
(n,  k )  code of q-ary elements is equivalent to an (nb, kb) binary code. 

The basic feature of block codes is that the block of n digits (code word) 
generated by the encoder depends only on the corresponding block of k  digits 
generated by the source (data word). Therefore, the encoder is memoryless. A 
great deal of block code theory is an extension of the notion of par iv  check. Take 
a sequence of k  binary digits. Transform it into a sequence of length n = k  + 1 
digits by simply adding in the last position a new binary digit, following the 
rule that the number of ones in the new sequence must be even. This redundant 

! digit is called a parity-check digit. In this way, any error event on the channel 

! 
that changes the parity of the sequence from even to odd can be detected by the 
decoder. 

Parity-check codes are a particular class of block codes in which the digits 
of the code word are a set of n parity checks performed on the k  information 
digits. The code is usually referred to as an (n,  k )  code. An encoder (or, simply, 
a code) is called systematic when the first k  digits in the code word are a replica 
of the information digits in the data word, and the remaining ( n  - k )  digits are 
parity checks on the k  information digits. Parity checks in binary sequences are 

i formally dealt with using modulo-2 arithmetic, in which the rules of ordinary 
arithmetic hold true except that the sum (1 + 1) is 0, not 2. Throughout this chap- 
ter, modulo-2 arithmetic will be used unless otherwise specified. A functional 

i block diagram of the encoder is shown in Fig. 10.4. It consists of a k-stage in- 
I 



10. Improving the transmission reliabilily: Block codes 10.2. Block codes 

Input register 

I I 

Xn Xn-1 . . . . . 
Output register 

Figure 10.4: Block diagram of the encoder for a parity-check code, 

put shift register, n modulo-2 adders, and an n-stage output shift register. Each 
adder is connected to a subset of stages of the input register in order to perform 
the desired parity checks. The vector u = [ul, u2,. . . , uk] of k information dig- 
its is fed into the input register. When this register is loaded, the content of each 
adder is fed in parallel into the corresponding stage of the output register, which 
shifts out the code word x = [q, x2, . . . , x,,]. While shifting out one code word, 
the input register is reloaded and the whole operation repeated. The clocks for 
the two registers are different. the output rate being higher by a factor 1/R,. The 
following simple examples will clarify these concepts. 

Example 10.1 Repetition code (3 ,  1) 
In this code, each code word of length n = 3 is defined by the relations 

The encoder is sketched in Fig.lO.5. Obviously, the adders are omitted in this case. The 
resulting repetition encoder is defined by the correspondence 

Data words Code words F a G J  
Notice that the encoder is systematic, and that only two of the eight sequences of length 
3 are used in the code. 0 

Figure 10.5: Encoder for the repetition code (3, 1). 

I Figure 10.6: Encoder for the purify-check code (3, 2). 

Example 10.2 Parity-check code (3, 2) 
This is a code in which the third digit is a parity check on the first two digits. The code 
word is defined by the relations 

Data words Code words - 
Notice that only four of the eight sequences of length 3 are used in the code. 

0 
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Figure 10.7: Encoder for the Hamming code (7, 4). 

Example 10.3 Hamming code (7, 4) 
The Hamming code (7, 4) is defined by the relations 

xi = u i = 1,2,3,4 

5.5 = u1 +UZ + U3 (10.3) 

26 = u2 + u3 + u4 

2, = u1+ UZ + U4 . 

The corresponding systematic encoder is shown in Fig. 10.7. It is defined by the corre- 
spondence - 

lata words - 
0000 
000 1 
0010 
001 1 
0100 
0101 
0110 
01 1 1  
loo0 
1001 
1010 
1011 
1 100 
1101 
1110 
1111 - 

:ode words 
OOM) 000 
0001 011 
0010 110 
0011 101 
0100 111 
0101 100 
0110 001 
0111 010 
loo0 101 
1001 110 
1010 01 1 
1011 000 
1100 010 
1101 001 
1110 100 
1111 1 1 1  
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0 Notice that only 16 of the 128 sequences of length 7 are used in the code. 

These examples show that all the information required to specify the encoder 
operation is contained in relations of the type of (10.1), (10.2), and (10.3). With 
reference to Figs. 10.5, 10.6 and 10.7, these relations specify the connections 
between the input register cells and the adders. If the encoder is systematic, only 
the (n - k) parity-check equations of the redundant digits must be assigned. 

The information that specifies the encoding rule, and thus the structure of 
the encoder itself, can be concisely represented by the generator matrix G of the 
code. It is a k x n matrix whose (2 ,  j )  entry is 1 if the i-th cell of the input register 
is connected to the j-th adder, and 0 otherwise. Using the row-vector notation 
for the data word u and the code word x, the encoding rule is described by the 
equation 

(10.4) x = uG 

It is easily seen that obtaining a code word x through (10.4) is equivalent to 
summing the rows of the matrix G corresponding to the ones contained in the 
information sequence u. 

Example 10.4 For the (7, 4) Hamming code of Example 10.3, the generator matrix G 
can be found by inspection of the encoder of Fig. 10.7 as follows: 

If we want the code word corresponding to the data word u = [1100], we must add the 
first two rows of G ,  obtaining 

and the result agrees with the code table given in Example 10.3. 0 

For systematic encoders, the first k columns of G form a k x k identity 
matrix, so that G assumes the form 

(10.6) G = [Ik i PI 
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where Ik is the k x k identity mamx and P is a k x (n - k) matrix containing 
the information regarding the parity checks. The knowledge of P completely 
defines the encoding rule for a systematic encoder. 

The following important properties of parity check codes can be proved. 

Property 1 The block code consists of all possible sums of the rows of the gen- 
erator mamx. 

Property 2 The sum of two code words is still a code word. 

Property 3 The n-tuple of all zeros is always a code word. 

Because of these properties, parity-check codes are also called linear codes. Lin- 
ear block codes can be interpreted as being a subspace of the vector space con- 
taining all 2n binary n-tuples. From this algebraic viewpoint, the rows of the 
generator matrix G are a basis of the subspace and consist of k linearly inde- 
pendent code words. In fact, all their 2k linear combinations generate the entire 
subspace, that is, the code. Note that any k linearly independent code words of 
an (n, k) linear code can be used to form a generator matrix for the code. For 
these reasons, it is straightforward to conclude that any generator matrix of an 
(n, k) block code can be reduced, by means of row operations and column per- 
mutations, to the systematic form (10.6). which is also called reduced-echelon 
form. However, while row operations do not alter the code, column permuta- 
tions may lead to a different set of code words, i.e., to a code that differs from 
the original one in the arrangement of its binary symbols. Two codes whose 
generator matrices can be obtained from each other by row operations and col- 
umn permutations have the same word error probability, and, because of that, 
are said to be equivalent. Note, however, that their bit error probabilities (it will 
be defined later in the chapter, together with the word error probability) may 
be different, because equivalent codes can admit different encoders, and hence 
different mappings between data words and code words. 

Thus, every (n, k) block code is equivalent to a systematic (n, k) block code 
(see Problem 10.5). Therefore, if the word error probability is the parameter of 
interest, we can consider only systematic codes without loss of generality. 

An important parameter of a code word is its Hamming weight, that is, the 
number of ones that it contains. The set of all distinct weights in a code, together 
with the number of code words of that weight, is the weight distribution of the 
code. Owing to the previous definition, equivalent codes have the same weight 
distributions. Given two code words xi  and x,, it is useful to define a quantity 
to measure their difference. This quantity is the Hamming distance dij between 
the two code words, defined as the number of positions in which the two code 
words differ. Clearly, dij satisfies the condition 0 5 dii < n. The smallest 
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among the Hamming distances between distinct code words (i # j) is called 
the minimum distance d,, of the code. The following propexty allows an easy 
computation of d,i, for linear codes. 

Property 4 The minimum distance of a linear block code is the minimum weight 
of its nonzero code words. 

In fact, the distance between two binary sequences is equal to the weight of their 
modulo-2 sum, and the sum of two code words is still a code word (Property 2). 

Example 10.5 Consider again the (7, 4) Hamming code of Example 10.3. From the 
code table, we obtain the following weight distribution 

code words 

4 7 

Using Property 4, we get dmin = 3. 

10.2.1. Error-detecting and error-correcting capabilities of a block code 

Assume that the demodulator makes hard decisions so that the discrete channel 
between the channel encoder and decoder can be modeled as a binary symmetric 
channel (BSC). Each transmitted code word x is received at the decoder input as 
a sequence y of n binary digits (Fig. 10.1). The encoder is systematic. Therefore, 
the first k digits of y  a~ the received information digits. while the remaining 
(n - k) digits are the received parity-check digits. The sequence y can contain 
independent random errors caused by the channel noise. Let us define a binary 
vector e  called an error vector: 

e  = [el,. . . ,en] (10.7) 
Each component ei is 1 if the channel has changed the i-th transmitted digit; 
otherwise, it is 0. The received vector is then 

,#,I## ( 

,111 I, y = x + e  (10.8) 
where x is the transmitted code word. The decoder recomputes the (n - k) 

"I. 

parity-checks using the first k received bits, and compares them with the (n - k) 
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received parity-checks. If they match, the received sequence is a code word. 
Otherwise, an error is detected. Therefore, at least for error detection, the de- 
coding rule is very simple: an e m r  pattern is detected whenever at least one of 
the (n  - k) controls on parity checks fails. Let us define a vectors that contains 
the parity checks performed on the received word y.  Its ( n  - k) binary digits are 
zeros for all parity checks that are satisfied, and ones for those that are not. The 
vector s is called the syndrome of the received vector y .  Recalling the definition 
(10.6) of the generator matrix G of a systematic code, it is easily verified that 
the syndrome can be obtained from the equation 

s =  yH' (10.9) 

where the prime means transpose, and where we have introduced the panty- 
check matrix H,  defined as 

It is an (n  - k) x n  matrix, whose rows represent the parity-check symbols 
computed by the decoder. A direct calculation using (10.6) shows that 

GH' = 0 (10.11) 

where 0 is a k x ( n  - k) matrix all of whose elements are zero. 

Example 10.6 Consider again the (7, 4) Hamming code of Example 10.3. The three 
parity-check symbols computed by the decoder on the received sequence y can be writ- 
ten by inspection of (10.3) as follows: 

The parity check matrix is therefore 

~ 1 1 0 1 i O O 1 1  

It can be verified that (10.13) is also obtained from (10.5) using the definition (10.10). 
The property (10.11) can also be verified. 

0 

- From the definition of the syndrome associated with a received sequence y ,  
the following two properties can be verified: 
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Property 5 The syndrome associated with a sequence y is a zero vector if and 
only if y is a code word. 

Property 6 The decoder can detect all channel errors represented by vectors e 
that are not code words. 

Since the channel can introduce 2" different error vectors, only 2k of them are 
not detected by the decoder, that is, those corresponding to the set of code words. 
Finally, since no code word exists with a weight less than dmin (except, of course, 
the all-zero code word), the following theorem can be proved. 

Theorem 10.1 

A linear block code (n ,  k) with minimum distance dmin can detect all error vec- 
tors of weight not greater than (dmill - 1). 

Until now, we have only explored the error-detection capabilities of a hard- 
decision decoder. The problem of error correction is more complicated, since 
the syndrome does not contain sufficient information to locate the errors. Using 
(10.8), the expression (10.9) for the syndrome can be rewritten as 

where x is a code word. Since xH' = 0 (Property 5), there are 2k different 
sequences y that generate the same syndrome. They are obtained by summing 
to a given error vector e the 2k code words. Therefore, given a transmitted code 
word x, there are 2k error vectors that give the same syndrome. Which one 
actually occurred is an uncertainty that cannot be removed by using only the 
syndrome. 

A suitable decoding algorithm must be elaborated. Assume that maximum 
likelihood (ML) hard decisions are taken by the decoder. This means that it 
achieves minimum word error probability on the received code words when they 
are equally likely. If p is the transition probability of the equivalent BSC implied 
by hard decisions, we have 

where n is the block length and di is the Hamming distance between the received 
sequence y and the transmitted code word xi. Assuming, without loss of gener- 
ality, p < 112, the probability P ( y  I x i )  is a monotonic decreasing function of 
d,. Therefore, ML decoding is accomplished with minimum Hamming-distance 
decisions. The "best" decoding algorithm decides for the code word xi which is 
closest to y .  Recalling the discussion regarding (10.14), we can conclude that 
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code words 

Received sequences 
with errors 

Figure 10.8: Qualitative repre~entation of the decision regions msigned to code words. 

the minimum-distance decoding algorithm assumes that the error vector e that 
actually occurred is the minimum-weight e m r  vector in the set of the 2* error 
vectors yielding the syndrome associated with the received sequence y. Before 
considering this decoding rule in detail using the minimum-distance decodjng 
algorithm, let us relate the error-correcting capabilities of a block code to the 
code parameter dmin. 

Theorem 10.2 

A linear block code ( n ,  k ) ,  with minimum distance d,i,, can correct all error 
vectors containing no more than t = [(dmin - 1 ) / 2 ]  errors, where La] (the 
"floor" of a) denotes the largest integer contained in a. The code is then a t- 
error-correcting code, and is often denoted as an ( n ,  k ,  t )  code. v 

Proof of Theorem 10.2 

The decoding algorithm is implemented by assigning to each code word a deci- 
sion region containing the subset of all the received sequences that are closer to 
it than to any other (minimum distance decoding, see Fig. 10.8). An error vec- 
tor with no more than [(dmin - 1)/21 errors produces a received sequence lying 
inside the correct decision region. Error correction is therefore possible. QED 

The results of Theorems 10.1 and 10.2 are summarized in Table 10.1. 
Based on previous Theorems 10.1 and 10.2, a design goal for a block code 

( n ,  k )  is to use its redundancy to achieve the largest possible minimum distance 
dmi,. So far, no general solution to this problem is known. Instead. upper and 
lower bounds to dmin are used. Some of them will be described in Section 10.4.2. 

Errors detected Errors corrected 
0 

Table 10.1: Error correction and error detection cnpabilities of linear block codes ar a 
function of dmis 

10.2.2. Decoding table and standard array of a linear block code 

Using the minimum-distance hard decoding algorithm just described, the de- 
( coding operation can be performed by looking for the code word nearest to the 

received sequence. This approach requires the storage of the 2" code words and 

i repeated comparisons with the received sequence. The total storage requirement 

I is on the order of n x 2" bits. Hence, the approach becomes rapidly impractical 
even for moderately-sized codes. Also, the comparison process is unacceptably / long when n and k  are large. 

I A more efficient approach is to evaluate the syndrome associated with the 
I 

. $  

received sequence y by assuming that the error vector e that actually occurred 
is the minimum-weight vector in the set of the 2k vectors that generate the same 

! syndrome. With this approach, we can build a decoding table by associating 

i with each syndrome the error vector of minimum weight that generated it. The 

1 positions of the ones in the error vector indicate the digits that must be corrected 
in the received sequence y. This approach is better clarified by the following 
example. 

Example 10.7 The (7, 4) Hamming code has minimum distance 3. Thus, it is expected 
to correct all single errors. There are, of course, 128 possible received words and only 8 
different syndromes. All these sequences are included in Table 10.2. They are grouped 
in rows containing all sequences that share the same syndrome. The syndrome is shown 
as the first entry in each row. The first column of the table contains all error vectors 
of minimum weight. It can be verified by inspection that each error vector containing 
only one error has a different syndrome, and hence it can be corrected. Therefore. the 
decoding table for this code is the following: 
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Table 10.2: Standard array ofthe (7, 4 )  Hamming code. 

Obviously. the syndrome 000 corresponds to the set of the 16 code words. The 
syndrome 11 1 locates an error in the second position of the received sequence, and so 
on. Table 10.2 can also be interpreted as follows. Assume that the sequence 1101010 
is received. The corresponding syndrome is 011. Therefore, an error in position 4 is 
assumed and corrected. The code word obtained, which is 1100010, appears at the top 
of the column containing the received sequence. 0 

Syndrome 
000 
001 
010 
011 
100 
101 
110 

A table such as Table 10.2, containing all the 2" n-tuples (the possible re- 
ceived words) of length n organized in that order, is called the standard array 
of the code. It has 2k columns and 2n-k rows. The rows are called cosets. The 
first word in each row is nominated a coset leader. The top word in a column is 
a code word, and each coset leader is the minimum-weight word that generates 
the syndrome common to all words of that coset. 

The decoding table is built by simply associating with each syndrome the 
corresponding coset leader of the standard array. The coset leaders are there- 
fore the correctable error vectors; if the error vector is not a coset leader, then 
an incorrect decoding will be performed. To minimize the average word error 
probability, the coset leaders must be the error vectors that are the most likely to 
occur. For a BSC, the coset leaders are the minimum-weight words associated 
with a given syndrome. Therefore, the decoding algorithm works as follows: 

1. Compute the syndrome for the received sequence. 

Error vector 
0000000 
OOOOOO 1 
OOOOO10 
OOO1000 
OOOOlOO 
1 OOOOOO 
OOlOOOO 

2. Find the correctable error vector (coset leader) in the decoding table. 

Digit in error 
None 

7 
6 
4 
5 
1 
3 

3. Get the estimated code word by adding the correctable error vector to the 
received word. 

The decoding table requires the storage of 2n-k syndromes of length ( n  - k) 
and of 2n-k e m r  patterns of length n: a total of 2n-k x (2n - k) bits. For high 
rate codes (k 2i n), the storage requirement is close to n x 2n-k,  considerably 
less as compared to the n x 2k bits required by an exhaustive search. In spite of 
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(31 ,  26)  

Table 10.3: Parameters of thefirst Hmming codes. 

this interesting result, the decoding table, too. becomes impractical when n and 
k  are large numbers. In that case a more elaborate algebraic structure must be as- 
signed to the code in order to employ decoding strategies based on computational 
algorithms, rather than on look-up tables. 

10.2.3. Hamming codes 

Equation (10.14) can be rewritten in the form 

s = eH' 

Therefore, the syndrome of a given sequence is the sum of the columns of H 
corresponding to the position of the ones in the error vector. Consequently, if a 
column of H is zero, an error in that position cannot be detected. Furthermore, if 
two columns of H are equal, a single error in one of those two positions cannot 
be corrected since the two syndromes are not distinct. We can conclude that a 
block code can correct all single errors if and only if the columns of its parity- 
check matrix H are nonzero and distinct. 

Hamming codes arc characterized by a matix H whose columns are all the 
possible sequences of (n - k )  binary digits except the zero sequence. For every 
1 = 2 , 3 , 4 , .  . . , there is a (2' - 1,2' - 1  - 1 )  Hamming code. These codes 
have d,, = 3  and are thus capable of correcting all single errors. The i~  rate 
R, = (2l.- 1  - 1) / (2 l  - 1 )  increases with 1 and approaches 1  for 1 4 m. The 
parameters of the first six Hamming codes are listed in Table 10.3. 

Example 10.8 The parity-check matrix of the-Hamming code (15,111 is the following: 
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Notice that H is not written in the systematic form of (10.10). its columns being in lex- 
icographical order. It can be reduced to systematic form by a simple remFgement of 
columns. The interesting property of (10.17) is that the Ctuple in each column, as a 
binary number, identifies the column position. Therefore, an error vector with a single 
error will generate a syndrome that gives, in binary fom, the position of the error in the 
received sequence. This information can be used for correction. 0 

Hamming codes have an interesting property that can be verified by inspec- 
tion of the standard array (see Table 10.2 for the ( 7 ,  4 )  code). All possible re- 
ceived sequences have Hamming distance 1 from one of the code words. Codes 
of this type are called perfect codes. Another property of the Hamming codes 
is that they are one of the few classes of codes for which the complete weight 
distribution is known. The weight distribution of a code can be represented in a 
compact form as a polynomial, called the weight enurneraringfunction (WEF) 
of the code. It is a polynomial in the indeterminate D  

n 

A ( D )  = A ~ D ~  (10.18) 
d=O 

where Ad is the number (multiplicity) of code words in the code with weight 
(or, equivalently, Hamming distance from the all-zero code word) d. For the 
Hamming codes, the WEF can be shown to be 

1  
A ( D )  = -[(I + D)" + n ( l  + ~ ) ( " - ' ) / ' ( 1  - D ) ( " + ' ) / ~ ]  (10.19) n + l  I 

The result of Example 10.5 can be checked against (10.19). 
Each Hamming code can be converted to a new code by adding one parity 

digit that checks all previous n  digits of the code word. This results in a class 
of (2', 2' - 1  - 1 )  block codes called mended Hamming codes. Their parity- 
check matrix Hex, is obtained by adding a new row to the Hamming parity-check 
matrix H as follows: 

Hext = 

The last row represents the overall parity-check digit. Since, with an overall 
parity-check, the weight of every code word must be even, the extended Ham- 
ming codes have dm,, = 4.  Their particular structure makes it possible to detect 

i 0  

I 0  

H i i  

i 0  

- 1  1 ... 1 I 1 ,  

(10.20) 
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all double errors while simultaneously correcting all single errors (as in the orig- 
inal Hamming codes). In fact, the syndromes for double errors form a subset 
distinct from that of the syndromes for single errors. The decoding algorithm 
works as follows: 

1. If the last digit of the syndrome is 1, then the number of errors must be 
odd. Using the minimum-distance algorithm, correction can be performed 
as for the Hamming codes. 

2. If the last digit of the syndrome is 0, but the syndrome is not all-zero, then 
no correction is possible since at least two errors must have occurred. A 
double error is therefore detected. 

This property of extending a code by the addition of an overall parity check can 
be applied to any linear block code other than the Hamming codes. In particular, 
any linear ( n ,  k)  block code with an odd minimum distance can be converted into 
an extended ( n  + 1, k )  block code with a minimum distance increased by one. 

10.2.4. Dual codes 

The generator matrix G and the parity-check matrix H of a linear (n ,  k)  block 
code are related by (10.11). This relation can be rewritten as 

HG' = 0 (10.21) 

Thus, the two matrices can be interchanged and the H matrix can be the gener- 
ator matrix of a new (n ,  n  - k )  block code. Codes that are so related are said 
to be dual codes. There is a very interesting relationship between the weight 
distributions of two dual codes. Let A ( D )  be the weight enumerating function 
of the (n ,  k )  block code and Adud(D) the weight enumerating function of its 
(n ,  n  - k)  dual code. Then, the two weight enumerating functions are related by 
the identity (MacWilliarns and Sloane, 1977) 

This relationship is very useful in determining the weight structure of high-rate 
block codes through an exhaustive computer search performed on their low-rate 
dual codes. 

10.2.5. Maximal-length codes 

The duals of the Hamming codes are called maximal-length codes. Therefore, 
for every 1 = 2 , 3 , 4 , .  . . there is a (2' - 1, I) maximal-length code. Its gen- 
erator matrix is the parity-check matrix of the corresponding Hamming code. 
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The weight distribution of these codes can be easily determined by introducing 
(10.19) into (10.22). The weight enumerator A(D)  for the maximal-length codes 
is thus found to be 

A ( D )  = 1 + (2' - 1 ) ~ ~ l - l  (10.23) 
Hence, all nonzero code words have identical weight 2'-'. Also, this is the min- 
imum distance of the code. These codes are also called equidistant or simplex 
codes. Additional insight into the properties of these codes will be obtained later 
in connection with the description of cyclic codes. 

10.2.6. Reed-Muller codes 

The Reed-Muller codes are a class of linear block codes covering a wide range of 
rates and minimum distances. They present very interesting properties, among 
them, the fact that they can be soft-decoded by using a simple trellis (see Fomey, 
1988b). 

For any m and r < m, there is a Reed-Muller code with parameters given by 

The generator matrix G of the rth-order Reed-Muller code is defined by as- 
signing a set of vectors as follows. Let vo be a vector whose 2, elements are 
all ones, and let vl,  v2, . . . , v, be the rows of a matrix with all possible m- 
tuples as columns. The rows of the 7th-order generator matrix are the vectors 
vo, vl, . . . , v, and all the products of vl, . . . , v, two at a time, three at a time, 
up to r at a time. Here the product vector vivj has components given by the 
products of the corresponding components of vi and vj. 

Example 10.9 In this example, we show how to generate the Reed-Muller codes with 
m = 3. There are two codes. They have the following parameters: 

2 8 7  

The vectors used for building the generator matrices are given in Table 10.4. The first- 
order code ( r  = 1) is generated by using the vectors vo, vl, vz, v~ as rows of the gener- 
ator matrix. The second-order code (r = 2) is generated by augmenting this matrix with 
the additional three rows of Table 10.4. 

0 

The first-order Reed-Muller codes are closely related to the maximal-length 
codes. If a maximal-length code is extended by adding an overall parity check, 
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Table 10.4: Vectors for comtructing the generaor matrix of Reed-Muller codes with 
m = 3. 

Vo 

V l  

we obtain an orthogonal code. This code has 2" code words. Each has weight 
2m-1, except for the all-zero code word. Therefore, every code word agrees in 
2"-' positions and disagrees in 2"-' positions with every other code word. If 
this code is transmitted using an antipodal signaling scheme, each code word 
is represented by one out of 2m orthogonal signals. This explains the name 
"orthogonal" code. For the case m = 3, the code generator mamx consists of the 
three rows v l ,  v2, and v3 of Table 10.4. In fact, the first column represents the 
overall parity-check digit, whereas the other columns are all the seven possible 
triples of binary digits. The first-order Reed-Muller code is obtained from this 
code (the orthogonal code) by adding to the generator matrix the all-ones vector 
vo.  In terms of transmitted signals, this operation adds to the original orthogonal 
signal set the opposite of each signal. For this reason, the code is also called 
a biorthogonal code. Finally, notice that the rth-order Reed-Muller code is the 
dual of the Reed-Muller code of order (m - r - 1) .  

l l i l l l l l  
0 0 0 0 1 1 1 1  

10.2.7. Cyclic codes 

The cyclic codes are parity-check codes that present a large amount of math- 
ematical structure. These codes share, of course, all the properties previously 
described for parity-check codes, but, in addition, have peculiar properties that 
allow easy encoding operations and simple decoding algorithms. Cyclic codes 
are, for this reason, of great practical interest. 

Definition 10.1 

An (n, k )  linear block code is a cyclic code if and only if any cyclic shift of a 
iode word produces another code word. 
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Example 10.10 It can be verified that the (7, 4) Hamming code of Example 10.3 is a 
cyclic code. Take, for instance, the code word 0111010. There are six different cyclic 
shifts of this code word. 

They all belong to the set of code words. The same is true for all the code words. 0 

In dealing with cyclic codes, it is useful to represent a binary sequence of n 
bits as a polynomial in the indeterminate Z  of degree not greater than (n - 1)  
with binary (0  and 1) coefficients. The binary digits of a code word will be 
numbered in decreasing order from (n - 1) to 0, so that each index matches the 
exponent of Z .  A code word x = [zn-l,zn-,, . . . , zo] is then represented by the 
code polynomial z ( Z )  as follows: 

The binary coefficients of this polynomial will be manipulated with the rules of 
modulo-2 arithmetic. In this new notation, the code words of an (n, k )  linear 
block code are in a one-to-one correspondence with code polynomials of degree 
not greater than (n - 1). 

By definition of cyclic code, if z ( Z )  is the code polynomial of a cyclic code, 
then a cyclic shift of the code word (say to the left) of i positions generates 
another code polynomial that we denote by d i ) ( Z ) .  Theorem 10.3 relates the 1 ,  

polynomial representation of a cyclically shifted n-tuple to the binomial Zn + 1, 
which will be shown to play a crucial role for cyclic codes. 

Theorem 10.3 

The code polynomial z ( ' ) ( Z )  is the remainder resulting from dividing Z i x ( Z )  
by ( Z n  + 1); that is, 

where q ( Z )  is the quotient polynomial of degree not greater than (i - 1). 

Proof of Theorem 10.3 

Let us write explicitly Z i z ( Z )  
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Sum to this expression twice the terms X,-~Z"-', X , - ~ Z " ~ ,  . . . , zn-i; this is 
possible because x,-~ + x,+ = 0, V j .  We get 

z i z ( z )  = X,-~Z' - ' (Z~ + 1) + X , , - ~ Z ~ - ~ ( Z ~  + 1) + . . . 2,-i(Zn + 1) + 
X , - ~ - ~ Z ~ - '  + . . . + xlZitl + xaZi + xn-1Zi-' + . . . + x,-i 

and finally, 

z i x ( z )  = (X,-~Z"-' + x , - 2 ~ ' - ~  + . . .xn-i)(zn + 1) + 
xn-i-lzn-l + . . . + xlzi+l + xoZi + 2,-12'--' + . . . + 2,-i 

= q (2) (Zn  + 1) + x@) (2) 

Example 10.11 Let us take again the code word 0111010 of Example 10.10. The 
corresponding code polynomial is 

X ( Z )  = z5 + z4 + z3 + z 
A shift of four positions to the left generates the code polynomial x ( ~ ) ( z ) ,  which is 
obtained, according to Theorem 10.3, by dividing Z4x(Z)  by (Z7 + 1) as follows: 

2 7  +1 z9 + z8 + 27 + 2 5  

z9 + z2 
z8 + z7 + z5 + z1 

The remainder is Z5 + Z2 + Z + 1, that is, the sequence 0100111. This sequence is 
obtained from the original one with a four-position shift to the left. 0 

z2+z+1 
quotient 

2 7  + 1  
Z5 + Zz + Z + 1 

Using the polynomial description of cyclic codes, we now want to exploit the 
algebraic properties of their generator matrices. Let us first proceed through an 
example that will also enable us to introduce an important theorem. 

remainder 

~xarnpie 10.12 The (7, 4) Hamming code of Example 10.3 was already claimed to be 
cyclic in Example 10.10. Let us rewrite its generator matrix (10.5) in polynomial form 
as follows: 

r n 6 ~  z2 + 1 1  

10.2. Block codes 
479 

Consider the last row of this generator matrix, that is, the polynomial 

This code polynomial must have a 1 in the last position (coefficient of 2'); otherwise, six 
cyclic shifts to the left would generate a code word with k = 4 information digits equal to 
0 and a parity-check section containing 2 ones, which is impossible. Furthermore, this 
is the only polynomial of degree n - k = 3 in the code. In fact, if there were another, it 
could be added to g(Z)  to generate a code word presenting again an all-zero information 
section with a nonzero parity section. As a conclusion, there is a unique code polynomial 
g(Z) of degree n - k = 3, and this polynomial has always the form 

Let us now derive the remaining rows of the generator matrix (10.27). The third row 
can be obtained with one cyclic shift to the left of the last row. Should a 1 appear in 
the fourth position, the last row could be added to cancel it. Each row of G ( Z )  can be 
obtained in a similar way from the row below. The result is 

All the rows of G ( Z )  are multiples of the polynomial g(Z).  But, since all code words 
in the code are linear combinations of the rows of G ( Z ) ,  we can conclude that all the 
code polynomials are multiples of the polynomial g(Z).  

0 

The important conclusions drawn from the previous example are stated in 
general form in Theorem 10.4. 

Theorem 10.4 

Given an ( n ,  k )  cyclic code, there is a unique code polynomial of degree ( n  - k )  
that has the form 

g(Z)  = Zn-k + . . . + 1  (10.3 1) 
All other 2k - 1  code polynomials are multiples of g ( Z ) ,  and every polynomial 
of degree (n - 1) or less that is divisible by g ( Z )  must be a code polynomial. 

The proof, involving a generalization of the development in Example 10.12, is 
left to the reader. 

The polynomial g ( Z )  defined by Theorem 10.4 is called the generatorpoly- 
nomial of the cyclic code. Any cyclic code is completely defined by its generator 
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polynomial. The natural question now is whether there exists an ( n ,  k )  cyclic 
code for any n  and k  and which is the corresponding generator polynomial. The- 
orem 10.5 provides the answer. 

Theorem 10.5 

The generator polynomial g ( Z )  of an ( n ,  k )  cyclic code is a divisor of ( Z n  + 1). 
Conversely, every divisor of ( Z n  + 1) of degree ( n  - k) generates an ( n ,  k )  cyclic 
code. v 

Proof of Theorem 10.5 

Consider the polynomial Z k g ( Z )  of degree n  and divide it by ( Z n  + 1). We get 

where g ( k ) ( Z )  is a polynomial of degree not greater than ( n  - 1). Using (10.26), 
we can conclude that g ( k ) ( Z )  is a code polynomial obtained with k  cyclic shifts 
to the left of g(Z) .  Therefore, it is also a multiple of g(Z) ,  say m ( Z ) g ( Z ) .  
From (10.32), we get 

and the direct part of the theorem is proved. 
Conversely, let g ( Z )  be a divisor of ( Z n  + 1) of degree ( n  - k )  and con- 

sider the k  polynomials g(Z) ,  Z g ( Z ) ,  . . . , Zk-'g(Z) of degree ( n  - k ) ,  ( n  - k+ 
1) ,  . . . , ( n  - 1). There m 2k linear combinations of these k  polynomials. Each 
of them is a multiple of Q ( Z ) ,  and together they form an (n, k )  linear code. Let 
x ( Z )  be one of these codepolynomials and consider 

Z ' X ( Z )  = q ( 2 )  (2" + 1) + x(') (2) (10.34) 

where x(')(z) is a cyclic shift of ~ ( 2 ) .  Since both x ( 2 )  and ( Z n  + 1) are mul- 
tiples of g(Z) ,  then x(')(z) is also a multiple of g(Z).  Furthennore, it can be 
expressed as a linear combination of the aforementioned k  polynomials. It fol- 
lows that x(') (2) is a code polynomial and that the linear code is cyclic. QED 

Finally, notice that if g(Z)  divides (2'" +1) as well as (2" + I ) ,  with m < n ,  
then ( Z m  + 1) is a code word in the cyclic code ( n ,  k )  whose minimum distance 
is therefore 2. To avoid this drawback, n  must be taken as the smallest integer 
such as ( Z n  + 1) is a multiple of g(Z) .  

Considerable algebraic results are available regarding the properties of the 
phynomials ( Z n  + 1). In particular, tables of divisors for different values of n  

Factors 

6.54.64. 
6.7.444. 
6.7.46.62.76. 
6.471.727. 
6.7.54.64.534.724. 
6.5342.6165. 
6.76.4102041. 
6.7.444.4004004. 
6.45.51 S7.67.73.75. 
6.7.4522.6106.7776. 
6.54.64.76.57134.72364. 
6.7.57074.74364.77774. 
6.5747175.6647133. 
6.47771.52225.64213. 
6.7.46.62.76.444.40044.44004. 
6.43073357.75667061. 
6.54.64.40001004.40200004. 
6.7.433.471.637.661.727.763. 
6.76.7776.5551 347.71 64555. 
6.7.5604164.7565674.7777774. 

Table 10.5: Factors of the polynomial (2" + 1) .  Each polynomial factor is given in octal 
notation with the lowest-degree terms on the left (MacWilliams and Slome, 1977). 

can be found. One of these is reproduced in Table 10.5. These tables are very 
useful because the design of a cyclic code with preassigned properties reduces 
to an appropriate selection of divisors of ( Z n  + 1) as candidates for the code 
generator g(Z) .  

Notice that the Table 10.5 considers only odd values of n ,  because in bi- 
nary algebra we have ( Z Z m  + 1) = ( Z m  + I ) ~ .  Furthermore, the values of n  = 
3,5,11,13,19,29,37,53,59,61 are omitted from the table. In fact, for these 
values the factorization is simply 

(2" + 1) = ( Z  + l)(Zn-I + z" -~  + . . . + Z + 1) 

Therefore, Table 10.5 gives the factors of ( Z n  + 1) for n  5 63 and n  = 127. The 
factors are given in octal notation, with the lowest-degree terms on the left. As 
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an example, the second line of the table means that the coefficients of the factors 
are, respectively, 110, 11 1, and 100100100, so that we obtain 

Encoding algorithms for cyclic codes 

Given the generator polynomial g(Z) of a cyclic code (n, k), the code polyno- 
mial x(Z) corresponding to an information sequence u(Z) can be obtained from 
Theorem 10.4 as 

This simple algorithm does not actually represent a systematic encoder, as is 
verified in the following example. 

Example 10.13 The (7, 4) Hamming code described in Example 10.12 has the gener- 
ator g(Z) = Z3 + Z + 1. Let us find the code word corresponding to the information 
sequence 1101. Since 

U(Z) = 2 3  + zZ + 1 

we get 

Z(Z) = (23 + z2 + 1)(z3 + z + 1) = z6 + z5 + z4 + z3 + z2 + z + i 
The code word is then 11 111 11 and the encoder is not systematic. All other code words 
can be obtained in the same way. 

0 

The algorithm based on (10.35) can be modified to represent a systematic 
cyclic encoder (n, k). Given the information sequence u(Z), let us multiply it 
by Zn-k and divide by the generator polynomial g(Z). We have 

where q(Z) and T(Z) are, respectively, the quotient and the remainder of the 
division. Notice that T(Z) must have a degree (n - k - 1) or less, since the 
degree of g(Z) is (n - k), Rearranging (10.36), we get 

This is the key for the desired encoding algorithm. In fact, the LHS of this 
equation is a polynomial of degree (n - 1) or less, a multiple of g(Z), and hence 
a code polynomial in the cyclic code generated by g(Z). Let us write it explicitly 
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Quotient - * 
1 1 1 1  

Figure 10.9: Circuit to divide by g(Z) = Z3 + Z + 1. When all seven digits of the 
dividend have been fed into the shifr register; the contents rzrlro of the register are the 
remainder of the division For the example shown, the remainder will be 001. 

Therefore, the code word consists of the k information digits followed by the 
(n-k) parity check digits and the encoder is systematic. In conclusion, the parity 
check section of each code word in a systematic cyclic code (n, k) is obtained as 
the remainder of the division of Z"-ku(Z) by the generator polynomial g(Z). 

Example 10.14 Given the (7, 4) cyclic code with the generator polynomial Z3 + Z + 1, 
let us find the code word for the information sequence 1101 using the encoding algorithm 
just described. We have 

Dividing it by g(Z) yields the remainder 

so that the code word polynomial is x(Z) = Z6 + Z5 + Z3 + 1, corresponding to the 
binary form 1101001. The encoder is systematic. 

0 

The encoding algorithm based on (10.37) requires the division of Zn-ku(Z) 
by the generator polynomial g(Z) to get the remainder ~(2). This is the parity- 
check section of the code polynomial corresponding to u(Z). Therefore, the 
implementation of the algorithm requires a circuit that performs a division. This 
task can be accomplished by a shift register having (n - k) stages, the degree of 
the divisor, and suitable feedback connections that correspond to the coefficients 
of the divisor. The circuit shown in Figure 10.9 performs the division described 
in Example 10.14. 

At each clock pulse, the digits of the dividend are fed in leftwise starting 
with the most significant digit, and the quotient is shifted out rightward. The 
remainder is what remains in the register when all seven digits of the dividend 
have been fed in. Notice in pmicular that the feedback connections correspond 
to the structure of the divisor. 

A first possible version of the encoder for the (7, 4) code of Example 10.14 
is shown in Figure 10.10. The switches have three positions: First, at @, for four 
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Figure 10.10: First implementation of the encoder for the (7, 4 )  Hamming code with 
generator polynomial Z3 + Z  + 1. The switches are at position @ for 4 clock pulses, 
at @I for 3 clock pulses, and at 0 for 3 clock pulses. 

Quotient 

I 
Message 

Figure 10.1 1: Circuit to divide by g ( Z )  = Z3 + Z  + 1. Only four message digits arefed 
to the shift register at its right end 

clock pulses, during which the four information digits are fed into the register 
and sent to the channel; second, at @, for three clock pulses, while three zeros 
enter the register; third, at 0, for three clock pulses, while the remainder of the 
division is sent to the channel. The disadvantage of this implementation is that 
the channel remains idle while the switches are at @. To overcome this draw- 
back, the message digits can be fed into the right end of the shift register. This is 
equivalent to multiplying the symbols by Z3 as they come in. Hence, the divisor 
circuit of Figure 10.1 1 is used. The remainder of the division is now available 
in the register as soon as the last digit had been fed in. The implementation of 
the encoder based on this concept is shown in Figure 10.12. The switches are at 
@ for four clock pulses and at @ for three clock pulses. The operation of this 
encoder is described in detail in the following example. 

Example 10.15 We reproduce here the situation described in Example 10.14. The 
code word for the sequence 1101 is obtained by shifting in the circuit of Figure 10.12 
the information seguence and shifting out the remainder of the division. The contents of 

'' the shift register, at each step, are shown in the following table 
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Figure 10.12: Second implementation of the encoder for the (7, 4)  Hamming code with 
generator polynomial g(Z) = Z3 + Z  + 1. The switches are at position @ for 4 clock 
pulses, and at @I for 3 clock pulses. 

As soon as the four information digits are entered into the register and delivered to 
the channel, the register contains the sequence 001. This corresponds to the remainder 
r ( Z )  = 1. 

0 

An encoder similar to that of Figure 10.12 will work for any cyclic code. It 
requires ( n  -k) delay elements in the shift register, and the generator polynomial 
is reflected in the feedback connections structure. For codes with k < ( n  - k), 
a simpler circuit with a k-stage shift register can be implemented. It is based on 
the multiplication by the parity-check polynomial defined as 

The encoder is shown in Figure 10.13. Notice in it the shift register with k = 4  
delay elements. The connections to the adder are made according to the powers 
of h ( Z )  = Z4 + Z 2  + Z + l .  The switch is at position @ for 4 clock pulses and at 
@ for 3 clock pulses. An example of its behavior is deferred to Problem 10.15. 

The parity-check polynomial h ( Z )  is a divisor of Zn + 1 of degree k. As 
such, it can be used as the generator of an (n,  n  - k) cyclic code. This code is 
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SOURCE 

1 

Figure 10.13: Encoder for the (7, 4 )  Hamming code based on the parity-check polyno- 
mial h ( Z )  = Z4 + Z2 + Z  + 1. The switches are at position @ for 4 clock pulses, and 
at @ for 3 clock pulses. 

equivalent to the dual of the code generated by g(Z)  (see Problem 10.16). It is 
customary to refer to the cyclic code generated by h ( Z )  as the dual code of the 
cyclic code generated by g(Z) ,  although this is not true according to the formal 
definition of dual code given in Section 10.2.4. 

Error detection and error correction with cyclic codes 

Assume that a code polynomial is transmitted over a noisy channel. In analogy 
with (10.8), the received sequence can be written in polynomial form as 

where x ( Z )  is the code polynomial and e ( Z )  is the error polynomial. Let us now 
divide y(Z)  by the generator polynomial of the code. We get 

where m ( Z )  is the quotient and s ( Z )  the remainder of the division. Since only 
the code polynomials are multiples of the generator polynomial, y(Z)  will be 
a code word if and only if the polynomial s ( Z )  is zero. This polynomial of 
degree not greater than ( n  - k - 1) is the syndrome polynomial of y(Z) .  Since 
z ( Z )  = q ( Z ) g ( Z ) ,  we can compare (10.40) with (10.41) and obtain 

This equation shows that s ( Z )  is also the syndrome of e(Z) .  In conclusion, error 
detection can be accomplished by simply checking the remainder of the division 
of the received polynomial y(Z)  by the generator g(Z) .  The detection circuit 
can be implemented with a circuitry similar to that shown in Figure 10.9. The 
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register is first set to zero and the received sequence is shifted in. The content of 
the register will represent the syndrome s ( Z )  as soon as the last digit of y(Z)  is 
entered. One additional property of the syndrome is stated in Theorem 10.6. 

Theorem 10.6 

If s ( Z )  is the syndrome of an error polynomial e ( Z ) ,  the syndrome of e(')(Z),  
that is, of e(Z)  shifted cyclically i places to the left, is obtained by shifting i 
times the syndrome s(Z)  inside the division circuit. 

Proof of Theorem 10.6 

First notice that we have 

42) = s (Z)g(Z)  + s ( Z )  

and, by Theorem 10.3 

e(') (2) = n ( Z )  (2' + 1) + e e ( Z )  = n ( Z )  h (Z)g(Z)  + Z'e(Z) 

Substituting (10.43) into (10.44) yields 

Zis(Z)  = [n(Z)h(Z)  + Ziq(Z) lg(Z)  + e(')(Z) 

Expressing e(')(Z) in terms of g(Z) as 

e(') (2) = m(Z)g(Z)  + r  (2) 

gives 

Z's(2)  = [n(Z)h(Z)  + Ziq(2)  + m ( Z ) ] g ( Z )  + r ( Z )  

which proves that r ( Z ) ,  the remainder of the division of e(')(Z) by g(Z) ,  is also 
the remainder of the division of Zis (Z)  by g(Z) .  Remembering the operation of 
the circuit of Figure 10.9, this operation is precisely obtained by shifting i times 
the syndrome s ( Z )  into the division circuit. QED 

The syndrome s (Z)  of a received sequence y ( Z )  can be obtained using the 
1 

encoder circuit of the type of Figure 10.10. Also the circuit of Figure 10.11 can 
be used to the same end. With this circuit, however, the calculated syndrome 
is that of the sequence y ( n - k ) ( ~ ) .  The properties of the syndrome generating 
circuits are best understood through an example. 
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Figure 10.14: First implementation of the syndrome generator for the (7, 4) code with 
generator polynomial g(Z) = Z3 + Z + 1. 

Example 10.17 Let us use again the (7, 4) cyclic code with generator polynomial 
g(Z) = Z3 + Z + 1 and assume a received sequence y (2) = Z6 + Z5 + 1. Fht ,  let us 
derive the syndrome s(Z) from (10.41). Using the polynomial division algorithm shown 
in Example 10.1 1 to divide y ( 2 )  by g(Z),  we obtain the remainder s(Z) = Z+ 1. which 
corresponds to the vector 01 1. This can also be obtained by using the parity-check matrix 
(10.13). The circuit of Figure 10.14 can be used to derive the syndrome s(Z) = + 1. 

The content of the register at the successive steps is given in the following table: 

Zeceived ( Register I 

L 
If, instead, the circuit of Figure 10.15 is used as syndrome generator, we obtain similarly 

Received Register I 

This syndrome, that is. s(Z) = Z2 + 1, is that of the sequence y ( 3 ) ( ~ )  = z3 + Z2 + 
2 .  Using Theorem 10.6, the same syndrome can be obtained by shifting three steps 
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Figure 10.15: Second implementation of the syndrome generator for the (7, 4) code with 
generatorpolynomial g(Z) = Z3 + Z + 1. 

the syndrome s(Z) = Z + 1 in the register of Figure 10.14. The result is given in the 
following table: 

content 

To perform error correction. the decoder must find a correctable error pat- 
tern e(Z)  from the syndrome s(Z) .  The transmitted code word x ( Z )  is then 
obtained by adding e(Z) to the received sequence y(Z). Whether or not this is 
a practical operation depends on the complexity of the decoder that computes 
the correctable error pattern e(Z). Special classes of codes have been developed 
that lead to practical algorithms. But a thorough description of multiple e m r -  
correcting schemes is beyond the scope of this book, so that the interested reader 
should refer to the Bibliographic Section at the end of the chapter. However, one 
simple technique that is applicable in the case of single-error correction will be 
described hereafter. It is based on the following general theorem. 

Theorem 10.7 

If the errors of e(Z)  are confined to the (n - k)  parity-check positions of y(Z), 
the syndrome s (Z)  is identical to e(Z) .  

" '# 

,.d 

Proof of Theorem 10.7 

The assumption is equivalent to saying that e(Z)  is a polynomial of degree not , .,.",I 

greater than (n - k - 1) .  Therefore, the division by g(Z),  which has degree 
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( n  - k ) ,  gives as a remainder just e ( Z ) .  QED 

Under the conditions of Theorem 10.7, error correction is accomplished by 
simply adding the syndrome to the ( n  - k )  received parity-check digits. Should 
the errors be confined to ( n  - k )  consecutive digits different from the parity- 
check section, then the use of Theorem 10.6 allows again for error correction. In 
fact, the errors can also in this case be confined in the parity-check section by 
shifting cyclically the received sequence to the left by i places. The syndrome of 
this new sequence is that of $)(z). Let us apply these concepts to an example. 

Example 10.18 Let us use once again the (7, 4) code with generator g(Z) = Z3 + 
Z + 1. Assume that 

Therefore, as in Example 10.17, the received sequence is y(Z) = Z6 + Z5 + 1. Since 
y(Z)  is shifted into the syndrome generator from the rightmost stage, it corresponds 
to a preshifted sequence z ~ - ~ ~  (2) = Z3y (2). Using the syndrome generator of Fig- 
ure 10.15, we get from Example 10.17 that s(Z)  = Z2+ 1. Therefore, an error located in 
position 23 in y  (2) corresponds to an error in position Zn-k+j = Z3+j in the preshifted 
sequence. When j = n  - 1 = 6, an error occurs in the first position of y  ( Z ) ,  and appears 
in position ( n  - k + j) = 9 of the preshifted sequence. Taking into account the end- 
around shift, this position is the highest of the parity-check section (in fact, 9 - 7 = 2). 
Due to Theorem 10.7, the syndrome corresponding to this situation is s (Z )  = Z2 (se- 
quence 100). We can now apply Theorem 10.6. The syndrome Z2 + 1 is shifted inside 
the division circuit. When the syndrome Z2 is identified, this means that the single error 
is in the first position of the cyclically shifted received sequence. 

These concepts are applied to the error-correcting circuit of Figure 10.16. It consists 
of the syndrome generator of Figure 10.15, a buffer, and an AND gate with (n - k)  = 3 
inputs. The received sequence is shifted into both the buffer and the syndrome generator. 
While it is read out from the buffer, the syndrome is simultaneously shifted into the 
register to identify the register contents corresponding to s (Z )  = Z2. When this is the 
case, the error is identified and the digit that will be shifted out will be corrected. The 
reader is invited to work out the details using Figure 10.16 and the following table, where 
the line with boldface numbers corresponds to the correction instant. 

Syndrome Shift Output G f q  0 0 1  0 1 

0 0  0 

2. Block codes 

-- 
Parity checks Information 

Figure 10.16: Error trapping correction circuit for the (7 ,  4) cyclic Hamming code 
generated by g(Z) = Z3 + Z + 1. 

The example has shown that one particular syndrome, that is. s ( Z )  = Z2 
corresponding to 100, allows the location and capture of the single error while 
the received sequence is shifted out from the buffer. This technique for error 
correction is called error-trapping decoding. It can be extended to cases other 
than single-error correction, like multiple-error and burst correction. 

10.2.8. Special classes of cyclic codes 

Cyclic Hamming codes 

The Hamming codes described in Section 10.2.3 can also be shown to be a spe- 
cial class of cyclic codes. TO this purpose, let us define an irreduciblepolynomial 
as a polynomial of degree 1 that is not divisible by any polynomial of degree less 
than 1 and greater than zero. Furthermore, an irreducible polynomial g ( Z )  of 
degree 1 is called primitive when the smallest integer n ,  such that ( Z n  + 1) is 
a multiple of g ( Z ) ,  is 2' - 1. Therefore, invoking Theorem 10.5, this primitive 
polynomial can generate a (2' - 1,2' - 1 - 1) cyclic code that is a Hamming code. 
It has been shown that this code can correct all single errors. Let us reconsider 

a the proof using polynomial notation. Let two singleerror patterns be e,(Z) = Zi 
a and e j ( Z )  = Z3,  where 0 5 i < j < n. It will be sufficient to show that the two 

corresponding syndromes, say si ( Z )  and sj  ( Z ) ,  are different. Using (10.43), we 
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Primitive polynomial 

64 

62 

51 

604 

442 

561 

4204 

4402 

5001 

62404 

66002 

Primitive polynomial 

6042 1 

600004 

640042 

440001 

4020004 

7 100002 

4400001 

50000004 

60000002 

41000001 

702000004 

Table 10.6: Primitive polynomials of degree I. Each polynomial is erpressed in octal 
notation with the lowest-degree terms on the lef. 

have 

Summing these two equations, we get 

Since j - i < n = 2' - 1 ,  and g ( Z )  is primitive, then g ( Z )  cannot divide 
(Zj-' + l ) ,  and, consequently, s i ( Z )  # s j ( Z ) ,  for i # j. Cyclic Hamming codes 
can be decoded by using the error-trapping algorithm as in Example 10.18. A 
list of primitive polynomials that generate Hamming codes is given in Table 10.6 
for different values of 1 .  The polynomials are given in octal notation, with the 
lowest-degree terms on the left. For example, the first line of the table means 
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Golay codes 

In searching for perfect codes, Golay discovered a (23,12) code that is a cyclic 
code with generator polynomial 

and with minimum distance dmin = 7. Therefore, triple error correction is pos- 
sible. The important point is that this code is the only possible nontrivial lin- 
ear binary perfect code with multiple error-correcting capabilities. Besides the 
Hamming single-error-correcting codes, the repetition codes (with n odd), and 
the Golay code, no other linear binary perfect codes exist (see MacWilliams and 
Sloane, 1977, Chapter 6). 

Bose-Chaudhuri-Hocquenghem (BCH) codes 

This class of cyclic codes is one of the most useful for correcting random errors 
mainly because the decoding algorithms can be implemented with an acceptable 
amount of complexity. For any pair of positive integers m and t, there is a binary 
BCH code with the following parameters: 

This code can correct all combinations o f t  or fewer errors. The generator poly- 
nomial for this code can be constructed from the factors of (Z2"-I + 1 ) .  Unfortu- 
nately, this procedure is not straightfonvard and is beyond the scope of this book; 
the interested readers are referred to Chapter 9 of the book by MacWilliams and 
Sloane (1977). A list of generator polynomials for BCH codes of different pa- 
rameters is given in Tables 10.7 and 10.8. The polynomials are represented in 
octal notation, with the highest degree terms on the left3. As an example, the 
third line of the table means 

Notice that this polynomial can be factored as 

It can be verified from Table 10.5 that these two factors are factors of (Z15 + 1 ) .  
,,rl8# 

The BCH codes provide a large class of codes. They are useful not only ,,Wll 

because of the flexibility in the choice of parameters (block length and code 
,,.. . 'The octal notation in this table is different with respect to that of Tables 10.5 and 10.6, in 

the sense that the highest-degree term is on the left here. 
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Table 10.8: List of generator polynomials for BCH codes. Each polynomial is repre- 
sented in octal notation with the highest-degree terms on the left (Stenbit, 1964). 

rate), but also because at block lengths of a few hunhed or less many of these 
codes are among the best-known codes of the same length and rate. For the 
decoding algorithms, see Berlekamp (1968, Chapter 7). Clark and Cain (1981, 
Chapter S), and Blahut (1983, Chapters 7 and 9). 

Reed-Solomon codes 

These codes are a subclass of BCH codes generalized to the nonbinary case, that 
is, to code symbols belonging to a set of cardinality q = 2m. Thus, each symbol 
can still be represented as a binary m-tuple, and the code can be considered as a -. _.) 

Table 10.7: List of generator polynomials for BCH codes. Each polynomial is repre- 

sented in octal notation with the highest-degree terms on the left (Stenbit, 1964). 
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special type of binary code (see Blahut, 1983, Chapter 7). The parameters of a 
Reed-Solomon code are the following: 

Symbol m  binary digits 
Block length n  42" - 1) symbols 

=m(2m - 1) binary digits 

Parity checks (n - k) = 2t symbols 
= 2mt binary digits 

These codes are capable of correcting all combinations of t or fewer symbol er- 
rors. Alternatively, interpreted as binary codes, they are well suited for correction 
of bursts of errors (see Section 10.2.10). In fact, one symbol in error means a 
number of binary digits in error ranging from 1 to m  in adjacent positions within 
the code word. Perhaps the most important application of these codes is in the 
concatenated coding scheme described in Chapter 11. 

Shortened cyclic codes 

Since the generator polynomial of a cyclic code must be a divisor of (2" $- I), 
it often happens that its possible degree (n - k) does not cover all combinations 
of n  and k that satisfy practical needs. To avoid this difficulty, cyclic codes are 
sometimes used in a shortened form. To this purpose, the first i information 
digits are assumed to be always zero and are not transmitted. In this way, a 
new (n - i ,  k - i )  code is derived whose code words are a subset of the code 
words of the original code. The code is called shortened cyclic code, although 
it may not be cyclic. The new code has at least the same minimum distance 
as the code from which it is derived. The encoding and syndrome calculation 
can be accomplished by the same circuits employed in the original code, since 
the leading string of zeros does not affect the parity-check computations. Error 
correction can be accomplished by prefixing to each received vector a string of z 
zeros, or by modifying accordingly the related circuitry. Therefore, these codes 
share all the implementation advantages of cyclic codes and are also of practical 
interest. 

10.2.9. Maximal-length (pseudonoise) sequences 

The code words of the cyclic (2' - 1,l) simplex (or maximal-length) code of 
Section 10.2.5 resemble random sequences of zeros and ones. In fact, we shall 
see that any nonzero code word of these codes has many of the properties that 
we would expect from a binary sequence obtained by tossing a coin 2' - 1 times. 

Maximal-length codes are the duals of the Hamming codes. Remember that 
,a Hamming code of length 2' - 1 is generated by a primitive polynomial g(Z) of 

10.2. Block codes 

Figure 10.17: Shifr register circuit for encoding the dual code of the Hamming (7,  4 )  
code with generator g ( Z )  = Z3 + Z  + 1. The circuit generates also a PN sequence of 
length 23 - 1 = 7. 

degree I. The dual code of the same length can be obtained by letting the same 
g(Z) be its parity-check polynomial. The dual code can therefore be generated 
by using an I-stage encoder of the type of Figure 10.13 with feedback connec- 
tions reflecting the structure of g(Z).  For purposes of clarification, we use the 
following example. 

Example 10.18 The dual code of the (7, 4 )  Hamming code generated by g ( Z )  = Z3+ 
Z  + 1 is a (7 ,  3) cyclic code with g ( Z )  as the parity-check polynomial. A three-stage 
encoder for the dual code is shown in Figure 10.17. This scheme is a slight modification 
of the encoder type shown in Figure 10.13. The register is first loaded (from left to right) 
with the information sequence. Then the register content is shifted out (seven steps) 
from the right. In the followingtable, the generation of the code word, corresponding to 
the sequence 100, is shown, together with the successive states of the register. The last 
column of the table is the desired code word. 

Register content l r l  

In the dual code, all the code words, with the exception of that which is all zero, are 
different cyclic shifts of a single code word. This property is understood by considering 
the evolution of the states of the shift register of the encoder of Figure 10.17. When 
the register is initially loaded and shifted 23 - 1 times, it cycles through all possible 

/ I' 23 - 1 states. Then it returns to the original one. The output sequence, when indefinitely 
shifted out, is periodic with period 23 - 1. Since there are only 23 - 1 possible states, 
this period corresponds to the largest possible in this register. This explains the name of 
marimal-length sequence and why the 23 - 1 code words of this cyclic code are different 
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cyclic shifts of one code word. 
0 

The example can be generalized to show that the encoder of a maximal-length 
code can be used to generate maximal-length sequences of period 2' - 1. Prim- 
itive polynomials (see Table 10.6) are suitable for the generation of these se- 
quences As already stated, these sequences are also called pseudonoise (PN) 
sequences. They present the following pseudo-randomness properties: 

Property 1. In any segment of length 2' - 1 of the sequence, there are exactly 
2'-' ones and 2'-I - 1 zeros. That is, the number of ones and the number 
of zeros are nearly equal. This property is an immediate consequence of 
the fact that the considered binary sequence is a code word of the simplex 
code, whose weight is constant and always equal to 2'-' (see (10.23)). 

Property 2. If we define a run to be the maximal string of consecutive identical 
symbols. then in any segment of the PN sequence of length 2' - 1 one- 
half of the runs have length 1, one-quarter have length 2, one-eighth have 
length 3, and so on. In each case, the number of runs of zeros is equal to 
the number of runs of ones. 

Property 3. The most relevant property is related to the autocorrelation function 
of the PN sequence. Let us define the autocomlation function of an infinite 
real sequence ( a i )  of period n as 

Notice that r ,  is periodic, of period n. If the sequence (ai) is binary, 
formed by " 0  and "1," let us replace it by a sequence (bi) in which we 
have substituted the 1's with -1's and the 0's by +l's. Thus, from (10.50), 
we get 

.where A and D are the number of places where the sequence (aoa l .  . . 
a,-,)  and its cyclic shift (ama,+l . . . am+n-l) agree and disagree, respec- 
tively (so A + D = n). Therefore, for a sequence of period n = 2' - 1,  we 
have 
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- - -  - - - - - -  ... 01 101 ... 
Binary sequence 

PN sequence PN sequence 

Synchronization 

Figure 10.18: Scrambling and descrambling a binary sequence by adding twice a PN 
sequence. 

In the sense of minimizing the magnitude of r,, for m # 0, this is the 
"best" possible autocmlation function of any binary sequence of period 
n. 

PN sequences are very useful in practice, when it is desired to obtain se- 
quences with random-like properties. To this purpose, the same PN sequence is 
added modulo-2 to the sequence at hand both at the transmitter and receiver side, 
as shown in Figure 10.18. This is possible as the PN sequence is determinis- 
tic. The only requirement is that in the two additions the two PN sequences be 
synchronized. The randomizing operation is known as scrambling. 

10.2.10. Codes for burst-error detection and correction 

In this section, we abandon the model of a channel producing random errors 
(like an AWGN or its hard-demodulated version BSC) and assume a channel 
model in which errors tend to be clustered in bursts. This is a typical situation in 
certain communication systems, employing media like magnetic tapes, magnetic 
disks, magnetic memories and compact disks. Another situation would be a 
channel that is basically an AWGN occasionally disturbed by long bursts of noise 
or radio-frequency interference. In general, when burst errors dominate, codes 
designed for correcting random errors may become inefficient. Nevertheless, 
cyclic codes again are very useful in this situation. 

Let us define a burst of length b as an error pattern in which the errors are 
confined to b consecutive positions. Therefore, a burst-error pattern of length b 
can be represented by the polynomial 

where Z' locates the burst in the error sequence of length n, and eb(Z)  is a 
polynomial of the type 

The following theorem holds true. 
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Theorem 10.8 

Any cyclic code ( n ,  k) can detect all bursts whose length is not grsater than 
( n  - k ) .  v 

Proof of Theorem 10.8 

The syndrome of such bursts is the remainder of the division of Zieb(Z)  by the 
generator polynomial g(Z). But this syndrome is always different from zero, 
since neither 2' nor e b ( Z )  are multiples of g(Z), provided that b 5 n - k. QED 

When error correction is required, Theorem 10.9 provides a lower bound on 
the degree of the generator polynomial of the code. 

Theorem 10.9 

A burst-error correcting code can correct all bursts of length b or less provided 
that the number of check digits satisfies the inequality (Reiger bound) 

n - k 2 2 b  (10.55) 

Proof of Theorem 10.9 

To correct all bursts of length b, the bursts of length 2b (or less) must be different 
from each code word. In fact, if acode word is a burst of length 26 (or less), it can 
be expressed as the sum of two bunts of length b (or less). Consider the standard 
array of the code. If one of the two bursts (the comctable one) is a coset leader, 
the other, as a consequence of the assumption made on the code word, must be in 
the same coset. Therefore, the second burst cannot be corrected. In conclusion, 
no burst of length 2b (or less) can be allowed to be a code word in order to comct 
all bursts of length b. When thiscondition is met, the number of check digits is at 
least 26. In fact, consider the sequences whose nonzero components are confined 
to the first 2b positions. There are 22b such sequences. These sequences must be 
in different cosets of the standard array. Otherwise, their sum would be a code 
word comsponding to a burst of length 2b (or less). Since the cosets are 2n-k,  
then the inequality (10.55) follows. QED 

As a consequence of Theorem 10.9, the ratio 
A 2b = - 

n - k  
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Table 10.9: Eflcient cyclic codes and shortened cyclic codes for burst-ermr correction 
The generator polynomial is represented in octal notation with the highest-degree term 
on h e  left (Lin, 1970). 

n - k - 2 b  

0 

1 

2 

3 

4 
5 

can be assumed as a measure of the burstcorrecting efficiency of the code. Some 
decoding algorithms for burstemor correction are based on error-trapping tech- 
niques (see Peterson and Weldon, 1972, Chapters 8 and I I). 

A list of effjcient cyclic codes and shortened cyclic codes for correcting short 
bursts is given in Table 10.9. The polynomials are again represented in octal 
notation, with the highest-degree terms on the left, as in Table 10.7. 

Fire codes 

Code 
(n, k) 

(7.3) 
(15.9) 

(19.11) 
( 2 7 3 )  
(34.22) 
(38.24) 
(50.34) 
(56.38) 
(59.39) 
(15,lO) 
(27.20) 
(38.29) 
(4837) 
(6754) 

(103.88) 
(96.79) 
(3 1 ,251 
(63.55) 
(85.75) 

(131.119) 
(169,155) 

(63.56) 
(121.112) 
(164.153) 
(290277) 
(51 1,499) 

(1023.1010) 

These codes are a versatile class of systematic cyclic codes designed for correct- 
ing or detecting a single burst of length b in a block of n digits. Let p(Z)  be an 

Bust-comcting 
ability. b 

2 
3 
4 
5 
6 
7 
8 
9 

10 
2 
3 
4 
5 
6 
7 
8 
2 
3 
4 
5 
6 
2 
3 
4 
5 
4 
4 

Gentrator 
polynomial 

35 
171 

1151 
267 1 

15173 
114361 
224531 

1505773 
4003351 

65 
311 

1151 
4501 

36365 
114361 
501001 

161 
71 1 

265 1 
15163 
55725 

355 
1411 
6255 

2471 1 
10451 
22365 
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irreducible polynomial of degree m  2 b, and let e be the smallest positive integer 
such that p ( Z )  divides ( Z e  + 1) .  Furthermore, assume that e and (2b - 1)  are 
relatively prime integers. Then the polynomial 

is the generator of a b  burst-error correcting Fire code of length n  = LCM(e, 2b- 
I ) ,  where LCM means least common multiple. Notice that the number of parity- 
check digits in these codes is ( m  +2b-  1 ) .  For the limit case of m  = b, we obtain 
a burst-correcting efficiency that cannot exceed 2l3. A proof of the burst-error 
correcting capabilities of Fire codes, together with a description of error-trapping 
decoders, can be found in Chapter 9 of Lin and Costello (1983). Under the same 
conditions as before, given two integers b  and d, we can generate a Fire code 
capable of correcting any burst of length b  (or less) and simultaneously detecting 
any burst of length up to d 2 b, by using the generator polynomial 

with c satisfying the condition c 2 b  + d - 1  (see Peterson and Weldon, 1972, 
Chapter 11). 

Example 10.19 We want to design a Fire code to correct all bursts of length b 5 7 
and to detect all bursts of lengths up to 10. We get c 2 16 and m 2 7 .  Choosing the 
primitive polynomial of degree 7 in Table 10.6, we obtain the following generator: 

Since p ( Z )  is primitive, we have e = 27 - 1 = 127, and the length of the code is 
n = 16 x 127 = 2032. Thus, the code is a (2032,2009) Fire code with a high rate 
( R c  = 0.99) and a burst-correcting efficiency z = 0.6. Notice that the low value of 
( n  - k) makes it easy to implement the encoder. On the other hand, these codes usually 
have a high length, even for a modest burst-correcting capability. This is a disadvantage, 
since only one burst per each block length is correctable or detectable. Therefore, a very 
long guard space between successive bursts is required. 

0 

Interleaved codes 

A practical technique to cope with burst errors is that of using random-error- 
correcting codes in connection with a suitable interleaverldeinterleaver pair. An 
interleaver is a device that rearranges the ordering of a sequence of symbols in a 
deterministic manner. The deinterleaver applies the inverse operation to restore 
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Figure 10.19: Block diagram for the application of the interleaver-deinterleaver pail: 

the sequence to its original ordering. Given an ( n ,  k )  cyclic code, an ( i n ,  i k )  
interleaved code can be obtained by arranging i code words of the original code 
into i rows of a rectangular array that will be transmitted by columns. The param- 
eter i is called the interleaving degree of the code. If the original code corrects 
up to t random errors, the interleaved code will have the same random-error- 
correction capability, but in addition it will be able to correct all bursts of length 
i x t (or less). The use of this technique is shown in Figure 10.19 and explained 
in the following example. 

Example 10.20 Consider a (15.5) BCH code, whose generator polynomial is, from 
Table 10.7 g ( Z )  = 2'' + Z 8  + Z5 + Z 4  + Z Z  + Z + 1. This code corrects all random 
error configurations with t = 3 (or less) errors in sequences of length n = 15. Taking 
i = 5, we can derive a (75,25) interleaved code. The arrangement of the code words is 
shown in Figure 10.20. An information sequence of 25 digits is divided into five 5-digit 
message blocks and five code words of length 15 are generated using g ( Z ) .  These code 
words are arranged as five rows of the 5 x  15 matrix shown in the figure. The columns of 
the matrix are transmitted, in the indicated order, as a code word of length 75. Each burst 
of length 15 (or less) produces no more than three errors in each row of the matrix. A 
burst from position 18 to position 32 is shown by dashed squares in the figure. Therefore, 
the decoder can correct the errors by operating on each row. The interleaving process 
has, in fact. diffused the burst into isolated errors, and all error patterns containing three 
errors or less in each row of the matrix are correctable. 

0 

10.3. Performance evaluation of block codes 

In Chapter 5, different modulation schemes were compared on the basis of their 
bit error probability Pb ( e ) .  The scope of this section is to provide useful tools for 
extending those comparisons to coded transmission. 

For transmission systems employing block codes, two error probabilities can 
be introduced: 

0 The word error probability P,(e), defined as the probability that the de- 
coder output is a wrong code word, i.e., a code word different from that 
transmitted. 
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L 

Information digits Parity-check digits 

Figure 10.20: Scheme for the interpretation of a (75.25) interleaved code derived from 
a (15.5) BCH code. A burst of length b = 15 is spread into t = 3 error patterns in each 
of the five code words of the interleaved code. 

The bit errorprobabiliv Pb(e) (or symbol error probability for nonbinary 
codes), defined as the probability that an information bit (symbol) is in 
error after decoding. 

Which of the two probabilities better describes the system performance in a par- 
ticular situation depends on the system. The significance of the bit error proba- 
bility comes from the fact that some of the information bits may be correct even 
if the decoder outputs a wrong code word. 

The computation of the word and bit error probabilities depends on the de- 
coding strategies chosen by the system. As an example, when the system em- 
ploys an ARQ strategy, the decoder will output a wrong code word if and only if 
the received n-tuple is one of the 2k - 1 code words different from the transmit- 
ted one. This, for linear codes, requires that the channel error vector coincides 
with one of the nonzero code words. The situation is completely different when 
an FEC strategy is adopted. 

Different decoding strategies are better understood with reference to the stan- 
dard array of a linear code introduced in Section 10.2.2. We recall that the stan- 
dard array is an array with 2k columns and 2n-k rows that groups all 2n n-tuples 
representing the received words. Each row (a coset) is labeled by a code syn- 
drome, and contains all the ntuples that give that syndrome. The first ntuple of 
each row (the coset leader) is the lowest weight word in the row. 

Arrange the cosets in order of decreasing weight (i.e., decreasing probability 
on aBSC) of the coset leader, obtaining the situation of Figure 10.21, and assume 
that the code has a correction capability of t errors. If the code were a perfect 
code, such as a Hamming code for t = 1, the cosets with a leader of weight up to 
-t would include all n-tuples. In general, however, this will not be the case, and 
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Coset 
Syndromes leaders 

J Correct errors 
(coset leaders of weight < t)  

Detect emrs 
(coset leaders of weight > t)  

Figure 10.21: Standard array of a block code with the cosets ordered according to the 
increasing weight of the coset leaders. 

we will find cosets with leaders having weights beyond t .  When this happens, 
we face different decoding strategies: 

1. Complete decoding. With this strategy, the decoder always outputs a de- 
coded code word. It fully exploits the standard array, so that the top part 
of it (see Figure 10.21) includes all the received words. Given a received 
word in the standard array, the decoder assumes that an error vector corre- 
sponding to the leader of the coset containing the received word has been 
added to the transmitted code word on the channel, and decodes accord- 
ingly. In doing this, the decoder goes beyond the correction capabilities of 
the code, so that some error vectors with weight larger than ;can lead to 
wrong decoding. 

2. Bounded t-distance decoding. This strategy corresponds to the partition 
of the standard array of Figure 10.21. If the received word y lies in the 
top part of the array, it is maximum-likelihood decoded as the code word 
found at the top of its column. If y lies in the bottom part of the standard 
array, the decoder just detects that more than t errors have occurred. As 
a consequence, we have an incomplete decoding, or a mixture of error 
correction and error detection. 

3. Error detection. This strategy does not attempt to correct errors; rather, it 
declares an error whenever the received word does not belong to the code. 
The upper part of the standard array of Figure 10.21 disappears, and the 
second includes all received words except code words. 

In the following, we shall analyze all decoding strategies. The analysis is highly 
simplified when the code is linear. In this case, in fact, we can apply, for trans- 
mission over the BSC, the uniform error properry, stating that the error prob- 
ability conditioned to a given transmitted code word does not depend on that 
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code word. This important property stems from the properties of linear codes 
(see Problem 10.26). Thus, to compute the average error probability (word or 
bit), we can choose to transmit every code word; it is customary to choose the 
all-zero code word, denoted x l .  Code linearity and transmission of xl will al- 
ways be assumed in the following. We start our analysis with the simplest case 
of hard-decoding and error detection (ARQ) systems. 

10.3.1. Performance of error  detection systems 

In ARQ systems, the decoder's function is to answer the binary question of 
whether a received word is a code word or not. In the negative case, the system 
asks for the retransmission of the message until a positive answer is obtained 
from the decoder. This technique has been used for years in computer systems 
and other applications where a feedback channel is available and retransmission 
is made possible by the system resources and constraints. 

We assume a BSC, and define as P:) (e) ,  P ~ ) ( c ) ,  P t ) ( d )  the probabilities of 
decoding error, correct detection, and error detection in a single transmission. A 
decoding error occurs when the error vector on the channel coincides with a code 
word different from x l .  We have correct detection when no errors occur over the 
channel, and, finally, error detection when the error vector is not a code word. 
These are the only possible events in a single transmission, so that 

Moreover, the probability of error coincides with the probability that the channel 
error vector is one of the nonzero code words, given by 

where Ad is the number of code words of Hamming weight d and A(.) is the 
weight enumerating function defined in (10.18). 

The probability of correct detection is the probability that no errors occur on 
the channel, that is 

P:) (c) = (1 - p)" (10.61) 

Noticing then that A. = 1, we obtain from (10.59), (10.60) and (10.61) 

When the system keeps on retransmitting a message until the received word gets 
accepted by the decoder, we can have a word error at the nth transmission if and 
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only if the previous n - 1 transmissions have l e ~  . d to an error detection, and the 
nth to an accepted erroneous code word, so that 

The word error probability of this ARQ system is thus given by 

00 

pw(e) = C PP)(e) = P$) (e) 
R=I 1  - ~ $ ) ( d )  

10.3.2. Performance of error  correction systems: word error  probability 

Hard decoding 

Denote with P(y,  1 xi) the probability of receiving the n-tuple yj  when the code 
word xi of an (n, k,  t) code is transmitted over a BSC with transition probability 
p. Then the word error probability for complete decoding is given by 

when M = 2k indicates the number of code words assumed to be equally likely, 
and Si the set of subscripts j of received words y,, which are decoded into the 
code word xi. 

For linear codes and maximum-likelihood decoding, the set Si identifies the 
received words lying in the same column of the standard array as xi. Owing to 
the uniform error property, we can avoid the average over the transmitted code 
words in (10.65), obtaining 

where xl is the all-zero code word. 
Unfortunately, the evaluation of this apparently simple expression is very 

hard (Elia, 1983), because exhaustive computations become soon impractical as 
n increases. Therefore, upper bounds to (10.66) have been sought. 

In general, for both complete and bounded t-distance decoding, the word 
error probability is always less than or equal to the probability that more than t 
errors have occurred on the channel. We obtain then the following upper bound 
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Notice that the equal sign in (10.67) holds only for perfect codes. When np << 1, 
(10.67) can be approximated by its largest term 

A different approach to obtain a general upper bound to the word error prob- 
ability stems directly from the union bound explained in Section 4.3. The deriva- 
tion here will assume the uniform error property. Let us define the painvise error 
event (xl  + x f )  as the set of received words yj such that, when the transmitted 
code word is x l ,  the received word yj  is closer (in the ML sense) to xe than to 
x l .  Therefore, for maximum-likelihood decoding 

Denoting by Slc the set of subscripts j for which (xi  + xe) occurs, we have, for 
the painvise error probability 

and the union bound (4.50) gives 

Now we derive an upper bound for P(xl  + xe) of (10.70). This result, in- 
troduced in (10.71), will give us the final answer. Defining the function fe(yj) 

1, for j E Sit 
fe(yj) C. { 0, for j 6 sle 

we can rewrite (10.70) as 

where the summation has been extended over the whole set of received sequences 
y j .  Now, we can easily bound fe(yj) by - 
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Owing to the definition (10.69) of (xl + X L ) ,  the bound (10.74) is verified for 
j E S ~ L ,  whereas for j 6 Sle it is trivial. Introducing (10.74) into (10.73), we 
finally get 

2" 

p ( x l +  xt) I C J p ( y j  I x t ) P ( ~ j  I x l )  (10.75) 
j=1 

This expression is called the Bhattacharyya bound. Using the memoryless prop- 
erty of the BSC, (10.75) leads to the result (see Problem 10.27) 

where Y = (0, I}, and we is the weight of the code word xe. Using the transition 
probability p  of the BSC and introducing (10.76) into (10.71), we get 

The summation in (10.77) is performed over all M - 1 code words different 
from the all-zero code word. Recalling the meaning of the weight enumerating 
function A(D)  and its expression (10.18), we can transform (10.77) into 

The bound (10.78) requires the knowledge of the weight enumerating function 
of the code. A simpler, but weaker, bound is obtained if we replace we with 
dmi, V .! in (10.77) 

Unquantized soft-decision decoding 

As described in Section 10.1, unquantized soft-decision decoding entails no 
quantization of the channel output. 

In principle, ML decoding for transmission over an AWGN channel could be 
performed with the techniques explained in Chapter 4. For an (n ,  k) code, each 
code word x  is mapped by the modulator into a waveform z ( t ) .  The functions of 
the demodulator and decoder are integrated within the receiver, which is formed 
by a bank of M = 2k parallel filters matched to the waveforms z ( t ) .  The sampled 
output of the ith filter yields the correlation between the received signal and the 
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ith modulator signal. The M outputs from the matched filters enter a processor 
that chooses the largest, thus performing an ML decision. This optimum receiver 
becomes unrealizable in practice for large values of k. Some simplifications are 
possible, aiming at reducing the number of matched filters, for particular choices 
of the modulation scheme. Let us assume, as an example, that the n bits of 
the code word are transmitted using binary antipodal modulation. Each binary 
waveform is demodulated by the optimum soft demodulator (a single matched 
filter followed by a sampler) and a code word is represented by a sequence of n 
random variables. Let E denote the energy of the modulator waveform. Then, 
dropping an irrelevant constant, each of the n binary decision variables can be 
written as 

if the ith digit is 1 
"' = { $=ui if the ith digit is 0 

(10.80) 

with i = 1,2, . . . , n. The random variables vi are samples of the Gaussian noise 
with zero mean and variance No/2. From the knowledge of the M = 2k code 
words, and upon reception of the sequence 21,. . . , z,, from the demodulator, the 
decoder forms M decision variables as follows: 

where xij denotes the digit in the jth position of the ith code word. In this way, 
the decision variable corresponding to the actual transmitted code word will have 
a mean value n f l ,  while the other (M - 1) ones will have smaller mean values. 
Maximum-likelihood decoding is achieved by selecting the largest among the 
Li's of (10.81). 

Although the computations involved in the previous decoding process are 
very simple, it may soon become impractical to implement this algorithm be- 
cause of the exponential growth of the number M of decision variables with k. 
Several different types of soft-decision decoding algorithms have been invented 
to circumvent this difficulty. Some reference is given to them in the Bibliograph- 
ical Notes. 

The derivation of the exact error probability in the decoding process is not 
straightforward, as it is complicated by the correlations between the decision 
variables. Therefore, we resort to a union bound similar to the one employed 
for the case of hard-decoding. Recalling the uniform error property, we can 
assume that the all-zero code word is transmitted. Let us define the pairwise 
error probability P(x l  -+ x,) as 

P(xl -+ x,) 2 P[L, > L1 1 xl] (10.82) 
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It is the probability that the likelihood of the mth code word is higher than that 
of the transmitted all-zero code word. The union bound (4.50) gives 

But the pairwise error probability P(xl -+ x,) only depends on the Euclidean 
distance dl, between the two code words. If the mth code word has weight w,, 
then it differs from the all-zero code word in wm positions. Therefore, 

Introducing this value into (4.52). we obtain P(x1 -+ x,), and. from (10.83), 
we conclude with 

A looser bound is obtained by using dmin in (10.85). This yields 

Grouping together the Ad code words with the same weight d, we can rewrite 
(10.85) as 

Using now the inequality (AS) (see Appendix A) i e r f c (&)  < i exp(-z), we 
transform (10.87) into 

To estimate the coding gain, we can compare the approximate result (10.86) 
with (4.36) for binary antipodal transmission. Making use of the exponential 
approximation (AS) for the function erfc, we obtain 

A (Eb/N~)unc G, = = Rcdmin - kln 2 
(Eb/NO)enc (&b/N0 )en, 

Notice that the coding gain G, depends on both the code parameters and the 
signal-to-noise ratio. The asymptotic value in dB is 10 logl,(Rcdmin). 

The results obtained in the h t  two sections will now be illustrated through 
an example. 
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Example 10.21 Consider the (7 ,  4) Hamming code that has been used in the examples 
throughout the chapter. The aim of this example is to assess the bounds introduced in 
the last two sections. We start with hard decision. To compute the error probability p of 
the BSC, we assume a binary antipodal transmission, so that 

Since Hamming codes are perfect codes, the expression (10.67) is the exact value of the 
word error probability 

The exact result for Pw (e)  is plotted in Figure 10.22, together with the two bounds (10.78) 
and (10.79). Recalling the weight enumerating function of Hamming codes (10.19). the 
bound (10.78) yields 

Similarly, being dmi, = 3, the bound (10.79) becomes 

pw(e) 5 1 5 D 3 I D = m  

From the curves of Figure 10.22, we see that the tighter of the two bounds differs by 
slightly less than 2 dB from the exact error probability at P,(e) = loe6, and that the 
looser bound is worse by a fraction of dB. 

In the case of soft decision, we apply the bound (10.87) and the simpler (10.86), 
obtaining 

and 

The figure also contains these results pertaining to soft decision. 0 

10.3.3. Performance of error correction systems: bit error probability 

The expression of the bit error probability is somewhat more complicated. In 
this case, in fact, we must enumerate the actual error events and weight the prob- 
ability of each event by the number of bit errors that occur. Invoking the uniform 
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Figure 10.22: Word ermr pmbabilig for the (7, 4 )  Hamming code: exact value and two 
upper bounds. Hard decision and so@-decision curves. Binary mtipodal transmission. 

error probability, a formal expression for the bit error probability is the follow- 
ing: 

where P ( x j  ( x l )  is the probability of decoding a code word xj different from 
the transmitted all-zero code word x l ,  and w*(uj) is the Hamming weight of the 
information word that generates the code word x j .  

Computing (10.91) is a very difficult task, in general. In the following, we 
will generalize the concept of weight enumerating function so as to obtain a 
union bound to the bit error probability close to the one already obtained for the 
word error probability. 

The weight enumerating function describes the weight distribution of the 
code words. It does not provide informations on the data words that generate the 
code words. In other words, it does not provide informations about the encoder. 
Let us generalize it by introducing the definition of the input-output weight enu- 
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meratingfunction (IOWEF) 

where Bw,d represents the number of code words with weight d generated by data 
words of weight w. Recalling the definition (10.18) of the weight enumerating 
function A(D),  it is straightforward to derive the relationships 

As an example, consider the Hamming code (7, 4). From the table defining 
its encoder (see Example 10.3), we obtain the IOWEF 

where we have defined the conditional weight enumerating function (CWEF) 
Bw(D),  as the weight enumerating function of the code words generated by data 
words of weight w. In general, it is obtained through 

A union bound to the bit error probability can be obtained by following the 
derivation of (10.78) and (10.88), and defining a conditional pairwise error event 
(xl 4 G , ~ )  as the event that the likelihood of the transmitted all-zero code word 
is less than that of the code word x ~ , ~  with weight d generated by an information 
word of weight w. 

The final upper bounds, for the case of hard and infinitely-soft decoding (see 
Problem 10.28); are, respectively, 

10.3. Performance evaluation of block codes 515 

Making use of the inequality (A.5). (10.97) becomes 

By exchanging the order of summation, (10.96) (and similarly (10.97)) can also 
be written in the form 

Comparing (10.99) and (10.100) with the analogous expressions (10.78) and 
(10.87) for the word error probability, we see that they are formally identical 
if we interpret the quantity in brackets as the average number of nonzero infor- 
mation bits associated with a code word of weight d. 

Example 10.22 Consider once again the (7, 4) Hamming code. Substituting into 
(10.96) and (10.98) the CWEFs of this code evaluated in (10.94). we obtain 

from which, replacing D with d m '  or e ~ p ( - R , & ~ / i V ~ ) ,  we obtain the bit error 
probability bounds for the case of hard and soft decision, respectively. 0 

Computing the previous union bound requires the knowledge of the CWEFs 
of the code, and this is often a heavy task. A simpler approximation to the bit 
error probability valid at high signal-to-noise ratios can be obtained as follows. 
For a code with distance dmin = 2t + 1, the most frequent undetected error 
will occur when the error vector contains exactly t + 1 errors. In this case, the 
decoding algorithm will erroneously assume that the received sequence contains 
t errors and will choose a code word at distance dmi, from the correct one. As a 
consequence, the decoded word will contain 2t+l  errors, which can be anywhere 
in the n-digit sequence. The bit error probability can thus be expressed in terms 
of the word error probability as 

Approximation (10.101) can be used in conjunction with all expressions of the 
word error probability previously derived. In the following example, we will 
show how to estimate the coding gain by comparing uncoded and encoded bit 
error probabilities curves. 
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Figure 10.23: Bit error probability curves for the (7, 4) Hamming code with binary 
antipodal transmission. 

Example 10.23 Consider the (7, 4) Hamming code. In Figure 10.23 we have plotted 
four curves. Curve @ gives the bit error probability for uncoded transmission with 
binary antipodal modulation over the AWGN channel 

Curve 0 represents the bit error probability of the BSC as seen by the decoder, i.e. 

with R, = 417. Comparing these two curves, we better understand the terms of the 
discussion presented in Section 10.1. In fact, the comparison shows that, when the code 
is used, the bit error probability on the binary transmitted symbols is higher than with 
uncoded transmission. The two curves differ by 10 loglo Re 0 2.4 dB. It is expected 
that the error-correcting capabilities of the code are able to eliminate this disadvantage 
and to achieve a coding gain. The actual result for the Hamming code is shown by curve 
@. This curve plots the approximate expression of the bit error probability (10.101):~ 
in which P,(e) is the exact value (10.67). For Pb(e) = a coding gain of 0.6 
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dB is obtained. Finally, curve @ represents the bit error probability when only error 
detection is used. This curve plots the approximate expression of the bit error proba- 
bility (10.101), in which P,(e) is the exact expression (10.64). The apparent dramatic 
improvement cannot be directly compared with curve @, because in this case we have 
a retransmission strategy, so that the effective transmission rate through the channel is 
decreased: we are gaining performance at the expenses of the bandwidth. 0 

Example 10.24 We consider here the performance of some of the BCH codes whose 
generator polynomials were given in Table 10.7. To this purpose, combining (10.101) 
with (10.68). we get. for the bit error probability with hard decoding, the following 
approximation 

The BSC channel error probability p is evaluated as before assuming a binary antipodal 
transmission. Curves of bit error probability versus the bit signal-tenoise ratio Eb/No 
are plotted in Figure 10.24 for several BCH codes having in common a rate R, z 0.5. 
The curve referring to the uncoded transmission is also plotted. Comparing Figure 10.24 
with Figure 10.2, the reader can gain an immediate perception of how much these codes 
fill the region of potential coding gains. Indeed, it can be verified that substantial coding 
gains can be obtained, for example, at Pb(e) = With a code length n = 511. about 
a 4-dB gain is achievable, which is almost half that promised in Figure 10.2. Increasing 
this coding gain is not easy. Indeed, Figure 10.24 shows that the curves tend to cluster 
as n increases. It was shown in Wozencraft and Jacobs (1965) that a rather broad max- 
imum of coding gain versus code rate R, occurs for each block length of BCH codes. 
This maximum lies in the range from one-third to three-quarters for R,. 0 

Example 10.25 We show here in a more complete way the performance of a group of 
BCH codes and of the Hamming codes. Each code is identified by the triplet (n, k, t). 
The BCH codes are those of Table 10.7. The results were obtained using for BCH codes 
the same approximation as in Example 10.24, whereas for Hamming codes the bit error 
probability is the approximation (10.101) with the exact expression (10.67) of the word 
error probability. All the details of the computations are omitted. The results are pre- 
sented in the graph of Figure 10.25. Notice that this presentation is identical to that used 
for the comparison of different modulation schemes (Chapter 5). The two parameters in 
the figure are the bandwidth efficiency RJW and the bit signal-to-noise ratio &b/No. All 
the results are given for a fixed bit error probability Pb(e) = Notice, first, the per- 
formance point for uncoded binary antipodal transmission. Compaiing with Figure 5.3 1, 
it can be seen that the codes fill the region of potential gains in the power-limited region. 
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Figure 10.24: Bit error probability curves for some BCH codes, chosen so m to have a 
rate R, of about 0.5. 

The bandwidth expansion of the codes is also evident, leading to bandwidths efficien- 
cies less than 1. Let us briefly comment on the results. To this purpose, three groups of 
codes are identified by different symbols (stars, black dots, and squares) and connected 
by dashed lines. These have no other meaning than that of identifying the group. 

The black dots refer to the BCH codes of Figure 10.24. Actually, the pints are 
obtained by sectioning the curves of Figure 10.24 at Pb(e) = The rate of these 

codes (coinciding with the spectral efficiency) is practically constant and roughly 0.5. 
These black dots give pictorial evidence to the essence of the channel-coding theorem 
(see Section 3.3.3). We can improve the performance (in this case we save signal power) 
by coding with an increasing block length n. 

A second group of codes, the squares. represents Hamming codes. They are single- 
error-correcting codes and their coding gain is rather poor. Increasing the block length, 
we improve both the coding gain and the bandwidth efficiency. The best code at q ( e )  = 

is the (63, 57, 1) code. If we keep on increasing the block length, the bandwidth 
efficiency continues to increase, but the coding gain becomes poorer. 

The last group of codes, the stars, are BCH codes of length 255 and different rates, 
starting from the code (255,239.2) down to the code (255,123,19). The trend of the 
stars clearly shows the trade-off between coding gain and bandwidth efficiency when 
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Figure 10.25: Pe$omnce chart of direrent BCH and Hamming codes. Each code is 
ident$ied with three numbers: the block length n, the number of information bits k, and 
the number of corrected errors t. 

the block length is kept constant. a 

10.4. Coding bounds 

When attempting to find new codes, it is very useful to know how close a code is 
to the best possible code with the same parameters. Coding bounds give quanti- 
tative answers to this requirement. 

We will present in this section two types of coding bounds. The first is 
bounds on the minimum distance obtained by examining certain structural as- 
pects of codes. We will consider the four main bounds of this kind, i.e., the 
Singleton, Hamming, Plotkin and Gilbert bounds. The first three bounds yield 
the largest possible minimum distance for given code length and rate, while the 
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fourth bound is an achievable bound, and thus provides a lower bound on the 
minimum distance of the best code. 

The second type of bounds deals with the code performance, based on ran- 
dom coding arguments. The most important result of this approach was already 
mentioned in Chapter 3 as the Shannon channel coding theorem. Here, we will 
derive a second bound based on the cutoff rate of the channel. 

10.4.1. Bounds on the code minimum distance 

The design goal when dealing with an (n, k) block code is that of achieving the 
largest possible dmin with the highest possible code rate R, = kln. This means 
that the best use has been made of the available redundancy. Here, we shall 
present four results obtained in this area. The derivation of the first two bounds 
is referred to the Problem Section, while that of the last two is omitted. The 
interested reader can find the details in the book by MacWilliams and Sloane 
(1977). The first bound is an upper bound known as the Singleton bound. The 
minimum distance dmin of any linear (n, k) code satisfies the inequality 

The second bound is known as the Hamming, or sphere-packing, bound. The 
maximum achievable dmin is given implicitly by the expression 

where t is the maximum number of correctable errors and dmin = 2t  + 1. The 
equality sign in (10.103) holds only for perfect codes. This bound is tight for 
high-rate codes. The proofs of Singleton and Hamming bounds are very simple 
(see Problem 10.24). 

A tight upper bound for low-rate codes is the Plotkin bound, given by 

The derivation of the Plotkin bound is based on the principle that the minimum- 
weight code word of a group code is not larger than the average weight of all 
nonzero code words. 

An interesting question can be raised at this point. Given that an (n, k) 
code with an error-correcting ability better than that obtained from (10.103) and 
(10.104) cannot exist, what can actually be achieved? A partial answer to this 
question is given by the Varsharnov-Gilbert bound, which states that it is always 
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possible to find an (n, k) code with minimum distance at least dmin, where n, k, 
and dmin satisfy the inequality 

This result represents a lower bound to the achievable dmin. 

Example 10.26 We want to find a block code of length n = 127 and error-correcting 
capability t = 5 (i.e., dmi, = 11). Its rate should be the largest possible. The Singleton 
bound (10.102) yields k 5 119. The Hamming bound (10.103) gives 

from which we get k 5 99. Instead. the Plotkin bound (10.104) gives 

2(11 - 1) -logz 11 5 127 - k 

so that k 5 110. 
On the other side, the Varshamov-Gilbert bound (10.105) gives 

5 (li6) < 2127-k 
1=0 

from which we argue that codes exist with k > 82. Therefore, the maximum value of k 
should lie between 83 and 99. From Table 10.7, we observe that a (127.92) BCH code 
exists that provides a satisfactory answer to our problem. a 

10.4.2. Bounds on code performance 

Bounds on code performance are obtained using random coding techniques, that 
is, by evaluating the average performance of an ensemble of codes. This implies 
the existence of specific codes that behave better than the average. The most 
important result of this approach was already mentioned in Chapter 3 as the 
channel-coding theorem. This theorem states that the word error probability of 
a coded system can be reduced to any value by simply increasing the code word 
length n, provided only that the code rate does not exceed the channel capacity 
C. i l l Y r i  

,IN1 ' Given the ensemble of binary block codes of length n and rate &, the mini- 
mum attainable error probability over any discrete memoryless channel is bound- 
ed by 

I I ". 
Pw (e )  5 2-nE(R.) , Rc 5 C (10.106) 



10. Improving the transmission reliabil@: Block codes 

Figure 10.26: Typical behavior of the reliabilityfunction E(Re)  on the AWGN channel. 

The achievable performance is d e t e d n e d  by the reliabilityfunction of the chan- 
nel E ( . ) ,  whose typical behavior for a discrete memoryless channel is given in 
Figure 10.26. The tangent to E(R,)  with slope -1 intercepts the horizontal 
axis at a value of R, that we call the cutoff rate & of the channel. Therefore, we 
can write a simpler upper bound in the form 

The parameter & plays an important role in coding theory. Since it is a charac- 
teristic of the channel, it allows comparisons of different channels with respect to 
an ensemble of codes. We shall now derive the expression of & for the ensemble 
of binary block codes using a binary antipodal modulation over an AWGN. 

Let us consider the ensemble C of all binary block codes C of length n and 
rate R,. Each code C has M = 2k = 2"& code words, and there is a total of 
2nM possible codes. This ensemble also includes some very bad codes, such as 
those having all equal code words. Nevertheless, the bounding technique gives 
useful results. If we select at random one code C, and denote by Pw(e ( C) the 
conditional word error probability, the error probability over the code ensemble 
is given by 

Pw (e )  = 2-nM C P W ( ~  1 C) (10.108) 
CEC 

Assume now that the code word xi of C is transmitted with probability P(x , ) .  
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Then 
M 

Pw(e I C) = C Pw(e 1 C,xi )P(xi )  (10.109) 
i=l 

The conditional error probability P,(e ( C, x , )  can be upper bounded by using 
the union bound (see Section 4.3). We get 

where P ( X ;  i xj ( C) denotes the painvise error probability between the two 
code words and xj of the code C. 

Introducing (10.110) into (10.109) and going back to (10. 108), we obtain 

. .. 
Pw(4 5 rnM C C q x , )  C P(x ,  i xj 1 C) 

CEC 1=1 (10.111) 
j=l,j#i 

Now comes the crucial step in the derivation, consisting in the interchange of the 
summations order in (10.11 I)  to get 

The quantity in square brackets is the average of the painvise error probability 
P(xi i xj I C )  over the ensemble of codes and is quite straightfonvard to 
compute. Since the code C, and hence the code words, are chosen at random, 
we perform the average of CcEc P(x;  i xj 1 C )  in square brackets of (10.112) 
by considering the pairs x,, x, of randomly chosen code words that differ in h 
symbols (i.e., whose Hamming distance is dij = h) and then averaging with 
respect to h. We have then 

The probability that two code words of length n selected at random differ in h 
digits is 

P[dij = h] = (t) 2-" (10.114) 

Furthermore, from Chapter 4, (4.29) and using the inequality (AS), we get 
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Substituting (10.115) and (10.1 14) into (10.113) and using the binomial expan- 
sion, we obtain 

Introducing (10.116) into (10.112) and observing that the RHS of (10.116) is 
independent of i and j, we get 

Pw (e) 5 (M - 1)2-" (1 + e'"Eb/NO)n < M2-" (1 + e-"Eb")n (10.117) 

Finally, from (10.117) we can obtain the bound (10.107) by letting 

Equation (10.1 18) represents the cutoff rate of an unquantized AWGN channel 
with binary antipodal modulation. Similar analyses can be performed to derive 
the cutoff rate for different types of modulation (see Chapter 12) on the same 
channel. When hard-decision decoding is used, we have the general model of 
a discrete memoryless channel with Nx input symbols and N y  output symbols. 
The cutoff rate of such a channel, when the input symbols are equally likely, was 
shown to be (Gallager, 1965) 

For the BSC, (10.1 19) specializes to 

The channel cutoff rate plays an important role in coded transmission. It indi- 
cates in fact both a region of rates for which arbitrarily small error probability 
is achievable, and an exponent in the bounding expression of the word error 
probability. For this reason, the cutoff rate was claimed to be the most sensible 
parameter for comparing different modulation schemes in coded transmission 
(Massey, 1974). When soft decisions are used, the symbol error probability at 
the demodulator output is a very poor (practically useless) indication of the qual- 
ity of the system in the presence of coding. Actually, the demodulator symbol 
error probability is a straight performance measure in the absence of coding be- 
cause, in this case, the errors at the demodulator output are immediately reflected 
in the digits delivered to the user. This approach was first extended to the case 
of modulation plus coding in the presence of hard-decision decoding, when the 
purpose of coding is to correct the errors at the demodulator output. 

10.4. Coding bounds 

Figure 10.27: Cutoff rate-based boundr on the required signal-to-noise ratio as 
a func- 

tion of the code rate R, for hard and soft decision and binary antipodal modulation over 
the AWGN channel. 

When soft decisions are used, the combined process of modulation and cod- 
ing needs a different approach. From this viewpoint, the purpose of the modu- 
lator-demodulator pair is that of presenting the coder-decoder pair with the best 
possible discrete-input discrete-output (in the case of quantized soft decisions) 
channel or the best possible discrete-input continuous-output (for unquantized 
soft decisions) channel for a given available bandwidth and signal-to-noise ratio. 
The performance measure of this channel is its cutoff rate &, and the average 
performance of the coded transmission system is given by (10.107). 

To conclude this discussion, we show how the cutoff rate can be used to 
evaluate bounds on the achievable coding gains for a given channel. Equa- 
tions (10.118) and (10.120) are plotted in Figure 10.27. They are obtained by 
letting Ro = R, and using for p in (10.120) the expression (10.90). The curves 
show for a given rate R, the minimum possible value of Eb/No for which the 
word error probability (10.107) can still be driven to zero. 

As an example, we know from Figure 10.3 that uncoded antipodal transmis- 
sion requires a value of &/No = 9.6 dB to achieve an error probability of lob5. 
From Figure 10.27 we see that, for unquantized soft decisions and code rate 
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R, = 112, we need a value of Eb/No = 2.45 dB. Therefore, a potentid coding 
gain of the order of 7 dB is available at this rate. Moreover, we can observe that 
there is not much to be gained by increasing the redundancy of the code, since at 
zero rate the coding gain is only slightly greater than 8 dB. 

Another point that results from Figure 10.27 is that hard decisions cause a 
loss of about 2 dB. In the same figure, we have also plotted the curve of & for 
an eight-level quantized receiver with uniform thresholds on the received binary 
antipodal signal. This curve plots (10.1 19). The conclusion is that an eight-level 
quantization presents a negligible degradation with respect to the unquantized 
case. Finally, in Figure 10.27 the curve of channel capacity is plotted. It provides 
an absolute limit on the minimum value of Eb/No required to achieve any desired 
small error probability. Comparing the cutoff rate and capacity limits, we can see 
that for codes of rate 112 an additional coding gain of 2.4 dB is available over 
the prediction of the & bound. However, decoding algorithms allowing one to 
operate in this region are usually very complex. A very promising exception are 
the so-called turbo codes, which will be described in the next chapter. 

10.5. Bibliographical notes 

The reader interested in a deeper approach to the theory of block codes can find 
some excellent books devoted to these subjects. In particular, recommended 
reading are the books by Berlekamp (1968), Peterson and Weldon (1972), and 
MacWilliams and Sloane (1977). A stimulating approach to the decoding of 
cyclic codes can be found in Blahut (1983). For the reader interested in the ap- 
plications and implementation problems of coded transmission, the two books by 
Clark and Cain (1981) and Lin and Costello (1983) are recommended references. 

It would be very hard to reference papers on coding theory, besides those 
motivated by specific details directly in the text. In fact, the literature on the 
subject is huge. A wide bibliography is included in MacWilliams and Sloane 
(1977). A selected reading in a historical framework can be found in Berlekamp 
(1974). . 

Soft decoding a block code is generally much more complex than using alge- 
braic algorithms for hard decoding. A general approach consists in deriving the 
trellis (see Chapter 11 for its definition) of the code, and then applying maximum 
likelihood algorithms, such as the Viterbi algorithm described in Appendix F, to 
decode it. Illuminating references are Wolf (1978), Kschischang and Sorokine 
(1995), and McEliece (1996). 

10.6. Problems 

10.1 A (5, 3) block code is defined through the correspondence given in the following 
table: 

1 0 1 0 1 0 1 0  
0 1 0 0 1 1 0 0  I 

Find the generator matrix of the code. 

10.2 Verify that the Hamming distance between two binary sequences is equal to the 
weight of their modulo-2 sum. 

103 From (10.13) and (10.20) construct the parity check matrix of the extended (8, 4) 
Hamming code. 

Show that the last row, if replaced by the modulo-2 sum of all rows, still 
represents a legitimate parity-check equation. 

Verify that the matrix obtained is that of a systematic code equivalent to the 
original one. 

10.4 A (6, 2) linear block code has the following parity-check matrix: 

h l 1 O O O 1  

h 4 0 1 1 1 0  

1. Choose the h's in such a way that d,i, 2 3. 

2. Obtain the generator matrix of the equivalent systematic code and list the 
four code words. 

10.5 Generalize the examples of Problems 10.3 and 10.4 to show that there is always 
a systematic code equivalent to the one generated by a given parity-check matrix. 

10.6 A systematic (10, 3) linear block code is defined by the following parity-check 
equations: 
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10.7 A (5, 2) linear block code is defined by the following table: 

1. Find the generator matrix and the paritycheck matrix of the code. 

2. Build the standard array and the decoding table to be used on a BSC. 

3. What is the probability of making errors in decoding a code word assuming 
an error detection strategy of the decoder ? 

10.8 Assume that an ( n ,  k )  code has minimum distance d. 

1. Prove that every set of (d - 1) or fewer columns of the parity-check matrix 
H is linearly independent. 

2. Prove that there exists at least one set of d columns of H that is linearly 
dependent. 

10.9 Show that the dual of the ( n ,  1) repetition code is an ( n ,  n -  1) code with d,i, = 2  
and with code words always having even weight. 

10.10 Given an ( n ,  k) code, it can be shortened to obtain an ( n  - 1, k  - 1) code by 
simply taking only the code words that have a 0 in the first position, and deleting 
this 0. Show that the maximal-length (simplex) code (2m - 1, m )  is obtained by 
shortening the first-order (2m, m + 1) Reed-Muller code. 

10.11 Assume that an ( n ,  k )  block code with minimum distance d  is used on the binary 
erasure channel of Example 3.14. Show that it is always possible to correctly 
decode the received sequence provided that no more than (d - 1) erasures have 
occurred. 

10.12 Consider the following generator matrix of an (8, 5) linear block code: 

1. Show that the code is cyclic, and find both the generator polynomial g ( Z )  
and the parity-check polynomial h ( Z ) .  

10.6. Problems 

2. Obtain the parity-check matrix H. 

10.13 Consider the generator polynomial 

g ( Z )  = Z + 1  

1. Show that it generates a cyclic code of any length. 

2. Obtain the parity-check polynomial h ( Z ) ,  the parity-check matrix H, and 
the generator matrix G. 

3. What kind of code is obtained? 

10.14 Given the (7, 4) Hamming code generated by the polynomial 

g ( ~ )  = 2 3  + z + 1  

obtain the (7.3) code generated by 

g ( ~ )  = ( Z  + l)(z3 + z + 1) 

1. How is it related to the original (7, 4) code? 

2. What is its minimum distance? 

3. Show that the new code can correct all single errors and simultaneously 
detect all double errors. 

4. Describe an algorithm for correction and detection as in part (3). 

10.15 Illustrate the behavior of the encoder of Figure 10.13 by enumerating the register 
contents during the encoding of the data word u ( Z )  = Z3 + Z2 + 1. 

10.16 Show that the ( n ,  n  - k )  code generated by the parity-check polynomial h ( Z )  is 
equivalent to the dual of the code generated by the generator polynomial g(Z) .  In 
particular, show that the dual code of the code generated by g ( Z )  is generated by 
g ( d ) ( ~ )  = Zkh(Z- I ) .  

10.17 A cyclic code is generated by 

1. Find the length n  of the code. 

2. Sketch the encoding circuits with a k  or ( n  - k )  shift register. 

10.18 Discuss the synthesis of a code capable of correcting single errors and adjacent 
double errors. Develop an example and compare the numbers n  and k  with those 
required for the correction of all double and single errors. Hint: Count the re- 
quired syndromes and construct a suitable parity-check matrix. 
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10.19 It is desired to build a singleemor-correcting (8, 4)  linear block code. 

1. Define the code by shortening a cyclic code. 

2. List the code words and find the minimum distance. 

3. Sketch the encoding circuit and verify its behavior with an example. 

10.20 Show that the binary cyclic code of length n  generated by g ( Z )  has minimum 
distance at least 3, provided that n  is the smallest integer for which g ( Z )  divides 
(2" + 1). 

10.21 Consider a cyclic code generated by the polynomial g ( Z )  that does not contain 
( Z  + 1) as a factor. Show that the vector of all ones is a code word. 

10.22 Show that the (7, 4)  code generated by g ( d ) ( Z )  = z3 + Z + 1  is the dual of the 
(7, 3)  code generated by g ( Z )  = Z4 + Z3 + 2' + 1. 

10.23 Repeat the computations of Example 10.23 for the (15, 11) Hamming code. 

10.24 Prove the Singleton bound (10.102) and the Hamming bound (10.103). 

10.25 Consider a transmission system that performs error detection over a BSC with 
transition probability p. Using the weight enumerating function A(D) ,  find an 
exact expression for the probability of undetected errors for the following codes: 

1. Hamming codes. 

2. Extended Hamming codes. 

3. Maximal-length codes. 

4. ( n ,  1) repetition codes. 

5. ( n ,  n  - 1)  parity check codes. 

10.26 Show that for a linear block code the set of Hamming distances from a given code 
word to the other ( M  - 1) code words is the same for all code words. Hint: Use 
Property 2 of Section 10.2. 
Prove that for any linear code used on a binary-input symmetric channel with ML 
decoding the uniform error property holds, i.e., 
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where Si is the set of subscripts j of received sequences y j  that are decoded into 
the code word xi, and 

n 

P ( ~ l x i )  = n P ( ~ k b i k )  
k=l 

then use the symmetry of the channel. i.e., 

10.27 Using the memoryless property of the BSC, that is. 

derive (10.76) from (10.75). 

10.28 Following the same steps that led to (10.78), derive the union bound to the bit 
error probability (10.96) and (10.97). 
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Convolutional and concatenated 
codes 

With block codes, the information sequence is segmented into blocks that are en- 
coded independently to form the coded sequence as a succession of fixed-length 
independent code words. Convolutional codes behave differently. The no bits 
that the convolutional encoder generates in correspondence of the ko informa- 
tion bits depend on the ko data bits and also on some previous data frames (see 
Section 10.1): the encoder has memory. 

Convolutional codes differ deeply from block codes, in terms of their struc- 
ture, analysis and design tools. Algebraic properties are of great importance in 
constructing good block codes and in developing efficient decoding algorithms. 
Good convolutional codes, instead, have been almost invariably found by ex- 
haustive computer search, and the most efficient decoding algorithms (like the 
Viterbi maximum-likelihood algorithm and the sequential algorithm) stem di- 
rectly from the sequential-state machine nature of convolutional encoders, rather 
than from the algebraic properties of the code. 

In this chapter, we will start by establishing the connection of binary convo- 
lutional codes with linear block codes, and then widen the horizon by assuming 
a completely different point of view that looks at a convolutional encoder as a 
finite-state machine and introduces the code trellis as the graphic tool describing 
all possible code sequences. 

We will show how to evaluate the distance properties of the code and the er- 
ror probability performance, and describe in details the application of the Viterbi 
algorithm to its decoding. A brief introduction to sequential and threshold de- 
coding will also be given. 
, The second part of the chapter is devoted to concatenated codes, a concept 

Figure 1 1 . 1 :  General block diagram of a convolutional encoder in serial form for a 
(no,  ko )  code with constraint length N .  

first introduced by Forney (1966) that has since then found a wide range of appli- 
cations. After describing the classical concatenation schemes, we will also de- 
vote some space to the recently introduced "turbo" codes, a very promising new 
class of concatenated codes that approach the capacity coding gains at medium- 
to-low bit error probabilities. 

11.1. Convolutional codes 

A binary convolutional encoder is a finite-memory system that outputs no binary 
digits for every ko information digits presented at its input. Again, the code rate 
is defined as R, = ko/no. In contrast with block codes, ko and no are usually 
small numbers. A scheme that serially implements a lineal; feedforward binary 
convolutional encoder is shown in Fig. 11.1. The message digits are introduced 
ko at a time into the input shift register, which has N k o  positions. As a block 
of ko digits enters the register, the no modulo-2 adders feed the output register 
with the no digits and these are shifted out. Then the input register is fed with 
a new block of ko digits, and the old blocks are shifted to the right, the oldest 
one being lost. And so on. We can conclude that in a convolutional code the no 
digits generated by the encoder depend not only on the corresponding ko message 
digits, but also on the previous (N - l ) k o  ones, whose number constitutes the 

A 
memory v = ( N  - 1)ko of the encoder. Such a code is called an (no, ko, N)  
convolutional code. The parameter N, the number of data frames contained in 
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the input register, is called the constraint length of the code.' With reference to 
the encoder of Fig. 1 1.1, a block code can be considered to be the limiting case 
of a convolutional code, with constraint length N = 1. 

If we define u to be the semi-infinite message vector and x the correspond- 
ing encoded vector, we want now to describe how to get x from u. As for block 
codes, to describe the encoder we only need to know the connections between 
the input and output registers of Fig. 11.1. This approach enables us to show both 
the analogies and the differences with respect to blockcodes. But, if pursued fur- 
ther, it would lead to complicated notations and tend to emphasize the algebraic 
structure of convolutional codes. This is less interesting for decoding purposes. 
Therefore, we shall only sketch this approach briefly. Later, the description of 
the code will be restated from a different viewpoint. 

To describe the encoder of Fig. 11.1, we can use N submatrices GI, G2,  
G3,. . . , GN containing ko rows and no columns. The submauix Gi describes 
the connections of the i-th segment of ko cells of the input register with the no 
cells of the output register. The no entries of the first row of Gi describe the 
connections of the first cell of the i-th input register segment with the no cells 
of the output register. A "1" in G, means a connection, while a "0" means no 
connection. We can now define the generator matrix of the convolutional code 

All other entries in G, are zero. This matrix has the same properties as for block 
codes, except that it is semi-infinite (it extends indefinitely downward and to the 
right). Therefore, given a semi-infinite message vector u, the corresponding 
coded vector is 

This equation is formally identical to (10.4). A convolutional encoder is said to 
be systematic if, in each segment of no digits that it generates, the first ko are a 
replica of the corresponding message digits. It can be verified that this condition 

'The reader should be warned that there is no unique definition of constraint length in the 
convolutional code literature. 
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Figure 11.2: Two equivalent schemes for the convolutional encoder of the (3.1.3) code 
of Example I I .  I .  

is equivalent to have the following ko x no submatrices: 

and 

for i = 2 , 3 , .  . . , N. All these concepts are better clarified with two examples. 

Example 11.1 Consider a (3J.3) convolutional code. Two equivalent schemes for the 
encoder are shown in Fig. 11.2. The first uses a register with three cells, whereas the 
second uses two cells, each introducing a unitary delay. The output register is replaced 
by a commutator that reads sequentially the outputs of the three adders. The encoder is 
specified by the following three submatrices (actually, three row vectors, since ko = 1): 
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Figure 11.3: Convolutional encoder for the (3.2.2) code of Example 11.1. 

Figure 11.4: Parallel implementation of the same convolutional encoder of Fig. 11.3. 
The generator ma&, from (11.1). becomes 

. It can be verified, from (1 1 3 ,  that the information sequence u = (11011. .) is encoded 
. into the sequence x = (111100010110100. .). The encoder is systematic. Notice that 

the code sequence can be obtained by summing modulo-2 the rows of G, correspond- 
ing to the "1" in the information sequence, as for block codes. 0 

Example 11.2 Consider a (32.2) code. The encoder is shown in Fig. 11.3. The code 
is now defined by the two submamces 

PARALLEL 

SERIAL 

The encoder is systematic, since (1 1.3) and (11.4) are satisfied. The generator matrix is 
now given by 

Figure 11.5: General block diagram of a convolutional encoder in parallel form for an 
(no, ko , N )  code. 

G ,  = 

The encoder of Fig. 11.3 requires a serial input. The ko = 2 input digits can also 
be presented in parallel, and the corresponding encoder is given in Fig. 11.4. 

The parallel representation of the encoder, shown for a general (no, ko) en- 
' ' ,  

coder in Fig. 11.5. is more flexible than the serial one of Fig. 11.1,  as it allows 
allocation of a different number of register cells in each parallel section. When 
Ni = N ,  Va, we can define the constraint length N as in the case of the serial 
representation. When the Ni's are different, we define the constraint length N 

A as the largest among the Ni's, i.e., N = max, Ni , i = 1 , .  .. , ko. The encoder 
memory is in this case v = . C;:,(N~ - 1). 

If we look for a physical meaning of the constraint length, N - 1 represents 
the maximum number of trellis steps (see Section 11.1.1) that are required to 
return from any state of the encoder to the zero state. This "remerge" operation, 
called trellis ternination, is required to transform K sections of the trellis of a ,11,1/1 ........ convolutional code into a block code with parameters k = ko . K,  n = no, ( K  + 
N - 1 ) .  Sometimes, system constraints impose a frame (or "burst") structure 
on the information stream. For short bursts, terminated convolutional codes are 

I,.. , 
used, and each burst is decoded using the Viterbi algorithm without truncation 

- 101 001 000 . . . . . .  
. . . . . .  010 001 000 

. . .  000 101 001 000 

. . .  000 010 001 000 
000 000 101 001 000 
000 000 010 001 000 
. . . . . . . . . . . . . . .  

The information sequence u = (11011011.. .) is encoded into the code sequence x = 
(1 11010100110.. .). 0 
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(see 1 1.1.3). 
Notice that, in the more general case of different Ni's, the structure of the 

encoder is not identified by the three parameters (no, ko, N); instead, beyond ko 
and no, the whole set {N~)!:~ is needed. 

From Example 11.1, it can be verified that the operation of the encoder for an 
(no, 1) code is to generate no digits of the sequence x for each digit ui according 
to the following expression: 

This is the discrete convolution of the vectors GI, G2,  . . . , G N  and the N-digit 
input sequence (w, *-I,. . . , u , - ~ + ~ ) .  The term convolutional code stems from 
this observation. 

Quite often, the number of modulo-2 adders in the encoder is smaller than 
the constraint length of the code. In fact, code rates of 112 or 113 are widely used, 
and in these cases we have only two or three adders, respectively. For this reason, 
instead of describing the code with the N submatrices G i  previously introduced, 
it is more convenient to describe the encoder connections by using the transfer 
function matrix G [ "'1 g l m  ] 

G = (1 1.6) 

gk0.1 . ' ' gko,no 

where g i j  is a binary row vector with N entries describing the connections from 
the ith input, i = 1,. . . , ko, to the jth output, j = 1 , .  ..,no. Vectors g i j  are 
often called generators of the encoder. 

Example 11.3 Let us reconsider the code of Example 11.1. This code has ko = 1 and 
no = 3. Therefore, it can be described with the following three generators: 

In the literature, the binary vectors g i j  are also represented as octal numbers (1 10 -t 61, 
or polynomials in the indeterminate Z, as was done for cyclic codes. As an example, 
the previous vector g1,3 = (110) would be represented as glP3(Z) = Z2 + Z. The 
tables describing the ''best" convolutional codes (see Section 11.1.2) shall characterize 
the codes using the transfer function mahix, in which each generator will be represented 
as an octal number. 
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The advantage of this representation is not immediately apparent. As in Exam- 
ple 11.1, we have three vectors. But, for example, in the case of a (3,1,10) code, this 
second representation always requires three generators of length 10, whereas in the other 
representation we would need 10 vectors (the submatrices Gi) of length 3. No doubt the 
first description is more practical. 0 

11.1.1. State diagram representation of convolutional codes 

As already noted, there is a powerful and practical alternative to the algebraic 
description of convolutional codes. This alternative is based on the observation 
that the convolutional encoder is a finite-memory system, and hence its output 
sequence depends on the input sequence and on the state of the device. The 
description we are looking for is called the state diagram of the convolutional 
encoder. 

We shall illustrate the concepts involved in this description by taking as an 
example the encoder of Fig. 11.2. This encoder refers to the (3,1,3) code de- 
scribed in Example 11.1. Notice that each output triplet of digits depends on the 
input digit and on the content of the shift register that stores the oldest two input 
digits. The encoder has memory v = N - 1 = 2. Let us define the state ue of the 
encoder at discrete time l as the content of its memory at the same time. That is. 

There are No = 2" = 4 possible states. That is, 00,01, 10, and 11. Looking at 
Fig. 11.2, assume, for example, that the encoder is in state 10. When the input 
digit is 1, the encoder produces the output digits 100 and moves to the state 11. 

This type of behavior is completely described by the state diagram of Fig. 11.6. 
Each of the four states is represented in a circle. A solid edge represents a tran- 
sition between two states forced by the input digit "0," whereas a dashed edge 
represents a transition forced by the input digit "1." The label on each edge rep- 
resents the output digits corresponding to that transition. Using the state diagram 
of Fig. 11.6, the computation of the encoded sequence is quite straightforward. 
Starting from the initial state 00, we jump from one state to the next following a 
solid edge when the input is 0 or a dashed edge when the input is 1. 

If we define the states to be SI = (00), S2 = (Ol), S3 = (lo),  S4 = (1 I),  
we can easily check that the input sequence u = (11011.. .), already con- 
sidered in Example 11.1, assuming S1 as the initial state, corresponds to the 
path S ~ S ~ S ~ S Z S ~ S ~ .  . . through the state diagram, and the output sequence is 
x = (111 100 010 110 100 . . .), as found by writing down the sequence of 
edge labels. 
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Figure 11.6: State diagram for the (3.1.3) convolutiond code of Example 11 .1 .  

The concept of state diagram can be applied to any (no, ko, N )  code with 
memory v. The number of states is No = 2". There are 2k0 edges entering each 
state and 2k0 edges leaving each state. The labels on each edge are sequences of 
length no. As v increases, the size of the state diagram grows exponentially and 
becomes very hard to handle. As we are "walking inside" the state diagram fol- 
lowing the guidance of the input sequence, it soon becomes difficult to keep track 
of the past path, because we travel along the same edges many times. Therefore, 
it is desirable to modify the concept of state diagram by introducing time explic- 
itly. This result is achieved if we replicate the states at each time step, as shown 
in the diagram of Fig. 11.7. This is called a trellis diagram. It refers to the state 
diagram of Fig. 11.6. In this trellis, the four nodes on the same vertical represent 
the four states at the same discrete time e, which is called the depth into the trel- 
lis. Dashed and solid edges have the same meaning as in the state diagram. The 
input sequence is now represented by the path a0 = Sl, ul = S3, u2 = S4,. . ., 
and so on. Any encoder output sequence can be found by walking through the 
appropriate path into the trellis. 

Finally, a different representation of the code can be given by expanding 
the trellis diagram of Fig. 11.7 into the tree diagram of Fig. 11.8. In this 

diagram, the encoding process can be conceived as a walk through a binary tree. 
Each encoded sequence is represented by one particular path into the tree. The 
encoding process is guided by binary decisions (the input digit) at each node of 
the tree. This tree has an exponential growth. At depth e, there will be 2' possible 
paths representing all the possible encoded sequences of that length. The path 
corresponding to the input sequence 11011 is shown as an example in Fig. 11.8. 
The nodes of the tree are labeled with reference to the states of the state diagram 
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Ur 

Figure 1 1.7: Trellis diagram for the (3.1.3) convolutional code of k p l e  I I .  I .  The 
boldface path corresponds to the input sequence 1101. 

shown in Fig. 11.6. 

Distance properties and transfer functions of convolutional codes 

As for block codes, the error-detection and error-correction capabilities of a con- 
volutional code are directly related to the distance properties of the encoded se- 
quences. Due to the uniform error property of linear codes, we assume that the 
all-zero sequence is transmitted in order to determine the performance of the 
convolutional code. 

Let us start with some definitions. Consider a pair of encoded sequences 
up to the depth C into the code trellis and assume that they disagree at the first 
branch. We define the e-th order column distance dc(C) as the minimum Ham- 
ming distance between all pairs of such sequences. For the computation of dc(e), 
one of the sequences of the pair can be the all-zero sequence. Therefore, we have 
to consider all sequences, up to the depth e in the code trellis, such that they dis- 
agree at the first branch from the all-zero sequence. The column distance dc(e) 
is the minimum weight of this set of code sequences. The column distance d,(e) 
is a nondecreasing function of the depth C. By letting the value of e go to infinity, 
we obtain the so-called free distance df of the convolutional code, defined as 

From (1 1.8), we see that the free distance of the code is the minimum Hamming 
distance between infinitely long encoded sequences. 

It can be found on the code trellis by looking for those sequences (paths) that, 
after diverging from the all-zero sequence, merge again into it. The free distance 
is the minimum weight of this set of encoded sequences. 
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- ooo I, 100 

101 

Figure 11 3: Tree diagram for the (3.1.3) convolutional code of Example 11.1. The solid 
path corresponds to the input sequence 11011. 

A straightforward algorithm to compute d f  is based on the following steps: 

I. s e t e = o  

2. e - t e + l  

3. Compute dc(C) 

4. If the sequence giving dc (e )  merges into the all-zero sequence, keep its 
weight as d f  and go to 6. 

5. Return to 2 
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Figure 11.9: Part of the trellis diagram for the (3,1,3) code of Example 11.4 for the 
computation of the code distance properties. The trellis is the same as in Fig. 11.7, but 
the labels represent here the weight of the output sequence of three digits associated with 
each edge. 

6. Stop. 

Example 11.4 We want to reconsider the (3,1,3) convolutional code, whose &ellis is 
given in Fig. 11.7, to find the distances just defined. Let us consider Fig. 11.9. Part of the 
trellis is reproduced in the figure, with the following features. Only the all-zero sequence 
and the sequences diverging from it at the h t  branch are reproduced. Furthermore, each 
edge is labeled with the weight of the encoded sequence. The column distance of the 
code can be found by inspection. We get 

Since the constraint length of this code is N = 3, we have the first merge of one se- 
quence into the all-zero sequence for e = 3. However, the merging sequence has weight 
6, and does not give d,(3),  which is instead equal to 5. Thus, we must keep looking for 
d f .  For L = 4, we have a merging sequence giving dc(4) .  Its weight is 6, and therefore 
we conclude that df = 6. 0 

The computation of df,  although straightfonvard, may require the examination 
of exceedingly long sequences. In practice, the problem is amenable to an algo- 
rithmic solution based on the state diagram of the code. We take again the case 
of Fig. 11.6 as a guiding example. The state diagram is redrawn in Fig. 11.10 
with certain modifications made in view of our goal. First, the edges are 
labeled with an indeterminate D raised to an exponent that represents the weight 
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Figure 11.10: State diagram for the (3.1.3) convolutional code of Fig. 11.6. The labels 
allow the computation of the weight enumeratingfunction T (D) .  

(or, equivalently, the Hamming distance from the all-zero sequence) of the en- 
coded sequence corresponding to that state transition. Furthermore, the self-loop 
at state S1 has been eliminated, since it does not contribute to the weight of a 
sequence. Finally, the state S1 has been split into two states, one of which repre- 
sents the input and the other the output of the state diagram. 

Let us now define the label of a path as the product of the labels of all its 
edges. Therefore, among all the infinitely many paths starting in Sl and merging 
again into S1, we are looking for the path whose label D is raised to the smallest 
exponent. This exponent is indeed df. By inspection of Fig. 11.10, we can verify 
that the path S1S3S2S1 (see Example 11.4) has label D6, and indeed this code 
has df = 6. We can define a weight enumeratingfunction T ( D )  of the output 
sequence weights as a series that gives all the information about the weights of 
the paths starting from S1 and merging again into Sl. This weight enumerat- 
ing function can be computed as the transfer function of the signal-flow graph 
of Fig. 11.10. Using standard techniques for the study of directed graphs (see 
Appendix D), the transfer function for the graph of Fig. 11.10 is given by 

where Ad is the number (multiplicity) of paths with weight d diverging from 
state S1 and remerging into it later. Thus, we deduce from (1 1.9) that there are 

'The function T(D) is more often called the generating or transferfunction of the convolu- 
tional code, and, sometimes, we will use this denomination, too. The term "weight enumerating 
function," however, is more appropriate, because, apart from the length of the described code 
words. which can be infinite for convolutional codes, its meaning is the same as for the function 
A(D) of block codes defined in Eq. (10.18). The only difference is that T(D) does not contain 
the all-zero sequence, so in its development as a power series the "1" is missing. 

11.1. Convolutional codes 

Figure 1 1.1  1 : State diagram for the (3,1,3) code of Fig. 11.6. The labels allow the 
computation of the input-ourput weight enumerating function T3 (W, D, L). 

two paths of weight 6, one path of weight 8, five paths of weight 10, and so on. 
Using the terminology of Chapter 4, we can also say that the all-zero path has 
two nearest neighbors at Hamming (instead of Euclidean) distance 6. 

Different forms of transfer functions can be used to provide additional infor- 
mation on the code properties. This is done by considering the modified graph of 
Fig. 11.1 1. Each edge has now a label containing three indeterminates, W, D, L. 
The exponent of W is the weight of the input data frame (a single digit, in this 
example) that caused the transition, so that the exponent of W for a given path 
will represent the Hamming weight of the information sequence that generated 
it. The indeterminate D has the same meaning as before, and finally, L is present 
in each edge, so that its exponent will count the length of the paths. According 
to the expanded labels, we have a new input-output weight enumeratingfunction 
denoted by T3(W, D, L) ,  where the subscript refers to the number of indetermi- 
nates. 

For the state diagram of Fig. 11.11 we obtain 

= W D ~ L ~ ( ~  + W L )  + w ~ D ' L ~  + . . . (11.10) 

where Cw,d,e is the number of paths diverging from state Sl and remerging into 
, I I 8 8 8  it later generated by an information sequence of weight w ,  having weight d, and 
/ 

with length C. From (11.10). we see that the two paths of weight 6 have lengths 3 
and 4, respectively, and that the weights of the input sequences are 1 and 2. The 
path of weight 8 has length 5, and the corresponding input sequence has weight 
3. And so on. These numbers can be checked immediately in Example 11.4. 
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Comparing (1 1.9) with (1 1. lo), we realize that T ( D )  can be obtained from 
T3(W, D, L) by setting W = L = 1. 

Sometimes, the length of the path is not important. In this case, we have a 
third version of the input-output weight enumerating function, T2(W, D) ,  which 
contains only two indeterminates. With obvious notations, it is defined as 

00 00 

T2 (W, D)  5 Bw,dwWDd 

where Bw,d is the number of paths diverging from state S1 and remerging into it 
later with weight d, generatedby an information sequence of weight w. Tz(W, D)  
can be obtained from T3(W, D, L) by setting L = 1. 

We have thus three distinct weight generating functions. The first, T ( D ) ,  
characterizes the distance spectrum of the convolutional code through the pairs 
(Ad,  d) yielding the weights d of the code sequences and their multiplicities Ad. 
The second, the input-output weight enumerating function T2(W, D) ,  provides 
information on the encoder mapping between input and code sequences, by keep- 
ing distinct code sequences of the same weight generated by input sequences of 
different weights. The third, T3(W, D, L) ,  finally, adds to Tz the information 
about the length of sequences in terms of number of trellis branches. 

The multiplicities Ad, Bw,d, Cw,d,e satisfy the following relationships: 

We have determined the properties of all code paths with reference to a sim- 
ple convolutional code. The same techniques can be applied to any code of arbi- 
trary rate and constraint length. We shall see in the next sections how the weight 
enumerating functions of the code can be used to bound the error probabilities 
of convolutional codes. 

11.1.2. Best known short-constraint-length convolutional codes 

When considering the weight enumerating function T ( D )  of a convolutional 
code, it was implicitly assumed that T ( D )  converges. Otherwise, the expan- 
sions of (1 1.9) and (11.10) are not valid. This convergence cannot occur for all 
values of the indeterminate, because the coefficients are nonnegative. In some 
cases, certain coefficients are infinite, and the code is called catastrophic. An 
example is given in Problem 11.4. The code is a (2,1,3) code. Its state diagram 
shows that the self-loop at state S4 does not increase the distance from the all- 
zero sequence, i.e., its label has an exponent of D equal to zero. Therefore, the 
path S1S3S4. . . S4S2S1 will be at distance 6 from the all-zero path no matter how 
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df (Rate 112) df (Rate 113) 
v Systematic 1 Nonsystematic Systematic 1 Nonsystematic 
1 3 3 5 

Table 11.1 : Marimum free distances achievable with systematic codes and nonsystem- 
atic noncatastmphic codes with memory v and rates ID and 1/3. 

many times it circulates in the self-loop at state S4. We have the unfortunate cir- 
cumstance where a finite-weight code sequence cornsponds to an infinite-weight 

, information sequence. Thus, it is possible to have an arbitrarily large number of 
decoding errors even for a fixed finite number of channel errors. This explains 
the name given to these codes. 

The presence in the trellis of a self-loop, different from the one in state S1, 
with zero weight associated, is a sufficient condition for the code to be catas- 
trophic. We may have, however, closed loops (i.e., paths from state Si to state 
Si) in the state diagram longer than one trellis branch, and with overall zero 
weight. In this case, too, the code is catastrophic. 

Conditions can be established on the code generators that form the transfer 
function matrix (11.6) of the code to avoid catastrophic codes. For rate l /no 
codes, the condition is particularly simple, and states that the code generators, 

I in polynomial form, must be relatively prime to avoid catastrophicity (see Prob- 
I lem 11.5). The general conditions can be found in Massey and Sain (1968). 
! 

An important consideration here is that systematic convolutional codes can- 
not be catastrophic. Unfortunately, however, the free distances that are achiev- 
able by systematic codes realized with the feed-forward encode3 of Fig. 11.1 

! are usually lower than for nonsystematic codes of the same constraint length N. 
i ! Table 11.1 shows the maximum free distances achievable with systematic (gen- 

erated by feed-forward encoders) and nonsystematic noncatastrophic codes of 
1 rates 112 and 113 for increasing values of the code memory v. 
I Computer search methods have been used to find convolutional codes opti- 

3We insist on the role of the encoder structure, since in Section 11.1.6 we will show that every 
nonsystematic convolutional encoder admits an equivalent systematic encoder, provided that the 

I encoder is not constrained to be feed-forward. 

i 
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mum in the sense that, for a given rate and a given constraint length, they have 
the largest possible free distance. These results were obtained by Odenwalder 
(1970), Larsen (1973), Paaske (1974), Daut et al. (1982), and recently by Chang 
et al. (1997). While the first searches used as selection criterion the maximiza- 
tion of the free distance, the recent search by Chang er al. (1997) is aimed at 
optimizing the input-output weight-enumerating function previously introduced. 
This criterion, as we will see in Section 11.1.5, is equivalent to minimizing the 
upper bounds to bit and error event probabilities. The best codes are reproduced 
in part in Tables 11.2 through 11.7. For the rates and number of states included 
in the search by Chang er al. (1997), the tables reproduce those codes since they 
have been found using the more complete optimization criterion. The codes are 
identified by their transfer function matrix defined in (1 1.6), in which the gen- 
erators are represented as octal numbers. So, for example, an (no, ko) code will 
be represented by ko x no octal numbers organized in a matrix with ko rows and 
no columns. The tables also give, when available, upper bounds on df derived 
in Heller (1968) for codes of rate l / n o  and extended to codes of rate k01n0 by 
Daut, Modestino, and Wismer (1982). The Heller bound is described later in this 
chapter. 

Example 11.5 The rate 112 convolutional code of memory v = 3 of Table 11.2 has 
generators 15 and 17, which means 

The block diagram of the encoder is shown in Fig. 11.12. For the rate 2/3 code of 
memory v = 3 in Table 11.6, the transfer function matrix is 

and the block diagram of the encoder is shown in Fig. 11.13. 0 

Punctured convolutional codes 

An appropriate measure of the maximum-likelihood decoder complexity for a 
convolutional code (see next section) is the number of visited edges per decoded 
bit. Now, a rate ko/no code has 2ko edges leaving and entering each trellis state 
and a number of states No = 2". where v is the memory of the encoder. Thus, 
each trellis section, corresponding to ko input bits, has a total number of edges 
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Memory 
V 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Generators in 
octal notation 

1 3 
5 7 
15 17 
23 35 
53 75 
133 171 
247 371 
561 753 
1131 1537 
2473 3217 
4325 6747 
10627 16765 
27251 37363 

Upper bound 
on df 

3 
5 
6 
8 
8 
10 
11 
12 
13 
14 
15 
16 
17 

Table 11.2: Feed-fonvard mnsystematic encoders generating maximum free distance 
convolutional codes of rate 1/2 and memory v. (Chang et al., 1997). 

Memory 
V 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Generators in 
octal notation 

1 3 3 
5 7 7 
13 15 17 
25 33 37 
47 53 75 
117 127 155 
225 331 367 
575 623 727 
1167 1375 1545 
2325 2731 3747 
5745 6471 7553 
10533 10675 17661 
21645 35661 37133 

Upper bound 
on df 

5 
8 
10 
12 
13 
15 
16 
18 
20 
22 
24 
24 
26 

Table 11.3: Feed-fonvard nonsystematic encoders generating maximum free distance 
convolutional codes of rate 1/3 andmemory v. (Lursen, 1973, and Chang et a]., 1997). 
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Figure 11.12: Encoder for the (2,1,4) convolutional code of Example 11.5. 

Figure 11.13: Encoder for the (3.2.2) convolutional code of Example 11.5. 

equal to 2k0+u. As a consequence, an (no, ko, N) code has a decoding complexity 

The increase of complexity inherent in passing from rate l / n o  to rate kolno 
codes can be mitigated using the so-called punctured convolutional codes. A 
rate ko/no punctured convolutional code can be obtained by starting from a rate 
l / n o  and deleting parity-check symbols. An example will clarify the concept. 

Example 11.6 Consider the 4-state convolutional encoder of Fig. 11.14 (a). For each 
input bit entering the encoder, two bits are sent through the channel, so that the code 
generated has rate 1R. Its trellis is also shown in Fig. 11.14 (b). Suppose now that for 
every four parity-check digits generated by the encoder, one (the last) is punctured, i.e., 
not transmitted. In this case, for every two input bits three bits are generated by the 
encoder, thus producing a rate 2/3 code. The trellis for the punctured code is shown in 
Fig. 11.14 (c), and the letter "x" denotes a punctured output bit. As an example, the 
input sequence u = 101101 . . . would yield x = 111000010100 for the rate 1R code, 
and x = 111000010 for the punctured rate 2/3 code. In a similar way, higher rates can 
be obtained by increasing the number of punctured parity-check bits. 

Memory 
V 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11  
12 
13 

Generators in 
octal notation 

1 1 3 3 
5 5 7 7 
13 13 15 17 
25 27 33 37 
45 53 67 77 
117 127 155 171 
257 311 337 355 
533 575 647 711 
1173 1325 1467 1751 
2387 2353 2671 3175 
4767 5723 6265 7455 
11145 12477 15537 16727 
21113 23175 35527 35537 

Upper bound 
on df 

Table 1 1.4: Feed-fonuanl nonsystematic encoders generating marimwn free distance 
convolutional codes of rate 114 and memory v. (Larsen, 1973, and Chang et al.. 1997). 

Table 11.5: Feed-fonuard nonsystematic encoders generating marimum free distance 
convolutional codes of rate 115 and memory v (Modestino and Wismer, 1982). 

Memory 
v 
2 
3 
4 
5 
6 
7 

It is interesting to note that the punctured rate 2 3  code so obtained is equivalent to 
the unpunctured rate 2/3 code depicted in Fig. 11.15, for which one stage of the trellis 
corresponds to two stages of the trellis of the punctured code. 0 

Of course, the way paritycheck digits are deleted, or "punctured," should be op- 
timized in order to maximize the free distance of the code (see Problem 11.6). 
Tables of optimum punctured codes can be found in Cain et al. (1979) and Ya- 

Generators in 
octal notation 

7 7 7 5 5 1 3  
17 17 13 15 15 
37 27 33 25 35 
75 71 73 65 57 
175 131 135 135 147 
257 233 323 271 357 

df 

16 
20 
22 
25 
28 

Upper bound 
on df 

13 
16 
20 
22 
25 
28 
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:onstraint 
length N 

2 

3 

3 

4 

4 

5 

5 

6 

6 

Transfer function 
latrix in octal notation 

( 3  1 0 )  

lpper bound 
on df 

4 

6 

7 

Table 11.6: Feed-fonvard nonsystematic encoders generating marimum fme distance 
convolutional codes of rare 213 and constraint length N .  (Chang et al., 1997). 

suda er al. (1984). They yield rate ko/no  codes from a single rate l / n o  "mother" 
code. 

From the previous example, we can derive the conclu.on that a rate ko/no 
convolutional code can be obtained considering ko trellis sections of a rate 1R 
mother code. Measuring the decoding complexity as done before in (1 1.13), we 
obtain for the punctured code 

so that the ratio between the case of the unpunctured to the punctured solution 
yields 

which shows that, for ko > 2, there is an increasing complexity reduction yielded 

Constraint 
length N 

2 

2 

3 

3 

3 

4 

4 

4 

Memory 
V 

2 

3 

4 

5 

6 

7 

8 

9 

Transfer function 
matrix in octal notation 

1 1 1 0  
( 3  3 2 0 2  0  0  1 )  

3 2 1 0  
( 3  2  2  1  2  2  3  1 )  

6 1 4 3  

04 06 07 07 

Upper bound 
on df 

4 

Table 11.7: Feed-fonvard nonsystematic encoders generating marimum free distance 
convolutional codes of rate 3/4 and constraint length N .  (Chang et al., 1997). 

by the punctured solution. Also, with puncturing, one can obtain several rates 
from the same mother code, thus simplifying the implementation through a sort 
of "universal" encoder, and this fact is greatly exploited in VLSI implementa- 
tions. 

There are at least two downsides to the punctured solution. First, punctured 
codes are normally slightly worse in terms of distance spectrum with respect to 
unpunctured codes of the same rate (see also Problem 11.6). Second, since the 
trellis of a punctured (no ,  ko) code is time-varying with period ko, the decoder 
needs to acquire frame synchronization. 
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Figure 11.14: Encoder (a )  and trellis (b)  for a (2,1,3) convolutional code. The trellis (c )  
refers to the rate 213 punctured code described in Example 11.6. 

11.1.3. Maximum-likelihood decoding of convolutional codes and the Viterbi 
algorithm 

We have already seen that ML decoding of block codes is achieved when the 
decoder selects the code word whose distance from the received sequence is 
minimum. In the case of hard decoding, the distance considered is the Hamming 
distance, while for soft decoding it is the Euclidean distance. Unlike a block 

I 

,,a 
code, a convolutional code has no fixed block length. But it is intuitive that 

the same principle works also for convolutional codes. In fact, each possible 
encoded sequence is a path into the code trellis. Therefore, the optimum decoder . must choose that path into the trellis that is closest to the received sequence. 
Also in this case, the distance measure will be the Hamming distance for hard 
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Figure 11.15: Encoder (a)  and trellis (b)  for the (3.  . 2.3) convolutional code equivalent 
to the rate 2/3 punctured code described in Example 11.6. 

decoding and the Euclidean distance for unquantized soft decoding. 
Let us start with hard decoding. We assume binary antipodal modulation, 

and, consequently, the equivalent discrete channel is aBSC with error probability 
p. Denoting with y and x(') the received sequence and the rth path in the trellis, 
respectively, the optimum ML decoder must choose the path x(') of the trellis 
for which the conditional probability P ( y  I x(')) is maximum. We may take the 
logarithm of this probability as well. Therefore, the ML decoder must find the 
path corresponding to , 

where the symbol "2' means "equivalent." In ( 1  1.16), K indicates the length of 
the path into the trellis, or, equivalently, Kno is the length of the binary received 
sequence, ye is the sequence of no binary digits supplied to the decoder by the 
demodulator between discrete times ! and (! + l ) ,  and xj') is the no-digit label 
of the T-th path in the code trellis between states at and at+1. 

The maximization of the RHS of ( 1  1.16) is already formulated in terms suit- 
able for the application of the Viterbi algorithm and, henceforth, it is assumed 
that the reader is familiar with the contents of Appendix F. The metric for each 
branch of the code trellis is defined as 

A 
I/((') (a t - I ,  a t )  = In P(ye 1 xj')) (11.17) 
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and therefore K-1 

u(ff~-1) = m y  ~ l " ( ~ t - l !  o.!) (11.18) 
f=O 

If we denote with dl') the Hamming distance between the two sequences yt. and 
xf ) ,  and use (10.15). we can rewrite (1 1.17) as 

with cr and ,O positive constants (if p < 0.5). 
Using (1 1.19) into (1 1.18), and dropping unessential constants, the problem 

is reduced to finding 
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Received sequence 

- 
K-1 

A 
~ ' ( g ~ - ~ )  = mjn d f )  (1 1.20) 

k 0  

As expected intuitively, (1 1.20) states that ML decoding requires the minimiza- 
tion of the Hamming distance between the received sequence and the path chosen 
into the code trellis. This conclusion is perfectly consistent with the ML decod- 
ing of block codes, provided that the infinitely-long sequences are replaced by 
n-bit code words. The form of (1 1.20) is such that the minimization can be ac- 
complished with the Viterbi algorithm (described in Appendix F), the metric on 
each branch being the Hamming distance between binary sequences. 

Example 11.7 We apply the Viterbi decoding algorithm to the code whose trellis is 
shown in Fig. 11.7, corresponding to the state diagram of Fig. 11.6. We know already 
(see Example 11.4) that this code has df = 6. Assume that the transmitted information 
sequence is 01000000. . . , whose corresponding encoded sequence is 000 11 1 01 1 001 
000 000 000 000. . .. Furthermore, assume that the received sequence is instead 110 
11 1 01 1 001 000 000 000 000. . . . It contains two errors in the first triplet of digits, and 
therefore it does not correspond to any path through the trellis. To apply the Viterbi 
algorithm, it is more useful to refer to a trellis similar to that of Fig. 11.9, in which, now, 
the label of each edge corresponds to the Hamming distance between the three digits 
associated to that edge and the corresponding three received bits. The successive steps 
of the Viterbi algorithm are shown in Fig. 11.16 and Fig. 11.17. The algorithm, at each 
step f! into the trellis, stores for each state the surviving path (the minimum distance path 
from the starting state (ao = Sl)) and the corresponding accumulated metric. Consider, 
for example, the situation at step f! = 4. We have 

S1 S3 Sz SI S3 Figure 11.16: Viterbi decoding algorithm applied to the (3.1.3) convolutional code of 
Fig. 11.6. The decoded sequence is 01000000. 
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Received sequence 

Figure 11.17: Continuation of Fig. 11.16: Viterbi decoding a lgor i th  applied to the 
(3,1,3) convolutio~l code of Fig. 11.6. The decoded sequence is 0 1 m m .  

Therefore, at step l = 4, the MI. path (the one with the smallest distance) is S~SIS~SZSI. 
and the corresponding information sequence is 0100 (follow the dashed and solid edges 
on the trellis). Consequently, in spite of the two initial channel errors, already at this 
step the correct information sequence is identified. In case of a tie, i.e., when two or 
more states exhibit the same lowest path metric, any of the corresponding paths can be 
chosen. 

Let us see in detail how the algorithm proceeds one step farther to compute the situ- 
ation at l = 5. Consider first the state 0 5  = Sl. From the trellis diagram of Fig. 11.7, we 
can verify that the state S1 can be reached either from the state Sl with a transition cone- 
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sponding to an encoded triplet 000, or from the state S2 with a transition corresponding 
to an encoded triplet 001. The received triplet during this transition is 000. Therefore, 
from (1 1.19) and (11.18) we have, as potential candidates to U1(u5) 

Thus, the minimum-distance path leading to Sl at l = 5 comes from S1, and the tran- 
sition from Sz is dropped. The metric U'(u5) at Sl will be 2, and the surviving path 
will be that of 0 4  = S1 (i.e., 0100) with a new 0 added (i.e.. 01000). The interesting 
feature is that at l = 6 all surviving paths merge at state u4 = S1. This means that at 
this step the first four information digits are uniquely decoded in the correct way and the 
two channel errors are corrected. a 

For a general (no, ko, N) convolutional code, there are 2" states at each step 
in the trellis. Consequently, the Viterbi decoding algorithm requires the storage 
of 2" surviving paths and 2" metrics. At each step, there are 2k0 paths reaching 
each state, and therefore 2" metrics must be computed for each state. Only 
one of the 2" paths reaching each state does survive, and this is the rninimum- 
distance path from the received sequence up to that transition. The complexity 
of the Viterbi decoder, measured in terms of number of visited trellis edges per 
decoded bit, is then 

and grows exponentially4 with ko and u. For this reason, practical applications 
are confined to the cases for which ko + u is in the range 2 to 15.5 The Viterbi 
algorithm is basically simple, and has properties that yield easy VLSI implemen- 
tations. Actually, Viterbi decoding has been widely applied and is presently one 
of the most practical techniques for providing large coding gains. 

The trellis structure of the decoding process has the following consequence. 
If at some point an incorrect path is chosen, it is highly probable that it will 
merge with the correct path at a later time. Therefore, the typical error sequences 
of convolutional codes, when decoded by a Viterbi decoder, result in bursts of 
errors due to the incorrect path diverging from the correct one and soon merging 
again into it. Qpical bursts have a length of a few constraint lengths. 

One final consideration concerns the technique used to output the decoded 
digits. The optimum procedure would be to decode the sequence only at the end 

4The exponential growth with ko can be avoided using punctured codes, as seen previously. 
'TO our knowledge, the most complex implementation of the Viterbi algorithm concerns a 

code with ko = 1 and u = 14 for deep-space applications (see Dolinar. 1988). 
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Figure 11.18: Simulated bit ermr probability versus the decoding delay for the decoding 
of the rate In (2.1.7) convolutional code of Table 11.2. The signal-to-noise ratio &/No 
is 3 dB. 

of the whole receiving process. However, this would result in unacceptably long 
decoding delays and excessive memory storage for the surviving sequences. We 
have seen in the example that all surviving paths tend to merge into one single 
path when proceeding deeply enough into the trellis. A solution to this problem is 
thus to use the truncated Viterbi algorithm, described in Appendix F. This forces 
the decision on the oldest symbol of the minimum distance path after a fixed and 
sufficiently long delay. Computer simulations show that a delay on the order of 
5 N  results in a negligible degradation with respect to the optimum performance. 
This is shown in Fig. 11.18, where we report the bit error probability evaluated 
by simulation as a function of the decoding delay for the constraint length 7, rate 
112 code of Table 11.2. 

An important feature of the Viterbi algorithm is that soft-decision decoding, 
unlike for block codes, requires only a trivial modification of the procedure dis- 
cussed previously. In fact, it is sufficient to replace the Hamming metric with 
the Euclidean metric and let all the other decoding operations remain the same. 
Therefore, the implementation complexity for soft-decision decoding is not sig- 
nificantly different from the hard-decision case. 

Let us now derive an expression for the branch metric (11.17) in the case of 
unquantized soft decisions. In practice, 3-bit quantization of the branch metrics 
is sufficient to obtain almost ideal performance (Jacobs, 1974). 

If is the set of received demodulator outputs in the case of binary 

11.1. Convolutional codes 56 1 

antipodal modulation (with transmitted and received energy &) and assuming 
that the eth branch of the rth path has been transmitted, we have 

which is obtained from (10.81). Here, x2) ,is a binary digit and vj is a Gaussian 
RV with zero mean and variance No/2. Therefore, from (11.22) we get 

Inserting (11.23) into (11.17) and neglecting all the terms that are common to all 
branch metrics, we get 

This is the branch metric to be used by the soft-decision Viterbi decoder. It is 
called, for obvious reasons, correlation metric. The best path would correspond 
in this case to the highest metric. As an alternative, one can also use the distance 
metric, which should be minimized. 

11.1.4. Other decoding techniques for convolutional codes 

The computational effort and the storage size required to implement the Viterbi 
algorithm limit its application to convolutional codes with small-medium values 
of the memory v (typically, 1 5 v 5 14). Other decoding techniques can be 
applied to convolutional codes. These techniques preceded the Viterbi algorithm 
historically, and are quite useful in certain applications. In fact, they can use 
longer code constraint lengths than those allowed by practical implementations 
of the Viterbi algorithm, and hence yield larger coding gains. 

Sequential decoding techniques 

As already pointed out, the operation of a convolutional encoder can be described 
as the choice of a path through a binary tree in which each path represents an 
encoded sequence. The sequential decoding techniques (in their several variants) 
share with the Viterbi algorithm the idea of a probabilistic search of the correct 
path, but, unlike the Viterbi algorithm, the search does not extend to all paths 
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that can potentially be the best. Only some subsets of paths that appear to be 
the most probable ones are extended. For this reason, sequential decoding is not 
an optimal (ML) algorithm as the Viterbi algorithm. Nevertheless, sequential 
decoding is one of the most powerful tools for decoding convolutional codes of 
long constraint length. Its error performance is not significantly worse than that 
of Viterbi decoding. 

The decoding approach can be conceived as a trial-and-error technique for 
searching out the correct path into the tree. Let us consider a qualitative exam- 
ple by looking at the code tree of Fig. 11.8. In the absence of noise, the code 
sequences of length no = 3 are received without errors. Consequently, the re- 
ceiver can start its walk into the tree from the root and then follow a path by 
simply replicating at each node the encoding process and making its binary deci- 
sion after comparing the locally generated sequence with the received one. The 
transmitted message will be recovered directly from the path followed into the 
tree. 

The presence of noise introduces errors, and hence the decoder can find itself 
in a situation in which the decision entails risk. This happens when the received 
sequence is different from all the possible alternatives that are locally generated 
by the receiver. Consider again the code tree of Fig. 11.8, and assume that the 
transmitted sequence is the one denoted by the heavy line. Let, for instance, 
the received sequence be 11 1 100 11 1. . .. Starting from the root, the first two 
choices are not ambiguous. But, when reaching the second-order node, the de- 
coder must choose between the upward path (sequence 010) and the downward 
path (sequence 101), having received the sequence 110. The choice that sounds 
more reasonable is to go downward in the tree, since the Hamming distance be- 
tween the received and locally generated sequences is only one, instead of two. 
With this choice, however, the decoder would proceed on a wrong path in the 
tree, and the continuation would be in error. If the branch metric is the Hamming 
distance, the decoder can track the cumulative Hamming distance between the 
received sequence and the path followed into the tree, and eventually notice that 
this distance grows higher than expected. In this case, the decoder can decide 
to go back to the node at which an apparent error was made and try the other 
choice. This process of going forward and backward into the tree is the rationale 
behind sequential decoding. This movement can be guided by modifying the 
metric of the Wterbi algorithm (the Hamming distance for hard decisions) with 
the addition of a negative constant at each branch. The value of this constant is 
selected such that the metric for the correct path decreases on the average, while 
that for any incorrect path increases. By comparing the accumulated metric with 
a moving threshold, the decoder can detect and discard the incorrect paths. 

Sequential algorithms trade with the Viterbi algorithm a larger decoding de- 
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lay with a smaller storage need. Unlike for the Viterbi algorithm, both the de- 
coding delay and the computational complexity are not constant. Instead, they 
are random variables that depend, among other factors, on the signal-to-noise 
ratio. When there is little noise, the decoder is usually following the correct 
path requiring only one computation to advance one node deeper into the code 
tree. However, when the noise becomes significant, the metric along the correct 
path may increase and be higher than the metric along an incorrect path. This 
forces the decoder to follow an incorrect path, so that a large number of steps 
(and computations) may be required to return to the correct path. To make this 
statement quantitative, we refer to the cutoff rate of the channel & already in- 
troduced in Section 10.4.2. When the code rate R, is larger than the channel 
cutoff rate, the average computational load of sequential decoding, defined as 
the average number of computations per decoded branch, is unbounded. For this 
reason, & is often called the computational cutoff rate, as it indicates a limit 
on the code rates beyond which sequential decoding becomes impractical (for a 
proof of these statements, see Lin and Costello, 1983). 

The M-algorithm 

The idea of the M-algorithm is to look at the best M (M less than the number 
of trellis states Nu) paths at each depth of the trellis, and to keep only these 
paths while proceeding into the trellis (no backtracking allowed). For M = 
Nu, it becomes the Wterbi algorithm. The choice of M trades performance for 
complexity. Unlike sequential decoding, the M-algorithm has the advantage 
of fixed complexity and decoding delay. For details on the M-algorithm, see 
Anderson and Mohan (1991). 

Syndrome decoding techniques 

Unlike sequential decoding, these techniques are deterministic and rely on the 
algebraic properties of the code. Typically, a syndrome sequence is calculated 
(as for block codes). It provides a set of linear equations that can be solved to de- 
termine the minimum-weight error sequence. The two most widely used among 
such techniques are feedback decoding (Heller, 1975) and threshold decoding 
(Massey, 1963). They have the advantage of simple circuitry and small decod- 
ing delays, thus allowing high-speed decoding. However, since the allowable 
codes presenting the required algebraic properties are rather poor, only moderate 
coding gain values are achievable with these techniques. 
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- The maximum-a-posteriori -- .- - .. (MAP) symbol decoding - algorithm 

The Viterbl algorithm performs the ML estimate of the transmitted sequence. Its 
output is the code sequence closest in some sense (Hamming or Euclidean dis- 
tance) to the received one. The Viterbi algorithm thus minimizes the sequence er- 
ror probability when the inGrmation sequences are assumed to be equally likely. 

In the most general case, the decision rule minimizing the error probabil- 

ity should be based on the maximiGtion of the a posteriori probabilities (APP) 
of e s h  i . n M  & in the sequence 

where uk is the transmitted bit at time k,  y is the entire received sequence, and 
K is the sequence length. We recall that MAP decoding also d~ffers from ML 
decoding in that it does not assume equally likely information symbols. 

The simplest algorithm to compute the a-posteriori probabilities (1 1.25) was 
proposed by Bahl et al. (1974), but until recently it received very little attenhon 
because its complexity exceeds that of the Viterbi algorithm, yet the advantage 
in bit error rate performance is small. It is described in Appendix F under the 
name of BCJR algorithm, from the initials of the researchers who proposed it. 

The big difference between Viterbi and APP algorithms consists in their out- 
puts. The Viterbi algorithm outputs a hard decision on the transmitted digits, 
whereas the -- APP -- -- algorithm a provides the a posteriori probabhty, which may be 
interpreted-as a soft estima<e of the transmitted digits reliability, actually the best 
possible one. When a convolutional code is employed in a concatenated coding 
scheme, like those examined in the last section of this chapter, this difference __ 
becomes fundamental, and explains the recent great revival of interest for APP 
algorithms. 

As a final, important comment. we can say that the Viterbi algorithm, and 
consequently also the other algorithms briefly described previously, is applica- 
ble to the decoding of any code whose code words can be associated to paths in a 
trellis. As a consequence, the soft decoding of block codes, which can be repre- 
sented by time-varying trellises (see, for example, Wolf, 1978), can be performed 
by using the Viterbi algorithm. 

11.1.5. Performance evaluation of convolutional codes with ML decoding 

In this section, we will derive upper bounds to the error event and bit error prob- 
abilities of a convolutional code. Since the results are based on the union bound, 
they provide tight approximations to the actual probabilities for medium-high 
signal-to-noise ratios. For lower signal-to-noise ratios, these bounds diverge, 
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i i' Correct path 

Error events in the 
decoder's path 

Figure 11.19: Trellis paths showing possible error events of a Wterbi decoder: 

and one should resort to simulation! or to more sophisticated techniques, like 
the one described in Poltyrev (1996) and references therein. Moreover, we do 
not consider the suboptimality of the truncated Viterbi algorithm involved in 
forcing premature decisions (see Hemmati and Costello, 1977, and Onyszchuk, 
1991). 

Error event probability 

Before discussing techniques for bounding the bit error probability Pb(e), it is 
necessary to analyze in some detail the concept of error event in the Viterbi 
decoding. Since convolutional codes are linear and the uniform error property 
holds for them, we can assume that the all-zero sequence has been transmitted 
and evaluate error probabilities under this hypothesis. We denote as the correct 
path the all-zero horizontal path at the top of the trellis diagram (Fig. 11.19). 

The decoder bases its decisions on the received noisy version of the transmit- 
ted sequence and can choose a path different from the correct one on the basis 
of the accumulated metric. For a given discrete time k, an error event is de- 
fined as an incorrect path segment that, after diverging from the correct path at 
trellis depth k, merges again into it at a successive depth. Since the trellis of a 
convolutional code is time-invariant (with the exception of the initial transient 
from the zero state to all other states), the performance will not depend on the 
starting time k of the error event, which can thus be omitted. Fig. 11.19 shows 
three error events starting at nodes i, j, k, and corresponding to the sequences 
xz, xg, xq. Notice also that the dotted path, corresponding to the sequence xi 
diverging at node z', may have a metric higher than the correct path and yet not 
be selected, because its accumulated metric is smaller than that of the solid path 
corresponding to the sequence xz. 

6~ortunately, simulation is required for low signal-to-noise ratios, where the error probabili- 
ties are high, say greater that so that the required computer time is often quite reasonable. 
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The term "error event" comes from the fact that, when the decoder chooses 
an incorrect path forming an e m r  event, the e m r s  accumulated during the pe- 
riods of divergence cannot be corrected, since, after remerging, the correct and 
error event paths will accumulate the same metrics. We may conclude that a 
necessary and sufficient condition for an ermr event to occur at a certain node is 
that the metric of an incorrect path, diverging from the correct one at that node, 
accumulates higher metric increments than the correct path over the unmerged 
path segment. 

Thus, we can define an error event at a certain node as the set of all paths 
diverging from the correct path at that node, and having a path metric lager  than 
the correct one. 

If we denote by xd a path of weight d diverging from the all-zero path, by 
x, the correct path (all-zero sequence), and by P(x1  + xd) the painvise error 
probability between the two sequences7 x l  and xd. then the probability P(e)  of 
an error event can be upper bounded, using the union bound, as 

where Ad is the number of paths of weight d diverging from the all-zero path. To 
proceed further, we must distinguish the cases of hard and soft-decoding. 

Hard decoding Using (10.76). we have 

Introducing (1 1.27) into (1 1.26) and recalling the definition (1 1.9) of the weight 
enumerating function T(D) ,  we finally obtain 

p(e) 5 T ( D ) l D = m  
(1 1 .28) 

This result emphasizes the role of the weight enumerating functiorT(D) for 
the computation of the probability P(e)  of an ermr event, paralleling the results 
obtained for the word error probability of block codes. 

Soft decoding The case of soft decoding is the same as the hard decoding one, 
except that the metric is the Euclidean distance, and, consequently, assuming a 

7The pairwise error probability was defined in Chapter 4 and used in Chapter 10. Here, it 
represents the conditional probability that the sequence xd has a larger metric than the correct 
sequence XI. 
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serial transmission of the coded bits using a binary antipodal modulation w i h  
energy Eb, we can write the pairwise error probability as 

where R, is the code rate. Substituting the right-hand side of (1 1.29) into (1 1.26). 
we get the union bound to the error event probability 

Using the inequality (A.5) ierfc(f l  < +e-=, we can express (11.30) as 

The difference between the two bounds (1 1.30) and (1 1.31). is that the first 
is tighter. However, the second can be evaluated from the closed-form knowl- 
edge of the weight enumerating function, whereas the first requires the distance 
spectrum of the code, i.e., the pairs {Ad, d)&, which can be obtained from the 
power series expansion of T(D).  Usually, a small number of pairs are sufficient 
to obtain a close approximation. A bound in closed form tighter than (1 1.3 1) can 
also be derived (see Problem 11.7). 

Bit error probability 

The computation of an upper bound to the bit error probability is more difficult, 
and, in fact, the result is not always rigorously derived in textbooks. 

Consider the trellis section between time m and time m + 1, and assume that 
the all-zero sequence has been transmitted. Let E(w,  d,  C) be the event that an 
error event with input information weight w, code sequence weight d, and length 
.! is active, i.e., has the highest path metric, in the internal (m, m + 1). Also, 
denote with e(w, d ,  C) an error event starting at time m with input information 
weight w, code sequence weight d, and length C. 

The probability of the event E(w, d,  C) is easily bounded as 

where P[e(w, d,  C)] is the probability of an error event produced by an incorrect 
path xd of weight d, length C and input weight w, and Cw,d,f is the multiplicity of 
such incorrect paths. The first inequality in (1 1.32) relies on the fact that, to be 
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active in the interval ( m ,  m + l ) ,  the error event e(w,  d, C )  of length C must have 
started at a node between m - l! + 1 and m .  

The bit error probability Pb(e), defined as the probability that a bit is in error 
in the interval ( m ,  m + l ) ,  is given by 

But the probability of a bit error for a rate ko/no code, conditioned to E(w,  d,  C ) ,  
is simply 

In fact, e is the number of information digits equal to one (digits in error, since the 
all-zero sequence was transmitted) in E(w,  d ,  C ) ,  and koC is the overall number 
of information digits in the error event of length C .  Substituting (11.34) and the 
upper bound (1 1.32) into (1 1.33), we obtain 

or, taking into account (1 1.12) 

Comparing (11.36) with (11.26), we see that the two are formally the same, 
provided that we substitute for Ad the bit multipliciv A;), defined as 

The pairs (A;) ,  d )  form the bit distance spectrum of the convolutional code. To 
continue, we must distinguish as before the cases of hard and soft decoding. 

~ a r d  decoding Using (1 1 .27) for P(xl  -t xd)  into (1 1.36). we obtain 
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which shows the role of the input-output weight enumerating function in the 
computation of the bit error probability. 

When p is very small, we can approximate the general result (1 1.38) by keep- 
ing only the smallest exponent d = df in the summation. This yields the uymp- 
totic approximation 

( 6 )  dr drl2 Ad, 2 P (1 1.39) 

where A$) is the bit multiplicity of paths with weights d = d f  The importance 
of the free distance is thus fully evident. A somewhat tighter upper bound can 
be obtained in (1 1.35) by using for P(xl  -t xd) an expression different from the 
Bhattacharyya bound (see Problem 11.8). 

Soft decoding The case of soft decoding is the same as the hard decoding one, 
except that the metric is the Euclidean distance. Proceeding as for the case of the 
error event probability, we obtain 

Substituting the right-hand side of (1 1.40) into (1 1.36), we get the union bound 
to the bit error probability 

where we have used the definition (1 1.37) of the bit multipliciv A;). To use the 
bound (1 1.41) in practice, we need to truncate the summation in d to some finite 
value. Usually, the first few (say 10) terms are enough to guarantee accurate 
results. 

A looser, but closed-form bound can be obtained through the inequality (AS), 
by which (1 1.41) becomes 

The bound (1 1.42) can be further refined and made tighter, although it will re- 
main looser than (1 1.41) (see Problem 11.7). 
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For large signal-to-noise ratios Eb/N0, the general result (1 1.41) can be ap- 
proximated as 

1 
Pb(c) i; -~$)effC 2 (/F) 

where A:) is the bit multiplicity of error events with weight equal to df. 
We can conclude that, for large signal-to-noise ratios, the behavior of the bit 

error probability is dominated in all cases by the free distance df, which plays a 
role similar to the minimum distance dmin for block codes. Comparing (1 1.43) 
with the bit error probability for uncoded transmission (4.36), we can derive the 
asymptotic ML coding gain as 10 loglo dfR,. 

Example 11.8 In this example we derive the bit error probability Pb(e) for the (3.1.3) 
convolutional code with state diagram depicted in Fig. 1 1.1 1. This code was seen to 
have a free distance 4 = 6. 

We plot in Fig. 11.20 five curves. They refer to the upper bounds (1 1.38) and (1 1.41) 
refemng to hard and soft ML decoding, to the asymptotic approximations of Eqs. (1 1.39) 
and (1 1.43) that take into account only the first term deriving from the free distance, and, 
finally, to the results obtained by simulating the Viterbi algorithm with infinitely-soft 
quantization (curve with "+"). We see from the curves three things: the hard decoding 
penalty of 2.4 dB, the fact that the asymptotic bounds converge to the bounds using the 
entire distance spectrum for bit error probabilities below and, finally, that the u p  
per bound (11.41) is very tight, as it almost coincides with the simulation. 0 

Example 11.9 To get a more complete idea of the coding gains achievable by ML 
decoded convolutional codes, some codes of rate 112 (Table 11.2) and rate 113 pa-  
ble 11.3) have been considered. The upper bounds to Pb(e) have been evaluated using 
the bound (1 1.41) truncated to the first five nonzero terms of the bit distance spectrum. 
The results are shown in Figures 11.21 and 11.22. 

Notice that the potential coding gains are quite significant and increase as the signal- 
to-noise ratio increases until they reach the asymptotic coding gain 10 loglo df&. AS 
the constraint length N is increased for the codes of the same rate, the coding gain in- 
creases by about 0.3 to 0.4 dB for each increase of one unit in N .  On the other hand, 
increasing the code rate for the same N entails a loss in coding gain of about 0.4 dB. 
The curves assume infinitely-soft quantization in soft Viterbi decoding. However, the 
predicted coding gains are quite real. In fact, if an eight-level quantization is used rather 
than infinite quantization, the observed degradation in performance is of the order of 0.25 
dB. Achievable coding gains with eight-level quantization soft-decision Viterbi decoding 

' are given in Table 11.8 for different values of the bit error probability. The asymptotic 
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Figure 11.20: Performance bounds with hard- and soji-decision maximum-likelihood 
decoding for the (3.1.3) co~olutionol code of Fig. 11.6 (see b p l e  11.8). The curve 
with "+ " refers to simulation results obtained with the soji-decision Viterbi algorithm. 
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11.1.6. Systematic recursive convolutional encoders 
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We have seen previously (see Table 11.1) that systematic convolutional codes 
generated by feed-forward encoders yield, in general, lower free distances than 
nonsystematic codes. In this section, we will show how to derive a systematic 
encoder from every rate l/no nonsystematic encoder, which generates a system- 
atic code with the same weight enumerating function as the nonsystematic one. 
The encoder has feedback connections in it, and we call it a recursive system- 
atic encoder. Costello (1969) and Fomey (1970) were the first to point out this 
possibility. 

Consider for simplicity a rate 112 feed-forward encoder characterized by the 
two generators (in polynomial form) glVl ( 2 )  and gl,S(Z). Using the power series 
u(Z) to denote the input sequence u and x l (Z)  and xZ(Z) to denote the two 
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Figure 11.21: Upper bounds to the soft ML decoding bit error probability of direrent 
convolutional codes of rate ID. The codes are those listed in Table 11.2 (Clark and 
Cain, 1981). 

sequences xl and x2 forming the code x ,  we have the relationships 

To obtain a systematic code, we need to have either x l ( Z )  = u ( Z )  or % ( Z )  = 
u ( Z ) .  To obtain the first equality, let us divide both equations (1 1.M) by 01 (2). 
so that 

Defining now a new input sequence G(Z) as 
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Figure 11.22: Upper bounds to the soft ML decoding bit error probability of d~rerent 
convolutional codes of rate 113. 7 l e  codes are those listed in Table 11.3 (Clark and 
Cain, 1981). 

the relations (1 1.45) become 

"(2) = w - ) g l , l ( z )  
z2(z) = G(z)g1,2(z)  (1 1.47) 

We notice now that the transformation (11.46) between u ( Z )  and G(Z)  is that 
of a recursive digital filter with operations in the field GF(2).  This transforma- 
tion operates a simple reordering of the input sequences u ( Z ) ,  which form the 
set of all possible binary sequences. Making use of this observation, and com- 
paring (1 1.47) with (1 1.44), we can affirm that the set of code sequences B(Z) 
is the same as the set of z ( Z ) ,  and thus the two codes have the same weight 
enumerating functions. As a consequence, the recursive encoder (u ,  %) gener- 
ates a systematic code equivalent, i.e., having the same distance spectrum, to the 
nonsystematic code generated by the feed-forward encoder ( u ,  x ) ;  for the two 
encoders, however, the same code sequences correspond to different input se- 
quences. As an example, it is easy to verify that input sequences with weight 1 
produce error events in the feed-forward encoder, whereas the recursive encoder 
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Table 11.8: Achievable coding gains with some convolutional codes of rate R ,  and con- 
straint length N at different values of the bit error probability. Eight-level quantization 
soJ-decision Wterbi decoding is used. The last line gives the asymptotic upper bound 
10 loglo d fRc  (Jacobs, 1974). 

Figure 11.23: Rate ID, Cstate feed-fonvard encoder generating the nonsystematic code 
(A)  of Example 11.10. 

needs input sequences with weight at least 2 to return to the zero state, and thus 
to generate an error event. As  we shall see in Section 11.3. this difference will 
prove to be crucial for the performance of turbo codes. 

Example 11.10 Consider the (2,1,3) feed-forward encoder (A) of Fig. 11.23, with gen- 
erators g f ( Z )  = 1  + Z 2 ,  g!(Z) = 1  + Z  + Z 2  and its equivalent recursive encoder 
of Fig. 11.24 obtained as explained previously with generators g P ( Z )  = 1, g f ( z )  = 
(1  +Z + Z 2 ) / ( l  + Z 2 ) .  

Using the state diagram representations for both codes, and computing the input- 
output weight enumerating functions T;'(w, D ) ,  TzB(W, D ) ,  we obtain 

W D 5  
T;' (w, D )  = --- 1 - 2 W D  

Letting W  = 1, we obtain the same weight enumerating function for the code sequences 
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Figure 11.24: Rate 1 4  4-state recursive encoder generating the systematic code (8) of 
Example 11.10. 

of the two codes, i.e. 

As a consequence, the upper bounds to the error event probability of the two codes are 
exactly the same. On the other hand, taking the derivative of the input-output trans- 
fer functions (1 1.48). we obtain two different results, and thus two different bit error 
probability bounds. In fact 

It is instructive to compute the bit distance spectrum (A!), d)  (the multiplicities A!) 
were defined in (1 1.37)) of the two codes. whose first terms are reported in the following 
table (NS stands for "nonsystematic," RS for "recursive systematic"): 

Comparing the multiplicities A!) for the two codes, we see that for low values of d (and 
in particular for d = d f )  the multiplicities are smaller for the nonsystematic encoder, 
whereas for large d the situation is reversed. We can thus argue that for medium-to-high 
signal-to-noise ratios the bit error probability will be lower for the nonrecursive encoder, 
whereas for low signal-to-noise ratios the recursive encoder will perform better. These 
observations are confirmed by the curves of Fig. 11.25, where we have plotted the bit 
error probabilities for the two codes. The curves have been obtained by simulating the 

MAP decoding algorithm employing the BCJR APP algorithm (see Appendix F). 0 
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Figure 11.25: Bit error probabiliv versus signal-to-noise ratio for the nonsystematic 
nonrecursive (NSNR) and systematic recursive (SR) encoders of Example 11.10. 

The same behavior of the above example holds for codes with different constraint 
lengths and different rates l/no. When used in a stand-alone configuration, the 
nonsystematic codes are the right choice, because of their slightly better behavior 
at bit error probabilities below this explains the almost universal preference 
given to them in practice. When used in a concatenated scheme, however, aiming 
at very large coding gains, the behavior at low signal-to-noise ratios become 
crucial, and thus recursive systematic encoders should be used. 

11.1.7. Coding bounds 

As explained for block codes in Section 10.3, we can derive also for convolu- 
tional codes bounds on the free distance and bounds on code performance based 
on random coding arguments. 

The best known bound on the free distance is the Heller bound, already used 
in the tables of good codes in Section 11.1.2. It states that the largest achievable 
free distance by a (no, 1, N)  convolutional code satisfies the inequality 
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Convolutional codes 
/ \ 

Figure 11.26: Typical behavior of the reliabilivfunction E(Rc) on the AWGN channel 
for convolutional and block codes. 

where r is an integer. The Heller bound has been extended to codes of any rate 
by Daut et al. (1982). A version of the channel coding theorem described 
in Chapter 3 for block codes can be derived also for the class of time-valying 
convolutional codes (see Chapter 5 of Viterbi and Omura, 1979). The final result 
is that the error event probability for a (no, ko, N)  convolutional code is upper 
bounded by an expression similarto the blockcode expression given by (10.106), 

4 

namely 
P(e) 5 A ( R , ) ~ - " o ~ ~ ( % )  , Rc 5 C (1 1 .52) 

1 where A(Rc) is a small constant, and E(R,) is the reliability function for con- 
volutional codes shown in Fig. 11.26, where we have redrawn also the reliability 
function of block codes of Fig. 9.20, for the sake of comparison. 

Therefore, also for convolutional codes we can write a simple upper bound 
in terms of the cutoff rate R,-, 

Through the inequalities in (10.106) and (11.53) used with n = noN, we can 
compare the relative performance of block and convolutional codes in a ho- 
mogeneous way. Choosing n (or noN) as a reasonable indicator of the de- 

IU 

coder complexity for both block and convolutional codes, we can achieve an 
exponent in (11.53) for convolutional codes greater than the one in (10.106) 
for block codes. Roughly speaking, and with the due caution of comparing 
ensemble-average bounds, we can say that convolutional codes give a better 
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Figure 11.27: Block diagram of a two-level concatenated code. 

performancelcomplexity tradeoff than block codes, especially for low signal-to- 
noise ratios. 

11.2. Concatenated codes - ---__ _ Y*r-ll_ _. - - 
Concatenatedcodes were introduced by Forney (1966), in his goal to find a class 
of codes whose probability of error would decrease exponentially at a rate less 
than capacity, while decoding complexity would increase only algebraically. In]- 
tially motivated only by theoretical research interests, concatenated codes have 
since then evolved as a standard for those applications where high coding gains 
and affordable complexity are needed. 

The basic concept of concatenated codes is illustrated in Fig. 11.27, for the 
case of a two-level concatenation. Two, or more, encoders are arranged in a 
cascaded fashion, where the code words of the first encoder become the input 
words of the second encoder, and so on. In the case of the concatenation of two 
codes, the first is called the outer code, and the second the inner code. They are 
the constituent codes of the concatenated scheme. In the following, we will only 
consider two-level concatenations. 

Let the outer code be an (no, k,) block code, and the inner code be an (n,, k,) 
block code. The parameters k ,  and no must be multiple (or integer submultiple) 
of each other. Typically, no is larger than k,, so that 

no = mki , m integer 

Thus, the code word of the outer code contains an integer number of data words 
of the inner code. Denoting by R:, Ri the rates of the outer and inner codes, the 
overall rate of the concatenated code is 

i.e., the product of the rates of the constituent codes. When the constituent codes 
are convolutional codes, the same previous relationships hold between the code 
rates. 

The most common approach for a long time has been using as the outer code 
,a nonbinary code, typically a long high-rate Reed-Solomon (RS) code. For the 

11.2. Concatenated codes 579 

inner code, many different solutions have been proposed, like orthogonal codes, 
convolutional codes, and short block codes. 

The crucial advantage of concatenated codes is that they lend themselves 
to a staged decoding strategy which breaks the burden of decoding the overall 
(mn,, k,) code into a cascade of two simpler (n,, k,), (no, k,) codes. In other 
words, the receiver first decodes the inner code, and then the outer code. There 
are several ways of performing this cascaded decoding, which depend on the 
nature of the demodulator and outer decoder operations. The demodulator may 
output either hard or soft decisions, and the inner decoder, in turn, may provide 
to the outer decoder hard or soft estimates of the outer code symbols. Fomey C- -* (1966) has shown that -- t h e - ~ w g & - o g g &  the cascaded deco-res 

-r ?_ -*___ -- 
for the inner decoder to estimate the a posteriori probabilities of the outer code _ _  _r___.. , - .-- I------- h- - 
-th-cfihGl sequence. This optimum procedure requires 
~ R E ~ o T O ~ ~ E Z E ~ ~ E O ~  fie ~ m o d u " i % ~ a ~ t l i ' e  inner decoder. 

j 7 In the simpler, suboptimal strategy where the inner decoder produces only 
hard symbol decisions, the outer decoder sees an equivalent channel formed by 
the cascade of inner encoder, modulator, channel, demodulator, and inner hard 
decoder. This equivalent channel is characterized by a symbol error probability 
p, that depends on the signal-to-noise ratio over the physical channel, on the 
modulation scheme, and on the error correction capability of the inner code. For 
an (no, k,, t) RS outer code using K-bit symbols, and assuming a symbol error 
probability p, at the RS decoder input, we can estimate the bit error probability 
as 

The result (11.56) has been obtained by starting from the bound (10.67) on the 
word error probability, and making the pessimistic assumption that a pattern of 
j  channel errors (j > t )  will cause the decoded word to differ from the correct 
one in j  + t positions, so that a fraction ( j  + t)/no of the ko information symbols 
is decoded erroneously. The factor [2K- ' / (2K - I)] accounts for the average 
number of information bit errors per symbol error. 

11.2.1. Reed-Solomon codes and orthogonal modulation 

An interesting choice for the inner code is that of representing each K-digit 
symbol of the Reed-Solomon code with one of the 2K signals of an orthogonal 
signal set. The decoder complexity grows with K ,  since a separate correlator 
is required for each of the 2K signals of the inner code. Therefore, only small 
values of K are of practical interest. Furthermore, as we know from Chapter 4, 
a large bandwidth is required to transmit the orthogonal signal set. These codes 
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Figure 11.28: Bit errur prubabilify for a concatenated code. The inner code is a set of 
2K orthogonal signals with wncoherent demodulation The outer codes are (no, ko) RS 
codes with R, .-. 112 and symbol size K .  (Clark and Cain, 1981.) 

have been used in deep-space communication systems. The symbol error proba- 
bility depends on the mo-demodulation scheme, and can be computed using the 
techniques of Chapter 4. Then, having pa, we can apply (11.56) to evaluate the 
bit error probability. As an example, we plot in Fig. 11.28 the results concern- 
ing the use of orthogonal signals with noncoherent demodulation and RS outer 
codes with Rz 2 112. There is an available coding g ~ n  of the order of 9 to 10 dB 
(at Pa(e) = with respect to binary orthogonal signaling and noncoherent 
demodulation. 

11.2.2.. -- Reed-Solomon and convolutional codes -.. . 

Perhaps the most used concatenated code configuration employs as inner code 
a convolutional code. Since the inner code operates at moderately high error 
probabilities, short constraint length convolutional codes are usually chosen with 
soft-decision Viterbi decoding. 

Since the errors at the Viterbi decoder are bursty, they tend to present to the 
RS decoder correlated symbol errors, a situation that degrades the performance 
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Figure 11.29: Bit error probability for a concatenated code formed by an inner concate- 
nated code of rate 112 and constraint length 7 Md an outer Reed-Solomon code. (Clark 
and Cain, 1981.) 

of the RS decoder. The degree of correlation depends on the constraint length 
of the convolutional code, and extends up to 6 times the constraint length. To 
destroy the correlation we can use an interleaver (see Section 10.2.10) between 
the outer and inner encoders (and correspondingly at the receiver side). The 
action of the interleaver is such that no two symbols occurring within a decoding 
depth at the Viterbi decoder output belong to the same RS code word It should 
be noted also that (1 1.56) requires random symbol errors at the RS decoder input, 
and cannot be applied in the presence of bursts. 

In Fig. 11.29 we present results assuming an ideal interleaving. so that (1 1.56) 
can be used. The symbol error probability has been estimated by simulation un- 
der the assumption of a binary PSK modulation and an AWGN channel. The in- 
ner code is a rate 112, constraint length 7 convolutional code. The Reed-Solomon 
code uses symbols of K bits, K ranging from 6 to 9. For each value of no, the 
code selected is that with the best performance. Comparing these results with 
Fig. 10.3, we see that coding gains up to 7 dB can be obtained at Pb(e) = 
Moreover, the curves are so steep that a moderate increase in Eb/No results in a 
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Figure 11.30: Block diagram of a serially concatenated block code. 

significant decrease of the bit error probability. 

-11.3. Concatenated codes with interleaver - -- -- . -.- - - -  . , 
In a paper by Berrou et al. (1993), simulation results concerning a new codlng 
scheme called turbo code showed performance close by 0.5 dB to the Shannon 
capacity limit, at a bit error probability of This astonishing performance 
gave rise to a large interest in the coding communlty, and generated several 
results in a subject that we call concatenated codes with interleavers. In this 
section, we will present these high-performance coding schemes, show how to 
analyze their average performance, give some design guidelines and, finally, in- 
troduce a simple iterative decoding technique. 

The main ingredients of a concatenated code with interleaver are two con- 
stituent codes (CCs) and one interlea~er.~ They can be connected in senes, like 
in Fig. 11.30, or in parallel, as in Fig. 11.31. 

In Fig. 11.30 we show the example of concatenated block code 

(SCBC), composed by two linear cascaded (N ,  mk) code C ,  with 

rate R: = mk/N and the inner (mn, N)  code C, with rate R: = N/(mn), linked 
by an interleaver of size N, an integer multiple of the length of code words of 
the outer code, N = mp. The overall SCBC is then a linear (mn, mk, N)  code, 
denoted by C,, with rate Rt = RER: = kin. 

Parallel concatenated codes are obtained as in Fig. 11.31, which refers to the 
-2- 

case of a parallel concatenated block code (PCBC). Two linear block codes C1 

wlth parameters (nl ,  k )  and rate RL1) = k/nl ,  and C2 with parameters (n2, k )  
and rate R?) = k/nz, the constituent codes, having in common the lenght k of 
the input informatlon words. are linked through an interleaver of size N = mk. 
The block of m input words to the second encoder is a permuted version of the 
corresponding input block of the first one. The PCBC code word is formed by 
concatenating the two code words generated by the first and second encoder. The 
PCBC, that we denote as C,, is then an (nl + n2, k ,  N)  linear systematic code 

'We can have more than two CCs and one interleaver, but we will consider only this case for 
simplicity. 
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Figure 1 1.3 1 : Block diagram of a parallel concatenated block code. 
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Cp(n1+n2, k, N) 

with rate 

BLOCK 
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Instead of using block codes as CCs, we could employ convolutional codes as 
well. Indeed, turbo codes are parallel concatenated convolutional codes (PCCC). 
The nickname "turbo" codes, refers not to the encoder, but to the decoding pro- 
cedure, a clever suboptimal technique that iterates the individual soft decoding 
oFr?ili% on each CC decoder several times, improving the performance at each 
itef_atign. 

,---- 
1 ' I 

- Y x 1  I 
I I 

,--.- To clarify the behavior of these coding schemes, we will first derive an upper 

bound to the average maximum-likelihood performance, then show some design 
rules, and, finally, explain the iterative decoding procedure. Part of the analytical 
details, indeed very heavy, will be avoided; the interested reader can find them 
in the papers referenced at the end of the chapter, in the bibliographical notes. 

11.3.1. Performance analysis 

I I 

Although the case of concatenated convolutional codes is more interesting for 
the applications, we will first present the analysis for the simpler case of linear 
block concatenated codes, i.e., SCBC and PCBC, and then outline the extension 
to convolutional concatenated codes. When the CCs are linear, the resulting 
serial or parallel concatenated code also is linear (see Problem 11.1 l),  so that 
the uniform error property (see Section 10.3) applies, and we can assume the 
transmitted code word to be the all-zero word. In the following, we will limit 

- 
INTERLEAVER 

N =mk 

I I 
I I 
I I 
I I 
I I 

I I ! I 
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ourselves to the evaluation of the bit error probability. 

Serially concatenated block codes with interleaver 

To obtain an upper bound to the bit error probability of the SCBC of Fig. 11.30, 
we capitalize on the result expressed in (10.98), here reported with a slight 
change in notations 

w 
pb(e) 5 x [B$ (Dl] D=e-*cfbiNo 

w r l  

where B> (D) is the conditional weight enumerating function (CWEF) of the 
SCBC, i.e., the weight enumerating function of the code words of the SCBC 
generated by information words of weight w. 

Alternatively, we can proceed as in Section 11.1.5, starting from the defini- 
tion of the CWEF - 

and computing the tighter upper bound 

where A!) is the bit multiplicity defined in (11.37) as 

The union bounds (1 1.58) and (1 1.60) show that, in order to upper bound the bit 
error probability of the SCBC, we need to compute its CWEFs. To do this, we 
should take each data word of weight w ,  encode it by the outer encoder, pass the 
code word so obtained through the interleaver, and then encode the interleaved 
code word by the inner encoder. Now, the code word of the inner encoder will 
depend not only on the weight w of the data word to the outer encoder, but also 
on the permutation induced by the interleaver. For large interleaver sizes N ,  this 
exhaustive procedure is exceedingly complicated. 

To overcome this difficulty, we introduce the notion of unqom interleaver, 
defined as follows. A uniform interleaver of size N is a probabilistic device 

that maps a given input word of weight w into all distinct . . 

of it with equal probability 1/ (t) . The uniform interleaver transform a code 
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word of weight w at the output of the outer encoder into all its distinct 

permutations. As a consequence, all code words of the outer code of weight j .  
through the action of the uniform interleaver, enter the inner encoder generating 

code words of the inner code. 
Thus, assuming for simplicity that the interleaver size equals the length of 

the outer code words, i.e., N = k, the number B $ , ~  of code words of the SCBC 
of weight d associated with an input word of weight w is given (with obvious 
notations) by 

From (1 1.62), we easily derive the expressions of the conditional weight enu- 
merating function of the SCBC 

" BZj  x BjC' ( D )  
B$(D) = c 

j=o (7) 
from which we see that, to obtain the enumerators of the SCBC, we only need to 
know those of the two constituent codes. 

Example 11.11 Consider the (7,3,4) SCBC code obtained by concatenating the (4,3) 
parity-check code with a (7,4) Hamming code through an interleaver of size N = 4. 

+ I I  The CWEFs of the outer code are 

so that the only coefficients B W j  different fmm zero are BoVo = 1, B1,2 = 3, B2,2 = 3. 
and B3,4 = 1. Fm the inner code, recalling Eq. 10.94, we have 

so that, placing these results into (1 1.63). we obtain 

and the union bound to the bit error probability (1 1.58) becomes 
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Figure 11.32: Upper bound to the bit error probabiliq for the SCBC of Exmple 11 .1  1 
using an interleaver of size 4m. 

Use of the uniform interleaver drastically simplifies the performance evalua- 
tion. However, what we obtain is the performance of an average SCBC, instead 
of the actual performance of the SCBC with a given interleaver. The signifi- 
cance of the average performance was demonstrated in Benedetto and Montorsi 
(1996a), where it was proved that, for each value of the signal-to-noise ratio, the 
performance obtained with the uniform interleaver is achievable by at least one 
actual interleaver, and that an interleaver chosen at random will behave with high 
likelihood closely to the average. 

Previous result (11.63) can be easily generalized to the case of an inter- 
leaver with size N being an integer multiple (by a factor m) of the length of 
the outer code words (see Problem 11.12). As an example, consider again the 
CCs of Example 11.1 1, linked by an interleaver of size N = 4m. Using the 
upper bound (1 1.60) we have obtained the bit error probability curves plotted in 
Fig. 11.32 for various values of the integer m. The curves show the interleaver 
gain, defined as the factor by which the bit error probability is decreased with the 
interleaver size. A careful examination of the curves shows that the error proba- 
bility seems to decrease regularly with m as m-'. We will explain this behavior 
later. 
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Parallel concatenated block codes with interleaver 

As for the case of SCBCs, to obtain an upper bound to the bit error probability 
of the PCBC shown in Fig. 11.31, we will use (11.58), here rewritten with the 
replacement of C, with C, to denote that we are dealing with parallel (instead of 
serial) concatenated codes 

where B$(D) is the conditional weight enumerating function (CWEF) of the 
PCBC, i.e., the weight enumerating function of the code words of the PCBC 
generated by information words of weight w. 

Also in this case we need to compute the CWEF B$(D). Using, as for 
SCBCs, a uniform interleaver, a given word of weight w at the input of the 
interleaver is mapped into all its permutations, which are then encoded by the 
code C2. As a consequence, all data words of the same weight generate the same 
set of code words of Cz, so that the CWEFs of C1 and C2 become independent, 
and can be multiplied and suitably normalized to yield the CWEF of the PCBC. 
In formulas, we have, for N = k 

B$(D) = B$(D). B$(D) 
(1 1.65) 

(3 
Knowing B$(D), we can apply the union bound (1 1.64). 

I & , >  

Example 11.12 Consider a (10,4,4) PCBC obtained through the use of a (7,4) system- 
atic Hamming code C1 and a (4.3) code C2 whose code words are the three parity-check 
bits of the systematic (7.4) Hamming code. The CWEFs of the (7,4) Hamming code 
have already been obtained in Example 11.11. As for those of C2, they can be easily 
derived, yielding 

so that, applying (1 1.65). we obtain the CWEF of the SCBC as 



11. C O ~ V O ~ L ~ ~ O M ~  and concatenated codes 

1 .  I 

Figure 11.33: Upper bound to the bit error pmbability for the PCBC of Example 11.12 
using an interleaver of size 4m. 

We then apply the union bound (1 1.64) to obtain 

Previous result (11.65) can be easily generalized to the case of an interleaver 
with size N being an integer multiple (by a factor m) of the length of the input 
words (see Problem 11.13). As an example, consider again the PCBC of Exam- 
ple 11.12, and assume an interleaver of size N = 4 m  We have obtained the 
bit error probability curves plotted in Fig. 11.33 for various values of the integer 
m. The curves show a gain of roughly 1 dB as m increases. Unlike the case of 
SCCC, however, the interleaver gain tends to saturate for large m. This behavior 
will be explained later. 
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Figure 11.34: Block diagram of a rate 113 parallel concatenated convolutional code. 

Extension to parallel concatenated convolutional codes 

We will now extend the previous analysis starting from the case of parallel con- 
catenated convolutional codes (PCCCs), which were the first to be proposed 
under the name of turbo codes. The block diagram of a PCCC is shown in 
Fig. 11.34. This figure represents the case of a rate 113 PCCC obtained from the 
concatenation of a rate 112 CC (C1) with a rate 111 CC (C2). As an example, this 
rate 111 code could be obtained using the same rate 112 systematic encoder that 

1 6 ;  generates C1 and transmitting only the parity-check bit. 
We will break the performance analysis of PCCCs into two steps. The first 

is an exact analysis yielding an upper bound to the bit error probability. The 
second shows how to obtain an accurate approximation that drastically reduces 
the computational complexity. 

Exact analysis 
Consider a PCCC formed by an interleaver of size N and two convolutional 

CCs C1 and C2 whose trellises have ml and mz states, respectively. To examine 
the whole dynamic of the PCCC, we must consider a super-trellis with ml . mz 
states, like the one depicted in Fig. 11.35. 

The state S,, of the super-trellis corresponds to the pair of states sl, and sz, 
for the first and second CCs, respectively. Each branch S,, -+ Smn in the super- 
trellis represents all pairs of paths which start from the pair of states sl,, s ~ ,  and 

,#I ' '  
reach the pair sl,, s2, in N steps (see Fig. 11.36). 

Thus, when embedded in a PCCC using an interleaver of size N, the CC's 
contributions to the final code word (or code sequence) derive from N-truncated ..a 

versions of their input information sequences, or, equivalently, from trellis paths 
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Figure 11.35: Super-trellis of a PCCC. 

N steps 
I I 

$10' ' .--.--.-.--.--- ' Sl0 

Figure 11.36: Associations of states and paths of the trellises of constituent codes to 
states and paths of the PCCC super-trellis. 

of size N .  

k t  B$,,(w, D) be the label of the branch Sij i Sml of the super-trellis. 
It represents the input-output weight enumemting f inction (IOWEF), already 
defined in Section 10.3.3, of the equivalent parallel concatenated block code 
obtained by enumerating the weights of all N-truncated sequences of the PCCC 
joining the super-states Sij and Smn. 

The IOWEF of an (n ,  k) code C has been defined as 

where B;,, is the number of code words with weight d generated by data words 
of weight w.  As a function of the CWEF B$(D) previously introduced in (1 1.59), 
the IOWEF can be written as 

Once we know the labels B:,,(w, D) ,  the performance of the PCCC can be 
obtained by applying to the super-trellis the standard transfer function approach 
described in Section 11.1.5 for convolutional codes. 

To derive the branch labels of the super-trellis, we can use the same proce- 
dure applied previously to parallel concatenated block codes, as we have seen 
that each label is indeed the IOWEF of a particular equivalent block codeg with 
information word size equal to N.  

We start with the CWEFs B:;,,(D) of the equivalent block codes associated 
to the CCs. These functions enumerate the weights of all possible paths gener- 
ated by data words of weight w and connecting the state s with the state n in N 
steps for the kth constituent encoder, k = 1 ,2 .  They can be obtained from the 
weight enumerating functions of the CCs (see Benedetto and Montorsi, 1996a). 
From their knowledge, we compute the CWEF Bzmn,,(D) of the equivalent 
block parallel concatenated codes. Owing to the properties of the uniform in- 
terleaver, they are simply the normalized product of B~;,,(D) with D?;,,(D), 
i.e. 

Successively, we obtain the IOWEF from the corresponding conditional weight 
enumerating functions through (11.67) and, finally, use the standard transfer 
function approach to get an upper bound to the bit error probability. An example 
will clarify the whole procedure. 

Example 11.13 Consider the rate 113 PCCC obtained by concatenating a 2-state rate 
112 systematic recursive encoder with a 2-state rate 111 encoder, obtained from the pre- 
vious one by neglecting the systematic bit, through an interleaver of size N = 4. The 
resulting encoder structure is depicted in Fig. 11.37. First, we derive the 4 CWEFs 

gActually, only the label B:;,,,(W, D) describes a linear code containing the all "0" word; 
the other labels refer to cosets of this code. This has no effect on the analysis. 
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Figure 11.37: Parallel concatenated convolutional encoder of Example 11.13. 

Table 11.9: Conditional weight enurnerating&nctions enumerating all paths connecting 
state si with state sj in 4 steps for the constituent encoder C1 of Exumple 11.13. 

B$,(D) that enumerate all possible paths connecting in 4 steps the state s i  with the 
state s j  of the CC Cl. Then, we evaluate the CWEFs B:,(D) for the CC Cz. The results 
for B$,(D) are summarized in Table 11.9. Previous results can be used to construct, 
through (11.68). the CWEFs B:,,,,(D) reported in Table 11.10, and, through (11.67). 
the labeling IOWEFs B ~ ~ ~ ( w ,  D )  of the super-trellis. From now on. the technique that 
leads to the computation of the performance of the PCCC is the same as for a standard 
time-invariant convolutional encoder. 

0 

An accurate approximation 
In the previous example, as the encoder had a very simple structure and the 

interleaving size was only 4, an analytic approach could be used leading to the 
exact expression of the average performance of the scheme. 

In general, for long interleavers and codes with larger constraint lengths, the 
super-trellis is completely connected, so that the number of branches increases 
with the fourth power of the number of states (supposed to be equal) of the CCS. 
Thus, although the complexity of the analysis is only related to CCs and not to 
the interleaver size, it may become very heavy. Our experience shows that this is 
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Table 11.10: Conditional weight enumeratingjimctiom of the PCCC of E m p l e  11.13. 

(D) 

the case for CCs with more than 8 states. 
i r  

To overcome this difficulty, we propose a much simpler analysis. It is based 
on approximating the complete transfer function of the super-trellis with the 
IOWEF B$,,(w, D) that labels the branch joining the zero states of the super- 
trellis. It describes all pairs of paths which diverge from the zero states of both 
CCs and remerge into the zero states after N steps. 

To check the accuracy of the approximation, we have used the exact and ap- 
proximate analyses to estimate the performance of the PCCC of Example 11.13 
with different interleaver sizes, namely N = 2,10,1000. The results are reported 
in Fig. 11.38. For N = 2, the approximate and exact CuNeS are significantly dif- 
ferent above They merge around for N = 10, and are completely 
indistinguishable for N = 1000. Actually, this behavior appears from N = 20. 

In general, the approximate method gives accurate results when the inter- 
leaver size is significantly larger (say 10 times) than the CC memory. For this 

# lq reason, since the results which follow refer to this situation, we will always use 
the approximate analysis. 

As an example, consider a rate 113 PCCC employing as constituent codes the - 
same rate 112, 4-state recursive systematic convolutional code with generators 

ij, mn 
00,Oo 

w  = 0 
1 

00,Ol 

w  = 1 

6 1 D8 

w = 2  
9D4+12D5+10D6+4D'+Du 

w = 3  ] w = 4  





I., .., 
.."MI I. 

596 11. Convolutional and concatenated codes 

Figure 11.41: Average upper bound to the bit error probability for a rate IN SCCC 
using as outer code a 4-state, rate ID, mnrecursive convolutional encodel; and as inner 
code a 4-state, rate 213, recursive convolutional encoder with uniform interleavers of 
various sizes. 

11.3.2. Design of concatenated codes with interleaver 

The ingredients of parallel and serially concatenated codes with interleavers are 
two constituent codes and an interleaver with size N. For medium-to-large inter- 
leavers, the state complexity of the overall code becomes so large as to prevent 
exhaustive searches for good codes. The only way to get some insight into the 
design of PCCCs and SCCCs is to split it into the separate designs of the CCs 
and of the interleaver. The tool to decouple the two problems is still the uniform 
interleaver defined in Section 11.3.1 ., which permits identification of the most 
important performance parameters of the CCs and consequent design of CCS 
based on a simplified computer search. Using this approach, one first designs the 
CCs as the optimum ones for the average interleaver, and then, having fixed the 
CCs, chooses a suitable interleaver. 

We have seen that the performance of PCCCs and SCCCs using an interleaver 
of size N depends on equivalent block codes obtained by considering the N-long 
paths of the CC's trellises starting from and ending at the zero state. The code 
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Figure 11.42: T7ze meaning of coejicients ~ 2 , ~ ~ ~ ~ .  

words of the equivalent block code are then concatenations of error events of the 
CCs (we recall that by error event of a convolutional code we mean a trellis path 
starting from and ending into the zero state). 

Let 

Bc' (w ,  D, %) = B&,~, Dd (1 1.69) i i  

d 

be the weight enumerating function of the code words of the block code equiva- 
lent to the ith CC formed by the concatenation of n, error events of the CC, where 
BwL,n, is the number of code words with weight d, generated by data words of 
weight w,  and number of concatenated error events n, (see Fig. 11.42 for the 
meaning of the coefficients BgjVnn.). For N large, the CWEF of the equivalent 
block code can be approximated by 

where n i ~  is the largest number of error events generated by a weight w infor- 
mation sequence in the ith code. In the following, we will use (1 1.70) to obtain 
approximate expressions of the bit error probability bounds for PCCCs and SC- 
CCs valid for large N. 

The case of PCCCs 

Using (1 1.70), assuming a uniform interleaver, and exploiting (1 1.65). we obtain 
the CWEF of the PCCC as 
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AS we are interested in large interleavers, we will use for the binomial coefficient 
the asymptotic approximation 

Comparing (1 1.71) with (11.59). and making use of the relationship (11.61) 
between the bit multiplicities A!) and the coefficients BZd, we obtain the fol- 

lowing expression for the A!) as a function of the PCCC parameters 

From (11.60), we see that the pain (A:), d )  yield the upper bound to the bit 
error probability. Moreover, for large N, the performance, for each d, will be 
dominated by the terms in (1 1.72) having the largest exponent of N. Define this 
largest exponent as 

Inserting (11.73) into (11.72). and this into (11.60). and retaining only for 
each d the terms with the exponent a ( d ) ,  we can write the upper bound to the bit 
error probability in the form 

where d f p  is the free distance of the PCCC, and Cd is a coefficient that depends 
on the CCs but not on the interleaver size N. Equation (11.74) highlights the con- 
tribution of the interleaver size to the performance of the PCCC. Those weights 
d for which a(d)  is larger will dominate the performance when the interleaver 
size increases. Moreover, if the largest exponent is negative, we shall have an 
interleaver gain, since the bit error probability will decrease with N. 

We shall consider now two particular values of a(d) ,  for which we give the 
expressions without the derivations that can be found in Benedetto et al. (1998b). 

The exponent a ( d f p )  The asymptotic (with the signal-to-noise ratio) perfor- 
mance of the PCCC is dominated by the lowest value of d, i.e., its free distance 
d f p .  Thus, it is then important to evaluate the exponent of N corresponding to 
this distance. The result is the following: 

a ( d f p )  = 1 - W ~ P  
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where w f p  is the minimum input weight among those generating error events of 
the two CCs yielding the free distance of the PCCC. Equation (1 1.75) shows that, 
in order to obtain an interleaver gain (a fact happening if a i 0) for medium- 
large signal-to-noise ratios, we should satisfy the inequality 

a condition that is always satisfied by recursive constituent encoders. 
The design of the CCs consists in the maximization of the parameter w f p .  

The asymptotic expression of the bit error probability is 

where the value of Cdlp is easily obtained from (11.72). 

The largest exponent aM For very large N ,  the performance of the PCCC is 
dominated by the tenn in the summation of (1 1.74) with the largest exponent of 
N ,  denoted by a~ 

Recalling that n i ~  is the maximum number of concatenated error events in a 
code word of the ith equivalent block code, we obtain that, for a given w, the 
largest values of nl and n2 are given by 

where jxj means "integer part of 2," and w, is the minimum weight of the 
input sequence yielding an error event of the i-th CC. It is easy to prove (see 
Problem 11.14) that wim is equal to 1 for nonrecursive convolutional encoders 
and to 2 for recursive convolutional encoders. As a consequence, from (1 1.78). 
we have a~ = 0 when at least one CC is a block or nonrecursive convolutional 
code, and 

when the CCs are both recursive. 
The design consequence is that both CCs must be recursive convolutional 

encoders, in which case the bit error probability decreases with N as N-I for 
N -t 03. 
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For recursive CCs, the asymptotic (in N )  exp~ssion of the bit error proba- 
bility is 

where we have defined the effective free distance d ,  of the PCCC as the min- 
imum weight of the sequences of the PCCC generated by input sequences of 
wight 2, and where Cdnr. can be easily obtained from (1 1.72). 

Since d ,  = d,,,+dnM, the choice of the CCs must be aimed at maximizing 

The case of SCCCs 

Using the same approach previously described for PCCCs, which will not be re- 
Fated for conciseness, we obtain the following expression for the A!) as func- 
lions of the parameten of the SCCC depicted in Fig. 11.40: 

u here the meaning of symbols is the same as for PCCCs, and where the super- 
scr i~ts  ''o'' and &l.. refer to the outer and inner codes, respectively. 

For large N ,  and for a given d ,  the dominant coefficient of the exponentials 
in (11.81) is the one for which the exponent of N is maximum. Define this 
nlavimum exponent as 

A a ( d )  = max{nO w,! + n' - f! - 1) (1 1.82) 

Elduating a ( d )  in general is not possible without specifying the CCs. Thus. 
ur will consider two important cases, for which only the final results will be 
Tpr t ed .  For analytical details, see Benedetto et al. (1998b). 

The exponent of N for the minimum weight 

T-ar l q e  values of &/No, the performance of the SCCC is dominated by the 
s t  term of the summation in (11.60) with respsct to d .  We denote by dm the 
~ i n i m u r n  weight of SCCC; it may be larger than the free distance 6, of the inner 
:~de. since the input sequences to the inner encoder are not uncons~ained binary 
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sequences, but, rather, code words of the outer code. With simple computations, 
we obtain 

where ( , (dm) is the minimum weight f! of code words of the outer code yielding 
a code word of weight dm of the inner code, and d! is the free distance of the 
outer code. 

The result (1 1.83) shows that the exponent of N corresponding to the minimum- , 
weight of SCCC code words is always negative for d! 2 2, thus yielding an 
interleaver gain at high &/No. Substitution of the exponent a ( d m )  into (1 1.74) 
truncated to the first term of the summation with respect to d yields 

where the constant Cdm can be derived from (1 1.81). 
Expression (1 1.84) suggests the following conclusions: 

For the values of &/No and N where the SCCC performance is dominated 
by its free distance @ = &-,, increasing the interleaver size yields a gain 
in performance. 

To increase the interleaver gain, one should choose an outer code with 
large free distance d!. 

To improve the performance with Eb/No, one should choose an inner and 
outer code combination such that dm is large. 

These conclusions do not depend on the structure of the CCs, and thus they yield 
for both recursive and nonrecursive encoders. 

The second important case regards the largest exponent of N ,  defined as 

This exponent will permit one to find the dominant contribution to the bit error 
probability for N + oo. 

The maximum exponent of N We will give separately the results for nonre- 
cursive and recursive inner encoders. 
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Block and nonrecursive convolutional inner encoders 

In this case, it is straightforward to obtain for the value of a~ 

so that interleaving gain is not obtained. 

Recursive convolutional inner encoders 

We have already seen (Problem 11.14) that for recursive convolutional en- 
coders the minimum weight of input sequences generating error events is 2. As 
a consequence, an input sequence of weight e can generate at most Le/2j error 
events. Based on this consideration, and after lengthy computations, we obtain 

The value (11.86) of a~ shows that the exponents of N in (11.81) are always 
negative integers. Thus, for all d, the coefficients of the exponents in d decrease 
with N, and we always have an interleaver gain. Moreover, a~ can be sensibly 
lower for SCCCs than for PCCCs, where it was always equal to -1. As an ex- 
ample, ford; = 5, aM = -3, so that the interleaver gain goes as N-3.  This was 
precisely the behavior of the SCCCs whose performances have been presented 
in Fig. 11.41. 

Denoting by 44ff the minimum weight of code words of the inner code gener- 
ated by weight-2 input sequences, we obtain a different weight h(aM) for even 
and odd values of d;. 

d; even 

For d; even, the weight h(aM) associated with the highest exponent of N, is 
given by 

d;d:.ff 
d(aM) = 2 

since it is the weight of an inner code word that concatenates d:/2 error events 
with weight d,.,. 

Substitutine the exponent a M  into (1 1.74), approximated only by the term of " 

the summation with respect to d corresponding to d = d ( a ~ ) ,  yields 

- 
lim Pb(e) 5 ~ , , , , ~ - ~ ~ / ~ e r f c  

N-tm 
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where C,,,, can be derived from (1 1.81). 

d; odd 

For df odd, the value of d(aM) is given by 

where d" is the minimum weight of sequences of the inner code generated by a 
weight 3 input sequence. In this case, in fact, we have 

concatenated error events, of which n', - 1 are generated by weight 2 input 
sequences and one is generated by a weight-3 input sequence. 

Thus, substituting the exponent a, into (1 1.74) approximated by keeping 
only the term of the summation with respect to d corresponding to d = d(aM) 
yields 

where the constant Codd can be derived from (1 1.81). 
In both cases of d; even and odd, we can draw from (1 1.87) and (1 1.89) a 

few important design considerations: 

the use of a recursive convolutional inner encoder always yields an inter- 
leaver gain. As a consequence, the first design rule states that the inner 
encoder must be a convolutional recursive encoder. 

The coefficient that multiplies the signal-to-noise ratio Eb/NO in (11.89) 
increases for increasing values of 4,e,. Thus, we deduce that the effective 
free distance of the inner code must be maximized. 

Comparison between parallel and serially concatenated codes 

In this section, we shall use the bit error probability bounds previously derived 
to compare the performance of parallel and serially concatenated block and con- 
volutional codes. 
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Figure 11.43: Comparison of an SCBC and PCBC with various interlemer sizes, chosen 
so as to yield the same input decoding delay for the two codes. 

Serially and parallel concatenated block codes To obtain a fair compari- 
son, we have chosen the following PCBC and SCBC: the PCBC has parameters 
( l lm,  3m, N) and employs two equal (7,3) systematic cyclic codes with gener- 
ator g(Z) = (1 + Z) (1 + Z + Z3); the SCBC, instead. is a (Ism, 4m, N) SCCC. 
obtained by the concatenation of the (7.4) Hamming so& with a ( 1 5 , ~ )  BCH 
code. 

They have almost the same rate (&, = 0.266, &. = 0.273). and have 
been compared by choosing the interleaver size in such a way that the &coding 
delay due to the interleaver, measured in terms of input information bits. is the 
same. As an example, to obtain a delay equal to 12 input bits, we must choose 
an interleaver size N = 12 for the PCBC, and N = 12/RE = 21 for the SCBC. 

The results are reported in Rg. 11.43, where we plot the bit error pmbability 
versus the signal-to-noise ratio &b/No for various input delays. The results show 
that, for low values of the delay, the performance is almost the same. On the other 
hand, increasing the delay (and thus the interleaver size N), yields a significant 
interleaver gain for the SCBC, and almost no gain for the PCBC. 

11.3. Concatenated codes with interleaver 

Serially and parallel concatenated convolutional codes Fnr .- - -- a fair compar- 
ison, we have chosen the following PCCC and SCCC: the PCCC is a rate 113 
code obtained by concatenating two equal rate 112, 4-state systematic recursive 
convolutional codes with transfer function matrix in polynomial form 

The SCCC is a rate 113 code using as outer code the same rate 112.4-state code 
as in the PCCC, and, as inner code, a rate 2/3,4-state systematic recursive con- 
volutional code with generator matrix 

Also in this case, the interleaver sizes have been chosen so as to yield the same 4" 

decoding delay, due to the interleaver, in terms of input bits. The results are 
reported in Fig. 11.44, where we plot the bit error probability versus the signal- 
to-noise ratio &/No for various input delays. 

The results show the great difference in the interleaver gain, as anticipated 
by the discussion made in Section 11.3.2. In particular, the PCCC shows an in- 
terleaver gain going as N-', as dictated by (1 l.SO), whereas the interleaver size 
of the SCCC, as from (11.86), goes as N(++')/~ = N-3, being the free distance 
of the outer code equal to 5. This means, for %(e) = lo-", a gain of more than 
2 dB in favor of the SCCC. 

11.33. Iterative decoding of concatenated codes with interleavers -- -- 

Maximum-likelihood decoding algorithms, like Viterbi or MAP algorithms, ex- 
hibit a complexity increasing linearly with the number of states of the code 
trellis. As a consequence, they are not applicable to concatenated codes with 
interleavers, whose state complexity, although difficult to evaluate exactly (see 
Benedeao et al., 1997), can be shown to increase exponentially with the inter- 
leaver size. In addition to that, the trellis of the overall code is time-varying, 
and this makes even more difficult the implementation of the Viterbi (or MAP) 
decoder. I. Y 

( / I I I I  

In this section, we will describe a suboptimum iterative decoding algorithm, 
whose complexity is almost independent from the interleaver size, and increases 
linearly with the number of states of the CCs. The behavior of the decoding 

-" . 
algorithm in terms of convergence conditions (When does it converge? What 
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Figwe 11.4: Comparison of an SCCCand PCCC with various interleaver sizes, chosen 
so as to yield the same input decoding delay for the two codes. The CCs are 4-state 
convolutional codes. 

does it converge to? ) is far from being understood. SO far, only explanations 
based on analogies to similar known algorithms have been provided in the liter- 
ature (McEliece et al., 1998). However, there is wide simulation evidence that 
the iterative algorithm works nicely, and yields results very close to the Shannon 
limits at bit error probabilities in the range 10-~-10-~.  Thus, in practice, it can 
be considered as yielding a very effective trade-off between performance and 
complexity. 

In the following, we will propose a heuristic justification of the iterative al- 
gorithm, followed by the input-output relationships of the main decoder block, 
which implements the evaluation of the a posteriori probabilities (APP) through 
forward and backward recursions. This APP algorithm is a slight modification 
andextension of the BCJR algorithm @ah1 et al., 1974) described in Appendix F. 
Successively, we will present the results obtained by simulating the iterative al- 
gorithm applied to a few cases of parallel and serially concatenated codes. The 
description will be based on PCCCs, and then extended to SCCCs. 
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Figure 11.45: Block diagram of a transmission system employing a parallel concate- 
nated convolutional code. 

PCCC ---------- 
I 

The reference transmission system 

Y l  
- ' C 1  * CI 

The description of the iterative decoding algorithm will be based on the reference 
transmission system shown in Fig. 11.45, which represents the transmission of 
sequences encoded by a parallel concatenated convolutional encoder through two 
parallel channels.1° 

ilP l The information sequence u, with rate R, bitls, is formed by symbols u 
defined over a finite or infinite index set with cardinality K, and drawn from the 
alphabet 

lJ = {Ul,. . . , ulul} 
The information symbols are encoded by a parallel concatenated code (PCC) 

with rate 

R" R " 4  
biUs biUs 

MODULATOR 

MODULATOR 

where Rcl and Rc2 are the binary rates of the two constituent codes C1 and Cz. 
The encoded sequence c is formed by concatenating two parallel code se- 

quences (cl,  cz) with rate &/Rcl and R,/Rc2, obtained through the two en- 
coders C1 and Cz that operate on the sequence u and on its scrambled replica 
provided by the interleaver I. 

The code symbols are drawn from the two alphabets 

with cardinalities generally different from that of the input alphabet. 
The two encoded sequences are then mapped, on a one-to-one basis, into 

two modulation alphabets producing the signals xl and x2. The modulated sig- 
nals are transmitted over two parallel memoryless noisy channels, and the re- 
ceived signals y l  and y2 are fed to the soft demodulator. Remembering that 
K is the overall number of information symbols in the whole transmission in- 
terval, the number of the transmitted (and received) symbols x l  and 2 2  will be 

=1 

2 

''The same analysis would apply to a system transmitting the two sequences cl and cz serially. 

CHANNEL 

CHANNEL 

Y I * 

-% 
DEMODULATOR 

DEMODULATOR 

-+ - ,NIERATIVE ; 



608 11. Convolutional and concatenated codes 

Nl = (K log2 (UI)/(Rcl log2 IClI), and N2 = (Klog2 IUI)/(Rc2 log2 ICzI), re- 
spectively. 

The soft demodulator has knowledge of the conditional probability density 
functions that define the channel 

where the subscript k denotes a discrete time. Based on its knowledge of the 
channel, the soft demodulator provides the values of the conditional probabilities 
to the decoder for all time instants k. 

In the following, we shall use the shorthand notation 

or, equivalently 
(P(YU I Q ) ,P (YZ~ I 4 

The task of the decoder is to provide an estimate Q of the symbols of the trans- 
mitted sequence u. In the analysis, we shall assume that the sequence of a priori 
probability distributions of the information symbols pa(u) is known. When this 
probability distribution is not known, it can be assumed to be uniform. 

The iterative decoding algdrithrn: a heuristic explanation 

The optimal symbol-by-symbol maximum a posteriori (MAP) decision should 
be based on the maximization of the a posteriori probability (APP) of the infor- 
mation symbols 

A 
Ch = arg m+x[APP(k, 1 i)] 

where argmaxi[f (i)] denotes the argument i of f (i) that maximizes it, and 
where we have defined the a posteriori probability 

and 
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In order to simplify the mathematical expressions, we will omit in the fol- 
lowing the upper limits of the products, limiting ourselves to keep distinct the 
running variables. 

As observed previously, the evaluation of (11.91) for PCCCs has a compu- 
tational complexity that is linearly proportional to the number of states of the 
overall code, thus making impossible the evaluation of the true APP when the 
interleaver size N is large (say, more than 1&15). 

Berrou et al. (1993,1996) proposed a technique to iteratively evaluate (1 1.92) 
for a PCCC, with a comp!exity that is almost independent from the interleaver 
size. Although suboptimal, the iterative decoding procedure has been proved 
by a large number of simulations to work very well. A heuristic explanation I * ?  

of the iterative algorithm can be based on the independence assumption, stating 
that the probabilities (11.93) and (11.94), which refer to the constituent codes, 
can be expressed as products of functions defined on the individual information 
symbols: 

P(Y1 

P(Y2 

Then, after substitution into (11.92), we obtain that the APPs must satisfy the 
following nonlinear system: 

which admits the following solutions (provided that they exist): 
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Based on these solutions, we can evaluate the APP of the k-th information 
bit as: 

The nonlinear system (11.96)-(11.97) is the key point for the iterative eval- 
uation of APP(k, i). The iterative decoding scheme (Benou et al, 1993, 1996) 
can indeed be viewed as a way to iteratively solve (1 1.97) as 

The iterative decoding algorithm employing log-likelihood ratios 

For binary ("0" and "1") information and code symbols, we can replace the sym- 
bol probabilities with their log-likelihood ratios (LLRs). This leads to two im- 
portant simplifications: first, only one quantity needs to be computed and prop- 
agated through the algorithm, leading to considerable savings in computation 
and memory requirements; second, it permits transformation of the intrinsically 
multiplicative algorithm into an additive one. 

Let us define the following quantities: 

Xk(APP) P log 
C " : u k , o ~ ( ~ l  l c ~ ( ~ ) ) P ( Y z  I cz(u))pa(u) 
Cu:uk=l p(y1 l c ~ ( ~ ) ) P ( Y z  I cz(u))pa(u) 
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A Fll(0) 
Sll = log - 

Pll(1) 

A PZl(0) 
S 2 l  = log ---- 

P21(1) 

Dividing the numerator and denominator of (11.99) by the constant factor 
P(YI 1 O)P(YZ 1 O)pa(0) does not influence the result. As a consequence, we 
obtain 

Cu:uk=o 
P ( Y ~  l c1(u)) P(YZ I cz(u)) P,(u) - 

Xb(APP) = log p(y1 1 0) P(YZ I 0) PC$) (11.103) 

Cu:Uk=l  
P ( Y ~  l c1(u)) P(YZ I cz(u)) pa(u) - 

P ( Y ~  I 0) P(YZ 10) Pa(0) 

By definition, we have 

and 

Analogously, we can write 

Using then the definitions (1 1. loo), (11.101), (1 1.102) into (1 1.103), finally 
yields 
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and the iterative decoding procedure (1 1.98) can be rewritten as 

A$) = 0 

where k = 1, . . . , K, and the final value of the LLR is computed as 

and the MAP decision is made according to the sign of X k .  
The block diagram of the iterative decoding scheme making use of the LLRs 

is reported in Fig- 11.46. In the figure, the blocks labeled by Jl and Jl-' 
represent the interleaver and its inverse. 

It remains to see how to perform, at the sequence level, the operations in- 
volved in (11.104) and (11.105). They contain implicitly the trellis constraints 
imposed by the encoders, and can be executed through forward and backward 
recursions. In Fig. 11.46, these operations are performed by the two blocks 
SISO 1 (Soft-Input Soft-Output) and SISO 2, whose behavior will be described 
in the next section. 

Example 11.14 Using a binary antipodal modulation with energy per bit Eb over an ad- 
ditive white Gaussian noise channel with two-sided noise spectral density No/2, yields 
the following probability density functions conditioned on the transmitted bit: 

so that the LLRs become 

11.3. Concatenated codes with interleaver 
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AzJ" SISO , & 
Figure 11.46: Block diagram of the iterative decoding scheme for binary convolutional 
codes. 

Figure 1 1.47: The trellis encoder 

The computation of the LLR thus requires that the soft demodulator simply multiplies 
the observed samples at the output of the matched filter (sufficient statistics) by a con- 
stant that depends on the channel noise. 

0 

The soft-input soft-output (SISO) algorithm 

# "," In Fig. 11.47 we show a trellis encoder, characterized by the input information 
I Y 

symbols u and the output code symbols c. 
The trellis encoder takes a group of n, consecutive input symbols forming 

a symbol vector called u, and emits a group of n, symbols (symbol vector CJ 
according to the trellis section. 
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The decoding algorithm underlying the behavior of SISO works for encoders 
represented in their trellis form. It can be a time-invariant or time-varying trellis, 
and thus the algorithm can be used for both block and convolutional codes. In 
the following, for simplicity of the exposition, we will refer to the case of time- 
invariant convolutional codes. 

The dynamic of a time-invariant convolutional code is completely specified 
by a single trellis section, which describes the transitions ("edges") between the 
states of the trellis at two consecutive time instants. 

A trellis section is characterized by: 

A set of N states S = I s l , .  . . , sN}. The state of the trellis at time k is 
Sk = S, with s E S. 

A set of N . NI edges obtained by the Cartesian product 

which represent all possible transitions between the trellis states. 

With each edge e E & the following functions are associated (see Fig. 11.48): 

The starting state sS(e) (the projection of e onto S) ;  

The ending state sE(e); 

The set of input symbols ~ ( e )  (the projection of e onto Unu); 

The set of output symbols ~ ( e ) .  

The relationship between these functions depend on the particular encoder. 
As an example, in the case of systematic encoders (sS(e), ~ ( e ) )  also identifies 
the edge since a(e) is uniquely determined by ~ ( e ) .  In the following, we only 
assume that the pair (sS(e), U(e)) uniquely identifies the ending state sE(e); this 
assumption is always verified, as it is equivalent to say that, given the initial 
trellis state, there is a one-to-one correspondence between input sequences and 
state sequences, a property required for the code to be uniquely decodable. 

The soft-input soft-output (SISO) module in its general form is a four-port 
device (see Fig. 11.49) that accepts at the input the sequences of likelihoodfunc- 
tions 

and outputs the sequences of extrinsic a posteriori likelihood functions required 
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I 
I 

Figure 11.48: An edge of the trellis section. 

Figure 1 1.49: The Sofi-lnpur Sofi-Ouput (SISO) module. 

in the iterative procedure (1 1.97) 

computed according to its inputs and to its knowledge of the trellis section. The 
name "extrinsic" comes from the original proposal of turbo codes (Berrou et al., 
1993): its meaning will be clarified in the following. 

The SISO algorithm can be embedded into the iterative decoding procedure 
(1 1.98) letting: 
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Figure 11.50: The relationships between the information and code sequences u,c, their 
constituent symbols ui,~, and the symbols 141;. c that label the trellis edge. 

for the second SISO decoder. 
The SISO algorithm allows computation of (11.106) and (11.107), for any 

code defined by its trellis, with a complexity that grows linearly with the number 
of states of the trellis and also linearly (and not exponentially as in (1 1.106) and 
(1 1.107)) with the transmission length. 

We assume first that the time index set is finite, with cardinality K.  The algo- 
rithm by which the SISO operates will be explained step by step in the following. 

At time k, the input likelihood functions relative to the information and 
code symbols u and c are combined to form the likelihood functions of the 
symbols 14 and c that label a single trellis edge (see Fig.11 SO): 

i=O 
n.-1 

pk(~; I) = Pknc+i(c; I) 
i=O 

0 The output likelihood functions are computed according to 

pk (u; 0) = 
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The quantities Ak(.) and&(.) in (1 1.108) and (1 1.109) are obtained through 
the forward and backward recursions, respectively, as 

with initial values: 

1 s=so 
0 otherwise (11.112) 

1 S'SK 
BK(s) = 0 otherwise 

The output likelihood functions at the symbol level are obtained from 
(1 1.108) and (1 1.109) through 

The new likelihood functions Pknu+, (u; O), Pknc+, (c; 0) represent updated 
versions of the input distributions Pknu+,(u; I), Pkn,+,(c; I), based on the code 
constraints and obtained using the likelihood functions of all symbols of the se- 
quence but the kth ones PknU+,(u; I) and Pknc+,(c; I). In the literature of "turbo 
decoding," PknU+, (u; 0)) pknc+, (c; 0) are called extrinsic informations. They 
represent the "value added" of the SISO module to the "a priori" distributions J UI 

Pknu+r ('l~; I), Pknc+, (c; 1). 
The formulation of the APP algorithm has been presented in a form that 

generalizes the one given in Appendix F and in other previous formulations, 
which were not in a form suitable to work with a general trellis code. 
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Other forms of the SISO algorithm 

As our previous description should have made clear, the SISO algorithm is a mul- 
tiplicative algorithm requiring the whole sequence to be received before starting. 
The reason is due to the backward recursion that starts from the (known) final 
trellis state SK. AS a consequence, its practical application is limited to the case 
where the duration of the transmission is short ( K  small), or, for K long, when 
the received sequence can be segmented into independent consecutive blocks, 
like for block codes or convolutional codes with trellis termination. It cannot be 
used for continuous decoding of convolutional codes. This constraint imposes a 
frame rigidity to the system, and also reduces the overall code rate through trellis 
termination. 

A more flexible decoding strategy is offered by modifying the algorithm in 
such a way that the SISO module operates on a fixed memory span, and out- 
puts the updated likelihood functions after a given delay D, like in the Viterbi 
algorithm. This new version of the algorithm, which is called the sliding win- 
dow soft-input soft-output algorithm (SW-SISO), is described in Benedetto et 
al. (1998~). In essence, it starts the backward recursion assuming that all trellis 
states are equally likely, and offers almost the same performance as the stan- 
dard SISO algorithm, provided that the decoding delay D is sufficiently large. 
The reader will notice here a reminiscence of the practical implementation of the 
Viterbi algorithm. 

The sliding-window SISO algorithm solves the problem of continuously up- 
dating the likelihood functions, without requiring trellis terminations. Its com- 
putational complexity, however, is still high when compared to the Viterbi algo- 
rithm. This is mainly due to the fact that both SISO and SW-SISO are multi- 
plicative algorithms, a fact that can be tolerated if the hardware implementation 
makes use of a DSP, but that becomes computationally heavy for VLSI imple- 
mentations. 

This drawback is overcome by the additive version of the SISO algorithm, 
that applies as well to SISO and SW-SISO. For a complete description of the 
sliding window and additive algorithms, together with an analysis of their com- 
putational complexity, the reader is referred to Benedetto et al. (1998~). 

Example 11.15 As an example of the performance of the iterative decoding algorithm, 
consider a rate 112 PCCC obtained concatenating a 16-state, rate 213 systematic, recur- 
sive convolutional encoder with a rate 211 encoder obtained from the previous one by 
eliminating the two systematic bits. The interleaver size is N = 8920. The perfor- 
mance is reported in Fig. 11.5 1 in terms of bit error probability versus Eb/No for several 
iterations of the decoding algorithm. 

The curves show that, at Eb/NO = 0.8 dB, an error free transmission is obtained 
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1 . , . . .  
. . , I :  . , 

Pb (e)  : : : : 

Figure 1 1.5 1 : Bit error p m b i i u y  obtained by simulating the iterative decoding algo- 
rithm. Rate lL? PCCC based on 16-state rate 213 and 211 CCs, and interleaver with size 
N = 8920. 

based on a 100 million bits simulation. This result is at 0.6 dB from the Shannon limit. 
0 

Iterative decoding of serially concatenated convolutional codes 

The iterative decoding algorithm described previously for PCCCs can be ex- 
tended to the case of SCCCs. 

The core of the iterative decoding procedure is still the SISO algorithm. 
The block SISO is used within the iterative decoding algorithm as shown in 
Fig. 11.52, where we also exhibit the block diagram of the encoder to clarify the 
notations. 

The symbols A ( .  ; I) and A ( .  ; 0 )  at the input and output ports of SISO refer 
to the logarithmic likelihood ratios (LLRs),llbinary unconstrained when the sec- 
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OUTER 

From soft 1 A(ci; 0 )  
> Not used 

demodulator - 1 SISO I 

Figure 11.52: Block diagrams of the encoder and iterative decoder for serially concate- 
nated convolutional codes. 

ond argument is I ,  and modified according to the code constraints when it is 0. 
The first argument u refers to the information symbols of the encoder, whereas c 
refers to code symbols. Finally, the superscript o refers to the outer encoder, and 
a to the inner encoder. The LLRs are defined as 

When x is a binary symbol, ''0" or "1," xref is generally assumed to be the 
"1 ." When x belongs to an L-ary alphabet, we can choose as xref each one of the 
L symbols; a common choice for hardware implementation is the symbol with 
the highest probability, so that one LLR will be equal to zero and all others will 
be negative numbers. 

Unlike with the iterative decoding algorithm employed for decoding PCCCS, 
in which only the LLRs of information symbols are updated, we must update 
here the LLRs of both information and code symbols based on the code con- 
straints. 

During the first iteration of the SCCC algorithm,12 the block "SISO Inner" 
is fed with the demodulator soft outputs, consisting of the U s  of symbols 
received from the channels, i.e., of the code symbols of the inner encoder. The 
second input X(ui; I )  of the SISO Inner is set to zero during the first iteration, 
since no a priori information is available on the input symbols ui of the inner 

''To simplify the description, we assume that the interleaver acts on symbols instead of bits. 
In the actual decoder, we usually deal with bit LLRs and bit interleavers; the extension of the 
algorithm to this case can be found in Benedetto et al. (199%). 
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encoder. 
The LLRs X(ci; I )  are processed by the SISO algorithm, which computes 

the extrinsic LLRs of the information symbols of the inner encoder X(ui; 0) 
conditioned on the inner code constraints. The extrinsic LLRs are passed through 
the inverse interleaver (block labeled "n-I"), whose outputs correspond to the 
LLRs of the code symbols of the outer code, i.e. 

n-l[X(ui; o)] = X(CO; I )  
These LLRs are then sent to the block "SISO Outer" in its upper entry, which cor- 
responds to code symbols. The SISO Outer, in turn, processes the LLRs X(cO; I )  
of its unconstrained code symbols, and computes the LLRs of both code and in- 
formation symbols based on the code constraints. The input X(uO; I )  of the SISO 
Outer is always set to zero, which implies assuming equally likely transmitted 
source information symbols. The output LLRs of information symbols (which 
yield the a posteriori LLRs of the SCCC information symbols) will be used in 
the final iteration to recover the information bits. On the other hand, the LLRs 
of outer code symbols, after interleaving, are fed back to the lower entry (corre- 
sponding to information symbols of the inner code) of the block SISO Inner to 
start the second iteration. In fact we have 

Example 11.16 Consider a rate 114 SCCC with a very long interleaver, corresponding 
to an input decoding delay of 16,384. The constituent codes are 8-state codes: the outer 
encoder is nonrecursive, and the inner encoder is a recursive encoder. Their generating 
matrices are 

respectively. 
Its performance in terms of bit error probability versus Eb/No for different number 

of iterations is presented in Fig. 11.53, They show that the decoding algorithm works at 
Eb/No = -0.05 dB, at 0.76 dB from the Shannon capacity limit (which is in this case 
equal to -0.817 dB), with very limited complexity (remember that we are using two rate 
112 codes with 8 states). 0 

Comparison between serially and  parallel concatenated codes 

The analytical results presented in Section 11.3.2. showed that serial concate- 
nation can yield significantly higher interleaver gains and a steeper asymptotic 
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Figure 11.53: Simulated bit error probability pelfomance of a rate 114 serially concate- 
nated code obtained with two eight-state constituent codes and an interleaver yielding 
an input decoding delay equal to 16,384. 

slope of the error probability curves. To check if these advantages are retained 
when the codes are iteratively decoded at very low signal-to-noise ratios, we 
have simulated the behavior of SCCCs and PCCCs in equal system conditions: 
the concatenated code rate is 113, the CCs are 4-state recursive encoders (rates 
112 + 112 for PCCCs, and rates 112 + 213 for the SCCCs), and the decoding de- 
lays in terms of input bits is 16,384. In Fig. 11.54 we report the results, in terms 
of bit error probability versus &*/No for six and nine decoding iterations. AS 
can be seen from the curves, the PCCC outperforms the SCCC for high values 
of the bit error probabilities, down to roughly For lower values of the bit 
error probability, the SCCC behaves significantly better (the advantage of SCCC 
at is 0.5 dB with nine iterations), and does not present the phenomenon of 
"error floor."13 

131t is customary in the PCCC literature to call "error floor" what is actually a significant 
change of slope of the performance curve. 

11.4. Bibliographical notes 

I ,  

Figure 11.54: Comparison of rate IN PCCC and SCCC. The PCCC is obtained con- 
catenating two equal rate 1/2 4 states codes, whereas the SCCCconcatenates two #-state 
rate 1/2 and rate 2 3  codes. The curves refer to six and nine iterations of the decoding 
algorithm and to an equal input decoding delay of 16,384. 

11.4. Bibliographical notes 

As for block codes, excellent textbooks exist on the subject of convolutional 
codes. In particular, the book by Viterbi and Omura (1979) is an invaluable ref- 
erence book for convolutional codes and for the random coding bounds for all 
types of codes on different channels. Convolutional (and also block) code ap- 
plications and implementation problems can be found in the books by Clark and 
Cain (1981) and Lin and Costello (1983). The three classical papers by Forney 
(1970, 1974a, and 1974b) provide a complete overview of the structure and de- 
coding techniques of convolutional codes. Forney (1970) and Rosenberg (1971) 
explore the question of the relative fraction of catastrophic codes in the ensem- 
ble of all convolutional codes of a given rate and constraint length. Sequential 
decoding was first introduced by Wozencraft (1957) and subsequently modified 
by Fano (1963). An interesting class of sequential decoding algorithms are the 
stack algorithms, which were proposed independently by Jelinek (1969) and Zi- 
gangirov (1966). These algorithms are computationally simpler than Fano's but 
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require more storage. An analysis of the computational problems implied by se- 
quential decoding can be found in Wozencraft and Jacobs (196% Savage (1966), 
Fomey (1974b), and in the book by Anderson and Mohan (1991). 

Concatenated codes were invented by Fomey, and are analyzed in his book 
(1966). Concatenated codes with interleaven are a relatively new subject, started 
in 1993 with the paper on "turbo" codes by Berrou et al. (1993). The excel- 
lent performance of turbo codes has been explained in Benedetto and Montorsi 
(1996a), a paper that contains the analytical details of the analysis presented in 
Section 11.3 of this chapter, and, independently, by Divsalar and Pollara (1995). 
A tutorial explanation is contained in Perez et al., (1996). Design techniques 
and tables of good constituent codes to be employed in parallel concatenated 
convolutional codes are reported in Benedetto and Montorsi (1996b). Divsalar 
and McEliece (1996), and Benedetto et al. (1998a). The analysis, design and 
iterative decoding of serially (as opposed to parallel) concatenated codes with 
interleaven are included in Benedetto et al. (1998b). 

The BCJR algorithm to compute the a posteriori probability, an essential 
building block for the iterative decoding of concatenated codes with interleavers, 
proposed by Bahl et al. (1974), is described in Appendix F. The extension to 
the sliding window and additive algorithms, as well as to other versions of the 
general SISO algorithm, can be found in Benedetto et al. (1998~). The approach 
of Section 11.3.3 closely follows that paper. 

The algorithm that iteratively decodes "turbo" codes has been proposed first 
by Berrou et al. (1993). It is also explained in detail in Hagenauer et al. (1996). 
A general iterative algorithm applicable to all forms of code concatenations has 
been described in Benedetto et al. (1998~). . 

A great number of papers have appeared on the subject of the "turbo" iterative 
decoding algorithm, showing that it can be viewed as an istance of previously 
proposed algorithms (see, for example, McEliece et al. (1998) and the exten- 
sive references therein). To avoid a huge reference list, the readers are referred 
to the papers and references in the European Transactions on Telecommunica- 
tions (Biglieri and Hagenauer, 1995), and in the IEEEJournal on Selected Areas 
in &mmunications (Benedetto et al., 1998d), entirely devoted to concatenated 
codes and iterative decoding. 

11.5. Problems 

Problems marked with an asterisk should be solved with the aid of a computer: 

11.1 Consider the (3,1,3) convolutional code, defined by the generators 

11.5. Problems 

1. Draw the state diagram of the code. 

2. Obtain the input-output weight enumerating function T2(W, D). 

3. Find the free distance df of the code. 

4. Evaluate the maximum-likelihood bit error probability Pb(e) over a BSC 
with p = 

11.2 Jhmider the (2,1,5) convolutional code, defined by the generators 
1' 

1. Draw the trellis diagram of the code. 

2. Find the free distance df of the code. 

3. (*) Obtain the input-output weight enumerating function implementing in 
software the matrix technique of 'Appendix D. 

113 Perform a complete study of the (2,1,2) convolutional code with generators 

11.4 Consider the (2,1,3) convolutional code with generators 

g1.1 = (110), g1,2 = (101) 

1. Draw the state diagram of the code. 

2. Verify that the self-loop at state Sq = (11) does not increase the distance 
from the all-zero sequence. 

3. The code is catastrophic. Verify the effects with an example. 

4. Check that the necessary and sufficient condition to avoid catastrophicity 
given in Section 11.1.2 is not fullfilled. 

11.5 For rate llno codes, prove that the condition to avoid catastrophicity is that the 
code generators in polynomial form are relatively prime. 

/' -\ 
11.6,kJsing as 'Inothef' code the (2.1.4) convolutional code of Figure 11.12, find the 
-' best (in terms of largest free distance) rate 2/3 and 314 punctured codes. For the 

best punctured codes, find the weight enumerating function T(D). 

11.7 (Viterbi and Omura. 1979) The bounds (11.31) and (11.42) can be made tighter 
through the following steps. 

1. Prove, first, the following inequality: 
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2. Since d 2 df,  we may bound (11.29) by 

3. Derive the new bound (11.31) in the form 

and similarly for the bound (1 1.42). 

4. (*) Compare the new bound on the bit error probability with (1 1.42) on a 
4-state rate 112 code. 

11.8 A bound on Pb(e) tighter than (1 1.38) can be obtained for convolutional codes if 
P(e ld)  is computed exactly instead of being upper bounded as in (1 1.27). The all- 
zero path is assumed to be transmitted, and suppose that the path being compared 
has weight d. The incorrect path will be selected if there are more than (d + 1)/2 
errors, with d odd. 

1. Show that in this case 
d 

P(x1 i xd) = (f) pi(' 
i=(d+1)/2 

where p is the transition probability of the BSC. 

2. When d is even, show that 

5 (f) pi (1 - p)d-i 
i=d/2+1 

3. (*) Use the preceding results in (1 1.35) and compare the new bound numer- 
ically on an example. 

11.9 (*) Evaluate the bit distance spectra (A!', d) for the codes of Tables 11.2 and 11.3 
for N 5 8, and use them to rederive the curves of Figures 11.21 and 11.22. 

11.10 (*) Check the terms of the bit distance spectra of the nonsystematic and recursive 
systematic codes of Example 11.10. 

11.5. Problems 

11.12 Evaluate the conditional weight enumerating function of a serially concatenated 
block code using a uniform interleaver of size N = mk equal to an integer num- 
ber of outer code words, as a function of the two conditional weight enumerating 
functions of the outer and inner code. 

11.13 Evaluate the conditional weight enumerating function of a parallel concatenated 
block code using a uniform interleaver of size N = mk equal to an integer num- 
ber of data words words, as a function of the two conditional weight enumerating 
functions of the constituent codes. 

11.14 Prove that the minimum weight w, of input sequences to a convolutional encoder 
generating an error event is equal to 1 for nomecursive convolutional encoders, 
and equal to 2 for recursive convolutional encoders. 

11.15 (*)Write a computer program implementing the SISO algorithm described in Sec- 
tion 11.3.3 (in the multiplicative or additive (see Benedetto er aL, 1998c) form), 
and apply it to the MAP decoding of the convolutional code of Problem 11.2. 

11.16 (*) Using the computer program developed in Problem 11.15, implement by 
software the iterative decoding algorithms for parallel and serially concatenated 
codes. Test the programs on the PCCC of Example 11.15 and on the SCCC of 
Example 1 1.16. 

11.11 Prove that parallel and serially concatenated block codes with interleaver, whose 
block diagrams have been shown in Figs. 1 1.30 and 1 1.3 1, are linear codes pro- 
vided that the two constituent block codes are linear. Is this result also valid for 
concatenated convolutional codes? I 



Coded modulation 

In this chapter we introduce coded modulation, with special attention to a version 
called trelliscoded modulation (TCM). This is used in digital communications 
for the purpose of gaining noise immunity over uncoded transmission without 
expanding the signal bandwidth or increasing the transmitted power. The trellis- 
coded-modulation solution combines the choice of a modulation scheme with 
that of a convolutional code, while the receiver performs soft demodulation prior 
to decoding. 

12.1. The cutoff rate and its role 

As we have illustrated in Chapter 4, if coding is not to be included in the design 
of a modulation/demodulation system, then the sensible design criterion is the 
minimization of error probability. That is, the best modem is the one which, 
under the constraints faced by the system designer, generates the discrete channel 
affected by the lowest error probability. 

Now, assume that coding is to be used over the channel. Application of this 
criterion would lead us to minimize the error probability as seen from the coded- 
channel input to the decoder output. However, in these terms the design problem 
would be hardly solvable in practice. In fact, to compare channels used with 
coding we should pick the best codes for each of them-a prohibitive task. A 
way out of this impasse comes from a technique that was introduced by Shan- 
non in his proof of the Channel Coding Theorem (see Chapter 3) and was used in 
Chapter 10 to derive the cutoff rate of a binary-input continuous-output Gaussian 
channel. This technique, a central one in information theory, is usually referred 
to as "random coding." It comes from the fact that if we pick a code at random, 
it is very likely to be good. (Louis Pasteur said, "Chance is the best ally of those 
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who know how to take advantage of it." Think of this as a partial disclaimer of 
Murphy's law.) Thus, instead of computing the error probability for the opti- 
mum code, which we cannot find, we compute the average error probability over 
the ensemble of all the possible codes to be used on the given channel. Obvi- 
ously, at least one code will perform at least as well as the ensemble average: 
hence this ensemble average yields an upper bound to the performance of the 
optimum code. Moreover, in practice most of the random codes are so good that 
we cannot beat their performance by using a practical coding scheme. As we 
have seen in Chapter 3, for a block code of length n and rate R, = k ln  the word 
error probability is bounded above, for R, less than the channel capacity, by the 
quantity 2-nE(R,). A similar result (see, e.g., Viterbi and Omura, 1979) holds for 
convolutional codes, where the role of n is played by noN. 

The function E(R,), which does not depend on the code but only on its rate, 
tells how good the channel is when we want to use coding on it. In fact, as 
we increase the complexity of the code by increasing its block length n, the 
higher the value of E(R,) the lower the error probability bound will be. Loosely 
speaking, we should expect lower error probabilities for good codes with the 

I same complexity and the same rate over channels with higher E(R,). For this 
reason E(R,) is called the reliabilityfunction of the channel. 

In conclusion, when coding is used, a meaningful comparison among chan- 
nels should be based on their reliability functions. Unfortunately, the actual com- 
putation of this function may be a very demanding task; moreover, it would be 
far simpler to make comparisons based on a single parameter rather than on a 
function. How should we select this parameter? It may seem at first that channel 
capacity is a good choice. However, channel capacity gives only a range of rates 

i where reliable transmission is possible. As discussed in Chapter 10, the sensible 
parameter here is the cutoff rate, &, of the discrete channel. This is the rate 
at which the tangent to E(R,) of slope -1 intercepts the R, axis, so that for 
R, 5 & we have E(R,) 2 & - R, and hence 

P(e) 5 2-n(RO-R,), R, 5 & (12.1) 

From the last inequality we see that & provides both a range of rates and an 
exponent to error probability. 

12.1.1. Computing the cutoff rate: AWGN channel with coherent detection 

We now show how to compute the cutoff rate of the discrete channel generated 
by a given signal constellation transmitted on the additive white Gaussian noise 
channel with coherent demodulation. We assume, as we did in Chapter 4, a finite 
signal constellation S = {s i )g , .  A code for the Gaussian channel is a set of 

I 
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M code words x ,  each one consisting of n signals in S. Transmission of one of 
these signals corresponds to one "channel use." This code has rate 

logz bitlchannel use R, = - 
n 

For example, for uncoded transmission, M = Mn, and hence R, = log, M .  
With a binary blockcode and binary modulation, M = Zk, and hence R, = kin; 
here a channel use corresponds to the transmission of a binary signal. 

The average error probability of this code can be evaluated by using the union 
bound of Section 4.3: P(e) is computed, by averaging over the vectors x in the 
code, the painvise error probability 

We recall that P{x  -t 2) is the probability that the received vector r be closer 

.dl 
(in the sense of Euclidean distance) to P than to x: 

and 
a x = ~ r - ~ ~ 2 - ~ ~ - ~ ~ 2  

= ~ ( n , x - P ) + ( ~ - f ) ~  (12.5) 

19 
Here n is the white Gaussian noise vector affecting the transmission, and (., .) 
denotes scalar product. The last equality shows that X, being an affine deter- 
ministic transformation of a Gaussian random vector, is itself a Gaussian random 
variable (RV). Its mean and variance can be computed by observing that, with 
T the duration of the real waveforms corresponding to the signal vectors si, we 
have 

Thus, since E[n(t)] = 0 and E[n(t)n(r)] = (No/2)6(t - r ) ,  we see immediately 
that the average of (12.6) is zero, and its variance is equal to 

12.1. The cutoff rate and its role 

Figure 12.1: Illustration of the inequality u(-x) 5 exp(-Ax), A 2 0. 

In conclusion, X is a Gaussian RV with mean / x  - PI2 and variance 2&lx - PI2. 
! We shall now derive an upper bound to the painvise error probability. Ob- 
i serve that, with u(x) denoting the unit-step function, we have 

u(-x) 5 e-X2 

for all real A 2 0 (see Fig. 12.1). 
Thus. the following holds f i r  any continuous random variable F with proba- 

bility density function (pdf) fC(x): 

The tightest bound is obtained by choosing the value of A that minimizes the last 
integral. For 5 a Gaussian RV with mean p and variance u2, we have 

which is minimized by choosing A = p/u2. This yields the "Chemoff bound  



12. Coded modulation 12.1. The cutoflrate and its role 633 

The pairwise error probability (12.3) is then bounded above by 

Before proceeding further with our derivation of & for the AWGN channel. 
we pause one moment for a comment on the bound just derived. Since the prob- 
ability that a Gaussian RV takes on a negative value is known (see Appendix A), 
we could derive an exact expression for the pairwise error probability: 

The reader should recognize that this equality is exactly the same as (4.49), with 
the role of the signals q, sj now played by the code words x, f. By using the 
inequality (AS), valid for x > 0 

1 1 -,a 
-erfc (z) < -e < ebZ1 
2 2 

we could obtain (12.7) directly from (12.8). Although the latter derivation is 
shorter, it obscures the fact that the bounding technique used in the derivation 
of & should be based on the Chernoff bound. Actually, the derivation given 
before is in a form that lends itself to generalization to other types of channels, 
an example of which will be provided in Chapter 13. 

With an abuse of notation that should not confuse the reader, we now write 
x = (sl, . . . , s,) and x = (il, . . . , $) for the two code words involved in (12.7). 
which allows us to write the bound in a product form as follows: 

We are now ready for the key step in obtaining a random coding bound: generate 
a code for the Gaussian channel by randomly selecting, independently and with 
equal probabilities 1/M, the n symbols occurring in any code word. The average 
of the pairwise error probability bound (12.9) over the ensemble of random codes 
is given by 

., 

where the last equality follows from the independence of the code symbols se- 
lected in random coding. Since the symbols are equally likely, and since the 

i 

averaging operation eliminates the dependence on the index k, we have explic- 
itly 

where 

Thus, from (12.10) we obtain 

This can be put in the form 

by identifying the RHS of (12.12) and (12.13). i.e., by defining 

From (12.13) we also have, by applying the union bound of Section 4.3 and 
observing that there are M equally likely code words x and f 

Due to (12.2), we have M = 2"&, and consequently 

This, which corresponds to (12.1), concludes our derivation of &. 
Before examining some examples of the actual calculation of &, we hasten 

to observe that, due to an assumption we made in the derivations, (12.14) might 
be only a lower bound to the true &. In fact, we have assumed that in the random 
codes the channel symbols are equally likely: this may not be the best assump- 
tion, because if some symbols were picked with larger frequency than others we 
might actually decrease the error probability. If our derivation were modified so 
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as not to assume equally likely code symbols, we could easily prove (12.14), but 
with the new definition 

where Q denotes the probability distribution of the signals picked from S, and 
Q( . ) their individual probabilities. Since the maximization involved in (12.15) 
may not be easy to perform, use of the simpler version of & (that one should 
call "symmetric cutoff rate") is often preferred, in spite of the fact that this may 
not provide the true cutoff rate. In the following, we shall always use this simpler 
form of &, without any further comment. 

Example 12.1 (PSK) In this example we evaluate the cutoff rate for the discrete chan- 
nel generated by M-ary PSK with coherent detection over the AWGN channel. To eval- 
uate r (S ,  No) through (12.1 1). and hence &, we need only to know the set of Euclidean 
distances from each vector of the signal set. Here, due to the uniformity of the constel- 
lation, the set of distances from any s does not depend on the selection of s. This allows 
us to simplify the calculations by picking arbitrarily one s, and writing 

For example, for 4PSK with energy E we have 

The values of Ro for binary, quaternary, and octonary PSK are shown in Fig. 12.2. 

12.2. Introducing TCM 

An example will introduce the concept of TCM. Consider a digital communica- 
tion scheme to transmit data from a source emitting two information bits every 
T. Several solutions are possible (see Fig. 12.3). 

(a) Use no coding and 4PSK modulation, with one signal transmitted every T .  
In this situation, every signal carries two information bits. 

(b) Use a convolutional code with rate 213 and 4PSK. Since every signal car- 
ries now 413 information bits, it must have a duration of 2T/3 to match 
the information rate of the source. This implies that, with respect to the 
uncoded scheme, the bandwidth increases by a factor 312. 

Figure 12.2: Cutoff rate of the discrete channel generated by M-ary PSK transmitted 
over the AWGN channel and demodulated coherently. Here re = &/No. 

(c) Use a convolutional code with rate 213, and 8PSK to avoid reducing the 
signal duration. Each signal carries 2 information bits, and hence no band- 
width expansion is incurred because 8PSK and 4PSK occupy the same 
bandwidth. 

We see that with solution (c) we can use coding with no bandwidth expan- 
sion. One should expect that the use of a higher-order signal constellation in- 
volves a power penalty with respect to 4PSK: thus, the coding gain achieved by 
the rate 213 convolutional code should offset this penalty, the net result being 
some coding gain at no price in bandwidth. 

This idea is indeed not new, since multi-level modulation of convolutional- 
ly-encoded symbols was a known concept before the introduction of TCM. The 
innovative aspect of TCM is the concept that convolutional encoding and modu- 
lation should not be treated as separate entities, but rather as a unique operation 
(this is why we talk about coded modulation.) As a consequence, the received 
signal is processed by a receiver which does "soft demodulation": that is, the de- 
tection process will involve soji rather than hard decisions. Instead of deciding 
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Figure. 12.3: Three digital communication schemes trammifling two bits m e v  T sec- 
onds. ( a )  Uncoded transmission with 4PSK (b)  4PSK with a rate-U3 convolutio~l 
encoder and bandwidth q o n s i o n  (c)  8PSK with a rate-Ujl convolutional encoder and 
no bandwidth expansion. 

to which transmitted symbols the received signals correspond, the demodulator 
passes metric information to a soft Viterbi decoder. In conclusion, the paramter 
governing the performance of the transmission system is not t h e w  Hmming 
distance of the convolutional code, but rather, over the AWGN channel. thefree 
Euclidean distance between transmitted signal sequences. Thus, the optimiza- 
tion of the TCM design will be based on Euclidean distances rather than on 
Hamming distances, and the choice of the code and of the signal constellation 
will not be performed in separate steps. 

12.2.1. Fundamentals of TCM 

We assume here transmission over the AWGN channel, and the vector model 
introduced in Chapter 4. When a signal s is transmitted, the received signal is 

12.2. Introducing TCM 

represented by 
r = s + n  

where n is a noise N-tuple whose components are independent Gaussian random 
variables with mean zero and the same variance No/2. The signal s is chosen 
from a set S' consisting of M' signals, the uncoded signal constellation. Under 
the assumption that the transmitted signals are all equally likely, the average 
signal energy is 

1 
E' = - C 1x12 

XES' 

Consider now the transmission of a sequence (si):i1 of K signals, where the 
subscript i denotes discrete time. The receiver which minimizes the average error 
probability over the sequence operates by first observing the received sequence 
ro, . . . , r ~ - l ,  then deciding that 20,. . . was transmitted if the squared 
Euclidean distance 

K-l 

d2 = C 1s - %I2 
i=o 

is minimized by taking = Bi, i = 0,. . . , K - 1, or, in words, if the received 
sequence is closer to 20,  . . . than to any other allowable signal sequence. 
As we know from Section 4.3, the resulting sequence error probability, as well as 
the symbol error probability, is upper bounded, at least for high signal-to-noise 
ratios, by a decreasing function of the ratio 6,$,/No, where 6:,, is the minimum 
squared Euclidean distance between any two allowable signal sequences. With 
no coding, this is K times the minimum distance among signals in St. 

We can now define the concept of coding in the s i g ~ l  space. This consists of 
restricting the transmitted sequences to a proper subset of stK. In other words, 
we choose a subset of all the possible sequences made of signals of St, exactly as 
we generate a binary block or a convolutional code by choosing, among all the 
possible binary sequences, those that satisfy certain properties. If this is done, 
the transmission rate will also be reduced because of the decrease in the number - -, 
of sequences available for transmission. To avoid this unwanted reduction, we I 
choose to increase the@zcof.C'~-or S' the larger constellati& 
S 3 n e n c e  increasing M' to M > M', and selecting W" seauen&'% 
a subset of S N ,  we can have sequences whlch are less tightly packed and hence 1 
increase the minimum distance among them. - In conclusion, we obtain a minimum &stance 6free between any two se- 

quences which turns out to be greater than the minimum distance dmin between 
signals in St. Hence, use of maximum-likelihood sequence detection will yield 
a "distance gain" of a factor of 6tee/6ki,. 

On the other hand, to avoid a reduction of the value of the transmission rate, 
the constellation was expanded from Sf to S. This may entail an increase in 
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the average energy expenditure from E' to E, and hence an "energy loss" &I&'.' 
Thus, we define the asymptotic coding gain of a TCM scheme as 

where E' and E are the average energies spent to transmit with uncoded and 
coded transmission, respectively. 

This introduction of interdependencies among the signals in a sequence, and 
the constellation expansion to avoid rate reduction are two of the basic ideas 
underlying trellis-coded modulation (another one is set partitioning, which will 
be described later.) 

12.2.2. Trellis representation 

A convenient and fruitful way of describing a set of signal sequences is through a 
trellis, as we learned in Chapter 6 in the context of CPM, and in Chapter 11 in the 
context of convolutional codes. That is, we choose sequences that correspond to 
paths in a trellis which (apart from its initial and terminating stages) is periodic? 
The nodes of the trellis are called the states of the encoder. Assume the source 
emits MI-ary symbols. With each of them we associate a branch which stems 
from each encoder state at time k and reaches a new encoder state at time k + 1. 
The branch is labeled by the corresponding transmitted signal s E S. 

Thus, with MI-ary source symbols, each node must have M' branches stem- 
ming from it (one per each source symbol). As we shall see, in some cases two 
or more branches connect the same pair of nodes. If this occurs, we say that 
parallel transitions take place.3 

Fig. 12.4 shows an example of a trellis representation. It is assumed that 
the encoder has four states, the source emits binary symbols, and a constellation 
with four signals denoted O,1,2,3 is used. 

12.2.3. Decoding TCM 

Due to the one-to-one correspondence between signal sequences and paths travers- 
ing the trellis, maximum-likelihood (ML) decoding consists of searching for the 

'Here and in the following we disregard certain losses caused by the demodulation of a con- 
stellation of larger size. For example, carrier-phase recovery with 8PSK may entail a loss of 
performance with respect to 4PSK. 

'This is by no means the only possible choice. Nonperiodic, i.e., time-varying trellises are 
also possible, although seldom used in practice. 

31n this context, we may describe uncoded transmission by a trellis that degenerates to a 
single state, and all of whose transitions are parallel. 

12.2. Introducing TCM 

State at State at 
time k time k+l 

trellis path with the minimum Euclidean distance to the received signal wquence. 
If a wquence of length K is transmitted, and the sequence ro, rl, . . . , r ~ - ,  is 

observed at the output of the AWGN channel, then the receiver looks for the 
sequence xo, XI ,  . . . , XK-1 that minimizes 

This is done by using the Viterbi algorithm (Appndix F). The branch metrics 
to be used are obtained as follows. If the branch in the trellis used for coding is 
labeled by signal x, then at discrete time i the metric associated with that branch 
is Iri - x12 if there are no parallel transitions. If a pair of nodes is connected by 
parallel transitions. and the branches have labels x', xu, . . . , in the set X, then 
in the trellis used for decoding the same pair of nodes is connected by a single 
branch, whose metric is 
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12.2.4. Free distance of TCM 

12.3. Some examples of TCM schemes 

The distance properties of a TCM scheme can be studied through its trellis di- 
agram in the same way as for convolutional codes. It should be kept in mind, 
however, that the uniform error property (valid for convolutional codes) does 
not necessarily hold for TCM schemes, so that certain simplifications may not 
be possible. Recall that optimum decoding is the search of the most likely path 
through the trellis once the received sequence has been observed at the channel 
output. Because of the noise, the path chosen may not coincide with the correct 
path, i.e., the one traced by the sequence of source symbols, but will occasion- 
ally diverge from it (at time n, say) and remerge at a later time n + L. When 
this happens, we say that an error event of length L has taken place. Thus, the 
free distance of a TCM scheme is the minimum Euclidean distance between two 
paths forming an error event. 

12.3. Some examples of TCM schemes 

Here we describe a few examples of TCM schemes and describe their coding 
gains. We do this before providing tools for performance evaluation, with the 
aim of motivating the in-depth analysis of TCM that follows. 

Consider first the transmission from a source with 2 bits per symbol. With 
uncoded transmission a channel constellation with M' = 4 would be adequate. 
We shall examine TCM schemes with M  = 2M' = 8, i.e., such that the redun- 
dancy needed to achieve a coding gain is obtained by expanding the constellation 
size by a factor of 2. 

Let us examine PSK signals first. With M' = 4 we obtain 

G i n  - - 2  
E' 

a figure which will be used as a baseline to compute the coding gain of PSK- 
based TCM. We use TCM schemes based on the octonary PSK constelIation 
whose signals we label { 0 , 1 , 2 ,  . . . , 7 )  as shown in Fig. 12.5. We have 

Two states. Consider first a scheme with two states, as shown in Fig. 12.6. 
If the encoder is in state S1, the subconstellation { 0 , 2 , 4 , 6 )  is used. If it is 
in state Sz, constellation { 1 , 3 , 5 , 7 )  is used instead. The free distance of this 

Figure 12.5: Ocronary consrellarion used in a TCM scheme. 

Figure 12.6: A TCM scheme based on a 2-state trellis, M' = 4, and M = 8. 

TCM scheme is obtained by choosing the smallest among the distances between 
signals associated with parallel transitions (error events of length 1) and the dis- 
tances associated with a pair of paths in the trellis that originate from a common 
node and merge into a single node at a later time (error events of length greater 
than 1). The pair of paths yielding the free distance is shown in Fig. 12.6, and, 
with b(z, j )  denoting the Euclidean distance between signals i and j ,  we have the 
following:: 
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Figure 12.7: A TCM scheme based on a 4-state trellis, M' = 4. and M = 8. 

Hence, we obtain an asymptotic coding gain over 4PSK 

Four states. Let us now use a TCM scheme with a more complex structure in 
the hope of increasing the coding gain. With the same constellation of Fig. 12.5, 
take a trellis with 4 states as in Fig. 12.7. We associate the constellation {0 ,2 ,4 ,6)  
with states S1 and S3, and {1,3,5,7)  with S2 and S4. In this case the error event 
leading to bkee has length 1 (a parallel transition), and is shown in Fig. 12.7. We 
get 

2 
6, = k ( o , 4 )  = 4 

E 
and hence 

4 
7 = - = 2 + 3 d B  

2 

Eight states. A further step in the road toward higher complexities, and hence 
higher coding gains, can be taken by choosing a trellis with 8 states as shown in 
Fig. 12.8. To simplify the figure, the four symbols associated with the branches 
emanating from each node are used as node labels. The first symbol in each 
node label is associated with the uppermost transition from the node, the second 
symbol with the transition immediately below it, etc. The error event leading to 
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Figure 12.8: A TCM scheme based on an 8-state trellis, M' = 4, and M = 8. 

bkee is also shown. It yields 

and hence 
4.586 7 = - -  

2 - 2.293 + 3.6 dB 

Consideration of QAM. Consider now the transmission of 3 bits per symbol 
and quadrature amplitude modulation (QAM) schemes. The octonary constel- 
lation of Fig. 12.9 (black dots) will be used as the baseline uncoded scheme. It 
yields 

A TCM scheme with 8 states and based on this constellation is shown in Fig. 12.10. 
The subconstellations used are 

and 
{1,3,4,6,9,11,12,14) 

The free distance is obtained from 
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Figure 12.9: The ortonary QAM constellation {0,2,5,7,8,10,13,15) and the 16-ay 
QAM constellation (0, 1,. . . ,151. 

Figure 12.10: A TCM scheme based on an 8-state trellis, M' = 8, and 
= 16. 

so that 
7 = - =  2.5 * 3.98 dB 

0.8 

12.3.1. Coding gains achieved by TCM schemes 

The values of bfree achieved by actual designs based on two-dimensional modula- 
tions (PSK and QAM) are shown in Fig. 12.1 1. Free distances here are expressed 
in dB relative to the value b$, = 2  of unit-energy uncoded 4PSK. The free dis- 
tances of various schemes are plotted versus R,/W, the bandwidth efficiency in 
bit/s/Hz, under the assumption that the signal bandwidth is the Shannon band- 
width 1 / T .  Note that significant coding gains can be achieved by TCM schemes 
having as few as 4, 8, and 16 states. A rule of thumb is that 3 dB can be gained 
with 4 states, 4 dB with 8 states, 5 dB with 32 states, and up to 6 dB with 128 or 
more states. With higher numbers of states the returns are diminishing. 

12.3.2. Set partitioning 

Consider the determination of bfi,,. This is the Euclidean distance between the 
signals associated with a pair of paths that originate from an initial split and, after 
L (say) time instants, merge into a single node as shown in Fig. 12.12. Assume 
first that the free distance is determined by parallel transitions, i.e., L = 1. Then 
bf, equals the minimum distance between the signals in the set associated with 
the branches emanating from a given node. Consider next L > 1. With A, B, C, 
D denoting subsets of signals associated with each branch, and b(X,Y) denoting 
the minimum Euclidean distance between one signal in X and one in Y, will 
have the expression 

die, = d 2 ( ~ ,  B) + - , - + d2(c, D) 

This implies that, in a good code, the signal subsets assigned to the same orig- 
inating state (A and B in Fig. 12.12) or to the same terminating state (C and D 
in Fig. 12.12) must have the largest possible distance. To put this observation 
into practice, Ungerboeck (1982) suggested the following technique, called set dl 

partitioning. 
The M-ary constellation is successively partitioned into 2 ,4 ,8 , .  . . , subsets 

with size M / 2 ,  M/4 ,  M / 8 ,  . . . , havingprogressively larger minimum Euclidean 
distances bii),, bcj,,, b,$)", . . . (see Fig. 12.13 and Fig. 12.14). Then, 
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Figure 12.1 1: Free distance vs. bandwidth eficiency of selected TCM schemes based on 
two-dimensional modulations. (Adaptedfrorn Ungerboeck, 1987.) 

U1 Members of the same partition are assigned to parallel transitions. 

U2 Members of the next larger partition are assigned to "adjacent" transitions, 
i.e., transitions stemming from, or merging into, the same node. 

These two mles, in conjunction with the symmetry requirement 

Figure 12.12: A pair of splitting and remerging paths, for L = 1 (parallel transitions). 
andL  > 1. 

Figure 12.13: Set panition of an 8PSK constellation. 

U3 All the signals are used equally often, 

are deemed to give rise to the best TCM schemes, and are usually referred to as 
the three "Ungerboeck's rules." 

12.3.3. Representation of TCM 

We now examine the design of TCM encoders. In particular, we examine TCM 
encoders consisting of a convolutional encoder cascaded to a memoryless map- 
per. 
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Figure 12.14: Set partition of a 16-QAM constellation 

(1) 

Consider binary source symbols, grouped into blocks of m bits bi , - .bjrn) 
that are presented simultaneously to a convolutional encoder with rate m/(m + 
1). The latter determines the trellis structure of the TCM scheme (and, in par- 
ticular, the number of its states). A memoryless mapper following the encoder 
generates a one-to-one colrespondence between the binary coded (m + 1)-tuples 
and a constellation with M = 2m+1 signals (see Fig. 12.15). 
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Figure 12.16: A TCM encoder where the bits that are leji uncoded are shown erplicirly. 

Figure 12.15: A TCM encoder: 
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It is convenient to modify the above representation as described in Fig.12.16, 
where the fact that some of the source bits are left uncoded is made explicit. 
The convolutional code appearing here has rate f i / ( f i  + 1). The presence of 
uncoded digits causes parallel transitions; a branch in the trellis diagram of the 
code is now associated with 2m-fi signals. The correspondence between the 
encoded digits and the subconstellations obtained from set partitioning is shown 
in Fig. 12.13 and Fig. 12.14. Convolutional 

encoder 

m Rate - 
m+ 1 

b L 

Example 12.2 Fig. 12.17 shows a TCM encoder and the corresponding trellis. Here 
m = 2 and f i  = 1, so that the trellis nodes are connected by parallel transitions asso- 
ciated with 2 signals each. The trellis has four states, as does the rate-1R convolutional 
encoder, and its structure is determined by the latter. 0 

12.3.4. TCM with multidimensional constellations 

We have seen that, for a given signal constellation, the performance of TCM can 
be improved by increasing the number of trellis states. However, as this number 
exceeds a certain value, the increase of coding gain is progressively diminishing. I I 

This suggests that to achieve larger gains the constellation should be changed. A 
possibility is to move from two-dimensional to multidimensional constellations. 

Here we expand briefly on the use of constellations that are generated by 
time-division of elementary (typically, two-dimensional) constellations. For ex- 
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Figure 12.17: A TCM encoder with m = 2 and 7TL = 1. The corresponding trellis is also 
shown 

ample, if N two-dimensional signals are sent in a time interval of duration T ,  
and each has duration T I N ,  we obtain a 2N-dimensional constellation. 

Use of these multidimensional constellations in TCM offers a number of 
advantages: 

Spaces with larger dimensionality have more room for the signals, which 
can consequently be spaced at larger Euclidean distances. Thus, an in- 
creased noise margin may come from the constellation itself. 

0 An inherent cost with one- and two-dimensional constellations is that when 
the size of the constellation is doubled over that of an uncoded scheme it 
may occur that & > &', that is, the average energy needed for signaling 
increases. For example, with two-dimensional rectangular constellations 
(QAM) doubling the constellation size costs roughly 3 dB in energy. With- 
out this increase in energy expenditure, the coding gain of TCM would be 
greater. Now it happens that if we use a multidimensional rectangular 
constellation this cost falls from 3 dB for two dimensions to 1.5 dB (four 
dimensions) or to 0.75 dB (eight dimensions). 

0 As we shall see, for some applications it might be necessary to design 
TCM schemes that are transparent to phase rotations. Multidimensional 
constellations may simplify the design of these "rotationally invariant" 
schemes. 

12.4. Error probability of TCM 

Figure 12.18: A 2-state TCM scheme based on a 2x4PSK constellation The error event 
providing the free Euclidean distance is also shown. 

Example 12.3 As an example of a TCM scheme based on a multidimensional signals, 
consider the 4-dimensional constellation obtained by pairing 4PSK signals. This is de- 
noted 2x4PSK. With the signal labeling of Fig. 12.18, the 42 = 16 four-dimensional 
signals are 

This constellation achieves the same minimum squared distance as two-dimensional 
4PSK. viz., 

6,$, = J2(00, 01) = J2(0, 1) = 2 

The following subconstellation has 8 signals and a minimum squared distance 4: 

With S partitioned into the four subsets 

the choice of a two-state trellis provides the TCM scheme shown in Fig. 12.18. This has 
a squared free distance 8. 0 

12.4. Error probability of TCM 

This section is devoted to evaluating the error probability of a TCM scheme. 
Here we assume the transmission to occur over the additive white Gaussian 
noise channel, and the detection to be ML. Not surprisingly, we shall find that, 
asymptotically, the error probability is upper- and lower-bounded by functions 
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that decrease monotonically when bfree increases. This fact proves that the free 
Euclidean distance is the most significant single parameter useful for comparing 
TCM schemes employed for transmission over the additive white Gaussian noise 
channel when the signal-to-noise ratio is large enough. This also explains why 7, 
the increase from minimum distance to free distance caused by the introduction 
of TCM, was called "asymptotic coding gain." 

Since there appears to be no general technique for choosing an optimum 
TCM scheme, the selection of any such scheme is typically based on a search 
among a wide subclass. Thus, it is extremely important that computationally 
efficient algorithms for the computation of free distance and error probability be 
available. 

12.4.1. Upper bound to error event probability 

Recall the scheme of Fig. 12.15. A rate-m/(m + 1) convolutional code accepts 
m binary source symbols bi at one time, and transforms them into blocks ci of 
m + 1  binary symbols, that are fed into a memoryless mapper. This mapper 
outputs channel symbols xi. From now on, the binary (m + 1)-tuple ci is called 
the label of signal xi. 

Since there is a one-to-one correspondence between xi and its label ci, two 
L-tuples of signals can be equivalently described by the two L-tuples of their 
labels, namely 

Ck,  Ck+l, . ' ' 9 Ck+L-1 

and 

where ei ,  i = k, . . . , k + L - 1, form a sequence of binary vectors, called from 
now on error vectors,and @ denotes modulo-2 addition. 

Now, let X L  and X L  denote two signal-vector sequences of length L. With 
these notations, an error event of length L occurs when the dem_odulatorchooses, 
instead of the transmitted sequence X L ,  a different sequence X L  corresponding 
to a trellis path that splits from the correct path at a given time, and remerges 
exactly L discrete times later. The error probability is then obtained by summing 
over L,  L = 1 , 2 , .  . ., the probabilities oferror events of length L,  i.e., the joint 
probabilities that X L  is transmitted and X L  detected. 

The union bound of Section 4.3 provides the following inequality for the 
probability of an error event: 

12.4. Error probability of TCM 653 

Since we assume a one-to-one correspondence between output symbols and 
labels, by letting C L  denote an L-sequence of labels ci and EL an L-sequence 
of error vectors ei, we can rewrite (12.17) in the form 

where we have defined the quantity 

expressing the average pairwise probability of the specific error event of length 
L caused by the error sequence EL. The pairwise error probabilities appearing 
in the last equation can be computed in a closed form. However, we shall not 
take advantage of this fact, and rather use a bound leading to the Bhattacharyya 
bound of Section 4.3. 

Specifically, denote by f (c)  the signal with label c, and, with an abuse of 
notation, by f ( C L )  the sequence of signals with label sequence C L .  We have, 
using (AS) 

Define now the function 

By observing that P { C L )  = P { X L ) ,  (12.17) can be rewritten in the form 
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Eq. (12.22). our final result, shows that P(e) is upper-bounded by a sum, over 
all the possible error-event lengths, of functions of the vectors EL causing them. 
Thus, our next task toward the evaluation of P(e) will be to enumerate these 
vectors. Before doing this, we pause for a moment to observe that a technique 
often used (in particular with TCM schemes with a large number of states, or 
in conjunction with transmission over channels other than AWGN) consists of 
summing, in the right-hand side of (12.22). a finite number of terms, chosen 
among the shortest error events. Since these are expected to have the smallest 
distances, they should contribute most to error-event probability. Needless to 
say, this technique should be used with the utmost care, since the truncation of a 
union bound might not result in a bound. 

Enumerating the error events 

We enumerate all the error vectors by using the transfer function of an error state 
diagram, i.e., a graph whose branches have labels that are Nu by Nu matrices, 
where Nu denotes the number of states of the trellis. Specifically, recall that 
under our assumptions the source symbols have equal probabilities 2-m, and 
define the Nu x Nu "error-weight matrices" G(en) as follows. The entry i, j of 
G(en) is zero if no transition from the code trellis state i to the state j is possible. 
Otherwise, it is given by 

where ci,j are the label vectors generated by the transition from state i to state 
j (the sum accounts for possible parallel transitions between the two states). 

With these notations, to any sequence EL = e l ,  - . . , e ~ ,  of labels in the 
error state diagram there corresponds a sequence of L error-weight matrices 
G(e l ) ,  . . . , G(eL) ,  and we have 

where 1 is the column Nu-vector all of whose elements are 1 (consequently, for 
any Nu x Nu matrix A ,  1 ' A l  is the sum of all the entries of A, )  It should be ap- 
parent that the element i, j of the matrix n;=, G(en) enumerates the Euclidean 
distances involved in the transitions from state i to state j in exactly L steps. 
Thus, what we need next to compute P(e) is to sum W(EL) over the possible 
error sequences EL, according to (12.22). 

12.4. Errorprobabilzly of TCM 

Figure 12.19: Trellis diagram for a 2-state, m = 1 TCM scheme. The branch labels are 
the components of c. The error state diagram is also shown. 

The error state diagram. Due to the linearity of the convolutional code gen- 
erating the TCM scheme, the set of possible sequences e l ,  . . . , eL is the same as 
the set of coded sequences. Thus, the error sequences can be described by using 
the same trellis associated with the encoder, and can be enumerated by making 
use of a state diagram which is a copy of the one describing the code. We call it 
the error state diagram. It has a structure determined by the convolutional code, 
and differs from the code state diagram only in its branch labels, which are now 
the matrices G(ei) .  

The transfer function bound. From (12.24) and (12.22) we have 

where 

and the matrix 

is the matrix transfer function of the e m r  state diagram. T ( Z )  will be called the 
(scalar) transfer function of the error state diagram. 

Example 12.4 Consider the TCM scheme one section of whose trellis d i a g m  is 
shown in Fig. 12.19. Here m = 1 and M = 4 (binary source, quaternary signals). 
The error state diagram is also shown. If we denote the error vector as e = (e2el )  and 
we let E = 1 @ e (i.e., i? denotes the complement of e),  then we can write the general 



656 

form of the matrix G(e)  as 
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4 

where I denotes the 2 x 2 identity matrix. 
Notice that (12.28) and (12.29) could be written without specifying the signals used 

in the TCM scheme. Actually, to give the signal constellation corresponds to specifying 
the four values taken on by the function f (.). These will provide the values of the entries 
of G(enel) from which the transfer function T ( Z )  is computed. 

Consider first quaternary PAM, with the mapping 

and 

so that from (12.29) we obtain 

In conclusion, we get the transfer function 

If we consider instead a unit-energy 4PSK constellation as in Fig. 12.20, we have 

so that 
1 1 1  

G(OO)=-[  2 1 1  ] (12.36) 

Figure 12.20: Signal constellation and set partition for 4PSK. 

and 

In conclusion, 

which yields the transfer function 
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Interpretation and  symmetry considerations 

Let us interpret the meaning of the matrix G defined in (12.27). We may observe 
that the entry i ,  j of G provides an upper bound to the probability that an error 
event occurs starting from node i and ending at node j .  Similarly, k G 1  is a 
vector whose ith entry is a bound to the probability of any error event starting 
from node i,  and &1'G is a vector whose j-th entry is a bound to the probability 
of any error event ending at node j. 

Inspection of the matrix G leads to the consideration of different degrees of 
symmetry implied in a TCM scheme. In some cases the matrix G has equal en- 
tries: this is the case of the 4PSK example above. This fact can be interpreted by 
saying that all the paths in the trellis are on an equal footing, i.e., they contribute 
equally to the error probability4. Hence, in the analysis of the TCM scheme we 
may take any single path as a reference, and compute error probabilities by as- 
suming any given transmitted sequence. A simple sufficient condition for this 
symmetry to hold is that all the matrices G(e) have equal entries. However, this 
condition is not necessary, as proved by examining the 4-PAM example above: 
it has G with equal entries although the entries of G(11) are unequal. 

If all the matrices G(e) have equal entries, then in the computation of the 
transfer function bound the branches of the error state diagram can be simply 
labeled by the common entries of these matrices, thus leading to a scalar transfer 
function. However, for the computations to be done in terms of scalars it is 
not necessary to require such a high degree of symmetry. All is needed is the 
looser symmetry that arises when the sum of all the elements in any row (or 
a column) of G does not depend on the row (or column) itself: This symmetry 
corresponds to having all the states on an equal footing, and allows consideration 
of a single reference state rather that all the pairs of states for the computation 
of error probabilities. More specifically, only the error events leaving from a 
fixed node (in the case of equal row sums) or reaching a fixed node (in the case 
of equal column sums) need be considered. This point is discussed and made 
more precise in the next paragraph. 

Algebraic conditions for scalar transfer functions. We now state some sim- 
ple conditions which, if satisfied, will make it possible to compute a transfer 
function bound based on scalar, rather than matrix, branch labels. 

Given a square matrix A, if 1 is an eigenvector of its transpose A', i.e., 

1'A = a l '  

4More precisely, we should say that they contribute equally to the upper bound to error event 
probability. However, here and in the following we shall avoid making this distinction. 
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where a is some constant, then the sum of its elements in a column does not 
depend on the column order. We call A column-uniform. Similarly, if 1 is an 
eigenvector of the square matrix B ,  i.e., 

where is some constant, then the sum of its elements in a row does not depend 
on the row order. In this case we call B row-uniform. 

Now, the product and the sum of two column- or row-uniform matrices is 
itself column- or row-uniform. For example, if Bl and B2 m row-uniform 
with eigenvalues 81 and a, respectively, and we define B3 = Bl + B2 and 
B4 = BIB2, we have 

and 

which dmw that B3 and B4 are also row-uniform, with eigenvalues o1 + 
and PI,&, respectively. Also, for an N x N matrix A which is either row- or 
column-uniform, we have 

From the above it follows that, if all the matrices G(e) are either row-uniform 
or column-uniform, then the transfer function (which is a sum of products of 
error matrices, as seen explicitly in (12.27)), can be computed by using scalar 
labels on the branches of the error state diagram. These labels are the sums of 
the elements in a row (column). In this case, we say that the TCM scheme is 
uniform. By recalling the definition of the matrices G(e). we have that G(e) 
is row-uniform if the transitions stemming from any node of the trellis carry the 
same set of labels, irrespective of the order of the transitions. It is column- 
uniform if the transitions leading to any node of the trellis carry the same set of 
labels. 

Asymptotic considerations 

The entry i, j of the matrix G is a power series in 2. If we denote the general 
term in the series as vij (de)z6:, where 

and nh, h = 1,2, .  . . , is the number of error paths starting from node i at time 0 
(say), remerging Lh time instants later at node j, and whose associated distance 
is 6. Since I / M = ~  is the probability of a sequence of symbols of length Lo. 
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vij(63 can be interpreted as the average number of competing paths at distance 
dr  associated with any path in the code trellis starting at node i and ending at 
node j. Consequently, the quantity 

can be interpreted as the average number of competing paths at distance 6( as- 
sociated with any path in the code trellis leaving from node i and ending at any 
node. Similarly, 

N(be) 5 vij(6e) 
N,2 i , j  

is the average number of competing paths at distance & associated with a path in 
the code trellis. 

For large signal-to-noise ratios. i.e., No i 0, the only terms in the entries of 
the matrix G that provide a c o n t ~ u t i o n  to the ermr probability which is signif- 
icantly different from zero will be of the type vij(6free)~+*. Thus, using (A.5) 
we have asymptotically 

1 
P(,) - - ~ ( b t , ~ ~ ) e - ~ 2 e = / ~ ~ ~  2  

An improved upper bound 

An upper bound on P(e) better than (12.25) can be obtained by substituting 
for the Bhattacharyya bound in (12.20) a tighter expression. Specifically, let us 
recall that we have, exactly, 

1 ( f C  - f c )  , (12.42) 
p { c L  i C',} = -erfc 2 f i  2  

Since the minimum value taken by 1 f (CL)  - f(C;)I is what we call 6free. 
use of the inequality (see Problem 11.7) 

erfc (e) 5 erfc (6) ey, z 2 0, y 2 0 

leads to the bound 

In conclusion, we have the bound on error probability: 

12.4. Emorprobability of TCM 

We also have, approximately for high signal-to-noise ratios, 

Bit error probability 

A bound on bit ermr probability can also be obtained by following the footsteps 
of a similar derivation for convolutional codes in the previous chapter. All that 
is needed here is a change in the error matrices. The entries of the matrix G(e)  
associated with the transition from state i to state j of the error state diagram 
must be multiplied by the factor W e ,  where e is the Hamming weight (i.e., the 
number of ones) of the input vector b that causes the transition i i j. 

With this new definition of the error matrices, the entry i, j of the matrix G 
can now be expressed in a power series in the two indeterminates Z and W .  The 
general term of the series will be h q ( 6 e ,  eh)Z6: ~ ' h ,  where pPq(6[, eh) can be 
interpreted as the average number of paths having distance be and eh bit emon 
with respect to any path in the trellis starting at node i and ending at node j. If 
we take the derivative of these terms with respect to W and set W = 1, each 
of them will provide the expected number of bit errors per branch generated by 
the incorrect paths from z to j. If we further divide these quantities by m, the 
number of source bits per trellis transition, and we sum the series, we obtain the 
following upper bound on bit error probability: 

Another upper bound can be obtained by substituting for the Bhattacharyya 
bound in (12.20) the tighter inequality derived above. We get 

Convergence considerationsand catastrophic codes. In our previous analy- 
sis we have not considered the issue of the convergence of the series providing 
the transfer function T ( Z )  or T,(Z, W ) .  Actually, we assumed implicitly that 
T ( Z ) ,  or the derivative of Tz(Z, W ) ,  converges for large enough values of the 
signal-to-noise ratio. Now, there are situations in which the transfer function 
does not converge due to the fact that one or more of its coefficients take value in- 
finity. This situation was already examined in the context of convolutional codes 
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in Chapter 11, and may actually occur for certain TCM schemes in which two 
encoded sequences with a finite Euclidean distance correspond to source symbol 
sequences with infinite Hamming distance. The scheme is called "catastrophic" 
in analogy with convolutional codes. 

Lower bound to error probability 

We now derive a lower bound to the probability of an error event. This derivation 
is based on the fact that the error probability of any real-life receiver is larger than 
that of a receiver which makes use of side information provided by, say, a genie. 

The genie-aided receiver operates as follows. The genie observes a long 
sequence of transmitted symbols, or, equivalently, the sequence 

of labels, and tells the receiver that the transmitted sequence was either C or the 
sequence 

where C' is picked at random from the possibly transmitted sequences having 
the smallest Euclidean distance from C (not necessarily bfr,, because C may 
not have any sequence C' at free distance). 

The error probability for this genie-aided receiver is that of a binary trans- 
mission scheme in which the only transmitted sequences are C and C': 

Now, consider the unconditional probability Pc(e). We have 

where I (C)  = 1 if C admits a sequence at bfree: 

and I (C)  = 0 otherwise. In conclusion, 

I2.4. Error probabiZity of TCM 

where * = c p ( c ) I ( c )  (12.51) 
C 

represents the probability that at any given time a code trellis path chosen at 
random has another path splitting from it at that time, and remerging later, such 
that the Euclidean distance between them is bfree. If all the sequences have this 
property, then we get the lower bound 

but this is not valid in general. For (12.52) to hold, it is sufficient that all the 
trellis paths be on an equal footing, so that in particular all of them have a path 
at bfr,. This is obtained if each one of the error matrices G(e)  has equal entries. 

Finally, we may get a lower bound to the bit error probability by observing 
that the average fraction of erroneous information bits in the splitting branch of 
an error event cannot be lower than l/m. Thus 

12.4.2. Examples 

In this section we present some examples of computation of error probabilities 
for TCM schemes. From the theory developed before, it is seen that this compu- 
tation involves two separate steps. The first one is the evaluation of the transfer 
function of the error state diagram with formal labels (proper attention should 
be paid to the noncomrnutativity of matrix operations if the TCM scheme is 
nonuniform). This can be accomplished by using the techniques described in 
Appendix D. Next, the appropriate labels (the error matrices, or the correspond- 
ing scalar labels for uniform TCM schemes) are substituted for the formal labels, 
and the matrix G computed. 

Four-state code 

A four-state code is shown in Fig. 12.21 with the corresponding error state dia- 
gram. Denote by T,, To, and T, the transfer functions of the error state diagram 
from the starting node to nodes cr, /3, and 7, respectively. The relevant equations 
are 
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Figure 12.21: Trellis diagram for a 4-state, m = 1 TCM scheme and its corresponding 
error state diagram. 

For simplicity we examine here only the case of scalar labels, so that com- 
mutativity holds. By defining go = G(OO), gl = G(01), g2 = G(10). and 
g3 = G(11), we have the solution 

and finally 

4-PAM. From (12.53) we can obtain an upper bound to the probability of an 
error event by substituting for the various g, the values obtained from the cal- 
culation of the error matrices G (  . ). We do this first for a 4-PAM constellation 
with 

The G-matrices for this constellation were computed in (12.30H12.33). Thanks 
to their row-uniformity, the transfer function can be obtained from (12.53): 
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We see that dice = 36, obtained with an average energy expenditure E = (9 + 
1 + 1 + 9 ) / 4  = 5. An uncoded binary PAM with signals f 1  would have d i i n  = 4 
and energy E' = 1, so that the coding gain achieved by this TCM scheme is 

4PSK. With unit-energy 4PSK and the mapping 

we obtain the G-matrices of (12.36)-(12.39). We have uniformity here, so that 
the transfer function obtained from (12.53) is 

Z1° 
T ( Z )  = ---- = ZIO + 2Z12 + 4Z14 + . . . 

1 - 2 Z 2  (12.55) 

Here d:ee = 10, obtained with E = 1. An uncoded binary PSK with signals f 1 
would have d i i n  = 4 and energy E' = 1. so that the coding gain achieved by this 
TCM scheme is 

Expressing the error probabilities explicitly in terms of &,,/No, from (12.55) 
we have, by observing that E = Eb = 1, 

The improved upper bound (12.45) yields 

The lower bound (12.52) yields 

These error probabilities should be compared with uncoded binary PSK, for 
which 

,rut1 

p(e) = 'edc (g) 
2 

These four error probabilities are plotted in Fig. 12.22. It can be observed, from 
,a", the figure and also from their expressions, that the lower bound and the improved 
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I 

Figure 12.22: Error probabilities of 4-state TCM based on 4PSK. TUB: Trwfer-  
function upper bound. 1TUB: Improved transfer finctwn upper bound LB: Lower 
bound The error probability of uncoded binary PSK is also shown for comparison 

upper bound are very close to each other, and hence to the true value of error 
probability. Unfortunately, this does occur only for TCM schemes based on 
signal constellations with a small number of points and having a small number 
of states. Moreover, comparison of P ( e )  for uncoded binary PSK with the two 
bounds for PCM shows explicitly that the coding gain is very close to 512. as 
argued before. 

12.4.3. Computation of df,, 

The results derived so far for upper and lower bounds on error probability of 
TCM show that bfre plays a central role in determining its performance. Con* 
quently, if a single parameter is to be used to assess the quality of a TCM scheme. 
the sensible one is bfree. Thus, it makes sense to look for an algorithm to compute --.. 

this parameter independently of P ( e ) .  
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Using the error state diagram 

The first technique we describe for the computation of bfr, is based on the error 
state diagram that was described in the context of the evaluation of an upper 
bound to error probability. We have already observed that the transfer function 
T ( Z )  includes information about bfiee. In the examples of last section we have 
exploited the fact that the value of b;, follows immediately from the expansion 
of that function in a power series: the smallest exponent of Z in that series is 
6kee. However, in most cases a closed form for T ( Z )  is not available. 

For this reason, we describe here a computational algorithm for evaluat- 
ing bfree. This was first described by Saxena (1983) and Mulligan and Wilson 
(1984), and can be used also to evaluate the minimum distance in intersymbol- 
interference channels (Chapter 7) and in nonlinear channels (Chapter 14). Con- 
sider the trellis describing the TCM scheme. Every pair of branches in a sec- 
tion of the trellis corresponds to one distance between the signals labeling the 
branches. If there are parallel transitions, every branch will be associated with 
an entire subconstellation. In this case, only the minimum distance between any 
two signals extracted from the pair of subconstellations will be used. The squared 
distance between the signal sequences associated with two paths in the trellis is 
obtained by summing the individual squared distances. The algorithm is based 
on the update of the entries of a matrix D(") = (b$)),  which are the minimum 
squared distances between all pairs of paths diverging from any initial state and 
reaching the states i and j at discrete time n. Two such pairs of paths are shown 
in Fig. 12.23. Notice that the matrix D(") is symmetric, and that its elements on 
the main diagonal are the distances between remerged paths (the "error events"). 
The algorithm goes as follows. 

Step 1 For each state i, find the 2" states (the "predecessors") from which a tran- 
sition to i is possible, and store them in a table. Set bij = -1 for all i and 
j 2 i. If there are parallel transitions, for all i set bii equal to the minimum 
squared Euclidean distance among all signals associated with the parallel 
transitions leaving any state. 

Step 2 For each pair of states (i, j ) ,  j 2 i, find the minimum squared Euclidean 
distance between pairs of paths diverging from the same initial states (what- 
ever they are) and reaching i, j in one time unit. Two such pairs are shown 
in Fig. 12.24. This distance is 6;;). 

Step 3 For both states in the pair (i, j ) ,  j > i, find in the table of Step 1 the 2" 
predecessors il, . . . , iz- and jl , . . . , j2- (see Fig. 12.25). In general there 
are 22m possible paths at time n - 1 that pass through i and j at time n. 
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Figure 12.23: Two pairs of paths diverging at time n = 0 and reaching the states i, j at 
the same time. 

They pass through the pairs 

The minimum squared distance among all the paths passing through (i,  j )  
at time n is 

n-1) 6ilm jlm + J2 (i2m + i ,  jZm + j ) }  

In (12.56), the distances come from the calculations of previous Step 

2, while for example 6( i l  + i ,  jl + j )  denotes the Euclidean distance 
between the two signals associated with the transitions il + i and jl + j. 
These can be computed once for all at the beginning. When one of the 

(n-1) . 
previous distances 6, is equal to -1, the corresponding term in the 
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Figure 12.24: Two pairs of paths starting from different states and reaching the same 
pair of states in one time instant. 

right-hand side of (12.56) disappears. In fact, 6k- ' )  = -1 means that no 
pair of paths can pass through the states L and m at time n - 1. When 
i = j. 6j:' represents the squared distance between two paths remerging 
at the nth step on the state i. This is an error event. Thus, if 6:" < &'-'), 
then b!,!') will take the place of in matrix D(").  

for at least one pair (i,  j ) ,  then set n = n + 1 and go back to Step 3. 
Otherwise, stop iterating and set 

Condition (12.57) verifies that all the paths still open at time n have dis- 
tances not less than the minimumdistance of an error event, and guarantees 

,,,,.# that the latter is actually bf,,. 
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Figure 12.25: Predecessors of states i, j .  

A word of caution 

While kee provides the best single-parameter dedpt ion of the quality of a 
TCM scheme, some caution should be exercised when it is used to compare 
schemes to be operated at low-to-intermediate signal-to-noise ratios. In fact, be- 
sides &=, it may be advisable to consider two other parameters as influential 
over the performance of the TCM scheme. They are: 

1. The "error coefficient" N(bax). If this is large, it may affect significantly 
the value of error probability for low-to-intermediate signal-to-noise ratios. 

2. The '&next distance'' 6,,, i.e., the second smallest Euclidean distance be- 
tween two paths forming an error event. If this is very close to &=. the 
simal-to-noise ratio necessary for a good approximation to P(e) based " 
on (12.46) may become very large. 

12.5. Power density spectrum 

In this section we consider the power density spectrum of the digital signal at the 
output of the TCM modulator. In particular, we derive simple sufficient condi- 
tions for the resulting spectrum to be equal to the spatrum of an uncoded signal. 

12.5. Power density spectrum 67 1 

For simplicity, we shall only consider h e m  and one- or two-dimensional 
modulations here: i.e., we shall assume that the signal transmitted over the chan- 
nel has the form 

y ( t )  = f: a,,s(t - nT) (12.58) 
n=-w 

where s ( t )  is a waveform defined in the time interval (0 ,  T )  with Fourier trans- 
form S (  f ) ,  and (a,) is a sequence of complex random variables representing the 
TCM encoder outputs. If we assume that the source symbols are independent and 
equally likely, from the regular time-invariant structure of the code trellis it fol- 
lows that the sequence (a,) is stationary. Under these conditions, from Chapter 
2 we have the following result. If 

and 

Ebeak l  = a:~e-m + ]pal2 
so that po = 1 and p, = 0, then the power density spectrum of y ( t )  is 

where G ( " ) ( f ) ,  the continuous part of the spectrum, is given by 

and ( f ) ,  the discrete part of the spectrum (or line spectrum) is given by 

When the random variables a, are uncorrelated (i.e., pe = bO,!, b the Kronecker 
symbol) we have the special case 

This is the power spectral density that we would obtain without TCM from a 
modulator using the same waveform s ( t )  for signaling. In the balance of this 
section we shall investigate the conditions for TCM not to shape (and hence, not 
to expand) the signal spectrum, i.e., to give the same power density spectrum as 
for an uncoded signal. 

We first assume that pa = 0, SO that no line spectrum appears. Without loss 
of generality we also assume a: = 1. Let a ,  denote the encoder state when the 
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symbol z, is transmitted, and the successive state. The correlations pe can 

be expressed as 

this becomes 

Hence, sufficient conditions for pe = 0, C # 0, are that E[a, 1 u,,] = 0 or 
E[Q,,-~ 1 an] = 0 ,  for each a,, individually. The first condition is equivalent to 
stating that for all encoder states the symbols available to the encoder have zero 
mean. The second condition is equivalent to stating that, for each encoder state, 
the average of the symbols forcing the encoder to that state is zero. This is the 
case for a good many TCM schemes. 

Consider finally the line spectrum. A sufficient condition for it to be zero is 
that pa = 0, that is, the average of symbols at the encoder output be zero. 

12.6. Rotationally-invariant TCM 

Channels with a phase offset 

We consider here achannel with a phase offset, and how to design a TCM scheme 
that can cope with it. 

Consider, as an example, M-PSK transmission and its coherent detection. 
This detection mode requires that the phase of the carrier be estimated prior to 
demodulation. Now, most techniques for estimating the carrier phase require that 
the modulation phase be removed. This was described in Chapter 9. An inherent 
ambiguity arises: specifically, we say that there is an ambiguity of 2 s / M ,  or, 
equivalently, that the channel is affected by a phase offset which may take on 
values k Z s / M ,  k = 0,1 ,  - .  . , M - 1. 

T o  resolve this ambiguity, i.e., get rid of this phase offset, differential en- 
coding and decoding are often used (see Section 5.8). However, when a TCM 
scheme is included in the system, we must make sure that it is invariant to phase 
rotations by multiples of 2n lM.  That, is, any TCM sequence, when rotated by 
a multiple of 2a /M,  must still be a valid TCM sequence. Otherwise, any phase 
rotation would cause a long emor sequence because, even in the absence of noise, 
the TCM decoder would not recognize the received sequence as a valid one. 

12.6. Rotationally-invariant TCM 

Figure 12.26: A TCM scheme invariant to rotations of a, but not to rotatiom of a/2. 

Example 12.5 An example of this effect is illustrated in Fig. 12.26. Suppose that 
the all-zero sequence is transmitted. A rotation by a causes the all-2 sequence to be 
received-a valid sequence. However, a rotation by a /2  generates the all-l sequence, 
which is not recognized as valid by the Viterbi algorithm. 

0 

The receiver can handle the phase ambiguity in several ways. One is through 
a known training sequence sent by the transmitter. A second option is to use 
a code whose words are not invariant under component-wise rotation. A phase 
error can then be detected and countered by using a decoder that attempts to dis- 
tinguish an invalid, rotated sequence from a valid sequence corrupted by channel 
noise. A third method, which we assume as our model, is to have the receiver 
arbitrarily assign to the canier-phase estimate any of the possibilities correspond- 
ing to integer multiples of 2x lM.  Thus, we should design a TCM scheme that is 
invariant (or "transparent") to rotations, so that any rotated code sequence is still 
a coded sequence, and consequently the decoding algorithm will not be affected 
by a constant phase shift. 

What we want to ensure, for a phase offset not to affect a TCM scheme, is 
the following: 

1. The TCM scheme must be transparent to the phase rotations introduced by 
the carrier-phase recovery subsystem. I (~# 

2. The encoder must be invariant to the same phase rotations, i.e., all the 
rotations of a coded TCM sequence must correspond to the same input 
information sequence. 
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Figure 12.27: A 4-way rorarionally invarianr parfirion of 8PSK. 

Note that the rotational invariance of a TCM scheme is a geometric property: 
the coded sequences, viewed as a collection of points in an infinite-dimensional 
Euclidean space, must be invariant under a certain finite set of rotations. The 
second property is rather a structural property of the encoder, i.e., it has to do 
with the input-output correspondence established by the latter. 

Rotationally invariant partitions. The first fundamental ingredient in the con- 
struction of a rotationally invariant TCM scheme is a rotationally invariant par- 
tition. 

Let S denote a 2Ndimensional signal constellation, and {Yi,. . . , Y K )  its 
partition into K subsets. Consider the rotations about the origin in the two- 
dimensional Euclidean space; rotations in the 2N-dimensional space are ob- 
tained by rotating separately each 2-dimensional subspace. Consider then the 
set of rotations that leave S invariant, and denote it by R(S).  If R(S) leaves 
the partition invariant, i.e., if the effect of each element of R(S) on the parti- 
tion is simply a permutation of its components, then we say that the partition is 
rotationally invariant. 

Example 12.6 Consider IPSK, and the 4-way partition shown in Fig. 12.27. Here 
R(S) is the set of four distinct rotations by multiples of a/4. This partition is rota- 
tionally invariant. For example, p,14 corresponds to permutation ( Y ~ Y ~ Y z Y ~ ) ,  p,lz to 
permutation (YlY2) (Y3Y4), p, to the identity permutation, etc. 

0 

12.6. Rorotionally-invariant TCM 

Figure 12.28: A section of a two-state trellis. 

Example 12.7 Take the 2x4-PSK four-dimensional signal set of Example 12.3, and 
its 8-way partition 

Here the elements of R(S) are pairs of rotations, each by a multiple of n/2, which we 
denote PO, p , j z .  P,, and P3?r/2 It is seen for example that the effect of pmjz  on signal zy 
is to change it into signal (z + l)(y + I ) ,  where addition is mod 4. This partition turns 
out to be rotationally invariant. 

0 

Rotationally invariant trellis. Consider now the effect of a phase rotation on 
TCM coded sequences. Given a rotationally invariant partition Y of S ,  the TCM 
scheme is rotationally invariant if for every p E R(S) the rotated version of any 
subconstellation sequence compatible with the code is still compatible with the 
code. 

Let us examine one section of the trellis describing the TCM scheme. If 
we apply one and the same rotation p to all the subconstellations labeling the 
trellis branches, we obtain a new trellis section. Now, for the TCM scheme to 
be rotationally invariant, this new mllis section must correspond to the original 
(unrotated) one apart from a permutation of its states. 

Ill1 

Example 12.8 Consider the trellis segment of the two-state TCM scheme of Fig. 12.28. 
The partition on which it is based is 
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where the notations are the same as in the Example 12.7 above. This partition is rotation- 
ally invariant. Denote the trellis segment by the set of its branches (si, Yj, sk), where Yj 
is the subconstellation that labels the branch joining state s j  to state sk. Thus, the trellis 
is described by the set 

The rotations p,/2 and P3,/2 transform 7 into 

which corresponds to the permutation ( A ,  B) of the states of 7. Similarly, po and p, 
correspond to the identity permutation. In conclusion, the TCM scheme is rotationally 
invariant. 0 

It may happen that a TCM scheme satisfies the property of being rotationally 
invariant only with respect to a subset of R(S), and not to R(S) itself. In this 
case we say that S is partially rotationally invariant. 

Example 12.9 Consider the TCM scheme of Fig. 12.29, with 8 states and subconstel- 
lations corresponding to the partition Y = {Yl, Yz, Y3, Y4} of Example 12.6. 

The partition, as we know, is rotationally invariant. However, this TCM scheme is 
not rotationally invariant. For example, consider the effect of a rotation of ?r/4 summa- 
rized in Table 12.1. It is easily seen that p,14 does not generate a simple permutation of 
the trellis states: in fact, take the branch (sl, &, s 1 )  In the original trellis, there is no 
state of the type (si, Y3, s i )  Actually, this TCM scheme is partially invariant: in fact, 
rotations by angles multiple of ?r/2 leave it invariant. For example, the effect of p,/a is 
summarized in Table 12.1: it causes the state permutation (sls8)(szs~)(s~s6)(s~s5). 

Invariant encoder. We finally consider now the invariance of the encoder, i.e., 

the property that all rotations of a coded TCM sequence correspond to the same 
input information sequence. If u denotes a sequence of source symbols and y the 
corresponding output sequence of subconstellations, we want any rotation p(y)  
(among those for which the TCM scheme is invariant) to correspond to the same 
u. 

Notice that fulfillment of this condition may require introduction of a differ- 
ential encoder. We illustrate this point with an example. 

12.6. Rotationally-invariant TCM 

Figure 12.29: An &state TCM scheme which is not rotationally invariant, 

Example 12.10 Take once again the eight-state 8PSK TCM scheme of Example 12.6. 
As we have seen, rotations by ?r/2 and 3 x / 2  cause the permutation (X Y2) (Y3 Y4) If the 
encoder associates source symbols with subconstellations according to the rule 

then the only effect of pr12 and of ~ 3 ~ ~ 2  is to change the first bit in the source pair, while 
po and p, change no bits. Thus, if the first bit is differentially encoded, the TCMencoder 
is transparent to any rotation multiple of ?r/2. 

0 

General considerations 

It can be said in general that imposing the constraint of rotational invariance 
may reduce the gain of a TCM scheme based on two-dimensional constellations. 
Moreover, implementation of a rotationally-invariant decoder may require using 
a nonlinear convolutional code. On the other hand, multidimensional constella- 
tions make i t  easier to attain rotational invariance, in the sense that they suffer 
less from this performance loss due to rotational invariance. 
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P n / 2  

:a, Y z ,  9 1 )  

( 9 1 ,  Y l ,  5-21 

( 9 2 ,  Y 4 r  9 3 )  

( 9 2 ,  Y3r  9 4 )  

( 9 3 ,  Y 3 , 9 5 )  

( ~ 3 ~ Y 4 r ~ 6 )  

( 9 4 ,  Y l ,  9 7 )  

( 9 4 ,  Y z r  5-01 

(5-5, Y l ,  9 1 )  

( 9 5 ,  Y z , 5 - 2 )  

( 8 6 ,  G, 9 3 )  

( 9 6 ,  Y4r  9 4 )  

(5-7, Y4r  5-51 

( 9 7 ,  G, 9 6 )  

( 9 8 ,  Y2r  9 7 )  

(5-81 Y l r  9 8 )  

Table 12.1: Effect of rotations by ~ / 4  and 1r/2 on the TCM scheme of Example 12.9. 

12.7. Multilevel coded modulation and BCM 

Consider again TCM as described through its encoder scheme of Fig. 12.16. 
We may interpret it by observing that the bits entering the mapper are subject 
to two levels of protection: specifically, bits c i l )  to c!"+') are encoded by a 
convolutional code, while bits bi"+2) to birn+') are left uncoded. The reason 
why this procedure works is that bits b y )  with the highest values of k are more 
protected than the others by the Euclidean distance of the modulation scheme. 
and hence need less protection . 

Example 12.11 In the 8PSK partitioning of Fig. 12.13, it is seen that, if we denote 
by 6 0 ,  J 1 ,  and 62 the Euclidean distances among the subconstellations at the different 
partition levels, and we assume unit energy, we have 

Thus. bit cil) is protected from noise by a Euclidem distance 60. bit c y )  by a Euclidean 
distance J 1 ,  and bit c i 3 )  by a Euclidean distance d 2 .  To improve transmission reliability, 
we may decide to add protection to bits c!) and c y )  (say) by increasing their ~amming 
distance through convolutional coding, while c y )  is left to the channel's mercy. 

12.7. Multilevel coded modulation and BCM 

Figure 12.30: Encoder of an L-level BCM scheme using codes with length n. 

Multilevel coded modulation is based on the interpretation above. It general- 
izes the concept of TCM by combining several codes to provide more than two 
levels of protection to the bits that label the signals sent to the channel. The re- 
sulting scheme provides flexible transmission rates and high asymptotic coding 
gains, although in many cases it performs worse than TCM at low signal-to-noise 
ratios, due to its higher number of nearest neighbors. 

Here we describe multilevel coded modulation through its most popular ver- 
sion, that is, block-coded modulation (BCM), in which the codes used are block 
codes. We also assume, for simplicity's sake, that the codes are all binary. 

The encoder is shown in Fig. 12.30. We start from an "elementary" signal 
constellation (8PSK in our previous example) with M signals, and its partition 
into L levels. At level 0 the elementary constellation is partitioned into 2 sub- 
constellations of M / 2  signals each. At level 1 each subconstellation is parti- 
tioned into 2 sub-subconstellations with M / 4  signals each, and so forth, until 
at level L - 1 we are left with 2L subconstellations with ~ / 2 ~  signals each. 
By numbering the subconstellations at partition level C, we obtain a one-to-one 
correspondence between the numbers {O,1) and the two subconstellations at 

."w 
that level. The L linear block encoders have the same block length n, dimen- 
sions ko,  . - .  , k L - 1 ,  and Hamming distances d o , .  . ., d L - l .  Since any L-tuple 
( ~ 0 % ~  . . . , c ( ~ - l ) i ) ,  for i = 1, . . . , n, defines a unique elementary signal, the map- 
per f ( - ) outputs an n-tuple of elementary signals. 

There are as many different signals as there are n-tuples, i.e., code words. 
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Thus. 

The minimum squared Euclidean distance among two n-tuples of elementary 
signals is bounded below by 

where is the minimum Euclidean distance between any two subconstellations 
at partition level e. To prove (12.66), it suffices to observe that at level e a min- 
imum Hamming distance d! will cause any two code words of C! to differ in at 
least dc positions, which entails the corresponding two n-tuples of elementary 
signals to be at a squared Euclidean distance of at least 6:dt. 

If the minimum squared Euclidean distance is specified, then it sounds rea- 
sonable to take the minimum Hamming distance of the codes to be 

where 1x1 is the smallest integer not less than x. However, this is not the best 
possible choice: for example, Huber and Wachsmann (1994) advocate a rule 
based on information capacities. 

It should also be observed here that this construction may be seen as provid- 
ing a multidimensional signal with a number of dimensions nD,  where D is the 
dimensionality of the elementary signal set. The multidimensional signal thus 
obtained can be used in conjunction with a TCM scheme. 

Example 12.12 The concepts and definitions above will now be illustrated and clar- 
ified through an example. Choose L = 3, n = 7, and 8PSK as the elementary con- 
stellation. The mapper f ( . ) associates an 8PSK signal with every triplet of bits at the 
output of the encoders, and hence it associates n 8PSK signals with each triplet of en- 
coded blocks. Let C2 be the nonredundant (7.7) code, C1 the (7,6) single-parity-check 
code, and Co the (7,l) repetition code. From (12.65) the BCM encoder may output 
21+6+7 = 214 possible signals. The number of dimensions is nD = 14, and hence the 
scheme carries 1 bit per dimension (as 4PSK). Its minimum squared Euclidean distance, 
normalized with respect to the average signal energy E, is bounded above by (12.66): 

and direct computation shows it to be exactly equal to 4. Thus, this BCM scheme 
achieves a 3-dB asymptotic coding gain with respect to 4PSK. 

0 
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1. Staged decoding of multilevel constructions 

An important feature of BCM is that it admits a relatively simple sequential 
decoding procedure. This is called staged decoding. In some cases, namely. for 
L = 2 and C1 a nonredundant code, staged decoding is optimal (see Problem 
12.8). Otherwise, it is a suboptimal procedure, but with a complexity lower than 
for optimum decoding. 

The idea underlying staged decoding is the following. An L-level BCM 
scheme based on [CO, - .  . , CL-~]  is decoded by decoding the component codes 
in sequence. Co, the most powerful code, is decoded first. Then Cl is decoded by 
assuming that Co was decoded correctly. Further, C2 is decoded by assuming that 
the two previous codes were decoded correctly, and so forth. 

The block diagram of a staged decoder is shown in Fig. 12.31 for L = 3. Let 
the received signal vector be 

where q, cl,  cz are the code words, and n the noise vector. The receiver must 
produce an estimate of the three code words co, c,, c2 in order to decode r. In 
principle, the metrics of all possible vectors f (co, c l ,  c2) should be computed, 
and the maximum such metric determined. This is an impractical procedure for 
large signal sets. In staged decoding, decoder Do produces an estimate of co for 
all possible choices of cl, c2. Next, decoder Dl produces an estimate of cl for 
all the possible choices of c2, by assuming that the choices of co were correct. 
Finally, decoder D2 produces an estimate of c2 by assuming that the choice of 
co and of C I  was correct. Observe that decoding of D! will provide us with the 
estimate of kc source symbols. Thus, at each stage of the procedure we obtain a 
block of source symbols that are sent to the parallel-to-serial converter. 

12.8. Bibliographical notes 

The idea of using of the cutoff rate to compare channels to be used in conjunction 
with coding for the AWGN channel was originally advocated by Wozencraft and 
Kennedy (1966), but sank into oblivion until it was resurrected in the seminal 
paper by Massey (1974). For a critical view of the role of &, see Blahut (1987, 
p. 184). In 1974, Massey formally suggested that the performance of a digital 
communication system could be improved by looking at modulation and coding 
as a combined entity, rather than as two separate operations (Massey, 1974). 

The basic principles of Trellis-Coded Modulation were described by Unger- 
boeck (1982); see also Ungerboeck (1987), Fomey et al. (1984), and the book 
by Biglieri et al. (1991). Similar concepts, based on the combination of block 
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Figure 12.3 1 : Staged decoder for a 3-level BCM. 

and convolutional codes with modulation, were developed by h a i  and Hirakawa 
(1977). One- or two-dimensional constellations can be used in a TCM scheme 
in the simple way described in this chapter. Use of higher-dimensional constel- 
lations was advocated by Wei (1987). He performed paditioning by an ad hoc 
method, starting from lower-dimension partitions. If lattice constellations are 
used, powerful algebraic method for partitioning them are available (Calderbank 
and Sloane, 1987; Forney, 1988a and 1988b). 

TCM experienced a fast transition from research to practical applications. 
In 1984. a generation of modems using TCM becam available, achieving reli- 
able transmission at speeds of 14.4 kbit/s on private-line modems and 9.6 kbit/s 
switched-network modems. The V.32 modem (1984) uses an 8-state two-dimen- 
sional TCM scheme (Wei, 1984) based on a nonlinear convolutional encoder to 
achieve n/2 rotational invariance. The V.34 modem (1994) specifies three four- 
dimensional TCM schemes, with 16,32, and 64 states, respectively. The coding 
gains at P(e) n are about 3.6 dB for the V.32 modem, and range from 4.2 
to 4.7 dB for the V.34 modems (see Forney et al., 1996). 

Besides the representation of a TCM encoder based on a convolutional en- 
coder and a memoryless mapper, another description exists. which is analytical 
in nature. This has been advocated by Calderbank and Mazo (1984). See also 
Chapter 3 of Biglieri et al. (1991). 

The discussion on the uniformity properties of TCM schemes, which are 
useful to evaluate error probabilities in a relatively simple way, was taken from 
Liu, O k a  and Biglieri (1990), which in turn is an elaboration of Zehavi and wolf 
(1987). A comprehensive account of these properties, based on group theom 

can be found in Fomey (1991). Nonuniform TCM schemes can be dealt with 
by using the product-trellis method of Biglieri (1984). A tutorial presentation 
of techniques for evaluating the performance of TCM schemes can be found in 
(Benedetto et al,, 1994). 

The theory of rotationally-invariant TCM schemes is fully developed in Trott 
et al. (1996). A generalization of TCM to constellations derived from lattices 
can be found in Fomey (1988a and 1988b). 

Ginzburg (1984) develops an algebraic introduction to BCM. A discussion 
on multilevel codes and multistage decoding is in Calderbank (1989) and Pot- 
tie and Taylor (1989). Biglieri (1992) discusses parallel decoding of BCM, and 
V. Benedetto and Biglieri (1993) show how to evaluate error probabilities. Ac- 
tual implementations of staged BCM decoders are described in Pellizzoni et al. 
(1997) and Caire et al. (1995). 

12.9. Problems 

Problems marked with an asterisk should be solved with the aid of a computer. 

12.1 Prove that the simplex set of Problem 4.12 maximizes & as defined in (12.14) 
and (12.15) under the constraint of a given average energy. Hint: Observe that 
&I depends only on the differences between signal vectors, so that for a given 
average energy an optimal signal set will have its centmid at the origin. Write 
& for a signal set with the centroid at the origin, and use the convexity of the 
exponential. Find the minimizing probability distribution Q. 

12.2 Consider the quaterniuy signal constellation of Fig. 12.32. Design a good 4-state 
TCM scheme based on this constellation and transmitting 1 bithignal. Discuss 
the behavior of the free distance as a function of the angle 4. 

12.3 Specify the convolutional codes and the mappers that generate trellis-coded mod- 
ulation schemes with 2 and 4 states, respectively, based on the octoniuy constel- 
lation represented by the black dots of Fig. 12.9 and transmitting 2 bits per signal. 
Compute their free distances and asymptotic coding gains with respect to 4PSK. 

12.4 The encoder of a standard TCM scheme for the coded 9.6 kbivs two-wire full- 
duplex voiceband modem is shown in Fig. 12.33. The 32-signal constellation 
used is also shown. Draw one stage of the corresponding trellis diagram. 

12.5 Consider the TCM scheme shown in Fig. 12.34. The signal consteIIation used is 
,I ' *  

16-QAM. Specify the mapper, and compute the resulting free distance. 

12.6 (*) Write a computer program implementing the algorithm of Section 12.4.3 for 
the computation of the free distance of a TCM scheme. Use it to verify the result 

,, ,,,ill 
of Problem 12.5. 
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Figure 12.32: A quaternary signal constellation. 

12.7 (*) Consider the 32-point cross contellation of Fig. 5.20. Perform set partitioning, 
and design a Cstate TCM scheme satisfying the Ungerboeck rules and transmit- 
ting 4 bits per signal. Compute its free distance and bit error probability. 

12.8 Consider a 2-level BCM scheme with C1 the nonredundant (n, n) binary code. 
Show that staged decoding is optimum in this case. 

12.9. Problems 685 

Figure 12.33: Encoder of a TCM scheme, the corresponding 32-signal constellation, 
and mapping table. 

Figure 12.34: Encoder of a TCM scheme. 



Digital transmission over fading 
channels 

In the simple communication channel model considered in Chapter 4 the received 
signal was affected only by a constant attenuation and a constant delay; Chapter 
7 dealt with a more complex form of channel, one in which the signal is distorted 
by frequency selectivity. In this chapter we describe digital transmission over a 
channel affected by fading. The latter term describes the propagation vagaries 
of a radio channel which affect the signal strength, and is connected, as we shall 
see, with a propagation environment referred to as "multipath" and with the rel- 
ative movement of transmitter and receiver, which causes time variations of the 
channel. Fading channels generate time-varying attenuations and delays, effects 
which may significantly degrade the performance of a communication system 
and hence need analysis in order to take adequate countermeasures against them 
(as we shall see, diversity and coding are appropriate methods). 

Multipath propagation occurs when the electromagnetic energy carrying the 
modulated signal propagates along more than one "path" connecting the trans- 
mitter to the receiver. This simple picture, assuming that the propagation medium 
includes several paths along which the electromagnetic energy propagates, al- 
though not very accurate from a theoretical point of view, is nonetheless useful 
to understand and to analyze propagation situations that include reflection, re- 
fraction, and scattering of radio waves. Examples of such situations occur for 
example in indoor propagation, where the electromagnetic waves are perturbed 
by structures inside the building, and in terrestrial mobile radio, where multipath 
is caused by large fixed or moving objects (buildings, hills, cars, etc.). 

13. Digital transmzksion over fading channels 

Delay spread. The signal components arriving from the various paths (direct 
and indirect) with different delays combine to produce a distorted version of 
the transmitted signal. Assume for the moment that an ideal impulse b( t )  is 
transmitted. The various propagation paths are distinguishable, in the sense that 
they give rise to various distinguishable copies of the transmitted signal, affected 
by different delays and attenuations. To characterize by a single constant the 
various delays incurred by the signal traveling through the channel, we define a 
&lay spread as the largest among these delays. 

The above is still valid when the signal bandwidth is much larger than the 
inverse of the time delays. For narrower bandwidths, the received signal copies 
tend to overlap, and cannot be resolved as distinct pulses. This generates the form 
of linear distortion that we have previously studied in Chapter 7 as intersymbol 
interference. In the context of the present discussion, we say that this delay 
spread causes the two effects of time dispersion and frequency-selective fading. 

Let B, denote the bandwidth of the transmitted signal. If this is narrow 
enough that the signal is not distorted, there is no frequency selectivity. As B, 
increases, the distortion becomes increasingly noticeable. A measure of the sig- 
nal bandwidth beyond which the distortion becomes relevant is usually given in 
terms of the so-called coherence bandwidth of the channel, denoted by B, and 
defined as the inverse of the delay spread. The coherence bandwidth is the fre- 
quency separation at which two frequency components of the signal undergo in- 
dependent attenuations. A signal with B, >> B, is subject to frequency-selective 
fading. More precisely, the envelope and phase of two unmodulated carriers at 
different frequencies will be markedly different if their frequency spacing ex- 
ceeds B,, so that the cross-correlation of the fading fluctuations of the two tones 
decreases toward zero. The term "frequency-selective fading" expresses this lack 
of correlation among different frequency components of the transmitted signal. 

Doppler-frequency spread. When the receiver and the transmitter are in rela- 
tive motion with constant radial speed, the received signal is subject to a constant 
frequency shift (the Doppler shift) proportional to this speed and to the carrier 
frequency. Doppler effect, in conjunction with multipath propagation, causes 
frequency dispersion and time-selective fading. Frequency dispersion, in the 
form of an increase of the bandwidth occupancy of a signal, occurs when the 
channel changes its characteristics during signal propagation. As we shall see in 
a moment, Doppler-frequency spread is in a sense dual to delay spread. 

Assume again an ideal situation: here a single, infinite-duration tone is trans- 
mitted. This corresponds to a spectrum made by an ideal impulse. The power 
spectrum of the signal received from each path is a sum of impulses, each of 
which has a different frequency shift depending on its path. We have frequency 
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dispersion. We define the "Doppler spread" as the largest of the frequency shifts 
of the various paths. 

Let T, denote the duration of the transmitted signal. If this is long enough, 
there is no time selectivity. As T, decreases, the signal spectrum becomes 
broader, and its copies generated by Doppler effect tend to overlap and cannot 
be resolved as distinct frequency pulses. The Doppler effect causes a variation 
of its shape which corresponds to a distortion of the signal waveform. We say 
that the channel is time-selective. 

A measure of the signal duration beyond which this distortion becomes rel- 
evant is the so-called coherence time of the channel, denoted by T, and defined 
as the inverse of the Doppler spread. Let T, denote the duration of a transmit- 
ted pulse. If this is so short that during transmission the channel does not change 
appreciably in its features, then the signal will be received undistorted. Its distor- 
tion becomes noticeable when T, is well above T,, the delay between two time 
components of the signal beyond which their attenuations become independent. 

Fading-channel classification. From the previous discussion we have seen 
that the two quantities B, and T, describe how the channel behaves for the trans- 
mitted signal. Specifically, 

(i) If B, << B,, there is no frequency-selective fading, and hence no time 
dispersion. The channel transfer function looks constant, and the channel 
is calledflat (or nonselective) in frequency. 

(ii) If T, << T,, there is no time-selective fading, and the channel is calledflat 
(or nonselective) in time. 

Qualitatively, the situation appears as shown in Fig. 13.1. The channel flat in 
t  and f  is not subject to fading, neither in time nor in frequency. The channel flat 
in time and selective in frequency was studied in Chapter 7. The channel flat in 
frequency is a good model for several terrestrial mobile radio channels, and most 
of this chapter will be devoted to its analysis. The selective channel, affected by 
fading both in time and in frequency, is not a good model for terrestrial mobile 
radio channels, while it can be useful for avionic communications, in which high 
speeds (and hence short coherence times) combine with long delays (and hence 
narrow coherence bandwidths) due to earth reflections. 

13.1. Impulse response and transfer function of a fading chan- 
nel 

AS fading channels are typically time-varying, we cannot study them by using 
the techniques summarized in Chapter 2. Here we briefly review the extension to 
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Figure 13.1 : Radio-channel clrrrsificarion. 

time-varying channels of the basic entities (impulse response, transfer function) 
I used in the analysis of time-invariant systems. 

Consider the bandpass transmitted signal 

where as usual ? ( t )  denotes its complex envelope and fo the carrier frequency. 
Transmission of x ( t )  over a multipath time-varying channel yields a received 
signal 

~ ( t )  = C an( t )x [ t  - ~ n ( t ) j  
n 

where a n ( t )  and ~ , ( t )  denote the attenuation and the delay that affect the copy 
of x ( t )  received along the nth propagation path. We can also write 

a where Bn(t) = 2n f o ~ , ( t )  is the phase shift caused by the delay ~ , ( t ) .  We see that 
the multipath channel transforms the complex envelope ? ( t )  into the complex 
envelope 

C a n ( t ) e - ' R n ( t ) ~ [ t  - rn( t ) ]  
n 

which is equivalent to saying that the low-pass equivalent channel has a time- 
varying impulse response 
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This function of the two variables t  and T describes the attenuations, the phase 
shifts, and the delays generated by each of the propagation paths. It is the re- 
sponse of the channel at time t  to an impulse applied at time t  - T ,  i.e., T seconds 
before. The channel input-output relationship is expressed by the convolution 

We obtain a similar characterization of the channel by moving to the fre- 
quency domain. The Fourier transform of the impulse response h ( t ;  T ) ,  taken 
with respect to the variable T ,  provides us with the (time-varying) transfer func- 
tion of the channel: 

which for our multipath channel takes the form 

The time-varying transfer function H ( f ;  t )  can be interpreted as follows. For 
a single tone transmitted at frequency f' (relative to the carrier frequency) the 
received complex envelope is exp ( j27~  f ' t )H(  f'; t ) .  The latter expression de- 
scribes the fact that the fading-channel response to a single tone has gener- 
ally a time-varying envelope and phase. If the transmitted signal bandwidth is 
much greater than the coherence bandwidth of the channel, then the signal is af- 
fected by different gains and phase shifts across its bandwidth, and the channel 
is frequency-selective. Additional distortion is caused by the time variations 
in H ( f ;  t ) :  for channel variations related to motions within the propagation 
medium, which in turn imply Doppler effects, we can interpret the time depen- 
dence of H (  f ;  t )  in terms of Doppler shifts. 

If it is assumed that the propagation medium changes randomly, we may 
model h ( r ;  t )  as a random process in the variable t ,  so that the channel be- 
haves as a linear, randomly time-varying system. An assumption often made 
(the "Rayleigh fading" model, which we shall describe in detail later on) is that 
h ( r ;  t )  can be modeled as a zero-mean Gaussian process, whose phase is uni- 
formly distributed in (0, 2 7 ~ )  and whose envelope has a Rayleigh distribution. 
Consequently, also H (  f ;  t )  is a Gaussian process. 

As for the power density spectrum of this process, we hasten to stress here 
that it  has nothing to do with the fading being selective. Selectivity depends 
on the transmitted-signal bandwidth, whereas the fading spectrum reflects the 
relative motion of receiver and transmitter in a multipath environment. 
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Conditioned on the transmitted signal, the received signal turns out to be a 
sample function of a Gaussian random process (this has nothing to do with the 
additive noise, which we are neglecting for the moment). Since the received 
process and its complex envelope are Gaussian, the requirement that two of its 
samples be statistically independent is equivalent to the requirement that they 
be uncorrelated. Consequently, we may define the coherence time as the time 
beyond which two samples are independent, and the coherence bandwidth as 
the frequency separation beyond which samples of the Fourier transform of the 
complex envelope are uncorrelated. For this reason coherence time and coher- 
ence bandwidth are sometimes referred to as correlation time and correlation 
bandwidth, respectively. 

A channel flat in time and frequency has a transfer function that reduces to a 
constant, albeit a random one. It responds to z ( t )  with the signal R e J 8 z ( t ) ,  where 
R is the envelope and 0 the phase of the fading, respectively. A channel which 
is flat only in time has a transfer function which depends only on f ,  and hence 
it behaves like a linear time-invariant system. Its response to an input sinusoid 
is a sinusoid whose frequency is the same, whose amplitude is multiplied by a 
constant random gain, and whose phase is shifted by a constant random phase, 
so that the channel output does not appear to fade in time. A channel which is flat 
only in frequency has a transfer function which depends only on t .  The ourput- 
signal complex envelope equals the input-signal complex envelope multiplied by 
a complex function of time. Thus. the channel modulates the transmitted signal 
in amplitude and phase. 

13.2. Examples of radio channels 

For the purpose of illustration, we provide here some simple models of radio 
channels giving rise to various types of selectivity. 

13.2.1. Two-path propagation 

Assume that the transmitter and the receiver are fixed. and that two propagation 
paths exist. This is a useful model for the propagation in terrestrial microwave 
radio links. The received signal can be written in the form 

where b and T denote the relative amplitude and the differential delay of the 
reflected signal, respectively (in other words, it is assumed that the direct path 
has attenuation 1 and delay 0). This equation models a static multipath situation 
in which the propagation paths remain fixed in their characteristics and can be 
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Figure 13.2: Magnitude of the transferfunction of a two-path channel. 

identified individually. The channel is linear and time-invariant. Its transfer 
function 

H ( f )  = 1 + be-jZTf' 

in which the term b exp(-j2s f 7) describes the multipath component, has mag- 
nitude 

IH(f)(  = J ( l +  b c0s2?rfr)~ + b2sin22?rfr 

= 41 + bZ + 2b cos 2 s  f r 

Fig. 13.2 shows a typical behavior of the function 1 H (  f) l .  For certain delays 
and frequencies the two paths are essentially in phase alignment, producing a 
large value of I H (f)  1. For some other values the paths nearly cancel each other, 
producing a minimum of ( H  ( f )  ( usually referred to as a "notch." 

If x(t) has a wide enough bandwidth, the two echoes in the RHS of (13.5) 
are discernible in time at the receiver (ideally, if x(t) = 6(t), a pair of pulses 
is always observed): the channel is selective in frequency, as the transmitted 
signal "sees" a channel with a nonflat transfer function. As the bandwidth Bz 
of x(t) decreases, and hence its time duration increases, the two echoes become 
increasingly indistinguishable, and as B, becomes small with respect to 1/r the 
received pulse is only affected by a constant attenuation and a constant delay. 
The channel becomes nonselective in frequency, and we identify the coherence 
bandwidth of the channel with 117. 

The situation described here does not account for fading, as there is no time 
variation of the medium. This may occur in certain situations, due for example 
to temperature variations that cause variations in the density of the transmission 

Incoming 

Figure 13.3: Single-path propagation: Effect of movement. 

medium. Thus, both b and r vary with time, creating a dynamic multipath situa- 
tion in which the transfer function of the channel depends on time as well as on 
frequency. 

13.2.2. Single-path propagation: Effect of movement 

Consider the situation depicted in Fig. 13.3. Here the receiver is in relative mo- 
tion with respect to the transmitter. The latter transmits an unmodulated carrier 
with frequency fo. Let v denote the speed of the vehicle (assumed constant), and 
y the angle between the direction of propagation of the electromagnetic plane 
wave and the direction of motion. Doppler effect causes the received signal to 
be a tone whose frequency is displaced (decreased) by an amount 

(the "Doppler frequency shift"), where c is the speed of propagation of the elec- 
tromagnetic field in the medium. Notice that the Doppler frequency shift is either 
greater or lower than 0, depending on whether the transmitter is moving toward 
the receiver or away from it (this is reflected by the sign of cos y). 

By disregarding for the moment the attenuation and the phase shift affecting 
the received signal, we can write it in the form 

Notice that we have assumed a constant vehicle speed, and hence a constant fD. 
Variations of v would cause a time-varying fD in (13.7). 



13. Digital transmission over fading channels 

Figure 13.4: Two-path propagation: Effect of movement. 

More generally, consider now the transmission of a bandpass signal ~ ( t ) ,  and 
take attenuation a ( t )  and delay ~ ( t )  into account. The complex envelope of the 
received signal is 

g ( t )  = a( t ) e - j e ( t )  - - T W I  

This channel can be modeled as a time-varying linear system with low-pass 
equivalent impulse response 

13.2.3. Two-path propagation: Effect of movement 

Consider now the more complex situation represented in Fig. 13.4. A vehicle 
moves at constant speed v along a direction that we take as the reference for 
angles. The transmitted signal is again an unmodulated canier at frequency f o .  
It propagates along two paths, which for simplicity we assume to have the same 
delay (zero) and the same attenuation. Let the angles under which the two paths 
are received be 0 and y. Due to Doppler effect, the received signal is 

Y ( t )  = A exp [j2nfo (1 - s )  c t ]  + A exp [ j2n f o  (1 - cos y) t ]  (13.8) 

We observe from the above equation that the transmitted sinusoid is received 
as a pair of tones: this effect can be viewed as a spreading of the transmined 
signal frequency, and hence as a special case of frequency dispersion caused 
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by the channel and due to the combined effects of Doppler shift and multipath 
propagation. 

Eq. (13.8) can be rewritten in the form 

The magnitude of the term in square brackets provides the instantaneous enve- 
lope of the received signal: 

The last equation shows an important effect: the envelope of the received signal 
exhibits a sinusoidal variation with time, occurring with frequency 

The resulting channel has a time-varying response. We have time-selective fad- 
ing, and, as observed before, also frequency dispersion. 

13.2.4. Multipath propagation: Effect of movement 

Assume now that the transmitted signal (an unmodulated canier as before) is 
received through N paths. The situation is depicted in Fig. 13.5. Let the receiver 
be in motion with velocity v, and let Ai, Bi, and yi denote the amplitude, the 
phase, and the angle of incidence of the ray from the ith path, respectively. The 
received signal contains contributions with a variety of Doppler shifts, say 

The (analytic) received signal can be written in the form 

The complex envelope of the received signal turns out to be 

For a large number N of paths, we may assume that the attenuations Ai and the 
phases 2n f i t  - 0, are random variables (RV): that can be reasonably assumed 
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and hence 

Figure 13.5: Multipath propagation: Effect ofmovement. 

to be independent of each other. Then, invoking the central limit theorem, we 
obtain that at any instant, as the number of contributing paths become large, the 
resulting sum approaches a Gaussian RV. The complex envelope of the received 
signal becomes a lowpass Gaussian process whose real and imaginary parts are 
independent and have mean zero and the same variance a2. In these conditions, 
R(t)  and Q( t )  turn out to be independent processes, with Q(t)  being uniformly 
distributed in (0,  27r) and R(t)  having a Rayleigh probability density function 
(pdfl, viz., 

(see Problem 13.1). Here the average power of the envelope is given by 

We also have 

E[R] = E a  

Notice that the Rayleigh pdf is often used in its "normalized" form, obtained by 
choosing E[R2] = 1: 

fR(r)  = 2re+' (13.13) 

13.2.5. Multipath propagation with a fixed path 

Here we modify the channel model of the previous example by assuming that, 
as often occurs in practice, the propagation medium has one major strong fixed 
path in addition to the N weaker paths. Thus, we may write the received-signal 
complex envelope in the form 

where as before u(t )  is Rayleigh-distributed, a ( t )  is uniform in (0 ,  27r), and v ( t )  
and p( t )  are deterministic signals. With this model R( t )  has the pdf 

for r  2 0. (I0 ( . ) denotes the zeroth-order modified Bessel function of the first 
kind.) Here R( t )  and Q( t )  are not independent. 

Let us further assume a certain amount of randomness in the fixed-path sig- 
nal. Specifically, assume that the phase /3 of the fixed path changes randomly, 
and that we can model it as a RV uniformly distributed in (0,  2n). As a result 
of this assumption, R(t)  and Q( t )  become independent processes, with Q uni- 
formly distributed in (0, 2n) and R(t)  still having the probability density func- 
tion (13.14) (see Problem 13.2). The function (13.14) is usually called the "Rice 
pdf." Its mean-square value is E[R2] = v2 + 2a2. This pdf is plotted in Fig. 13.6 
for some values of v  and a2 = 1. 

Notice that in (13.14) v  denotes the envelope of the fixed-path component of 
the received signal, while 2a2 is the power of the Rayleigh component (see (13.12) 
above). Thus, the "Rice factor" 

w 

denotes the ratio between the power of the fixed-path component and the power .. 
of the Rayleigh component. Sometimes the Rice pdf is written in a slightly 
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Figure 13.6: Rice pdf with u2 = 1. 

different form, obtained by assuming E[RZ] = vZ + 2u2 = 1 and exhibiting the 
Rice factor explicitly: 

for r 2 0. 
As K -t 0,  i.e., as the fixed path reduces its power, since Io(0) = 1 the 

Rice pdf becomes a Rayleigh pdf. On the other hand, if K co, i.e., the fixed- 

path power is considerably higher than the power in the random paths, then the 
Gaussian pdf is a good approximation for the Rice density. In fact, by replacing 
the Bessel function by its asymptotic expression 

from (13.14) we obtain 

This shows that when v ,  and hence K ,  becomes large (or r is far out on the tail 
of the probability density curve) fR(r)  behaves like a Gaussian pdf. 

13.3. Frequency-$cat, slowly fading channels 

13.3. Frequency-flat, slowly fading channels 

The channel models considered in the previous examples assume narrowband 
transmission. For digital transmission systems this is tantamount to assuming 
that the duration of a modulated symbol is much greater than the delay spread 
caused by the multipath propagation. If this occurs, then all frequency compo- 
nents in the transmitted signal are affected by the same random attenuation and 
phase shift, and the channel is frequency-flat. If in addition the channel varies 
very slowly with respect to the symbol duration (slow relative motion between 
transmitter and receiver), then the fading R ( t )  expljO(t)] remains approximately 
constant during the transmission of one symbol (if this does not occur the fading 
process is called fast.) 

This important special case of this fading model, viz., that of frequency-flat, 
slow fading, will be subjected to further analysis in the balance of this chapter. 
The assumption of nonselectivity allows us to model the fading as a process 
affecting the transmitted signal in a multiplicative form. The assumption of a 
slow fading leads us to model this process as a constant RV during each symbol 
interval. From now on we shall also consider the effect of additive Gaussian 
noise. In conclusion, if Z(t )  denotes the complex envelope of the modulated 
signal transmitted during the interval (0,  T), then the complex envelope of the 
signal received at the output of a channel affected by slow, flat fading and additive 
white Gaussian noise can be expressed in the form 

where ?l(t) is a complex Gaussian noise, and R&' is a Gaussian RV, with O 
uniformly distributed and R having a Rice or Rayleigh pdf. 

If we can further assume that the fading is so slow that we can estimate the 
phase Q with sufficient accuracy, and hence compensate for it, then coherent 
detection is feasible. Thus, model (13.16) can be further simplified to 

It should be immediately apparent that with this simple model the only dif- 
ference with respect to an AWGN channel resides in the fact that R ,  instead of 
being a constant attenuation, is now a RV, whose value affects the amplitude, and 
hence the power, of the received signal. Assume finally that the value taken by R 
is known: we describe this situation by saying that we have perfect channel state 
information (CSI). Channel state information can be obtained for example by 
inserting a pilot tone in a notch of the spectrum of the transmitted signal, and by 
assuming that the signal is faded exactly in the same way as this tone. Another 
possible strategy is the insertion of pilot symbols in the transmitted frames. 
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Detection with perfect CSI can be performed exactly in the same way as for 
the AWGN channel: in fact, the constellation shape is perfectly known, as is 
the attenuation incurred by the signal. The optimum decision rule in this case 
consists of minimizing, as we learned in Section 4.2, the Euclidean distance 

with respect to the possible transmitted real signals x(t) (or vectors x). 
A consequence of this fact is that the error probability with perfect CSI and 

coherent demodulation of signals affected by frequency-flat, slow fading can be 
evaluated as follows. We first compute the error probability P(e  I R) obtained 
by assuming R constant in (13.17). then we take the expectation of P(e  I R),  
with respect to the random variable R. The calculation of P(e  ( R) is performed 
as if the channel were AWGN, but with the energy E changed into R2&. Notice 
finally that the assumptions of perfect channel-state information and phase-shift 
estimate make the values of P(e) thus obtained as representing a lower bound to 
the actual performance. 

13.3.1. Coherent detection of binary signals with perfect CSI 

A simple case which is amenable to a closed-fom expression for the error prob- 
ability is offered by binary modulation. Let the two transmitted signals have 
common energy E and correlation coefficient p. From (4.34) we know that the 
error probability, when the received energy is R2E and the detection is coherent. 
is given by 

Thus, to obtain P(e) we must take the expectation of (13.19) with respect to the 
pdf of R: 

p(e) = jm p(e  I T) ~ R ( T )  dr (13.20) 
-00 

Rayleigh fading 

When R has a Rayleigh pdf, the calculation of P(e) can be done in closed form. 
By using the definition 
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in (13.20), and reversing the order of integrations, it is easy to obtain 

where E is the average received energy 

The special case of antipodal signals (p = -1) gives 

while for orthogonal signals (p = 0) we obtain 

It can be observed that the 3-dB margin of antipodal signaling over orthogonal 
, signaling, already experienced over the AWGN channel, is retained here. The 

effect of Rayleigh fading on error probabilities is illustrated in Fig. 13.7. 
It is also observed that the error probability over the fading channel decreases 

with a much lower slope than for AWGN. Hence, the signal-to-noise ratio (SNR) 
, required for reliable transmission over this channel is much higher than with 

AWGN. By using the asymptotic expression, valid for z + m, 

l + z  22 
we see that, for binary signals and large values of E/No 

1 1 
P(e) - - - 

I 2(1 - P) &/No (13.22) 
I , This shows that the error probability decreases only inversely with the signal-to- 

noise ratio, rather than with an exponential law as in the AWGN channel. 

Rice fading 

Fig. 13.7 also shows the error probability for antipodal signals over a Rice chan- 
nel with different values of the Rice factor K, as obtained from numerical inte- 
gration (see below for a description of this technique). It is seen that, as K in- 

: creases from 0 to infinity, the channel behavior moves from Rayleigh to AWGN 
channel, as expected. For K = 20 dB the performance is close to AWGN within 
a fraction of a dB for the signal-to-noise range considered here, while K = 10 dB 
entails a loss of about 7 dB at P(e) = 
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SNR (dB) 

Figure 13.7: Comparison of error probabilities of antipodal binary modulation over the 
AWGN, the Rice, and the Rayleigh fading channel. Here SNR= E[R2]E/No. 

13.3.2. A general technique for computing error probabilities 

We now describe a general technique for the evaluation of error probabilities 
over the fading channel. Although this technique can be used for calculations of 
P(e )  over other types of channels, we describe it here because it finds its most 
important application for the fading channel. 

Recall from Section 4.3.2 that the conditional error probability P(e  I x )  can 
be bounded above by the union bound 

where P { x  -+ 2 )  denotes the pairwise error probability, i.e., the probability that 
the distance of the received signal from P is smaller than that from the transmitted 
signal x. If X  denotes the difference between these two distances when x is 
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transmitted, then we may write 

This shows how the calculation of error probability in a digital communication 
scheme can always be reduced to the calculation of the probability that a RV 
takes on a negative value. 

The latter can be evaluated on the basis of the following calculations. Define 
the (two-sided) Laplace transform of the pdf f x  ( x )  of the RV X  

where s  = a + jw.  From Laplace-transform theory it is known that this integral 
converges in a vertical strip (YI < (Y < a2 of the complex s-plane bounded by the 
closest poles of @ x ( s ) .  The restriction of @ x ( s )  to the real axis is a real positive 
function, and, since 

@$(a) = E[X2e:"X] 2 0  

it is convex. Finally, integrate (13.25) by parts. If Fx(x)  denotes the cumulative 
distribution function of X ,  we obtain 

w m x  ( s )  = e-" FX(x )  + s J Fx (x)e-sz dx 
-w 

w 
- - s  /__ F x ( ~ ) e - ' ~  dx 

for a > 0. Thus, by inverting the Laplace transform, we get 

I for 0 < c < a ~ .  Consequently, by recognizing that P ( X  5 0 )  = Fx(0)  we have 
the exact result 

where c is chosen so as to obtain convergence. 
The latter integral can be evaluated by residues, partial-fraction expansion, 

or numerical integration. In the following we describe three methods aimed at 
computing (13.26) exactly or at bounding it. 

Exact calculation through residues. If Q X ( s ) / s  = O ( S )  as Is1 -+ m, the 
integral (13.26) can be computed exactly by using either one of the following: 
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where the summations are to be taken over the poles lying in the left-hand (LH) 
or right-hand (RH) side of the complex s-plane, and the residue in s = 0 is equal 
to 1 because ax (0) = 1 by definition. 

Calculation of P ( X  5 0) through (13.27) is easy when the poles are simple. 
If ax(s ) / s  contains multiple poles or essential singularities, the actual calcula- 
tion of (13.27) may become very, if not hopelessly, long and intricate. In fact, in 
the presence of poles of order n calculation of (13.27) requires determining the 
derivative of order n - 1 of a (usually complicated) function. If @ x  (s)/s exhibits 
essential singularities, then derivatives of all orders must be computed. 

Numerical integration. A different approach to the exact calculation of P ( X  5 
O), and one which guarantees arbitrarily high accuracy while not requiring eval- 
uation of the poles or residues of ax (s), is based on numerical integration. As it 
can be applied even if ax(s)  is known only numerically, its range of application 
is exceedingly wide. 

Recall (13.26). Since its left-hand side is a real quantity, we are allowed to 
keep only the real part of its right-hand side. Thus, by observing that 

we obtain 

The change of variable w = c m / x  transforms (13.28) into 

13.3. Frequency-pat, slowly fading channels 705 

(-1, 1). The actual value of r, can be bounded from above if the derivatives of 
g(x) are known, but this is often unnecessary: in practice, to achieve the desired 
degree of accuracy it suffices to evaluate (13.30) for increasing values of n, and 
accept the result as soon as it does not change significantly. 

In our case we obtain explicitly 

where r k  = tan[(2k - l)s/(2u)]. Notice also that the value of c may affect the 
value of u necessary to achieve a prescribed accuracy. A reasonable choice is 
usually c = az/2. 

Chernoff bound. This provides a very simple, although frequently loose, up- 
per bound to P ( X  < 0). By recalling the definition of Qx(s) and our derivation 
of the Chemoff bound in Section 12.1, we have, for A > 0, 

P ( X  5 0) 5 a x @ )  

The Chemoff bound is thus given by the inequality 

where, as discussed before, the minimum is unique due to the convexity of the 
restriction of @x(x) to the real axis. 

It often happens that the minimization involved in (13.32) cannot be obtained 
in closed form. If this is the case, one may proceed numerically, or choose (by 
educated guess) a suboptimum value for A, which still provides a bound. 

Computing ax (s) 

where 

Integrals of the form (13.29) can be evaluated numerically by using Gauss- 
Chebyshev integration (see, e.g., Abramowitz and Stegun, 1972, p. 889): 

where the remainder term rn decreases to zero as the number n of terms in (13.30) 
increases, provided that the derivative of order 2n of g(x) remains bounded in 

The former discussion leads to the consequence that once ax (s) is known the 
probability P ( X  5 0) can be evaluated in several ways. Thus, it is appropriate 
to describe a general technique for the evaluation of @x(s). Before entering into 
the details of the calculation we list for convenience two equations that will be 
useful in the sequel. If v is a Gaussian RV with mean p and variance u2, we have 

E[e-SV] = e - ~ ~ + ~ f ~ f / z  (13.33) I C' 

If R is a Rice-distributed RV with E[R2] = 1 and Rice parameter K, then, for 
Ria) < 1 + K 
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The latter equation follows from the observation that the Rice pdf (13.14) inte- 
grates to 1, which yields the integral 

As a special case, for a Rayleigh-distributed R  we obtain, by taking K = 0 
in (13.34): 

1  E [ ~ ~ ~ ~ ]  = - (13.35) 
1 - a  

Assume now that, for a given value of the fading random variable R, X is condi- 
tionally Gaussian with mean P ( R )  and variance a2(R) .  From (13.33) we obtain 

The desired function Q x ( s )  is obtained by averaging the above with respect to 
the random variable R. 

Error probability for coherent detection of general M-ary signals with per- 
fect CSI 

Here r = Rx + n, with n a Gaussian random vector whose components are 
independent with mean zero and equal variance N0/2. Recalling that 

we have 

where ( . , . ) denotes scalar product, and 

X, being a linear transformation of the random vector n, is itself conditionally 
Gaussian for given R. By duplicating calculations performed in Section 12.1, its 
conditional mean and variance are 

and 
a 2 ( ~ )  = 2~'Nod:? 

respectively. We are now in a position to use (13.36), which yields 

If R  has a Rice pdf, the integral arising from (13.40) can be given a closed form. 
In fact, by using (13.34), we obtain 

The special case of Rayleigh fading is obtained by letting K = 0 in (13.41): 

Method of the residues. For Rayleigh fading the function Q x ( s )  has two sirn- 
ple poles 

s1,2 = 
1~ JiT-zq& 

2No 
where sl is the pole in the left-hand side of the s-plane, and s2 is the pole in its 
right-hand side. By writing 

$1.92 
= 

( s  - S ~ ) ( S  - s2) 
we see that the residue of the function Q x ( s ) / s  in s2 is s l / ( s2  - sL) .  After a sign 
change, from (13.27) we finally obtain the exact result 

Chernoff bound. It should be easily recognized that for s  = X (a real variable) 
Q x ( s )  in (13.41) is an increasing function of X(NoX - I ) ,  irrespective of K.  
Thus, it achieves its smallest value when X(NoX - 1) is a minimum, i.e., when 

Hence, the Chernoff bound for Rice fading yields 

For Rayleigh fading we have the Chernoff bound I b' 

P { x  -+ 2 )  L. 1  
1  + d:?/4No (13.45) 

Fig. 13.8 compares this Chernoff bound with the exact value (13.43) of pair- 
wise error probability. 
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Figure 13.8: Comparison of the Chemoff bound to the pairwise error probabiliry 
P { x  -t P )  with its eruct value on a Rayleigh channel. 

Example 13.1 (Binary signals) For two signals with common energy E and correla- 
tion coefficient p = ( x ,  P)  / E  we have eb = 2E (1 - p), and hence, for Rayleigh fading. 
from (13.43) 

This coincides (as it should) with (13.21). after observing that E = E here because we 
are assuming that E[R2] = 1. 

The Chernoff bound yields 

or, for large SNRs, 

13.3. Frequency-pat, slowly fading channels 709 

13.3.3. No channel-state information 

So far we have made the assumption of perfect channel-state information in co- 
herent detection. Since an infinitely-accurate CSI is never available, we should 
discuss the effect of its imperfect howledge. For simplicity, we shall limit our- 
selves to examining the limiting case where no CSI at all is available. In this case, 
we choose to demodulate by minimizing with respect to x, in lieu of (13.18), the 
Euclidean distance we would use in the Gaussian channel, that is, 

The calculation of error probability in this case can be performed in the same 
way as with perfect CSI: we first derive P(e I R ) ,  then we average over the 
fading pdf. 

Given two competing signals x and 2 ,  their pairwise error probability can be 
calculated from (13.24), where as usual X decotes the difference between the 
squared distances of the received vector r to 2 and x: 

It is recognized, by duplicating calculations performed in Section 12.1, that, 
given R, X is a conditionally Gaussian RV, with conditional mean and variance 

and 
u 2 ( ~ )  = 2Nolx - 212 

respectively. Thus, from (13.25) we have 

@x(s )  = En [exp { - s  (1212 - lx12 + 2R(x, x - 2 ) )  + Nos21212 - 1x1' 
(1 I ]  .51) 

Consider for simplicity the case of Rayleigh fading. By using the integral 

we obtain for the Rayleigh channel 

@ x ( s )  = exp [ - ( 1 2 1 ~  - IxI2)s + NO]% 1' - /x1's2] 
I I' 

(13.52) 

( 1  - exp ( ( x ,  x - P ) ~ s ~ )  f i ( x ,  x - 2)serfc ( ( x ,  x - i ) s ) ]  

The above expression can be used in conjunction with numerical integration to 
obtain the union bound to error probabilities of any signal constellation. 
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13.3.4. Differential and noncoherent detection 

In a channel for which the fading process is not slow enough to allow accurate 
estimation of its phase shift, an alternative to coherent detection is differential 
demodulation. In fact, the latter requires only that the phase remain stable over 
two adjacent symbols. 

The calculation of error probability for binary signaling over a fading channel 
with differential detection is quite easy. Assume antipodal signaling, and observe 
that, conditionally on R, we have, from Eq. (5.79), 

For Rayleigh fading, direct integration yields 

which is twice as large as (13.22). Thus, differentially coherent detection entails 
a loss, for high SNRs, of 3 dB with respect to coherent detection. 

Another possible choice is not to estimate the channel phase shift at all. The 
error probability for binary orthogonal signals with noncoherent detection is, 
from (4.95), 

1 R ~ E / ~ N O  P(e I R) = -e- 
2 

For Rayleigh fading, direct integration yields 

which, for high SNRs, is four time as large as (13.22) when p = -1 (antipodal 
signals), and two time as large when orthogonal signals are used with coherent 
detection. 

13.4. Introducing diversity 

We have seen that in the presence of fading the transmitter has to deliver a power 
higher, and in some cases much higher, than for an AWGN channel to achieve 
the same error probability. For example, passing from AWGN to Rayleigh fad- 
ing transforms an exponential dependency of error probability on SNR into an 
inverse linear one. To combat fading, and hence to reduce transmit-power needs, 
a very effective technique consists of introducing diversity in the channel. Based 
on the observation that on a fading channel the SNR at the receiver is a random 
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variable, the idea is to transmit the same signal through L separate fading chan- 
nels. They are chosen so as to provide the receiver with L replicas of the same 
signal, these replicas being affected by fading processes as independent as pos- 
sible, and hence giving rise to independent SNRs. If L is large enough, at any 
time instant there is a high probability that at least one of the signals received 
from the L "diversity branches" will not be affected by a deep fade, and hence 
its SNR will be above a critical threshold. By suitably combining the received 
signals, the fading effect will be mitigated. 

Many techniques have been advocated for obtaining the independent chan- 
nels needed by diversity, and several methods are known for combining the sig- 
nals obtained at their outputs. The most important among them can be catego- 
rized as follows. 

Space diversity. This consists of receiving the transmitted signal through L 
separate antennas, whose spacing is wide enough with respect to the carrier 
wavelength so as to obtain sufficient decorrelation. This technique can be 
easily implemented, and does not require extra spectrum occupancy. 

Polarization diversity. If a radio channel exhibits decorrelated fading for sig- 
nals transmitted on orthogonal polarizations, then diversity can be obtained 
by using a pair of cross-polarized antennas in the receiver. Notice that only 
two diversity branches are available here, while any value of L can in prin- 
ciple be obtained with space diversity. On the other hand, cross-polarized 
antennas do not need the large physical separation necessary for space di- 
versity. In scattering environments tending to depolarize a signal, there is 
no need for separate transmission. 

Frequency diversity. This is obtained by sending the same signal over different 
frequency carriers, whose separation must be larger than the coherence 
bandwidth of the channel. Clearly, frequency diversity is not a bandwidth- 
efficient solution. 

Time diversity. If the same signal is transmitted in different time slots sepa- 
rated by an interval longer than the coherence time of the channel, time 
diversity can be obtained. Since in mobile radio systems slow-moving 
receivers have a large coherence time, in these conditions time diversity 
could only be introduced at the price of large delays. 

13.4.1. Diversity combining techniques 

Three main combining techniques, viz., selection, maximal ratio, and equal gain, 
will be described here. Each of them can be used in conjunction with any of the 
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diversity schemes just listed. Some analyses will follow; however, it should be 
clear from the onset that the relative advantage of a diversity scheme will be 
lower as the channel moves away from Rayleigh fading towards Rice fading. In 
fact, increasing the Rice factor K causes the various diversity branches to exhibit 
a lower difference in their instantaneous SNRs. 

Selection combining 

Among the forms of diversity combining, this is conceptually the simplest. It 
consists of selecting at each time, among the L diversity branches, the one with 
the largest value of signal-to-noise ratio. 

We analyze the performance of this combining technique by assuming that 
each diversity branch is affected by the same Gaussian noise power, so that se- 
lecting the branch with the largest instantaneous SNR is tantamount to selecting 
the branch with the largest instantaneous power. Moreover, let the branches have 
the same average signal-to-noise ratio 

and denote by qi, 1 < i < L, the instantaneous signal-to-noise ratio measured in 
the ith diversity branch during the transmission of a given symbol, that is 

The probability that the SNR in the ith. branch be lower than a threshold H is 
given by 

H 
P(v; < H )  = f i ( ~ ) d ~  (13.55) 

0 

where fi(y) denotes the pdf of qi, which we assume to be the same for all the 
branches. With L independent branches the probability that all of them have an 
SNR below the same threshold H is given by 

L 
P(q1 _< H ,  72 5 H ,  . . . , VL < I )  = [P(Vi < I ) ]  (13.56) 

and decreases as L increases. This is also the cumulative distribution function of 
the RV 

7 j  = max(771, . . . , V L I  
(in fact, i j  is less than H if and only if ql, . . . , qL are all less than H). Hence, 
the pdf of the SNR obtained at the output of the selection combiner is obtained 
by taking the derivative of (13.56) with respect to H. This result can be used 
to obtain the error probability of a digital modulation scheme in the presence 
of selection combining: once the error probability is known for a given SNR, it 
suffices to average it over the pdf of Q. 
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Example 13.2 If R has a Rayleigh pdf, then R2 has the same pdf of the sum of 
the squares of two independent, zero-mean Gaussian random variables with the same 
variance. Hence, R2E/No is a chi-square RV with two degrees of freedom, i.e., an 
exponentially-distributed RV: 

1 f.( ) - - - d S  
a y  - ie  

Thus, the probability that all the L diversity branches have an S N R  below the threshold 
H is given by 

Consequently, this is the cumulative distribution function of the S N R  at the output of the 
selection combiner. The corresponding pdf is obtained by differentiation of the above: 

As a special case, let = 20 dB, and compute the probability p that the instantaneous 
S N R  at the output of the selection combiner be lower than H = 10 dB. We have 

: For example, with L = 1 (no diversity) we have p = 0.095, while for L = 2 we have 
; p = 0.009 (a decrease of one order of magnitude) and for L = 4 we havep = 8.2 x 

(a decrease of three orders of magnitude). 0 

I 

/ Maximal-ratio combining 
I 

Selection combining is relatively easy to implement, as it requires only a mea- 
sure of the powers received from each diversity branch and an antenna switch at 
the receiver. However, the simple observation that it disregards the information 
obtained from all branches but one leads us to argue that it is not an optimum 
combining technique. 

In maximal-ratio combining, the signals at the output of the L diversity 
branches are combined linearly, and the coefficients of the linear combination 
are selected so as to maximize the ratio between the instantaneous signal energy 
and the noise power spectral density. Specifically, let us denote by 

1 the complex signals at the output of the diversity branches, and let us assume 

1 that the noises n; are independent and have the same power spectral density 
I 
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2No. Moreover, assume that we have perfect channel state information on all 
the branches, i.e., that the values taken on by the fading random variables R, are 
perfectly known. Finally, assume for simplicity that x is an equal-energy signal 
with 1 ~ 1 ~  = 2E. 

Maximal-ratio combining consists of using the linear combination 

as the decision variable for demodulation. The power spectral density of the 
noise after combining is given by 

L 

2No C 1Gil2 
i=l 

while the instantaneous signal energy is 

The ratio between these two quantities 

E I X L . ~ G ~ R , / ~  
q = -  

NO Cf=1IGil2 

can be maximized as follows. Recall the Cauchy-Schwan, inequality 

which holds with equality for ai = cbi, c any constant. Thus, 

The equality in (13.58) is obtained for Gi = 8 for all i, which provides the 
weighting coefficients for maximal-ratio combining. This shows that each diver- 
sity branch is weighted proportionally to the fading attenuation that affects it: the 
branches more faded are counted less, and vice versa. Maximal-ratio combining 
provides a signal-to-noise ratio 

If we recall that ER:/No is the SNR per branch, the latter equation shows that 
with maximal-ratio combining mx is the sum of the SNRs, and hence can be 
large even when the individual SNRs are small. The SNR provided by selection 
combining is simply the largest among the terms in (13.59). 
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Example 13.3 Assume that all branches are affected by independent fading, and that 
this is Rayleigh-distributed. Since the sum of L squares of independent Rayleigh RVs 
has a chi-square pdf with 2L degrees of freedom (Papoulis, 1984, p. 187). we obtain 
from (13.59) the pdf of the signal-to-noise ratio: 

The result just obtained about the signal-to-noise ratio of the decision vari- 
able resulting from maximal-ratio combining can be used to evaluate the error 
probability of a modulation scheme. For simplicity, here we restrict our attention 
to binary antipodal signals. From (13.19) with p = -1 we obtain 

; where m~ is the SNR (13.59) obtained from maximal-ratio combining. Thus, 

The latter expectation is computed by multiplying P(e  I mR) by the pdf of mR 
and integrating. 

Example 13.3 (continued) In the conditions of this example, P(e)  can be computed 
in closed form. We obtain 

i where we have defined 

The values of P(e) for L = 1 to L = 4 are shown in Fig. 13.9. When the signal- 
to-noise ratio  NO is large enough, from the same asymptotic approximation used in 
Section 13.3.1. we obtain (1 + p)/2 - 1 and ( 1  - p)/2 - 1 / ( 4 E / ~ o ) .  Furthermore, 

so that the probability of error P(e) can be asymptotically approximated by 
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Figure 13.9: Error probability for binary antipodal trammission with coherent detection 
and L-branch maximal-ratio diversity combining. Here SNR= E [ R ~ ] E / N ~ .  

The latter equation shows an important fact: the probability of error, with diversity order 
L, decreases inversely with the Lth power of the signal-to-noise ratio. 0 

Equal-gain combining 

Should the derivation of channel-state information be too complex, one may use 
a simplified version of maximal-ratio combining, in which all the coefficients Gi 
in (13.57) are set equal to 1. 

13.5. Coding for the Rayleigh fading channel 

In this section we provide an analysis of coding for fading channels, with empha- 
sis on the Rayleigh fading channel. As we shall see, the concept of code diversity 
plays a crucial role here: in fact, coding will be seen as a way of introducing di- 
versity in the transmission system, and all channel codes can be interpreted as 
having a degree of built-in diversity. 

13.5. Coding for the Rayleigh fading channel 717 

Assume transmission of a coded sequence x = (sl , s2, . . . , s,) where the 
components of x are signal vectors selected from a constellation S. We do 
not distinguish here among block or convolutional codes (with soft decoding), 
or block- or trellis-coded modulation. We also assume that, thanks to perfect 
(i.e., infinite-depth) interleaving, the fading RVs affecting the various symbols sk 
are independent. Hence we write, for the components of the received sequence 
(r1, r2, . . . 7 rn) 

rk = Rk~k + ~ l k  (13.64) 

where the Rk are independent, and, under the assumption that the noise is white, 
all the components of the random vectors nk are also independent. 

Coherent detection of the coded sequence, with the assumption of perfect 
channel-state information, is based upon the search for the coded sequence x 
that minimizes the distance 

Thus, the painvise error probability can be expressed in this case as we did 
in 13.3.2. 

P{x + 2 )  = P(X < 0) (13.66) 
1 
i where now 

Under our assumptions, all the terms in the last summation are independent. 
Thus, from (13.40) and (13.41), by observing that the RVs Rk are independent 

1 and equally distributed we obtain 
I 

I 

I where the last equality differs from the previous one in that the index set is re- 

I duced from (1,. . . , n) to K, the set of k such that sk # gk. This can be done 

f 
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because for the values of k such that sk = & the exponential in (13.68) takes 
value 1, and hence carries no contribution to @ x ( s ) .  

Since K has as many elements as there are components of the code sequence 
x  that differ from the corresponding components of 2, the cardinality of the set 
K turns out to be the Hamming distance between x and 2 ,  that is, the num- 
ber of components in which x  and 2  differ. We denote this Hamming distance 
~ H ( x ,  2 ) .  

By using the result (13.41). a x ( s )  can be given a closed form in the case of 
Rice fading, and a fortiori for Rayleigh fading, obtained by letting K = 0. In the 
latter case 

Computation of the painvise error probability through the Chernoff bound is 
especially simple in this case, because the choice s  = 1/2No minimizes each 
term of the product, and hence a x ( s ) ,  for real s .  We obtain 

Example 13.4 For illustration purposes, let us compute the Chernoff upper bound to 
the word error probability of a block code with rate R,. Assume that binary antipodal 
modulation is used, with waveforms of energies 8, and that the demodulation is coherent 
with perfect CSI. We use (13.70) by observing that for zk # xk we have 

where i$ denotes the average energy per bit. For two code words x, 2  at Hamming 
distance dH(x ,  2 )  we have 

and hence for a linear code 

where the sum runs over the set of nonzero Hamming weights of the code, and Ad is the 
number of words with Hamming weight d. It can be seen that for high enough signal-to- 
noise ratios the dominant term in the expression of P(e) is the one with exponent dminy 
the minimum Hamming distance of the code. 

By recalling Example 13.3 and (13.63), the fact that the probability of error de- 
creases inversely with the signal-to-noise ratio raised to power dmi, can be expressed 
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by saying that we have introduced a code diversity dmin. In this context, the various 
diversity schemes discussed in the previous section may be seen as implementations of 
the simplest among the coding schemes, the repetition code, which provides a diversity 
equal to the number of diversity branches. 0 

13.5.1. Guidelines of code design for the Rayleigh fading channel 

We may further upper bound the RHS of (13.70) by writing 

(which is close to the true Chernoff bound for small enough No). Here 

is the geometric mean of the nonzero squared Euclidean distances between the 
components of x,  2. The latter result shows the important fact that the error prob- 
ability is (approximately) inversely proportional to the product of the squared 
Euclidean distances between the components of x,  2  that differ, and to a power 
of the signal-to-noise ratio whose exponent is the Hamming distance between x  
and 2 .  

We hasten to observe that the expression obtained here for the pairwise error 
probability is an upper bound, rather than an exact expression. Thus, the results 
obtained should be interpreted with some care. 

Now, we know from the results refemng to block codes, convolutional codes, 
and coded modulation that the union bound to error probability for a coded sys- 
tem can be obtained by summing up the pairwise error probabilities associated 
with all the different "error events." For small noise spectral density No, i.e., for 
high signal-to-noise ratios, a few equal terms will dominate the union bound. In 
our framework, these correspond to error events with the smallest value of the 
Hamming distance d ~ ( x ,  2 ) .  We denote this quantity by LC to stress the fact 
that it reflects a diversity residing in the code. We have 

where v is the number of dominant error events. For error events with the same 
Hamming distance, the values taken by b2 ( x ,  2)  and by v are also of importance. 
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This observation may be used to design coding schemes for the Rayleigh fading 
channel with high SNR: the Euclidean distance, which is the central parameter 
used in the design of coding schemes for the AWGN channel, plays a minor role 
here. 

From the discussion above, we have learned that over the high-SNR Rayleigh 
fading channel with perfect interleaving the choice of a coding scheme should 
be based on the maximization of the code diversity, i.e., the minimum Hamming 
distance among pairs of error events. Since for the Gaussian channel code di- 
versity does not play the same central role, coding schemes optimized for the 
Gaussian channel are likely to be suboptimum for the Rayleigh fading channel. 

One should also observe that for "conventional" systems, i.e., those separat- 
ing modulation and coding with binary modulation, Hamming distance is pro- 
portional to Euclidean distance, and hence a system optimized for the additive 
white Gaussian channel is also optimum for the Rayleigh fading channel. This 
solution has the advantage of being robust, i.e., of providing good performance 
with a fading channel as well as with an AWGN channel (and, consequently, with 
a Rice fading channel, which can be seen as intermediate between the latter two). 
This observation has prompted some authors to advocate "pragmatic" schemes 
in which coded modulation is generated by pairing an M-ary signal set with a 
binary convolutional code with the largest free Hamming distance. Decoding is 
achieved by designing a suitable metric to be used in conjunction with a stan- 
dard, off-the-shelf Viterbi decoder for the convolutional code. For a thorough 
discussion of this point, see Caire, Taricco, and Biglieri, 1998. 

13.5.2. Cutoff rate of the fading channel 

We supplement our discussion of the effect of coding on the fading channel by 
providing the computation of the cutoff rate of the discrete channel generated by 
a modulation scheme used on the Rayleigh fading channel with coherent detec- 
tion, perfect channel-state information, and infinite-depth interleaving. We also 
assume that the fading process is ergodic, i.e., that every realization is represen- 
tative of the whole process. 

Our calculation parallels that of Section 12.1. Pick two code words x = 
( ~ 1 , .  . . , s,,) and 2 = (gl, .  . . ,$,I, whose components are selected randomly, 
independently, and with equal probabilities. From (13.67) we have the Chernoff 
bound 

By observing that the arguments of the exponentials are minimized for A = 
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1/2No (irrespective of k), we have for the average pairwise error probability 

where, by following the footsteps of the derivation of (12.12), we have defined 

Ro = log2 M - log2 (13.73) 

and 

6 No, = C C 1 

SES P+S 1 + I S  - ~I2 /4No 

Example 13.5 (PSK) By exploiting the symmetry of the constellation as indicated in 
Example 12.1, we have, for quaternary PSK: 

r(S, No) = 4[1/(1+ E/No) + 2/(1+ E/2No)] 

and 
& = logz 4 - 10g2[l + r ( s ,  No)/4] 

The values of &, in bits per channel use for binary, quaternary, and octonary PSK, are 
shown in Fig. 13.10. By comparing these results with those of Fig. 12.2 we can see that 
the gap between the values of the cutoff rate of AWGN and Rayleigh fading channel 
is not as wide as the gap in error probability for uncoded systems. This suggests that 
coding is highly beneficial for this fading channel. 0 

13.6. Bibliographical notes 

The books on mobile, or wireless, or cellular radio usually have one or more 
chapters devoted to fading channels, their characterization, and measurement. 
The interested reader may see the classic Jakes (1974), or the recent books by 
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SNR (dB) 

Figure 13.10: Cutoff rate Ro (in bits per channel use) of the discrete channel gener- 
ated by M-ary PSK transmitted over the Rayleigh fading channel with coherent de- 
tection, perfect channel-state information and infinite-depth interleaving. Here SNR= 
E [ R ~ ] & / N ~ .  

Pahlavan and Levesque (1995), Rappaport (1996), Stiiber (1996), or the col- 
lection of articles reprinted in Rappaport (1995). The book by Lee (1989) is 
devoted to the engineering aspects of mobile radio communications. Chapter 
14 of Proakis (1995) contains a variety of topics on fading channels that were 
not covered here. The paper by Biglieri, Proakis, and Sharnai (1998) includes a 
thorough discussion of the information-theoretic aspects of fading channels. 

Further details on the calculation of error probabilities for transmission on a 
fading channel can be found for example in Lindsey (1964), Ho and Fung (1992), 
Cavers and Ho (1992), Simon and Alouini (1998), and Biglieri, Caire, Taricco, 
and Ventura (1998). 

A good recent review of diversity techniques can be found in Chapter 12 of 
Gibson (1996). The paper by Brennan (1959) contains a thorough discussion of 
linear diversity combining techniques. See also Jakes (1974). 

The book by Biglieri et al. (1991) contains two chapters on trellis-coded 
modulation for the fading channel, while Jamali and Le-Ngoc (1994) is entirely 
devoted to this subject. Our discussion on coding for the Rayleigh channel fob 
lows closely the review paper by Seshadri and Sundberg (1993). to which the 

I 

13.7. Problems 

interested reader is referred for further details and an extensive set of references 
on this topic. 

The synergy of coding and diversity over fading channels is thoroughly stud- 
ied by Ventura, Caire, Biglieri, and Taricco (1997a, 1997b. and 1997~).  Coding 
strategies that perform well on both the AWGN and the fading channels are the 
subject of two papers by Zehavi (1992) and Caire, Taricco, and Biglieri (1998). 
Block fading channels are studied, among others, by Knopp and Humblet (1997 
and 1998). 

13.7. Problems 

Problems marked with an asterisk should be solved with the aid of a compute,: 

13.1 Consider two independent Gaussian random variables X, Y, with mean zero and 
common variance u2. Let R  denote the magnitude and Q the phase of the complex 
random variable X + jY. Prove that R  and Q are independent, that R  has a 
Rayleigh pdf, and Q is uniformly distributed in (0, 2n). 

13.2 Consider two independent Gaussian random variables X, Y, with mean values 
p x  and py.  respectively, and common variance u2. Let R  denote the magnitude 
and Q the phase of the complex random variable X + jY. 

(a) Prove that R  and Q are generally not independent, and that R  has a Rice 
pdf, 

(b) Assume next that the phase of the complex number p x  + j py  is a RV 
uniformly distributed in (0, 2n) , and prove that in these conditions R  has 
still a Rice pdf, Q is uniformly distributed in (0, 2n) ,  and R  and Q are 
independent. 

13.3 We introduce here the "block Rayleigh fading" channel model. This model is 
motivated by the fact that, in many mobile radio situations, the channel coherence 
time is much longer than one symbol interval, and hence several transmitted sym- 
bols are affected by the same fading value. This model assumes that a code word 
of length n = pv spans p blocks of length v.  An interleaver spreads the code 
symbols over the p blocks. The value of the fading in each block is a Rayleigh- 
distributed RV, constant over a block and independent from block to block. 

(a) Prove that for this channel the painvise error probability decreases exponen- 
tially with exponent dH(p) ,  the Hamming distance between code words on 
a block basis (this is the number of blocks in which two code words differ, 
rather than the number of different symbols). 

(b) Derive a Singleton upper bound on d~ ( p ) ,  depending on the code rate, the 
value of p, and the number of signals used by the modulator. 
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13.4 Prove that, with constant envelope signals (1x1 constant), the error probabilities 
obtained with (1 3.18) and (13.49) coincide. 

13.5 (*) Consider the (8,4) extended Hamming code with dmi, = 4 and soft decoding. 
Compare the coding gain obtained for an error probability P(e)  = lo-' by using 
coherently-demodulated biniuy antipodal modulation over the AWGN channel 
and over the Rayleigh fading channel. 

13.6 (*) Consider biniuy antipodal modulation with coherent detection and a Rayleigh 
fading channel with L-branch diversity and selection combining. Compute and 
plot the resulting error probability for L = 1,2,4, and 8. 

13.7 Compute the average signal-to-noise ratio obtained at the output of a selection 
combiner. Assume an L-branch diversity receiver. 

Digital transmission over nonlinear 
channels 

In Chapters 7 and 13 we considered some of the major impairments affecting 
digital transmission besides additive Gaussian noise, such as intersymbol inter- 
ference (ISI), interchannel interference (ICI), and fading. They are due to the 
nonideal characteristics of the linear devices present in the system and to the 
transmission medium. We have seen in Chapter 7 that IS1 and ICI can be mod- 
eled as terms that sum to the useful signal. This is a direct consequence of the 
linear assumption made for the components of the system. 

There are many cases, however, where this assumption is not true, as non- 
linear devices significantly contribute to system degradation. One example is 
encountered in high-speed digital transmission over telephone channels, where 
nonlinear signal distortion arises principally from inaccuracies in signal com- 
panding (compressing-expanding) in telephone transmission. A second example 
is the digital satellite link, in which both the earth station and the satellite repeater 
are equipped with amplifiers operated in a nonlinear region of the input-output 
characteristics for a better exploitation of the power of the device. The earth 
station amplifier nonlinearity is often mild, either because it operates some deci- 
bels below the saturation point (it is "backed o f f  ), in a nearly linear region, or 
because a predistortion linearizer is inserted in the transmitter chain. To the con- 
trary, the satellite amplifier (a traveling wave tube (TWT) or a solid-state device) 
is driven near to the saturation point and exhibits highly nonlinear characteris- 

, tics, which must be included in the analysis of the system performance. A third 
example is offered by power amplifiers in hand-held terminals of mobile radio 
communications, whose power effieciency is at a premium. 

In most engineering fields the gap between the tractability of linear and non- 
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Figure 14.1 : Block diagram of a nonlinear transmission system. 

linear problems is wide. Whereas refined mathematical tools and comprehensive 
theories are normally available in the linear case, only very special categories 
of problems can be analyzed in nonlinear situations. Digital transmission theory 
is no exception to this rule. No well-established theories exist for the analysis 
and/or design of a nonlinear digital transmission system. Because of this, the 
structure of this chapter will be in a sense peculiar with respect to the rest of 
the book. Most of the topics analyzed in detail before in a linear context will be 
discussed concisely here, aiming at extending the results, wherever possible, to 
the nonlinear situations. 

Much of the technical literature shows the effort that has been devoted to 
smoothing out the differences among models and analyses used to attack nonlin- 
ear problems. However, this chapter is idiosyncratic, in the sense that it reflects, 
in its choice of topics and analytical tools, the preferences of the authors and their 
research experience. The particular nature of the chapter renders more important 
the Bibliographical Notes at the end, where reference is also made to different 
approaches to the same problems. 

Section 14.1 is devoted to the modeling of a finite-memory nonlinear chan- 
nel. Then this model is used as a starting point to perform spectral analysis of 
nonlinear signals (Section 14.2). to derive the optimum symbol-by-symbol linear 
receiver (Section 14.4), and the optimum maximum likelihood (ML) sequence 
receiver (Section 14.5). A more specialized model of the nonlinear channel, 
based on the discrete Volterra series, is introduced in Section 14.3. This model 
permits the computation of an explicit expression for the received signal in which 
all the significant contributions (i.e., useful signal, linear and nonlinear interfer- 
ences, and noise) appear separately. In the same section, this result is used in 
evaluating the performance of a nonlinear system employing QPSK modulation. 
In Section 14.6, the Volterra model is employed to derive the structure of a non- 
linear equalizer and of a linearizer. Finally, in Section 14.7, precompensation of 
nonlinearities is examined. 

14.1. A model for the nonlinear channel 

The model applied to the system analyzed is shown in Fig. 14.1. The source 

14.1. A model for the nonlinear channel 

Figure 14.2: Model of the noiseless part of a nonlinear channel withfinite memory. 

emits a stationary sequence (a,) of discrete independent random variables (RVs) 
of known statistics, one every T ;  the block labeled "channel" represents the 
noiseless part of the real channel and includes all devices between the source 
and the receiver (modulator, filters, physical channel, nonlinear devices, etc.). 
It transforms the discrete-time sequence at its input into a continuous waveform 
y(t). After the addition of Gaussian noise, the signal enters the receiver, in which 
it is processed to estimate the transmitted sequence (a,). 

We assume that the channel has a finite memory; that is, at any time instant 
t the channel output y(t) depends only on a finite number, say L, of past source 
symbols besides the one emitted at time t. Using the definition of shift-register 
state sequence given in Section 2.2.1, we can define the state a, of the channel 
during the nth interval [(n-1)T, nT] as the n-tuple of the L consecutive symbols 
ai 

The state a, then represents the memory of the channel. The emission of symbol 
a, from the source forces a transition of the channel state from a, to a,+l. A 
sequence of states forms the special case of the Markov chain studied in Section 
2.2.1 under the name of shift-register state sequence. 

With the finite-memory assumption, we can model the noiseless channel of 
Fig. 14.1 as in Fig. 14.2, where h( t  - nT);  a,, a,) is the waveform generated in 
the nth time interval of duration T. The channel output y(t) will then consist of 
a sum of nonoverlapping waveforms, each defined in an interval of duration T 

a 
~ ( t )  = n h(t - nT;  a,, a,) (14.2) 

In (14.2), the waveforms h(t; a,, a,) are zero outside the interval (0, T )  and 
can assume no more than ML+' different shapes, where M is the cardinality of 
the set of values assumed by a,. The waveforms h(t; ., .) will be called chips. 
The signal y(t) at the output of the channel is then obtained as a sequence of 
chips chosen according to the values of the sequence (a,) or, equivalently, (a,). 
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Figure 14.3: Noiseless part of a bandpass nonlinear trammission system using 2-PSK 
modulation 

A final observation is pertinent. This system model can also accommodate a 
channel (block or trellis) encoder with finite memory. 

14.2. Spectral analysis of nonlinear signals 

A general method to evaluate the power spectrum of a random digital signal 
was presented in Section 2.3. The signal y ( t )  of (14.2) has the form (2.104), 
which is the starting point for the derivation of the power spectrum. We can use 
then formulas (2.149)-(2.151) to compute the spectrum, taking into account the 
simplification that the state sequence (on) is a shift-register sequence (Section 
2.2.1). This reduces the infinite summation in (2.151) to a finite summation 
ranging from 1 to L, L the channel memory as defined above. The following 
example shows some results obtained through the application of this method. 

Example 14.1 The aim of this example is to pictorially describe the effect of the non- 
linearity on the power spectrum of a digital signal. Consider a channel formed by cas- 
cading a linear filter with a memoryless nonlinear device like that in Fig. 14.3, used by 
a system employing a 2-PSK modulation. The whole channel can be considered as a , 

nonlinear system with memory, in which the memory is due to the linear filter and the 
nonlinearity to the memoryless nonlinear device. The filter, represented by its impulse 
response s ( t ) ,  is a sixth-order Butterworth filter with normalized equivalent noise band- 
width BqT = 1.2. The nonlinear device is a traveling-wave tube whose AMJAM and 
AMlPM characteristics are shown in Fig. 14.4 (see Section 14.3 for a detailed explana- 
tion of the meaning of these characteristics). Inspection of the impulse response of the 
filter shows that a value of L = 3 is sufficient to account for the memory of the system. 
We have then 2' = 16 different chips h(t;  a ,  o) for this system. Using the technique 
previously outlined, we may compute the power spectra of the signals x ( t ) ,  the output 
of an ideal 2-PSK modulator, z ( t ) ,  its filtered version, and y(t), the filtered signal passed 
through the nonlinearity of Fig. 14.4 for different values of the input backofl defined as 
the difference in dB between the actual input power and that corresponding to the max- 
imum output power. Looking at the results shown in Fig. 14.5, the phenomenon of the 
sidelobes restoration due to the TWT appears evident: the sidelobes of the CPSK spec- 
trum are first attenuated by the filter, then restored by the TWT. Also evident is the role 
played by the input backoff and the consequent trade-off between power efficiency and 
sidelobes enhancement. The sidelobes restoration gives rise to interchannel interference 
(ICI) in a system employing frequencydivision multiplexing. 

14.2. Spectral analysis of nonlinear signals 

-20 -I5 -10 -5 0 
l n p t  envelope (dB) 

Figure 14.4: Typical AM/AM andAM/PM characteristics of a 7WT 

Figure 14.5: Power spectral densities of different signals in the nonlinear transmission 
system of Example 14.1. Curve a refers to the modulator; curve b to the filter; curve c to 
the TWT at saturation, and curves d and e to the TWT with an input backoff of 6 and 12 
dB, respectively. 
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SATELLITE 

Figure 14.6: Satellite link 

Figure 14.7: Block diagram of a satellite link. 

14.3. Volterra model for bandpass nonlinear channels 

1 HPA - 
IMUX TWT - 

FILTER 

As previously mentioned, satellite digital transmission represents one of the most 
important cases of digital communication systems employing a nonlinear chan- 
nel. It consists of two earth stations (TX and RX in Fig. 14.6), usually far from 
each other, connected by a repeater traveling in the sky (the satellite) through two 
radio links (uplink and downlink inthe figure). A block diagram of the system of 
Fig. 14.6 is shown in Fig. 14.7. The block labeled HF'A (high-power amplifier) 
represents the earth station power amplifier; its input-output power characteris- 
tics are nonlinear, of a saturating type like that presented in Fig. 14.4. Although 
the highest power efficiency is obtained by letting the HF'A operate at (or near) 
the saturation point, it is common practice to operate the HF'A a few decibels 
below saturation in a nearly linear region. This backing-off the operation point 
facilitates the attenuation of the effects caused by nonlinearity (e.g., the spread- 
ing of the spectrum of the input signal, which, as seen in Example 14.1, gives 
rise to ICI). 

TX 
FILTER 

- SOURCE 

RECEIVER 

14.3. Volterra model for bandpass nonlinear channels 

OMUX 
~ L T E R  

Figure 14.8: Simulated phasor diagram of a QPSK signal at the output of a bandpass 
nonlinear channel. 

+ 

- +- 

The TX filter limits the bandwidth of each channel in an FDMA system, 
whereas the IMUX (input multiplexing) filter limits the amount of uplink noise 
entering the satellite transponder. The block labeled TWT represents the satel- 
lite's on-board amplifier. Owing to the satellite's limited power resources, this 
amplifier is usually operated at saturation to obtain the maximum efficiency. Typ- 
ical input-output characteristics of TWTs are of the kind shown in Fig. 14.4. 

Due to bandwidth limitations, the modulated signal at the TWT input does 
not have a constant envelope. In particular, when transitions between opposite 
points in the signal space occur (as in CPSK), the envelope may pass through 
zero. This phenomenon is represented in Fig. 14.8, where the set of envelope 
values is drawn in the signal space at the input of the TWT in a typical system 
situation. These input envelope fluctuations are translated at the TWT output 
in phase shifts that deteriorate the system performance. The functions of the 
OMUX (output demultiplexing) filter and RX filter are, respectively, similar to 
those of TX and IMUX. The receiver is assumed to be a conventional symbol- 
by-symbol receiver. In this section the receiver optimization is not considered. 
It will be dealt with later. Our objective is to determine the performance of the 
system in terms of error probability. 

Two main tracks have been followed to assess the error performance of a 
nonlinear satellite link. The first uses simulation tools to analyze a complete 
model of the system. The second is based on some simplifications of the model 

- 
MODULATOR 

RX 
FILTER 
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Gaussian 
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RECOVERY RECOVERY 

Figure 14.9: Block diagram of a digital satellite transmission link 

such that an analytical approach is feasible. Based on the channel model of 
Section 14.1, an intermediate approach could be used when the uplink noise is 
omitted from the system model. This often occurs owing to the higher signal-to- 
noise ratio in the uplink. The approach consists in evaluating the error probability 
conditioned on the channel state a,, and then averaging over all possible states 
by generating the whole set of chips h( t ;  ., .) in (14.2). This approach stems 
directly from the direct-enumeration method for computing the error probability 
in the presence of the IS1 described in Section 7.2.1. 

In this section we present a method for the performance analysis based on 
Volterra series. It renders explicit the dependence of the received signal on the 
sequence of source symbols (a,) and allows the application to the nonlinear case 
of the methods for computing the error probability with ISI. 

It is felt that the model based on Volterra series represents a balance between 
two often conflicting requirements (i.e., faithful representation of the physical 
system and analytical tractability of the model). 

Consider the block diagram of Fig. 14.9. It represents a slightly more detailed 
version of Fig. 14.7, as the block "receiver" has been expanded. This block 
diagram will be the basis of our analysis. Note that it does not include some 
types of disturbances that can affect the two radio links of Fig. 14.6, (e.g.. fading 
and interferences from other users of the transmission medium, cochannel and 
interchannel interference, etc.). Furthermore, camer and timing recovery are 
supposed to be ideal. The nonlinear device is a bandpass memoryless nonlinear 
system whose input-output characteristics are described by the relationship (see 
(2.218)): 

y ( t )  = ~ [ ~ , ( ~ ) ] & ( b = ( t ) + * [ ~ = ( ~ ) ] }  (14.3) 

14.3. Volterra model for bandpass nonlinear channels 

1.5 1 

A W A M  
A W P M  (dB) 
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Input envelope (dB) 

Figure 14.10: Measured input-output A M A M  and A M P M  characteristics of a commer- 
cial lUT 

where y(t)  is the complex envelope of the output signal and 

is the complex envelope of the input signal. The nonlinearity is then character- 
ized by two real-valued functions, F(.)  and @(.), which describe the AMIAM 
and AM/PM conversion effects, respectively. A typical example related to satel- 
lite links is shown in Fig. 14.10, where F( . )  and @(.) represent measured charac- 
teristics of a commercial TWT. Since the whole system represented in Fig. 14.9 
is bandpass, we can use the low-pass representation of systems and signals (Sec- 
tion 7. I), which leads to the block diagram of Fig. 14.11. Here 

(a,) is a sequence of (generally complex) discrete iid generally complex 
RVs. 

0 x ( t )  is the modulated signal 

0 s ( t )  is the overall impulse response of the filters preceding the nonlinearity. 

c(.) is a complex function that represents the input-output relationship of 
the nonlinearity 

.(.) = J'(.)&*(') (14.6) 
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Figure 14.11: Equivalent block diagram of the digital satellite link of Fig. 14.9. 

u ( t )  is the impulse response of a filter that represents the cascade of all 
linear devices following the nonlinearity. 

nl ( t )  and n2 ( t )  are generally complex baseband Gaussian processes, with 
zero mean and variances a: and 0: (in a satellite link, they represent the 
uplink and downlink noises, respectively). 

The analysis of the system in Fig. 14.1 1 will follow two steps. First, we assume 
that nl ( t )  = 0 (i.e., no uplink noise is present in the system). Although motivated 
by the desire for simplicity, this assumption is reasonable for satellite systems in 
which the greater power of the earth transmitter keeps the signal-to-noise ratio 
in the uplink higher than in the downlink. Successively, we will include uplink 
noise in the analysis. 

Consider a Volterra system, as defined in Section 2.1.2, whose input-output 
relationship has the form 

m 

~ ( t )  = CY&) (14.7) 
k=l 

where 
k 

yk ( t )  5 Jm -CO . . .ll hk (rl ,  . . . , r k )  [n x ( t  - ri)dri 
i=l 

and hk(r l r  .. . , rk) are the Volterra kernels of the system. We want to ob- 
tain input-output expressions like (14.7) and (14.8) in the particular case of 
the bandpass Volterra system, for which the input and output signals are the 
complex envelopes of the actual signals, and the system is characterized by 
its equivalent low-pass Volterra kernels. Extending the development of Exam- 
ple 2.18, which concerned memoryless polynomial-law nonlinear devices, to the 
case of the bandpass nonlinear system comprised between signals x ( t )  and y(t)  
in Fig. 14.11, we obtain the following result (see Problem 14.2): 

14.3. Volterra model for bandpass nonlinear channels 735 

where * means complex conjugate. 
Substituting now the expression (14.5) of x ( t )  into (14.9), we have 

where k2,+, are the low-pass Volterra kernels of the system. Owing to the par- 
ticular structure of the nonlinear system of Fig. 14.1 1 that confines the memory 
into linear components, the low-pass Volterra kernels can be derived in a rela- 
tively easy way. 

Consider first the following Taylor series expansion of the nonlinear function 
c( . )  defined in (14.6): 

m 

c(A)  = C ~ ~ 2 r n + l A ~ ~ + l  (14.1 1) 
n=O 

in which the presence of only odd powers of the argument A  is a consequence of 
the bandpass nature of the nonlinearity (see Example 2.18). Using (14.11), the 
output of the nonlinearity (Fig. 14.1 1) can be expressed as 

Since now 
~ ( t )  = Jm s ( r ) x ( t  - r ) d r  

-m 
(14.13) 

and 

we get, through some easy algebra 

Comparing (14.15) with (14.9), one finds the desired expression for the low-pass 
equivalent kernels 
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We now have all the ingredients to find an explicit expression for the sampled 
received signal entering the decision device in Fig. 14.11. The received signal 
r ( t )  is given by 

r( t )  = Y ( t )  + n ~ ( t )  (14.17) 

where y(t) has been defined in (14.10). Sampling now at t  = to and defining 

leads to 

This result is the starting point for the analysis of a synchronous digital commu- 
nication system using nonlinear devices. The computation of the discrete kernels 
K2m+l (.) only involves a convolution integral (see (14.16)), which can be solved 
using standard numerical techniques. 

To apply (14.21). we also have to deal with two kinds of infinite summa- 
tions. The first one, index m, comes from the power series expansion (14.11) of 
the nonlinearity characteristics. It is usually truncated to some value m~ large 
enough to accurately represent the function c ( . ) .  As an example, in the case of 
the TWT characteristics shown in Fig. 14.10, m~ = 3 allows a reasonable ap- 
proximation of the curves in the range from zero to a few decibels beyond the 
saturation point. The second kind of infinite series, indexes ni, depends on the 
memory of the linear components of the communication system, that is, s( t )  and 
u(t ) .  As is usual for linear systems, we shall suppose that both s( t )  and ~ ( t )  
have a finite duration. Thus, we can say that each ni takes value in a finite set of 
integers. In the following, summations limits will often be omitted. It is intended 
that the set of values taken by the indexes have finite cardinality. 

As seen in Chapter 7, the decision device operates on samples of the in- 
phase and quadrature demodulated signals, which correspond to the real and 
imaginary parts of R (i.e., Rp and R Q )  From (14.21), we can extract all the 
terms containing only the transmitted symbol ao, which contribute to form what 
we call the "useful sample" &: 

14.3. Volterra model for bandpass nonlinear channels 

This allows one to rewrite (14.21) in the form 

Let us define 

(where the summation indexes nl ,  . . . , nzm+l in the RHS of (14.26) and (14.27) 
cannot be all zeros) and 

NZP e R(N2) (14.28) 

N2Q 4 ~ { N Z )  

so that finally (14.23) becomes 

The structure of (14.23) is quite similar to that of (7.18) and can be viewed as 
an extension of it. In fact, we recognize in (14.23) the useful signal (first term in 
RHS), the linear IS1 (second term), the nonlinear contribution to IS1 (third term), 
and, finally, the additive Gaussian noise (last term). 

As in Chapter 7 for the linear case, we can now apply the methods there 
described (in particular, the Gauss quadrature rule approach explained in detail in 
Appendix E) to compute the error probability of the system. Those methods are 
based on the knowledge of a certain number of moments involving the RVs that 
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represent IS1 (i.e., RP and RQ in our case). With respect to the linear situation, 
two new factors are present. They give rise to considerable complications. First, 
it is necessary to compute the discrete Volterra kernels Kzm+l( . ). This can be 
achieved with the aforementioned numerical algorithms. Second, the RVs R p  
and RQ cannot be written (as in the linear case) as a sum of independent RVs. 
The next section is almost entirely devoted to solve this problem. Although our 
treatment will deal with M-ary CPSK, it requires only minor changes to extend it 
to any coherent modulation scheme using a two-dimensional signal constellation. 

14.3.1. Error probability evaluation for M-ary CPSK 

Let an = exp{j&) in (14.5), with 4, assuming equally likely values in the set 

which corresponds to M-ary PSK. The decision device determines the received 
phase angle aR 

aR = tan-' 
ROQ + RQ + N ~ Q  (14.32) 
RIP + RP + NZP 

and decides according to the phase thresholds 2krlM + O , k = 0,. . . , M - 1, 
where O is a constant phase offset taking into account the value of AMPM 
conversion of the TWT at the nominal operating point. This phase conversion has 
the effect of rotating the signal space by a constant value. This is compensated 
for by shifting the phase thresholds. 

Following the procedure described in Section 7.2.2 for the linear case, we 
obtain the following bounds for the error probability, conditioned on the trans- 
mitted symbol a0 = e x p { j r / M ) :  

where 

11 - I / erfc { X(O + 2 r l M )  + Xo(O + 2 r l M )  
2 c &'a2 } f&(O + 2rlM)ldX 

(14.34) 

A 1 1 { - A ( @ )  - ~ ~ ( 0 )  } Iz  = - erfc f~[X(@)ldX (14.35) 
2 c &'uz 

In (14.34) and (14.35), a; is the variance of the Gaussian RVs Nzp,  NzQ; L and 
~ A ( X )  are the range and pdf of the RV A, defined as 

A ( p )  E R p  sin /3 - RQ cos /3 (14.36) 
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The useful sample in (14.34) and (14.35) is present in X o  , defined as 

( P )  5 h p  sin P - hQ cos P (14.37) 

As in the linear case, the symmetry of the received signals implies that the aver- 
age error probability coincides with the conditional one. As a matter of fact, the 
transformations operated by the nonlinear device on the input signal depend on 
the envelope of the signal itself, which in turn is independent of the transmitted 
phase. 

To evaluate (14.34) and (14.35) using the approaches outlined in Appendix 
E, we need a few conditional moments of the RV A@). In the following, we shall 
derive a recurrent relationship that permits their computation. From (14.36). the 
conditional moments of A can be written as 

E{An(P) ( ao) = E{(Rp  sin P - RQ cos P)" I ao) (14.38) 

= 2 (:) E{R:R;-* / aO}(-l)"-* sink /3 
k=O 

and the problem of computing the moments of A(P) is reduced to the cornputa- 
tion of the joint conditional moments 

pkn E{R:RZ;~ I ao) 

Define the complex random variable E as 

A E = RP + j R Q  

so that 
1 

R P = ~ ( E + E ~ )  

1 
RQ = - (E  - E * )  

2J' 
Thus, we can write (14.39) as 

Let us get a deeper insight into the structure of the powers of E and E*. From (14.26) 
and (14.27), < is given by 
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where the multiple summation excludes the term all of whose indexes are zero. 
Observe that any power of < (and <*) can be considered as output of a Volterra 
system having < (or r )  as input. We shall relate the new Volterra kernels defining 
the output to the ones that define the input. Let us start with E2. When computing 
it, the terms a,, a,, , a,, a,,u,,,a:, , . . . , are multiplied by coefficients obtained 
as sums of products of Volterra kernels Kzm(.) as follows: 

where the symbol KP) refers to the Volterra coefficient of the L-th order relative 
to the second power of <. 

Based on (14.44) and on previous definitions of KP), we can write t2 as 

where Kg2 ,  (.) satisfies the recurrence 

The previous procedure can be extended (see Problem 14.4) to derive the general 
formula 

with 
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and K:O ( . ) Km( . ). The reader is invited to challenge his patience in deriv- 
ing similar relationships for the powers of <* (see Problem 14.5). 

Using (14.47)-(14.48), and the corresponding formulas for (<)*, the averages 
in the RHS of (14.43) can be given the form 

and the final step toward the knowledge of the moments of A (see (14.36)) is the 
computation of the conditional averages in the RHS of (14.49). 

To this end, define 
Ak E{ak) (14.50) 

and remember that the indexes ni range in a finite set, say (0,. . . , N). Denote 
by um (and u:) the number of indexes of the ani (and a&) that take on the values 
m (m = 0,1, .  . . , N). Taking into account that 

we have 

and 
1, if k = f 2 i M ,  i = O , l ,  . . .  

A k = {  -1, if k = f ( 2 i + l ) M ,  i = 0 , 1 ,  . . .  (14.53) 
0 ,  otherwise 

As an example, assuming M  = 4 (quaternary PSK), we have 

To end this section, a step-by-step summary of the whole procedure needed to 
obtain the error probability may prove useful for applicative purposes. 
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Step 1 Compute the Volterra coefficients Kzi+, (.) by using, for example, their 
definition (14.18) and (14.16). 

Step 2 Compute the Volterra coefficients of higher order using recurrent rela- 
tionships like (14.48). 

Step 3 Compute the moments pk, defined in (14.43) through (14.49)-(14.53). 

Step 4 For a given P ,  compute the moments of the RV A(P) through (14.38), 
taking into account (14.39). 

Step 5 Compute Il and I2 (and thus the bounds on error probability) defined 
in (14.34) and (14.35) using the methods described in Appendix E. 

14.3.2. Including uplink noise in the analysis 

In general, a wide-sense stationary Gaussian process nl ( t )  can be represented in 
the following form (see Masry et al., 1968): 

where b,(t) are appropriately chosen deterministic functions and (Pa)  is a se- 
quence of zero-mean, unit-variance independent Gaussian RVs (possibly com- 
plex). 

The general representation (14.54) reduces to the following form: 

when (see Problem 14.7) the lowpass equivalent linear systems that limit the up- 
link noise power can be approximated by an ideal lowpass filter with bandwidth 
1 / 2 T .  

If the representation (14.55) is valid, we can use the model of 14.12, where 
no(t) is added to the modulated signal before the baseband shaping filter. In this 
way, the uplink noise is accounted for by simply considering as an input signal 
x( t ) ,  instead of the one given by (14.5), the new signal 

The received signal can now be given the same form as (14.21), with the substi- 
tution of (a,+P,) in place of a,, and the same previous procedure can be applied 
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Figure 14.12: Block diagram of a nonlinear transmission system including uplink noise. 

to the computation of the moments (see Problem 14.8), since the averages to be 
performed as the final step of the moment computation, that is, 

involve products of independent RVs whose moments are known, as in the pre- 
vious analysis. The only significant change in the procedure worth mentioning 
here is that the presence of the uplink noise also affects the "useful" signal. In 
fact, the expression for & in (14.22) now becomes 

To obtain the error probability, a final average must be computed with respect to 
Po. This can be done by using, for instance, a standard Gauss-Hermite numerical 
quadrature formula (Appendix E). 

Example 14.2 In this example, some results obtained by applying the Volterra series 
method of analysis will be presented. The system model is that shown in Fig. 14.11. 
The TWT characteristics were given in Fig. 14.10. The filters s(t) and u(t) are fourth- 
and second-order Butterworth, respectively. The curves of error probability are given as 
a function of the parameter 

where (Eb)sat is the energy per bit at the input of the receiver in correspondence with the 
TWT operated at its saturation point. The sampling instant to was chosen as the one in 
which the convolution of the impulse responses s(t) and u(t) is maximum, whereas the 
chosen phase offset was that minimizing the error probability (a good starting point for 
the optimization is the value corresponding to the A W M  conversion at saturation). 

In Figs. 14.13 to 14.15 the error probability for a QPSK system is plotted versus 
a the downlink signal-to-noise ratio q2 for different values of the uplink parameter q1 = 

10 loglo(l/a~). It can be seen that, due to the combined effects of uplink noise and 
nonlinearity, a "floor" effect takes place in the error probability curves. For low values 
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Figure 14.13: Error probability of QPSK versus downlink signal-to-noise ratio at satu- 
ration a, with upIir+ 71 as a parmeter: Transmission filter fourth-order Buttenvorth 
with equivalent noise bandwidth Be, = 1.8/T. Receivingfiltec second-order Butier- 
worth with Bw = l.l/T. 

of a. the effect of downlink noise dominates. For large a, the uplink noise dominates 
and the error probability does not depend on downlink-noise power. 

By comparing Figs. 14.13 and 14.15, another relevant feature is observed. As a 
result of an increase of the transmitting filter bandwidth from 1.8 to 2.5, the error prob- 
ability decreases, due to the smaller amount of IS1 introduced by the filtering. This is 
explained by the lack of neighboring channels in the models. Actually, in a multichannel 
environment, for any increase in the transmitting filter bandwidth, a corresponding in- 
crease in interference power occurs. By comparing Figs. 14.13 and 14.14, the effects of 
the nonlinearity can be observed. The most dramatic feature is the increased sensitivity 
to the uplink noise. In fact, when signal plus uplink noise enter a nonlinearity with a sat- 
urating characteristic, a signal-suppression effect takes place. In the linear case this does 
not occur because uplink and downlink noise simply sum up without further corrupting 
the signal. 

Finally, in Fig. 14.16, the sensitivity of the system to the offset in timing recov- 
ery is shown. The error probability is plotted versus the normalized deviation from the 
"optimum" sampling time tb. It is apparent that the presence of the nonlinear device 
(continuous lines) renders the system behavior more critical to the choice of the sam- 
pling instant. 0 

14.3. Vokerra model for bandpass nonlinear channels 

Figure 14.14: Same a Fig. 14.13, without nonlineariiy. 

Figure 14.15: Same a Fig. 14.13, with transmission bandwidth Bq = 2.5/T. 
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Figure 14.16: Error probability of QPSK versus normalized deviation from the "opti- 
mum" sampling instant tb, with uplink q1 as aparameter and for Q = 12.5 dB. Same 
channel as in Fig. 14.13. 

14.4. Optimum linear receiving filter 

In the preceding sections, we presented models for the description of nonlinear 
channels and demonstrated their use to compute certain performance parameters 
like power spectrum or error probability. So far, nonlinearity has been seen as an 
unwanted source of performance degradation imposed by some particular system 
demands. Also, the receiver structure was assumed to be the same as in the 
linear case. In this section and the following, we shall consider the problem 
of modifying the receiver according to some optimality criterion in order to take 
into account the channel nonlinearity. The analysis is based on the general model 
introduced in Section 14.1. 

Let us consider the symbol-by-symbol receiver shown in Fig. 14.17, in the 
form of a linear filter followed by a symbol-rate sampler and a memoryless de- 
cision device. Here we want to choose the filter impulse response v(t)  in such 
a way that the sample of the received signal ~ ( t )  taken at time t ,  = to  + nT is 
as close as possible (in the mean-square sense) to the transmitted symbol a,. In 
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Figure 14.17: Block diagram of a linear symbol-by-symbol receivez 

formulas, we aim at finding the u ( t )  that minimizes the quantity 

This optimization has been already considered for the linear case in Section 7.4. 
Here, we shall extend those results to a nonlinear environment. Minimization of 
E in (14.59) will be performed in the frequency domain. The received signal (see 
Fig. 14.1) is given by 

where y ( t )  has been defined in (14.2) and w ( t )  is a noise process independent of 
y ( t )  with power spectral density G w ( f )  > 0 for all f .  

Let us denote with U ( f )  the transfer function of the receiving filter and with 
Y ( f )  the Fourier transform of the signal y( t ) .  We have 

where H (  f ;  a,, a,) is the Fourier transform of the waveform h ( t ;  a,, a,). It can 
assume N = M ~ + ~  shapes { H ( f ;  z)):, not necessarily distinct, according to 
the finite-memory assumption made for the channel. 

In the frequency domain, (14.59) can be rewritten as 

where the following definitions have been used: 
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Using the standard variational calculus technique summarized in Appendix C, it 
can be shown that a necessary and sufficient condition for U( f )  to minimize & 
is that it be the solution to the integral equation 

Thus far, we have not yet exploited our knowledge of the structure of Y ( f ) ,  as 
provided by (14.61). Substituting (14.61) into (14.63) and exploiting the fact that 
the state sequence is a shift-register sequence, we obtain (see the derivation of 
(2.1 1 0)) 

where Gk( f )  has been defined as 

m 

Gk( f )  x E { H ( f ;  a,, an)H8(f - k/T; an+e,an+d)e 
-jZaLfT (14.68) 

e=-00 

so that the integral equation (14.66) takes the form 

Let us now compute the averages involved in the definitions of V (  f )  and G k ( f )  

The average in RHS of (14.70) can be computed using a method similar to that 
followed in Section 2.3, leading to the result of (2.146). With the same notations, 
except for the replacement of s(t; a,, a,) with h(t; a,, a,), we obtain 

k-n-1 I c,, n < k  
E{anH*(f;  ak, ak)) = ~;(f)[p'-"'"]'c;,  n  2. k (14.71) 

where c z ( f )  has been defined in (2.135), P (the transition probability matrix of 
the state sequence (a,)) in (2.133), and 
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where ph = P(ah)l and w, Eh were defined in Section 2.3. Note that c3 is 
a vector whose jth entry is the average of the source symbols ah that lead the 
channel to the state Sj ,  being {Sj)& the set of values assumed by the RV a,. 

Substitution of (14.71) into (14.70) and of this into (14.64) yields 

where 

The second term in the RHS of (14.73) contains spectral lines at dc and multiples 
of the symbol rate 1/T. It disappears when either Pmcb or c2( f )Pm is equal 
to zero. This means that the average value of symbols aj's or of waveforms 
H( f ;  ak, ak) is zero. We shall make this assumption in the following; thus we 
have 

v ( f )  = e-j2"fet~ [ c ; ( f ) A ( f  )dl (14.75) 
Turning our attention to the average in the RHS of (l4.68), which defines Gk(f ) ,  
using a straightfonvard replica of the algebra leading to (2.146). we obtain 

where c l ( f )  was defined in (2.138). 
Substitution of (14.76) into (14.76) yields 

where A ( f )  was defined in (14.74). With the hypothesis 

we can write finally 

'Here and in (14.72) the subscript h runs over the set of  M values assumed by the RV a,. 
It mlght have been more appropnate to employ two different notations (one for the RV and the 
other for ~ts values). However, we opted for just one to avoid notational aggravations. 
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Following the procedure used in Section 7.4 for the linear case, we shall prove 
that the equation (14.69) admits the solution 

where 7 ( f )  is a column M-vector of frequency functions periodic with period 
1 /T .  

Recalling through definition (2.135) that c 2 ( f )  is a vector whose ith compo- 
nent is the average amplitude spectrum of the waveforms available to the modu- 
lator when it is in the ith state Si, the similarity of (14.80) with the result (7.87) 
obtained in the linear case becomes apparent. As a matter of fact, we have that 
the optimum receiving filter may be thought of as being composed of a bank of 
filters matched to the average transmitted waveforms, each one followed by an 
infinite-length transversal filter. 

Let us define 
b(f )  b A ( f  )c$ (14.81) 

so that (14.75) can be rewritten as 

Substitution of (14.79), (14.80), and (14.82) into (14.69) yields 

Equivalently, (14.83) can be rewritten in the form 

where d ( f )  is the M-vector, periodic with period 1/T,  defined by 

The vector d ( f )  is now periodic with period 1/T,  so the inverse Fourier trans- 
forms of its components, d j ( t )  , i = 1,.  . . , M ,  have the following form: 
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Figure 14.18: Structure of the optimum receiving jiltes 

Hence, the time-domain version of (14.84) is 

where ~ ( t ;  i) is the inverse Fourier transform of the ith component of cz( f ) .  
Thus, if the waveforms cz(t; i) are linearly independent, (14.88), and hence 

(14.84), can holdif and only if all the p,, are equal to zero. This means that (14.84) 
admits the only solution d ( f )  = 0, that is, assuming that A ( f )  is nonsingular: 

Equation (14.89) shows that 7 ( f )  is periodic with period 1/T.  This proof can 
be extended to the case when the waveforms c2(t; i) are not linearly independent 
(see Biglieri er al. (1984)). 

As already noted, the structure of the optimum filter Uopt ( f )  in (14.80) is that 
of a bank of matched filters followed by infinite-length transversal filters. This 
is shown in Fig. 14.18. 

Example 14.3 As an example of application, consider binary CPSK signal uansmit- 
ted over a nonlinear channel consisting of a fourth-order Butterworth filter cascaded to 
a nonlinear amplifier (a TWT exhibiting both M A M  and A W M  conversion, as in 
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Figure 14.19: Transferfunction of the optimum receivingfilter for binary CPSK (solid 
line) and power spectral density (dashed line) of the received signal; forth-order But- 
tenvonh TXfilter with Bq = 1.0128/T; No = 5 . W/Ht Linear and nonlinear 

channels are shown for comparison. 

Fig. 14.10. For comparison's sake, Fig. 14.19 shows the transfer function of the opti- 
mum filter for a channel with and without the nonlinearity, for the sake of comparison. 
The power spectral densities of the received signal are also shown for comparison. The 
performance of the optimum filter is shown in Fig. 14.20. For comparison, the mean- 
square error resulting from a second-order Butterworth receiving filter with optimum 
3-dB bandwidth is also shown. 0 

14.5. Maximum-likelihood sequence receiver 

In this section we derive the structure of the maximum-likelihood (ML) sequence 
receiver for a system using a nonlinear channel. The channel model is still that 
of Section 14.1 and Figs. 14.1 and 14.2. We suppose that the transmission lasts 
from time 0 to time KT. This duration is taken large enough to disregard end 
effects due to the channel memory (in practice, we assume K >> L). The signal 
at the output of the noiseless part of the channel, represented by (14.2), can thus 

14.5. Mnrimum-likelihood sequence receiver 

Figure 14.20: Mean-square error with optimum linear filter (solid line) and with 
bandwidth-optimized second-order Buttenvonh filter (dashed line). Same nonlinear sys- 

I 
I tem as in Fig. 14.19. 

I 
! 

i be written as 
A K-1 

~ a ( t )  = h(t - nT; a,, on) (14.90) 
n=O 

where the subscript a denotes the dependence of ya(t) on the sequence a = 
(ao, . . . , a ~ - 1 )  of source symbols that must be estimated from the receiver. 

1 From (14.90) we can see that the entire waveform ya(t) , t  E (0, KT),  is 

1 defined by the sequence of states ( o ~ ,  . . . , OK),  or, equivalently, by the sequence 
of symbols (ao, . . . , a~-1) .  Thus, we have no more than MK possible received 
waveforms in the observation interval, and the ML reception is equivalent to the 
detection of one out of a finite set of waveforms in additive Gaussian noise. Thus, 

I in principle, the optimum receiver will be made up of a bank of MK matched i 
filters, one for each possible waveform. The filters' outputs are then sampled 
at the end of the transmission, and the largest sample is used to select the most 
likely symbol sequence. 

In Chapter 7, solutions were found in the linear case for two major problems 
arising in the implementation of an ML receiver, (1) the number of matched 
filters required, and (2) the number of comparisons needed to select the largest 
output. In particular, it was shown that just one matched filter was required 
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to obtain the sufficient statistics for the h4L receiver and, also, that the Viterbi 
algorithm can be used to select the most likely sequence with a complexity that 
grows only linearly with the message length. In the nonlinear case the results are 
different. The second problem will be given a satisfactory solution, still invoking 
the Viterbi algorithm. With respect to the number of matched filters needed, we 
shall show that it grows exponentially with the channel memory L. This is better 
than the exponential growth with the sequence length K arising from a brute- 
force approach, but it still makes a practical application of this theory confined 
to those situations in which the channel memory is very short andor M is small. 

The key to the h4L receiver design is the expression of the log-likelihood 
ratio for the detection of the finite sequence of symbols a = (ao, al, . . . , a ~ - ~ )  
based on the observation of the waveform 

where w( t )  is a white Gaussian noise process. The log-likelihood ratio for a has 
the expression (see Section 2.6) 

where y,(t) is the noiseless waveform defined in (14.90). Using(l4.91), (14.92) 
can he rewritten in the form 

1 K - 1 K - 1  KT 
-- h(t - nT; a,, an)h*(t - IP; ae. oe)dt 

No n=O e=o 

Notice now that h(t ;  ., .) has a finite duration T .  Thus, we have 

KT 

& h* ( t  - nT;  a,, a,)r(t)dt 

h*(t - nT;  a,, a,)dt , n = 0,. . . , K - 1 

and 
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So, defining 

and 
T 

, ( a n , , )  Ih(t;an,an)12dt (14.97) 

we finally get 

We can observe that: 

(i) &,(a,; a,) is the energy of the waveforms h(t;  a,, a,); 

(ii) Z,(a,; a,) can be obtained as the response, sampled at time (n + 1)T,  of a 
filter matched to h(t;  a,, a,), to a segment of the input r ( t )  in the interval 
[nT; ( n  + l ) T ] .  The number of matched filters required is then equal to 
ML+', that is, the number of different values of the pair (a,, a,). 

The h4L sequence decoding rule requires A, to be maximized over the set of pos- 
sible sequences a. Equivalently, multiplying (14.98) by the constant factor No 
and changing signs, we can say that the h4L sequence a is the one that minimizes 
the quantity 

The h4L receiver is formed by a bank of filters matched to h(t ;  a,, a,) followed 
by one sampler per branch and by a processor, the ML sequence detector, which 
determines the most likely transmitted data sequence as the one minimizing C,. 

Define now the transition between states as 

and observe that there is a one-to-one correspondence between each pair (a,, a,) 
and T,. Thus, we can write Z, (7,) and &,(T,), SO that, defining 

we can rewrite (14.99) as 
K-1 

e, = c e p  (T,) 
n=O 
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Decomposition (14.102), together with the fact that the sequence (7,) originates 
from a shift-register sequence, ensures that the Viterbi algorithm (see Appendix 
E) can be applied to the minimization problem at hand. As in the linear case 
described in Chapter 7, the ML detection problem reduces to the selection of a 
path through a trellis whose branches have been labeled with the values taken 
by the function .!?)(T,), referred to as the branch rnetrics. The same steps illus- 
trated in Chapter 7 to describe the algorithm can be applied with straightforward 
modifications. 

14.5.1. Error performance 

The problem of evaluating the error probability of an ML sequence receiver 
can be conceptually reduced to the general problem examined in Chapter 4 and 
solved in several instances throughout this book. We need only to think of data 
sequences as points in a signal space: here, error events happen whenever noise 
and interferences cause the receiver to decide for a point different from the trans- 
mitted one. Of course, the e m r  probability depends on the distribution of the 
Euclidean distances between all possible pairs of points, and, roughly speaking, 
they are mainly related to the minimum value dmin of these distances. 

Usually, finding dmi, requires exhaustive comparisons of the received signal 
waveforms corresponding to all possible pairs of symbol sequences. This can 
be avoided when the structure of points representing the received sequences is 
completely symmetric, in such a way that comparisons of all sequences with 
respect to a particular one are representative of the larger set of comparisons that 
would be needed. In this case, we say that the uniform error property applies. A 
significant example is represented by linear codes, where the error performance 
was computed using as a reference the all-zero word (block codes) or sequence 
(convolutional codes). 

In the present case the uniform error property does not hold, so all compar- 
isons are needed. In some cases, like the typical satellite channel with a short 
memory, the number of sequence pairs that needs to be considered is not very 
large. Hence, a brute-force computation is feasible. A method to do that can be 
found in Hemnann (1978). It consists of an algorithm to compute systematically 
the so-called "chip functions" and "chip distances." It uses these to compute the 
distances between pairs of received waveforms and then to estimate the symbol 
e m r  probability. 

Here we use a different approach. We first derive an upper bound to the se- 
quence e m r  probability, defined as the probability of choosing as true a transmit- 
ted sequence different from the actual one. Then, we shall see that the most re]- 
evant contribution to the error probability, for medium-to-large values of signal- 
to-noise ratios, depends on the minimumEuclidean distance between all pairs of 
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possible received waveforms. At that point, the general and efficient algorithm 
described in Chapter 12 to compute the minimum Euclidean distance can be used 
to assess the asymptotic performance. 

Suppose that the sequence a, has been transmitted. The probability that the 
estimated sequence d is different from aj can be written as 

Application of the union bound (see Section 4.3.2) allows us to write 

where d ( q ,  a j )  is the Euclidean distance between the two signal sequences ob- 
tained at the output of the noiseless part of the channel in correspondence with 
the symbol sequences q and aj 

The last equality in (14.104) becomes evident if one thinks of the noiseless re- 
ceived waveforms of duration KT as points in a signal space and then applies the 
standard formula for the binary e m r  probability between two points at distance 
d2(ai7 aj). 

To obtain the average sequence error probability, we need only to average 
P(e I a j )  over all the possible symbol sequences aj assumed to be equally likely: 

1 I 
P(e) = P(a,)P(e I a j )  5 -- x erfc (u) (14.106) 

aj M K  aj a.#aj 2 d X  
The final step is to consider the discrete finite set of all Euclidean distances 
d(q ,  a j ) ,  q # aj ,  denoted by D = {dt} .  Denoting by N(d f )  the number of 
pairs of sequences (q, a j )  giving rise to noiseless received waveforms at dis- 
tance df ,  we can rewrite (14.106) as 

For large values of signal-to-noise ratio, the dominant term of the summation in 
A the RHS of (14.107) is the one containing dmin = mindtED dt, so that, asymptot- 

ically, we can approximate P(e) as 
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To compute the sequence error probability (14.107), an extension of the method 
of the transfer function of directed graphs, used to evaluate the performance of 
convolutional codes, could be applied (see Viterbi and Omura, 1979, Problem 
5.14). However, that approach presents a computational complexity that grows 
with the fourth power of the number of the states (14.1), and is thus often im- 
practical. A related technique is described in (Liu et al., 1990). If one contents 
himself with the approximation given in (14.108), which only requires knowl- 
edge of the minimum Euclidean distance dm., then an efficient algorithm to 
obtain the latter is easily obtained as a straightforward modification of the one 
described in Section 12.4. 

14.6. Identification and equalization of nonlinear channels 

In the preceding sections we have derived the form of the optimum (in the 
mean-square sense) linear symbol-by-symbol receiver and of the optimum un- 
constrained (maximum-likelihood) sequence receiver. Both receivers require 
knowledge of the channel. When the channel is not completely known a priori, 
a preliminary phase, before the transmission of information, must be devoted to 
channel identification. Moreover, the procedure has to be occasionally repeated 
as the channel characteristics vary with time. It is the same phenomenon en- 
countered when dealing with adaptive equalization (see Chapter 8), but now it is 
complicated by the nonlinear behavior of the channel. 

The conventional linear receiver, possibly equipped with an adaptive equal- 
izer, does not attain the required performance in some applications. An example 
is represented by the satellite channel previously described: its behavior is driven 
by a strong nonlinearity in conjunction with a short memory span. The problem 
of using an ML sequence receiver in this channel has more to do with the speed 
of digital integrated circuits, which must cope with the high symbol rate (up to 
hundreds of Mbitls), than with the complexity related to the channel memory. 

We shall describe in this section a receiver that is intermediate (in terms of 
complexity and optimality) between the conventional linear receiver and the ML 
sequence receiver. It can be used indifferently for channel identification pur- 
poses andor as a nonlinear equalizer. Its structure can easily be made adaptive. 
The form of the receiver is a nonlinear extension of the tapped-delay-line (TDL) 
mean-square-error (MSE) equalizer described in Chapter 8. Its nonlinear struc- 
ture is suggested by the Volterra model of Section 14.3. As such, it can be 
used to estimate the parameters of a discrete Volterra model of the channel. The 
equalizer, which can be seen as a structure-constrained optimum (in the mean- 
square sense) embedded in a symbol-by-symbol receiver, will be described in its 
simplest version. It is intended that some of the refinements to the basic TDL 
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equalizer presented in Chapter 8 (such as decision feedback) can be fruitfully ap- 
plied also to this case. The description of the equalizer, as well as the numerical 
results, refers to a system employing CPSK. 

Recalling the expression (14.10) of the signal y ( t )  (see Fig. 14.11), we can 
write the samples r, that form the received sampled sequence (r,) as 

where u, is the noise sample. 
The structure of (14.109) reflects how the channel output depends both on 

the channel (through the Volterra coefficients) and on the information symbols. 
In particular, the symbol structure of PSK modulation (a, = $9.) results in 
insensitivity to certain kinds of nonlinearities. In fact, since a,a; = 1, it is 
apparent from (14.109) that certain Volterra coefficients K2rn+l will contribute 
to nonlinearities of order less than 2m + 1. To be more specific, consider first 
the third-order Volterra coefficients K3(n - nl,  n - n2, n - n3); for n1 = n3 or 
n2 = 723, the channel nonlinearities reflected by these coefficients will not affect 
a PSK signal, because 

and the only contribution is to the linear part of the channel. Similar consider- 
ations on the higher-order coefficients show that some of them contribute to the 
linear part, others only to the third-order nonlinearity, and so on. These consid- 
erations can be further pursued if we observe that, for an M-ary CPSK, a: is 
a constant, which results in a further reduction of sensitivity of PSK to certain 
nonlinearities. This leads to the noteworthy conclusion that, for CPSK, certain 
nonlinearities need only a linear compensation, while others affect the signal to 
a lower degree than other modulation schemes. The overall effect is a further 
reduction of the number of Volterra coefficients to be taken into account in the 
channel model. 

The Volterra series representation (14.109) provides us with a basis for rep- 
resenting a general signal processor in the same form. In fact, it seems quite nat- 
ural to choose, for the general discrete-time processor, the structure suggested 
by (14.109) after truncating the infinite sums. This processor can be imple- 
mented using a TDL, a nonlinear combiner, a number of complex multipliers, 
and a summing bus. as shown in Fig. 14.21 for the special case Nl = N2 = 
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I Nonlinear combiner 

Tn-N+l 
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zn 

Figure 14.21 : Third-order nonlinear TDL equalizer. 

N3 = N .  ( N i ,  i = 1,2,3, to be defined shortly.) Thus, assuming a (2k + 1)th 
order equalizer (i.e., a processor with nonlinearities up to the order 2k + l), its 
output sequence (z,) is related to the input (received) sequence (r,) by the rela- 
tionship 

N1-1 Nak+l-l 

+ C . . . C rn-nl . . . rn-nk+lri-nk+, . . . r L z k + l c ~ k + l ( n l , .  . ., n2k+l) 
nl=0 n ,k+ l=O 

where Ni represents the number of values assumed by the summation index ni. 
Equation (14.1 12) shows that the output is related to the input by a finite set of 

constants c l ( n l ) ,  c3(n1, 7 1 2 ,  n3),  . . . , c2k+l(n1, . . . , n2k+l). which will be referred 
to hereafter as the tap weights of the equalizer, in analogy with the linear case 
described in Chapter 8. Thus, the design of the equalizer is equivalent to the 
choice of its tap weights. If we arrange them in the column vector 

and define 
A 

r n  = [ T ~ , T ~ - ~ ,  . . . , T , - N ~ - ~ , . .  . , T , - N ~ + ~ . . . T *  n-Nlk+l+lll (l4.'l4) 
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the input-output relationship for the equalizer can be written in vector form as 

The input-output relationship (14.115) governing the behavior of the equalizer is 
linear in the tap-weight vector c; thus, the methods used in the linear case can 
also be applied here. We want to design the processor so as to get, at its output, 
a sequence of samples approximating, under an MSE criterion, the sequence of 
channel input symbols a,-D , where D denotes the allowed delay. Thus, we 
need to minimize the MSE 

with respect to c, where 
A R = E{rirh) (14.1 17) 

A 
g = E { a n - ~ r i )  (14.118) 

The optimum c can thus be obtained by solving the set of linear equations 

which admits the solution 
Copt = R-lg (14.120) 

provided that R is positive definite. It is seen from the definition of R that this 
condition is fulfilled if, for any arbitrary complex vector b, we have 

The RHS of (14.121) can be thought of as the average power of the output of 
an equalizer with tap weights b'. This power cannot be zero, due to the pres- 
ence of the noise added to the samples entering the equalizer. In the absence of 
noise, (14.121) can only be zero if btr, = 0 (i.e., the entries of r,  are linearly 
dependent). 

The solution (14.120) for the optimum tap-weight vector requires knowledge 
of R and g. Computation of the averages involved in their definitions (14.1 17) 
and (14.118) can be done using the method described in Section 14.3 to eval- 
uate the moments of the RVs representing ISI. In particular, it is possible to 
evaluate by exhaustive enumeration the part of the averages depending on infor- 
mation symbols and, analytically, the part depending on Gaussian noise. These 
procedures, of course, allow only off-line computation of R and g ,  and are not 
suitable for the equalizer working in an adaptive mode. However, the algorithms 
described for adaptive linear equalizers and, in particular, the stochastic-gradient 
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Linear part 

K1(l)  = 0.063 - jO.OO1 
K1(2) = -0.024 - j0.014 
K1(3) = 0.036 + 30.031 

Thud-order nonlinearities 

I K3(0,0,2) = 0.039 - j0.022 
K3(3, 3,O) = 0.018 - j0.018 
K3(0, 0 , l )  = -0.035 + j0.035 
K3(0, 0,3) = -0.040 - jO.009 

Fifth-order nonlinearities 

[ K5(0, O , O ,  1 , l )  = 0.039 - j0.022 I 
Table 14.1: Reduced Volterra coeficients for the nonlinear QPSK system described in 
Erample 14.4. 

algorithm of Chapter 8 can also be applied fruitfully in this case. Its application 
leads to the following recursion for tap updating: 

Example 14.4 Consider the scheme of Fig. 14.11. The transmission filter s ( t )  in- 
cludes a rectangular shaping filter and a fourth-order Butterworth with 3-dB bandwidth 
1.7/T. The TWT is described by the characteristics of Fig. 14.10, and is driven at satu- 
ration by the PSK symbols. The receiving filter u(t)  is a second-order Butterworth with 
3-dB bandwidth l . l /T .  The computed Volterra coefficients for this channel, after ne- 
glecting the linear Volterra coefficients whose value lies below 0.001 and the nonlinear 
coefficients lying below 0.005, and after the further reduction that takes into account 
the structure of PSK symbols, as previously mentioned, are shown in Table 14.1. We 
want to study the effect of a nonlinear equalizer cascaded to the channel. An important 
question is worth mentioning at this point. For a given complexity (i.e., a given number 
of first, third, ..., nth-order coefficients in the TDL), what is the best allocation of those 
coefficients, i.e., how can we choose the range of indexes n l ,  712,713,. . . in (14.112)? 

Simulation experience shows that often a good use of the allowable complexity con- 
sists in allocating the TDL taps so that they match the most significant Volterra coeffi- 
cients of the channel. In other words, it is convenient to introduce a tap, say cs(i , j ,  k), 
if the corresponding Volterra coefficient K3(i, j, k) of the channel model has a relevant 
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MSE 
MODULATOR EVALUATION 

Figure 14.22: Block diagram for the simulation of the channel identifiex 

magnitude. This way of matching the structure of the nonlinear TDL to that of the chan- 
nel requires previous knowledge of the channel structure. Thus, the first step consists of 
channel identification using the model of Fig. 14.21. The system behavior has been sim- 
ulated as in Fig. 14.22. A stochastic-gradient algorithm was used to iteratively modify 
the coefficients of the nonlinear TDL, with the goal of minimizing E{lrn - i.n12}, the 
mean-square difference between the true sample at the channel output and the sample 
generated by the channel estimator. 

The convergence of the identification process is described through a sequence ((k) 
of running averages of Ir, - ?,,I2 evaluated over successive blocks of K symbols. If the 
parameter a in (14.122) is chosen in the field of values allowing the convergence of the 
algorithm, the sequence ((k) will decrease to the minimum value achievable with the 
complexity chosen for the channel model. 

For the sake of comparison, ((k) is plotted in Fig. 14.23 in the linear case (i.e., 
when the TWT is not present in the channel and the channel estimator is a linear TDL 
with 10 taps). In the nonlinear case, we have considered a nonlinear TDL with Volterra 
coefficients of first, third, and fifth order, allowing a memory of 10 for the linear part, 
4 for the thud-order part, and 3 for the fifth order. In Fig. 14.24 the behavior of ((k) is 
shown for K = 100. For curve A, the initial choice of the coefficient a was taken outside 
the convergence interval of the algorithm. Thus, the curve shows an initial divergence 
that ends when the value of a is suitably reduced. Curves B and C differ in the choice of 
the coefficient a governing the updating of the nonlinear coefficients. Comparison with 
the linear case of Fig. 14.23 shows that the MSE settles to a value sensibly lower in the 
linear case and that the convergence is faster. This happens because of the following: 

(i) In the linear case the complexity of the TDL (N = 10) is lower. This allows the 
use of larger a and accelerates the convergence. 

(i) The structure of the estimator in the linear case is much closer to the true channel 
than in the nonlinear case. In the latter, other nonlinear coefficients should be 
added to the model in order to decrease the steady-state MSE. 

Let us now proceed to the design of the equalizer. Having chosen the structure of the 
nonlinear TDL on the basis of the estimate of the channel, the optimum values of the 
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Figure 14.23: Identi$cation of the channel of Example 14.4 in the absence of the TWT 
(linear channel). The curves present the behavior of the MSE estimated through a run- 
ning time average made over blocks of K = 400 symbols. The linear equalizer has 
N = 10 taps, and a = 0.1. 

tap weights q(.) of the equalizer can be found through the stochastic gradient algo- 
rithm (14.122) aiming at minimizing the MSE E defined in (14.116). Also in this case 
we have used a running average (Ek) over K symbols, which represents a time average 
of Izn - 

The results in terms of Ek in the linear case are shown in Fig. 14.25, for the sake 
of comparison, for various numbers of the TDL taps. The two sets of curves refer to 
different values of a. The continuous curves have been obtained with a = 0.1, whereas 
the dashed ones have a = 0.05. The value of K is equal to 100. Tming now to the 
nonlinear case, we can examine the results presented in Fig. 14.26. The set of curves 
refers to equalizers of increasing complexity cascaded with the nonlinear channel. The 
results suggest the following observations: 

(i) Linear taps cannot compensate for the distortion, since after addition of a certain 
number of them the MSE will not show any significant reduction. 

(u) The addition of a few nonlinear taps allows a significant reduction of the MSE. 

0 500 loo0 1500 2000 
Steps 

! Figure 14.24: Identification of the channel of Example 14.4 in the presence of the TWT 
i (nonlinear channel). The curves present the behavior of the MSE estimated through a 

running time average made over blocks of K = 100 symbols. Curve A refers to a case 
in which the initial choice of the parameter controlling the gradient algorithm is made 
outside the convergence interval and then reduced so as to have convergence. Curve B 
has a value of the parameter controlling the updating of the linear part of the equalizer 
equal to 0.1, and a value of the parameter controlling the nonlinear part equal to 0.04. 
Curve C has both parameters equal to 0.01. 

14.7. Compensation of nonlinear channels 

A fundamental limit to the performance of optimum receivers and equalization 
schemes (and, more generally, of any conceivable receiver, either linear or non- 
linear, as we have shown in Section 7.5) depends on the minimum Euclidean 
distance between the signals observed at the output of the noiseless part of the 
channel. Stated in words, this limitation is due to the fact that the signal to be 
processed by the receiver is affected by noise, and hence any attempt to com- 
pensate for the channel distortion by introducing a sort of "inverse distortion" 
will enhance the noise. For this reason, it appears logical to investigate solutions 
based on the compensation of the nonlinear channel before noise addition. With 
this procedure, the channel should be made to look as similar as possible to a 
Gaussian channel. This idea bears obvious similarities to Tomlinson-Harashima 
precoding, that we examined in Chapter 8. 
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Figure 14.25: Equalizarion of the channel of Example 14.4 in the absence of the TWT 
(linear channel). The curves present the behavior of the MSE estimated through a 
running-rime average made over block of K = 100 symbols. The number N of taps of 
the linear equalizer is a parameter. The solid curves refer to a value of the parameter 
cr = 0.1, whereas rhe dashed curves have cr = 0.05. 

If this approach is chosen, several factors and constraints should be taken 
into account. One of them is, of course, the uItimate performance that the 
nonlinearity-compensating scheme can achieve. The second one is the imple- 
mentation complexity. The third one is the fact that the compensator itself may 
expand the signal bandwidth. Finally, if the channel is time-varying, provision 
must be made for adaptive compensation. 

In this section we examine digital predistorters, i.e., devices to be inserted at 
the input of the digital channel, and whose aimis to compensate for the unwanted 
effects of the nonlinear channel. Their design will be based on the concept of 
pth-order inverse of a nonlinear system. 

14.7.1. pth-order compensation 

Assume first, for simplicity, that the channel has no memory, i.e., that no band- 
width-limiting components exist, and that the channel's input-output relationship 
is invertible. In this situation a memoryless predistorter may act by skewing the 
transmitted signal constellation in such a way that, when passed through the 
nonlinear channel, it will resume its original shape. Here the compensator's 
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Figure 14.26: Equalization of the channel of Example 14.4 in the presence of the W 
I (nonlinear channel). The curves prsent the behavior of the MSE estimated through a 

running-time average made over block of K = 100 symbols. The curves marked with 
"linear" refer to a linear equalizer; whereas the ones marked with "nonlinear" refer 
to a nonlinear equalizer: The numbers of linear and nonlinear taps are parameters of 
the curves. The value of cr is equal to 0.1 for the linear taps, and equal to 0.01 for the 
nonlinear taps. 

task is to invert the nonlinearity. The channel symbols a, are changed into the 
symbols b,, = g(a,), where g( . ) is a suitable complex function, and hence the 
design of a predistorter for a channel without memory can be viewed as the 
selection of a new modulation scheme. 

Consider next the more general assumption of a channel with memory. Inver- 
sion of a nonlinear system with memory may not be possible: not all nonlinear 
systems possess an inverse, and many systems can be inverted only for a re- 
stricted range of input amplitudes. However, it is always possible to define a 
pth-order inverse, for which the amplitude range is not restricted. 

Given a nonlinear system H, its pth-order inverse is a system which, when 
cascaded to H, results in a system in which the first-order Volterra kernel is a 
unit impulse, and the second- through the pth-order Volterra kernels are zero 
(Schetzen, 1980). In other words, if the pth-order nonlinear inverse channel is 
synthesized at the transmitter's front end, the compensated transmission channel 
will exhibit no linear distortion, and no nonlinear distortion up to order p. Obvi- 
ously, the performance of the pth-order compensated channel will depend on the 



768 14. Digital transmission over nonlinear channels 

effects of the residual distortion. 
To describe pth-order compensation, it is convenient to use tensor notations. 

These imply that any subscript occumng twice in the same term is to be summed 
over the appropriate range of discrete time. Thus, for example, we write xiyi to 
denote xlyl + x2yz + . . .. 

These notations allow us to write the input-output relationship of a noiseless 
system with memory, whose input is the sequence (a,) and whose output is the 
sequence (y,), in the form 

which corresponds to the noiseless part of (14.109). 
Consider now two bandpass nonlinear systems. Let the first one (the compen- 

sator) be characterized by Volterra coefficients f ,  and the second (the channel) by 
Volterra coefficients g. Denote by h the coefficients of the system resulting from 
the cascade of the two. The first- and third-order h-coefficients are explicitly 
given by 

(1) - (I) f(l.l 
hn;i - 9n;v v;r (14.124) 

(1) f '3) , + g(3) f (;! f (l), f (;)* 
h!$,j,k = gn;v v;r,j,k n;u,w,z v r w j r k (14.125) 

Higher-order coefficients can be expressed in a similar form, although with more 
terms appearing in the right-hand side: for example, 5th-order coefficients have 
five terms. 

We are now ready to provide equations for the pth-order compensator. Un- 
der the assumption that the linear part of system f ,  i.e., the linear functional 
determined by the first-order coefficient of f ,  is invertible, it is possible to find 
a system g such that its cascade with f yields a system with no linear distortion, 
1.e.. 

This choice generates the first-order compensator. Equation (14.126) expresses 
nothing but the Nyquist criterion for the absence of intersymbol interference in 
the overall channel. Since we are interested in finite-complexity compensators, it 
is useful to examine an approximate solution to (14.126) including a finite num- 
ber of coefficients. This problem is equivalent to the design of a zero-forcing 
equalizer with finite length, as studied in Section 8.6. The third-order compen- 
sator is obtained by choosing g(3) so as to have h(3) = 0. By taking the discrete 
convolution of both sides of (14.125) with g(')g(')g(')', and recalling (14.126), 
we obtain 
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Example 14.5 Assume that the channel nonlinearity can be modeled as the cascade 
of a linear system L and a memoIyless device D. The pth-order compensator for this 
channel turns out to be the cascade of a linear filter, the inverse L-' of L, preceded by a 
nonlinear memo~yless device, the pth-order inverse of D. Notice that the cascade of L-' 
and L gives rise to a Nyquist filter. This result shows that in this case compensation of 
the channel nonlinearity consists of removing the channel memoIy, then compensating 
for the resulting memoIyless nonlinearity by memoIyless predistortion. 0 

Example 14.6 Consider a nonlinear channel whose linear part has already been com- 
pensated by a suitable combination of channel filtering and linear equalization at the 
receiver's front-end. In this situation some simplifications of the compensator are possi- 
ble. In particular we obtain, for the first- and third-order compensators, 

The first equation above shows that no linear compensation should be added, while the 
thud-order compensator coefficient is simply obtained by changing the sign of the third- 
order channel coefficient. 0 

Spectrum-shaping effects 

Under our assumption of linear modulation, the effect of the compensator on the 
transmitted signal is to transform the symbol sequence (a,) into a new sequence 
(b,), while keeping the basic modulator waveform unchanged. Consequently, the 
power density spectrum of the transmitted signal can be analyzed by examining 
the autocorrelation function of the sequence (b,). 

Example 14.7 Consider a linear compensator responding to the symbol sequence (a,), 
E J ~ ,  l 2  = 1, with the sequence (b,) = (a, + Aa,-'), A a real constant. Computation of 
the,autocorrelation function of (b,) shows that this compensator causes a spectral shap- 
ing (1 + A ~ )  + 2A c o s ( 2 ~  f T), T the symbol period. In some cases the nonlinear terms 
of the compensator may be irrelevant in shaping the spectrum. Consider, for instance, 
the compensator-output sequence (b,) = (a, + Aa,-l + Ba,a,-lai-2), A and B two 
real numbers. Direct calculation shows that (rk), the autocorrelation sequence of (b,), 
takes values 

k = *l, 
0 lkl > 1 
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Thus, for >> B~ the thii-order nonlinearity has very little effect on the spectrum. 0 

14.8. Bibliographical notes 

Our treatment of the modeling and performance evaluation of bandpass non- 
linear digital systems follows closely Benedetto et al. (1976, 1979). Discrete 
Volterra series applied to sampled-data systems are analyzed in Barker and Am- 
bati (1972). Inverses of nonlinear systems represented by continuous and dis- 
crete Volterra series are investigated in Schetzen (1976) and Wakamatsu (1981). 

The problem of evaluating the performance of a nonlinear digital transmis- 
sion system has received considerable attention, particularly as applied to satel- 
lite links. The interested reader is invited to scan the extensive reference list in 
Benedetto et al. (1979). 

The derivation of the optimum receiving filter follows that presented in Bi- 
glieri et al. (1984). Different approaches have been pursued by Fredricsson I 
(1975) and Mesiya et al. (1978). 

The model and the approach followed in the derivation of the ML sequence 
receiver are original. Based on an analytical model of the bandpass nonlinearity, 
Mesiya et al. (1977) have derived the ML sequence receiver for binary PSK. An 
ML receiver taking into account also the uplink noise in satellite links has been 
described by Benedetto et al. (1981). The Volterra series technique has been 
applied by Falconer (1978) and, previously, by Thomas (1971) to the design of 
adaptive nonlinear receivers. The use of orthogonal Volterra series to achieve 
rapid adaptation in connection with a Volterra series approach is proposed in 
Biglieri et al. (1984). 

Our treatment of nonlinear equalization follows closely that of Benedetto 
and Biglieri (1983), while that of pth-order compensation is taken from Biglieri 
et al. (1988), where applications to satellite channels are also described. Use 
of Volterra series in the compensation of nonlinearities in magnetic recording 
channels is described in Biglieri et al. (1994). Other contributions to the analysis 
and compensation of nonlinear distortion can be found in Karam and Sari (1989, 
1990,1991a, and 1991b). 

14.9. Problems 

14.9. Problems 77 1 

14.1 (*) Good analytical approximations for typical AMIAM and AM/PM characteris- 
tics of TWTs are 

(see Saleh, 1981), where the coefficients a,. Pa, and a& are found by fitting 
these equations to the experimental data through a minimum mean-square-error 
procedure. Apply this procedure to approximate the curves of Fig. 14.10 and draw 
the resulting F ( r )  and d(r ) .  

14.2 Following the calculations of Example 2.18, extend the results obtained there for 
memoryless nonlinear devices to the case of the bandpass nonlinear system of 
Fig. 14.11 by obtaining the result (14.9). 

14.3 (*) Consider a channel formed by cascading a 2nd-order Butterworth filter with 
normalized equivalent noise bandwidth BeqT = 2.0 with the TWT of Fig. 14.10. 
Using a polynomial approximation of the complex TWT characteristics, that is. 
F ( r )  expl jd(r)] ,  with powers up to the seventh, compute the discrete Volterra 
coefficients (14.18) discarding those smaller than . kl ( to) .  

14.4 Derive the recurrent formulas (14.47) for the powers te of discrete Volterra coef- 
ficients. 

14.5 Derive the recurrent formulas for the powers (r)m of discrete Volterra coeffi- 
cients using the derivation of Problem 14.4. 

14.6 Prove the result (14.52). 

14.7 A wide-sense stationary Gaussian process n ( t )  can be represented as 

4 t )  = C ~ i b i ( t )  
i  

where pi are unit-variance independent Gaussian RVs and bi(t) are appropriately 
chosen deterministic functions. Evaluate the functions bi(t)  in the case of a power 
spectral density of n ( t )  equal to Go in the interval ( -F,  F ) ,  and zero outside. 
Hint: If G n ( f )  is the power spectral density of the process, the functions bi(t) 
are obtained as inverse Fourier transforms of yi ( f  )Gn ( f  ) , where yi ( f )  form a 
complete sequence of orthonormal functions in the Hilbert space with norm 

Problem. marked with an asterisk should be solved with the aid of a computel: 
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14.8 Repeat the computations of the moments (14.52) in the case of uplink noise rep- 
resented as in (14.55). 

14.9 Using variational calculus techniques (Appendix C), derive the integral equa- 
tion (14.66) that minimizes the mean-square error (14.59). 

14.10 Compute the average (14.71). 

14.11 Compute the average (14.76). 

14.12 (*) Modify the algorithm described in Section 12.4.3 and write a computer pro- 
gram implementing it. Use it to compute dmi, for the nonlinear system of Exam- 
ple 14.1. 

Useful formulas and 
approximations 

14.13 (*) Repeat the simulation of Example 14.4 by setting the 3-dB bandwidth of the 
transmission filter equal to 2/T. 

, A.1. Error function and complementary error function 

Definitions 

Relation with the Gaussian probability density function with mean p and vari- 
ance u2 

The function erfc(x) admits the following asymptotic (x -t m) expansion: 

Table A. 1. shows a comparison, for values of x between 3 and 5, of the approx- 
imation (A.4) truncated to its first term with the exact value of erfc(x). Relative 
errors are also indicated. To obtain closed-form upper bounds to the error prob- 
abilities for block and convolutional codes, we will use sometimes the following 

i upper bound: 
! 1 1 

-erfc(&) < -e-z 

i 2 2 ('4.5) 

In Figure A.l  the two functions ferfc(&) and f exp(-x) are plotted. 
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Table A.l: Comparison between the values of erfc(x) and its approximation. 

Figure A.l: Graph of the functions 1/2erfc(fi) and $e-z. 

Using relation (A.3) and definitions (A.l) and (A.2). it is straightforward 
to compute the following probabilities related to the Gaussian random variable 

A.2. The mod@ed Besselfunction Zo 775 

(RV) E: 

P{E < x)  = 5 1 + erf 3 = -erfc - { ( J u ) }  (5:) (A.6) 

(A.7) 

p{l<I > X) = - erfc 3 + erfc - 
2 { ( JU ) (;,")I (A'9) 

A.2. The modified Bessel function I. 

Definition 

A 1  " 
IO(X) = - / eizCose do = 

.IT 0 
(A.lO) 

It admits the following asymptotic (x + m) expansion: 

1 9  
l o b )  N - I + - + -  +-+... 9 . 2 5  } (A.l l )  

82 2 ! ( 8 ~ ) ~  3 ! ( 8 ~ ) ~  

A.3. Marcum Q-function and related integrals 

Definitions and basic properties 

a2 + b2 
&(a, b) 4 d w e x p  (-1) Io(ax)xdx 

Q(O, b) = exp (-:) 
&(a, 0) = 1 

Asymptotic expansion, valid forb >> 1 and b >> b - a 

(A. 12) 

(A. 13) 

(A. 14) 

(A. 15) 
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Symmetry and antisymmetry relations 

a2 + b2 
Q(a ,b )  +Q(b ,a )  = 1 + e x p  (A. 16) 

1 
Q ( a ,  a )  = - [1 + e-a' Io(a2)] (A. 17) 

2 

(A. 18) 
Asymptotic expansions, valid forb >> 1, a >> 1 ,  and b >> b - a > 0 

1 + &(a, b) - Q(b, a )  (A. 19) 

A.4. Probability that one Rice-distributed RV exceeds another 
one 

Given a pair i t 1 ,  6) of independent Rice-distributed RVs with pdf 

the probability P i t z  > El} that one exceeds the other can be expressed by one 
of the following equivalent forms: 

A.4. Probability that one Rice-distributed RV exceeds another one 777 
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Some facts from matrix theory 

In this appendix we collect together, for ease of reference, some basic results 
from matrix theory that are needed throughout the book, and in particular in 
Chapter 8, where extensive use of matrix notations is made. We assume that 
the reader has had previous exposure to matrix calculus. Thus, we focus our 
attention mainly on the results that are specifically needed in the text, whereas 
more elementary material is either skipped or included for reference's sake only. 

B.1. Basic matrix operations 

A real (complex) N  x M  matrix is a rectangular array of N M  real (complex) 
numbers, called its entries, or elements, arranged in N  rows and M  columns and 
indexed as follows: 

a12 . . . a l ~  

(B.1) 

aN1 ~ N Z  . . . 

We write A = (aij) as shorthand for the matrix (B.l). If N  = M ,  A is called a 
square matrix; if M  = 1, A is called a column vector, and if N  = 1, A is called 
a row vector. We denote column vectors by using boldface lowercase letters, 
such as x, y, . . .. 

Standard operations for matrices are the following: 

(a) Multiplication of A by the real or complex number c. The result, denoted 
by cA, is the N x M matrix with entries caij. 

(b) Sum of two N  x M  matrices A = (aij) and B = (bij). The result is the 

N  x M  matrix C whose entries are aij + bij. The sum is commutative (i.e., 
A + B = B + A ) .  

(c) Product of the N  x K matrix A by the K x M  matrix B. The result is the 
N  x M matrix C with entries 

The matrix product is not commutative (i.e., in general A B  # BA), but it 
is associative (i.e., A ( B C )  = (AB)C)  and distributive with respect to the 
sum(i .e . ,A(B+ C )  = A B + A C a n d  ( A + B ) C  = A C + B C ) .  

When A B  = B A ,  the two matrices A and B are said to commute. The 
notation An is used to denote the nth power of a square matrix A (i.e., the 
product of A by itself performed n - 1 times); that is, 

A If we define the identity matrix I = (dij) as the square matrix all of whose 
elements are 0 unless i = j, in which case they are equal to 1, multiplica- 
tion of any square matrix A by I gives A itself, and we can set 

(d) Given a square matrix A ,  there may exist a matrix, which we denote by 
A-', such that AA-' = A-'A = I. If A-' exists, it is called the inverse 
of A ,  and A is said to be nonsingular. For n a positive integer, we define a 
negative power of a nonsingular square matrix as follows: 

We have: 
(AB)-' = B-~A-] 

(e) The transpose of the N  x M  matrix A with entries a,j is the matrix with 
entries aji, which we denote by A'. If A is a complex matrix, its conjugate 

A' is the matrix with elements a,,, and its conjugate transpose A t  2 (A1)* 
has entries a;;. The following properties hold: 

(AB)' = B'A' , (AB)' = B'A' 
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The scalarproduct of two real column vectors x , y is 

If x and y are complex, their scalar product is defined as 

Two vectors are called orthogonal if their scalar product is zero. 

B.2. Numbers associated with a matrix 

(a) The trace. Given a square N x N matrix A, its trace (or spur) is the sum of 
the elements of the main diagonal of A 

The trace operation is linear; that is, for any two given numbers a, P, and 
two square N x N matrices A ,  B, we have 

tr (cuA + PB) = cu tr(A) + P tr(B) (B.3 

In general, tr (AB) = tr (BA) even if A B  # BA. In particular, the 
following properties hold: 

tr (A-'BA) = tr (B) (B.6) 

and, for any N x M matrix A 

Notice also that for two column vectors x , y 

xty = tr (xyt) 

(b) The determinant. Given an N x N square matrix A,  its determinant is the 
number defined as the sum of the products of the elements in any row of 
A with their respective cofactors y,j 

a N 

det A = C aijyij, for any i = 1,2 , .  . . , N (B.9) 
j=1 

B.2. Numbers associated with a matrix 78 1 

A The cofactor of aij is defined as yij = (-l)'+jmij, where the minor mij is 
the determinant of the ( N  - 1) x (N - 1) submatrix obtained from A by 
removing its ith row and jth column. The determinant has the following 
properties: 

det A = 0 if one row of A is zero 

or A has two equal rows (B.10) 
detA = detAf (B.11) 

det (AB) = det A .  det B (B.12) 

det (A-l) = (det A)-' (B.13) 

det(cA) = cN . det A for any number c (B. 14) 

A matrix is nonsingular if and only if its determinant is nonzero. 

(c) The eigenvalues. Given an N x N square matrix A and a column vector 1 
with N entries, consider the set of N linear equations 

where X is a constant and the entries of u are the unknown. There are only 
N values of X (not necessarily distinct) such that (J3.15) has a nonzero 
solution. These numbers are called the eigemalues of A, and the corre- 
sponding vectors u the eigemectors associated with them. Note that if u 
is an eigenvector associated with the eigenvalue X then, for any complex 
number c, cu is also an eigenvector. 

The polynomial a(X) fi det(X1 - A) in the indeterminate X is called the 
characteristic polynomial of A.  The equation 

det (XI - A) = 0 (B.16) 

is the characteristic equation of A, and its roots are the eigenvalues of A. 
The Cayley-Hamilton theorem states that every square N x N matrix A 
satisfies its characteristic equation. That is, if the characteristic polynomial 
of A is a(X) = A N  + culXN-I + . . . + ON. then 

where 0 is the null matrix (i.e., the matrix all of whose elements are zero). 
The monic polynomial p(X) of lowest degree such that p(A) = 0 is called 
the minimal polynomial of A. I f f  (x) is a polynomial in the indeterminate 
x, and u is an eigenvector of A associated with the eigenvalue A, then 
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That is, f (A) is an eigenvalue of f (A) and u is the corresponding eigen- 
vector. The eigenvalues X I , .  . . , AN of the N x N matrix A have the prop- 
erties 

N 

det(A) = n Xi (B.19) 
i=l 

and 

From (B.19), it is immediately seen that A is nonsingular if and only if 
none of its eigenvalues is zero. 

(d) The spectral norm and the spectral radius. Given an N x N matrix A, 
its spectral norm 1 1  All is the nonnegative number 

where x is an N-component column vector, and llull denotes the Euclidean 
norm of the vector u 

We have 

for any matrix B and vector x. If X i ,  i = 1 , .  . . , N, denote the eigen- 
values of A, the radius p(A) of the smallest disk centered at the origin of 
the complex plane that includes all these eigenvalues is called the spectral 
radius of A 

A 
P(A) = lsyN \Xi  I (B.23 

In general, for an arbitrary complex N x N matrix A, we have 

and 

I I A I  = JpO 
If A = At, then 

P(A) = IlAll 

(e) Quadratic forms. Given an N x N square matrix A and a column vector x 
with N entries, we call a quadratic form the quantity 

B.3. Some classes of matrices 

Let A be an N x N square matrix. 

(a) A is called symmetric if A' = A. 

(b) A is called Hermitian if At = A. 

(c) A is called orthogonal if A-' = A'. 

(d) A is called unitary if A-' = At. 

(e) A is called diagonal if its entries aij are zero unless i = j. A useful 
notation for a diagonal matrix is 

(f) A is called scalar if A = cI for some constant c; that is, A is diagonal 
with equal entries on the main diagonal. 

(g) A is called a Toeplitz matrix if its entries aij satisfy the condition 

That is, its elements on the same diagonal are equal. 

(h) A is called circulant if its rows are all the cyclic shifts of the first one 

(i) A symmetric real matrix A is called positive (nonnegative) dejnite if all 
its eigenvalues are positive (nonnegative). Equivalently, A is positive 
(nonnegative) definite if and only if for any nonzero column vector x the 
quadratic form xt Ax is positive (nonnegative). 
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A 
Example B.l Let A be Hermitian. Then the quadratic form f = xt Ax is real. In fact 

f = (xtAx)* = xlA*x* = ( ~ * x * ) ' x  = xtAtx (B.32) 

Since At = A this is equal to xt AX = f ,  which shows that f is real. 0 

Example B.2 Consider the random column vector x = [xl, x2, . . . , xN], and its cor- 
relation matrix 

A R = E [xxt] (B.33) 

It is easily seen that R is Hermitian. Also, R is nonnegative definite; in fact, for any 
nonzero deterministic column vector a, 

with equality only if atx = 0  almost surely; that is, the components of x are linearly 
dependent. 

If X I ,  . . . , X N  are random variables taken from a wide-sense stationary discrete-time 
random process, and we define 

it is seen that the entry of R in the ith row and the jth column is precisely rl;-jl. This 
shows in particular that R is a Toeplitz matrix. 

If g( f )  denotes the discrete Fourier transform of the autocorrelation sequence (r , ) ,  
that is g( f )  is the power spectrum of the random process (2,) (see (2.81)), the following 
can be shown: 

(a) The eigenvalues XI, . . . , A N  of R are samples (not necessarily equidistant) of the 
function g ( f ). 

(b) For any function 7 ( . ) ,  we have the Toeplitz distribution theorem (Grenander and 
Szego, 1958): 

B.4. Convergence of matrix sequences 

Example B3 Let C be a circulant N  x N  matrix of the form 

Let also w fi d2TlN, so that wN = 1. Then the eigenvector associated with the eigen- 
value Xi is 

Ui = [WOWiW2i . W(N-l )~~l ,  i = 0 , 1 ,  . . . ,  N - 1  (B.38) 

The eigenvalues of C are 

and Af can be interpreted as the value of the Fourier transform of the sequence Q, cl, 
. . . , CN-1, taken at frequency i / N .  0 

Example B.4 If U is a unitary N  x N  matrix, and A is an N  x N  arbitrary complex 
matrix, pre- or postmultiplication of A by U does not alter its spectral norm; that is, 

B.4. Convergence of matrix sequences 

Consider the sequence of powers of the square matrix A. As n -+ m, 
for An to tend to the null matrix 0 it is necessary and sufficient that the spectral 
radius of A be less than 1. Also, as the spectral radius of A does not exceed its 
spectral norm, for An -+ 0 it is sufficient that 1 1  All < 1 .  

Consider now the matrix series 

For this series to converge, it is necessary and sufficient that An -+ 0  as n -+ m. 
If this holds, the sum of the series equals ( I  - A)- ' .  



786 B. Some factsfrom matrix theory 

B.5. The gradient vector 

Let f (x)  = f (xl,. . . , xN) be a differentiable real function of N real arguments. 
Its gradient vector, denoted by V f ,  is the column vector whose N entries are the 
derivatives d  f /axi , i = 1 , .  . . , N. If xl ,  . . . , X N  are complex, that is 

x i = x : + j x ~ ,  i = l , . . : , N  (B.42) 

the gradient o f f  (x)  is the vector whose components are 

a 
Example B.5 If a  denotes a complex column vector, and f ( x )  = ~ [ a t x ] ,  we have 

V f ( x )  = a  (B.44) 

0 

a 
Example B.6 If A  is a Hemitian N x N matrix, and f ( x )  = x t ~ x ,  we have 

V  f ( x )  = 2Ax (B .45) 

0 

B.6. The diagonal decomposition 

Let A  be a Hermitian N  x N matrix with eigenvalues X I , .  . . , A N .  Then A  can 
be given the following representation: 

A  = UAU-' 03.46) 
a 

where A = diag ( A 1 , .  . . , A N ) ,  and U  is a unitary matrix, so that U-' = U t .  
From (B.46) it follows that 

AU = U A  (B .47) 

which shows that the ith column of U  is the eigenvector of A  corresponding 
to the eigenvalue X i .  For any column vector x, the following can be derived 
from (B.46): 

N 
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B.7. Bibliographical notes 

There are many excellent books on matrix theory, and some of them are certainly 
well known to the reader. The books by Beilman (1968) and Gantmacher (1959) 
are encyclopedic treatments in which details can be found about any topic one 
may wish to study in more depth. A modem treatment of matrix theory, with em- 
phasis on numerical computations, is provided by Golub and Van Loan (1996). 
The most complete reference about Toepiitz matrices is the book by Grenander 
and Szego (1958). For a tutorial introductory treatment of Toepiitz matrices and 
a simple proof of the distribution theorem (B.36). the reader is referred to Gray 
(1971 and 1972). In Athans (1968) one can find a number of formulas about 
gradient vectors. 

a 
where y l ,  . . . , y~ are the components of the vector y = Utx.  



Variational techniques and 
constrained optimization 

In this appendix, we briefly list some of the optimization theory results used in 
the book. Our treatment is far from rigorous, because our aim is to describe a 
technique for constrained optimization rather than to provide a comprehensive 
development of the underlying theory. The reader interested in more details is 
referred to Luenberger (1969, pp. 17 1-190) from which our treatment is derived; 
alternatively, to Gelfand and Fomin (1963). 

Let R be a function space (technically, it must be a nomed linear space). 
Assume that a rule is provided assigning to each function f E R a complex 
number p [ f ] .  Then p  is called afinctional on R. 

Example C.l Let f  ( x )  be a continuous function defined on the interval (a, b). We 
write f E C(a, b). Then 

and 

are functionals on the space C(a,  b). 

If p  is a functional on R, and f ,  h  E R, the functional 

is called the FrCchet differential of p. The concept of FrCchet differential pro- 
vides a technique to find the maxima and minima of a functional. We have the 
following result: 

A necessary condition for p [ f ]  to achieve a maximum or minimum value for 
f = fo  is that bp( f o ;  h )  = 0 for all h  E R. 

In many optimization problems the optimal function is required to satisfy 
certain constraints. We consider in particular the situation in which a functional 
p  on R must be optimized under n constraints given in the implicit form $ l [ f ]  = 
Clr $ ~ ~ [ f ]  = C2, .  . . , & [ f ]  = Cn, where . . , $, are functionals on R, and 
Cl, . . . , C, are constants. We have the following result: 

If fo  E R gives a maximum or a minimum of p  subject to the constraints $;[ f ]  = 
C, , 1 5 i 5 n, and the n functionals b$;[fo; h] are linearly independent, then 
there are n scalars XI,. . . , An which make the FrCchet differential of 

vanish at fo. 

This result provides a rule for finding constrained maxima and minima. The 
procedure is to form the functional (C.2), to compute its FrCchet differential, and 
to find the functions f that make it vanish for every h. The values of the "La- 
grange multipliers" All.  . . , An can be computed using the constraint equations. 
Whether the solutions correspond to maxima, or to minima, or neither, can be 
best determined by a close analysis of the problem at hand. 

Example C.2 We want to find the real function f E C ( 0 , l )  which minimizes the 

(where w ( x )  E C ( 0 , l ) )  subject to the constraint $ I f ]  = 1, where 

$ [ f l  2 j1 f  ( x )  dx 
0 

The Frichet differential of ~ [ f ]  + X $ [ f ]  is 
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For this functional to be zero for any h(x), we must have 

If this result is inserted in the constraint expression, the value of X can be determined. 0 

Example C.3 Find the complex function f (x) that minimizes 

(where w(x) > 0 for -w < x < w) subject to the constraint 

The relevant Frkhet differential is 

and this is zero for any h(x) provided that 

Transfer functions of directed 
graphs 

The state diagram of a convolutional code such as that of Fig. 11.6 is a directed 
graph. To define a directed graph, we give a set V= {v l ,  v2, . . . , ) of vertices 
(the states of the encoder, when dealing with convolutional codes) and a subset 
E of ordered pairs of vertices from V, called edges. A graph can be represented 
by drawing a set of points corresponding to the vertices and a set of arrows 
corresponding to each edge of E, and connecting pairs of vertices or one vertex 
to itself. A path in a graph is a sequence of edges, and can be identified by the 
sequence of subsequent vertices included into it. In the study of convolutional 
codes, we are interested in the enumeration of all paths of a directed graph. 

A simple directed graph is shown in Fig. D.1. There are three vertices, v l ,  v2 
and v3, and and four edges (vl , v2) , (vl  , v3),  (v2,v4), and (v2, v2). In this graph 
there are infinitely many paths between ul and v3, because of the loop at the 

Figure D.1: A directed graph. 
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CD + mF 
I-E 

AC+ KF &: c : 0 we e 

Figure D.2: (a)  Directed graph with five vertices and seven edges. (b) Reduced graph 
by removing vertex "d." (c)  Reduced graph byfitrther removing ver ta  "b." 

vertex vz. One path of length 4, is, for instance, vlvzvzvzv3. Each edge of a 
directed graph can be assigned a label. An important quantity, called the transfer 
function between a pair of vertices, is defined as the sum of the labels of all paths 
of any length connecting the two vertices. The label of a path is defined as the 
product of the labels of its edges. For example, considering again the directed 
graph of Fig. D.l, the label of the path vlvzvzvzv3 is L12L&L23. The transfer 
function T  between vl and v3 is then given by 

Therefore, the graph of Fig. D. l  can be replaced by a new graph with a single 
equivalent edge joining the vertices vl and v3 with label L',, given by 0 . 1 ) .  

Given a directed graph, it is thus possible to compute the transfer function 
between a pair of vertices by removing one by one the intermediate vertices 
on the graph and by redefining the new labels. As an example, consider the 
graph of Fig. D.2(a), with vertices a, b, c ,  d ,  e  and labels A, B ,  C ,  ..., G. Using 
the result @.I), this graph can be replaced with that of Fig. D.2 (b), in which the 
vertex d has been removed. By removing also the vertex b, we get the graph of 
Fig. D.2 (c), and finally the transfer function between a  and e  

T(a ,  e) = 
ACG(1- E )  + ABFG 

1 - E - C D + C D E - B D F  

When the number of vertices is large (say larger than 8). the reduction tech- 
nique previously explained becomes too complex, and we must resort to a dif- 
ferent technique for evaluating the transfer function. This technique is based on 
a matrix description of the graph, and can be very useful in computations since 
it lends itself to a software implementation. We will explain this technique with 
reference to the graph of Fig. D.2. 

Let us define by xi the value of the accumulated path labels from the initial 
vertex a to the vertex i, as influenced by all other vertices. Therefore, the state 
equations for the graph of Fig. D.2 (a) are 

With this approach, we obviously have T(a ,  e) = xe, and therefore we can solve 
the system 0 . 3 )  and verify that xe is given again by 0 . 2 ) .  

The system of equations 0 . 3 )  can be given a more general and formal ex- 
pression. Define the two column vectors 

and the state transition matrix T 

Using 0 . 4 )  and @S), the system 0 . 3 )  can be rewritten in matrix form as 

The formal solution to this equation can be written as 

or as the matrix power series 

Notice that the solution in terms of a power series is very useful when consider- 
ing the state diagram as being described by a walk into a trellis (see Chapters 11 
and 12). Each successive multiplication by T corresponds to one further step 
into the trellis. 

When the number of states is small, the matrix inversion 0 . 7 )  is also useful 
to get directly the result in a closed form similar to 0 . 2 ) .  



Approximate computation of 
averages 

The aim of this appendix is to describe some techniques for the evaluation of 
bounds or numerical approximations to the average E[g(c)] ,  where g(.) is an 
explicitly known deterministic function, and c is some random variable (RV) 
whose probability density function is not known explicitly, or is highly complex 
and hence very difficult to compute exactly. It is assumed that a certain amount 
of knowledge is available about c ,  expressed by a finite and usually small set of 
its moments. An efficient recursive algorithm to compute those moments for the 
important special case of < being a sum of independent RVs will be presented 
in the next section. Also, we shall assume that the range of c lies in the interval 
[a, b], where both a  and b are finite unless otherwise stated. The techniques 
described hereafter are not intended to exhaust the set of possible methods for 
solving this problem. However, they are general enough to handle a large class of 
situations and are computationally efficient in terms of speed and accuracy. Also, 
instead of providing a single technique, we describe several, as we advocate that 
the specific problem handled should determine the technique best suited to it 
from the viewpoint of computational effort required, accuracy, and applicability. 

E.1. Computation of the moments of a RV 

As this is the most relevant case for the applications considered in this book (see 
Section 7.2), we assume that the RV < is the sum of N independent RVs <, 
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whise first moments are known. For example, in the case of M-PAM modulation, 
discussed in Section 7.2, 6, = h,a,, where h ,  is one of the N significant sam- 
ples of the overall system impulse response, and a,  are the information-bearing 
RVs, assuming M equally likely and equally spaced values as in Table 7.1. 

A recursive method to compute the moments of 6 ,  which is particularly suited 
for computer implementation is described step by step in the following. 

Step 1 Compute the moments of the individual RVs <,. We have 

Step m Define the partial sums 

with q~ = <, and compute recursively, for each k, the moments 

through 

where the independence between qm and has been exploited. 

Step N When m = N stop the procedure, since 

The method for computing the moments, although described with reference to 
M-PAM, is fairly general, since it only requires c to be written as a sum of in- 
dependent RVs. When this is not possible, as for instance in systems employing 
codes that correlate the symbols in the sequence (a,), a more elaborate approach 
must be used to compute the error probability (see Cariolaro and Pupolin, 1975). 
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E.2. Series expansion technique 

In this section, we shall assume that the function g(x)  is analytic at point x = xo. 
Hence, we can represent it in a neighborhood of xo by using the Taylor's series 
expansion 

If the radius of convergence of (E.2) is large enough to include the range of the 
RV <, and we define 

A 
cn = E[< - 201" (E.3) 

then, averaging termwise the Taylor's series expansion of g(<), we get from (E.2) 
and (E.3) 

It can be seen from (E.4) that E[g(<)] can be evaluated on the basis of the knowl- 
edge of the sequence of moments (c,):=~, provided that the series converges. In 
particular, an approximate value of E[g(<)] based on a finite number of moments 
can be obtained by truncating (E.4) 

The error of this approximation is 

- 1 
- -  

( N  + I ) !  E N  - 
+ e(< - x ~ ) ] )  

where 0 < 0 < 1. Depending on the specific application characteristics, either 
one of the second and third terms in (E.6) can be used to obtain a bound on the 
truncation error. In any case, bounds on the values of the derivatives of g(.)  and 
of the moments (E.3) must be available. 

As an example of application of this technique, let us consider the function 
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where h and a are known parameters. This function can be expanded in a Tay- 
lor's series in the neighborhood of the origin by observing that (Abrarnowitz and 
Stegun, 1972, p. 298) 

where Hk-l(.) is the Hermite polynomial of degree ( k  - 1) (Abramowitz and 
Stegun, 1972, pp. 773-787). Thus, 

and we finally get 

2 
E[g(oI = erfc (&) + (-5) . 2 (&,)kk! 

(E. 10) 
where 

pk A E[<le], k = 1,2, 

are the central moments of the RV <. 
The proof that the series (E.lO) is convergent, as well as an upper bound on 

the truncation error, can be obtained by using the following bound on the value 
of Hermite polynomials (Abrarnowitz and Stegun, 1972, p. 787): 

IHn(z)I 5 f12ni2&exp (f) , f l  2 1.086435, n = l , 2 , .  . . (E.12) 

and the following bound on central moments: 

where x denotes the maximum value taken by 1 < 1 .  The bound (E.13) can be 
easily derived under the assumption that < is bounded. Using (E.12) and (E.13), 
we get the inequality (Prabhu, 1971) 

which holds ~rovided that 

g(x )  = erfc - (2:) (E. 15) 
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The condition (E.15) can always be met for finite values of X ,  provided that N is 
sufficiently large. 

A case of special interest arises when is a symmetric RV, so that its odd- 

order central moments are zero 

In this case, (E.lO) specializes to 

and, using the inequality (Abramowitz and Stegun, 1972, p. 787) 

the following bound can be derived (Prabhu, 1971): 

under the constraint (g)' < N + 2  (E. 19) 

It can be seen from (E.14) and (E.18) that the truncation error can be made van- 
ishingly small by taking N, the number of terms retained for the computation, 
sufficiently large. Thus, at first it may seem that the average E[g(()] can be ap- 
proximated with as great an accuracy as desired. But, in practice, roundoff errors 
may make it impossible to add up too many terms in the series and still retain 
a satisfactory accuracy. Notice in particular that in @.lo), and even in (E.16), 
the terms of the series do not have the same sign. Also, in practice, it is virtu- 
ally impossible to compute a very large set of moments. The inaccuracies in the 
computations (or in measurements) of the moments increase with their order, so 
the process of adding more and more terms to the series cannot be extended very 
far as the computed values of the series become unreliable. 

The Taylor's series technique presented so far can be modified by considering 
a different series expansion for the function g(.). One may want to consider, in 
lieu of (E.2), a series of the form 

where Po ( x ) ,  Pl ( x ) ,  . . . form a sequence of polynomials orthonormal in the in- 
terval I. consequently, the coefficients of the series expansion are given by 

If I includes the range of the RV I ,  by averaging (E.20) termwise we obtain 

which can in turn be approximated by a finite sum. The computation of (E.22) re- 
quires the knowledge of the "generalized moments" E[Pn(()], which can be ob- 
tained, for example, as finite linear combinations of the central moments (E.ll). 
This variant of the first technique may lead to a better convergence of the series. 

E.3. Quadrature approximations 

In this section we shall describe an approximation technique for E[g(()] based 
on the observation that this average can be formally expressed as the integral 

where ft(.) denotes the probability density function (pdf) of the RV I .  Having 
ascertained that the problem of evaluating E[g(()] is indeed equivalent to the 
computation of an integral, we can resort to the numerical techniques developed 
to compute approximate values of integrals of the form (E.23). The most widely 
investigated techniques for approximating a definite integral lead to the formula 

i.e., a linear combination of values of the function g(.). The x, , i = 1,2,  . . . , N, 
are called the abscissas (or points or nodes) of the formula, and the wi , i = 
1,2, . . . , N, are called its weights (or coefficients). The set of abscissas and 
weights is usually referred to as a quadrature rule. A systematic introduction 
to the theory of quadrature rules of the form (E.24) is given in Krylov (1962). 

The quadrature rule is chosen to render (E.24) as accurate as possible. A 
first difficulty with this theory arises when one wants to define how to measure 
the accuracy of a quadrature rule. Since we want the abscissas and weights to 
be independent of g(.), and hence be the same for all possible such functions, 
the definition of what is meant by "accuracy" must be made independent of the 

i 
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particular choice of g ( . ) .  The classical approach here is to select a number of 
probefunctions and constrain the quadrature rule to be exact for these functions. 
By choosing g ( . )  to be a polynomial, it is said that the quadrature rule (E.24) 
has degree of precision v if it is exact whenever g ( . )  is a polynomial of degree 
5 v (or, equivalently, whenever g ( x )  = 1 , x ,  . . . , x") and it is not exact for 
g ( x )  = xv+l .  

Once a criterion of goodness for quadrature rules has been defined, the next 
step is to investigate which are the best quadrature rules and how they can be 
computed. The answer is provided by the following result from numerical analy- 
sis, slightly reformulated to fit our framework (see Krylov, 1962, for more details 
and a proof): 

Given a random variable 5 with range [a, b] and all of whose moments exist, it 
is always possible to define a sequence of polynomials P o ( x ) ,  P l ( x ) ,  . . . , with 
deg e ( x )  = i, that are orthonormal with respect to 5;  that is, 

Denote by X I  < x2 < . . . < X N  the N roots of the polynomial P N ( x )  (they are 
all real, and lie inside [a, b]) ,  and by kn the coefficient of x ,  in the polynomial 
P n ( X )  , n = 0 ,1 , .  . .. By defining 

the set { x i ,  w i ) g l  is a quadrature rule with degree of precision 2N - 1. This is 
the highest degree of precision that can be attained by any quadrature rule with 
N weights and abscissas. 

These quadrature rules are usually called Gauss quadrature rules because 
they were first studied by Gauss. He considered the special case f { ( x )  = con- 
stant. 

If { x i ,  w i ) g ,  is a Gauss quadrature rule, the error involved in the approxi- 
mate integration of the function g ( . ) ,  that is, the difference between the two sides 
of (E.24), is given by 

provided that g ( . )  has in [a, b] a continuous derivative of order 2N; 77 is a point 
in [a, b] .  

Example E.l For a number of probability density functions f{(.), results concerning 
Gauss quadrature rules are available in tabular form. For example, if < is a Gaussian RV 
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with mean C( and variance oZ, the corresponding Gauss quadrature rule is 

where the abscissas z ,  , i = 1,. . . , N are the zeros of the Nth-degree Hermite polyno- 
mial. The actual values of wi and zi, for various values of N, can be found for instance 
in Abrarnowitz and Stegun (1972, p. 924). The error is given by 

It can be seen from this example that the range of the random variable < need not be 
finite for the application of a Gauss quadrature rule to the approximation of E[g(<) ] .  

E.3.1. Computation of Gauss quadrature rules 

In the example just shown, the orthogonal polynomials relevant to the compu- 
tation of the Gauss quadrature rules were well-known classical polynomials. In 
most instances, however, the pdf of the RV 5 does not give rise to a polynomial 
set available in tabular form. In these situations, the Gauss quadrature rule must 
be computed. The relevant fact here is that the set { x i ,  w i ) g l  can be evaluated 
on the basis of the moments p l ,  p 2 , .  . . , P z N - ~  of 5 .  In other words, only the first 
2N - 1 moments of 5 are needed to determine explicitly a Gauss quadrature rule 
with N weights and abscissas.' 

To see how to undertake this, we use the fact that a Gauss quadrature rule 
with N weights and abscissas has degree of precision 2N - 1. Since 

for any 0 5 k  5 2N - 1 the Gauss quadrature rule is exact, that is, 

This system of 2N nonlinear equations has the weights and abscissas as un- 
knowns; by solving it, the Gauss quadrature rule can be found. 

'It is often claimed that the moment p2,~ is also needed to perform this task; see for instance 
Golub and Welsch (1969) and Benedetto et al. (1973). Actually, the role of p2N is just that of 
normalizing the polynomial PN(.) .  and its values affect neither the abscissas nor the weights of 
the quadrature rule (Gautschi. 1970). 
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In general, it is not convenient to solve directly equations (E.31), except for 
a very few simple cases. A computationally effective technique to determine 
Gauss quadrature rules based on the moments of 5 has been proposed in Golub 
and Welsch (1969). The reader is referred to the original paper for details about 
the computational algorithms. Here it suffices to say that Golub and Welsch's 
technique consists essentially of two steps: 

Step 1 Evaluation of the coefficients { a n ) L  , { P n } L  of the three-term recur- 
rence relationship satisfied by the polynomials Po (2) , . . . , PN (2) orthogo- 
nal with respect to the random variable 5 

with the initial conditions 

Step 2 Generation of a symmetric tridiagonal matrix whose entries depend on 
{ a n ) L  and { P n ) L .  The weights { w n ) L  are found as the first compo- 
nents of the normalized eigenvectors of this matrix, whereas the abscissas 
{ x n ) L  are the corresponding eigenvalues. The computations can be per- 
formed on the basis of the knowledge of the moments p l ,  p2,.  . . , p z ~ - l .  
First, the Gram matrix M of the moments is formed. It has entries 

Notice that M also includes the moment p z ~  as an element. Anyhow, as 
discussed before, the exact value of p z ~  is irrelevant. Thus, if p2N is Un- 
known, any value for p z ~  will suffice, provided that M is positive definite. 
Let M = I'I" be the Cholesky decomposition of M, where I' is a lower 
triangular matrix with positive diagonal entries (see, e.g., Golub and Van 
Loan, 1983, p. 88). The elements of I', which can be computed using stan- 
dard recursive formulas, provide the coefficients of the recursion (E.32). 

E.3.2. Round-off errors in Gauss quadrature rules 

In principle, if a sufficiently large number of moments of 5 is available, the error 
term (E.27) can be made as small as desired by increasing the number N of ab- 
scissas and weights of the quadrature rule. In fact, as N -+ co, the RHS of (E.24) 
converges to the value of the LHS "for almost any conceivable function" f c ( . )  
"which one meets in practice" (Stroud and Secrest, 1966, p. 13). However, this 
is not true in practice, essentially because the moments of J  needed in the com- 
putation are not known with infinite accuracy. Computational experience shows 
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that the Cholesky decomposition of the moment matrix M is the crucial step 
of the algorithm for the computation of Gauss quadrature rules, since M gets 
increasingly ill-conditioned with increasing N .  Roundoff errors may cause the 
computed M to be no longer positive definite. Thus its Cholesky decomposition 
cannot be performed because it implies taking the square root of negative num- 
bers (Luvison and Pirani, 1979). In practice, values of N greater than 10 can 
rarely be achieved; the accuracy thus obtained is, however, satisfactory in most 
situations. 

E.4. Moment bounds 

We have seen in the preceding section that the quadrature rule approach allows 
E[g(<)]  to be approximated in the form of a linear combination of values of 
g( - ) .  This is equivalent to substituting, for the actual probability density function 
f c ( z ) ,  a discrete density in the form 

where {x i ,  wi):, are chosen so as to match the first 2N - 1 moments of J  
according to (E.31). 

A more refined approach can be taken by looking for upper and lower bounds 
to E[g(J ) ] ,  still based on the moments of <. In particular, we can set the goal 
of finding bounds to E[g(<)] that are in some sense optimum (i.e., they cannot 
be further tightened with the available informations on 5).  The problem can 
be formulated as follows: given a random variable 5 with range in the finite 
interval [a,  b],  whose first M moments p l , .  . . , p~ are known, we want to find 
the sharpest upper and lower bounds to the integral 

where g( . )  is a known function and f c ( . )  is the (unknown) pdf of the RV 5. To 
solve this problem, we look at the set of all possible f c ( . )  whose range is [a ,  b] and 
whose first M moments are p1, . . . , p ~ .  Then we compute the maximum and 
minimum value of (E.35) as f c ( . )  runs through that set. The bounds obtained are 
optimum, because it is certain that a pair of random variables exists, say 5' and 
<", with range in [a,  b] and meeting the lower and the upper bound, respectively, 
with the equality sign. 

This extremal problem can be solved by using a set of results due essentially 
to the Russian mathematician M. G. Krein (see Krein and Nudel'man, 1977). 
These results can be summarized as follows. 



804 E. Approximate computation of averages 

(a) If the function g(.) has a continuous (M + 3)th derivative, and g(M+3)(.)  is 
everywhere nonnegative in [a, b ] ,  then the optimum bounds to E[g(J)]  are 
in the form 

N' N" 

C w:g(x:) 5 E[g(J)I 5 C w;g(x&) (E.36) 
i=l i=l 

This is equivalent to saying that the two "extremal" pdfs are discrete, 
which allows the upper and lower bounds to be written in the form of 
quadrature rules. 1f g(M+3)  (.) is nonpositive, instead of being nonnegative, 
it suffices to consider -g(.) instead of g(.). 

(b) I f M  is odd, then N1 = ( M  + 1)/2 and NI1 = ( M  + 3)/2. Also, {x i ,  w : ) z l  
is a Gauss quadrature rule, and {x:, w:')C; is the quadrature rule having 
the maximum degree of precision (i.e., 2NU+1) under the constraints x',' = 
a ,  x:,, = b. I f M  is even, then N1 = N" = (M + 2 ) / 2 .  Also, {xi ,  w i ) z l  
(and, respectively, {x:, w:)z ; )  is thequadrature rule having the maximum 
achievable degree of precision (i.e., 2N1) under the constraint xi = a (and, 
respectively, x$ = b). 

A technical condition involved with the derivation of these results requires 
that the Gram matrix of the moments pl , .  . . , p~ be positive definite. For our 
purpose, a simple sufficient condition is that the cumulative distribution function 
of J has more than M+1 points of increase. If J is a continuous RV, this condition 
is immediately satisfied. If E is a discrete RV, it means that J must take on more 
than M + 1 values. As M + 1 is generally a small number, the latter requirement 
is always satisfied in practice; otherwise, the value of E[g(J)]  can be evaluated 
explicitly, with no need to bound it. 

E.4.1. Computation of moment bounds 

Once the moments p1,. . . , p~ have been computed, in order to use Krein's re- 
sults explicitly, the quadrature rules {wl, x ~ ) ~ ~  and {w:, x:)g; must be evalu- 
ated. From the preceding discussion, it will not be surprising that the algorithms 
for computing the moment bounds (E.36) bear a close resemblance to those de- 
veloped for computing Gauss quadrature rules. Indeed, the task is still to find 
abscissas and weights of a quadrature rule achieving the maximum degree of 
precision, possibly under constraints about the location of one or two abscissas. 
Several algorithms are available for this computation (Yao and Biglieri, 1980; 
Omura and Simon, 1980). 

The first approach (Yao and Biglieri, 1980), is based on the assumption that 
Golub and Welsch's algorithm described in Section E.2 has been implemented. 
In particular, the known moments of J must be modified before being used as 
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inputs to that algorithm, and, also, the weights and abscissas obtained as the 
outcomes of the algorithm must be modified. These modifications can be found 
in Yao and Biglieri (1980), and the interested reader is referred to this reference. 

E.5. Approximating the averages depending on two random 
variables 

Before ending this appendix, we shall briefly discuss the problem of evaluating 
approximations of the average E[g(<, q)] .  where g(., .) is a known deterministic 
function, and J ,  q are two (possibly correlated) RVs with range in a region R of 
the plane. Exact computation of this average requires knowledge of the joint pdf 
fc,q(x, y)  of the pair of RVs J ,  q. This may not be available, or the evaluation of 
the double integral 

may be unfeasible. In practice, it is often exceedingly easier to compute a small 
number of joint moments 

and use this information to obtain E[g(J,  q )] .  
The first technique that can be used to this purpose is based on the expansion 

of g(J ,  q )  in a Taylor's series. The terms of this series will involve products like 
Jtqm, SO that truncating the series and averaging it termwise will provide the 
desired approximation. 

Another possible technique uses cubature rules, a two-dimensional gener- 
alization of quadrature rules discussed in Section E.3. With this approach, the 
approximation of E[g(J ,  q )]  takes the form 

As a generalization of the one-dimensional case, we say that the cubature rule 
{w,, xi,  Yi)iN,l has degree of precision v if (E.39) holds with the equality sign 
whenever g(x ,  y)  is a polynomial in x and y of degree 5 v ,  but not for all poly- 
nomials of degree v + 1. Unfortunately, construction of cubature rules with a 
maximum degree of precision is, generally, an unsolved problem, and solutions 
are only available in some special cases. For example, in Mysovskih (1968) a cu- 
bature rule with degree of precision 4 and N = 6 was derived. This is valid when 
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the region R and the function f e ,q ( - ,  .) are symmetric relative to both coordinate 
axes. Thus. we must have 

With these assumptions, pi,k = 0 if at least one of the numbers i and k is odd. 
The moments needed for the computation of the cubature rule are then p2,0, p g , ~ ,  

p4,o. and p2,2. Underhe same symmetry assumptions, a cubature rule with 
N = 19 and degree of precision 9 can be obtained by using the moments p 2 , ~ ,  

p0,27 p4,0, p0,4, p2,2. p2,4, p4,2, &01 p2,6. p6,2, p8,09 p0.89 and p4,4. 

If a higher degree of precision is sought or the symmetry requirements are not 
satisfied, one can resort to "good" cubature rules that can be computed through 
the joint moments (E.38). Formulas of the type 

with degree of precision v = min ( N ,  - 1, Nu - 1) can be found by using 
the moments p h , ~ ,  p ~ , ~ ,  h = 1 , .  . , , 2 N z ,  k = I , .  . . , 2 N u ,  and ph,k, h = 
1 , .  . . , N, - 1 , k = 1 , .  . . , Nu - 1 .  Equivalent algorithms for the computation 
of weights and abscissas in (E.41) were derived in Luvison and Navino (1976) 
and Omura and Simon (1980). 

We conclude by commenting briefly on the important special case in which 
the two random variables J and q are independent. In this situation, by using mo- 
ments of J one can construct the Gauss quadrature rule {wi ,  x i ) z l ,  and by using 
moments of q one can similarly obtain the Gauss quadrature rule { u j ,  yj)y21. 

Then it is a simple matter to show that the following cubature rule can be ob- 
tained: 

i=l j=1 

and this has degree of precision v = min (2N,  - 1, 2Nu - 1 ) .  

Viterbi algorithm 

F.1. Introduction 

The Viterbi algorithm (VA) was originally proposed in 1967 for decoding convo- 
lutional codes. Shortly after its discovery, it was observed that the VA was based 
on the principles of dynamic programming, a general technique for solving ex- 
tremum (that is, maximization or minimization) problems. 

Our application of the VA consists of finding, among the paths traversing a 
trellis from left to right, the one with the maximum or minimum metric. Specif- 
ically, we define a trellis as a diagram representing all the allowable trajectories 
of a Markov chain with No states { S i ) z l  from time k = 0 to time k = K. The 
trellis begin and ends at two known states, and there is a one-to-one correspon- 
dence between the sequences of K + 1 states and the paths through the trellis. 
Fig. F.1 shows an example of a four-state trellis with K = 6. A branch metric is 
associated with each branch (or edge) of the trellis, in the form of a label. The 
branch metrics are additive, i.e., the metric associated with a pair of adjoining 
branches is the sum of the two metrics. Consequently, the total metric associated 
with a path traversing the whole trellis from left to right is the sum of the labels of 
the branches forming the path. The problem here is to find the path traversing the 
trellis with the maximum (or minimum) total metric (the choice between maxi- 
mum or minimum depends of course on the problem being solved). Formally, if 
a k  denotes the state at time k, taking values {Si)zl, and m(ak, ak+1) denotes 
the metric associated with the branch emanating from node ak and joining node 
ak+l, we want to maximize (or minimize) the function 
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Figure El :  Trellis of a four-state Markov process. 

over all the possible choices of the state sequences (ao, 01, . . . , a ~ )  compatible 
with the trellis structure. 

Clearly, the problem above could be solved in principle by a brute-force 
approach, consisting of evaluating all the possible values of the function A ( . )  
in (El), and choosing the largest (or the smallest). However, this algorithm 
would suffer from two main drawbacks, viz., 

Complexity: The number of computations required, and the storage needed, 
grow exponentially with the length K of the sequence. 

Delay: If the branch labels are computed sequentially from time k = 0 to time 
k = K (as it occurs in the applications considered in this book), then the 
decision on the best path must be deferred until the whole sequence of 
labels is computed, which entails a delay K. 

As we shall see, the Viterbi algorithm solves the maximization problem with- 
out suffering from exponential complexity: actually, its computational complex- 
ity (and storage requirements) grow only linearly with K. Moreover, the trun- 
cated version of the VA has a delay which may be much smaller than K, at the 
price of a minor loss of optimality. 

We start our description of the VA with the illustration of its key step, com- 
monly called ACS (for Add, Compare, and Select). Consider Fig. F.2, where 
(and from now on) we shall consider a muximum problem. It shows the trellis 
states at time k (denoted uk) and at time k + 1 (denoted u ~ + ~ ) .  The branches 
joining pairs of paths are labeled by the corresponding branch metrics, while the 
states a k  are labeled by the accumulated state metrics, to be defined soon. The 
ACS step consists of the following: For each state ak+l, examine the branches 
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Figure F.2: The ACS step of Viterbi algorithm. 

stemming from states uk and leading to it (there are two such branches in Fig. F.2). 
For these branches, ADD the metric accumulated at the state from which it stems 
to the metric of the branch itself. Then COMPARE the results of these sums, and 
SELECT the branch associated with the maximum value (and consequently dis- 
card, for each state, all the other branches entering it; and if two or more of 
the quantities being compared are equal, choose one at random). The maximum 
value is associated with the state, and fonns its accumulated metric. This value 
is retained only for the next ACS step and is then discarded. 

The VA consists of repeating the ACS step from the starting state to the end- 
ing state of the trellis. After each ACS step the VA retains, for each state, one 
value of accumulated metric and one path, usually called the survivor corre- 
sponding to the state. Thus, at any time k we are left, for each a t ,  with a single 
survivor path traversing the trellis from the initial state to a k ,  and with one value 
of accumulated metric. This survivor path is the maximum-metric path to the 
corresponding state. After K ACS steps, at the termination of the trellis we 
obtain a single K-branch path and a single accumulated metric. These are the 
maximum-metric path and the maximum-metric value, respectively. Fig. F.3 il- 
lustrates the determination of a maximum-metric path through a four-state trellis 
via the VA. 

To prove the optimality of the VA it suffices to observe the following. As- 
sume that the optimum path passes through state Si (say) at time k. Then, itsfirst 
k branches must be the same as for the survivor corresponding to Si. In fact, if 
they did not, the optimum path would begin with a path passing through S; and 
having a metric lower than the survivor of Si, which is a contradiction. In other 
words, no path discarded in favor of a survivor can provide a contribution to the 
total metric larger than the survivors. 
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The computational complexity of the VA is the same at each time instant 
(we disregard initial and final transients). Hence, it grows only linearly with K. 
More specifically, the VA requires N, storage locations, one for each state, with 
each location storing an accumulated metric and a surviving path. In terms of 
the number of computations, at each time instant the VA must make Q additions, 
where Q is the number of transitions in a trellis section (for example, Q = 8 in 
Fig. E l ) ,  and N, comparisons. Thus, the amount of storage is proportional to the 
number of states, and the amount of computation per time unit is proportional to 
the number of transitions. 

F.1.1. The truncated Viterbi algorithm 

The VA as described above leaves the delay problem unsolved. In fact, the algo- 
rithm cannot reach a decision about the maximum-metric sequence before time 
K. On the other hand, it is obvious that a decision about the best sequence cannot 
be reached before scanning all the states from k = 0 to k = K, so that reducing 
the delay would necessarily entail a loss of optimality of the algorithm. 

When the delay of K time instants cannot be tolerated, the truncated Viterbi 
algorithm may be used. This consists of forcing decisions at stage k on all paths 
prior to stage k - D, for some truncation depth (or decision depth) D. The 
approach consists of comparing the partial path metrics for the paths at stage k,  
and noting which one is the largest. The branch chosen at this time is the one 
belonging to this path at time k - D. Thus, after a latency of D time instants, the 
truncated VA outputs one branch at a time. Doing this entails also a reduction in 
the storage needed, since only the last D branches of the survivor paths must be 
kept in memory. The loss of optimality is reduced when D is increased, because 
when D is large there is a high probability that all the surviving paths leading to 
any node have an initial part in common: so this initial path will be a part of the 
optimum one, and we say that a merge has taken place. 

F.1.2. An example of application 

Here we describe a simple example of application of the Viterbi algorithm to a 
decoding problem. Assume that a symbol sequence x, consisting of K equally 
likely binary symbols taking values 0 or 1, is transmitted over a memoryless 
channel. Assume also that the symbols, rather than being independent, are cor- 
related with each other, and that their correlation can be described in the fonn of 
a trellis as defined before. Specifically, all the admissible symbol sequences are 
in one-to-one correspondence with the the paths traversing the trellis from k = 0 
to k = K, with one symbol associated with each branch. This occurs for exam- 
ple when the symbol sequence can be thought of as the output of a finite-state 
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machine driven by an independent, identically distributed sequence of random 
variables, so that the sequence of states forms a Markov chain. 

Let yk denote the components of the received signal sequence y ,  and p(yk I 
xk) the probability density function of the received samples given that z k  was 
transmitted. Maximum-likelihood detection of the transmitted sequence consists 
of maximizing the conditional pdf 

over all the admissible sequences x. Here the assumption of a memoryless chan- 
nel has been used to factorize the pdf. 

By taking the logarithm of (F.2). we obtain the additive form 

We can then use Inp(yk I xk) as the metric that labels the trellis branches as- 
sociated at time k with the symbol z k  when the observed channel output is yk. 
Maximization of the sum (F.3) leads to choosing the most likely sequence of 
transmitted symbols. As a special case, for the additive white Gaussian noise 
channel the above leads to a problem equivalent to the minimization of a Eu- 
clidean distance, or, for equal-energy signals, to the maximization of a scalar 
product. 

F.2. Maximum a posteriori detection. The BC JR algorithm 

It is known (Section 2.6) that maximum-likelihood detection minimizes the prob- 
ability that the whole detected sequence be in error. Assume instead that in the 
example of Section F. 1.2 we are interested in minimizing the symbol error prob- 
ability for the detected symbols (motivation for this choice is provided in Section 
11.3). To do this, for each k we should choose the value of z k  that leads to the 
greater between the two quantities (a posteriori probabilities) P ( z k  = 0 ( y )  and 
P(xk = 1 I y). This is tantamount to comparing with a unit threshold the a 
posteriori probability ratio 

Now, observe that the transmitted symbol z k  is associated with one or more 
branches of the treIlis stage at time k, and that each one of these branches can 
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be characterized by the pair of states, say (ak, u ~ + ~ ) ,  that it joins. Thus, we can 
write 

where the two summations are over those pairs of states for which zk = 1 and 
zk = 0, respectively, and the conditional probabilities of (F.4) are replaced by 
joint probabilities after using Bayes' rule and cancelling out the pdf of y, com- 
mon to numerator and denominator. 

We proceed now to the computation of the pdf p(y, ak, uk+l). By defining 
y;, the components of the received vector before time k, and y:, the components 
of the received vector after time k, we can write 

and consequently 

Now, observe that due to the dependences among observed variables and trellis 
states, reflected by the trellis structure or, equivalently, by the Markov-chain 
property of the trellis states, y: depends on ak, ~ k + ~ ,  y;, and yk only through 
ak+l, and, similarly, the pair yk, uk+l depends on ak, y; only through uk. Thus, 
by defining the functions 

we may write 

In conclusion, the a posteriori probability ratio (FS) can be rewritten in the form 
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To complete our calculations, we now describe how the functions ak(uk) and 
/3k+l(uk+l) can be evaluated recursively. We note the forward recursion 

with the initial condition QO(S~) = 1 (sl denotes the initial state of the trellis). 
Similarly, we note the backward recursion i 

with the final value PK(sK) = 1. 
The combination of the latter two recursions with (F.10) forms the BCJR al- 

gorithm, named after the authors who first derived it (Bahl, Cocke, Jelinek, and 
Raviv, 1974). This algorithm, that was derived here with the aim of maximiz- 
ing the a posteriori probabilities of the symbols, is used in Section 11.3 to the 
purpose of computing a posteriori probabilities. 

Roughly speaking, we can state that the complexity of the B C R  algorithm is 
about three times that of Viterbi algorithm. A truncated version of this algorithm 
(the "sliding-window" algorithm) is described in Section 11.3. 

F.3. Bibliographical notes 

The Viterbi algorithm was proposed by Viterbi (1967) as a method for decoding 
convolutional codes (see Chapter 10). Since then, it has been applied to a variety 
of maximization problems arising in demodulation of digital signals generated 
by a modulator with memory or in sequence estimation for channels with inter- 
symbol interference. A survey of applications of the Viterbi algorithm, as well as 
a number of details regarding its implementation, can be found in Fomey (1973). 



The connections between the Viterbi algorithm and dynamic programming tech- 
niques were first recognized by Omura (1969). 

The maximum a posteriori decoding algorithm, now commonly referred to as 
the BCJR algorithm, was proposed in (Bahl, Cocke, Jelinek, and Raviv, 1974). 
Until recently it received limited attention because of its increase in complexity 
over the Viterbi algorithm, which yields very close results in terns of bit error 
probability. Recently the interest in the BCJR algorithm was rekindled by the 
discovery of the class of "turbo" codes (Berrou, Glavieux, and Thitirnajshirna, 
1993) described in Chapter 11. 

l? 3. Bibliographical notes 

Figure F.3: Determination of the maximum-metric path through a trellis with K = 6 
and four states via the Viterbi algorithm. 
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redundancy, 115 
uniquely decipherable. 109 

code word 
average length, 109 

conditional entropy, 116 
discrete stationary, 106 
encoding 

Huffman procedure. 1 13 
Lempel-Ziv algorithm, 12 1,151 

information rate, 121 
Markov 

encoding, 119 
entropy. 118 
graph, 1 18 
stationary, 117 

prefix code. 109 
stationary 

entropy, 115 
Spectral analysis of nonlinear signals, 728 
Spectral efficiency. 149 
Standard may, 469 
State diagram, 41 
State diagram of convolutional codes, 539 
State of convolutional encoders, 539 
Steepest-descent algorithm. 384 
Sufficient statistics, 85, 167, 172 
Symbol-by-symbol decision, 167 
Synchronization 

acquisition, 430 
carrier, 440 
clock, 445 
training, 430 

Syndrome decoding. 563 
System 

bandpass, 63 
continuous-time 

group delay. 18 
transfer function, 18 

linear 
bandpass. 63 

nonlinear 
bandpass, 66 

stable. 15 
time-discrete, 10 

causal, 11 
finite impulse response, 11 
finite-memory. 11 
group delay, 14 
impulse response, 10 

invariant, 10 
linear, 10 
memoryless, I I 
transfer function, 14 

System optimization 
mean-square error. 348 

Systematic encoder, 455 
Systematic recursive convolutional encoders, 

571 

Tapped delay line, 1 I 
TCM 

asymptotic coding gain, 638 
coding gain, 645 
decoding 

Viterbi algorithm, 639 
encoder states. 638 
error event, 640.652 
error probability, 651,659 

lower bound, 662 
transfer function bound. 655 

error state diagram. 654 
free distance, 640 

computation, 666 
parallel transitions. 638,639 
rotationally invariant, 672 
set partitioning, 645 
Ungerboeck's design rules, 647 

Time dispersion, 687 
Timing jiner, 446 
Toeplitz distribution theorem, 784 
Tomlinson-Harashima preceding, 421 
Transfer function of convolutional codes, 543 
Transfer functions 

directed graphs, 791 
Transmitting filter 

information-theoretic optimization, 356 
Tree code, 454 
Tree diagram of convolutional codes, 540 
Trellis diagram of convolutional codes, 540 
Trellis termination, 537 
Turbo codes, 582 

design. 596 
interleaver gain. 586 
iterative decoding, 605 
performance analysis, 583,589 
uniform interleaver, 585 

Uncertainty principle, 80 

Unequal error protection. 267 
Uniform interleaver. 585 

Variational techniques, 788 
Kterbi algorithm, 285,808 

branch metric, 556 
computational complexity, 559 
convolutional codes, 554 
correlation metric. 561 
decoding delay, 560 
distance path metric, metric, 558 561 

soft metrics, 560 
truncated, 296,810 

Volterra 
coefficients, 12 
kernels. 17,98 
series, 12, 16.96 

Volterra kernels, 734 
Volterra model of nonlinear channels, 730 
Voronoi region, 174,246,247 

Water-pouring 
system optimization, 356 

Weight enumerating function (WEF), 473 
Weight enumerating function of convolutional 

codes, 543 
White noise, 32.84.93 

narrowband, 62 


	Elements of detection theory



