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Preface

Quelli che s’innamoran di pratica sanza scienzia,

son come 'l nocchieri ch’entra in navilio sanza timone o bussola,

che mai ha la certezza dove si vada.

Leonardo da Vinci, Codex G, Bibliotheque de I'Institut de France, Paris.

This books stems from its ancestor Digital Transmission Theory, published by
Prentice-Hall in 1987 and now out of print. Following the suggestion of several
colleagues who complained about the unavailability of a textbook they liked and
adopted in their courses, two out of its three former authors have deeply revised
and updated the old book, laying a strong emphasis on wireless communications.
We hope that those who liked the previous book will find again its flavor here,
while new readers, untouched by nostalgia, will judge it favorably.

In keeping with the cliché “every edition is an addition,” we started plan-
ning what new topics were needed in a textbook trying to provide a substantial
covering of the discipline. However, we immediately became aware that an in-
depth discussion of the many things we deemed appropriate for inclusion would
quickly make this book twice the size of the previous one. It would certainly be
nice to write, as in the Mahabharata, “what is in this book, you can find some-
where else; but what is not in it, you cannot find anywhere.” Yet such a book,
like Borges’ map drawn to 1:1 scale, would not hit the mark. For this reason we
aimed at writing an entirely new book, whose focus was on (although not totally
restricted to) wireless digital transmission, an area whose increasing relevance
in these days need not be stressed. Even with this shift in focus, we are aware
that many things were left out, so that the reader should not expect an encyclope-
dic coverage of the discipline, but rather a relatively thorough coverage of some
important parts of it.

Some readers may note with dismay that in a book devoted, at least partially,
to wireless communications, there is no description of wireless systems. If we
were to choose an icon for this book, we would choose Carroll’s Cheshire Cat of
Wonderland. As Martin Gardner notes in his “Annotated Alice,” the phrase “grin
without a cat” is not a bad description of pure mathematics. Similarly, we think
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vi Preface

of this phrase as a good description of “communication theory” as contrasted
to “communication systems.” A book devoted to communication systems alone
would be a cat without a grin: thus, due to the practical impossibility of deliver-
ing both, we opted for the grin. Another justification is that, as the Cheshire Cat
is identified only by its smile, so we have characterized communications by its
theoretical foundations.

Our goal is primarily to provide a textbook for senior or beginning-graduate
students, although practicing engineers will probably find it useful. We agree
with Plato, who in his Seventh Letter contrasts the dialectic method of teaching,
exemplified by Socrates’ personal, interactive mode of instruction, with that af-
forded by the written word. Words can only offer a shallow form of teaching:
when questioned, they always provide the same answer, and cannot convey ulti-
mate truths. Instruction can only take place within a dialogue, which a book can
never offer. Yet, we hope that our treatment is reflective enough of our teaching
experience so as to provide a useful tool for self-study.

We assume that the reader has a basic understanding of Fourier transform
techniques, probability theory, random variables, random processes, signal trans-
mission through linear systems, the sampling theorem, linear modulation meth-
ods, matrix algebra, vector spaces, and linear transformations. However, ad-
vanced knowledge of these topics is not required.

This book can serve as a text in either one-semester or two-semester courses
in digital communications. We outline below some possible, although not ex-
haustive, roadmaps.

1. A one-term basic course in digital communications:
Select review sections in Chapters 2, 3, 4, and 5, parts of Chapters 7 and 9.

2. A one-term course in advanced digital communications:
Select review sections in Chapters 4 and 5, then Chapters 6, 7, 8, 9, and
13.

3. A one-term course in information theory and coding:
Chapters 3, 9, 10, 11, 12, and parts of 13.

4. A two-term course sequence in digital communications and coding:
(A) Select review sections in Chapters 2, 3,4, 5,6, and 7.
(B) Chapters 9, 10, 11, 12, 13, and 14.

History tells us that Tolstoy’s wife, Sonya, copied out "War and Peace” seven
times. Since in these days wives are considerably less pliable than in 19th-
century Russia, we produced the whole book by ourselves using IKIEX: this
implies that we are solely responsible not only for technical inaccuracies, but

Preface vii
also for typos. We would appreciate it if the readers who spot any of them would-
write to us at <benedetto,biglieri>@polito.it. Anerrata file will be
kept and sent to anyone interested.

As this endeavor is partly the outcome of our teaching activity, it owes a great
deal to our colleagues and students who volunteered to read parts of the book,
correct mistakes, and provide criticism and suggestions for its improvement. We
take this opportunity to acknowledge Giuseppe Caire, Andrea Carena, Vittorio
Cummi, G. David Forney, Jr., Roberto Garello, Roberto Gaudino, Jgrm Justesen,
Guido Montorsi, Giorgio Picchi, Pierluigi Poggiolini, S. Pas Pasupathy, Fabrizio
Pollara, Bixio Rimoldi, Giorgio Taricco, Monica Visintin, Emanuele Viterbo,
and Peter Willett. Participation of E.B. in symposia with Tony Ephremides, Ken
Vastola, and Sergio Verdi, even when not strictly related to digital communica-
tions, was always conducive to scholarly productivity. Luciano Brino drew most
of the figures with patience and skill.

namo Ganesdya vighnésvaraya



Contents

1 Introduction and motivation

2 A mathematical introduction

2.1.

2.2.

2.3.

24.

2.5.

2.6.

2.7.
2.8.

Signalsandsystems . . . .. ... ... ... . ...
2.1.1. Discretesignalsandsystems . . . ... .......
2.1.2. Continuous signals and systems . . ... ... ...
Randomprocesses . .. ... ... .............
2.2.1. Discrete-time processes . . . . . . . ...,
2.2.2. Continuous-time processes . . . . . . . . . . . . . .
Spectral analysis of deterministic and random signals . . . .

2.3.1. Spectral analysis of random digital signals . . . . . .
Narrowband signals and bandpass systems . . . . ... ...
2.4.1. Narrowband signals: Complex envelopes . . . . . .
24.2. Bandpasssystems . ... ..............
Discrete representation of continuous signals . . . . .. ..

2.5.1. Orthonormal expansions of finite-energy signals

2.5.2. Orthonormal expansions of random signals . . . . .

Elements of detectiontheory . . .. ... ..........
2.6.1. Optimum detector: One real signal innoise . . . . .
2.6.2. Optimum detector: M real signalsin noise . . . . .

2.6.3. Detection problem for complex signals . . .. ...
2.6.4. Summarizing the detection procedure . . . . . ...
Bibliographicalnotes . . . . ... ... ...........
Problems . .............. ... . ... . ...,

3 Basic results from information theory

3.1
3.2.

Introduction . . . . ... ... .. .. ... .. ... ...,
Discrete stationary sources . . . . . . . . . oo o0t ...



3.2.2. Coding of the source alphabet . . . ... ........ 109
3.23. Entropy of stationary sources . . . . . . . . . .+ o - - 115
3.3, Communicationchannels . . . . . ... .. ... ... ... 122
3.3.1. Discrete memorylesschannel . .. ........... 122
33.2. Capacity of the discrete memoryless channel . . .. .. 128
3.3.3. Equivocation and error probability . . . . .. ... ... 134
3.3.4. Additive Gaussianchannel . . . .. .. ... o0 141
3.4. Bibliographicalnotes . . . . ... .. ... 150
3.5. Problems . . .. ..o e e e e e e 151
Waveform transmission over the Gaussian channel 159
4.1. Introduction . . . . . . . . . e e 160
4.1.1. A simple modulation scheme with memory . . . . ... 163
4.1.2. Coherent vs. incoherent demodulation . . . . . . .. .. 164
4.1.3. Symbol error probability . . . . .. ... ... 166 )
4.2. Memoryless modulation and coherent demodulation . . . . . . . 166
4.2.1. Geometric interpretation of the optimum demodulator . 172
4.2.2. Error probability evaluation . . .. ... ..... ... 176
4.2.3. Exact calculation of error probability . . . . ... ... 178
4.3, Approximations and boundsto P(e) . . . ... ... ... ... 187
43.1. An ad hoc technique: Bounding P(e) for M-PSK . . . . 188
432. Theunionbound ... ... .... ... ... 190
43.3. The union-Bhattacharyyabound . . . . . ... .. ... 191
434. Alooserupperbound. . . .. ... ... e 193
435, Alowerbound . .. ... ..... ... 193
43.6. Significance of dmin . . - - - o .o oo 194
43.7. An approximation to error probability . . . .. .. ... 195
4.4. Incoherent demodulation of bandpass signals . . . . ... ... 196
44.1. Equal-energysignals . .. ... ... .......... 198
44.2. On-offsignaling . ................ ... 199
44.3. Equal-energy binarysignals . ... ........... 202
444. Equal-energy M-ary orthogonal signals . . . . .. ... 204
4.5. Bibliographicalnotes . . . . . .. . ... ... 206
4.6. Problems . .. ... . . .. e 206
Digital modulation schemes 215
5.1. Bandwidth, power, error probability . . .. ... ... ... .. 215
5.1.1. Bandwidth . . ... ... . ... ... ... ... 216
5.1.2. Signalto-moiseratio . .................. 218
- 5.1.3. Errorprobability . . .. ................. 220

Contents

3.2.1. A measure of information: entropy of the source alphabet 106

Contents i

5.1.4. Trade-offs in the seiection of a modulation scheme . . . 221

5.2, Pulse-amplitude modulation (PAM) . . .. ... ........ 221

5.2.1. Emorprobability . ... ................. 222

5.2.2. Power spectrum and bandwidth efficiency . . . . . . . . 224

5.3. Phase-shiftkeying(PSK) . . .. ... .............. 224
5.3.1. Emorprobability . . ................... 225

5.3.2. Power spectrum and bandwidth efficiency . . . . . ... 227

5.4. Quadrature amplitude modulation (QAM) . . ... ... .. .. 227

54.1. Emorprobability ... .................. 230

5.4.2. Asymptotic power efficiency . . . ... ... ... ... 234

5.4.3. Power spectrum and bandwidth efficiency . . . . .. .. 236

5.4.4. QAM and the capacity of the two-dimensional channel . 236

5.5. Orthogonal frequency-shift keying FSK) . . ... ....... 238
5.5.1. Erorprobability .. ................... 239

5.5.2. Asymptotic powerefficiency . . . .. ... ....... 240

5.5.3. Power spectrum and bandwidth efficiency . . . . . . .. 240

5.6. Multidimensional signal constellations: Lattices . . . . . . . . . 242
5.6.1. Latticeconstellations . . . ... ............. 245
5.6.2. Examplesoflattices . ... ............... 247

5.7. Carving a signal constellation outof alattice . . . . . ... ... 249
5.7.1. Spherical constellations . .. .............. 250
572, Shellmapping . . .................... 251
5.73. Emorprobability . ..................., 252

5.8. Noperfect carrier-phaserecovery . . . . . ... ... ... ... 252

5.8.1. Coherent demodulation of differentially-encaded PSK
(DCPSK) . . .. e 255
5.8.2. Differentially-coherent demodulation of differentially en-

codedPSK . .. ... . ... ... .. .. .. ... 258

5.8.3. Incoherent demodulation of orthogonal FSK . . . . . . 262

5.9. Digital modulation trade-offs . . . . ... .......... .. 262
5.10. Bibliographicalnotes . . . . ... ...............,. 264
S51LProblems . ... ....... ... ... 264
Modulations for the wireless channel 272
6.1. Variationsonthe QPSKtheme . .. .. ... ... .. ..... 274
6.1.1. OffsetQPSK . ... ................... 274
6.1.2. Minimum-shiftkeyingMSK) . . ... ......... 276
6.1.3. Pseudo-octonary QPSK (m/4-QPSK) . ... ... ... 279
6.2. Continuous-phase modulation . ... .............. 281
6.2.1. Time-varying vs. time-invariant trellises . . . . .. .. . 284
622, GeneralCPM . . ..................... 286



Contents

6.2.3. Power spectrum of full-response CPM . . . . . ... .. 289
6.24. ModulatorsforCPM . . .. ... ... ... ... ... 294
6.2.5. DemodulatingCPM . ... ............... 295
6.3. MSKand its multipleavatars . . . ... ............. 299
631. MSKasCPFSK . .............c..0c0.. 299
6.3.2. Massey’simplementation. . . .. ... ......... 302
6.3.3. Rimoldi’simplementation . . .. ............ 304
6.3.4. DeBuda’simplementation . . .. ............ 305
6.3.5. Amoroso and Kivett’s implementation . . . .. .. ... 306
64. GMSK . . . .. i i e 307
6.5. Bibliographicalnotes . . . . . ... ... ... 309
6.6. Problems . ... ....... ...ttt 310
Intersymbol interference channels 312
7.1. Analysis of coherent digital systems . . .. ........... 313
7.2. Evaluation of the error probability . . . ... .......... 323
7.2.1. PAMmodulation . . ... ... ... .. ... ... 324
7.2.2. Two-dimensional modulation schemes . . . . . . . ... 329
7.3. Eliminating intersymbol interference: the Nyquist criterion . . . 337
7.3.1. Theraised-cosinespectrum. . . . ... ......... 343
7.3.2. Optimum design of the shaping and receiving filters . . 347
7.4. Mean-square error optimization . . . . .. .. ... 348
7.4.1. Optimizing the receiving filter . . . . . ... ... ... 350
7.4.2. Performance of the optimum receiving filter . . . . . . . 353
7.4.3. Optimizing the shaping filter . . . . . .. ... ... .. 354
7.4.4. Information-theoretic optimization . . . . . .. ... .. 356
7.5. Maximum-likelihood sequence receiver . . . . ... ... ... 358
7.5.1. Maximum-likelihood sequence detection using the Viterbi
algorithm . . ... .. e e 359
7.5.2. Error probability for the maximum-likelihood sequence
TECEIVET . . v v v v e e o v e e i v e 365
7.53. Significance of dm, and its computation . . . . . .. .. 370
7.5.4. Implementation of maximum-likelihood sequence detec-
) TOFS .« v v e v e e e e e e e e e e e 371
7.6. Bibliographicalnotes . . . . . .. ... ... 373
77. Problems . . . ... ... 375
Adaptive receivers and channel equalization 380
8.1. Channelmodel . ......................... 381
8.2. Channel identification . . . . . ... ... ... ... 0L 382

8.2.1. Using a channel-sounding sequence . . . . ... .. .. 383

10

Contents xii
8.2.2. Mean-square error channel identification . ... .. .. 383
8.2.3. Blind channel identification . .............. 389
83. Channelequalization . ...................... 390
8.3.1. Performance of the infinitely long equalizer . . . . . . . 392
8.3.2. Gradient algorithm for equalization .. ...... ... 396
8.4. Fractionally-spacedequalizers . .. ............... 402
8.5. Training the equalizer: Cyclic equalization . . . . ... ... .. 403
8.6. Non-MSE criteria for equalization . . . ......... ... 406
8.6.1. Zero-forcing equalization. . . . .. ... ........ 406
8.6.2. Least-squares algorithms . . . . ... .......... 407
8.7. Non-TDL equalizer structures . . . . . .. ... ........ 409
8.8. Decision-feedback equalization . . . . . .. ... ... ..... 409
8.9. Blindequalization. . . .. ... ................. 414
8.9.1. Constant-modulus algerithm . . . . .. ......... 415
8.9.2. Shalvi-Weinsteinalgorithm . ... ........... 417
8.9.3. Stop-and-go algorithm . .. ... ............ 418
8.10. More on complex equalizers . . . . ... ............ 418
8.11. Tomlinson-Harashimaprecoding . . . . . ............ 421
8.12. Bibliographicalnotes . . . ... ................. 424
813, Problems . ........... . ... . ... ... ..., 426
9 Carrier and clock synchronization 429
9.1. Introduction . . . .. ... ... ... ... .. ... 429
9.2. Acquisitionandtraining . .................... 430
9.3. Thephase-lockedloop . ..................... 434
9.3.1. Order of the phase-lockedloop . . . . ... ... .... 436
9.4. Carrier synchronization . . . . . ... .............. 440
9.5. Clocksynchronizers. . . . ... ... .............. 445
9.6. Effect of phase and timing jitter . . . ... ... ........ 447
9.7. Bibliographicalnotes . . . ... ................. 448
98. Problems . ............. ... .. .. .. ... 450
Improving the transmission reliability: Block codes 452
10.1. A taxonomy of channelcodes. . . . .. .. ... ........ 453
10.2.Blockcodes . . . . ... ... . ... e 459
10.2.1. Error-detecting and error-correcting capabilities of a block
code. . ... ... . ... 465
10.2.2. Decoding table and standard array of a linear block code 469
10.2.3. Hammingcodes ... ... ............... 472
10.24. Dualcodes . ... ... ... ... .......... 474
10.2.5. Maximal-lengthcodes . ... .. ... ......... 474



11

12

Contents
10.2.6. Reed-Mullercodes - « « « « « « « « + v v o o v v v v ot 475
10.2.7. Cycliccodes . . . .. ... ... o 476
10.2.8. Special classes of cycliccodes . . . . ... . ... ... 491
10.2.9. Maximal-length (pseudonoise) sequences . . . . . . . . 496
10.2.10.Codes for burst-error detection and correction . . . . . . 499
10.3. Performance evaluation of blockcodes . . . . ... ... .. .. 503
10.3.1. Performance of error detection systems . . . . . . . . . 506
10.3.2. Performance of error correction systems: word error prob-
ability . . . ... e 507
10.3.3. Performance of error correction systems: bit error prob-
ability . . .. ..o 512
104. Codingbounds . . . . ... ... .. ..o 519
10.4.1. Bounds on the code minimum distance . . . . .. ... 520
10.4.2. Bounds on code performance . . . . . . . .. ... ... 521
10.5. Bibliographicalnotes . . . . . .. ... .. ... ... ... 526
106.Problems . . ... ... .. ... . .. ... .. 527
Convolutional and concatenated codes 532
11.1. Convolutionalcodes . . . . . . . ... ... .. .. 533
11.1.1. State diagram representation of convolutional codes . . . 539
11.1.2. Best known short-constraint-length convolutional codes 546
11.1.3. Maximum-likelihood decoding of convolutional codes
and the Viterbi algorithm . . . . .. ... ... ... .. 554
11.1.4. Other decoding techniques for convolutional codes . . . 561
11.1.5. Performance evaluation of convolutional codes with ML
decoding . .......... . . ... . 564
11.1.6. Systematic recursive convolutional encoders . . . . . . 571
11.1.7. Codingbounds . . . . .. .. .............. 576
11.2. Concatenatedcodes . . . . . . ... ... ... ... L. 578
11.2.1. Reed-Solomon codes and orthogonal modulation . . . . 579
11.2.2, Reed-Solomon and convolutional codes . . . . . . ... 580
11.3. Concatenated codes with interleaver . . . . ... ... ... .. 582
11.3.1. Performance analysis . . . . . ... ... ... .. ... 583
11.3.2. Design of concatenated codes with interleaver . . . . . . 596
11.3.3. Tterative decoding of concatenated codes with interleavers 605
11.4. Bibliographicalnotes . . . . . . ... .. ... .. ....... 623
11.5.Problems . . . . ... .. .. e e 624
Coded modulation 628
“12.1. The cutoffrate and itsrole . . . . . . ... ... ... ..... 628

Contents

13

XV
12.1.1. Computing the cutoff rate: AWGN channel with coher-

entdetection . .. .................... 629

122. Introducing TCM. . . . . ... .. ... .. .. .. ... .... 634
12.2.1. Fundamentals of TCM . . . . ... ... ........ 636
12.2.2. Trellis representation . . . . . . ... .......... 638
1223. DecodingTCM . . . . . ... .............. 638
12.2.4. Free distance of TCM . . . . . ... ... ... .... 640

12.3. Some examples of TCM schemes . . . . . . .. .. ... .... 640
12.3.1. Coding gains achieved by TCM schemes . . . ... .. 645
12.3.2. Setpartitioning . . . ... ... .. ... ........ 645
12.3.3. Representationof TCM.. . . . ... ... .. ...... 647
12.3.4. TCM with multidimensional constellations . . . . . .. 649

12.4. Error probabilityof TCM . . . . . . ... ... ......... 651
12.4.1. Upper bound to error event probability . . . . .. ... . 652
1242, Examples . . . . .. .. ... ... . ... 663
12.4.3. Computation of gree + -« « v v v oo u e 666

12.5. Power density spectrum . . . . .. .. ... ... ... .... 670
12.6. Rotationally-invariant TCM . . . ... .. ............ 672
12.7. Multilevel coded modulationand BCM . . . ... ... .... 678
12.7.1. Staged decoding of multilevel constructions . . . . . . . 681

12.8. Bibliographicalnotes . . . . ... ................ 681
129.Problems . . . ... ... 683
Digital transmission over fading channels 686
13.1. Impulse response and transfer function of a fading channel . . . 688
13.2. Examples of radiochannels . . . .. ... ... .. .. ... .. 691
13.2.1. Two-path propagation . . . ............... 691
13.2.2. Single-path propagation: Effect of movement . . . . . . 693
13.2.3. Two-path propagation: Effect of movement . . . . . . . 694
13.2.4. Multipath propagation: Effect of movement . . . . . . . 695
13.2.5. Multipath propagation with a fixedpath . . . .. .. .. 697

13.3. Frequency-flat, slowly fading channels . . . .. ... ... ... 699
13.3.1. Coherent detection of binary signals with perfect CSI . . 700
13.3.2. A general technique for computing error probabilities . . 702
13.3.3. No channel-state information. . . . ... ........ 709
13.3.4. Differential and noncoherentdetection . . . . . . .. .. 710

13.4. Introducing diversity . . . . ... ... .. ... ... ... . 710
13.4.1. Diversity combining techniques . . . ... ... .... 711

13.5. Coding for the Rayleigh fading channel . . . . ... ... ... 716

13.5.1. Guidelines of code design for the Rayleigh fading channel 719
13.5.2. Cutoff rate of the fading channel . . . ... ....... " 720



i Contents

13.6. Bibliographicalnotes . . . . . ... ... ... ... 721
137.Problems . . .. .. ... ... ... e 723

14 Digital transmission over nonlinear channels 725
14.1. A model for the nonlinearchannel . . . ... .......... 726
14.2. Spectral analysis of nonlinearsignals . . . . . ... ... .... 728
14.3. Volterra model for bandpass nonlinear channels . . . . .. ... 730
14.3.1. Error probability evaluation for M-ary CPSK . . . . . . 738

14.3.2. Including uplink noise in the analysis . . ... ... .. 742

14.4. Optimum linear receiving filter . . . . .. ... ... ... ... 746
14.5. Maximum-likelihood sequence receiver . . . . . ... ... .. 752
14.5.1. Errorperformance . . . . . . . ..o v e on 756

14.6. Identification and equalization of nonlinear channels . . . . . . 758
14.7. Compensation of nonlinear channels . . . ... ....... .. 765
14.7.1. pth-order compensation . . . .. ... ... ... 766

14.8. Bibliographicalnotes . . . . . .. . ... ... o 770
149.Problems . . .. ... .. ... 770

A Useful formulas and approximations 773
A.l. Error function and complementary error function . . . ... .. 773
A.2. The modified Bessel functionlp . . ... ... ......... 775
A.3. Marcum Q-function and related integrals . . . . ... ... ... 775
A.4. Probability that one Rice-distributed RV exceeds another one . . 776

B Some facts froin matrix theory 778
B.1. Basic matrixoperations . . . . . . .. ... 778
B.2. Numbers associated withamatrix . ............... 780
B.3. Someclassesof matrices . . . . ... ... o 783
B.4. Convergence of matrix sequUences . . . . . . . .. ... . ... 785
B.5. Thegradient vector ... . . . « v o o v v v v v v e v oo eu s 786
B.6. The diagonal decomposition . . . .. ... ... ........ 786
B.7. Bibliographicalnotes . . ... ... ... .. ... ....... 787

C Variational techniques and constrained optimization 788
D Transfer functions of directed graphs 791
E Approximate computation of averages 794
E.1. Computation of the momentsofaRvV . .. ........... 794
E.2. Series expansiontechnique . . .. .. .. .. ... ... .... 796

“E.3. Quadrature approximations . . . . . . .. ... .o 799

Contents xvii
E3.1. Computation of Gauss quadraturerules . ... ... .. 801

E.3.2. Round-off errors in Gauss quadraturerules . . . .. . . 802

E4. Momentbounds . . . ....................... 803
E4.1. Computation of momentbounds . . . .......... 804

E.5. Approximating the averages depending on two random variables 805

F Viterbi algorithm 807
Fl. Imtroduction . . . .. ....................... 807
El1.1. The truncated Viterbi algorithm . . . . ... . ... .. 810

El1.2. Anexampleofapplication . . .............. 810

F2. Maximum a posteriori detection. The BCJR algorithm . . . . . 811
F3. Bibliographicalnotes . . . . ... .. .............. 813
References 816
Index 845



2 1. Introduction and motivation
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Figure 1.1: Desirable delivery or response time and quantity of data for typical use of
data transmission

delivery time of the order of tens of minutes or longer may be acceptable. How-
ever, when a person-computer dialogue is taking place, the responses must be
returned to the person quickly enough so as not to impede his or her train of
thoughts. Response times between 100 milliseconds and 2 seconds are fine, but
whoever has tried to download files using the Internet knows that the delays in-
volved are often significantly longer. In real-time systems, where a machine or
a process is being controlled, response times can vary from a few milliseconds
to some seconds. Fig. 1.1 shows some of the common requirements for delivery
times or response times and the amounts of data transmitted.

The block labeled “terminal dialogue systems,” for example, indicates a re-
sponse time from 1 to 10 seconds, and a message size ranging from 1 character
(8 bits) to about 30,000 characters (around 240,000 bits), corresponding roughly
to a JPEG picture. The transmission speed required by the communication link
equals the number of transmitted bits (reported in the horizontal axis of Fig. 1.1)
divided by the delivery time of one-way messages (reported in the vertical axis
of Fig. 1.1). Straight lines on the figure correspond to a given speed, and some
of them are also indicated. For most of the applications shown in the figure, the
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Termingis and/or
Personal Computers

Telephane
Network

Figure 1.2: Local area networks, metropolitan are networks (MAN), and wide area net-
works (WAN) interconnected through various telecommunication links.

speeds allowed on telephone channels (up to, say, 64,000 bits per second) are
sufficient. Of course, this concerns individual applications. We know, on the
other hand, that the traffic incoming from several sources is often multiplexed to
efficiently exploit the capacity of a single digital carrier. An impressive exam-
ple of this is the up-to-date capacities of wave-division multiplexed fiber optic
systems, which can convey more than 1 terabit per second in a single fiber!

A common form of digital communication nowadays consists of people sit-
ting in front of a terminal (normally a personal computer) exchanging informa-
tions with other terminals (or a mainframe computer) or down-loading informa-
tion from a provider. A community of users in a limited area is interconnected
through a local area network (LAN) offering a variety of services like comput-
ing resources, voice and facsimile communication, teleconferencing, electronic
mail, and access to distant Internet information providers.

Different LANs can exchange information over a packet-switched long-dis-
tance telecommunication network (e.g., through the Asynchronous Transfer Mo-
de). Geographic networks of this kind are Metropolitan Area Networks (MAN)
and Wide Area Networks (WAN), which can connect several nodes through high
capacity links in a ring or star topology. This scenario can be represented as in
Fig. 1.2
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Figure 1.3: Point-to-point communication link between two computers.

In a geographic network, the communication engineer must solve a variety
of global problems, such as designing the topological structure of the network,
its link capacity allocation, and the routing and flow control procedures, as well
as local problems, such as the choice of the multiplexing scheme, the number of
message sources per concentration point, the access technique (polling, random
access, etc.), and the buffer size. The final system choices will be the result
of a trade-off between costs and performance, such as the (average, maximum)
response time and the specified reliability.

The exchange of information in a packet-switched network is governed by a
layered protocol architecture, such as that described, for example, in the ISO/QSI
reference model. Level 1 of this layered architecture concerns the point-to-point
communication between two nodes of the network. According to the physical
medium that connects the nodes, different problems are encountered to establish
a reliable link. Moreover, to access one of the nodes of the packet-switched
network, the user may have to exploit the dialed public telephone network or a
leased voice line.

Let us isolate and examine in greater detail one communication link in the
system of Fig. 1.2, for example, the one denoted as “point-to-point link,” whic.h
establishes a connection between two computers.! It is shown magnified in
Fig. 1.3. To be transmitted on the physical channel, the digital stream emit-
ted by the transmitting computer must be converted into a sequence of wave-
forms suited to the channel. This operation is performed by a device known as
a modem, short for modulator/demodulator. The modem converts the data into a
signal whose range of frequencies matches the available bandwidth of the chan-
nel. Besides data, the terminal and the modem exchange various line-control
signals according to a standardized interface. At the other side, a modem'cc.m-
verts the received waveforms into a digital stream that is sent to the receiving

}Very similar considerations could be applied to different forms of point-to-point C(?nnecﬁons,
like, for example, those regarding a mobile and base station in a wireless communication system.
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Figure 1.4: Functional block diagram of a point-to-point digital communication system.

computer through a transmission control unit that supervises the communication
and implements the various layers of the ISO/OSI reference model.

The design of this point-10-point communication link is related to the choices
made for the network in terms of available speeds, response times, multiplexing
and access techniques. In particular, matching the sources of information to the
channel speed may involve source encoding (like JPEG or MPEG for still and
moving images, respectively), channel bandwidth and the choice of modulation
schemes. The response time and the access techniques pose constraints on the
modem setup time, that is, on the choice of the synchronization and adaptive
equalization algorithms. The transmission quality is usually given in terms of biz
error probability, which, in turn, depends on channel encoding (error control),
the transmitted power and the modulation schemes.

This book is devoted to the theory of point-to-point digital communication.
To resort to a more general and abstract context, let us expand the point-to-point
connection of Fig. 1.3 into the functional block diagrams of Fig. 1.4. We only
consider discrete information sources. When a source is analog in nature, such
as a microphone activated by speech or a TV camera scanning a scene, we as-
sume that a process of sampling, quantizing and coding takes place within the
source, so that the output is a sequence of discrete symbols or letters. Discrete
information sources are characterized by a source alphabet, a source rate (ex-
pressed in symbols per second), and a probability law governing the emission
of sequences of symbols, or messages. From these parameters we can construct
a probabilistic model of the information source and define a source information
rate (denoted by R,) in bits (binary digits) per second. The input to the second
block of Fig. 1.4, the source encoder, is then a sequence of discrete symbols oc-
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curring at a certain rate. The source encoder converts the symbol sequence into
a binary sequence by assigning code words to the symbols of the input sequence
according to a specified rule. This encoding process has the goal of reducing the
redundancy of the source (i.e., of obtaining an output data rate approaching E,).
At the receiver, the source decoder will convert the binary output of the channel
decoder into a symbol sequence that is passed to the user.

Because the redundancy of the source information has been removed, the
binary sequence at the output of the source encoder is highly vulnerable to er-
rors occurring during the process of transmitting the information to its desti-
nation. The channel encoder introduces a controlled redundancy into the binary
sequence so as to achieve highly reliable transmissions. At the receiver, the chan-
nel decoder recovers the information-bearing bits from the coded binary stream.
Both the encoder and decoder can operate either in block mode or in a continuos
sequential mode.

The communication channel provides the electrical connection between the
source and the destination. The channel may be a pair of wires, a telephone link,
an optical fiber, or free space over which the signal is radiated in the form of
electromagnetic waves. In all cases, communication channels introduce various
forms of impairments. Having finite bandwidths, they distort the signal in am-
plitude and phase. Moreover, the signal is attenuated and corrupted by unwanted
additive and/or multiplicative random signals referred to as noise or fading. For
these reasons, an exact replica of the transmitted signal cannot be obtained at
the receiver input. The primary objective of a good communication system de-
sign is to counteract the effects of noise and distortion so as to achieve a faithful
estimate of the transmitted signal.

The modulator converts the input binary stream into a waveform sequence
sujtable for transmission over the available channel. Being a powerful tool in
the hands of the designer, modulation will receive considerable attention in this
book. It involves a large number of choices, such as the number of waveforms,
their shape, duration, and bandwidth, the pawer (average and/or peak), and more,
allowing great flexibility in the system design. At the receiver, the demodulator
extracts the binary sequence (hard demodulation) or suitably sufficient statistics
(soft demodulation) from the received waveforms. Due to the impairment intro-
duced by the channel, this process entails the possibility of errors between the
input sequence to the modulator and the the output sequence from the demodu-
lator (in the case of hard decoding), or a poor sufficient statistics (in the case of
soft demodulation). A result of both types of degradation is a nonzero bit error
probability. Tt is the goal of the channel decoder to exploit the redundancy in-
troduced by the channel encoder to retrieve the transmitted information either by
correcting the binary errors of the demodulator (hard decoding), or by suitably
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processing the sufficient statistics (soft decoding).

In practical point-to-point communication systems, other functional blocks
exist, which for simplicity are not shown in Fig. 1.4. They are, for example,
the adaptive equalizer, which reduces the channel distortions, the carrier and
clock synchronizers, which allow coherent demodulation and proper sampling
of the received signals, scramblers and descramblers, which are used to prevent
unwanted strings of symbols at the channel input, and enciphering and decipher-
ing devices, which ensure secure communication. Some of these blocks will be
decribed in the book.

The book is organized as follows. Chapter 2 reviews the main results from the
theory of random processes, spectral analysis, and detection theory, which can
be considered as prerequisites to the remaining chapters. In Chapter 3 we look at
probabilistic models for discrete information sources and communication chan-
nels. The main results from classical information theory are introduced as a con-
ceptual background and framework for the successive material. Chapter 4 is de-
voted to memoryless waveform transmission over additive Gaussian noise chan-
nels. By using results from detection theory, optimum demodulator structures are
derived, and the calculation of their error probabilities is presented. A distinction
is made between coherent and noncoherent demodulation. In Chapter 5, the main
modulation techniques employed for digital transmission are described, and their
performances are compared in terms of error probability, energy, and bandwidth
efficiency. Chapter 6 presents some modulation schemes specifically intended
for transmission on wireless channels. In Chapter 7 we show how to evaluate
the performance of systems affected by intersymbol interference, derive the op-
timization criteria for the overall system transfer function, and, finally, discuss
the maximum-likelihood receiver structure. Chapter 8 is devoted to receivers for
intersymbol-interference channels: adaptive receivers and channel equalization
are covered. Chapter 9 deals with carrier and clock synchronization problems in
modems. Chapter 10 describes linear block codes applied to improve the chan-
nel reliability, by error detection and correction. The most important classes of
block codes and a few decoding techniques are described. The first part of Chap-
ter 11 is devoted to linear convolutional codes. Their performance in terms of bit
error prabability is analyzed, and the maximum-likelihood decoding algorithm,
the celebrated Viterbi algorithm, is described in detail (Appendix F is also de-
voted to it and to a maximum-a-posteriori decoding algorithm). The second part
of Chapter 11 deals with concatenated codes, and particular attention is paid to
the recently discovered, high-performance rurbo codes. Chapter 12 cavers the
important topic of ‘trellis-coded modulation, a technique to improve the chan-
nel reliability that merges modulation and channel coding in a very successful
manner. Chapter 13 introduces models of fading channels and describes tech-
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niques for analysis and design of coding schemes operating on them. Finally,
Chapter 14 deals with digital transmission over nonlinear channels.

A mathematical introduction

Signal theory, system theory, probability, and stochastic processes are the basic
mathematical tools for the analysis and design of digital communication systems.
Since a comprehensive treatment of all these topics requires several volumes,
rather than attempting a comprehensive survey we devote this chapter to a selec-
tion of some points that are especially important in the developments that follow.
The topics selected and the depth of their presentation were decided according
to two criteria. First, where possible, laborious and sophisticated mathematical
apparatuses have been omitted. This entails a certain loss of rigor, but it should
improve the presentation of the subject matter. Second, those topics most likely
to be familiar to the reader are reviewed very quickly, whereas more attention is
devoted to certain specialized points of particular relevance for applications.

The topics covered in this chapter are deterministic and random signal the-
ory for both discrete- and continuous-time models, linear and nonlinear system
theory, and detection theory. Extensive bibliographical notes at the end of the
chapter will guide the reader wishing to become more conversant with a specific
topic.

2.1. Signals and systems

In this section we briefly present the basic concepts of the theory of linear and
certain nonlinear systems. We begin with the time-discrete model for signals and
systems and continue with the time-continuous model. To provide a higher level
of generality to our presentation, we introduce and extensively employ complex
time functions. The reasons for their use are explained in Section 2.4.

9
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2.1.1. Discrete signals and systems

A discrete-time signal is a sequence of real or.corflplex .numbe]rs, din0te<d:;y
(za)i2,, . defined for every integer index n ranging in the interval n; < n_ s 2.
The index n is usually referred to as the discrete fime. Whenever n = =00
and n, = o0, or when the upper and lower indexes need not be. specified, we
shall simply write (z,). A time-discrete syste.m, or for short a dlsc“rete systt;m,
is a mapping of a sequence (zy), called the input of the system, into another

sequence (yn), called the output or response. We write

Yn = S[(zn)] 2.1

for the general element of the sequence (yn).. . .

A discrete system is linear if, for any pair of input signals (z!,), (z}) and for
any pair of complex numbers A’, A”, the following holds:

S[(A', + Ael)] = A'S[(z)] + A"S[(z)] 22)

Equation (2.2) means that if the system input is a linear combination of two
signals, its output is the same linear combination of the t.wo responses. .

A discrete system is time-invariant if the rule by Wthh. an input sequence is
transformed into an output sequence does not change with time. Mathematically,
this is expressed by the condition

S[(In—k)] = Yn—k (23)
for all integers k. This is tantamount to saying thaF, if the input is delayed by &
time units, the output is delayed by the same quantity.

If (6,,) denotes the “unit impulse™ sequence

5. = 1, n=0, 2.4)
"T10 n#0

and S is a linear, time-invariant discrete system, its response (hn) to the 'mput
(6,) is called the (discrete) impulse response of the systerp. Given a linear,
time-invariant discrete system with impulse response (hn), 1t:<. response to any
arbitrary input (z,) can be computed via the discrete convolution

o0

Z Tehn-k

k=-00

i hkl'n—k (25)

=—c0

Yn

e i
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Figure 2.1: Transversal-filter implementation of a time-invariant discrete system with
memory L.

It may happen that the system output at time £, say y,, depends only on a certain
subset of the input sequence. In particular, the system is said to be causal if y,
depends only on (z,)%__.. This means that the output at any given time depends
only on the past and present values of the input, and not on its future values. In
addition, the system is said to have a finite memory L if y, depends only on the
finite segment (z,,)¢_,_, of the past input. When L = 0, and hence ¢ depends
only on x,, the system is called memoryless. For a linear time-invariant system,
causality implies k, = 0 for all n < 0. A linear time-invariant system with
finite memory L has an impulse response sequence (h,,) that may be nonzero
only for 0 < n < L. For this reason, a finite-memory system is often referred
to also as a finite impulse response (FIR) system. A system with memory L can
be implemented as in Fig. 2.1. The blocks labeled D denote unit-delay elements
(i.e., systems that respond to the input z,, with the output 3, = z,,_;). A cascade
of such unit-delay elements is called a shift register, and the resulting structure is
called a tapped delay line, or transversal, filter. Here the function S(-) defining
the input-output relationship has L + 1 arguments. When the system is linear,
S(-) takes the form of a linear combination of its arguments:

L
S(l‘", Tn-i,--- 1In—L) = Z hkrn—k (26)
k=0

In this case, the structure of Fig. 2.1 becomes the linear transversal filter of
Fig. 2.2.

Discrete Volterra systems
Consider a time-invariant, nonlinear discrete system with memory L, and assume

that the function S( ) is sufficiently regular to be expanded in a Taylor series in
a neighborhood of the origin z, = 0, z,_, = 0, ..., Tn—r, = 0. We have the
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Figure 2.2: Linear discrete transversal filter.

representation

L
1
Yn = S(rn,:cn_h.--,:tn—L)=h(°)+zh§ 20

i=0
L L L Lo
+ Z E hg)zn—izn—j + E E Z h,'jk-’lfn_;fn_jfn—k +-0- 27)
i=0 7=0 i=0 j=0 k=0

called a discrete Volterra series. It is seen that the system is completely charac-
terized by the coefficients of the expansion, say
RO RO AP RS, ... 45,k=0,1,2,--+, L,

which are proportional to the partial derivatives of the function S( : ) at the ori-
gin. These are called the system’s Volterra coefficients. The expansion (2.7? can
be generalized to systems with infinite memory, although in the computational
practice only a finite number of terms will be retained. In general t'he Volterra
system representation involves an infinite number of infinite summations. T.hus,
if a truncation of the series is not performed, we must associate with each series a
suitable convergence condition to guarantee that the representation is meaningful
(see, e.g., Rugh, 1981).

Example 2.1 Consider the discrete system shown in Fig. 2.3 and obtained by cascad-
ing a linear, time-invariant, causal system with impuise response (h;) to a memox?'less
nonlinear system with input-output relationship yn, = g{wy). Assume that g‘( 1) is an
analytic function, with a Taylor series expansion in the neighborhood of the origin

g(w) = Zalwl 2.8)

=0
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—> (h) gC) > Yn=8(wn)

Figure 2.3: A discrete nonlinear system.

The input-output relationship for the system of Fig. 2.3 is then

()

=0

Un

oo o0 o0
ag + a; Z hiTn_i + a2 E Z hihitn_iTn_j+--- 2.9)
i=0 i=0 j=0

so that the Volterra coefficients for the system are:

RO = o
K = gk
1]

h(2) = agh,' hj

The following should be observed. First, if g( - ) is a polynomial of degree K, the coef-
ficients ax 41, @k 42, ..., in (2.8) are zero, so that only a finite number of summations
will appear in (2.9). Second, if the impulse response sequence (hy,) is finite (i.e., the
linear system of Fig. (2.3) has a finite memory), then all the summations in (2.9) will
include only a finite number of terms. O

Discrete signals and systems in the transform domain
Given a sequence (z,), we define its Fourier transform F{(x,,)] as the function

of the frequency f defined as

X(f) & i zne~ S (2.10)

n=-—co

where j = v/=1. X(f) is a periodic function of f with period 1, so it is cus-
tomary to consider it only in the interval —1/2 < f < 1/2. The inverse Fourier
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transform yields the elements of the sequence (z,) in terms of X (£):

z= [ " x(net of 2.11)
-1/2

The Fourier transform H(f) of the impulse response (h,) of a liflear time-
invariant system is called the frequency response, or transfer function, of the
system. We call |H (f)| the amplitude and arg[H (f)] the phfzse of the transfer
function. The derivative of arg[H (f)] taken with respect to f is ca!led the group
delay of the system. A basic property of the Fourier transform 1s‘that the re-
sponse of a linear, time-invariant discrete system with. transfer function H(f) to
a sequence with Fourier transform X (f) has the Fourier transform H (f)X (£)-

2.1.2. Continuous signals and systems

A continuous-time signal is a real or complex function z(t) of the real variable
t (the time). Unless otherwise specified, the time is assumed to range frorn. -0
to co. A continuous-time system is a mapping of a signal z(t)', the system input,
into another signal y(t), called the output or response. We write

y(t) = S[z(8)] (2.12)

A continuous-time system is linear if for any pair of input signals z'(t), z"(t)
and for any pair of complex numbers 4', A”, the following holds:

S[A'z'(t) + A"z"(t)] = A'S[z'(t)] + A"S[z" (t)] (2.13)

A continuous-time system is time-invariant if (2.12) implies ’
Slz(t — )=yt —1) (2.14)
for all 7. Let 6(t) denote the delta function, characterized by the sifting property
I swevd = #(0) (2.15)

valid for every function ¢(t) continuous at the origin. The response h(t) of a
linear, time-invariant continuous system to the input §(¢) is called the impulse
response of the system. For a system with a known imp}llse response f'l(t)., the
response y(t) to any input signal z() can be computed via the convolution inte-

gral
y(t) = /w z(T)h(t - 7)dr

—00

/w h(r)z(t —)dr (2.16)
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Figure 2.4: Linear continuous transversal filter.

It may happen that the system output y(t) at time ¢ depends on the input x(t)
only through the values taken by z(t) in the time interval L. If I = (—oo0, t], the
system is said to be causal. If I = (t — to,t], 0 < ty < oo, the system is said
to have a finite memory ty. If [ = {t} (i.e., the output at any given time depends
only on the input at the same time), the system is called memoryless. It is easily
seen from (2.16) that, for a linear time-invariant system, causality is equivalent
to having h(t) = O forall t < 0. A general time function h(t) with the latter
property is sometimes called causal.

A linear system is said to be stable if its response to any bounded input is
bounded. A linear, time-invariant system is stable if and only if its impulse
response is absolutely integrable.

Example 2.2 Figure 2.4 represents a linear, time-invariant continuous system with fi-
nite memory. The blocks labeled T are delay elements, that is, systems with impulse
response d(t ~ T). A cascade of such elements is called a (continuous) tapped delay

line and the structure of Fig. 2.4 a linear transversal filter. The system has an impulse
response

L
h(t) =" cpd(t — £T) @17
=0

and a memory LT. O
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Figure 2.5: A continuous nonlinear system.

Continuous Volterra systems

To motivate our general discussion of Volterra series, consider as an example the
time-invariant, nonlinear continuous system shown in Fig. 2.5. Assume that the
first black represents a linear time-invariant system with impulse response h(t)
and that g(-) is a function as in Example 2.1, so (2.8) holds. The input-output
relationship for this system can thus be expanded in the form

w0 = o[ At~ r)ar]
= a9 +a; /_m h(r)z(t —7)dr
+az /;°° /~_°° h(rl)h(’rz)fl?(t - Tl)l'(t — 7'2) drdr +---(2.18)
By defining
hy = ag
M) = ahlt) (2.19)
= azh(t1)h(t2)

h2(t1) tZ)

Eq. (2.18) can be rewritten as
y(t) = ho+ [°° he(P)a(t = 7) dr
+ /w /oo hy(ry, m)z(t — )zt —m)dndn + - (2.20)

oo ) k
+[w"'[mhk(T1,Tg,,..,Tk) [Ez(t—n)dnjl + .-

Equations (2.19) and (2.20) represent the input-output relationship of the system
of Fig. 2.5. More generally, (2.20) without the definitions (2.19), that is, for a
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general set of functions hg, hy(2), ho(t1,t2), ..., provides an input-output rela-
tionship for nonlinear time-invariant continuous systems. The RHS of (2.20) is
called a Volrerra series, and the functions hg, by (¢), ha(t1,¢3), ..., are called the
Volterra kernels of the system. As a linear, time-invariant continuous system is
completely characterized by its impulse response, so a nonlinear system whose
input-output relationship can be expressed as a Volterra series is completely char-
acterized by its Volterra kernels. It can be observed that the first-order kernel
hy(t) is simply the impulse response of a linear system. The higher-order ker-
nels can thus be viewed as higher-order impulse responses, which characterize
the various orders of nonlinearity of the system. The zero-order term kg accounts
for the response to a zero input.

It can be shown (see Problem 2.6) that a time-invariant system described by
a Volterra series is causal if and only if, for all k,

hk(tl,tz,...,tk)‘:o for all ti<0, i=1,2,...,k (221)

A Volterra series expansion can be made simpler if it is assumed that the system
kernels are symmetric functions of their arguments. That is, for every £ > 2 any
of the k! possible permutations of the & arguments of hg(t, tz,..., %) leaves
the kernel unchanged. It can be proved (see Problem 2.5) that the assumption of
symmetric kernels does not entail any loss of generality.

Volterra series can be viewed as “Taylor series with memory.” As such they
share with Taylor series some limitations, a major one being slow convergence.
Moreover, the complexity in computation of the kth term of a Volterra series
increases quickly with increasing k. Thus, it is expedient to use Volterra series
only when the expansion (2.20) can be truncated to low-order terms, i.e., the
system is “mildly nonlinear.”

Continuous signals and systems in the transform domain

With the notation X (f) = F[z(t)] we shall denote the Fourier transform of the
signal z(¢); that is,
o0 .
X(f) = / ()92t gt 2.22)
—co

Given its Fourier transform X (f), the signal z(¢) can be recovered by computing
the inverse Fourier transform F Y[ X (f)]:

z(t) = /_ZX(f)eﬂ”f‘ df (2.23)

The Fourier transform of a signal is also called the amplitude spectrum of the
signal. If A(t) denotes the impulse response of a linear, time-invariant system,
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its Fourier transform H (f) is called the frequency response, or transfer function,
of the system. We call |H(f)| the amplitude and arg [H (f)] the phas‘e of thg
transfer function. The derivative of arg [H ()] taken with respect to f is calle
the group delay of the system. It is seen from (2.22) that, wk}en a:.(t) isa rez.ll
signal, the real part of X (f) is an even function of f, and th.e imaginary part is
an odd function of f. It follows that for a real z(t) the function | X (f)| is even,
and arg [X (f)] is odd. .

An i[mportant property of Fourier transform is that it relates products an'd
convolutions of two signals z(t), y(t) with convolutions and products of their
Fourier transforms X (f) and Y(f):

Flelty(e) = [ X(@Y(f - e) do 2.24)
and -
FI[T sttt =] = X(OY () (2.25)

In particular, (2.25) implies that the output y(t) of a linear, timc-inva.riant
system with a transfer function H(f) and an input signal z(¢t) has the amplitude
spectrum

Y(f) = H(HX(f) (2.26)

Example 2.2 (continued) The transfer function of the system shown in Fig. 2.4 is
obtained by taking the Fourier transform of (2.17):

L
H(f) =Y cpe . 227
£=0
It is left as an exercise for the reader to derive the conditions for which this system ex-
a
hibits a linear phase.

Example 23 An important family of linear systems is provided by the Bu.tterworth
filters. The transfer function of the nth-order low-pass Butterworth filter with cutoff

frequency f. is

H(f) = e 228)

Dn(Gf/fe)
where n
D,,(s) é H [s _ ejw(2i+n—l)/2n] (2.29)
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Figure 2.6: Amplitude of the transfer function of low-pass Butterworth filters of various
orders.

is an nth degree polynomial. Expressions of these polynomials for some values of n are

Di(s) = 1+s
Dz(s) = 1+ \/—2-8 + 52 (2.30)
D3(s) = 1+23+2s2+4°

Figure 2.6 shows the amplitude |H (f)| of the transfer function of the low-pass Butter-
worth filters for several values of their order n. It is seen that the curves of all orders pass

through the 0.707 point at f = f,. As n — oo, [H(f)| approaches the ideal low-pass
(“brickwall”) characteristics:

elsewhere.

[H(f)] = { (1) I/ < fe (2.31)

a

2.2. Random processes

2.2.1. Discrete-time processes

A discrete-time random process, ot random sequence, is a sequence (&,) of real
or complex random variables (RV) defined on some sample space. The index n
is usually referred to as the discrete time. A discrete-time process is completely
characterized by providing the joint cumulative distribution functions (cdf) of
the N-tuples &1, &, ..., &4n of RVs extracted from the sequence, for all
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integers i and N, N > 0. If the process is complex, these joint distributions are
the joint 2N-dimensional distributions of the real and imaginary components of
&is1, ..., Eipnv. The simplest possible case occurs when the RVs in the sequence
are independent and identically distributed (iid). In this case the joint cdf of any
N-tuple of RVs factors into the product of individual marginal cdfs. For a real

process,
N

F v bian (Tiv1, Tivz, s TipN) = 1—_[1 Ff("‘:iﬂ') (2.32)
j=
where Fy(-) is the common cdf of the RVs. Thus, a sequence of iid RVs is
completely characterized by the single function Fe(-)

A random sequence is called stationary if for every N the joint distribution
function of £i41, £i425 - ., &ipv does not depend on 4. In other words, a stationary
random sequence is one whose probabilistic properties do not depend on the
time origin, so that for any given integer k the sequences (£,) and (§n+k? are
identically distributed. An iid sequence extending from n = —oo to +00 is an
example of a stationary sequence.

The mean of a random sequence (£,) is the sequence (£,) of mean values

i £ Elg] (2.33)
The autocorrelation of (£,) is the two-index sequence (,,) such that
Fam £ Elgé7] 2.34)
For a stationary sequence,

(@) pn does not depend on 7, and

(b) 7., depends only on the difference n — m. Thus, the autocorrelation
sequence has a single index.

Conditions (a) and (b), which are necessary for the stationarity of the se-
quence (&,), are generally not sufficient. If (a) and (b) hold true, we say that
(£,) is wide-sense (WS) stationary. Notice that wide-sense stationarity is ex-
ceedingly simpler to check for than stationarity. Thus, it is always expedient to
verify whether wide-sense stationarity is enough to prove the properties that are
needed. In practice, although stationarity is usually invoked, wide-sense station-
arity is often sufficient.
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Markov chains

For any real sequence (£,)3%, of independent RVs, we have, for every n,

an lfn—l:fn—?v--;fo (zﬂ I zn-l’mn—zv reey -’50) = an (‘Tn) (235)

where Fg, |¢._, £n-a,..c0( * +) denotes the conditional cdf of the random variable
&, given all the “past” RVs &,_1,&,-, .. .,&. Equation (2.35) reflects the fact
that &, is independent of the past of the sequence. A first-step generalization
of (2.35) can be obtained by considering a situation in which, for any n,

Feltnrbnrido(Zn | Tno1i T2y oo Z0) = Fey g0y (Tn | Tn1)  (2.36)

that is, £, depends on its past only through £, _;.

When (2.36) holds, (£,)%, is called a discrete-time (first-order) Markov pro-
cess. If in addition every &, can take only a finite number of possible values, say
the integers 1, 2, ..., g, then (&,) is called a (finite) Markov chain, and the val-
ues of &, are referred to as the states of the chain. To specify a Markov chain,
it suffices to give, for all timesn > 0 and j,k = 1,2,...,q, the probabilities
P{&n = j} and P{€n11 = k | & = j}. The latter quantity is the probability that
the process will move to state £ at time n + 1 given that it was in state j at time
n. This probability is called the one-step transition probability function of the
Markov chain.

A Markov chain is said to be homogeneous (or to have stationary transition
probabilities) if the transition probabilities P{&,» = k | £& = j} depend only
on the time difference m and not on £. We then call

P§T)=P{€e+m=k|§z=j}, £>0, m>1, jk=1,2...,9 237

the m-step transition probability function of the homogeneous Markov chain
(én)72y. In other words, pg',:') is the conditional probability that the chain, be-
ing in state j at time £, will move to state & after m time instants. The one-step

transition probabilities pﬁ) are simply written p;:

pjk = P{ér1 =k | & =7}, £2>0, k=12,...¢ (2.38)

These transition probabilities can be arranged into a ¢ x g transition matrix P:

Pu1 P12 - Py
P= P21 P2 P2y (2.39)
Pg1 Pgz " Py
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The elements of P satisfy the conditions

ijZO, j7k=11~-'aq (240)
and .

So=1, i=1,2,....q 2.41)

k=1

(i.e., the sum of the entries in each row of P equals 1). Any square matrix that
satisfies conditions (2.40) and (2.41) is called a stochastic matrix or a Markov

matrix. o o
For a homogeneous Markov chain (£,)3%,, let wy" denote the unconditiona

probability that state k occurs at time n; that is,
W =P{& =k}, k=12....4 (2.42)

The row g-vector of probabilities w,(c"),

w® = [ w® .. w®) (2.43)

is called the state distribution vector at time n. With w{® denoting the initial
state distribution vector, at time 1 we have

9
ol =S wpy,  k=1,....q 244
i=1

r, in matrix notation,
e w) = wOP (2.45)
Similarly, we obtain

w® = wOp

= wOp? (2.46)
and, iterating the process,
wim™ = wm-bp
= wiopm (2.47)
More generally, we have
8 ¥ w(£+m) - w(e)Pm (2.48)

Equation (2.48) shows that the elemerits of P™ are the m-step transition proba-
bilities defined in (2.37). This proves in particular that a homogeneous Markov
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chain (£,)5%, is completely described by its initial state distribution vector w(®
and its transition probability matrix P. In fact, these are sufficient to evaluate
P{¢, =j}foreveryn > 0and j = 1,2,...,q, which, in addition to the ele-
ments of P, characterize a Markov chain.
Consider now the behavior of the state distribution vector w(™ as n — co. If
the limit
w = lim w® (2.49)

n—o00

exists, the vector w is called the starionary distribution vector. A homogeneous
Markov chain such that w exists is called regular. It can be proved that a homo-
geneous Markov chain is regular if and only if all the eigenvalues of P with unit
magnitude are identically 1. If, in addition, 1 is a simple eigenvalue of P (i.e.,
a simple root of the characteristic polynomial of P), then the Markov chain is
said to be fully regular. For a fully regular chain, the stationary state distribution
vector is independent of the initial state distribution vector and can be evaluated
by finding the unique solution of the system of homogeneous linear equations

wP =w (2.50)
subject to the constraints
q .
Zwk=17 wk_>_01 k=1721"'7q (251)
k=1

Also, for a fully regular chain the limiting transition probability matrix

P* = lim P (2.52)
n—oo
exists and has identical rows, each row being the stationary distribution vector
w:
w

w
Pe=1 2.53)

w

The existence of P* in the form (2.53) is a sufficient, as well as necessary,
condition for a homogeneous Markov chain to be fully regular.

Example 2.4 Consider a digital communication system transmitting the symbols 0 and
1. Each symbol passes through several blocks. At each block there is a probability 1 —p,
P < 1/2, that the symbol at the output is equal to that at the input. Let £ denote the
symbol entering the first block and &,, n > 1, the symbol at the output of the nth block
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of the system. The sequence &g, &1, &2, . . ., is then a homogeneous Markov chain with
transition probability matrix
i-p p

The n-step transition probability matrix is

1
pn J+31-2) 3-30-)7

The eigenvalues of P are | and 1 — 2p, so for p # 0 the chain is fully regular. Its
stationary distribution vector is w = [% %], and

1111
o _
=3[0
which shows that as n — 0o a symbol entering the system has the same probability 1/2
i [m]
of being received correctly or incorrectly.

Shift-register state sequences

An important special case of a Markov chain arises from the consideration qf a
stationary random sequence {c,,) of independent random variables, each taking

on values in the set {a,as,...,ap} With probabilities py = Pla, = ax},
k=1,..., M, and of the sequence (6,)3,, with
On = (an—la s an—L) (2.54)

If we consider an L-stage shift register fed with the sequence (0n) (Fig. 2.7,
. represents the content (the “state”) of the shift register at tm'le n (1..e., when
o, is present at its input). For this reason, (on) is called a sh:ff-regzster state
sequence. Each o, can take on M L values, and it can be verified Fhat (on)
forms a Markov chain. To derive its transition matrix, we shall first introduce
a suitable ordering for the values of g,. This can be done in a natural way by

first ordering the elements of the set {a;,az,...,aum} (a simple way to fio this
is to stipulate that a; precedes a; if and only if ¢ < j) and then inducing the
following “lexicographical” order among the L-tuples a;;, @, - - -, Gj.°
(aj, a3, - - -, a;,) precedes (@i, @iy, - - -, ai,)
jl < il, or
if and only if { 71 =%; and j2 <3, Or (2.55)

‘ jl = ila jz = i27 andj3 < i37 etc.
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®n Q. 2 4%} Op1

Figure 2.7: Generating a shift-register sequence.

Once the state set has been ordered according to the rule (2.55), each state
can be represented by an integer number expressing its position in the ordered

set. Thus, if ¢ represents the state (a;;,ai,,...,a;,) and j represents the state
(aj,,a4,,- - ., a5, ) the one-step transition probability pij is given by
Dij = P{on = (aj,,0,,..,85,) | 01 = (@i, 0iy, - - -, a5}
= P{C!,,_]_ = Gjyy .-y Quo = G5, | Qn_2 =Qj,...,Qp_[ 1= diL}
= pjléiszéizja fe éiL—lev . (256)

where §;; denotes the Kronecker symbol (6; = 1 and §;; = 0 for i # 7).

Example 2.5 Assume M =2,a; =0,a3 =1,and L = 3. The shift register has eight
states, whose lexicographically ordered set is

{(000), (001), (010), (011), (100), (101), (110), (111)}.

The transition probability matrix of the corresponding Markov chain is

(000) (001) (010) (011) (100) (101) (110) (111)

[p1 0 0 0 p 0 0 07 (000
m 0O 0 0 p 0 0 O (001)
0 0 pm 0 0 0 p 0 O (010)

P= |0 p»§ 0 0 0 po 0 0 (011) @.57)

0 0 p 0 0 0 p 0 (100)
0 0 p 0 0 0 p O (101)
0 0 0 p 0 0 0 p (110)

L0 0 0 p 0 0 0 p)| (111)

As one can see, from state (zyz) the shift register can move only to states (wzy), with
probability py if w =0 and py if w = 1. ]

Consider now the m-step transition probabilities. These are the elements of
the matrix P™. Since the shift register has L stages, its content after time n + m,
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m > L, is independent of its content at time n. Consequently, the states o4y,
m > L, are independent of ¢,; so, form > L,

L
P{Un+m = (ajlvajav = 'vajl,) , On = (ainaiﬂ' . ’ya‘iL)} = HPJ( (2'58)
=1

Thus, PL = PL*+! = ... and P has identical rows. We can write
PL =P (2.59)

which shows, in particular, that the shift-register state sequence defined in (2.54)
is a fully regular Markov chain.

Example 2.5 (continued) We have, by direct computation from (2.57) or using (2.58),
that P3 has the structure (2.53), with w, the stationary distribution vector, being equal
to
3
w = [p}, plp2, plp2, P13, Pip2, P1P3, P13, P3) (260)
a

2.2.2. Continuous-time processes

A continuous-time random process (or random continuous signal) is a family
of real or complex signals £(t) defined on some probability space. At any N-
tuple of times t1, ¢, . . ., tn, the quantities £(t), £(t2), . - ., §(tw) are RVs. C9n-
sequently, a random process can be described by providing the joint distribution
functions of the N RVs £(t;),&(t2), - . ., &(tn) for all integers N and N-tuples of
time instants.

A continuous-time random process is called stationary if for every N, for any
N-tuple (t1,t4,...,ty) and for every real 7, the N-tuples of RVs £(t1), &(ta),
oE(tn) and £(t; + T), E(t2 + T), ..., E(ty + 7) are identically distributed.
Stated in another way, a stationary random process is one whose probabilistic
properties do not depend on the time origin. Thus, for any given 7 the processes
£(¢t) and £(¢ + 1) are identically distributed.

The mean of the process £(t) is the deterministic signal

u(®) 2 EE@®)] 261)
The autocorrelation of £(t) is the function
Re(t1,t2) = E[E(t)€"(2)] (2.62)

-
For a stationary process,
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(@) p(t) does not depend on time, and

(b) Re(t1,t2) depends only on the difference t; — ;. Consequently, we can
write

Re(ts — ta) = E[6(1)€"(22)] (2.63)

Conditions (a) and (b) are generally not sufficient for the stationarity of £(t).
If (a) and (b) hold true, we say that £(t) is wide-sense (WS) stationary. A random
process &(t) is called cyclostationary with period T if its probabilistic properties
do not change when the time origin is shifted by a multiple of T"; that is, we
consider {(t + kT'), k an integer, instead of £(t). Wide-sense cyclostationarity
can also be defined as follows: £(¢) is WS cyclostationary if

(@) p(t) is a periodic function of time with period T, and
(b) the autocorrelation of the process has the property
Re(t+7,t) = Re(t+ 7 + kT, t + kT) (2.64)

k any integer. Equation (2.64) can be interpreted by saying that Re(¢+7, t),
when considered as a function of ¢, is periodic with period 7.

Example 2.6 Consider the deterministic finite-energy signal s(t) and a WS stationary
sequence (a,) of random variables with correlation (r,). The random signal

oo

E(t)é Z ags(t —£T)

€=-o00
is WS cyclostationary with period T. In fact
x
w(t) =Eleg] Y s(t—eT)
f=—0

is periodic with period T'. Moreover,

og og
Re(ti,t) = Y Y Elawal]s(ts - €T)s*(tz — mT)
f=—oco m=—00
[ <] oQ
= 3 Y rems(ty - €T)s*(ts — mT),
€=—o00o m=-00
and it can be verified that (2.64) holds. [m}

Some important properties of stationary and cyclostationary processes are
the following:
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(a) If a stationary (cyclostationary) process is passed Fhrou{gh a stable time-
invariant system, it retains its stationarity (cyclostationarity).

(b) The sum of two stationary processes is a stationary process. Thg sum
of a cyclostationary process and a stationary process 1s a cyclostationary
process.

(c) Let£(t) be a WS cyclostationary process with period T, and let n(t) denote
the randomly translated process

n(t) = £(t +9), 265)
where 6 is a random variable statistically independent of £(¢) and uni-

formly distributed in the interval (0,T'). Then the process £(t) is WS sta-
tionary.

Gaussian processes

A real random process £(t) is called Gaussian if, for any given time instgnt t, £(t)
is a Gaussian random variable. Formally, £(t) is a Gaussian process if for any
N-tuple t, 13, ..., ty of time instants, N any integer > 1, the row N-vector of
random variables £ £ [€(t1),£(ts), - - -, ()] has a Gaussian distribution, that
is, a probability density function of the form

fe) = WW exp[-3(x- WA x—p)|  (269)
where p is the mean vector
p 2 E[g] = (BlE(t), E[E(t)], - EE@n)]) (2.67)
and A is the N x N covariance matrix
A2 E[(€ - p)'(E-w)] (2.68)

Now, let £(t) be a complex random process, and let
£(t) = €p(t) + j€a(t) (2.69)

where £p(t), £o(t) are real processes. The process £(t) is called Gaussian if thg
joint distribution of Ep(tl), Ep(tz), . fp(tN), EQ.(tl)v EQ(tz), s EQ(tN) is
9 N-dimensional Gaussian for any N-tuple of time instants and for any integer
N2>1 .

Gaussian processes have the following properties:
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(a) The output of any linear system whose input is a Gaussian process is still
Gaussian.

(b) Let§(t) be a WS stationary real Gaussian process. Then £(t) is stationary.

() Let £(¢) be a WS stationary complex Gaussian process. Then £(t) is sta-
tionary if and only if the average F[£(t)£(2,)] is a function only of the
time difference ¢; — ¢,.

Property (c) deserves some comments. Wide-sense stationarity of £(¢) im-
plies that E[£(¢)€*(s)] is a function of ¢ — s, and E[€(t)] is a constant. For
the stationarity, one must show that E[£5()€p(s)], E[€(¢)€q(s)], E[€q ()€ (s)]
all depend only on the difference ¢ — s. But this is equivalent to showing that
E[£(¢)€*(s)] and E[£(t)£(s)] depend only on ¢ — s. To verify the latter prop-
erty, it is sometimes useful to apply Grettenberg’s theorem (Grettenberg, 1965).
It states that for a complex Gaussian process £(¢) with mean zero we have
E[£(t)&(s)] = 0 if and only if, for all 0 < @ < 2, the processes £(t) and
e’%€(t) are identically distributed; that is, £(t) is invariant under phase rotations.

2.3. Spectral analysis of deterministic and random signals

In the representation of signals in the Fourier transform domain, one associates
with each frequency f a measure of its contribution to the signal. This repre-
sentation is particularly useful when the signal is transformed by a linear time-
invariant system, because in this case each of the frequency components of the
signal is independently weighted by the system transfer function, according to
the rule (2.26) (it holds for discrete and continuous signals). In this section we
extend this concept to the spectral analysis of certain energetic quantities that one
may want to associate with a given signal, such as its energy or its power (to be
suitably defined). Specifically, assume that, for a given signal &, either discrete
or continuous, deterministic or random, we have defined a nonnegative energetic
quantity II¢. The density spectrum of II, is a frequency function, say V;(f), car-
rying information regarding how much of II; is associated with each frequency
f. The function V¢(f) is nonnegative, and the two following properties hold:

(a) The integral of Vi(f) gives I1¢:
Il = /1 Ve(f) df. (2.70)

(b) Let II,, be the same energetic quantity defined at the output of a linear,
time-invariant system with transfer function H(f) and input £(¢). Then

= [IH(DPRV:(S) df @71
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In (2.70) and (2.71), I = (—o00,00) if £ is a continuous-time signal, and I =
(—1/2,1/2) if £ is a discrete-time signal. o

Let us now specialize this general definition to some cases of practical inter-
est.

Energy density spectrum: Continuous deterministic signals

Given a continuous deterministic signal z(t), we define its energy as the quantity
o0

&2 / |z(t)[? dt @.72)
—0o0

provided that the integral in (2.72) is finite. In the transform domai1:1, the energy
of a signal z(t) whose Fourier transform is X (f) can be expressed in the form

e= [ IX(NPdf @.73)

—00
Equality (2.73) is a special case of Parseval’s theorem. This states that for two
signals z; (t), z2(t) with Fourier transforms X, (f), X2(f), respectively, the fol-
lowing holds:

[ nomed= [~ xnxoed @74)
The function
S(f) 2 1X(H)P .75)

is the energy (density) spectrum of z(t). It is easily seen that with this definition
both (2.70) and (2.71) hold.
Power density spectrum: Continuous deterministic signals

For a continuous aperiodic deterministic signal =(t) whose energy is not finite,
define its average power as the quantity

a/2
P, 2 i 1 / |z (8)|? dt (2.76)
a=00 q J_g/2
provided that this limit exists. If we define the truncated signal
' a a
——<t< -,
s 2] * 3 2 @77)
0, elsewhere

the average power of z(t) can be written

P, = lim lea (2.78)
a—+00

o b W
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where &, denotes the energy of z,(t). Hence, for the signal z(t) we define its
power (density) spectrum as the function

G.(f) 2 lim ~[X.(F)I 2.79)

a—+00

where | X, (f)|? is the energy spectrum of the truncated signal (2.77).
For a periodic signal z(t) with period T, its average power is defined as

Al (T2 \
= — t
P T/_T/z l=(t)*d

Define its Fourier-series expansion

where

Average power density spectrum: Discrete stationary random signals

Consider a WS stationary random sequence (&,) with autocorrelation (r,,). Its
average power is defined as

Pe £ E{J&.[°} (2.80)

The (average) power (density) spectrum G¢(f) of (&,) is the Fourier transform
of the autocorrelation sequence (r,,); that is,

(=]
. 1
Ge(f) = D rne7i, Ifl < 2 (2.81)
n=-o00
Let us show that with this definition (2.70) holds. We have
v Ge(f) d 3 V2 it 2.82
[1p9e0i= 3 [ et ap =, @82)

and ro equals E{|¢,|*} because of (2.34) and the assumption of WS stationarity.
Property (2.71) can be proved similarly.
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Average power density spectrum: Continuous stationary random signals
Let £(t) be a WS stationary continuous random process with autocorrelation
function R¢(7). Its average power is defined as

P 2 E{E)"} 2.83)

The (average) power (density) spectrum Ge(f) of £(t) is the Fourier transform
of the autocorrelation function Re(7):
Ge(f) = [ Re(r)e ™" ar 2.84)

-0

In this situation, (2.71) takes the form
P= [ H(G() df (2.85)

where 7(t) is the response of a linear time-invariant system with transfer function
H(f) to the input £(¢).

Example 2.7 (White noise) A process with autocorrelation function

Re(r) = %J(T) (2.86)
has a power spectrum
Ge(f) = % —0 < f < oo (2.87)

Such a process is called a white noise. In practice, this process is not realizable, as its
power P is not finite. However, this process can be very useful in instances where the
actual process has an approximately constant spectral density over a frequency range
wider than the bandwidth of the system under consideration. On the other hand, the
observation of any process will be made through a measuring device whose bandwidth
is finite: consequently, when we observe a constant spectral density it is mathematically
convenient to assume that the underlying process (which we do not, and cannot, observe)
is a white noise.

At the output of a linear time-invariant system with transfer function H(f) we get

the average power
Ny [> 2
Pp=— [ HO S (2.88)
2 Jooo
which is finite provided that the integral in the RHS converges. In this situation, it is

customary to define the equivalent noise bandwidth of the system as

LG
2 max [H(f)P

W

Beq (2.89)
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(a)

fo f

Figure 2.8: Equivalent noise bandwidth for (a) low-pass systems, and (b) bandpass
systems.

Notice the presence of the factor 1/2 in (2.89), which can be interpreted by saying
that the bandwidth is only defined for positive frequencies. This convention is assumed
throughout this book for every possible definition of the bandwidth of a signal or a
system. For linear systems with a real impulse response, |H(f)| is an even function.
Hence, the factor 1/2 can be omitted in the RHS of (2.89) and the integration carried out
from 0 to co. With definition (2.89), the power at the output of a linear, time-invariant
system with equivalent noise bandwidth Beq and whose input is a white noise with power
spectral density Ng/2 turns out to be

Py = Np- Beq - max |H(f)? (2.90)

Equation (2.90) shows that Beq can be interpreted as the bandwidth of a system with a
rectangular transfer function, whose amplitude squared is max [H(f){?. Fig. 2.8 illus-
trates this fact for a low-pass and a bandpass system.

For example, the low-pass Butterworth filters defined in Example 2.3 have an equiv-
alent noise bandwidth

_ m/(2n)
Beq = fc's‘m—[;rm (2.91)
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From (2.91) it is easily seen that, as n — o0, Beq = fo, fe being the cutoff frequency
of the filter. ]

Average power density spectrum: Continuous nonstationary random signals

Consider now a nonstationary continuous random process (t). Clearly, defini-
tion (2.83) is not valid anymore because in general E{|¢(t)[?} varies with time.
In this situation, the definition of average power that should be used is

a/2
Pe= ,}i{gg% [ B}t (2.92)
that is, the time average of the mean value of the instantaneous power |£(t)]2.
With this definition, a spectral density function that satisfies properties (2.70)
and (2.71) can also be defined for nonstationary processes, provided that we
restrict our attention to an appropriate subclass of processes. This subclass is
that of harmonizable processes (Loéve, 1963, pp. 474-477). Roughly speaking,
a process is harmonizable if we can define its Fourier transform:

202 [ eerar 293)

Equation (2.93) defines a new random process in the variable f. In certain cases,
a proper interpretation of (2.93) requires some care. In fact, (2.93) is an equality
in the sense of distribution theory (i.e., it becomes an equality if a linear operator
is applied to both sides and the order of integrations is reversed in the RHS).
Incidentally, this is the correct way to interpret equalities like

8(t) = / = et g
-0

Harmonizable processes are a first-step generalization of WS stationary random
processes. It has been shown (Cambanis and Liu, 1970) that, under some mild
conditions, any random process obtained at the output of a linear system is har-
monizable. The system may be randomly time variant and the input process need
not be stationary, or even harmonizable.

For a harmonizable process £(t), the power spectrum can be obtained as fol-
lows. Compute first the function

Te(f1, f2) 2 EE(A)Z(£)] (2.94)

Consider then the bisector f; = f, of the plane (fi, f2) and the line masses of
L¢(A, f2) located on it. The distribution of these line masses provides us with
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a function G¢(f), the power spectrum of £(t). Specifically, if I'¢(fi, f2) can be
written in the form

Le(fr, f2) = Ge(A)0(f1 — f2) + Ae(f1, f2) (2.95)

where A¢(f1, f2) has no line masses located on the bisector fi = f, then
Ge(f) is the required spectrum. (It may happen that G¢(f) is identically zero;
in this case the process has finite energy.] Using (2.93), it can easily be seen that
Le(f1, f2) can be written in a form equivalent to (2.94):

00 o0 .
(i f) = [ [ Relmym)e ™ 0m=tmid arydry (2.96)
—o0 J—00
Equation (2.96) shows that I'c(f1, f2) is the two-dimensional Fourier transform

of the autocorrelation function of the process £(¢). This is tantamount to saying
that R¢(71, 72) is the inverse Fourier transform of T¢( fi, f»):

Re(rom)= [ [~ el o™ hnrmarian,  297)

Example 2.8 Let £(¢) be WS stationary. Its autocorrelation function depends only on
71 — T2. Thus, (2.96) yields

© oo .
Fé(fl: f2) = / / Re(r1 — Tz)e—ﬂ"[fl(ﬂ—72)+(f1-f2)72] dr drg
-0 J~00

/ ” Re(r)e (" dr . §(f1 — fa), (2.98)

which is consistent with (2.84) (as it should be). Also notice that, using (2.97), one sees
that R¢ (71, 72) depends on the difference ;1 — 72 only if T'¢(f1, f2) has the form

Le(f1, f2) = Ge(1)8(f1 — f2) (2.99)
(see Fig. 2.9). ]

Example 2.9 Let£(t) be a WS cyclostationary process with period 7. Using the prop-
erty (2.64), it is seen that R¢ (71, 72) can be expanded in the Fourier series

o0

Re(t+7,t)= 3 ga(r)ed™/T (2.100)
n=—oQ
where
al (72 —jn2mt/T
9a(7) = 5 . Re(t + 7, t)e=m27t/T gy (2.101)
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A GRS

Figure 2.9: The function T¢(f1, f2) for a wide-sense stationary process.

Using (2.96), we get

=) o0 00 .
_ . &In2mt/T o =j2rn((h~fa)e+ 17} gr gy
Te(f1, f2) n:;m/_m/_mg (r)
- n (2.102)
- ¥ Gni(n-r-f) :

where G () is the Fourier transform of gn(-), =00 < n < 0. Equation (2.102)
shows that T'¢(f1, f2) consists of line masses located on the lines fi = f? + .n/T.‘,
—00 < n < 0o, which are parallel to the bisector of the plane (f1, f2)- This situation is
shown qualitatively in Fig. 2.10.

The power spectrum of £(t) is then

Ge(f) = Golf) (2.103)

It can also be shown that the power spectrum (2.103) can be obtained by considering the
WS stationary process (2.65) and using (2.84). ]

2.3.1." Spectral analysis of random digital signals

In Chapter 4, devoted to the transmission of digital information using continuous
signals, the following random process will be considered:

£t) = i s5(t = nT; am, 9a) (2.104)

n=-o0
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G (i fy)

Figure 2.10: The function T¢(f1, f2) for a wide-sense cyclostationary process.

This is called a digitally modulated random signal, or for short a digital signal.
The sequence (a,) of discrete RVs is WS stationary, and will be referred to as
the sequence of source symbols. The sequence (o,,) is a stationary sequence of
discrete random variables referred to as the states of the modulator. The random
waveforms s(t; an, 0,) take values in a set {s;(t)}¥, of deterministic, finite-
energy signals. They are output sequentially by the modulator, one every T
seconds, in accordance with the values of the source symbols and the modulator
states.

Several special cases of (2.104) are of interest. If the modulator states o, do
not appear in (2.104), the modulator is called memoryless, and we have

§(t) = i s(t —nT; an) (2.105)
If in addition
8(t; an) = an s(t), (2.106)

that is, the waveforms of the set {s;(¢)}; are scalar multiples of one and the

i=1
same signal s(t), the modulator is called linear, and we have
o0
EB)= > ons(t—nT). (2.107)

n=-0o0

Here we evaluate the power density spectrum of the signal (2.104), which is
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generally nonstationary. The Fourier transform of £(t) is given by

2(f) = 2 S(f; an, on)e 727/ T (2.108)
n=-—0o0
where S(f; an, 0,), the Fourier transform of s(t; a., 0,,), takes values in the
set {S:(f)}4,, with Si(f) £ Fls:i(t)],i = 1,2,..., M. Thus, from (2.94) we
get

Ff(fl, f2 Z Z E{S(f], am,o'm)S" (le an,Uﬂ)}e"Jz" fim—fan)T

m=—-00n=—00
o0

s P’ -
= Y X E{S(fi; tnst;0040)S"(f2; n, 0n) eI T e fim 0T

f=—00o n=—00

As the sequences (a,), (g,) are stationary, the expectation in the last line
of the previous equation depends only on £ and not on n. Thus, recalling the
equality (sce, e.g., Jones, 1966, p. 135)

o —j2rmwz __ l_ — _ 7_77»_
SemelEin) am
we obtain
1 & ]
Le(hn o) = 7 3 E{S(f1; 0ntt; 0nse)S"(f2; an, o) e 2mHT
= m
mg_:m&(f”f’”T) (2.110)

Compare now (2.110) with (2.95). It is apparent that the power spectrum of &(t)
is given by

Ge(f) = 1 iGe eIt (2.111)
t=—oo
where
Gulf) 2 E{S(f; ansts 0ns0)S"(f; Un, 7a)} @2.112)

It is customary, in the computation of spectral densities, to separate their con-
tinuous part from their discrete part (line spectrum). This can be done in our
situation by defining

Gulf) 2 Jim Gl)

|E{S(f; @, 0u)} (2.113)

\
]

e
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(this does not depend on n because of stationarity) and rewriting (2.111) in the
form

Ge(f) = f: [Ge(f) = Goolf)le™1T

+73 Gw(f) Z 6<f——> (2.114)

{=—o00

where (2.109) was used again. The second term in the RHS of (2.114) is a line
spectrum with lines spaced 1/T Hz apart. The first term is line-free if G,(f) —
Goo(f) tends to zero fast enough as £ — oo for all f. We shall assume in the
following that this is the case.

Equation (2.114) can be rewritten in a slightly different form by observing
that, from definition (2.112), it follows that

G_dlf) = Gi(f) @.115)

Thus, denoting by gé”’ (f) and gé")( f) the continuous and the discrete part of the
power spectrum, respectively, we finally get

Ge(£) =62 + 62 (2.116)

where
c) 2 —jonfeT 1
(1) = $R {161 = Gl 1T} = LGl - Gunl)] @117

and

20 = g6at) 3 5(1-7) @119

{=—o00
We shall now proceed to specialize (2.116)—(2.118) to a number of cases of prac-
tical interest.

Linearly modulated digital signals

When the modulator is linear, that is, (2.104) reduces to (2.116)-(2.118), from
(2.112) we get, with S(f) denoting the Fourier transform of s(t),

Gi(f) = E{antea}|S(f)|2 (2.119)

If
E{an} =4 (2.120)

W
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and
E{aea,} = 05p-m + |1 2.121)
with pg = 1 and p,, = 0, then the power spectrum of £(¢) is given by
Ge(f) = GO (f) + 6 (f) 2.122)
where
(e) a4 2 o jom fer
Ge"(f) = ZIS(NIF 2R pee™*/ 1 (2.123)
£=0
and ,
kad l
6 =Lisne 3 s(f- 2 2.1249)
T Play T

It is seen from (2.124) that . = 0 is a sufficient condition for G¢(f) to have no
lines in its spectrum.

When the random variables ¢, are uncorrelated (i.e., p, = &), We get
from (2.123)

2
GEf) = ZIS()P (2.125)

Notice from (2.123) the two factors that separately influence the shape of g§°’ (-
The first is the waveform s(t) through its energy spectrum. The second is the cor-
relation of the sequence (c,), which appears in the bracketed factor of (2.123).
If this factor is rewritten as

o0 =]
2§R2ple—j21rﬂT —-1= Z ple—jh’ﬂT

=0 f=—00
it is seen that it turns out to be the Fourier transform of the sequence (p,). In
practice, the fact that G¢(f) depends on two independent factors provides a de-
gree of freedom that can be used to shape the signal spectrum. Indeed, a given
spectrum can be obtained by choosing appropriately the waveform s(t), or the
correlation of (), or both.

Example 2.10  Perhaps the simplest way to introduce correlation in a discrete sequence
is to pass it through a linear system. Thus, let (3,) denote a sequence of iid RVs with
E8.=0 and E|Ba|? = 1, and let (a,,) denote a new sequence with

n = hmBa-m, (2.126)
m

where (h,,) is the impulse response of a linear, time-invariant system. In this situation a
simple computation shows that

E{antean) =) hmithy,. (2.127)
m
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Thus, the power spectrum of (2.107), when (o) is as in (2.126), is

Ge(f) = ZISPIHUTIP, (128

where H(f) is the transfer function of the discrete linear system:

H(f) &S hpei2mf (2.129)

It is immediately apparent from (2.128) that the same power spectrum for £(t) could be
obtained by using, instead of (a,), the sequence (8.} and a signal whose Fourier trans-
formis S(f)H(fT). Q

Nonlinearly modulated digital signals

We shall now consider the computation of the power spectrum of the digital
signal £(t) expressed by (2.104) when the sequence (o,) is assumed to have a
special structure. In particular, we assume that (o) is an iid sequence, and that
(0,,) depends on (a,) as follows:

On41 = g(anv Un)y (2130)

where g( - ) is a2 completely known deterministic function. Equation (2.130) de-
scribes in which state the encoder is forced to move at time n + 1, when at time
n it was in state o, and the source symbol is c;. The modulator uses the value
of the pair a,, 0, to choose the waveform s(t; &, 0,) from the set {s;(t)}2,,
which is then output sequentially.

For this model of a digital signal to be fully specified, it is sufficient to pro-
vide the function g( - ) and the mapping between pairs &,, 0, and waveforms of
the set {s;(t)}},. We assume, hereafter, that o,, takes on the g values ¥y, L,
..., Zq, and ar, takes on the L values a;, a2, ..., 0. (g and L both finite). Thus,
our description of £(t) can be done through two L x g tables whose rows are
labeled a4, ag, . . ., ar, and whose columns are labeled T;, Tz, ..., Z,. In the first
table we display the waveforms corresponding to the pairs (a;, £;), and in the
second the values of g(a;, ;). An equivalent representation is in the form of a
state diagram. This is a directed graph consisting of g vertexes, each represent-
ing one state; an oriented branch is drawn from state ¥; to state T; if and only if
there is a source symbol ay such that g(ax, £;) = ;. The branch is then labeled
by ax and by the waveform, say s,(t), corresponding to the pair (ax, Z;) (see
Fig. 2.11). Before proceeding further, we provide some examples of nonlinearly
modulated digital signals and their representations.
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. a,ls; (1) .

Figure 2.11: Element of the state-diagram representation of a modulated digital signal.

NIRRT

o| o 0 ol =, T

1 (2 —s(f) 1 z. z,
1s()

0/0 -@ @ 0/0
1/=s(r)

Figure 2.12: Representation of the bipolar-encoded digital signal: Tabular form and
state diagram.

Example 2.11 (“Bipolar-encoded” digital signal) The modulator has ¢ = 2 states,
say £ and £_, and the source is binary; that is, @ € {0,1}. The modulator responds
to a source symbol O with a zero waveform and to a source symbol 1 with the waveform
s(t) or —s(t), according to whether its state is £. or &_, respectively. Source symbol 1
makes the modulator change its state. The tabular and state-diagram representations of
this signal are provided in Fig. 2.12. O

Example 2.12 (“Miller-encoded” digital signal) The modulator has M = 4 wave-
forms, ¢ = 4 states, and the source is binary. Figure (2.13) describes this digital signal.
a
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ap Zl Zz 23 24 a, Z] Zz 23 24

0 S4 (t) S4 (t) 51 (t) 5 (t) 0 24 . 24 Zl Zl
1 520 530) 200 s3() 1 2, 23 2, 2,

Iil(t) Hz ® TSs ® 184 ®
LEREASE

Figure 2.13: Representation of the Miller-encoded digital ngnal Tabular form, wave-
Jorms, and state diagram.

Example 2.13 (“TCM” digital signal) The modulator has M = 8, ¢ = 4, and the
source is quaternary. The available signals are

s,-(t)=exp{j [2ﬂf0t+(i—1)§]}, i=1,...,8, 0<t<T, foT'>»1

Fig. 2.14 describes the resulting digital signal. m]

For our future computations, the following quantities must be defined:

(a) The state transition matrices By, k = 1,2,..., L, which are the ¢ X q
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51 5200 s300 s | si(®=exp {j[anot +(i-1) %]}

0

1| ss( ss@) s1(8) 30

2 | 550 s si(®) 5200 0<:<T
3 5100 s s ssQ) foT>>1
Gn

s, (©)
3/s¢ (1)

Figure 2.14: Representation of the TCM digital signal: (a) Tabular form; (b) state dia-
gram.

matrices whose entry [EyJ;; is equal to 1 if g(ax, Z;) = Z;, and zero oth-
erwise. In clarification, the matrix Ej has a 1 in row ¢ and column j if the
source symbol ay, forces a transition of the modulator from state Z; to state
L;. Otherwise, it has a zero.

(b) The row g-vectors sx(f), k = 1,2,..., L, whose q entries are the Fourier
transforms of the waveforms of the set {s;(t)}/4,, according to the rule
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[sk(f)li = F(s(t; ax, ;)]. Thatis, s, (f) includes the amplitude spectra
of the modulator waveforms corresponding to the source symbol a;, for the

different modulator states.

Example 2.11 (continued) In this case, letting @) = 0 and ay = 1, we have

10 01
E“[o 1]’ Ez—'[l o]

si(f)=[00], so(f)=S([1 -1

where S(f) is the Fourier transform of s(t). O

and

Example 2.12 (continued) In this case, letting a; = 0, a3 = 1, we have

0001 0100
{0001 _]J0oo0o10
Ei=li 000 B2=io 100
1000 0010
and
sif)=S(f)[-1-2z —1-2z 14z 1+
32(f)=5(f)[1—2 —142 1-~2 —1+z]
where T sinmfT/2
& T sinm
SN=3 TfT]2
and
28 gminst

Example 2.13 (continued) In this case, letting a; =i —1,i=1,2,3,4, we have

1000 0100
0010 0001
El—‘E2—' 1000 E3=E4—- 0100
0010 0001

and

it
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where

st —foT 8 s

w(f = fo)T

We want now to evaluate the power spectrum of the digital.mgn.al (2.104).
The assumption that () is an iid sequence, along. with (2.130), 1mp11es. t.hat ;he
state sequence (o) is 2 homogeneous Markov chain. In fact, the probability that
the encoder is in a given state at time n + 1 depends only on the state o, an.d.on
the symbol ¢, and not on the preceding states on—1, Tn-2, -+ - The transition
matrix of this chain has entries

[P]l] é P{Un+1 = E] l On = E:}
= P{g(am Un) = z:j | Tn = E,}

L
= Y P{g(en, 0x) = T; | an = ax, 00 = Li}P{on = ai}
k=1

L
= > pulBuly .131)
k=1
where, as already defined,
& Plon=a), k=12,...,L (2.132)

Thus, the transition matrix P is a linear combination of the matrices E;:
L
P= Z peEx (2.133)
k=1

We assume that the Markov chain is fully regular, and that its staﬂiqg time is
n = —oo. This implies that, for any finite n, w(® = w. Thus, the transition mat
trix P provides a complete characterization of the sequence of modulator states;
in particular, the stationary state probabilities

w; & P{o, = 5.} (2.134)

are obtained as the entries of vector w computed from (2.50) and (2.51).
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Let us now define four quantities that play an important role in the expression
of the power spectral density we are seeking. The first is the average value, taken
over the source symbols, of the vectors s (f):

L
ca(f) = 3 pise(f) (2.135)
i=1
The ith component of c;(f) is then the average amplitude spectrum of the wave-
forms available to the modulator when it is in state PR
The second is the g-vector c; (f) whose jth component is the average ampli-
tude spectrum of the waveforms that, when output by the modulator, force it to
state X;.
This jth component of ¢, (f) is then given by

L g
a
[e1(Nl = 20 pewilBeli; Fls(t; ax, T)] (2.136)
k=1i=1
(recall from the definition of E, that [Ex];; = 1 only if the source symbol a;
takes the modulator from state ; to state Z;). If we define the ¢ x ¢ diagonal
matrix

D £ diag (wy, ws, ..., w,) (2.137)
we have from (2.136)
L
ci(f) = Y pese(f)DE; (2.138)
k=1

Our third quantity is the average amplitude spectrum of the waveforms available
from the modulator:

u(f)

>

E{F[s(t; an, 0a)]}

= Zipkw,}'[s(t, D Ei)]

k=1i=1
L
= X pewsi(f)
k=1
= wcy(f) (2.139)

Finally, the fourth quantity of interest is the average energy spectrum of the
waveforms available from the modulator:

55 el Fls(t ax, )1

k=1i=1

L
> pesi(f)Dsi(f) (2.140)
k=1

>

Co(f)
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Before proceeding further, we evaluate these four quantities in a few exam-
ples.

Example 2.11 (continued) Assuming that the source symbols 0 and 1 are equally

likely, we have
1j1 1
P=pP®=_ [ ]

2(1 1
so that 11
v=1[z 3

Moreover,

ef) = S(AHg -4

a(f) = SH-; 1

pu(f) = 0
and

Example 2.13 (continued) Assuming that the source symbols 0 and 1 are equally
likely, we have

0101 1111
110011 w_ll1 111
P=2l1100 PP=4l1111
1010 1111

Thus, w = (} 1 1], and

ea(f) = S(Al-=z -114],

a(f) = %[14—2 l—z —1+4+2z —1-142],
p(f) =0

a(f) = 2S(HP
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Example 2.13 (continued) Assuming that the source symbols 0, 1, 2, 3, are equally
likely, we have

1100 1111
110011 o_p2_Ll]1 111
P_21100 P‘P‘41111

0011 1111

Moreover,
c(f) =0
a(f) = 0
u(f) =0,
and

Consider now the computation of the power spectrum. This will be under-
taken by applying (2.116)—(2.118). From (2.112) we have, for £ > 0,

g9 4a

Gelf) = D222 5(f; an, 5)5*(f; ak, Ti)

h=1k=11i=1 j=1
'P{an+l = Qp, On = Gk, On4e = Ej7 On = E‘L} (2.141)

The probabilities appearing in (2.141) can be put in the form

P{onye = an, 0q = g, Onpe = Lj, 0n = 5;}
= Plopye=an, Onpe =55 | 0n = ak, 00 = 5;} - prw; (2.142)

As the source symbols are independent, we have

Planie = an, onye =Z; | an = ak, 00 = I;}
=py P{Onre=2L; | an = ar,0n = T;}

q
= Dn Z P{op1e=L;j | Ont1 = Bm, 0 = ag, 0, = I;}

m=1
P{op1 =Zn | 0n = ar, 0 = 5}

q
=PDp Z P{O‘n+[ = EJ I Ony1 = Em} [Ek]im

m=1
q i~
=pn 3 [P mj [Eklim (2.143) "

m=1
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For £ = 0, we get instead

Golf) = 3= 30 IS(F; an SR pe 2.144)

k=1 i=1

By combining together equations (2.141) to (2.144), we have

L L
3 Y papisi(f)DEP s, (f), €>0
G(f) = § "¢+ (2.145)
Y pasi(f)Dsy(f), £=0
h=1
and, using definitions (2.135) to (2.140),
_ [ G(Pies), £>0 2.146)
Also, from (2.113) and the definition (2.139) of u(f), we get
Goolf) = ()P (2.147)

or, equivalently, if (2.146) is used,
Goo(f) = c1(f)P=cy(f) (2.148)

In conclusion, the continuous and discrete parts of the power spectrum of our
digital signal are given by

GE(f) = Hlal) ~ (NP + ZRGEDADSG] @149
and . - ,
69 = i) 3 5(7-7) @150
where -
A(f) & Y [Pt — PoledIT (2.151)
=1

Whenever there exists a finite N such that PY = P* [e.g., when (0n) is 2
shift-register state sequence], A(f) involves a finite number of terms, ang its
computation is straightforward. If such an NV does not exist, we need a technique

to evaluate the RHS of (2.151).

2.3.  Spectral analysis of deterministic and random signals 51

Observe that, from the equality P*P® = P>, we have

Pk —P>® = (I _ Pw)(Pk _ Poo)
(I-P=)(P - Px)* (2.152)

for all £ > 0. Thus

)
A(f) —_ e‘jZWfTZ(Pl_POO)e—j21rf£T
=0

oQ
— e—J'Z"ffCT(I _ P°°) Z(Pk _ Poo)ee—j27rf£T
=0
= (I-P%)[e*/T] — (P* - P™)]~! (2.153)

where the last equality holds because the matrix (P*¥—P>) has all its eigenvalues
with magnitude less than 1 (see Cariolaro and Tronca, 1974, for a proof).

It is seen from (2.153) that the matrix A(f), necessary to evaluate the RHS
of (2.149), can be computed for each value of f by inverting a g x ¢ matrix. This
procedure is computationally inefficient because, if the spectrum value is needed
for several f, many matrix inversions must be performed. For a more efficient
technique, observe that A(f) is an analytic function of the matrix

ASP-P> (2.154)

so that A(f) can be written in the form of a polynomial in A. whose coefficients
depend on f, say,

K-1
A(f)=(I-P®) Y Bi(f)A’ (2.155)
i=0
The expansion (2.155) is not unique, unless we restrict K to take on its minimum
possible value (i.e., the degree of the minimal polynomial of A). Here we assume
that the reader is familiar with the basic results of matrix calculus, as summarized
in Appendix B. In this situation, equating the RHS of (2.153) and (2.155), we
get
K-1
[ TI-A] Y Bi(f)A' -I=0 (2.156)
i=0
As the LHS of (2.156) is a polynomial in A having degree K, its coefficients
must be proportional to those of the minimal polynomial of A. Denoting this
minimal polynomial by

K
AN =3 &N, sx=1 @.157)
=0
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and equating the coefficients of A;,i =0, ..., K, in (2.156) and in the identity

K
S&AT=0 (2.158)
=0
we get the coefficients 53;(f), i = 0,..., K — 1, needed to compute A(f) ac-
cording to (2.155). This procedure allows one to express A(f) as aclosed-form
function of f, which can be computed for each value of f with modest compu-
tational effort. '

Although the use of the minimal polynomial of A to obtain the representa-
tion (2.155) leads to the most economical way to compute the spectrum,‘ eyery
polynomial A(A) such that (2.158) holds can be used instead .of the mmupal
polynomial. In particular, the use of the characteristic po]ynopnal of A (which
has degree ¢) leads to a relatively simple computational algorithm (due to F?ld-
deev and first applied to this problem by Cariolaro and Tronca, 1974). According
to this technique, A(f) can be given the form

1
where A()) is now the characteristic polynomial of A, and B(-) is a g x g matrix
polynomial:

A(f)=(I-P™) B(e*T) (2.159)

B()\) = A1Bg + MN72B; -+ By (2.160)

The polynomials B(- ) and A(-) can be computed simultaneous}y by using the
following recursive algorithm (Gantmacher, 1959). Starting with §; = 1 and
Bo=1,let

Qr = ABia
1
Gqk = —3tr Qi
By = Qi+ Jq_kl (2.161)

fork =1,2,...,q. At the final step, B, must be equal to the null matrix, and
8, = 0, because the matrix A has a zero eigenvalue.

Example 2.11 (continued) In this case P = P°°; thus, from (2.151) we have

A(f) = (= P)e 7T = [ P ] e~i2nfT

so that .
Ge(f) = GO(f) = ﬁIS(f)Iz(l —cos2nfT)
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Example 2.12 (continued) We have

-1 1 -1 1

& 1] -1 -1 1 1
.A. = P b d = -

P 4 1 1 -1 -1

1 -1 1 -1

Application of the Faddeev algorithm gives

1
ba=8=1, 52=§7 Si=68=0

1 -1 1 1001
_1f{-1 3 1 I1fo110
Bi=1 1 -1 B:=7lo11 0
1 -1 1 1001
and
B3=0
Thus, using (2.149) and (2.159), we get
G = ¢
3 Z(sinnfT/2>23+cos7rfT+2cos27rfT—cos37rfT(2162)
T2\ #fT/2 9+ 12 cos2nfT + 4cos4n fT ’
o
Example 2.13 (continued) From (2.149) we get
1
Ge(f) = G7(f) = ZIS() (2.163)
o

A special case

We finally observe an important special case of the digital signal considered. If
the modulator has only one state, or, equivalently, the waveform emitted at time
nT depends, in a one-to-one way, only on the source symbol at the same instant,
we have, from (2.149) and (2.150) and after some computations,

) =1 [;p,-ls,(f)lz -

gpi&(f )

2
} (2.164)

ki
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and

= : 65
$ ‘5<f"‘T') (2.165)

{==-00

1 M
@D(f)= = |3 p:S:
G2(1) = 7 [ S
i the
where {S;(f)}, are the Fourier transforms of the waveforms available from
1 =
modulator.
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i in symme-
When the signal z(t) is real, its Fourier 'transform X( lf ) asrl:o;;s }g?x}t;uis a); e
tries around the zero frequency. In p@xcular, the real p o e o,
function of f, and its imaginary part is odd. A§ a ;?nsecz) e f(;‘- o Now
sition to reconstruct z(t), it is sufﬁ01er}t to sp.ecxf)f ( f ) " ); for 2 .
hat z(t) is passed through a linear, time-invanant sy e syetom
o Pancrion’ the step function au(f), o a constant. At the output of this e
e fubns?;\c/,: altssignal fpr)om which z(t) can be recovered without information loss.
we ol :
The impulse response of this system is

a

E[Mﬂ+j%ﬂ

50 its response to z(t) is a/2 - [z(t) + jZ(¢)], where
sy 2L [20) g (2.166)
=0 =3 / Py

. . it

is called the Hilbert transform of z(t). Notice that, because gf trr;ea ;;nrg,;l;z:e)f

in the integrand, the meaning of the RHS of (2.166? h?s ;o aﬁl e

Specifically, the integral is defined as the Cauchy principal value.

a = 2yields o .
z(t) = R[E(t)] (2.167)

2 o(t) + j3 () (2.168)

i the
Equation (2.167) shows that the original mgn(a})zt(’t) can tlye ::;ic::/::;i féglmpan
. i ion 2u y simply .
t of a system with transfer function ulf ) : '
’cl,“llll?gorcr)lpfex);ignal #(t) is called the analytic signal associated with z(t)
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Spectrum of z(z)
Spectrum of y(r)

L

:

i

:
+ N
t

L K

Figure 2.15: Spectra of a baseband signal 2(t) and of a narrowband signal y(t).

Example2.14 Letz(t) = cos{27 fot +4). Its Hilbert transform is 2(t) = sin(2x fot+
), so the corresponding analytic signal turns out to be 2(t) = exp{j(2n fot + 9)}. We
see from this simple example that the analytic signal representation is a generalization
of the familiar complex representation of sinusoidal signals. a

Among the properties of analytic signals, two are worth mentioning here.

(a) The operation transforming the real signal z(t) into the analytic signal

£(¢) is linear and time invariant, In particular, if 2(t) is a Gaussian random
process, £(t) is a Gaussian random process.

(b) Consider two real signals 2(t) and y(t), and their product

() 2 2(t)y() (2.169)

Assume that z(¢) is a baseband signal, that is,
power) spectrum is zero for | f| > f, and y(t) is a narrowband signal, that
is, its spectrum is nonzero only for fa<|fi<

f3, fa > fi (see Fig. 2.15).
With these assumptions, from our definition of an analytic signal it follows
that

its (amplitude or enérgy or

2(t) = 2(t)3(2) (2.170)

that is, £(t) is the product of the real signal z(t)

and the analytic signal
associated with y(t)

el 1
1
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Figure 2.16: (a) Spectrum of a narrowband signal; (b) spectrum of its complex envelope.

(Figures not to scale.)

Example 2.15 (Amplitude modulation of a sinusoidal ca.rrier) Lety(t) = cos 21ﬁr I{g(tj,
and let z(t) be a deterministic baseband signal whose Fquner. transfcrrm Z ( f) 1:):1:0::1t "
to the interval (— f1, f1), f1 < fo. The analytic signal associated with their produ

#(t) = z(t)ed 2ot (2.171)

which shows that the arplitude spectrum of Z(t) is Z (f — fo). that is, it is obtained bé
translating the amplitude spectrum of z(t) around the frequency fo.

2.4.1. Narrowband signals: Complex envelopes

A narrowband signal is one whose spectrum is to'a certain extent cogcegt{?tg
around a nonzero frequency. We define a real signal to be narrO\;/ an(fx o
(amplitude or energy or power) spectrum is zero fF)r‘| flé( f.l, fz),1 \6N er)e oln, t ;e
is a finite frequency interval not including the origin (see Fig. 2. (2.1) : e
other hand, a signal whose spectrum is concentrated arpund the orl';glrz1 o
frequency axis is referred to as a baseband signal. For a given narrowband sig
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and a frequency fy € (fy, f2), the analytic signal Z(t) can be written, according
to the result of Example 2.15, in the form
2(t) = Z(t)eI¥hot (2.172)
where Z(t) is a (generally complex) signal whose spectrum s zero for f > f,—f,
and f < fi — fo (see Fig. 2.16 (b)).
The signal Z(¢) is called the complex envelope associated with the real signal
z(t). From (2.172) we have the following representation for a narrowband z(t):

o(t) = R[E(2)]

= z(t) cos 2 fot — z,(t) sin 2 fot (2.173)
where
z(t) £ RE(t)] = Rlg(t)eiwh
= z(t) cos 2m fot + E(t) sin 2 fot (2.174)
and

>

T(t) = S[E(H)] = S{E(t)e >

—z(t) sin 27 fot + Z(t) cos 2m fot (2.175)
are baseband signals. Equation (2.173) and direct computation prove that z.(z)

and z,(t) can be obtained from z(t) by using the circuitry shown in Fig. 2.17.
There the filters are ideal low-pass.

From (2.172) it is also possible to derive a vector representation of the nar-
rowband signal z(¢). To do this we define, at any time instant ¢, a two-dimensional
vector whose components are the in-phase and quadrature components of Z(z),
that is, z.(t) and =, (¢) (see Fig. 2.18). The magnitude of this vector is

As(t) £ [3(t)] = 22(t) + 22(2) (2.176)
(see Fig. 2.19), and its phase is

0 (t) £ arg [#(t)] = tan-! 220 2.177)
Tc(t)

The time functions A;(t) and o, (t) + 27 fot are called, respectively, the in-
Stantaneous envelope and the instantaneous phase of z(t). The instantaneous
frequency of z(t) is defined as 1/2r times the derivative of the instantaneous
phase; that is, 2.0 020

A 1 z,(8)z.(t) — z,(8)zl(t

fo(t) = fo+ o 20+ 22(0) (2.178)

where the primes denote time derivatives. From (2.173) to (2.177) the following
representation of the narrowband signal z(t) can also be derived:

z(t) = A(t) cos[2m fot + o (t)] (2.179)

Mml
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§ 4.

— -;—xc(l)

B

&» cos 27fyt

—>--%x,(t)

5

sin 27fy ¢

Figure 2.17: Obtaining the real and imaginary parts of the complex envelope of the
narrowband signal z(t).

<
&
<
&
xg (D) A------------ .E(t)
AD o0 E N
xcl(t) IN-PHASE

Figure 2.18: Vector representation of the narrowband signal z(t).

Narrowband random processes

Consider now a real narrowband, WS stationary random process v(t), and the

complex process
B(t) 2 v(t) + 50(2). (2.180)

The possible representations of v/(t) are
v(t) = R[p(t)e*™ oY (2.181)

. v(t) = v (t) cos 2m fot — v,(t) sin 27 fot (2.182)
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x:(0) x2(t)

54

()

x(r)
—> 2cos 27fyt

‘/'— A (D)

X (1)

20 |

§.

()

—2sin 27fy ¢

Figure 2.19: Obtaining the instantaneous envelope of the narrowband signal z(t).

and
v(t) = Ay (t) cos[27 fot + o, (¢)] (2.183)
where

b(t)e 72 fot

ve(t) + jus(t) (2.184)

o (t)

is the complex envelope of v(t).

The power spectrum of &(t) can be easily evaluated by observing that &(t)
can be thought of as the output of a linear, time-invariant system with transfer
function 2u(f) whose input is v(t). Thus, its power spectrum equals the power
spectrum of v(t) times the squared magnitude of the transfer function:

Go(f) = 4G, (f)u*(f) = 4G.(f)u(f) (2.185)

Equation (2.185) shows that the spectral density of () is equal to four times
the one-sided spectral density of v(t). Consider then the complex envelope (t).
From (2.184), its autocorrelation is

RD(T) = E[l;(t-f-»r)f/*(t)]e—j%rfor
= Ry(r)e 9l 2.186)
and hence
9el7) =Golf + Jo) 2.187)

which shows that the power spectral density of the complex envelope (t) is the
version of G;(f) translated around the origin (see Fig. 2.20). Consider finally

o
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60
9,(f) I
<«—B—» «—B—»
"fo (a) fo f
“ Ell3 ("1 = 2N, B
2N,
(b) fo f
A% (f)
pac ElF ()P = 2N B
<«—RB— f’

4,(f)=%,(f)

EV2()] = Ep2(0)] = NoB
Ny

Figure 2.20: Representations of a narrowband white noise process v(t): (a) Power
spectrum of v(t); (b) power spectrum of the analytic signal o(t); (c) power spect-rum of
the complex envelope i(t); (d) power spectra of the real and imaginary parts of U(t)-
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ve(t) and v,(t), the real and imaginary parts of the complex envelope. It can be
shown (see Problem 2.20) that the following equalities hold:

R, (r)=R,(7) (2.188)
and
E[ue(t + 7)vs(t)] = —E[vs(t + 7)v(t)] (2.189)
Thus,
Ro(r) = E{[ve(t+7) + jus(t + 7))[velt) — ju,(8)]}
= Ry () + R, (7) + 5{Elws(t + 7)ve(t)] = Elwe(t + 7)1a(2)]}
= 2R (r) + jRuu(7)] (2.190)
where
Ry (7) £ B[, (t + 7)ve(t) (2.191)

From (2.188) to (2.191) we can draw the following conclusions:
(a) As R;(0) = E|(¢)|? is a real quantity, Egs. (2.190) and (2.191) show that
Ely,(t)v:(t)] =0 (2.192)

That is, for any given ¢, v,(t) and v.(t) are uncorrelated RVs. As a special
case, if v(t) is a Gaussian process, v,(t) and v,(¢) are independent RV's for

any given ¢.
(b) From (2.185) and (2.186) it follows that

El7(t)]? = E[2(t)* = 2E[*(¢)] (2.193)

Similarly, from (2.188), (2.190), and result (a) we have
Elo(t)]* = 2E[we(t)]* = 2E[}(2)] (2.194)

Thus,

Elv.(¢))? = E[U2(t)] = E[L3(2)] (2.195)
That is, the average power of v,(t) and v,(t) equals that of the original
process v(t).

(c) If the power spectrum of the process v(t) is symmetric around the fre-
quency fo, from (2.187) it follows that the power spectrum of (t) is
an even function. This implies that R;(7) is real for all 7, so (2.190)
and (2.191) yield

E[v,(t + T)we(t)) =0 forallr (2.196)

This means that the processes v,(t) and v;(t) are uncorrelated [or indepen-
dent when v(t) is Gaussian]. Thus, in this situation,

Go(f) = 26u.(f) = 26..(f) (2.197)

L
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Example 2.16 Let z(t) be a bandpass real signal, and let Gz(f) be the power density
spectrum of its complex envelope. From (2.185) and (2.187) we have

G:(f) = Gi(f+ fo)
4G (f + fo)u(f + fo)

Recalling the fact that Gz(f) must be an even function of f, the last equality yields

1

Ga(f) = 0G5(~1 = fo) +Gs(f = fo)]

As an example, consider the signal
o0

z(t) =R Z ans(t — nT) - ef?7fot

n=-—00

where E[or,] = 0 and E[an+mal] = 0260,m-
From (2.122)—(2.124) we obtain the power spectrum of the complex envelope of
z(t):
G:(f) = %a 1S()?
k3 = T .

Hence, the power spectrum of the signal is

a’2 2 2
Gz(f) = 2 {1S(=f = Sl +15(f - fol}-

Narrowband white noise

As we shall see in later chapters, in problems concerning narrowband signals
contaminated by additive noise it is usual to assume, as a model for the noise,
a Gaussian process with a power density spectrum that is constant in a finite
frequency interval and zero elsewhere. This occurs because a truly white noise
would have an infinite power (which is physically meaningless), and because any
mixture of signal plus noise is always observed at the output of a bandpass filter
that is usually not wider than the band occupied by the signal. Thus, in practice,
we can assume that the noise has a finite bandwidth, an assumption entailing no
loss of accuracy if the noise has a bandwidth much wider than the filter’s.

A narrowband white noise is a real, zero-mean, stationary random process
whose power density spectrum is constant over a finite frequency interval not
including the origin. In Fig. 2.20 we showed the power spectrum of a narrowband
white noise with a power spectral density Np/2 in the band B centered at f.
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2.4.2. Bandpass systems

The complex envelope representation of narrowband signals can be extended to
the consideration of bandpass systems (i.e., systems whose response to any input
signal is a narrowband signal). In the following we shall see how to character-
ize the effects of a bandpass system directly in terms of complex envelopes. In
other words, assume that y(¢) is the response of a bandpass system to the nar-
rowband signal z(t). We want to characterize a system whose response to Z(t),
the complex envelope of z(t), is exactly §(t), the complex envelope of y(¢).

Bandpass linear systems

First, consider a bandpass linear, time-invariant system with impulse response
h(t) and transfer function H(f). The analytic signal representation of h(t)
is h(t) = h(t) + jh(t), which corresponds to the transfer function H(f) =
2H(f)u(f). If z(t) is the narrowband input signal and y(t) the response, the
analytic signal §(¢) can be obtained by passing z(¢) into the cascade of the lin-
ear system under consideration and a filter with a transfer function 2u(f) (see
Fig. 2.21 (a)). In a cascade of linear transformations, the order of the operations
can be reversed without altering the final result, so we can substitute the scheme
of Fig. 2.21 (b) for that of Fig. 2.21 (a). Next, observe that £(¢) has a Fourier
transform equal to zero for f < 0. Hence, we can substitute a system with
transfer function H(f) for another system having a transfer function H(f)u(f)
without altering the output. The latter system (see Fig. 2.21 (c)) has an impulse
response 3h(t), input &(t), and output §(t). These signals are related by the
convolution integral

() = %/_Z h(r)i(t — ) dr (2.198)

This equation becomes particularly useful if both Z(t) and h(t) are expressed in
terms of their complex envelopes. We get
o 1 j2r fot * ¢ =
() = 5o / R(r)E(t - 7) dr (2.199)
—00
which shows that §(t) is a narrowband signal, centered at f,, with complex en-
velope
1 roo o~
i) =3 / h(r)E(t — 1) dr (2.200)
-0
In conclusion, the complex envelope of the response of a bandpass linear, time-
invariant system with impulse response A(t) to a given narrowband signal z(¢)
can be obtained by passing the complex envelope Z(t) through the low-pass
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x(?) () ()
—>{ H(f) 2u(f) ——
(a)
x(?) x(f) y(t)
—{ 2u(f) H(f) |—
(b)
x(?) (1) ()
—{ 2u(f) H(fu(fF—
©)

Figure 2.21: Three equivalent schemes to represent the analytic signal associated with
the output of a linear system.

equivalent system whose impulse response is %ﬁ(t), or, equivalently, whose trans-
fer function is H(f + fo)u(f + fo) (see Fig. 2.22). Notice that only if H(f) is
symmetric around f; will the low-pass equivalent system have a real impulse re-
sponse. A nonreal impulse response will induce in the output signal a shift of the
phase and a correlation between the in-phase and quadrature components. These
effects are usually undesired.

Example 2.17 Let .
z(t) = z(t)ef 2ot (2:201)

where the Fourier transform of z(t) is zero for |f| > B, B < fo. Consider an LRC
parallel resonator. Its transfer function is

= j2mfL 2.202
Hf) =3 +j2rfL —4n2f2LC (2:202)

The corresponding impulse response is, for £ > 0,

h{t) = zgle_"ht/w cos 27 fot — %‘?e"’f0t/20 sin 27 fot (2.203)

+
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H(f

/\ /\ 5
% (‘) fo f
a

H(f+fo)u(f+fo)

1 | T Kt

(b)

Figure 2.22: (a) Transfer function of a bandpass linear system; (b) transfer function of
a low-pass equivalent linear system.

where
a C
Q=R I

is the “quality factor” of the circuit, and

fo = ZWJL_C (1 B #) N

If Q@ > 1, the computation of h(t) becomes very easy. In fact, the second term in
the RHS of (2.203) can be disregarded. Additionally, we can safely assume that the
exponential factor exp{—m fot/2Q} is a bandlimited signal. Thus, from (2.203), we
have

h(t) = Zg—f"e-"ﬂ"/w grht >0, (2.204)
where
1
fo= w/iC
In conclusion,
h(t) = 22f° e~ ™t/2Q 45 (2.205)

(ki
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Notice that the approximations in the computation of h(t) make the Fourier transform
of (2.205) symmetric around the origin of the frequency axis. a

Bandpass memoryless nonlinear systems

We shall now examine a class of nonlinear systems that are often encountered
in radio-frequency transmission. We are especially interested in nonlinear time-
invariant systems whose input signal bandwidth is so narrow that the system’s
behavior is essentially frequency-independent. Moreover, the system is assumed
to be bandpass. This in turn means that it can be thought of as being followed by
a zonal filter whose aim is to stop all the frequency components of the output not
close to the center frequency of the input signal. For a simple example of such a
system, consider a sinusoidal signal z(t) = A cos 27 fyt sent into a time-invariant
nonlinear system. Its output includes a sum of several harmonics centered at
frequencies 0, fy, 2fp, .... If only the harmonic at fy is retained at the output,
the observed output signal is a sinusoid y(t) = F(A) cos[27 fot + w(A)]. If we
consider the complex envelopes Z(t) = A and §(t) = F(A) exp[jp(4)], we see
that the system operation for sinusoidal inputs can be characterized by the two
functions (- ) and (- ). In the following we shall prove that this result holds
true even when the input signal is a more general narrowband signal.

Consider a narrowband signal z(¢), with a spectrum centered at f,. Its ana-
lytic signal representation can be given the form

B(t) = A,(t) Jlrhotte=®] (2.206)
where A;(t) and ¢, (t) are baseband signals. Letting
b (t) 2 2m fot + @a(t) (2.207)
we rewrite (2.206) as ,
E(t) = A (t) &%= (2.208)

Consider then the effect of a nonlinear memoryless system whose input-output
relationship is assumed to have the form

£) = So[Au(t) cos Ya (£)] + So[Ax(t) sin e (t)] (2.209)

where S.[-] is an even function of ¥.(¢), and S,[-] is an odd function. It is
seen that y(t), when expressed as a function of ¥, (t), is periodic with period 2.
Thus, we can expand y(t) in a Fourier series:

o0

y(t) = yla ()] = 3 celAs(t)] =0 (2.210)

, {=—o00

. e — e il _.

——— ——
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Figure 2.23: Spectrum of the output of a memoryless nonlinear system whose input is a
narrowband signal centered at frequency fo.

where
c(A) & = ! / {Se[Acos y] + S,[Asin | }e~ i dop (2.211)

The quantity c,(A) is generally complex. Its real and imaginary part are, respec-
tively,

Rlce(A)] = - / S.[A cos 9] cos &y dip 2.212)

and

See(A ]—2/ o[ A sin ) sin £ dy (2.213)

From the definition (2.207) of ,(t), we see how (2.210) expresses the fact
that the spectrum of y(t) includes several spectral components, each centered
around the frequencies +££fy, £ = 0, 1,.... Figure 2.23 illustrates qualitatively
this situation. Notice that we must assume that the signals cg[A,(t)] have spectra
that do not significantly extend beyond the interval (— fo/2, fo/2).

The assumption that the memoryless system is bandpass implies that only
one of the spectral components of y(t) can survive at the system output (i.e.,
that centered at & fo). The analytic-signal representation of the output of such a
bandpass memoryless system is then

§(t) = c[Ax()]e’*= (2:214)
where
c(4) £ 2¢,(A) (2.215)
As ¢(A) is generally a complex number, we can put it in the form
c(A) = F(A4)e??A) (2.216)
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Figure 2.24: Representation of a bandpass memoryless nonlinear system.

so that
§(t) = F[ Az(t)]ei{wa(t)w[ftz(t)]) 2217

or, in terms of complex envelopes,
F(t) = F[Az(t)]ei{wz(t)w[Az(t)l) (2.218)
Comparing the last equation with the complex envelope of the input signal,
B(t) = Ag(t)e=® (2.219)

we can see that the effect of a bandpass memoryless nonlinear system is to alter
the amplitude and to shift the phase of the input signal according to a law that
depends only on the values of its instantaneous envelope. This shows, in partic-
ular, that the system can be characterized by assigning the two functions FJ[-},
[ -], which describe the so-called AM/AM conversion and AM/PM conversion
effects of the system (AM denotes amplitude modulation and PM phase modu-
lation). These functions can be determined experimentally by taking as an input
signal a single sinusoid with a frequency close to f; and an envelope A, and by
measuring, for different values of A, the output envelope F'(A) and the output
phase shift ¢(A). Notice that, for the validity of this nonlinear system model,
the functions F'(A) and ¢(A) should not depend appreciably on the frequency of
the test sinusoid as it varies within the range of interest.

Finally, notice that the system we are dealing with can be represented as in
Fig. 2.24, where S, and S, denote memoryless nonlinear devices. From this
scheme it is seen that only if S, is present can the system show an AM/PM
conversion effect.
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Example 2.18 (Polynomial-law devices) Consider a nonlinear system whose input-
output relationship is
y(t) = Cz(t) (2.220)
£ an integer greater than 1. If z(t) is written in the form
z(t) = R[E(t)e/? /oY
1 . .
= 5[5(t)e72”f°‘ + £*(t)e I ot) (2.221)

we get
¢
zi(t) = 21—,2 (ﬁ) [Z()]* [£° (£)]¢ keI 2m (k=0 ot (2.222)
k=0

When y(t) is filtered through a zonal filter, all its frequency components other than those
centered at = f, will be removed. Thus, only the terms with 2k — ¢ = £1 will contribute
to the system output. This shows, in particular, that only when ¢ is odd can the output of
the zonal filter be nonzero. For £ odd, the complex envelope of the system output is then

i) = 2?——1 ( ¢ +‘1) ) 2) 1) |20 2.223)

More generally, if the system is polynomial, i.e.,
L
y(t) =" aexl(t), (2.229)
i=1

we shall get, for L odd,

(L-1)/2
- . z aom+1 (2m +1
§(t) = (1) 2’;"' (m +1

) |Z2()]*™. (2.225)
m=0

Notice that polynomial-law devices with real coefficients never exhibit AM/PM conver-
sion. a

2.5. Discrete representation of continuous signals

In this section we consider the problem of associating a continuous signal with a
discrete representation. In other words, we wish to represent a given continuous
signal in terms of a (possibly finite) sequence. The representation may be exact
or only approximate, in which case it will be chosen on the basis of a compromise
between accuracy and simplicity.

As we shall see in later chapters, this representation makes it possible to
impart a geometric interpretation to a signal set, and hence to visualize it by
extracting from it the features that are relevant when the signals are used for
modulation.

[LER
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2.5.1. Orthonormal expansions of finite-energy signals

A fundamental type of discrete representation is based on sets of signals called
orthonormal. To define these sets, consider first the notion of the scalar prod-
uct between two finite-energy signals z(t) and y(t): it is denoted by (z,y) and
defined as the value of the integral

oy 2 [ sty (2.226)
)
If X(f) and Y (f) denote the Fourier transforms of z(t) and y(t), respectively,
and we let

XV =[xV () (2.227)

Parseval’s equality relates the scalar products defined in the time and in the fre-
quency domain:
(z,y)=(X,Y) (2.228)

If (z, y) = 0, or equivalently (X, Y) = 0, the signals z(t) and y(t) are <':alled
orthogonal. From the definitions of scalar product and of orthogonality, it im-
mediately follows that (z, 1) = &, the energy of z(t), and that the energy of the
sum of two orthogonal signals equals the sum of their energies.

Suppose now that we have a sequence (1;(t)):c1 of orthogonal signals; that
is,

WM%)={§ j;? (2.229)

where [ is a finite or countable index set.

If £&; = 1for all i € I, the signals of this sequence are called orthonormal.
Obviously, an orthonormal sequence can be obtained from an orthogonal one
by dividing each ;(t) by v/&. Given an orthonormal sequence, we wish to
approximate a given finite-energy signal z(¢) with a linear combination of signals
belonging to this sequence, that is, with the signal

2(t) 2 et (2.230)

i€l
A suitable criterion for the choice of the constants ¢; appearing in (2.230), and
hence of the approximation Z(t), is to minimize the energy of the error signal

e(t) 2 z(t) - () (2.231)
Thus, the task is to minimize

, e 2 f ‘: l2(t) — 2(t)P dt
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&+ &~ 2R(z, F)
Ex+ ) lal’ — 2R Y cilz, %) (2.232)

i€l i€l

with respect to ¢;, ¢ € I. By completing the square, we can also write

Ee=E+ ) la— (7, )P -3 |z, i) (2.233)

el i€l

As the middle term in the RHS of (2.233) is nonnegative, &£, is minimized if the
¢; are chosen such as to render this term equal to zero. This is achieved for

o=@ =/ s, el (2.234)
-
The minimum value of &, is then given by
(min =& =Y el (2.235)
iel

When ¢;, 7 € I, are computed using (2.234), the signal Z(t) of (2.230) is called
the projection of z(t) onto the space spanned by the signals of the sequence
(¥:(t))ie1, that is, on the set of signals that can be expressed as linear combina-
tions of the 1;(t). This denomination stems from the fact that, if (2.234) holds,
the error e(t) is orthogonal to every 9;(t), ¢ € 1, and hence to Z(t). In fact,

(B, 1/’:) = (117 - 57 wz)
(JI, 111:) - (51 wz)
= (),

= G—G

iel
(See Fig. 2.25 for a pictorial interpretation of this property in the case I = {1,2}.)

An important issue with this theory is the investigation of the conditions un-
der which (€)min = 0. When this happens, the sequence (1/;(t));e; is said to be
complete for the signal z(t), and from (2.235) we have the equality

E=) lal (2.236)
i€l
In this case we write
i€l

although this equality is not to be interpreted in the sense that its RHS and LHS
are equal for every ¢, but rather in the sense that the energy of their difference is

ai!
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x(r)

Figure 2.25: Z(t) is the projection of z(t) onto U, the signal space spanned by 1(t)
and a2(t).

zero. This fact is often expressed by saying that the RHS and LHS of (2.237) are

equal aimost everywhere.

In conclusion, once an orthonormal signal set has been chosen, a signal z(¢)
can be represented by the sequence (c;);e; defined by (2.234). This representa-
tion is exact (in the sense just specified) if the orthonormal set is complete with
respect to z(t).

Example 2.19 (The complex Fourier series) The orthonormal sequence

1 %0
- e]kZﬂt/T)
(\/T k==—00

is complete for every complex signal z(t) defined in the interval (-T7/2, ’.I.’/ 2) and hav-
ing bounded variation with finitely many discontinuity points. The expansion

1 S jk2nt/T 8
t)=—= D, " te (~T/2,T/2), (2.238)

vT Z=

with
1 (T2 —jk2nt/T
= o(t)e TR T gt (2.239)
o VT J-T/2 ®

]

is the familiar complex Fourier-series representation.

-+
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Gram-Schmidt procedure

Because of the importance of orthonormal signal sequences, algorithms for con-
structing these sequences are of interest. One such algorithm, which is compu-
tationally convenient because of its iterative nature, is called the Gram-Schmidt
orthogonalization procedure. Let a sequence (¢;(t))X, of finite-energy signals
be given. We assume these signals to be linearly independent, i.e., to be such
that any linear combination Y%, ¢;¢;(¢) is zero almost everywhere only if all
the ¢; are zero. An orthonormal sequence (¢;(t))X, is generated by using the
following algorithm (see Problem 2.21).
We first define the auxiliary signal ¢} () equal to ¢, (¢):

Y1) = a(t)
then we normalize it to obtain the first orthonormal signal:
A0
(¥1, ¥1)

By subtracting from ¢,(t) its projection onto ), (£) we obtain a signal orthogonal
to ¢ (t), as shown in Fig. 2.26:

Y3(t) = B2(t) — (62, 1) ¥ (2)
that we normalize to obtain the second orthonormal signal:
$3(2)
(¥2, ¥2)

By proceeding this way, we obtain the entire set of orthonormal signals. The
general step of the algorithm is then:

Yi(t) =

Ya(t) =

i—-1

Yi(t) = $i(t) — D (Ber o) Yelt) (2.240)
=1
¥i(t)
Ui(t) = ——— (2.241)
® (%, ¥Y)

fori =1,2,..., N (wheni =1 the sumin the first equality is empty).

Geometric representation of a set of signals

The theory of orthonormal expansions of finite-energy signals shows that a sig-
nal z(t) can be represented by the (generally complex) sequence (c;):er of scalar
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l’[21

o o

(¢2v llf:) Wl u’] ¢l

Figure 2.26: Generating a signal orthogonal to (t).

products (2.234), once an orthonormal sequence that is complete for z(t) has
been provided. Now, if we consider a given sequence (;(t))iL, of N gnhonor—
mal real signals, it will be complete for any real z(t) that can be written as a
linear combination of the ¢;(t), that is, in the form

N
z(t) = 3z ti(t) (2.242)
i=1
a
Thus, every such signal can be represented by the real N-vectorx = (z, .. -, ZNn),

or, equivalently, by a point in the N-dimensional Euclidean space (i.e., the space
of all real ordered N-tuples) whose coordinate axes correspond to the signals
¥i(t),i=1,...,N.

Consider now a set {z;(t)}}, of real signals. Can we find an orthonormal
sequence that is complete for these M signals? If so, we can represent a}cl(t),
z9(t), ..., Tar(t) as M vectors or as M points in a Euclidean space of su1tabl§
dimensionality. If the signals in the set {z;(t)}?, are linearly independent, it
suffices to apply to it the Gram-Schmidt procedure to find such an orthonqrmal
sequence. In fact, (2.240) shows that each of the ;(t) is expressed as a linear
combination of signals in {z;(t)},; hence, each of the z,(t) can be express;d
as a linear combination of the v;(t). Suppose, instead, that only N signals in
{z;(t)}}, are linearly independent, and hence M — N of them can be expressgd
as linear combinations of the remaining signals. In this case, the Gram-Schmidt
procedure can still be used, but it will produce only N < M nonzero orthonormal
signals. Every z;(¢) is then represented by the N-vector

4 Xq £ (Iu, Ti2y- -, IiN) (2.243)
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where A
I,‘j=(l‘i,’t/)j), 1:=1,...,M, j=1,...,N (2244)

or, equivalently, as a point in the N-dimensional Euclidean space whose coor-
dinate axes correspond to the nonzero orthonormal signals found through the
Gram-Schmidt procedure. In this situation, we say that the signal set {z;(t)} M,
has dimensionality N.

Example 2.20 Consider the four signals
zi(t) = cos[mt + (1 — 1)w/2] t€(0,2), i=1,2,3,4 (2.245)
Using the Gram-Schmidt procedure, we get
1(t) = cos mt

Po(t) = —sinnt

and
Pa(t) = 4(t) =0

which shows that the signal set (2.245) has dimensionality 2 and is represented by the
four vectors:

X = (17 0) X2 = (07 1)7 X3 = (_1: 0) X4 = (07 _1)
The reader should observe that the M -signal set
z;(t) = cos[rt + 2(i - )w/M], t€(0,2), i=1,2...,M (2.246)

has dimensionality 2, and can also be represented using the same orthonormal basis. &

Computing signal distances and scalar products

Based on the procedure just developed, a real-signal set {z;(t)}, defined for
0 < ¢ < T can be represented by a set of vectors x; = {(z;, . .. ,Zin) in the N-
dimensional Euclidean space. By using (2.242) and orthonormality of the signals
¥i(t), it can be easily proved that the following holds for any i = 1,..., M:

T N
/0 () dt = |2 = 3 a4 (2.247)
i=1

which shows that the energy of a signal equals the squared length of the vec-
tor representing it. This equivalence between signal energy and distance of the
vector from the origin is a very useful relation.
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Moreover, we have

T
/z,-(t)a:k(t) dt = (%, X¢) Zx.,xk, (2.248)
0

i=1

As two signals are orthogonal if their scalar product vanishes, we visualize or-
thogonal signals by two vectors perpendicular to each other.
Finally,

/T[z,’(t) — ()P dt = [ = xe[? =[xl + xil? = 2(xi, xe) (2.249)
0

The latter quantity is the (Euclidean) distance between signals z;(t), zx(t), and
is equal to the squared distance between the two vectors X;, X.

Sampling expansion of bandlimited signals

Consider now the set of signals z(¢) strictly bandlimited in the freq.uency interval
(- B, B), that is, such that their Fourier transform X (f) is identically zero for
|f| > B. An orthonormal basis for any such z(¢ ) can be found as follows.
Expand X (f) in a Fourier series according to (2.238) and (2.239). Then take the
inverse Fourier transform to get an expansion for z(¢). This procedure yields

X(f) = % _i /™' fe(-B, B) (2.250)
=L/ ~#inf/B g 2.251)

a=—=[ X(fe f (

and finally
e B
.’L‘(t) _ _]2;5_; c"/_B —Jnrf/Beﬂvrftdf

®,  sin27B[t —i/(2B)] 2,252
= V2B 2 % 5B -i/(5) @22

which is an expansion valid for every z(t) with bandwidth B. Observing further
that the integral in the RHS of (2.251) is proportional to- the inverse Fourier
transform of X (f) computed for ¢ = i/(2B), ¢; can be put in the form

1 i
_ i (2.253)
“=RB" (23)
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This shows that the coefficients of the series expansion (2.252) are the samples
of the signal z(¢) taken at the time instants i/(2B), —co < i < co. Explicitly,
from (2.250) and (2.253) we obtain

1 & i

>z (55) eI Ii2B) (2.254)

X(f)=2—§__

and hence, by taking the inverse Fourier transform,

& i\ sin2x B[t - i/(2B)]
0= i=z—:°° <2B) 27 B[t —i/(2B)] (2.255)

Equation (2.255) shows that every finite-energy signal with bandwidth B can
be fully recovered from the knowledge of its samples taken at the rate of 2B sam-
ples per second. More generally, as any signal bandlimited in (—B, B) is also
bandlimitedin (—B’, B'), where B' > B, we can say that any finite-energy band-
limited signal can be represented by using the sequence of its samples, provided
that they are taken at a rate nor less than 2B. This minimum sampling rate of
2B is usually called the Nyquist sampling rate for z(t). If z(t) is a narrowband
signal, it should be observed that it is convenient to apply the sampling expan-
sion (2.255) to its complex envelope instead of the signal itself. This results in a
much lower Nyquist frequency and, hence, in a more economical representation.

Observe now that (2.255) can also be written in the form

PRERER -

i=-~00

Now, sin(27 Bt) /(27 Bt) can be interpreted as the impulse response of a linear,
time-invariant system with frequency response

1/(2B), |fl<B

H(f)= { Py Hlsemtore (2.257)

that is, an ideal low-pass filter with cutoff frequency B. Thus, (2.256) suggests
how to implement a system that recovers z(¢) from its samples. The sequence
of samples is used to modulate linearly a train of impulses, which is then passed
through an ideal low-pass filter (see Fig. 2.27).

A frequency-domain interpretation of the reconstruction of a sampled signal
can also be provided. Let the signal z(t) be sampled every 7, seconds, and
observe that we can write

oo
> z(iTy)6(t - iTy) E 8(t —iT,) (2.258)

i=-—o0 i=—o00

I
i
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((i2B))i% ~ oo x(1)
H(f)

3 sG-i2B)

{==—c0

Figure 2.27: Recovering a bandlimited signal z(t) from its samples. H(f) is an ideal
low-pass filter with cutoff frequency B.

The spectrum of this signal is obtained by taking the convolution of X (f} with
the Fourier transform of a train of impulses with period T;. This is given by

Tl“ié(f —i/T)

[use (2.109)]. Thus, the spectrum of (2.258) is
X,(f) & = i X < - T) (2.259)

which is periodic with period 1/7, (see Fig. 2.28).

The original signal can be recovered from X,(f) by using the ideal low-
pass filter whose transfer function H(f) is shown in Fig. 2.28, provided that the
translated copies of X (f) forming X,(f) do not overlap. This condition holds if

and only if B < — — B, that s,
T,

fs>2B (2.260)

where f, £ 1 /T, is the sampling rate.

If (2.260) does not hold (i.e., the signal is sampled at a rate lower than
Nyquist’s), z(t) cannot be recovered exactly from its samples. The signal ob-
tained at the output of the ideal low-pass filter has the Fourier transform

H)X.(f) = { 2 XU =T, f1<1/2L @.261)

g, elsewhere
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X(f)
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i I i >
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7; i=-o00 s
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Figure 2.28: Sampling and reconstructing a bandlimited signal: frequency domain rep-
resentation.

It is important to observe that if this situation occurs (i.e., the signal is “un-
dersampled™), even the phase of the sampling process affects the shape of the
reconstructed signal. Specifically, if the sampled signal is

2(t) 32 8(¢t - iT, +©)

i=-00
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where © is a constant smaller than T}, at the output of the low-pass filter we get
a signal whose Fourier transform is

— _ &\ jizwe/T, 1 "
) X(f T’)e’ <z (2.262)

i=—00

If the bandwidth of z(t) does not exceed 1/ (2T, ), then (2.262) gives the spectrum
of z(t) (as it should). Otherwise, the shape of the signal recovered will also
depend on the value of ©.

2BT-theorem and the uncertainty principle

The sampling expansion (2.255), which is valid for any z(t) bandlimited in
the interval (—B, B), when applied to a signal vanishing outside the time in-
terval (0, T) has nonzero terms occurring only for 0 < i/(2B) < T (.., for
i=0,1,2,...,2BT). Thus, any bandlimited and time limited z(t) is completely
specified by 2BT + 1 ~ 2BT constants. For real signals, this fact can be sum-
marized by saying that “the space of real signals of duration T' and bandwidth B
has dimension 2BT.”

However, this argument is fallacious, because no bandlimited signal (besides
the trivial null signal) can have a finite duration. The proof of this property
is based on the fact that a signal z(t) whose amplitude spectrum vanishes for
|f] > B can be written as

z(t) = /_ iX (f)ef* 1t af (2.263)

Now, if we allow ¢ in (2.263) to be a complex variable, this extended z(t) is
an entire function of ¢. In other words, z(t) has no singularities in the finite ¢
plane, and its Taylor series expansion about every point has an infinite radius of
convergence. Thus, any z(t) vanishing on any interval of the time axis would
have all its derivatives zero at some interior point of the interval. Hence, its
Taylor series expansion would require it to be identically zero.

This impossibility for a signal to be simultaneously bandlimited and time
limited is a special case of the uncertainty principle for a signal and its Fourier
transform. One way to describe this principle is the following (stated without
proof). Define two quantities o € [0, 1] and 8 € [0, 1] that measure the fraction
of the signal energy concentrated in the time interval (—T'/2, T/2) and in the
frequency interval (-~ B, B), respectively:

a1 [T )
= _ dt 2.264
) ol / 70 (2.264)
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4
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<
\g 2
1
/
0
0 2 4 6 8 1.0

Figure 2.29: The function c(\g) of the uncentainty principle.

and

ge gi / ‘: X (F)] df (2.265)

where £; denotes the energy of the signal z(¢). The uncertainty principle states
that
wBT > c¢(X) (2.266)

where
o =cos®(6, +6;), cos’f =a, cos’h;=p (2.267)

and the function ¢( - ) is shown in Fig. 2.29. Notice that c()\g) — 0o as Ag — 1.

With a signal both time limited and bandlimited, we should have . = 3 =1
for a finite product BT. But this would be in conflict with (2.266), because in
this case Ag = 1, and hence ¢()\g) = oo.

Example 2.21 For an example of the application of the uncertainty principle, deter-
mine the minimum value of the product #BT for « = # = 0.95. From (2.267) we
get 81 = B, = 0.2255 and A9 = cos?0.4510 = 0.81. The curve in Fig. 2.29 yields
c{Xo) = 1.6. [m]

Let us now return to our 2BT theorem. Although it is not strictly true in
the form stated at the beginning of this section, it can be reformulated in a more
rigorous manner. To this end, we must recognize the inherent physical limi-
tations of measuring equipment, and the consequent inability of measuring an
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energy smaller than the energy resolution of this equipment. Thus, denote by ¢
the smallest amount of energy that we could measure. We say that a real signal
z(t) is time limited to (—T/2, T/2) at level € if

/ c2(t)dt < € (2.268)
i>T/2

and is bandlimited with bandwidth B at level ¢ if
[ IX(DPdr<e (2.269)
|fI>B

Conditions (2.268) and (2.269) indicate that the energy lying outside the time in-
terval (—T'/2, T/2) and the frequency range (—B, B) is less than we can mea-
sure. Furthermore, a set S of real signals is said to have dimension N at level €
if there is a set of N signals {t;(¢)}; such that, for each z(t) € S, there exist
a,as, ..., ay such that

/T/2 [I(t) - iai"/)i(t)}z dt <e (2.270)

-T/2 i=1

and there is no set of N —1 functions that will approximate every z(t) € Sin this
manner. In words, every signal in S can be so well approximated in (—T'/2, T/2)
by a linear combination of ¥y (t), ...~ (t) that we could not measure the en-
ergy of the difference between the signal and its approximation. With these
definitions, we have the following theorem, due to Slepian (1976):

Theorem 2.1 Let S, be the set of real signals time limited to (—T'/2, T/2) at
level € and bandlimited to (—B, B) at level e. Let N = N(B, T ¢, ¢) be the
approximate dimension of S, at level €. Then, for every €' > ¢,

1 1
im — N = im — N = 2.271
711—{20TN(B’ T,¢, €') = 2B, Bll_r}rc}(3 2BN(B, Tee)=T ( )

This “2BT-theorem” renders precise the concept that for large BT the space
of signals of approximate duration 7" and approximate bandwidth B has approx-
imate dimension 2BT. The proof of the theorem will not be reported here: the
interested reader is referred to Slepian (1976).

2.5.2. Orthonormal expansions of random signals

We shall now briefly consider the problem of associating a discrete representa-
tion with a random signal £(¢). Quite generally, we look for a series expansion
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of the form -
)= 2 nws(t) (2.272)
i=—00
where ¢;(t), —o00 < i < 00, are deterministic random functions, ; are random
variables, and the equality is to be interpreted in the sense that

2

k
)=~ S ws(®)] =0 (2.273)

lim E
k—o0 .
i=—k

Various constraints may be imposed on £(t), 1;(t), and the random sequence
(i), thus obtaining different families of expansions. In the Karhunen-Loéve
expansion, {(t) is a WS stationary process defined in the finite interval (0, T),
{1:()}2, is a set of finite-energy orthogonal signals, and the coefficients -y; are
uncorrelated random variables.

If the process £(t) is bandlimited, in the sense that its power spectrum G (f)
vanishes outside the interval (— B, B), we have the sampling expansion

& 1\ sin2xB(t — i/(2B))
¢0= % ¢(55) 2Bt — i/(2B)) 2274)

i=-00

The coefficients £(i/(2B)) are uncorrelated if and only if G¢(f) is constant over
(-B, B).

More general classes of series representations of WS stationary random pro-
cesses were derived by Masry, Liu, and Steiglitz (1968) and Campbell (1969).
Similar results were obtained by Cambanis and Liu (1970) for harmonizable pro-
cesses, and for an even more general class of processes (the “weakly continuous”
processes) by Cambanis and Masry (1971).

2.6. Elements of detection theory

In this section we examine the problem of recognizing a signal chosen at ran-
dom (with known probabilities) from a finite known set {s;(¢)}}, once it has
been perturbed by a random disturbance in the form of a noise process v(t) in-
dependent of the signal and added to it. More specifically, the problem is to

decide which one, among the signals s;(t), s2(2), ..., sa(t), has given rise to
the observed signal y(t), when it is known that y(t) has the form
y(t) = s;(t) + v(t) (2.275)

for some 7, 1 < 7 £ M. Signals and noise may be either real or complex (i.e.,
complex envelopes of narrowband time functions). It will be assumed here that

T
flas
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v(t) is a white Gaussian process, with power spectral density No‘/ 2 (real signals)
or 2N, (complex envelopes). The signals dealt with have a finite energy and a
finite duration. Also, their starting and ending times are known to the observer.
We assume that s;(t), 1 < i < M, are defined in the interval 0 < ¢ < T and that
y(t) is observed in the same interval. ' o

This problem, called a detection problem, is central in diglta.l tra.nsrmssxon
theory. It will be provided further motivation in Chapter 4, which includes a
number of applications.

2.6.1. Optimum detector: One real signal in noise

We shall consider first, for simplicity’s sake, the case in which there are only
two signals, one of which is zero. Thus, the task is to decide between the two

hypotheses

Hy: y(t) = v(t)
Hy: y(t) = s(t) + v(t) (2.276)

where s(t) is a finite-energy real signal. The decision is based on the observation
of y(t) for 0 < ¢t < T, and we want it to be made in such a way that the pfoba-
bility of a wrong decision is minimized. In words, we say that H; (respectlve.ly,
Hpy) is true when the observed signal contains (respectively, does not contain)
s(t).

( )A basic step in our derivation of the optimum detector is the discrete repre-
sentation of the signals involved, which allows us to avoid further consideration
of time functions. To do this, we expand y(t) in an orthonormal series and rep-
resent it using the sequence of its coefficients. As a basis for this expansion,
we choose any complete sequence of real signals (¥;(t))2,, orthonormal in the
interval (0, T) and such that 9 (t) = s(t)/v/Z, (see Problem 2.22). Hence, s(t)
will be represented by the sequence (v/£5,0,0,...) and v(t) by the sequence
(1, va, vs, ...}, where

u,-é/TV(t)d),»(t)dt, i=1,2,... @277
0
By direct calculation it can be shown that E{;} = 0,4 =1,2,...,and
T T
/0 /0 E{u(t)v(r) s ()5 (7) dt dr
= No [T T 5t = Pyt () dt d
= 3 /0 /0 5(t — T)%s(t); (7) dt dr
N() T NO

= — 1l)‘(t)1l)](1') dt = ——5‘] Z’] = 1, 2, e (2.278)
2 Jo 2

E{Vgl/j}
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Since v;,i = 1,2,.. ., are Gaussian RVs, (2.278) shows that they are indepen-
dent. In terms of these discrete representations, we can formulate our decision
problem as follows. Decide between the hypotheses

Hy: (Y2, = (n, va,...)
H: (B2 =0+E v 2.279)

on the basis of the observation of the quantities

y, & /0 TyOwmd, =12, (2.280)

Consider now a crucial point. Under both hypotheses H; and H, the observed
quantities Y3, Y3, ..., are equal to v,, v, ..., respectively, and these are inde-
pendent of each other and Y. Thus, the observation of Y5, Y3, . .., does not add
any information to the decision process, and hence it can be based solely on the
observation of

Y, & % /0 " y(t)s(t) dt (2.281)

(Notice that the assumption of a Gaussian noise is crucial here. Without i,
Y, Y3, ... would only be uncorrelated with Y;, rather than independent of it.)

In conclusion, the problem is reduced to the decision between the two hy-
potheses

Ho : Y]_ =11
H: Yi=u+/g (2.282)

upon observation of Y; as defined in (2.281). The quantity Y; is called the suf-
ficient statistics for deciding between Hy and H,, because it extracts from the
observed signal y(t) all that is required to perform the decision. All other infor-
mation about y(t) is irrelevant to the decision process.

Since the decision is based only on the observation of the scalar quantity
Y}, the optimum detector will first compute the scalar product (2.281) of the
observed signal y(t) and s(t). Then it will choose either H, or H; according to
the value taken by Y;. If we denote by S; and Sy = R — S; two subsets of the
real line R, the decision rule is ,

choose Hy ify; € Sy
choose H, ify; €8, (2.283)

where ¥, is the observed value of the random variable ¥;. Hence, the optimum
decision rule can be specified by choosing Sy and S, in such a way that the
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average error probability is minimized. The error probability is given by

Pe) =
= /; pllelﬂl('y | Hl) dy + /;1 pOfY1|Ho(y | HO) dy

= /thfmm(y | Hy) dy — /sl pofrim (¥ | H1)dy+/s1 DofriHe(y | Ho) dy

=p - /sl[plfmm (y | H1) = pofrita, (v | Ho)l dy (2.284)

where pg 2 P{Hp}, ;1 2 {H,} are the a priori probabilities that Hy is true [i.e.,
the observed signal does not contain s(¢)] and H} is true [i.e., the observed signal
contains s(t)], respectively. To minimize P(e), we should maximize the contri-
bution to the integral of the term in brackets in the last expression of (2.284).
This can be done by including in S; all the values y taken on by ¥ such that
p1fym (¥ | H) > pofvim(y | Ho) and in Sy the remaining values. Values
of Y; such that the integrand is zero do not affect the value of P(e), and hence
may be included in either Sy or S; arbitrarily. If we define the likelikood ratio
between hypotheses Hy and H; as

a frym(y | H1) 2.285
AW = v Ho) (2259

the decision rule becomes

choose Hy, ifA(y) < f—)q
1

choose Hy  if A(yy) > 22 (2.286)

»n
In conclusion, the optimum detector consists of a device that computes the
likelihood ratio A(y;) and compares its value with the threshold po/p:. Explic-
itly, we have

e-(y—ﬂ:)z/No
AY) = —m
2 1
= exp {my\/a ~ mgs} (2.287)

so that, using (2.281),

AY:) = exp {.A% / T y()s(t) dt — Nio / () dt} (2.288)
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Because of the likelihood ratio’s structure, it is customary to define the log-
likelihood ratio as the logarithm of A(-):

InA(y), (2.289)

so (2.288) becomes

AN) = N%/OTy(t)S(t) dt — —/OT s%(t) dt (2.290)

and the decision rule becomes

choose Hy if A(y1) <In Po

Y41

choose H,  if A(y) > In 22 (2.291)
Y48

An important special case occurs when pg = p; (i.e., the two hypotheses are
equally likely). In such a case, the decision is made by comparing A(y,) against
a zero threshold. Moreover, from (2.290) it is seen that the value of the constant
N, is not relevant to the decision. Hence, when py = p; the decision procedure
does not depend on the spectral density of the noise. This simplification and the
fact that the a priori probabilities py and p; might be unknown justify the frequent
use of the simplified decision rule (called the maximum likelihood, or ML, rule):

choose Hy if A(y1) <0
choose H; if A(y;) >0 (2.292)

although it gives minimum error probability only when py = p;. The rule (2.291)
is referred to as the maximum a posteriori probability, or MAP, rule. The struc-
ture of the ML detector is shown in Fig. 2.30.

Example 2.22 (The integrate and-dump receiver) A simple special case of the gen-
eral ML detector previously considered arises when the signal s(¢) has a constant ampli-
tude A in the interval 0 < ¢ < T'. The task is then to decide between the two hypotheses

Hi:  y(t)=A+v(t) (2.293)

upon observation of y(¢) for 0 < ¢ < T. In this case, £ = A>T, and from (2.281) we
have

Y L T di 2.294
l—ﬁ/o y(t) dt (2:294)
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Figure 2.30: ML detection of a real signal s(t) in white Gaussian noise.

Equation (2.294) shows that the sufficient statistics for the detection are computed by
averaging out the noise from the observed signal. This is obtained by integrating y(2)
over the observation interval.

Consider the performance of this detector when pp = p;. The RV

A 1 (T
= — 2.295
ne - /o V(t) dt (2.295)

is Gaussian, with mean zero and variance No/2. Thus, the error probability under Hy
(i.e., the probability of choosing H; when Hy is true) is
P(e| H)) = P{A11)>0]| Ho}
= P{n> Aﬁ/z}

= —yf —— 2.296
2 erfc ( D) No ( )

where erfc (- ) is the complementary error function (see Appendix A). Similarly, the
error probability under H; is

P(e|Hi) = P{Aw)<0|H}
= P{n<-avT 2}

1 1 ' A?7 )
_ 1o | — 2.297
2 erte (2 Ng ( )

. A?T
P(e) = P(e | Ho)po + P(e | Hi)p1 = %erfc (%\/ Wo—) (2.298)

If we define the signal-to-noise ratio

so that

2
8 AT (2.299)
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it is seen that, as P(e) is a monotone decreasing function of 7, the error probability will
decrease by increasing the level A, or by increasing the duration T of the observation
interval, or by decreasing the noise spectral density. o

Matched filter

Consider again (2.281). This equation shows that the sufficient statistics can be
obtained, apart from a constant factor, as the output at time ¢ = T of a linear,
time-invariant filter whose impulse response is

ht) & s(T - 1) (2.300)

In fact, with this definition we have

y(t) * A(t)|yor = /OT y(M(T - 1) dr = /OT y()s(r) dr (2.301)

A filter whose impulse response is (2.300), or, equivalently, whose transfer func-
tion is

H(f) £ 5*(f)e /T (2.302)
where S(f) £ F. [s(t)], is called the filter matched to the signal s(t). Thus, we
can say that a matched filter whose output is sampled at ¢ = T extracts from the
observed signal y(¢) the sufficient statistics for our decision problem.

An important property of the matched filter is that it maximizes the signal-to-
noise ratio at its output, in the following sense. When the filter input is the sum of
the signal s(t) plus white noise (¢}, at time ¢t = T its output will be made up of
two terms. The first is the signal part [° H(f)S(f)e’*™/T df, where H(f) is the
transfer function of the filter. The second is the noise part, a Gaussian RV with
mean zero and variance (Ny/2) [2° |H(f)|2 df. If we define the signal-to-noise
ratio at the filter output

[ mpspemra]
(No/2) [ (PP

(i.e., the ratio between the instantaneous power of the signal part and the vari-
ance of the noise part), we can show that ¢? is maximized if H(f) has the
form (2.302); that is, if the filter is matched to the signal s(t). The proof is based
on Schwarz’s inequality, which states that if A(-) and B(-) are two complex
functions, then

24

(2.303)

\[ AB*|* < [|A [|BJ? (2:304)
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with equality if and only if A = aB*, where o is any complex constant. Us-
ing (2.304) in (2.303), we get
* 2 * 2
JTHER [T ISR e
2 < Iz - —

< e 5 (2.305)
= | HAE ‘

Thus, the maximum value of the signal-to-noise ratio ¢? is obtained for
H(f) = aS*(f)e™* T (2.306)

Since « can be any constant, we can set o = 1 without loss of optimality, so
that the filter sought is indeed the matched filter as defined by (2.302). Notice
that this filter may be physically unrealizable, in which case it is necessary to
approximate it. Also, its response to the input s(¢) is, at time ¢ = T

/oo H(H)S(f)e™ T df = /_0; IS(F)IPdf =&, (2.307)

-

that is, the energy of s(t).

2.6.2. Optimum detector: M real signals in noise

We now want to solve the most general problem stated at the beginning of this
section, that is, to decide among the M hypotheses

H;:  y(t) =s;(t) +v(), i=12...,.M (2.308)

upon observation of y(t) in the time interval (0,T). The M real signals s;(t),
j =1,...,M, are known and have a finite duration and a finite energy. Us-
ing the Gram-Schmidt procedure, we can determine an orthonormal signal set
{:(t)}¥,, N < M, such that each s;(t), j = 1,2,..., M, can be expressed
as a linear combination of these signals. Also, consider a complete orthonormal
signal sequence such that its first NV signals are 1 (t), ..., ¥n(t) (see Problem

2.22). Denote with (;(t))%2,, this sequence, and define
’ T
s 8 / sOwit)dt, j=1,...,M, i=12,... (2.309)
0

and v;, Y; as in (2.277) and (2.280), respectively. The decision problem can be
formulated in a discrete form as follows. Choose among the M hypotheses

H,j : (Y,)?il = (sjl + v, Sj2 + 2, ..., S;N T UN, UN41, UNG2) - - ) (2310)
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J=12,..., M, on the basis of the observation of the values taken by the RVs
Y1, Ys, ... As the noise components vy .1, Un 2, ..., are independent of vy, ...,
vy, and of the hypothesis, observation of Yy1, Yy42, ..., does not add any
information to the decision process. Thus, it can be based solely on the observa-

tion of Y3, Y3, ..., Y. By defining the row N-vectors Y 2 v, Y, ..., Yul,

v é [I/l, Va, ..., I/N], and 8 g [Sjl, §52y « 00y SjN],j = ].,. . .,M, (2310) can
be reduced to the vector form

H;: Y=s;+v, Jj=12,...,.M (2311)
Thus, the optimum detector sought for will operate as follows;
choose H; if y € §; (2.312)

where y denotes the observed value of the random vector Y, and S;, S, ..., S
is a partition of the V-dimensional vector space such that the rule (2.312) gives
a minimum of the average error probability

M
P(e)=1—ij/S fyim,(z | Hy) dz, (2.313)
j=t 7S

where p; = P{H;},j = 1,2,..., M. It is seen from (2.313) that P(e) is
minimized if every S; is chosen in such a way that

z€S; ifandonlyif p;fym(z|H;) = m?xpifYIHi(z | Hy) (2.314)

By combining (2.312) and (2.314), we obtain the MAP decision rule. In this
situation the M -dimensional regions S; are called the MAP decision regions. In
the special case where the hypotheses H; are equally likely, that is, p; = 1/M,
7=12,..., M, (2.314) becomes

Z € Sj if and only if fY]Hj (Z I H]) = max fy|H|.(Z I H,) (2315)

which corresponds to the maximum-likelihood (ML) decision rule (accordingly,

the S; are called the ML decision regions). Although it minimizes the average

error probability only for equally likely H;, (2.315) is the most used detection

rule, so in the following we shall mostly confine our attention to ML detection.
By defining the auxiliary hypothesis

Hy: Y=v (2.316)
(2.315) can also be written in the form

z€S; ifandonlyif A;(z) = maxA;(z) (2.317)
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where we define the likelihood ratios

A = d = .
)= el Ho)
Thus, the ML decision rule is
choose H; if A;(y) = max Ai(y) (2.319)

where, as usual, y denotes the observed value of Y. That is, the ML detector
operates by computing the M likelihood ratios A1 (y), A2(y), ---» Am(y), and
then choosing the hypothesis that corresponds to the largest among them. Let us
now compute explicitly the likelihood ratios (2.318). By observing th'at, under
hypothesis H;, j = 0,1,...,M, Y is a Gaussian random vector with mean
s; (or zero for j = 0), independent components, and variance Ny/2 for each
component, we have, forj =1,..., M,

exp[—(1/No) Iy — 55%] 2 ., 1 .
Aj(y) = xei[cp[—(l/oNo) IYIzi =exp{ﬁo-ysj—No |s,|2} (2320)

where as usual |x|? = xx’ = ¥, 22 denotes the squared modulus of the row
vector x. Consideration of the log-likelihood ratios

X(y) £ In As(y) 2321)
allows us to rewrite (2.319) in the following simple form:
1 1

choose H; if ys)— §|sj{2 = max {ys§ - —2-|s,-|2} (2.322)

A different expression for the log-likelihood ratio can be derived as follows.
Because

y(t) = i Yiu(t) (2.323)
i=1
and .
s;(t) =D sjethe(t) (2.324)
=1
we have

T o N T
/0 y(t)s;(t)dt = D03 Yisse /0 Pi(t)e(t) dt

(2.325)

>
o
m\
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and
T N N T
L850 = £S5 sisn [ velebule)ae
0 e=1k=1 0
Y 2
= Zsjl
=1
£ | (2.326)
so that

2T g L [T .
Ail) = 3 /0 y(B)sy(t) dt = 5 /0 st)ydt, j=1,...,M (2327)

In Chapter 4 the structures of the optimum detectors based on (2.320) and (2.327)
will be reexamined and discussed.

2.6.3. Detection problem for complex signals

We shall now focus our attention on the problem of detecting complex signals
in Gaussian noise. This situation occurs when we are dealing with narrowband
signals that we want to describe using complex envelopes. Let us first consider
the detection of a single complex signal in noise, that is, the decision among the
hypotheses

Hy y(t) = W‘/(t)
H: y(t)= %s(t) + %V(t) (2.328)

where t € (0,7), and y(t), v(t), and s(t) are complex envelopes of narrowband
signals (for notational simplicity, we omit the tilde). In particular, we have

5(t) = sc(t) + Jss(2) (2.329)
v(t) = ve(t) + jus(t) (2.330)
Y(t) = ye(t) + Jus(2) (2.331)

where v(t) is a complex Gaussian noise process with power spectral density
2Ny, and v, (t), v,(t) are independent, white Gaussian baseband processes with
power spectral density Ny (see Fig. 2.20). Hence, (1/v/2)v.(t) and (1/v/2)v,(t)
have spectral density Ny/2, and the energy of (1//2)s(t) is the same as the
real signal with which it is associated. Choose now a real orthonormal sequence
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where we define the likelihood ratios

a fym (Y | Hj) 318
M= R H @319

Thus, the ML decision rule is ;
choose H; if A;(y) = max Ai(y) (2.319)

where, as usual, y denotes the observed value of Y. That is, the ML detector
operates by computing the M likelihood ratios A(y), Az(y), ---» Am(y), and
then choosing the hypothesis that corresponds to the largest among them. Let us
now compute explicitly the likelihood ratios: (2.318). By observing th.at, under
hypothesis H;, j = 0,1,...,M, Y is a Gaussian randoql vector with mean
s; (or zero for j = 0), independent components, and variance Ny/2 for each
component, we have, forj =1,..., M,

=Ny ~s ), (2, 1
NN e il T R L By

where as usual |x|2 = xx' = X, 22 denotes the squared modulus of the row
vector x. Consideration of the log-likelihood ratios

Aily) £ lnAj(y) (2.321)
allows us to rewrite (2.319) in the following simple form:
1 1

choose H; if ys}— §|sj|2 = max {ys; - §|5i|2} (2.322)

A different expression for the log-likelihood ratio can be derived as follows.
Because

y(t) = i Yai(t) (2.323)
i=1
and .
s;(t) = sjethe(t) (2.324)
=1
we have

T
Yisjz/O i (t)e(t) dt

H
™M
M=

T
| vtrs;eyae

£

Z Yisji

=1

1

il

W
-

(2.325)

e
o
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and
r N N T
/ sHt) = ZZSj[Sjk/ Ve(t) e (t) dt
0 t=1k=1 0
= Zsﬂ
=1
a P (2.326)
so that
9 (T 1 (T .
MW =5 f, vOsdi- g [CS0d =M @3

In Chapter 4 the structures of the optimum detectors based on (2.320) and (2.327)
will be reexamined and discussed.

2.6.3. Detection problem for complex signals

We shall now focus our attention on the problem of detecting complex signals
in Gaussian noise. This situation occurs when we are dealing with narrowband
signals that we want to describe using complex envelopes. Let us first consider
the detection of a single complex signal in noise, that is, the decision among the
hypotheses

Hot  ylt) = 5o
Hy:  y(t)= —\;—Es(t) + —lﬁu(t) (2.328)

where ¢t € (0,7, and y(t), v(t), and s(t) are complex envelopes of narrowband
signals (for notational simplicity, we omit the tilde). In particular, we have

8(t) = s.(t) + 7s,(2) (2.329)
v(t) = ve(t) + jus(t) (2.330)
y(t) = ye(t) + jys (t) (2.331)

where v(t) is a complex Gaussian noise process with power spectral density
2Ny, and v,(t), v4(t) are independent, white Gaussian baseband processes with
power spectral density Ny (see Fig. 2.20). Hence, (1/v/2)v,(t) and (1/v/2)v,(t)
have spectral density Ny/2, and the energy of (1/v/2)s(t) is the same as the
real signal with which it is associated. Choose now a real orthonormal sequence
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(e1(2), ¥a1(2), Yealt), ¥s2(2),...), complete for any real signal in the time in-
terval (0, T'), with 9.1 () = s.(t) and 941 (t) = s,(t). By formulating our detec-
tion problem in a discrete form, we have

HO : (}/(':1: }/:?11 }/627 }/.'927' . ) = (Vcl7 Vs1, Ve2, Vs2, "') (2‘332)
Hy: (Yer, Yo1, Yoz, Yoz, .. ) = (St + Vet, Ss1 + Vi1, Sca + Vs2, Ss2 + Va2, - )

where
- % /0 " st a(t) dt ‘ (2.333)

54 2 % /0 T s (E)0ui(t) dt (2.334)

Ve 2 % /0 T () belt) dt (2.335)

vy & % /0 T (&) alt) dt (2.336)

Va2 2= [ le)iate) de 2.337)

v, &8 L 7 / vs ()i (8) (2.338)

Discarding the data irrelevant to the decision process, (2.332) can be put in the
equivalent form

Hy: Yi=u,
Hy: Y, =51 + vy, (2.339)

. A . N
where Y} £ Yo+ j3Ya, 2 Vo1 + jVs1, and 81 = Se1 + JS1. In this sm.latlon,
the decision regions Sq and S; are two dimensional, and the likelihood ratio

A fravom (e vs | Hi)
Ay, ) 2 (2.340)
e 3e) = o e v | Ho)

is equal to

2
A(ye, ys) = exp {N (YeSc1 + YsSs1) — ( 31 + 331)}

No
2
exp {ﬁo‘ﬁ[y'ﬁ] _ FOM } (2.341)
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where y £ Ye + jys. Through computations similar to those that led to (2.327),
it can be shown that the likelihood ratio between H, and H; can also be written
in the form

AYy) = exp{ ER/ t)dt — —/ |2dt} (2.342)

This result can be extended to the problem of detecting one out of M complex
signals in noise. In this case the likelihood ratio among the hypotheses

and

(where all the signals are complex) is given by

Asly) = exp{ ER/ £) dt ~ Nio/T|sj(t)|2dt} (2.343)

The proof of (2.343) is left to the reader.

2.6.4. Summarizing the detection procedure

From the above discussion we have learned that the detection procedure consists
of two basic steps:

1. Computation of the sufficient statistics, which consists of distilling from
the observation what is sufficient to make the decision in an optimal way.

2. Use of the sufficient statistics for the detection.

For example, in the case of one real signal in white Gaussian noise the sufficient
statistics is ¥; in (2.281), a scalar quantity extracted from the signal y(t) ob-
served. The decision rule is based on y;, the observed value of Y1, and is given
for example by (2.291).

This distinction between the two steps of the detection procedure may be
especially relevant when a suboptimum detection rule is sought: for example,
for simplicity’s sake one of the two steps may not be optimum.
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2.7. Bibliographical notes

Several excellent books cover the area of signal and system theory. In most
of them the reader can find further details regarding the topics covered in this
chapter. Continuous-time and discrete-time deterministic signals and systems
are treated extensively by Oppenheim, Willsky, and Young (1983). Discrete-time
signals and systems are studied, among others, in Schwartz and Shaw (1975),
Oppenheim and Schafer (1989), Proakis and Manolakis (1992). Papoulis (1977)
covers both continuous- and discrete-time systems and deterministic and random
signals. Gallager (1995) covers discrete random processes.

Volterra series were first studied by the Italian mathematician Vito Volterra
around 1880 as a generalization of the Taylor series of a function. His work in
this area is summarized in Volterra (1959). The application of Volterra series
to the analysis of nonlinear systems with memory was suggested by Norbert
Wiener. Extensive treatments of Volterra series as applied to the description of
nonlinear systems can be found in Schetzen (1980) and Rugh (1981). Basic work
in this area is represented by the paper of Flake (1963), whereas a relatively
recent good review is found in Schetzen (1981). Applications are covered by
Weiner and Spina (1980), and, among others, in the papers by Bedrosian and
Rice (1971) and Benedetto, Biglieri, and Daffara (1976 and 1979).

Probability theory and random processes, at the level needed for this book,
are covered by Parzen (1962), Papoulis (1965), and Davenport (1970). A com-
prehensive treatment of cyclostationary processes can be found in the disserta-
tion by Hurd (1969) and in the papers by Gardner and Franks (1975) and Gardner
(1978). Complex random processes are covered extensively by Miller (1974).
Further details on Markov chains can be found in the classic book by Feller
(1968) or in Kemeny and Snell (1960). The two volumes by Gantmacher (1959)
on matrix theory include a treatment of Markov chains based on their matrix de-
scription. The reader is warned, however, that the nomenclature in Markov chain
theory varies in the literature.

Fourier series and Fourier transforms are covered by Bracewell (1978), Dym
and McKean (1972), and Papoulis (1962). Arsac (1966) emphasizes generalized
functions. The approach to the computation of the power density spectrum of a
random process £(t) based on the function [¢( f1, f2) is described in some detail
in Blanc-Lapierre and Fortet (1968) and in Papoulis (1965). Spectral analysis of
digital signals based on a Markov chain model was first discussed by Huggins
(1957) and Zadeh (1957). Since then, several authors have expanded on the basic
results. For a comprehensive and detailed discussion of this topic, see Cariolaro,
Pierobon, and Tronca (1983) and Galko and Pasupathy (1981), where the whole
treatment is given a firm mathematical basis.

For a more detailed treatment of narrowband signals and bandpass systems
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than was possible here, the reader is referred to Schwartz, Bennett, and Stein
(1966, pp. 29—45) and Franks (1969, pp. 79-97, 195-200), or to the papers of
Arens (1957), Dugundji (1958), and Bedrosian (1962). Different possible defi-
nitions for the envelope of a narrowband signal are discussed and compared in
Rice (1982). Bandpass nonlinear systems are introduced in Blachman (1971)
(see also Blachman, 1982).

Orthonormal expansions of finite-energy signals and the Gram-Schmidt or-
thogonalization procedure are dealt with by Franks (1969), including an intro-
duction to the Karhunen-Logve expansion and to the sampling theorem for ran-
dom processes.

A profound treatment of detection theory can be found in the classics by Van
Trees (1968) and Helstrom (1968). For the computation of the likelihood ratio
in signai-detection problems, see also Turin (1969) and Kailath (1971). In the
latter paper the case of nonwhite Gaussian noise is treated using the techniques
of “reproducing-kerne! Hilbert spaces.”

2.8. Problems

2.1 A given (discrete or continuous) system may or may not be linear, time-invariant,
memoryless, or causal. Determine which of these properties hold and which do
not for each of the following systems, described by their input-output relation-
ships. In particular, when a system is not memoryless determine the length if its
memory.

@) yn =2z, +1.

(b) yn = nz,
(c) Yn =1+ 2%:0 Q;Tn—i
(d) yn = z|n/y (1=] 2 integer part of z)
(&) yn = zp[1 - dp), dn 21 forn= 0, and O elsewhere
® yn =1z
® y(t) =1+ ' h(t—T1)z(r)dr
_ dz(?)
M) y(t) = —

® y@)=z(t-T)-z(t+7T)
.) (t) _ t+T d
@ y(t) = /t- zTdT

& y{t) = z(t)ed¥fot
M y(t) = [, =(r)e 9 dr
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2.2 Find the Fourier transform of the sequence (zy), for

@) yn = 6n, O 21 forn = 0, and 0 elsewhere

a®, n>0
(m”"‘{m n<0 (a<l)

© zn=aM, (a<1)

1, 0<n<N-1
@ 20 = { 0, elsewhere
(€e) z, = (-

2.3 Given the discrete linear time-invariant system whose input-output relationship is
described by the difference equation

=2 +-1- +z
Yn = Gyn—l 6yn—2 n

compute its transfer function H (f) and its impulse response (hy). Determine the
response of the system to the input

Sl = [ ko
—1/2

where X (f) denotes the Fourier transform of the sequence (z,).

2.5 Prove that for a continuous or discrete time-invariant Volterra system there is no
loss of generality if it is assumed that the kernels describing the system are sym-
metric (i.e., any permutation of their arguments leaves the kernels unchanged).

2.6 Prove that a continuous time-invariant Volterra system is causal if and only if
(2.21) holds for all k. Provide the corresponding condition for the kernels of a
discrete time-invariant Volterra system.

2.7 Find the Volterra kernels for the continuous nonlinear system obtained by cascad-
ing a memoryless nonlinearity and a linear time-invariant system with impulse
response h(t) (Fig. 2.31). It is assumed that

2.8

2.8

29
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Problems 99

x(1) ¥()
—> g h@®)

Figure 2.31: See Problem 2.7.

x(1) ; y(©)
- () H(f) >

cos 27mfyt

Figure 2.32: See Problem 2.8.

Find the input-output relationship of the system of Fig. 2.32, where z(t) is a
low-pass signal whose spectrum is zero for |f| > f1, and H(f) denotes an ideal
bandpass filter centered at fo, fo > f1.

Consider a finite-energy signal s(t) defined for |t| < T'/2, and its Fourier trans-
form S(f). Denoting by s*}(2) the kth derivative of s(t), [s(®(¢) £ ()], show

that if - T
S(k) (5‘) = S(k) (—5) = O 0 S k S K

then, as f = o0

Consider then the signal

s(t) = (ﬂ+ '”O
= COS T  Sin T

and find o so as to get |S(f)|Z = O(f~5).

Discrete matched filter: Let the input of a discrete linear time-invariant system
with transfer function H(f) be the real sequence (z,) = (Sn +wy), where (sp,) is
a deterministic sequence with Fourier transform S(f), and (wy) is a sequence of
independent, identically distributed random variables. If (y,) denotes the system
response to (s,) and (vy,) the system response to (wy), find H(f) such as the
ratio y3 /E[v2] is a maximum.



- v«

100 2. A mathematical introduction

2,11 Fora homogeneous Markov chain (£,) with transition probability matrix P, given
an integer N and an N-tuple of integers k; < k2 < -++ < ky, express the
probability P{¢, = i1, &, = 42, --.,Eky = i} iR terms of the entries of P

and of the initial state distribution vector w(®.

2.12 Prove that, if the transition matrix P of a fully regula.r homogeneous Markov
chain is doubly stochastic, i.e., the sum of its entries in each row and column
equals 1, then its stationary distribution vector w has equal components.

2.13 Let £(t) be a WS stationary random process and Re(T) it.? autocorrelation func-
tion. Prove that, given n > 1, for any n-tuple of time instants 1.-1, 1;2, ...,.'r,.
and for any n-tuple of complex numbers aj, 2, ... ,an the following inequality
holds: a n

Y ajajRe(ri—7;) 20

_i=lj=1
2.14 Consider the linearly modulated digital signal

[e 2]
£(t) = Z ans(t - nT)
n=-—0o0
where (@) is a sequence of independent, identically distributed random variable.s
taking on values =1 with equal probabilities. Compute E[¢ 2(t)] and show that it
is a periodic signal with period 7.

2.15 Let£(t) be a WS cyclostationary process with period T Consifier arandom linear
system whose output is 7(t) = £(¢—©), © arandom variable independent _°f £(t)
and uniformly distributed in the interval (0, T'). Prove that n(t) is WS stationary.
Hint: Consider T'y(f1, fa)-

2.16 Evaluate the power density spectrum of the digital signal

o0

HOES Z s(t — nT; an)

n=-0o

where (a,,) is a sequence of independent, identically distributed random variables
taking on values 1, 2, 3, 4 with equal probabilities,

T
st an) 2 fir(0) +50 (- 5)

with r(t) defined for t € (—=T'/2, T/2), and S, B, are obtained from o, accord-
ing to the following table:

an | B, A
1 [(+1 +1
2 (-1 +1
3141 -1
- 4 | -1 -1
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Specialize the result to the cases (which will be treated in detail in later chapters)
r(t)=1 (offset PSK)

r(t) = cos %t (MSK)

L 1 . 4rm
r(t) = cos (Tt - z5n —ITt) (SFSK)

and plot the resulting power spectra for | fT'| < 10.

2.17 FSK digital signals: Find the power spectral density of the signal

&) = exp {120 [ a(ryar}
where

q(t) = i ans(t — nT),

n=0

(rn) is a sequence of independent, identically distributed random variables taking
on values 1 with equal probabilities, and

s(t) = 1, 0<t<T
T ] 0, elsewhere

(This refers to CPFSK modulated signals. They will be treated in Chapter 6.)
2.18 Evaluate the power spectral density of the digital signal

£(t) =exp {j i ang(t — nT)}

n=-0o0

where g(t) is a signal with duration T < 7T, and () is a sequence of independent,
identically distributed random variables taking on the M values (w/M)(2i — 1),
i=1,..., M, with equal probabilities.

2.19 Prove the following properties of the Hilbert transform Z(¢) of the signal z(t):

(a) If z(t) is an even function of t, then Z(t) is an odd function.
(b) If z(¢) is an odd function of ¢, then Z(t) is an even function.

(c) The Hilbert transform of Z(¢) is equal to —z(t).

(d) The energy of Z(t) is equal to the energy of z(t).

(e) The energy of z(t) + jZ(t) is equal to twice the energy of x(¢).
(® Rzz(r) = Rzo(7).
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(@ E[Z(t + 7)z(t)] is equal to Rz (7), the Hilbert transform of the autocorre-
lation function of z(t), and E[z(t + 7)Z(t)] is equal to —Rzz(7).

2.20 Prove the equalities (2.188) and (2.189). Hint: Compute R, () by using (2.182).

2.21 Show that the Gram-Schmidt procedure (2.240)-(2.241) generates an orthonor-
mal set of signals.

2.22 Consider a given orthonormal signal set {ti(t)}/_,. Prove that it is possible to
find a complete orthonormal signal sequence such that its first elements are ¢ (t),

cees ’l/JN(t).

2.24 Let z(t) be a continuous-time signal and () the sequence of its samples taken
every T: that is, z, & zo(nT). If X(f) denotes the Fourier Lransfom? of the
sequence (z»), and X,(f) the Fourier transform of the continuous-time signal

L) 3 dt-nT)

n=--oo

prove that
X,(f) = X(T).

2.25 Generalize (2.259) to the case in which the sampling waveform, instead of being
a train of ideal impulses, is the periodic signal 302 _ plt —'nT), where. p(t)
is a rectangular pulse with duration 7 < T'. Can the original signal z(t) still be
recovered exactly from the product signal z(t) ¥ar o 0(t — nT)?

2.26 Matched filter for nonwhite noise: Consider a continuous linear time-in\:anant
system whose input is the sum of a deterministic signal s(t) anda WS sta.tlona.ry
noise v(t) whose power spectral density G, (f) is nonzero for all. f. Find the
transfer function of the system that maximizes the ratio between the instantaneous
power of the signal part and the variance of the noise part at its output.

Basic results from information
theory

In this chapter we deal with information sources and communication channels.
The main part of the treatment is devoted to the discrete case. Only at the end of
the chapter do we present a brief description of continuous sources and channels,
aimed at obtaining the capacity of the bandlimited Gaussian channel.

The first part of the chapter defines a discrete stationary source and shows
how the quantity of information that is emitted from the source can be measured.
In general, the source output (the message) consists of a sequence of symbols
chosen from a finite set, the alphabet of the source. A probability distribution is
associated with the source alphabet, and a probabilistic mechanism governs the
emission of successive symbols in the message. Generally, different messages
convey different quantities of information; thus an average information quantity,
or entropy, must be defined for the source. The unit of measure for the informa-
tion is taken to be the biz, that is, the information provided by the emission of
one among two equally likely symbols. The entropy of the source represents the
minimum average number of binary symbols (digits) that is necessary to repre-
sent each symbol in the message. The source output can thus be replaced by a
string of binary symbols conveying the same quantity of information and having
an average number of digits per symbol of the original source as close as desired
to the source entropy. The block in the system that implements this function is
called the source encoder.

The communication channel is the physical medium used to comnect the
source of information with its user. In the second part of the chapter we define
discrete memoryless channels and study their properties. Discrete memoryless
channels are specified by a probability law linking symbols of the channel input

103
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alphabet to symbols of the channel output alphabet. A bas'ic point is the knowl-
edge of the maximum average information flow that can rel}ably pass through the
channel. This leads to the definition of the channel capacity and to the problem
of computing it. Both topics are addressed in this chapt.er. .

The final part of the chapter is devoted to a presentation of the channel coding
theorem and its converse. They provide a link between the com.jepts of entropy of
asource and capacity of a channel and assess precisely what reliable transmission
means and how it can be achieved.

The main goal of this chapter is to provide a general frarqe to the subsequent
material, which deals with specific aspects of data transmission systems. It. also
assesses the theoretical limits in performance that can be obtained over a binary
channel and an additive Gaussian channel.

3.1. Introduction

The goal of every communication system is the reproduction f’f a message emit-
ted from a source into a place where the user of the information is located.. The
distance between the source and the user may be either considerable, as in the
case of intercontinental transmission, or very small, as in the stor?ge and retrieval
of data using the disk unit of a computer (in this case, the dJsFance be?ween
transmitter and receiver may be considered in time). However,.lrre.spectlve of
distance, there exists between the source and the user a communicating channel
affected by various disturbances, like noise and distortions. .

The presence of the disturbed channel makes thfe exact 'reprodl‘lctlon of the
message emitted from the source at the user’s premises an 1mpos§1b1e achieve-
ment. Nevertheless, the designer of a communication syste.m will alwa.ys. be
asked to provide the user with an “as close as possible” replica of the ongmal
message. A closer insight into the characteristics of the. user bette'r spefslﬁes%
case by case, the meaning of “as close as possible,” that is, the specification o
a user-oriented criterion of acceptability. For example, in the case of sPeech
communication in the area of service communications, one is normally satlsﬁe.d
when the listener can understand the semantic content of what the speaker is
saying. Quite often, however, in the domain of public telephone services, the
listener wishes to recognize the identity and mood of tl.1e speaker through the
pitch and.inflection of his or her voice, and this gives rise to a mqre stringent
criterion of acceptability. Hence, as illustrated in thesc? .examples, different user
requirements may lead to different criteria of accept?b{llty and, consequently, to
different bandwidth requirements for speech transmission.

As explained, the problem of noise in the communicatlor'l Fhapnel creat.es the
need for user-sensitive specifications of criteria of acceptability in the design of
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a

Figure 3.1: Class of equivalence relative to the letter "a” in handwritten texts.

....... - A ’—\\ --- ] equivalence class

- /fL ------ \ L class representative
2T =

Figure 3.2: Quantization process in PCM.

communication systems. This can be accomplished in the following fashion. The
possible source outputs in a given time interval are partitioned into equivalence
classes on the basis of a certain criterion of acceptability. This permits one to
regard such source outputs as a set of equivalence classes where the source out-
puts residing in the same equivalence class are indistinguishable with respect to
the acceptability criterion. Thus, the communication system, in this regard, can
be reduced to the transmission of the specific class to which the source output
belongs in each successive time interval.

In Fig. 3.1, one possible class of equivalence is depicted for the transmission
of written texts, where the criterion of acceptability is merely the semantic intel-
ligibility of the message. The class represents different ways of writing the letter

[T}

a

Another well-known example is the quantization process performed in con-
nection with pulse-coded modulation (PCM). In Fig. 3.2, the process is schemat-
ically outlined.

The source waveform is first sampled every T seconds. Each sample is then
quantized, (that is, the closest value in a finite pre-selected set is substituted for
it), and kept constant for T seconds.

From here on we shall assume that the criterion of acceptability had been es-
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tablished, yielding a finite number of equivalence classes, say M, in a speciﬁed
time interval. The transmission of information then consists in the communica-
tion of a sequence of integer numbers chosen in the set {1,2,..., M} from the
source to the user. The user, upon receiving the indication of the equivalence
class, generates the representative (which he knows) of the class so as to restore
an information close to the original.

3.2. Discrete stationary sources

Consider a finite alphabet X formed by the M symbols {z;}}Z, and»deﬁne a

message as a sequence of symbols such as (z,)32,. A discrete stochastic source

is a device emitting messages through the selection of symbols from the alphabet
a

X according to a probability distribution {p;}},, where p; = P(z:). Erom a

probabilistic point of view, one can regard the whole set of messages as a discrete

random process, that is, a sequence (£,)3%, of random variables (RVs), each

taking values in the set X with the probability distribution {p;}.

We shall assume that the source is stationary; that is,

Pl =11, & = 21} = Pllusn = T, Gisrn = Tk} 3.1

for all nonnegative integers iy,...,%, h and all z1,...,7x € X. In th1§ case,
the message sequence forms a discrete-time stationary random process with the
properties described in Chapter 2.

3.2.1. A measure of information: entropy of the source alphabet

The quantity of information carried by one particular symbol of the source alpha-
bet is strictly related to its uncertainty. Increased uncertainty should corres'pon.d
to more information. As an example, the letter size in a newspaper headline is
larger when the news is unexpected like “Life found on Mars !.” than in'the case of
“A new government in Italy.” It is then fairly natural that the mfopnatlon content
of the ith symbol, denoted by I(x;), be a decreasing function of its probability

I(z;) > I(z), if p; < p; (3.2)

and that the information content associated with the emission of two independent
symbols be the sum of the two individual informations:

If P(z;,z;) = P(z;)P(z;) then I(z;,x;) = I(z:) + I(z;) (3.3)

A definition of the information content satisfying both (3.2) and (3.3) is

I(z:) £ log, (%) (34)

i
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In (3.4) the base of the logarithm (indicated with a) is unspecified. Its choice
determines the unit of measure assigned to the information content. If the natural
(base e) logarithm is used, then the unitis called nar. When the base is 2, the unit
is widely known as biz (a contraction of the words “binary digit”). The use of bit
is based on the fact that the correct identification of one out of two equally likely
symbols conveys an amount of information equal to I(z;) = I (z2) =log,2=1
bit. Unless otherwise specified, we shall use the base 2 in this chapter and write
log to mean log,.

The definition (3.4) allows one to associate with each symbol of the source
alphabet its information content. A characterization of the whole alphabet can
be obtained by defining the average information content of X

a M 1
HX) =Y pl(z:) = 3 pilog (p_> (3.5)
=1 =1 i

which is called the entropy of the source alphabet and is measured in bit/symbol.

Example 3.1 The source alphabet consists of four possible symbols with probabilities

p1= %, p2 = %,ps =pg = %. To compute the entropy of the source alphabet, we apply
definition (3.5)

1 1 1
H(X) = 3 log2+ i log4 + 2§ log 8 = 1.75 bit/symbol
If the source alphabet consists of M equally likely symbols, we have

1
HX)=3Y" i log M = log M bit/symbol

i=1

When the source alphabet consists of two symbols with probabilities p and g=1—p
the alphabet entropy is

HOO =plog -+ (1 -p)log (1) 2 H(p) )

In Fig. 3.3 the function H(p) is plotted.
It can be seen that the maximum occurs for p = 0.5, that is, when the two symbols
are equally likely. O

The last result of Exampie 3.1, that is, the maximization of the source entropy
for equally likely symbols, is fairly general, as will be stated in the following
theorem.
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H(p)
1.01
0.8 1
0.6 1
0.4
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0.'2 014 0.l6 08 1.0 p

Figure 3.3: Plot of the entropy function H(p) of a binary source with P(z1) = p and
Plza)=1-p.

Theorem 3.1
The entropy H(X) of é source alphabet with M symbols satisfies the inequality
H(X) < log M 3.7)

with equality when the symbols are equally likely. 7

Proof of Theorem 3.1

To prove the theorem, consider the difference

M M 1
- pilogM = > pilog (W) (3.8)
1 i=1 b

i=1

H(X) —logM = % pilog <i>

i=z1 b
Making use of the inequality

hy<y-1 (3.9

in the RHS of (3.8), we obtain

M1
H(X) —log M < loge " ('M"pi) =0
i=1

QED
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3.2.2. Coding of the source alphabet

For a given source, we are now able to compute the information content of each
symbol in the source alphabet and the entropy of the alphabet itself. Suppose
now that we want to transmit each symbol using a binary channel, that is, a
channel able to communicate only binary symbols. Before being delivered to the
channel, each symbol must be represented by a finite string of digits, called the
code word. Leaving aside the problem of possible channel errors, efficient com-
munication would involve transmitting a symbol in the shortest possible time,
which, in turn, means representing it with a code word as short as possible. As
usual, we are interested in average quantities, so our goal will be that of mini-
mizing the average length of a code word

M
A2 E{(n} =3 pn (3.10)
i=1

where n; is the length (number of digits) of the code word representing the sym-
bol z;, and n is the random variable representing its length (that is, assuming the
value n; with probability p;, ¢ =1,2,..., M).

The minimization of (3.10) must be accomplished according to an important
constraint on the assignment of code words to the alphabet symbols. To under-
stand the necessity of this constraint, consider the following code:

Symbol | Code word
1 0
T 01
T3 10
T4 100

In it, the binary sequence 010010 could correspond to any one of the five
messages T1Z3TaT), Z1T3T1Z3, L1L4T3, Z2L1T1Z3, OF T2X1Z2Z1. The code
is ambiguous, or not uniquely decipherablie. It then seems natural to require that
the code be uniquely decipherable, which means that every finite sequence of
binary digits corresponds to, at most, one message. A condition that ensures
unique decipherability is to require that no code word be a prefix of a longer
code word. Codes satisfying this constraint are called prefix codes. The codes
described in the sequel are of this kind.

A very useful graphical representation of a code satisfying the prefix con-
straint is that which associates to each code word a terminal node in a binary
tree, like the one of Fig. 3.4.

Starting from the root of the tree, the two branches leading to the first-order
nodes correspond to the choice between 0 and 1 as the first digit in the code
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— Symbols | Code words
1 0 X,
0 5 0
X, 10
1 ——ox, X 110
0 x, 111
1% order {
nodes L ox
2"order
3" order

Figure 3.4: Binary tree associated with a binary source code.

words. The two branches stemming from each of the first-order nodes corre-
spond to the second digit of the code words, and so on. Since code words are
assigned only to terminal nodes, no code word can be a prefix of another code
word. A tree is said to be of order n if it contains nodes up to the n-th order. A
necessary and sufficient condition for a given code to satisfy the prefix constraint
is given in the following theorem.

Theorem 3.2
Kraft inequality. A neéessa.ry and sufficient condition for the existence of a
binary prefix code with word lengths ny, n,, . .., nyy is the following:
M
Yrm<l (3.11)
i=1
v
Proof of Theorem 3.2

We prove first that (3.11) is a necessary condition. Since the code satisfies the
prefix constraint, it is embedded in a tree of order

n = max(ny, na, ..., Np)
The presence in the tree of a terminal node of order n; eliminates 2"~™ of the

possible nodes of order n. Thus, for the code to be embedded in the tree, the sum
of all nodes of order n eliminated by terminal nodes associated with code words
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must be less than or equal to the number of nodes of order n in the tree; that is,
M
ot (3.12)
i=1

Dividing both sides of the last inequality by 2™ yields (3.11).

To prove that (3.11) is a sufficient condition for the existence of a prefix code,
let us assume that the n;’s are arranged in nondecreasing order,n; < n2 < ... <
ny. Choose as the first terminal node in the code tree any node of order n; in
a tree of order nys containing all branches. All nodes in the tree of each order
greater than or equal to n; are still available for use as terminal nodes in the
code tree, except for the fraction 27! that stems from the chosen node. Next,
choose any available node of order n; as the next terminal node in the code tree.
All nodes in the tree of each order greater than or equal to n are still available
except for the fraction 27™! + 272 that stem from either of the two chosen nodes.
Continuing in this way, after the assignment of the j-th terminal node in the code
tree, the fraction of nodes eliminated by previous choices is Zj=1 27%_ From
(3.11), this fraction is always strictly less than 1 for j < M, and thus there is
always a node available to be assigned to the next code word. QED

Since we are using a binary code, the maximum information content of each
digit in the code word is 1 bit. So the average information content in each code
word is, at most, equal to 7. On the other hand, to uniquely specify a symbol of
the source alphabet, we need an average amount of information equal to H(X)
bits. Hence we can intuitively conclude that

7> H(X) (3.13)

Comparing the definitions (3.5) and (3.10) of H(X) and 7, it can be seen that the
condition (3.13) can be satisfied with the equal sign if and only if (the “if” part
is straightforward, for the “only if” proof see Fano (1961)):

p=2T"i=12,....M 3.14)

In this case, (3.11) also becomes an equality.

Example 3.2 The following is an example of a code satisfying (3.13) with the equal
sign and obeying the prefix constraint.

Symbol | p; | Code word
I
T 5 1
T2 i 00
T3 % 010
T4 i6 0110
s || o1l
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Computing the value of 7 defined in (3.10), one obtains

A=H(X) =3

In general, condition (3.14) with n; integers is not satisfied. So we cannot
hope to attain the lower bound for 7 as in the previous example. However, a
code satisfying the prefix constraint can be found whose 7 obeys the following
theorem.

Theorem 3.3

A binary code satisfying the prefix constraint can be found for any source alpha-
bet of entropy H(X) whose average code word length 7 satisfies the inequality

H(X) <7 < HX) +1

v

Proof of Theorem 3.3

An intuitive proof of the lower bound has already been given when introducing
(3.13). Let us now choose for the code word representing the symbol z; a number
of bits n; corresponding to the smallest integer greater than or equal to I (z;). So
we have

I(I,') <n < I(I,‘) +1 (3.15)

Multiplying (3.15) by p; and summing over 2, we obtain
HX)<a<HX)+1

To complete the proof of the theorem, we have to show that the code satisfies
the prefix constraint, that is, the lengths n;’s of the code words obey the Kraft
inequality (3.11). Recalling the definition (3.4) of I(z;), the left-hand inequality
of (3.15) leads to p; > 2~™; so, summing over i, we obtain

M M
Y2y pi=1 (3.16)
i=1 i=1

QED .
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p; X;
0.5 X0
1042
0.5 0 1
11
x
0.15 20 0
0.3 3
0.15 X3 0
X, o
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0.05 Xs o |1
0.1
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Figure 3.5: Tree generated by the Huffman encoding procedure for a source with six
symbols.

The last step in our description of the source alphabet coding is the con-
struction of a code uniquely decipherable that minimizes the average code word
length. We shall present a method for the construction of such optimal codes
due to Huffman. The proof of optimality will be omitted; the interested reader
can find it in any book specifically devoted to information theory, as for exam-
ple McEliece (1977). The Huffman procedure will be described step by step.
The reader is referred to Fig.3.5, in which the steps can be spotted in the tree
originated by the encoding procedure.

Step 1 Have the M symbols ordered according to nonincreasing values of their
probabilities.

Step 2 Group the last two symbols z,,_; and zp into an equivalent “symbol,”
with probability par—1 + pu-

Step 3 Repeat steps 1 and 2 until only one “symbol” is left.

Step 4 Looking at the tree originated by the preceding steps (see Fig. 3.5), asso-
ciate the binary symbols 0 and 1 to each pair of branches departing from
intermediate nodes. The code word of each symbol can be read as the
binary sequence encountered when starting from the root of the tree and
reaching the terminal node associated with the symbol at hand.
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For the example of Fig. 3.5, the code words obtained using the Huffman
procedure are

Symbol { Code word
I 0
Zo 100
T3 101
Ty 110
T5 1110
Zg 1111

The average length 7 and the entropy H(X) are 2.1 digits/symbol and 2.086
bits/symbol, respectively; they satisfy Theorem 3.3, and no other code can do
better.

Example 3.3 For the code shown in Fig. 3.5, use the tree to decode the received se-
quence 1100101100110. Starting from the root of the tree, we follow the branches at
each intermediate node according to the binary digits in the received sequence, until a
terminal node (and hence a symbol) is reached. Then we restart the procedure. The
decoded sequence is T471T3T2T4. a

The reader is invited to repeat the decoding procedure of Example 3.3, as-
suming that an error had been introduced by the channel in the first position. This
permits us to verify the catastrophic effect of error propagation in these variable-
length codes. On the other hand, the goal of the source coding is the reduction of
redundancy of the source alphabet, and not the protection against channel errors.
This is the scope of channel encoding, as we will see in Chapters 10-12.

So far, we have seen how a code word can be efficiently assigned to each
symbol z; of the source alphabet X. The main result is represented by Theo-
rem 3.3. In fact, the lower bound of the Theorem can be approached as closely
as desired if we are allowed to encode blocks of symbols instead of single sym-
bols. Suppose we take a sequence of independent observations of X and assign
a code word to the resulting group of symbols. In other words, we construct a
code for a new alphabet Y=X" containing M symbols, denoted y;. The proba-
bility of y; is then given by the product of the probabilities corresponding to the
v symbols of X that specify y;. By Theorem 3.3, we can construct a code for Y
whose average code word length 7, satisfies

, H(Y) <@, <H(Y) +1 (3.17)
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Every symbol in Y is made by v independent symbols of the original alphabet
X; so the entropy of Y is H(Y) = vH(X) (see Problem 3.2). Thus, from (3.17)
we get

7 1
H(X) < <H(X)+ - (3.18)

But 72, /v is the average number of digits/symbol of X; so, from (3.18), it
follows that it can be made arbitrarily close to H(X) by choosing v sufficiently
large.

The efficiency € of a code is defined as

(3.19)
and its redundancy is (1-¢).

Example 3.4 Given the source alphabet X = {z1, 22,3}, with p; = 0.5, ps = 0.3,
and p3 = 0.2, we want to construct the new alphabet Y = X2 = {y1,92,...,¥s}, ob-
tained by grouping the symbols z; two by two.

Symbol | Code word
=11 P(yl) = P(:z:ll‘]_) = P(.’L‘l)P(:l:l) =0.25
ya =122 | Ply2) = 0.15
Y3 = T2 P(y3) =0.15
ya = 7173 | P(ys) = 0.10
ys = x3z1 | P(ys) = 0.10
Y6 = ToT2 P(ys) =0.09
Y7 = ZT3Ta P(y7) = 0.06
ys = zaz3 | P(ys) = 0.06
Yo =z373 | P(ys) = 0.04

The reader is invited to construct the Huffman codes for block lengths v = 1 and
v = 2 and compare the average numbers of digits/symbol obtained in both cases, using
the preceding definition of code efficiency. o

3.2.3. Entropy of stationary sources

Although our definition of a discrete stationary source is fairly general, we have
so far considered in detail only the information content and the encoding of the
source alphabet. Even when describing the achievement of the block encoding
of the source, we made the assumption of independence between the symbols
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forming each block. Of course, when the messages emitted by the source are ac-
tually a sequence of independent random variables, then the results obtained for
the source alphabet also hold true for the source message. In practice, however,
this is rarely the case. Thus we need to extend our definition of the information
content of the source alphabet to the information content of the source, which
will involve consideration of the statistical dependence between symbols in a
message. Let us consider a message emitted by the source, like (z,)3%¢, and
try to compute the average information needed to specify each symbol z, in the
message. The information content of the first symbol  is, of course, the entropy

H(Xo)!

Zp. log ( )

i=1
The information content of the second symbol z;, having specified zo, is the
conditional entropy H(X, | X,) based on the conditional information I(z | y) E

log (1/P(z | y))

H(X: | Xo) 2 3> P(zo, 1) I(21 | 20)

Xo X1

3> P(zo,11) log( Ple. T2 )> (3.20)

Xo Xy

In general, the information content of the sth symbol, given the previous ~ sym-
bols in the message, is obtained as

H(X; | Xiz1, ..+, Xizn) (3.21)
1
P(Ziopy. .-, 7i) -1 , 1<h<i
;.:,. Z Tich =) Og(P($i|$i—1,---,$i—h)>

It thus seems fairly intuitive to define the information content of the source, or
its entropy Hoo(X), as the information content of any symbol produced by the
source, given that we have observed all previous symbols. Given a stationary
information source (£,)%%,, its entropy Ho (X) is then defined as

Hoo(X) = lim H(Xa | Xn-t, -+, Xo)

To gain a deeper insight into the meaning and properties of Hy(X), we shall
prove the following theorem.

1We are using the notation X; to denote the alphabet pertaining to the i-th symbol in the
message. Usually all X;’s refer to the same set X; nevertheless, it is notationally convenient to
keep them distinct.
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Theorem 3.4
The conditional entropy H(X; | X,) satisfies the inequality

H(X, | Xo) < H(Xy) (3.22)
v

Proof of Theorem 3.4

To prove the theorem, consider the difference

H(X, | Xo) — HX1) = S 3 Pleo, 1) log( P(z1) )

Xo X; P(z, | zo)

and use in the RHS the inequality (3.9) so as to get

H(X; | Xo) — H(X1) < loge ) Y P(zo,21) ['Is'PLxl)—) - 1] =0

Xo X1 (21 | 7o
QED

The relationship (3.22) becomes an equality when &; and &, are independent
random variables. In this case, in fact, P(zy | o) = P(z1). A shrewd extension
of Theorem 3.4 and the exploitation of the stationarity of the sequence (£,)3%¢
allow one to write

H(anxn—l)'-'vxﬂ) S H(anxn—h‘"vxl)
= H(Xn_l | Xn_g, caey Xo) (323)

So the sequence H(X, | Xn-1,---,,X0), n = 1,2,..., is nonincreasing, and
since the terms of the sequence are nonnegative, the limit Hy, (X) exists. More-
over, it satisfies the following inequality:

0 < Hoo(X) < H(X) (3.24)

where the RHS inequality becomes an equality when the symbols in the sequence
are independent.

The entropy of an information source is difficult to compute in most cases.
We will describe how this is achieved for a particular class of sources, the sta-
tionary Markov sources. A stationary Markov source is an information source
whose output can be modeled as a finite-state, fully regular Markov chain (see
Section 2.2.1). The properties of a stationary Markov source can be described as
follows:
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(i) At the beginning of each symbol interval, the source is in one of g possible
states {S;}7_,. During each symbol interval, the source changes state, say
from S; to Sy, according to a transition probability p;x whose value is
independent of the particular symbol interval.

(iiy The change of the state is accompanied by the emission of a symbol z;,
chosen from the source alphabet X, which depends only on the present
state S; and the next state .Si.

(iil) The state S; and the emitted symbol z; uniquely determine the next state
Sk.

In other words, the current symbol emitted by the source depends on the past
symbols only through the state of the source. The stationary Markov model for
information sources is a useful approximation in many physical situations. The
interested reader is referred to Ash (1967, Chapter 6) for a detailed exposition of
the subject. Here, we will illustrate the concept with an example.

Example 3.5 Let a stationary information source (£,)32, be characterized by the
property P(zn | Zn1,...,%0) = P(Zn | Tn—1); that is, each symbol in the sequence
depends only on the previous one. We assume that the alphabet X is formed by three
symbols, say the letters A, B, and C. The probabilities P(z, | zn—1) are given as
follows:

Zn/Tn1 | A | B | C
A 0270404
B 0310502
C 060103

This source can be represented by using the directed graph of Fig. 3.6, where each
state represents the last emitted symbol and the transitions are identified by their prob-
abilities and the presently emitted symbols. It can be verified that this source satisfies
properties (i), (ii), and (iii), and thus it is a stationary Markov source. )

Let us compute now the source entropy Hy, (X ). Defining the entropy of the
state S; as

A 1

H(SJ) = ijk log <——)
k=1 Djk

where M; represents the number of symbols available at the state S, and denot-

ing by {w;}{_, the components of the stationary distribution vector (2.49), the

following basic theorem can be proved (see, e.g., Ash, 1967, Chapter 6).
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Figure 3.6: Graph representation of a stationary Markov source with alphabet X =
{A,B,C}.

Theorem 3.5
The entropy Hy,(X) of a stationary Markov source is given by

q
HOO(X) = Z ’LUJ'H(SJ') (325)
i=1

v

Example 3.6 With reference to the Markov source of Example 3.5, computing the sta-
tionary distribution vector and applying (3.25) we obtain the entropy Hoo(X) = 1.441.
[w]

Encoding stationary Markov sources

The inequalities (3.23) and (3.24) show that the average information content
of a source emitting nonindependent symbols decreases as the message length
increases. If we define the entropy of a block of successive symbols of a source

message as
& H(Xo, X1, - Xoo1) (3.26)

- TX X Plawme 50 % (e

Xo Xi Xv-1

H(XY)




120 3. Basic results from information theory

and apply the way of reasoning that led to (3.18), we find that a code can be
devised for blocks of v consecutive source symbols whose average number of
bits per symbol satisfies the inequality

H(X¥)

v

H(X¥
(x), 1
v v

ﬁ”
<—<
14

Moreover, using (3.23) and some easy algebra, it can be proved that the sequence

H(X*)/v, v=1,2,..., is nonincreasing, and its limit is H,,(X); that is,
. H(XY)
Jim, = = He(X)

T.hus we can see that increasing v (the block length) makes the code more effi-
cient at each step, and, as v goes to infinity, the average length 7, /v approaches
the source entropy He, (X) as close as desired; that is,

Hoo(X) < "7 < Ho(X) +0(r™Y), v —o00

The price that must be paid for this increased efficiency lies in the complexity
of the encoder, whose input alphabet size increases exponentially with v, and in
the decoding delay. In fact, before obtaining the first symbol in every block, one
must wait for the decoding of the entire block of » symbols at the output of the
source decoder.

Turning our attention to the particular case of Markov sources, we can apply
the Huffman procedure to encode the symbols of the alphabet for each state
S;. This may require using a different set of code words for each state of the
source. The performance of such a coding procedure is easily obtained. Using
Theorem 3.3 and denoting by 7(S;) the average number of digits/symbol of the
alphabet used in the state S;, we obtain

H(S;) < A(S;) <H(S;) +1

Thus, the average length of a code word is

and satisfies the inequality
Hoo(X) < < Hpo(X) +1

where (3.25) has been taken into account.
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Example 3.7 Letus use the state-dependent Huffman procedure to encode the Markov
source of Example 3.5 and compute its efficiency. Using the tree-encoding procedure
for the three symbols that can be emitted from the source in any state, we obtain the
following code

5115 |5
Alll|10]0
B|l10{|0 11
Cclo0 11 | 10

The average number of digits/symbol is
3
=) w;A(S;) = 1.5054
i=1

Using the result of Example 3.6 we can compute the efficiency o, of the code, which is

defined as
a Hyo(X)
€ = ———
i

and is equal to 0.957 in this case. ]

The source encoders we have described so far require the knowledge of the
source statistics, something that is often completely, or at least partially, unavail-
able in practice. As a consequence, universal coding schemes have been deeply
studied, which encode efficiently a broad class of sources in an adaptive fashion.
The best known, and widely applied, scheme is the Lempel-Ziv algorithm. This
important algorithm is not described here for space reasons; the interested reader
is referred to the original paper (Ziv and Lempel, 1977), or, for a general and
comprehensive treatment of source encoding algorithms, to the book by Bell et
al. (1990).

Information rate of a stationary source

In our definition of a discrete stationary source at the beginning of Section 3.2,
time was not taken into account. To overcome this, we need to place the events
forming a source message in correspondence with a sequence of points on the
time axis. In particular, let us assume that the source emits the symbols forming
a message at equally spaced time instants, and that the time period between two
consecutive emissions is T,. Thus we can define the average information rate of

the source, R,, as
a Hoo (X)

T,

R, bit/s (3.27)
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x(1) ¥

n(t)

Figure 3.7: Model of the additive noise channel.

As we shall see later, the appearance of time in our paradigm is strictly related
to the bandwidth of the channel that will be used to convey the information.

3.3. Communication channels

The communication channel is the physical medium used to connect the source
of information (in general, the transmitter) and its user (the receiver). As we saw
in Chapter 1, according to the block diagram of Fig. 1.4, different kinds of chan-
nels can be specified, depending on the sections of the system we are observing.
Between the output of the modulator and the input of the demodulator, for exam-
ple, we have a continuous channel, which can be modeled in its simplest form
by the additive channel shown in Fig. 3.7.

In it, z(t) is the information signal emitted by the modulator, n(t) represents
the noise added to the signal on the channel, and y(¢) is the received signal. The
channel is completely characterized by the probability distribution of the noise.
If we now observe the block diagram of Fig. 1.4 between the channel encoder
output and the decoder input, we have a discrete channel, which accepts symbols
z; belonging to the input alphabet X of the channel encoder and returns symbols
y; belonging to its own output alphabet Y. When X and Y contain the same
symbols, y; is an estimate of the jth transmitted symbol z;.

In the following, we shall see how to characterize a communication channel
and how to compute the rate at which the information can be reliably transmitted
through it.

3.3.1. Discrete memoryless channel

A discrete channel is characterized by an input alphabet X = {z;} %, an output
alphabet Y = {y;},, and by a set of conditional probabilities

-’ Dij, i=1)2y“'»NX, j=1,2,...,Ny
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X L——)O yNY

P NxNy

Figure 3.8: Model of a discrete memoryless channel.

Pu

1 ® Y,

Figure 3.9: The binary channel model.

where p;; E P(y; | z;) represents the probability of receiving the symbol y;
given that the symbol z; has been transmitted. We assume that the channel is
memoryless, that is

P(yl:"'yy‘nlzla-~~1zﬂ)=HP(yj]Ii)
i=1

where zi,...,z, and y;, ..., y, represent n consecutive transmitted and re-
ceived symbols, respectively. A graphical model of the discrete memoryless
channel is shown in Fig. 3.8.

Each arrow represents a transition from one of the symbols of the input al-
phabet to one of the symbols of the output alphabet, that is, the transmission of
a symbol belonging to X and the reception of a symbol belonging to Y. Each
transition is labeled with its conditional probability. The sum of all the transition
probabilities labeling the arrows stemming from the same input symbol is equal
to 1.

Example 3.8 The binary channel It is a special case of the discrete channel when
Nx = Ny = 2, as depicted in Fig. 3.9. The average error probability P(e) is defined as
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P(e) £ P(z1,y2) + P(z2,31) (3.28)
and can be computed as
P(e) = P(z1)P(y2 | 21) + P(z2) P(y1 | 32) = P(@1)p12 + Ple2)pn (3.29)

If the two transition probabilities pi2 and pay are equal, say, to p, the channel is called
binary symmetric channel (BSC) and (3.29) becomes

P(e) =p[P(z1) + P(z2)] =P
o

It is customary to arrange the conditional probabilities {pi;} into the channel
matrix

n P2 ..+ DNy
P21 P22 .oo DP2Ny

P é . - e . (3.30)
PNxl PNx2 --- PNxNy

In (3.30) the numbers p;; represent probabilities, so they satisfy the inequality
0 < pi; < 1, and, obviously, the relationship

Ny
Zpij=11 i=12,...,Nx
j=1

That is, the sum of the elements in each row of P is 1. The average error proba-
bility is defined by extension of (3.28) for Ny = Nx = N,as

N N N N
P 2L Play) = L PEIZ Pz
R =G
N N
= ZP(I.')ZP.'J'
= e
N
= EP(a:i)(l—pgi\ (3.31)

i=1
whereas the probability of correctly receiving the symbol transmitted over the

channel is given by
N N

Pe)21-Ple) =3 Px)P(w| =)= Ple)ps (332

i=1 i=1

Particular forms of P lead to cases of interest.
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Example 3.9 The noiseless channel For this channel, we have Ny = Ny = N, and
the conditional probabilities p;; satisfy the relationship

i#]
In words, the symbols of the input alphabet are in a one-to-one correspondence with the

symbols of the output alphabet. It can be easily verified that in this case P(e) = 0, as it
is intuitive. o

L oie
Pij={ o r=J (3.33)

Example 3.10 The useless channel For this channel, we have Nx = Ny = N, and
the output symbols are independent from the input ones, or

P(y; | =) = P(y;),  Vj,i (3.34)

Regarding matrix P, it is evident that (3.34) is verified if and only if P has identical
rows. (m]

A noiseless channel and a useless channel represent extremes of possible chan-
nel behavior. The output symbol of a noiseless channel uniquely specifies the
input symbol, whereas a useless channel completely “scrambles” all input sym-
bols, so that the received symbol gives no useful information to decide upon the
transmitted one.

Example 3.11 The symmetric channel For this channel, each row of the matrix P
contains the same set of numbers {p; };-V;'l, and each column contains the same set of

numbers {qg},-N=’§. The following matrices provide examples of symmetric channels

1/2 1/3 1/6 13 13 16 16
P=|1/6 1/2 1/3|, P=
1/3 1/6 1/2 1/6 1/6 1/3 1/3

(m]

According to the input and output channel alphabets X and Y and to their prob-
abilistic dependence specified by the channel matrix P, we can define five en-
tropies.

(i) The inpur entropy H(X),

H(X) 2 gP(z.-) log (ﬁ) bit/symbol (3.39)

which measures the average information content of the input alphabet.
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(ii) The outpur entropy H(Y),

Ny
H(Y) £ S P(y;) log (%) bit/symbol (3.36)
i=1 7

which measures the average information content of the output alphabet.

(iii) The joint entropy H(X,Y),

Nx Ny
H(X,Y) & Z Z P(z;,y;) log (P—(z%m> bit/(symbol pair)
= (3.37)

which measures the average information content of a pair of input and
output symbols, or the average uncertainty of the communication system
formed by the input alphabet, the channel, and the output alphabet as a

whole.

(iv) The conditional entropy H(Y | X),

Nx Ny
H(Y | X) 2 S5 Pz, ;) log (F(y—llx—j> bit/symbol  (3.38)
i=1j=1 J i

which measures the average information quantity needed to specify the
output symbol y when the input symbol z is known.

(v) The conditional entropy H(X | Y),

o Nx & 1 .
H(X|Y) = z; z; P(x;,y;)log (m bit/symbol  (3.39)
=1 )=

which measures the average information quantity needed to specify the in-
put symbol  when the output (or received) symbol y is known. This condi-
tional entropy represents the average amount of information that has been
lost on the channel, and it is called equivocation. The term equivocation
seems appropriate if one realizes that for a noiseless channel H(X l1Y)=0
(the received symbol uniquely determines the transmitted one), whereas
for a useless channel we find that H(X | Y) = H(X). In this case the un-
certainty about the transmitted symbol remains unaffected by the reception
of an output symbot (all the information has been lost on the channel).

Using these definitions and (3.22), it can be verified that the following rela-
tionships between the entropies just defined hold true:

H(X,Y) = H(Y,X) = H(X) + H(Y | X) = H(Y) + H(X | Y)  (3.40)
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H(X |Y) < H(X) (3.41)
H(Y | X) < H(Y) (3.42)

The 1'fe'ader is invited to verify some of the following results by applying the
definitions and properties (3.35) to (3.42) (see Problem 3.17).

Example 3.9 (continued)

HX|Y)=0 (3.43)
H(Y|X)=0 (3.44)

and
H(X,Y) = H(X)H(Y) (3.45)
[m]

Example 3.10 (continued)

H(X|Y)=H(X) (3.46)
HY|X) = H(Y) (3.47)

and
H(X,Y) = H(X) + H(Y) (3.48)
Equation (3.46) says that all transmitted information is lost on the channel. a]

Example 3..11.(continued) An important property of the symmetric channel is that
H(Y | X) is independent of the input probabilities P(x;) and depends only on the
channel matrix P. To show this, let us write

Nx
H(Y | X) =" P(z)H(Y | 2) (3.49)
i=1
where
a &y 1
H(Y | 2:) =) pijlog (-—) (3.50)
j=1 Dij

According to the definition of symmetry, all the rows of P are permutations of the same
set of numbers {p; };\’:”1 Thus

Ny
H(Y [z:) =) pjlog (i> (3.51)
j=1 Pj
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and inserting (3.51) into (3.49) gives

H(Y | X) = EP:::. Ep_,log( ) Ep,log( ) (3.52)

i=1 j=1

which does not depend on the input probabilities P(z;), i =1,... ,Nx. ]

3.3.2. Capacity of the discrete memoryless channel

We have seen that a part of the information H(X) that must be t.ransmittch over
the channel is lost because of the noise present in the channel itself. This part
is measured by the channel equivocation H(X | Y). Thus, it seems natural to
define the average information flow (also known as mutual information between
X and Y) I(X;Y) through the channel as

I(X;Y) £ H(X) — H(X | Y) bit/symbol (3.53)
Using (3.40), the following alternative forms can be derived:
I(X;Y) = H(Y) — H(Y | X) = H(X) + H(Y) - H(X,Y) (3.54)
Comparing (3.53) and the first equality of (3.54), it is apparent that I(X;Y) =
1[(Y; X).

Example 3.12 Let us compute I(X;Y) for the BSC with error probability p = 0.1 and
equally likely input symbols. Because P(z;) = P(z2) = 0.5, the output symbols y1
and ys are also equally likely. Thus we have

H(X) = H(Y) =1 bit/symbol

To compute 1(X;Y) using (3.54), we need the joint entropy H(X,Y) given by 3.37).
The joint probabilities P(z;, y;) are easily computed as

P(zy,41) = P(z1)P(y1 | 1) = 0.5-0.9 = 0.45
P(IlvyZ) =0.05
P(Ig,yl) = 0.05
P($2:y2) =0.45
Thus we have
H(X,Y) = 1.469

and in conclusion

I(X;Y) =1+1 - 1.469 = 0.531 bit/symbol
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Figure 3.10: Plot of the average information flow through a BSC as a function of the
input probability P(z1). The error probability p of the channel is the parameter.

The result shows that almost one half of the information is lost on the channel. How

does this result compare with the intuitive remark that, on the average, only ten percent
of the received bits are in error if p = 0.1 7 [}

Let us consider again the BSC and see how I(X; Y) depends on the probabil-
ity distribution of the input symbols. Using the form
I(X;Y) = H(Y) - H(Y | X)
and computing H(Y | X) using (3.49), we get
I(X;Y) = H(Y) - H(p) (3.55)

where H (p) was defined in (3.6). In Fig. 3.10 the plot of I(X; Y) versus P(z,)
for different values of p is shown. It can be observed that the maximum value of
I(X;Y), no matter what the value of p s, is obtained for P(zy) = 0.5, that is,
when the input symbols are equally likely. Then, fixing P(z;) = 0.5, we obtain
a value for I(X; Y) that depends only on the channel and represents the maximum
information flow through a BSC. It is given by

rp(aic I(X;Y)=1-H(p)=1+plogp+ (1 — p) log(1 -p) (3.56)
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Figure 3.11: Capacity of the BSC as a function of the error probability p.

where P(z) is the set of all possible probability distributions of the input sym-
bols. The maximum value of I(X; Y) is called channel capacity C and is plotted
in Fig. 3.11. The capacity is maximum when p is equal to 0 or equal to 1, .sinc.e
both these situations lead to a noiseless channel. For p = 0.5, the capacity is
zero, since the output symbols turn out to be independent from the input sym-
bols, and no information can flow through the channel. Note that, due to the
symmetry of the channel, H(p) = H(1 — p).

Based on the result obtained for the BSC, we can now define similarly the ca-
pacity C of a discrete memoryless channel as the maximum information [(X; Y)
that can be transmitted through the channel. Recalling the first equality of (3.54),
we obtain

. Nx Ny L.
Dij
cs [(X;Y) = max E E P(z;)p;; lo (———) 3.57
%](?’3( ( ) Ig(” i=1j=1 (wlpi log TiX P(ze)pe;

The meaning of the channel capacity and its significance are not completely
apparent so far. It will be proved later in this chapter that reliable transmission
through the channel is not possible when the average number of bits per channel
symbol is greater than the channel capacity. The analytical computation of the
channel capacity is difficult in most cases. However, numerical algorithms are
available, such as those due to Arimoto and Blahut (see Viterbi and Omura,

B e D, T e R A . e B ]

B e e s L 3

T
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1979, Appendix 3C). It becomes simpler in the particular cases of Examples 3.9
to 3.11.

Example 3.9 (continued) Using the result (3.43), we can write
C = max [H(X) - H(X | Y)] = max H(X) = log Nx
P(z) P(z)
Hence no information is lost on the channel. As a matter of fact, the information flow

through the channel equals the average quantity of information H(X) that is needed to
specify an input symbol. o

Example 3.10 (continued) Using (3.46), we get
C=HX)-HX]Y)=0

Hence no information can flow through the channel. O

Example 3.11 (continued) We have proved that the conditional entropy H(Y | X)
does not depend on the input probability distribution. Thus, the problem of maximizing
[(X;Y) = H(Y) — H(Y | X) reduces to the problem of maximizing the output entropy
H(Y). We know that H(Y) < log Ny, where the equal sign refers to the case of equally
likely outputs, that is,

We prove that the output symbols are equally likely when the inputs are equally likely.
In fact, if

P(z;) =
we have

Nx Nx L Nx
P(y;) =Y Pl(zi,y;) = Y Plzi)pi; = Nx > pi
=1 =1 =1

But the term }:fixl pij is the sum of the entries of the jth column of the channel matrix
P, and, by definition of symmetric channels, it does not depend on ;. Thus all symbols
y € Y have the same probability, and the capacity of a symmetric channel is given by

Ny

C =log Ny + Y p;logp; bit/symbol (3.58)
i=1

u]
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Figure 3.12: The binary erasure channel model.

Example 3.13  The capacity of the symmetric channel whose matrix is
P 1/3 1/3 1/6 1/6
{16 1/6 1/3 1/3
can be computed using (3.58) with Ny = 4, and yields
1

6) = 0.082 bit/symbol

1 1 1
C=2+2(zlog-+ =

1
38375 %

Example 3.14 Consider a channel with Nx = Ny = N and probabilities p;; € P
given by

e e 1- p, 1= J
PIZ\p/(N=1), i#]
The rows and columns of P are in this case permutations of the N numbers
P __?;)
PNIT N
Thus the channel is symmetric, and its capacity C is given by
C =logN + (1 —p)log(l —p) +plog (ITIP—_I) (3.59)

The capacity of the BSC is obtained as a particular case of (3.59) with N = 2. m]

Example3.15 The binary erasure channel (BEC) Consider the channel of Fig. 3.12.
The outputs y; and y, correspond to the input symbols z; and x5, whereas y; refers to
an ambiguous output for which no decision about the transmitted symbol will be taken.
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Figure 3.13: The capacity of the binary erasure channel.

This model represents a practical digital transmission system (see Problem 3.21). Let us
compute its capacity. The channel matrix is the following:

_|1-p 0 p
P—[ 0 1-p p]

It does not satisfy the symmetry conditions, so (3.58) cannot be applied. Starting from
the first equality of (3.54), it is straightforward to show that I(X;Y) is given by (3.55)
also in this case. Therefore, the capacity C' is obtained for the input distribution that
maximizes H(Y). Denoting P(z) by & and computing H(Y), we get

H(Y) = —plogp— (1 -p)log(l-p)
—a(l —p)loga - (1 - a)(1 —p)log(l —a) (3.60)

which is seen to have a maximum for & = 0.5. So the capacity is obtained for equally
likely input symbols, and it is given by

C=1-p (3.61)

Comparing the plot of C shown in Fig. 3.13 with the capacity of the BSC of Fig. 3.11,
we can see that erasing the received symbol when the information is not reliable can
improve the information flow through the channel. This is true even in a more realistic
situation when the probabilities P(yz | z1) and P(y | z2) are different from zero (see
Problem 3.21). [m}

We have seen that the channel capacity of the BEC is achieved with equally likely
input symbols, although the channel is not symmetric according to our definition.
However, by inspection of Fig. 3.12, we can see that the structure of the channel



134 3. Basic results from information theory

exhibits a clear symmetry with respect to the inputs. To cope with situations like
this, it is possible to generalize the definition of symmetric channels. The reader
is referred to Gallager (1968, Chapter 4) for useful theorems on the computation
of channel capacity in some particular cases of interest.

3.3.3. Equivocation and error probability

In Section 3.3.2 we have defined the average error probability P(e) of a discrete
channel and its equivocation H(X | Y). Both can be used as measures of the
channel quality, and certainly they are not independent quantities. In the fol-
lowing, we shall derive a relationship between them. Let us refer to a channel
matrix P, with Nx = Ny = N. Recalling the definition of error probability
already given in (3.31)

P(e) = P(zi,y5) (3.62)

M=
M=

-
Il
—

(e
n
-

Let us define now the entropy H (e) as
H(e) & —P(e)log P(e) — [1 — P(e)] log[1 — P(e)] (3.63)

that is, consider H (e) as the entropy of a binary alphabet with symbol probabili-
ties P(e) and 1 — P(e), which corresponds to the amount of information needed
to specify if an error has occurred during the transmission on a channel with error
probability P(e). We can prove the following theorem.

Theorem 3.6

Fano’s inequality. Given a discrete memoryless channel whose input and out-
put alphabets X and Y have the same number N of symbols, and with error
probability P(e), the following inequality holds:

H(X | Y) < H(e) + P(e) log(N — 1) (3.64)
v

Proof of Theorem 36

To prove the theorem, we use the definition (3.39) of the equivocation H(X | Y)
to write

HX|Y) =35 P L) 3 Pl i) log | o

I ;; xhyj IOg (P(Z'; I yJ)) + ; (xiyyi) og (P(Z'; I y;))
J#i :

- . (3.65)

e - 5__ P(MZ”_PL _v6) (1-pis)

J* ¢
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and the definition (3.31) of P(e) to get
H(X|Y) — P(e) log(N —1) — H(e) (3.66)
LA P(e) ) N ( 1 - P(e)
= P(z;,y;)log | —————— ] + ) Plzi,y) log | =—F=
2,2 Flzow) (=t + &P (e )

T l yi)
J#i -

Applying now the inequality (3.9) to the RHS of (3.66), we obtain ,QM xe¢e x-1

e

HX|Y) — P(e )log(N 1) - H(e) \\\\xw
= e

+g P(z,-,yi)@{———-lpzxj;f)) - 1]} 3.67)
= loge{ —IEZP Y;5) if:P (z1,95)

i=1 j=1 =1 j=1

J# J#i

N N
- PO Y Plu) = 3 Pl

i=1

= loge{P(e) - P(e) +[1~ P(e)] = [1 = P(e)]} =0
QED

The inequality (3.64) can also be given an intuitive interpretation. Detecting
whether or not an error has occurred, upon receiving asymbol y € Y, removes an
uncertainty equal to H (e). If no error occurred, the remaining uncertainty about
the transmitted symbol is zero. If an error occurred, an event that has probability
P(e), we still have to decide which of the remaining N — 1 symbols has been
transmitted to make a correct decision. The uncertainty about this choice cannot
exceed log(N —1).

In Fig. 3.14 the function H(e) + P(e)log(N — 1) is plotted versus P(e).
Since H(X | Y) = H(X) — I(X;Y), the theorem provides a lower bound to
the error probability in terms of the excess of entropy of the input alphabet X
with respect to the information flow through the channel. Considering now that
I(X;Y) < C, (3.64) can be written as

H(X)~C < H(e) + P(e) log(N — 1) (3.68)

The curve C+H (e)+ P(e) log(N —1) = 0 is reported in Fig. 3.15. It can be seen
by inspection that the region of the allowed pairs (P(e), H(X)) contains points
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Figure 3.14: Plot of the function H(e) + P(e} log (N-1) versus P(e).
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Figure 3.15: Plot of the function C + H(e) + P(e) log (N-1) versus P(e).

with abscissa P(e) = 0 only if H(X) < C. In other words, if the entropy {)f the
input alphabet exceeds the channel capacity, it is impossible to transmit t}.ue infor-
mation through the channel with arbitrarily small error probability. This result
is a simplified version of the converse to the fundamental theorem of information
theory, that will be discussed later on. If we identify the input alphabet of: the
channel with the output alphabet of the source encoder, the previously described
situation refers to a communication system in which the symbols at the output
of the source encoder are sent directly through the channel: no channel encoding
is performed. We shall now include the channel encoder into our system and

extend the previous results.
¢ Let us consider the system shown in Fig. 3.16 in which the block labeled
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Figure 3.16: Model of a discrete communication system.

“source” represents the cascade of the source itself and the source encoder.
Suppose for simplicity that the output of the source is a sequence of binary sym-
bols emitted every T, seconds. The channel encoder is a binary block encoder
(to be described in detail in Chapter 10). It transforms blocks of k consecu-
tive source digits (words) into blocks of n digits belonging to the input channel
alphabet X. An encoding rate R, can be defined as

R 2K (3.69)
n
Since n symbols must be transmitted over the channel every - T, seconds, the
channel must be used every T, = R, T, seconds. Denoting with W the set of 2*
messages at the input of the channel encoder and with Z the set of 2% messages
at the output of the channel decoder, we can apply the Fano inequality to these
two sets, obtaining

H(W | Z) < H,(€) + P,(e) log(2* - 1) (3.70)

where H, (e) is the entropy of a binary alphabet with symbol probabilities P, (e)
and 1 — F,(e), and where the subscript w in P, (e) denotes “word” and P, (e)
represents the average probability of decoding a word erroneously, that is, of
incorrectly recognizing the transmitted code word. Moreover, since H(W | Z) =
H(W) — I(W;Z), and taking into account that the following inequality holds
true (data-processing theorem; see Viterbi and Omura, 1979, Chapter 1 for a
proof; roughly speaking, it states that it is impossible to increase the information
content of a message by processing it in some way),

I(W;7) <I(X;Y)
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we get
H(W|Z)>HW)-I(X;Y) 3.71)
Since the transmission of each block of k bits involves using n times the channel,
we can also write
I(X;Y) < nC 3.72)

so that, inserting (3.72) into (3.71) and the result into (3.70), we obtain
H(W) - nC < H(e) + Pule) log(2* — 1) 3.73)

The inequality (3.73) is the converse to the coding theorem. Since the alphabet
W is obtained by grouping k consecutive symbols at the output of the source, the
entropy H(W) is given by

H(W) = kH (L) (3.74)
where H,,(L) is the entropy of the source. Thus, inequality (3.73) states that
the probability of erroneously decoding a sequence of & source symbols carm_ot
be made arbitrarily small when the encoding rate R, is greater than the ratio

C/Hw(L). A lower bound to the error probability can be derived from (3.73)
and (3.74) as follows:

kHeo(L) — nC — H(e) _ kHy (L) —nC -1 CH(L c 1
> > = -
hle 2 — @ k =) -7 "%
Now, letting k and n go to infinity and keeping constant their ratio R, yields
C
P,(e) > Hoo(L) — & (3.75)
(4

Previous considerations refer to the word error probability. We want to ex-
tend them to the bit error probability, that is, the probability that a source binary
symbol will be delivered erroneously to the user. With reference to the notations
of Fig. 3.16, the bit error probability is defined as P (e) £ P[¢: # M, ie., the
probability that a single source digit is in error after channel decoding. As.sum-
ing for simplicity that the binary source symbols are independent, identically
distributed, equally likely RVs, we can apply Theorem 3.6 to obtain

T0a¢) =HO) —HN | Q) =1-H | G) 21— Hye)  (3.76)
where Hy(e) is the entropy of a binary alphabet with symbol probabilities F, (e)
and 1 — P,(e). Moreover, using (3.76) it can be proved that

k

W | Z) > 3100 G) > kL — Hi(e)] 3.77)

i=1
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Finally, observing that, owing to the data processing theorem, the following
chain of inequalities holds :

(W;2) <I(X;Y)<nC (3.78)
Combining it with (3.77), we obtain
k C
=L
R n ~ 1— Hy(e) (3.79)

The bound (3.79) is a decreasing function of the bit error probability through the
denominator of the RHS. This is not surprising, as it merely means that the more
reliably we want to communicate, the slower we must communicate.

From (3.79) we can also derive a lower bound to the bit error probability,
analogous to (3.75), in the form

C
Pye) > Hy'(1- =) (3.80)
R,
which states once again that we cannot communicate reliably at rates above the
channel capacity.

Channel coding theorem

We have seen in the previous subsection that there exists a lower bound to the
error probability, different from zero, when the encoding rate R, is greater than
the channel capacity C. This is the “negative” result known as the converse to
the coding theorem. When the encoding rate R, is smaller than C the system
behavior is dictated by the channel coding theorem, which will be stated here
without proof. It was proved in 1948 by C. E. Shannon, and the interested reader
is referred to his original paper (Shannon, 1948) or to one of the many books
available, for example, Gallager (1968, Chapter 5).

Theorem 3.7

Given a binary information source, with entropy H, (L) bits/symbol and a dis-
crete, memoryless channel with capacity C, there exists a code of rate R, = k/n
for which the word error probability is bounded by

P,(e) <2"E® R = R.Hy(L) (3.81)
where E(R) is a convex U, decreasing, nonnegative function of Rfor0 < R < C.

v

A typical behavior of the function E(R) is shown in Fig. 3.17. Based on
(3.81), we can undertake three different actions to improve the performance of a
digital communication system.
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Figure 3.17: Typical behavior of the function E(R).
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Figure 3.18: Increasing the value of the function E(R) by decreasing R. = k/n.

(i) Decrease R by decreasing R, = k/n. This means increasing the redun-
dancy of the code and, for a given source emission rate, using the channel
more often. In other words, we need a channel with a larger bandwidth
(see Chapter 5 for a thorough discussion of this point). What happens is
shown in Fig. 3.18. We move from R; to R, so that E(R) increases and
the RHS in (3.81) decreases.

(ii) Increase the channel capacity C by increasing the signal-to-noise ratio over
the channel. This situation is depicted in Fig. 3.19. The operating point
moves from the previous function E; (R) to the new function Ez(R), thus
decreasing the RHS of (3.81).

(iiiy Increase n, while keeping the ratio R, = k/n constant. This thir.d ap-
proach does not require any intervention on the bandwidth and/or signal-
to-noise ratio of the channel. It allows one to improve the performance
of the communication system by simply increasing the length of the code
words, and thus at the expense of a greater complexity of the encoder-

+  decoder pair and of a longer delay in reconstructing the decoded sequence.
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Figure 3.19: Increasing the value of the function E(R) by increasing the capacity C of
the channel.
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Figure 3.20: Block diagram of a time-discrete additive Gaussian channel.

While (i) and (ii) were well-known remedies to counteract the disturbances
in a communication system, the use of the third way is one of the major achieve-
ments of Shannon'’s theory.

3.3.4. Additive Gaussian channel

In this section we shall consider a communication channel that is amplitude-
continuous and time-continuous. Starting from the discrete channels considered
50 far, this situation will be approached in two steps. First, we shall examine the
time-discrete, amplitude-continuous Gaussian channel shown in Fig. 3.20. Every
T, seconds the source transmits a symbol chosen from a possibly uncountable al-
phabet. The channel disturbance has the form of an unwanted noise added to the
signal to be transmitted. The assumption that the noise is Gaussian, which is
highly desirable from a mathematical point of view, also turns out to be reason-
able in a wide variety of physical settings. After the analysis of this simplified
case has been completed, we shall extend the results to the time-continuous chan-
nel, in which the transmission of information will be allowed to be continuous
in time. The derivation of the main result will be done in a heuristic manner,
avoiding all mathematical subtleties. The unsatisfied reader is invited to quench
his/her thirst for rigor in Ash (1967, Chapter 3). For the channel of Fig. 3.20,
we have 7 = £ + v, where £ and 7 are RVs representing the input and output
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symbols and taking values z € X, y € Y with the probability density functions
(pdf’s) fe(z) and f;(y), respectively, and v is a zero-mean Gaussian RV repre-
senting the noise. Denoting the noise variance with o2, we have v ~ N'(0,02),
and the output 7, given £ = z, is N'(z,02). Our goal is the evaluation of the
channel capacity; thus we need to extend our definition of the information mea-

sure to the continuous case.
Measure of information in the continuous case
Let ¢ be a continuous RV taking values in X with pdf fe(x). We define its entropy
HX) as

o0

HX) 2 - / fe(z) log fe(z) dz (3.82)

—00
Although (3.82) seems a straightforward extension of the definition (3.5) given
in the discrete case, some differences arise. The main one consists in the fact
that H(X) defined in (3.82) may be arbitrarily large, positive, or negative (see
Problem 3.30). In the same way as for (3.82), we can define for two random
variables ¢ and 7 having a joint probability density function Jen(z, y), the joint
entropy H(X,Y), and the conditional entropies H(X [ Y) and H(Y | X) as

H(X,Y) & - /_0; /_0; fen(z,y) 108 fen(z, ) dz dy (3:83)

HX V) 2= [7 [ fo@v)logfen@|v)dzdy B84

HY [ X) 2= [7 [” fo@)losfuly|s)dsdy (385

Assuming now that both H(X) and H(Y) are finite, the following relationships
hold true, as in the discrete case:

H(X,Y) < H(X) + H(Y)

H(X,Y) = H(X) + H(Y | X) = H(Y) + H(X | Y)
H(Y | X) <H(Y), HEX]|Y)<H(X)

In all the preceding relationships, inequalities become equalities if £ and 7 are

statistically independent.
In the discrete case, we have proved (Theorem 3.1) that the entropy is maxi-
mized by equally likely symbols. In the continuous case, the following theorem

holds.

3.3. Communication channels 143

Theorem 3.8
Le.t € be a continuous RV with pdf f¢(z). If £ has finite variance a?, then H(X)
exists and satisfies the inequality

H(X) < llog(zvreag) (3.86)

with equality if and only if & ~ A (u,0?) . v

For the proof, see Problem 3.31.

Capacity of the discrete-time Gaussian channel

Suppose that the continuous RV’s ¢ and 7 represent the input and output
symbols for the channel of Fig. 3.20. As we did for the discrete channel, we
define the average information flow through the channel as

A
I(X;Y) = H(X) - H(X | Y) = (Y; X) = H(Y) — H(Y | X) (3.87)
and the channel capacity C as

C & maxI(X;
max (X;Y) (3.88)

We know that, given § = z, 7 ~ N(z, 02). Thus
H(Y | X) = 2log(2neq?)

and
C= max H(Y) = log(2meo?) (3.89)

By Theorerr.l 3.§, H(Y) is maximum when 7 is Gaussian, and this in turn happens
¥f and only if £ is Gaussian. Therefore, the capacity C is attained for a Gaussian
input &, say ¢ ~ N'(0, 02), and its value is given by

2

1 1 !
C 3 log [2me(0} + 07)] - 5 log (27eo?) = Elog (l + g) (3.90)

g,

Capacity of the bandlimited Gaussian channel

We have treated up to this point only time-discrete channels. On the other hand,
many channels of practical interest are time-continuous, in the sense that their
inputs and outputs are time-continuous functions. To extend the result (3.90) to
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this new situation, let us suppose that the channel input signals are st.rlctly band-
limited to the frequency interval (~B, B) Hz. Then, by the sampling theorem
(see Section 2.5.1), we can represent each signal using (at least) 2B samples per
second. Each sample has a variance o7 equal to the signal power P Moreqver,
the noise is assumed to be a white Gaussian random process, Wltf.] two~sxdgd
power spectral density Vo /2, sampled every 1 /2B seconds. Hence its power 1s
o2 = (No/2) - (2B) = N,B. As a consequence, the result (3.90) becomes

1 P
C=§log(1+NB

) bit/(channel use) (3.91)
0

Recalling the definition (3.27) of the source rate R, in bits/s, we can define the
energy per information bit of a transmitter with average power P

a P . 92
= — /it (3.92)
tfb Rs 1
Substituting (3.92) into (3.91) yields
1 EbRs) .
== == bit/(channel use) (3.93)
C=gloe (1 T NoB (

If the system includes a channel encoder with rate R., we shall presen.t Fo the
channel a bit flow with rate R,/R,. We will see in Chapter 6 fhat the minimum
value of B required to transmit reliably this rate of information (the so called
Nyguist bandwidth) is B = F, so that (3.93) becomes

C = = log (1 + 2R.E;/N,) bit/(channel use) (3.94)

v | k=

Finally, by means of (3.79), we obtain the inequality

log (1 + 2R.E,/No) (3.95)
¢ = 21— Hy(e)]

Equatioh (3.95), with equality substituted for the inequalit.y, yiel.ds the .relation—
ship between the bit error probability and the signal-to-noise ratio per informa-
tion bit, for a given code rate. It is plotted in Figure 3.21 f9r various .values 'of 'Rc.
For a'given code rate, only the region above the respective curve 1s admissible
for the pair (Py(e), E/No)- ~ .
Letting Py(e) = 0, i.e., Hy(e) = 0 in (3.91), and solving with respect to

Es/ Ny, yields

: & 21 (3.96)

’ No = 2R
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Figure 3.21: Plot of the points (£,/Ny, Py(e)) satisfying (3.95) with equality for vari-
ous values of the code rate R.. The curve pertaining to the uncoded binary antipodal
modulation (see Chapter 4) is also shown.

Equation (3.96), with equality substituted for the inequality, yields the relation-
ship between the signal-to-noise ratio per bit which is required to obtain a re-
liable transmission as a function of the code rate. It is plotted as curve (A) in
Figure 3.22, where we also plotted two other curves. The first of these, curve
(B), stems from the capacity of the Gaussian channel constrained to a binary in-
put. Such a capacity, which is denoted as C, . to make explicit the continuous
unconstrained output, has been derived in Chapter 4 of the book by McEliece
(1977). 1t is given by

_ 2R L @ 2R [2R.Ep
Cye = N, Wor Wt log cosh Mo +y N, dy (3.97)

For small signal-to-noise ratios, the capacity C, . approaches the capacity C of
the unconstrained Gaussian channel, which proves that binary-input quantization
does not hurt for low signal-to-noise ratios. The third curve, curve (C), refers to
the capacity of the binary-input, binary-output channel obtained from a Gaus-
sian channel through a double binary quantization of both input and output. Its
capacity, denoted with obvious notation as C, 5, caincides with the capacity of
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Figure 3.22: Plot of the points (R, Ev/No) satisfying (3.96) (curve (A), w'tconstrained
Gaussian channel), and derived from (3.97) (curve (B), binary-input Gaussian channel),
and from (3.56) (curve (C), binary-input, binary-output Gaussian channel) versus the
code rate R,.

the binary symmetric channel given in (3.56)
Caz=1+plogp+ (1 —p)log(l - p) (3.98)

with the following expression for the transition probability p, obtained assuming
the most efficient modulation scheme (binary antipodal, see Chapter 4) over the
additive Gaussian noise channel and a code with rate R, (see Chapter 10):

p= L orfe ( R°£"> (3.99)

2 No

Comparing curve (A) with curve (C), we notice a degradation 'of ab'out 2 dB for
low signal-to-noise ratios; this is the price to be paid for using binary output
quantization. . '
To pass from the capacity expressed in bit per channel use to its expression
in bit per second, we simply need the consideration that we need 23 sample§ per
second to represent a signal with bandwidth B Hz, so that Wwe are using 2B times
per second a discrete-time Gaussian channel with capac1.ty .C given by (3.9.1).
THus, finally, we obtain the capacity C, in bit/s of a bandlimited white Gaussian
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channel as

C, =YB log (1 + FZJE) bit/s (3.100)
The result (3.100) is of fundamental importance, since it gives the upper limit
that can be reached when information is to be reliably transmitted over Gaus-
sian channels. The designer of a digital communication system tries to choose
the system parameters in such a way as to approach the capacity C, as closely
as possible with a preassigned error probability. In Chapter 5 the modulation
schemes most widely used in digital transmission systems will be compared,
among themselves and with respect to the limit given by C, in (3.100),

Example 3.16 Most of today’s telephone connections use a transmission medium that
is almost entirely digital, with a fairly short analog local loop connecting the subscriber
at one end to this medium via a digital central office. Such high quality telephone lines
have a signal-to-noise ratio of about 37 dB, i.e., P/NgB = 10%7, and a bandwidth of
about 3500 Hz.

Computing the capacity C'; of such a channel, considered in a first approximation as
an additive Gaussian channel, we obtain, through (3.100)

C, = 3500log(1 + 10%7) = 43,020 bit/s

Let us compare this theoretical capacity with the data rate achievable by today’s off-
the-shelf modulator-demodulators (modems). The last standard approved by the Inter-
national Telecommunications Union is contained in the Recommendation V.34. It is a
modem using multilevel amplitude and phase modulation combined with channel cod-
ing and shaping to provide roughly a 5 dB gain. The highest data rate provided by
V.34 modems is 33,600 bit/s and represents a dramatic improvement over the previous
V.32 bis standard (1990) of 14,400 bit/s. The gap between the achieved data rate of
33,600 bit/s and the channel capacity (43,020 bit/s) is due to several reasons, such as the
nonGaussianness of the channel, other disturbances, implementation losses, etc.

The highly sophisticated V.34 modem incorporates most of the state-of-the-art the-
oretical achievements of the last years in the field, like trellis-coded modulation (see
Chapter 12), signal shaping through shell mapping (see Chapter 5), adaptive equaliza-
tion and precoding (see Chapter 8).

Presently, the V.34 modems are being superseded in the market by PCM (pulse-
coded modulation) modems that advertise speeds around 50 kbit/s. These modems are
not based on the classic additive Gaussian channel model, but rather exploit the fact
that in many applications a digital connection to the network can be made (for further
information, see Humblet and Troulis, 1996). m]
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From (3.93), the capacity in bits per second can also be expressed as a func-
tion of the source rate R, and of the energy per information bit &, as

= gbR') 3.101
C,—Blog(1+NoB (3.101)

We can state and prove the following theorem.

Theorem 3.9

To transmit information on a additive white Gaussian noise channel with two-
sided noise power spectral density No /2 W/Hz, any digital communication sys-
tem requires an energy per bit satisfying the following inequality:

&> Mo _ 603N, (3.102)
loge
v

Proof of Theorem 3.9

The theorem concerns unlimited-bandwidth channels. Thus, taking the limit of
the RHS of (3.101) for B — oo, the limit yields (see Problem 3.32)

_ &R,
a 0

C, loge

Considering now that R, < C, we obtain (3.102). QED

Inequality (3.102) expressed in decibels provides an absolute lower limit to
the signal-to-noise ratio of every communication system to operate reliably (that
is, with Py(e) — 0)

&
- > -1.59 dB (3.103)
w2

. 0

In Chapters 4 and 5, we shall see that the most efficient binary modulation
scheme (2-PAM or 2-PSK) requires a much greater signal-to-noise ratio to oper-
ate at low error probabilities, like 10.5 dB at P(e) = 107%. The range between
_1.59 and 10.5 dB is the vast region where coding can be used to improve the
power efficiency of digital communication systems (see also Chapter 10, 11, and

12).
)Theorem 3.9 assumed no bandwidth limitation. When the channel is band-
limited, instead, we can define the spectral efficiency 7 of the modulation scheme
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Spectral efficiency r
bit/s Hz
W
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Figure 3.23: Plot of the points (€3/No, 7) satisfying Theorem 3.10 with equality.

employed (see Chapter 5, which also contains a detailed discussion on how to
define the bandwidth)

r2 %i bit/sec/Hz (3.104)

and prove the following theorem providing a lower bound to the signal-to-noise
ratio as a function of r.

Theorem 3.10

To transmit information reliably on an additive white Gaussian noise channel
with spectral efficiency r any digital communication system requires a signal-to-
noise ratio satisfying the following inequality
T —
& 7ol
No T

(3.105)

\Y%

Proof of Theorem 3.10
Starting from (3.101), include R, < C;, and solve for £,/ Ny. QED

In Fig. 3.23 we report the function r that satisfies (3.105) with equality versus
£,/Ny. Any communication system can be described by a point lying below
the curve, and for any point below the curve a communication system can be
designed whose bit error probability is as small as desired. The challenge of
system designers is precisely to approach as close as possible this curve.
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Example 3.17 Consider a source with rate R, whose output enters a block channel
encoder with rate R, = 0.5. To compute the lower bound (3.105) we need the .spectral
efficiency r. The data rate at the output of the channel encoder (and .at the input .of
the channel) is equal to R, /R, digits/s, R, being the encoding rate. Using the Nyquist
bandwidth (see Chapter 7) B = R, /(2R.), we get

r=&=%’—=2Rc=1.
B 3
Substituting 7 = 1 in (3.105) yields
& 5048

0

3.4. Bibliographical notes

This chapter has no presumptions of originality, as its material simply summa-
rizes results discussed in greater depth in the many excellent textl_)ooks :clvmlable
on the subject of information theory. All of them stem from the pioneering work
of C. E. Shannon that was published in his fundamental paper of 1948 (Shannon,
1948); see also the collection of all papers by Shannon edited by Sloane and
Wyner (1993).

As students first, as researchers and teachers later, the authors have been
especially familiar with the classical books by Fano (1961), Ash (1967), Gallager
(1968), and Cover and Thomas (1991). We are indebted tc? these books for. the
development of topics in this chapter. In the following, we give some suggestions
to the reader wishing to go deeper into the subject.

Berger (1971) wrote an advanced book dealing whol'ly \?/ith the source cod-
ing theorem, its generalizations, and its practical appllcanons.' Chapte.r 3 of
McEliece (1977) is devoted to a modern and original presentation .of discrete
memoryless sources and their rate-distortion functions. Source cgdmg anfi re-
cent advances in rate-distortion theory are also treated extensively in Viterbi and
Omura (1979, Chapters 7 and 8). A comprehensive and highly informative book
on source encoding is the one by Bell et al. (1990). In this chapter, we t}avc.e de-
scribed the Huffman source coding algorithm. Although it has found ubiquitous
applications, the Huffman coding procedure has some drawl?acks: the source
statistics must be known, and, because of the code word’s variable length, there
i§ a mismatch between source and channel rates that requires buffering at the
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transmitter. Moreover, the algorithm is not designed to take advantage of long se-
quences of the same characters. An alternative source coding technique remedies
some of the deficiencies of the Huffman coding algorithm. It is the Lempel-Ziv
algorithm, described in Ziv and Lempel (1977). The Lempel-Ziv algorithm is in-
trinsically adaptive to the source and can efficiently encode frequently-occurring
groups of source symbols.

For the subject of discrete channels with memory (not covered in this chap-
ter), see Ash (1967, Chapter 7), Gallager (1968, Chapter 4), and Viterbi and
Omura (1979, Chapter 2). The continuous-time Gaussian channel, briefly men-
tioned here, is treated in detail in Fano (1961, Chapter 5), Gallager (1968, Chap-
ter 8), and Ash (1967, Chapter 8).

3.5. Problems
Problems marked with an asterisk should be solved with the aid of a computer.

3.1 For the third source alphabet of Example 3.1 show by direct differentiation that
the entropy has a maximum for p = 0.5.

3.2 For the source of Problem 3.1, consider sequences of two outputs as a single
output of an extended source with alphabet

X2 = {(1:1,121), (1:1,1:2), (z21x1)’ (1:2,1:2)}

Under the hypothesis that consecutive outputs from the source are statistically
independent, show directly that H(X?) = 2 - H(X). Generalize the result to the
case of an extended source X",

3.3 A source emits a sequence of independent symbols from an alphabet X consisting
of five symbols zy,...,zs, with probabilities 1, 1,1 & 2 respectively. Find

the entropy of the source alphabet.

3.4 A black and white TV picture consists of 525 lines of picture information. As-
sume that each line consists of 525 picture elements and that each element can
have 256 different brightness levels. Pictures are repeated at the rate of 30 per
second. What is the average rate of information conveyed by a TV set assuming
independence?

3.5 Consider two discrete sources with alphabets X; and X, having M; and M,
symbols, respectively, and probability distributions {p,}f‘_”__‘1 and {q,}f‘i’l From
these sources a new source is formed, with M; + M, symbols: the first M,
symbols have probability distribution {,\pi}fi‘l, while the last M2 symbols have
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probability distribution {(1 ~ A)¢:} 222 , 0.< ) < 1. Find the entropy of the new
source and the value of A that maximizes it.

e . . . M
3.6 Given a source of alphabet X with M symbols and probability distribution {p:}it1.
group the last m symbois to form a new source X' with M' = M ~m+1 symbols

and probability distribution {¢;}24] such that

qi = Pi, 1;=1,2,...,M’—1

g =pMr +PM1 Yt T PM
Show that the entropy of the new source satisfies the inequality H(X') < H(X).

3.7 Abinary source with alphabet X and symbols {z1, T2} has probatbilities P{z,} =
0.1and P{z3} = 0.9. Construct the Huffman codes con'espc?ndmg to the sources
Xv ,(v=1,2,3,4), obtained by grouping the outpu.ts of X in words of length v.
For every value of v, find the efficiency of the encoding scheme.

3.8 Given the source with alphabet X having symbols {z;}%.,, and probability distri-
bution

find three binary codes satisfying the prefix constraint such that:

(2) The average number of digits/symbol i is minimized;
(b) The maximum number of digits in every code word is minimized;

(¢) The average number of digits/symbol 7 is minimized subject to the con-
straint that the maximum length of the code words is 4.

3.9 Consider a source alphabet with N symbols, and two probability distributions

{(p1,P2,P3,---,pn} and {py,P2,P3,--- PN}
where

PL=PL=AP L ApS 0, >
pp=p2+Ap

Show that the entropy of the alphabet is greater for the second prabability distri-
" bution provided that p; > po- Hint: Applying the inequality In 2 < z — 1, with
T = q;/pi, show that the following inequality holds true:

~Y pilogpi < - _pilogai
i i

where {p;}¥ and {g;}{" are probability distributions.
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Figure 3.24: See Problem 3.10

3.10 InFig. 3.24, the representations of symbols 0,1,...,9are shown. A two-dimensional
field with 4 x 6 positions (white or black) is used. Find the redundancy of this
code under the hypothesis that the symbols are equally likely.

3.11 A binary source with alphabet X having symbols {1, 22} has a probability dis-
tribution {p; = 0.005, p = 0.995}. The outputs from the source are grouped in
blocks of 100 each, and a code word is associated only with those blocks contain-
ing no more than three symbols ;. Assuming that the symbols from the source
are statistically independent

(a) Find the minimum code word length for a fixed-length code;
(b) Find the probability that a block is not encoded.

3.12 A source has an alphabet of four symbols. The probabilities of the symbols and
two possible sets of binary code words for the source are as follows:

Symbol | P(z;) | Codel | Code II
1 |04 |1 1
z2 0.3 01 10
z3 0.2 001 100
T4 0.1 000 1000

For each code, answer the following questions:

(a) Does the code satisfy the prefix condition?
(b) Is the code uniquely decipherable? .

(c) What is the mutual information provided about the source symbol by the
specification of the first digit of the code word?

3.13 For the source of Example 3.5, compute the entropy and check the result of Ex-
ample 3.6.
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N~ ° 0.1 ? 2,
0.7

Figure 3.25: See Problem 3.14

3.14 It is desired to re-encode more efficiently the output of the Markov source illus-
trated in Figure 3.25.

(a) Find the entropy Ho(X) of the source.

(b) Construct the Markov diagram for pairs of symbols.

(c) Construct the optimum binary code for all pairs of symbols and evaluate the
resulting code efficiency.

3.15 Consider a stationary source with a ternary alphabet X = {271,2:2, z3}, for which
the probability of each symbol depends only on the prec.edmg symbc'JI. The prob-
abilities of the possible ordered symbol pairs are given in the following table:

Tn-1/Zn Z1 z2 z3
T 0.20 | 0.05 | 0.15
) 0.15 | 0.05 | 0.10
z3 0.05 | 0.20 | 0.05

Determine the optimum binary code words and the resulting code efficiency for
the following encoding schemes:

& The sequence is divided into successive pairs of symbols and each pair is
represented by a code word.

& A Markov model for the source is devised, and a state-dependent code is
used to encode each symbol.

3.16 The state diagram of a Markov source is given in Fig. 3.26, and the symbol prob-
abilities for each state are as follows:

51 Sy | S3 | 84
21|07 |03[05]03
z | 0125 | 05| 01|05
£3 | 00750 {010
. zg |01 |02]03]02]
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Figure 3.26: See Problem 3.16

X O——————»0 y, X e— »az

Y / 5
X x Y2 X x / 2
% 2 .

Figure 3.27: See Problem 3.18

() Evaluate the source entropy Hoo (X).
(b) Construct an optimum set of binary code words for each state and evaluate
the resulting code efficiency.
3.17 Prove the results (3.43) to (3.48).

3.18 The symbols from a source with alphabet X = {1, 22,23} and probability distri-
bution {3, 1, 3} are sent independently through the channels shown in Fig. 3.27.

Evaluate H(X), H(Y), H(Z), H(X | Y), and H(X | ).

3.19 A channel with input alphabet X, output alphabet Y, and channel matrix P, is
cascaded with a channel with input alphabet Y, output alphabet Z, and channel
matrix P, (Fig. 3.28).

Under the hypothesis of independent transmissions over the two channels, find
the channel matrix P of the equivalent channel with input X and output Z.

3.20 Prove that the cascade of n BSC’s is still a BSC. Under the hypothesis that the
n channels are equal, evaluate the channel matrix and the error probability of the
equivalent channel and let n — oo.



Ty

Tt

156 3. Basic results from information theory

bl

1T

X Py : P,

Y

Figure 3.28: See Problem 3.19

DECISION N
SOURCE MODULATOR DEVICE r-» %
X={x},x,) t1

v

Figure 3.29: See Problem 3.21

3.21 Consider the transmission system shown in Fig. 3.29. A modulator associates
with the two symbols z;, z emitted by the two source voltages of +1 and -1V,
respectively. A Gaussian noise represented by the RV v is added to the modulator
output, with v ~ A7(0, 1). The decision device can operate in two ways:

(a) It compares the received voltage with the threshold zero and decides that
z1 has been transmitted when the threshold is exceeded or that z3 has been
transmitted when the threshold is not exceeded.

(b) It compares the received voltage with two thresholds, +& and —§. When
+7 is exceeded, it decides for z;; when -§ is not exceeded, it decides for
4; if the voltage lies between —4 and +4, it does not decide and erases the
symbol.

Compute and plot the capacity of the two discrete channels resulting from the
application of decision schemes (a) and (b). Plot the second one as a function of
4.

3.22 For the two situations depicted in Fig. 3.30, show that I(X;Y) = I(X; Z). Verify
also that in the first case H(Y) > H(Z), whereas in the second case H(Y) <

H(Z).

3.23 Compute the capacity C of the channel shown in Fig. 3.31.

Figure 3.30: See Problem 3.22

3.5.

3.24

3.25

3.26

327

3.28
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Figure 3.32: See Problem 3.27

Cascading n such channels, compute the capacity Cj, of the equivalent channel
and let n — oo.

Consider the cascade of two BSC channels. Prove that the capacity of the equiv-
alent channel cannot exceed the capacity of each single channel.

Consider the BEC channel with channel matrix given in (3.60). Compute and plot
H(X | Y) as a function of P(z,).

(*) Write 2 computer program implementing the Arimoto-Blahut algorithm (see
Viterbi and Omura, 1979, Appendix 3C) to find the capacity of a discrete channel.

Find the capacity and an optimizing input probability assignment for each of the
discrete channels shown in Fig. 3.32 (Gallager, 1968).

(*) Compute the capacity of the channels of Problem 3.27 using the program de-
veloped in Problem 3.26 and compare the results with those obtained analytically
in Problem 3.27.
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3.29 Let £ be a continuous RV uniformly distributed in the interval X = (0,b). Com-
pute its entropy H(X).

3.30 Show that the entropy H(X) of the RV ¢ having probability density function:

2
felz) = { (1)([3(1°g$) I, zi:

is infinite.
3.31 Prove Theorem 3.8. Hint: Prove first that the following inequality holds:
o0 00
7 e toglie(@ds < - [ Je(a)ogln(a)] e
—00 ~00
where fg(z) and f,(x) are arbitrary probability density functions. Then apply it

by considering an arbitrary probability density function f¢(x) with finite variance
0%, and a Gaussian density function

2

3.32 Compute the upper limit of the capacity (3.100) of a bandlimited Gaussian chan-
nel as B — 0.

3.33 Prove the inequality (3.105) of Theorem 3.10.

Waveform transmission over the
Gaussian channel

In this chapter we introduce digital modulation as a way of delivering to the user
digital information generated by the source. A physical communication channel
is available, which may consist of a pair of wires, a coaxial cable, an optical
fiber, a radio link, or a combination of these. Therefore, it is necessary to convert
the sequence of source symbols into waveforms that match the physical proper-
ties of the transmission medium. What is called digital modulation (or digital
signaling) is indeed the mapping of digital sequences into a set of waveforms.

The digital modulator is the functional device that achieves such mapping. In
its simplest possible form the mapping is one-to-one between binary digits and
a set of two waveforms. This type of transmission is called binary modulation,
or binary signaling. More generally, the modulator may map into waveforms
blocks of h binary digits at a time, and hence need a set of M = 2" different
waveforms. This type of transmission is called M-ary (or multilevel) modulation.

All physical channels corrupt the information-bearing waveforms with dif-
ferent impairments such as distortions, interferences, and various types of noise.
At the receiving side, the corrupted waveforms are processed by the digiral de-
modulator. Its task is inverse to the modulator, since it estimates which particular
waveform was actually transmitted by the modulator, and hence recovers from it
an estimate of the source information. In order for the source information to be
delivered to the user as reliably as possible, the design of the demodulator must
account for the impairments introduced by the channel. This chapter deals with
only one of these impairments, namely, Gaussian noise added to the signal.

A central role in this chapter is played by the evaluation of the performance
of the modulator-demodulator pair. We are interested in assessing how well a

159
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Figure 4.1: The channel model assumed in this chapter.

given modulation scheme does its job of carrying information through a channel
in a reliable way by making the most efficient use of the basic resources avail-
able, namely, power, bandwidth, and complexity. While these concepts will be
made clear later on, we mention from the onset of this chapter that a good digi-
tal modulation/demodulation scheme should deliver information to the end user
with a low error probability, low bandwidth occupancy for a given transmission
rate, and low power expenditure. In addition, the complexity, and hence the cost,
of the modulator/demodulator pair (in short, of the modem) should be made as
Iow as possible.

4.1. Introduction

The channel model considered in this chapter is reproduced in Fig. 4.1. A source
produces a sequence of independent, identically distributed binary symbols with
an information rate R, = 1/T, bit/s (the subscript s stands for source). These
binary digits are grouped in blocks of length £, that shall be referred to as source
symbols. The M = 2" symbols occur with probabilities p;, 1 = 1,..., M,
assigned to the set of symbols {m;},. For simplicity’s sake, we assume that all
the symbols are equally likely, so that p; = 1/M for all 7. However, the reader
should be warned that this assumption may not hold in some instances, as for
example during the transmission of a preamble message intended to establish a
communication, or the like.

In the simplest form of a digital modulation scheme, the modulator maps
each symbol onto a set of M waveforms, that are transmitted sequentially over
the channel. The resulting composite signal generated by the modulator is writ-
ten v (t), where the subscript ¢ denotes the entire sequence of source symbols.
Since the transmission of one symbol requires a time T = hT,, the rate 1/T at
which the signals are transmitted over the channel is called the signaling rate.
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This is given by
1_1 _ R
T AT, log,M
and is measured in (M-ary) symbols per second.
A great variety of digital modulation schemes (or mapping rules) is available,
and an effort will be made here to present them in a unifying conceptual frame.
We start with some simple examples.

Example 4.1 The modulator uses M signals {s;(¢)}}, with duration T = AT,.
Fig. 4.2 shows an example of transmitted waveforms for M = 2, M = 4,and M = 8.
For M = 2 we have

s1(t) = +A, s2(t) = - A, 0<t< T,
For M = 4 we have
51{t) = =34, &1ty =—A4, s3(t)=+A4, s4(t)=+34, 0<t<2T;
and for M = 8 we have
si(t)=(2i-9)4, i=1,...,8, 0<t<3T,

We observe that in general each signal has duration hTy, i.e., for a given source rate its
time span is proportional to h. |

A basic point may be raised from the sheer consideration of this simple exam-
ple. That is, how should we pick one among these various modulation schemes?
Or, does any of them perform better than the others? As we shall see, we cannot
say in general that there is an optimum choice of M: rather, this choice is the
result of a tradeoff between complexity and power and bandwidth efficiency.

In this example it turns out that, when the source rate 1/T, is kept constant,
the waveforms with M = 8 require less bandwidth than those with M = 2, since
the pulse duration in the former case is longer. In general, increasing M reduces
the bandwidth occupancy, and hence increases the bandwidth efficiency of the
modulation scheme. On the other hand, if the average signal power spent for
transmission is kept constant as M varies, we see that in the presence of noise
it will be a harder task for a demodulator to distinguish between signals when
M is large, because their amplitude levels are closer. Making signal levels as
separated in the case M = 8 as they are for M = 2, and hence keeping the error
probability at about the same level, would require increasing the average signal
power. Thus, increasing M decreases the power efficiency of this modulation
scheme.
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binary source sequence
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Figure 4.2: Three examples of memoryless modulation schemes. From top to bottom:
Binary modulation, quaternary modulation, and octonary modulation.

The tradeoff involved in the selection of M should be evident now. If this
modulation scheme is to be used for a transmission system where bandwidth
is at a premium (called a “bandwidth-limited” system) we should use a larger
value of M. If power is at a premium (a “power-limited” system) we should
use a lower value of M. Other considerations—among them, implementation
complexity—occur as well, but the above describes the basic tradeoff the system
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designer is faced with.

The simple example above describes one among the various modulation sche-
mes available to the designer, one which is suitable for a baseband system. For
radio systems, a favorite scheme consists of associating messages to M possible
phases of a sinusoid, called the carrier. This modulation scheme, called M-ary
phase-shift keying (PSK), will be described at length in the following. Here we
limit ourselves to observe that it transmits over the channel a constant-envelope
signal, and hence is a good choice for applications in which power amplifiers
are operated at or near saturation for best power efficiency, and hence are non-
linear because of AM/AM and AM/PM conversions (see Section 2.4.2). This
nonlinearity would distort any signal with a time-varying envelope.

We hasten to observe here that the modulation model considered so far, i.c.,
one in which there is a memoryless, one-to-one correspondence among source
symbols and modulator signals, although it is the most important, is by no mean
the only one. To motivate what we call “modulations with memory,” we describe
here a simple special case of continuous-phase modulation (CPM), that will be
discussed in more depth in Chapter 6.

4.1.1. A simple modulation scheme with memory

Consider 2-PSK, i.e., a binary modulation scheme in which binary source sym-
bols “0” and “1” are associated with two phases, 0 and 7, of a sinusoid. The
signal sent through the channel is shown in Fig. 4.3. Its power density spectrum
can be easily calculated by using the techniques described in Chapter 2. Here
it suffices to say that the resulting spectral occupancy may be just too wide for
certain applications (e.g., some mobile-radio systems). Now, Fourier theory sug-
gests to us a reason for this: it is known that the presence of discontinuities in
a signal widens its spectrum, and the PSK signal exhibits jumps in its phase at
each occurrence of a pair 01 or 10 in the source sequence.

Based on this observation, we expect that a narrower spectrum will be ob-
tained if these discontinuities are smoothed in some way. This is obtained for
example as shown in Fig. 4.4. In this modulation scheme the transmission of
a source “0” makes the phase of a sinusoid increase linearly by 7 /2, while the
transmission of a “1” makes it decrease by the same amount. The resulting phase
trajectory is now continuous, and hence we expect it to yield a narrower spec-
trum than 2-PSK. Notice that we can do even more than linear phase transitions:
smoother phase trajectories can be obtained by shaping them in other forms, as
we shall see in our general presentation of CPM (Chapter 6).

At this point we can add the observation that this modulation scheme is not
memoryless anymore: in fact, rather than associating two different waveforms
to the binary source symbols, at time &T" (say) we transmit a waveform whose
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Figure 4.3: Evolution of the transmitted signal and of the phase in binary PSK.

shape depends not only on the source symbol emitted at 7', but also on the
phase reached by the signal at the same instant. We say that the modulator has
memory. As we shall see, the presence of this memory has a strong impact on
the structure of the optimum demodulator.

4.1.2. Coherent vs. incoherent demodulation

We are now ready to start our discussion of the demodulators’ structures and
their performance, but first we need to introduce a further classification. As
mentioned before, throughout this chapter we shall be considering that the signal
received at the output of the channel is corrupted by AWGN n(t) with power
spectral density Np/2. Two different cases will be considered here, giving rise
to different families of demodulators. In the first, we assume that the receiver
has complete knowledge of the set of possible transmitted signals. We call this
receiver a coherent receiver. We can write the received signal in the form

r(t) = ve(t) + n(t) 4.1)

In the second case we consider a typical situation arising in bandpass communi-
cation systems. In these we may not be able to assume that the signals used by
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Figure 4.4: A simple modulation scheme with memory. The transmitted signal is phase-
continuous.

the modulator are fully known, because the exact phase of the carrier sinusoid
used by the modulator is unknown. We write the received signal in the form

r(t) = ve(¢; 0) + n(t) - 4.2)

where  is a random variable modeling the uncertainty on the phase angle of the
transmitted signal. A demodulator that operates without any knowledge of 8 will
be called incoherent.
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4.1.3. Symbol error probability

The purpose of the demodulator is to process the received signal r(t? to pr?iiuce
an estimate € of the transmitted sequence &, and consequently an estimate 77 (?f
each transmitted symbol. The performance of the modulator/demodulator pair
will be evaluated through the symbol error probability

P(e) 2 P{& # &) 43)

We are interested in the demodulator that achieves the minimum value of
P(e). We call it optimum in this sense. For simplicity, we shall assume through-
out the chapter that the transmitted messages are equally ll.kely, S0 th‘at, as st‘low.n
in Section 2.6, minimum error probability is achieved with a maximum likeli-
hood (ML) receiver. We shall deal with three different cases:

1. Memoryless modulators and coherent receivers. Each generated wavefoqn
has a duration strictly limited to the time interval T', and the modulator is

memoryless.

2. Memoryless modulators and incoherent receivers. Each generated wave-
form still has a duration limited to the interval T and the modulator is
again memoryless, but the receiver has an uncertainty due to a random

phase angle as in (4.2).

3. Modulators with memory. These will be considered in Chapter 6.

4.2. Memoryless modulation and coherent demodulation

The memoryless nature of the modulation process implies that the wave.fonns
available at the modulator are strictly limited to the time interval 7. While we
shall restrict ourselves to this situation throughout this chapter, we hasten to say
that the theory developed here is also valid in some instanf:es when Fhose wave-
forms have a longer duration. In fact, this theory also applies, mutatis mutandis,
whenever the quantities obtained at the channel output t?y .processmg thfa re-
ceived signal in a single symbol interval are sufficient Sl.atlSIICS.fOI‘ t.he dec1s%on
on that symbol. This situation occurs, for instance, with the infinite-duration
raised-cosine pulses of Chapter 7.
The demodulator outputs one realization of the random process

ve(t) = KZ— s(t — kT, &), 0<t< KT 4.4

=0

—

Eod
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depending on the K-symbol sequence &€. The log-likelihood ratio for £, based on
the observation of the noisy signal r(t) = v (t) + n(t), is given by (see Section
2.6.1)

2 KT 1 KT
=5 /0 r(thoe(t) dt - 3 /0 vg(t) dt 4.5

The optimum demodulator chooses the sequence € that maximizes A¢ in (4.5);

. thatis,

€: N =max) 4.6)

In the following, with a slight abuse of notation we shall denote by A, the quan-
tity (4.5) multiplied by the inessential constant No/2. Thus, insertion of (4.4)
into (4.5) shows that the ML sequence must maximize the quantity

A (KT K-1 ' 1 KT [K-1 ) 2
Al /0 r(2) gs(t—kT, &)dt - /0 [zs(t—kT, Ek)] dt (4.7)

k=0

By recalling that s(t; &) has duration 7', (4.7) can be rewritten in the form

K-1
Ae= " A (4.8)
k=0

where

a (k+1)T : 1 ple+1)T 2,
Ag = /kT r(t)s(t —kT; &) dt - 5 /k . S&)d @9

form a sequence of independent random variables under our assumptions that &,
are independent and the noise is white.

From (4.8) we can conclude that the ML sequence E is obtained as an ML
symbol-by-symbol decision, i.e., in each time interval T the quantities A¢, in (4.9)
are maximized separately. In fact, under our assumptions the maximum value of
the sum (4.8) corresponds to the sum of the maximum values of its components
(see Appendix F). Considering this fact, without any loss of generality from now
on we shall examine modulator and demodulator by restricting ourselves to the
time interval (0, T') corresponding to & = 0.

The quantities in (4.9) are a set of sufficient statistics of the received signal
7(t). This, as discussed in Section 2.6, means that all we need to know about
the received signal r(t) to allow an ML decision is contained in these quantities.
Since the RV & can take on M different values, each signal s(t; &) comes from
a set {s5;(t)}}, of different waveforms of duration 7. Therefore, the RV Ag
becomes, fori =1,2,..., M,

A= /oTr(t)si(t) dt+ c; 4.10)
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Figure 4.5: Correlator implementation of the optimum coherent receiver for memoryless
modulation and transmission over the AWGN channel.

where
4 1 2 = _}. . 4.11)
q_—z/() si(t)dt— 25,

and &; denotes the energy of the ith signal. ‘ .

The block diagram of the ML demodulator is shown in F1g 4:5, in the form
usually referred to as a correlation demodulator. For simplicity it refers to the
demodulation of the first symbol &. : v

An equivalent method to get the quantities (4.10) is to replace the bank of ri({)r-
relators with a bank of M filters, each matched to one of the signals {si(t)}X4,.
The filter matched to s(t) has an impulse response h;(t) = si(T —t), s0 that
the output of this filter at ¢ = T, when the input is r(t), gives exactly.the inte-
gral in (4.10). The block diagram of this matched-filter demodulator is shown
in Fig. 4.6. This version of the optimum demodulator sh?vys that a bank of M
matched filters supplies the sufficient statistics for our deClSIOI‘.l problem.

A simpler version of the optimum demodulator can be gbtamed by represe.nt—
ing the signals {s;(¢)}, in the orthonormal basis {¥;(t)};1, N < M, by using
the Gram-Schmidt procedure (see Section 2.5). We get

N
si(t) =Y sty i=1,2....M, 0<t<T (4.12)

i=1
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Figure 4.6: Matched-filter implementation of the optimum coherent receiver for memo-
ryless modulation and transmission over the AWGN channel.

By inserting (4.12) in (4.10), after some algebra we get
1 N
,\,~=Zs,-jrj—§zs?j, i=12,....M (4.13)

where
T'j= A T‘(t)’(b]’(t)dt (414)

Thus, to construct the sufficient statistics needed by the demodulator we may use
the NV quantitiesr;, j = 1,..., V, the projections of r(¢) onto the orthonormal
basis {1;(t) ;};1 spanning the N-dimensional signal space. The components of
the received signal that are orthogonal to this space are irrelevant to the deci-
sion process. The block diagram of the demodulator based on (4.13) is shown
in Fig. 4.7. There is no difference in performance between this demodulator and
that of Fig. 4.5; however, it contains only N rather than M correlators, which
entails a reduction in complexity, which is considerable when M is much larger
than V.
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Figure 4.7: Correlator implementation of the optimum coherent receiver for memory-
less modulation and transmission over the AWGN channel. Th; modulator signals are
represented as linear combinations of N basis signals {;(t)};2,-

Example 4.2 Let us reconsider in this example the binary modulation scheme of Ex-
ample 4.1. By defining the unit-energy function

w(t)é{ 1/VT, 0<t<T,

0, elsewhere

we can write the two elements of the binary signal set in the form (4.12), that is, for
0<t<T,

si(t) = AVTY(t)
s2t) = —AVTY(t) (4.15)
The corhputation of the quantities in (4.13) yields
1
A = AVTr — %AZT dp = —AVTr — §A2T (4.16)
where
1 T
== t) dt 4.17)
=75 O

The sufficient statistics is represented now by the RV r, the component of r(t) .along
(t). Inspection of (4.16) leads us to conclude that the decision is based on the sign of
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Figure 4.8: Optimum coherent receiver for a binary modulation scheme.
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Figure 4.9: Demodulating quaternary PSK. Only two correlators are needed to deter-
mine the quantities v\ and v upon which the optimum decision can be based.

the value taken on by r: for positive r we have Ay > );, whereas for negative r we have
Az > A1. The block diagram of the optimum demodulator is shown in Fig. 4.8. a

Example 4.3 (Quaternary PSK) As we have seen in Example 2.20 the quaternary
PSK signal set has 2 dimensions. If the signals are, for0 < t < T,

8i(t) = Acos[2m fot + (i — 1)m/2], 1=1,2,3,4

and the carrier frequency fy is much larger than 1/7,, the inverse of the signal dura-
tion, then the orthonormal basis functions are v (t) = /2/T cos 2w fot and ¥ (t) =
—v/2/T sin2n fot. The energy of the four signals is the same, so that the demodulator
decision can be based on the two quantities 7, and 5, obtained as shown in Fig. 49. It
can also be seen that only the signs of r; and r are relevant to the decision process, so
that the multiplicative factor +/2/T is actually immaterial. The reader may want to ob-
serve that the demodulator structure of Fig. 4.9 works with any value of M, since every
M -ary PSK signal set has two dimensions. a
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4.2.1. Geometric interpretation of the optimum demodulator

By defining the three vectors

ré(rl, 7‘2,...,7‘N)
Jay
Sj = (SJ'I, Sjg, ‘e .,SJ'N)
né (nly TL2,...,TLN)
where
N T
m:/nm%@ﬁ (4.18)
0

we represent the signals r(t), s(t) and n(t) as points in an N-dimensional Eu-
clidean space. The coordinates of these points are the projections of the corre-
sponding signals onto the basis of the space, and, as we know, these are all we
need to make a decision in the optimal way. We may write

r=s;+n j=12,...,M (4.19)

to express the fact that in the additive white-Gaussian-noise channel the signal
vector is perturbed by a Gaussian-noise vector, with independent components, to
generate the observation r.

Now, recall that the sufficient statistics to be used by the demodulator are

A ’ ) dt — = ’ 2t)dt
o= [ rs@d-; [
If we complete the square by subtracting the term

~ t)dt

5 [ o

(which is independent of 7 and hence does not alter the decision) we obtain the
new sufficient statistics

u=-4ﬂ40-&mra

The significance of the last equality lies in the fact that now, by using (2.249),
we can interpret the maximization of [ over ¢ as the search for the value of ¢
that minimizes [J [r(t) — si(t)]>dt. Now, since the components of r(t) lying
outside of the signal space spanned by the s;(t) are irrelevant to the decision
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Figure 4.10: Geometry of the minimum-distance decision rule, corresponding to opti-
mum demodulation.

(see Section 2.6.1) this minimization is tantamount to the minimization of the
squared Euclidean distance |r — s;|? between r and one of the vectors s;, where
r represents the projection of r(t) in that signal space.

In geometrical terms, the optimum (ML) demodulator looks for the transmit-
ted signal vector which lies closer to the received signal vector: itis a minimum-
distance demodulator. We may interpret this by saying that in a sense the opti-
mum demodulator trusts the channel: that is, it assumes that the transmitted
signal is the one most similar (in a Euclidean-distance sense) to the received
waveform.

This geometrical view is illustrated in Fig. 4.10 for a two-dimensional signal
space. The receiver decides in favor of s; because this is the signal closest to the
received vector r.

Decision regions

Let us push our geometrical interpretation a little further with the aid of Fig. 4.11.
Each point of the N-dimensional Euclidean space R¥ is a possible received vec-
tor r, and the demodulator can be thought of as a (many-to-one) mapping of the
received vectors into the signal vectors. Specifically, denoteby R;, i = 1,..., M,
the regions of R¥ such that if r lands in R" then the optimum demodulator’s
choice is s;. These regions form a partition of RY, and are called ML decision
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Figure 4.11: Maximum-likelihood decision regions in a two-dimensional signal set with
three points s;, s;, and s.

regions or Voronoi regions. Formally,
R £ {r: v~ si| = min|r - 5[} (4.20)

The ML decision rule can therefore be put in the form
choose §=3s; whenever r € R; 4.21)

which is interpreted by saying that the demodulator partitions RY into M de-
cision regions R;, the sets of points closer to s; than to any other signal-vector
point. These regions are bounded by hyperplanes that are the loci of the points
equidistant from two neighbor signals.

We note in passing that in the event |r —s;} = |r —s;| (i.e., when the received-
signal point lies on a boundary hyperplane) the ambiguity between s; and s; may
be resolved without loss of optimality by tossing a coin. In fact, this event occurs
with probability zero, and the error probability is not affected by the decision
made when it occurs.

Summary of optimum demodulation

Before proceeding with the evaluation of the error probability for optimum de-
modulators, we summarize here our assumptions and the different aspects under
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which these demodulators may be sen. We have assumed that the signal re-
ceived in the interval ¢ € (0, T') is
r(f) = «(t) +n(e)

where i is an integer in the set {1..... M}, that the source chooses at random,

with probability 1/M for all i and independently of the choices made in other
time intervals. Also, n(t) is Gaussian noise with flat power spectral density
No/2.

The optimum demodulator operates equivalently in one of the following
forms:

L. Tt looks for the maximum over j among the M quantities

/r e(t)3;(t) dt — %Ej

0

where £; denotes the energy ol the signal s;(t). A demodulator operat-
ing this way must calculate every T’ seconds these M integrals (by using

correlators, or matched filters) hefore searching for the largest.

2. It looks for the maximum over j among the M guantities
N 1

z BikTh — —2-57

k=i
which are constructed by computing once for all the quantities

S = [’ o5 () (6) dt
“

and every T seconds the N quarntities

T
Ty = / T(t)’l/)k(t) dt

The latter computation requires N matched filters or correlators, which

makes this second demodulator ~aore attractive when N < M.

3. By defining (and computing) t:# N-vectorst = (r1,...,ry) and 5; =
(8j1,--.,8;n), it looks for the »ector s; that minimizes the squared Eu-

clidean distance |r — s;|2.
4. By defining the M decision regts
R; £ {r: 2 -s:[= mjinIr—Sj|}

it searches for R; that containa 7z received vector r.
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4.2.2. Error probability evaluation

Under the usual assumption of equally likely symbols, the symbol error proba-
bility (4.3) can be written as

Ple)=1-P(c)=1~ —1%/1- f: P(cls;) (4.22)

=l

where P(c | s;) is the probability of a correct decision when the transmitted
signal is s;. Thus, the computation of P(e) requires the computation of the set
of probabilities {P(c | s;)}1Z,. Similarly, we can write, with obvious meaning
of the symbols,

1 M
P(e) = i > Ple]s;) (4.23)
j=1
Now, a correct decision on s; occurs whenever the noise vector n does not
move s; out of its decision region R;: thus,

P(C l Sj) = P{l‘ S R.j | Sj} (4.24)

Further, observe that, given s;, r is a conditionally Gaussian random vector with
independent components, variance Np/2 along each component, and mean value
s;: in fact, r is generated by adding to s; a Gaussian zero-mean noise vector n
with independent components. Consequently, from (4.24) we obtain P(c | s;)
by integrating over R; the probability density function of r given s;. We have

1 —[r—s;]3/Ne
P(ClSj)=/l;j WG fr=s;1*/No gy 4.25)

The last equality shows that the error probability is expressed in the form
of an integral extended to a region centered at s;. The integrand function has
a spherical symmetry around s;, that is, it takes constant values over spherical
surfaces centered at s;. This observation allows us to conclude that the error
probability P(c | s;) depends only on the shape and the size of the decision re-
gion R;, and not on its location in space. Every transformation that modifies Fhe
signal constellation by leaving its decision regions invariant in shape and size
does not change its error probability. Thus, rotations, translations, or reflections
of the signal constellation do not change P(e) (at least for an optimum demodu-
lator).

For example, the three constellations of Fig. 4.12 have the same error prob-
ability. However, we hasten to observe that this does not imply that they be all
equivalent from the point of view of communication efficiency. In fact, we are
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Figure 4.12: Three quaternary signal constellations that have the same error probability
Jor transmission over the AWGN channel.

interested in achieving a given P(e), i.e., a preassigned reliability, with the low-
est expenditure of energy. The average energy required for transmission of a
constellation with equally-likely signal vectors {s;}, is

1 X 18 .,

We recognize that (4.26) is precisely the definition of the moment of inertia
around the origin for a set of M equal point masses located at the signal points.
Thus, £ is minimized if their center of gravity is at the origin. This condition can
be stated mathematically as

M
Yosi=0 @27
=1

so that a signal set satisfying (4.27) requires the minimum average energy. (Since
the third constellation of Fig. 4.12 uses, on the average, more energy than the
other two, it should be regarded as less efficient.)

Uniform signal sets

We conclude these considerations about error probability by defining a geomet-
rically uniform signal set as one whose decision regions are all congruent, in
the sense that all of them can be obtained from a single one by translations and
rotations. For this signal set all the signals generated by the modulator are on an
equal footing, in the sense that they have the same error probability: for all pairs
i, 7 we have P(e | s;) = P(e | s;), and consequently

1 M
Ple) = M;P(e | si) = P(e| si) (4.28)
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Figure 4.13: Geometric representation of a binary signaling scheme. General configu-
ration and minimum-energy (antipodal) configuration. The two configurations have the
same error probability, but different energies.

for any 4. We say that this signal constellation has the uniform error property.

4,2.3. Exact calculation of error probability

In spite of the fact that (4.25) has a compact expression, its calculation is, in but
a few instances, a formidable task that cannot be carried out to obtain a closed-
form solution. In this section we deal with these simpler (yet very important)
cases.

Binary signals

Whenever the modulator has only two signals, i.e., when M = 2, the error
probability can be computed in closed form. A general configuration of two
signal vectors is shown in Fig. 4.13. The two decision negions'are thc? half-planes
separated by the axis of the segment joining the two signal points. Since they are
congruent, every binary signal set is uniform. .

To compute its error probability, it is convenient to modify the 51gnﬂ-§pace
basis so that % (t) is parallel to the line joining s; with s;, and the rmd;?omt of
the two signal vectors is at the origin. This can be accomplished by rotating and
translating the signal set, which, as we know, does not change P(e). We have

Ple) = Plels1)
P{reR,|s}
P{T]_ <0 | S]_}

’ = P{d/2+n, <0}
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= P {Tl]_ < —d/ 2}
1 d
= Zerfc | —me 4.
= () @2

where the last equality stems from a result of Appendix A, and d denotes the
Euclidean distance between s; and s,:

d2 = |81 - 52I2 = /T ,Sl(t) - Sz(t)lz dt (430)
0

The last equality in (4.29) shows the important fact that in the coherent demod-
ulation of two equally likely signals transmitted on the AWGN channel the error
probability depends only on the Euclidean distance between the two signals, and
not on their other features.

Let us compute this distance by relating it to the signal set. From (4.30) we
have

T
E=E+E- 2/0 51(t)sa2(t) dt 431

By defining the correlation coefficient of the two signals as their normalized
scalar product

a 1 T
T /0 s1(t)s2(2) dt 4.32)
we can also write
&E=E+6-2p/66, 4.33)

By combining (4.33) and (4.29) we can compute P(e) in a closed form that
depends on the energy of the signals, their correlation coefficient, and the power
spectral density of the noise. Here we specialize this general result to the case of
equal-energy signals, i.e., £; = £ = £. We obtain

P(e) = %erfc ( f(—;l—;;fl) (4.34)

Antipodal signals.  Since, by Schwarz’s inequality

< Vaé

the correlation coefficient takes values |p| < 1. The maximum value of error
probability is achieved by p = 1, which corresponds to s; = s, a situation
hardly attractive for signal transmission as it yields P(e) = 1/2. On the contrary,
p = —1, corresponding to

T
/0 51(8)52(8) dt

51(t) = —sa(t) (4.35)
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Figure 4.14: Error probability as a function of 1 = & /Ny for binary antipodal and
orthogonal signals.

(and hence to s, = —s;) provides the minimum error probability (equivalently,
the minimum energy expenditure for a given P(e)). Signals such that (4.35)
holds are called antipodal. For these

P(e) = Lerfc (\/—% (436)

The corresponding curve is shown in Fig. 4.14.

Binary orthogonal signals. Two orthogonal signals are shown in Fig. 4.15. In
this case p = 0, and therefore the error probability is given by

P(e) = %erfc (,/51%;) @37

Its curve is plotted in Fig. 4.14. There is a 3-dB penalty in Fhe signal energy to be
paid with respect to the antipodal case. In fact, by comparing (4.36)'Wlth 4.37),
we see that to achieve the same error probability with orthogonal signals as for
antipodal signals, the energy of the latter must be doubled because of the factor
2+showing up in the argument of the error function.
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¥
$2

Figure 4.15: Geometric representation of binary orthogonal signals.

A bandpass binary constellation. Consider a binary constellation generated
by shifting up and down by an amount f; the frequency of a carrier cos(27 fot):

51(t) = Acos{2n(fo — fa)t}, s2(t) = Acos{2n(fo + fa)t}, 0<t<T
We assume that (fo £ f¢)T > 1, so that we have approximately

T T AT
= 2 - 2 =
& —/0 sl(t)dt—/o s5(t)dt = 5

The correlation coefficient is, from its definition (4.32):

_sindn f;T
- 4 de

The behavior of p as a function of 27 f;T is shown as in Fig. 4.16. Eq. (4.34)
yields the minimum error probability when p achieves its minimum value, that
is, when p ~ —0.22. In this situation,

P(e) ~ %erfc ( 0.61N£)

0

Rectangular signal sets

The integral (4.25) yields a closed-form P(e) also for two-dimensional signal
constellations whose decision regions are bounded by orthogonal straight lines
parallel to the coordinate axes. Let us start with a simple example of this calcu-
lation.
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Figure 4.16: Correlation coefficient of the two signals s)(t) = Acos[2n(fo — fa)t] and
s2(t) = Acos(2r(fo + fa4)t].

Figure 4.17: Geometric representation of 4-PSK signals.

Error probability of 4-PSK. This signal constellation is shown in Fig. 417
This includes four points located symmetrically on a circumference. Its deFlslon
regions are the four quadrants of the plane, so that this constellation is uniform.
Consequently, by using the independence of the two noise components n; and

N4, we have

Ple) = Ple|s)

1-Pc|s1)

1— P{ny > —d/2, ny > —d/2}

; = 1-P{n; > —d/2} P{n, > —d/2}
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= 1-¢

where (see Appendix A)

g=P{n >—d/2} = %erfc (—2_‘1\/%) —1-p

with
p= %erfc (5%) (4.38)
and d the Euclidean distance between two neighboring signals. In conclusion,
P)=1-(1-p)?=2 —;172 (4.39)
where p is given by (4.38).

A more complex situation accurs when the decision regions of a two-dimensional

constellation are still bounded by straight lines parallel to the coordinate axes,
but they are not congruent. The calculations that follow illustrate this case, cor-
responding to a signal set which is not geometrically uniform.

Error probability of 16-QAM. This signal constellation is shown in Fig. 4.18.
It consists of 16 points located in the plane to form a square grid. It has three
different types of decision regions, namely, that pertaining to the four corner
signals s1, S4, 13, and 8¢, that pertaining to the eight signals s,, s3, S5, Ss, Sq,
S$12, S14, and s;5, and that pertaining to the four internal signals sg, S7, s10, and
811. By defining

@ 2 Plc|s)
a2 Plc|s)
and A
g = P(c| se)
it should be an easy matter to derive from (4.22) that in this case
1
P(c) = ﬁ(‘lql + 8¢, + 4gs) (4.40)

Specifically, we have
q = P{n, < d/2} P{ny > —d/2} = (1 — p)*
where p is again as in (4.38). Moreover,

Q= P{—d/2 <n < d/2}P{Tl2 > _d/2}
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SY

Figure 4.18: A two—dimensional signal set with 16 points and decision regions bounded
by straight lines parallel to the coordinate axes: 16-QAM.

with
P{~d/2 < ny <d/2} = P{ny > —d/2}—P{n; > d/2} = (1-p)-p=1-2p

and
P{'n-g > —d/2} =1-p
Thus,
g2 =(1-2p)(1-p)
Finally,

gs = P{~d/2 < n; < d/2}P{—d/2 < np < d/2} = (1 - 2p)?

In conclusion, from the latter calculations and (4.40) we obtain
' 9
P(e) = {1~ g +201-2)(1—p) + (1= 297 = 1= 3p+ 3p* (44D

and hence

P(e) =3p— %p2 (4.42)

We observe here, also for later use, that for p < 1, i.e., p? < p (asituation that
should always occur for reliable transmission) we have

‘ P(e) = 3p (4.43)
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It is interesting to interpret (4.43). The term p, defined in (4.38), represents the
probability that in binary modulation a signal will be mistaken for another signal
lying at distance d from it. Further, observe that in this constellation the four
corner signals similar to s; have 2 nearest neighbors (i.e., signals at distance
d away), the eight signals similar to s; have 3 nearest neighbors, and the four
signals similar to s¢ have 4 nearest neighbors. The average number of nearest
neighbors in this constellation is then

L7=1—16—(4X2+8X3+4X4)=3

Thus, it is tempting to interpret (4.43) by saying that the error probability
is approximately equal, for low enough noise, to the product of the binary error
probability p computed for the minimum distance of the constellation, multiplied
by afactor equal to the average number of signals at the minimum distance. This
satisfies the intuition that, when the noise is low, an error will occur by mistaking
the transmitted signal for one of its nearest neighbors. The larger the number of
these nearest neighbors, the larger the error probability.

If we return for a moment to the error probability for 4-PSK we can see that
this interpretation makes sense also in that case. In fact, from (4.39) we have

and every 4-PSK signal has exactly two nearest neighbors at distance d. Later
on we shall prove that this approximation is valid in general.

Error probability of orthogonal signal sets.  Another important signal config-
uration allows one to obtain an expression for P(e) which is nearly closed-form.
This is the set of M orthogonal signals with equal energies, that is,

. ) = O) 1#]1
(SHSJ)_{g, 1:]

This signal set has dimensionality ¥ = M. The two-dimensional case was
shown in Fig. 4.15, whereas the case M = 3 is shown in Fig. 4.19. The de-
cision regions may be hard to visualize for M > 2, but the decision rule can
be described in a simple way. Assume that s; is transmitted, and consider the
two-dimensional space spanned by s; and s;, forany k£ = 2,..., M (Fig. 4.20).
It is seen that the received signal point r belongs to the decision region Ry when
the received signal component r; is greater than 7, & = 2,..., M. Thus, in
the M-dimensional space the decision region R, is bounded by the hyperplanes
Ty =T2,TL =T3,...,71 = ry. The same argument holds for the other decision
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Figure 4.20: Decision regions for a pair of orthogonal signals.

regions, which are congruent and thus make this signal constellation geometri-
cally uniform.
Consequently, we have

P(C)=P(C‘Sl)=P{T1>T2, Ty >1‘3,...,T1>TMl51} (4.44)

To compute this prabability we observe that, when s; is transmit}ed, the random
variables rq, ..., ry are independent Gaussian with equal variance Np/2 and

mean values VB i=1,
Erilsil =1 o7 i1
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The main difficulty in this computation arises from the fact that the events r; >
are not independent. However, they are conditionally independent for given ry,
so that we can write

P(c) = Eq[P{ri>ra, 11> 73,11 > 1 |81, 11}]

- =i ()] )

Our final step is taken by observing that the conditional pdf of r, is given by
(mNo)~1/? exp[— (@ — VE)2/N,). We obtain the equation

1 o0 2 1 M-1
Ple)=1- NG /_ N e~ (E=V/E/No) [1 - gerfc (z)] dz (4.45)

The integral in (4.45) cannot be further simplified, but it can be easily computed
numerically.

A brief discussion of this result allows a first glance at the problem of com-
paring modulation schemes with different values of M (Chapter 5 contains a
thorough discussion of this point). By looking at the integral in the right-hand
side of (4.45), one may observe that, since the quantity in square brackets is
smaller than 1, a small value of M gives a smaller error probability for the same
value of £/Np. On the other hand, notice that the greater is M, the higher is the
information content of each signal, which in fact conveys A = log, M bits. The
transmission of a single binary digit requires an energy £/ log, M. Given this,
a reasonable question is: for a given value of the noise power spectral density
Np/2, what happens to the error probability P(e) when M is increased but the
energy expenditure per transmitted bit, £, = £ /log, M, is kept constant? The
answer is obtained by plotting P(e) vs. the latter quantity. From Fig. 4.21 it can
be seen that, at least for low error probabilities, increasing the size M of the
signal set requires less energy per bit to obtain the same error probability.

4.3. Approximations and bounds to P(e)

In most practical cases the probability of error cannot be computed in closed
form. An example was already encountered in the case of orthogonal signals.
Another example stems from M-PSK, with M = 2% and h > 2. When an exact,
closed-form expression is not available, we resort to approximations (we are
especially interested in approximations that are good for low error-probability
values) or to bounds. Approximations and bounds are useful only if they require
simple computations. Moreover, we require the bounds to be “tight,” that is, that
the gap between upper and lower bound be small enough as to give a reasonable
approximation to the unknown true value,
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n, (dB)

Figure 4.21: Error probability for coherent detection of M orthogonal signals. Here
A
% = €/ No.

4.3.1. An ad hoc technique: Bounding P(e) for M-PSK

Consider M-PSK, whose M signal points are evenly distributed along a circum-
ference with radius V€. Fig. 4.22 shows 8-PSK, along with the decision region
of signal s;. Since the constellation is uniform irrespectively of M, we write

P(e)=P{r ¢ Ry |s1}=P{re S |s}

where S, is the complement of R;. Now, observe that S; is the union of the two
half-planes S and S? (Fig. 4.23). We can write the pair of inequalities

P{reS |s;} <Ple) < P{reS8)|s}+P{reS]| s1} (4.46)

The inequality on the right stems from the fact that the probability of a union of
events cannot exceed the sum of the probabilities of the single events. That on
the left stems from the fact that S} is a subset of S; (obviously, we could use S}
instead, but the end result would not change).

To compute the probabilities in (4.46) we choose to represent the noise vec-
tor with a coordinate system (1}, 1}) obtained by rotating the original axes by
w/M. This operation does not change the noise statistics—which has a spherical
symmetry— but simplifies our calculations. Fig. 4.24 shows that the probability

4.3. Approximations and bounds to Ple)

Figure 4.22: Geometric representation of M-PSK for M
is also shown.
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Figure 4.23: S,, the complement of the decision region R,

, can b
union of the two half-planes S} and 8. e expressed as the

that the received vector be in S does not depend on the component ny, and is
equal to the probability that n, take on a value exceeding /€ sin /M. Thus

’ 1
P{reS)|s}= Eerfc (”Nio sin %) (4.47)

189

= 8. The decision region of s,

£
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Figure 4.24: Rotating the coordinate axes: the noise component along 1)} becomes

irrelevant.

Because of the symmetry of the problem, the probability P{r € S{ | s1} takes
on the same value as above, and consequently from (4.46) and (4.47) we have
the following upper and lower bounds to P(e):

Lerte (/S sin = ,/i’ z 4.48
5erfc( mmnM)gP(e)gerfc( Nosm M) ( )

We observe that upper and lower bounds in (4.48) differ oqu by factor of 2,
which is usually adequate for applications. Moreover, notice that. the upper
bound has the form 7 - 0.5 erfc(d/2v/No), where d = 2+/€ sinm/M is the min-
imum distance between signal points in M-PSK and & = 2 is the .numb‘er of
nearest neighbors. Based on our discussion in previous section, Wthl"l will be
made more precise soon, we may expect that the upper bound to P(e) in (4.48)
be a good approximation to the true value. In fact, the upper bound turns out to
be closer to P(e) than the lower bound.

4.3.2. The union bound

We start by defining a quantity which will prove central in. a1~1 the discussi-qns
that follow, the pairwise error probability P{s; — s;}. This is the probablAllty
that, when s; is transmitted, s; will be closer than s; to the rCC61.VCd vectgr r,ie,
s; will be preferred to s; by the demodulator. The reason for its name is that if
the transmission system uses only two signals, viz., s; and s;, then Plels;) =
P{s; = s;}. This can be easily computed from (4.29):

1 d;j
, P{S,’ e Sj} = aerfc (ﬁ) (449)
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where
dij = |s; — 5]
is the Euclidean distance between s; and S;.
For a general M-ary modulation scheme, if s; is transmitted an error occurs
if one or more of the signals other than s; are preferred to it by the demodulator.

Since the probability of a union of events cannot exceed the sum of the individual
probabilities, we have the union bound

Ple|si) < 3 P{si = s;} (4.50)
8;#3;

By combining the results (4.49) and (4.50) we obtain the union bound in the
explicit form:

1 d.
P ) < S Zerf ] 4.51
(0190 < 3 gerte (55 @s1)
By further averaging (4.51) over the signal set, we get
Ple) < — f; > Lertc < i ) 4.52)
TMZG2 2v/Ny '

We notice that for the computation of (4.52) it suffices to know all the distances
d;; among signals in the constellation.

An important observation is that the union bound becomes tighter and tighter
as No decreases, i.e., when P(e) decreases, so that for low enough error proba-
bilities it provides a good approximation to their exact values. On the other hand,
for large P(e) values its approximation may be very loose. (Actually, nothing
prevents the value of a union bound to exceed 1 for high noise values.) The latter
fact may not be overly bad in system design, because, after all, if we use an upper
bound in lieu of the true P(e) we keep ourselves on the safe side.

4.3.3. The union-Bhattacharyya bound

A simpler form of the union bound (4.52) can be obtained by using a bound to
the pairwise error probability in lieu of its exact value. Since (Appendix A)

1 dij 2.
Z < __4
perc <2\/N_0> = &xp { 4N,

from (4.52) we obtain the union-Bhattacharyya bound

1 X d
Pe) < m S exp {—m} (4.53)

i=1 j#i
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Figure 4.25: Error probability of 4-PSK. Comparison of true value, ad hoc bounds, and
N
union-Bhattacharyya upper bound. Here ny = &b /No.

Use of (4.53) may be convenient for signal sets whose distance -enumeéat?r cz;ln
be computed in closed form. This is defined as the's Polynormal T(Z) in the
indeterminate Z such that the presence of a term aZ° indicates that among the
squared distances d%, i,j = 1,.:., M, j # i, there are gf them taerflgt e
value 6. Then the union-Bhattacharyya bound takes the especially simple form
1 4.54)
P(e) < i T(Z)

Z=a-1/4Mg

Example 4.4 As an example, consider 4-PSK as in Pjig. 4.17. 2Every signal gas two
neighbors at squared distance d?, and one at squared distance 2d®. Thus, the distance

enumerator is
T(2) = 4(22% + 2°%)
and the union-Bhattacharyya bound gives
P(e) < 26/ 4 o= #/20o
For illustration’s sake, this is plotted in Fig. 4.25 as a function of Es/No, where & is the

a
energy per bit, equal to £ /2.

The usefulness of the union-Bhattacharyya bound will appear .in full in oui1 d;s:
cussion of error probabilities of convolutional codes and trellis-coded moduia

tion (Chapters 11-12).
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4.34. A looser upper bound

From the union bound we may obtain a simpler but looser bound that requires
only the knowledge of a single parameter of the signal constellation. This derives
from the observation that the function erfc(-) decreases monotonically as its
argument increases, so that if we define the minimum (Euclidean) distance of the
constellation as the smallest distance between any two signals:

Omin = mm di.‘i (4.55)
i#j

we have

d;; Amin
< erfi —_—
erfe (ww*) =€ °(2m>

and consequently from (4.52) we obtain

P < 3 ()

i=1 j#i

M-1 dmin
- Ml ( x 7%)' (4.56)

where the last equality derives from the observation that the two summations
involve M (M — 1) terms. This upper bound is obviously looser than the union
bound from which it derives. Its simplicity derives from its depending on a single
parameter of the constellation, dy;;,.

4.3.5. A lower bound

As we have seen in our derivation of the union bound, when s; is transmitted
an error occurs if one or more of the following events occur: “The demodulator
prefers to s; the signal s;, § # 1. These events have probabilities P(s; = s;).

Now, if an event is the union of sub-events, its probability is lower-bounded
by each one of the probabilities of these sub-events, so that, for all j # i,

Ple|s;) > P(si — s;)
Consequently, we have

Ple}s;) > maxP(s; = s;)

J#i
= max Lerfc (% 4.57)
T A2 2Ny /-~ :
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Since erfc( - ) is monotone decreasing, its maximum value is achieved when its
argument is minimum, so that we may write

1 doin \ . _
§erfc (2—m—m) , if s; has at least one signal at dmin, 4.58)

Plel]si) 2
otherwise.

)

By averaging (4.58) over the signal set, we obtain

P(e)

It

1 M
—SP ;
72 Plels)

Vi 1 dmin
min - mi (4.59)
M 2°rf°<2\/—No)

where vpin denotes the number of signals that have at least one neighbor at dis-
tance dmi. Notice that vmin/M is the fraction of such signals.

v

Example 4.5 Consider M-ary orthogonal signals. Here all signals have a neighbor at
distance dmin = +/2&, so that vmin = M, and we have the lower bound

1 [ €
P(E) 256]’f€< -éTV—D')

By comparing this lower bound with the union upper bound, obtained from (4.52) by
observing that di; = dmin forall i and j # i

- [ £
P(e) £ M2 1erfc( m)

we see that the difference between the two bounds increases with M.

4.3.6. . Significance of dmin
From the definition of vp;, we immediately have
Vpmin > 2

so that (4.59) yields

1 i"ﬂ 4.60)
P(e)z—Merfc <2m> (
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By combining this simplest form of lower bound with the correspondingly sim-
ple upper bound (4.56), that is,

1 dinin M-1 dimin
f < Ple) < e 4.
M c<2\/_No> Sl <= rfc(wm) 60

we may appreciate the significance of the parameter dp,;,. In fact, knowledge
of it allows us to obtain both upper and lower bounds to the error probability of
any M-ary signal set, these bounds differing only for a multiplicative constant.
For this reason, we may say that dy,j, is the single most important parameter
that determines the quality of a signal constellation, especially for low noise. In
these conditions, constellations with the same average energy may be compared
on the basis of their minimum distances, because it is expected that the one with
the largest value of dp, has the lowest error probability. Thus, maximization of
dmin has become a popular design criterion for signal constellations.

We hasten to add a word of caution here: especially when the error proba-
bility is not very small, maximizing dy,;, may not be tantamount to minimizing
P(e). The next subsection reveals that the number of nearest neighbors also
plays a relevant role in determining P(e) (see also Problem 4.17 at the end of
this Chapter).

4.3.7. An approximation to error probability

A useful approximation to P(e | s;), especially valid for intermediate P(e) val-
ues, will now be derived. This approximation was anticipated at the end of our
derivation of the exact error probability of 16-QAM.

Recall the union bound in the form (4.51):

1 dij
Ple|s) < Jz; §erfc <2m> (4.62)

As Ny — 0, or, equivalently, as d;;/+/Ny grows to infinity, the function erfc( - )
becomes very steep (in a logarithmic scale), so that in the summation at the right-
hand side of (4.62) the only significant terms are those whose argument includes
dmin- If v; denotes the number of signals at distance dy,;, from s;, we have

~ U do
Plels)< 5 g 4.63
(GIS)_zerfc<2m) (4.63)

where the quirky notation < means an approximate upper bound, one that be-

comes closer and closer to a true upper bound as N, (and hence P(e)) approaches
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zero. By averaging over the transmitted signals we obtain

1 M
—MZP(HS-')

Ple) =
i=1
~ D Amin (4.64)
s g (wﬁa)
where M
a1l - (4.65)
V= M ; Vi

is the average number of nearest neighbors of the si gnals in the constellatl?lr;.uld
From (4.64) we can see that, besides din, at leas.t another paran}eter ts ud
be accounted for to evaluate the performance of a signal constellflnon al 'mm
mediate values of P(e). This is the average number of nearest nelghborf,j 1{10_ 6e
constellation. As a rule of thumb, we may say that, for P( e)_values a.rou(;l2 N ,
doubling the value of ¥ is equivalent to losing about .2dBin ‘the ratio ,;;ml 8 eoé
(See Problem 4.18 at the end of this Chapter.) Tt‘xe lattt?r quantity, as we sha
in the next chapter, is related to the signal-to-noise ratio.

4.4. Incoberent demodulation of bandpass signals

The case that will be addressed in this section arises in practical situations whg::
bandpass signals are transmitted, and the demodulator does not' ha\(e a a})retctnh ©
knowledge of the phase of the oscillator that genc?rates the carrier mgpd a e
transmitter side. Consequently, there is an uncerFamty at the receiver side, m
eled by a random phase 8 of which only the pdf is as.sum'ed to bg kpo:jvn. e
The modulator is assumed to be memoryless, with signals lmut'e to a N
interval of duration T. As in our analysis of cohefent demodu!auoq, wfl: 9:t
loss of generality we restrict our attention to thc signal tr‘ansmxtt‘ejd 1n1 t edli;l
terval (0, T), that we model by using analytic-signal notations as develope:

ion 2.4: i
Section 2 ot €0) = R [5( t €o)e]21rfot] (4.66)

= (41 M
where the complex-envelope signals 3(t; &) are chosen fropl the set {s.-(t)},;l .t
To account for the fact that the receiver knows the carrier frequency fo, bu

not its phase, we write the signal received in (0, T) as
r(t) = s(t; £0,6) +n(t) 4.67)

where we have defined
’ s(t; 60,0) = R[5(t; &)/ ] (4.68)

4.4. Incoherent demodulation of bandpass signals 197

The coherent-demodulator solution discussed so far in this chapter implies
estimating ¢, then using its value for demodulation. Here we examine a different
solution, which consists of designing a demodulator that operates without the
assumption that § is known. To achieve this goal, we first evaluate the likelihood
ratios of the transmitted signals conditioned on the value of 4, and then average
over it to obtain likelihood ratios independent of the carrier-phase value.

The conditional likelihood ratio can be written as

2 (T 1 /T, :
Ai(6) = exp {E/o r(t)si(t; 6) dt — F0/0 s2(t; 9)dt} L i=1,2... M
(4.69)
where )
si(t; 6) & R{5:(t)ePei2mhoty (4.70)
By taking the expectation of A;(f) with respect to 4, i.e., by multiplying it by the

pdf fs(-) and integrating from — to 7, we obtain the unconditional likelihood
ratio:

5.' T 2 T
A =exp (—170) /_1r exp {Fo/o r(t)s:i(t; 2) dt} fo(z) dz 4.71)

where £; denotes the energy of the signal s;(t; ), which does not depend on the
phase 6.

The latter expression may be simplified by defining the complex quantities
a

1 /T .
L= 3" —Jj2n fot 4
L; A /0 r(t)5; (t)e dt 4.72)

which allow us to write

A = exp (—%) /_: exp {sn [ﬁLé” folz)dz, i=1,2,...,M

0 No
4.73)

These are the quantities upon which the optimum incoherent demodulator oper-
ates to make its decisions.

When there is no a priori information about the distribution of 8, this lack of
knowledge is reflected by the choice of the uniform pdf, that is,

1
fo(z)=ﬂ, —T<z<7

By using this pdf in (4.73), and recalling the definition of the modified Bessel
function of the first kind, Iy( - ) (see Appendix A), we get

A = exp (—%) Io (%‘?w), i=1,2,...,M 4.74)
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and the log-likelihood ratio for each decision becomes

Ai=InA;=1nl, (2f|L,|) + ¢, 1=1,2,.. LM 4.75)
0

A
where ¢ = —Ei/No.

Thus, the key quantities that the demodulator has to compute are the magni-
tudes of L;. Let us examine in some detail how this can be done. From defini-

tion (4.72), we have

Lie™® =7 / e~ dy

Due to definition (4.70), the term in square brackets in the integrand is the con-
jugate of the analytic signal associated with s;(¢; ¢). Thus, by defining 5;(¢; 0)
as the Hilbert transform of the latter, we have

Le'ﬂ:—— t) [s:(t; ) — 35i(t; 6)] dt
It follows that |L;|*> may be constructed by summing the squares of the real part

—\/%/OTr(t)s (t; 0) dt

and of the imaginary part

= [ s oar
— r{t)s:(¢
\/—.
The signals s;(¢; ), affected by the uncertainty 6, are available to the demodula-
tor. Their Hilbert transforms can be generated by using a device that shifts these

by 7 /2.

4.4.1. Equal-energy signals

An important special case occurs when equal-energy signals are transmitted. In
this case the constants ¢; are all equal and can be omitted from (4.75). Then, since
Io( - ) is monotone increasing for nonnegative arguments, the ML decisions can
be based on the simpler quantities

&1L, i=12,...,M (4.76)

Notice also the important fact that if the energies are not equal, the value of No
should also be known for optimum demodulation.

The block diagram of the optimum incoherent demodulator for equal-energy
signaling is shown in Fig. 4.26. This is called a correlation demodulator.
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Figure 4.26: Block diagram of the correlator receiver Sor incoherent demodulation of
bandpass signals with equal energies.

4.4.2. On-off signaling

Consider binary modulation with the signals

si(t) = 0,

[2E
T cos 2rfot, 0<t<T. 4.77)

Sz(t)
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T 2

-»(%)—» I > ()
0

2 Decision
1403} | \/%cos(Zn’fot +0) - IL,| .

T 2

I dt > ( )
% 0

-\/; sin(2 2 fot +0)

Figure 4.27: Optimum receiver for the case of incoherent demodulation of binary on-off
signals.

Here s, (t) has energy zero, while s;(t) has energy £. From (4.75) we get

M=mnL(0)+0=In1=0

and
2WE £
/\2 =In .[0 <-To—i[:2|) - No

i i t to comparing Az with 0,
Comparing A; to A, to choose the largest is tantamoun .
or, ecfuivalently, |L2|? against a suitable threshold value v, according to the block

diagram of Fig. 4.27. o
g\r’Ve now dgetermine v. |LyJ? takes value v when the two signals s;(t) and

s2(t) are equally likely, i.e, when

2/E £
—_—=0
lnI0< No |L2|> ND

Thus, v is the solution of the equation
Iy <¥\/E) = exp(£/No)
0

which also shows that the optimum threshold, say Vopt, depends on the values o}fl'
£ and of N, (the estimate of the latter may not be an easy task). For small enoug
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Figure 4.28: Optimum decision regions for binary on-off signaling and incoherent de-
modulation.

Ny (which corresponds, as we shall see, to small enough error probability) we
may use the approximation Iy(z) 2 e, which gives

3
VVopt & ‘/7_ (4.78)

Error probability

Since the demodulator operation is based on the envelope of the received signal,
it should be immediately realized that the boundary between the two decision
regions is a circle of radius \/Vopt (see Fig.4.28). The two coordinates of the
received vector are given by

[o (7
= T/; 7(t) cos 2 fot dt
2 [T .
Ty = —\/T/; r(t) sin 27 fot dt

as it can be seen by observing that L = r; + jr,.

Given a transmitted signal s;(¢) and a given value of 8, these two random
variables are conditionally Gaussian and independent with variance N, /2. When
51(t) is transmitted Efr; | s1, 6] = E[r; | sy, 6] = 0, while when 59(t) is
transmitted we have

and

E[ri|s;, 8] = V€ cost
Efr: | s, 9] = VEsind.

1w
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The error probability P(e | s1) is the probability that a point with coordinates
(r1,72) will be out of the circle with radius ,/Tope, that is,

A+ 1y da 4.79)
1o = oo [ [, o (-2 dmcn

Moving to polar coordinates oy = p €08 ¢ and ap = psin ¢, we have
1 2 o0 _ Z/N __ ~Vopt/No 4 80)
=— d / e P /Mpdp=e .
P(e|s1) 1rNo/0 ¢ -

Similarly,

—VEsinb)?

VE cos)? + (a2 }da da
ele)= //R { o 1(4 81)

Moving again to polar coordinates, after integration with respect to the angular
coordinate ¢ we get
} Io (ZP \/_) (4.82)

an integral that can be expressed in closed form in terms of the Marcum’s @-
function (see Appendix A). Specifically, we obtain

25 2 opt
Ple|s)=1-Q (\/;0, ’,-IKV—OP_) 4.83)

Combination of (4.80) with (4.83), yields the final expression for the error prob-

ability: 5
1 o Vopt
P(e) = 5 {exp ( Z pt (\/;0 \/ N: )} (4.84)

Notice that the above expression for error probability also holds for non-
optimum threshold values, i.e., with vepe changed into v.

2 [V {
p exp

P(C‘SQ) No 0

No

4.4.3. Equal-energy binary signals
Assume two signals with equal energy £ and correlation coefficient
1 (T

5% /s 51(t)55(¢) dt (4.85)

’ p=
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(Notice the difference between this definition and (4.32). The factor 2 in the
denominator of (4.85) accounts for the fact that the energy of the complex en-
velope is twice the energy of the real signal, so that we obtain p = 1 when
51(t) = 5(t)).

When 51 (¢) is transmitted, the received signal r(t) has complex envelope

#(8) 2 51 + a(2) (4.86)
so that
r(t) = R{F(t)e> ot} = = [ F(£)e2 0t 4 7 (t)e=T2m o] (4.87)
By assuming fo7" > 1, the terms at 2 fo can be dropped from (4.72), so that we
obtain, for: = 1,2,

= \/_ / t) dt (4.88)

Notice that, since the sufficient statistics (4.76) is based on the squared magni-
tude of |L;|, there is no loss of optimality if we use instead of L; the rotated
quantity L;e . Using (4.86) and (4.85) in (4.88), we get

Lle—ja = \/E'{- n,

Lye™® = pVE+my (4.89)

where, given 8, n; and n; are conditionally Gaussian complex random variables,
defined by

= —= a(t)5r(t) dt
2\/ge A n(t)5; (t)
and hence such that
E{n; |6} = 0, (4.90)
E{lnl? 18} = N, i=1,2, 4.91)
E{nin |8} = Ngp (4.92)

Notice from last equation that »; and n, need not be independent, due to the fact
that they are obtained by projecting white Gaussian noise on axes that may not
be orthogonal.

Thus,

P(e | Sl) = P{IL2|2 > |L1|2 I Sl} = P{ILge_jal > |L1e_j9| I Sl} (493)

Calculation of (4.93) is complicated by the fact that the two random variables
involved are generally not independent, as observed before. However, by using
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Figure 4.29: Error probability for incoherent detection of binary signals. Here n =

E/Ny.

function (see Problem 4.15) we can obtain a closed-form

again the Marcu O ). Moreover, it is an easy matter to check that P{e | s1) =

expression for P(e | s
P(e | s2), so that

I [T) 1 Eat+bd)y, (€ N (404
P(e)=Q( al—%, bﬁo>—_2_e)(p(—7\’_; 9 )IO(NO\/a—> ¢

where
o & %(1—\/1—Ip|2),
p 2 %(1+\/1—|p|2)

This error probability is plotted versus £/No in Fig. 4.2?. The ;mr:;\mur:s :al;z
of P(e) is achieved when |p| = 0, i.e., for orthogonal signals. In this case,

have, by using a result from Appendix A,

£ 1 eromo _ L ~er2m (4.95)
Ple)=Q (0, M) 3¢ )

4.44. Equal-energy M-ary orthogonal signals

The results of the last subsection can be easily generalized to 2 c‘orl?tell;t[i(;?nﬁf
M orthogonal signals. These may be conveniently generated by picking i
soidal signals with duration T', with frequencies located symmetrically aroun
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carrier frequency fo, and such that the correlation between any pair of signals is
zero.

By duplicating the calculations that lead to (4.89), we have, under the as-
sumption that s;(t) was transmitted, and for j = 1,..., M

L.e‘jo={ \/E+n,-, .7=1;
77 nj, ];é‘l

Now the noise components n; are independent. If we define the normalized

envelope R; as
a [2

then this has a conditional pdf which is a Rice pdf when i = 7, and Rayleigh pdf
when ¢ # j, viz,, fora > 0,

1/, 26 A
"e"l’{‘i (" W,)}If’ ("‘\/NE)’ i=h

frisi{a | si) = o (4.98)
aexp (— 7) ) J#

We now have

(4.96)

P(c|si) =P{R; = m;ja.x R;|s;} (4.99)

As a consequence of the independence of the noise components in (4.96), the
envelopes R; are independent as well. Thus, from (4.98) we have, by duplicating
the arguments that led us to (4.45),

P(c|s;) = /omaexp [—-21- (az + Izv—i)]

2 2 M~-1
I (a\/%) [1 —exp (—%)} do (4.100)

We observe that the RHS of (4.100) is independent of the transmitted vector s;.
Therefore, it provides the unconditional probability P(c) of a correct decision.
Moreover, this can be brought to a closed form by using the binomial expansion
for the bracketed term raised to power (M — 1) and then integrating termwise.
The final expression for the error probability is found to be

Ple) = % exp (—2—1%0-) i (M)(—l)‘exp [(22;;35] (4.101)

i=2 \ !

For M = 2 this result agrees with (4.95), as it should. The curves of (4.101) are
shown in Fig. 4.30 as a function of £ /Nj.
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Figure 4.30: Error probability for incoherent detection of M orthogonal signals. Here
n= & / No.

4.5. Bibliographical notes

Much of the material in this chapter is classical in detection anq modulat1qn
theory and, as such, it can be found in most of the textbooks available on this
subject.

JThe authors are indebted to the excellent books by Wozenf:raft and Jacobs
(1965) and Van Trees (1968). The first, in particular, emphasizes the georpct-
ric viewpoint. For the theory of signal spaces, the book by Franks (.1969) is a
recommended reading. The paper by Arthurs and Dym (1962) contains 2 clear
presentation, in a geometric context, of the problems of coherent and incoherent
demodulation of memoryless signals. . A

A more detailed analysis of the phase coherence of the receiver aqd of its
effects on the demodulated signals can be found in the books by Viterbi (1966)
and Simon, Hinedi, and Lindsey (1995) and in Viterbi (1965). The problem
of incoherent demodulation of two equal-energy signa}s appears in Hel§trom
(1958); here we have followed closely the general derivation presented in the
book by Schwartz, Bennett, and Stein (1966).

4.6. Problems

Problems marked with an asterisk should be solved with the aid of a computer.
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4.1. Given an orthonormal basis {z/)j(t)};y:l, show that the RVs n; defined in (4.18)
are independent, zero-mean Gaussian with covariance Ny/2, where Ny/2 is the
power spectral density of the white Gaussian random process n(t).

4.2. Consider the three binary modulation schemes for the AWGN channel whose
signals, defined in (0, T'), are the following:

s1(t) =0, 32(t) = +/2E/T sin 27 fot

s1(t) = 1/2€ /T sin2r fit, s2(t) = /2 /T sin 2r fot
51(t) = 4/2€ /T sin 2~ f1 ¢, s2(t) = —1/2E /T sin 27 fy t

Assume f; — f; = n/T and f; = m/T, nand m two nonzero integers.

and

(a) Represent geometrically each scheme.
(b) Compute their error probabilities.

{¢) Comment on the relative efficiency of each scheme with regard to the uti-
lization of the average transmitted energy.

4.3. Consider a binary antipodal modulation scheme whose signals have distance d
and are not equally likely. Define py = P(s1) and p, = P(s;), the a priori prob-
abilities of the two signals, and show that the optimum demodulator of Fig. 4.8
must set its threshold to the value

N
0 p P2
24 p

In words, the boundary of the two decision regions is not at the origin, but is
shifted closer to the signal with the lower probability. Find the resulting expres-
sion of error probability.

4.4. Assume a binary antipodal modulation scheme.

(a) Evaluate the error probability of the demodulator of Fig. 4.8 when the deci-
sion threshold has an offset A with respect to the optimum (zero) value.
*(b) For some values of A/+/E plot error probability curves, and compare with
Fig. 4.15.

4.5. In this problem we analyze the degradation in performance of a binary demodula-
tor due to the use of a filter different from the optimum matched filter. The system
is shown in Fig. 4.31. Assume

Sl(t) = O,

s2(t) = \/—g, 0<t<T

il
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Figure 4.31: A suboptimum receiver.

and n(t) a Gaussian noise process with power spectral density No /2. The opti-
mum demodulator would require a matched filter, i.e, one with impulse response

1
hopt (2) = \/;, 0<t<T

Assume instead an approximation of a simple RC filter with impulse response
h(t) = e~ Atup(2).
(a) Compute the error probability of this nonoptimum demodulator.
(b) Find the value of A that minimizes the error probability found in (a).
(c) Evaluate the increase of transmitted energy required to get the same error
probability as with the optimum demodulator.

4.6. Two antipodal signals are transmitted over the AWGN channel. The optimum
receiver achieves an error probability of 0.1 when /Np = 1.

(a) Compute the capacity of the binary symmetric channel generated by this
transmission scheme (see Section 3.3.2).

*(b) Modify the receiver by introducing two thresholds at +A, so that an erasure
is declared when the received signal component has an absolute value less
than A. Derive the discrete equivalent binary erasure channel and compute

its capacity as a function of A.
Compare the two cases, and comment on them.
4.7. Assume a binary modulation scheme with signals, defined over (0, T),
81(t) = 0,
26 . .
T sin2rfot, fo =m/T, m aninteger

32(t)

“ and consider coherent and incoherent demodulation.
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(a) Obtain for each scheme its equivalent binary discrete channel, and deter-
mine its parameters as functions of £/Nj.

*(b) For both schemes, plot the channel capacity versus £/N,.

4.8. The two equally likely signals, defined in (0, T),

/26
Tcosanlt,
H%cosZn(ﬁ +Af)

are transmitted over an AWGN channel with noise power spectral density Ny/2.

Assume T = 2 ms and f; = 1 MHz. Consider the two cases A f = 500 Hz and
Af =1kHz.

51(t)

32(t)

(a) Compute the error probability for coherent demodulation.
(b) Compute the error probability for incoherent demodulation.

4.9. (Wozencraft and Jacobs, 1965) The eight equally likely signals shown in Fig. 4.32
are transmitted over an AWGN channel with noise power spectral density No/2.

(a) Compute the error probability achieved by the optimum coherent demodu-
lator.

(b) Interpret the result by using a binary symmetric channel model.

4.10. (Lindsey and Simon, 1973) Consider the following set of M equally likely sig-
nals, with foT > 1:

2
3i(t) = \/;aicos%rfot— \/;bisin%rfot, 0<t<T, i=12,....M

The average energy of this signal set is
1 M
&= 207 4 (G-,2 + b,z )

i=1

(a) Show that the unjon bound (4.52) can be put in the form L3

1 ¥ [€ d;
Ple) < — erfc ¢ 4/ — (———-——]———-—) }
M ; ,‘; { No \2//my oK, Isif?

*(b) Consider the four signal sets of Fig. 4.33 and compare their error probabil-
ities by using the expression found in part (a).



210 4. Waveform transmission over the Gaussian channel 4.6. Problems 211
5 (t G A
AS1 ( ) -2-( ) 5 53 5 L) 5
1 1 I——I s
__| . A
T — T v T > S, -
12 3 1 "1 2 3 1 N A 5
ps® 540 1% S —t—ss
1 (EREE ]
— M S A A
1 2 3 1 1 2 3 1t 5
A5s ® A 56 5 5 St 25
1 . r 1+4-- 51 . S8 54
S,
! > T —> 3 J6 ? s
1.2 3 ¢ 1.2 3 1t 7 el
A 57 530) K
1
_ A L Figure 4.33: Four octonary signal sets.
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Figure 4.32: Signal set of an octonary modulation scheme. VT
4.11. Define a configuration of biorthogonal signals as a set of M = 2N signals in vz vz
an N-dimensional signal space obtained by augmenting an original orthogonal . -
' signal set with the opposite —s; of each signal s;. The case of N' = 2 is shown in Y
Fig. 4.34. Paralleling the calculations that lead to (4.45), show that for biorthog-
onal signals +-V¢

1 o BN a \1M/2)-1
P(o) = / e~le )/°[exf<—>] da

() TNy Jo VN .
Figure 4.34: A biorthogonal signal set with M = 4, N = 2.

4.12. Given a set of M equally likely orthogonal signals of energy £, show that a signal
set with the same error probability but minimum average energy can be obtained isfies the condition
by translating its origin by £ .
L som={ o, 7]
= —_— S; ) .
* M i=1 '

These signals are said to be equally correlated.
The resulting set of signals {s; —a}}, is called a simplex. Show that the simplex
set has an average energy £(1 — 1/M). (a) Prove that

A

©
IA
-

4.13. (Wozencraft and Jacobs, 1965) Assume that a set of M equal-energy signals sat- M=

—
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MR
Hint: Consider ,Z,-=l s,-l .

(b) Verify that the minimum value of p is achieved by a simplex set (see Prob-
lem 4.12).

(c) Prove that, for any p, the signal set has the same error probability as the
simplex signal set with energy

8,:8(1——1M->(1—p)

. M .
Hint: Consider the set {s; ~ a}}4,, with a = (1/M) £, si.

(d) Verify, as a consequence of part (c), that this signal set has the same error
probability as an orthogonal signal set with energy

E=E(1-p)

4.14. Prove (4.90)~(4.92).

4.15. This problem consists of a step-by-step derivation of (4.94). Define the two RVs
z1=\/g+n1, 22=\/E+n2

and apply the following linear transformation:

t = S (14 K) + 21~ K)eH)
ty= %{21(1 — K)+ z2(1 + K)e™3%}

1+ o] _Re) .Sk
K=o =T ¢ 7

(a) Show that the two RVs t; and t; are Gaussian and independent.

where

(b) Show that R, = |t1| and Ry = [ta| are independently distributed Rician
random variables with pdf given by

r 'r2+¢71,Z I fLT.
fRa(T)-‘-J—'geXP 27 [P\ 32

with0 <r < oo,i=1,2,and

24

e 2 Et], of 2 SE(lt - EtP)

-
B =
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(c) Show that (4.93) can be rewritten as

P(e) = P{lz* > |21} = P{jt2]* > |2} = P{R; > Ry}
Hing: Write |t;|2 = t2¢;.
(d) Use the results of Appendix A to get

l/2
P(e) = Q(va, VB) - 2z exp (- 252 no(vab)

where R
a é %3 é G% 1/2 — Uf
O’% + O’%’ 0.% ¥ ogy ;27

(e) Finally, use the definitions of part (b) to show that in our case

£ £
=-"(1-4/1- == —[p2 21
o= = VI- IR, b= g4y /I1), v
4.16. Assume an M-ary modulation scheme with signals given by
2
s,-(t)=A.-‘/Tcos27rfot, 0<t<T, i=12,....M

and 4; = (i — 1)d. Consider an incoherent envelope demodulator that uses the
following nonoptimum thresholds

b = 0,
2 /. 3 .
b = 7\(;(1_5)(1’ 1=12..., M,
byl = o

(a) By extending to this case the analysis that led to the calculation of error
probability for on-off signals, show that fori = 1,2,..., M,

Plcls)=Q [(i - l)d\/%, b,-J -Q [(z‘ - 1)4\/%, bi+1J

(b) Show that, with £ the average energy of the signal set, we have
2 6&

T (M-1)(2M -1)
Hint: Use the equality

n—1

Sit= én(n—- 1)(2n-1)
=0
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*(c) Plot the error probability
Ple)=1- —'ZP(C | s:)

versus the ratio £ /Np.

=
By

.....

4.17.

4.18.

4.19.

4.20.

This problem shows that the maximization of the minimum Euclidean dlsta:n.ce
does not necessarily lead to a signal constellation with minimum error probability

over the AWGN channel.

Consider the unit-energy one-dimensional quaternary gonstgllation with signal
vectors §; = a, Sy = —a, 83 = b, and s4 = —b, where a®? + 8> =1/2and b > a.

(a) Compute the exact value of the error probability for coherent demodulation.

*(b) Determine the optimum values of a and b as a function of Ny, the pov\{er
spectral density of the noise. In particular, verify tpat as Nf’ — 0 the min-
imum distance dmin of the constellation is maximized, while for large N

the best constellation has a — 0.

By using (4.64) and an exponential approximation to the complemen_ta'ry error
function, prove that for P(e) values around 10~% doubling the value of U is equiv-
alent to losing about 0.2 dB in the ratio dZ;, /No.

Consider the binary transmission system based on the signal pair

Acos2m(fo — fa)t] 0<t<m,
() Acos[2mfot — 2mfgr] T<E<T
Acoser(fo+ f)t] 0<t<T,
s28) = Acos[2rmfot +2mfar] T<t<T

where 7 < T. For a given value of fa, find the value of the correlation coefficient
p that minimizes the error probability, and the corresponding value of P(e).

(*) Consider incoherent detection of M-ary orthogonal signals. (.Zompare ntl)lmer-
ically the resulting error probability with that of coherent detection, anfi observe
the performance degradation due to the lack of knowledge of the carrier phase.
By focusing on the binary case, observe how this degradation becomes monoton-

ically smaller as the ratio £/N increases.

Digital modulation schemes

This chapter is devoted to the study of a number of important classes of digital
modulation schemes. The concepts and the tools developed in Chapter 4 will be
extensively used to analyze their performance. Transmission over the additive
Gaussian noise channel is assumed throughout this chapter. The effect of other
impairments other than Gaussian noise, viz., intersymbol interference and fad-
ing, will be examined in later chapters, while modulations aimed specifically at
the wireless channel will be dealt with in Chapter 6.

Here we aim at assessing how each modulation scheme uses the resources
available, that is, power, bandwidth, and complexity, to achieve a preassigned
performance quality as expressed in terms of error probability. Several con-
straints and theoretical limitations generate conflicts among the designer’s de-
sired goals. Therefore, the whole conceptual framework of this Chapter is final-
ized at clarifying the tradeoffs that are fundamental to the choice of a modulation
scheme.

5.1. Bandwidth, power, error probability

As in Chapter 4, we assume transmission over the additive white Gaussian noise
(AWGN) channel with a two-sided noise power spectral density N, /2. We de-
note by P the average power of the digital signal at the receiver front-end. As
we assume for simplicity that the transmission channel introduces no attenua-
tion, then P is also the average power of the signal observed at the transmitter
output.

In this section we define the parameters that will be useful to assess the per-
formance of a digital modulation scheme, that is, bandwidth (and bandwidth
efficiency), signal-to-noise ratio (and power efficiency), and error probability.

215



216 5. Digital modulation schemes
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Figure 5.1: Power density spectrum of a PSK signal.

5.1.1. Bandwidth

Consider first, for motivation’s sake, an M-PSK si gnal whpse elementary wave-
forms have duration T and amplitude A. The power density spectrum of such a
signal is, as computed in Section 2.3,

Gu(f) = 2 [6(=1 = fo) + G{f = fo) 5.1

where )
_ sinm fT 52
o) = wr (220T) 62

The latter function, plotted in Fig. 5.1 on a logarithmic scale, is seen to <':onsist

 of 2 main lobe surrounded by smaller sidelobes. Spectra of signals obtained at
the output of different modulators have a similar appearance. If fhe spectrum
had a finite support, i.e., it were nonzero only on a finite frequency mtqrval. thf:n
it would be an easy matter to define the spectrum occupancy as t'he width of its
support. However, for digital modulations employing finite-duration elementary
waveforms (as is the case of the schemes described in Chapter 4), the pow.er den-
sities extend in frequency from —oo to 0o, thus making it necessary to stipulate
a conventional definition of bandwidth.
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The bandwidth of a real signal accounts only for the positive frequencies of
its spectrum. Then we may use a number of different definitions:

(a) Null-to-null bandwidth. This measures the width of the main spectral lobe.
It is simple to evaluate whenever the first two nulls around the carrier fre-
quency enclose the main lobe, which in tumn contains most of the signal
power.

(b) Fractional power-containment bandwidth. This is the frequency interval
that contains (1 — €) of the signal power in positive frequencies (which
is 50% of the total signal power). This definition is useful for wireless
systems that share a common frequency band: for example, if a signal has
99.9% of its power in the bandwidth B allocated to it, then 0.1% of its
power falls out of B, thus interfering with adjacent channels.

(¢) Bounded power-spectral-density bandwidth. The criterion that specifies
this bandwidth states that everywhere outside B the power spectral den-
sity does not exceed a certain threshold (for example, 50 dB below its
maximum value).

(d) Equivalent noise bandwidth. Originally defined for linear, time-invariant
systems (see (2.89)), this measures the dispersion of the power spectral
density around the carrier frequency.

The definitions above depend on the modulation scheme and on the specific
signals used to implement it. Since in the following we shall be interested in a
comparison among modulation schemes that leaves out of consideration the ac-
tual signals and focuses instead on the geometric features of the signal constella-
tions, it is convenient to use an “abstract” definition of bandwidth. Let us recall
from the 2BT-theorem of Chapter 2 that the dimensionality of a set of signals
with duration T' and bandwidth W is approximately N = 2WT. This motivates
our definition of the “Shannon bandwidth” of a signal set with N dimensions as

N

W = T (5.3)
This bandwidth can of course be expressed in Hz, but it may be more appropriate
in several instances to express it in dimensions per second. The Shannon band-
width is the minimum amount of bandwidth that the signal needs, in contrast to
the definitions above. Any of them, which can be called Fourier bandwidths of
the modulated signal, expresses the amount of bandwidth that the signal actu-
ally uses. In most cases, Shannon bandwidth and Fourier bandwidth differ little:
however, there are examples of modulated signals (“spread-spectrum” signals)
whose Fourier bandwidth is much larger than their Shannon bandwidth.
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Figure 5.2: Power-containment bandwidth of PSK and MSK.

Example 5.1 (PSK) An M-PSK signal has 2 dimensions, so that W'=.1 /T. Tts
null-to-null bandwidth is 2/T, its equivalent noise bandwidth is 1/T, while its Power—
containment bandwidth is plotted in Fig. 5.2. In the same figure the power—contm.nment
bandwidth of another modulation scheme, MSK, to be described in Chapter 6, is also
shown for future reference. a

Note that in general, for any sensible definition of the bjcmdwidth W, we h'ave
W = a/T, which reflects the fundamental fact from Foune.r theory that the time
duration of a signal is inversely proportional to its bandwidth occupancy. The
actual value of  depends on the definition of bandwidth and on the signals used
by the modulator.

5.1.2. Signal-to-noise ratio

In our discussion of Section 4.1 we have seen that the information rate of the
$ource, R,, is related to the number of waveforms used by the memoryless mod-

Ry
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ulator, M, and to the duration of these waveforms, T, by the equality

_ log, M
R, = T (54)

This is the rate in bit/s that can be accepted by the modulator. The average power
expended by the modulator is
p_t
T
where £ is the average energy of the modulator signals. Each signal carries
log, M information bits. Thus, defining &, as the average energy expended by
the modulator to transmit one bit, so that £ = &, log, M, we have

p=g 8t _gp, (5.5)

We define the signal-to-noise ratio as the ratio between the average signal power
and the average noise power. The latter equals (Ny/2) - 2W = NyW, where now
W is the equivalent noise bandwidth of the receiving filter, i.e., of the filter at the
receiving front-end whose task, in our channel model, is to limit the noise power
while leaving the signal undistorted. We have

P & R,
NW SN W (5.6)

Bandwidth efficiency and asymptotic power efficiency

Expression (5.6) shows that the signal-to-noise ratio is the product of two quan-
tities, viz., £/No, the energy per bit divided by twice the power spectral den-
sity, and R,/W, the bandwidth (or spectral) efficiency of a modulation scheme.
In fact the latter, measured in bit/s/Hz, tells us how many bits per second are
transmitted in a given bandwidth W. For example, if a system transmits data
at a rate of 9,600 bit/s in a 4,800 Hz-wide system, then its spectral efficiency is
R, = 2 bit/s/Hz. The higher the bandwidth efficiency, the more efficient the use
of the available bandwidth made by the modulation scheme.

We also observe that if W denotes the Shannon bandwidth then R,/W may
also be measured in bit/dimension. We have

R, log, M

7 2 N (5.7)

Since two-dimensional modulation schemes are especially important in applica-
tions, often the spectral efficiency is measured in bits per dimension pair.

We now define the asymptotic power efficiency v of a modulation scheme
as follows. From (4.65) we know that for high signal-to-noise ratios the error
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probability is approximated by a complementary error function whose argument
is dmin/2+/Ny. Define 7 as the quantity satisfying

& _ o
TN T 2N,

y= Imin (5.8)
4&,
In words, v expresses how efficiently a modulation scheme makes use of the
available signal energy to generate a given minimum mst@ce. Thus we may
say that, at least for high signal-to-noise ratios, a modulation s?heme is bfett.er
than another (having a comparable average number of nearest neighbors p)ifits
asymptotic power efficiency is greater. ‘ B
For example, the antipodal binary modulation of Chapter 4 has VE =&
and dg;n = 2v/€, so that ¥ = 1. This may serve as a baseline figure.

that is,

5.1.3. Error probability

Most of the calculations in Chapter 4 were based on symbol error probability.
To allow comparisons among modulation schemes wit'h different values of M,
and hence whose signals carry different numbers of bits, a better Rerfonnance
measure is the bit error probability Py(e), often also referred to as bit-error rate
(BER). This is the probability that a bit emitted by the source will be received
erroneously by the user.

In gene);al.yit can be said that the calculation of P(e) is a far simpler tas!c than
the calculation of P;(e). Moreover, the latter depends alsq on the_ mapping of
the source bits onto the signals in the modulator’s constellation. A simple bou'nd
on P,(e) can be derived by observing that, since each signal carries log? M bits,
one symbol error produces at least one bit error and at most log, M bit errors.
Therefore,

L) < pe) < Ple) 59)

» log, M

Since (5.9) is valid in general, we should try to keep Py(e) as close as Posflble to
its lower bound. One way of achieving this goal is to choose the mapping in such
a way that, whenever a symbol error occurs, the signal erroneously chos.en by. the
demodulator differs from the transmitted one by the least number of b‘xts. Smce
for high signal-to-noise ratios we may expect that errors occur by rms‘takmg a
signal for one of its nearest neighbors, then a reasonable pick is a mapping such
that neighboring signal points correspond to binary sequences that differ in only
one digit. When this is achieved we say that the signalg are Gray-mapped, and we

iy
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approximate Py(e) by its lower bound in (5.9). In the following we shall provide
examples of Gray-mapped signal constellations, but we hasten to observe here
that exact Gray-mapping is not possible for every conceivable constellation.

5.1.4. Trade-offs in the selection of a modulation scheme

In summary, the evaluation of a modulation scheme may be based on the fol-
lowing three parameters: the bit error probability P, (e), the signal-to-noise ratio
&y/Ny necessary to achieve Py(e), and the bandwidth efficiency R, J/W. The
first tells us about the reliability of the transmission, the second measures the
efficiency in power expenditure, and the third measures how efficiently the mod-
ulation scheme makes use of the bandwidth. For low error probabilities, we may
simply consider the asymptotic power efficiency - and the bandwidth efficiency.

The ideal system achieves a small P, (e) with a low &,/N; and a high R, /W
now, Shannon’s theory as discussed in Chapter 3 places bounds on the values of
these parameters that can be achieved by any modulation scheme. In addition,
complexity considerations force us to move further apart from the theoretical
limits. Consequently, complexity should also be introduced among the parame-
ters that force the trade-off in the selection of a modulation scheme.

5.2. Pulse-amplitude modulation (PAM)

This is a linear modulation scheme, also referred to as amplitude-shift keying
(ASK). A sequence £ of K source symbols is carried by the signal

K-1

w(t) = Y Ges(t ~ A7),

k=0

0<t< KT (5.10)

where the RV & take on values in the set of equally-spaced amplitudes {a;},
given by
d

a=Q2-1-M)3z, i=12..M G.11)

Consequently, the waveforms used by the modulator are a set of scalar multiples
of a single waveform: {s;(t)}M; = {a;}M,s(t). If s(¢) is a unit-energy pulse,
it plays the role of a basis signal in an orthonormal expansion, which shows that
this signal set is one-dimensional. The geometrical representation of PAM signal
sets for d = 2, M = 4 and M = 8, is shown in Fig. 5.3, where the signals are
Gray-mapped.
The simplest form of optimum demodulator has only one correlator, or matched

filter (with impulse response s(T" —t)). Its output is sampled, then compared to a
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Figure 5.3: Geometrical representation of Gray-mapped PAM signal sets.

set of M —1 thresholds, located at the midpoints of adjacent signal points. The re-
sult of these comparisons provides the minimum-distance (and hence maximum-

likelihood) decision.

5.2.1. Error probability
The symbol error probability of PAM with coherent demodulat.iqn can be eval-
uated as shown in Section 4.2.3. Explicitly, we have the probability of a correct

decision )
P(e) = 77 201 + (M - 2)g]

where ¢ is the correct-decision probablhty for the two outer points of the con-
stellation, and g, is the same probability for the (M — 2) inner points. By defining

erfc (2\/Vo>
we have ¢ = 1 — p and ¢ = 1 — 2p, so that
9 M-1
P(c)=1-2p i
and finally
P(e) = M-1 erfc d >
4 (e) - M 2\/No
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Figure 5.4: Symbol error probabilities of M -ary PAM. Here m = &/ No.

To express P(e) as a function of &/Ny, observe that the average signal en-
ergy is, from (5.11),

1&, & M:i-1,
E=-r3al= T L= 1= M) = = (5.12)

P =2 e (,/ e %) (5.13)

The error probabilities for several values of M are plotted in Fig. 5.4. The
asymptotic power efficiency is the factor multiplying £,/N, in the argument of
erfc( - ). For this scheme we have

Thus

3log, M

YPAM = M2 — 1

(5.19)
which can be seen to decrease when M increases.

In PAM the average energy of the transmitted signal differs from the peak
energy £, which is the energy of the maximum-amplitude signal. When design
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constraints are put on the peak transmitted power, we may want {0 express P(e)
in terms of £, = (M — 1)2d*/4. From (5.12) we obtain

& _M-1 (5.15)

£ M+1
For example, for M = 4 we find that £ is 2.55 dB larger than £.

5.2.2. Power spectrum and bandwidth efficiency
The power spectral density of the PAM signal is obtained from (2.125) as

6.(f) = IS

where S(f) is the Fourier transform of s(t). Notice that here and in the t:ol-
lowing, when dealing with power spectral densities, we extend the ‘summagon
in (5.10) from —oo to 0o, so as to avoid edge effects and render the signal wide-

sense cyclostationary. . )
The Shannon bandwidth of this modulation scheme is W = 1/2T, so that its

bandwidth efficiency is

(&) =20eM (5.16)
W/ pam

This increases with M. _ )
In conclusion, for PAM, increasing M improves bandwidth efficiency but

decreases power efficiency.

5.3. Phase-shift keying (PSK)

This is a linear modulation scheme in which the source symbols shi.ft the phase
of a carrier signal. A sequence of K symbols is represented by the signal

ve(t) = R {Kf Exs(t — kT)eﬂ"fu‘} , 0<t<KT (5.17)
k=0

where ék = e/% and each discrete phase ¢, takes values in the set

{Za-n+a) (518)

i=1

with @ an arbitrary constant phase. In the following the modulator wavefqrm
s(t) is assumed to be urp(t), a rectangular pulse of amplitude A and duration

i gﬂ,:
2
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T, so that the envelope of a PSK signal is constant (but other waveforms are
possible). We can write explicitly

K-1

v%(t) = A up(t—kT)cos(2m fot + ¢x) (5.19)
k=0
= I(t) cos 2w fot — Q(t) sin 2m fot (5.20)

where we have defined the in-phase and quadrature components of the PSK
signal:
K-1

I(t) é A Z_ Ccos ¢k ‘U,T(t - kT)
k=0

K-1
Q) £ A Y singpur(t - kT)
k=0

The PSK signal set is represented geometrically in Fig. 5.5 for M = 2, M =
4,and M = 8. In all cases the signals are Gray-mapped. We have seen in
Example 2.20 that the PSK signal set is two-dimensional. The modulators of
2-PSK and 4-PSK are shown in Figs. 5.6 and 5.7.

5.3.1. Error probability

Consider coherent demodulation of PSK. For illustration purposes, the structure
of the demodulator of 4-PSK is shown in Fig. 5.8.

Binary PSK

The exact error probability of binary PSK is determined by observing that 2-
PSK is an antipodal modulation scheme. Hence, by using the result (4.37), and
observing that for a binary scheme £, = £, we obtain

&

Ple) = -21—erfc ( 7\/—) (5.21)
0

Quaternary PSK

The error probability of quaternary PSK (4-PSK, or QPSK) was determined ex-
plicitly in Subsection 4.2.3. By observing that now £ = £/2 and dpin = V26 =
2&y, from (4.39)~(4.40) we have

ro-ete(|[5) - (JB)] e
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Figure 5.5: Geometrical representation of Gray-mapped PSK signal sets.

M-ary PSK

For general M-ary PSK we may use the upper and lower bound to P(e) derived
in Subsection 4.3.1. Here &, = £/ log, M, and from (4.49) we have

Lerte (| £ in — J210g, Msin Z) (523
5erfc< FologsznM-)sP(e)Serfc( N og, M sin - (5.23)

The error probabilities for several values of M are plotted in Fig. 5.9.
The asymptotic power efficiency of PSK is given by

YPSK = Sil’l2 % . 10g2 M (524)

which can be seen to decrease as M increases, M > 2. (Notice how for both
M =2and M =4 wehavey =1).
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Figure 5.6: Binary PSK modulator.

5.3.2. Power spectrum and bandwidth efficiency

The power spectral density of the PSK signal is expressed by (5.1)—(5.2). Since
N = 2, the Shannon bandwidth of this modulation scheme is W = 1/T, so that
its bandwidth efficiency is

(&) = logy M (5.25)
PSK

w
This increases with M.
In conclusion, for PSK (as for PAM) increasing M improves bandwidth effi-
ciency but decreases power efficiency.

5.4. Quadrature amplitude modulation (QAM)

This is a linear modulation scheme such that the source symbols determine the
amplitude as well as the phase of a carrier signal. Contrary to PSK, the signal
envelope is not constant. A sequence of K symbols is represented by the signal

K-1
ve(t) = R { > Geslt — kT)eﬂ"f°‘} , 0<t< KT (5.26)

k=0
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Figure 5.7: Quaternary PSK modulator.

where the discrete RV & is defined as
6 = 6 + 6 = A
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Figure 5.8: Quaternary PSK demodulator.

which expresses the transmitted signal in the form of a pair of orthogonal carriers
modulated by a set of discrete amplitudes. This family of signal constellations is
two-dimensional, and its modulator and demodulator have the same structure of
those of PSK.

Several QAM families may be selected. Fig. 5.10 shows two constellations
with M = 8 and M = 16. These are obtained by choosing a set of discrete
amplitude levels (in number of 2 and 4, respectively), and four equally-spaced
phase values in each. Another choice, way more popular, consists of picking an
infinite grid of regularly spaced points, with coordinates (ny + 1/2, ny + 1/2),
n; and ny two relative integers (that is, n, € Z and n, € Z), and carving out of
it a finite constellation with M points (for example, under the constraint that the
average energy be minimized).

This infinite grid can be thought of as generated by translating the so-called
square lattice Z* with points (ny, n2), n; and n, any two relative integers. This
lattice, as well as its translated version, has minimum distance 1. Three square
constellations obtained from the translated lattice Z* + (%, 1) with M = 4,
M = 16, and M = 64 are shown in Fig. 5.11. When M is not a power of
4, the corresponding constellation is not square, and can be given the shape of

and s(t) is a baseband complex signal with duration 7. When the latter is 2

tangul Ise of unit amplitude, i.e., s(t) = ur(t), we can rewrite (5.26) as a cross to reduce its minimum average energy. Two examples of these “cross
rectangular pulse o Lie., s(t) = ,

constellations” are shown in Fig. 5.12 for M = 32 and M = 128.
(527 Another constellation can be obtained by picking signal points from the lat-

K=l
— £ si - kT
ve(t) = kE_% {€i cos 27 fot — & sin 27 fot} ur(t ) tice D,. This is derived from Z? by removing one out of two points in a checker-




230 5. Digital modulation schemes

10°

107

10

P(e)

10°¢

108 ¢

10%°

7, (dB)

Figure 5.9: Symbol error probabilities of PSK. Here np = Ey/No.

board fashion, so that the minimum distance among the remaining points is max-
imized. In formulas, D, is the set of the integer pairs {ny, ng) with even sum
11 + ng. The lattice D,, whose minimum distance is +/2, and an 8-point constel-
lation carved from D; + (3, %) are shown in Figs. 5.13 and 5.14, respectively.

5.4.1. Error probability
Square constellations carved from Z? + (%, %)

The symbol error probability of M-points square constellations carved from
Z% + (3, 3) can be easily derived from the observation that they consist of the
cross-product of two independent PAM constellations with VM signals each
and an average energy one half that of the QAM constellation (so that & is the
same for both constellations). To see this, note that a square constellation can
be demodulated independently on the two coordinate axes, corresponding to the
in-phase and quadrature components.

Thus, the probability of correct detection in this M -signal QAM equals the
%qume of the probability of a correct detection for a PAM constellation with v M
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Figure 5.10: Two QAM constellations with M = 8 and M = 16.

[ ]
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::@J;:i

fllgulrc)a 5.11: Three square QAM constellations carved from the translated lattice 7, +
22/

signals obtained by projecting the former on one coordinate axis. If p denotes -
the symbol error probability in each PAM constellation, we have

Ple)=1~(1-p)*=2p-p? (5.28)
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Figure 5.12: Two cross constellations carved from the translated lattice Z+ (3, 5)-
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Figure 5.13: The lattice Do, obtained from the square lattice by removing every second
point in a checkerboard fashion.

F o

where, from (5.13) with M changed into vM,

- 1 3logg M & 5.29)
= (1- 7)== (

A simple upper bound to P(e) (which is also an approximation useful for

5.4.  Quadrature amplitude modulation (QAM) 233
A
o o
[ ] [ ]
o o -
® [ ]

Figure 5.14: An 8-point signal constellation carved from Dy + 3, )

large M and large &,/Ny) can be obtained by writing P(e) < 2p and observing
that (1 - 1/v/M) < 1 in (5.28)<(5.29). Equivalently, we may observe again that
a square constellation can be thought of as the product of two PAM with M
signals and half the energy. By using (5.12) we obtain

M-1
€= =% dun
Moreover, the average number of nearest neighbors is approximately 4 (it is
lower for the outer points of the constellation, and exactly 4 for all inner points).
Thus, from (4.64) we have

< [3logs M &,

Cross constellations carved from Z? + (4, 1)

To construct a cross constellation with M = 2%+2# signals we may use the 32-
square template of Fig. 5.15. We scale it, by partitioning each square into four
squares, 1 times. The cross constellation is then the set of 25+2# points from
Z? + (3, 3) located in the middle of the resulting squares.

For the error probability of cross constellations no exact result is available.
However, for large enough M the approximation (5.30) still holds. In fact, the
average number of nearest neighbors is still about 4, while the average energy is
slightly lower than for square constellations. To justify the latter statement, we
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Figure 5.15: Template for a 32-point QAM cross constellation.

observe that for large M the average energy of the constellation, that is,

1 &
= — S;
E=u ;‘ |
can be thought of as the discrete approximation to the integral
! / 2 (5.31)
=— [ |x|°dx
z M x|

where the integration is performed over the domain that' enc}osef/tﬁm:dc?n?;ilc-l
lation. For example, if it is performed over the squa':e wx%h side . ,f,t,n tane
hence area Md2,;) that encloses the square constellation Wli':h M p01r.1tt)s, (; aybove
the approximation £ &~ MdZ,,/6. For the cross cqnstellatxon desc:l-l et alues,
we obtain £ & 31/32- Md2;,/6, 2 good approxlmgnon even for mo edréi e vWhile
of M. For example, M = 128 yields the appro?umate value 220.67W i e
the true value obtained from direct computatign 1§ & = 20.5d; ;- efconcuZIIe
that the average energy of a cross coln:tggatlon is lower than that of a sq
1 31/32,1.e.,0. .
conifgg.z[rlr(z)t l;oz:):li;;iot:es for square constellations with several values of M are

plotted in Fig. 5.16.

5.4.2. Asymptotic power efficiency
From (5.30) the asymptotic power efficiency of QAM is given by

s 310g2M
TAM T M -1

(5.32)
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Figure 5.16: Symbol error probabilities of square constellations carved from 2% +
1, 1), Hereny = & /Ny,

which can be seen to decrease when M increases.
It is instructive to compare the asymptotic power efficiencies of PSK and
QAM. We expect the latter to be larger, since QAM does not suffer from the

constraint of having all its signal points on a circumference for constant enve-
lope. By taking the ratio between (5.32) and (5.24) we obtain

Yoam _ 3 1
Yesk  2(M —1)sin®7/M

For large M, this ratio approaches

M2

3
2{M - 1)n?

~0.152M

and hence increases linearly with M. For example, for M = 64 the ratio between
the two efficiencies is close to 10 dB, and for M = 256 is close to 15.9 dB.
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5.4.3. Power spectrum and bandwidth efficiency
The power spectral density of the QAM signal is given by (5.1), where now

o(r) = Lol 5 63

and S(f) is the Fourier transform of the complex signal §(t).
Since N = 2, the Shannon bandwidth of this modulation scheme is W =

1/T, so that its bandwidth efficiency is the same as for PSK:

R
=2 =log, M (5.34)
( 124 ) QAM B2

As for PAM and PSK, this increases with M. _
In conclusion, for QAM, increasing M improves bandwidth efficiency but

decreases power efficiency.

5.4.4. QAM and the capacity of the two-dimensional channel

We have seen that, in the absence of a constant-energy constraint, QAM is more
efficient than PSK. In this section we shall examine how this modulation scheme
compares with the limiting performance predicted by information theory.
Recall from Chapter 3 the expression of the capacity of the additive white
Gaussian noise (AWGN) channel, expressed in bit/s/Hz:
Rs Eb

C
= = = 22) =1 1+ SNR (5.35)
log, (1 + W No) oga( )

By recalling (5.34) we may write

&
SNR = log, M A

Let us define the normalized SNR as
SNRy = SNR 27" (5.36)

where 75 denotes the transmission rate in bits per dimension pair. Now, consider
QAM with M = 2" equally likely signals. Its symbol error probability over the
AWGN channel is given by (5.30), which can be rewritten, for large M, in the
form

/ ) /3
. P(e) = 2erfc ( E%SNR = 2erfc ( §SNR0) (5.37)
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Figure 5.17: Symbol error probability vs. normalized SNR for Q AM. The Shannon limit
is also shown.

This expression of error probability can be compared with the Shannon capacity
bound derived from (5.35). This states that for large SNR there exists a coding/
modulation scheme which achieves, over the AWGN channel, arbitrarily low
error probabilities provided that

< % = log,(1 + SNR) = log, SNR (5.38)

N

log,(SNR/M) > 1 (5.39)

This implies that arbitrarily low error probabilities can be achieved for any nor-
malized SNR, > 1 (i.e., 0 dB). Fig. 5.17 compares the symbol error probability
achieved by QAM with the Shannon bound. From this figure we may observe
that for an error rate of the order of 10~ there is a SNR gap of about 6 dB, which
becomes 7.5 dB at 107 and about 9 dB at 10~°. As we shall see later, most of
this gap can be filled by a combination of coded modulation and shaping,
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5.5. Orthogonal frequency-shift keying (FSK)

This is a nonlinear modulation scheme such that the source symbols determine
the frequency of a constant-envelope carrier. Specifically, it is assumed that
the modulator consists of a set of M separate oscillators tuned to the desired
frequencies.!

A sequence of K symbols is represented by the signal

{ Z ug(t — kT)e/2mfaés(t=KT) eJ’”f°‘} 0<t< KT (540)

where the discrete RV & takes values in the set {2i —~ 1 — M}, and hence 2,
is the separation between adjacent frequencies.
The transmitter uses the signals

0<t<T
1=12,....M (5.41)

S,’(t) = Acos 27I'fit,
fi = f0+(2i— 1~ M)fd,

They have common energy £ = A*T'/2, and a constant envelope.
By choosing appropriately the frequency separation, the signals can be made
orthogonal. Specifically, we have

T T
/ 5i(t)s;(t) dt = A? / c0s 27 f;t - cos 2w f;t dt
0 0

A (T
= 7/ COSQ?T(f,'-l—fJ tdt"'_’/ COS27I' f1 fj)tdt
0

AT sin2r(fi + f5)T | AT sindn(i —5)fuT
2 u(fi+ )T 2 4n(i— ) faT

We assume that the product f,T' of carrier frequency and symbol interval is so
large that the first term in the last expression can be disregarded. Thus, the scalar
product of two distinct waveforms is zero whenever 4r f4T is a nonzero multiple
of w. The minimum frequency separation yielding orthogonal signals is

1

2a= 77 (5.42)

! Another practical possibility is the use of a single oscillator whose frequency is modulated
by source bits. The resulting FSK signal is phase-continuous, and the absence of abrupt phase
transitions yields a narrower power density spectrum. See Chapter 6 for further details.
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Figure 5.18: Symbol error probability of orthogonal FSK. Here ny = &,/ Ny.

5.5.1. Error probability

By bounding the symbol error probability with the union bound of Example 4.5,

we obtain
M-1 log, M &,
< _— .
Ple) < 3 erfc < ) No) (5.43)

(See Fig. 5.18).

For this modulation scheme the bit error probability can be easily related to
P(e). Choose a position in the (log, M)-tuple of bits associated with any signal.
Then M/2 signals have a O there, and M/2 have a 1. We have an error in that
position if the demodulator selects one out of the M /2 signals with the wrong
bit there. Now, when the demodulator makes an error, all the M ~ 1 incorrect
signals have the same probability of being selected, because all are at the same
distance dyy;, from the transmitted signal and the noise is spherically symmetric.
In conclusion,

M/2

Pye) = o1 (e)
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5.5.2. Asymptotic power efficiency
From (5.43) the asymptotic power efficiency of orthogonal FSK is given by

1
TRSK = 5 log, M (5.44)
and increases with M.

5.5.3. Power spectrum and bandwidth efficiency

By using egs. (2.164) and (2.165) under the assumption that all signals are
equally likely to be transmitted, we obtain the power density spectrum of the
FSK signal as

2}

M

(e) 1 2 1| :
620 = 37\ LIS = 37 [ Si)

i=1

and
(@ 1 M ? m
- o] £.00-3)
where as usual S;( f) denotes the Fourier transform of signal s;(t),4 = 1,..., M.

Example 5.2 Consider binary FSK signaling, with
81(t) = Acos2w(fo — fa)t and s2(t) = Acos2x(fo + fa)t
The corresponding complex envelopes are
51(t) = Ae™9 et and  §,(t) = AeITSet
and their Fourier transforms are
Si(f)=g(f+fo) and  S(f)=g(f - fa)
where g(f) is the transform of the rectangular pulse Aur(t):

9(f) = AT —-—Si:}rfe""’”

The power density spectrum of the complex envelope of the modulated signal is given
by

GO = g [lolr + FaP +1g(f = £ = R {g(f + fa)g"( — fal}]

o

P
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Figure 5.19: Power density spectrum of binary FSK (continuous part).

and
g9 =
% [lg(f + )1+ la(f ~ £)I? + 2R {g(f + fa)g"(f - f2)}] m:éma ( f- %)

Finally, the power spectrum of the real signal can be obtained from

6ulf) = 7 {991 = ) + GO(=f = f)GD(s = 1) + GO (~f - )

Curves showing the continuous part of the spectrum of FSK for some values of 2f,T
can be found in Fig. 5.19. Table 5.1 lists the amplitudes of the line spectrum for the same
values of 2f,T. 0

In interpreting the results described above for the power density spectrum of
FSK, one should keep in mind that they were obtained under the fundamental as-
sumption, made in this chapter, that the modulation scheme is memoryless. This

ot

T
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fTl2fT=1012f,T=15]|2f;T =20

0 -134

1 ~7.4 —6.8 —-6.0

2 -154 -20.1

3 -19.2 -24.6

4 -21.8 =275

5 -23.8 -29.6

6 -254 -313

7 -26.8 -32.7

Table 5.1: Discrete power density spectrum for the signals of Example 5.2: Coefficients
of the line components in dB.

implies, as briefly mentioned at the beginning of this section, that the pulses at
different frequencies be generated independently: in particular, no phase depen-
-dence among them is assumed. This model fits a situation in which the modu-
lated signal is obtained by switching at a rate 1/T among M different oscillators
that generate signals with the same initial phase in each symbol interval. This
may occur when the signal waveforms are generated digitally.

Bandwidth efficiency. Here N = M, so that the Shannon bandwidth of this
modulation scheme is W = M /2T, and its bandwidth efficiency is

(&) —olog: M (5.45)
W/ psk M

We note that, unlike with PAM, PSK, and QAM, by increasing M the bandwidth
efficiency of orthogonal FSK decreases. On the other hand, its power efficiency
increases.

5.6. Multidimensional signal constellations: Lattices

In this section we focus our attention on a special case of multidimensional sig-
nals, those generated by lartices. Lattices are infinite constellations with a high
degree of symmetry, and lattice signaling, which has recently been receiving con-
siderable attention for theoretical analyses as well as for applications, is deemed
to provide excellent trade-offs between performance and implementation com-
plexity for digital communication systems. We give here an overview of some of
the aspects of lattice theory that are most relevant to applications.

The idea is to consider an N-dimensional lattice A, and to carve a finite set
of signals S out of it by retaining only the elements of A that lie in a finite region
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R. One then derives the properties of S from the properties of A and those of R.
We start by listing some parameters useful for assessing the quality of a mul-
tidimensional constellation.

Bit rate and minimum distance. Let S denote an N-dimensional signal con-
stellation, |S| the number of its points, and g(x) the probability of transmitting
the signal x € S. Its bit rate is the number of bits per dimension carried by each
signal, that is, log, |S|/N. Its normalized bit rate is the number of bits carried
per dimension pair: |
_ 2log, |S|

8= N (5.46)
The normalized minimum distance of the constellation S is the ratio between
dZ;, and the average signal energy &, where

- ,Si, 3 o) Ix]?

xES

£

Figure of merit. The constellation figure of merit of S is the ratio between
d%;, and the average energy of S per dimension pair:
d2

o=

The constituent constellation. Assume the N-dimensional constellation to be
generated by transmitting N/v consecutive v-dimensional elementary signals
(in typical wireline modems v = 2, with QAM as elementary signals). If the
projections of S onto coordinate pairs (1,2), (3,4), ..., (N — 1, N) are identical,
we call this common constellation the constituent 2-D constellation of S. This is
denoted by S;, and the induced probability distribution by ¢»( - ). We desire that
the size | S, be as small as possible. With this definition of S; we have

S| < (S22 (5.47)
which shows that |S;| is lower bounded by
[Sa] > |S/N = 22loe2 ISUN — 96 (5.48)
Thus, we may define the constellation expansion ratio of S as

|S2! |Sa|
CER(S) = 55" = 15y 2 1 (5.49)

In designing a multidimensional constellation, one should keep its expansion
ratio as close as possible to the lower bound of 1.
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Peak-to-average energy ratio. The peak-to-average energy ratio (PAR) isa

measure of the dynamic range of the signals transmitted by a two-dlmen'sxonz‘al

modem, and it measures the sensitivity of a signal constella.tlon to nonhpean-

ties and other signal-dependent perturbations. Peak power is measured in the
constituent {two-dimensional) constellation. The PAR is given by

AR (C) = o

PAR(C) = g’

where €2, is the peak energy of the signals in Sp, and £, is their average energy:

2
€rnax = MK [X]

£r= o 3 g(x)x.

- |82| XESa

Example 5.3 The baseline one-dimensional PAM constellation (with M > 2 signals)
has a bit rate per dimension pair

B=2log, M >2

and a figure of merit, from (5.12):

Example 5.4 Consider the infinite set A of 4-dimensional signals with semi-integer

i 1111 in thi carve a finite con-
coordinates. We denote this set Z% + (3, 3, 3, 3)- Within this set we

stellation S obtained as follows. We choose a representative signal in A,‘ and f:rtr: i::
class of signals by applying to it all permutations and all changes of t.he signs o ‘e
coordinates. All the vectors in one class have the same energy as the.lr representative.
The union of a finite number of classes gives a constellation. We consider l‘1ere th;e C;)l;-
stellation with |S| = 512 obtained as the union of the 7 classe.s shown in ’f;b'e 5
The projections of S on two dimensions are identical. The conftltuent constellation -‘i
is shown in Fig. 5.20. It should also be observed (the calculations are .left as' ar:s‘exellél
cise) that if the signals in S are equally likely, this is not the case for the signals in Sa.

5.6. Multidimensional signal constellations: Lattices 245

Representative number of signals
s IIsfi? in the class
Gpog) |1 16
Gibb [ 3] e
$33d | s 9%
Ghnd |7 64
G330 | 7 64
@350 | 9 192
B34 | o 16

Table 5.2: Construction of a 4-D constellation with 512 signals carved from 74 +
111 L,

222022

5.6.1. Lattice constellations

In general, a lattice A in the Euclidean N-space RY is defined as an infinite set
of N-vectors closed under ordinary addition and multiplication by integers. This
“group” property makes a lattice look the same no matter from which one of its
points it is observed. The simplest lattice is the only one-dimensional lattice Z,
the set of relative integers.

A basis for A is a set of m vectors a,, - - - » 8, in R¥ such that
m
A =3 x4, 7, €Z
i=1

In words, each lattice point can be expressed as a linear combination, with in-
teger coefficients, of m basis vectors. Under these conditions A is said to be
m-dimensional (usually we have m = N).

Two lattices are equivalent if one of them can be obtained from the other by
a rotation, reflection, or scaling. If A is equivalent to A’, we write

AN

If dmin is the minimum distance between any two points in the lattice, the
kissing number 7 is the number of adjacent lattice points located at dp;y, i.e.,

b

g

et
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A
. . . .
. . . . . °
o o o . o .
o o . o . o
o o o . o .
o . o .

Figure 5.20: 2-dimensional constituent constellation.

the number of nearest neighbors of any lattice point. Thi.s name comes from the
fact that if each lattice point is surrounded by a sphere with radius dmin/2, these

spheres will touch, or “kiss,” 7 similar spheres.

The coding gain of a lattice

Each lattice point has a polyhedron surrounding it that conttains the': ppin[s of the
N-dimensional space closer to it than to any other lattice pomt.. This is called thc?
Voronoi region of the lattice. The regularity of the latticc? entaJ.Is that all Voronoi
regions are congruent. The coding gain v.(A) of the lattice A is defined as
Y(A) = VAN

where V(A) is the fundamental lattice volume. This is defined as the Yolume of
the Voronoi region of any of the lattice points, or, equivalently, th:,r reciprocal of
the nurnber of lattice points per unit volume (for example, V(ZN) = 1). The
main properties of ,(A) are listed in Forney (1988, pp. 1128-1129).

Transformation of lattices

Given a lattice A with vectors x, new lattices can be generated by the following
operations.
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Figure 5.21: The lattice Z2.

e Scaling: If r is any real number, thefl 7A is the lattice with vectors rx.

e Orthogonal transformation: If T is a scaled orthogonal transformation of
R”, then TA is the lattice with vectors Tx.

e Direct product: The n-fold direct product of A with itself, i.e., the set of
all nN-tuples (X1, x5, - - -, X,), where each x; is in A, is a lattice denoted
by A™.

5.6.2. Examples of lattices
The lattice Z~

The set ZV of all N-tuples with integer coordinates is called the cubic lattice,
or integer lattice. Its Voronoi region is a hypercube with unit edge length. Its
minimum distance is dp;, = 1, and its kissing number is 7 = 2/N. For example,
Z? is shown in Fig. 5.21.

The N-dimensional lattice Ay

Ap is the set of all vectors with (V + 1) integer coordinates whose sum is zero.
This lattice may be viewed as the intersection of Z¥+! and a hyperplane cutting
the origin. Its minimum distance is dp;, = +/2, and its kissing number is 7 =
N(N+1). Fig. 5.22 shows A, called the “hexagonal” lattice because its Voronoi
regions are hexagons.
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Figure 5.22: The 2-dimensional hexagonal lattice As.

The N-dimensional lattice Dy

Dy is the set of all N-dimensional points whose inte}\ge.r coo.rdinates h.ave an
even sum. It may be viewed as a punctured version of Z%,in w%uch the pomtsha.re
colored alternately black and white with a checko.?rboard coloring, and the_w \}tﬁe
points (those with odd sums) are removed (see Fig. 5.13). We have dmin = V2,
=2N(N -1). o
and;.; rezpre(sents ﬂ)le densest lattice packing in R‘.' Thi§ means that if umtl;
radius, 4-dimensional spheres with centers in the lattice points are }1sed to pac
R, then D, is the lattice with the largest number of spheres per unit volume.

The Gosset lattice Eg
E; consists of the points
1 &
- {(z1,--,78): Vzi€ZorVz; €Z+ 3 > z; =0 mod2}

=1

In words, Ej consists of the 8-vectors whose components are all integers, or ail

halves of odd integers, and whose sum is even. .

This lattice has duin = V2 and 7 = 240. The 240 nearest neighbors of the
origin (the point 0%) are the 112 points obtained by permutmg the FomPonents
.of (£1)20%, and the 128 points (+1)®, where the number of minus signs 1s even.

v
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If we build a sphere with radius v/2/2 centered at any point of Eg, we obtain an
arrangement of spheres in the 8-dimensional space such that 240 spheres touch
any given sphere. It can be shown that it is impossible to do better in R8, and
that the only 8-D lattice with 7 = 240 is F.

Other lattices

The description and the properties of other important lattices, like the 16-di-
mensional Barnes-Wall lattice A4 and the 24-dimensional Leech lattice Aggq, are
outside the scope of this book and can be found, for example, in Chapter 4 of
Conway and Sloane (1988).

5.7. Carving a signal constellation out of a lattice

We now study how a finite signal constellation S can be obtained from an infinite
lattice A, and some of the properties of the resulting constellation. We shall
denote with S(A, R) a constellation obtained from A (or from its translate A +a)
by retaining only the points that fall in the region R with volume V(R). The

resulting constellation has ®)
V(R
1~ vy
points, provided that V/(R) > V/(A), i.e., that |S] is large enough.

In order to express the figure of merit of the constellation S (A, R), we need
to introduce the definition of the shape gain 75(R) of the region R. This is
defined as the reduction in average energy (per dimension pair) required by a
constellation bounded by R compared to that which would be required by a
constellation bounded by an N-dimensional cube of the same volume V(R). In
formulas, the shape gain is the ratio between the normalized second moment of
any N-dimensional cube (which is equal to 1 /12) and the normalized second
moment of R:

1/12
W(R)=—5 5.51
7(R) R (5.51)
where fy
T T
mz(R) = NT%WW (5.52)

The main properties of 7¥s(R) are listed in Forney and Wei (1989).
Here we can quote without proof the following important result: The figure
of merit of the constellation S(A, R) having normalized bit rate [ is given by

CFM(S) ~ CFMj - 7,(A) - 7,(R) (5.53)
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Name A | N | Kissing | 7:(A)

number | (dB)
Integer lattice Z |1 2 0.00
Cubic lattice ZV¥ | N 2N 0.00
Hexagonal lattice | Ay | 2 6 0.62
Schlifti Dy} 4 24 1.51
Gosset Es | 8 240 3.01
Barnes-Wall A | 16| 4,320 | 4.52
Leech Aqg | 24 1 196,560 | 6.02

Table 5.3: Parameters of important lattices.

where CFM, is the figure of merit of the one-dimensional PAM constellation
(chosen as the baseline), .(A) is the coding gain of the lattice A (see (5.50)),
and v,(R) is the shape gain of the region R. The approximation holds for large
constellations.

This result shows that, at least for large constellations, the gain from shaping
by the region R is almost completely decoupled from the coding gain due to
A — or, more generally, the gain due to the use of a code. Thus, for a good
design it makes sense to optimize separately -y.(A) (i.e., the choice of the lattice)
and 7,(R) (i.e., the choice of the region).

The values of +, for some important lattices are summarized in Table 5.3.

5.7.1. Spherical constellations

The maximum shape gain achieved by an N-dimensional region R is that of a
sphere £. If R is its radius and NV = 2n, it has

ﬂ.nRZn
V)= n!
and n ,
2dr = ——RV (S
L|1‘| dr n+1 (=)
so that

w(n+1)
%(E)=§W

As N — 00, 7,(X) approaches e /6, or 1.53 dB. The last figure is thus the max-
imum achievable shaping gain. A problem with spherical constellations is that
the complexity of the encoding procedure (mapping input symbols to signals)
may be too high.
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2

2
2

Figure 5.23: Partitioning a 2-D constellation into equal-size rings.

The main goal of N dimensional constellation design is to obtain a shape
gain as close to that of the V sphere as possible, while maintaining reasonable
implementation complexity and other desirable constellation features.

5.7.2. Shell mapping

In shell mapping (Laroia, Farvardin, and Tretter, 1994), the component two-
dimensional signal constellation S; is partitioned into M rings Qo, ..., Qur_1,
each containing the same number of points (Fig. 5.23). Then some of the bits
are used to select rings, while other select points in those rings. An important
feature of shell mapping is that it integrates shaping and mapping.

The basic idea is as follows. Each of the M rings is assigned a “cost” c;,
i =0,--+, M — 1, which approximates the average energy of the points in the
ring (c; = i provides a good approximation). Let S denote the 2N -dimensional
constellation consisting of all possible combinations of si gnal points in the com-
ponent 2-D constellation S,. To send b bits in N symbols, we use the 2° lowest-
cost points in S;', where the cost of a point is the sum of the costs in the 2-D
rings. This is done with a sequence of table look-ups and arithmetic operations.

The shell-mapping method naturally chooses a 2°-point signal constellation
S that approximates a 2N-dimensional sphere. For example, when b/N = 8 and
|Sf = 256, with shell mapping we obtain a shape gain of 0.2 dB. For IS = 320
we obtain a shape gain of 0.8 dB. By using larger constellations, shaping gains

a
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approaching 1.0 dB can be obtained.

5.7.3. Error probability

Assume that a finite constellation carved from a lattice is used for digital trans-
mission over the AWGN channel. From (4.65) we have

~ T dmin
P(e) < gerfe <2No> (5.54)

On the other hand, since all lattice points have at least one neighbor at distance
enin, (4.60) yields . i

Zerfc (22 (5.55)

P(e) > 2erfc <2No>

By comparing the last two inequalities, we can see thgt tht? low.er bc?und and
the approximate upper bound to error probability for lattice 51gnﬂ1ng differ by a
factor 7, which may be rather large for high-dimensionz?l lattices (.see Table 5.3
above). When a finite constellation is used, (5.54) can stl!l be cons1d'ered a. good
approximation to P(e) if the constellation size and the signal-to-noise ratio are
both large.

5.8. No perfect carrier-phase recovery

So far in this chapter we have assumed that coherent derpodulation is Performed,
i.e., that the carrier phase is perfectly known at the receiver. When this assump-
tion is not valid because no carrier phase estimation is performed, an alteman\{e
detection method, described in Chapter 4, is incoherent demodulatlor}. In this
section we shall consider a situation in which the receiver achieves an 1rqperfect
knowledge of the carrier phase. To understand how this can occur, consider for
illustration sake the transmission of a 4-PSK signal with phases (0., +7/2, 7).
Observation of the received signal under an imperfect synchronizatlor.l between
transmitter and receiver carrier-frequency generators will show that. its Phases
belong to the set {6, +7/2 + 8, 7 + §}. Based upon thi§ observation, 1t'may
seem at first that one can easily align the received phases with thos; transgntted:
it suffices to shift the former by —8. However, things are not so §1mple: in fact,
any shift § + kn /2, k any integer, produces the same received. signal constel‘la-
tion, so that sheer observation of the latter is not sufficient to estimate the.rotatlon
induced by the carrier-phase misalignment between transmitter and receiver. We
may say that this misalignment has the form 8 + kr /2, where 6’.can be estm.la.ted
(techniques for doing so will be discussed in Chapter 9), whlle.the remaining
term, the phase ambiguity, remains to be corrected. In general, with A/-PSK the

v MQ
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phase ambiguity introduced by this process, which we denote by ¢, isequal to a
multiple of 2n /M.

Two techniques can be used to resolve this phase ambiguity:

1. A preamble, i.e., a fixed symbol sequence known by the receiver, is sent at
the beginning of the transmission (and whenever it may be assumed that
the receiver carrier has lost its coherence). Observation of this sequence is
used to remove the ambiguity: in fact, any nonzero value of ¥ will cause
the received symbols to differ from the fixed preamble.

2. Differentiallencoding is used, i.e., the information to be transmitted is as-
sociated with phase differences rather than with absolute phases.

Here we describe the latter technique, which generates the so-called differen-
tially-encoded PSK. The model of a channel introducing the phase ambiguity ¢
can be easily constructed by assuming that, when the phase sequence (0,)3,1s
transmitted, the corresponding received phases are (6, + )2, (We neglect the
noise here.) We start our discussion with a simple example.

Example 5.5 Consider transmission of binary PSK. Assume the transmitted phases to
be

(07 01 g} 0) ™ m, 0) 0’ T, Ov)
If the channel is affected by the phase ambiguity p = 7, we receive

(7(, s 07 ™ 07 07 T, ™, 07 7I',"')

and hence all of the received bits differ from those transmitted. o

The example above shows that, while all the bits are received erroneously
(which incidentally would be detected by observing that the preamble received
differs from the preamble transmitted), the phase transitions between adjacent
bits are left invariant by the presence of an ambiguity. Thus, if the information
bits are associated with these differences rather than with absolute phases, the
ambiguity has no effect on the information received.

Example 5.5 (Continued) Before modulation, transform the source phases (6,)32,
into the differentially encoded phase sequence (67,5 according to the rule

6, =0,+0,_, modr (5.56)
where it is assumed that 62, = 0. Thus, if the uncoded phase sequence is

(Ol ™, T, 01 ™, 01 ™ W)"')

L

wer
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the differentially encoded sequence is
0,0, m0,mm0,0,m, 0,--)
Assume again that the channel is affected by the phase ambiguity @ = w. We receive
(m, 7, 0,7, 0,0, m, m, 0, myeer)
Now, we differentially decode the received phase sequence by inverting (5.56):
b, =0,+065_, modm (5.57)
where a hat denotes phase estimates. We obtain the phase sequence
©,mm0m0,m, myee-)

as it should be. .
1t can be seen that (5.56) and (5.57) correspond to modulo-2 operations on the source

a
bits corresponding to the BPSK phases.

To explain in general terms the differential coding/ench%ng proce@grefi v's;e
use here z-transform notations, which corresponds to describing a semi-infinite

. A n Witk ek
sequence (z,)3%, through the power series X (z) = T 0Taz". With this

notation, we write the transmitted phase sequence as
Oz) =+ bz + 02z + -
and the received sequence as
- _2 ..
() +8(z) = (Bo+¢)+(Br+e)z +(B2+9)z" +
= 0) +p(l+zl+272+)

= O(z)+ (5.58)

@
1-2z1

ill neglecting the effect of the additive Gaussian noise?. .
(we’;;egi?rid ogf the a%nbiguity term ¢/ (1 — z71) we may {nult1ply t‘heFr.eceslszd
signal (5.58) by (1—z~1). This is accomplished py th'e cqcmF shownin flg. .the,
called-a differential decoder. In the time domain, tt.us c1.rcu1t subtra;ts rom the
phase received at any instant the phase that was recelved. in Fhe prece ing sym od
period: since both phases are affected by the same amb1gu1'ty ©, this is rer.noveW
by the difference (except for the phase at time 0).' Tt.1e rf,celved sequemc:ie 1sX 2: t
(1 = z71)©(z) + v, which shows that the ambiguity 1s now re{nove0 (eN 5
at the initial time n = 0, as reflected by the teml1 @ muluplymg z%). ! ow,
the information term ©(z) is multiplied by (1 — z7"): to recover it exactly we

..
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Xn + T Yn = Xn- Xpy
X@) - YA=(1-z)X@)
z1

Figure 5.24: Differential decoder.

*n F Yn =Xp- Yp-1
+ >
X@2) + Y@) = X(z)
] (1-zh

Figure 5.25: Differential encoder.

must divide ©(z), before transmission, by (1 — z71), as shown in Fig. 5.24.
This operation is called differential encoding. The overall channel, including
differential encoder and decoder, is shown in Fig. 5.26.

In conclusion, with differential encoding the receiver may consist of a co-
herent demodulator (with imperfect phase recovery) followed by a differential
decoder, as described hereafter. Another possibility is to incorporate the differ-
ential decoder into the demodulator, i.e., to design a demodulator which directly
outputs a phase difference. The latter avoids any estimate of the carrier phase.

In the following we analyze the error performance of both receivers applied to
PSK.

5.8.1. Coherent demodulation of differentially-encoded PSK (DCPSK)

What is new here with respect to nondifferential PSK is that each decision made
on a transmitted symbol requires a pair of M-ary phase decisions. Let us denote
the phases received in two adjacent intervals Bk-1 and B;. Introduce the phase
¥y representing the received signal’s phase displacement from the transmitted
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0@ 0@ ¢

1-z71 1-z1 1-71

Figure 5.26: Differential encoding and decoding for a channel affected by a phase am-
biguity .

one, including the effect of the phase ambiguity ¢:

Y 2 B — 6k + )

To evaluate the symbol error probability, we consider all possible ways gf
making a correct decision on the kth transmitted symbol. A correct decision is
made if and only if the difference between v, and _1 is close enough to zero.
Specifically, a correct decision is made if and only if one of the M following
exhaustive and mutually exclusive events occurs:

A{Zi—l 2i+1 211 2i+17r}

c; = 7f_<_¢k—1<T7f, MW5¢k< i

fori=0,1,...,(M —1). '
To evaluate the probability of these events, notice that the RVs _'l’k and ¥r—1
are statistically independent (they only depend on independent noise samples).

If their pdf is denoted by fy(- ), and

i+1)m/M
2 [ (e da (5.59
(2i-1)/M
we have
: P(c)=p}
and finally
M-1
Ple)=1- Y ! (5.60)
i=0

A pictorial interpretation of the quantities involved in (5.60) is shown in Fig. 5.27.
The pdf fy(-) is obtained in Problem 5.6.
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A
So(x)
2 [
by Py
P / ip,
- 1 ‘ T T /IIA\ T 1
- -3m4 w4 O w4 4 x x

Figure 5.27: Pictorial interpretation of the quantities involved in the derivation of error
probability for differentially-encoded quaternary PSK.

It is interesting to relate the symbol error probability (5.60), corresponding
to differentially-encoded, coherently-demodulated PSK (DECPSK), to that of
coherently-demodulated PSK (CPSK). Due to our definition of probabilities p;,
we may write the latter in the form

P(e)lcpsx =1-pp (5.61)

Introducing (5.61) into (5.60), we obtain

1 1 Ml
P(lozcrs =2 Pllos {1= 3 PlOlerss ~ rpra— 3 7
DECPSK CPSK 2 lepsk 2 P(€)opsxc ;
(5.62)
For high signal-to-noise ratios, py is the dominant term in the right-hand side

of (5.60), and (5.62) becomes

P(e)lpecesk = 2 P(€)lcpsk (5.63)

Thus, for low error probabilities differential encoding doubles the symbol error
probability. This is the price to pay for removing the phase ambiguity. It should
be intuitive that with DECPSK symbol errors tend to occur in pairs: in fact, when
a demodulated absolute phase is mistaken, it causes an error in two adjacent
intervals.

Example 5.6 Specialization of (5.62) to binary and quaternary PSK yields formally
simple results. With M = 2, the only term in the summation of (5.62) is p;, which

il
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from (5.59) becomes
3n/2 T
o= / fole) dz =2 / folz)dz = P(e)lgpsk

and therefore

P(e)lpecpsk = 2 P(e)lcpsk {1 — P(e)lcpsk}

() (- )

For quaternary signals, by observing that the in-phase and quadrature signals are
independent, from (4.38)—(4.39) we obtain

5.8.2. Differentially-coherent demodulation of differentially encoded PSK

Coherent demodulation of PSK requires the local generation of a reference car-
rier. This may be undesirable either because of the additional complexity re-
quired or because some applications do not afford sufficient time for carrier ac-
quisition. An approach that avoids the need for a reference carrier consists in
accomplishing the demodulation by looking at the phases of the received signal
in two adjacent symbol intervals and estimating their difference. If the informa-
tion phases have been differentially encoded at the transmitter, then the observed
phase difference at the receiver allows the recovery of the information and the
removal of the phase ambiguity. The signal are still in the form (5.20), but now
the information is encoded into phase differences, taking values in the set

2m M
—(i—-1 <I>} 5.64
{M =1+ i=1 .64
with @ equal either to 0 or to 7/ M.

The demodulator’s block diagram is shown in Fig. 5.28. It can be proved to
be optimum, in the ML sense, for the estimation of the phase differences of the
received signal (see Problem 5.7). The phase ambiguity of the received signal is
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T
j dt THRESHOLD
o DETECTOR
\
6] PHASE PARAL
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Figure 5.28: Block diagram of the differentially-coherent demodulator of PSK.

removed under the assumption that it remains constant in two adjacent symbol
intervals.

Tg evaluate the error probability of this receiver we resort to a bounding
technique. Let the received signal in the kth time interval be written as

r(t) = R {7(t)e> ot} (5.65)

where

F(t) = Ad* +@(t), KT <t<(k+1)T

and 7(t) is the complex envelope of a narrowband Gaussian noise as described
in Section 2.4.

The delayed and shifted replica of r(t) can be be written as

ro(t) £ R {F(t ~ T) @1 Meinhot) = @ (75 (t)e*rfot} (5.66)

where
Fp(t) & AO-1+=m/M) | Gy _ T)ed(@=n/M)

and in (5.66). we have assumed that foT is an integer. If this were not the case,
the phase shifter of Fig. 5.28 should be adjusted to compensate for this phase

.w'
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shift. The receiver bases its decision on the difference between the phases of the
signals (5.65) and (5.66), that is, on
ABy £ arg[F(H)7p(t)], KT <t<(k+1)T (5.67)

When we send a phase difference belonging to the set (5.64), the values taken on
by AR, in the absence of noise, are in the set

(7 (-3 @

A correct decision is made if the point representing the signal 7(t)7p(t) lies
inside a sector of width 27 /M centered around the correct value of ASk.

We can observe that the problem exhibits the same kind of symmetry as for
coherent detection of PSK: therefore, we may compute tbe error probgblhty by
limiting our consideration to ¢ = 1 in (5.68). By proceeding as in Section 4.3.1,
we obtain the upper bound

Ple)< P{ya<ABr <m+7}+P{n-7< A < m} (5.69)
where we have defined the two phase thresholds

27
7 =0, =737 (5.70)

For computational purposes that we shall clarify soon, inequality (5.69) can be
given the following form:

3r T b
Ple) < 1—P{——2— < Aﬂk"‘"f‘z—a < —5}
3r T T
+P{-——2-<Aﬂk—”h—-2‘<—§} (5.71)

Let us now define, at the kth decision instant t = tg, kT < tx < (k+ 1)T, the
following RVs:

n 2 F(te) = A% + a(ty)
5 & jip(t)e™ = jHM0 [Aeiter 1t —T)}  (572)
P é j;D(tk)ej’h = jej(i'—w/M) {Aej¢k—l + T-l(tk _ T)}

It is immediately verified that

27

7l' ‘
DB =57~ 12‘: =agln 23], Ab-5= arglz 73] (5.73)

£ ﬂ

5.8.  No perfect carrier-phase recovery 261

Using (5.73), we can finally express (5.71) in the form

P(e) < 1 - P{R(2123) < 0} + P {R(xr23) < 0} (5.74)
By using the identity
. zi+ 22 |z — z|?
R(zz)) = | =52 ~ 1252 216l = nyl? (5.75)

in (5.74), we obtain

Ple) <1— P{l&12] < |mal} + P{|€1s] < Imal} (5.76)

The four random variables involved in the right-hand side of (5.76) are in-
dependent and have a Rice distribution. With the details of the computation
deferred to Problem 5.8, we obtain

I3 g
Ple)<1+Q (‘/F';bM, ,/F';aM> -Q (1/%%,/%%) (5.77)

where

Jay P Jay T
an =10g2M(1+sm M) , by = log, M (1 —sin M)
and Q(-, -) is the Marcum Q function (see Appendix A). For high values of
&/ Ny, the bound (5.77) is very tight. When M also is large, by using the asymp-
totic expansion, validforb>> 1 and b > b — a:

Q(a, ) ~ %erfc (”\;;)

we obtain |
ogaM&E . =
P(e) ~ erfc (———2 A sin __>

Specialization of the above results to the binary case leads to an especially
simple result. In this case the exact value of P(e) can be written as

P(e) = P{r < AB < 27} (5.78)
and therefore, since (Appendix A)
Q(z,00=1,  Q(,z)=e""?

we have, from the same calculations that led to (5.77):
1
P(e) = Ee-fb/f"o (5.79)

Error probability curves are plotted in Fig. 5.29.

Ve
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Figure 5.29: Symbol error probability of differential demodulation of diﬁ'e}rlennally-
erltil;ded .M .-ary PSK (solid lines). Error probabilities of CPSK are also shown for

comparison (dashed lines). Here p = &/ No.

5.8.3. Incoherent demodulation of orthogonal FSK

i i i ion than for
Incoherent demodulators results in an even mmplc?r 1mp1emenltatt;gr10 e op.
differentially-coherent detection. For error prot.>ab111t)f res:l;s rela
onal FSK we refer the reader to our discussion in Section 4.4.

5.9. Digital modulation trade-offs

. - ion

As mentioned at the onset of this chapter, the CEO;?T'tOf ;1 dcliil,:zlt liofgzil:rtllgy
i obability, ban 8

heme aims at the best trade-off among error pr .

Siv‘:: efficiency, and complexity. This section summarzes the resul:)sf :(f: t:h;
zhapter. For our purposes, it is interesting to cqmpare the pe;for,:nv?/rg; or acnal
modulations with the ultimate performance ach.levable overt §5 o yields
The latter is obtained from the channel capacity formula (5.35), .

=C:
when R, & 9CIW _ 1 (5.50)

7 No CJ/W

il

5.9.  Digital modulation trade-offs 263
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Figure 5.30: Error-plane performance plot for PAM, PSK, QAM.

This expression shows that £,/ Ny must increase exponentially with C/W. On
the other hand, if C/W — 0, then

& i 2CIW _q

No "o Cyw - =12 (5.81)

which is —1.6 dB. This result indicates that reliable transmission, with as low an
error probability as desired, is possible over the AWGN channel only if & /Ny >
-1.6 dB.

Fig. 5.30 shows qualitatively the trade-offs among error probability, power
efficiency, and bandwidth efficiency. Reference is made here to modulations like
PAM, PSK, and QAM, such that when M is increased their power efficiency
decreases, while their bandwidth efficiency increases. Moving along line A (that
is, changing the value of M while P(e) remains constant) can be viewed as
trading power efficiency for bandwidth efficiency. Similarly, line B shows how
P(e) can be traded off for &, /No, with fixed bandwidth. Movement along line
C illustrates trading bandwidth efficiency for error probability, while &,/Nj is

e



264 5. Digital modulation schemes

fixed. Notice that movement along B corresponds to changing the signal energy,
while movement along A or C requires changing the modulation size (which
typically implies a different equipment complexity).

The bandwidth efficiency-power efficiency chart is a useful tool for the com-
parison of different modulation schemes. By selecting a value of bit error prob-
ability, a modulation/demodulation scheme can be represented in this chart as a
point, whose abscissa is the value of £, /Ny necessary to achieve such Py(e) and
whose ordinate is its bandwidth efficiency R,/W . Fig. 5.31 shows such chart for
Py(e) = 1075. The Shannon capacity curve shows the bound to reliable trans-
mission of any conceivable modulation scheme. It is customary to divide the
achievable region in this chart in a bandwidth-limited region (R,/W > 1) and a
power-limited region (R,/W < 1). In the former, the system bandwidth is at a
premium, and should be traded for power (i.e., £/ No). PSK and QAM are effec-
tive modulation schemes in this region, as their bandwidth efficiency increases
by increasing the size of their constellation. On the other hand, FSK schemes
operate in the power-limited region: they make inefficient use of bandwidth, but
trade bandwidth for a reduction of £/ Ny necessary to achieve a given Py(e).

The choice of a modulation scheme that achieves a target P (e) will be guided
by this chart.

5.10. Bibliographical notes

The discussion on bandwidth in Section 5.1.1 is taken from Amoroso (1980).
The definition of Shannon bandwidth is due to Massey (1995). Further details
on modulation performance, receiver implementation, etc., can be found, among
others, in the book by Simon, Hinedi, and Lindsey (1995). The paper by Forney
et al. (1984) contains many details and advances on QAM, as well an extensive
bibliography on the subject. The material of Section 5.4.4 is taken from Forney
and Ungerboeck (1998).

The literature on lattices is extremely abundant, but most of it is written by
mathematicians for mathematicians. A thorough treatment of this topic can be
found in the encyclopedic book by Conway and Sloane (1988) from which most
of the material in this chapter was taken; but see also Forney (1988).

The presentation of the final section on digital modulation trade-offs was
inspired by the tutorial paper by Sklar (1983).

5.11. Problems

* Problems marked with an asterisk should be solved with the aid of a computer.
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. cy-power efficiency chart {
W is the Shannon bandwidth, and Pyle) = 10_5.Cy of modulaion schemes. Here

5.1. issi
1. A ;:Jc()herent M-ary PAM transmission scheme is used with the constraint that the
peak power of each signal be not greater than 1 mW. The

i . noise power g
density No/2 is 0.25 pW/Hz. A bit error probability P (e) S

< 1078 is required.

le SIm
O ute tie maximum Sslb tran 1ssi0n Speed n bIDS for M 2,

(b) Which one of the thr : ..
per bil? ee schemes requires the minimum value of &, (energy

5.2. Consider the 64-Point signal constellation of Fig. 5.32. This is obtained from a
;?are cor%stellanon by moving to the axes the four points with highest energy.
e resulting constellation is “more circular” and hence more power-efﬁcient.

h .
f;n'the mofher constellation. Evaluate the amount of improvement in power
etficiency with respect to the square constellation.
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Figure 5.32: A 64-point constellation.

5.3. (a) Prove that the error probability for M-ary PSK can be written in the form

1 prO-1/8) sin® r/M € 5.82
=1 |- | O

(b) By comparing the above equation with (5.21), derive an integral expression
for the complementary error function.

5.4. Assume that we want to transmit (h + 1/2) bits per symbol. To this purpose
we use a signal constellation with 2" inner point.s take:n from the square l.amce
and 2"~ outer points drawn from the same lattice with the goa} of'maxu;n;m
symmetry and minimum average power. Two exampl.es are shown in Fig. 5.33 for
h = 4 (24 points) and h = 5 (48 points). The transmission goes as follows.

1. Group the source bits into blocks of 2k + 1 bits to be sent with two wave-
- forms (h + 1/2 bits per symbol).

2. The first bit determines whether or not any outer point is to be used.

3. If not, the remaining 2h bits are used to select two inner points for trans-
mission in two successive periods.

4. If yes, one additional bit selects which of the two signals. should be an outer
point and the remaining h — 1 and h bits select, respectively, the outer and
the inner point to be sent.
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Figure 5.33: Two constellations for the transmission of (h + 1/ 2) bits per symbol.

On the average, one outer point is transmitted every other four transmissions.

(a) Compute the average energy of the two signal sets of Fig. 5.33 and verify
that the transmission of the additional 1/2 bit per symbol requires about
1.5 dB more energy.

(b) Generalize this scheme to transmit h + 2¢ bit/symbol, with ¢ an integer
greater than 1.

5.5. Consider an 8-PSK constellation. By assuming a large signal-to-noise ratio, show
that some mappings of three bits to PSK signals yield a different Py(e) for differ-
ent bits (this effect is known as *“unequal error protection”). Find the mappings
that yield equal error probabilities for the three bits, and the mappings that yield
the largest ratio between the maximum and the minimum bit error probability.

5.6. Consider transmission of a PSK signal with energy £ over the AWGN channel
with power spectral density No/2.

(@) Prove that the probability density function of the difference 1) between the
transmitted and the received phase is given by

fy(z) =

1 e, 7€ (£/No) cos? = £ w
2"re 1+ ]Tocosxe 1+ edf A cosz )

for —n <z < 7.
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(b) By using the approximation, valid for z > 1,

1
erf(z) =1 — Tz

derive from the above an approximate expression for the error probability
of coherently-demodulated M-ary PSK.

5.7. This problem is proposed in order to show that the demodulator of Fig. 5.28 is a
maximum-likelihood detector of phase differences.

(a) First, consider (2.315) and notice that the ML receiver looks for the nllax-
imum conditional pdf f,l,j(r | sj), where r is the vector of the received
signal that contains the sufficient statistics.

(b) The pair of received signals used in the detection of the transmitted signal
s; is the following:

r1(t) = \/Z;:‘COS(Zﬂ'fot + @) +n(t)

ra(t) = \/gcos [21rf0t+tp+ 2M"r(j -1) +<I>] +n(t-T)

where n(t) is a white Gaussian noise. Notice that the hypothesis on signal
s; means that the phase difference is

2, .
A¢j= G- +2
Show that the received signal points coordinates in the plane with axes

2 .
Pi(t) = \/’—;:cos 27 fot, Palt) = —\/;sm21rf0t

have the form

(c

—

= VEcosp+nn
12 = \/Esin¢p+n12

2
VE cos [np+-A—}(j—1)+(I>] +n21

2
\/Esin[tp+—l\§(j—l)+¢] + ng2

21

[

T22

(d) Define the vector r 2 [r11, r12, r21, 2] Of the received signals and show
that the conditional pdf is given by

i fris;e(t | 85, ) = Aexp(Ccosp + Dsin ®)
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where

AS (W—}%)zexp {-Nio(lryz + 25)}

2VE
ce \/—(7‘11 + r21 €08 Ad; + r22 8in Agh;)
No [
2VE -
D= \/—(7‘12 = ra18in Ag; + ro2 cos Ad;)

No

() Assume that the phase ambiguity ¢ has a uniform distribution and average
it out. You will get

feis; (r ] 85) = Aly(v/C? + D?)

where Jo( - ) is the modified Bessel function of order 0. Choosing the max-
imum pdf is equivalent to choosing the maximum of (C? + D?), since A
does not depend on A¢; and Ip( - ) is a monotone increasing function of its
argument when the latter is nonnegative.

(f) Switch to polar coordinates, and show that
C?+D%= %e[p +cos(AB — Ag;)]
0
where *
p=r1|.=[ra|

Ap = arg(ra) — arg(r1)
and

r; = [rj1, Ti2]
(g) Decide on the optimality of the receiver.

5.8. In this problem we outline the computations that yield the result (5.77). Let us
start from (5.74).

(@) Compute first P{R®(z123) < 0}. Define the two Gaussian random variables

fia = z21 + 22 _ A1 T2
12 BT hz = ) .
and show that they are independent under the assumption -

E{7*(te)a(ty —T)} = 0
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A . -
(b) The random variables R; 2 |é12} and Ry = |n12| are independent Rician
with pdf given by

2 2
_z o A )
In(E) = Gr o= 5a7 (

with0 < z < 00,7 = 1,2, and
A? .
= [E{gn} = 5 (1-sin 37)

A? . W
a% = |E{T]12}|2 = 7 (1 + sin —M‘)

1 2 No
2_ 1 _ _ M
ot = 2E{|§12 E{¢2}“} 3T
1 No
o3 = 53 E{Imz - E{m2}]*} = 7= of

(c) Use formulas of Appendix A to get
P{R(x%) <0} = 111 - QG V&) + Q(va, VB)]

where 9 2
A as _A- aj

a=——: = —a
o + o8’ ot +o3

(d) Following the same procedure, show that
P(R(255) < 0} = 3[1 - Q(va, VB) + Q(V, &)

(e) Conclude and obtain (5.77).

5.9. Consider octonary PSK with coherent demodulation and Gray mapping as in
Fig. 5.5.

(a) Draw a block diagram of the optimum receiver with a logic device that
makes decisions based only on the sign of the received signal components.

(b) (*) Compute the capacity of the equivalent discrete transmission channel
by using for P(e) the upper bound (5.23). Assume that £/Nj is so high
that only errors between signals that are adjacent in the signal space may be
taken into account. Compare this capacity with that of binary and quater-
nary PSK as a function of &,/ Ng.

(¢) Compute the exact (closed-form) expression of the bit error probability
By(e).

5.11.

5.10.
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With this problem we want to show that PAM achieves capacity as R,/W —
0o. Use first the expression (3.100) for channel capacity, and show that if the
transmitted power is increased by a factor 4™ (i.e., P’ = 4™P) then

Y . G
(W) —W+2n -

That is, the bandwidth efficiency increases by 2n bit/s/Hz. Take now the error
probability (5.13) and show that the same increase of power corresponds to

R, I~Ra
(W) _W+2n

Reach a conclusion as n — oo.

With this problem we want to show that orthogonal FSK achieves capacity as
R;/W — 0. Start from (4.45), and write the error probability in the form

P(e) = %/j’; {1 - [1 - %erfc (%)]M—l} e @E=VID?/2 gy

where n S¢ /Ng. Use the following two bounds:

M-1 _
{1 - [1 - lerfc (i)] } < M 1erfc (i) < Me™='/2 z large

2\ /2 2 7

1 T M-1
{1— [I—Eerfc (ﬁ)] } <1 z small
Therefore,

P(e) < %/’0 e~ ==vVIN' /2 4 4 M c’oe‘“’z/ze'(”"/ﬁ)z/z dz
—0oQ

27 Zo

Optimize zg, and show that zo = \/2log, M In2. Using simple exponential
bounds for the two integrals, show that

Ple) < 2exp{—logo M(ns — 2In2)/2}, n/4>lM
(©) <\ 2exp{-log, M(yTs ~ Via3)/2}, n/a<InM <7

where n, = 1/ log, M. Notice that P(e) — 0 as M — oo provided thatn, > In2
(*‘Shannon bound”).

S
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Modulations for the wireless
channel

This chapter describes a number of digital modulation schemes that may be
thought of as being derived from PSK, in the sense that they retain the single
most attractive feature of PSK—its constant envelope—but reduce certain unde-
sired effects. One of these is the bandwidth occupancy of PSK, which may be
excessive for applications, like wireless systems, that call for a highly efficient
use of bandwidth. As we shall see, constraining phase-shift keying to preserve
phase continuity may have a beneficial effect on spectrum occupancy: the result-
ing modulation scheme, called CPM (for continuous-phase modulation) will be
described later in this chapter. Another undesired effect follows from filtering a
PSK signal. Consider for simplicity the QPSK modulator described in Chapter
5. Here the carrier phase changes only once every 2T, seconds, 1/T being the
source binary rate. When only one of the two quadrature components, either
in-phase (J) or quadrature (Q), changes its sign, a phase shift of £90° occurs. A
change in both components generates a phase shift of 180°. These phase jumps,
which are ideally instantaneous, are shown in the phasor diagram of Fig. 6.1(a).
Usually, the transmitted QPSK signal is bandlimited by a bandpass filter so as to
reduce the out-of-band spectral sidelobes and prevent interference with adjacent
channels; moreover, any practical modulator will exhibit reactive components
which generate a filtering effect. A consequence of this filtering is that the ban-
dlimited QPSK signal no longer exhibits a constant envelope. In fact, the occa-
sional 180° phase shifts occur now in a nonzero time and cause the envelope to
approach zero, as shown qualitatively in Fig. 6.2. This effect is highly undesir-
able when the signal undergoes nonlinear power amplification (see Chapter 14
for further details). Actually, a nonlinear amplifier operated at saturation tends

272
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Figure 6.1: Phasor diagrams of (a) QPSK signals; (b) OQPSK signals; (c) MSK signals.

to restore the constant envelope of the signal, but at the same time it enhances
the out-of-band spectral sidelobes. Thus, the filtering action at the transmitter is
destroyed.

'Wc procéed now with the description of a family of modulation schemes,
derived from quaternary PSK and intended to limit this deleterious effect.

it
(b
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QPSK - ideal

QPSK - filtered

Figure 6.2: Qualitative description of filtering effects over a QPSK signal. The dashed
line shows the envelope.

6.1. Variations on the QPSK theme

6.1.1. Offset QPSK

A reduction of the envelope fluctuations of QPSK signals is made possible by the
simple device of delaying the Q-channel digits by T, seconds relative to the I-
channel, as shown in Fig. 6.3. The resulting modulation scheme is called offset
QPSK (OQPSK), or sometimes staggered QPSK, because the two quadrature
components are offset in time by a bit period T,. This solution eliminates the
possibility of 180° phase changes. In fact, phase changes of only £90° can occur
every T,. This feature is shown pictorially in the phasor diagram of Fig. 6.1(b).
As a result, the ratio of the maximum to the minimum value of the envelope of
filtered OQPSK signals is v/2 with this simplified model, while for standard
QPSK it is infinity. Therefore, it may be expected that the undesired envelope
variations of QPSK due to filtering are greatly reduced, as is the dynamic range
required from the power amplifier.

The complex envelope of the transmitted signal can be written as follows.
Define E!c = (€2k7 €2k+l); then

ve(t) = A s(t ~ 2kT,; =) 6.1)
)

where
s5(t; Zk) = Eanf(8) + jbansr f(E = T) 6.2)

1, -T,<t<T,
. Ft) =, (t) = { 0, elsewhere ©.3
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Figure 6.3: In-phase and quadrature components of QPSK, OQPSK, and MSK signals.

and the &;’s are independent random variables taking values +1 with equal prob-
abilities. Egs. (6.1)—(6.3) imply that the data sequence (&) is split into even
symbols &3 and odd symbols &5;4;. These determine the sign of the shaping
waveforms, which are translates of a unit square pulse with duration 27;. The
coherent receiver for OQPSK is identical to that of QPSK, with the only change
being the delay of the I-stream by T} so that the two pulses carrying the even
and odd symbols are realigned in time. Consequently, the error performance of
this modulation is identical to that of QPSK.

vk



Uk g]

276 6. Modulations for the wireless channel

Power spectral density

The power spectral density of the transmitted signal is not affected by the delay
incurred by one of the quadrature components, and hence is the same as for
QPSK. To prove this, observe that transforming (6.2) we obtain

S(f;Zx) = (Ear + joprie” P T)F(f) (6.4)

We are in the conditions of validity of (2.164)—(2.165), where Si(f), ¢ =1,2,3,4,
denote the four realizations of S(f; Zx). Recall that the binary source symbols
are independent and equally likely. Then, by observing that the four different
realizations of S(f; =) sum to zero, we have from (6.4)

A 2 ﬁ 2
& L ISP =TI

Ge(f) = G(f) =

and finally

sin21rfT,>2 6.5)

Ge(f) = 44°T, (—ma—

6.1.2. Minimum-shift keying (MSK)

This modulation scheme will be discussed in greater length later on, and the
reason for its name will be explained. For the time being, we view it as a mod-
ification of OQPSK, obtained by shaping the transmitted pulse. The modulated
signal retains the form (6.1)-(6.2), but now

£(£) = cos (g’%) . T, <t<T, 6.6)
so that .
f(t-T,) =sin (;’T ) 0<t<oT, 6.7

Therefore, MSK is a form of offset QPSK with a half-sinusoid amplitude shaping
pulse. The shaping waveforms cause the phase transitions shown in Fig. 6.1(c).
Power spectral density

By duplicating the calculations done for OPSK, where now

4 cos2rfT,
Fi) =T 7 1 - 16f2T2
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Figure 6.4: Power density spectra of QPSK (and OPSK), and MSK.

we obtain the power density spectrum

16A% [ cos2mfT, 2
R

(6.8)

The power spectrum of the real MSK signal is shown in Fig. 6.4 along with the
spectrum of OPSK (and hence of QPSK). It can be noticed how the main lobe of
MSK is wider than that of OPSK, and its sidelobes decrease more steadily than
those of OPSK. In fact, from the analytical expression of the spectra, it is seen
that as the frequency increases the power density spectrum of OPSK decreases as
1/ f2, while that of MSK decreases as 1/ f*. The power-containment bandwidths
of MSK and PSK are compared in Fig. 5.2.

MSK as a digital frequency medulation

We shall now show that MSK can be viewed as a special form of FSK. To do
this, let us focus for a moment our attention on the real part of the complex
envelope of the transmitted signal, corresponding to the even-index symbol se-
quence (&2;). In our formulation of MSK, transmission of the all-1 sequence
corresponds to an in-phase part of the complex envelope consisting of a train of

ot
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positive arcs of a sinusoid. Now, consider a slightly different version of MSK,
in which the values taken on by &, are alternately changed in sign. The trans-
mitted signal that corresponds to the all-1 sequence is now the “freewheeling”
sinusoid cos mt/2T,. A similar consideration holds for the imaginary part. Now,
the signal resulting from this modified version of MSK retains the same features
of the original version: the only difference between the two is a change in sign
of every other source symbols, which does not alter the statistical properties of
the source sequence, and hence of the modulated signal.
We can write the real signal transmitted in this modified form of MSK as

ve(t) = I(t) cos 2m fot — Q(t) sin 2 fot 6.9)
where now ot
I(t) = Acos [ — Eop uor, (t — 2kTy) (6.10)
9= Ao (32) S
and :
Q(t) = Asin (27r_'1"‘,) zk:fzk.H UoT, [t - (2k - l)T,] (611)
By defining
C] (t) é Z 62)‘ U, (t - 2kT3) (612)
k
and
Co(t) & S o uan, [t — (2k — 1)T3) (6.13)

k
we can write, after some simple trigonometry,

ve(t) = i;g’;(t) [cos 27 fot + cos 2m fit] — gCQ(t)[cos 27 fot — cos 2w f1t] (6.14)

where

1 1

hehtg  h2h-gm 6.15)
Now, observe that both ¢;(¢) and (¢ (¢) keep a constant value (depending on the
source symbol) over a 2T,-interval, and that over a T;-interval this pair can take
on four possible values, corresponding to the four waveforms for v¢(t) shown in
Table 6.1.

This shows that MSK can be interpreted as a form of frequency-shift keying
with frequencies f; and f,; notice further that two signals with the frequencies f;
and f, given in (6.15) are orthogonal, and their frequency spacing is the smallest
for orthogonality, as shown in (5.42) (see also Fig. 4.16). This is the reason why
this modulation scheme is called minimum-shift keying.

Perusal of Table 6.1 also shows that in an interval with duration T, there are
four possible signals: each of them has two other signals orthogonal to it, and
one antipodal. This is a biorthogonal signaling scheme, not unlike QPSK.

g
aiadl
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Gr(t) Galt) ve(t)
+1 +1 Acos 27 fit
+1 -1 Acos 2 fot
-1 +1 | —Acos2rm fot
-1 -1 | —Acos?2mfit

Table 6.1: Shapes of vg(t) during an interval of duration T, as a function of the pair of
source symbols emitted during the same interval.

6.1.3. Pseudo-octonary QPSK (7/4-QPSK)

This is a modulation scheme derived from QPSK, offering a tradeoff between
the latter and OQPSK in terms of density of phase transitions.

While QPSK uses four carrier phases and has a maximum phase transition
of 180°, and OQPSK has a maximum phase transition of 90°, pseudo-octonary
QPSK, usually referred to as m/4-QPSK, uses 8 phases to carry 2 information
bits per modulated symbol, and has a maximum phase transition between two
adjacent symbols of 135°. This modulation is easily amenable to differentially-
coherent demodulation.

The idea here is to use two different QPSK signal constellations shifted by
7/4, and to move from one to the other in every symbol interval. This guar-
antees a phase transition of at least /4 in each interval, which eases symbol
synchronization (see Chapter 9).

The complex envelope of the transmitted signal is

velt) = AY s(t - 2KTs; &)
k

with

s(t; &) = Aej(""*""‘"/“)f(t) (6.16)

where ¢, € {0, £7/2, 7}, and f(£) = uor, (t). The signal may be differentially
encoded, allowing it to be differentially demodulated. In this case it is called
7w /4-DQPSK. Let A, = 8, — 6;_; denote the difference between the phases
transmitted in two adjacent intervals: this difference takes on the four values
{+£n/4, £3n/4}. The signal-space diagrams for OQPSK and n/4-QPSK are
shown in Fig. 6.5, with the continuous lines indicating the possible transitions
among phases. Notice that the phase transitions never pass through the origin.
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Figure 6.5: Signal-space diagrams of OQPSK (a) and w/4-QPSK (b).

Power density spectrum

By using (6.16) it is easy to show that the power density spectrum is the same as
for QPSK. In fact, by duplicating the spectrum calculation for OQPSK, we have

BIS(f; Gue)S°(f; )] = B [eflosset(st0n/8gmslontin/d] ()2
E [ej(¢b+l—¢b)] eitr/4 |F(f)|2

{ IF(f)I?, ¢=0
0, L#0

Demodulation

Coherent demodulation can be achieved by feeding a standard QPSK demod-
ulator with a received signal sequence shifted by /4 every 2T,. A differen-
tial demodulation scheme is shown in Fig. 6.6. The received signal, after being
bandpass-filtered, is sent to a coherent demodulator which separates the in-phase
and quadrature components and samples them synchronously to derive the two
sequences (wy) and (2;). These samples are then processed to obtain the two
NEW sequences
Tp = WgWg—1 + Zk2Zk—1

and
; Yk = ZpWk—-1 — Wk2k-1
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2 B
Received | -~ cos 2xfot Sample Detected
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signal ) 2T, data
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i L—0"o $0
% Ve
-sin 27 fyt

Figure 6.6: Differential demodulation of w /4-DQPSK.

to be used for decisions. With 8, denoting the unknown initial carrier phase,
which (as usual with differential detection) is assumed to remain practically con-
stant during a pair of symbol intervals, we may write, under the simplifying
assumption that there is no noise, wx = cos(6; — ) and z;, = sin(f — bp), so
that

COS(Gk - 00) COS(gk_l - 00) + sin(ﬁk - 00) sin(Gk_l - 00)
COS(Gk - Gk_l)
cos Ay

T

and, similarly,

Y = sin(ﬁk - 00) COS(gk_l - 00) - cos(0k - 00) sin(Gk_l - 90)
sin(ﬁk - Gk_l)
= sin Ak

The decision device outputs Sy = 1 if z; > 0 (and S; = 0 otherwise), Sg = 1 if
vk > 0 (and Sg = 0 otherwise). A parallel-to-serial converter (denoted P — S
in Fig. 6.6) outputs the stream of detected binary data.

6.2. Continuous-phase modulation

We now describe an exceedingly general family of modulations, which retain the
basic feature of PSK (and of FSK) of having a constant envelope, while decreas-
ing the spectrum occupancy of the latter by smoothing the phase transitions of
the transmitted signal.

]

s
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Figure 6.7: Time pulse g(t) with duration T and area 1/2, and its integral q(t).

The general expression for a constant-envelope, phase-modulated signal is

vg(t) = 4/ -QTE cos[2m fot + 0(t; &) + o) 6.17)

where £, is the energy per symbol of the signal, £ denotes the source-symbol
sequence, T is the symbol interval, and 8, is the initial phase of the carrier. If we
examine the evolution of the information-bearing phase 8(¢; &) for PSK, we note
that this is a piecewise-constant function with jumps taking place at every phase
transition. A major cause for the wide spectral occupancy of PSK can be seen
in the discontinuities in its phase function: in fact, smoother signals have a more
compact spectrum. To reduce spectral occupancy, one may think of smoothing
out the phase discontinuities, which is precisely the idea underlying continuous-
phase modulation (CPM). Here the phase 8(¢; &) is generated as the integral of
another time function: by choosing the latter regular enough (i.e., without delta
functions), a continuous phase is easily obtained.
For example, let us start with an M-ary PAM signal

ze(t) = i €ng(t —nT) (6.18)
n=0

where £, = +1,43,...,+(M — 1) and g(¢) is a rectangular signal with dura-
tion T'; its area is chosen to be 1/2 for later convenience (see Fig. 6.7). Next,
generate a signal whose instantaneous frequency (apart from a factor 2, this is
the derivative of the signal phase) is

fo+ 2faT z¢(t)

where f; is the peak frequency deviation when the signals are binary (§, = *1).
This is equivalent to generating the modulated signai

ve(t) = \/ 2?8’ cos [27l'fgt +4n fT /: ze(r) dr + 00] (6.19)

E

g
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Ug ® En-3 En-Z En
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) nT K(nu)r 7t
¢

+nT
Ara=3 T sl

Figure 6.8: Evolution of the phase of a CPM signal in one symbol interval.
By comparing (6.17) with (6.19), we have, apart from the initial carrier phase:

0(t; &) = dnfiT /: ze(r) dr (6.20)

Let us determine the evolution of the phase 6(¢; £) within the symbol interval
[nT, (n 4 1)T]. From Fig. 6.8 we have, by computing the integral in the latter
equation,

0(t; &) =4nfyT - Z & +4n fiT - E" T (6.21)
that is,
0(t; &) = 0, + 2rhéq(t — nT) (6.22)
where we have made the positions
n—1
0, =mh Z & (6.23)
k=0

with h = 2f,T (the “modulation index™) and ¢(t) the integral of g(t) (see
Fig. 6.7).

The signal we have obtained by combining (6.17) with (6.22) is a special
case of CPM called continuous-phase FSK (CPFSK). The reason for its name is
that the instantaneous frequency of v(t) varies every T according to the source
symbol, while its phase is continuous. The most general version of CPM will
be described later: it allows g(t) to take a nonrectangular shape and a duration
greater than T'. However, before doing this we take a closer look at this simpler
version.

As a further concession to simplicity, let us assume a binary source, that is,
& = 1. The phase tree of binary CPFSK is shown in Fig. 6.9, under the
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Figure 6.9: Evolution of the phase of binary CPFSK.

assumption that at ¢ = 0 the phase is 0 (that is, 6 = 0). This is the ensemble
of all the phase trajectories, and completely describes the signal except for the
carrier frequency fo and its initial phase 8. It is seen from the figure that the
phase is continuous. At the beginning of each symbol interval it is allowed to
increase (if £ = +1) or to decrease (if £ = —1) by the quantity Amr. If for
example A = 1/2, at the end of each symbol interval the possible values taken
on by the signal phase are (after reduction modulo 27) 0, £7/2, and 7 = —.

The phases that differ by an integer multiple of 27 are physically indistin-
guishable. Thus, when after reduction mod 27 the values taken on by 8(t; )
at the end of each interval are of finite number, the phase tree can be made to
collapse into a phase trellis, as shown in Fig. 6.10 for h = 1/2. This figure
should be interpreted as wrapped on a cylinder, because the ordinates —7 and =
are actually one and the same, as are the pairs of points labeled A and B.

6.2.1. Time-varying vs. time-invariant trellises

From Fig. 6.10 we observe that at the end of each symbol interval only two phase
values are alternately allowed: either £x/2 or 0,n. This phase trellis is time-
varying, in the sense that the phase trajectories in the even-numbered symbol
intervals are not time translations of those in odd-numbered symbol intervals.

’
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‘} 0 &)
A B
T
o 2T, 4T
T 3T T
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Figure 6.10: Trellis of the phase of binary CPFSK with h = 1/2.

Now, this can be a nuisance when the trellis is used for demodulation. As we
shall soon see, the Viterbi algorithm can be used for demodulating CPM, and the
complexity of the algorithm increases if the trellis is not time-invariant.

One way of making the trellis time-invariant is the following. If we measure
the phase relative to the lowest phase trajectory in Fig. 6.10, this new “tilted”
phase, defined by

wt
Y(t; €) =0(t; &) + 5T

has the phase tree and the phase trellis shown in Fig. 6.11 and 6.12, respectively.
The trellis of Fig. 6.12 is now time invariant, i.e., the phase trajectories in any
two symbol intervals (after a T-second transient due to our constraint of having
zero phase at the origin) are time translates of one another.

A different method to obtain a time-invariant trellis is the following. Observe
from (6.22) that 8(¢; &) depends separately on 8, and on &,: the phase starts at
value 8, at time nT, and the value of £, forces its transition to the value ,1; =
0, + wh&, at time (n + 1)7. Thus, we may list as states all the values that §,, can
possibly take, irrespective of the value of n; they are joined by branches labeled
by the values of £,. It can be seen that this “natural” construction leads to a higher
number of states than with the tilted-phase trellis: for example, binary CPFSK
with A = 1/2 has a tilted-phase trellis with two states (Fig. 6.12), while it has 4
states (corresponding to the phases 0, & /2, m) with the latter construction.

What can be done with the tilted-phase trellis can also be done with the natu-
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Figure 6.11: Tilted-phase tree of binary CPFSK with h = 1 /2.

AV O

27

~

0 T 2T T AT

Figure 6.12: Tilted-phase trellis of binary CPFSK withh =1 /2.

wo are equivalent. However, the use of the former

can often simplify analyses and realizations of CPM (Rimoldi, 1988). Il"l the fol:
lowing, the tilied-phase trellis will be used to evaluate the p<.)wer-den51t'y spec
trum of a special case of CPM, and to derive a number of equivalent realizations

of MSK receivers.

ral phase trellis, because the t

6.2.2. General CPM

case examined so far, and derive 2

to generalize the simple .
T ol veraon h out the phase trajecto-

more general version of CPM. Since our goal is to smoot
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ries in order to achieve a more compact power spectrum for the modulated signal,
we may consider phase transitions that are even smoother than those provided by
CPFSK. Specifically, while the transmitted signal retains the form (6.17)—(6.18),
now the “frequency pulse” g(t), a time function with area 1/2, is not necessarily
rectangular, and its duration is generally LT, L an integer > 1. If L = 1, we talk
of full response CPM, otherwise of partial response CPM. The integral of g(t)
is the “phase pulse” ¢(t)

at) = [ g(r)dr

which takes value zero for ¢t < 0 and 1/2 fort > LT.
By generalizing previous calculations, from (6.20) we have, for the evolution
of §(t; €) in the interval nT < ¢t < (n + 1)T:

06§ = 2rh>"€uglt— AT)
k=0

n—L n
= mh) & + 2th S &g(t — kT)

k=0 k=n—L+1
= Ot nl) 6.24)

In the second line of last equation, the first term represents the contribution to
the phase at ¢ of the “exhausted” phase pulses, while the second term describes
the behavior of the pulses that are still evolving toward their final value 1/2. Let
us further analyze ¢,(t). We have

n

Salt) S 27h Y £uq(t — kT)

k=n—-L+41

n—1
oth Y Gug(t — kT) + 2nhéng(t ~nT)  (6.25)

k=n—L+1

We observe that the first term in the last line is a function of the past source sym-
bols (€n—1,8n—2, - -, &n—rL31), while the remaining term is a function of £, alone,
the present symbol. Using the expression just derived, we can again represent
the evolution of the phase 8(t, £) by using a trellis. However, in the present case
8, is not sufficient to describe this evolution, due to the contribution of “non-
exhausted” pulses. A trellis whose states are in one-to-one correspondence with
the values taken on by the phase at the end of each symbol interval is also not
sufficient. Here we need, according to (6.24), a stare-trellis, which describes the
transitions among the states

Tn = (07‘” fn—ly EH—Z, ey EH—L+1) (626)
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The value of ¢, forces a transition between a pair of states o, —->. Ontl-
How many states are there in the state-trellis? The L — 1 variables &,y .. .,
£n-r+1, that we assume to be M-ary and statistically independent, can take on
n- ’ ; X
a total of M %=1 values. This figure is to be multiplied by the number of values
that 8,, can possibly take to yield the number of states.

Assume that & is a rational number:
m

p
with m and p relatively prime integers. We see from (6.24) tl?a.t O, is a sum of
integers multiplied by wh. Such a sum can take on all the positive and nega.tlve
integer values. Consider first the case of m even. The sequence of possible

values of 8, is:

m
0, WE, 21rT-, 3m—, -

P p p '
After p different terms, (the last among them being (p — .1)1rm/p), we ob}mp
prm/p = mm, which is congruent to 0 under our assumption of even m. Simi-
larly, for odd m, we have the sequence

m
0w o (p-lry

that includes 2p terms, which then keep on reproducing themselves mod 27. In
conclusion, the number of states is given by

S = pML-1  meven (6.27)
- 2le‘_1 m odd

Example 6.1 The state-trellis of a binary full-response CPM sch:me (that is, M ='2,
L = 1) with h = 1/2 (thatis, m = land p = 2) has § = 4 x 27 = 4 states. If, with
M = 2, L is increased to 2 and the modulation index is changed to & = 3/ 4,. the number
of states is increased to S = 16. Specifically, o, = (6n, £n—-1), With 65, taking on the 8
values 0, £7/4, £7/2, £37/4, and , while &,_1 = %1. o

The final step in studying the state-trellis of CPM is taken b)'l examining the
structure of its transitions from one state to the next. By recalling from 6.24)

that ool
6, =7h Z &k
k=0
the new state becomes

Ont+l = (0n+11 5717 571—17 . gn—L+2)
(6 + Thn—r41, &ns €ty -+ - En-r+2)
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Example 6.1 (Continued) Consider again the case of Example 6.1 above, with A =
3/4, M = 2,and L = 2. Assume that 0 = 3r/d4and &y = —1, that is, o, =
(37/4, ~1). We have

Ont+l = (37"/4 +Thén_1, &n) = (0, &).

This means that the new state can be either (0, +1) or (0, ~1), according to the value
of the symbol output by the source at time n. Fig. 6.13 shows the complete trellis,
constructed by repeating, mutatis mutandis, the calculations above. a

Tilted-phase trellis for general CPM

Although only the “natural” trellis was considered in previous calculations, a
tilted-phase trellis for general CPM can also be constructed. The tilted phase is
defined as

b(t; €) £ 6(¢; &) + Th(M — 1)t/T (6.28)
Consideration of the modified data sequence
Xk = [ + (M - 1)]/2 (6.29)
taking values in the set {0,1,---, M — 1}, allows one to obtain a time-invariant
trellis, as before (see Problem 6.9 for details).
6.2.3. Power spectrum of full-response CPM

In this section we deal with the power spectral density of CPM. Since the general
theory is rather complicated, here for simplicity’s sake we limit ourselves to M-
ary full-response (L = 1) CPM whose modulation index & is a rational number
of the form h = J/M. Let us write the complex envelope of the signal vg(t)

in (6.17):
Te(t) =y 2:% exp j[0(t; £)] (6.30)

By introducing the tilted phase (6.28) and the modified data sequence (6.29), we
can also write

(0) = {522 exp 2w fut + w16 )] 63D
where
fo & —h(M = 1)/2T
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Figure 6.13: State-trellis of a CPM scheme with M =2, L = 2, and h = 3/4.
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We use the technique described in Section 2.3, which requires only the strai ght-
forward computation of a few relevant quantities and makes the computation
rather easy.

Observe that for L = 1 the tilted phase (6.28) may be written in the form

Y(t; Y, Xn) = 2rhipn + Amhxaq(t) + w(t) (6.32)

where
w(t) & 7h(M — 1)t/T = 2rh(M - 1)q(t) (6.33)

is a symbol-independent term. The transitions among the states 1y, are driven by
the symbols X, and we can write

wn+1 = wn + Xn (634) s

where the sum has to be reduced modulo the number $ of states, which we label
from 0 to S — 1. Under our assumption of independent and equally likely source
symbols, the state sequence of CPM described by its tilted-phase trellis forms a
fully regular Markov chain with S states.

Consider the calculation of the quantities defined in Section 2.3. From (6.34)
we may see that the matrices E; have the form

E; = Ef, k=01,...,8~-1

where E, is the matrix whose effect on a vector with S components is to cycli-
cally shift its components by one step to the left. Thus

Es=Ey=1

where I denotes the S x S identity matrix, and among the M matrices E; there
are M /S matrices equal to E;, M/S matrices equal to E,, and so on. Thus, the
transition probability matrix of the Markov chain is

A 1 M 1 M3 1
MEQO T M s,g k=37

where J denotes the § x S matrix all of whose elements are 1. Since PP = P,
we have
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where 1
Similarly, we get 1
D==1
S

We also obtain
[su)s 2 F {explw(t; ¥n xa))} = choe(f)
fori:0,-~~,S—landk=0,»--,M—1,where
€n & (i7h
(notice that €5 = 1) and

j[2m hkq(t)+w(t)]
ax(f) & F {AciBrmrimmhauil}

We can write 9 s-1
su(f) =Nt en & o0 €]

In conclusion, we obtain

p(f)=0
o1 M 2
ol f) = 37 L sl
L Y aNet
alf) =gyl & - a2 el

M-1
elf) = L e o 67T axlf)
k=0
and L .
_(1- _J> e=33IT
A =(1-3
Hence; there is no discrete spectrum, and

M-1
Ge(f) = H%Z Iak(f)lz]

k=0
M-1

=0

M-1 1
2 —jZW(f-fh)TL Ear(f) — Z a(f)
+ T§R {B M k§=:(] h M

(6.35)

} (6.36)
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If desired, (6.36) can be given a more compact form by defining the vector

a(f) =lao(f), -+, am=1(f)]

and the matrix H(f) whose entry 1, j is 6;; + (2/M)e7"U~fT¢l for i j =
0,..., M — 1, and with &;; denoting the Kronecker symbol. These definitions
yield
1
= t
Ge(f) = Rl HHA ()] (637)

Notice that the calculation of (6.37) requires only the computation of the Fourier
transforms a(f) defined in (6.35).

Example 6.2 (CPFSK) Eq. (6.36) can be specialized to CPFSK by letting ¢(t) =
t/2T, and consequently w(t) = 0 from (6.33). Direct calculation shows that

ok(f) = ao(fT = kh)e~3r(U=fuIT4)

where

_ psinm(f — fa)T
WfT) = AT= =7 5F

Thus,

[

g(f)

The general case of partial-response CPM will not be dealt with in detail (see
the bibliographical notes at the end of this chapter for references to the compu-
tation of general spectra). Here it suffices to observe that the power spectrum of
CPM generally depends on the values of 4, L, and M, and on the shape of the
frequency pulse g(¢). Small values of & generate a small bandwidth occupancy,
as do smooth pulses. For example, the raised-cosine pulse

1 2t
g(t):{ siv (l—cosﬁ>, 0<t<LT

0, otherwise
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99.9%
Frequency 99% '
elslulse L} h | bandwidth | bandwidth

Rectangular | 1 | 0.5 12 2.8

Rectangular | 2 | 0.5 0.9 1.9

Raised-cosine | 2 | 0.5 1.1 1.6

Rectangular | 2 | 0.7 1.2 2.1

Raised-cosine | 2 | 0.7 1.1 1.9

Table 6.2: Power-containment bandwidth as a fraction of 1/T for some CPM schemes.

q()
— A
DATA 00 O ™ pase | % R
———>1 8() [ f MODULATOR
(&) T
2mh fo

Figure 6.14: Structure of a modulator for continuous-phase signals.

L an integer > 1, results into a CPM scheme whose bandwidth occupanctif1 elrs,
smaller than that of CPFSK. As L increases, the Pulse g(t)' becomesferoo m_,
and the bandwidth occupancy is reduced, at the price of an increase ovt. te E'ual_
ber of trellis states, and hence of the demodulator comple.xuy if the : 1 .e;t hl -
gorithm is used (see below). Some values of power-containment bandwidth ar

shown in Table 6.2.

6.2.4. Modulators for CPM

A general modulator for CPM is shown in Fig. 6.14. The .data, afr:er mOlelﬁz:; gr
the phase pulse g(¢) and being multiplied by 27r{1, are sent into a phase 1{1}1}0 tulator
(a device which outputs a signal whose phase is equal to ‘1ts input). ' s 0}; !
of the latter is the CPM signal. The observatior? that taking the deriva wef f o
signal phase, and dividing it by 27, yields the 1.nsta'ntaneous fr;gtrxlencytca)i e
signal, leads to the alternative structure shown in Fig. 6.15, Wth co;)
frequency modulator (i.e., a voltage-controlled osc111ator—see‘C apter '.bed N
Other forms of modulators are possible—some of them will be descri
the end of this chapter for the special case of MSK.
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DATA FREQUENCY | % ©
——> &0 ——>
&) MODULATOR

h fo

Figure 6.15: Alternative structure of a modulator for continuous-phase signals.

6.2.5. Demodulating CPM

From the theory developed in Section 4.2, we understand that optimum demod-
ulation of CPM in additive white Gaussian noise consists of selecting the data
sequence £ that, upon observation of the received signal r(t), minimizes the in-

tegral
[22 ?
/;{r(t) - T’cos[?wfgt +6(t; 5)]} dt (6.39)

where T is the observation interval. We can represent this graphically by looking
at the trellis that represents, for a given CPM scheme, the set of allowable phase
trajectories. There is a one-to-one correspondence between an allowable phase
trajectory and a data sequence £: thus, the problem of demodulating CPM can
be viewed as the problem of choosing, among all the phase trajectories, the one
closest to the phase trajectory of r(t), in the sense that (6.39) is minimized.
Fig. 6.16 illustrates this qualitatively.

The evolution of the modulated-signal phase can be described through its
state-trellis, and the demodulation performed through the Viterbi algorithm. We
start by expanding the square in (6.39): by doing this we are left with three
terms, only one of which depends on ¢ under the usual assumption of a large

enough carrier frequency. Thus, minimizing (6.39) is equivalent to maximizing
the scalar product

/I r(t) cos[2m fot + 8(t; )] dt (6.40)

Let us first split this term into a sum of contributions, each coming from one
symbol interval [T, (n + 1)7):

(n+1)T
/ﬂ . r(t)coslanfut + Ot €)]dt

After observing r(t), we may label each branch of the CPM state-trellis with
the value of the above integral. We are left with a trellis all of whose branches
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Error probability of CPM
As we learned in Section 4.3, the pairwise error probability of the two signals as- "
sociated with the symbol sequences & and € depends on the minimum Euclidean
distance between the two signals. That s, recalling (6.17) we have
- r -~
'f
! - e Jay 25 KT
;o e L= Ny d*(ve(t), ve(t)) = ".ITJ A [ve(t) - vf(t)]2 dt
P KT, KT
= /0 vg(t) dt +/0 vi(t) dt
; 48, KT ~
0 T 2T 3T 4T t ST — /0 cos(2m fot + B(t; €)] cos(2n fot + B(t; &)) dt
| 2E, (KT ~
) i = 2K, — ra cos[f(t; &) — 6(t; €)] dt "
Figure 6.16: Continuous lines: Possible phase trajectories of a CPM signal. Dashed ‘ 9€. (KT 0 ~
line: Phase trajectory of the received signal r(t). ‘ = ?3 /0 {1 — cosd(t; &) ~ o(¢; 5)]} dt (641)

Since from (6.22) and (6.23) 4(¢; ¢) is related linearly to the source symbols ¢,

carry a label, and the demodulation problem consists of choosing the trajectory we may also wiite

i i i i . This problem can be
in the CPM trellis whose sum of labels is a maximum ' :
. . o rtant - )
solved by using the Viterbi algorithm as described in Appendl.x F An impo ax;l Lol ) = __3/ {1 ol ﬁ)]} } oo
consequence of this is the fact that the demodulator complexity is proportion 7/,
to the number of trellis states. .
Later in this chapter we shall examine the demodulator operation in more

2 4 . i g2 A
depth in one special case. rnin = }1_‘,7;0 I?;? &g (), Yg @] (6.43)

Thus, by defining the minimum Euclidean distance as the limit

the error probability of CPM can be expressed, following (4.64), as

~ 7 &
Truncating the Viterbi algorithm Ple) ~ Eerfc ( mdmin) 640
Consider the transmitted signal corresponding to a sequence £ = (&, - - Ex-1) where we have defined the normalized squared minimum distance
of information symbols taking values in the set {£1, :l:.33 (M —l—l 11)}&;.1““1: . L
Viterbi algorithm outputs the maximum-likelihood degsmn on the who g N | 24 - Edmm log, M
mitted sequence after observing the whole received signal. Since K, and hence _ 3

the observation length, may be so large as to mgke impractif:al both th\c}. pag?
storage and the decision delay implied by id'eal 1mplementat1qn of t1.1e s1tderi ,:
algorithm, the truncated version of the algorithm (see A.pApendlx ‘P) 13 1‘1_ eNT
practice. That is, practical Viterbi processors force a decision at time _b d
N < K. This is done by making a decision on the first source symbol 59 base . | | |
on the observation of the signal received up to ¢t = NT. After the decnsxo}r: is Let us examine the problem of Calgulatlpg - th.e auany it 'dommatets
miade for &, the process is repeated for &, at time ¢ = (N + 1)T, and so forth. the error performance of CPM for high siaaal e nore tioe. Gt s

and o is the average number of signals at distance d2. from any signal. The

'min

approximation (6.44) is increasingly better as &£, /No grows.

Computingd,,,, =
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of phase trajectories 6(¢; £) and 6(t; £) that differ in the first symbol (thé'lt is,
& # &). After some time intervals in which symbols may or may not filffer,
eventually the two trajectories merge and coincide. We define this situation as
a merge. In general, it can be seen that for frequency pulses g(t) of duration
LT a merge cannot occur before (L + 1) symbol intervals f.rom the start of the
phase trajectory. Now, dmin cannot exceed the Euclidean distance dp betw'een
two signals whose phase trajectories merge: actually, other merges are possible
after (L + 2) or more symbol intervals from the start, and nothmg prevents the
corresponding squared distance to be smaller than that corresponding to the first
merge. Only for full-response CPM is the value of dmin found for the first merge,
so that dmin = dg. (see Aulin and Sundberg, 1981)

Example 6.3. Assume L = 1 and, for the moment, M = 2. The two symbol sequences

£ = +1,"1,§2753a~--

E —1,+17§27§37"‘

correspond to two phase trajectories that merge after 2 symbol intervals. Assume rect-
angular pulses, and a modulation index A. From (6.42) we have

& = 2_%/;” {1—cos[0(t; E-E)]} dt

T
sin27rh)
= 4 (1 T T anh

. . . 2
It can be verified that this bound is maximized when h = 0.715, which gives dp =
4.87,. For h = 1/2 (which corresponds to MSK, as we shall see soon) we have

a . oy
d% = 4€,, and hence the normalized value 6% = d%/46 = L. Wlth L=1,it can be
shown that d2,;, = d%: this proves that the asymptotic power efficiency of MSK is the
same as that of traditional binary and quaternary PSK.
For M > 2, d% can be obtained by considering the two symbol sequences

+£7—ea§2r§37 e

4
£ ~4,+£,62,83, . .-

which yields the value

2 . 1— sin2k7rh}
dp =4, 15@11\9—1 { 2kmh

For example, with 2 = 1/2 we obtain 6% = log, M.

”
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We hasten to recall here that d is only an upper bound to d2,_, and that
in several cases it is not actually achieved. In general, d2,, depends on M, h,
the frequency-pulse shape, and L in a very complex way. The text of Ander-
son ez al. (1986) provides many examples of actual values of d2,,. Sundberg
(1986) also provides charts showing the tradeoff between d2;, and bandwidth
occupancy of several CPM schemes. A numerical algorithm for computing the
minimum distance is described in Saxena (1983): this is an application of the

general algorithm described in Chapter 14.

6.3. MSK and its multiple avatars

In this Section we examine in more depth a special case of CPM, namely MSK,
and we show how it can be equivalently represented as shaped offset PSK or
as CPFSK with A = 1/2. Demodulation of MSK can be obtained with several
structures, which provide further insight into this modulation scheme.

6.3.1. MSK as CPFSK

We show here that MSK can be viewed as a special case of CPFSK, and hence of
CPM. Specifically, assume a binary CPM with L = 1, g(t) a rectangular pulse,
and A = 1/2. By combining (6.17), (6.22), and (6.23), and by observing that
q(t) = ¢/2T for 0 < t < T, we obtain

[2€, i ity 7 t—nT]
ve(t) = 4/ == cos [27rfot + =) &+ =& — (6.45)
T 2 ,g) 2 T |

or, equivalently,

n-1 b
velt) = ,/2?‘2 cos [(21\' fot %g,) b+ 25 6~ %gnj (6.46)
k=0

The latter form shows once again that v¢(t) is a frequency-modulated signal,
obtained by shifting the carrier frequency up or down by an amount 1/4T. After
some algebra, (6.46) can be transformed into

ve(t) = 4\/ %[Inf(t —2nT) cos 2 fot — Quf(t — T — 2nT) sin 27 fyt] (6.47)
fornT <t < (n+1)T, where

In = _Qn—l §2n—1 and Qn = [ﬂ. §2n
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and rt) T<t<T
f(t) = COS (‘2_7" ’ -

so that 7t 0<t<2T

fit—=T)=sin (ET) )

. . N
Since under our assumptions (&, ) is 2 sequence of }n;ie;):d e o the
bles taking on values =1, then the two sequences (I n
a

same value: are m ual y de c Hd have “ldepende“t co"lpo“ents. V\‘e
a] S ut 1 mn p ndent, a
s

l de tha h S gnal (6. ) 18 mathem 11 y q t S Q
Cconciu t the si 47 al Cal] € Ulvalellt 0 an O‘f et ISK

i .2), and (6.6).
ith sinusoidally-shaped pulses, i.e., to MSK as 1r} (6}.11), E’Gw 2e)r e ancctrum
" Obviously, from the above result we may obltgm tme;3 1; o of oo
* . O
ial case of (6.38), but this would ¢ ! nsid-
o l\bj[lSI:r:i:nstpglf la\lgebra which is saved if the spectrum is calculated as w
erable ,

to derive (6.8).

dent random vari-

A modulator for MSK

i ified data se-
Use once again the tilted-phase representation (6.28) and the modifie

quence (6.29), which in our case yield

ve(t) = \/ 3;—’ cos{2x fot + O(t; &), t>0 (6.48)

where

t —nT AT <t < (n+1)T (649
0t &) = 9(t; Yn, Xn) = TPn + 7 T Xn»

i 0, 1} is the
is the information-carrying phase in the nth symbol interval, xx € {0, 1}
1

modified data sequence, and et o
Vo= 2 X ©
= i
= i during the
he tilted-phase trellis state dun
i duced mod 2, represents £ . . (€49)
thktxhi:\ttlzr\s/';:f1 1r3€y convention, 3o = 0, and In general ¥n € g;vs :}o(t};ag)(either
n that in any symbol interval the informatx?n-cartymg p s iy ntorpret
show§ . nstant (when x,, = 0) or increases linearly by 7. et
remalzst}(;: initial phase in the nth interval, and 7x, as the P}_‘ZZZ oring the rith
mpﬂEZ (6.49) makes explicit the fact that the si gna:) tiansn:nd by the e Y.
i 1is ified by the source symbol X, Y s 617, In
interval is completely spect iulator shown in Fig. 6.17.
i i entation of the MSK m : i Hl a
l;?lsﬁs ugies:;;}:iégts?tg; is memoryless because at any given time it outpu
this figure,
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e h Zn [ —

5 — Memoryless
: : |, MSK
; Yn i VY signal
.' + T .

Modulator

Continuous-phase encoder

Figure 6.17: Implementation of MSK modulator: MSK as CPFSK.

([ ¥n  ¥ni1 | output signal ]

0 |sp(t) = V& cos 2m fyt

U {si(t) = \/gcos m frt
1 Sz(t) = —So(t)
0 | s3(t) = —~s(t)

==

Table 6.3: mpur-

oulput relationship for the memoryless mapper in DMSK. Here h 2
fo+1/2T.

signal depending only on its in
look-up device.

The discrete system whose input is the source symbol y,, and whose output is
the pair (X, 1) has transfer function 1, z7/(1 - 271)]. (This is expressed in

terms of z-transform—the reader more familiar with D-transforms should sim-
ply change z~! into D.)

puts at the same time; it can be viewed as a table

Differential MSK

If we precode MSK by passing the source symbols into the discrete system
with transfer function 1 — 21 (the precoder), the continuous-phase encoder of
Fig. 6.17 is changed into one whose transfer function is [1 - 271, 271, or, equiv-
alently, [1 + 271, 2~1] (because modulo-2 addition and subtraction are the same
operation). The resulting modulator is shown in Fig. 6.18, while the relation
between source inputs and mapper outputs is shown in Table 6.3. What we
obtain is called differential MSK (DMSK). In a sense, DMSK is more natu-
ral than MSK: in fact, up to a time shift the information sequence equals the
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¥, V4
=l S+ . Memoryless
DMSK
¥, 2 Y, signal
el > T |—"4—"" > Modulator

Figure 6.18: Implementation of DMSK modulator.

state sequence. For this reason in the balance of this section we shall focus our
attention on DMSK. However, any transmitter and receiver for DMSK can be
transformed into a transmitter and receiver for MSK by doing a simple invertible
operation on the information sequence: specifically, by pre-multiplying the input
by 1/(1 - 271) and post-multiplying the output by 1 —2~!, respectively. Observe
finally that by looking at the transmitted signal one cannot distinguish between
MSK and DMSK, as the waveforms generated are the same in both modulations.

State trellis diagram

Here we use the tilted-phase trellis diagram, which allows us to represent MSK
with only two states. This trellis for both MSK and DMSK is shown in Fig. 6.19.
It has branches labeled by the transmitted signals, and describes the operation of
the transmitter. The trellis of Fig. 6.20 shows the branch metrics, and hence
is used by the receiver for maximum-likelihood detection. The correspondence
between state pairs and transmitted symbols is summarized in Table 6.3.

The branch metric A, (s;), ¢ = 0,1,2,3, is the correlation between the re-
ceived signal 7(t) and s;(¢t — nT), namely,

(r+1)T
Mnls) = [ T+ r(t)s:(t — nT) dt,

:=0,1,2,3

6.3.2. Massey’s implementation

Here we show how MSK can be seen as a modulation scheme whose optimum
demodulator needs to process the received signal over only two symbol intervals.
Specifically, we derive sufficient statistics for the estimate of ¥, that is obtained
from the received signal in three adjacent symbol intervals, i.e., in (n — 1)T" <

t < (n+ 1)T. This derivation is based on the fact that s;(t) = —so(t) and
s3(t) = —51(¢), which imply
. An(s2) = —An(s0) and  An(s3) = —Aq(s1) (6.51)
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A N
s3(0)
51(8)
so® 50D so(
n-1 n n+l n+2

Figure 6.19: Trellis diagram of MSK and DSMK. Branches are labeled by transmitted
signals.

State y,

1
’ln—l(SS)

’ln-l(sl)

/1,‘_1(.92) An(s’z) ’1n+1(s2)
An1(53)
’1n+1(sl )

A’n-l(SO) )'n(so) )'n-i-l(sO)
n-1 n n+l n+2

Figure 6.20: Trellis diagram of MSK and DSMK. Branches are labeled by branch met-
rics.

Now, assume that a genie has informed the receiver that ¢,y = 0 and ¢, 1 = 0.
In these conditions, the maximum-likelihood receiver does its job by choosing
between the two signal pairs corresponding to the pairs of branches joining those
two states, viz., (Sq, Sq) and (s1, s3) (see Fig. 6.20). The decision rule between
the two alternatives is

Yo=0  ifandonlyif  An_y(so) + An(S0) > Anc1(51) + An(s3) (6.52)

Thus, this genie-aided receiver needs only to process the received signal over
two symbol intervals before making a decision on the most likely trellis state.
We now show that the genie information is irrelevant, and hence (6.52) is always
a maximum-likelihood rule for the estimate of 1. Suppose for example that the
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5,0 An(sy)

Y
—0-

r(®)
—

5 () An (59)

Figure 6.21: Massey's optimal receiver for DMSK.

genie information to the receiver was that ¥,_; = 0 and 1,1 = 1. The choice

here is between the signal pairs (so, 51) and (s, sg), which corresponds to the

decision rule

Yo=0 ifandonlyif  An-1(S0) + An(51) = Anci(1) + An(s2) (6.53)

which, because of (6.51), is equivalent to (6.52). A similar conclusion holds for

the case Y,_; = 1 and 41 = 0, as well as for the case ¢,_; = 1 and Y. = 1.
It is convenient from now on to replace ¥, € {0, 1} with 7, € {1}, defined

by 21 21,. The rule (6.52) then becomes

=1 if and only if An—1(80)+An(80)=An=1(s1)+Aa(s1) > 0 (6.54)

This rule is implemented by the receiver of Fig. 6.21. This in turn suggests the
implementation of the DMSK transmitter in the form shown in Fig. 6.22.

6.3.3. Rimoldi’s implementation

The task of the correlators in Massey’s receiver is to compute A, (sq) and A, (sy).
Another possibility, first suggested by Rimoldi (1994), is to have correlators
computing the two quantities A,(so) + A, (s1), as in Fig. (6.23). The correspond-
ing transmitter structure is shown in Fig. 6.24. An interesting interpretation of
this transmitter structure is that the information symbol 7, is transmitted twice:
first it amplitude modulates sy (t) —s; (t)], then it amplitude modulates the signal,
orthogonal to the former one, [sq(t) + s1(¢)].
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i 1
z, 2 5 ®
Ny ) DMSK
1 y signal
2% ®

—:G[Dr \é

Figure 6.22: Massey’s transmitter for DMSK.

S —s5. ()

r(®)
—4

i —

;

S +5; ()

Figure 6.23: Rimoldi’s receiver for DMSK.

6.3.4. De Buda’s implementation

A third way of implementing (6.54) is to compute the left-hand side of that in-
equality by means of a single integral as follows:

(n+1)T

An1(50) 4 An(50) = Ancr (81) + An(s1) = / r(8)s[t— (n—1)T] dt (6.55)

(n—-1)T

where
s(t) 2 so(t) — s1(t) + so(t = T) + s1(t — T) (6.56)

A difficulty here is that the integration in (6.55) must be carried out on two
adjacent symbol intervals, which cannot be done with a single integrator (it can
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T p—

Figure 6.24: Rimoldi’s transmitter for DMSK.

s(t-7)

I
T

% J:T __,F_ %n-&-l

s(D
Figure 6.25: De Buda’s receiver for DMSK.

only provide the result for odd—or even—symbol intervals). This difficulty can
be overcome by using a second integral to obtain (6.55) for even—or odd—
symbol intervals. The resulting receiver is shown in Fig. 6.25.

6.3.5. Amoroso and Kivett’s implementation

In previous implementation, a second integrator was called for because of the
impossibility of computing the left-hand side of (6.54) for every n by means of
a single integrator. This difficulty can be circumvented by using a matched filter
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n)

Yo

h(t) f—o~o—> ——

Figure 6.26: Amoroso and Kivett’s receiver for DMSK.

with impulse response

A s(2T —¢), t€(0,2T)
h(t) = { 0, otherwise 657

The resulting receiver is shown in Fig. 6.26.

6.4. GMSK

Gaussian MSK (GMSK) is a CPM scheme with L > 1, whose design is aimed
at obtaining an especially compact spectrum, and hence a modulation scheme
applicable to wireless systems. It has h = 1/2 and M = 2, like MSK, but the
frequency pulse g(t) is selected here by passing the rectangular pulse of MSK,
which has duration T, through a filter whose impulse response is Gaussian, viz.,

_ V7B B8
h(t) = T R &P\ 2Tz (6.58)
where
022182
T2

or, equivalently, whose transfer function is
o 2
H(f) = exp{ -5 177}

(in practice, g(t) will be truncated in a window with suitable finite duration).
The actual filtered pulse g(t) is obtained by integrating h(t) in the interval (¢ —
T/2, t + T/2), which yields

9(t) = % [erf (%g(t +T/2)> —erf (%g—(t - T/2))]
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12
&8(t)
1.0
MSK
8 B=0.3 1

2 -1 0 1 2

Figure 6.27: Shape of a Gaussian-filtered rectangular frequency pulse, for three values
of the bandwidth-controlling parameter 3: MSK corresponds to 3 — oo.

Itis easily seen that [ h(t) dt = 1, and that the variance of A(t), interpreted
as a probability density function, is proportional to 72/3%. Thus, by decreasing
the value of the parameter 3 the variance is increased, i.e., the smoothness of
the filtered frequency pulse increases, and the bandwidth occupancy decreases.
Fig. 6.27 shows the filtered frequency pulse with 8 = co, which corresponds
to MSK, with 8 = 0.3 (which was selected for the second-generation European
cellular radio standard GSM), and with 8 = 0.2 (which was selected for the
wireless standard called DECT). The actual value of § is selected as a result
of a compromise between spectral occupancy, which calls for low values, and
complexity of the Viterbi demodulator, which calls for high values. In fact, a
smoother pulse obtained by decreasing 3 results in a longer duration, and hence
in an increase of the number of states of the demodulator.

The calculation of the power spectral density of GMSK, as in general that
of CPM with L > 1, is complicated, and will not be discussed here (see, e.g.,
Garrison, 1975). Table 6.4 shows the power-containment bandwidth of GMSK
for some values of 8. It can be observed that a smaller value of 3 results into a
modulated signal spectrally more compact.
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. WT, 90% | 99% | 99.9% | 99.99%
GMSK (8=02) | 052079 | 0.99 1.22
GMSK (8 =0.25) | 0.57 [ 0.86 | 1.09 1.37
GMSK (6=0.5) [ 0.69)1.04 ) 1.33 2.08
MSK 0.78 | 1.20 | 2.76 5.60

Table 6.4: Fractional power-containment bandwidth as a fraction of 1/T, for GMSK
and MSK.

6.5. Bibliographical notes

Gronemeyer and McBride (1976) compare the performance of MSK and OQPSK.
Most of the results on CPM can be found in the book by Anderson, Aulin, and
Sundberg (1986). The representation of CPM using the tilted phase is due to
Rimoldi (1988), although the choice of phase reference which makes the trellis
time-invariant was introduced by Amoroso and Kivett (1977) and by Morales-
Moreno and Pasupathy (1984). The derivation of the power density spectrum of
full-response CPM with modulation index h = J/M is taken from Biglieri and
Visintin (1990). For a more general calculation, see pp. 209 ff. of Proakis (1995)
or Anderson, Aulin, and Sundberg (1986). Multi-k CPM is a type of CPM where
the modulation index A in each symbol interval is cyclically picked from a set
{h1, he,..., hg} of rational numbers. Multi-k CPM may exhibit a more com-
pact spectrum than single-h CPM. Tamed-frequency modulation (TFM) is an-
other special type of partial-response CPM, introduced by De Jager and Dekker
(1978).

Although in our presentation we have described only maximum-likelihood
detection of CPM, other simpler demodulators have been proposed. Symbol-by-
symbol detectors were described by de Buda (1972) for coherent demodulation,
and by Osbome and Luntz (1974) and Schonhoff (1976) for noncoherent de-
modulation. The presentation of the equivalence between MSK and CPFSK in
Section 6.3.1 is drawn from Stiiber (1996).

MSK was invented by Doelz and Heald (1961). Later, De Buda (1972) and
Amoroso and Kivett (1977) introduced “fast FSK” and “serial MSK,” respec-
tively. While the original invention introduced MSK as OQPSK with shaping
done by a “full-wave rectified sine wave,” Pasupathy (1979) defined another
version of MSK with shaping by “unrectified sine wave.” (The latter version is
sometimes—and curiously—referred to as MSK-Type I, with the former one be-
ing called MSK-Type I1.) Pasupathy’s MSK actually turns out to be the OQPSK
version of Amoroso and Kivett’s serial MSK, a fact pointed out and proved by
Peebles (1987). A coded-modulation view of MSK is described in Leib and Pa-
supathy (1993), where Ungerboeck’s set-partitioning concept (see Chapter 12) is
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applied to provide some novel insight about MSK. The same paper summarizes
how different versions of MSK have different focus on continuity of phase (such
as squared Euclidean distance being proportional to Hamming distance, etc.).
Our presentation of the various forms of MSK transmitters and receivers closely
follows Rimoldi (1994), which in turn draws from de Buda (1972), Amoroso and
Kivett (1977), and Massey (1980).

GMSK was introduced in Murota and Hirade, 1981. In that paper, power
density spectrum, eye pattern, and error probability plots are obtained experi-
mentally or by computer simulation.

6.6. Problems

6.1 Compute the power spectral density of SFSK, obtained by letting
1. 4
£(t) = f"(t) = cos (% — 4 sin %t)

6.2 As f — oo, the asymptotic behavior of the power spectral density of offset PSK,
MSK, and SFSK (Problem 6.1) is O(f~2), O(f~4), and O(f %), respectively.
How can this asymptotic behavior be inferred from the expression of f(t) in (6.2)?
Derive a general form of a pulse f(t) which gives a power spectrum decreasing
asymptotically as f =¥,

6.3 Using (6.38), prove that for M large enough the power density spectrum of M -ary
CPFSK with modulation index h = J/M depends on J but not on M.

6.4 Derive a demodulator for 7/4-DQPSK, equivalent in performance to that shown
in Fig. 6.6, which does not include local oscillators but requires a delay line.

6.5 Derive the squared Euclidean distance d% for partial-response CPM with rectan-
gular pulses and L = 2. Compare the values obtained by considering the merges
at ¢ = 3T and those at t = 47"

6.6 Derive an explicit expression for the signal s(t) in (6.56), and use it to prove
that de Buda’s receiver implementation is equivalent to the implementation of a
receiver for MSK as shaped offset PSK. Derive also a transmitter based on de
Buda’s implementation.

6.7 Derive a transmitter for MSK based on Amoroso and Kivett’s serial implementa-
tion.

6.8 In Amoroso and Kivett's implementation of the MSK receiver (Fig. 6.26) the
signal s(t) has duration 27", and therefore pulse translates overlap. Show that this
has no effect on the matched filter.

i ‘%

. —
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6.9 Prove that, with the definitions (6.28) and (6.29), after an initial transient the
tilted-phase trellis is time-invariant.



Intersymbol interference channels

Chapter 3 has set the theoretical limits of digital modulation schemes transmitted
over the additive white Gaussian noise (AWGN) channel. In Chapters 4 and 5
we have derived the optimal receiver structures for the most common modulation
schemes, evaluated their performance over the AWGN channel, and shown how
they compare to the theoretical limits.

Although in many practical situations the AWGN channel is not a realis-
tic model, in most cases the performance of the different modulation schemes
on such a channel can be considered as an upper bound of the actual perfor-
mance. Moreover, in a Gaussian noise environment, the symbol error probabil-
ity depends only on one parameter, the signal-to-noise ratio. Thus, meaningful
comparisons among different modulation schemes can be obtained with only a
moderate computational effort. Finally, it is hoped (and often true) that the hi-
erarchy among different systems obtained on an AWGN channel is maintained
over real channels, although the absolute performance may change.

In this chapter we shall consider a more realistic model of the system that
includes additional impairments degrading the overall performance. Emphasis
will be placed on the intersymbol interference (ISI) caused by linear distortion
introduced by the finite bandwidth and the nonideal characteristics of the de-
vices used in the system, such as filters and amplifiers. In addition to ISI, other
factors affecting the system performance will be given some consideration, such
as cochannel and interchannel interferences, which arise in systems sharing a
common medium (e.g., in frequency-division multiplexing, FDM).

We shall focus on memoryless coherent modulation schemes whose repre-
sentative signal points lie in a one- or two-dimensional space. This choice per-
mits a unified treatment of different modulation schemes exploiting the concept
of analytic signal introduced in Section 2.4, and encompasses a wide range of
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practical cases. The first part of the chapter is focused on the performance anal-
ysis of digital transmission schemes in the presence of ISI. The first section of
the chapter presents a unifying analysis of coherent digital systems. Besides its
effects on performance, ISI also complicates their computation. The second sec-
tion of the chapter deals with this subject. It presents some methods that permit
a reasonably fast and accurate evaluation of the error probability; the analytical
details can be found in Appendix E.

The second part of the chapter examines some design problems related to the
transmission of linearly modulated signals over a time-dispersive channel, that
is, a channel perturbed by ISI. The first problem we take into consideration is
the design of a system in which the receiver is constrained to the form of a linear
filter followed by a sampler and a detector that makes decisions on a sample-by-
sample basis. Two design criteria will be considered under this constraint. The
first is the elimination of ISI from the sequence of samples to be processed by
the detector, and the second is the minimization of the joint effects of ISI and
noise on the same sequence.

If the receiver structure is not constrained, an optimum receiver can be de-
signed performing maximum-likelihood (ML) estimation of the information se-
quence. This is the subject of the third part of this chapter.

7.1. Analysis of coherent digital systems

In this section we analyze the coherent modulation schemes whose signal points
lie in one or two-dimensional spaces, like PAM, M-PSK, and QAM. Their per-
formance on the AWGN channel, as well as modulator’s and demodulator’s
block diagrams, were described in Chapter S.

A block diagram of the transmission system we consider here is shown in
Fig. 7.1. The bit stream at the output of the information source is first sent to
a serial-to-parallel converter that groups the binary digits in blocks of length A.
Then the signal enters the modulator, which performs a memoryless mapping
between the M = 2" input sequences and its alphabet of M waveforms. A
waveform is emitted by the modulator every T. As we know from Chapter 2
and Chapter 4, each waveform can be represented in this case as a point in a one
or two-dimensional Euclidean space, characterized by two real coordinates or,
equivalently, by a complex number. The modulated signal is transmitted over
the channel, in which Gaussian noise is added. The bandpass filter in Fig.7.1
represents, without loss of generality, the cascade of the transmitter filter, the
channel filter, and the receiving filter.! The received signal is fed to the carrier

10bviously, the fact of including the receiving filter into the bandpass filter of Fig. 7.1 mod-
ifies the spectral density of the additive Gaussian noise, which is not white anymore, as it has
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Figure 7.1: Block diagram of a transmission system with coherent receiver.

recovery device, which supplies the reference carrier to the coherent demodu-
lator. The main features of the carrier recovery devices will be studied later in
Chapter 9. Here, we assume that the recovered carrier phase is affected by a jitter
f(t), whose variations with time are so slow that it can be considered as a random
variable (RV) with known probability density function (pdf). Successively, the
demodulated signal is sampled at the symbol rate 1/T', in correspondence of the
sampling instant provided by the timing recovery device (this topic too will be
treated in Chapter 9). Finally, the detector makes a decision on which signal was
transmitted based on samples thus obtained and according to decision regions
tailored to the particular modulation scheme.
A general representation of the modulated signal v(t) is as follows:

v(t) = vp(t) cos 2m fot — vo(t) sin 27 fot 7.1
where f; is the carrier frequency and?

vp(t) =D apasp(t —nT) - > agnsq(t —nT) 7.2)

‘UQ(t) = Z aQ,,SP(t - nT)+ ZaPnsQ(t —nT) 7.3)

In (7.2) and (7.3), ap, and ag, are the coordinates of the signal point in the n-th
signaling interval [nT, (n + 1)T)] and can take M values in the sets Ap and Ag.
The waveforms sp(t) and sg(t) are suitable baseband shaping functions. The
representation (7.1) includes the case of a baseband signal, for which fo = 0 and

aQ,,=0

been filtered by the receiving filter.
2From here on the symbol 3", will denote summation over all integers n from —oo to +c0.

§ s g
—

7.1.  Analysis of coherent digital systems 315
Modulation Ap Ag sp(t) | so(t)
scheme
PAM-DSB | {(2k — M —1)d/2}}*, 0 s(t) 0
PAM-SSB | {(2k - M — 1)d/2}}*, 0 st) | 8@

CPSK A cos ¢ Asing, | s(t) 0
QAM Ay cos ¢ Agsingy | s(t) 0

Table 7.1: Coordinates of signal points and shaping functions for coherent modulation
schemes.

Example 7.1 In the case of M-ary PAM modulation (see Section 5.2), we have Ap =
{(2k — M - 1)d/2} |, sq(t) = 0, and, for instance, sp(f) = ur(t), where up(t) is a
rectangular waveform of unit amplitude in (0, T') and zero elsewhere. 0

The sets Ap,Ag and sp(t), sg(t) for the different modulation schemes are re-
ported in Table 7.1., where Ay, ¢, represent the amplitude and phase of the
two-dimensional signal points. In the case of a single-sideband pulse amplitude
modulation (PAM-SSB), i.e., of a bandpass PAM signal in which only half of
the bandwidth around the carrier is transmitted, sg(t) is obtained as the Hilbert
transform of sp(t). According to the theory of the complex envelope representa-
tion of bandpass signals, developed in Section 2.4, we can represent v(t) in (7.1)
by its complex envelope 7(t)

9(t) = vp(t) + jug(t) (7.4)

Moreover, the bandpass filtering operated by the channel on v(¢) can be rep-
resented by the filtering operated by the low-pass equivalent channel on ¥(t).
Thus, defining

Sn A .
§(t) = gp(t) + jgq(t) (7.5)

so that g(t) = R [g(t)ejz"f“‘] is the impulse response of the bandpass filter in
Fig. 7.1, we can write the complex envelope of the received signal r(t) as

7(t) = ~5(t) * §(t) + () (71.6)

[T

where 7i(t) = np(t) + jng(t) is the complex envelope of the bandpass Gaussian
noise process, and np(t), ng(t) are baseband Gaussian processes whose samples
are Gaussian RVs with zero mean and variance o2. The variance o7 is obtained as
NoBeg, No/2 being the two-sided power spectral density of the white noise and
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B,, the equivalent noise bandwidth of the receiving filter. Using now (7.2),(7.3),
and (7.4), we can write

#(t) = an3(t —nT) 1.7
having defined
G, = apn+jage (7.8)
5(t) & sp(t) +isq(t) (7.9)
Thus, finally, the received signal 7(t) can be given the following expression:
7(t) = Y anh(t — nT) +7(t) (7.10)
where )
R(t) 2 he(t) + jha(t) = 35(8) * ) (7.11)

From here on, (a,) is assumed to be a sequence of independent identicz.illy dis-
tributed RVs. Recalling (7.5) and (7.8), the convolution in (7.11) gives rise to
1
he(t) = slsp(t) * 92(8) = sa(t) * 5q() (7.12)

ha(t) = 3lsp(t) * 9a(t) +5a(8) 95 (1) .13

Example 7.2 Consider a PAM transmission and a bandpass filter whose transfer func-
tion G(f) satisfies the following symmetry conditions for every f:

Gh(fo+f) = GE(fo—f)
Gilfo+f) = —Gilfo—1)
where G and G are the real and imaginary parts of the transfer function

Al Gy, f=z0
G*(f)={07 f<0

To compute A(t) according to (7.11), we need §(t), that is, the inverse Fourier transfgrrn
of Gt (f + fo). But G¥(f + fo) exhibits the symmetries of G*(f) around the origin
f =0, and this makes §(t) = gp(t) real. Thus we have

A(t) = %s(t) +gp(t), (real), for PAM-DSB
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Figure 7.2: Demodulation of a two-dimensional modulation scheme.

and
At) = %[s(t) +73(8)] * gp(t), for PAM-SSB
[m]

The actual signal that enters the demodulator of Fig. 7.1 can be obtained simply
as r(t) = R{7(t)e?>"/*}. The task performed by the demodulator is represented
by the block diagram of Fig. 7.2.

In fact, this is the general form of the demodulator, which simplifies and
reduces to the upper branch when a one-dimensional modulation scheme like
PAM is used.® It can be proved (see Problem 7.1) that the two outputs 7pp(t)
and rpg(t) from the branches of the demodulator of Fig. 7.2 are the same as the
outputs of the system shown in Fig. 7.3. At its input, the complex envelope of
7(t) is presented.

The presence of nonideal low-pass filters in the demodulator could also be
easily accounted for by including their transfer functions in the overall low-pass
equivalent filter represented by i.z(t) in (7.11). Then we can immediately write
the expressions of the demodulated signals. For the sake of clarity, let us con-
sider separately the one and two-dimensional cases.

PAM modaulation
The demodulated signal is given by

Tp (t)

rop(t) = R{7(1)e”’} 0
058" anhp(t — nT) — sind_ azhqg(t — nT) + vp(t)

3 Also for BAM, however, two branches of the demodulator are needed when a single-sideband
(PAM-SSB) modulation is used.
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R —— 0

el? $ > ()

Figure 7.3: Equivalent demodulator, in the complex envelope representation, of a two-

dimensional modulation scheme.

In (7.14), for given 0, the baseband random process vp(t) = np(t)cost —
ngo(t) sin§ is Gaussian, with zero mean and variance o2, like np(t) and ng(?)
(see Problem 7.2). Equation (7.14) makes evident the different sensitivities of
DSB and SSB to the phase jitter. In fact, suppose that the channel transfer func-
tion G(f) satisfies the symmetry conditions of Example 7.2. Then, hq(t) is equal
to zero for the PAM-DSB modulation. In this case, the presence of the phase jit-
ter reduces to an aitenuation of the received signal by cos§. However, for SSB
systems, hg(t) is not zero. Thus, the second summation in the RHS of (7.14)

contributes to the performance degradation.
Two-dimensional modulations
The two demodulated signals are given by
rop(t) £ R{F(1)e} =S R{anh(t - nT)e’} +vp(t)  (7.15)

roo(t) & S{f(H)e?} = 3. Hanh(t — nT)e} +vo(t)  (7.16)

where vp(t) is the same as before, and vg(t) = np(t)sinf + ng(t)cosf is a
conditionally Gaussian baseband process with zero mean and variance a2, More-
over, samples of vp(t) and vg(t), taken at the same time instant, are conditionally
independent RVs (see Problem 7.2).

Example 7.3 Consider a2 QAM system without phase jitter (¢ = 0) and a band-
pass transfer function G(f) exhibiting the symmetries of Example 7.2. Using (7.12)
and (7.13), we have

ha(t) = () * g (t)
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ho(t) =0
and, from (7.15) and (7.16),

rop(t) = 3 apahp(t — nT) + np(2)

Tpo(t) = ZathP(t —nT) + ng(t)
a

In the detector, decisions on the transmitted a,, are taken by comparing sam-
pled values of 7pp(t) and rpg(t) (or only rpp(t) in the PAM case) with suit-
able thresholds. In other words, the receiver is the same as the one described
in Chapter 4 for the Gaussian channel. The sampling times form a sequence
(to+ T2 _ ., where 0 < tg < Tisthe optimum (in some sense) timing instant
depending on the impulse response A (t). Assuming that the sequence (a,) is sta-
tionary, the processes rpp(t) and pg(t) are cyclostationary random processes
with period T (see Section 2.2.2). Thus, the performance of the system does
not depend on the particular signaling interval. We shall consider the sampling

instant ¢;.
The following shorthand notation will be used in this chapter for all the time

functions:
Un & y(to ~nT), for all integers n 7.17)

The sampled demodulated signals are then given by the following expressions:

PAM modulation

Do = @o(hpoC0os 0 —~ hgosind) + Y an(hpn cos 8 ~ g sin ) + vpy (7.18)

n#o
Two-dimensional modulations
toro = Tpp(ao) + > 7pp(as) + vpo (7.19)
n#0
™o = Tpg(ao) + Y rpo(as) + vpy (7.20)
n#o
where
top(an) = (apnhpn — agnhgn) cos 8 (7.21)
- (O,pﬂhQﬂ + athpn) sin @
T0@(an) = (apnhqn + agnhpn)cosf (7.22)
+ (apnhpn - athQ,,) sind
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* sence of noise, the received signal 7p(t) shown in Fig. 7.6.
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Fo )

-~

Figure 7.4: Example of low-pass equivalent impulse response.

Figure 7.5: Successive component waveforms of the received signal.

.18), (7.19), and (7.20), the term with n = 0 has been given special
coni?dgrlatio)n (as it )contairis the required information about the symbol. ap on
which we are deciding. The summations in the RHS represent the conmbuthn
(unwanted!) to the sample taken at ¢ = fg of the past -fmd future symtl)ols 13
the sequence (a,). These terms are called intersymbol interference (IE ), ke;n
may represent a major cause of impairment to system perfognalrllce.b 00. r:ﬁ_
at (7.18)~(7.22), an important fact can be ob§ewed. Even in the a s;e‘nce 1
phase jitter, we have an interaction betweep the' in-phase a.nc'l quadrature cha.nnte;l :
whenever hg(t) is not zero at the sampling instants. This happens when
transfer function of the channel G(f) does not satisfy the symmetry conditions
of Example 7.2.

i i i = 2 and sp(t) = ur(t), trans-
Example 7.4 Consider a binary PAM system, with d' .
mittedl:ver a channel with §(£) = 2Te™*T, ¢ > 0. Using (7.11), we have (see Fig. 7.4)

- T2(1—e7T), 0<t<T
ht) =1 T2(e—1)eT, t>T

Using now (7.14), and assuming that the transmitted sequence (a5) is +1, -1, ~1,+1,

and 9 = 0, we obtain, by summing the various contributions of Fig. 7.5, and in the at|>j-
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Figure 7.6: Received signal for the impulse response of Fig. 7.4 corresponding to the
binary data sequence +1,—1,—1,+1, in the absence of noise.
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Figure 7.7: Construction of the eye diagram for the signal of Fig. 7.4.

An effective way of displaying the qualitative effects of ISI is the construc-
tion of the eye pattern, or eye diagram. 1t consists of slicing the demodulated
signal (in the absence of noise) in segments of T seconds duration and super-
imposing the various slices in the interval (0, T) as in Fig. 7.7, which refers to
Example 7.4. The eye diagram is obtained by observing the data signal through
an oscilloscope, whose time axis is synchronized at the symbol rate. For a binary
PAM modulation, the typical aspect of the eye pattern is as in Fig. 7.8, where the
sampling instant is shown to correspond with the maximum eye opening, yield-
ing the greatest protection against the noise. In Fig. 7.8, the amplitude peak
distortion is also indicated. It is defined as the maximum value assumed by the
ISI over all the possible transmitted sequences (a,). Using (7.14), with 8 = 0,
we can write it as

Dp L max ¥ ashpn = 3 fhpn] (7.23)
(an) n#0 n#0
The concept of eye diagram and peak distortion can be generalized to the mul-
tilevel PAM and two-dimensional modulation systems. The general form of the
overall low-pass equivalent impulse response fz( t) is shown in Table 7.2, together
with the expressions of 7 pg and rpgp.
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Figure 7.8: Example of eye diagrarﬁ for binary PAM modulation.

M?g:lelﬁ::on he ho . oPo Do
PAM - DSB $ugp svgg ;a,(hp,,cos 0- hgy sin 6) + Vpg 0
PAM - SSB :-g,,~?—gg :th+?-gP ;a.(hr,.cDSB-hg.S'lﬂe)‘*Vm 0
CPSK, AM-PM | s g, se gy E (@pnhpn - Ggehga) €05 0 ; @puhgn+agnhpa) cos O
-3, (@pahgn +agehen) sin 6 +vpy +§ (@pahpq - agnhga) sin 0 + vy
D

Table 7.2: Low-pass equivalent impulse responses and in-phase and quadrature samples
of the received signal for coherent modulation schemes. The acronyms DSB and SSB
mean double sideband and single sideband, respectively.

We have proved that the system shown in Fig. 7.9 permits us to obtain the
real and imaginary parts of the demodulated signal rp(¢) of Fig. 7.1. Note .that
in Fig. 7.9 the modulating and demodulating carriers have disappeared. Besides
its great simplicity and conciseness, this result proves to be very useful in the
computer simulation of bandpass digital transmission systems. In fact, using the
model of Fig. 7.9, the frequency at which signals must be sampled before being
processed by the computer is related to the bandwidth of the modulating signal,
and not to the carrier frequency, which is usually much larger.

To conclude this part, let us summarize step by step how the signal analysis
we have just described can be done. This analysis is the preliminary step in the
computation of the error probability, as we shall see in the next sections.

*Step 1 Given the modulation scheme and the shaping filter s(t), use Table 7.1.
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SOURCE n(t)

!

a,8(t-nT) n(t) el® } — 7polf)

Figure 7.9: Equivalent block diagram of a linear digital transmission system using com-
plex envelope representation.

to obtain the transmitted signal v(t) of (7.2) to (7.4).

Step 2 Cascade the bandpass transmitter, channel, and receiver filters to obtain
the transfer function G(f).

Step 3 Compute the low-pass equivalent impulse response §(t) by taking the
inverse Fourier transform of G*(f + fo), and use it in the convolutions
{7.12) and (7.13) to obtain the real and imaginary parts of ().

Step 4 Find the expressions of rppy and g in Table 7.1. as a function of a py,,
agn, (Table 7.1.), and hp, hg computed in Step 3.

The computational tools normally used in a digital computer to evaluate the con-
volutions in Step 3 are the fast Fourier transform in the frequency domain and
the state variable technique or the bilinear z-transform in the time domain. The
interested reader is invited to consult the Bibliographical Notes at the end of this
chapter for relevant references.

7.2. Evaluation of the error probability

The received signal, after demodulation and sampling, enters the decision device,
which locates it in one of the decision regions and chooses the corresponding
point in the signal space as the transmitted one. In practice, the decision regions
are coincident with the optimum ones under the criterion of minimum Euclidean
distance (i.e., optimum for the AWGN channel) described in Section 4.2. Thus,
computing the error probability for a given transmitted signal point entails evalu-
ating the probability that the point (r ppy, 7pgo) lies in a suitable two-dimensional
region, depending on the particular modulation scheme adopted. The computa-
tion is usually performed in two steps:
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bility that a point lies in a two-dimensional (or.on:—

dimensional in the PAM case) region, taking ad\éantagcf of tpe f;c\t] :ha}r thl :
iti independent Gaussian .

RVsr and rpgo are conditionally 1.n. nf

probabzi)ﬁ:y is precisely the error probability conditioned on ISI and phase

Step 1 Compute the proba

jitter 8.

Step 2 Compute the expectation of the result obtained in Step 1 w?th r:;.]spfecf
to (a) the two RVs (one for PAM) rcpresentiflg thc' ISI affcctglgh e ;11-
phase and quadrature components of the received signal and (b) the r

dom phase 6.

As we shall see, Step 1 can be achieved analytically in an exa;t o; ap;;:o:(—)
imate manner for almost all coherent modulation sctlemcs.‘ Ipd%eh, tt errs(:4 no
difference from the AWGN channel case disc;usscd in detail in o ap e; s 4
5. What really complicates the cor{;putatil(:lnbls St;gui;i ‘::i;h::fm:ai:d L cases

values assumed by the ISI RVs could be ex r
:Jc:nt;?tional error probab);lities computed, sucfh a prqcedure, in t}fac;;krzazfc;fit:-
take an extremely long time, and hence be impractical. For. emvem f st
plicity, we shall first verify this conclusion and show how to circu

reference to the PAM transmission system.

7.2.1. PAM modulation

sion was given in (7.18), where the symbols

The sampled received signal’s expres L with equal

forming the sequence (an) can take the values shown. in Table
probabilities 1 /M. With the following shorthand notations:

ha(6) & hpncosd — hgnsind (7.24)

a(8) 2 anha(6) (7.25)

X0 & Y X.0) (7.26)
n#0

the received signal rpo becomes
Tpo = aoho(o) + X(e) + vpo

Assuming M even and ho(f) > 0, the decisions at the receiver are made by

comparing 7 po with the following thresholds:

. _(524_ —~1)dho(8), ..., —dho(6), .-, (1—"2— — 1)dho(6)

i nd-éﬁiﬁm
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Thus, following the analysis of Section 5.2 and Steps 1 and 2, the error probabil-
ity is easily expressed as

P(e) =EeEx{P(e|6,X)} = MA;—lEaEx {erfc [(d/2)h:/(2fi— X(O)J}
i (7.27)

where Ex and Ey denotes average over the RVs X , representing the IS], and 6,
respectively. We shall discuss later how to perform the average with respect to
6. The problem, then, is the computation of the conditional expectation with
respect to the RV X () for a given 6, that is, of the integral

ré /X erfc [(d—/%l;iq fx()dz (7.28)

For simplicity, in (7.28) we have dropped the coefficient (M — 1)/M and the

dependence on 6. In the integral (7.28), X and fx () represent, respectively, the
range and the pdf of the RV X. '

Some facts about the RV X

Looking at (7.25) and (7.26), the RV X is seen to be the sum of a number, say
N, of RVs X,,. The number V depends on the duration of the impulse response
h(t) through its samples h,,. In principle, N may be infinite. However, in prac-
tice, only a finite number of samples significantly contribute to the performance
degradation. A thorough discussion on the convergence of X to a random vari-
able, and on the existence of a pdf for it, can be found in Campbell and Wittke
(1997) and the references therein. '

The structure of X (see (7.25) and (7.26)) is such that one is tempted to
invoke the central limit theorem and assume that it converges to a Gaussian RV
as N — oo. Unfortunately, the central limit theorem cannot be applied as, in
practice, the range of X is almost always a bounded interval, and its variance is

limited (see Logve, 1963, p. 277). In fact, the largest value taken by X cannot
exceed

Zsup é (M - 1); Z Ihnl (7.29)

n#0

The value z, is assumed by X with our assumption that (a,,) is a sequence
of independent RVs. When N is infinite, Tsup is still bounded if the asymptotic
decay of the impulse response h(t) is faster than 1 /t. In the practice this is

always the case. What happens when we try to apply the central limit theorem to
this case is shown in the following example.
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Example 7.5 Consider a PAM transmission sy.ster?h fc:rt.h »:l:::k:z?;,o :joﬁo;:/lis E:;
that the eye pattern of the system is open, i.e., tha

Il:fl:'nt:le separatiin I;aetween two adjacent signal levels, @d, consec!uen:tlly, t::tr :{el :I:na?t

transmit with zero error probability in the absence of noise. Applylrj’? ‘ etrc e

theorem (which leads to the Gaussian assumpztion for Xz), tl?e RV 4 1s[ ; ped ke

Gaussian RV, with zero mean and variance o = .E{X },. indepen b:n .

Thus, the sum X + vpg ~ N'(0,0% + 02), and the integral in (7.28) becomes

dhy
Ig =erfc | ——F——=—=
¢ (2\/5,/03{ + 0,21)

Now, increasing the signal-to-noise ratio in the channel b).' letting 0, — 0, we get

()
. = erfc
UI:IEO Ig=er 2 \/éo' X

which leads to an asymptotic error probability value different from zero (erro.r ﬂooarl)lA
This clearly contrasts with the hypothesis Zoup < ‘hgd/ 2.. However, wheanSI ﬂ,lli an;US:
this asymptotic value may be so low that in the region of interest the cTe or s
sian assumption gives a reasonable approximation of the error probability.

Exact value of the integral /

Henceforth, we shall suppose that N is finite. Although this is not alway§ ;rtl;,
in practice it is possible to find a finite /V large enough to make 1mmatenad‘ e
error due to the truncation of A(t). In Prabhu (1971), the .pro;lem of bounding
i i ined.
the error due to the impulse response truncation was exam . .
The RV X is then a discrete RV, assuming values {z;}£, with probabilities

{pi}%,, and its pdf fx(x) can be written as

L
fx(z) =3 pib(z — ) (7.30)
i=1
Inserting (7.30) into (7.28), we immediately get
L (d/2)ho - .'L',‘) (731)
I= ; pierfc ( o

and the problem is solved. The ease in obtaining the true value of I 1s.hould
nevertheless make the reader suspicious. In fact, what often renders (7.31) very
’ complex to compute is the number L, which can be extremely large. Suppose,
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for example, that we have an octonary PAM with a channel memory N = 20,
Then L is given by

L=MN=8"~115.10"

If we could use an extremely fast computer able to compute a million comple-
mentary error functions in 1 second, it would take only slightly less than 42
thousand years to compute the exact value of 7. That alone seems a good mo-
tivation for the large amount of research done in this area in the seventies and
later.

Many methods have been proposed in the literature to obtain approximations
of I in (7.28), with different trade-offs between accuracy and computer time.
Here, we propose the simplest upper bound, known as the worst-case bound,
and the Gauss quadrature rules (GQR) method, described in Appendix E, since
it has emerged as one of the most efficient in approximating integrals like 7 in
(7.28).

Worst-case bound

The worst-case bound is an upper bound to 7 in (7.28) computed through the
substitution of the RV X with the constant value Zsup defined in (7.29). Thus,

we have
< erte {W#} 032

Since erfc (-) is a monotonically decreasing function, the RHS of (7.32) is clearly
an upper bound to the RHS of (7.28). The term (d/2)hy — Zeup 1S precisely
the semi-opening of the eye diagram at the sampling instant. The worst-case
bound is very easily computed. The approximation involved is reasonable when
one interfering sample is dominant with respect to the others. Otherwise, the
bound becomies too loose. A better upper bound based on the Chernoff bound is
described in Saltzberg (1968) (see also Problem 7.3) and will be used later in the
examples.

The Gauss quadrature rules technique

The method of GQR is described in detail in Appendix E. Its use has now become
classical, owing to its being one of the best compromises between accuracy and
computer time. Essentially, it allows one to compute an approximation of / in
(7.28) in the form

J
I~ ijEIfc [%} (7.33)
j=1 n
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The {x;}7-, and {w;}}., are called, respectively, the abscissas and the weights
of the quadrature rule. They can be obtained through a numerical algorithm
based on the knowledge of the first 2J moments of RV X. Comparing (7.33)
with the exact value (7.31) of I, one immediately realizes the similarity. The
great difference lies in the value of J in (7.33), which is usually much less than
the value of L in (7.31). The tightness of the approximation depends on J (i.e.,
on the number 2J of known moments). Computational experience shows that a
value of J between 5 and 10 leads to very good approximations of the true value
of I. The same method of GQR can be used to evaluate the average with respect
to the RV 8 in (7.27), once the moments of 6§ are known. An efficient algorithm
to evaluate the moments y; of the RV X

m S E{X*}, k=1,2,...,2J (1.34)
without resorting to the pdf of X is explained in Appendix E.

Example 7.6 In this example the methods described to compute the error probability
in the presence of ISI will be applied, for the sake of comparison, to the case of binary
PAM transmission, with § = 0 and

he(t) = s—i“,fl’ff) 039

The impulse response of (7.35) is that of an ideal low-pass filter with cutoff frequency
1/(2T). The transfer function of the filter satisfies the Nyquist criterion (see Sec-
tion 7.3), and, thus, it does not give rise to ISI when properly sampled at the time instants
t = 0,£T, 42T, . ... We will suppose that the timing recovery circuit is not ideal, so the
sampling instants will be t, = to +nT, n = —00,...,00, with ¢y # 0, and we define
the normalized sampling time deviation A & to/T.

The methods discussed for computing the error probability are the worst-case bound
(curve labeled (1) in Fig. 7.10), the Chernoff bound (curves labeled (2)), the series ex-
pansion described in Appendix E (curve labeled (3)), and the GQR (curve labeled (4)).
In Figure 7.10 the error probability is plotted as a function of A for a signal-to-noise
ratio at the nominal sampling instant (t, = 0) SNR2 1 /(262) of 15 dB. The impulse
response has been truncated to N = 50. The curve (3), relative to the series expansion
method, stops at A = 0.15, since the summation of the series exhibits numerical in-
stability for larger values of A. This is visualized in Figure 7.11, where the exact error
probability, computed through (7.31) for N = 10, and the error probability estimated
either with the series expansion or with the GQR method are reported for A = 0.2 as
a function of J, the number of terms used in the series or the GQR. The curve giving
the results of the series expansion method ends with J = 8, since the successive nine-
term approximation yields a negative value for P{e). The processing time required for

7
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F.igure 7.' 19: Error probability for binary PAM as a function of the normalized sampling
time deviation A. The impulse response (with 50 interfering samples) is that of an ideal
low-pass filter with cutoff frequency 1 [(2T'). The labels of the curves are as follows: (1)

worst-case bound, (2) Chernoff bound, (3) series expansion method. (4
SNR = 15 dB. = method (9 GOR method

the cc')mputati.on on a desk-top computer is less than a few seconds for all the methods
described. It is practically constant with N for the worst-case bound, whereas with the
other methods it grows linearly with V. =]

7.2.2. Two-dimensional modulation schemes

Expresswns of the sampled in-phase and quadrature received signals were given
in (7.19) and (7.20). The error probability will involve in general, as a final step.
the average with respect to the RV 6, as for PAM. For simplicity, let us assumc;
6 = 0. With the following shorthand notations:

Py
Xp = % Top(as) = Z(aPnth — agnhgn) (7.36)
n n#0
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Figure 7.11: Error probability of the system of Example 7.6 for A = 0.2 asa function
of the number of terms used in the series expansion or in the GQR. Labels of curves as

in Figure 7.10. The exact value is also given.

XQ é Z rDQ(an) = Z(apnhQn + G.thpn) (737)
n#0 n#0

the in-phase and quadrature received signals become

ropo = Tpp(ao) + Xp+Vpo (7.38)
Do = TDQ(ao) + XQ + Vo (739)

The decisions at the receiver are made through a rule that 'partitions the two-
dimensional space of the received signal points intp M regions Ry. The error
probability can be immediately derived from (4.24) in the form

= S P{rpp€Relao= ax} (7.40)

Ple)=1-
() MakEA

- M
where r py is the received vector with components Tppo, Tpgo, and A={a},
#is the set of values assumed by ag. The probabilities in the RHS of (7.40) can be
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computed in two steps
P{rpo € Re | ao = ax} = Ex, xo P{rpo € Ri | a0 = ey, Xp, Xg}  (7.41)

The first step consists in evaluating the conditional probability in the right-hand
side of (7.41). The received vector r py, conditioned on oy, Xp, Xq, is a Gaus-
sian vector with independent components rppy and Tpgo. Thus, the evaluation
of (7.41) involves integration of a bivariate Gaussian RV with independent com-
ponents within the region Ry. This problem has been discussed in Chapter 5 for
the most important two-dimensional coherent modulation schemes. If we define

Di(ax, Xp, Xq) = P{rps € Rx | ap = o, Xp, Xg}

the second step to get the probability in the LHS of (7.41) becomes the evaluation
of the integral

T(aw) 2 / /XDk(akvXP:XQ)prXQ(-'CP,.'EQ)d:L‘pd:CQ (7.42)

where X and fx, x,(zp, Xq) represent the joint range and pdf of Xp and Xy,
respectively.

In Appendix E the method of cubature rules is outlined to approximate in-
tegrals like (7.42) on the basis of the knowledge of a certain number of joint
moments of the RVs Xp and Xj,. These moments can be computed using an
extension of the recursive algorithm already explained for the one-dimensional
case (see Problem 7.6). In some cases, owing to the symmetry of the modula-
tion scheme, the two-dimensional problem can be reduced to the product of two
one-dimensional problems, or even to a single one-dimensional problem. An
example is provided by the case of M-ary phase modulation M-PSK.

M-PSK modulation

The complete symmetry of the signal set allows us to simplify the error proba-
bility (7.40) as

P(e) = 1- P{I'DO € R1 I Qg = A} (743)
T T
= I—P{—M<¢DOSM‘}

In (7.43) we have assumed that the phase zero has been transmitted (see Ta-
ble 7.1.), and have defined the phase of the received vector rpg as

r
o S tan™! T__ZQZ (7.44)
' P
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A straightforward extension of the bounding technique that led to (5.23) for the
AWGN channel results in the following bounds for the error probability:

max(I, I) < P(e) < L+ Iy (7.45)

where
L= 3 [ e (A\%:) Fa(\)dA (7.46)
L = % [ et (Aji:j) Fa(N)dA (7.47)

A is the random variable accounting for ISI

A2 A [honsin (7 + 6a) + hanoos (77 + &) s
n#z0

and
a . m T
YW (hpo sin =+ hqo cos —ﬁ) (7.49)
Looking at (7.48) and (7.49), we can see that the evaluation of the bounds to the
error probability for M-PSK modulation has been reduced to the computation of
two one-dimensional integrals like (7.28). Thus, all the methods introduced in
the PAM case directly apply; in particular, we can apply the GQR method.

Example 7.7 Consider a binary PSK modulation scheme that uses a channel modeled
as a third-order Butterworth filter (see Example 2.3) with 3-dB bandwidth By. In Fig-
ure 7.12 the error probability computed using the GQR technique is plotted as a function
of the number of points J of the quadrature formula.

The dashed line is the exact value of P(e) obtained by means of (7.31). The number
of interfering samples has been chosen equal to 20. It can be seen that even with a small
value of J the GQR offers a high accuracy. The difference in the computer times needed
to obtain the two curves (the exact and the GQR ones) of Figure (7.12) is enormous,
and such as to prevent the use of the direct enumeration when the number of phases
increases. In Figure 7.13 the signal-to-noise ratio £ /Ny necessary to obtain an error
probability of 106 for quaternary PSK is plotted as a function of the normalized band-
width 2B,T". The two curves refer to the Chemnoff bound and to the GQR methods. The
asymptotic value represents the case of no ISL It can be seen that the Chernoff bound is

rather loose, and leads to an asymptotic difference of about 1 dB in signal-to-noise ratio.
u]

7.2.  Evaluation of the error probability 333

10%. P(e)

Figure 7.12: Error probability as a function of the number of points of the quadrature
rule for a binary PSK system with third-order Butterworth filter. The dashed line repre-
sents the exact value.

Example 7.8 In this example we want to show how the computational techniques that
!mve been presented in this chapter can be extended to the analysis and design of a dig-
ital transmission system operating in a Frequency-Division-Multiplexing (FDM) multi-
channel environment. The system model employing M-PSK modulation is presented
in Figure 7.14. The attention is focused on one particular channel (the useful channel),
disturbed by two adjacent channels, working at the same signaling rate, giving rise to
interchannel interference, and by one channel at the same frequency. This schematic
model suits wireless communication systems employing FDMA and frequency reuse
(for example, the widely used GSM standard), or any fixed point-to-point system em-
ploying FDM and making use of two orthogonal polarizations to increase the bandwidth
efficiency (like in some radio-relay links). The transmitter filters are assumed to have
the same transfer function, except for the frequency location. In other words, let

GH ) B GH(f +ifs), i=-1,01 (7.50)

be the trafxsfer function of the i-th channel transmitter filter for positive frequencies,
where fq is the frequency spacing between two adjacent channels. For simplicity, we
shall assume that G;(f) satisfies the symmetry conditions of Example 7.2 with respect

u&!;»

g
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Figure 7.13: Signal-to-noise ratio £/ Ng necessary to obtain a symbol error probability
P(e) = 1078 for a quaternary PSK system with third-order Butterworth filter as a
function of the normalized 3-dB bandwidth 2BqT. The dashed line refers to the Chernoff

bound and the continuous one to the Gauss quadrature rules.

n(t)

e —> Cr (D n(

G.[(f) Go(f) Gl(f)

T I

4.0 o) vy ()

Figure 7.14: Block diagram modeling a 4-channel FDM system. The figure shows the
useful channel, two adjacent and one co-frequency interfering channels.

-
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to its center frequency fo + i fy, fo being the carrier frequency of the useful signal. If

(t) = 3 exp(i¢n)s(t — nT) (7.51)

is the complex envelope of the useful signal at the modulator output, the i-th interfering
signal can be written as

5i(t) = Vi Y explidm, + 5(27 fat + 6)]s(t — =i — mT) (1.52)

mi
where the meaning of the symbols is as follows:
e V; is the magnitude of the signal in the ith channel.

e 7; accounts for the possible misalignment of signaling intervals in different chan-
nels. [t may be modeled as a uniformly distributed RV in the interval (0, T).

® §; is a RV uniformly distributed in the interval (0, 27) and accounts for the lack
of coherence among the different carriers.

® (¢m,) is the sequence of information phases pertaining to the i-th channel.

The bounding technique described for the case of M-PSK with ISI can be applied here
for estimating the error probability. Moreover, the GQR method can also handle this sit-
uation, provided that the error probability conditioned on given values of 7; and ; is first
computed and the averages over 7; and 6; are performed later using standard quadrature
rules. From the system engineer’s viewpoint, the main design parameters are the fre-
quency spacing f; between adjacent channels, the amount of co-channel interference
that the system can tolerate, the choice of the transmitter and receiver filters (types and
bandwidths), and the signal-to-noise ratio required to get a desired value of the error
probability. The choice of these parameters is usually accomplished through a cut-and-
try approach, which requires repeated analyses of the system and, hence, the availability
of a tool to quickly evaluate system performance.

As usual in PSK, we shall assume that the shaping function s(t) is rectangular. Both
the transmitter and receiver filters are assumed to be Butterworth. Consider now the
following parameters defining the system:

e n7,np: the order of transmitter and receiver filters, respectively.

® (BoqT)1,(BeqT)r: equivalent noise bandwidths of the transmitter and receiver
filters normalized to the symbol period 7.

® D = f4T: frequency spacing between two adjacent channels normalized to the
symbol period 7.

® &,/Np: signal-to-noise ratio per transmitted bit of information, N /2 being the
two-sided power spectral density of the noise.
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Figure 7.15: Quaternary PSK system: signal-to-noise ratio &/ Ny necessary to obtc.zirz a
P(e) = 107 as a function of the normalized equivalent noise bandwidth of the receiving

= = 1.6.
filter. The parameters are as follows: n =6, (BegT)T = 2.5, and D

The results that follow have been obtained by choasing as the sampling mstalrlltst(; :ue,
time value corresponding to the maximum of the impulse response of the overall sy
without interchannel and cochannel interferences.

Interchannel interference
Two symmetrically located interfering channels are present at the same gg;er_rls;/eé;i
i i jon i ed to be quaternary .
the one interfered with. The modulation is assume : e
i imization is the normalized bandwidth of the recei .
parameter considered for opnm.xzanorhl is B euror peobabity oqual &
In Figure 7.15 the signal-to-noise ratio necessary (0 o ‘
lxz)'sgil; plotted as a function of the normalized receiver ﬁltejr band}wdt.h. E‘lgefsyl:rgzi);
intervals in the three channels are first assumed to be tlme-allx.gne:db(l.:. ':a t; amlc:nd !
i i alue of the normalized bandw .
interfering channels). It can be seen that a v. X e idih
is opti ini f this example, the normalized receiv i
is optimum. In the remaining curves o . : e e
: der the choice of the channel spacing.
will be assumed equal to 1.1. Let us now consi C ne e
In Figure 7.16 the signal-to-noise ratio necessary (o ob.tam an error probability of fle? N
is plotted as a function of the normalized channel spacing D. The three curves reOf 0
different values of the transmitter filter bandwidths (the .value oo means abser.lgteh the
transmitter filter). It is seen that the presence of a transmitter filter with bandwidth eq
igni i f the system.
to 2.4 significantly improves the performance o ) )
Thisg:esult is confirmed by Figure 7.17, where the only dlfferx?nce is representeghll)l);
the fact that there is a random misalignment among the modulating bit streams.
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Figure 7.16: Quaternary PSK system: signal-to-noise ratio £,/No necessary to ob-
tain @ P(e) = 107 as a function of the normalized JSrequency displacement of two
symmetrically located interfering channels modulated by time-aligned bit streams. The
barameters are as follows: nt = 6,ng = 2,(Be,T)p = 1.1

the final error probability is evaluated through an average over the RV 7;.

Cochannel interference

Finally, in Figure 7.18, the presence of one interfering channel at the same frequency
as the useful one is considered. The modulating bit stream on the interfering channel
is supposed to have a random misalignment. The curves plot the signal-to-noise ratio
necessary to obtain an error rate of 10~¢ as a function of the attenuation of the interfer-
ing channel. It is seen that the attenuation has to be of the order of 14, 16, or 20 dB for

the cases of binary, quaternary, and octonary PSK, respectively, to ensure a negligible
performance degradation as compared with the case of no interference, ()

7.3. Eliminating intersymbol interference: the Nyquist crite-
rion

In this section we will derive the conditions under which intersymbol interfer-
ence (ISI) can be eliminated in a linearly modulated (one- or two-dimensional)

i
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Figure 7.17: Quaternary PSK system: same situation as in Figure 7.16 except for the
random misalignment between the modulating bit streams of the interfering and inter-
fered channels.

system. Consider the transmission model of Fig. 7.19.

The source and the modulator are modeled assuming that the data to be trans-
mitted form a stationary random sequence (a;) of independent, identically dis-
tributed (iid) real or complex random variables (RVs) with zero mean and vari-
ance

02 £ Ela,f* (7.53)

The data sequence (ay) is sent to a linear modulator. For mathematical conve-
nience, as it has been done in the previous part of the chapter, this is modeled as
the cascade of a modulator having the ideal impulse §(t) as its basic waveform,
and of a shaping filter with an impulse response 5(t) and a frequency response
S(f). The number of symbols to be transmitted per second (i.e., the signaling
rate) is denoted by 1/7. Thus, the modulated signal is 32 _o, @¢d(t — £T'), and
the signal sent to the channel is 52 _ aes(t — ¢T).

The channel section is represented by a time-invariant linear system having
known transfer function C(f) and impulse response ¢(t) and a generator of ad-
ditive noise. The noise process w(t) is assumed to be Gaussian, independent of
the data sequence, to have zero mean, finite power, and a known power density
spectrum G, (f). Thus, the signal observed at the output of the channel section

4__..._.._.__4.| ¥
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201log Vp

Figure 7.18: Cochannel interference effects in binary, quaternary and octonary PSK
systems. The signal-to-noise ratio £,/Ny necessary to obtain a P(e) = 10~° is
plotted as a function of the attenuation of the interfering channel. The modulating
bit streams are assumed to be randomly misaligned. The parameters are as Jollows:
ng =2, (BeqT)T = 00, (BeqT)R =1.1.
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Figure 7.19: Model for the transmission of linearly modulated data over a time-
dispersive channel.

can be written as
o

r(t)= > ap(t — L) + w(t) (7.54)

f=—oc0

where p(t) is the response of the noiseless part of the channel to the waveform
5(t) or, equivalently, the convolution

p(t) = s(t) = c(t) (7.55)

iy
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Figure 7.20: Sampling receiver for the transmission system of Fig. 7.19.

Our aim is the design of a receiver (see Fig. 7.20) having the form of a linear
filter (hereafter referred to as the receiving filter) followed by a safnpler. After
linear filtering, the received signal is sampled every T and the resulting sequence
(z) is sent to a detector. The detector makes decisions, on a samgle-by-sample
basis, according to the minimum-distance rule described in Section 4.2. The
criterion considered in the design of the receiver shown in Fig. 7.20 concerns
the elimination of ISI from the sampled sequence (z,). Such a criterion, known
as the Nyquist criterion, will define the constraints on the ov'eral.l system trans-
fer function S(f)C(f)U(f). As should be obvious, the elingnauon of ISI only
concerns the cascade S(f)C(f)U(f), leaving open the choice of hov.v to par-
tition the overall transfer function between transmitter and receiver (1.e.3 how
to choose S(f) and U(f) once the product S(f)C(f)U(f) has been specified).
One can then give the burden of eliminating ISI to the receiving ﬁ}ter Uuif), or
choose both S(f) and U (f) so as to meet the specified needs for their produc‘t:. in
this case, S(f) and U(f) can be chosen so as to minimize the .effects of additive
noise at the detector input, and hence to minimize the probability of error for the
transmission system under the constraint of no ISI.

With reference to the transmission system shown in Fig. 7.19 and the sam-
pling receiver of Fig. 7.20, denote by ¢(t) the convolution

q(t) = p(t) * u(t) = s(t) * c(t) * u(t) (7.56)
and by n(t) the convolution
n(t) = w(t) * u(t) (7.57)

where u(t) is the impulse response of the receiving filter. Thus, at the sampler
input we have

o0
z(t) = Z axq(t — kT) + n(t) (7.58)
k=~00
and hence, at its output -
Te= Y, GkQe-k + Mk (7.59)
k=—00

where the signal and noise samples are defined by

o T é I(to + ZT)’ Qe é q(tO + ZT), n¢ é n(to + fT) (760)
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and ¢y + €T, —00 < £ < o0, are the sampling instants. In what follows, for
the sake of clarity, we will assume ¢, = 0. For error-free transmission, allow-
ing for a delay of D symbol intervals between transmission and reception of a
given symbol, we must satisfy the condition that z, is equal to a,_p. However,
from (7.59) we obtain

T¢ ={qpa¢-p + Z QkQt—k + Ny (7.61)
k#(-D

The factor gp of (7.61) is a complex number representing a constant change of
scale, and possibly a phase shift if the channel is bandpass (see Section 7.1): un-
der the hypothesis of a known channel, it can be easily compensated for. Thus,
we assume ¢p = 1. The second term of (7.61) represents the contribution of ISL
As noted previously in this chapter, it depends on the entire transmitted sequence
(ax), as weighted by the samples g_ of the impulse response of the overall chan-
nel. This is the effect of the tails and precursors of the waveforms overlapping the
one carrying the information symbol a,-p. The third term in (7.61) represents
the effect of the additive noise. The sample sequence (z,) must be processed to
get an estimate (&) of the transmitted symbols sequence. Of course, a reasonable
way to do this is to perform symbol-by-symbol decisions (i.e., to use only z, to
obtain an estimate of a;_p, —00 < £ < o0). This procedure is the simplest, but
suboptimum as the samples z, given by (7.61) are correlated due to the effect
of ISL. Hence, for an optimum decision the whole sequence (z,) should be pro-
cessed. In the framework proposed, what seems at first a reasonable approach to
the problem of optimizing the transmission system is trying to eliminate the ISI
term in (7.61). If this is achieved, the problem is reduced to a situation in which
only additive Gaussian noise is present. Hence, a symbol-by-symbol decision
rule based on the minimum distance is optimum under the constraint of no ISL
We shall examine this solution.

To avoid the appearance of the ISI term in (7.61) the overall channel impulse
response sample sequence (g;) should satisfy the condition

_Jo, ¢#D
Qe—{l, =D (7.62)

This condition can also be expressed by observing that, with Ar(t) denoting a
periodic train of delta functions spaced T apart, that is,

Ar(t) £ i 6(t — kT) (7.63)

k=-c0

Equation (7.62) is equivalent to

| i
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Figure 7.21: Eliminating ISI from the samples of the channel output.

g(t) - Ap(t) = 6(t — DT) (7.64)

(see Fig. 7.21). Taking the Fourier transform of both sides of (7.64), with the
definition

Q(f) £ Fla(®)] = S(HCAHUS) (7.65)
we get

ZQf) * By(f) = exp(~j2n ] DT) (7.66)
The effect of convolving Q(f) with the train Ay,7(f) of spectral lines spaced

1/T Hz apart is to obtain a train of replicas of Q(f) spaced 1/T Hz apart
(Fig. 7.22). By denoting this convolution by Qeq(f):

Qe(f) & i Q(f + —;—,) (7.67)

k=—c0

Eq. (7.66) requires that Qeq( f) have a constant magnitude and a linear phase.i‘ It
is easily seen that, for any Q(f), Qeq(f) is a periodic function c?f f v&{lth penqd
1/T. Thus, without loss of generality, we can confine our consideration of this

4Tt may be worthwhile to notice that the condition of constant magnitude and linear phase
ensures no distortion also in the analog domain, where, on the other hand, the condition concerns
the true transfer function Q(f), instead of its aliased version Qeq(f)-
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Figure 7.22: Convolution of Q(f) with a train of spectral lines in the frequency domain.

function to the fundamental interval [—1/(2T), 1/(2T)], and express condition
(7.66) in the form

Qu(f) =T - exp(=j2nfDT), If] < 5 (7.68)
Condition (7.68) for the removal of IS is called the (first) Nyquist criterion and
the interval [~1/(2T),1/(2T)] the Nyquist interval. This criterion says that,
if the frequency response Q(f) of the overall channel is cut in slices of width
1/T and these are piled up in the Nyquist interval with the proper phases (see
Fig. 7.23), ISI is eliminated from the sample sequence (z;) when the resulting
equivalent spectrum Q.q(f) has a constant magnitude and a linear phase. Look-
ing at the achievable data rate, if the modulator uses M amplitude levels and a
baseband (or single-sideband) transmission, we can transmit up to log, M bits in
a 1/(2T) bandwidth without ISI.

7.3.1. The raised-cosine spectrum

If Q(f) is nonzero outside the Nyquist interval, many classes of responses sat-
isfy (7.68). Thus, the Nyquist criterion does not uniquely specify the shape of
the frequency response Q(f). On the contrary, if Q(f) is limited to an interval
smaller than Nyquist’s, it is impossible for (7.68) to hold. Thus, ISI cannot be
removed from the received signal. If Q(f) is exactly bandlimited in the Nyquist

| iy:
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N {

Figure 7.23: Construction of Qeq(f) in the Nyquist interval {—1/ (2T),1/(2T)). Here
Qeq(f) is assumed to be real.

interval, (7.68) requires that

Q(f) = { oqu(f) =T-exp(—j2nfDT), |fl< 3 (7.69)

elsewhere

That is, the“only transfer function Q(f) satisfying the Nyq1'1ist criterion is the

“brickwall” frequency response of the ideal low-pass filter with delay DT
With Q(f) as in (7.69), the overall channel impulse response ¢(t) becomes

_sinm(t/T — D)

9(t) = 7(t/T - D) (7.70)

a noncausal function (for any finite D) that decays for large ¢ as 1/t. The trz.msfer
function (7.69) poses two serious problem. First, it is not physically realizable
because of its sudden instantaneous jump to 0 at f = 1/(27T’) (as the Latin say-
ing goes, natura non facit saltus). The second drawback comes frgm t.he fact t’.hat
every real-world system will exhibit errors in the timing synchronization causing
erroneous sampling times. Even a minimum sampling error would cause the eye
pattern to close simply because the series Y52 _o, ¢(7 + kT') is not absqlutely
summable for 7 # 0 when g(t) is as in (7.70) (see Section 7.2.1). For this rea-
son, it becomes mandatory to trade a wider bandwidth for a reduced sensitivity
to inaccuracies in sampling times (and possibly for an easier implementétion).
Since it is recognized that the problem with the impulse response (7.70) is due
to its slow rate of decay, and since the rate of decay of a pulse is intimately re-
lated to the discontinuities of its Fourier transform, it is reasonable to investi gz'lte
classes of responses that satisfy the Nyquist criterion with a minimur_n of dis-
continuities, considering also the discontinuities in the derivatives. This can be
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Figure 7.24: Example of a real Q(f) satisfying the Nyquist criterion.

obtained, for example, as shown in Fig. 7.24. Let &, 0 < o < 1, be the allowed
relative amount of bandwidth in excess of Nyquist’s; that is, let Q(f) be strictly
bandlimited to the interval | f] < (1 + a)/(2T). Letting D = 0 for simplicity,
choose

@Q(f)=T, for |f|<(1-a)/(2T);

(b) Q(f) real, decaying from T to zero for (1-a)/(2T) < |f] < (1+a)/(2T),
and exhibiting symmetry with respect to the points of abscissa +1/(2T)
and ordinate T'/2. This roll-off spectrum must be chosen in such a way
that it presents a minimum of discontinuities at | f| = (1 + a)/(2T), the
band edges.

The choice of a sinusoidal form for the roll-off spectrum leads to the raised
cosine transfer function defined as follows:

l1—a
T, lfl <
T nT 1+« l-a T l1+a
={ = {1- —(f- <If| <
e 2{1 °°S[a (f oT )J} oT _lf1|; oT
@
0, |f] > =7
7.71)
The impulse response corresponding to a raised cosine spectrum is
sin(nt/T) cos(ant/T
q(t) = (xt/T) | cos(omt/T) (7.72)

nt/T  1-(2nt/T)?

and decays asymptotically as 1/t3 fort — oo.
Fig. 7.25 shows the raised cosine spectra and the corresponding impulse re-
sponses for & = 0.25, 0.5 and 1.0. In Fig. 7.26 we show the inner envelopes of

| i



by

346 7. Intersymbol interference channels
! v\ —a=1
T B a=.5
LR ~——a=.25
X
A
!
5 3
B
i
Ay
v
(Y
s
03 5 625 .75 1
fT
(@)

—_—a=1
------ a=.5
—_—a=.25

———

Figure 7.25: (a) Raised cosine spectra; (b) impulse response of raised cosine filters.

the corresponding eye patterns for binary transmission with symbols +1. It is
seen from Fig. 7.26 that the immunity to erroneous sampling instants increases
with . In particular, with a 100% roll-off, open-eye transmission is possible
even with a sampling time error approaching 0.5 T in absolute value. With
smaller values of a, the margin against erroneous sampling decreases, and is
zero when o = 0 (corresponding to the brickwall frequency response).

Notice also that g(t) in (7.72) is not causal and hence not physically realiz-
able. However, approximate realizations can be obtained by considering a delay

i
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Figure 7.26: Inner envelopes of eye patterns resulting from antipodal binary transmis-
sion over a channel with a raised-cosine transfer function.

D so large that a causal approximation to ¢(¢t — D) gives a performance satis-
factorily close to that predicted by the theory. Raised cosine spectra are often
considered for practical modem applications.

7.3.2. Optimum design of the shaping and receiving filters

Assume now that Q(f) has been chosen so as to satisfy the Nyquist criterion, so
that freedom from ISI is assured by taking the shaping filter and the receiving
filter such that

S(HCHU(f) =e(f) (1.73)

Thus, for a given C( f) the actual design of S(f) and U(f) still leaves a degree of
freedom, as only their product is specified. This freedom can be taken advantage
of by imposing one further condition, that is, the minimization of the effect of
the noise at the sampler input or, equivalently, the minimization of the error
probability (in fact, in the absence of ISI, errors are caused only by the additive
noise).

The average noise power at the receiving filter output is, from (7.57)

ot= [ GununPy @74)

Minimization of o2 without constraints would lead to the trivial solution |U (f)] =
0, which is not compatible with (7.73). To avoid this situation, we constrain the
signal power at the channel input to a finite value, which poses a constraint on
S(f). This, in turn, prevents (through (7.73)) U(f) from assuming too small

i
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values. Since the overall channel frequency response is the ﬁxed function Q(f),
the signal power spectral density at the shaping filter output is, from (2.128),
:

o? 2 _ 0. IQ(f)? (1.75
7SO = F o (e )

and the corresponding signal power is

g (* _1RUHE (1.76)
P=2 [ wroar?

Minimization of 2 under the constraint (7.76) can be pe.rformed u:sir.lg the La-
grange-multiplier and variational techniques (see Appendu.( C). Omitting an un-
essential factor, the minimizing U (f) is given by the equation

QU a.1n
CGlDlee

and the corresponding shaping filter is obtained through

__ Q) 778
SU) = EHo 778

In (7.77) and (7.78) it is assumed that Q( f) is zero at those fre.quenmes for which
the denominators are zero. Notice that the phase characteristics of U(f) are not
specified, and are therefore arbitrary (of course, S( f ) in (7.78) is such.that Qf )f
has a linear phase, as required by the Nyquist criterion). In the special case od
white noise and C(f) = constant, it is seen from (7.77) and (7.78) that U (f) an
S(f) can be identical apart from an irrelevant scale factor, so only one design
has to be implemented for both filters.

L]

7.4. Mean-square error optimization

In the last section we saw how a system free of ISI can be de.51gned. After
choosing the overall channel transfer function, the optimum design of shaping
and receiving filters was achieved by minimizing the noise power at the sam-
pler’s input. Although this procedure sounds reaspnable, it does not guarantee
minimization of the error probability. In fact, it might happen that, b-y tradl-ng a
small ISI for a lower additive noise power, a better error p;rformanqe is obtained.
On the other hand, system optimization under the criterion of 2 minimum error
probability is a rather complex task. This suggests that we look for a criterion
leading to a more manageable problem.
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Thus, in this section we shall consider the mean-square error (MSE) criterion
for system optimization; this choice allows ISI and noise to be taken jointly into
account, and in most practical situations leads to values of error probability very
close to their minimum.

Consider again the system model shown in Figs. 7.19 and 7.20. Instead of
constraining the noiseless samples to be equal to the transmitted symbols, we can
take into account the presence of additive noise and try to minimize the mean-
squared difference between the sequence of transmitted symbols (a¢) and the
sampler outputs (z,). By allowing for a channel delay of D symbol intervals, we
shall determine the shaping filter S(f) and the receiving filter U(f) so that the
mean-square value of

€ 2 T¢— Ge_p 7.79)

is minimized. This will result in a system that, although not specifically designed
for optimum error performance, should provide a satisfactory performance even
in terms of error probability.

We begin by deriving an expression for the MSE at the detector input, defined
as

£ £ Ble = Blz, — ap_p? (7.80)

From (7.61), ¢, can be given the form

ee=arp(gp— 1)+ Y argex +ne (7.81)
k#é-D

so that, due to the independence of the terms summed up in the RHS, we obtain

E = lgp -1+ Y |gl* + 02
k#D
o0
= o1 -2R(gp)]+0? ¥ |a)*+ o2 (1.82)
=-00

Now we want to express £ by using frequency-domain quantities. By assuming
as usual that £, is equal to zero, we get

o Y
= [ QUerTys (783)
and consequently, by direct calculation,
== : = 7.
Ttz ¥ [Cane(r+f)a  as

it
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Thus, (7.82) can be rewritten, using also (7.74), in the form
£ = o [1 _p / * Q(f)e*IPT gf (7.85)
—0oQ

s rllew 3 Q(f+k/T)df}+ [ Gu ool

k=-—00

We observe that the MSE is the sum of two terms. The first (enclosed in square
brackets) represents the overall channel ISI power, while the second represents
the contribution of the additive noise power. These terms are not independent,
as any change in U (f) would also affect Q(f). Qualitatively, it can be said that,
if the bandwidth of the receiving filter U (f) is reduced in order to decrease the
value of the noise term, this will result in a corresponding increase of the overall
channel ISI.

Example 7.9 Consider a baseband transmission system with white Gaussian noise
having power spectral density Np/2, data with 62 = 1, s(t) = ur(t), a channel mod-
eled through a fourth-order low-pass Butterworth filter with 3-dB frequency B¢, and a
second-order low-pass Butterworth receiving filter with 3-dB frequency By. InFig. 7.27
the dashed lines represent the contribution of the noise (which augments with increasing
By and Np) and the continuous lines the contribution of the overall ISI MSE (which
augments with decreasing By and Bc). The total MSE £ is obtained by summing up
the two contributions, which results in 2 minimum for an optimum value of By. 0

7.4.1. Optimizing the receiving filter

We shall now consider the selection of a transfer function U(f) that gives a
minimum for £ when S(f), as well as C(f), are given. By using (7.85) and
applying standard variational techniques (see Appendix C), it can be proved that
a necessary and sufficient condition for U ( f) to minimize £ is that

15 3 S (f +5)c (f +5)u (f +1)+

k=—o0
1

+ SGu(U(f) =57(HC(f) = S*(f)C*(f)e 2 IPT (7.86)

be satisfied. In spite of its formidable appearance, (7.86) is amenable to a closed-
form solution, which in turn admits an interesting interpretation. To see this, let
us first show that the optimum receiving filter, say Uqpe(f), has the following
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ilgure 1.27: (..‘?ntrtbl'ttions 10 mean-square error of intersymbol interference (continuous
ine) and additive noise (dashed line) in the situation of Example 7.9,

expression

P*
Uopt(f) = ng‘;r(f) (7.87)

where I'( f) is a periodic function with period 1/T, and

P(f) £ S(f)C(f) (7.88)

is the transfer fun(.:tion.o.f the cascade of the shaping filter and the channel (we
assume here for simplicity that G, (f) is nonzero everywhere). By substitut-

ing (7.87) into (7.86) and observing that k = i
e O g (f + &/T) = I'(f) for all £ due to its

1

1S IP+E/T)E 1
T*

G+ k/7) gz T = PUNeIoT o 89)

s

3
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For all the frequencies at which P(f) vanishes, (7.86) shows that Ugpe(f) must
also be zero, so that (7.87) is true. For P(f) # 0, (7.89) gives

a,ze—jmrfDT
P =173 720
where 2
_1 & |PF+K/T)]
L) =7 g_:w Gu(f +K/T) 7D

is periodic with period 1/T', as required. This shows that the solution to (7.86)
has the form (7.87). Insight into the behavior of the optimum receiving filter can
be gained by considering the special case of a channel bandlimited to the Nyquist
interval [—1/(2T), 1/(27T)]. In this case, (7.91) specializes to

LIP()P
D =Ta ) o

and, from (7.87) and (7.90) we get

_ a2P*(f) —j25fDT
Vo) = GoFy + @/ TNIPOE @)

Equation (7.93) shows that, in the absence of noise, the optimum receiving filter
is simply the inverse of P(f). This is an obvious result, since in this situation
1S is the only contribution to the MSE, and, in turn, can be reduced to zero
by forcing the overall channel to a flat frequency response in the Nyquist band.
However, when G, (f) # 0, elimination of ISI does not provide the best solution.
On the contrary, for spectral regions where the denominator of the RHS of (7.93)
is dominated by Gu(f), Uspe(f) (apart from a scale factor and a delay term)
approaches the matched filter characteristics P* (f)/Gu(f).

More generally, for a channel not constrained to have a zero transfer func-
tion outside the Nyquist interval, (7.87) can be interpreted by observing that
P*(f)/Guw(f) is the transfer function of a filter matched to the impulse response
p(t) of the cascade of the shaping filter and the channel. Also, I'(f). being a
periodical transfer function with period 1/T, can be thought of as the transfer
function of a transversal filter whose taps are spaced T seconds apart. Thus, we
can affirm that the optimum receiving filter is the cascade of a matched filter and
a transversal filter. The former reduces the noise effects and provides the princi-
pal correction factor when the signal-to-noise ratio is small. The latter reduces
1SI and in the situation of high signal-to-noise ratio attempts to suppress it.
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74.2. Performance of the optimum receiving filter

Let us now evaluate the MSE of a s i i i

te t ystem in which S(f) and C(f) are given and
U(f) has been optimized. Substituting (7.87) for U(f) in (7.85) and using (7.92)
and (7.93), we get, after algebraic manipulations,

el [FIPOE o2
% [1 L. e ramp? 759

For a more compact form of the error ex i i i
: : pression, the integral a i
is rewritten as follows: Eral appearing n (759

= PP o

I exrer Tk

P [Heen POR o}
koo 2k=1)/2T)  Gu(f) 1+ 02L()

= /“‘”’ 2 [PU+R/TIPY o2
e \ 2=, GG+ R/T) ) T7 2L

df (7.95)

=—00

Also, using (7.91), we can express (7.95) in the form

=gty [ _aiLf)
U"[ T -x/<2T>1+UZL(f)df (7:56)

and, finally

1/(2T) a2
E=T e
/_1/(27) 1+ o2L(f) df (7.97)

which, in conjunction with (7.91), is the expression of the MSE achievable by

gﬁ :nzmg the receiving filter U(f) for a given channel and a given shaping

Exa,n.ple 7.10 Let us consider again Example 7.9, in which the goal is to optimize the
.rece.lvmg filter. We assume here BcT = 0.6. The MSE for such a system is depicted
in Fig. 7.28. The dotted line refers to a second-order Butterworth receiving filter whose
I?andwidth has been chosen so as to minimize &£, while the dashed line refers to the op-
tlm}mf rez.:eiving filter given by (7.87). It can be observed that the effectiveness of the
optimization increases as the noise power spectral density Ny decreases (i.e., the system
performance is limited by ISI rather than by additive noise). ’ ]

Ml
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10 . ;
No

Figure 7.28: Performance of the transmission system of Examples 7.9 to 7.11: MSE £
versus the noise power spectral density Ny. Dotted line: the receiving filter is secon.d-
order Butterworth with 3-dB bandwidth chosen to minimize £. Dashed line: the receiv-
ing filter has the optimum transfer function given by Eq. (7.87). Continuous line: both
shaping and receiving filters are optimum in the MSE sense.

7.4.3. Optimizing the shaping filter

The final step toward system optimization can now be taken by lc.)o.kin.g for t.he
optimum shaping filter S(f). To do this, £ in (7.85) shoulld be minimized with
respect to S(f) subject to the power constraint at the shaping filter output

_ o[ 2 7.98
P=2 [ IS4 (7.98)

which is the same as in (7.76). N
The resulting equation, expressing a necessary and sufficient condmon’for
S(f) to minimize £, does not seem amenable to a simple closed-form solution.
Hence, we shall omit the details of the derivation and restrict ourselves to a
general description of the solution and an example of its application.
+ The optimum shaping filter transfer function can be obtained as follows:
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Step 1 For every f in the Nyquist interval [—1/(2T'), 1/(2T)], determine the
integer ky such that |C(f + &/T)|?/G.(f + k/T) takes on its maximum
value with respect to k. We shall define F as the set of frequencies that can

be written in the form f + k;/T, f € [-1/(2T), 1/(2T)}.
Step 2 Choose A > 0 and define the subset F, of F such that, for f € F,

2
'gi{}l) >§ (7.99)
Step 3 Take
TGy(f) T
1Seel2 =4 2GR T e VA FERY (109

0, elsewhere

Then compute U (f) according to (7.87) and (7.88) and choose the phases
of Sept(f), U(f) so that Q(f) = Sope(f)C(f)U(F) is real and positive.
Inspection of (7.85) demonstrates that the MSE depends on the phase of
S(f)U(f), but is independent of the way it is distributed between S(f)
and U(f).

Step 4 Evaluate the resulting average channel input power by substituting for
|S(f)]? in (7.98) the expression obtained from (7.100). The value com-
puted will generally be different from the constraint value P, so steps (2)
to (4) should be repeated for different values of A until the average channel
input power is equal to P.

From this procedure, it is seen that the optimum shaping filter, and hence the
whole channel transfer function Q(f), is generally bandlimited to the frequency
set F, which has measure 1/T (this set is usually referred to as a generalized
Nyquist set). The pulses transmitted through the channel have their energy con-
fined in this set, whose frequencies are chosen, according to Step 1, in order to
afford the largest possible contribution to L( f) in (7.91), and hence by rendering
L(f) as large as possible to minimize the RHS of (7.97). This simply shows
that the pulse energy must be allocated at those frequencies where the channel
performs better in the sense that |C(f)| is large and/or G, (f) is small. In Step 2,
the set F is further reduced in order to preserve only those frequencies at which
the ratio |C(f)|2/G(f) lies above a certain level depending on the value of A.
Actually, A, a Lagrange multiplier in the constrained optimization problem, turns
out to be proportional to the signal-to-noise ratio, defined as the ratio of the av-
erage transmitted power to the average noise power at the output of the receiving
filter.



k3

L]

356 7. Intersymbol interference channels

Example 7.11 We consider again the situations described in Examples 7.9 and 7.10,
and try to optimize the shaping filter. The noise is white, and |C( F)I? is assumed
to be a monotonically decreasing function of |f] (in fact, the function has the form
[C(H)|? = [1+(f/Bc)?]™"). Thus, it follows that k7, as already defined in Step 1, is al-
ways zero, and hence F= [—-1/(2T), 1/(27)]. Furthermore, F) = [-1/(2T"),1/(2T")],
where for high A values (i.e., high signal-to-noise ratios) T' = T, while for low A values
(i.e., in the situation that (7.99) does not hold for all f € F), 7" > T. Figure 7.28
shows the MSE obtained after optimizing both the shaping and the receiving filter in the
situation dealt with here (continuous line). a

7.4.4. Information-theoretic optimization

In Section 3 we have derived the capacity of the additive Gaussian channel, under
the hypothesis of band-limited white Gaussian noise. Here, we will show how to
design the transfer function of the transmitting filter S(f) in Fig. 7.19 in order to
maximize the capacity of the channel.

Consider the system represented in Fig. 7.19, where w(t) is additive Gaussian
noise with power spectral density G,,(f). We want to find the transfer function
S(f) of the shaping (transmitting) filter that maximizes the average mutual infor-
mation (see Section 3.3) between channel input and output, subject to the power
constraint (7.98) at the shaping filter output, here rewritten in the form

[T 1srar < 7-’2 (7.101)

Define the “channel signal-to-noise ratio functlon” (already used in the pre-
vious section)

a C(f )

n(f) = | Gulh) (7.102)
and consider, as already discussed in the previous section, that the preferred
transmission bandwidth is the one in which n(f) is large. This lead; to Fhe
following formal result for | S(f)|?, known as the water-pouring, or water-filling
solution (Gallager, 1968, Chapter 8):

) 1
K-——, f€eB
IS (o = 7(f) (7.103)
0, féB

where B is the capacity-achieving bandwidth, i.e., the following range of fre-
quencies f:
. BE{f:n(f) > 1/K} (7.104)
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Figure 7.29: Water-pouring model for optimal energy distribution.

and K is a constant chosen so as to satisfy the constraint (7.101), i.e., the solution
to

U~ Vin()]} df =P (7.105)

In practice, B is often a continuous frequency interval (f;, f2) (see Fig. 7.29),
and the optimum shaping filter is the one that “pours” more signal power where
the noise-to-signal ratio is lower, and avoids sending signal power when the
noise-to-signal ratio exceeds a certain threshold (K) that depends on the avail-
able signal power. Capacity of the channel is achieved when the transmitted
signal has a Gaussian statistic with power spectral density given by (7.103), and

is equal to?
K|C(f)]? 1 2
=5 Jytows | FE2RE = 3 [ tous [1+ Fistrznn] o s

(7.106)

Comparing (7.105), (7.103) and (7.106) with Fig. 7.29, we see that the power P

is given by the area of the shaded region, and that the appropriate power spectral

density is given by the height of the shaded region at any given f. This is the

reason for the water-filling interpretation, since we can think of 1/7(f) as being

the bottom of a container of unit depth, and of pouring in an amount of water

P. Assuming the region to be connected, we see that the water (power) will

distribute itself in such a way as to achieve capacity.

The water-pouring argument leads to a practical application for the system
called orthogonal frequency-division multiplexing (OFDM), where the channel
bandwidth B is divided into, say N, subbands of width A f around frequency
fi, i =1,..., N, in such a way that the channel signal-to-noise ratio function
7(f) and, consequently, |S(f){?, are nearly constant in each subband (see Bing-
ham, 1990). In these conditions, each subband can be considered as an ideal

5The reader is invited to compare (7.106) with the capacity (3.91) of the additive white Gaus-
sian noise channel.
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band-limited AWGN channel with bandwidth A f, in which an optimal power
P =(IS(f)F)(ANa2)/T
is transmitted, with capacity
Ci = logy[1 + Pin(fi)] bit/s (7.107)

The total expended power is then approximately P, and the total c'apacity ~C.
To approach the capacity, a code with rate matched to the capacny C; shou}d
be used in the ith subband. We have thus a situation in which the transmit-
ter has a knowledge of the signal-to-noise ratio across the channel .bandwic'ith
(knowledge that can be acquired, for example, through some probe SIgngls, like
a comb of frequencies f;), and adjusts the transmitted power (and poss1!)1y the
size of the signal constellation) in each subband based on the water-pouring so-
lution (7.103).

7.5. Maximum-likelihood sequence receiver

In this section an entirely different approach will be adopted in the design of
the optimum receiver for the system of Fig. 7.19.° In particular, we shalli apply
the theory of ML reception outlined in Chapters 2 and 4 to a channel with ISI
and demonstrate that this approach provides a conceptually simple (although not
always practical) solution to the optimization problem. Our assumptions are
that the noise w(t) is white and that the filters S(f), C(f) hgve a finite-length
impulse response. A consequence of the latter assumption is that, befo.re the
addition of the noise, the waveforms at the channel output, as considered in any
finite time interval, can only take a finite number of shapes (this number can be
very large, but conceptually this is not a hindrance). Thus, the ML recgptlon of
a finite-length message is equivalent to the detection of one out of a ﬁmFe set .of
waveforms in AWGN, so the theory developed in Sections 2.6 and 4.2 is valid.
In particular, the optimum receiver consists of a bank of matched ﬁltetrs,. one for
each waveform. Their outputs are sampled at the end of the transmission, and
the largest sample is used to select the most likely symbol sequence. .
In practice, however, this solution would be unacceptable due to its excessive
complexity. In fact, for a message of K M-ary symbols, M X matched ﬁlterAs
might be necessary, with about M¥ comparisons to be per.formed to select their
largest sampled output. Thus, to provide a practical solution to th'e p'rot?lem Qf
ML reception, we must overcome several difficulties that appear intrinsic to it.

6We continue here to consider the case of linear modulations and systems; this assumption,
however, is not strictly necessary, and will be removed in Chapter 14.
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The first is the complexity induced by the large number of matched filters needed.
The second is that induced by the large number of comparisons necessary to
make a decision. The third is the size of the memory required to store all the
possible transmitted sequences and the delay involved in the detection process.
As we shall see, satisfactory solutions can be found for these difficulties. In fact,
only one matched filter is sufficient, due to the channel linearity. Furthermore,
we can specify an algorithm whereby the number of computations necessary for
the selection of the most likely symbol sequence and the memory size grow only
linearly with respect to the message length K. Also, a suboptimum version of
this algorithm can be adopted that allows decisions to be made about the first
transmitted symbols with a fixed delay, without waiting for the whole sequence
to be received.

7.5.1.  Maximum-likelihood sequence detection using the Viterbi algorithm

The key to the ML receiver design is the expression of the log-likelihood ratio

. . A
for the detection of the finite sequence of symbols a = (ag, a1, . . . ,a K-1) based
on the observation of the waveform

K-1
() 2 3 apl(t — €T) +w(t), tel (7.108)

£=0
where I is a time interval long enough to ensure that p(t), p(t~T), .. ., p[t— (K —
1)T] are identically zero outside it. Definition (7.108) is derived from (7.54)
by considering a finite symbol sequence instead of an infinite one. Moreover,
for simplicity, we deal with real signals only. The extension to the complex
case is straightforward and requires only some minor changes of notation (see
Section 2.6). In (7.108), w(t) denotes white Gaussian noise with power spectral
density Ny/2. We also assume that the sequence length K is large enough to
disregard certain end effects. This concept will be made more precise when the
need arises. The log-likelihood ratio for a is then

2 1
== (vt —— [ 7.
Aa N /I-v (&)r(t)dt N /I'uadt (7.109)

where v, (¢) is the noiseless waveform corresponding to the symbol sequence a:
=
va = Y agp(t — €T) (7.110)
=0
Using (7.110), we can rewrite (7.109) in the form

9 K-1
Aa = m-gag/xp(t——lT)r(t)dt
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- LYY e, [pt - eTple = mT)de @110

NU £=0 m=0 I

For notational simplicity, it is convenient to define the following quantities:
z,8 / p(t — £T)r(t)dt 7.112)
1

and
Sem 2 / p(t ~ £T)p(t — mT)dt (1.113)
1

With the assumption of a finite duration for the waveform p(t), say
p(t) =0, t<0, t>(L+1T (7.119)

(the value L, L < K, will be referred to hereafter as the memory qf the c.han-
nel), the sequence Z,, £=10,1,...,K—1,canbe obtained by samplu?g z'1t nmgs
(L+£+1)T the output of a filter matched to the waveform p(t) when its input is
the received signal r(t). Notice also that (7.114) implies that I= [0, (K + L)T).
Strictly speaking, the RHS of (7.113) depends on £ and ™ separatel).'. However,
we assume that the choice of K makes the interval I long enough for it to depend
on £ — m only. Moreover, due to the assumption of a finite-memory channel,
$¢—m can be nonzero only for a finite set of values of £ — m. In fact, we have

se=0, k|=L+1 (1.115)

Finally, observe that, under the hypothesis of a known function p(t), the.va‘lues‘ of
sy are also known. Use now (7.112) and (7.113) in (7.111). Up?q multiplication
by the constant factor Ny, it is seen that the ML sequence a 18 the one that
minimizes the quantity’

K-1 K-1K-1
MNME-2Y aZi+ Y Y aamsem (7.116)
£=0 =0 m=0

Now we observe that one of the results anticipated at the beginning of this sectiqn
can be proved. In fact, all we need in order to compute A, for every vector a is
the sample sequence (Z)X5" obtained at the output of.a single match.ed filter.
Precisely, this set of samples provides a sufficient statistics for r(t) This means
that all we need to know about the received signal is contained in these samples.

The ML decision requires ), to be minimized over the whole set of possible
sequences a. Thus, the matched filter must be followed .by a processor, the ML
sequence detector, determining as the most likely transmitted data sequence, say

TWith a slight abuse of notation, we keep using A for the normalized log-likelihood ratio.
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4, the one minimizing A,. The direct computation of ), for all possible a to find
the minimum is impractical due to the sheer number of computations involved.
However, a sequential algorithm is available that performs such a selection in a
computationally efficient manner. This is the celebrated Viterbi algorithm de-
scribed in Appendix F, and already used in Chapter 6. It performs the minimiza-
tion of a function of several variables and is applicable to minimization problems
that can be formulated as the search for the minimum-length path in a finite trel-
lis. The significance of the Viterbi algorithm is that the number of computations
required for the ML detection of a sequence of length K grows only linearly with
K.

We shall now show how the Viterbi algorithm can be applied to our problem.
(From now on we shall assume that the reader is familiar with Appendix F)
Essentially, our task is to show that A, can be reduced to a sum of terms, each
one corresponding to the label of a branch in a suitable trellis diagram.

To do this, the first step is to rewrite A, as defined in (7.116), in the form

K-2 K-2K-2
Ao = {'2 (Z “lZl> +3 2 aeamSe_m} 7.117)
£=0 £=0 m=0
K-2
+ {_2(aK—IZK—1) +2 (aK_l E amsK—l-—m> + a?(~130}
m=K-L-1

where (7.115) and the property s_, = s, have been used. In (7.117) we have
decomposed A, into the sum of two bracketed terms. The first is similar to the
RHS of (7.116) (the only change is the upper summation limit), and the second
is a function only of the L + 1 symbols ax_;_1,ax_s, .. .,ax-1, Not of the
entire vector a. Our decomposition of A, into a sum of functions suitable for
the application of the Viterbi algorithm will be based on repeated application of
such decompositions. At this point it is convenient to define the variables

002 (@1, 809, ... a0r), £=1L,... K (7.118)
and the quantities
Uks1(og, ..., 0k41) (7.119)
k E &
é -2 (Zang) +Z E QA Se—-m k=L—1,...,K—1
=0 £=0 m=0
Vit1(0%, Ox41) (7.120)
N k-1
= —2((1ka) +21a AmSk—m +a§so, k=L,...,K-1
m=k—L

M
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Now, observing that
/\a=UK(ULy-~~7UK) (7121)

we can rewrite (7.117) in the form
Uk(or,...,0x) = Uk—1(oL,...,0k-1) + Vk(0K-1,0k)
and generalize the latter to show that

Uks1(or, - - - 0k41) = Uk(oL, -, 0%) (7.122)
+Vir1(ok, Ok41), k=L,..., K -1

Repeated application of (7.122) yields

Xa = Ulor) +Vil(or, o) (7.123)
+ Vipa(opsr, 042) + 00t Vi(0K-1,0k)

which is the required decomposition. . -

Our next step will be to exhibit a trellis such that we can associate with its
branches the values taken on by the functions Vi+1(o%, ok+1), k= L,..., K -1.
This task is simplified by a proper interpretation of the meaning of the variables
oy, defined in (7.118). .

Recall that we have assumed the channel to have a finite memory L. . This
assumption is expressed mathematically by (7.114), and can be interpre}ed in the
following manner. At any given time ¢, the received signal r(t) defined in (7.108)
depends on a set of L + 1 consecutive symbols, say a¢, Ge-1, - - -, Ge—L- The last
L of these symbols has been defined to form o. .

This is then called the state of the channel at time t. The transmission of the
symbol a, when the channel state is o, will then bring the channel to the succeed-

ing state o¢y; = (ae, ag41, - - - » Ge—r+1), and so forth, for symbols ae4, azt2, - - -
Thus, we have set a one-to-one correspondence between the sequence of trans-
mitted symbols ag, a;, . - ., ax—1 and the sequence of states o, ..., 0k- There-

fore, the problem of selecting the most likely symbol sequence is equiva!ent to
that of selecting the most likely sequence of states. This can also be seen directly
from (7.123). o

We are now able to define the trellis structure needed for the application
of the Viterbi algorithm. For each value of the index £, £ = L, L+1,... K,
associate a set of M~ nodes where each corresponds to a value of o¢. Each node
has M branches stemming from it, one for each value taken by a,. Also, the
branches represent the transition from the state o to the next state ge; as shown
in Fig. 7.30. An example will help clarify these procedures.
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y Qi1
(Channel state before (Channel state after
trasmission of the trasmission of the
£ - th symbol) £- th symbol)
a; ,
@ey-eonay) o > (ag,azy,...,80041)
a,
® (aj.apy,. . ap41)

Figure 7.30: Transition from one state to the next and construction of the trellis diagram

JSor application of the Viterbi algorithm; a’l and a’é are two possible values taken on by
the {th data symbol.

oy =(0y,, %,)

LD "
-1, 1)

(1,-D

-L,-1) .
i =2 {=3 =4 /=5 0= K-1 =K

Figure 7.31: Trellis diagram for the situation of Example 7.12.

Example 7.12 Assume a binary baseband modulation with symbols +1 and a chan-
nel with a finite memory L = 2. The trellis for this situation consists of the states
0¢ = (@p-1,as—2). Each state can assume four values for each £ (see Fig. 7.31), and
the branches joining adjacent states represent the structure of the state vectors. For in-
stance, the two branches stemming from the state (ag,ap—1) = (1, —1) connect it to the
allowable successor states (ag41,a¢) = (~1,1) or (1,1), corresponding to the symbols

a¢+1 = —1 and 1, respectively. Conversely, given the state (ag,1,a¢) = (1,—1) there
are two allowable predecessor states (a¢,a¢_1) = (1,1) and (1, —1), corresponding to
the symbols a,_1 = 1 and —1, respectively. m}

The ML detection problem has now been reduced to the selection of a path
through the trellis just described once the branches joining states oy and opy;
have been assigned the values taken by the function Vp4; (0, 044,), usually re-
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ferred to as the metric. The minimum-metric path corresponds to the most l.ikel)f
sequence of states, and hence to the most likely sequence of symbols. The Viterbi
algorithm is then applicable as follows:

Step 1 Observe the values of Z at time (L + 1)T, Z; at time (L +2)T,.. ., and
Zp_, attime 2LT. Let! = L and use (7.119) to compute U(oy) for each
value of oy. Store the values of Uy (o).

Step2 Let £ — £+ 1. Observe the value of Z, at ti_mc (L+ ¢+ 1)T, and
use (7.120) to compute Vp1(0¢, ge41) for each pair of sfates 0¢, Oes1 SUCh
that the transition from o to og1 is allowed by the trellis structure.

Step 3 For each state o4, compute
Uea1(0e41) 2 U},i[n[uz(az) + Veri(og, 0e41)] (7.124)

where the minimum is taken over the values of o, compatible with og4,
and ug(-) 2 UL(). The quantity ug4i(0es1) is th_e rniniml.lm lepg.th of
the paths leading to o¢.; store this quantity and this path with minimum
length for each value of o¢yy. If £ = K, go to Step 5.

Step 4 Go to Step 2.

Step 5 Compute min,, ux(0k); this is the minimum length of the path§ through
the trellis. The minimum-length path corresponds to the most likely se-
quence of states.

Example 7.13 Consider the situation of Example 7.12 and assume so = 1,8 =
5.1 = 04,8y = 8_3 = =02, 8 = 0, [k| > 2. Assume also that K = 8, and
Zy = 10,2, = =12, Z5 = 0.5, Z3 = —L.5, Zy = —0.2, Zs = 1.0, Zs = 0.8,
and Z7 = 0.9. Upon reception of the matched filter outputs Zg and Z;, Uz(o2) can be
computed for the four values of oo; we get

Ua(~1,-1) = 2.4, Uz(1,-1) = 5.6, Uz(=1,1) = —=3.2, U(1,1) = 3.2

Then, after receiving each value of Zp, £ = 2,...,7, Vep1(0e, 0¢+1) can be computed.
The corresponding values are shown in Fig. 7.32 together with those of ug{oe), L= 2

The minimum-length paths stored in Step 3 of the algorithm are shown by the solid
lines. Application of the Viterbi algorithm shows that the ML path joins the.states
(~=1,-1), (1,=1), (-1,1), (1,-1), (=1,1), (1,—1), and (-1,1), corresponding to
the data sequence —1,-1,1,-1,1,—-1,1,~-1. ]

+
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U (63) Uy (o) Us (o5) Us (0)

Figure 7.32: Branch and path metrics for the trellis diagram of Example 7.13.

7.5.2. Error probability for the maximum-likelihood sequence receiver

In the following, the performance of the ML sequence receiver will be evaluated
by computing upper and lower bounds to the probability of a symbol error

P(e) £ P(a¢ # ar) (7.125)

where a; denotes the £th transmitted symbol and &, its estimate. Strictly speak-
ing, this probability is a function of the index £ as our model is not stationary
due to the consideration of a finite symbol sequence ay, a;, ..., ax_;. However,
under the usual assumption that K is large enough, we shall disregard this diffi-
culty and assume that the RHS in (7.125) does not depend on £. Since the ML
sequence detection can be viewed as the choice of a path in the state trellis, for
errors to occur it is necessary that the ML path diverge for a certain index, say £;,
from the path representing the transmitted symbol sequence, and remerge later,
say for index £; + H. When this happens, we say that an error event of length
H — 1 has taken place (Fig. 7.33). The concept of error event specifies mathe-
matically the fact that, when a sequence is estimated, symbol errors do not occur
independently, but in finite clumps (bursts). If we define

eelai—ap £=0,1,... K—1 (1.126)

and recall definition (7.118), it is seen that an error event starting at index ¢; and
extending up to index ¢, + H, say

{be=00, 0=, &+ Hy 6 # 00,y << b+ H}

!y

[t
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6 =7 =8

(=2 =3 {=4 (=5

Figure 7.33: An error event of length 3. The continuous line is the path corresponding
to the transmitted sequence of states. The dashed line corresponds to the estimated

sequence of states.

corresponds to a sequence of symbol errors

A
€= (eluel1+17 [ 'yel1+H—L)7 €e ?,: Oi €0 +H-L ?,: 0

(Incidentally, this shows that H > L, i.e., the error events are always at least as
long as the channel memory.) If we let U be the set of all nonzero error events,
w(e) the number of decision errors entailed by the error event e (i.e., the number
of nonzero entries in e), and P{e} the probability of e to occur, we have

P(e) = w(e)P{e} (7.127)

e€U

Since the exact computation of error probability using (7.127) does not seem
feasible, we shall resort to evaluation of upper and lower bounds to P(e).

An upper bound to P(e)

Computation of an upper bound to P(e) will be based on the approximate eval-
uation of P{e} in (7.127). Let A(e) be the event that the transmitted sequence
a of data symbols (with the same length of e) is compatible with the occurrence
of e. Then, for e to occur, it is necessary that A(e) occur and that a + e have a
likelihood greater than any other possible sequence of source symbols, including
a. Since this latter event is included in the event {\ate > Aa}, the probability of
e can be upper bounded as follows:

Pe < P{late > Aa | A(e)} P{A(e)} (7.128)

We shall now proceed to evaluate separately the two factors in the RHS of (7.128)...

For a stationary sequence of independent source symbols, we have, for an error
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event of length H,
H-L
P{A(e)} = [ P{A(e)} (7.129)
=0

Example 7.14 Fon.' example, if a, takes on values =1 with equal probabilities only
a¢ = +1 is compatible with e; = 0, only a; = —1 is compatible with e, = +é and
both values a; = =1 are compatible with e, = 0. Thus, P{A(2)} = P{A(-—2)}’— !
and P{A(0)} = 1, which yields o

H-L

P{A(e)} = [ (1— M) (7.130)

=0 4

More generally, it can be easily proved that, if a, can take on the M values —M +
1, =M +3,..., M — 1 with equal probabilities, we have

P{A(e)} = Hf[L (1 _led
a ZM) (7.131)

a
Consider then the event {\aye > A, | A(e)}. By recalling (7.111) and us-

ing (7.1'12) anq (7.113), the inequality {Mate > Ao} can be rewritten, after some
algebraic manipulations, in the form

H-L
d*e) < 2 (Z eew) (7.132)
=0
where
2 A H-LH-L
€)= > 3 eemse—m (7.133)
=0 m=0

is called the distance of the error event, and
N
Vg—/Ip(t—lT)w(t)dt, 2=0,1,... H-L (7.134)
are Gaussian random variables with zero mean and covariance
N
E{vey} = 7°sl_k (7.135)

The RHS of (7.132) turns out to be a Gaussian RV wi i
with zer:
(No/2)(e). Therston 0 mean and variance

P{date > Aa | Ale)} = %erfc (;}%) (7.136)
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Using finally (7.127), (7.128) and (7.136), we get

Py Y w(e)%erfc (;%) P{A(e)} (7.137)

ecU

where P{A(e)} can be computed through (7.129). Eguation (7.137), in spllte
of the considerable effort spent to derive it, is still not in a usable form, mainly
because of the difficulty involved in enumerating the elerr}ents of U. Thus, we%
shall resort to an approximation of the RHS of (7.137), valid for small valtl:es 0
N, and based on the steep decrease of the function erfc(-). It suffices to observe
that the terms in the summation (7.137) will be dominated, as Ny — 0, by the
terms involving the smallest value of d(e), which we shall denote by dmin

2 mi (7.138)
dmin - 2161{11 d(e)

Hence we get the approximate upper bound

~1 I dmin .
P(e) < -2-1[) (dmin)erfc (2\/1_‘];) (7.139)
where
V(dma) & S w(e)P{A(e)} (7.140)

€€U(dmin)

and U(dmia) is the subset of U including the error events with distance dmiq.
Notice, in particular, that ¢'(dmin) is a constant independent of Np.

Example 7.15 Consider a binary transmission system with equally likely symbols -:11':}:’
and assume that U(dmin) includes the two error sequences (+2, —2) and ('—-2, 4(-‘2). le
set A(+2, —2) includes only the data sequence (—1, +1), and A(—2, +2) includes only

(+1, "1)'. Thus, . .
W) =2 3 +2 7 =1

In the same conditions, if U(dmin) = {(=2), (+2)}, we bave A(=2) = {(+ 1)} and A(+2)
=(-1),s0

1 1
Tpl(dmin) = ’2‘ + E =1
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A lower bound to P(e)

We shall now proceed to evaluate a lower bound to the symbol error probability.
To do this, we consider the ideal situation in which the detection process is aided
by a genie supplying to the receiver some side information on the transmitted
symbols. If the receiver makes its decisions by exploiting optimally the genie
information, it is clear that it cannot be outperformed by any receiver working
without the genie’s aid. Thus, if Pz(e) denotes the symbol error probability
achieved by the genie-aided receiver, we have, for every real-life receiver (and
hence for the ML sequence detector),

P(e) > Pgle) (7.141)

Assume that the genie operates as follows: when the sequence a = (ag,..-,ax_1)
is transmitted, he chooses at random another sequence a' = a + e, which has

an error on the {th symbol e, (and possibly others). Then he tells the receiver

that either a or a’ was transmitted. In this situation, the task of the receiver is to

choose one out of two known signals perturbed by white Gaussian noise. This

can be achieved optimally with a probability of error

lerfc d(e)

2 2v/ Ny
Thus, the probability that the genie-aided receiver makes an incorrect decision
onagis

1 d(e
Pgle) = eEEU zerfc (2\51\%)) P{A(e)} (7.142)
where A(e) can now be interpreted as the event that the data sequence chosen by
the genie is compatible with e. Equivalently, P{A(e)} is the ratio between the
number of sequences a’ such that a’ = a+ e for some a, and the total number of
data sequences with length K.

By combining (7.141) and (7.142), and discarding from the summation in the
RHS of (7.142) all those sequences e for which d(e) > dy, we have

1 1" dmin
Ple) > 14 (@minerfc (W) (7.143)
where A v
V" (dmin) = D (dmin) P{A(e)} (7.144)
ecU

is the probability that a data sequence chosen at random has a sequence e com-
patible with it and such that d(€) = dys,. The result (7.143) generalizes the
lower bound (4.63) obtained for symbol-by-symbol detection.

AL
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Example 7.16 Under the same conditions as for Example 7.15, if U(dmin) = {(-=2,
+2), (42, =2)}, we get " (dmin) = 1 + § = 3, and if U(dmin) = {(-2), (+2)}, we 8‘;
?/)”(dmin) = %"‘ % =1.

7.5.3. Significance of dp, and its computation

The results obtained so far in this section, and in particular the upper and 10»\f/er
bounds (7.139) and (7.143) on error probability, show th.at the kfey. paramf,ter or
the performance evaluation of the ML sequence detector is the minimum distance
dmin defined by (7.138) and (7.133) or, equivalently, by

A . 7.145)
dfmn = I:l;gg El Em €remSe-m (
or
denin £ min / [va(t) — var (t)]%dt . (7.146)
a'#a J1

where (7.110) has been used. In words, d2 ;. can be viewed from (7.145) as ;11:;-
ing from minimization over error pattemns, ot from (7.146) as the squgre 0 ine
smallest possible distance between distinct s1gpals at the 'output of the ete@ o,;
istic part of the channel. It is easily seen that, in the §pe01al .case of trar;s.rms:;
of independent symbols over the AWGN channel w1th0u.t 1ntersyfmbo u;teﬁ erc-l
ence, (7.146) reduces to the minimum distance betwe.en 51gnf11 points, as de .rclie
in Section 4.3. Also, it is interesting to observe that.mequal.lty (7.143) provides
a bound to the symbol error probability of arny real-life receiver t'hat can be cct))ni
ceived to detect a sequence of data transmitted on 2 cl7annel with mtersymfo
interference. Thus, computation of dmyin provides an important parameter for
judgi e quality of the channel itself.
JUd%ll"Ei :ir:re?:t coxyxllputation of dp;n involves a minimization proble.m that ma);
be hard to solve, as the number of relevant error pattemns e or, equivalently, o
symbol sequence pairs {a, a’) that have to be tested can be very large. ;
Tree-search algorithms for the determination of diin have bee'n propose (Is:ee
Fredricsson, 1974; Messerschmitt, 1973; Anderson and Foschini, 1975). For
channels"with a short memory, a convenient procedure to find dmin h?s been pro-
posed by Anderson and Foschini (1975). This procedure, stemng gromtz;;
approach combining functional analysis and computer search, is base 0:1
selection, from the full set of error sequences e, of a §mall sub‘se.t of crucial se-
quences such that at least one element of the subset attains tr'1e minimum distance.
As a result, d;, can be obtained from (7.145) by evaluating Yo, 5. €c€mSt-m
for every element of this subset and choosing the smallest value found.
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An efficient algorithm for the computation of dp;, based on dynamic pro-

gramming will be described in Chapter 12 in the context of trellis-coded modu-
lation.

Example7.17 Consider an M-ary baseband transmission with symbols ~M+1, — M+
3,...,M — 1 and a channel bandlimited to [—1/(2T), 1(2T)] with pp = 1,pp = -1

Thus, we have sp = 2T.9; = s_; = ~T', and 54 = 0, J¢| > 1. In this case (see Prob-

lem 7.21), d;, = 8T, which is achieved by the error events (+2,42,...,£2), with

length m = 1,2,.... Hence, using (7.131) and (7.140), we obtain

¥ (A = 2glm- (1- o) =2m01 =)

Similarly, (7.144) yields

¥ (dmin) = 2;; (1 - %) =2M-1)

The symbol error probability is then bounded as follows:

(M ~ 1)erfc (J%) < P(e) £ M(M — 1erfc ( %)

For a channel without ISI, M-ary transmission using pulses with energy 27" would result

in an error probability of
M-
P(e) = 7 Lot (M%)

7.5.4. Implementation of maximum-likelihood sequence detectors

Even with present-day technology, the implementation of an ML sequence de-
tector can be difficult in high-speed data transmission due to the processing re-
quirements of the Viterbi algorithm. In fact, the number of values taken by the
state variables o, and hence the number of quantities to be stored and processed
per received symbol, grows as M, and the demand on the processor speed in-
creases with the symbol rate for a given value of M~. For binary symbols and a
very short channel memory (say, L = 1 to 3), there may not be any problem with
this complexity for low-speed data transmission (see for example the case of the
wireless communication standard GSM). However, for many real-life channels,
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MY can be so large as to make implementation of a Viterbi receiver unfeasible
even at low data rates.

Also, a truly optimum receiver delays its decision on the.s.ymbol sequence
until it has been received in its entirety. In certain cases, a decision can pe made
before the entire sequence (Z¢)—," has been observed anzi processed; this occurs
when during the computations it is seen that all the M* trellis paths that have
been stored leading to the nodes corresponding to statc? az? (sa'y) pass thrc?ugh a
single node corresponding to state oz, £ < 2. In this situation, it is said that
a merge has occurred for £ = £;, and a decision can be made on the;ﬁrst states
from oy, to oy,. For example, in Fig. 7.32 a merge occurs for £ = 4 in the state
(~1, 1); this is detected for £ = 6, and a decision can be taken on the states
J2, 03, 04.

In general, merges occur at random, and in certain unfortunate.cases tpey
may never occur during the transmission of a finite sequence. Thus, in practice,
it is necessary to force decisions about the first transmitted symbo.ls when the
area allocated for the paths’ storage is liable to be exceeded. Q.uresh.l (1973) has
shown by analysis and computer simulation that in mosF practical sxtuz'mons the
probability of additional errors due to premature decisions becomes ?rrelfevant
if the decisions are made after a reasonable delay. In many cases, it \fvﬂl be
sufficient to choose a delay just beyond twice the channel memory L, provided of
course that the decisions are made by selecting the sequence that has the greatest
likelihood at the moment of the decisions. Some systems require that the data be‘
organized in bursts: in those cases, each burst is decoded independently, and the
decoding delay problem disappears, provided that the bursts are not too long.

To limit the receiver complexity due to the channel memory length, an ap-
proach that has often been adopted is to use a linear filter preceding tl}e optimum
receiver in order to reduce the channel memory to a small value. With this pre-
filter taking care of limiting L, the Viterbi algorithm can be implemepted w1Fh
a tolerable complexity. However, any linear filtering of the received signal will
also affect the noise. Thus, any attempt to compensate for the nulls or near nulls
in the channel equivalent transfer function results in prefilter charactt?nstlcs that,
by trying to invert the channel transfer function, will increase.tl.le noise power at
the receiver input. Thus, linear prefiltering designed to condition o.ptlmal'ly the
channel impulse response should also take into account the oytput noise variance.
To do this, the desired frequency response of the combination channel-prefilter
should be close to the channel’s in those frequency intervals where the channel
cannot be equalized without excessive noise enhancement.

Several solutions to the problem of optimum prefilter design have been pro-
posed. Qureshi and Newhall (1973) use a mean-square Friten'on to force the
ovérall response of the channel plus the prefilter to approximate a truncated ver-
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sion of the original channel impulse response. Falconer and Magee (1973) show
how the desired response can be chosen to minimize the noise variance. The
approach of Messerschmitt (1974) is to minimize the noise variance while keep-
ing the first nonzero sample of the desired response fixed. Beare’s (1978) design
method results in a transfer function for the cascade of the channel and the pre-
filter that is as close as possible to that of the original channel under the constraint
of the memory length. Notice that the process of truncating the impulse response
of the channel will never be perfect, so that the receiver will ignore some of the
input ISL. The performance of this “mismatched” receiver has been considered
by Divsalar (1978). McLane (1980) has derived an upper bound to the bit error
probability due to this residual neglected channel memory. Other approaches to
the reduction of complexity of the optimum receiver have been taken. Vermeulen
and Hellman (1974) and Foschini (1977) consider the choice of a reduced-state
trellis in order to simplify the Viterbi algorithm; Lee and Hill (1977) embed a
decision-feedback equalizer (see Chapter 8) into the receiver structure.

7.6. Bibliographical notes

The state-variable method to simulate linear filtering using a digital computer
can be found in Smith (1977) and in Jeruchim et al. (1992). The z transform and
the FFT methods to simulate linear filtering in the time and frequency domains,
respectively, are described in Chapters 4 and 6 of Rabiner and Gold (1975). The
problem of digital transmission systems performance evaluation in the presence
of additive Gaussian noise and ISI has received considerable research attention
from the late 1960s. The first approach was to find an upper bound to the error
probability using the Chemoff inequality (Saltzberg, 1968; Lugannani, 1969).
Other authors computed the error probability using a Hermite polynomials series
expansion (Ho and Yeh, 1970, 1971) or a Gram-Charlier expansion (Shimbo and
Celebiler, 1971). A different bounding technique based on the first moments of
the RV representing the ISI has been described by Glave (1972) and refined by
Matthews (1973). The Gauss quadrature rule approach to the evaluation of the
error probability was first proposed by Benedetto, De Vincentiis, and Luvison
(1973). Upper and lower bounds based on moments and related to the Gauss
quadrature rules approach have been proposed by Yao and Biglieri (1980) (see
also Appendix E). Algorithms for the recursive computation of the moments of
the ISI RV are described in (Prabhu, 1971) for the case of independent data
sequences and in Cariolaro and Pupolin (1975) for the case of correlated data
sequences.

Although tailored for PAM modulation, almost all the aforementioned meth-
ods have been applied to the evaluation of the symbol error probability of co-
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herent and noncoherent modulation schemes in the presence of ISI and adjacent
channel interferences. A useful reference for these applications can be found in
the second part of the IEEE reprints collection edited by Stavroulakis (1980).

The paper by Nyquist (1928), a classic in the field of data transmission, and
the subsequent paper by Gibby and Smith (1965), include the formulation of
what has been named the Nyquist criterion. The generalization of Nyquist cri-
terion to a situation in which the transmission is assumed to be affected by both
ISI and crosstalk interference was considered by Shnidman (1967) and Smith
(1968).

The design of signal pulses subject to criteria other than the elimination of ISI
has been the subject of several studies. Chalk (1950) finds the time-limited Pulse
shape that minimizes adjacent-channel interference. Spaulding (1969) considers
the design of networks whose response simultaneously minimizes ISI and band-
width occupancy; his procedure generates better results than the approximation
of raised-cosine responses. Mueller (1973) designs a transversal filter whose
impulse response is constrained to give zero ISI and has minimum out-of-band
energy. Mueller’s theory has been generalized by Boutin et al. (1982). Franks
(1968) selects pulses that minimize the effect of the ISI resulting from a small
deviation from the proper timing instants ¢y + £7, —oo < £ < co.

For a receiver with the structure shown in Fig. 7.20, the most natural ap-
proach to the optimization of the filter U(f) is to choose the error probability
as a performance criterion. This was done by Aaron and Tufts (1966), whereas
Yao (1972) provided a more efficient computational technique. A simpler ap-
proach is to constrain the ISI to be zero and then minimize the error probability,
as described in Section 7.3. This was considered by Lucky er al. (1968). Yet
another approach is to maximize the signal-to-noise ratio at the sampling instants
(George, 1965).

Joint optimization of shaping and receiving filters under a minimum MSE
criterion was considered by Smith (1968) and Berger and Tufts (1967) (our han-
dling of the issue follows closely the latter paper). A different derivation of
Berger and Tufts’s results was obtained by Hansler (1971). Ericson (1971 and
1973) proved that for every reasonable optimization criterion the optimum shap-
ing filter is bandlimited, and that the optimum receiving filter can be realized as
the cascade of a matched filter and a tapped-delay line.

Nonlinear receivers have also been studied. Since maximum a posteriori or
ML detection seems at first to lead to a receiver complexity that grows exponen-
tially with the length K of the sequence to be detected, sequential algorithms
were investigated in order to reduce this complexity. Chang and Hancock (1966)
developed a sequential algorithm for a maximum a posteriori sequence detec-
tion whose complexity grows only linearly with K. A different algorithm with

7.7. Problems 375

the same complexity has been proposed in Bahl ez al. (1974) (see Appendix F).
Abend and Fritchman (1970) obtained a similar algorithm for symbol-by-symbol
detection. The idea of using the Viterbi algorithm for ML detection of data se-
quences for baseband transmission channels was developed, independently and
almost simultaneously, by Fomey (1972), Kobayashi (1971), and Omura (1971).
The case of complex symbols (i.e., carrier-modulated signals) was considered by
Ungerboeck (1974), whereas Foschini (1975) provided a mathematically rigor-
ous derivation of error probability bounds. Our treatment follows those of Forney
(1972), Ungerboeck (1974), Foschini (1975), and Hayes (1975).

7.7. Problems

Problems marked with an asterisk should be solved with the aid of a computer.

7.1 Show that the outputs of the block diagram of Fig. 7.2 are the same as those of
the block diagram of Fig. 7.3.

7.2 Given two independent Gaussian random processes n.p(t) and ng(t) with zero
mean and equal variance a2, find the first-order pdf of the processes vp(t) =
np(t)cos§ — ng(t)sing and vg(t) = np(t)sind + ng(t) cos§, where 6 is a
constant. Prove that samples of vp(t) and vg(t) taken at the same time instant
are statistically independent.

7.3 (*) Write a computer program implementing the recursive algorithm described in
Section 7.2.1 to evaluate the ISI moments in the case of multilevel PAM transmis-
sion.

7.4 (*) Write a computer program implementing the algorithm described in Golub
and Welsch (1969) (see also Appendix E) to construct a Gauss quadrature rule
starting from the first 2J moments of a RV.

7.5 (*) Use the programs available from Problems 7.3 and 7.4 to evaluate the error
probability for an octonary PAM system with ISI due to a raised cosine impulse
response h(t) with a roll-off factor & = 0.5 (for the impulse response of raised
cosine type, see (7.71), in the presence of a normalized sampling time deviation
of 0.05, 0.1, 0.15, and 0.2. Assume an SNR that yields an error probability of
107 at the nominal sampling instants and use a 15-sample approximation for the
impulse response.

7.6 Find a recursive algorithm for the computation of the joint moments of the RVs
Xp and Xg defined in (7.36) and (7.37) assuming that the a,’s are iid discrete
RVs with known moments. Hint: Generalize the procedure described in Sec-
tion 7.2.1 for a single RV.
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7.7 (*) For the same case of Problem 7.5, compute the Chemoff bound to the .error
probability extending the method described in Saltzberg (1968) to the multilevel

case.

7.8 (*) For the same case of Problem 7.5, compute the error probability u.sing the
series expansion method described in Ho and Yeh (1970) and in Appendix E.

7.9 Particularize the result (7.41) to the case of 16-QAM modulation with 8 = 0.

7.10 Extend the program developed in Problem 7.3 to the case of an M-PSK modula-
tion scheme.

3

7.11 (*) Using the program developed in Problem 7.11 and the results of Prol?lems 7.4
and 7.10, compute the error probability for a quatemary PSK modulat'xon using
a second-order Butterworth filter impulse response h(t) (with a normalized 3-dB
; bandwidth of 1.1) as a function of the phase offset . Assu'nlle the signal-to-
u noise ratio that yields an error probability of 10~% in ideal conditions (no ISI) and
' truncate the impulse response to 10 samples.

7.12 Consider the transmission of binary antipodal PAM signals over a linear chan-
nel perturbed by additive Gaussian noise and an intersymbo! _interference X =
Z,-il azh;. Assume d = 2, denote the resulting error probability by Py(e), and
the error probability without intersymbol interference by By(e).

(a) Prove that, if the eye pattern is open, ie., hp > TN, |hil, then we have
Po(e) < Py(e), ie., intersymbol interference increases the error probabil-
ity.

i (b) Generalize the result of (a) by deriving an inequality involving P (e), N '«

* N (i.e., the error probability obtained by retaining only N’ out of N inter-
fering samples).

(¢) Show, through an example, that if the eye pattern is not open, we may have
Po(e) > Pn(e).

7.13 Consider a raised-cosine transfer function Q(f) with roll-off o and its powers
QU(f),0<y <L

(a) Compute the equivalent noise bandwidth of Q7(f )Afor several values of a
and ~y [see (2.89)].
b) Compute the error probability in a binary baseband PAM system modeled
® as ilr)l Figs. 7.19 anl:i 7.20 with S(f) = BR™(f), U(f) = (}/ﬁ)Ql-W(f),
symbols a,, = %1, rate 1200 bits/s, and a white Gaussian noise with power
spectral density Gy (f) = 10~° W/Hz. The constant B is chosen so as to
“ have a unit power at the output of the shaping filter.
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7.14 In the system of Figs. 7.19 and 7.20, for given transfer functions S(f) and C(f),
choose the receiving filter U(f) so as to maximize at its output, for a given sam-
pling instant, the ratio between the instantaneous signal power and the average
power of ISI plus noise. Show that this filter can be implemented in the form of a
matched filter cascaded to a transversal filter.

7.15 Consider a binary PAM digital transmission system. Data must be transmitted at
a rate of 9600 bits/s with a bit error probability lower than 10~>. The channel
transfer function is given by

_} 1, |f| <6000 Hz
cl = { 0, elsewhere (7.147)

The noise is white Gaussian with a power spectral density G,,(f) = 105 W/Hz.
Choose the shaping filter S(f) and the receiving filter U( f) so as to minimize the
average transmitted power while getting rid of the intersymbol interference at the
sampling instants. Compute the signal power at the output of the shaping filter.

7.16 In a binary baseband PAM system modeled as in Figs. 7.19 and 7.20, the cas-
cade of S(f), C(f), and U(f) has a raised-cosine response with roll-off @, 0 <
a < 1. The sampling instants are affected by a constant offset of 5 percent with
respect to the nominal values, so ISI is present. Assuming that the transmitted
symbols are +1 and that the noise is white Gaussian with a power spectral den-
sity Gy(f) = 10~ W/Hz, compute the bit error probability of the system as a
function of a using one of the techniques described in Section 7.2.

7.17 Consider a bandpass transmission system operating at a signaling rate of 1/7 on
a channel with a flat transfer function C(f). The shaping filter is fourth-order
Butterworth with a 3-dB bandwidth Bs and the receiving filter is second-order
Butterworth with 3-dB bandwidth By. Assuming a white Gaussian noise, deter-
mine, for 1.2 < BsT < 2, the values of ByT that give the minimum bit error
probability for an M-ary coherent PSK modulation (M = 2, 4, and 8). For every
situation, choose the signal-to-noise ratio £ /Ny so that this minimum probability
is 1076,

7.18 Consider a binary baseband PAM data-transmission system operating at a rate of
4800 bits/s and modeled as in Figs. 7.19 and 7.20. Assume s(t) = ur(t),

_ 1
T 1+f/fe

and a white Gaussian noise with power spectral density G, (f) = 10-7 W/Hz.

C(f) 3 fc = 2400H z

(a) Determine the shape of the receiving filter that minimizes the bit error prob-
ability while removing ISI at the sampling instants.

i
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(b) Determine the shape of the receiving filter that minimizes the mean-square
error at the sampler’s output.

{¢) (*) Compare the error probabilities obtained with the systems designed in

parts (a) and (b).
Consider a filter with impulse response
Nm
s(t)= 3 sib(t —iT/N)
i=—Nm

(N an integer > 1). This can be modeled as a linear transversal filter c{ascadfed to
a linear system with impulse response b(t). Define the (2N, + 1)-dimensional

vectors
A ’
S = [S-Nmye--1S0y-+15Nm)

and
z 2 [z‘N"',...,zo,...,zN"‘]'

with z £ exp(j2m fT/N). Assume that b(t) has energy £ and a duration < T/N.

(a) Show that if s(¢) is the impulse response of the shaping filter of a data-
transmission system with independent and zero-mean symbols. {(an) and a
signaling rate 1/T, the power density spectrum of its output signal can be
written in the form

2
%8 B(f)Pstaats
22 B(/)s'az

where B(f) denotes the Fourier transform of b(t).

(b) Let Pr denote the power of the signal at the output of the shapinglﬁlter in the
frequency interval {—F, F'). Show that the shaping filter coefﬁc1ent§ vector
s that maximizes the ratio Pr/Poo (reiative power in the frequency interval
(—F, F)) is the eigenvector of a symmetric matrix R cormresponding to the
largest eigenvalue Amayx. Determine the entries of R, and show that Amax
coincides with the maximum value of Pr/Poo.

(c) Assume that s(t) satisfies the Nyquist criterion for intersymbol interference-
" free transmission; that is,

sty =0, for i= +1,£2,...,£tm

How can this constraint be included in part (b)?

(d) *) Assuming b(t) = &(t), derive the shaping filter that gives a Nyquist-type
response with maximum relative power in the frequency interval |f] < 2400
Hz for m = 8 (impulse response limited in duration to [t| < 8Tyand N = 4
(four samples per signaling interval T') (Mueller, 1973).
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7.20 Prove that the joint optimization of the shaping filter S(f) and the receiving filter
U (f) under the power constraint (7.98) leads to filters that are strictly bandlimited
to a generalized Nyquist set of measure 1/7T.

7.21 Assume that the channe] transfer function P(f) is bandlimited in the Nyquist
interval (—1/2, 1/2), and denote by p,,, ~co0 < m < oo, the samples, taken
every second, of its response.

(a) Derive an expression of the minimum distance for this channel in terms of
the discrete convolution between the sequence (p,,) and the sequence (em)
of symbol errors.

(b) Using the result obtained in part (a), derive the minimum distance for a
channel with memory L = 1 when the data symbols take on the values

0,1,...,M—-1.
(c) Consider a channel whose impulse response samples are p,, = 1 /Vn,m =
0,1,...,n — 1, and binary symbols +1. Derive the minimum distance for

this channel, and verify that dy,j, — 0 as n — oo.
7.22 Show that, with the notations of Section 7.5, the inequality

S lsml<so  (7.148)
m#0

is 2 sufficient condition for the nonexistence of error events whose distance is
smaller than that achieved by a single error. Hint: If §y denotes the minimum
nonzero value of |e,,|, show that

H
Z €m+k€k

k=0

H
Sze%_agv m #0
k=0

and use this result to prove that, if (7.148) holds, d2,;, cannot be smaller than

5230, the minimum distance achieved by a single error.
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Adaptive receivers and channel
equalization

The theory developed in Chapter 7, devoted to the design of an optimum rec'eiver
in the presence of channel distortion, was based on the assumption of a 11.near
channel and of the exact knowledge of its impulse response (or transfer functmn).
While the first assumption is reasonable in many situations (and we shall see in
Chapter 14 what to do when it is not), the latter assumption is often far fror'n
realistic. In fact, whereas it is generally true that the designer knows the basic
features of the channel, this knowledge may not be accurate enough to a}low
system optimization. This occurs, for example, when the channel, although tu?le-
invariant, is selected at random from an ensemble, a circumstance typical of dxfil-
up telephone lines. Another possibility is that the channel varies randomly \'mth
time. This is typical of certain radio channels affected by fading, to be descn.bed
in some depth in Chapter 13. A consequence of the above is that the receiver
designed to cope with the effects of intersymbol interference (ISI) and additive
noise should be self-optimizing or adaptive. That is, its parameters should be
automatically adjusted to an optimum operating point, and should possibly keep
track of the changing conditions.

Two philosophies can be the rationale behind the design of an adaptive re-
ceiver. The first, described in Fig. 8.1, assumes that the relevant channel parame-
ters are first estimated, then fed to a detector which is optimum (or suboptimum,
if the complexity of the latter is too large to be acceptable) for those parameters.
This can be, for example, a Viterbi detector, which for ideal operation need§ the
channel impulse response samples to be known. Another approach is depicted
in Fig. 8.2. Here a device, called an equalizer, compensates for the unwanted

" channel features, and presents the detector with a sequence of samples that have
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CHANNEL
IDENTIFICATION

!

— DETECTOR —>

CHANNEL

OUTPUT
SAMPLES

Figure 8.1: Scheme of an adaptive receiver based on the identification of channel pa-
rameters. Here the detector is matched to the channel,

CHANNEL
——— | EQUALIZER > DETECTOR |——>
OUTPUT

SAMPLES

Figure 8.2: Scheme of an adaptive receiver based on channel equalization. Here the
channel (including the equalizer) is matched to the detector.

been “mopped up” from ISI. The term “equalization” describes a set of operation
intended to eliminate ISI. Hence, the cascade of channel and equalizer is seen by
the detector as close to an AWGN channel, and consequently the detectors de-
scribed in Chapter 4 are close to optimum in this situation.

8.1. Channel model

Throughout this chapter, unless otherwise specified we shall assume a channel
model similar to that of Chapter 7. With reference to Fig. 8.3, the source symbols
(ar) form a stationary sequence of identically distributed, uncorrelated, zero-
mean complex random variables with E[|a,|?] = 1 (the assumption of complex
symbols is equivalent to assuming one- or two-dimensional modulations). The
modulation scheme and the channe] are both linear. The source sequence mod-
ulates a train of ideal impulses, then passes through a transmission filter. After
addition of noise, the signal at the output of the channel is first passed through a
receiving filter, then sampled every T to produce the sample sequence (z;), and
finally processed before detection.
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(ge)
A
r— Al
X¢
a -—>1 DETECTOR |[—>
—l—> X + RX s LE D
EVERY
T
ny

Figure 8.3: Channel model for channel identification or equalization.

We denote by (g;) the impulse response of the discrete .S)'s)tt?rtil1 (tll:e :1?1(::::
overall channel”) that responds to the source sequence (ae) :1 tte ; icsl ionce
(z¢). For mathematical convenience, it is also assumed 'that ht leS);S :e s tme-
invariant, and has a finite memory L. Thus, the relationship betw

quences (a;) and (z,) is expressed by

L
Ty = Z giae—i + 7 @.1)
i=0

where the noise samples of the sequence {m4) at the output of the receiving I1:ltlo:r
have mean zero and E[|n¢|?] = o2. These are independent of the source symbo’s.

8.2. Channel identification

The effect of this linear, finite-memory channel on any input sequence '(il) li

described in full by the L + 1 complex numbers o, . - 4L Hencg, \:lltesou

assumptions, identifying the channel is tantamount to estlma'ung the{rv : . .
Eq. (8.1) can be rewritten in a compact vector form by introducing the co

umn vectors 2
qé[QOa q1, - - 7QL]’ (8 )

and

lio

(8.3)

!
ay [az, Qp—1y -+ 7al—L]

(the latter is the vector of source symbols that affect the output at time £). With
these notations, (8.1) takes the form

, To=q'ac+ e (8.4)
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so that the problem of identifying the channel can be formulated as follows:
derive an estimate of the vector q based upon the observation of the received
sequence (z;) and the knowledge of the transmitted symbol sequence (ay).

8.2.1. Using a channel-sounding sequence

A simple solution to the channel identification problem consists of sending, be-
fore transmission, a channel-sounding data sequence with length N and noise-
like correlation properties, i.e., such that

1 N-1 . 1 k=0
N mzo AipkQ; = { 0, k ;é 0 (8.5)

for NV large enough. Disregard the effect of noise for simplicity. Upon reception

of the sample sequence (z), the receiver computes the correlation (equivalent to
a discrete matched filtering)

N-1

-

Ye = Z Te+il;
=

Owing to (8.1) and to (8.5), we obtain

L [N-1
Ye=3g; [Z az+i-jaf] ~ Ng, (8.6)
j=0

i=0

so that, apart from an unessential scale factor, y, approximates the £th sample of
the channel impulse response. This technique is used for example in the GSM
standard for digital cellular telephony, where a channel-sounding sequence (the
“midamble”) in inserted in the center of each data burst. If the channel impulse
response remains constant for the burst duration, optimum MLSE can in princi-
ple be achieved.

8.2.2. Mean-square error channel identification

Suppose that the information data sequence (a,) is known at the receiver. If
@ denotes an estimate of the vector in (8.2), we can construct a sequence (T,)
approximating the true received sequence as follows:

-

Ty =qga, 8.7)

and measure the accuracy of the channel estimate by computing the mean square
value of the error |z, — Z,|. By observing that, due to our assumptions on the
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source sequence, Efajaj] equals the identity matrix, this is given by

E[ze — Zof?] (q~ @)'Elaja,)(q - @) + of
= lg-3g?+02 8.8)

. 2 .
Thus, the minimum achievable mean-square enqr (MSE) is o, which corre-
sponds to the situation § = g, i.e., to perfect identification.

Algorithms for minimum-MSE channel identification

Since the condition g = q occurs when the MSE (8.8) is r‘ninifm.zed, a s;nmble
identification algorithm may be based on the sefarch for this mlmmurrlxl. fur:ep
ical analysis offers several minimization algomh.ms: however, r:iot all oatv:m
are applicable in a situation where the computations should be onle in rz
short time, with limited complexity, and in the presence of channe nmse.:;:'x
of roundoff errors due to digital implementation of the. algonthrp. An ’ell}gon:i m
which is widely used is the steepest-descent, or gradient, algorithm. To NlllgEer-
stand its behavior, assume that q is a real vector, and 'observe that ti?e ; ,a
quadratic function of the estimated vector g, can be viewed gef)n_aetncalfy 1\2; E
bowl-shaped surface in the (L + 1)-dimensional space. As .the minimum kci) »
corresponds to the bow]’s bottom, minimizing MSE is .eqmva.l.ent Fo see “.ng't. a;s:
bottom. In the gradient algorithm, one starts by choosing arbitrarily an “ini ,:em
vector §*), which corresponds to a point of the surface. The (L + I)Tcom.p(: o
gradient vector of the MSE with respect to q 1's thc?n computed at this point. :
the negative of the gradient is paralle] to the direction of s.teepest descex:;, a ts eII;
is performed on the surface in the direction of the negative of the gra 1enf.th
the step is short enough, the new point gV will be closer to the bottom odj ct
surface, and hence result in a better estimate of the charmel.. Now, .th.c gra etr)l
is computed at §* and the procedure repeated. Under certain condmfonhs (Lo Wcl
explored later), this process will eventually converge to thfa ?c_rttom.o the bo
(where the gradient is zero) regardless of the choice of the initial pom.t. e

Consider now (8.8) with a complex channel response. .The gradu.snt of ;
MSE with respect to § is ~2(q ~ Q) (see Section B.5), a.lmear function of t. ?
overall channel’s estimated impulse response. This result is due to our}choxcc ?d
MSE as the function to be minimized: in principle,.any convex flunctlon v;gu t
do the job, but only the choice of a quadratic function yields a linear gradient.
The gradient algorithm will then take the form

g =g +a(q-aq™), n=01, .. (8.9)
‘ . h
where §™ denotes the value assumed by the estimated impulse response at the

nth iteration step, and a is a positive constant small engugh tg ensure cic]m:telr-
gence of the iterative procedure. The significance of a will be discussed shortly.
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It should be observed that (8.9) is not in an appropriate form for implement-
ing the identification algorithm. In fact, it involves the vector q, which is obvi-
ously not available. Using (8.7) and recalling the independence of the data q,,
we can change (8.9) to

a(n+l) — El(n) + aB[(z, — £,)al] (8.10)

which is expressed in terms of the observable quantities z,,, Z,, and of the vector
an, assumed to be known. The difficulty now is that exact evaluation of the
expectation in the RHS of (8.10) is not practically achievable. In fact, its explicit
computation requires knowledge of the channel impulse response, which is not
available. The expectation could be approximated in the form of a time average,
computed over a sufficiently long time interval: but this would prevent real-time
operation. Thus, in most implementations the expectation in (8.10) is simply
removed, and only its argument kept.

Before discussing this approximation problem, we analyze the performance
of algorithm (8.9) or (8.10). The analysis is relatively simple, and provides more
than a bit of insight into the behavior of the implementable algorithm, to be
described afterwards.

Gradient algorithm
Consider again (8.9), rewritten in the form

a(n+1) = (1 _ a)a(") +aq (811)

By subtracting q from both sides, and defining the estimation error €™ at the
nth iteration as
€M =g _ g (8.12)
we get the simple first-order homogeneous recursion describing the evolution of
(n).
€\
€ =(1-a)™, n=01,... (8.13)
which has the solution
€ = (1 = a)ne® (8.14)
From (8.14) it follows that [e™| — 0 as n — oo, i.e., the algorithm converges
for any €%, if |1 — o™ — 0 as n — oo, The latter condition simply means that
we must have |1 ~a| < 1,ie.,0 < a < 2.

Notice also that the choice @ = 1 would make the algorithm converge in a
single step. However, even if this algorithm were implementable (and we know
it is not, because the value of the expectation in (8.10) is not available), in the
presence of round-off errors it would be advisable to pick a different value for c.
In fact, iterations average out the effect of these errors.

R
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Stochastic-gradient algorithm

Let us now consider an approximation of (8.9) in a form useful for real-.tlme
implementation. The simplest such approximation, and by. far the most w1de!y
used, is obtained by disregarding the expectation operator in (8.10).. We obtain
the new algorithm, usually denoted as the stochastic-gradient algorithm,

a(n+1) - ‘c‘l(") + a(xn — in)a;; (8.15)

The second term in the RHS of (8.15) obviously has the same expec?ed value as
the corresponding term in the gradient algorithm. Hence, it can be viewed as an
unbiased estimate of that quantity.

Implementation of (8.15) is shown in Fig. 8.4 for real data symbols. Each
iteration is performed every discrete time instant, i.e., every T. When a new
source symbol a,, is fed into the tapped delay line (TDL), the cha.nnel output
estimate Z, is obtained by combining linearly a,, ..., On-L af:cordxng to (8..7).
The error signal z,, — %, is then formed, and, after multiplication by the scaling
factor a, this value is also multiplied by the content of the TDL, expressed by
the vector a,. The resulting values are used finally to update the accumulators
containing the actual estimates gg, .. .,qzr- . '

Consider now the convergence of this algorithm. Its study is far more difficult
that with the “true-gradient” algorithm (8.9). In fact, we have from (8.15)

) — (I-aalal) M (8.16)

a version of (8.13) with the scalar (1 — &) changed into the matrix (’I— « atal)
denotes the identity matrix). A complication arises here from ay a;, being a 123-
trix with random entries, which in tumn are not statistically independent of €',
We cannot proceed further without an approximation: a widely employed or}e,
which makes the convergence analysis mathematically tractable, n.gmely, the in-
dependence assumption. This assumes (a,) to be a sequence of iid zero-mean
vectors. In spite of its being rather crude, it provides a convergence ana!ysxs
whose results are in close agreement with those of experiments and simulations,
provided that the step size « is sufficiently small (see, e.g., Ungerboeck, 1972;
Widrow ez al., 1976; Gitlin and Weinstein, 1979; Mazo, 1979; Jones et al., 1?82).

Since-in (8.16) €™ depends only on the sequence ag, ai, ... ,a,-1, the ‘mde-
pendence assumption entails that (™ must be independent of a,. Thus, if we
take the expectation of both sides of (8.16), we obtain

E[e™] = (1 — a)E[e™)] (8.17)

No random quantity appears in (8.17), so we can repeat the convergence
analysis carried out for the true gradient algorithm. This enables us to conclude

8.2. Channel identification 387

an an.] an-2 an.1,
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Figure 8.4: Implementation of the stochastic-gradient algorithm (real source symbols an
are assumed). The blocks labeled T denote delay elements; the blocks labeled A denote
accumulators.

that the average error vector E[€(™)] tends to the null vector, as 7 — oo, if 0 <
@ < 2. Nonetheless, this result is incomplete, as the behavior of E[e™] does
not provide us with a complete picture of the convergence of the algorithm. In
fact, nothing prevents this vector from being very close to the null vector while
€™ itself exhibits large deviations around its average. A deeper analysis of the

behavior of €™ is therefore called for. This can be obtained by studying the
quadratic error E|e™ |2,

If we define
gm A Ele™)|? = E[e™te(™) (8.18)
from (8.16) we obtain the following recursive equation:
ECH) = Ble™(I — aazal,)2e™)] (8.19)
By defining
ko £ Efjan]] (8.20)
we have

El(aza,)’] = (ko + L)I (8.21)
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and consequently from (8.19)

£0+1) = E[e™(1 - 20 + a?(ka + L))e™)] (8.22)

Repeated application of the latter yields
£M = [1 - 20+ aP(k, + L)"E® (8.23)

so that the quadratic-error convergence is assured provided that the quantity in
square brackets is Jess than 1.

Example 8.1 A simple special case occurs when the randgm variables an, take on val-
ues +1 with equal probabilities, and hence ks = 1. ‘We obtain

EM =1 - 2a+a*(L+ 1" EO

The quantity in brackets can be minimized with respect 1o the choice of ¢, yielding
L \" o
(n) = ___) £t
¢ (L +1

Notice how convergence is slowed down as L increases.

Some further problems

Several other features of automatic channel identiﬁf:ation may be. worth d}S-
cussing here. However, since several of them are in comon with fdz:pi,t;\i/g
equalization, which we shall examine in t.he l.)alanc‘e of this chapte:r,t (')t roie
unnecessary duplications we postpone their dlscus519n. Here we re; :10 our
selves to three problems, the first two becausj?1 oft .thClI' relevance, and the

it is typical of adaptive channel identification. . .
bec?l“ulf: grlsst iysitxe concerrll)s the behavior of the stochastic-gradient algoml?mh
when the channel is not stationary, i.e., when its impulse response t:hangesi W1;
time. This is the problem of adaprive identification. If changes occgrhs o‘\:vvil);
enough with respect to the signaling rate, we can expect that the algorithm o
allow thé channel estimate to track continually the channel features. .Ano
problem relates to the assumption that the source data sequence (a,) is knowx:1
to the receiver. It can be solved by first sending through the channe.l a knoj\:f_
sequence, which is expected to provide a reasonably good channel estimate. -
terwards, the receiver should provide a sufficiently good perform'fmcg to ?lssumh
that most of its estimates of transmitted symbols are correct. In this situation, the
assumption that (a,) is known becomes reasonable.
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Finally, consider the effect on automatic identification of inaccurate knowl-
edge of the true channel memory span L. Clearly, if the TDL of Fig. 84 has a
number L of delay elements larger than L, then at the end of the identification
process L — L tap weights will take on zero values in identification. If instead
L < L, that is, the number of delay elements in the TDL is smaller than the
channel memory, it can be shown (see Problem 8.2) that Z + 1 of the channel
impulse response samples can still be identified correctly under the assumption
that the data symbols be uncorrelated and have mean zero.

8.2.3. Blind channel identification

The identification techniques described so far are based on the existence of a
data sequence known at the receiver: channel identification is feasible sinice bath
input and output samples are known. When the channel is varying, to make
identification adaptive, this training data sequence has to be sent periodically to
update the channel estimates, thus reducing the effective transmission rate be-
cause a fraction of transmission time is wasted for a training sequence. Another
class of identification techniques, called blind, do not require the transmission of
a preassigned data sequence. Instead, the statistical properties of the transmitted
signal are exploited to carry out the identification without the receiver having
access to the symbols being transmitted.

A number of blind techniques are based on higher-order statistics of the
channei output (see, for example, Giannakis, Inouye, and Mendel, 1989; Gi-
annakis and Mendel, 1989; and Mendel, 1991). These algorithms, besides being
computationally intensive, suffer from the fact that the estimates of higher-order
statistics usually converge more slowly than those of second-order statistics,-and
hence the process may be too slow for applications involving rapid channel vari-
ations such as those in mobile radio communications.

Second-order algorithms

A more recent class of identification algorithms use only second-order statistics,
and hence exhibit a faster convergence; if certain mild conditions on the fre-
quency response of the channel are satisfied, only the autocorrelation function of
the oversampled channel output needs to be evaluated for channel identification
(see Tong er al., 1994; Tong et al., 1995; Tugnait, 1995; Moulines et al., 1995;
and Buisdn and Biglieri, 1996).

sy
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Xp- Xn-2 n
Xpn n-1 R
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Figure 8.5: The TDL equalizer.

8.3. Channel equalization

From Chapter 7 we know how the optimum linear' receiving filter is made: it
consists of a matched filter, a sampler, and an infinite-length TDL filter. Thus,
it makes sense to approximate this optimum filter as follows. Rather thanha
filter matched to (g¢), which may be unknown, we use a filter rpatched to the
transmitted signal, or a compromise filter matched tf’ a repres;ntatlvc of an ef:ltl.re
class of received signals. The infinite-length TDL is app.rox1mat§d with a mtc;
one, which is simple to implement, to analyze, and to atdjust, mainly because o
i ation between its tap weights and its output. .
e ilr?f}?irsr:;cggn we study an egualizer based on an algorithm for automanca_]ly
adjusting the coefficients of such a TDL. In the following we keep on assumzmAg
that the data symbols a,, are uncorrelated and have mean zero. We define o; =
2
E“(fl?flle] ‘TDL equalizer operating on the samples (z,) of the received signal 1ic,
shown in Fig. 8.5. This structure, also called a transversal. ﬁlfer, has N —N
delay elements, N taps, N weight accumulators, and N . multipliers. It stores
samples that are linearly combined to produce the equalizer output

Yo = C'%p (8.24)
where c is the tap-weight vector
c= [Co, Cry -« ,CN_],]’ (825)
and x,, denotes the TDL’s content at discrete time n:
‘ Xn = [T, Tn-1s - s Tn-N1] (8.26)
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Ideally, we would like the sequence (yn) at the output of the equalizer to
reproduce the sequence (a,) of transmitted data symbols, except perhaps for a
finite delay D. As we cannot expect to achieve this, even in the absence of noise,
with a finite-length TDL, a reasonable goal would be to find ¢ so as to minimize
a suitable distortion measure, with the constraints of the equalizer length and the
delay D. If we choose as a distortion measure the ubiquitous mean-square error
between y,, (what we get) and a,,_p (what we would like to get), with D a fixed
integer, we have to minimize the MSE

£(c) £ Ellyn — ap-p[?] = c'Xc - 2R[ctv] + o2 (8.27)

where v is a vector expressing the correlations between the source symbols and
the channel outputs:
A
v = Ela,_px})] (8.28)
and X is the autocorrelation matrix of the samples stored in the TDL:

X £ Ejx:x] (8.29)

The latter matrix is assumed to be positive definite. In fact, for every complex
N-vector a we have

a'Xa = Efja’x,[*] > 0 (8.30)

which shows that X is at least nonnegative definite. Moreover, the RHS of (8.30)
can be viewed as the average power at the output of an equalizer with tap weight
vector a. This power cannot be zero because of the random noise added to the
samples at the channel’s output. In the absence of noise and for a nonzero a,
(8.30) can be zero only if the samples z, are linearly dependent. With this ex-
ception (that we want to discard), atXa > 0, i.e., X is positive definite, and
hence invertible.

To define the value of the tap-weight vector ¢ that minimizes (8.27), we must
find the value of c that yields a null value of the gradient of £(c). This can be
computed by using the results of Examples B.5 and B.6:

VE(c) =2(Xc - v) (8.31)
As the gradient has a unique zero for
C=cop =X v (8.32)
we obtain the minimum MSE

Emin = E(Cop) = 02 —vIX1y (8.33)
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An alternative form for £(c) is then
E(C) = Enin + (C - Copt)tx(c - copt) (8.34)

This explicitly shows the quadratic nature of the functional £(c), and segargtes
the contribution of the minimum achievable MSE, Enin, from the term reflecting

the nonoptimum weight setting.

8.3.1. Performance of the infinitely long equalizer

We shall now analyze the performance of the optimum feiqx'Jalizlt;; 1:}r11der ?eaﬁsy-
i i ights tends to infinity. Mathematically,
sumption that the number of its tap weigl : i - .
i trix X with a circulant matrix
this allows us to approximate the Toeplitz mal ‘
ic shi Section B.3 for the relevant
whose rows are cyclic shifts of one of them (see the re
iti i imati i lecting that the true X differs from a
definitions). This approximation entails neg ! :
circulant matrix in the lower-left and the upper-right corners. Noyv, el'getrlwah::,:
and eigenvectors of a circulant matrix have closed-form expressions: thus,
. . £
shall be able to derive explicitly Copt and Emin .
Consider the diagonal decomposition of X in the form (see (B.45))

X = UAU™? (8.35)

where A is the diagonal matrix of the eigenvalues of X, say By -1 N=1, ;m:
U is the N x N unitary matrix of its eigenvectors (see Section B4). As X i
circulant, from Example B.3 the entries of U are

i = - 36
uik=iw*, i=01,....N~1, k=0,1,...,N-1 (836
VN

where w 2 2N (8.37)

Consider then the eigenvalues of X. From (B.39) and the definition of X, we

i N = o,
obtain, as w2

pi= Y Elzagezy] ™" (8.38)
¢=-N/2
Define now the signal Toq(t) as the time function, bandlimited in thc'e fr:quen:‘l)i
interval (—1/2T, 1/2T), whose sequence of samples, taken every T ist c; eqtij "
izer input (z,). From the sampling expansion (2.254) we obtain the Fou

transform 539)

N

Xeq(f) =T Z Tn e—j21rfnT’ 0<f<

n=—00
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By applying the techniques introduced in Section 2.3.1, we can derive the power
density spectrum of zq(¢):

o0
Geal/)=T 3 Elgunsex)]e ™ 0<f< 1 (8.40)
{=~00 T
The comparison of (8.38) with (8.40) shows that, as N — oo,
-—lg <l> i =0,1 N-1; (8.41
l“l—T eq NT ) t=u1,..., -4 g )

that is, apart from an unessential constant, the ei genvalues of X are the values
that the power spectrum of the bandlimited signal z(t) takes on at equally
spaced frequencies i/NT. Let us now express Geq(f) in terms of the channel
parameters. Using (7.58) and results from Section 2.3.1, we obtain
! i
=G == 42
+7C ( ) (8.42)

Ce (NLT> NT

where Qq(f) is defined as in (7.67), and Gn(f) is the noise power spectral
density at the receiver filter output. For simplicity, we have assumed that the
noise is bandlimited in (—1/2T, 1/27): otherwise we should write, in lieu of
Grn(f), its “aliased” version ¥, G, (g + k/T).

We are now ready to compute the performance of the infinite-length equal-
izer. Using (8.32) and (8.35), we get for the optimum tap-weight vector

2
ag
lli=,‘-.l:.%

cops = UA™'U'y (8.43)
Define
s 1 —j2m fiT
COPt(f) = —ﬁ Z [copt]ie J (844)
: =0
and
a 1 & —j2m fiT
V(if)= Vi > [v]e™ (8.45)
=0

Due to (8.36) and (8.37), premultiplication of vector Copt DY vNUt yields a .
vector whose components are Cop(k/NT), k = 0,..., N — 1. Similarly, pre-
multiplication of v by the same matrix yields a vector whose components are
V(k/NT), k = 0,...,N - 1. Consequently, by observing that U'U = I,
from (8.43) we obtain

k 1 k
— | ==V —= = . - E
Copt (NT) p (NT) , k=01, ,N-1 (8.46)
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In (8.42) the y; have been expressed in terms of the channel 'parameter§; 'we
derive now an analogous expression for the V (k/NT). If we write 7, explicitly
as in (8.1), from definition (8.28) we obtain

7D
db-1

v=0? :D (8.47)
4p-N+1

where the g, are the samples of the impulse response of the overall channel pre-
ceding the sampler. Then

N-1
- —jon fiT
V() = o L dpie
=0
N-1 .00

Q- (f/)e—j27rf’DTe—j21r(f—f’)iT df/

|
qu
il~)
—

vin = 2% [Laumen (- r -5 &
a2 & . MY\ _jonfDT
- 2% (s )¢
2 . .
— %}Q;q(f)e"ﬂ"fDT (8.48)

By combining (8.41), (8.46), and (8.48), we get finally, fork =0,1,..., N 1,
o () 2 95Qe (K/NT) _e TPV (8.49)
®*\NT) = Gn(k/NT) + (03/T)|Qeq(k/NT))

As N — oo, we can assume that the transfer function of the optimum.inﬁ.nitely
long equalizer is obtained from the former expression by writing f in lieu of

i/NT:

9205 (f) ~j2n/DT
Conlf) = G T @2/ DA FIT

By comparing this result with (7.93) it can be seen that, under the minimum-
MSE criterion, Cyp(f) is the optimum receiving filter when Qea(f) = Q(f),
that is, when the channel is bandlimited in the interval (—1/27, 1 /v2T). If the
latter condition is not fulfilled, the TDL equalizer fails to be the optimum filter.

H]

1
0<f< T (8.50)

e e e e
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We shall return to this point later, in our discussion of the fractionally-spaced
equalizer.

We are finally ready to evaluate the infinite-length equalizer performance.
The quadratic form appearing in (8.33) is computed using (8.35):

viX-lv = viuA-iuty
_ 1 vE/NT))?
B ']VZ:O Hi
1= 73Qeq(i/NT)|?
N 3 TGa(i/NT) + 02|Qeq(i/NT)|2

8.51)

By taking the limit of (8.51), which can be done by using the Toeplitz distribution
theorem (B.36), we have, as N — oo,

gt YT Qe P
viX V’T/-mm,.m+321Qeq(f)|2df ®-52)

and finally

2
Enmin = / " 2e0nll) df. (8.53)

yar Ga(f) + (02/T)1Qea( )12
This is the minimum MSE achievable by using an infinitely long TDL equalizer.
Equation (8.53) shows how it is related to the noise power spectral density and
to the channel transfer function (recall that the latter includes the receiving fil-
ter, which may not be a filter matched to the received signal). For finite-length
equalizers, it is difficult to say much about € without resorting to numerical
computations, which, as we know, involve the transmission filter, the channel
response, the noise power spectral density, the receiving filter, the delay D, and
the number V of equalizer coefficients.

Some considerations

A few interesting considerations can be derived from (8.50) and (8.53), as fol-
lows:

(@) In the absence of noise, (8.50) reduces to
Copt(f) = TQe—ql(f)e—J'21rfDT

which shows that, apart from a delay DT, the equalizer has a transfer func-
tion proportional to the inverse of Qeq(f). This shows that the optimum
equalizer inverts the channel transfer function in the frequency interval
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(—=1/2T, 1/2T) (it cannot operate on a wider interval. becaus_e the sam-
ples are taken every T: more on this later). When noise domx.nate‘s, ie.,
when Gn(f) > (02/T)|Qeq(f)|% the equalizer tra.nsfe'r function is pro-
portional to Q%,(f)/Gn(f). i.e., the optimum equalizer is a matched filter
(see Problem 2.26,)

(b) The maximum value that Eqa can attain is o2: from (8.53) we see that
this circumstance corresponds to a channel with a null transfer funcn(')n:
|Qeq(f)| = 0. This trivial result suggests that in the presence of noise
the performance of the linear equalizer described here is l{mxted by large
depressions in the frequency response of the channel. This fact can also
be understood by observing that the equalizer will try to compensate ’for
a deep null by synthesizing a large gain at the corresppndmg frequencies.
But this large gain will enhance the effect of the noise at .the same ’fre-
quency, thus preventing perfect compensation or even leading to serious
performance degradation.

(c) Certain channels (e.g., the multipath radio channel of Chapter 13)»may ex-
hibit nulls in their frequency response. Other channels, not t?ayxng deejp
spectral depressions in their transfer function Q) f), may exhibit them in
their “aliased” version Qeq( f) (e.g., the telephone channel). It happens that
when the channel bandwidth exceeds the Nyquist interval (—1/2T, 1/2T),
the choice of the sampling instant, which obviously does not affect |Q{f)|,
does indeed affect |Qeq(f)| (this was discussed in Section 2.5.1). Thgs,
for a channel whose frequency response extends beyond the Nyquist in-
terval, inappropriate choice of the sampling epochs can produce null§ in
the equivalent channel response. In this case, the linear TDL equalizer
described above may be inadequate to compensate for ISI.

(d) The minimum MSE (8.53) of the infinitely long equalizer does not sh9w
dependence on the allowed delay D. However, the performance of a finite
equalizer does depend on that choice.

8.3.2. Gradient algorithm for equalization

We shall now describe a gradient algorithm for the automatic a'djustment of the
tap-weight values vector ¢ 10 its optimum value. As the gra'dlent of thc MSE
was shown in (8.31) to be proportional to Xc — v, the gradient algorithm for
equalization takes the form

4 D = ) _ q(Xc™ - v) = ¢™ — aE[(yn — @n-p)X}) (8.54)

et ke i
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where ¢™ denotes the tap-weight vector at the nth iteration step, and a is a
positive constant small enough to insure convergence. The difficulty in the im-
plementation of (8.54) is that the average cannot be computed in real time (see
the discussion following (8.10)). Thus, as for automatic channel identification,
We must resort to a stochastic gradient algorithm. However, before doing that it
is expedient to analyze the convergence properties of the “true-gradient™ algo-
rithm (8.54). By duplicating arguments used in connection with the convergence
analysis of the channel identification algorithm (8.10), it can be proved that the
tap-weight error at the nth iteration,

™ &t _ ¢, (8.55)
satisfies the recursion
€ =(I-aX)"e™,  n=01,... (8.56)
so that
€ = (I- aX)" e® 8.57)

and convergence of the tap-weight error is assured for any €% provided that

0<a<2/pmu (8.58)

where pma. denotes the largest eigenvalue of the matrix X. (Notice that the
convergence analysis here is far more complex than for channel identification:
this is due to the fact that the role of the source symbols is taken here by the
channel outputs z,, whose autocorrelation is not the identity matrix anymore).

Define now the excess MSE at the nth iteration step, that is, when ¢ = ¢,
We have, using (8.34),

AW 2 g™y _ g = it (8.59)

Substitution of (8.57) in (8.59) yields
A = eI oX)X(T ~ aX)"e® (8.60)
or, observing that X commutes with I — aX, and hence with any of its powers,
A = Ot X)X 9 8.61)

Our next step in the analysis of the convergence of A™ is based on the
diagonal decomposition of X as in (8.35):

X =UAU"! (8.62)
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This yields .
(I-aeX)"X=U(I- aA)yAU” (8.63)
so that we finally get
N-1
AR =3 BOui(1 ~ ap)™ (8.64)
i=0

where ﬂ,-(o), i=0,1,...,N — 1, is the squared magnitude of the ith element of
the vector Ute®. From (8.64) it is seen that A(™ can be decomposed as the
sum of N exponentials, all of them decaying to zero if (8.58) holds. For fast
convergence, we may choose the step size o so as to speed up the convergence
of the slowest-decaying exponential term in (8.64). This is done by minimizing
the quantity

r(a) = max 11— api (8.65)

This “optimum” a satisfies the condition
1 — @pimin = —(1 — Aptmax) (8.66)

(see Fig. 8.6), where fiyq is the smallest eigenvalue of X. Thus

2
= (8.67)
ot Hmax T Pmin
and . )
— Hmax/ fimin 7 _ (8.68)
r(aopt) ;uma.x/;umin +1

Thus, we have proved that the maximum convergence speed is, in a sense, dom-

inated by the eigenvalue spread pimax/fimin. In fact, the smaller this value is,
the faster the convergence of the true-gradient algorithm that can be achieved
by a suitable choice of the step size a. A fast rate of convergence of the algo-
rithm allows the equalizer to converge closely enough to its optimum setting in a
short time; moreover, in a nonstationary environment channel variations can be
tracked.

Stochastic-gradient algorithm for equalization
We shall now examine the stochastic-gradient version of algorithm (8.54):
cmtl) — o(m) _ oY — @n-p)X}, (8.69)

Fig. 8.7 shows how this algorithm can actually be implemented. For s.impl.ic-
ity, real signals are assumed in this figure. However, it should be kept in mind
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Figure 8.6: Choice of the “optimum” value of the step size a..

that the quantities involved are generally complex, which implies that four real
multiplications are involved in each multiplier. We assume, for the moment, that
the source symbols a,, necessary to compute the RHS of (8.69) are known at the
receiver, and disregard the dashed box (to be described later). Every T one itera-
tion is performed. When a new sample z,, enters the TDL, a value ¥, is computed
by combining linearly the N samples contained in the TDL according to (8.24).
After subtraction of a,,_p, the stochastic gradient is formed by multiplying this
“error signal” by the samples z,,_;, 7 = 0,1,..., N — 1. The values obtained,
after rescaling by a factor —a, are added to the values of the tap weights stored
in their accumulators so as to provide their updated versions.

To analyze the convergence properties of the stochastic-gradient algorithm
for equalization we must resort again, faute de mieux, to the simplifications al-
lowed by the independence assumption. In our situation this consists in assum-
ing that (x,) is a sequence of zero-mean iid vectors. Again, this simplification,
which does not make much sense mathematically, offers results validated exper-
imentally.

Consider first the tap-weight vector ¢, From (8.69), it depends on xg, Xy,
... Xn_1. Given the independence assumption, c® is independent of x,; thus,
averaging both sides of (8.69) and using (8.55), we obtain

E{e"™*V] = (I — aX) E[e!")] (8.70)

This recursion shows that the average tap-weight error E[e(™)] converges to zero
subject to condition (8.58) (this also shows the usefulness of the true-gradient-
algorithm analysis). Thus, if (8.58) is satisfied, the stochastic-gradient algorithm
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Figure 8.7: Implementation of the stochastic-gradient algorithm for channel equaliza-

tion (real signals are assumed).

is stable on the average (i.e., the average tap-weight vector will converge to its
optimum value irrespective of the initial tap-weight setting).

Consider next the evolution of the mean-square error. If we define the excess
MSE §™ as

5™ £ By, — an-pl* — E |yl = an-pl’ 7D
where
Yo £ CopXn ®72)
we have, after some manipulations,
™ = F [y — yg;“z +2RE [(c(n) _ Copt)fx;(yg};z ~ap-p)] (8.73)

The second term in the RHS of (8.73) is zero. To show this, use (8.69) and
the indepéndence assumption to verify that ™ depends on X, and am_p only
for m < n, and hence that

E (™) — cope) 4 (55 — 3n-p)] = E[(c™ —cop) E [x3,(vi52 —an-)] &74)
Moreover,

+ E [x,‘,(y((,gz —~an-p)] = E[xix,] copr — Vv = Xeopr =V =10 (8.75)
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In conclusion, we have
6™ = Bly, ~ 4l = Bl e = E[eXe]  (8.76)

where the independence assumption has again been invoked in the last equality,
and €™ is defined as in (8.55). It is worthwhile emphasizing that (8.76) is, in
general, invalid if both (x,) and (a,) are not independent sequences.

To proceed further, we first rewrite the stochastic-gradient recursion (8.69)
in the form

e = A e + b, (8.77)
where
A, S1-axix, (8.78)
and
bn £ —0(Yopt ~ Gn—p)X (8.79)

Thus, from (8.76) we obtain
57D = E{e™E[A,XA,]e™} +2E [e™]E[A,Xb,] + E [bl Xb,] (8.80)

To simplify the analysis, we shall limit ourselves to the case in which the com-
ponents of the vector x,, are independent, and yopt — an-p is also independent of
Xn. Thus, recalling that E{a,] = 0 (which implies E[x,] = 0), we have X = 021,

where o2 2 E{|z.[%}, and the middle term in (8.80) vanishes. In fact, we have
E[A.Xb,] =0 (8.81)
Furthermore, the last term in (8.80) reduces to
E[b!,Xb,] = ¢’E [y — an-p|*E [X,Xx}) = 0 NEmgimo? (8.82)
Finally, the matrix in the first term of the RHS of (8.80) reduces to
E[A.XA,] = [(1 - ad?)? + a?p| 21 (8.83)

where
pLE E[xx,]2 — 01 = [E|za|* + (N - 2)i]I (8.84)
From the substitution of (8.81)—(8.84) into (8.80) and the observation that under
our assumptions Efe(™e(™] = 57260, we finally obtain
60+ = 46" + ® NEpino (8.85)

where
7 =(1-ac?)® + o*[Elz.[* + (N ~ 2)¢] (8.86)

s
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Thus, 7 < 1 tums out to be a necessary and sufficient condition for the con-
vergence of the excess MSE 6{™). We can see, for example, that the convergence
is adversely affected by the number IV of tap weights in the equalizer, as well as
by the fourth absolute moment of the received samples E{|z.|*}. Also,if ¥ < 1
and n — o0, the excess MSE tends to its residual value

‘
2 0*NEming}

(o0)
) 1=~

(8.87)

Notice in particular from (8.87) that the excess mean-square error does not
tend to zero, as in the true-gradient algorithm, but to a value approximately pro-
portional to a2, at least for small y values. This shows, for example, that the
choice of the step size a in the stochastic-gradient algorithm entails a trade-off
between fast convergence and small residual MSE.

We conclude this section with the observation that, by using an iterative al-
gorithm, the equalizer can work adaptively by tracking and compensating for
channel changes, provided that they are sufficiently slow with respect to the set-
tling time of the equalizer.

8.4. Fractionally-spaced equalizers

We have assumed so far that the signal z(t) received at the channel’s output is
first filtered and then sampled every T before being sent to the TDL with ad-
justable weights and elementary delays T'. This is an optimum procedure, as we
have discussed in Section 7.4, if the equalizer is preceded by a filter matched
to the channel-distorted transmitted pulse. In practice, when the channel is un-
known the best we can do is to match the receiver filter to the undistorted trans-
mitted pulse, or to a compromise representative of an entire class of distorted
signals. This change, however, is far from being innocuous. We know from Sec-
tion 2.5 that the process of sampling a signal at rate 1 /7" superimposes its spectral
components spaced 1/7 Hz apart (the “aliasing” effect), and henge makes the
equalizer performance very sensitive to the choice of the sampling time, because
this can cause the appearance of deep nulls in the equivalent channel transfer
function.

Another way of seeing this is by observing that the transfer function of the
T-spaced equalizer is periodic with period 1/7'; thus, spectral components of the
incoming signal lying at frequencies spaced 1/T apart cannot be processed inde-
pendently by adjusting the tap weights. Moreover, this periodicity does not allow
the noise-frequency components lying outside the interval (—1/27, 1/2T') to be
suppressed. This task is assigned to the receiver filter preceding the equalizer,
the one which should, optimally, be a matched filter.
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Instead, assume that z(¢) is sampled every T < T, and consequently the
TDL elementary delay is 7". If 3 denotes the excess bandwidth, that is, if the
received signal z(t) is confined to the frequency interval [—(1 + 3)/27, (1 +
B)/2T}, we can choose T" < (1 + B8)~'T. With this choice, the equalizer trans-
fer function becomes sufficiently large to accommodate the whole signal spec-
trum. Hence, Quq(f) = Q(f); the sampling instant becomes irrelevant, and the
appearance of deep nulls caused by a badly chosen sampling instant is avoided.
Finally, from (8.50) we see that the equalizer provides the optimum (MSE) re-
ceiving filter, thus avoiding the need for a separate matched filter to suppress the
noise (an anti-aliasing filter will be sufficient).

It must be kept in mind that the signal at the output of the equalizer is still
sampled at rate 1/7'. But, since its input is sampled at 1/7", the equalizer acts
on the received signal before aliasing its frequency components. In summary,
we can say that a T-spaced TDL with symbol-rate sampling cannot perform
matched filtering, while a T"-spaced TDL can incorporate the functions of a
matched filter and of an equalizer. Equalizers based on this principle are called
fractionally-spaced, and were first used in commercial telephone-line modems
in the mid 1970s.

A convergence analysis similar to that of Section 8.2 can be carried out for
fractionally-spaced equalizers. Simulation of QAM in equalizers with T* = T'/2
over typical voice-grade circuits (Qureshi, 1982) confirms the improvement, pre-
dicted by the theory, over symbol-rate-spaced (“‘synchronous™) equalizers. In
particular, (a) the T'/2 equalizer performs almost as well or even better than a
synchronous equalizer with the same number of taps, and consequently twice the
time span; (b) a receiving filter (other than the anti-aliasing filter) preceding the
equalizer is not required with a T'/2 equalizer; and (c) for channels with severe
band-edge distortions the T/2 equalizer outperforms the synchronous equalizer
regardless of the choice of the sampling instant (Qureshi, 1985).

8.5. Training the equalizer: Cyclic equalization

So far, our analysis of the TDL equalizer performance assumed that the data se-
quence (a,) needed to evaluate the error gradient was known at the receiver’s
front end. A widely used method to render this assumption realistic in practice
is now described. In an initial (training, or start-up) period, a particular data
sequence, known and available with the right time alignment at the receiver, is
sent through the channel. This training sequence, or preamble, may consist of
isolated pulses, or may be a continuous sequence with a uniform power spec-
trum (pseudo-noise sequences (Golomb, 1967) with periods significantly greater
than N are often used to this purpose). Once the equalized channel quality has
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become so good that decisions on transmitted symbols can be made with small
enough error probability, the gradient is computed by replacing the estimated
data symbol sequence (@,) for the transmitted one (a,) (see the dashed box in
Fig. 8.7). Simulations and experimental evidence show that for reasonable error
rates this replacement does not alter the convergence of the equalizer.

Tn some cases, the error probability before equalization is so small that the
training period can be avoided. The equalizer is then said to work in a “boot-
strap” mode, this name being derived from the saying about pulling oneself up by
one’s own bootstrap, However, in most situations the equalizer must be trained
before it can be switched to a decision-directed mode of operation.

Concerning the selection of the training sequence, a good choice is a periodic
sequence whose period is N, the number of TDL taps. This choice, which gives
rise to cyclic equalization, enables us to solve a problem arising in the start-up
procedure and concerning the best choice of the delay D to use in the defini-
tion (8.27) of the mean-square error to be minimized. In fact, when aligning
in time the training sequence generated locally with that sent by the source, D
should be chosen in order to best compensate for the delay introduced by the
channel. Cyclic equalization provides a rule to choose D such that the minimum
MSE might not be achieved, but a relatively simple implementation is obtained,
coupled with adequate performance.

Consider a training sequence with period N. Assume for a moment that the
channel is noiseless and distortionless. Thus, the received samples are just a
delayed version of the transmitted symbol sequence. After convergence of the
equalizer, only one of the tap weights will have a nonzero value. The correspond-
ing tap position informs us about the time shift between the received sequence
and the one generated locally; in particular, any unit time shift in the sequence
generated locally will cause the unique nonzero-weight tap to move by one po-
sition in the TDL. Let us now return to a channel affected by linear distortion,
but without noise. The received sampled sequence is once again periodic with
period V. One full period is stored in the TDL. After convergence, the start-up
procedure will finish with a set of tap-weight values that needs to be only cycli-
cally shifted for proper time alignment. As any cyclic shift between the received
sample sequence and the data sequence generated locally causes a cyclic shift of
the set of tap-weight values, it is not necessary to achieve time alignment before
start-up. This can be done after start-up by cycling the tap-weight values so that
the largest absolute value is found in a reference position (e.g., the center tap).

An equalizer scheme based on this principle is shown in Fig. 8.8. The pe-
riodic sequence generator outputs the training word. All tap weights are preset
to identical values to reflect that the location of the largest weight is not known
a priori. To begin the start-up procedure, the switch at the bottom is set to po-
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Figure 8.8: Block diagram of a TDL equalizer with cyclic training.

§ition @. After training, the tap weight values are aligned by cyclic shifts, as
just indicated. The equalizer can now be operated in a decision-directed mode
by moving the switch to position ).

.Il remains now to analyze the performance of cyclic equalization. Without
noise, the sequence (z,) is periodic; hence, it has a periodic correlation, which
makes the matrix X circulant. As a consequence, the analysis carried out in

Section 8.2.1 and based on decomposition (8.35) becomes exact. In particular,
from (8.49) we have

1 - g —j2emi
Copt (W) =TQg (N—T) e 2PN §=0,1,...,N—-1 (8.88)

This shows that equalization of the channel is achieved at a set of NV equally
spaced frequencies in a frequency interval of width 1/7". In other words, the in-
verse channel response is approximated through interpolation at equally spaced
points. Thus, equalization after start-up, although nonoptimum in the MSE sense
for random transmitted data, can be expected to be reasonably close to the opti-
mum when N, the number of taps in the TDL, is sufficiently large.

Conceming the choice of the periodic symbol sequence to be employed in
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the start-up phase, it has been proved (see Godard, 1981) that the best sequences
in the presence of noise are those whose periodic autocorrelation

N-1
R, 2 > Gtk mean @5

n=0
is exactly zero for k # iN, i = 0,£1,+2,.... As sequences with this prop-
erty can be generated for any period N by using constant-amplitude (i.e., purely
phase-modulated) signals, they have been called constant-amplitude, zero-auto-
correlation (CAZAC) sequences. One such sequence with N = 8 is obtained
by repeating periodically the 4-PSK signals /4, 7r/4, 37 /4, 3w /4, m/4, 37 /4,
3r/4, Tr/4.

8.6. Non-MSE criteria for equalization

The previous sections were devoted to the analysis of equalizers based on a given
structure, the TDL, and a given optimization criterion, the minimization of MSE.
Although this combination has proved most fruitful in applications, it is by no
means the only one, and considerable effort has been spent to devise and analyze
different equalization criteria and/or structures. Hereafter we shall review some
of the most significant solutions obtained in this framework. In particular, in
this section we shall describe two non-MSE criteria for TDL equalization. Other
criteria will be described a little later, in the context of blind equalization, and an-
other equalizer structure will be discussed in next section. Notice also that a most
sensible optimization criterion would be the minimization of error probability:
however, this would result in nonlinear equations, exceedingly more difficult to
solve than the linear equations arising from the minimum-MSE criterion.

8.6.1. Zero-forcing equalization

The first approach to automatic equalization assumed a peak-distortion criterion.
Peak distortion can be derived from the eye pattern of the received signal, and is
closely related to the worst-case bound to error probability (see Section 7.2).
Consider for simplicity that a binary (+1) stream of independent symbols is
transmitted. Further, denote by (h¢) the impulse response of the discrete-time
system that responds to the source sequence (a,) with the equalized sequence
(ye). In other words, (h,) is the response of the discrete-time equalized channel.
We define the normalized peak distortion as

1
D(c) £ — 3 |l (8.89)
. ho k#0
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It is assumed that hy = max; |hx|. In words, D(c) - hy represents the maximum
value of the intersymbol interference (ISI) affecting the equalized signal. D(c) =
0 means that there is no ISI, whereas D(c) > 1 denotes that the eye pattern is
completely closed (hence reliable transmission is impossible, irrespective of the
noise power level).

If the tap-weight vector c is chosen so as to minimize D(c), it can be ad-:
justed by using an iterative algorithm (Lucky, 1965 and 1966) that is guaranteed
to converge whenever the unequalized eye is open. This gives the zero-forcing
algorithm, so called because it forces the ISI to zero. Now, the equalized chan-
nel satisfies the zero-ISI condition, or Nyquist’s criterion, if the equalizer fre-
quency response is (apart from an unessential linear-phase factor) TQe‘q1 (f), the
inverse of the aliased frequency response of the channel seen by the equalizer (a
finite-length zero-forcing equalizer simply approximates this inverse). Since this
criterion neglects the effects of the noise, it might excessively enhance noise at
frequencies where |Qeq(f)| takes on small values. Nevertheless, due to their
simplicity, zero-forcing equalizers were the first incorporated in commercial
modems.

8.6.2. Least-squares algorithms

More recently, the expansion of data-transmission systems requiring quick setup
and response has created the requirement for equalizers in which a short training
time is a premium. This occurs, for instance, in multipoint networks, where the
tributary terminals may transmit only when polled by the control modem. The
messages from the tributary to a control station are often short, and the control
modem must adjust its equalizer whenever a message is received. Quickly con-
vergent equalization algorithms have been sought either by modifying the basic
gradient algorithm under an MSE criterion, or by devising other performance
criteria. The latter approach can be pursued by introducing a least squares (LS)
criterion, that is, the sequence of cost functions

n
L(C(n)) = Z |C(")'Xk — ax_pl?, 1<n<o (8.90)
i=1

to be minimized over the tap-weight vector c¢(™. In words, a c¢™ is sought that
minimizes the sum of the squared errors that would be obtained if ¢(™ were used
with all the past received-signal samples. Algorithms matched to the cost func-
tion (8.90), called LS algorithms, have been proved to provide fast convergence
as required.

By taking the gradient of (8.90) and setting it equal to the null vector, the
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following equation for the optimum tap-weight vector is obtained:

X(")cf,’;i =vin (8.91)
where n
X & 3 xix) (8.92)
k=1
and n
v & S ak-pXi (8.93)
k=1

Tt should be observed that, apart from a factor 1/n, X™ and v(™) are the time-
average counterparts of X and v, as defined respectively in (8.29) and (8.28).
Thus, X and v(™ can be viewed as estimates of X, v.

Solution of (8.91) by matrix inversion can be complicated by tpe fact tbat
X (™, being only an estimate of a correlation matrix, need not be positive deﬁmte.
Hence, its inverse may not exist. This problem can be circumventeq by simply
adding to X(® a scalar matrix §I, where d is a positive constant 1rfcluded to
ensure that X™ is nonsingular for all n. Moreover, the cost function (8..90)
can be slightly modified to include a feature desirable when the channel ig time
varying: by introducing a geometric attenuation factor 0 < A < 1, that is, by
introducing the new cost function

La(c™) & i/\""‘lc(")'xk - ax_pl?, 1<n<oo (8.94)

i=1

the present influences the tap-weight update more than the past. In fact, A
weights recent samples more heavily, so that £(c!™) tends to forget the old
samples. Thus, slow channel variations with time can be traclfed. For a time-
invariant channel we may choose A = 1. In a time-varying env1ronme1?t_,\ <1,
its actual value having no influence on the convergence rate but determining the
tracking capabilities of the equalizer (Ling and Proakis, 1984).

For the update of c™ several algorithms have been proposed. The Kalman
algorithm (Godard, 1974) assures rapid start-up, but requires a number of t.:alf:u-
lations proportional to N2, where N is the number of taps in the TDL. A su.mlar
algorithm, usually referred to as the fast Kalman algorithm (Falconer apd L_].ng,
1978), improves the Kalman algorithm as it achieves a lower complexity (l.mear
growth with N) without performance degradation because it is rgathergatlcally
equivalent to the latter. These algorithms have been compared by 51mu1at¥on over
several channels by Lim and Mueller (1980). Their convergence propemes.have
been proved to be very similar. They require roughly one-third as many itera-
tions as the stochastic-gradient algorithm. The price for this increase in speed
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is complexity: the fast Kalman algorithm, which has the lowest complexity, re-
quires about 10 times as many multiplications as the stochastic gradient. Notice
also that the fast Kalman algorithm may be unstable when implemented digitally
with insufficient accuracy (Lim and Mueller, 1980).

8.7. Non-TDL equalizer structures

It is also possible to use equalizer structures that are not transversal filters. One of
these alternative structures is obtained by using the Kalman filter as an equalizer
(Lawrence and Kaufman, 1971). The Kalman filter, a version of the minimum-
MSE linear receiver, has a recursive structure. Comprehensive simulation results
(Benedetto and Biglieri, 1974) have shown that the performance of this linear
filter is not significantly better than that of a TDL of comparable complexity.

Another equalizer structure is based on lattice filters (Lim and Mueller, 1980).
Among the properties of lattice filters that make them worthy of special attention
are their fast convergence and their high insensitivity to round-off errors deriving
from finite-precision digital implementation.

Satorius and Pack (1981) have compared the convergence properties of lattice
equalizers based on the minimization of MS or LS error with those of an MSE
TDL equalizer. By simulation, the LS lattice equalizer is shown to converge in
40 to 50 iterations where the MSE lattice equalizer needs about 120 iterations.
These figures are independent of the eigenvalue spread of the matrix X. On
the other hand, an MSE TDL working with the stochastic-gradient algorithm
requires about 600 iterations for its convergence when the eigenvalue spread
Mmax/ Hmin = 11, and about 1000 when pay /ftmin = 21. Thus, not only does the
lattice equalizer converge faster, but its convergence properties do not depend, to
a certain extent, on the channel. The price paid for this improved performance
is increased complexity. In fact, the LS lattice equalizer must perform 12N
multiplications, 11N additions, and 3N divisions at each step, while the TDL
equalizer needs only 2NV multiplications and 2N additions (Schichor, 1982). The
LS lattice equalizer needs even more operations than the fast Kalman algorithm
mentioned in Section 8.6 (which requires 10N multiplications, 9N additions,
and 2N divisions). On the other hand, the fast Kalman algorithm performs much
the same as the LS lattice in terms of convergence speed (see Lim and Mueller,
1980).

8.8. Decision-feedback equalization

In this section we examine a class of nonlinear equalizers that are especially
useful for channels with severe distortion. The basic idea is the following. Let us
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Figure 8.9: Qualitative impulse response of a discrete channel to be equalized.

observe that, due to propagation delay in the transmission channel, the rfeceived
signal sample z, is used to make a decision on the symbol that was emitted by
the source D discrete-time instants befare, say a,_p. The impulse response (g;)
of the discrete channel with input (a,) and output (z¢) is skctchc-d qualitatively
in Fig. 8.9. The samples gz, £ < D, are called the precursors, while the samples
e, £ > D, are called the fails, or postcursors, of the impulse response. Assume
for a moment that this impulse response and the source symbol g p are known.
Since

od
Te= ), Ggomm + (8.95)
m=—0c

we can subtract the known quantities a¢—.. pge+p from the samples T4, k # 0,
thus eliminating all the ISI due to symbol a,_p. This is the essence of data-
aided equalization: if a number of source symbols are correctly detected and
the channel impulse response is known, then the ISI can be reconstructed and
therefore canceled from the received signal. By implementing this idea when
the channel suffers from a large amount of amplitude distortion, we can expect
a performance improvement with respect to standard equalization. In fact, this
is a situation where an ordinary linear equalizer would considerably enhance the
noise, while this data-aided equalizer would not play any role in determining the
noise power of the equalizer output. In fact, it will just provide a weighted sum
of noise-free symbols to be subtracted from the received symbols. The reader is
warned, however, that the assumption of a known transmitted sequence malices
the preceding statements only approximately true. Actually, in a real setting
there is no hope of canceling completely the ISI without introducing a certain
amount of noise enhancement. This is because the minimum distance d;r (see
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INTERSYMBOL INTERFERENCE CANCELER

Figure 8.10: Block diagram of an ideal data-aided equalizer.

Section 7.5), which depends on the source symbol structure and on the channel,
imposes a limit to the error performance of any conceivable receiver, and hence
of any receiver based on data-aided equalization.

The block diagram of an ideal data-aided equalizer is shown in Fig. 8.10.
The ISI canceler is a transversal filter with tap weights {ck}. Denoting by S the
indexset {0, 1,...,D—1, D +1,..., N}, the equalized signal takes the form

o0
Ye = Z Gt-mdm — Z GfmCrm + 1y (8.96)
m=-o0 meS
Notice that S does not include the index D. This is because we want to re-
strict the role of the canceler to remove the ISI without altering the useful signal
ae-pgp- It satisfies intuition, and can be proved, that the canceler weights {c;}
that minimize the MSE € £ E [y, - a,_p|? are

Ck = Gk, kes 8.97)

Consider now the practical implementation of a data-aided equalizer. Since
the source symbol sequence (a,) appearing in Fig. 8.10 is not available at the re-
ceiver, it must be estimated from the received samples. Thus, it must be assumed
that, after a suitable training period, the equalizer yields an error rate so low
that near-perfect detection is not an unrealistic assumption. Also, as the chan-

nel is now known in advance (and can vary with time), the canceler will have
adaptively-varying coefficients.

411
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Figure 8.11: Block diagram of a decision-feedback equalizer.

The most popular scheme of data-aided equaliz.ation is the decision-feedback
equalizer (DFE). In it, the set S includes only the mteger.s D+1,..., N, s;/t'h;
canceler operates only on the postcursors of the channel impulse response. Wit
this choice for S, we see from (8.96) that at time £ the source symbols 'ru.:edeFi
for cancellation are ay_p_1, @¢_p—2, - - - » G¢—D—N- SiNCe at time .Z a dec1§19n is
taken on a,_p, the symbols needed can be obtained from the previous decisions.

In conclusion, a DFE is based on a canceler that takes care of thf, postcursors
of the channel impuise response. Now, this cannot be se]f-spfﬁcmnt, beca.use
the precursors also have to be accounted for. Hence, a preliminary equahzgr
(also called a feed-forward filter) should precede the ganceler. Its task may be
viewed as the elimination of the precursors, i.e., a function complerpentary to the
canceler. Since the feed-forward filter need not approximate the inverse of the
channel transfer function, excessive noise enhancement can be avoided.

The DFE scheme is presented in Fig. 8.11. Init, as is customary, the canf:e.ler
is referred to as the feedback filter. Notice that the incll'lsmn of the dcc1519n
device into a loop renders this equalizer intrinsically nonlinear (as generally in
all data-aided structures). - . h

To analyze the DFE behavior, assume that the prcllrmrfary equalizer and t ;
feedback filter are TDL with lengths N and N’ and welgl'.lt.vectors. c andb,
respectively. Thus, the signal sample at the input of the decision device can be
written in the form

Yo = CIZ( _ fls,( (898)

~ Bors oA ~ , ~
where z, é [zl, Ze—1y---1 Zl_N+1]I and a, = [a[, (77355 TN a,_N:.H] . By defin
ing the two column vectors, with V + N’ components each,

alec (8.99)
w2 [¢]
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and
u,é[ e } (8.100)

Eq. (8.98) can be rewritten in the more compact form

ye = b'u, (8.101)

Since (8.101) bears a close resemblance to (8.24), it is not difficult to dupli-
cate the arguments of Section 8.2 to find the vector b, and hence ¢ and f , that
minimize the MSE, and to devise a gradient algorithm for minimization. (Min-
imization of MSE is of course not the only design criterion. For example, a
zero-forcing criterion is also applicable (see Price, 1972).) By assuming é; = a,
for all £, we obtain

E{lye — ar_p*} = b'Ub - 2R[blw] + 6? (8.102)
where
U £ Efuu)] (8.103)
and
w £ Elap_pu)] (8.104)

By taking the gradient of (8.102) with respect to b and setting it equal to the null
vector, we obtain the following equation for the optimum tap-weight vector bop:

Ubgy = w (8.105)

Since U is not necessarily positive definite, a form for b similar to (8.32)
may not be available. However, a gradient algorithm can be displayed:

b+ = b — B[y, ~ ar-p)u;] (8.106)

which converges to a tap-weight vector achieving the minimum MSE.
By taking the limit as V and N' both tend to infinity, an expression can be
obtained for the minimum achievable MSE (Salz, 1973):

_ vt 03Gn(f)
asore = e {7 [ i 7

By comparing (8.107) with (8.53), the analogous expression for the infinite-
length linear TDL equalizer, one can prove that [Emin]pPE is always less than or
equal to the value (8.53). The equality holds only when |Qeq(f)] is a constant
and the noise is white: this fact suggests that the DFE equalizer outperforms the
linear equalizer especially when the channel is far from flat, i.e., it causes a large

B df} (8.107)

e

m
il
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distortion. This is true asymptotically, and in the absence of decision errors.
Unfortunately, however, there is no definite answer to the question of whether a
finite-length DFE achieves a lower MSE than a linear equalizer with the same
overall number of taps. In fact, the relative performance of the two equalizers
depends on the actual channel characteristics, on the number of taps, and on the
choice of the delay D (Qureshi, 1982). Simulation results (Salz, 1973) confirm
what is intuitively expected: the DFE is markedly superior to the linear equalizer
with the same finite length when operating on channels with spectral nulls in the
Nyquist interval. This is the situation where the linear equalizer suffers most
from noise enhancement. In addition, the DFE performance is less sensitive to
the sampling time (Qureshi, 1982).

Finally, it must be observed that our preceding discussion was based on the
assumption that @, = a, for all ¢, i.e., that the decision process was error-free.
Now it is reasonable to ask to what extent the DFE performance is degraded by
decision errors. Decision errors tend to propagate

because they produce wrong cancellation of tails. In fact, when the feedback
filter is fed by a wrong decision its output reflects this error during the next
few time instants. This causes a reduced noise margin for future decisions. In
turn, this entails a higher probability of future incorrect decisions, and so on.
Simulation results show that this error propagation is not catastrophic: in fact,
on typical channels errors tend to cluster in bursts short enough to only slightly
degrade performance.

8.9. Blind equalization

The need for an initial training period for the equalizer, which is detrimental for
data rate, can be avoided by using blind equalization techniques. They aim at
providing equalizer convergence without burdening the transmitter with a train-
ing overhead. An obvious way of doing this is to use blind identification as
described earlier in this chapter, and exploit the channel information thus ob-
tained to set the equalizer to its optimum value. This procedure can be repeated
as often as needed in order to track the channel variations.

Another approach to blind equalization is based on a non-MSE criterion: as
we shall see, a proper choice of the distortion function to be minimized yields a
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lated and have the same variance). Also, define
A
my = E{|aa|?} (8.109)
and
2 4
my = Ef|a,|*} (8.110)

Candition (8.108) implies certain symmetries in the signal constellation used by

the digital modulator. For example, binary PSK and one-dimensional modula-
tions are excluded.

8.9.1. Constant-modulus algorithm

The idea ht-ere is .lo force the equalizer weights to maintain a constant envelope
on the received signal. Under the assumption

2m2 > my (8.111)
the distortion criterion, independent of a,, is then
a 2 _ Ma]?
£(c)=E [lynl - m—z] (8.112)

If we denote by' (hn), as usual in this chapter, the impulse response of the discrete
channel extending from the source to the equalizer output, so that

oo
Yn= D Gn_ihs (8.113)

k=—o0

we have, after some algebra,

E() = (mi—md) 3 |hef?

k=-00
9 2 = 2 ’ = m2
+2mg | 3 |mf?] - 2my 2 P+ = (8.114)
k=—00 k=—00 m3

Now, (8.114) can be rewritten in the form

£(e) = ma(1~|hol)? +my 3 (Rl

tap-weight setting algorithm that does not depend on the transmitted data. i k0

The following assumptions on the source symbols are made: the RV a,, are 2
complex and iid. Moreover, +2m? [ (Z lhklz) -3 hkl4J o
E[az] =0 (8.108) k0 Pt

) |
Hmilhol’ ~ 2m] 3 |+ T - mg (8.115)

i 2
i k#0

(this occurs, for example, when the real and imaginary parts of a,, are uncorre-
2
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We have derived (8.115) to clarify the choice of (8.112) for the distortion func-
tion. Actually, we prove that this choice leads approximately to the same result
as the distortion

£'(c) 2 Ellyal® ~ laal'P, (8.116)
which appears at a first glance to be sensible for constant-envelope modulations,
i.e., constant |a,|2. Expanding (8.116), we obtain

E'(c) = my(1 — |hol?)? +maq 3 [Pl (8.117)
k#0
2
+om znhkv) =Sl + il = 2m3] 5
£#0 k#0 k#0

Now, (8.117) has a minimum when |ho|? is close to unity and the IS samples
hg, k # 0, are small in magnitude. Moreover, comparison of (8.115) and (8.117)
shows that

E(c)—E'(¢) = =4 —my~2m~mg T |f*  (8.118)
m2 k£0

The difference (8.118) is almost independent of (k,), and hence of < when
the distortion term is small enough. So it can be expected that mimrmzmg E(c)
will also provide a minimum for £'(c). The condition for this to be true is tt}at
in (8.115) the term [4m3|ho|* — 2m4] does not become negative near the min-
imum; but this is assured, because (8.111) is assumed, and near a minimum

hol? = 1.
| 0|A stachastic-gradient algorithm can now be exhibited.' Since y, = 'c’x,, as
usual, the gradient of £(c) taken with respect to the tap-weight vector c is

= 2_ Ti) ] 8.119)
ve(e) =48 [un (nl” - 22)
so that the following stochastic-gradient algorithm can be used:
ct) = ™ — ay, (lynl2 - @') X, (8.120)
me

Comparison of (8.120) with (8.69) shows that the stochastic-grac'lient term does
not depend on the symbols a,, as required. Also, it can be verified Fhat when
¢'x, = a, (i.e., perfect equalization is achieved) the gradient (8.119) is the null
vector. Incidentally, this result would not hold if in lieu of m‘.; /mg2 another con-
stant were selected in the brackets of (8.112). As a conclusion, (8.120) offefs
over (8.69) the significant advantage of not requiring a training sequence. This
comes at the cost of a lower convergence speed.
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8.9.2. Shalvi-Weinstein algorithm

A different distortion function was suggested by Shalvi and Weinstein (1990).
Under the assumptions that the kurtosis of the data, i.e.,

K(an) £ B{jaal*} - 2E{anl?} — |E{a2}? = mq — 2m2

is nonzero, and that the discrete Fourier transform of the sampled channel im-
pulse response has no zeros, i.e.,

S gne ™ 0, 0<w< 2m,

a necessary and sufficient condition for the channel to be perfectly equalized is
that E{[yn|*} = my and E{|y,|*} = m,.
The proof goes as follows. From the channel input-output relation

Un = Z an-hy
k
we have, by invoking the iid assumption of the an:

E{lyl’} = E{laal*} 3_ |hi* and E{y2} =0 (8.121)
k

Moreover, by recalling definitions (8.109) and (8.110) and observing that
gy, 1= ] =k=¢

E{on_ia]_janpay }={ m}, i=j#k=0i=0#j=k
0, otherwise

we have

2
E{lyal*} = ma 3 [el* + 2m3 [(Z Ihklz) - Ih,J"} (8.122)
k k k

Thus we obtain
E{lyal*} =ms Y (hilt (8.123)
P

Now, observe that in general

Zk: Jhal* < (;lhkP)z .

with equality if and only if there is at most one nonzero term in the summations.
Thus, if E{|y[*} = E{|ax[*} then from (8.121) we have ¥ |h|? = 1. Hence,
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Yk |hel* < 1, and Ty |he|* = 1 if and only if the impulse response has onl); one
nonzero component of magnitude 1. Thus, we havg obta.med that if E{|y,,|?} =
m, then E{|ya|*} < my, with equality if and only if the 1mpu'lse response of t}!e
equalized channel has only one nonzero component of .magmtude 1. But this is
tantamount to saying that the channel is perfectly equahzet?. '

The above result suggests the following equalization criterion:

maximize E{|y.|*} subject to E{lya*} = E{|an|*} (8.124)

An interesting feature of this criterion, that we sl12all not prov: here‘;l is that
E{|y»|*} has a single global minimum over E{lynl } = E{la.| '}, and hence,
unlike with the constant-modulus criterion described above, a gFa'dllent ?lgonthm
is expected to converge to the desired response regardles§ of mmahzatxon‘.

To apply this criterion, we need an explicit expression for the gradient of
£(c) = E{|y,|*}. We have

VE(c) = 4E{|ya[*ynx7} (8.125)

and hence the stochastic-gradient algorithm

) = ¢ 4 oy, Py.x, (8.126)

along with the normalization step

c(()n+1) - c(n+l)/ I D) I

8.9.3. Stop-and-go algorithm

A different approach to blind equalization leads to the “glqp-and-gq” alg.o'mhm
of Picchi and Prati (1987). This algorithm aims at retaining the. simplicity of
a conventional linear or DFE equalizer working in a dec151on—§1r§cted modf.,
while endowing it with blind convergence properties.. The.basxc x.dea here 1115
to stop adaptation whenever the reliability of the error signal is n(?t high enougt.
More precisely, a binary-valued flag is generated telling tt'le cquailhzer whether. 1ts
current decision may be used to generate a reliable error signal: if not, adaptation
is stopped for that iteration.

8.10. More on complex equalizers

Throughout this chapter, extensive use has been made of complex notz?nons to
denote samples of bandpass signals and channel responses. As a special case,

S |
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(x"ej (2ﬂfonT+ 9,.))
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DEVICE

EQUALIZER

(77 QfonT+ ’e‘,,))

( DEMODULATION AND
PHASE COMPENSATION)

Figure 8.12: Discrete-time model of a receiver in which equalization is performed after
demodulation and carrier-phase compensation.

(xpe) @fonT + 8,))

> EQUALIZER DECISION | (@,)
DEVICE
(e~ 27Ty (78
( DEMODULATION ) (PHASE COMPENSATION)

Figure 8.13: Discrete-time model of a receiver in which equalization is performed after
demodulation and before carrier-phase compensation.

baseband signals and channels can be handled with obvious changes in the equa-
tions. In this section we expand briefly on certain features of two-dimensional
equalization.
Hitherto we have implicitly assumed that the carrier phase for demodula-
tion has been properly estimated. This estimate can be performed in a decision-
directed mode with the receiver arrangement of Fig. 8.12. In it, equalization is
performed after coherent demodulation and inside the loop for decision-directed
phase compensation (Matyas and McLane, 1974). With this arrangement, as the
equalizer itself introduces a many-symbol-interval delay between input and out-
put, the estimated phase sequence (6,,) is a delayed version of the true phase se-
quence (0,,). This delay prevents the receiver from correctly compensating any o
time-varying phase shift introduced by the channel. To avoid this impairment e
source, two different receiver structures can be used (Falconer, 1976). The first
one, shown in Fig. 8.13, places phase compensation after the equalizer, while

demodulation is performed using a free-running oscillator before the equalizer.
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Figure 8.14: Discrete-time model of a receiver in which equalization is performed before

demodulation and carrier-phase compensation.

The second one (Fig. 8.14) places both demodulation and phase compensagqu
after the equalizer. The latter now operates on bandpass sarr{pleg Hence, dltf is
referred to as a bandpass equalizer. If equal phase compensation is assumed for
both schemes, mathematically these structures are exactly equivalent.

A feature of these two structures worth observing here is t.he tqp-ratatmn
property (Gitlin, Ho, and Mazo, 1973). Assume that the e.quahzer-l.npuht samé
ples are rotated by an angle ¢. Then the vector X, defined in (8.26? is cfanlg'e
into x,e/¥. Consider the effect of this phase rotation on t!'le operation ;)( .a lmf;
ear equalizer. From definitions (8.28)—(8.29_) it can be eas.ll)./ seen tht;t : t}i: : '
unchanged, whereas v is changed into ve‘.”’. In turr_l,_ th{s implies :1 e ta[:»S
timum tap-weight vector (8.32) is changed into Copte 4 (1.9., the equ ;zs N i;:S
are rotated by —¢), the net result being that when the equalizer has sett et e
optimum the equalized output samples will not be affected by the phase rotation.

Furthermore, consider the effect on the operation of thesg two equahz“er struc(;
tures of two transmission impairments typical of telephone lines, phzsg jitter atr;1 :
frequency offset. Phase jitter acts as a real random sgquence (zpﬂ). ec?,!;i- e
phase angle of the channel-output samples. When its time constant s mll:c e sh%f[
than the equalizer settling time, it can be assumed to cause a constant p! riis ua]:
Thus, due to the tap-rotation property, it can be compeqsated for by the eq :
izer. Similar considerations hold for a frequency offset (i.¢., t.he perturbatn(l)p 0r
the carrier frequency fo by a small amount Af). In conclusion, ’[.ljle equz::l 1::6 i
due to its tap-rotation property, can track small an.loun.ts'o.f ph.ase _]ltt(;r and e
quency offset so that the phase compensation loop implicit in F1 gs. 8.1 hgn h;lse
is not required. When phase jitter or frequency offset are significant, this p!

compensation loop is needed.
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8.11. Tomlinson-Harashima precoding

In this section we describe an equalization scheme that operates at the trans-
mitter side, and hence avoids the noise enhancement caused by linear equaliza-
tion or the error propagation caused by decision-feedback equalization. This is
called Tomlinson-Harashima (TH) precoding, and is in some ways inspired by
decision-feedback equalization. There, intersymbol interference (ISI) due to pre-
viously detected symbols is subtracted out in the receiver before detection of the
current symbol. In TH precoding, a similar effect is achieved by operating on the
transmitter side: the source symbols, instead of being directly sent through the
channel, are first pre-equalized to counter the distortion that will be introduced
there. In general, a linear pre-equalizer would exhibit the effect of boosting the
transmitted power, which is highly undesired for channels with a consiraint on
Wﬁm%ﬁecdaﬁg is to introduce a nonlinéar opera-
tion tmransmjtted power from increasing. This precoding scheme
is easy to implement, and can be used in conjunction with coded modulation (to
be described in Chapter 12).

Assume from now on that the impulse response (gi)$2, of the discrete chan-
nel is causal, with go having the largest magnitude, and is known at the trans-
mitter. This knowledge can be achieved by sending a training sequence during a
startup phase, and subsequently relaying the received sequence to the transmitter.
Assume further that gg = 1.

Let the channel symbols be denoted ay., and the source symbols by. Since the
channel is assumed to be known at the transmitter, then a linear “zero-forcing”
transmission filter, i.e., one obeying

ar =bp — > qiby;
i>1
would cause complete elimination of the ISI (or of its “postcursors,” if the chan-
nel were not causal). Now, the difficulty with this solution is that the transmitted
power.may be increased, and can even be unbourded if the zero-forcing filter is
unstable. To avoid this increase, a nonlinear operation is introduced so that the
values taken by a;. are forced to be in approximately the same range as those of
the source output by.

At each discrete time k, given the past channel symbols ax_;, 2 > 1, and the
actual source symbol by, a symbol f, is first determined by subtracting from by
the ISI due to the tail of the channel impulse response, i.e.,

fi=be =Y qiaki=b ~ 3 qiar_; — a (8.127)
i>1 i

The new transmitted symbol a;, is then obtained by reducing the coordinates

of fi. If the modulation is M-ary PAM, with b, = =1, +3, ..., (M -1),

e
)

| L



422 8. Adaptive receivers and channel equalization
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Figure 8.15: Precoding and decoding with Tomlinson-Harashima equalization.

then a; is reduced to the interval (—M, M ]bya nonlinear' trapsformatmnfthat
leaves it invariant if it takes a value in this interval, ch.erw1se. it subtracts rom
it an appropriate my, an integer multiple of 2M . Similarly, if the H;]Odlll]latlon
is QAM with real and imaginary parts of bg tal.ung on M vallues each, t ;}1 ;;
is reduced to the square (—M, M}? by subtracting an .appropnate. My in 2 .
This is equivalent to a mod-2M reduction of fi, or of its real and 1magma3 part
if fi, is a complex number. Notice that, while the source symbols b can take on
either M or M? values, the precoded symbols a, may take on many more values.
Thus,
ax = fio — M

and hence, because of (8.127),

ak = bk — D GiGk—i + % — M
i

which implies that
> qiag—i = b — My (8.128)

The latter equation can be interpreted by observirlxg that its LHS, i.e., the ;l:nan-
nel output, consists of b, (the source symbol) minus a correction term;11 ince
mi € 2MZ (PAM) or my, € 2M Z? (QAM), the chapnel outputs take v uei3 in
an extended signal constellation, whose exact range is channel-dependent. s—
fore decision, the channel outputs are reduced to .the source-symbol range by
reducing them mod-2M. This is equivalent to saying that the source signal es-
timates can be recovered from the channel output by a merporyless operz.itlon
that folds the latter into the region (—M, M] (for one-dlmen.swnal modulations)
or to the square (—M, M]? (for two-dimensional modulz?tlon.s).‘ If the source
symbols by, form a PAM sequence, the memoryless operation is simply a .sllcer.
Fig. 8.15 summarizes the precoding/decoding scheme resulting from Tomlinson-

Harashima equalization.
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Finally, observe that if the precoder is forced to choose the all-zero precoding
sequence, that is, if my = 0 for all k, then f; = ay, and the transmitted sequence

is simply
ak =Y geibs
i

where (gy) is the impulse response of the formal channel inverse: this is still
causal, with go = 1. The last equation is interpreted by observing that linear
zero forcing in the transmitter is equivalent to precoding with m; = 0.

We should also observe a “data-flipping” effect caused in the receiver by the
nonlinear operation. Consider, for simplicity’s sake, binary transmission with
symbols 1. Suppose that a; = +1 is transmitted through the channel, and that
the noise takes the signal out of the [~2, 2) region, causing for example the value
2.1 to be received. Without slicing, the decision would still be correct, while the
mod-4 operation produces the value 2.1 — 4 = —1.9, and hence an error is made
by the decision device.

Transmitted power with TH precoding

We examine now the average power transmitted with TH precoding. We may
confine ourselves to consideration of PAM only: since in QAM the signals are
transmitted over orthogonal carriers, the total power is obtained by summing the
powers of the individual in-phase and quadrature parts.

We have the following result, that we shall prove later on. The average power
of the transmitted symbols ay is bounded above and below by

2__1 2 _
M3 <Ef}] < M3 L (8.129)

while, as we know from (5.12),

M2-1
3
By comparing the last two equations we see that for a binary system the max-
imum power penalty is 3 dB, which reduces to 0.8 dB for a quaternary system

and tends to zero as M increases.
We now prove (8.129). Let us define the function [ -] that reduces its argu-

ment mod 2M. Then the average transmitted power can be written in the form
{we drop the time index for simplicity):

E[a®] = E;Ee[u?(b + O)] (8.131)

where © is a random variable representing the term added to the source symbol
bin (8.127). Since the calculation of the pdf of © is a difficult task, we choose
to look for the pdf’s that yield a maximum and a minimum value of Ela?]

E[pZ] =

(8.130)
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The key to the solution of this problem is the observation that the RV © may
be restricted, without loss of generality, to the interval (=1, +1]. .Ip 'fact', with
this restriction the RV (b -+ ©) takes on values, with equal probabilities, in

-(M=-1)+06, -(M~-1)+6+2, ... ,(M-1)+0

On the other hand, if © takes values in the interval (—1, +1] +2, then u(w + ©)
takes on values, with equal probabilities, in

—-(M-1)+0+2, -(M-1)+0+4, ... (M —-1)+0+72]
Since
p(M-1)+0+2]=-(M-1)+0©

then u(b + ©) has the same distribution of u(b+ © + 2), and, by the same

argument, of u(b + © + 27), j any integer. . o
Now, pick a pair =B of values taken by b. With the restriction of O to the

interval (—1, 1] the contribution of this pair to E[a?] is proportional to
Ee[(© + B)’] + Eol(6 - B)’]
2E[©?] + 2B?

Eo[u*(© + B)] + Ee[n*(6 - B)]

Now, for © taking values in (—1, 1], and independently of B, the last ql}zi‘.ntity
is minimized by choosing a pdf that assigns to © the value 0 with'probablht'y- 1,
and maximized by choosing a pdf that assigns to © the value 1 with probability
1. Substitution of these pdf’s in (8.131) yields the desired bounds (8.129).

8.12. Bibliographical notes

The scheme of Fig. 8.1 was first analyzed by Magee and Proakis (197}) and
Proakis (1974). Prior to the mid-1960s, considerable research effort was directed
to the specification of digital receivers for channels affected b‘y ;SI. The struc.ture
of an adaptive receiver based on the TDL, and an iterative optimjzation tejchmque
for adjusting its tap weights, eventually emerged from this work. The history of
the TDL filter as an equalizer dates back to Nyquist (1928). The fl..mdamen‘tal
ideas on which automatic equalization is based were not unknown in the mid-
1960s: see, e.g., Goldenberg and Klovsky (1959), 2 paper that one of the authors
claims to be the first to describe time-domain adaptive equalization (Klovsky an'd
Nikolaev, 1978, p. 40); or the papers by Kettel (1961, 1964). However, the%-e is
no doubt that it was R. W. Lucky’s early work (Lucky, 1965, 1966) th.at provided
the major breakthrough in the problem of equalizing intersymbol-interference
channels. The TDL equalizer based on an MSE criterion was first analyzed by
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Proakis and Miller (1969) and Gersho (1969). Its convergence properties in the
training mode were studied by, among others, Ungerboeck (1972), Mazo (1979),
and Gardner (1984) using the “independence assumption.” Our treatment of the
subject is based on the latter paper, which contains the most comprehensive con-
vergence analysis known to the authors. Convergence analysis of the MSE TDL
equalizer working in the tracking mode with the stochastic-gradient algorithm
is more complicated. For details, the reader is referred to Macchi and Eweda
(1984) and to the references therein.

The interest on developing adaptive algorithms with fast convergence is more
recent. Chang (1971) and Gitlin and Magee (1977) approached this problem by
transforming the equalizer input sequence in order to decorrelate its samples.
Godard (1974) obtained an adaptive algorithm that has the structure of a Kalman
filter and exhibits a particularly fast convergence. Gitlin and Magee (1977)
showed that Godard’s algorithm owes its convergence properties to its capability
of decorrelating the equalizer inputs. The “fast Kalman algorithm,” having the
same convergence properties as Godard’s, but requiring a lower complexity, was
proposed by Falconer and Ljung (1978). Later, attention was attracted by lattice
filters. As lattice filters perform Gram-Schmidt orthogonalization on their input
sequence, their application to the fast-converging algorithm problem is natural.
An overview of the properties and applications of lattice filters can be found
in Makhoul (1978), Friedlander (1982), and in the book by Honig and Messer-
schmitt (1984). Application of lattice filters to adaptive equalization was first
suggested by Satorius and Alexander (1979) and Makhoul (1978). A problem
with adaptive lattice filters is that their outputs are uncorrelated only after the
adaptation algorithm has reached the steady state. Thus, the equalizer conver-
gence may not be as fast as with Godard’s algorithm. An adaptive lattice algo-
rithm whose outputs are uncorrelated at any time was discovered by Morf (1977)
(see also Morf et al., 1977) and applied to equalization by Schichor (1982) and
Satorius and Pack (1981). Complex adaptive lattice structures are examined in
Symons (1979). The Kalman, fast Kalman, and adaptive lattice algorithms are
extended to complex fractionally-spaced equalizers by Muller (1981).

The idea of fractionally-spaced TDL equalizers dates back to an unpublished
1969 paper by Gersho, and was rediscovered a few years later (see Guidoux,
1975; Macchi and Guidoux, 1975). Ungerboeck (1976), Qureshi and Forney
(1977), and Gitlin and Weinstein (1981) analyze their performance and conver-
gence properties.

The idea of using past decisions to cancel intersymbol interference, and
hence the concept of decision-feedback equalization, was introduced by Austin
(1967). An overview of the work done in this area before 1978 is contained in
Belfiore and Park (1979), where the derivations are based on results of linear

i
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prediction and estimation theory. A unified theory of data-aided eq?ilzzz?e::
provided in the paper by Mueller and Salz (1981). Our treatment of the subj
i ed on it.
° b;l:lind equalization goes back to the pioneer?ng work. by Sfato (19;53)[.052:
first approach to blind equalization based 0;1 tthe(T;;cJSc;u:rtngr(l} c;d:rréexgso) ton
criterion, different from MSE, was due to ' ato pesne (19805. e
presentation of the constant-modulus algorithm here foll.o:vsa“d et (1554
an analysis and extension of Sato’s method see B.er.wems (< o [his,
alysis of Godard’s method see Foschini (198.5). Eunher work i
idaf\?vrajzzlrlle ﬁy Picchi and Prati (1987), Shalvi @d Wemstem (1?190) (s:fgzlls)o
the set of references in this paper), Shalvi and Wem.stftm (1994.)1, J t(1) r;;(;rsa \ ,
Tong, Xu, and Kailath (1994), and Tong, Xu, Ha:mbl, and Kai a}t . (11 th.e -
Because, in practice, adaptive equalizers are 1rpplemented 'dlglta )l; el ]EV_
rameters, as well as the signal samples, are quantized to a ﬁmte numbe of lev
els. The effects of digital implementation of the TI?L equahzer are exami
Gitlin, Mazo, and Taylor (1973) and Gitlin and \'JVemstem.(l9.79). o
Proakis (1991) provides a survey ofbfildapt‘li\i'e equ;lﬁ:tl?hzez e:gg;mem
ime-divisi ultiple access digital mobile radio sys -
ggiiigg‘tlilzogqflnalizfﬁon up to 1984 is summarized in Qureshi (1985), where an
extensive list of references can be found.

8.13. Problems

Problems marked with an asterisk should be solved with the aid of a computer.

8.1 Consider mean-square error channel identification when the.source]z'ix:r;
bols a, are not uncorrelated with mean zero. By .dc':ﬁnmg [1.1611‘ col?:,h tion
matrix A = Elaja}], and assuming A to be positive deﬁm[eh(w 1[ ch cor
responds to assuming that the a, are linearly independent), s oz hat the
minimum achievable mean-square error corresponds to perfect ide

tion.

8.2 Consider the channel identification problem of Section 8.2. Assn;‘me ht:rz:f
the TDL used to identify the channel has L delay element;, while t e char
nel memory span is L > L. This situation can be dealt with by writing, in
lieu of (8.4),

T = q’a¢ + e

and ,
« Ty = qO ag
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] we[f]
and q, q, have L+1 components, and 0 is the null vector with [ — I,
entries. With these assumptions, derive an expression for the minimum
mean-square identification error without the assumption of zero-mean, un-
correlated source symbols. Also, when the source symbols are uncorre-
lated and have zero mean, show the minimum MSE is achieved for § = q,.

where

8.3 (*) Consider binary PAM transmission with source symbols %1 using a
channel bandlimited in the Nyquist interval (=1/2T, 1/2T). The impulse-
response samples, taken every T, are 0.833, 1.0, and 0.583. The noise is
additive Gaussian, and the receiving filter is an ideal low-pass filter with

cutoff frequency 1/27. Compute the bit error probability versus £ /N, in
the following situations:

(a) Unequalized channel.

(b) Channel equalized by a S-tap minimum-MSE TDL equalizer (choose
the optimal value for the delay D). ~

(¢) Same as in (b), with a 7-tap TDL.
(d) Same as in (b), with a 15-tap TDL.

8.4 Consider a linearly-modulated signal transmitted over a dispersive chan-

nel. Assume that an infinitely-long zero-forcing equalizer is used that com-
pletely eliminates ISI.

(a) Derive the transfer function of the equalizer.

(b) Derive an expression for the bit error probability of this transmission

system that takes into account the noise enhancement introduced by
the equalizer.

8.5 (*) Consider binary PAM transmission with source symbols +1 using a
channel bandlimited in the Nyquist interval (—1 /2T, 1/2T). The channel
has a sampled overall impulse response (hn), the noise is additive Gaus-
sian, and the receiving filter is an ideal low-pass filter with cutoff frequency
1/2T. Assume that the channel is equalized using a three-tap minimum-
MSE equalizer, and compute the bit error probability versus £,/N,, with
the delay D as a parameter, for these two situations:

@) (ha) = (0.5, 1.0,0.5).
(b) (ha) = (1.0, 0.67, 0.45, 0.3, 0.2, 0.135).
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8.6 Discuss the Shalvi-Weinstein algorithm in the case where E{a2} = 0, but
the kurtosis is nonzero.

Carrier and clock synchronization

9.1. Introduction

In previous chapters, when computing the performance of a digital communi-
cation system, we assumed implicitly that the same clock controlled both the
transmitter and the receiver operations. This means that corresponding events in
the transmitter and receiver are synchronous (i.e., they occur at the same time
instants, or at time instants that differ by a fixed and constant delay).

Also, in Chapters 4 and 5, we saw that the most efficient demodulation
schemes are coherent; they make use of the phase information of the carrier.
Optimum demodulation requires then a local carrier at the receiver side whose
frequency and phase are in perfect agreement with that of the transmitted signal.
In principle, two pairs of ideal identical oscillators at the transmitter and re-
ceiver sides could ensure the synchronization and coherence required for proper
operation of the system. In practice, however, the signals emitted by a pair of
oscillators with the same nominal frequency will start drifting from each other
because of their physical inability to keep the nominal frequency with infinite
precision.

A good model, valid for the signals emitted by two independent oscillators
with the same nominal frequency f, synchronized at ¢ = 0, is the following:

21 (t) = A1 COS{27Tf0t -+ 91 (t)] (9.1)

22 (t) = A2 COS[ZWfot + 02 (t)] (92)

where each 8;(t) is a Wienet random process with 8;(0) = 0, zero mean, and
variance equal to t/7;, 7 = 1,2. This random process is a nonstationary Gaus-
sian process defined in the interval (0, c0). Thus, the variance of the random

429
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process representing the phase difference between the two oscillators is given by

t i TI+Ta t
E6(t) - &) =—+—==t =—
OO -aOP = -+ == IR E

9.3)

where we have defined the joint coherence time 712 of the two oscillators as the
time required by them to yield a unitary variance of their phase difference. Since
the variance (9.3) increases with time, we can conclude that a pair of indepen-
dent oscillators cannot maintain their synchronization indefinitely. They need to
mutually exchange certain informations, that is, to be in some way locked. In
this chapter, we examine the fundamentals of clock and carrier synchronization
with the aim of clarifying some very basic concepts. In pursuing this scope, we
had to make some choices, the most important of which is to treat the subject in
the analog (instead than in the digital) domain. The reason is that, in our opinion,
the basic synchronization circuits (one for all, the phase-locked loop) are easier
to understand in the analog domain. We are perfectly aware that modem imple-
mentations (at least for low-to-medium carrier frequencies) tend today to place
an analog-to-digital converter, equipped with an anti-aliasing filter, at the input
of the receiver, and then to perform all operations, including synchronization,
in the digital domain, The readers interested in implementing synchronization
circuits in the digital domain are referred to the recent and comprehensive books
of Mengali and D’ Andrea (1997), and Meyr et al. (1997).

9.2. Acquisition and training

So far, we have supposed 61 (0) — 6,(0) = 0. This is certainly not true when we
switch on the modems to start the transmission. The two oscillators are com-
pletely incoherent, and we need an initial period of time to synchronize the os-
cillators before the transmission of data can be started. This is usually known as
acquisition time ot acquisition phase. At the end of the acquisition phase, the
two oscillators are locked and data transmission starts. During the data trans-
mission, we also need to keep the phase difference between the two oscillators
within certain specified bounds. This operation is known as the tracking phase.
It is needed only when the transmission time is significantly larger than the joint
coherence time of the oscillators. When this is not the case, as in the transmission
of characters from a terminal keyboard, we have an asynchronous transmission.
Different levels of synchronization are often required in the system. As an ex-
ample, consider a time-division multiplexed pulse-coded modulation system to
transmit the voice, employing binary CPSK modulation. We need the four lev-
els of synchronization shown in Fig. 9.1: the frame, word, symbol, and carrier
synchronization. Here, we will only be concerned with the last two, carrier and
symbol synchronization.
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Figure 9.1: Different synchronization levels in digital transmission.

The location of carrier and clock synchronizers within a possible receiver
structure is shown in Fig. 9.2.

We have seen from the spectral analysis of modulated signals in Chapter 5
that the most efficient digital modulation techniques suppress the carrier com-
pletely; all transmitted power resides in the continuous part of the spectrum, and
none is “wasted” on a spectral line at the carrier frequency. Also, under the
hypothesis that the information-bearing random variables are independent and
identically distributed, the spectrum of the digital signal is continuous and does
not contain spectral lines at the clock frequency. Thus, any carrier or clock syn-
chronizer will be composed of two conceptually distinct parts: (1) a suitable
nonlinear circuit that regenerates a carrier or clock frequency from the data sig-
nal that contains neither, and (2) a narrowband device (typically a tuned filter or
a phase-locked loop, PLL) that separates the regenerated carrier or clock from
background disturbances.
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Figure 9.2: Receiver illustrating locations of synchronizers.
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Figure 9.3: Maximum-likelihood estimator for the carrier phase.

To give a theoretically sound justification of the structure of the PLL, which
is the most widely used circuit for synchronization purposes, let us consider
a simplified situation in which the regenerated carrier is only affected by the
addition of Gaussian noise; that is,

2(t,0) = Asin(27 fot + 6) + n(t) 9.4

We want to obtain the “best” estimate of the unknown phase # based on the
observation of z(f) in an interval of length nTp, with Ty = 1 /fo and n any
integer. A straightforward application of detection theory (see Section 2.6) to the
continuous case leads to the following expression for the log-likelihood function:

A©) = /0 "Lt 8) — Asin(@nfot + ©)]2dt 9.5)

where © is the RV representing the estimate of 6. The optimum unbiased esti-
mate © = 8 of § under the maximum-likelihood criterion is the one minimizing
the RHS of (9.5) or, equivalently, solving the equation
nTt a
/ * 2(2,6) cos(2m fot + f)dt = 0 9.6)
0

A block diagram of the ML estimator of 8 is presented in Fig. 9.3. To obtain an

s
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approximate expression of the variance of the estimate 6, let us assume that the
noise power is low (and consequently the estimate error is low), so that we can
write

cos(2 fot + 8) = cos(2m fot + 0) + (6 — 0);0- cos(2m fot + 6) 9.7

Substitution of (9.4) and (9.7) into (9.6) leads to

§_ g~ BT n(t) cos(2m ot +6) dt

9.8
A [T sin®(2n fot + 6) dt ©8)

Now, accounting for the fact that n(¢) is a white Gaussian noise with power
spectral density Vy/2, we can easily obtain for the variance of the estimate the
following expression:

o 2. Ny
B0 -6~ AnT,
From (9.9), one can conclude that the variance of the estimate is inversely pro-
portional to the signal-to-noise ratio A%/ N, and to the length nT} of the observa-
tion interval. Figure 9.3 also shows that the optimum estimator has an open-loop
structure. However, practical considerations render the solution of Fig. 9.3 im-
practical in most cases. In fact, an estimate of the unknown phase is available
only at the end of the observation interval. Since the phase estimate has to be
used for coherent demodulation with the final goal of deciding on the transmit-
ted data, these data should be stored for a time equal to n7; in order to postpone
any decision about them. This procedure should also be repeated periodically in
order to follow slow variations of the carrier phase during the tracking period.

(9.9)

A possible way of overcoming these difficulties consists in obtaining the de-

sired estimate using an iterative procedure. Suppose that at the end of the kth
carrier period we have the estimate ék, and that we want to modify it on the
basis of the observation of the received signal in the subsequent carrier period.
Consider the average of the quantity (9.6) in an observation interval of length Tg
conditioned on the value 6, obtained in the previous interval

{22 o-4)

(k+1)To -
E { /k 2(,8) cos(27 fot + 6y) dt}

To
AT; -
= —2—(1 sin(6 — 6) 9.10)
In Fig. 9.4 the behavior of this average is shown as a function of 6. If we have
a value of 8 close to 8 (which is reasonable at the end of the acquisition phase),
the average (9.10) is a good error indicator for the estimate at hand. In fact,

¥
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Figure 9.4: Error indicator function for recursive phase estimation.

whenever it is positive, we know that 0y is greater than #; on the other hand,
when it is negative, we know that ék is smaller than #. Moreover, its magnitude
tells us how far from # our past estimate is. A reasonable recursive algorithm to
update our estimate is thus the following:

ék+1 = ék - akE{e(ék)} (911)
where e(6y) is defined as
- dA(O)
e(fy) & =22 9.12)
©) =26 oci,

In (9.11) the similarities with the gradient algorithms described in Chapter 8 to
recursively update the taps of an adaptive equalizer are evident. Since we are not
able to compute the statistical average in the RHS of (9.11), it seems appropriate
to modify the recursive algorithm (9.11) by replacing it with a time average

. . 1.k R
Ori1 =0 — = > ie(6;) (9.13)
k =0
where we have extended the influence of the past estimates to the whole time
interval (0, kTy).

9.3. The phase-locked loop

A practical implementation of the recursive algorithm (9.13) is shown in the c.ir-
cuit of Fig. 9.5, which is called a phase-locked loop (PLL). In it, the received sig-
nal z(¢, 8)" is multiplied by the output of a voltage-controlled oscillator (VCO),

!Notice that we have multiplied here by /2 the magnitude of the received signal in order to
simplify the expressions that follow.
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V24 sin(2zfyt +0)
—> LPF

1/_2—k1cos(2nfot+ )

vCO

Figure 9.5: Block diagram of a phase-locked loop.

(2] +
© + 0 sin (-) Ak ky h(D)

90 L20)
f dt dt

Figure 9.6: Egquivalent block diagram of a phase-locked loop showing the relationship
between the phases.

a sinusoid with magnitude equal to v/2k,. This device generates a carrier whose
frequency varies linearly with the amplitude of a control signal. The product is
low-pass filtered and input to the VCO, whose instantaneous angular frequency
is changed according to

db(z)

dt

Under reasonable simplifications, it can be shown (see Problem 9.2) that the PLL
implements a relationship like (9.13) between successive estimates of 8.

Let us now analyze in some detail the behavior of the PLL, which is the heart
of many synchronization circuits. Suppose for the moment that the received
signal is noiseless. Let us denote by h(t) the impulse response of the low-pass
filter in Fig. 9.5, and suppose that it filters out the high-frequency component at
the output of the multiplier. Thus, having defined the phase error

= koe(t) (9.14)

8(t) £ 0(t) - b(2) 9.15)
we obtain the following nonlinear equation governing the behavior of the PLL:
dp df t ,
=== Ak1k2/0 h(t ~ 7)sin ¢(r) dr (9.16)

In Fig. 9.6 a block diagram that functionally represents (9.16) is shown. While
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[

Figure 9.7: Linearized version of the block diagram of Fig. 9.6.

in general its behavioral analysis is difficult, it simplifies drastic.:ally in the case
of a phase error ¢(t) small enough to justify the approximation sin ¢ = ¢, which
linearizes (9.16) and leads to the circuit of Fig. 9.7. Its analysis is straightforward
using Laplace transforms. We obtain the transfer function of interest as

B(s) Ak k2 H (s) ©.17
O(s

>

Heq(s)

) = 5+ AkikH(s)

where ©(s) is the Laplace transform of 8(t).

9.3.1. Order of the phase-locked loop

The order of the PLL is defined according to the degree of the denominator of
Heq(s), which in turn depends on the loop filter transfer function H(s). Thus we
have

First-order PLL

Ak ky
_ = 9.18
H(s) =1 = Hel(s) T AR, (9.18)
Second-order PLL
1457 _ 4C¢7 fos + (27rfn)2 9.19
His) = sn = Hels) = 82 +4Cnfus + (27 fu)? ©-19)

where the two parameters f, and ¢, called respectively the natural frequency and
the damping factor of the loop, are given by

_ 1 [Akk (9.20)
T or 1

c= D [ARk 9.21)
s 2 1

n
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Figure 9.8: Frequency response of a second-order loop.

We observe that the order of the PLL corresponds to the number of perfect inte-
grators within the loop. For a first-order PLL, we can control only one parameter,
Ak, k3, which is the 3-dB bandwidth of Heq(s), whereas the second-order loop
gives us the two parameters f, and (.

The magnitude of the frequency response H,q (727 f) of a second-order loop
for several values of { is plotted in Fig. 9.8. It can be seen that the loop performs
a low-pass filtering operation on phase inputs. Using root-locus plot characteris-
tics, it can be shown that first- and second-order loops are always stable, whereas
third- and higher-order loops can be stable under certain conditions. Besides the
stability considerations, it is important to know the steady-state behavior of the
PLL (i.e., the steady-state phase and frequency errors in the presence of particu-
lar inputs). We shall examine two different cases of input phases

8a(t) = 27t (Af) + A9 9.22)
0p(t) = w2 (6 f) + 2mt(Af) + A (9.23)

The first case is the most important in data transmission between fixed points,
since it refers to a situation in which the received carrier presents a frequency
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Errors | Lst-order PLL | 2nd-order PLL | 3rd-order PLL
AD, i’fkfz 0 0
A®g 00 2:21’2 0
Afa 0 0 0
Afp 1—4%% 0 0

Table 9.1: Steady-state phase and frequency errors for PLL of various order.

displacement Af (e.g., due to frequency-division multiplexing) an{i an iniFial
phase shift A. The second case can happen when there is a relaflve motion
between transmitter and receiver, as in a mobile radio communication system.
Using the final-value theorem of the Laplace transform (see Problem 9.1), we
obtain the steady-state errors of Table 9.1, where Afap and Ad4 p represent
the frequency and phase errors, respectively.

All the preceding results were based on the assumption that the phas; error
is sufficiently small, thus allowing the loop to be considered linear in its op-
eration. This assumption becomes progressively less useful as error increases
until, finally, the loop drops out of lock and the assumption becomes unjustiﬁed.
Through the analysis of the nonlinear model of the PLL, one can identify im-
portant parameters like, for example, the hold-in range (i.e., the input freque.ncy
range over which the loop will hold lock) or the acquisition time (i.e., the time
required by the loop to reduce the phase error under a given threshold). A de-
tailed analysis of the behavior of the PLL without the linear assumption can be
found in Viterbi (1966) and Lindsey (1972).

When a Gaussian noise is present in additive form at the input of the PLI..,
an approximate linear analysis is still possible when the signal-to-noise ratio is
sufficiently high. This leads (see Viterbi, 1966) to the functional block diagram
of Fig. 9.9. In the figure, n'(t) is a Gaussian noise process independent of n(t),
with the same spectral properties as the input noise, i.c. with power spectral

9.3. The phase-locked loop 439
n'(t)
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Figure 9.9: Equivalent block diagram of a linearized PLL including noise.

density Gn/(f) = N,. To evaluate the effect of the noise, we assume that the
input phase 4(t) is constant so that the fluctuations in the phase of the VCO
signal can be entirely attributed to the noise. From Fig. 9.9 we can obtain the
transfer function between the noise n'(t) and the recovered phase 4(t)

5 O(s) | kikH(s) 1
Hy(s) = NGy = s+j4k1k2H(s) = = Heals) (9.24)

The noise power contribution to 8(t) is then

1 fo . N
ot =5z | w(N)IHua(2nf)df = 22Beq (9.25)

where B, denotes the equivalent noise bandwidth of the PLL. For first- and
second-order PLL, it is given by the following expressions:

Beq = A’Z"z (first order PLL) (9.26)
Beq =7fay/C+ 4—1<- (second order PLL) .27

It can be seen from (9.26) and Table 9.1 that, for a first-order PLL, the needs for
a small steady-state phase error and a small noise bandwidth are in conflict. For
a second-order PLL, a good compromise is achieved with the value ¢ = 0.707.

When the linear analysis is valid, the VCO phase error ¢(t) (the so-called
phase jitter ) is a Gaussian random process. In general, this is not true. Nonlin-
ear analysis of a PLL has been concerned with deriving the probability density
function (pdf) of the RV & representing the amplitude of the phase error #(t).
This pdf (see Viterbi, 1966) is found as the steady-state solution of a nonlin-
ear stochastic partial-differential equation known as the Fokker-Planck equation.
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Without going into the details, the resulting Tikhonov pdf is

_ exp(pcos ¢)
fa(¢) = “orlelp ¢ < (9.28)

where p is the signal-to-noise ratio of the loop (the inverse of the variance (9.25)),
and Io(-) is the modified Bessel function of the first kind and order zero. The
pdf (9.28) approaches a Gaussian one for large p.

In its essence, the PLL acts as a narrowband filter whose central frequency
tracks the frequency of the received signal (9.4) within a reasonable range with-
out affecting its noise bandwidth. As already stated, it requires the presence of a
spectral line, at the frequency to be tracked, contained in the signal at its input.
Thus, in addition to the PLL, suitable nonlinear circuits are integral portions of
a synchronizer. In the following, we shall examine in some detail some of the
most common carrier and clock synchronizers. Only a qualitative description of
their behavior will be presented. The reader interested in detailed performance
analyses may refer to the Bibliographical Notes at the end of this chapter.

9.4. Carrier synchronization

To simplify, let us consider initially a binary CPSK signal written in its bandpass
form
v(t) = vp(t) cos(2m fiot + 6) (9.29)

where
vp(t) = Y anur(t — nT) (9.30)

where up(t) is the unit step function, equal to 1 for 0 < ¢ < T and 0 elsewhere,
and the information symbols a,, take the values +1.

There are three main types of carrier synchronizers, the squaring loop, the
remodulator, and the Costas loop. They differ in the position of the nonlinearity,
which is entirely separated from the PLL in the squaring loop, whereas it is
included in the phase detector for the remodulator and the Costas loop.

The block diagram of the squaring loop is shown in Fig. 9.10. Its nonlinear-
ity is a square-law device, so its output

1
y(t) £ v(t) = 5 1+ cos(4m fot + 26)] 9.31)
contains a spectral line at frequency 2f, that can be tracked by a conventional

PLL. The VCO output is divided by 2 to provide the desired carrier at frequency
fo. In.the divide-by-2 operation, there is a phase indeterminacy, which makes it
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Figure 9.10: Block diagram of the squaring loop for carrier recovery of a binary PSK
signal.
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Figure 9.11: Block diagram of the remodulator for carrier recovery of a binary PSK
signal.

impossible to decide whether the current symbol is 1 or —1. This phase ambigu-
ity, inherent in all phase-shift modulation techniques, can be resolved by special
encoding, like the differential encoding described in Section 5.8.

A remodulator synchronizer is shown in Fig. 9.11.  The received signal
is demodulated and the message vp(t) recovered. It is used to remodulate the
received signal so as to remove the modulation. If the baseband waveforms are
time-aligned, the output of the balanced modulator has a pure carrier component
that can be tracked by the PLL. The delay  in Fig. 9.11 is required to compensate
for the delay of the low-pass filter following the demodulator. In the figure, the
relationships explaining the behavior of the synchronizer in the absence of noise
are also given.

A block diagram of the Costas loop is shown in Fig. 9.12.  Its behavior
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Figure 9.12: Block diagram of the Costas loop for carrier recovery of a binary PSK

signal.
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Figure 9.13: Block diagram of the Mth power synchronizer for carrier recovery of an
M-ary PSK signal.

should be explained by the relationships indicated in the figure, which are valid
in the absence of noise.

The carrier recovery circuits described before can be generalized to the situa-
tion in which the digital information is transmitted via M -ary CPSK modulation.
An Mth power synchronizer is shown in Fig. 9.13. Its operation is easily under-
stood by simple extension of the squaring loop. Because of their wide applica-
tions, block diagrams of the 4-PSK remodulator and the Costas loop for 4-PSK
are shown in Figs. 9.14 and 9.15. A stable lock can be achieved at any of four
different phases. There is an inherent fourfold ambiguity that must be resolved

S
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Figure 9.14: Block diagram of the remodulator for carrier recovery of 4-PSK signals.
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Figure 9.15: Block diagram of the Costas loop for carrier recovery of 4-PSK signals.

by other means, such as, for example, the differential co-decoding explained in
Section 5.8. Both the remodulator and the Costas loop perform a multiplication
by the demodulated message in analog form to remove modulation. Better noise
rejection would be possible if the detected digital message were used for modu-

1
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Table 9.2: Intermodulation losses of Mth-law regenerators.

lation removal. This is done in decision-directed synchronizers. Unfortunately, a
decision-directed synchronizer cannot acquire the carrier until symbol §ynchro-
nization has been achieved. Thus, it is not suited for applications requiring fast
acquisition. Carrier synchronization circuits based on both th; remc?dulator and
Costas loop can be modified to cope with more general two-dimensional modu-
lations such as QAM.

In general, the performance analysis of a synchronizer is very difficult Pe-
cause of the presence of the nonlinear regenerator. Without going into details,
we can write the noise-caused VCO phase jitter variance for an M -phase syn-
chronizer as

N UBeq

of = M* (2552 Lua(p) ©.32)

where M? comes from the M-fold phase magnification, Las(p;) is the los§ causgd
by noise intermodulation in the nonlinearity, and p; is the signal-to-noise ratio
at the output of the receiving filter. The quantity within the pamnthgses repre-
sents the jitter variance of an ordinary PLL (see (9.25)). For the §pec1al case of
an Mth-power nonlinearity (Butman and Lesh, 1977), some typical losses are
given in Table 9.2.
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9.5. Clock synchronizers

We assume that carrier and clock are recovered in two distinct steps: first, the
phase 8 of the carrier is estimated; then the timing wave is extracted from the
demodulated baseband signal. In other words, we shall not consider the approach
of the simultaneous estimation of the carrier and clock. This omission does
not imply a merit judgment, since in some cases superior performance can be
obtained with (admittedly complex) joint estimation methods. Details can be
found in the Bibliographical Notes at the end of this chapter.
Consider now the baseband signal obtained from the demodulator:

o(t) = 3 ash(t — nT) (9.33)

where (a,) is the message sequence, which is assumed to be a zero-mean station-
ary discrete random process formed by iid random variables. The objective of the
timing synchronization circuit is to extract from rp(¢t) a periodic wave with pe-
riod T' (the symbol interval) and a proper phase indicating the sampling instant
within each period. Clock synchronizers can be categorized according to the
bandwidth of the communication system as wideband or narrowband. We are in-
terested in the most common, and more critical from the timing synchronization
point of view, situations where bandwidth occupancy approaches the Nyquist
limit of 1/(2T) at baseband. More precisely, we assume that the bandwidth does
not exceed 1/T. In this case, the pulse A(t) is spread over many symbol inter-
vals, giving rise to intersymbol interference (ISI). As we have seen in Chapter 7,
to avoid ISI the pulses are usually given a Nyquist shape. This yields the elim-
ination of ISI at nominal sampling instants, but it is not sufficient to eliminate
the effects of ISI on the clock synchronizer. In general, the recovered clock is
affected by a jitter component, called self-noise or data noise, caused by ISI. In
many applications, this self-noise is predominant with respect to the Gaussian
noise. For this reason, we have not included the additive Gaussian noise in the
RHS of (9.33).

As for carrier acquisition, the available signal rp(t) has no spectral lines at
frequency 1/T. In fact, rp(t) is easily recognized as a cyclostationary random
process (see Section 2.2.2) with period T', zero mean, and mean-square value

E{r}(t)} = E{a®}>_h*(t — nT) 9.34)

Equation (9.34) shows that the square of 7 (t) does possess a periodic mean
value.

Using the “Poisson sum formula” (see (2.109) and Problem 9.3), we can
express (9.34) in the more convenient form of a Fourier series whose coefficients

i
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Figure 9.16: Block diagram of a clock synchronizer.

are obtained from H (f), the Fourier transform of A(t)

omlt
E{rh(t)} = ——E{:ﬁz} > ueexp (J%") (9.35)
4
with o .
w=[ H (f - ;) H(P)df 936)

Due to the assumption of bandwidth limitation for H (f), only the three terms
with £ = 0, %1 in the summation of (9.35) are differenF from‘zero.' The. first
corresponds to a dc component, whereas the other two give a sinusoidal signal

with frequency 1/T" and amplitude
o0 1
= (f-= d 9.37)
m= [T H (-5 B

Note that the sinusoidal component at the clock frequency vanishes }Nher} H(f)
is strictly bandlimited in the interval [-1/(27), 1/(2T)). Thus,. also in this case,
for signals exhibiting some extra bandwidth beyond the Nyquist fnquency, we
can use a nonlinearity (e.g., a square-law rectifier) to restore the desired spec-
tral line followed by a “tuned” filter (a narrowband ﬁltgr cfentcred around the
timing frequency 1/T) or a PLL that tracks the restored timing wave. Altematef
zero-crossings of the reference waveform w(t) are used by the pulse. generator o
Fig. 9.6 as indications of the correct sampling iflstants. Remerx'lbenng tl;le spec-
tral analysis of cyclostationary processes of Section 2..3, we rea'hze that the spec-
trum of y(t) = r5(t) presents a continuous part, besides the dnscrf:t.e one giving
rise to the desired spectral line. Thus, even in the absence of addmye Gaussnag
noise, we have a self-noise entering the tuned filter (or PLL) of flg. 9.16 z?n
causing a fluctuation of the zero crossings of w(t) arqund the nominal sampllmg
instants, the timing jitter. To better understand, consider the complex envelope
R(t) of h(t) defined with respect to the frequency 1/ (27), so that

h(t) = R {ﬁ(t) exp (]%f) } (9.38)

and write 7% (t) in terms of A(t)
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1 2

* 3

> (=1)"ash(t — nT)

n

(9.39)

The second term in the RHS of (9.39) can be disregarded as it is not passed
through the tuned filter (or PLL). The first term can be rewritten as

Acos (2—,?) + bp(t) cos (%) + bg(t) sin (g;th) (9.40)

In (9.40) we can recognize the desired periodic component (first term), as well
as two in-phase and quadrature disturbances (second and third components, re-
spectively). It is precisely the quadrature component b (t) that produces timing
jitter. Using (9.39), this component can be written as (see Problem 9.4)

bo(t) =33 aktm(—1)*""hp(t — kT)hg(t — mT) (9.41)
k m

where hp(t) and hq(t) are the real and imaginary parts of A (). It is evident
from (9.41) that the timing jitter is strongly dependent on the shape of the date
pulse A(t) at the input of the nonlinearity. For this reason, some authors have
suggested the insertion of a suitable prefilter before the nonlinearity of Fig. 9.16
in order to eliminate or greatly reduce the data noise (Franks and Bubrouski,
1974; Mengali, 1983). In particular, these authors have shown that using a tuned
filter (or a PLL) with a transfer function exhibiting 2 conjugate symmetry around
the symbol rate 1/7 and a transfer function H(f) limited in bandwidth to the
interval {1/(4T'), 3/(4T)] with a conjugate symmetry around 1/(2T), one can
completely eliminate the data noise if the nonlinearity is a square-law rectifier.

9.6. Effect of phase and timing jitter

The first part of Chapter 7 was devoted to the computation of the symbol error
probability conditioned on a given value of the phase jitter considered as a RV
with a known pdf. Later, we introduced the Tikhonov pdf (see (9.28)), which
describes the statistical behavior of the phase error at the output of a PLL. We
mentioned that it approaches a Gaussian pdf for large values of the loop signal-
to-noise ratio. To give a quantitative idea of the effect of the phase error on the
average error probability, we shall consider a binary CPSK system, without ISI,
affected by a phase error in the recovered carrier with Gaussian pdf. In this case,
it is easily seen that the conditional bit error probability for a given value of the
phase error ¢ is

Pfel¢) = %erfc ( & 33:2 ¢) (9.42)
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so that the average bit error probability, assuming a Gaussian pdf for the phase
jitter @, becomes

R(e) = BoRlel )= [ Rile|8)fe(4)dd ©943)

1 0 & cos? ¢) ( #* ) d
erfc exp|—-=) d¢
2,/2n03 /—oo ( No 20,

Figure 9.17 shows the behavior of the average bit error probability as a funcnon
of the signal-to-noise ratio £,/Np. Different curves are labeled according to a
value of the standard deviation of the phase jitter gy in degree.s: The curves
have been obtained by calculating the conditional error probability and, then,
averaging with respect to the phase jitter pdf using standard Gauss qu&fdrat.ure
rules (see Problem 9.6). The figures show the typical error floor behav1(?r, ie.,
the fact that, for a given standard deviation, thereis a low.ex.' bound tfxgthe bit error
probability attainable by the system. For an error probablhty of 10 ,a standard
deviation of 10 degrees induces a penalty in the signal-to-noise ratio clp§e t.o
0.5 dB. The effect of a symbol synchronization jitter on the error probability is
shown in Fig. 9.18. In obtaining the results shown in the ﬁgure, we 'have assumed
a simplified situation in which the elementary pulse A(t) in (9.33) is rect.angulz?.r,
so that the only effect of the timing error is to reducg the 51gnal.-to-n01se .rat1o
at the output of the correlator that implements the optimum recetver for binary
CPSK. The timing error is supposed to be a Gaussian RV. The parameter o,
labeling the curves of Fig. 9.17 is the standard deviation, multiplied by =, of the
normalized error 7 £ (£, — fo)/T in the receiver symbol clock.

When we consider a multilevel signaling scheme employing two quadrature
carriers, the effect of the carrier jitter is enhanced, because the phe'lse error also
induces, as seen in Chapter 7, a cochannel interference besides the snpple attenu-
ation of the binary case. Thus, the accuracy requirements of the carrier recovery
circuits become more stringent.

9.7. Bibliographical notes

A huge literature exists in the field of synchronization of digital communica-
tion systems. The following books are focused on the phase-locked loop (PLL;
theory and applications: Viterbi (1966), Lindsay (1972), Blanchard (1976), an

Gardner (1979). In particular, Viterbi’s exact analysis .of 'the first-order PLL
solving the Fokker-Planck equation has provided n.mch insight for underst.apd-
ing nonlinear operations, whereas Gardner’s book is very usefu.l for practicing
engineers. The problems related to the design and analysis of digital PLL have
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Figure 9.17: Binary PSK bit error probability with imperfect carrier synchronization
as a function of the signal-to-noise ratio £,/No. The parameter labeling each curve
represents the standard deviation of the residual phase jitter assumed to have a Gaussian
statistics.

not been considered in this chapter, although they are now very important be-
cause of the widespred applications of digital circuitry. A good starting point
for the interested reader are the tutorial papers by Gupta (1975) and Lindsey and
Chie (1981). A survey of the peculiar methods used in the analysis of digital
PLL without noise can be found in D’ Andrea and Russo (1983).

The general problem of carrier and clock synchronizers is faced by Stiffler
(1971), Lindsey and Simon (1973) and Franks (1983). A comprehensive tuto-
rial paper has been written by Franks (1980). The joint recovery of carrier and
symbol synchronization has been analyzed by Mengali (1977), Mancianti e al.
(1979), and Meyers and Franks (1980). The effect of imperfect synchronization
on system performance is the subject of certain papers in Stavroulakis (1980).
The treatment of this subject is attributable to Franks (1980), Gardner (1979),
and Mengali (1979).
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Figure 9.18: Binary PSK symbol error probability with imperfect timing synchronization
as a function of the signal-to-noise ratio &/No. The parameter.labilmg each curve
represents the standard deviation of the residual, normalized timing jitter assumed to

have Gaussian statistics, multiplied by .

Digital synchronization techniques, where timing, phase and frquency syn-
chronization is achieved by operating on signal samples tak,en at a suitable rate,
is the subject of the comprehensive books by Mengali and D’ Andrea (1997), and

by Meyr et al. (1997).

9.8. Problems
Problems.marked with an asterisk should be solved with the aid of a compuzer.

9.1 Using the final-value theorem of the Laplace transform, verify the steady-state
frequency and phase errors of Table 9.1.

9.2 Show that the PLL of Fig. 9.5 implements a relationship like (.9.13) between suc-
cessive estimates of 6. Hint: Start from the differential equation (9.16) and sup-
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pose that the variations of 6(£) are so slow that it is possible to write

di(t) 6@ ~b(t-T)
.~ T

9.3 (a) Show that (Poisson sum formula)
1 m\ .
h(t —kT) = — 2rmt[T
Ek (t-kT) T Sm H(—T)eJ

Hint: Find first the Fourier series expansion of the periodic factor h(t — kT).
(b) Using the result in part (a), verify (9.35).

9.4 Derive the expression (9.41) of the quadrature data noise component bg(t).

9.5 In the absence of noise in the received signal, explain quantitatively the behavior
of the remodulator and Costas loop for QPSK modulation, as from the block
diagrams of Figs. 9.14 and 9.15.

9.6 (*) Using standard quadrature rules, obtain the curves of Fig. 9.17.

9.7 (*) Compute the conditional symbol error probability P(e | ¢) for the case of
QPSK modulation, and then average with respect to ¢, assumed to be a Gaussian
random variable with standard deviation 0, Obtaining curves of the symbol error
probability versus £ /Ny for various values of Cg-

9.8 Using the result of (9.37), evaluate the magnitude of the discrete component at
frequency 1/T" at the output of a square-law device for a raised-cosine impulse
response h(t) (see (7.71) for the expression of h(t)) as a function of the roll-off
factor a.
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Improving the transmission
reliability: Block codes

Designers of primitive digital communication systems sou.ght lto obtabx:n l(;)‘:,vl (;3[11:
error probabilities by transmitting at high power or by using arger o
than strictly necessary. This approach is adequa.xte if Fhe required error prow_th [hz
is not too low and/or the data rate is not dtoodh;]gh: dlt blv?':rperformance i
1 precious of resources: spectral bandwidth and power. .

mosT}I:e lesson taught by Shannon (see Section 3.3) was that high pexfonfz;ril::e
is indeed obtainable by calling a third resource into pla'y, the sy'stem com;f) :.ran:'_.
The concurrence of two basic facts, i.e., the sky-rocketing requ1ren.1ents ;) iy
mission speed and the affordability, thanks to the modemn electronic techno ‘ (iy,
of extremely sophisticated receivers has made the .Shannon dream a; ;avirsyed i:ll
reality, so that highly complex co—deco:ing ;echnlt?g:s are now widely

igital transmission systems to protect the information. N

e Techniques to cor)nltrol the error probabili‘ly are based on Fhe add1.t10n of, ir:-
dundancy to the information sequence. Tradltlonallx, codes aimed gt impro : ii
the transmission reliability are called error correcting codes. Th‘ljs cc?nce;;l s
bound to a particular operating mode of the demodulator and deco bc;rf in vgein
the received signal sequence is hard-detected by the. demodulator, ore thi
transferred to the decoder. As a consequence, the binary sequence entenn%rh e
decoder contains errors that the decoder may or may not be at?le to correc(;[..S nis
mode of operation, however, entails some degree gf subopnma(ljxt{, and ;rives
placed, whenever feasible, by soft-decoding, in which the d.em.o u at:m;j e
the sufficient statistics in analog or quantized fom.l, and supphes'lt t:)i t ? ec:tior;
which, in turn, performs the final task of estimatl.ng the‘fransmltte in m;rr:: on
sequence. When this is the operation mode, talking of “error correcting
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Figure 10.1: Block diagram of a transmission system employing channel coding.

does not make sense, since no true correction of error takes place, but, rather, the
pair encoder-decoder prevents errors from occurring. In this situation, it would
better to talk of error control codes (see Blahut, 1983). Most of the algorithms
for decoding tree codes make use of the soft information in a straightforward
manner. The use of soft-decision in block codes is somewhat more involved and
generally requires significant changes in the decoding algorithms.

For the reasons previously explained, we will generally speak of codes that
improve the transmission reliability, or of channel codes, in the sense that these
codes aim at protecting the information from impairments occurring during its
transmission over the channel. '

In this chapter, we will first propose a taxonomy of the codes employed to
protect the transmitted information, and then define and analyze linear block

codes. In the next chapter, we will consider convolutional and concatenated
codes.

10.1. A taxonomy of channel codes

Consider the simple block diagram of Fig. 10.1. Using the terminology of Blahut
(1983), we distinguish a source producing a binary sequence, the data stream: it
is the binary sequence emitted directly by the source, or by the source encoder.
We assume that it is formed by independent identically distributed (iid) binary
random variables (RVs). The data stream enters the channel encoder which maps
itinto a code stream. For constructing the code, additional structure may be de-
fined on the data stream by segmenting it into pieces called data words. Like-
wise, the code stream is segmented into pieces called code words. For an (n, k)
block code, the data words consist of & bits and the code words of 7 bits. A

H“MH”
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channel code C is the set of 2% n-tuples of bits, the code words X. An encoder E
is the set of the 2* pairs (u, x), where u is a data word, i.e., a.k—tuple of bits, and
x the corresponding code word. These definitions should clarify the fundamental
difference between the notion of a code and the notion of an encoder. The code
is a collection of code words and is independent of the way they are obtained.
The term encoder refers to the one-to-one correspondence between data words
and code words, and also applies to the device that implements this assignment.
With respect to how the encoder assigns code words to data words, we say that
the (n, k) code is a block code when the encoder is memoryless, i.e., whc?n to the
same k bits in the data word there correspond the same n code word bits. The

block code is an {n, k) code, and the ratio R, £k /nis the rate of th.e code. .Each
data word (block) is encoded independently without interaction with earlier or
later data words. When the correspondence between data words and code words
has memory, i.e., the n bits of the code word do not depend only on the k bits
of the data word, but also on some previous data words, we say that the code
is a tree code. In this case, it is often convenient to think of infinitely long data
streams and code streams, or sequences, which start at time zero and continue
indefinitely in the future. A tree code breaks the data stream into §egments called
data frames, each consisting of ko data bits, ko normally a small integer. The en-
coder is a finite-state machine that retains some memory of earlier data frames;
in the simplest case, it simply stores the m most recent data frames unchange.d.
A single code frame consists of ng bits that are computed from the mko dgta bits
of the m data frames stored in the encoder memory, and the kg bits of the incom-
ing data frame; these n bits are shifted out to the channel as the new kg data bits
enter the encoder. The ratio R, 2 kq/nq is still called the code rate. Tree codes
with a special memory and linearity structure, to be defined in the next chapter,
are called convolutional codes.

With respect to the properties of the set of code words, we distinguish be-
tween linear and nonlinear codes. For a linear code, the set of code words {or
code streams, for tree codes) is closed under component-wise modulo-2 addition,
an operation denoted simply by "+ in this chapter.! This property has sevejral
important implications that will be made clear in the next scc.tlo.ns. ' According
to how the system makes use of the code capabilities, we dlstmgulsh. bc.atwe?en
error detecting and error correcting codes. This does not represent a distinction
between the codes themselves, but, rather, between the strategies followed by the
system.

Two different strategies can be used in the channel decoder. Conceptually,

1Modulo-2 addition can also be defined as the addition operation in the F}alois field GF(2).
Since it is beyond the scope of this book to introduce Galois fields, we will always speak of
modulo-2 addition.
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these strategies can be related to Fano’s inequality (see Chapter 3, (3.67)). In the
first strategy, the decoder observes the hardly-demodulated received sequence
and detects whether or not errors have occurred. A certain measure of uncertainty
is eliminated, which corresponds to the term H (e) in (3.67). Error detection is
used to implement one of two possible schemes: error monitoring or automatic
repeat request (ARQ). In the case of error monitoring, the decoder supplies to
the user a continuous indication regarding the quality of the received sequence,
so that, when the reliability becomes too low, the sequence can be discarded. In
the case of ARQ, the transmitter is asked to repeat unsuccessful transmissions.
To this end, a feedback channel from the receiver to the transmitter must be
available.

The second strategy is called forward error correction (FEC). The decoder
attempts to restore the correct transmitted sequence whenever errors are detected
in the received sequence. In this case, an additional quantity of uncertainty must
be removed corresponding to the term P(e) log(2* — 1) of (3.67). It is intuitive
that this strategy requires, for the same code, more complex decoding algorithms.
The choice between the twao strategies depends on the particular application and
on the complexity of the transmission system considered. For example, the ARQ
scheme is usually applied in the communication between computers, since a two-
way transmission channel is available together with large memory devices that
store the incoming information while performing, upon request, the retransmis-
sion procedure. On the other hand, FEC is adopted when the information must
be protected on a one-way channel, or when real-time, or strictly-controlled de-
lays are required. Examples pertain to deep-space communication and digitized
interactive voice transmission.

With respect to the encoder operations, we say that the encoder E is system-
aric when the first & bits of each code word x coincide with the & bits of the data
word u. It is common in textbooks to say that a code, rather that its encoder,
is systematic. In the following, we too will sometimes indulge in this impreci-
sion. The reader is wamned, though, that the concept of systematicity entails the
mapping of data words into code words, and, thus, only pertains to the encoder.

To analyze the benefits due to channel encoding in comparison with the un-
coded schemes of Chapter 5, let us consider again the model of Fig. 10.1. The
source emits binary digits? at a rate of R, bit/s and the encoder represents each
data word of k source bits using n = k/R, bits. R, is the code rate. To keep the
pace of the source, the transmission speed on the channel must be increased to
the value R,/R, binary symbols per second, and thus the required bandwidth
must also be increased by the same factor 1/R,. As a result, the use of chan-

2Since we make the assumption that the data stream is made of iid binary RVs (0 and 1), we
will use indifferently the words “bits” and “binary digits.”
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nel encoding decreases the bandwidth efficiency with respec(ti tt? tl:;eli;r;,c;dnﬁ
o b o andcomened o & sequence o e
encoder are presented to the modulator, an ‘ ] o e
ing one of the modulation schemes described in Chapter 5 or 6.
fl(::’;)irl;sc)zfs of this preliminary discussion, we assume tha;tv thhe r;zd:lf;ziatifgz
an antipodal binary modulation over an AWGN channel. 1tl this .
scheme, each binary encoded symbol is mapped by th‘e modu. atoF mh a binary
waveform of duration T = T, = R./R, seconds. Tr.ns dm"auon 1}5\ 8| oer i
that used in the uncoded case by a factor R.. penotlng Wl.th &y the en taﬁ{ p‘:c
information bit, and assuming that the transmitted power 1s kept f?nih 5 v,alue
can conclude that coding decreases the energy per channel sytr,nt;ow;l)l ihe value
&R, As aresult, in case of hard de;is(iions, mo'res ?:nr;: :s);n:, bc; esrvmions neor
ctly demodulated than with uncoded transmis: ion. ' ’
:)dir)llg seem rather discouraging. In fact, ban(tiwgit}; :23226);:\,2:}::?::: ia:(:
more errors in the demodulated sequence are to . \ 2
-desi ded system, the larger number of errors at t}.u? demodulator ou
::tnwdi‘l:ls E:gr;;ensat}:ed for by the error-correcting c.apabilmgs of t};erd:c;c;?;r;
Therefore, a coded transmission should trade ban.dv‘ndth efficiency oiVa]em]
overall error performarnce, using the same transirussion powe;; o‘rj, equase o th);,
for a smaller required power for a given error performamfe. T e decre
required power for the coded system is referred to as coding gain.

Let us describe the processing that must take place at the channel putp:é :g
achieve such a result. Consider first the case in which r.!1e demodullatcBE Oxst :lss o
make decisions on whether each binary waveformlcarriles::l an(i toerdaby. Jothis paHd

i i s de

ose, the demodulator output is quantized to two evels den !

?s said to make hard decisions. The sequence of binary dlgltse rfrglr: itr},l;oﬁ::;?:n
i ts to recov
ulator is fed into the decoder. The decoder attemp . . o
i ’s redundancy for either detecting or correcting
sequence by using the code word’s re g O s
tput. Such a decoding p

the errors that are present at the demodulator output. : : y
called hard-decision decoding. In this model, assuming a binary anl:xpodalhcohirl
ent modulation and an AWGN channel, the combm:dtlon of modulator,I t<: ;naESi:
and demodulator is equivalent to a binary symmetrlc:.chaglrlleril c(zslizi.onsscmme

. IR - . tipoda

robability is the error probability of a binary an

?::; %hapter 4)),. The overall error performance of the codc?d scheme depgnds on
the implementation of efficient algorithms for error detection and correction.

At the other extreme, consider the case in which the unquannzc?d outp:tﬂ?:
the demodulator, the sufficient statistics, is fed tp the decoder. Thlsdstt)cl)lli't]ads .
7 outputs corresponding to each sequence of n binary waveforms an S
decision variables. With the optimum decision strategy, the casc:: e g
lator and decoder perform the same operation as the optimum coheren

—
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ulator of Chapter 4, i.e., they choose the transmitted sequence corresponding
to the n-bit code word which is closest, in the sense of the Euclidean distance,
to the received sequence. Such a decoding process is called unquantized soft-
decision decoding. In this model, the combination of modulator, channel, and
demodulator is equivalent to a binary-input, continuous-output channel. It is in-
tuitive that this approach presents a higher reliability than that achieved with the
hard-decision scheme. In fact, the decoder can take advantage of the additional
information contained in the unquantized samples that represent each individual
binary transmitted waveform. An intermediate case, called soft-decision decod-

ing, is represented by a demodulator whose output s quantized to @ levels, with

@ > 2. In this case, the combination of modulator, channel, and demodulator is

equivalent to a binary input, Q-ary output discrete channel. The advantage over

the analog (unquantized) case is that all the processing can be accomplished with
digital circuitry. Therefore, it represents an approximation of the unquantized
soft-decision decoding.

The advantage of a coded transmission scheme over an uncoded one is usu-
ally measured by its coding gain. This is defined as the difference (in decibels)
in the required value of £,/N, to achieve a given bit error probability between
a binary antipodal uncoded transmission and the encoded one. This concept is
represented qualitatively in Fig. 10.2, where we plot the two curves expressing
the bit error probability P, (e) versus the signal-to-noise ratio per bit £,/ N, for
the uncoded and encoded systems. The typical behavior of the two curves of
Figure 10.2 suggests two considerations:

® The coding gain, which depends on the value of the bit error probability
(and thus on the signal-to-noise ratio), increases with the signal-to-noise
ratio and tends (for £,/Ny — oo and hence for P,(e) — 0) to an asymp-
totic value that will be evaluated later in the chapter.

o For low values of the signal-to-noise ratio, there can be a crossin g between
the uncoded and coded curves, meaning that the coding gain becomes neg-
ative. In other words, there is a limit to what a code can do in terms of
improving a bad channel.

To quantitatively assess the limits of the coding gain, we have plotted in Fig-
ure 10.3 the curve of the binary uncoded antipodal scheme (curve A) with the two
channel capacity limits: the first (curve B), which tends to —1.6 dB, correspond-
ing to the infinite-bandwidth capacity limit and to soft-decision decoding, and
the second (curve C), which tends to 0.4 dB, the BSC capacity limit which refers
to a hard-decision demodulator. These limits had been evaluated in Section 3.3.

The regions between the uncoded curve and those of the capacity limits rep-
resent the region of potential coding gains. As an example, for a bit error proba-

Sty
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Py (e

Uncoded
»

Coded

€, /No (dB)

Figure 10.2: Typical behavior of the bit error probability versus bit signal-to-noise ratio
for uncoded and coded systems.
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w0sd R It SR
w0t
-6 -2 2 6 10
£,/No (dB)

Figure 10.3; Potential coding gains of coded transmission with respect to binary un-

coded antipodal transmission.
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bility of 10~5, a potential coding gain of 11.2 dB is theoretically available in the
case of unquantized soft-decision decoding. Another limit, the cutoff rate limit,
will be derived when analyzing the performance of coded transmission.

The fifty years that separate us from the channel coding theorem of Shannon
has seen a great research effort aiming at filling the channe! coding gap through
the discovery of codes approaching the capacity limits. Until recently, these
efforts had been very successful up to the cutoff rate limit (see Section 10.4),
a couple of dB short of the capacity limit, but were unable to reach the region
between cutoff rate and capacity. As we shall see at the end of next chapter,
we now know a way to design codes that can approach to within 0.5 dB of the
coding gain promised by the capacity limit at bit error probabilities of 10~ to
1077

10.2. Block codes

We will consider mainly binary codes, i.e., codes for which both the data words
and the code words are formed by binary digits O and 1. This concept can be
extended to g-ary codes, and a particularly important case occurs when ¢ = 2°
is a power of 2; in this case, ¢ admits a binary representation with b bits, and the
(n, k) code of g-ary elements is equivalent to an (nb, kb) binary code.

The basic feature of block codes is that the block of » digits (code word)
generated by the encoder depends only on the corresponding block of & digits
generated by the source (data word). Therefore, the encoder is memoryless. A
great deal of block code theory is an extension of the notion of parity check. Take
a sequence of k binary digits. Transform it into a sequence of length n = k + 1
digits by simply adding in the last position a new binary digit, following the
rule that the number of ones in the new sequence must be even. This redundant
digit is called a parity-check digit. In this way, any error event on the channel
that changes the parity of the sequence from even to odd can be detected by the
decoder.

Parity-check codes are a particular class of block codes in which the digits
of the code word are a set of n parity checks performed on the k information
digits. The code is usually referred to as an (n, k) code. An encoder (or, simply,
a code) is called systematic when the first & digits in the code word are a replica
of the information digits in the data word, and the remaining (n — k) digits are
parity checks on the k information digits. Parity checks in binary sequences are
formally dealt with using modulo-2 arithmetic, in which the rules of ordinary
arithmetic hold true except that the sum (1 + 1) is 0, not 2. Throughout this chap-
ter, modulo-2 arithmetic will be used unless otherwise specified. A functional
block diagram of the encoder is shown in Fig. 10.4. It consists of a k-stage in-
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Qutput register

Figure 10.4: Block diagram of the encoder for a parity-check code,

put shift register, n modulo-2 adders, and an n-stage output shift register. Each
adder is connected to a subset of stages of the input register in order to perform
the desired parity checks. The vector u = {u1, %2, .- -, u¢] of k information dig-
its is fed into the input register. When this register is loaded, the content of each
adder is fed in parallel into the corresponding stage of the output register, which
shifts out the code word X = [Z1, T2, - . ., Z]. While shifting out one code word,
the input register is reloaded and the whole operation repeated. The clocks for
the two registers are different, the output rate being higher by a factor 1/ R.. The
following simple examples will clarify these concepts.

Example 10.1 Repetition code (3, 1)
In this code, each code word of length n = 3 is defined by the relations

Ty =U, T2=1U, T3 =W (10.1)

The encoder is sketched in Fig.10.5. Obviously, the adders are omitted in this case. The
resulting repetition encoder is defined by the correspondence

Data words | Code words
0 000
1 111

Notice that the encoder is systematic, and that only two of the eight sequences of length
3 are used in the code. a
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x3 x2 x,

n=3

Figure 10.5: Encoder for the repetition code (3, 1),

k=2
Uy |

+

13 [ X x1;—->
n=3

Figure 10.6: Encoder Jor the parity-check code (3, 2).

Exa'tn{ple 10.2  Parity-check code 3, 2)
This is a code in which the third di 7

. it i ] . .
word is defined by the refations T ok On the first two digts. The code

1=u, T2 =up, I3=1u +u, (10.2)

The . . -
Systematic encoder is shown in Fig. 10.6. It is defined by the corresponden
ce

Data words | Code words

Noti .
otice that only four of the eight sequences of length 3 are used in the code
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k=4

Uy Us Uy uy

DIOIC

X7 | X1 *5 x4 | X3 | X2 *1

n=7

Figure 10.7: Encoder for the Hamming code (7, 4).

Example 10.3 Hamming code (7, 4) )
The Hamming code (7, 4) is defined by the relations

T = Ui, i=1,2,3,4
T5 = uy +uz +u3
Tg = upFuzFUg
27 = uptuztuq.

(10.3)

. - . cre-
The corresponding systematic encoder is shown in Fig. 10.7. It is defined by the co

spondence
Data words | Code woa—]
0000 0000 000
0001 0001 011
0010 0010 110
0011 0011 101
0100 0100 111
0101 0101 100
0110 0110001
0111 0111 010
1000 1000 101
1001 1001 110
1010 1010011
1011 1011 000
1100 1100 010
1101 1101 001
1110 1110 100
1111 1111111
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Notice that only 16 of the 128 sequences of length 7 are used in the code. O

These examples show that all the information required to specify the encoder
operation is contained in relations of the type of (10.1), (10.2), and (10.3). With
reference to Figs. 10.5, 10.6 and 10.7, these relations specify the connections
between the input register cells and the adders. If the encoder is systematic, only
the (n — k) parity-check equations of the redundant digits must be assigned.

The information that specifies the encoding rule, and thus the structure of
the encoder itself, can be concisely represented by the generaror matrix G of the
code. It is a k x n matrix whose (4, j) entry is 1 if the i-th cell of the input register
is connected to the j-th adder, and 0 otherwise. Using the row-vector notation
for the data word u and the code word x, the encoding rule is described by the
equation

x =uG (10.4)

It is easily seen that obtaining a code word x through (10.4) is equivalent to

summing the rows of the matrix G corresponding to the ones contained in the
information sequence u.

Example 10.4  For the (7, 4) Hamming code of Example 10.3, the generator matrix G
can be found by inspection of the encoder of Fig. 10.7 as follows:

Q
1

00
00 (10.5)
10
01

= o= = O

1
1
0
1

(= )

0
1
0
0

S o o =

If we want the code word corresponding to the data word u = [1100], we must add the
first two rows of G, obtaining

1000101 +
0100111 =
1100010

and the result agrees with the code table given in Example 10.3. Q

For systematic encoders, the first k¥ columns of G form a k x k identity
matrix, so that G assumes the form

G=[I:P] (10.6)
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where I is the k X k identity matrix and P is a k x (n — k) mz;u;x co:)ta]l;:;g
the information regarding the parity ch'ecks. 'ghe knowledge of P completely
defines the encoding rule for a systematic encoder. .

’ The following important properties of parity check codes can be proved

Property 1 The block code consists of all possible sums of the rows of the gen-
erator matrix.

Property 2 The sum of two code words is still a code word.
Property 3 The n-tuple of all zeros is always a code word.

Because of these properties, parity-check codes are also c?ll;d line:zorr cs::iec: (I;;:-
i being a subspace of the vec -
ear block codes can be interpreted as pace O P
ini i - this algebraic viewpoint, the .
taining all 2" binary n-tuples. From O K Yeatly inde.
i basis of the subspace and consist 0 ]
B e worce 1o & ir 2% li inati enerate the entire
all their 2* linear combinations g
pendent code words. In fact, _ e o BT e
i inearly independen
subspace, that is, the code. Note that any e . For
i form a generator matrix for de.
an (n, k) linear code can be used to ode. For
’ it i i lude that any generator matrl
these reasons, it is straightforward to conc _ el
d, by means of row operations an
(n, k) block code can be reduced, of ro tions and colums per.
i i .6), which is also called reduc
mutations, to the systematic form (10.6), clon
i ions do not alter the code, column perm
form. However, while row operations : | pormue-
i ds, i.e., to a code that differs fro:
ions may lead to a different set of code words, i.e.,
:L(;nirigiial one in the arrangement of its binary symbols. Twotf:or:ise:‘n »;h:;?
i btained from each other by row operatto
generator matrices can be 0 24 B
i d error probability, and, .
umn permutations have the same wor bab e St
i i that their bit error probabiliti
are said to be equivalent. Note, however, . e ma
i th the word error probability y
be defined later in the chapter, together wi he v
be different, because equivalent codes can admit dxffgrent encoders, and hence
i opi d code words.
fferent mappings between data words an '
? ;‘rhus evgl?y (%z, k) block code is equivalent to a syste.n?an(? (n, k) blocktcoc:;
(see Prol;lem 10.5). Therefore, if the word error probablhty is the parﬁne er
interest, we can consider only systematic codes without lqss of ger;:re: hlaz'.is e
i de word is its Hamming weight, )
An important parameter of a co its ‘ . hatis, e
i i f all distinct weights in a code, tog
number of ones that it contains. The set o : : 12 code, (oBeLter
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i i iti ivalent codes have the same weig
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among the Hamming distances between distinct code words (3 # J) is called
the minimum distance dy, of the code. The following property allows an easy

computation of d,;, for linear codes.

Property 4 The minimum distance of a linear block code i
of its nonzero code words.

In fact, the distance between two binary sequences is equal to the weight of their

modulo-2 sum, and the sum of two code words is still a code word (Property 2).

Example 10.5 Consider again the (7, 4) Hamming code of Example 10.3. From the

code table, we obtain the following weight distribution

Weight | Number of
code words

0 1

3 7

4 7

7 1

Using Property 4, we get dyy;, = 3.

10.2.1. Error-detecting and error-correcting capabilities of a block code

Assume that the demodulator makes hard decisions so that the discrete channel
between the channel encoder and decoder can be modeled as a binary symmetric
channel (BSC). Each transmitted code word x is received at the decoder input as
asequence y of n binary digits (Fig. 10.1). The encoder is systematic. Therefore,
the first k digits of y are the received information digits, while the remaining
(n — k) digits are the received parity-check digits. The sequence y can contain
independent random errors caused by the channel noise. Let us

define a binary
vector e called an error vector:

e=le;,..., e 10.7)

Each component ¢; is 1 if the channel has changed the i-th transmitted digit;
otherwise, it is 0. The received vector is then

y=x+e (10.8)

where x is the transmitted code word. The decoder recomputes the (n — k)
parity-checks using the first k received bits, and compares them with the (n — k)

s the minimum weight

iy

1H
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received parity-checks. If they match, the received sequence is a .codethv;o;::
Otherwise, an error is detected. Therefore, at least for error detectllon,t he de-
coding rul; is very simple: an error pattern is detected whenever at heatls one of
the (n — k) controls on parity checks fails. Let us define a vectotr).s thal dci niains
the parity checks performed on the received word y. Its (n — k) hmta;]rryze ! gt e
zeros for all parity checks that are satisfied, and ones for those .t athe deﬁl;ition
vector s is called the syndrome of the received vector y. Bgcalllq,c]; oliniton
(10.6) of the generator matrix G of a systematic code, it is easily ven
the syndrome can be obtained from the equation
s=yH (10.9)
where the prime means transpose, and where we have introduced the parity-
check matrix H, defined as

HE [P L (10.10)

x m matrix, whose rows represent the parity-check symbols

Itis an (n — k) lation using (10.6) shows that

computed by the decoder. A direct calcu
GH =0 (10.11)

where 0is a k x (n — k) matrix all of whose elements are zero.

(7, 4) Hamming code of Example 10.3. The three

Example 10.6 Consider again the PG O ved soquonee y can be writ

parity-check symbols computed by the decoder o!
ten by inspection of (10.3) as follows:

s1 = (t+yet+y)tys o2
s2 = (y2+uys+uys)tue (10.
s3 = (+uy2tys)+yr
The parity check matrix is therefore
110:100
X (10.13)

H=|90111:010
1101:001

i i ing the definition (10.10).
It can be verified that (10.13) is also obtained from (10.5) using )

The property (10.11) can also be verified.

From the definition of the syndrome associated with a received sequence y,
tl{e following two properties can be verified:
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Property 5 The syndrome associated with a sequence y is a zero vector if and
only if y is a code word.

Property 6 The decoder can detect all channel errors represented by vectors e
that are not code words.

Since the channel can introduce 2" different error vectors, only 2% of them are
not detected by the decoder, that is, those corresponding to the set of code words.
Finally, since no code word exists with a weight less than dy, (except, of course,
the all-zero code word), the following theorem can be proved.

Theorem 10.1

A linear block code (n, k) with minimum distance d,;, can detect all error vec-
tors of weight not greater than (dp;, — 1). ¥

Until now, we have only explored the error-detection capabilities of a hard-
decision decoder. The problem of error correction is more complicated, since
the syndrome does not contain sufficient information to locate the errors. Using
(10.8), the expression (10.9) for the syndrome can be rewritten as -

s = yHl = (X + e)HI (1014)

where x is a code word. Since xH' = 0 (Property 5), there are 2% different
sequences y that generate the same syndrome. They are obtained by summing
to a given error vector e the 2% code words. Therefore, given a transmitted code
word x, there are 2% error vectors that give the same syndrome. Which one
actually occurred is an uncertainty that cannot be removed by using only the
syndrome.

A suitable decoding algorithm must be elaborated. Assume that maximum
likelihood (ML) hard decisions are taken by the decoder. This means that it
achieves minimum word error probability on the received code words when they

are equally likely. If p is the transition probability of the equivalent BSC implied
by hard decisions, we have

Py | x;) =p%(1 ~p)~—% (10.15)

where n is the block length and d; is the Hammin g distance between the received -
sequence y and the transmitted code word x;. Assuming, without loss of gener-
ality, p < 1/2, the probability P(y | x;) is a monotonic decreasing function of
d;. Therefore, ML decoding is accomplished with minimum Hamming-distance
decisions. The “best” decoding algorithm decides for the code word x; which is
closest to y. Recalling the discussion regarding (10.14), we can conclude that
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e Code words

[ Received sequences
with errors

isi i i ode words.
Figure 10.8: Qualitative representation of the decision regions assigned to c

the minimum-distance decoding algorithm assumes thi.lt tgf errto(r)fvte:;o;kee:;;
actually occurred is the minimum-weight error vector in deﬁseuence et
vectors yielding the syndrome associated v{lth the received s 3istance ciemding
considering this decoding rule in detail using the 'rr.n.mmt;m- O e
algorithm, let us relate the error-correcting capabilities of a

code parameter dpiq.

Theorem 10.2

A linear block code (n, k), with minimum distance dpin, can cohrr::: af(lzljez-tr;;
vectors containing no more than t = [(dmi,..— 1)-/2 | ex;ﬁm,c :(/ie re o] (he
“floor” of a) denotes the largest integer contained in a. de

error-correcting code, and is often denoted as an (n,k,t) code. v

Proof of Theorem 10.2

The decoding algorithm is implemented by assigning to each code word a deci-

sion region containing the subset of all the rec?wed seg'xencl:gs 8t)hafA a;lre; :rlg:f; f:
it than to any other (minimum distance decoding, see Fig. ‘ .e d.se e ying
tor with no more than [(dmi, — 1)/2] errors produces a recfelv 5 glble A
inside the correct decision region. Error correction 1s therefore p .

The resuits of Theorems 10.1 and 10.2 are summar‘ized in Table 101.1.k .
Based on previous Theorems 10.1 and 102, a demgq l;gioal .fo'r ;utr,no;:istc;n &
i i hieve the largest possible mini
(n, k) is to use its redundancy to achier : : um distance
i blem is known. Instead, uppe
.. So far, no general solfution to this pro . m. In . .
(11:\;/; bounds to dgmi,, are used. Some of them will be described in Section 104.2
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Errors detected | Errors corrected

B

Qu

O N AWK AWM
EWWROND = -

Table 10.1: Error correction and error detection capabilities of linear block codes as a
Sunction of din.

10.2.2. Decoding table and standard array of a linear block code

Using the minimum-distance hard decoding algorithm just described, the de-
coding operation can be performed by looking for the code word nearest to the
received sequence. This approach requires the storage of the 2* code words and
repeated comparisons with the received sequence. The total storage requirement
is on the order of n x 2* bits. Hence, the approach becomes rapidly impractical
even for moderately-sized codes. Also, the comparison process is unacceptably
long when n and ¥ are large.

A more efficient approach is to evaluate the syndrome associated with the
received sequence y by assuming that the error vector e that actually occurred
is the minimum-weight vector in the set of the 2* vectors that generate the same
syndrome. With this approach, we can build a decoding table by associating
with each syndrome the error vector of minimum weight that generated it. The
positions of the ones in the error vector indicate the di gits that must be corrected
in the received sequence y. This approach is better clarified by the following
example.

Example 10.7 The (7, 4) Hamming code has minimum distance 3. Thus, it is expected
to correct all single errors. There are, of course, 128 possible received words and only 8
different syndromes. All these sequences are included in Table 10.2. They are grouped
in rows containing all sequences that share the same syndrome. The syndrome is shown
as the first entry in each row. The first column of the table contains all error vectors
of minimum weight. It can be verified by inspection that each error vector containing
only one error has a different syndrome, and hence it can be corrected. Therefore, the
decoding table for this cade is the following:
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Table 10.2: Standard array of the (7, 4) Hamming code.
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Syndrome | Error vector | Digit in error
000 0000000 None
001 0000001 7
010 0000010 6
011 0001000 4
100 0000100 5
101 1000000 1
110 0010000 3
111 0100000 2

Obviously, the syndrome 000 corresponds to the set of the 16 code words. The
syndrome 111 locates an error in the second position of the received sequence, and so
on. Table 10.2 can also be interpreted as follows. Assume that the sequence 1101010
is received. The corresponding syndrome is 011. Therefore, an error in position 4 is
assumed and corrected. The code word obtained, which is 1100010, appears at the top
of the column containing the received sequence. ]

A table such as Table 10.2, containing all the 2" n-tuples (the possible re-
ceived words) of length n organized in that order, is called the standard array
of the code. It has 2% columns and 2" ~* rows. The rows are called cosets. The
first word in each row is nominated a coset leader. The top word in a column is
a code word, and each coset leader is the minimum-weight word that generates
the syndrome common to all words of that coset.

The decoding table is built by simply associating with each syndrome the
corresponding coset leader of the standard array. The coset leaders are there-
fore the correctable error vectors; if the error vector is not a coset leader, then
an incorrect decoding will be performed. To minimize the average word error
probability, the coset leaders must be the error vectors that are the most likely to
occur. For a BSC, the coset leaders are the minimum-weight words associated
with a given syndrome. Therefore, the decoding algorithm works as follows:

1. Compute the syndrome for the received sequence.
2. Find the correctable error vector (coset leader) in the decoding table.

3. Get the estimated code word by adding the correctable error vector to the
received word.

The decoding table requires the storage of 2*~* syndromes of length (n — &)
and of 2"~* error patterns of length n: a total of 2"~* x (2n — k) bits. For high
rate codes (k = n), the storage requirement is close to n x 2"~*, considerably
less as compared to the n x 2* bits required by an exhaustive search. In spite of
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(n,k)
3.1)
(7, 4)
(15, 11)
(31, 26)
(63, 57)
(127, 120)

- NV T N SR

Table 10.3: Parameters of the first Hamming codes.

i i en n and
this interesting result, the decoding table, 00, becc;me; 1{12175rtiﬁté::1}ev::ust nand
laborate algebrai :
k are large numbers. In that case a more elat . oo
signeda:fthe code in order to employ decoding strategles based on computal

algorithms, rather than on look-up tables.

10.2.3. Hamming codes

Equation (10.14) can be rewritten in the form
s =eH (10.16)

Therefore, the syndrome of a given sequence is the sum of tc]':lz Z:lu,;l:; ;fig
corresponding to the position of the ones in the error v‘eictOr.[ ? 111: 3 rct;hemo,re 2
column of H is zero, an error in that pOSithl'.l cannot be detected. Further cam,mt
two columns of H are equal, a single error 1n one Qf those two p sitions cannor
be corrected since the two syndromes are not dlstm.ct. We cl:an ;:18 e .
block code can correct all single errors if and only if the colum
Che(;-ll(ar:jnt?n);ilazr;n;z?;:r:gix‘:;s;;n;; a matrix H whose columns a;gra‘lalvtehl;
i igi ro sequence.

posile sequences of 1 = 4 i o mming code. These codes
ila:'—e d’m,; -’—- 3 ’and are thus capable of .correcting all sxr;lg]e f;?rri‘_?r;{ ;a;:
R. = (2'—1—1)/(2" - 1) increases with [ and app‘roa:;‘: beis L fo

pa:ametefs of the first six Hamming codes are listed in Table 10.3.

Example 10.8 The parity-check matrix of the Harnming code (15,11) is the following:

0.00000011111111
000111100001 11 (10.17)
H={) | 1001100110011
’ 1] 0101010101010
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Notice that H is not written in the systematic form of (10.10), its columns being in lex-
icographical order. It can be reduced to systematic form by a simple rearrangement of
columns. The interesting property of (10.17) is that the 4-tuple in each column, as a
binary number, identifies the column position. Therefore, an error vector with a single
error will generate a syndrome that gives, in binary form, the position of the error in the
received sequence. This information can be used for correction. o

Hamming codes have an interesting property that can be verified by inspec-
tion of the standard array (see Table 10.2 for the (7, 4) code). All possible re-
ceived sequences have Hamming distance 1 from one of the code words. Codes
of this type are called perfect codes. Another property of the Hamming codes
is that they are one of the few classes of codes for which the complete weight
distribution is known. The weight distribution of a code can be represented in a
compact form as 2 polynomial, called the weight enumerating function (WEF)
of the code. It is a polynomial in the indeterminate D

A(D) =Y A4D¢ (10.18)
d=0
where Ay is the number (multiplicity) of code words in the code with weight
(or, equivalently, Hamming distance from the all-zero code word) d. For the
Hamming codes, the WEF can be shown to be
1

A(D) = ~ o (1 + D)* + n(1 + D)*~1/2( — p)tnt1)/2] (10.19)

The result of Example 10.5 can be checked against (10.19).

Each Hamming code can be converted to a new code by adding one parity
digit that checks all previous n digits of the code word. This results in a class
of (2',2! — 1 — 1) block codes called extended Hamming codes. Their parity-

check matrix H.,, is obtained by adding a new row to the Hammin g parity-check
matrix H as follows:
[ o]
20

He = H Do (10.20)

11 ...1

The last row represents the overall parity-check digit. Since, with an overall
parity-check, the weight of every code word must be even, the extended Ham-
ming codes have dp;, = 4. Their particular structure makes it possible to detect

4

iy
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all double errors while simultaneously correcting all single errors (as in the o:g-
inal Hamming codes). In fact, the syndromes for double errors tform asu ;et
distinct from that of the syndromes for single errors. The decoding algorithm

works as follows:
1. If the last digit of the syndrome is 1, then the numl?er of errors must bz
odd. Using the minimum-distance algorithm, correction can be performe
as for the Hamming codes.

2. If the last digit of the syndrome is 0, but the syndrome is not all-zero, ;he:
no correction is possible since at least two errors must have occurred.

double error is therefore detected.

This property of extending a code by the addition of an Qverallcjpanlty c:;c;i(uc;:?
be applied to any linear block code other tt}ap the Ha.lmrmng co bes. 0n P e im(;
any linear (n, k) block code with an odd minimum dlsFance canbec n(ﬁ, di
an extended (n + 1, k) block code with a minimum distance increased oy one.

10.2.4. Dual codes

The generator matrix G and the parity-check matrix'H of a linear (n, k) block
code are related by (10.11). This relation can be rewritten as

HG =0 (10.21)

Thus, the two matrices can be interchanged and the H matrix can be the gent:Ar(-1
ator matrix of a new (n,n — k) block code. Code§ that are so relate: are §alht
to be dual codes. There is a very interesting relatxoflshlp betweeq t ef welt'gorl
distributions of two dual codes. Let A(D) be the weight em{meratmg' uncflits
of the (n, k) block code and Aguu(D) the weight gnumeratlpg functlolntod :
(n,n — k) dual code. Then, the two weight enumerating functions are related by
the identity (MacWilliams and Sloane, 1977)
1-D

Ageut(D) = 27*(1 + D)"A (—1—+—D) (10.22)

This relationship is very useful in determining the weight structure of hligh-rate
block codes through an exhaustive computer search performed on their low-rate
dual codes.

10.2.5. Maximal-length codes

The duals of the Hamming codes are called maximal-length codes. Therefore,
for every [ = 2,3,4,... there is a (2! — 1,0) maximal-leggth code.' Its gen-
erator matrix is the parity-check matrix of the corresponding Hamming code.
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The weight distribution of these codes can be easily determined by introducing
(10.19) into (10.22). The weight enumerator A(D) for the maximal-length codes
is thus found to be

AD) =1+ 2 -1)p¥" (10.23)

Hence, all nonzero code words have identical weight 272, Also, this is the min-
imum distance of the code. These codes are also called equidistant or simplex
codes. Additional insight into the properties of these codes will be obtained later
in connection with the description of cyclic codes.

10.2.6. Reed-Muller codes

The Reed-Muller codes are a class of linear block codes covering a wide range of
rates and minimum distances. They present very interesting properties, among
them, the fact that they can be soft-decoded by using a simple trellis (see Forney,
1988b). '

For any m and r < mm, there is a Reed-Muller code with parameters given by

-
n=2" k=Y (), de=2m (10.24)
i=0

The generator matrix G of the rth-order Reed-Muller code is defined by as-
signing a set of vectors as follows. Let vy be a vector whose 2™ elements are
all ones, and let v;, vy, ..., v,, be the rows of a matrix with all possible m-
tuples as columns. The rows of the rth-order generator matrix are the vectors
V0, V1, ..., Vr, and all the products of vy, ..., v,, two at a time, three at a time,
up to 7 at a time. Here the product vector VviV; has components given by the
products of the corresponding compornents of v; and v;.

Example 10.9 In this example, we show how to generate the Reed-Muller codes with
m = 3. There are two codes. They have the following parameters:

r J n_k dmin
18 4 4
218 7 2

The vectors used for building the generator matrices are given in Table 10.4. The first-
order code (r = 1) is generated by using the vectors vg, v1, Vg, V3 as rows of the gener-
ator matrix. The second-order code (r = 2) is generated by augmenting this matrix with
the additional three rows of Table 10.4. 0

The first-order Reed-Muller codes are closely related to the maximal-length
codes. If a maximal-length code is extended by adding an overall parity check,
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vo J1 1 1 11111
vpi /OO OO 1111
v |]OO 110011
v 01 010101
vive |0 0 0 0 0 O 1 1
viv{0 0 0 0 0 1 0 1
vav3 0 00 1 0 0 0 1

Table 10.4: Vectors for constructing the generator matrix of Reed-Muller codes with

m=23.

we obtain an orthogonal code. This code has 2™ code words. Each gas welgpr:
om-1 except for the all-zero code word. Therefor‘e, every code wort agrezs 11 "
2m-1 positions and disagrees in 2m-1 positions w1.th every other code oLvor . !
this code is transmitted using an antipodal sigpalmg schgme, eagh v he w;:le
is represented by one out of 2™ orthogonal signals. This explams the nf me
“orthogonal” code. For the case m = 3, the code generator matrix consists (ES the
three rows vy, vz, and v; of Table 10.4. In fact, the first column represen the
overall parity-check digit, whereas the other columns are gll the §evznfpossthis
triples of binary digits. The first-order Reed-Muller code is obtalr;e ror\:lmtor
code (the orthogonal code) by adding to the gc?nerator matrix th.e ‘alaior:;O oot
vo. In terms of transmitted signals, this operation adds to the ori gin: :1 ganed
signal set the opposite of each signal. For this reason, the codt;.lls os‘;)ecis ted
a biorthogonal code. Finally, notice that the rth-order Reed-Muller ¢

dual of the Reed-Muller code of order (m — 7 — 1).

10.2.7. Cyclic codes

The cyclic codes are parity-check codes that present a large ampunt of @aﬂ;-
ematical structure. These codes share, of course, all the pmpenles pre}')on.tn}s1 );
described for parity-check codes, but, in addition,.have peguhar propelr.tw:sod :s
allow easy encoding operations and simple decoding algorithms. Cyclic ¢

are, for this reason, of great practical interest.

Definition 10.1

An (n, k) linear block code is a cyclic code if and only if any cyclic shift of a
¢ode word produces another code word.
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Example 10.10 It can be verified that the (7, 4) Hamming code of Example 10.3 is a
cyclic code. Take, for instance, the code word 0111010. There are six different cyclic
shifts of this code word.

1110100 1101001 1010011 0100111 1001110 0011101

They all belong to the set of code words. The same is true for all the code words. ]

In dealing with cyclic codes, it is useful to represent a binary sequence of n
bits as a polynomial in the indeterminate Z of degree not greater than (n — 1)
with binary (0 and 1) coefficients. The binary digits of a code word will be
numbered in decreasing order from (n —1) to 0, so that each index matches the
exponent of Z. A code word X = [2,_y, Zn_s,. .., Zg] is then represented by the
code polynomial z(Z) as follows:

T(Z) = Tn1 2" + 20 2™ 24+ 2 T+ 2 (10.25)

The binary coefficients of this polynomial will be manipulated with the rules of
modulo-2 arithmetic. In this new notation, the code words of an (n, k) linear

block code are in a one-to-one correspondence with code polynomials of degree
not greater than (n — 1).

By definition of cyclic code, if z(Z) is the code polynomial of a cyclic code,
then a cyclic shift of the code word (say to the left) of i positions generates
another code polynomial that we denote by £®(Z). Theorem 10.3 relates the
polynomial representation of a cyclically shifted n-tuple to the binomial Z" 4 1,
which will be shown to play a crucial role for cyclic codes.

Theorem 10.3

The code polynomial z()(Z) is the remainder resulting from dividing Z'z(Z2)
by (2" + 1); that is,

Z'2(2) = ¢(Z)(Z" + 1) + 29(2) (10.26)
where ¢(Z) is the quotient polynomial of degree not greater than (i—-1).v
Proof of Theorem 10.3
Let us write explicitly Z'z(Z)

Z2(Z) = 2an 2 b2, 22 L 2 4 10T
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. i
Sum to this expression twice the terrps Tp1Z
possible because T, _; + Tnj = 0, Vj. We get
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L opn2Z'7%, ..., Tny; this is

Zo(Z) = 50T+ 1) 4 2nnZ T A 2D
Tp—i 1Zn_1+...+.’171Zi+1+1'0Z1+1'n_1Z'_ + ...+ Th
n—i—

and finally,
Z'x(2) = (Ta1Z7'+ Ta2Z 4. .:c,,-,»)(Z" +1) + 1
Tn—i ‘Zn_l +...+.T1Z{+1+.’L'0Z1+1'n-1zl— +...+ Tn-i
= q@)(2"+1) +29(2)
QED

Example 10.11 Let us take again the code word 0111010 of Example 10.10. The
corresponding code polynomial is

HZ)=2°+2'+2°+2Z
generates the code polynomial z(#)(Z), which is

A shift of four positions to the left oy T g 1) as follows:

PEER T 4
obtained, according to Theorem 10.3, by dividing Z*z2(Z)

247241
8 7 5 Z+
ZT+1 gz + Z8 + 2T + Z 2 Lz
+
s+ 2 + 2 + Z° i
Z8 +
ZT ¥ 2° + Z2° + Z 1
7
g +Za+Z‘+Z+1 remainder

i 00111. This sequence is
The remainder is Z5 + 2% + Z + 1, that is, the sequence 01 s

obtained from the original one with a four-position shift to the left.

. it the
Using the polynomial description of cyclic codes, we now want tccl) c;l(pl:n;] tl;n
algebraic properties of their generator matrices. 'Let us first proceed throug
example that will also enable us to introduce an important theorem.

amming code of Example 10.3 was already claimed to be

Example 10.12 The (7, 4) H climed o

cyclic in Example 10.10. Let us rewrite its generator matrix (10.5) in pol
follows: »
) Z5+ AR 1
z5%+ Z:+ Z+ 1 (10.27)
G(2)= 74 2+ Z
Z+ Z+ 1
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Consider the last row of this generator matrix, that is, the polynomial
WD) =2+ 7 +1 {10.28)

This code polynomial must have a 1 in the last position (coefficient of Z®); otherwise, six
cyclic shifts to the left would generate a code word with & = 4 information digits equal to
0 and a parity-check section containing 2 ones, which is impossible. Furthermore, this
is the only polynomial of degree n — k = 3 in the code. In fact, if there were another, it
could be added to g(Z) to generate a code word presenting again an all-zero information
section with a nonzero parity section. As a conclusion, there is a unique code polynomial
9(Z) of degree n — k = 3, and this polynomial has always the form

W) =23+... +1 (10.29)

Let us now derive the remaining rows of the generator matrix (10.27). The third row
can be obtained with one cyclic shift to the left of the last row. Should a 1 appear in
the fourth position, the last row could be added to cancel it. Each row of G(Z) can be
obtained in a similar way from the row below. The result is

(Z°+Z+1) ¢(2)
(Z2+1)

G(2)=|

(10.30)

Q@

(2)
(2)
9(2)
All the rows of G(Z) are multiples of the polynomial 9(Z). But, since all code words

in the code are linear combinations of the rows of G(Z), we can conclude that all the
code polynomials are multiples of the polynomial 9(2). O

The important conclusions drawn from the previous example are stated in
general form in Theorem 10.4.

Theorem 10.4

Given an (n, k) cyclic code, there is a unique code polynomial of degree (n — k)
that has the form
92)=2"* 4+ . +1 (10.31)

All other 2¥ — 1 code polynomials are multiples of g(Z), and every polynomial
of degree (n ~ 1) or less that is divisible by g(Z ) must be a code polynomial. 7

The proof, involving a generalization of the development in Example 10.12, is
left to the reader.

The polynomial g(Z) defined by Theorem 10.4 is called the generator poly-
nomial of the cyclic code. Any cyclic code is completely defined by its generator
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olynomial. The natural question now is whether there exists an (7, l?)lc%:]l:
f:)ode for any n and k and which is the corresponding generator polynomuial.
orem 10.5 provides the answer.

Theorem 10.5

The generator polynomial g(Z) of an (n, k) cyclic code is a divisor (()f (kZ) C+C}i)c.
Conversely, every divisor of (Z"+1) of degree (n — k) generates an {n, k) cy
code. 7

Proof of Theorem 10.5
Consider the polynomial Z*g(Z) of degree n and divide it by (2" + 1). We get

Z%g(Z) = (Z" +1) + ¢¥(2) (10.32)

i i than (n — 1). Using (10.26),
here 9()(Z) is a polynomial of degree not greater than : (102
:eir:ngcorsch)ldc tt?at ¢*®)(Z) is acode polynomxa} obtained with k cycl;c sl(xgt)s
to the left of g(Z). Therefore, it is also a multiple of 9(2), say m(Z)g(Z).
From (10.32), we get

Z"+1=[2* +m(2))g(2) = M2)g(2) 0.33)

i art of the theorem is proved.
andg;j;rr:g; let g{Z) be a divisor of (Z: +1) of degree (n — :) zzr:ld_c;:x:
sider the k polynomials g(2), Z¢(Z),...,Z 'j‘g(Z) of deglrcee (1n - nz;als i
1),...,(n —1). There are 2¢ linear combinations of these k po 13.mo als. Each
of them is a multiple of g(Z), and together they form an (n, k) linear .
z(Z) be one of these code polynomials and consider

Z'5(2) = ¢(2)(Z" + 1) +39(2) (10.34)

. -
where z19(Z) is a cyclic shift of (Z). Since bofth z:éf ) ;Tlit(lezr:n-gri)iz:tz ;:Lll)e
i i i iple of ¢g(Z). ,
tiples of g(Z), then z(9(Z) is also a multip ‘ ' c
elfpiessej gs)a linear combination of the aforementl‘oned k po{ynoml'als. I]tg lf)ol
lows that z0(Z) is a code polynomial and that the linear code is cyclic. Q

Finally, notice that if g(Z) divides (Z™+1) a(s w:;l a; (z» n-il-l rlgm»:i? dy:;t:n :e
1) i ic code (n, k) whose
t Z™ +1) is a code word in the cyclic co , '
i?iﬁe(refore 2? To avoid this drawback, n must be taken as the smallest integer
Z™ + 1) is a multiple of g(Z). . ‘
Suc%zilgiderablg algebraic results are available regarding th.e properties of ;he
polynomials (Z* + 1). In particular, tables of divisors for different values of n
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n Factors

7 | 6.54.64.

9| 6.7.444.
15 | 6.7.46.62.76.
17 | 6.471.727.

21 | 6.7.54.64.534.724.
23 | 6.5342.6165.
25 | 6.76.4102041.
27 | 6.7.444.4004004.
31 { 6.45.51.57.67.73.75.
33 | 6.7.4522.6106.7776.
35 | 6.54.64.76.57134.72364.
39 | 6.7.57074.74364.77774.
41 | 6.5747175.6647133,
43 | 6.47771.52225.64213.
45 | 6.7.46.62.76.444.40044.44004.
47 | 6.43073357.75667061.
49 | 6.54.64.40001004.40200004.
51 | 6.7.433.471.637.661.727.763.
55 | 6.76.7776.5551347.7164555.
57 | 6.7.5604164.7565674.7777774.
63 | 6.7.54.64.414.444.534.554.604.634.664.7 14.724.
127 | 6.406.422.436.442.472.516.526.562.5 76.602.626.646.652,
712.736.742.756.772.

Table 10.5: Factors of the polynomial (Z™+1). Each polynomial factor is given in octal
notation with the lowest-degree terms on the left (MacWilliams and Sloane, 1 977).

can be found. One of these is reproduced in Table 10.5. These tables are very
useful because the design of a cyclic code with preassigned properties reduces
to an appropriate selection of divisors of (Z" + 1) as candidates for the code
generator g(Z).

Notice that the Table 10.5 considers only odd values of n, because in bi-
nary algebra we have (Z*™ + 1) = (Z™ 4 1)2. Furthermore, the values of n —
3,3,11,13,19, 29, 37,53, 59, 61 are omitted from the table. In fact, for these
values the factorization is simply

(@' +)=(Z+1)(Z" ' +2" 2+ +Z+1)

Therefore, Table 10.5 gives the factors of (Z"+1) forn < 63 andn = 127. The
factors are given in octal notation, with the lowest-degree terms on the left. As
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an example, the second line of the table means that the cocfflcients of the factors
are, respectively, 110, 111, and 100100100, so that we obtain

22 +1=(Z+ )2 +Z+1)(2°+ 2% +1)

Encoding algorithms for cyclic codes

Given the generator polynomial g(Z) of a cyclic code (n, k), the ct:)dfa pglfy;;;
mial z(Z) corresponding to an information sequence u(Z) can be obtaine
Theorem 10.4 as o) = w2)0(2) 1035)
This simple algorithm does not actually represent a systematic encoder, as is
verified in the following example.

i ibed in Example 10.12 has the gener-
le 10.13 The (7, 4) Hamming code descri - : !
::t)(‘):rn:(pZ‘; = 73 + Z + 1. Let us find the code word corresponding to the information

1101. Since
e wWZ)=2+2%+1

we get 2
2(Z) = (B + P+ ) +2+1) =25+ 2+ 2+ 22+ 2"+ Z +])

. . ds
The code word is then 1111111 and the encoder is not systematic. All other code wor ’
can be obtained in the same way.

The algorithm based on (10.35) can be modified to represent a syst;xrllatii
cyclic encoder (n, k). Given the information sequence u(Z), let us multiply 1
by Z*~* and divide by the generator polynomial g(Z). We have

Z7*u(Z) = q(Z)9(2) +7(2) (10.36)

where g(Z) and r(Z) are, respectively, the quotient and the reTainde.r (c;i t::
division. Notice that r(Z) must have a degree (n — k — 1) or less, sin
degree of g(Z) is (n — k). Rearranging (10.36), we get

727 *u(Z) +1(2) = q¢(Z2)9(2Z) (10.37)

This is the key for the desired encoding algorithm. Ilr: flact,ftgh(eZI)_I—;ido;et:é:
ion i i - less, a multiple o ,

equation is a polynomial of degree (n — 1) or less, <), ler

a?:ode polynomial in the cyclic code generated by g(Z). Let us write it explicitly

—k—1
u-,,_lZ"“ + uk_gZ"‘z + ...+ qu"—k + r,,_k_IZ" +...+71 (10.38)

ek i con i

—

L2
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P

Figure 10.9: Circuit to divide by 9(Z) = Z° + Z + 1. When all seven digits of the
dividend have been fed into the shift register, the contents roryr of the register are the
remainder of the division. For the example shown, the remainder will be 001.

z3
Quotient

Dividend
0001011

1111

Therefore, the code word consists of the % information digits followed by the
(n—k) parity check digits and the encoder is systematic. In conclusion, the parity
check section of each code word in a systematic cyclic code (n, k) is obtained as
the remainder of the division of Z "~*u(Z) by the generator polynomial g(Z).
Example 10.14  Giventhe (7, 4) cyclic code with the generator polynomial Z% + Z + 1,

let us find the code word for the information sequence 1101 using the encoding algorithm
just described. We have

ZPu(Z) =25+ 2%+ 28
Dividing it by g(Z) yields the remainder

r(Z)=1

so that the code word polynomial is z(Z) = Z6 + 275 + 23 4 |, corresponding to the
binary form 1101001. The encoder is systematic. o

The encoding algorithm based on (10.37) requires the division of Zm*u(Z)
by the generator polynomial g(Z) to get the remainder 7(Z). This is the parity-
check section of the code polynomial corresponding to u(Z). Therefore, the
implementation of the algorithm requires a circuit that performs a division. This
task can be accomplished by a shift register having (n — k) stages, the degree of
the divisor, and suitable feedback connections that correspond to the coefficients
of the divisor. The circuit shown in Figure 10.9 performs the division described
in Example 10.14.

At each clock pulse, the digits of the dividend are fed in leftwise starting
with the most significant digit, and the quotient is shifted out rightward. The
remainder is what remains in the register when all seven digits of the dividend
have been fed in. Notice in particular that the feedback connections correspond
to the structure of the divisor.

A first possible version of the encoder for the (7, 4) code of Example 10.14
is shown in Figure 10.10. The switches have three positions: First, at @), for four
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©
AN
\ z°
® b@< CHANNEL
SOURCE! \\o > o
®0©

. ith
Figure 10.10: First implementation of the encoder for the ('.7, 4) Hamming cide lwz
generator polynomial Z 3 4 Z + 1. The switches are at position & for 4 clock pulses,
at® for 3 clock pulses, and at © for 3 clock pulses.

E

Message

Figure 10.11: Circuit to divide by g(Z) = Z* + Z + 1. Only four message digits are fed
to the shift register at its right end.

clock pulses, during which the four information digits are fed inFo tthhe reg1s:§:
and sent to the channel; second, at @), for three clock pglses, whlle' dree ozfethe
enter the register; third, at ©), for three clock pulses, w?ul‘e the remain er.s e
division is sent to the channel. The disadvantage of this 1mplementat:;>p 1dmw-
the channel remains idle while the switches are at ®. To ovc.ercom.e 1sThis ”
back, the message digits can be fed into the right end of the. shift reglst;r. sl
equivalent to multiplying the symbols by Z 3 as they come in. ernce, evai]able
circuit of Figure 10.11 is used. The remainder of thc? d1v1sxop 1s]now z: ailable
in the register as soon as the last digit had beeq fed in. The imp en.ler}x1 a on of
the encoder based on this concept is shown in Figure 10.12. The switches e
@ for four clock pulses and at 8 for three clock pulses. The operation ©
encoder is described in detail in the following example.

Example 10.15 We reproduce here the situation described in ?xa.mplfeF%O.:.lg'il;
. i i ifting in the circuit of Figu X
d for the sequence 1101 is obtained by shi circ
th:?n?(]:::nation segu;lnce and shifting out the remainder of the division. The contents of
the shift register, at each step, are shown in the following table
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SOURCE CHA

Figure 10.12: Second implementation of the encoder for the (7, 4) Hamming code with
generator polynomial g(Z) = Z° + Z + 1. The switches are at position @ for 4 clock
pulses, and at ® for 3 clock pulses.

Ui [Tp ™ T2
-10 0 O
1 1 1 0
1 1 0 1
01 0 o
1 1 0 0

As soon as the four information digits are entered into the register and delivered to

the channel, the register contains the sequence 001. This corresponds to the remainder
r{Z) = 1. ]

An encoder similar to that of Figure 10.12 will work for any cyclic code. It
requires (n—k) delay elements in the shift register, and the generator polynomial
is reflected in the feedback connections structure. For codes with k < (n— k),
a simpler circuit with a k-stage shift register can be implemented. It is based on
the multiplication by the parity-check polynomial defined as

aZt+1

h(Z (2 (10.39)

The encoder is shown in Figure 10.13. Notice in it the shift register with k = 4
delay elements. The connections to the adder are made according to the powers
of h(Z) = Z*+ 2%+ Z +1. The switch s at position @ for 4 clock pulses and at
® for 3 clock pulses. An example of its behavior is deferred to Problem 10.15.
The parity-check polynomial h(Z) is a divisor of Z* + 1 of degree k. As
such, it can be used as the generator of an (n,n — &) cyclic code. This code is
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®
SOURCE jf 4@
z¢ z? Z 1

CHANNEL [—>

Figure 10.13: Encoder for the (7, 4) Hamming code based on the parity-check polyno-
mial h(Z) = 2% + Z% + Z + 1. The switches are at position @ for 4 clock pulses, and

at ® for 3 clock pulses.

equivalent to the dual of the code generated by g(Z) (see Problem 10.16). It is
customary to refer to the cyclic code generated by h(Z) as the dual code of the
cyclic code generated by g(Z), although this is not true according to the formal

definition of dual code given in Section 10.2.4.

Error detection and error correction with cyclic codes

Assume that a code polynomial is transmitted over a noisy channel. In analogy
with (10.8), the received sequence can be written in polynomual form as

y(Z) =z(2) + e(2) (10.40)

where z(Z) is the code polynomial and e(Z) is the error polynomial. Let us now
divide y(Z) by the generator polynomial of the code. We get

y(Z) =m(2)g(Z) + s(2) (10.41)

where m(Z) is the quotient and s(Z) the remainder of the division. Since only
the code polynomials are multiples of the generator polynomial, y(Z) will be
a code word if and only if the polynomial s(Z) is zero. This polynomial of
degree not greater than (n — k — 1) is the syndrome polynomial of y(Z). Since
2(Z) = q(Z)g(Z), we can compare (10.40) with (10.41) and obtain

e(2) = [m(Z) +a(2)]9(Z) + 5(2) (10.42)

This equation shows that s(Z) is also the syndrome of e(Z). In conclusion, error
detection can be accomplished by simply checking the remainder of the division
of the received polynomial y(Z) by the generator g(Z ). The detection circuit
can be implemented with a circuitry similar to that shown in Figure 10.9. The
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:E?:;Z sl‘se fmFliet to zero and the received sequence is shifted in. The content of
Wwill represent the syndrome s(Z) as soon as th igi i
°T e last digit of y(Z
entered. One additional property of the syndrome is stated in Theorgem I(Z)lg )

Theorem 10.6

gast(‘zs' ) c1)sf t:(ez s;ynﬁc:n;e of )an error polynomial e(Z), the syndrome of e(? (2)
: , snifted cyclically 7 places to the left, is obtained ifting i
times the syndrome s(Z) inside the division circuit. V’ wined by shiftng

Proof of Theorem 10.6

First notice that we have

e(Z) = q(2)g(Z) + s(2) (10.43)
and, by Theorem 10.3
eNZ)=n(Z)(Z"+1) + Z'e(Z) = n(Z)M(Z)g(Z) + Z'e(Z)  (10.44)
Substituting (10.43) into (10.44) yields
Z's(2) = [n(2)h(2) + Z'4(2))9(2) + e(2) (10.45)
Expressing e((Z) in terms of g(Z) as
e(2) = m(2)9(2) + r(2)
gives
Z's(Z) = [n(Z)MZ) + Z'4(2) + m(2))g(2) + r(2) (10.46)

t»;/l:l;:: nﬁlrio;es thfat r(Z‘),‘tI‘le remainder of the division of e (Z) by 9(2),is also

e Circm:\o(;rp ?g :fr\: %V;SISESog z 'SEZ ) by g(Z). Remembering the operation of
) 109, peration is precisely obtai ifting ¢ ti

the syndrome $(Z) into the division circuit.p QED Y cptained by shiftng i times

The syndrome 5(Z) of a received
yndr ' sequence y(Z) can be obtained usi
te):cl?:hzr ;:1rc111m of the type of _Flgurg 10.10. Also the circuit of Figlrj‘re lu()s lln 1g é:rel
ed to the same end. With this circuit, however, the calculated syr;drome

is that of the sequence y(n—k)( Z). Th .
L . The .
circuits are best understood through an ef;;[:i:’les of the syndrome generating
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ith
Figure 10.14: First implementation of the syndrome generator for the (7, 4) code wi
generator polynomial g(Z) = Z 34+Z+1

. . ial
Example 10.17 Let us use again the (7, 4) cyclic code wm; ge;esrjfoi' %tzgtmi:tnus

(Z) = Z3+ Z + 1 and assume a received sequence y(2) = z°+ : o.mhm ,Shown
gerive the syndrome s(Z) from (10.41). Using Lhe.polynomxa! tmsu(); ; E S
in Example 10.11 to divide y(Z) by g(Z )l, w; o:;z:;x;nt:: ;Irﬁz:i:gz : parit;.check’mamx

orresponds to the vector 011. This can also be . o x
zlg 131;?The circuit of Figure 10.14 can be used to de.nve Fhe syr;d;]m:c;.n S(i Z,]e; Z+
The content of the register at the successive steps is given in the following

Received Register
digit content
. S0 St 82
yf 0 0 0
1 1 0 0
1 1 1 0
0 0 1 1
0 1 1 1
0 1 0 1
0 1 0 0
1 1 1 0

in similarl
If, instead, the circuit of Figure 10.15 is used as syndrome generator, we obtain similarly

Received Register
digit content
. S0 31 S2
lfl 0 0 0
1 1 1 0
1 1 0 1
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 0
1 1 0 1

i @zZ)=2°+2"+
i , that is, 5(Z) = Z* + 1, is that of the sequence y*(Z)
;hlslizi:::?['?:orem 110.65 d)le same syndrome can be obtained by shifting three steps

10.2. Block codes 489

Figure 10.15: Second implementation of the syndrome generator for the (7, 4) code with
generator polynomial g(Z) = 23 + Z + 1.

the syndrome $(Z) = Z + 1 in the register of Figure 10.14. The result is given in the

following table:
Shift Register
# content
S0 81 82
- 1 1 0
1 0 1 1
2 1 1 1
3 1 0 1

To perform error correction, the decoder must find a correctable error pat-
tern e(Z) from the syndrome s(Z). The transmitted code word z(Z) is then
obtained by adding e(Z) to the received sequence y(Z). Whether or not this is
a practical operation depends on the complexity of the decoder that computes
the correctable error pattern e(Z). Special classes of codes have been developed
that lead to practical algorithms. But a thorough description of multiple error-
correcting schemes is beyond the scope of this book, so that the interested reader
should refer to the Bibliographic Section at the end of the chapter. However, one

simple technique that is applicable in the case of single-error correction will be
described hereafter. It is based on the following general theorem.

Theorem 10.7

If the errors of e(Z) are confined to the (n — k)

parity-check positions of y(Z),
the syndrome s(Z) is identical to e(Z). ¢

Proof of Theorem 10.7

The assumption is equivalent to saying that e(Z) is a polynomial of degree not
greater than (n — k — 1). Therefore, the division by g(Z), which has degree
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(n — k), gives as a remainder just e(Z). QED

Under the conditions of Theorem 10.7, error correction is accomplished by
simply adding the syndrome to the (n — k) received parity-check digits. Should
the errors be confined to (n — k) consecutive digits different from the parity-
check section, then the use of Theorem 10.6 allows again for error correction. In
fact, the errors can also in this case be confined in the parity-check section by
shifting cyclically the received sequence to the left by ¢ places. The syndrome of
this new sequence is that of y(Z). Let us apply these concepts to an example.

Example 10.18 Let us use once again the (7, 4) code with generator o2y =23+
Z + 1. Assume that

(Z)=28+25+2%+1, e(Z)=2°

Therefore, as in Example 10.17, the received sequence is y(Z) = Z® + Z5 + 1. Since
y(Z) is shifted into the syndrome generator from the rightmost stage, it corresponds
to a preshifted sequence Z"*y(Z) = Z%y(Z). Using the syndrome generator of Fig-
ure 10.15, we get from Example 10.17 that s(Z) = Z?+1. Therefore, an error located in
position Z7 in y(Z) corresponds to an error in position Z n-k+j = 73+J in the preshifted
sequence. When j = n— 1 = 6, an error occurs in the first position of y(Z), and appears
in position (n — k + j) = 9 of the preshifted sequence. Taking into account the end-
around shift, this position is the highest of the parity-check section (in fact, § — 7 = 2).
Due to Theorem 10.7, the syndrome corresponding to this situation is $(Z) = Z2 (se-
quence 100). We can now apply Theorem 10.6. The syndrome Z 2 4 1 is shifted inside
the division circuit. When the syndrome Z? is identified, this means that the single error
is in the first position of the cyclically shifted received sequence.

These concepts are applied to the error-correcting circuit of Figure 10.16. It consists
of the syndrome generator of Figure 10.15, a buffer, and an AND gate with (n—k) =3
inputs. The received sequence is shifted into both the buffer and the syndrome generator.
While it is read out from the buffer, the syndrome is simultaneously shifted into the
register to identify the register contents corresponding to $(Z) = Z>. When this is the
case, the error is identified and the digit that will be shifted out will be corrected. The
reader is invited to work out the details using Figure 10.16 and the following table, where
the line with boldface numbers corresponds to the correction instant.

Syndrome Shift Output
S0 S1 82 b ¢
1 0 1 - 1 0 1
1 0 0 1 1 0 1
Q 1 0 2 |0 0 0
0 0 1 3 101 1
1 1 0 4 |0 O 0
0 1 1 5 [0 0 0
. 1 1 1 6 {1 0 1
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‘ +
S0 5 82
1 + 0 1
Input ‘
e I I i
e e b

Parity checks Information

gure 10.16: PP Q. T 4 3 4 CVCIIC Hammmg code
Figu 0 6 E”O’ tra, ing correction circuit fo the 7
gene ated t.) g(Z) Z Z L f ( )

The cxmple has shown that one particular syndrome, that is, s(Z) = 72
c:rrequndmg to 100, gllows the location and capture of the single error while
the received sequence is shifted out from the buffer. This technique for error

::;)ITCC'IIOI‘I 1s called erro.r-tragping decoding. It can be extended to cases other
an single-error correction, like multiple-error and burst correction.

10.2.8. Special classes of cyclic codes

Cyclic Hamming codes

The Hamming cpdcs described in Section 10.2.3 can also be shown to be a spe-
cial class of c.ychc codes. To this purpose, let us define an irreducible polynomial
as a polynomial of degree [ that is not divisible by any polynomial of degree less
than [ an'd greater than zero. Furthermore, an irreducible polynomial g(Z) of
degree.l is called primitive when the smallest integer n, such that (Z "g-l— 1) is
a multlpl.e of g(Z), is 2' — 1. Therefore, invoking Theorem 10.5, this primitive
?olynomlal can generate a (2'=1,2"—1—1) cyclic code that is a Hamming code.
t has been shown that this code can correct all single errors. Let us reconsider
the proof using polynomial notation. Let two single-error patterns be e;(Z) Lz

Ay : - .
(z:md ej(Z)d.= Z7, where 0 < 1 < j < n. It will be sufficient to show that the two
orresponding syndromes, say s;(Z) and s;(Z), are different. Using (10.43), we
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{ | Primitive polynomial ! | Primitive polynomial
3 64 14 60421
4 62 15 600004
5 51 e 640042
6 604 17 440001
7 442 18 4020004
8 561 19 7100002
9 4204 20 4400001
10 4402 21 50000004
11 5001 22 60000002
12 62404 23 41000001
13 66002 24 702000004

Table 10.6: Primitive polynomials of degree l. Each polynomial is expressed in octal
notation with the lowest-degree terms on the left.
have

Zi = qi(2)g(2) + 5:(2) (10.47)
77 = ;(2)9(Z) + 55(2)

==
N N
N N’
(I

Summing these two equations, we get
ZYZF 4 1) = [6(2) + (D)9(2) + 5:(Z) + 55(2) (10.48)

S vide
ince j —i < n =2 -1,and g(Z) is primitive, Fhen g.(Z) cannot divi
?Zj“ j— 1), and, consequently, s;,(Z) # s;(Z), for # J. Cyclic qu;unll(r)lg1 ;odt:.:
can be decoded by using the error-trapping algontlthm asin Ex'amp'e Tai,le .10 :
list of primitive polynomials that generate Hmng cgdes is givenin " u;e
for different values of I. The polynomials are given in octal notaucl)n, wi )
lowest-degree terms on the left. For example, the first line of the table mean

64 = 110100 = ¢(2) =1+ Z + Z°
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Golay codes

In searching for perfect codes, Golay discovered a (23,12) code that is a cyclic
code with generator polynomial

92 ="+ 2+ 277+ 25+ 25+ Z +1 (10.49)

and with minimum distance dp,;, = 7. Therefore, triple error correction is pos-
sible. The important point is that this code is the only possible nontrivial lin-
ear binary perfect code with multiple error-correcting capabilities. Besides the
Hamming single-error-correcting codes, the repetition codes (with n odd), and

the Golay code, no other linear binary perfect codes exist (see MacWilliams and
Sloane, 1977, Chapter 6).

Bose-Chaudhuri-Hocquenghem (BCH) codes

This class of cyclic codes is one of the most useful for correcting random errors
mainly because the decoding algorithms can be implemented with an acceptable
amount of complexity. For any pair of positive integers m and ¢, there is a binary
BCH code with the following parameters:

n=2"~1, n-k<mt, dpy>2-+1

This code can correct all combinations of ¢ or fewer errors. The generator poly-
nomial for this code can be constructed from the factors of (Z2"~1+1). Unfortu-
nately, this procedure is not straightforward and is beyond the scope of this book;
the interested readers are referred to Chapter 9 of the book by MacWilliams and
Sloane (1977). A list of generator polynomials for BCH codes of different pa-
rameters is given in Tables 10.7 and 10.8. The polynomials are represented in
octal notation, with the highest degree terms on the left®. As an example, the
third line of the table means

721 = 111010001 = g(2) =2+ 27+ 28+ Z4 + 1
Notice that this polynomial can be factored as
I2)=(Z'+Z+1)(Z +2*+ 22+ Z +1)

It can be verified from Table 10.5 that these two factors are factors of (215 + 1).
The BCH codes provide a large class of codes. They are useful not only
because of the flexibility in the choice of parameters (block length and code

3The octal notation in this table is different with respect to that of Tables 10.5 and 10.6, in
the sense that the highest-degree term is on the left here.
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n k t gD)
7 4 1 13
15 11 1] 23
7 24 721
5 3] 2467
31} 26 11 45
21 2| 3551
16 31 107657
11 5| 5423325
6 7 | 313365047
63 57 1 103
51 2 12471
45 31 1701317
39 4 | 166623567
36 5 | 1033500423
30 6 | 157464165547
24 7| 17323260404441
18 ] 10 | 1363026512351725
16} 11| 6331141367235453
10| 13 | 472622305527250155
7 15 | 5231045543503271737
127 | 120 1 211
113 2 | 41567
106 3| 11554743
99 4 | 3447023271
92 5] 624730022327
85 6 | 130704476322273
78 7 | 26230002166130115
71 9 | 6255010713253127753
64 | 10 | 1206534025570773100045
571 11 | 335265252505705053517721
50 | 13 | 54446512523314012421 5014’).‘11.34.3
43 | 14 | 1772177221365122752122057: 2 s
36) 15} 3 1460746665220750447645747 s
29 | 21 | 4031 144613676706036675301411 ood
22| 23 l2337607040472252243544562663;”604353
15 1 27 | 2205704244560455477052301 3762 ol
8 | 31 | 704726405275103065 14762242715677
247 1] 435
3 239 2 1 267543
231 3 156720665
223 4 | 75626641375
215 5 | 23157564726421
207 6 | 16176560567636227
199 7 1 7633031270420722341
191 8 | 2663470176115333714567
187 9 | 52755313540001322236351 S
179 | 10| 226247107 17340432416300450637
171 | 11 | 1541621421234235607706163 .
163 | 12 | 7500415510075602551 57472451

ial i re-
Table 10.7: List of generator polynomials for BCH codes. Each pal[y)r;or]ngn;iX )15 rep
- sented in octal notation with the highest-degree terms on the left (Stenbit, 3
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n k t 8D
255 | 155 | 13 | 3757513005407665015722506464677633
147 | 14 | 1642130173537165525304165305441011711
139 | 15 | 461401732060175561570722730247453567445
131 18 215713331471510151261250277442142024165471
123 | 19 | 1206140522420660037172103265 16141226272506267
115 ] 21 | 60526665572 100247263636404600276352556313472737
107 | 22 22205772327.066256312417300235347420176574750154441
99 | 23 | 1065666725347317422274141620157433225241 1076432303431
91 | 25 | 67502650303274441727236317247325110755 50762720724344561
87 1 26 | 110136763414743236435231634307 1720462067225452733117213
17
79| 27 | 6670003563765750002027034420736617462 101532671176654134
2355
71| 29 | 24024710520644321515554172112331 16320544425036255764322
1706035
63 | 30 | 1075447505516354432531521735770700366611 172645526761365
6702543301
551 31| 73154252035011001330152753060320543254 14326755010557044
426035473617
47 | 42 | 2533542017062646563033041377406233175123334 145446045005
066024552543173
45 43 | 15202056055234161131101346376423701 56367002447076237303
3202157025051541
371455 1363302550670074141774472454375304207357061 74323432347
644354737403044003
29 } 47 | 30257155366730714655270640123613771 15342242324201174114
060254757410403565037
21 | 55 | 125621525706033265600177315360761 2103227341405653074542
521153121614466513473725
131 59 | 46417320050525645444265737 14250066004330677445476561403
17467721357026134460500547
9| 63 | 15726025217472163201031043255355134614 16236721204407454
5112766115547705561677516057

Table 10.8: List of generator polynomials for BCH codes. Each polynomial is repre-

sented in octal notation with the highest-degree terms on the left (Stenbit, 1964).

rate), but also because at block lengths of a few hundred or le
codes are among the best
decoding algorithms, see Berlekamp (1968, Cha
Chapter 5), and Blahut (1983, Chapters 7 and 9).

Reed-Solomon codes

These codes are a subclass of BCH codes generalized to the nonbinary case, that
is, to code symbols belonging to a set of cardinality ¢ = 2™
can still be represented as a binary m-tuple,

ss many of these
-known codes of the same length and rate. For the

pter 7), Clark and Cain (1981,

- Thus, each symbol
and the code can be considered as a

495
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special type of binary code (see Blahut, 1983, Chapter 7). The parameters of a
Reed-Solomon code are the following:

Symbol m binary digits
Block length =(2™ - 1) syrr.lbols N
=m(2™ - 1) binary digits
Parity checks (n — k) =2t symbols N
= 2m¢t binary digits

These codes are capable of correcting all combinations oflii‘ or.fe:?r ngzlﬁ:;
i i i des, they are well suited for
rors. Alternatively, interpreted as binary codes, the ' ]
i In fact, one symbol in error means
of bursts of errors (see Section 10.2.10). , on ; I s 2
i igits i i 1 to m in adjacent positions wi

number of binary digits in error ranging from mi s W

the code word. Perhaps the most important application of these codes is in the
concatenated coding scheme described in Chapter 11.

Shortened cyclic codes

Since the generator polynomial of a cyclic coc;e must be a divizﬁrczfm(éna:olrz;
i i i — k) does not cover
t often happens that its possible degree (n ) does nc :
Lfon and kpfhat satisfy practical needs. To avoid this difficulty, cyc.ll.c ;:ode:;;;
sometimes used in a shortened form. To this purpt:::, th:tefjirstﬁl 13‘ iosrx"r‘:ay "
igi d are not smitted. ,
digits are assumed to be always zero an
negw (n — 4,k ~ i) code is derived whose code words are a spbset of thi COdﬁ
words of th7e original code. The code is called shortened CyCllf: f:ode, acllgstoal:ie
i i least the same minimum
it may not be cyclic. The new code has at . :
as thg code from which it is derived. The encoding .and syn@ere ca:;:ula.t:lzz
can be accomplished by the same circuits employed in tl;(e ongme:l:;g;, ]Salmr
i i he parity-check computations. .
the leading string of zeros does not affec‘t t : .
correctiongcan be accomplished by prefixing to each 'recexr\I/;d vc;f)trc;r z:h it;n cgoc(;i :
ifyi i d circuitry. Therefore,

eros, or by modifying accordingly the relate ' :
:hare all thi implementation advantages of cyclic codes and are also of practical
interest.

10.2.9. Maximal-length (pseudonoise) sequences

The code words of the cyclic (2! — 1,1) simplex (or maximal-length) codc:1 :J
Section 10.2.5 resemble random sequences of zeros and ones. In fact, r\:;zssthat
see that any nonzero code word of these codfes has many of the .pr;})i s tha
we would expect from a binary sequence obtained by t'ossmg a collzn L tha;

Maximal-length codes are the duals of the Hamn}m.g‘codes. emfearil ot
.a Hamming code of length 2 ~ 1 is generated by a primitive polynomial g
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Figure 10.17: Shift register circuit Jor encoding the dual code of the Hamming (7, 4)

code with generator g(Z) = Z3 + Z + 1. The circuit 8enerates also a PN sequence of
length 2’ —1=7.

degree . The dual code of the same length can be obtained by letting the same
9(Z) be its parity-check polynomial. The dual code can therefore be generated
by using an I-stage encoder of the type of Figure 10.13 with feedback connec-

tions reflecting the structure of g(Z). For purposes of clarification, we use the
following example.

Example 10.18  The dual code of the (7, 4) Hamming code generated by g(Z) = Z3+
Z +lisa (7, 3) cyclic code with g(Z ) as the parity-check polynomial, A three-stage
encoder for the dual code is shown in Figure 10.17. This scheme is a slight modification
of the encoder type shown in Figure 10.13. The register is first loaded (from left to right)
with the information sequence. Then the register content is shifted out (seven steps)
from the right. In the following table, the generation of the code word, corresponding to
the sequence 100, is shown, together with the successive states of the register. The last
column of the table is the desired code word,

Register content

OlSC = =~ o~ o
Olm =~ O ~0o0
=m0 - 00~

In the dual code, all the code words, with the exception of that which is all zero, are
different cyclic shifts of a single code word. This property is understood by considering
the evolution of the states of the shift register of the encoder of Figure 10.17. When
the register is initially loaded and shifted 23 — 1| times, it cycles through all possible
2% — 1 states. Then it returns to the original one. The output sequence, when indefinitely
shifted out, is periodic with period 23 — 1. Since there are only 2% — 1 possible states,
this period corresponds to the largest possible in this register. This explains the name of
maximal-length sequence and why the 22 — 1 code words of this cyclic code are different

[
[
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a
cyclic shifts of one code word.

imal- h
The example can be generalized to show that the encoderf of solgazfmall l;?ii "
imal- h sequences of pe - 1.

be used to generate maximal lengt . -

?t(i)f/i: ;?)rllynomials (see Table 10.6) are suitable for the gc;,ngranondorf1 Otihszsc(:P?g)
e also called pseudo
uences. As already stated, these §equences art o
gequences. They present the following pseudo-randomness properties

ly
! _ 1 of the sequence, there are exact
1. In any segment of length 2

Pmpe;’tyl ones an)c; 2’§1 — 1 zeros. That is, the number of ones and the number

. - . ¢
of zeros are nearly equal. This property 1s an immediate corf\s;qu;r;:clzx
the fact that the considered binary sequence 1s a code'\ivlord o (tl ;23))p
code, whose weight is constant and always equal to 2 (see (10.23)).

Property 2. If we define a run to be the maximal string of (}olnsectl;lti;/te idt;nsr(]::l
. i t of the PN sequence of leng - -
symbols, then in any segmen Sguene O B ot have
f the runs have length 1, one-quarter have length 2, .
:\ear:;; 3. and so on. In each case, the number of runs of zeros is equal to

the number of runs of ones.

Property 3. The most relevant property is related to thg autocorr'elatl?n fgn;ﬁ?tr;
d of the PN sequence. Let us define the autocorrelation function of an 1n

real sequence (a;) of period n as

|
-

[ m=0,+1,%2,... (10.50)

1 n
Tm = — QiQigm
ny

0

i i iodi i . If the sequence (a;) is binary,
that 7, is periodic, of period 72 . .
forme “0"': amf “1” let us replace it by a sequence (b;) in which we

formed b / ’
h(;ve subs};i[uted the 1’s with —1’s and the 0’s by +1’s. Thus, from (10.50),
we get
5 LSy 4a-D 10.51)
Jay 1 — -1 2i+Gi+m — ( i
= - bibi m ( )
™= g * n < n

-where A and D are the number of places where the sequence (agay c
an_1) and its cyclic shift (@mam41 - - - Gmtn_1) 2GTEE anfj dlsag_re2el, fipiv -
ti?/ely (so A+ D = n). Therefore, for a sequence of period n = ,

"~ have
(10.52)

To — 1
L or <m<2 -2 (10.53)

- ?

Tm
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-.01101...

Binary sequence

"Random" sequence ..01101...

PN sequence

PN sequence

Synchronization

Figure 10.18: Scrambling and descrambling a binary sequence by adding twice a P
Sequence. ’

In the sense of minimizing the magnitude of Tm, for m # 0, this is the

“best” possible autocorrelation function of any binary sequence of period
n.

PN sequences are very useful in practice, when it is desired to obtain se-
quences with random-like properties. To this purpose, the same PN sequence is
added modulo-2 to the sequence at hand both at the transmitter and receiver side,
as shown in Figure 10.18. This is possible as the PN sequence is determinis-
tic. The only requirement is that in the two additions the two PN sequences be
synchronized. The randomizing operation is known as scrambling.

10.2.10. Codes for burst-error detection and correction

In this section, we abandon the model of a channel producing random errors
(like an AWGN or its hard-demodulated version BSC) and assume a channel
model in which errors tend to be clustered in bursts. This is a typical situation in
certain communication systems, employing media like magnetic tapes, magnetic
disks, magnetic memories and compact disks. Another situation would be a
channel that is basically an AWGN occasionally disturbed by long bursts of noise
or radio-frequency interference. In general, when burst errors dominate, codes
designed for correcting random errors may become inefficient. Nevertheless,
cyclic codes again are very useful in this situation,

" Let us define a burst of length b as an error pattern in which the errors are
confined to b consecutive positions. Therefore, a burst-error pattern of length b
can be represented by the polynomial

€(2) = Z'es(2) (10.54)

where Z* locates the burst in the error sequence of length n, and ¢;(Z) is a
polynomial of the type

elZ)=2"1+... 41
The following theorem holds true.

]
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Theorem 10.8
Any cyclic code (n,k) can detect all bursts whose length is not greater than
(n—k). v

Proof of Theorem 10.8

The syndrome of such bursts is the remainder of the division.of z‘ebgz ) by the
generator polynomial g(Z). But this syndrome is alyays dlffer:nt iolzn éeEr:(])),
since neither Z nor e;(Z) are multiples of g(Z), provided thatb S n — &.

When error correction is required, Theorem 10.9 provides a lower bound on
the degree of the generator polynomial of the code.

Theorem 10.9

A burst-error correcting code can correct all bursts of length b or less provided
that the number of check digits satisfies the inequality (Reiger bound)

n—k2>2b - (10.55)

\%

Proof of Theorem 10.9

To correct all bursts of length b, the bursts of length 24 (or less) ;l:ust l;escsi;ffletr::;
from each code word. In fact, if a code word is a burst of length 'd(ort he St;ndard
be expressed as the sum of two bursts of length b (or less). Consx’ er eet andas
array of the code. If one of the two bursts (the co;recta&l: ::gg : :r cclolsn e ir;
the other, as a consequence of the assumption made on s ) mus e
the same coset. Therefore, the second burst cannot be correcctle. . rr(\j ecr . comcé
no burst of length 2b (or less) can be allowc?d to be a code wbor nfn }c:eCR 10 comee!
-all bursts of length b. When this condition is met, the number of ¢ eck ¢ égonﬁned
least 2b. In fact, consider the sequences whose nonzero components confined
rst 2b positions. There are 2% such sequences. T‘hese sequences m;
:z Edhi:fgrent cc;s,p(;ts of the standard array. Otherwise, th:?xr sur; woulctist;iea ;}cﬂe
word corresponding to a burst of length 2b (or less). Since the cose! )

then the inequality (10.55) follows. QED

As a consequence of Theorem 10.9, the ratio

a % (10.56)
2= n-k
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n-k-2b Code Burst-correcting Generator
(n, k) ability, b polynomial
0 (1.3 2 35
(15,9 3 171
(19,11) 4 1151
7,171 5 2671
(34,22) 6 15173
(38,29 7 114361
(50,34) 8 224531
(56,38) 9 1505773
(59,39 10 4003351
1 15,10 2 65
(27,20) 3 3
(38,29 4 1151
(48,37 5 4501
(67,54) 6 36365
(103,88) 7 114361
(96,79) 8 501001
2 (31,25) 2 161
(63,55) 3 711
(85,75) 4 2651
(131,119) 5 15163
(169,155) 6 55725
3 (63,56) 2 355
(121,112) 3 1411
(164,153) 4 6255
(290,277) S 24711
4 (511,499) 4 10451
5 J (1023,1010) 4 22365

Table 10.9: Efficient cyclic codes and shortened cyclic codes for burst-error correction.
The generator polynomial is represented in octal notation with the highest-degree term
on the left (Lin, 1970).

can be assumed as a measure of the burst-correcting efficiency of the code. Some
decoding algorithms for burst-error correction are based on erTor-trapping tech-
niques (see Peterson and Weldon, 1972, Chapters 8 and 11).

A list of efficient cyclic codes and shortened cyclic codes for correcting short
bursts is given in Table 10.9. The polynomials are again represented in octal
notation, with the highest-degree terms on the left, as in Table 10.7.

Fire codes

These codes are a versatile class of systematic cyclic codes designed for correct-
ing or detecting a single burst of length b in a block of digits. Let p(Z) be an

Lo
Lot
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irreducible polynomial of degree m > b, and let e be the smallest positive integer
such that p(Z) divides (Z° + 1). Furthermore, assume that e and (26 — 1) are
relatively prime integers. Then the polynomial

9(2) = (2* + 1)p(2) (10.57)

is the generator of a b burst-error correcting Fire coc{e of lengthn = LCMf(e, 21:—-
1), where LCM means least common multiple. Notice that the numble)r o pzlx:tl a?
ch,eck digits in these codes is (m +2b—1). For tclile 2111311111t6‘<:ase olf :)rlzc ;e ,b »:reS;)erroxl
i i . A proo -
a burst-correcting efficiency that cannot exceec 10 . .
correcting capabilities of Fire codes, together with a description of etzor t;appmi
decoders, can be found in Chapter 9 of Lin and Costello (1983). Utn :r Ftirz s::aomde
ition i i d d, we can generate

onditions as before, given two integers b and @, ; :
zapable of correcting any burst of length b (or less) and 51mu1tanf=,ously detecting
any burst of length up to d > b, by using the generator polynomial

9(2) = (Z2°+ 1)p(2) (10.58)

with ¢ satisfying the condition ¢ > b+ d — 1 (see Peterson and Weldon, 1972,
Chapter 11).

Example 10.19 We want to design a Fire code to correct all burst>s <;f lce;rk;gth i ggthz
. We get ¢ > 16 and m > 7. Choosi

and to detect all bursts of lengths up to 10 : : :

primitive polynomial of degree 7 in Table 10.6, we obtain the following generator:

9(2) = (2¥+1)(Z2"+ 2% +1)

Since p(Z) is primitive, we have e = 27 —1 = 127, and Fhe length o; thc:1 .c;d:,a:z
n = 16 x 127 = 2032. Thus, the code is a (2032,2009) Fl}'e code w1t1 a 1g1 e
(R. = 0.99) and a burst-correcting efficiency z = 0.6. Notice that the (c:jw va:lal]

(n — k) makes it easy to implement the encoder. (.)n the othc.tr. hand, -th.ese Z c:,isv:n " ey
have a high length, even for a modest burst-correcting capability. This is ;: 1sfa " vz \
since only one burst per each block length is correctable or detectable. Therefore, a very

. . g
long guard space between successive bursts is required.

Interleaved codes

A practical technique to cope with burst errors is that of qsmglrandoma-ierrrzrr;
correcting codes in connection with a suitable {nterleaver/demter efaverg ]S. An
interleaver is a device that rearranges the orde.rmg of.a sequence of symbo ina
deterministic manner. The deinterleaver applies the inverse operation to res
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Data Data
—|ENCODER INTERLEAVER BURST ERROR DEINTERLEAVER DECODER
n CHANNEL out

Figure 10.19: Block diagram for the application of the interleaver-deinterleaver pair.

the sequence to its original ordering. Given an (n, k) cyclic code, an (in, k)
interleaved code can be obtained by arranging 1 code words of the original code
into ¢ rows of a rectangular array that will be transmitted by columns. The param-
eter ¢ is called the interleaving degree of the code. If the original code corrects
up to ¢ random errors, the interleaved code will have the same random-error-
correction capability, but in addition it will be able to correct all bursts of len gth
@ X t (or less). The use of this technique is shown in Figure 10.19 and explained
in the following example.

Example 10.20 Consider a (15, 5) BCH code, whose generator polynomial is, from
Table 10.7 g(Z) = Z'% + 2% + 25 + Z* + Z2 + Z + 1. This code corrects all random
error configurations with ¢ = 3 (or less) errors in sequences of length n = 15. Taking
t = 5, we can derive a (75, 25) interleaved code. The arrangement of the code words is
shown in Figure 10.20. An information sequence of 25 digits is divided into five 5-digit
message blocks and five code words of length 15 are generated using g(Z). These code
words are arranged as five rows of the 5x 15 matrix shown in the figure. The columns of
the matrix are transmitted, in the indicated order, as a code word of length 75. Each burst
of length 15 (or less) produces no more than three errors in each row of the matrix. A
burst from position 18 to position 32 is shown by dashed squares in the figure. Therefore,
the decoder can correct the errors by operating on each row. The interleaving process
has, in fact, diffused the burst into isolated errors, and all error patterns containing three
errors or less in each row of the matrix are correctable. m}

10.3. Performance evaluation of block codes

In Chapter S, different modulation schemes were compared on the basis of their
bit error probability P, (e). The scope of this section is to provide useful tools for
extending those comparisons to coded transmission.

For transmission systems employing block codes, two error probabilities can
be introduced:

e The word error probability P,(e), defined as the probability that the de-

coder output is a wrong code word, i.e., a code word different from that
transmitted.
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o [[1]s]ulis]ar|2s]31] --- 66|
S| z2]7 |||z --- |6a|n
4 3] s|13|18[23}28]33] --- |e8|73
Q
o | [ o|1a]19]2a]20]3e] oo [69]|T4
2
| [5]w0]is]20]2s]0]35] --- |7075
" _J\ ./
Y Yo
Information digits Parity-check digits

Figure 10.20: Scheme for the interpretation of a (75,25) interleaved code derived from
a(15,5) BCH code. A burst of length b = 15 is spread into t = 3 error patterns in each
of the five code words of the interleaved code.

e The bit error probability P,(e) (or symbol error probability for nonbinary
codes), defined as the probability that an information bit (symbol) is in
error after decoding.

Which of the two probabilities better describes the system performance in a par-
ticular situation depends on the system. The significance of the bit error proba-
bility comes from the fact that some of the information bits may be correct even
if the decoder outputs a wrong code word.

The computation of the word and bit error probabilities depends on the de-
coding strategies chosen by the system. As an example, when the system em-
ploys an ARQ strategy, the decoder will output a wrong code word if and only if
the received n-tuple is one of the 2% — 1 code words different from the transmit-
ted one. This, for linear codes, requires that the channel error vector coincides
with one of the nonzero code words. The situation is completely different when
an FEC strategy is adopted.

Different decoding strategies are better understood with reference to the stan-
dard array of a linear code introduced in Section 10.2.2. We recall that the stan-
dard array is an array with 2¢ columns and 2"~* rows that groups all 2 n-tuples
representing the received words. Each row (a coset) is labeled by a code syn-
drome, and contains all the ntuples that give that syndrome. The first ntuple of
each row (the coset leader) is the lowest weight word in the row.

Arrange the cosets in order of decreasing weight (i.e., decreasing probability
on a BSC) of the coset leader, obtaining the situation of Figure 10.21, and assume
that the code has a correction capability of ¢ errors. If the code were a perfect
code, such as a Hamming code for ¢ = 1, the cosets with a leader of weight up to
¢ would include all n-tuples. In general, however, this will not be the case, and
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Coset
Syndromes leaders

Correct errors
(coset leaders of weight < 1)

Detect errors
(coset leaders of w