

Advanced Information and Knowledge Processing

Series Editors
Professor Lakhmi Jain
Lakhmi.jain@unisa.edu.au
Professor Xindong Wu
xwu@cems.uvm.edu

For other titles published in this series, go to
www.springer.com/series/4738

Sergei V. Chekanov

Scientific
Data Analysis using
Jython Scripting
and Java

Dr. Sergei V. Chekanov
Argonne National Laboratory (ANL)
9700 S. Cass Ave
Argonne
60439 IL, USA
chakanau@hep.anl.gov

AI&KP ISSN 1610-3947
ISBN 978-1-84996-286-5 e-ISBN 978-1-84996-287-2
DOI 10.1007/978-1-84996-287-2
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2010930974

© Springer-Verlag London Limited 2010
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

This book is dedicated to my family

Preface

Over the course of the past twenty years I have learned many things relevant to
this book while working in high-energy physics. As everyone in this field in the
yearly to mid-90s, I was analyzing experimental data collected by particle colliders
using the FORTRAN programming language. Then, gradually, I moved to C++
coding following the general trend at that time. I was not too satisfied with this
transition: C++ looked overly complicated and C++ source codes were difficult
to understand. With C++, we were significantly constrained by particular aspects
of computer hardware and operating system (Linux and Unix) on which the source
codes were compiled and linked against existing libraries. Thus, to bring the analysis
environment outside the high-energy community to the Windows platform, used by
most people, was almost impossible.

I began serious development of ideas that eventually led to the jHepWork Java
analysis environment in 2004, when I was struck by the simplicity and by the
power of the Java Analysis Studio (JAS) program developed at the SLAC National
Accelerator Laboratory (USA). One could run it even on the Windows platform,
which was incredible for high-energy physics applications; We never really used
Windows at that time, since high-energy physics community had wholly embraced
Unix and Linux as the platform of choice, together with its build-in GNU C++ and
FORTRAN compilers. More importantly, JAS running on Windows had exactly the
same interface and functionality as for Unix and Linux! It was a few months af-
ter that I made the decision to focus on a simplified version of this Java framework
which, I thought, should befit from Java scripting, will be simpler and more intuitive.
Thus, it should be better suited for general public use. I have called it “jHepWork”
(“j” means Java, “HEP” is the abbreviation for high-energy physics, and “work”
means a sedentary lifestyle in front of a computer monitor).

Indeed, I was able to simplify the language and semantic of the JAS analysis en-
vironment by utilizing more appropriate short names for classes and methods, which
are more suited for scripting languages. The entire project had grown tremendously
after inclusion of many new GNU-licensed packages and extending the functionality
of JAS in many areas, such as 3D graphics, serialized I/O and numerous numerical
packages. At present, jHepWork covers an impressive list of Java-written packages

vii

viii Preface

ranged from basic mathematical functions to neural networks and cellular automa-
tion. And, eventually, a little of JAS has left inside jHepWork! One important thing,
however, has remained: As JAS, jHepWork was still an open-source software that
can be downloaded freely from the Web.

For this project, Python was chosen as the main programming language because
it is elegant and easy to learn. It is a great language for teaching scientific compu-
tation. For developers, this is an ideal language for fast prototyping and debugging.
However, since the whole project was written in Java, it is Jython (Python imple-
mented in Java) that was eventually chosen for the jHepWork project.

This book is intended for general audience, for those who use computing power
to make sense of surrounding us data. This book is a good source of knowledge on
data analysis for students and professionals of all disciplines. Especially, this book
is for scientists and engineers, and everyone who devoted themselves to the quest of
where we find ourselves in the Universe and what we find ourselves made of.

This book is also for those who study financial market; I hope it will be useful
for them because the methods discussed in this book are undoubtedly common to
any scientific research. However, I have to admit that this book may have little inter-
est for a commercial use since financial-market analysts, unlike researches in basic
scientific fields, could afford costly commercial products.

This book is about how to understand experimental data, how to reduce com-
plexity of data, derive some meaningful conclusions and, finally, how to present
results using Java graphical packages. It concentrates on computational aspects of
these topics: as you will see, due to the simplicity of Python, one could catch ideas
of many examples of this book just by looking at the code snippets without even
explaining them in words. This book is also about how to simulate more or less re-
alistic data samples which can mimic real situations. Such simulated data are used in
this book in order to give simple and intuitive examples of data analysis techniques
using Java scripting.

In this book I did not go deep inside of particular statistical or physics topics,
since the aim was to give concrete numeral receipts and examples using Jython
scripting language interfaced with Java numerical packages. My aim was also to
give an introduction to many data-analysis subjects with sample code snippets based
on Jython and jHepWork Java libraries. In cases when I could not cover the subject
in detail, a sufficient number of relevant references was given, so the reader can
easily find necessary information for each chapter using external sources.

Thus, this book presents practical approaches for data analysis, focusing on pro-
gramming techniques. Each chapter describes the conceptual and methodological
underpinning for statistical tools and their implementation in Java, covering essen-
tially all aspects of data analysis, from simple multidimensional arrays and his-
tograms to clustering analysis, curve fitting, metadata and neural networks. This
book includes a comprehensive coverage of various numerical and graphical pack-
ages currently implemented in Java that are part of the jHepWork project.

The book was written by the primary developer of the software, and aimed to
present a reliable and complete source of reference which lays the foundation for
future data-analysis applications using Java scripting. The book includes more than

Preface ix

200 code snippets which are directly runnable and used to produce all graphical
plots given in the text. A detailed description and several real-life data-analysis
examples which develop a genuine feeling for data analysis techniques and their
programming implementation are given in the last chapter of this book.

Finally, I am almost convinced myself that this book is self-contained and does
not depend on knowledge of any computing package, Java, Python or Jython (al-
though knowledge of Python and Java is desirable for professionals).

Chicago-Hamburg-Minsk Sergei V. Chekanov

Acknowledgements

Several acknowledgements are in order. Much of this project grew out of fruitful
collaboration with many of my colleagues who devoted themselves to high energy
physics.

My scientific career in experimental high-energy physics was most influenced by
Prof. Dr. V.I. Kuvshinov and Prof. Dr. E.W. Kittel, who were my supervisors almost
fifteen years ago. I’ve learned experimental computation in the yearly 90x from
Dr. L.F. Babichev and Dr. W.J. Metzger. I’ve learned experimental physics and its
computational aspects from Dr. M. Derrick, Prof. Dr. E. Lohrmann, Dr. J. Repond,
Dr. R. Yoshida, Dr. S. Magill, Dr. C. Glasman, Prof. Dr. J. Terron, Dr. J. Proudfoot,
Dr. A. Vanyashin and many others.

The author is grateful to many authors writing free scientific software for their
dedication to science and open-source analysis tools. I would like to thank many of
my collegues for checking and debugging the jHepWork package, especially J. Dale,
E. May, L. Lee, T. Johnson, P. Di Stefano and many others.

I would like to thank my parents and sister for their support, guidance, and love.
Not least, I would like to express my eternal gratitude for my dear wife and children
for their love and patience to a husband and father who wrote this book at home
and thus was only half (mentally) present after coming from his work. Without their
patience and understanding, this book would not have been possible.

xi

Contents

Introduction . 1
Introduction to Data Analysis and Why This Book Is Special . . . 1
Who Is This Book for . 2

1 Jython, Java and jHepWork . 3
1.1 Introduction . 3

1.1.1 Books You May Read Before 4
1.1.2 Yes, It Is Pure Java . 4
1.1.3 Some Warnings . 5
1.1.4 Errors . 7

1.2 Introduction to Scientific Computing 7
1.2.1 Book Examples and the Power of Jython 7
1.2.2 The History of jHepWork 8
1.2.3 Why Jython? . 9
1.2.4 Differences with Other Data-analysis Packages 10
1.2.5 How Fast It Is? . 11
1.2.6 Jython and CPython Versions 12

1.3 Installation . 13
1.4 Introduction to the jHepWork IDE 14

1.4.1 Source Code Editor . 15
1.4.2 jHepWork Java Libraries and Python Packages 15
1.4.3 Jython and Bean Shell Consoles 17
1.4.4 Accessing Methods of Instances 19
1.4.5 Editing Jython Scripts . 19
1.4.6 Running Jython Scripts 19
1.4.7 Running a BeanShell Scripts 20
1.4.8 Compiling and Running Java Code 20
1.4.9 Working with Command-line Scripts 21
1.4.10 jHepWork Code Assist . 21
1.4.11 Other Features . 22

xiii

xiv Contents

1.5 Third-party Packages and the License 23
1.5.1 Contributions and Third-party Packages 23
1.5.2 Disclaimer of Warranty 25
1.5.3 jHepWork License . 25
References . 26

2 Introduction to Jython . 27
2.1 Code Structure and Commentary 27
2.2 Quick Introduction to Jython Objects 28

2.2.1 Numbers as Objects . 31
2.2.2 Formatted Output . 32
2.2.3 Mathematical Functions 33
2.2.4 Complex Numbers . 34

2.3 Strings as Objects . 34
2.4 Import Statements . 35

2.4.1 Executing Native Applications 36
2.5 Comparison Tests and Loops . 37

2.5.1 The ‘if-else’ Statement 37
2.5.2 Loops. The “for” Statement 38
2.5.3 The ‘continue’ and ‘break’ Statements 39
2.5.4 Loops. The ‘while’ Statement 39

2.6 Collections . 40
2.6.1 Lists . 40
2.6.2 List Creation . 41
2.6.3 Iteration over Elements 42
2.6.4 Removal of Duplicates . 43
2.6.5 Tuples . 45
2.6.6 Functional Programming. Operations with Lists 46
2.6.7 Dictionaries . 48

2.7 Java Collections in Jython . 50
2.7.1 List. An Ordered Collection 50
2.7.2 Set. A Collection Without Duplicate Elements 53
2.7.3 SortedSet. Sorted Unique Elements 54
2.7.4 Map. Mapping Keys to Values 55
2.7.5 Java Map with Sorted Elements 55
2.7.6 Real Life Example: Sorting and Removing Duplicates . . . 56

2.8 Random Numbers . 57
2.9 Time Module . 58

2.9.1 Benchmarking . 59
2.10 Python Functions and Modules 60
2.11 Python Classes . 63

2.11.1 Initializing a Class . 65
2.11.2 Classes Inherited from Other Classes 66
2.11.3 Java Classes in Jython . 66
2.11.4 Topics Not Covered . 67

Contents xv

2.12 Used Memory . 67
2.13 Parallel Computing and Threads 67

2.14 Arrays in Jython . 68
2.14.1 Array Conversion and Transformations 70
2.14.2 Performance Issues . 70

2.15 Exceptions in Python . 71
2.16 Input and Output . 72

2.16.1 User Interaction . 72
2.16.2 Reading and Writing Files 72
2.16.3 Input and Output for Arrays 74
2.16.4 Working with CSV Python Module 75
2.16.5 Saving Objects in a Serialized File 77
2.16.6 Storing Multiple Objects 77
2.16.7 Using Java for I/O . 78
2.16.8 Reading Data from the Network 79

2.17 Real-life Example. Collecting Data Files 80
2.18 Using Java for GUI Programming 83
2.19 Concluding Remarks . 84

References . 84

3 Mathematical Functions . 85
3.1 Jython Functions . 85
3.2 1D Functions in jHepWork . 87

3.2.1 Details of Java Implementation 89
3.2.2 Integration and Differentiation 90

3.3 Plotting 1D Functions . 91
3.3.1 Building a Graphical Canvas 92
3.3.2 Drawing 1D Functions . 95
3.3.3 Plotting 1D Functions on Different Pads 97
3.3.4 Short Summary of HPlot Methods 98
3.3.5 Examples . 98

3.4 2D Functions . 100
3.4.1 Functions in Two Dimensions 100
3.4.2 Displaying 2D Functions on a Lego Plot 101
3.4.3 Using a Contour Plot . 104

3.5 3D Functions . 105
3.5.1 Functions in Three Dimensions 105

3.6 Functions in Many Dimensions 105
3.6.1 FND Functions . 105
3.6.2 Drawing FND Functions 106

3.7 Custom Functions Defined by Jython Scripts 107
3.7.1 Custom Functions and Their Methods 107
3.7.2 Using External Libraries 110
3.7.3 Plotting Custom Functions 111

3.8 Parametric Surfaces in 3D . 113

xvi Contents

3.8.1 FPR Functions . 113
3.8.2 3D Mathematical Objects 116

3.9 Symbolic Calculations . 116
3.10 File Input and Output . 119

References . 120

4 One-dimensional Data . 121
4.1 One Dimensional Arrays . 121
4.2 P0D Data Container . 122

4.2.1 P0D Transformations . 125
4.2.2 Analyzing P0D and Summary Statistics 126
4.2.3 Displaying P0D Data . 128

4.3 Reading and Writing P0D Files 130
4.3.1 Serialization . 131
4.3.2 XML Format . 131
4.3.3 Dealing with Object Collections 133

5 Two-dimensional Data . 135
5.1 Two Dimensional Data Structures 135
5.2 Two Dimensional Data with Errors 136

5.2.1 Viewing P1D Data . 140
5.2.2 Plotting P1D Data . 142
5.2.3 Contour Plots . 144

5.3 Manipulations with P1D Data . 145
5.3.1 Advanced P1D Operations 146
5.3.2 Weighted Average and Systematical Uncertainties 148

5.4 Reading and Writing P1D Data 151
5.4.1 Dealing with a Single P1D Container 151
5.4.2 Reading and Writing Collections 153

5.5 Real-life Example I: Henon Attractor 154
5.6 Real-life Example II. Weighted Average 155

References . 159

6 Multi-dimensional Data . 161
6.1 P2D Data Container . 161

6.1.1 Drawing P2D and HPlot3D Canvas 161
6.2 P3D Data Container . 164
6.3 PND Data Container . 166

6.3.1 Operations with PND Data 167
6.4 Input and Output . 169

7 Arrays, Matrices and Linear Algebra 171
7.1 Jaida Data Containers . 171

7.1.1 Jaida Clouds . 172
7.2 jMathTools Arrays and Operations 174

7.2.1 1D Arrays and Operations 174

Contents xvii

7.2.2 2D Arrays . 176

7.3 Colt Data Containers . 177
7.4 Statistical Analysis Using Jython 178
7.5 Matrix Packages . 181

7.5.1 Basic Matrix Arithmetic 183
7.5.2 Elements of Linear Algebra 184
7.5.3 Jampack Matrix Computations and Complex Matrices . . . 185
7.5.4 Jython Vector and Matrix Operations 186
7.5.5 Matrix Operations in SymPy 188

7.6 Lorentz Vector and Particle Representations 189
7.6.1 Three-vector and Lorentz Vector 189
7.6.2 Classes Representing Particles 191
References . 192

8 Histograms . 193
8.1 One-dimensional Histogram . 193

8.1.1 Probability Distribution and Probability Density 198
8.1.2 Histogram Characteristics 198
8.1.3 Histogram Initialization and Filling Methods 199
8.1.4 Accessing Histogram Values 201
8.1.5 Integration . 201
8.1.6 Histogram Operations . 203
8.1.7 Accessing Low-level Jaida Classes 204
8.1.8 Graphical Attributes . 205

8.2 Histogram in 2D . 205
8.2.1 Histogram Operations . 207
8.2.2 Graphical Representation 209

8.3 Histograms in Jaida . 212
8.4 Histogram in 3D . 214
8.5 Profile Histograms . 214

8.5.1 Profile Histograms in 1D 215
8.5.2 Profile Histograms in 2D 215

8.6 Histogram Input and Output . 217
8.6.1 External Programs for Histograms 218

8.7 Real-life Example. Analyzing Histograms from Multiple Files . . . 220
References . 221

9 Random Numbers and Statistical Samples 223
9.1 Random Numbers in Jython . 223
9.2 Random Numbers in Java . 225
9.3 Random Numbers from the Colt Package 226
9.4 Random Numbers from the jhplot.math Package 227

9.4.1 Apache Common Math Package 229
9.5 Random Sampling . 229

9.5.1 Methods for 1D Arrays from jhplot.math 230

xviii Contents

9.5.2 Methods for 2D Arrays from jhplot.math 232
9.6 Sampling Using the Colt Package 233

References . 233

10 Graphical Canvases . 235
10.1 HPlot Canvas . 236
10.2 Working with the HPlot Canvas 238

10.2.1 Find USER or NDC Coordinators 238
10.2.2 Zoom in to a Certain Region 238
10.2.3 How to Change Titles, Legends and Labels 238
10.2.4 Edit Style of Data Presentation 239
10.2.5 How to Modify the Global Margins 239
10.2.6 Saving Plots in XML Files 240
10.2.7 Reading Data . 240
10.2.8 Cleaning the HPlot Canvas from Graphics 241
10.2.9 Axes . 241
10.2.10Summary of the HPlot Methods 242
10.2.11Saving Drawings in an Image File 242

10.3 Labels and Keys . 244
10.3.1 Simple Text Labels . 244
10.3.2 Interactive Labels . 245
10.3.3 Interactive Text Labels with Keys 246

10.4 Geometrical Primitives . 248
10.5 Text Strings and Symbols . 249
10.6 SHPlot Class. HPlot Canvas as a Singleton 249
10.7 Visualizing Interconnected Objects 251
10.8 Showing Charts . 253
10.9 SPlot Class. A Simple Canvas . 254

10.9.1 Henon Attractor Again 256
10.10Canvas for Interactive Drawing 257

10.10.1Drawing Diagrams . 258
10.10.2SHPlotJa Class . 259

10.11HPlot2D Canvas . 260
10.123D Canvas . 262
10.13HPlot3D Canvas . 263

10.13.1HPlot3DP Canvas . 263
10.13.23D Geometry Package . 266

10.14Combining Graphs with Java Swing GUI Components 267
10.15Showing Streams of Data in Real Time 270

References . 271

11 Input and Output . 273
11.1 Non-persistent Data. Memory-based Data 273
11.2 Serialization of Objects . 274
11.3 Storing Data Persistently . 276

Contents xix

11.3.1 Sequential Input and Output 276
11.3.2 GUI Browser for Serialized Objects 278

11.3.3 Saving Event Records Persistently 279
11.3.4 Buffer Size for I/O Intensive Operations 280
11.3.5 Input and Output to XML Files 281
11.3.6 Non-sequential Input and Output 282

11.4 Compressed PFile Format . 283
11.4.1 Browser Dialog for PFile Files 286

11.5 Reading ROOT and AIDA Files 287
11.5.1 Reading ROOT Histograms 287
11.5.2 Reading ROOT Trees . 288
11.5.3 Plotting ROOT or AIDA Objects Using jHepWork IDE . . 290

11.6 Working with Relational SQL Databases 291
11.6.1 Creating a SQL Database 292
11.6.2 Working with a Database 293
11.6.3 Creating a Read-only Compact Database 294

11.7 Reading and Writing CSV Files 295
11.7.1 Reading CSV Files . 295
11.7.2 Writing CSV File . 296

11.8 Google’s Protocol Buffer Format 297
11.8.1 Prototyping Data Records 298
11.8.2 Dealing with Data Using Java 299
11.8.3 Switching to Jython . 302
11.8.4 Adding New Data Records 303
11.8.5 Using C++ for I/O in the Protocol Buffers Format 303
11.8.6 Some Remarks . 306

11.9 EFile Data Output . 306
11.10Reading DIF Files . 309
11.11Summary . 310

11.11.1Dealing with Single Objects 310
11.11.2Dealing with Collections of Objects 310
References . 311

12 Miscellaneous Analysis Issues Using jHepWork 313
12.1 Accessing Third-party Libraries 313

12.1.1 Extracting Data Points from a Figure 313
12.1.2 Cellular Automaton . 314

12.2 Downloading Files from the Web 315
12.3 Macro Files for jHepWork Editor 315
12.4 Data Output to Tables and Spreadsheets 316

12.4.1 Showing Data in a Sortable Table 316
12.4.2 Spreadsheet Support . 318

12.5 Accessing External Java and Jython Libraries 318
12.6 Working with a jHepWork Project 319

12.6.1 Pure Jython Project . 319

xx Contents

12.6.2 Pure Java Project . 320
12.6.3 Mixing Jython with Java 320

12.7 Working with Images . 321
12.7.1 Saving Plots in External Image File 321
12.7.2 View an Image. IView Class 321
12.7.3 Analyzing and Editing Images 321

12.8 Complex Numbers . 322
12.9 Building List of Files . 322
12.10Reading Configuration Files . 323

12.10.1Configuration Files Using Jython 323
12.10.2Reading Configuration Files Using Java 325

12.11Jython Scripting with jHepWork 326
12.11.1Jython Operations with Data Holders 328

12.12Unwrapping Jython Code. Back to Java 329
12.13Embedding jHepWork in Applets 331

References . 334

13 Data Clustering . 335
13.1 Data Clustering. Real-life Example 335

13.1.1 Preparing a Data Sample 336
13.1.2 Clustering Analysis . 338
13.1.3 Interactive Clustering with JMinHEP 342
References . 342

14 Linear Regression and Curve Fitting 343
14.1 Linear Regression . 343

14.1.1 Data Set . 343
14.1.2 Analyzing the Data Set 344

14.2 Curve Fitting of Data . 346
14.2.1 Preparing a Fit . 348
14.2.2 Creating a Fit Function 349

14.3 Displaying a Fit Function . 354
14.3.1 Making a Fit . 354

14.4 Real-life Example. Signal Plus Background 357
14.4.1 Preparing a Data Sample 357
14.4.2 Performing Curve Fitting 357
14.4.3 Fitting Multiple Peaks . 359
14.4.4 Fitting Histograms in 3D 362

14.5 Interactive Fit . 363
References . 365

15 Neural Networks . 367
15.1 Introduction . 367

15.1.1 Generating a Data Sample 368
15.1.2 Data Preparation . 369

Contents xxi

15.1.3 Building a Neural Net . 371
15.1.4 Training and Verifying . 373

15.2 Bayesian Networks . 375
15.3 Self-organizing Map . 376

15.3.1 Non-interactive BSOM 378
15.4 Neural Network Using Python Libraries 379

References . 382

16 Steps in Data Analysis . 383
16.1 Major Analysis Steps . 383
16.2 Real Life Example. Analyzing a Gene Catalog 385

16.2.1 Data Transformation . 386
16.2.2 Data Skimming . 386
16.2.3 Data Slimming . 387
16.2.4 Data Sorting . 387
16.2.5 Removing Duplicate Records 389
16.2.6 Sorting and Removing Duplicate Records Using Java . . . 390

16.3 Using Metadata for Data Mining 391
16.3.1 Analyzing Data Using Built-in Metadata File 392
16.3.2 Using an External Metadata File 395

16.4 Multiprocessor Programming . 396
16.4.1 Reading Data in Parallel 397
16.4.2 Processing a Single Input File in Parallel 399
16.4.3 Numerical Computations Using Multiple Cores 401

16.5 Data Consistency and Security. MD5 Class 403
16.5.1 MD5 Fingerprint at Runtime 403
16.5.2 Fingerprinting Files . 404
References . 405

17 Real-life Examples . 407
17.1 Measuring Single-particle Densities 407

17.1.1 Preparing a Data Sample 408
17.1.2 Analyzing Data . 409

17.2 Many-particle Densities, Fluctuations and Correlations 411
17.2.1 Building a Data Sample for Analysis 411
17.2.2 Analyzing the Data . 415
17.2.3 Reading the Data and Plotting Multiplicities 416

17.3 Analyzing Macro Data: Nearby Galaxies 420
17.4 Analyzing Micro Data: Elementary Particles 423
17.5 A Monte Carlo Simulation of Particle Decays 425
17.6 Measuring the Speed of Light Using the Internet 428

17.6.1 Getting Host Names in Each Continent 429
17.6.2 Checking Response from Servers 430
17.6.3 Creating Histograms with the Response Time 430

xxii Contents

17.6.4 Final Measurements . 431
References . 433

Index of Examples . 435

Index . 437

Conventions and Acronyms

In this book, we will use the following typographical convention: A box with a code
inside usually means interactive Jython commands typed in the Jython shell. All
such commands start with the symbol >>>, which is the usual invitation in Python
to type a command. This is shown in the example below:

>>> print ’Hello, jHepWork’

Working interactively with the Jython prompt has the drawback that it is im-
possible to save typed commands. In most cases, the code snippets are not so short,
although they are still much shorter than in any other programming language. There-
fore, it is desirable to save the typed code in a file for further modification and execu-
tion. In this case, we use Jython macro files, i.e. we write a code using the jHepWork
(or any other) editor, save it in a file with the extension “.py”, and run it using the
keyboard shortcut [F8] or the button “run” from the jHepWork tool bar menu. In
the book, such code examples are also shown inside the box, but code lines do not
start with the Jython invitation symbol >>>. In such situations, the example codes
will be shown as:

print ’Hello, jHepWork’

If a code snippet should be used as a Jython module for inclusion into other
programs, then we should write our program inside a file. A Python code always
imports an external module using its file name. Since the file names are important,
we always indicate which exactly file name should be used on the top of the box with
a code. For example, if a program code is considered as a module to be imported by
another code example, we will show it as:

Module ’hello.py’

print ’Hello, jHepWork’

xxiii

xxiv Conventions and Acronyms

with the box title indicationing the file name. For instance, we call the module above
as:

>>> import hello
Hello, jHepWork

when using the Jython prompt (recall the >>> symbol!). The code imports the
file ’hello.py’ and executes it, printing the string ’Hello, jHepWork’. In
other cases, one can use any file names for the code snippets.

We use typewriter font for Jython and Java classes and methods. For file
names and directories, we also use the same font style after adding additional paren-
theses.

We remind also that the directory name separators are backward slashes for Win-
dows, and slashes for Linux and Mac computers. In this book, we use the latter
convention. For example, the directory with examples will be shown as:

... /macro/examples/

while for Windows computers, the same directory should be shown as:

C:...\macro\examples\

The dots in this example are used to indicate the jHepWork installation directory.
This is all. We will try to avoid using abbreviations. When we use abbreviations,

we will explain their meaning directly in the text.

Introduction

Introduction to Data Analysis and Why This Book Is Special

Data analysis is a systematic process of understanding surrounding us world by
means of several phases in a scientific research:

• Data gathering, digitization and transformation to a necessary format. Usually,
data comes from experimental apparatus;

• Reduction of data volume, structuring and cleaning erroneous entries where pos-
sible;

• Data description, which can usually be done via statistical analysis of data; At this
stage, producing data summaries is an important computational task to proceed
further;

• Data mining that focuses on knowledge discovery and predictions. This stage
aims to identify and classify patterns in data. The data mining is usually machine-
based exploration of data;

• Comparison of data with other data sets and finding interdependence or similari-
ties;

• Confronting data with numerical or analytical models. Numerical data modeling
and simulation of experimental apparatus can be used if an analytical description
is impossible;

• Data visualization and extraction of relevant results.

As you can see, the topic of data analysis is very broad and cannot easily be covered
in a single book. We do not plan to do this.

The approach of this book is different. There are plenty of books which go into
the depth of certain data-analysis subjects. In this book, I give numerical recipes and
complete code snippets which illustrate essentially all phases in data analysis dis-
cussed above. Not only this: we will not only illustrate data-analysis computational
techniques, but also will show how to simulate data that can be used for our analysis
examples. In addition, we perform data analysis computations using real-life data
ranged from particle physics to astrophysics and biology.

Data analysis is a difficult research topic. It requires a good knowledge of not
only your specific research field, but also computer programming. On top of this,

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_1, © Springer-Verlag London Limited 2010

1

2 Introduction

the knowledge of mathematics and statistics is essential. To make the data analysis
examples as simple as possible from the computational point of view, I fully em-
brace the scripting approach in the course of this book. This leads to short and clear
analysis codes, so one could concentrate on the logic of analysis flow rather than on
language-specific details.

Until now, if one needs to analyze large data volumes, most likely one has to
use either C++ or FORTRAN, thus one should write some rather low-level code,
compilation and execution of which require a certain computer platform. At this
moment, this is the only book which teaches how to combine the power of a high-
level scripting language with Java numerical libraries, and how to make use of truly
platform-independent and multi-threaded computational environment for data anal-
ysis. I hope this book will help to unleash the tremendous potential of this new
approach and will encourage to use it by a wide audience.

The main emphasis of this book has been put on numerical methods and codding
techniques, thus we are going to equip you with the necessary knowledge for data
analysis from the computational point of view. In this book, you will learn how
to write analysis codes, and numerous code snippets give you some ideas that can
easily be incorporated into your own research application.

Who Is This Book for

I have written this book for undergraduate and graduate students, academics, profes-
sors, professionals of any field and any age. The book could be used as a textbook
for students.

I assume that the reader is not familiar with any particular programming lan-
guage, but some basic understanding of statistics and mathematics would be very
helpful to understand the material of this book. This is why I have spent so much
time in this book showing how to write analysis codes, rather than explaining the ba-
sics of statistics and data mining. Note that if the reader will decide to write his/her
own Java libraries to be deployed as jar files for a new project, some experience with
the Java programming language will be required.

Chapter 1
Jython, Java and jHepWork

1.1 Introduction

The data analysis approach implemented in the jHepWork data-analysis frame-
work [1] and to be discussed in this book was designed for everyone who does
not have a big desire to go into the depth of low-level hardcore programming. Yes,
this book is for you, scientists, engineering and students, and the rest of us, whose
brain is already busy with professional research or hobby. jHepWork was designed
to enable researches to spend their time thinking about problems and their solu-
tions, rather than diving into a low-level codding using programming languages,
such as C/C++ or FORTRAN, which are more oriented toward a computing ma-
chine, rather than to a person who has to understand and interpret the code. jHep-
Work analysis macros for data manipulations are based on Jython, an implementa-
tion of the high-level language Python. Thus, one can fully benefit from variety of
programming possibilities offered by Python, including its syntax clarity and high-
level libraries. But Jython is not prerequisite for this framework: Java can also be
used to access the mathematical and graphical libraries of jHepWork.

With time, any computational framework based on a simple-to-learn program-
ming language naturally gets large and difficult to handle; this is a quite inevitable
feature of the modern life. Properly chosen computation language is essential to
maintain simplicity of user communication with exponentially growing programs.
And this is where Java comes to its power: Java virtual machine and its popular in-
tegrated development environments can help to develop programs, tell about errors
or mistyped classes and, in general, provide a layer of intelligent activity between
a human, who writes a code or interprets its algorithmic logic, and a machine de-
signed for program execution. This is rather different from low-level languages like
C/C++ or FORTRAN which are often used for numerical calculations. For such
languages, a researcher is usually on his own with a text editor and a programing
language itself which typically requires good programming skills and several man-
uals on a bookshelf.

jHepWork is by no means a simple framework, although it is based on Java and
high-level Python language. It has more than ten thousands Java classes and methods

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_2, © Springer-Verlag London Limited 2010

3

4 1 Jython, Java and jHepWork

designed for data manipulation, analysis and data visualization (excluding those
provided by the native Java API and Python itself). The jHepWork library core for
statistical and graphical analysis is based on the jHPlot library, which contains more
than 1200 Java classes and methods. However, you will be surprised to find out
about how easy to work with this program. Partially, this is because of the Python
language implemented in Java (Jython) and, partially, because of Java itself. We will
explain this point in this chapter.

1.1.1 Books You May Read Before

Generally, the text of this book is self-contained. But to understand the material
deeper, you may need to look at other sources. First of all, there are plenty of
good books [2–6] about Python and Jython, which are more complete for language-
specific topics than the material given in this book.

Secondly, a great deal of supplementary information can be found in Java books
[7–11]. These books are especially useful if you will decide to understand many
issues on much deeper level than that given in this book. The truth is that Java forms
the backbone of the jHepWork numerical and graphical libraries. This means that
one can write your data-analysis software in pure Java language using exactly the
same libraries as those used for the scripting examples in this book! Of course, in
this case, you should use the proper Java syntax.

Thirdly, as you read, you may need to look at external sources to understand the
material better, especially when we come to statistical interpretation of data. We will
supply the reader with the necessary references, so he or she can choose the most
appropriate (and affordable) books to discover the world of data analysis and data
mining.

1.1.2 Yes, It Is Pure Java

You may want to skip this section if you are not too interested in any further discus-
sion of Java and C++.

Nowadays, the advantages of Java over C++ in many areas seems to be over-
whelming. First of all, Java is the most popular object-oriented programing lan-
guage. According to SourceForge.net and Freshmeat.net statistics, the number of
open-source applications written in Java exceeds those written in C++. According
to the TIOBE Programming Community Index (http://www.tiobe.com), the popu-
larity of Java in industry is at the level of 20%, while C++ has 10% popularity at
the time when this book was written.

Java retains the C++ syntax, but significantly simplifies the language. This is
an incomplete list of advantages of Java over C++: (1) Java is multi-platform with
the philosophy of “write once, run anywhere”; (2) Better structured, clean, efficient,

1.1 Introduction 5

simpler (no pointers); (3) Stable, robust and well supported: Java programs written
(or compiled) many years from now can be compiled (or executed) without modi-
fications even today. This is true even for JAVA source code with graphic widgets.
In contrast, C++ programs usually require continues time-consuming maintenance
in order to follow up the development of C++ compilers and graphic desktop envi-
ronment; (4) Java has the reflection technology, which is not present in C++. The
reflection allows an application to discover information about created objects, thus a
program can design itself at runtime. In particular, this is considered to be an essen-
tial feature for building integrated-development environments (IDEs); (5) Java has
several intelligent IDEs, which are indispensable tools for large software projects.
Some of them, like Eclipse or Netbeans, are free. We probably should note that
one can also use free IDEs for C/C++, but they are not as intelligent as those for
Java and usually miss many important features; (6) Automatic garbage collection.
Having in hands this feature, a programmer does not need to perform a low-level
memory management; (7) Extensive compile-time and run-time checking; (8) Java
is truly multi-threaded and this significantly simplifies the development of applica-
tions which should run in parallel on multi-core machines; (9) Programs written in
Java can be embedded to the Web. This is important for distributed analysis envi-
ronment (Java WebStart, plugins, applets), especially when data-analysis tools are
not localized in one single place but scattered over the Web (nowadays, this is the
most common situation).

We will stop here assuming that you are convinced.

1.1.3 Some Warnings

We should immediately warn you: the jHepWork numerical and graphical libraries
can be considered neither as most efficient nor error free. The code of jHepWork
does not always follow the coding recommendations for Java developers including
naming conventions and code layout. We even admit that some parts were not de-
signed with highest-possible performance for code execution in mind. The reason
is simple: it was not written by professional programmers. The numerical libraries
were written by many people at different time, most of them were students and
scientists who had to develop numerical and data-visualization algorithms for their
own research programs, since commercial software companies either could not of-
fer similar programs or their products were too expensive. Many contributed pack-
ages were discontinued many years ago and were brought into life only recently
after their inclusion into jHepWork. In addition, some packages were written using
Java 1.1, and this had also some impact on the coding style of certain libraries.

Thus, a professional programmer may immediately find unprofessionally written
pieces of code. This is true even for some examples shown in this book. The reason
for this was not because we were not aware of such codding issues. In some cases,
we did not find appealing reasons to keep very strict coding standard at the expense
of simplicity. For example, in most cases, we import all classes inside a package
using the statement:

6 1 Jython, Java and jHepWork

>>> from PackageName import *

instead of importing only certain classes as

>>> from PackageName import class1,class2

We did not enforce the latter case to keep the examples of this book short and con-
cise, so we could fit the code snippets into the pages of this book. Also, it is possible
that you may not like to type long lists of imported classes during a code prototyp-
ing (personally, I do not like this style), since this can be done at later stage during
code deployment.

A professorial programmer might find some other odds, like why some object
containers are designed to store only double values (like the P1D class to be dis-
cussed below), while it is more practical to store integer values when necessary.
Again, the motivation was not because of omissions. The reason was that the reader
may not want to dive into extra complexity of dealing with different types, since
integers are only a subset of float values. There are plenty of other classes which are
well suited for storing integer values (we will discuss them in this book).

The main motivation for the jHepWork project was to develop an accessible and
friendly tool to be used in scientific search, with a syntax oriented towards scientists
rather than programmers, not towards a particular operating system. The design of
this project was mainly motivated by the simplicity: there are many programming
languages which are required to learn for many years before starting to write useful
scientific and engineering projects. The approach discussed in this book is very
different: generally, the reader does not need to know any programming language to
start writing analysis codes using jHepWork libraries. However, if it happens that the
reader knows either Java or Python (or both) already, he or she will find this book
also interesting, since jHepWork is not just a simplified entry to the world of the
Java and Python. The program and this book go much beyond a simple introduction
to programming, as they supply with a significant amount of information on how to
professionally analyze data.

The reader may also notice that a little attention has been paid to how to write
and use Java or Jython classes. Of course, classes are necessary for any object-
oriented language. The reason for this was following: for the majority of scientific
data-analysis projects, the logic of scripting programs is linear, i.e. an analysis code
typically consists of a well-defined sequence of statements to be evaluated one by
one, from the top to the bottom of the code. It is very unlikely that data-analysis logic
will contain highly parallel algorithmic branches as those for the usual graphical-
user-interface (GUI) development.1 Certainly, the classes are necessary when one

1We should probably tell you that this may not be totally true in the future when multi-core ma-
chines will be rather common and one will be faced with the question of how to parallelize analysis
codes to gain high performance. We will discuss this topic later on in this book.

1.2 Introduction to Scientific Computing 7

develops Java libraries to be used by a scripting language. But, in this book, we
mainly concentrate on the scripting examples based on the existing Java libraries of
jHepWork, rather than discussing how to write classes for numerical computation
to be deployed as external libraries.

1.1.4 Errors

This book may contain typos, omissions or even errors. jHepWork can also contain
bugs. If you notice any errors or if you have suggestions regarding the book and
code examples, I would be happy to hear from you. You can send your comments
to:

jhepwork@jworks.org

One can also post bug reports to the jHepWork forum accessible from the main
Web page:

http://jwork.org/jhepwork/

1.2 Introduction to Scientific Computing

Let us say a few words about scientific analysis environment. Scripting in a scien-
tific research is essential. There are plenty of programs heavily based on graphical
user interfaces (GUI), where a researcher should go over many mouse clicks before
reaching a designed result (which, usually, is a graph or some statistical summary).
Typical examples are Microsoft Excel, Origin and many other commercial products.
The scripting approach is somewhat different: it requires from a developer to type
only short commands and store them in files so one can easier reproduce the results
by executing such macro files later. During the program development, an analysis
framework should help to find a proper method for a particular class instance and to
supply with a comprehensive description of its methods which can fit to the program
logic. It should control your code while typing and correct it when needed!

In this respect, jHepWork is similar to Wolfram Research Mathematica or Maple.
However, unlike these commercial products, jHepWork is significantly more data
oriented. Being Java-based, jHepWork is also more GUI oriented since all the power
of Java graphical widgets to build user interfaces is in your hands. In addition, jHep-
Work uses Python, which is very popular programming language for science and
engineering. Finally, jHepWork is free.

1.2.1 Book Examples and the Power of Jython

You will be surprised to know that even the most realistic data-analysis examples
given in this book have rather short source-code snippets. I will promise that all our

8 1 Jython, Java and jHepWork

example codes typically fit to 2/3 of the printed page of this book at most. This came
to be possible using the Python syntax and its high-level built-in data structures. This
was also possible due to known Python capabilities to glue different programming
languages. In case of its Java implementation—Jython, one can seamlessly integrate
Python, Java and jHepWork libraries.

As you walk through the examples, you may decide to type all the listed codes in
by hand, since this is the best way to get familiar with the coding techniques. But,
even although Jython examples of this book are short, you may still avoid typing
them when following the book pages. The example source codes of this book (for
each section separately) can be downloaded from:

http://jwork.org/jhepwork/

or from the mirrors:

http://projects.hepforge.org/jhepwork/
http://sourceforge.net/projects/jhepwork

Look at the section called “Documentation” which gives the location of the tar
file with all examples.

1.2.2 The History of jHepWork

You can easily skip this section if you are not interested in the history of this project
and jump directly to the next section.

jHepWork libraries have their roots in high-energy physics in the late 1990s
when first effort was done in accessing visibility of using Java for high-energy
physics [12]. Later, the AIDA project was formulated, with the goal to define ab-
stract interfaces for common physics analysis objects, such as histograms, ntuples,
fitters, input and output. The adoption of these interfaces allowed some simplifica-
tion in using different tools without having to learn new interfaces or change their
code. The AIDA interface was implemented in Java and then was included into the
core of the Java Analysis Studio (JAS), which also contained a built-in editor and
other software tools.

JAS has become a powerful modular application framework into which various
analysis components can be plugged. The framework allowed to use various script-
ing languages, such as Jython and Peanut. JAS and JAIDA have become the core
of the FreeHEP library [13], which was mainly aimed for future International Lin-
ear Collider project. While the initial focus of this project was high-energy physics,
many self-contained libraries are generic and very common in science and engineer-
ing.

Being very powerful as a Java application, JAS was not ideally suited for scien-
tific scripting due to long names of factories used to create objects. JAS had a rather
basic editor without syntax highlighting, help assist and without a robust 3D support
for data visualization. In 2005, a new project has started based on the same JAIDA

1.2 Introduction to Scientific Computing 9

libraries, with the main goal to improve graphics and to use short class names, so it
would require less typing and, naturally, can lead to a higher productivity. The main
goal was to utilize short names for Java classes, which could naturally match to the
concise syntax of the Python language. Mixing Jython and Java objects for scien-
tific scripting was expected to form a natural semantic flow and could lead to short
codes for data-analysis programs. In addition to the FreeHEP high-energy physics
libraries, the project was expected to include other freely available Java libraries
aimed for statistical analysis, data mining and consequent visualization. The name
of this project was jHepWork [1].

1.2.3 Why Jython?

Python [14] became increasingly popular programming language in science and
engineering [6], since it is interactive, object-oriented, high-level, dynamic and
portable. It has simple and easy to learn syntax which reduces the cost of program
maintenance. Jython [15] is an implementation of Python in Java. In contrast to the
standard Python (or CPython) written in C, Jython is fully integrated with the Java
platform, thus Jython programs can make full use of extensive built-in and third-
party Java libraries. Therefore, Jython programs have even more power than the
standard Python implemented in C. Finally, the Jython interpreter is freely available
for both commercial and non-commercial use.

jHepWork is a full-featured object-oriented data-analysis framework for scien-
tists that takes advantage of the Jython language. It is truly multi-platform product,
implemented 100 percent in Java.

Jython macros are used for input and output (I/O), mathematical manipulations
with data, to create histograms, visualize data, perform statistical analysis, curve
fitting and so on. The program includes many tools for interactive scientific plots in
2D and 3D. It can be used to develop a range of data-analysis applications focusing
on analysis of complicated data sets. Data structures and data manipulation meth-
ods, integrated with Java and the JAIDA FreeHEP libraries, combine a remarkable
power with a very clear syntax. It offers a full-featured, extensible multi-platform
integrated development environment (IDE) implemented in Java.

You may ask this question: what is the point in using Jython and Java if CPython
is also portable and can be installed on Linux or Windows platforms? This answer
is this: CPython calls libraries implemented in C/C++ or FORTRAN, but these
libraries, by definition, should be compiled separately for each platform (in fact,
as CPython itself). Thus, CPython cannot provide a genuine multi-platform frame-
work. In the case of Jython, libraries developed using Java are truly multi-platform
and do not require separate deployment for each computer platform.

Programs written using jHepWork are usually rather short due the simple Python
syntax and high-level constructs implemented in Python and in the core jHepWork
libraries. As a front-end data-analysis environment, jHepWork helps to concentrate
on interactive experimentation, debugging, rapid script development and finally on
work-flow of scientific tasks, rather than on low-level programming.

10 1 Jython, Java and jHepWork

The main web pages of jHepWork are:

http://jwork.org/jhepwork/
http://projects.hepforge.org/jhepwork/

These web pages contain numerous examples and documentation API.
jHepWork consists of two major libraries, jeHEP (jHepWork IDE) and jHPlot

(jHepWork data-analysis library). Both are licensed under the GNU General Public
License (GPL).

1.2.4 Differences with Other Data-analysis Packages

How does jHepWork compare with other commercial products? Throughout the
years there have been many commercial products for data analysis, but it is impor-
tant to realize that they are typically platform specific. On top of this, commercial
products are either rather costly or do not provide a user with the source code, or
both.

We would not be too wrong in saying that it is very hard to find a commercial
product with the same functionality in certain analysis areas, and with such variety
of methods existing in jHepWork. For example, only one single class used to build,
manipulate and display an one-dimensional histogram has about eighty methods
(plus dozens of methods inherited from other classes). Usually, commercial soft-
ware is not competitive enough for such specialized tasks as histogramming and
processing of large data samples. Together with a high price, this was one of the
reasons why commercial products have never penetrated into the software environ-
ment of high-energy physics in which the data reduction and data mining were the
most important tasks. Here, we should also probably add that Linux and Unix are the
most common platforms in universities and laboratories and this also has a certain
impact on the number of data-analysis packages to be used in scientific research.

Below we will compare jHepWork with another free object-oriented package
currently used in high-energy physics, the so-called ROOT [16, 17]. The ROOT
analysis framework is written in C++, and at the time when this book was writ-
ten, ROOT was a de facto standard program in high-energy physics laboratories.
Compared to ROOT, jHepWork:

• is Java-based and thus inherits the well-know robustness. For example, the source
code of this project developed 5 years ago can easily be compiled without any
changes even today. Even jar libraries compiled many years from now can run
without problems on modern Java Virtual Machines. C++ programs, such as
ROOT, require a constant support, especially if they include a graphical interface;
A typical lifetime of unsupported C++ code based on graphic widgets is several
years on Linux-based platforms;

• being Java-based, is truly multi-platform. jHepWork does not require compilation
and installation. This is especially useful for plugins distributed via the Internet
in form of bytecode jar libraries;

1.2 Introduction to Scientific Computing 11

• can be integrated with the Web in form of applets or Java Web-start applications,
thus it is better suited for a distributed analysis environment via the Internet. This
is an essential feature for large scientific communities or collaborations working
on a single project;

• Java has an automatic garbage collection. This has a significant advantage over
C++/C as the user does not need to perform a memory management;

• being Java-based, jHepWork is designed from the ground up to support program-
ming with multiple threads. It is truly multi-threaded language. This makes par-
allel programming easier and leads to a more efficient use of modern computers
with multi-core processors. Unlike C++, the Java virtual machine takes care of
low-level threads according to the host multi-core computers;

• being Java based, it comes with the reflection technology, i.e. the ability to ex-
amine or modify behavior of applications at runtime. This feature is missing in
C++ and, therefore, in ROOT;

• has a full-featured IDE with syntax highlighting, syntax checker, code completion
and analyzer;

• is designed for calculations based on Jython, thus it is seamlessly integrated with
hundreds of Java classes for advanced 2D graphics and imaging;

• is used for calculations based on Jython scripts that can be compiled into Java
bytecode files and packed into jar libraries without modifications of Jython
scripts. In contrast, ROOT/CINT scripts have to be written using a proper C++
syntax, without CINT shortcuts, if they will be compiled into shared libraries.
This makes the ROOT/CINT scripts to be almost identical to the standard C++
code with long programming statements;

• includes an advanced help system with a code completion based on the Java re-
flection technology. With increasingly large number of classes and methods in
ROOT/C++, it is difficult to access information on classes and methods without
advanced IDE. Using the jHepWork IDE, it is possible to access the full descrip-
tion of classes and methods while editing Jython scripts;

• essentially all jHepWork objects, including histograms, can be saved into files and
restored using Java serialization mechanism. One can store collections of objects
using Jython maps or lists. One can even serialize dialog widgets and other GUI
components.

Finally, as mentioned before, Java is considered to be the most popular program-
ming language. One can find more detailed information about differences between
Java and C++ on this Web site [18].

1.2.5 How Fast It Is?

Sometime one can hear that Java is slower than C++. The subject itself is contro-
versial, since the answer totally depends on the nature and the goal of an application.
Nowadays, most people agree that after introduction of Just-in-Time compiler (JIT),
Java is as fast as C++. Probably, in some areas, Java is still slower than C++, but

12 1 Jython, Java and jHepWork

the nature of such controversy is already a sign that the performance gap is now
quite small and there is no alarming difference in speed between Java and C++
programs. And, anyway, the proper comparisons with C++ is usually unfair: Java
does tremendous amount of run-time checks, such as array bound checking, thread
synchronization, run-time checking, garbage collection etc. to make sure that a code
runs without problems and without putting extra stress on a programmer.

The JIT compilation converts Java bytecode into a native machine code at run-
time. The conversion step could be slow, but for most numerical calculations in-
volving large loops over objects, this does not matter so much. With the recent
development of Java engines, the speed penalty is not that significant, especially for
projects based on massively parallel processing where Java’s multi-thread support
is the strongest argument.

Secondly, while programming in C++, one can often pass objects to functions by
value, which leads to an overhead. Java always passes references to objects instead
of objects themselves, therefore, independent of how you program in Java, your
code will always be rather efficient.

Thirdly, Java is a process virtual machine, not a system virtual machine is usually
used to run C/C++ applications which are difficult to run using the host comput-
ers. Thus, Java avoids a significant overhead due to running non-native operating
systems used for C/C++ or FORTRAN applications.

jHepWork is also based on Jython, not only on Java. Jython scripts are about four-
five times slower than equivalent Java programs for operations on primitive data
types (remember, all Jython data types are objects). This means that CPU intensive
tasks should be moved to Java jar libraries.

One should bear in mind that jHepWork was designed for data manipulations
and visualizations in which the program speed is not essential, as it is assumed
that jHepWork scripts are used for manipulations with high-level data objects (like
histograms). For such front-end data analysis, the bottleneck is human interaction
with graphical objects using the mouse, keyboard or network latency in case of
remote data or programs.

In practice, results obtained with Jython programs can be obtained much faster
than those designed in C++/Java, because the development is so much easier that
a user often winds up with a much better algorithm based on the Jython syntax and
jHepWork high-level objects than he/she would in case of C++ or Java. For CPU
intensive tasks, like large loops over primitive data types, reading files etc., one
should use high-level structures of Jython and jHepWork or user-specific libraries
which can be developed using the jHepWork IDE. This is the basic idea. The rest of
this book will spell it out more carefully.

1.2.6 Jython and CPython Versions

The jHepWork described in this book is based on the Jython version 2.5.1, which
supports all language level features of CPython 2.5. This Jython release is believed
to provide a much cleaner and consistent code base than the previous releases.

1.3 Installation 13

1.3 Installation

The good news is that you do not need to install anything to make all the examples
discussed in this book to work. But to run jHepWork, you need to have the Java
JDK (Java development kit) installed. You can also use Java Runtime Environment
(JRE), which is very likely already installed on your computer but, in this case, there
will be some limitations (for example, you will not be able to compile Java source
codes).

Java software is available at:

http://java.sun.com/javase/downloads/

Installing the JDK or JRE is rather simple for any platform (Windows, Solaris,
Mac and Linux). Once installed, check Java by typing java -version on the
prompt. If Java is installed, you should see

java version "1.6.X"
Java(TM) 2 Runtime Environment, Standard Edition
Java HotSpot(TM) Client VM (build 1.6.X, mixed mode)

or a similar message (“X” indicates a subversion number). You will need at least
Java 1.6 or above.

jHepWork does not require installation. Download the package from the follow-
ing location:

http://jwork.org/jhepwork/

or

http://projects.hepforge.org/jhepwork/
http://sourceforge.net/projects/jhepwork/

The package for download has the name “jhepwork-VERSION.zip”, where
“VERSION” is a version number. Unzip this file to a folder. You will see several
files and the directories ’lib’, ’macros’ and ’doc’. For Windows, just click
on the file ’jhepwork.bat’ which brings up the jHepWork IDE windows. For
Linux, Unix and Mac, run the script ’jhepwork.sh’.

For Mac, Linux and UNIX, one can put the file ’jhepwork.sh’ to the
’$HOME/bin’ directory, so one can start jHepWork from any directory. In
this case, one should set the variable JEHEP_HOME (defined inside the script
’jhepwork.sh’) to the directory path where the file ’jehep.jar’ is located.

First time you execute the ’jhepwork.sh’ or ’jhepwork.bat’, you will
see many messages such as:

sys-package-mgr: processing new jar, ’jhplot.jar’
sys-package-mgr: processing new jar, ’jminhep.jar’
...

14 1 Jython, Java and jHepWork

This is normal: one should wait until the end of Java libraries scan. Jython cashes
the jar libraries, i.e. it creates a new directory ’cachedir’ inside the directory
’lib/jython’with the description of all classes located in jar files defined in the
CLASSPATH variable. Next time when you execute the start-up script, jHepWork
IDE will start very fast as the package cache is ready (of course, if you did not
modify the Java CLASSPATH before starting the jHepWork IDE).

1.4 Introduction to the jHepWork IDE

Feel free to skip this section and jump to Chap. 2, since for the readers with some
programming experience, this section could be too obvious. For those who are
just entering the computational world, I’ll try to explain here several tricks which
could be useful for source code editing and execution. jHepWork comes with a
light-weight integrated development environment (IDE) which includes a source
code editor with a code completion and a code analyzer, a Jython shell (“Jython-
Shell”), a Bean shell (“BeanShell”) and a panel with the file manager. The script
’jhepwork.sh’ (for Linux/UNIX/Mac) or ’jhepwork.bat’ (Windows)
starts the jHepWork IDE. After initialization, you will see the jHepWork IDE with
a source code editor as shown in Fig. 1.1.

It should be noted that the source-code development using the jHepWork libraries
can be done using any text editor, while the execution of Jython scripts or compiled

Fig. 1.1 jHepWork IDE workbench

1.4 Introduction to the jHepWork IDE 15

Java codes can be done using a shell prompt after specifying the CLASSPATH en-
vironmental variable. This part should be considered for advanced users and will be
discussed later.

The jHepWork workbench has three main windows:

• The Source Code Editor (central window);
• The Tool Bar menu (above the text area);
• File and code browser window (left window);
• Bean-shell and Jython-shell window (bottom windows).

When jHepWork is started for the first time, it creates files with preferences lo-
cated in the directory:

$HOME/.jehep

for Linux/Mac, or

$HOME\jehep.ini

for Windows. There are several preference files inside this directory: the main file,
’jehep.pref’, with all source-code editor preferences, a user dictionary file,
a JabRef preference file and other files. If you need to reset all settings to their
default values, just remove the directory with the preference files (or just the file
’jehep.pref’).

1.4.1 Source Code Editor

The source code editor can be used to edit files, and it has all the features necessary
for effective programming: syntax highlighting, syntax checker and a basic code
completion. For bookmarks, one should click on the right margin of the source code
editor. A blue mark should appear that tells that the bookmark is set at a given line.
One can click on it with the mouse in order to jump to the bookmarked text location.

The file browser is used to display files and directories. By clicking on the se-
lected file name one can open it in a new tab of the text editor. For most types of files
(LaTeX, C++, Java, Python), the code browser shows the structure of the currently
opened document.

1.4.2 jHepWork Java Libraries and Python Packages

Although this topic is probably for advances users, we feel that it is necessary to
describe the jHepWork library structure here. Generally, the program contains Java
jar libraries and Python-based libraries. After the installation, the main jHepWork
directory contains the following subdirectories:

16 1 Jython, Java and jHepWork

• ’lib’—contains Java libraries. When you start jHepWork, this directory is
scanned by jHepWork and all libraries inside this directory are put to the Java
CLASSPATH environmental variable. The directory lib contains several sub-
directories with jar files: freehep—contains only FreeHEP Java libraries; the
directory ’jython’ contains Jython libraries; system contains libraries nec-
essary to run jHepWork, including third-party libraries. User-specific libraries can
be put under the user directory (which will also be scanned by the jHepWork
startup script).

• ’python’—contains Python libraries. By default, they are not imported by
Python modules, so it is up to you to import them into your programs. There are
several ways to do this: (1) put the directory name in the file ’registry’
located in the directory ’lib/jython’. You should define the variable
python.path as:

python.path=[dir]/python/packages

where [dir] is the installation directory (it should contain the file
’jehep.jar’). Or, alternatively, one can set the location of Python libraries at
the beginning of your Jython code as:

import sys
sys.path.append(’[dir]/python/packages’)

If you run a Jython module inside the jHepWork IDE, one can specify the current
installation directory using the variable SystemDir which always points to the
installation directory. Thus the line above will look as:

import sys
sys.path.append(SystemDir+’/python/packages’)

I will come back to this point later in the text where several Python-based scien-
tific libraries will be discussed.

• ’macros’—contains Python modules necessary to run jHepWork. It also
contains examples in the sub-directory ’examples’. When you start jHep-
Work, the directory ’macros/system’ is put inside the Jython class path
automatically by the script ’sysjehep.py’ located inside the subdirectory
’system’.

A user can put new macros in the ’macros/user’ directory. There are already
several macros in this directory: For example, one can replace a string with another
string in the current text just by calling the method replace(str1,str2),
where str1 and str2 are input strings; In fact, all user macros are rather

1.4 Introduction to the jHepWork IDE 17

similar to those used by the jEdit2 editor, as long as the textArea class is
used.

The Jython class path is defined via the module ’sysjehep.py’ located
in the ’macros/system’ directory. This variable specifies the location of
Jython modules which can be visible for the “import” statement. The module
’sysjehep.py’ is loaded automatically every time you start jHepWork (or
reload the Jython console). One can specify the location of the user modules
in this file. By default, every file which is put into the installation directory or
to ’macros/system’ or ’macros/user’, should be visible for jHepWork
macros and normally you do not need to import them.

1.4.3 Jython and Bean Shell Consoles

The BeanShell and JythonShell can help quickly prototype small pieces of codes
without using text editors. By default, the BeanShell window is active. To activate
the PythonShell, window, click on the PythonShell tab.

BeanShell and JythonShell can be used to run external programs. Just type “!” in
front of the program name you want to execute. For example:

>>> !latex <file> # latex for the file <file>
>>> !make # compile C++/Fortran
>>> !ls # list files (linux/unix/max)
>>> !dir # list files (windows)

One can use the command history (keyboard key: [Up] and [Down]) and Java
and Python code completion using the key combination [Ctrl] + [Space].
Use the help options to learn more about additional features for interactions with
the native OS. Both shells contain their own help system.

There are several predefined variables available for the both consoles. They
have been exported by the scripts located in the ’macros/system’ directory:
’sysjehep.py’ (for Jython) ’sysjehep.bsh’ (for BeanShell).

There are several predefined objects useful for text manipulations: Assume a user
is editing a file in the text editor. Using the JythonShell, one can access properties of
this file using the Editor class and its methods. This class holds currently opened
document and allows a manipulation with its content. For example, if one types
print Editor.DocDir() in the JythonShell, one can display the full path to
the currently opened document. One can access all public methods of the Editor
static class using the jHepWork code assist for the Editor class:

>>> Editor. [Ctrl]+[Shift] # show all methods

2jEdit is one of the most popular Java-based text editors.

18 1 Jython, Java and jHepWork

or

>>> dir(Editor) # show all methods
’DocDir’, ’DocMasterName’, ’DocMasterNameShort’,
’DocName’, ’DocStyle’ ..

(below we print only a few first methods). As you can see, having in hand this class,
one can access a broad variety of methods for text manipulation. More information
about this class can be found using the code assist to be discussed in Sect. 1.4.10.

Below we give several examples of how to access the information about an
opened file using several predefined variables. Use the Jython shell to type the fol-
lowing commands:

>>> print ’Java classpath’,ClassPath
>>> print ’File name=’,DocName -
>>> print ’Directory=’,DocDir
>>> print ’File separator=’,fSep
>>> print ’Name with complete path’,DocMasterName
>>> print ’Name without extension’,DocMasterNameShort

All these variables are automatically imported by the IDE.
But how one can find the predefined variables available in jHepWork while work-

ing with Jython macros files? This should be easy: Click on JythonShell and type
the following command:

>>> dir()
[ClassPath’, ’DicDir’, ’DocDir’, ’DocMasterName’,
’DocMasterNameShort’, ’DocName’, ’DocStyle’,
’Editor’, ’ObjectBrowser’, ’ProjDir’, ’SetEnv’,
’SystemDir’, ’SystemMacrosDir’, ’UserMacrosDir
...

(again I show only a few first variables). The best approach to learn about them
is just to print them out. Analogously, one can print all such variables using the
BeanShell commands (but using the BeanShell syntax).

It is useful in many cases to clean up messages from the interactive consoles.
To reload either the File Browser or Jython/Bean shell, one should use the
Reload buttons located directly on the small blue tabs of the console windows.

jHepWork uses the following aliases for the BeanShell macros:

[CLASSPATH] java class path;
[FILE_SHORT] returns the filename without the extension;
[FILE_SHORT_NODIR] returns the file name without the extension and the path;
[FILE] returns the full name of the file including the path;
[FILE_NODIR] returns the full name of the file excluding the path;

1.4 Introduction to the jHepWork IDE 19

[DIR_FILE] returns file directory;
[DIR_SYS] returns system directory.

For example, typing print [FILE] prints the name of the currently opened
file. Such substitutions can be used in macros. For example, if a macro contains
[FILE], it will be automatically replaced by the current file name.

1.4.4 Accessing Methods of Instances

A user can view the available methods by typing obrowser in the BeanShell. This
will open an object browser window with all objects. If one needs to add some
object, one should type obrowser.add(obj), where “obj” is an instance of a
Java class.

>>> obrowser
>>> obj=new JLabel(’OK’)
>>> obrowser.add(obj)

For a similar task in the JythonShell prompt, a user should use the code assist,
see Sect. 1.4.10, or the Python dir(’obj’) method. The jHepWork code assist
cannot be used in BeanShell. In this case, one should use the obrowser class.

One can manually execute the obrowser class by running the script
’obrowser.bsh’ or ’obrowser.py’ from the directory macros/system.

1.4.5 Editing Jython Scripts

First, a new file with the extension ’.py’ should be created. There are sev-
eral ways to do this: (1) Select [File]-[New]-[jHPlot script] in the
main menu. A new template Jython script should appear; (2) Use the menu
[File]-[New]-[Text document]. Then, save it as a Jython file with the
extension ’.py’; (3) Click on any Jython file with the extension ’.py’ in the File
Browser.

If a script with the user analysis program is ready, one should save it. But before
this, you may check for syntax errors without actual execution of the macro file.
Look at the menu [Run] and [Check Jython syntax]. In the case of errors,
the IDE will point to a line with an error. For the syntax checker, it is impossible to
identify run-time errors, i.e. errors which may happen during the execution of the
script. Once you know that there are no errors, save the file again using the menu
[File].

1.4.6 Running Jython Scripts

To run a Jython script, use the [run] button from the main tool-bar of jHepWork.
One can also use the keyboard key [F8] for fast script execution. In case of an

20 1 Jython, Java and jHepWork

error, the jHepWork main editor will move the cursor to the appropriate line with
the detected error. Press any key to remove the line highlighting (red color). One can
also execute a Jython file line-by-line using the [run] menu of the main tool-bar.

During the execution, all program outputs will be redirected to the JythonShell
window. It is appropriate mention here one feature: JythonShell is not designed
for very heavy output, it is mainly a debugging tool. If you want to print a lot of
messages, then you should be careful: you may wipe out significant resources by
doing this and your code execution will be rather slow. For example, consider a
simple Jython program: printing integer values:

for i in range(1000000):
print ’Test=’,i

Save these lines in the file ’test.py’. Then open it in the jHepWork editor and
run it by clicking on the button [run]. You will immediately see that the memory
monitor in the right corner of the IDE will show an increase in the memory usage.
So, try to avoid such situations. If you need to debug loops like this, use a small
number of iterations. If you still want to run the loop over many iterations, you
should not print many debugging messages for every single iteration inside a loop.
For example, one can print a status line every 100 iteration as:

for i in range(1000000):
if i%100 == 0: print ’Test=’,i

As you may guess, % means a remainder of i/100, which should be 0 for printing
the string ’Test=’,i.

1.4.7 Running a BeanShell Scripts

One can run BeanShell scripts and Java source codes in the same way. However,
jHepWork has much less advanced error handling in this case. As in the Jython
case, the [F8] key can be used fast execution of a BeanShell script.

During the execution, the output from the scripts will be redirected to the Bean-
Shell window.

1.4.8 Compiling and Running Java Code

Java files can be edited in the same way. Java source code can be compiled into
bytecodes using the menu from the [Run] tool-bar menu as [Run]-[Javac
current file]. Similarly, one can also compile all Java source codes located
in the same directory or build a jar library.

1.4 Introduction to the jHepWork IDE 21

1.4.9 Working with Command-line Scripts

For advanced users, we should be more specific about how to run Jython scripts from
jHepWork without the main text editor. For this, one can set the ’CLASSPATH’
variable to the libraries located in the ’lib’ directory. One can find an example
bash script ’a_run.sh’ in the directory macros/examples. To run a Jython
file, say file.py, run the command:

bash#: a_run.sh file.py

from the Linux/UNIX or Mac prompt.
It is however more convenient to use the ANT tool [19], since it is a multi-

platform Java program. It reads a configuration file ’build.xml’ to run and com-
pile programs using the command line. jHepWork has a special ’build.xml’
file which allows to run and compile Jython macros from the command line with-
out the main text editor. Go to the directory ’macros/cmd’ and type ant. If the
ANT tool is installed, one should see command-line options to run or compile the
scripts. For example, to run the ’file.py’ script without the main text editor
using Linux, Unix or Mac, type:

bash#: ant run -DM file

If you want to compile this script into a jar library, type:

bash#: ant jarpy -DM file

If one needs to compile standard Java source files with the purpose of creating a
jar library, one should put the source files to the ’src’ directory and execute the
command ’ant jarjava’.

In all such cases, it is assumed that a user is working in the ’cmd’ directory. If
one needs to work in some other directory, modify the variable jhepwork in the
’build.xml’ file.

1.4.10 jHepWork Code Assist

If a user is working with the Jython shell, all methods associated with a particular
object are shown in a drop down menu after typing a dot after the name of an object
and pressing [Space] after holding down the [Ctrl] key. For example, if a
Jython or Java object obj was instantiated, type:

>>> obj. # press [Ctrl]+[Space] for the help

to bring up a table with all methods associated with a class instance obj.

22 1 Jython, Java and jHepWork

However, the help system works differently for the code editor. In this case, one
can get the information on available public methods using the jHepWork code assist.
When a user types a name of some object followed by a dot, [F4] key can be used
to check the methods associated with this object. For example:

>>> from jhplot import P0D
>>> obj=P0D() # create a Java object
>>> obj. # press [F4] for P0D methods
>>> obj="string" # create a Jython object
>>> obj. # press [F4] for "str" methods

Pressing the [F4] key after each object, followed by a dot, brings up a table with
all methods that belong to a particular Jython or Java class. In the above example,
the table shows the methods of the class P0D.

One can also search for a particular method using the pop-up table of the Code
Assist. For this, the standard Java regular expressions [20, 21] can be used. To sort
rows with methods, one should click on the column headers. Then one can push a
selected method to the text editor using a double-click or mouse menu. The selected
method will be inserted into the code editor at the line after the dot.

The Code Assist also allows you to look at the full API documentation of the
jHPlot classes or methods. Click on a selected line in the Code Assist table and use
the right mouse button to get the associated JavaDoc information. One can also push
a selected method into the editor window by clicking on a pop-up mouse menu.

Many (not all!) classes of jHepWork have their own help, usually based on
the original work of the developers. To access the API help documentation,
use the method doc(). For example, after creation of HPlot() canvas as
c1= HPlot(), one can look at the API documentation of its methods by exe-
cuting the line c1.doc().

The code assist of the BeanShell window is somewhat different. Please read the
corresponding help using this shell.

1.4.11 Other Features

The jHepWork GUI has several other features which should be useful while working
with a text or data:

• The menu [Search] can be used for searching particular strings or substrings
in an opened document;

• The menu [Run] is useful for compilation of Java source codes, building Java
jar libraries, execution of Jython scripts and checking Jython syntax;

• The menu [Tool] is designed for working with LaTeX files. It provides a bib-
liographic manager (based on the JabRef program), LaTeX tools for common
LaTeX symbols. It can be used also to start a graphical canvas for plotting and a
basic image editor based on the popular ImageJ program.

1.5 Third-party Packages and the License 23

It is worth exploring the menu toolbar of the IDE. Especially, if you would
like to see jHepWork examples, look at the menu [Tool] and select [jHPlot
examples]. This brings up a dialog with the list of available Jython examples.
One can run the example macro files to get a clue on how to use the jHPlot package
with numerical and graphical libraries.

Before jumping to the data analysis sections, I would like to give one advice.
The jHepWork IDE is only an experimental tool and, probably, it was not tested as
careful as any other professional IDE. It was designed as a light-weight source-code
editor with IDE-like features to help for new users to get started. Therefore, if you
are not too satisfied with the jHepWork IDE, you are likely to be a professional pro-
grammer. In this case, use ether Eclipse or NetBeans (well, if you are a professional
programmer, you must know about them!). Both Eclipse and Netbean can be used
for editing jHepWork scripts if you will set the $CLASSPATH to the jHepWork jar
libraries inside the directory ’lib’ (again, I do not need to explain this to advanced
users).

Finally, you may even use popular code editors, like jEdit, Emacs or VI (Linux
and Windows) or Notepad (Windows). How to run the jHepWork scripts in a console
without using the IDE has been described before.

1.5 Third-party Packages and the License

1.5.1 Contributions and Third-party Packages

Note that some third-party libraries are not licensed by the GPL license but free
only for non-commercial purposes. Therefore, generally, you can safely use the en-
tire software for non-commercial purposes only. If you will use it for commercial
purposes, you should contact the authors.

jHepWork is based on several reused classes that have been rewritten and adopted
for the use together in jHepWork. This book has numerous references on other third-
party packages if the discussed package contains or relies on a particular library.
The author apologize in advance if some reference is missing; such omissions were
wholly unintentional.

All packages listened below are subject to their licenses (as well as the packages
cited in the following sections). The vast majority of the included packages are
GNU-licensed or have very permissive open-source licenses.

Many projects from the list given below are not supported any longer by the
original authors, but they were very useful at the time when jHepWork was under
heavy development. jHepWork (version 2.2) contains:

• FreeHEP java libraries
http://java.freehep.org;

• jEdit TextArea components (from the jEdit 2003 version, written by Slava
Pestov);

24 1 Jython, Java and jHepWork

• some classes from the jMySpell project
http://jmyspell.javahispano.net/en/index.html by DreamTagnerine;

• classes from early versions of JabRef project
http://jabref.sourceforge.net/;

• classes for color syntax highlighting taken from the Jext project
http://www.jext.org/;

• LatexTools Beanshell macro developed for jEdit (this is still a test version);
• Debuxter package

http://dexter.sourceforge.net/;
• classes from the JyConsole project by Artenum

http://www.artenum.com;
• some classes of the jpEdit project

http://www.jpedit.co.uk/;
• drawing classes from jPlot

http://www.cig.ensmp.fr/~vanderlee/jplot/ by Jan van der Lee;
• the Surface Plotter package

http://www.fedu.uec.ac.jp/~yanto/java/surface/ by Yanto Suryono;
• a rewrite of the Browser3d package (I could not identify its developers);
• a rewrite of the popular JaxoDraw package

http://jaxodraw.sourceforge.net/;
• the Jakart Common Math library

http://jakarta.apache.org/commons/math/;
• self-contained mathematics and statistics components addressing the most com-

mon problems. In addition, T. Flanagan’s Java Library
http://www.ee.ucl.ac.uk/~mflanaga/java/updates.html;

• a self-contained framework for clustering analysis by S.Chekanov, the JMinHEP
package
http://hepforge.cedar.ac.uk/jminhep/;

• the core engine of the JOONE package http://www.jooneworld.com/ and the
Encog
http://code.google.com/p/encog-java/;

• the JGraph package and the JGrapht package
http://www.jgraph.com/
http://jgrapht.sourceforge.net/;

• the jFreeChart package
http://www.jfree.org/;

• the classes from the ObjectBrowser project by J. Hrivnac;
• jHepWork includes the GlobalDocs program

http://globaldocs.zeevbelkin.com/;
• the Colt package

http://dsd.lbl.gov/~hoschek/colt/;
• refactored classes from the PTPlot 5.6

http://ptolemy.berkeley.edu/java/ptplot/;
• several classes from the high performance jMathTools package

http://jmathtools.sourceforge.net/;

1.5 Third-party Packages and the License 25

• look and feel based upon Liquidlnf and JGoodies and therefore subject to their
license;

• the Protocol Buffers library
http://code.google.com/p/protobuf/;

• VLJTable table class from VLsolutions
http://www.vlsolutions.com;

• classes from the ImageJ java program
http://rsb.info.nih.gov/ij/;

• the package Sympy, a Python library for symbolic mathematics
http://code.google.com/p/sympy/;

• several icons are from Gnome and Eclipse and therefore subject to their licenses;
• 3D-XplorMath project by the 3D-XplorMath Consortium

http://3d-xplormath.org/.

1.5.2 Disclaimer of Warranty

jHepWork is not commercial product, although it is professionally written and many
libraries have been tested by a large scientific community. I cannot guarantee that it
is fault free in all possible foreseeable situations. Therefore, you use this package at
your own risk.

The author and publisher make no warranties, express or implied, that the pro-
grams contained in this book are free of errors, or are consistent with any particular
standard of merchantability. They should not be relied on for solving a problem
whose incorrect solution could result in injury to a person or loss of property. If you
do use the program in such a manner, it is at your own risk. The authors and pub-
lisher disclaim all liability for direct or consequential damages resulting from your
use of the programs.

1.5.3 jHepWork License

jHepWork is licensed by the GNU General Public License (GPL). However, it con-
tains some third-party libraries integrated to jHepWork which are free for non-
commercial purposes.

Here is the GNU License:
Copyright (C) 2006 S. Chekanov. The jHepWork project.
This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or any later version.

This program is distributed in the hope that it will be useful, but without any
warranty; without even the implied warranty of merchantability or fitness for a par-
ticular purpose. See the GNU General Public License for more details.

26 1 Jython, Java and jHepWork

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place—
Suite 330, Boston, MA 02111-1307, USA.

References

1. Chekanov, S.: HEP data analysis using JHEPWORK and JAVA. In: Proceedings of the
HERA-LHC workshop (CERN-DESY) 2007–2008 (2008), p. 763. URL http://arxiv.org/abs/
0903.3861

2. Pilgrim, M.: Dive into Python. Apress, New York (2004)
3. Guzdial, M.: Introduction to Computing and Programming in Python. A Multimedia Ap-

proach. Prentice Hall, New York (2005)
4. Martelli, A.: Python in a Nutshell (In a Nutshell (O’Reilly)). O’Reilly Media, Sebastopol

(2006)
5. Lutz, M.: Learning Python, 3rd edn. O’Reilly Media, Sebastopol (2007)
6. Langtangen, H.: Python Scripting for Computational Science. Springer, Berlin/Heidelberg

(2008)
7. Richardson, C., Avondolio, D., Vitale, J., Schrager, S., Mitchell, M., Scanlon, J.: Professional

Java, JDK 5th edn. Wrox, Birmingham (2005)
8. Arnold, K., Gosling, J., Holmes, D.: Java(TM) Programming Language, 4th edn. Java Series.

Addison-Wesley, Reading (2005)
9. Flanagan, D.: Java in a Nutshell, 5th edn. O’Reilly Media, Sebastopol (2007)

10. Eckel, B.: Thinking in Java, 4th edn. Prentice Hall PTR, Englewood Cliffs (2006)
11. Bloch, J.: Effective Java, 2nd edn. The Java Series. Prentice Hall PTR, Englewood Cliffs

(2008)
12. Johnson, A.: A Java based analysis environment JAS (1996)
13. FreeHEP Java Libraries. URL http://java.freehep.org/
14. Python Programming Language. URL http://www.python.org/
15. The Jython Project. URL http://www.jython.org/
16. Brun, R., Rademakers, F., Canal, P., Goto, M.: Root status and future developments. ECONF

C0303241 (2003) MOJT001
17. Brun, R., Rademakers, F.: ROOT: An object oriented data analysis framework. Nucl. Instrum.

Methods A 389, 81 (1997). URL http://root.cern.ch/
18. Wikipedia, Comparison of Java and C++. URL http://en.wikipedia.org/wiki/Comparison_of_

Java_and_C
19. The Apache Ant. URL http://ant.apache.org/
20. Java regular expressions, ReGex package. URL http://java.sun.com/j2se/1.6.0/docs/api/
21. Stubblebine, T.: Regular Expression Pocket Reference: Regular Expressions for Perl, Ruby,

PHP, Python, C, Java and .NET (Pocket Reference (O’Reilly)). O’Reilly Media, Sebastopol
(2007)

Chapter 2
Introduction to Jython

In this chapter, we will give a short introduction to the Jython programming lan-
guage. We have already pointed out that Jython is an implementation of the Python
programming language, unlike CPython which is implemented in C/C++.

While these implementations provide almost identical a Python-language pro-
gramming environment, there are several differences. Since Jython is fully
implemented in Java, it is completely integrated into the Java platform, so one
can call any Java class and method using the Python-language syntax. This
has some consequences for the way you would program in Jython. During
the execution of Jython programs, the Jython source code is translated to Java
bytecode that can run on any computer that supports the Java virtual machine.

We cannot give a comprehensive overview of Jython or Python in this chapter:
This chapter aims to describe a bare minimum which is necessary to understand the
Jython language, and to provide the reader with sufficient information for the fol-
lowing chapters describing data-analysis techniques using the jHepWork libraries.

2.1 Code Structure and Commentary

As for CPython, Jython programs can be put into usual text files with the extension
‘.py’. A Jython code is a sequence of statements that can be executed normally,
line-by-line, from the top to the bottom. Jython statements can also be executed
interactively using the Jython shell (the tab ‘JythonShell’ of the jHepWork IDE).

Comments inside Jython programs can be included using two methods: (1) To
make a single-line comment, put the sharp “#” at the beginning of the line; (2) To
comment out a multi-line block of a code, use a triple-quoted string.

It is good idea to document each piece of the code you are writing. Documenta-
tion comments are strings positioned immediately after the start of a module, class

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_3, © Springer-Verlag London Limited 2010

27

28 2 Introduction to Jython

or function. Such comment can be accessed via the special attribute __doc__. This
attribute will be considered later on when we will discuss functions and classes.

Jython statements can span multiple lines. In such cases, you should add a back
slash at the end of the previous line to indicate that you are continuing on the next
line.

2.2 Quick Introduction to Jython Objects

As for any dynamically-typed high-lavel computational language, one can use
Jython as a simple calculator. Let us use the jHepWork IDE to illustrate this. Start
the jHepWork and click on the “JythonShell” tab panel. You will see the Jython
invitation “>>>” to type a command. Let us type the following expression:

>>> 100*3/15

Press [Enter]. The prompt returns “20” as you would expect for the expression
(100*3)/15. There was no any assignment in this expression, so Jython assumes
that you just want to see the output. Now, try to assign this expression to some
variable, say W:

>>> W=100*3/15

This time, no any output will be printed, since the output of the expression from
the right side is assigned directly to the variable W. Jython supports multiple assign-
ments, which can be rather handy to keep the code short. Below we define three
variables W1, W2 and W3, assigning them to 0 value:

>>> W1=W2=W3=0

One can also use the parallel assignments using a sequence of values. In the example
below we make the assignment W1=1, W2=2 and W3=3 as:

>>> W1,W2,W3=1,2,3

At any step of your code, you can check which names in your program are de-
fined. Use the built-in function dir() which returns a sorted list of strings

>>> dir()
[’W’,’W1’,’W2’,’W3’,’__doc__’, ’__name__’ ...

2.2 Quick Introduction to Jython Objects 29

(we have truncated the output in this example since the actual output is rather long).
So, Jython knows about all our defined variables including that defined using the
character W. You will see more variables in this printed list which are predefined by
jHepWork.

One can print out variables with the print() method as:

>>> print W1
1

One can also append a comment in front:

>>> print ‘The output =’,W1
The output = 1

You may notice that there is a comma in front the variable W1. This is because
‘The output’ is a string, while ‘W1’ is an integer value, so their types are distinct
and must be separated in the print statement.

How do we know the variable types? For this we can use the type() method
which determines the object type:

>>> type(W1)
<type ’int’>

The output tells that this variable holds an integer value (the type “int”).
Let us continue with this example by introducing another variable, ‘S’ and by

assigning a text message to it. The type of this variable is “str” (string).

>>> S=’The output =’
>>> type (S)
<type ’str’>

So, the types of the variables ’W1’ and S are different. This illustrates the fact
that Jython, as any high-level language, determines types based on assigned values
during execution, i.e. a variable may hold a binding to any kind of object. This
feature is very powerful and the most useful for scripting: now we do not need
to worry about defining variable types before making assignments to a variable.
Clearly, this significantly simplifies program development.

Yet, the mechanics behind such useful feature is not so simple: the price to pay
for such dynamical features is that all variables, even such simple as ‘W1’ and ‘S’ de-
fined before, are objects. Thus, they are more complicated than simple types in other
programming languages, like C/C++ or FORTRAN. The price to pay is slower ex-
ecution and larger memory consumption. On the other hand, this also means that
you can do a lot using such feature! It should also be noted that some people use

30 2 Introduction to Jython

the word “value” when they talk about simple types, such as numbers and strings.
This is because these objects cannot be changed after creation, i.e. they are im-
mutable.

First, let us find out what can we do with the object ‘W1’. We know that it holds
the value 10 (and can hold any value). To find out what can be done with any objects
in the JythonShell window is rather simple: Type ‘W1’ followed by a dot and press
the [Space] key by holding down [Ctrl]:

>>> W1. [Ctrl]-[Space]

You will see a list of methods attributed to this object. They usually start as
__method__, where ’method’ is some attribute. For example, you will see the
method like __str__, which transforms an object of type integer to a string. So,
try this

>>> SW=str(W1); type(SW)
<type ’str’>

Here we put two Jython statements on one line separated by a semi-column. This,
probably, is not very popular way for programming in Jython, but we use it to il-
lustrate that one can this syntax is also possible. In some cases, however, a program
readability can significantly benefit from this style if a code contains many similar
and short statements, such as a1=1; a2=2. In this case, the statements have cer-
tain similarity and it is better to keep them in one single logical unit. In addition, we
will use this style in several examples to make our code snippets short.

The last expression in the above line does not have “=”, so Jython assumes that
what you really want is to redirect the output to the interactive prompt. The method
type() tells that “SW” is a string. As before, you may again look at the methods
of this object as:

>>> SW. [Ctrl]-[Space]

This displays a list of the methods attributed to this object. One can select a neces-
sary method and insert it right after the dot.

In addition to the JythonShell help system, one can discover the attributes of each
Jython object using the native Jython method dir():

>>> dir(SW)

In the following sections we will discuss other methods useful to discover at-
tributes of Java objects.

2.2 Quick Introduction to Jython Objects 31

2.2.1 Numbers as Objects

Numbers in Jython are immutable objects called values, rather than simple types
as in other programming languages (C/C++, Fortran or Java). There are two main
types: integers (no fractional part) and floats (with fractional part). Integers can be
represented by long values if they are followed by the symbol ‘L’. Try this:

>>> Long=20L
<type ’long’>

The only limit in the representation of the long numbers is the memory of Java
virtual machine.

Let us take a look again at the methods of a real number, say “20.2” (without
any assignment to a variable).

>> 20.2. [Ctrl]-[Space]

or, better, you can print them using the method “dir()”

>>> dir(20.2)

Again, since there is no any assignment, Jython just prints the output of the dir()
method directly to the same prompt. Why they are needed and what you can do with
them? Some of them are rather obvious and shown in Table 2.1.

Table 2.1 A short overview of the Jython operators for values

Jython operators for values

abs(x) __abs__ absolute value

pow(x, y) or y**x __pow__ raise x to the power y

−x,+x __neg__, __pos__ negative or positive

+, - __radd__, __rsub__ add or subtract

∗, / __rmul__, __rdiv__ add or subtract

x < y, x > y __com__ less or larger. Returns 0 (false) or 1 (true)

cmp(x, y) __com__ compare numbers. Returns 0 (false) or 1 (true)

x <= y, x >= y – comparison: less (greater) or equal

x == y, x! = y – comparison: equal or not equal

str(x) __str__ convert to a string

float(x) __float__ convert to float

int(x) __int__ convert to integer

long(x) __long__ convert to long

32 2 Introduction to Jython

There are more methods designed for this object, but we will not go into further
discussion. Just to recall: any number in Jython is an object and you can manipulate
with it as with any object to be discussed below. For example, Jython integers are
objects holding integer values. This is unlike C++ and Java where integers are
primitive types.

Is it good if simple entities, such as numbers are, have properties of objects? For
interactive manipulation with a code and fast prototyping, probably we do not care
so much, or even can take advantage of this property. But, for numerical libraries,
this feature is unnecessary and, certainly, is too heavy for high-performance calcu-
lations. We will address this issue later in the text.

2.2.2 Formatted Output

In the above examples we have used the print command without setting control
over the way in which printed values are displayed. For example, in the case of the
expression “1.0/3.0”, Jython prints the answer with 17 digits after the decimal
place!

Obviously, as for any programming language, one can control the way the values
are displayed: For this, one can use the % command to produce a nicely formatted
output. This is especially important of one needs to control the number of deci-
mal places the number is printed to. For example, one can print 1.0/3.0 to three
decimal places using the operator %.3f inside the string:

>>> print ’The answer is %.3f’%(1.0/3)
The answer is 0.333

As you can see, Jython replaces the character “f” with the variable value that fol-
lows the string. One can print more than one variable as shown in the example
below:

>>> print ’The answer is %.3f and %.1f’% (1.0/3, 2.0/3)
The answer is 0.333 and 0.7

One can also use the operator % to control the width of the displayed number,
so one can make neatly aligned tables. For example, the string “10.1f” forces the
number to be printed such that it takes up to ten characters. The example below
shows how to do this using the new-line character to print the second number on a
new line. As one can see, we align this second number with that printed on the first
line:

>>> print ’The answer: %.3f \n %13.1f’% (1.0/3, 2.0/3)
The answer: 0.333

0.7

2.2 Quick Introduction to Jython Objects 33

2.2.3 Mathematical Functions

To perform mathematical calculations with values, one should use the Jython math
module which comes from the standard specification of the Python programming
language. Let us take a look at what is inside of this module. First, we have to
import this module using the “import math” statement:

>>> import math

Use the usual approach to find the methods of this module:

>>> dir(math)
[’acos’, ’asin’, ’atan’, ’atan2’, ’ceil’,
’classDictInit’, ’cos’, ’cosh’, ’e’, ’exp’,
’fabs’, ’floor’, ’fmod’, ’frexp’, ’hypot’,
’ldexp’, ’log’, ’log10’, ’modf’, ’pi’, ’pow’,
’sin’, ’sinh’, ’sqrt’, ’tan’, ’tanh’]

Most of us are familiar with all these mathematical functions that have the same
names in any programming language. To use these functions, type the module name
math followed by the function name. A dot must be inserted to separate the module
and the function name:

>>> math.sqrt(20)
4.47213595499958

As before for JythonShell, one can pick up a necessary function as:

>>> math. [Ctrl]-[Space]

It should be noted that, besides functions, the math module includes a few well-
known constants: π and e:

>>> print "PI=", math.pi
PI= 3.141592653589793
>>> print "e=", math.e
e= 2.718281828459045

If you have many mathematical operations and want to make a code shorter by
skipping the “math” attribute in front of each function declaration, one can explic-
itly import all mathematical functions using the symbol “*”:

34 2 Introduction to Jython

>>> from math import *
>>> sqrt(20)
4.47213595499958

2.2.4 Complex Numbers

Python has a natural support for complex numbers. Just attach “J” or “j” for the
imaginary part of a complex number:

>>> C=2+3j
>>> type(C)
<type ’complex’>

Once a complex number is defined, one can perform mathematical manipulations as
with the usual numbers. For example:

>>> 1j*1j
(-1+0j)

Mathematical operations with complex numbers can be performed using the
’cmath’ module, which is analogous to the ’math’ module discussed above.
The example below demonstrates how to calculate hyperbolic cosine of a complex
value:

>>> import cmath
>>> print cmath.cosh(2+3j)
(-3.724+0.511j)

The output values for the real and imaginary part in the above example were trun-
cated to fit the page width.

2.3 Strings as Objects

Strings are also treated as values since they are immutable. To define a string, one
should enclose it in double (”) or single (’) quote. The escape character is a back-
slash, so one can put a quote character after it. The newline is given by n directly
after the backslash character. Two strings can be added together using the usual “+”
operator.

As mentioned above, an arbitrary value, val, can be converted into a string us-
ing the method str(val). To convert a string into int or float value, use the

2.4 Import Statements 35

methods int(str) or float(str). Below we illustrate several such conver-
sions:

>>> i=int(’20’)
>>> type(i)
<type ’int’>
>>> f=float(’20.5’)
>>> type(f)
<type ’float’>

As before, all the methods associated with a string can be found using [Ctrl]-
[Space] or the dir() method:

>>> dir(’s’)
...
’capitalize’, ’center’, ’count’,’decode’,
’encode’, ’endswith’, ’expandtabs’, ’find’,
’index’, ’isalnum’, ’isalpha’, ’isdecimal’,
’isdigit’, ’islower’, ’isnumeric’, ’isspace’...

(we display only a few first methods). Some methods are rather obvious and do
not require explanation. All methods that start from the string “is” check for a
particular string feature.

Below we list more methods:

len(str) gives the number of characters in the string str
string.count(str) counts the number of times a given word appears in a

string
string.found(str) numeric position of the first occurrence of word in the

string
str.lower() returns a string with all lower case letters
str.upper() returns a string with all upper case letters

Strings can be compared using the standard operators: ==, !=, <, >, <=,
and >=.

2.4 Import Statements

There are several ways that can be used to import a Java or Python package. One
can use the ’import’ statement followed by the package name. In case of Python,
this corresponds to a file name without the extension ’.py’. The import statement
executes the imported file, unlike lower-level languages, like C/C++, where the
import statement is a preprocessor statement. The consequence of this is that the
import statement can be located in any place of your code, as for the usual exe-
cutable statement. We have seen already how to import the Python package “math”.

36 2 Introduction to Jython

Here is an example illustrating how to import the Java Swing package (usually used
to build a GUI):

>>> from javax.swing import *

In the above example we use the wildcard character “*” to import all packages
from Java Swing. In this book, you will see that we use “*” wildcard almost for
every example, since we what to keep our examples short. This is often considered
as a bad style since it “pollutes” the global namespace. However, if you know that
the code is not going to be very long and complicated, we should not worry too
much about this style.

Let us give another example showing how to import of a Java class. We remind
that the code below works only for Python implemented in Java (Jython):

>>> from javax.swing import JFrame

This time we have imported only a single class (JFrame) from Java, unlike the
previous example with the “polluted” namespace.

Another way to import classes is to use the ’import’ statement without the
string ’from’. For example:

>>> import javax.swing

In this case, we should use the qualified names, i.e.:

>>> f=javax.swing.JFrame(’Hello’)

Although it takes more typing, we have avoided polluting the global namespace of
our code.

2.4.1 Executing Native Applications

In Sect. 1.4.3 we have shown that native applications can be run using JythonShell
by appending “!” in front of an external command. In addition, one can also use
Jython ’os.system’ package to run an external program.

The code below shows how to run an external command. In this example, we
bring up the Acroread PDF file viewer (it should be found on the current PATH if
this program installed on your system):

>>> import os
>>> rc=os.system(’acroread’)

2.5 Comparison Tests and Loops 37

>>> if rc == 0:
>>> ... print ’acroread started successfully’

The statement ’if’ checks whether the execution has succeeded or not. We will
discuss the comparison tests in the next section. The same operation will look like
!acroread when using the Jython shell.

2.5 Comparison Tests and Loops

2.5.1 The ‘if-else’ Statement

Obviously, as in any programming language, one can use the ’if-else’ state-
ment for decision capability of your code. The general structure of comparison tests
is

if [condition1]:
[statements to execute if condition1 is true]

elif [condition2]:
[statements to execute if condition2 is true]

....

else:
[rest of the program]

The text enclosed in square brackets represents some Jython code. After the line
with the statement ’if’, the code is placed farther to the right using white spaces
in order to define the program block. Either space characters or tab characters (or
even both!) are accepted as forms of indentation. In this book, we prefer two spaces
for indentation. It should also be noted that the exact amount of indentation does
not matter, only the relative indentation of nested blocks (relative to each other) is
important.

The indentation is good Python feature: The language syntax forces to use the
indentation that you would have used anyway to make your program readable. Thus
even a lousy programmer is forced to write understandable code!

Now let us come back to the comparison tests. The [condition] statement
has several possibilities for values ’a’ and ’b’ values as shown in Table 2.2:

Let us illustrate this in the example below:

>>> a=1; b=2;
>>> if a*b>1:
>>> .. print "a*b>1"
>>> else:
>>> .. print "a*b<=1"

38 2 Introduction to Jython

Table 2.2 Most popular
Jython comparison tests Comparison tests

a == b a is equal to b

a! = b a is not equal to b

a > b a is greater than b

a >= b a is greater than or equal to b

a < b a is less than b

a <= b a is less than or equal to b

a == b a is equal to b

a! = b a is not equal to b

In case if you will need more complex comparisons, use the boolean operators
such as ’and’ and ’or’:

>>> a=1; b=0
>>> if a>0 and b=0:
>>> ..print ’it works!’

One can also use the string comparisons = (equal) or != (not equal). The com-
parison statements are case sensitive, i.e. ’a’ == ’A’ is false.

2.5.2 Loops. The “for” Statement

The need to repeat a statement or a code block is essential feature of any numerical
calculation. There is, however, one feature you should be aware of: Python should be
viewed as an “interface” type of language, rather than that used for heavy repeated
operations like long loops over values. According to the author’s experience, if the
number of iterations involving looping over values is larger than several thousands,
such part of the code should be moved to an external library to achieve a higher
performance and a lower memory usage compared to the Python code operating
with loops over objects. In case of Java, such libraries should be written in Java.

In this section we will be rather short. One can find more detailed discussion
about this topic in any Python textbook.

The simplest loop which prints, say, 10 numbers is shown below:

>>> for i in range(10):
>>> ... print i

This ’for’ loop iterates from 0 to 9. Generally, you can increment the counter by
any number. For example, to print numbers from 4 to 10 with the step 2, use this
example:

2.5 Comparison Tests and Loops 39

>>> for i in range(4,10,2):
>>> ... print i

2.5.3 The ‘continue’ and ‘break’ Statements

The loops can always be terminated using the ’break’ statement, or some itera-
tions can be skipped using the ’continue’ statement. All such control statements
are rather convenient, since help to avoid various ’if’ statements which makes the
Python code difficult to understand. This is illustrated in the example bellow:

>>> for i in range(10):
>>> ... if (i == 4): continue
>>> ... if (i == 8): break
>>> ... print i

In this loop, we skip the number 6 and break the loop after the number 8:

2.5.4 Loops. The ‘while’ Statement

One can also construct a loop using the ’while’ statement, which is more flexible
since its iteration condition could be more general. A generic form of such loop is
shown below:

while CONDITION:
... <Code Block as long as CONDITION is true>

Let us give a short example which illustrates the while loop:

>>> a=0
>>> while a<10:
>>> ... a=a+1

The while loop terminates when a=10, i.e. when the statement after the
’while’ is false. As before, one can use the control statements discussed above
to avoid overloading the execution block with various “if” statements.

One can also create an infinite loop and then terminate it using the “break”
statement:

40 2 Introduction to Jython

>>> a=0
>>> while 1:
>>> ... print "infinite loop!"
>>> ... a=a+1;
>>> ... if a>10:
>>> break
>>> ... print i

In this example, the ’break’ statement together with the ’if’ condition controls
the number of iterations.

2.6 Collections

Data-analysis computations are usually based on object collections, since they have
being designed for various repetitious operations on sequential data structures—
exactly what we mostly do when analyzing multiple measurements. In addition, a
typical measurement consists of a set of observations which have to be stored in a
data container as a single unit.

Unlike to other languages, we consider Python collections to be useful mainly
for storing and manipulation with other high-level objects, such as collections with
a better optimized performance for numerical calculations. In this book, we will use
the Jython collections to store sets of jHepWork histograms, mathematical func-
tions, Java-based data containers and so on.

Of course, one can use Jython collections to keep numerical values, but this ap-
proach is not going to be very efficient: An analysis of such values requires Python
loops which are known to be slow. Secondly, there are no too many pre-build Jython
libraries for object manipulation.

Nevertheless, in many parts of this books we will use collections which contain
numerical values: this is mainly for pedagogical reasons. Besides, we do not care too
much about the speed of our example programs when analyzing tens of thousands
events.

2.6.1 Lists

As you may guess, a list is an object which holds other objects, including values.
The list belongs to a sequence, i.e. an ordered collection of items.

2.6 Collections 41

2.6.2 List Creation

An empty list can be created using squared brackets. Let us create a list and check
its methods:

>>> list=[]
>>> dir(list) # or list. + [Ctrl]+[Space]

One can also create a list which contains integer or float values during the initial-
ization:

>>> list=[1,2,3,4]
>>> print list
[1, 2, 3, 4]

The size of this list is accessed using the len(list) method. The minimum and
maximum values are given by the min(list) and max(list) methods, respec-
tively. Finally, for a list which keeps numerical values, one can sum-up all list ele-
ments as sum(list).

One can create a mixed list with numbers, strings or even other lists:

>>> list=[1.0,’test’,int(3),long(2),[20,21,23]]
>>> print list
[1.0, ’test’, 3, 2L, [20, 21, 23]]

One can obtain each element of the list as list[i], where ’i’ is the element
index, 0<i<len(list). One can select a slice as list[i1:i2], or even select
the entire list as list[:]. A slice which selects index 0 through ’i’ can be writ-
ten as list[:i]. Several lists can be concatenated using the plus operator ’+’,
or one can repeat the sequence inside a list using the multiplication ’*’.

As before, one can find the major methods of the list using [Ctrl]+[Space]
keys. Some methods are rather obvious:

To add a new value, use the method append():

>>> list.append(’new string’)

A typical approach to fill a list in a loop would be:

>>> list=[]
>>> for i in range(4,10,2):
>>> ... list.append(i)

(here, we use a step 2 from 4 to 10). The same code in a more elegant form looks
like:

42 2 Introduction to Jython

>>> list=range(4, 10, 2)
>>> print list
[4, 6, 8]

If one needs a simple sequence, say from 0 to 9 with the step 1, this code can be
simplified:

>>> list=range(10)
>>> print ’List from 0 to 9:’,list
List from 0 to 9: [0,1,2,3,4,5,6,7,8,9]

One can create a list by adding some condition to the range statement. For
example, one create lists with odd and even numbers:

>>> odd =range(1,10)[0::2]
>>> even=range(1,10)[1::2]

Another effective “one-line” approach to fill a list with values is demonstrated
below:

>>> import math
>>> list = [math.sqrt(i) for i in range(10)]

Here we created a sequence of sqrt(i) numbers with i = 0..9.
Finally, one can use the ’while’ statement for adding values in a loop. Below

we make a list which contains ten zero values:

>>> list=[]
>>> while len(list)<10:
>>> ... list.append(0)

2.6.3 Iteration over Elements

Looping over a list can be done with the ’for’ statement as:

>>> for i in list:
>>> ...print i

or calling its elements by their index ’i’:

2.6 Collections 43

>>> for i in range(len(list)):
>>> ...print list[i]

2.6.3.1 Sorting, Searches, Removing Duplicates

The list can be sorted with the sort() method:

>>> list.sort()
>>> print list
[1.0, 2L, 3, [20, 21, 23], ’new string’, ’test’]

To reverse the list, use the method reverse().
To insert a value, use the insert(val) method, while to remove an element,

use the remove(val) method. Finally, one can delete either one element of a
list or a slice of elements. For example, to remove one element with the index i1
of a list use this line of the code: ’del list[i1]’. To remove a slice of ele-
ments in the index range i1-i2, use ’del list[i1:i]’. To empty a list, use
’del list[:]’. Finally, ’del list’ removes the list object from the com-
puter memory.

It should be noted that the list size in the computer memory depends on the
number of objects in the list, not on the size of objects, since the list contains pointers
to the objects, not objects themselves.

Advanced statistical analysis will be considered in Sect. 7.4, where we will show
how to access the mean values, median, standard deviations, moments and etc. of
distributions represented by Jython lists.

Jython lists are directly mapped to the Java ordered collection List. For exam-
ple, if a Java function returns ArrayList<Double>, this will be seen by Jython
as a list with double values.

To search for a particular value ’val’, use

>>> if val in list:
>>> ...print ’list contains’, val

For searching values, use the method index(val), which returns the index
of the first matching value. To count the number of matched elements, the method
count(val) can be used (it also returns an integer value).

2.6.4 Removal of Duplicates

Often, you may need to remove a duplicate element from a list. To perform this
task, use the-called dictionary collection (will be discussed below). The example to

44 2 Introduction to Jython

be given below assumes that a list object has been created before, and now we
create a new list (with the same name) but without duplicates:

>>> tmp={}
>>> for x in list:
>>> ...tmp[x] = x
>>> list=tmp.values()

This is usually considered to be the fastest algorithm (and the shortest). However,
this method works for the so-called hashable objects, i.e. class instances with a
“hash” value which does not change during their lifetime. All Jython immutable
built-in objects are hashable, while all mutable containers (such as lists or dictio-
naries to be discussed below) are not. Objects which are instances of user-defined
Jython or Java classes are hashable.

For unhashable objects, one can first sort objects and then scan and compare
them. In this case, a single pass is enough for duplicate removal:

>>> list.sort()
>>> last = list[-1]
>>> for i in range(len(list)-2, -1, -1):
>>> ...if last==list[i]:
>>> del list[i]
>>> ...else:
>>> last=list[i]

The code above is considered to be the second fastest method after that based on the
dictionaries. The method above works for any type of elements inside lists.

2.6.4.1 Examples

Lists are very handy for many data-analysis applications. For example, one can keep
names of input data files which can be processed by your program in a sequential
order. Or, one can create a matrix of numbers for linear algebra. Below we will give
two small examples relevant for data analysis:

A matrix. Let us create a simple matrix with integer or float numbers:

>>> mx=[
... [1, 2],
... [3, 4],
... [5, 6],
...]

One can access a row of this matrix as mx[i], where ’i’ is a row index. One can
swap rows with columns and then access a particular column as:

2.6 Collections 45

>>> col=[[x[0] for x in mx], [x[1] for x in mx]]
>>> print col
[[1, 3, 5], [2, 4, 6]]

In case of an arbitrary number of rows in a matrix, use the map container for the
same task:

>>> col=map(None,*mx)
>>> print col
[[1, 3, 5], [2, 4, 6]]

Advanced linear-algebra matrix operations using a pure Jython approach will be
considered in Sect. 7.5.4.

Records with measurements. Now we will show that the lists are very flexible
for storing records of data. In the example below we create three records that keep
information about measurements characterized by some identification string, a time
stamp indicating when the measurement is done and a list with actual numerical
data:

>>> meas=[]
>>> meas.append([’test1’,’06-08-2009’,[1,2,3,4]])
>>> meas.append([’test2’,’06-09-2009’,[8,1,4,4,2]])
>>> meas.append([’test3’,’06-10-2009’,[9,3]])

This time we append lists with records to the list holding all event records. We may
note that the actual numbers are stored in a separate list which can have an arbitrary
length (and could also contain other lists). To access a particular record inside the
list meas use its indexes:

>>> print meas[0]
>>> [’test1’, ’06-08-2009’, [1, 2, 3, 4]]
>>> print meas[0][2]
[1, 2, 3, 4]

2.6.5 Tuples

Unlike lists, tuples cannot be changed after their creation, thus they cannot grow
or shrink as the lists. Therefore, they are immutable, similar to the values. As the
Jython lists, they can contain objects of any type. Tuples are very similar to the lists
and can be initiated in a similar way:

46 2 Introduction to Jython

>>> tup=() # empty tuple
>>> tup=(1,2,"test",20.0) # with 4 elements

Of course, now operations that can change the object (such as append()), cannot
be applied, since we cannot change the size of this container.

In case if you need to convert a list to a tuple, use this method:

>>> tup=tuple([1,2,3,4,4])

Below we will discuss more advanced methods which add more features to ma-
nipulations with the lists and tuples.

2.6.6 Functional Programming. Operations with Lists

Functional programming in Jython allows to perform various operations on data
structures, like lists or tuples. For example, to create a new list by applying the
formula:

b[i] − a[i]
b[i] + a[i] (2.1)

for each element of two lists, a and b, you would write a code such as:

>>> a=[1,2,3]
>>> b=[3,4,5]
>>> c=[]
>>> for i in range(len(a)):
>>> ... c.append(b[i]-a[i] / (a[i]+b[i]))

To circumvent such unnecessary complexity, one can reduce this code to a single
line using functional programming:

>>> a=[1.,2.,3.]
>>> b=[3.,4.,5.]
>>> c= map(lambda x,y: (y-x)/(y+x),a,b)
>>> print c
[0.5, 0.33, 0.25]

The function map creates a new list by applying (2.1) for each element of the input
lists. The statement lambda creates a small anonymous function at runtime which
tells what should be done with the input lists (we discuss this briefly in Sect. 2.10).

2.6 Collections 47

As you can see, the example contains much lesser code and, obviously, program-
ming is done at a much higher level of abstraction than in the case with the usual
loops over list elements.

To build a new list, one can also use the ’math’ module. Let us show a rather
practical example based on this module: assume we have made a set of measure-
ments, and, in each measurement, we simply counting events with our observations.
The statistical error for each measurement is the square root of the number of events,
in case of counting experiments like this. Let us generate a list with statistical errors
from the list with the numbers of events:

>>> data=[4,9,25,100]
>>> import math
>>> errors= map(lambda x: math.sqrt(x),data)
>>> print errors
[2.0, 3.0, 5.0, 10.0]

The above calculation requires one line of the code, excluding the standard
’import’ statement and the ’print’ command.

Yet, you may not be totally satisfied with the ’lambda’ function: sometime
one needs to create a rather complicated function operating on lists. Then one can
use the standard Jython functions:

>>> a=[1.,2.,3.]
>>> b=[3.,4.,5.]
>>> def calc(x,y):
>>> ... return (y-x)/(x+y)
>>> c= map(calc,a,b)
>>> print c
[0.5, 0.33, 0.25]

The functionality of this code is totally identical to that of the previous example.
But, this time, the function calc() is the so-called “named” Jython function. This
function can contain rather complicated logic which may not fit to a single-line
’lambda’ statement.

One can also create a new list by selecting certain elements. In this case, use the
statement filter() which accepts an one-argument function. Such function must
return the logical true if the element should be selected. In the example below we
create a new list by taking only positive values:

>>> a=[-1,-2,0,1,2]
>>> print "filtered:",filter(lambda x: x>0, a)
filtered: [1, 2]

48 2 Introduction to Jython

As before, the statement ’lambda’may not be enough for more complicated logic
for element selection. In this case, one can define an external (or named) function
as in the example below:

>>> a=[-1,-2,0,1,2]
>>> def posi(x):
>>> ... return x > 0
>>> print "filtered:",filter(posi, a)
filtered: [1, 2]

Again the advantage of this approach is clear: we define a function posi(), which
can arbitrary be complicated, but the price to pay is more codding.

Finally, one can use the function reduce() that applies a certain function to
each pair of items. The results are accumulated as shown below:

>>> print "accumulate:",reduce(lambda x, y: x+y,[1,2,3])
>>> accumulate: 6

The same functional programming methods can be applied to the tuples.

2.6.7 Dictionaries

Another very useful container for analysis of data is the so-called dictionary. If one
needs to store some objects (which, in turn, could contain other objects, such as
more efficiently organized collections of numbers), it would be rather good idea to
annotate such elements. Or, at least, to have some human-readable description for
each stored element, rather than using an index for accessing elements inside the
container as for lists or tuples. Such a description, or the so-called “key”, can be
used for fast element retrieval from a container.

Dictionaries in Jython (as in Python) are designed for one-to-one relationships
between keys and values. The keys and the corresponding values can be any objects.
In particular, the dictionary value can be a string, numerical value or even other
collection, such as a list, a tuple, or other dictionary.

Let us give an example with two keys in form of strings, ’one’ and ’two’,
which map to the integer values ‘1’ and ‘2’, respectively:

>>> dic={’one’:1, ’two’:2}
>>> print dic[’one’]
1

In this example, we have used the key ’one’ to access the integer value ‘1’. One
can easily modify the value using the key:

2.6 Collections 49

>>> dic[’one’]=10

It should be noted that the keys cannot have duplicate values. Assigning a value
to the existing key erases the old value. This feature was used when we removed
duplicates from the list in Sect 2.6.3.1. In addition, dictionaries have no concept of
order among elements.

One can print the available keys as:

>>> print dic.keys()

The easiest way to iterate over values would be to loop over the keys:

>>> for key in dic:
>>> ... print key, ’corresponds to’, dic[key]

Before going further, let us rewrite the measurement example given in the previ-
ous section when we discussed the lists. This time we will use record identifications
as keys for fast retrieval:

>>> meas={}
>>> meas[’test1’]=[’06-08-2009’,[1,2,3,4]]
>>> meas[’test2’]=[’06-09-2009’,[8,1,4,4,2]]
>>> meas[’test3’]=[’06-10-2009’,[9,3]]
>>> print meas[’test2’]
[’06-09-2009’, [8, 1, 4, 4, 2]]

In this case, one can quickly access the actual data records using the keys. In our
example, a single data record is represented by a list with the date and additional list
with numerical values.

Let us come back to the description of the dictionaries. Here are a few important
methods we should know about:

dic.clear() clean a dictionary;
dic.copy() make a copy;
has_key(key) test, is a key present?;
keys() returns a list of keys;
values() returns a list of values in the dictionary.

One can delete entries from a dictionary in the same way as for the list:

>>> del dic[’one’]

50 2 Introduction to Jython

One can sort the dictionary keys using the following approach: convert them into
a list and use the sort() method for sorting:

>>> people = {’Eve’:10, ’Tom’: 20, ’Arnold’: 50}
>>> list = people.keys()
>>> list.sort()
>>> for p in list:
>>> ... print p,’is ’,people[p]
Arnold is 50
Eve is 10
Tom is 20

2.7 Java Collections in Jython

It was already said that the concept of collections is very important for any data
analysis, since “packing” multiple records with information into a single unit is a
very common task.

There are many situations when it is imperative to go beyond the standard
Python-type collections implemented in Jython. The strength of Jython is in its com-
plete integration with Java, thus one can call Java collections to store data. Yes, the
power of Java is in your hands!

To access Java collections, first you need to import the classes from the package
java.util. Java collections usually have the class names started with capital
letters, since this is the standard convention for class names in the Java programming
language. With this observation in mind, there is a little chance for mixing Python
collections with Java classes during the code development. In this section, we will
consider several collections from the Java platform.

2.7.1 List. An Ordered Collection

To build an ordered collection which contain duplicates, use the class List from
the Java package java.util. Since we are talking about Java, one can check what
is inside of this Java package as:

>>> from java.util import *
>>> dir()
[.. ’ArrayList’,’Currency’,’Date’,List,Set,Map]

Here we printed only a few Java classes to fit the long list of classes to the page
width. One can easily identify the class ArrayList, a class which is usually used

2.7 Java Collections in Jython 51

to keep elements in a list. One can check the type of this class and its methods using
either dir() or the JythonShell code assist:

>>> from java.util import *
>>> jlist=ArrayList()
>>> type(jlist)
<type ’java.util.ArrayList’>
>>> dir(jlist):
[... methods ...]
>>> jlist. # [Ctrl]+[Space]

As you can see, the type() method indicates that this is a Java instance, so we
have to use the Java methods of this instance for further manipulation. Let us add
elements to this list and print them:

>>> e=jlist.add(’test’)
>>> e=jlist.add(1)
>>> jlist.add(0,’new test’)
>>> e=jlist.add(2)
>>> print jlist
[new test, test, 1, 2]
>>> print jlist.get(0)
new test
>>> print jlist.toArray()
array(java.lang.Object,[’new test’, ’test’, 1, 2])

You may notice that when we append an element to the end of this list, we assign the
result to the variable ’e’. In Jython, it returns ‘1’ for success (or true for Java).
We also can add an object obj at the position characterized with the index i using
the method add(i,obj). Analogously, one can access elements by their integer
positions. For example, one can retrieve an object back using the method get(i).
The list of elements can be retrieved in a loop exactly as we usually do for the Jython
lists. Let us show a more complete example below:

Java list example

from java.util import *

jlist=ArrayList()
append integers
for i in range(100):

jlist.add(i)
print jlist.size()

replace at 0 position
jlist.set(0,100)
s=jlist
print type(s)

52 2 Introduction to Jython

range between 0-50
newlist=jlist.subList(0,50)
for j in newList:

print j

Run the above code and make sense of its output.
Probably, there are not too strong reasons to use Java List while working with

Jython, since the native Jython list discussed in the previous section should be suffi-
cient for almost any task. However, it is possible that you will need to use Java lists
in order to integrate your application natively into the Java platform after moving
your code into a pure Java codding.

2.7.1.1 Sorting Java Lists

One can do several manipulations with the List using the Java Collection
class. Below we show how to sort a list using the natural ordering of its elements,
and how to reverse the order:

>>> from java.util import *
>>> jlist=ArrayList()
>>> jlist.add(’zero’); jlist.add(’one’); jlist.add(’two’)
>>> Collections.sort(jlist)
>>> print jlist
>>> [one, two, zero]
>>> Collections.reverse(jlist)
>>> print jlist
>>> [zero, two, one]

The next question is how to sort a list with more complicated objects, using some
object attribute for sorting. Consider a list containing a sequence of other lists as in
the case shown below:

>>> from java.util import *
>>> jlist=ArrayList()
>>> jlist.add([2,2]); jlist.add([3,4]); jlist.add([1,1])
>>> print jlist
[[2, 2], [3, 4], [1, 1]]

Here there is a small problem: how can we tell to the method sort() that we want
to perform a sorting using a first (or second) item in each element-list? Or, more
generally, if each element is an instance of some class, how can we change ordering
objects instantiated by the same class?

One can do this by creating a small class which implements the Comparator
interface. We will consider Jython classes in Sect. 2.11, so at this moment just accept

2.7 Java Collections in Jython 53

this construction as a simple prescription that performs a comparison of two objects.
The method compare(obj1,obj2) of this class compares objects and returns
a negative value, zero, or a positive integer value depending on whether the object
is less than, equal to, or greater than the specified object. Of course, it is up to
you to define how to perform such object comparison. For the example above, each
object is a list with two integers, so one can easily prototype a function for object
comparison. Let us write a script which orders the list in increasing order using the
first element of each list:

Sorting Java lists

from java.util import *

jlist=ArrayList()
jlist.add([2,2]); jlist.add([3,4]); jlist.add([1,1])

class cmt(Comparator):
def compare(self, i1,i2):

if i1[0]>i2[0]: return 1
return 0

Collections.sort(jlist,cmt())
print jlist

After running this script, all elements will be ordered and the print method displays
[[1, 1],[2, 2],[3, 4]].

We will leave the reader here. One can always find further information about the
Java lists from any Java textbook.

2.7.2 Set. A Collection Without Duplicate Elements

The Set container from the package java.util is a Java collection that cannot
contain duplicate elements. Such set can be created using general-purpose imple-
mentations based on the HashSet class:

>>> from java.util import *
>>> s=HashSet()
>>> e=s.add(’test’)
>>> e=s.add(’test’)
>>> e=s.add(1)
>>> e=s.add(2)
>>> print s
[1, 2, test]

As you can see from this example, the string ’test’ is automatically removed
from the collection. Operations with the Java sets are exactly the same as those with

54 2 Introduction to Jython

the ArrayList. One can loop over all elements of the set collection using the
same method as that used for the ArrayList class, or one can use a method by
calling each element by its index:

>>> for i in range(s.size()):
>>> ...print s[i]

As in the case with the Java lists, you may face a problem when go beyond
simple items in the collection. If you want to store complicated objects with certain
attributes, what method should be used to remove duplicates? You can do this as
well but make sure that instances of the class used as elements inside the Java set
use hash tables (most of them do). In case of the example shown in Sect. 2.7.1.1, you
cannot use HashSet since lists are unhashinable. But with tuples, it is different:
Tuples have hash tables, so the code snippet below should be healthy:

>>> from java.util import *
>>> s=HashSet()
>>> e=s.add((1,2))
>>> e=s.add((2,4))
>>> e=s.add((1,2))
>>> print s
[(2, 4), (1, 2)]

As you can see, the duplicate entry (1,2) is gone from the container. In case if
you need to do the same with Python lists, convert them first into tuples as shown in
Sect. 2.6.5.

2.7.3 SortedSet. Sorted Unique Elements

Next, why not to keep all our elements in the Java set container in a sorted order,
without calling an additional sorting method each time we add a new element? The
example below shows the use of the SortedSet Java class:

>>> from java.util import *
>>> s=TreeSet()
>>> e=s.add(1)
>>> e=s.add(4)
>>> e=s.add(4)
>>> e=s.add(2)
>>> print s
[1, 2, 4]

the second value “4” is automatically removed and the collection appears in the
sorted oder.

2.7 Java Collections in Jython 55

2.7.4 Map. Mapping Keys to Values

As it is clear from the title, now we will consider the Java Map collection which
maps keys to specific objects. This collection is analogous to a Jython dictionary,
Sect. 2.6.7. Thus, a map cannot contain duplicate keys as we have learned from the
Jython dictionaries.

Let us build a map collection based on the HashMap Java class:

>>> from java.util import *
>>> m=HashMap()
>>> m.put(’a’, 1)
>>> m.put(’b’, 2)
>>> m.put(’c’, 3)
>>> print m
{b=2, c=3, a=1}

Now you can see that Java maps have the same functionality as the Jython dictionar-
ies. As for any Java collection, the size of the Map is given by the method size().
One can access the map values using the key:

>>> print m[’a’]
1

Similar to the lists, one can print all keys in a loop:

>>> for key in m:
>>> ... print key, ’corresponds to’, m[key]
b corresponds to 2
c corresponds to 3
a corresponds to 1

Here we print all keys and also values corresponding to the keys.

2.7.5 Java Map with Sorted Elements

This time we are interested in a map with sorted keys. For this one should use the
class TreeMap and the same methods as for the HashMap class discussed before:

>>> from java.util import *
>>> m=TreeMap()
>>> m.put(’c’, 1)
>>> m.put(’a’, 2)

56 2 Introduction to Jython

>>> m.put(’b’, 3)
>>> print m
{a=2, b=3, c=1}

Compare this result with that given in the previous subsection. Now the map is
sorted using the keys.

2.7.6 Real Life Example: Sorting and Removing Duplicates

Based on the Java methods discussed above, we can do something more compli-
cated. In many cases, we need to deal with a sequence of data records. Each record,
or event, can consist of strings, integer and real numbers. So we are dealing with
lists of lists. For example, assume we record one event and make measurements of
this event by recording a string describing some feature and several numbers char-
acterizing this feature. Such example was already considered in Sect. 2.6.4.1.

Assume we make many such observations. What we want to do at the end of our
experiment is to remove duplicates based on the string with a description, and then
sort all the records (or observations) based on this description. This looks like a real
project, but not for Jython! The code below does everything using a several lines of
the code:

Sorting and removing duplicates

from java.util import *

data=ArrayList()
data.add(["star",1.1,30])
data.add(["galaxy",2.2,80])
data.add(["galaxy",3.3,10])
data.add(["moon",4.4,50])

map=TreeMap()
for row in data:

map.put(row[0],row[1:])

data.clear()
for i in map:

row=map[i]
row.insert(0,i)
data.add(row)

print data

Let us give some explanations. First, we make a data record based on the list
’data’ holding all our measurements. Then we build a TreeMap class and use
the first element to keep the description of our measurement in form of a “key”.

2.8 Random Numbers 57

The rest of our record is used to fill the map values (see row[1:]). As you already
know, when we fill the TreeMap object, we remove duplicate elements and sort the
keys automatically. Once the map is ready, we remove all entries from the list and
refill it using a loop over all the keys (which are now ordered). Then we combine the
key value to form a complete event record. The output of the script is given below:

[[’galaxy’,3.3,10],[’moon’,4.4,50],[’star’,1.1,30]]

We do not have extra record with the description ‘galaxy’ and, expectedly, all our
records are appropriately sorted.

2.8 Random Numbers

A generation of random numbers is an essential phase in scientific programming.
Random numbers are used for estimating integrals, generating data encryption keys,
data interpretation, simulation and modeling complex phenomena. In many exam-
ples of this book, we will simulate random data sets for illustrating data-analysis
techniques.

Let us give a simple example which shows how to generate a random floating
point number in the range [0,1] using the Python language:

>>> from random import *
>>> r=Random()
>>> r.randint(1,10) # a random number in range [0.10]

Since we do not specify any argument for the Random() statement, a random seed
from the current system time is used. In this case, every time you execute this script,
a new random number will be generated.

In order to generate a random number predictably for debugging purpose, one
should pass an integer (or long) value to an instance of the Random() class. For
the above code, this may look as: r=Random(100L). Now the behavior of the
script above will be different: every time when you execute this script, the method
randint(1,10) will return the same random value, since the seed value is fixed.

Random numbers in Python can be generated using various distributions depend-
ing on the applied method:

>>> r.random() # in range [0.0, 1.0)
>>> r.randint(min,max) # int in range [min,max]
>>> r.uniform(min,max) # real number in [min,max]
>>> r.betavariate(a,b) # Beta distribution (a>0,b>0)
>>> r.expovariate(lambda) # Exponential distribution
>>> r.gauss(m,s) # Gaussian distribution
>>> r.lognormvariate(m,s) # Log normal distribution

58 2 Introduction to Jython

>>> r.normalvariate(m,s) # Normal distribution
>>> r. gammavariate(a, b) # Gamma distribution.
>>> r.seed(i) # set seed (i integer or long)
>>> state=r.getstate() # returns internal state
>>> setstate(state) # restores internal state

In the examples above, ’m’ denotes a mean value and ’s’ represents a standard
deviation for the output distributions.

Random numbers are also used for manipulations with Jython lists. One can
randomly rearrange elements in a list as:

>>> list=[1,2,3,4,5,6,7,8,9]
>>> r.shuffle(list)
>>> print list
[3, 4, 2, 7, 6, 5, 9, 8, 1] # random list

One can pick up a random value from a list as:

>>> list=[1,2,3,4,5,6,7,8,9]
>>> r.choice(list) # get a random element

Similarly, one can get a random sample of elements as:

>>> list=[1,2,3,4,5,6,7,8,9]
>>> print r.sample(list,4) # random list
>>> [4, 2, 3, 6]

Of course, the printed numbers will be different in your case.

2.9 Time Module

The time module is rather popular due to several reasons. First, it is always a good
idea to find our the current time. Secondly, it is an essential module for more serious
tasks, such as optimization and benchmarking analysis programs or their parts. Let
us check the methods of the module time:

>>> import time
>>> dir(time) # check what is inside
[’__doc__’, ’accept2dyear’, ’altzone’, ’asctime’,
’classDictInit’, ’clock’, ’ctime’, ’daylight’,
’gmtime’, ’locale_asctime’, ’localtime’, ’mktime’,
’sleep’, ’strftime’, ’struct_time’, ’time’,
’timezone’, ’tzname’]

2.9 Time Module 59

You may notice that there is a method called __doc__. This looks like a method
to keep the documentation for this module. Indeed, by printing the documentation
of this module as

>>> print time.__doc__

you will see a rather comprehensive description. Let us give several examples:

>>> time.time() # time in seconds since the Epoch
>>> time.sleep() # delay for a number of seconds
>>> t=time.time()
>>> print t.strftime(’4-digit year: %Y, 2-digit year: \

%y, month: %m, day: %d’)

The last line prints the current year, the month and the day with explanatory anno-
tations.

To find the current day, the easiest is to use the module datetime:

>>> import datetime
>>> print "The date is", datetime.date.today()
>>> The date is 2008-11-14
>>> t=datetime.date.today()
>>> print t.strftime("4-digit year: \

%Y, 2-digit year: %y, month: %m, day: %d")

To force a program to sleep a certain number of seconds, use the sleep()
method:

>>> seconds = 10
>>> time.sleep(seconds)

2.9.1 Benchmarking

For tests involving benchmarking, i.e. when one needs to determine the time spent
by a program or its part on some computational task, one should use a Jython mod-
ule returning high-resolution time. The best is to use the module clock() which
returns the current processor time as a floating point number expressed in seconds.
The resolution is rather dependent on the platform used to run this program but, for
our benchmarking tests, this is not too important.

To benchmark a piece of code, enclose it between two time.clock() state-
ments as in this code example:

60 2 Introduction to Jython

>>> start = time.clock(); \
[SOME CODE FOR BENCHMARKING]; \
end = time.clock()

>>> print ’The execution of took (sec) =’, end-start

Let us give a concrete example: We will benchmark the creation of a list with integer
numbers. For benchmarking in an interactive mode, we will use the exec() state-
ment. This code benchmarks the creation of a list with the integer numbers from 0
to 99999.

>>> code=’range(0,100000)’
>>> start=time.clock();List=exec(code);end=time.clock()
>>> print ’Execution of the code took (sec)=’,end-start
Execution of the code took (sec) = 0.003

Alternatively, one can write this as:

>>> List=[]
>>> code=’for x in range(0,100000): List.append(x)’
>>> start=time.clock();exec(code);end=time.clock()
>>> print ’Execution of the code took (sec)=’,end-start

2.10 Python Functions and Modules

Jython supports code reuse via functions and classes. The language has many built-
in functions which can be used without calling the import statement. For example,
the function dir() is a typical built-in function. But how one can find out which
functions have already been defined? The dir() itself cannot display them. How-
ever, one can always use the statement dir(module) to get more information
about a particular module. Try to use the lines:

>>> import __builtin__
>>> dir(__builtin__)
...’compile’, ’dict’, ’dir’, ’eval’ ..

This prints a rather long list of the built-in functions available for immediate use
(we show here only a few functions).

Other (“library”) functions should be explicitly imported using the import
statement. For example, the function sqrt() is located inside the package
’math’, thus it should be imported as ’import math’. One can always list

2.10 Python Functions and Modules 61

all functions of a particular package by using the dir() function as shown in
Sect. 2.2.3.

It is always a good idea to split your code down into a series of functions, each of
which would perform a single logical action. The functions in Jython are declared
using the statement def. Here is a typical example of a function which returns
(a-b)/(a+b):

>>>def func(a,b):
>>> ... "function"
>>> ... d=(a-b)/(a+b)
>>> ... return d
>>>print func(3.0,1.0)
0.5
>>> print func.__doc__
function

To call the function func(), a comma-separated list of argument values is used.
The ’return’ statement inside the function definition returns the calculated
value back and exits the function block. If no return statement is specified, then
’None’ will be returned. The above function definition contains a string comment
’function’. A function comment should always be on the first line after the def
attributed. One can print the documentation comment with the method __doc__
from a program from which the function is called.

One can also return multiple values from a function. In this case, put a list of
values separated by commas; then a function returns a tuple with values as in this
example:

>>>def func(a,b,c=10):
>>> ... d1=(a-b)/(a+b)
>>> ... d2=(a*b*c)
>>> ... return d1,d2
>>>print func(2,1)
(0, 20)
>>> >print func(2.,1.0)
(0.5, 30.0)

The example shows another features of Jython functions: the answer from the
function totally depends on the type of passed argument values. The statement
func(2,1) interprets the arguments as integer values, thus the answer for
(a-b)/(a+b) is zero (not the expected 0.5 as in case of double values). Thus,
Jython functions are generic and any type can be passed in.

One can note another feature of the above example: it is possible to omit a pa-
rameter and use default values specified in the function definition. For the above
example, we could skip the third argument in the calling statement, assuming c=10
by default.

62 2 Introduction to Jython

All variable names assigned to a function are local to that function and exist
only inside the function block. However, you may use the declaration ’global’
to force a variable to be common to all functions.

>>>def func1(a,b):
>>> ... global c
>>> ... return a+b+c
>>>def func2(a,b):
>>> ... global c
>>> ... c=a+b
>>>
>>>print func2(2,1)
None
>>>print func1(2,1)
6

Thus, once the global variable ’c’ is assigned a value, this value is propagated
to other functions in which the ’global’ statement was included. The second
function does not have the ’return’ statement, thus it returns ’None’.

We should note that a function in Jython can call other functions, including itself.
In Jython, one can also create an anonymous function at runtime, using a con-

struct called ’lambda’ discussed in Sect. 2.6.6. The example below shows two
function declarations with the same functionality. In one case, we define the function
using the standard (“named”) approach, and the second case uses the “lambda”
anonymous declaration:

>>> def f1 (x): return x*x
>>> print f1(2)
4
>>> f1=lambda x: x*x
>>> print f1(2)
4

Both function definitions, f1 and f2 do exactly the same operation. However, the
“lambda” definition is shorter.

It is very convenient to put functions in files and use them later in your programs.
A file containing functions (or any Jython statement!) should have the extension
’.py’. Usually, such file is called a “module”. For example, one can create a file
’Func.py’ and put these lines:

File ’Func.py’

def func1(a,b):
"My function 1"
global c
return a+b+c

def func2(a,b):

2.11 Python Classes 63

"My function 2"
global c
c=a+b

This module can be imported into other modules. Let us call this module from
the JythonShell prompt with the following commands:

>>> import Func
>>>print Func.func2(2,1)
None
>>>print Func.func1(2,1)
6

We can access functions exactly as if they are defined in the same program, since the
import statement executes the file ’Func.py’ and makes the functions available
at runtime of your program.

Probably, we should remind again that one can import all functions with the
statement ’from Func import *’, as we usually do in many examples of this
book. In this case, one can call the functions directly without typing the module
name.

Another question is where such modules should be located? How can we tell
Jython to look at particular locations with module files? This can be done by using a
predefined list sys.path from the ’sys’ module. The list sys.path contains
strings that specify the location of Jython modules. One can add an additional mod-
ule location using the append() method: In this example, we added the location
’/home/lib’ and printed out all directories containing Jython modules:

>>> import sys
>>> sys.path.append(’/home/lib’)
>>> print sys.path

Here we have assumed that we put new functions in the directory ’/home/lib’.
Now we are equipped to go further. We would recommend to read any book about

Python or Jython to find more detail about Jython modules and functions.

2.11 Python Classes

As for any object-oriented language, one can define a Jython class either inside a
module file or inside the body of a program. Moreover, one can define many classes
inside a single module.

Classes are templates for creation of objects. Class attributes can be hidden, so
one can access the class itself only through the methods of the class. Any Python
book or tutorial should be fine in helping to go into the depth of this subject.

64 2 Introduction to Jython

A Jython class is defined as:

>>> class ClassName[args]:
>>> ... [code block]

where [code block] indicates the class body and bounds its variables and meth-
ods.

The example below shows how to create a simple class and how to instantiate
it:

>>> class Func:
>>> ... ’My first class’
>>> ... a=’hello’; b=10
>>>
>>> c=Func()
>>> print c.a, c.b
hello 10

The class defined above has two public variables, a and b. We create an instance of
the class ’Func’ and print its public attributes, which are just variables of the type
string and integer. As you can see, the class instance has its own namespace which
is accessible with the dot. As for functions and modules, classes can (and should)
have documentary strings.

The created instance has more attributes which can be shown as a list using the
built-in function dic(): Try this line:

>>> dir(Func)
[’__doc__’, ’__module__’, ’a’, ’b’]

The command displays the class attributes and the attributes of its class base. Note
that one can also call the method dir(obj), where ’obj’ is an instance of the
class (c in our example), rather than explicitly using the class name.

But what about the attributes which start from the two leading underscores? In
the example above, both variables, a and b, are public, so they can be seen by a
program that instantiates this class. In many cases, one should have private vari-
ables seen by only the class itself. For this, Jython has a naming convention: one
can declare names in the form __Name (with the two leading underscores). Such
convention offers only the so-called “name-mangling” which helps to discourage
internal variables or methods from being called from outside a class.

In the example above, the methods with two leading underscores are private
attributes generated automatically by Jython during class creation. The variable
__doc__ keeps the comment line which was put right after the class definition,

2.11 Python Classes 65

and the second variable __module__ keeps a reference to the module where the
class is defined.

>>> print c.__doc__
My first class
>>> print c.__module__
None

The last call returns ’None’ since we did not put the class in an external module
file.

2.11.1 Initializing a Class

The initialization of a Jython class can be done with the __init__ method, which
takes any number of arguments. The function for initialization is called immediately
after creation of the instance:

>>> class Func():
>>> ’My class with initialization’
>>> def __init__(self, filename=None):
>>> self.filename=filename
>>> def __del__(self):
>>> # some close statement goes here
>>> def close(self):
>>> # statement to release some resources

Let us take a closer look at this example. You may notice that the first argument of
the __init__ call is named as self. You should remember this convention: every
class method, including __init__, is always a reference to the current instance of
the class.

In case if an instance was initialized and the associated resources are allocated,
make sure they are released at the end of a program. This is usually done with
the __del__ method which is called before Jython garbage collector deallocates
the object. This method takes exactly one parameter, self. It is also a good prac-
tice to have a direct cleanup method, like close() shown in this example. This
method can be used, for example, to close a file or a database. It should be called
directly from a program which creates the object. In some cases, you may wish to
call close() from the __del__ function, to make sure that a file or database was
closed correctly before the object is deallocated.

66 2 Introduction to Jython

2.11.2 Classes Inherited from Other Classes

In many cases, classes can be inherited from other classes. For instance, if you have
already created a class ’exam1’ located in the file ’exam1.py’, you can use this
class to build a new (“derived”) class as:

>>> from exam1 import exam1
>>> class exam2(exam1):
>>> ... [class body]

As you can see, first we import the ancestor class ’exam1’, and then the ances-
tor of the class is listed in parentheses immediately after the class name. The new
class ’exam2’ inherits all attributes from the ’exam1’ class. One can change the
behavior of the class ’exam1’ by simply adding new components to ’examp2’
rather than rewriting the existing ancestor class. In particular, one can overwrite
methods of the class ’exam1’ or even add new methods.

2.11.3 Java Classes in Jython

The power of Jython, a Java implementation of the Python language, becomes clear
when we start to call Java classes using Python syntax. Jython was designed as a
language which can create instances of Java classes and has an access to any method
of such Java class.

This is exactly what we are going to do while working with the jHepWork
libraries. The example below shows how to create the Java Date object from
java.util and use its methods:

>>> from java.util import Date
>>> date=Date()
>>> date.toGMTString()
’09 Jun 2009 03:48:17 GMT’

One can use the code assist to learn more about the methods of this Java class (Type)
the object name followed by a dot and use [Ctrl]+[Space] in JythonShell for
help. Similarly, one can call dir(obj), where obj is an object which belongs to
the Java platform. For jHepWork IDE code editor, use a dot and the key [F4].

In this book, we will use Java-based numerical libraries from jHepWork, thus
most of the time we will call Java classes of this package. Also, in many cases, we
call classes from the native Java platform. For example, the AWT classes ’Font’
and ’Color’ are used by many jHepWork objects to set fonts and colors. For
example, Sect. 3.3.1 shows how to build a Java instance of graphical canvas based
on the Java class HPlot.

2.12 Used Memory 67

2.11.4 Topics Not Covered

In this book, we will try to avoid going into the depths of Python classes. We cannot
cover here many important topics, such as inheritance (the ability of a class to in-
herit propertied from another class) and abstract classes. We would recommend any
Python or Jython textbook to learn more about classes.

As we have mentioned before, we would recommend to develop Java libraries
to be linked with Jython, rather than building numerical libraries using pure-Jython
classes; for the latter approach, you will be somewhat locked inside the Python
language specification, plus this may result in slow overall performance of your
application. Of course, you have to be familiar with the Java language in order to
develop Java classes.

2.12 Used Memory

To know how much memory used by the Java virtual machine for an application is
important for code debugging and optimization. The amount of memory currently
allocated to a process can be found using the standard Java library as in the example
below:

>>> from java.lang import Runtime
>>> r=Runtime.getRuntime()
>>> Used_memory = r.totalMemory() - r.freeMemory()
>>> ’Used memory in MB = ’, Used_memory/(1024*1024)

We will emphasize that this only can be done in Jython, but not in CPython which
does not have any knowledge about the Java virtual machine.

We remind that if you use the jHepWork IDE, one can look at the memory mon-
itor located below the code editor.

2.13 Parallel Computing and Threads

A Jython program can perform several tasks at once using the so-called threads.
A thread allows to make programs parallelizable, thus one can significantly boost
their performance using parallel computing on multi-core processors.

Jython provides a very effective threading compared to CPython, since JAVA
platform is designed from the ground up to support multi-thread programming.
A multi-threading program has significant advantage in processing large data sets,
since one can break up a single task into pieces that can be executed in parallel.
At the end, one can combine the outputs. We will consider one such example in
Sect. 16.4.

68 2 Introduction to Jython

To start a thread, one should import the Jython module ’threading’. Typi-
cally, one should write a small class to create a thread or threads. The class should
contain the code to be executed when the thread is called. One can also put an ini-
tialization method for the class to pass necessary arguments. In the example below,
we create ten independent threads using Jython. Each thread prints integer numbers.
We create instances of the class shown above and start the thread using the method
start() which executes the method run() of this class.

A thread example

from threading import Thread

class test(Thread):
def __init__ (self,fin):
Thread.__init__(self)
self.fin = fin

def run(self):
print ’This is thread No=’+str (self.fin)

for x in xrange (10):
current=test(x)
current.start()
print ’done!’

Here we prefer to avoid going into detailed discussion of this topic. Instead,
we will illustrate the effectiveness of multi-threading programs in the following
chapters when we will discuss concrete data-analysis examples.

2.14 Arrays in Jython

This is an important section: Here we will give the basics of objects which can be
used for effective numerical calculations and storing consecutive values of the same
type.

Unfortunately, the Java containers discussed in Sect. 2.7 cannot be used in all
cases. Although they do provide a handy interface for passing arrays to Java and
jHepWork objects to be discussed later, they do not have sufficient number of built-
in methods for manipulations.

Jython lists can also be used for data storage and manipulation. However, they
are best suited for general-purpose tasks, such as storing complex objects, especially
if they belong to different types. They are rather heavy and slow for numerical ma-
nipulations with numbers.

Here we will discuss Python/Jython arrays that can be used for storing a sequence
of values of a certain type, such as integers, long values, floating point numbers etc.
Unlike lists, arrays cannot contain objects with different types.

The Jython arrays directly mapped to Java arrays. If you have a Java function
which returns an array of double values, and declared as double[] in a Java code,
this array will be seen by Jython as an array.

2.14 Arrays in Jython 69

Table 2.3 Characters used to
specify types of the Jython
arrays

Jython array types

Typecode Java type

z boolean

c char

b byte

h short

i int

l long

f float

d double

To start working with the arrays, one should import the module jarray. Then,
for example, an array with integers can be created as:

>>> from jarray import *
>>> a=array([1,2,3,4], ’i’)

This array, initialized from the input list [1,2,3,4], keeps integer values, see the
input character ’i’ (integer). To create an array with double values, the character
’i’ should be replaced by ’d’. Table 2.3 shows different choices for array types.
The length of arrays is given by the method len(a).

Arrays can be initialized without invoking the lists. To create an array containing,
say, ten zeros, one can use this statement:

>>> a=zeros(10, ’i’)

here, the first argument represents the length of the array, while the second specifies
its type.

A new value ’val’ can be appended to the end of an array using the
append(val) method if the value has exactly the same type as that used dur-
ing array creation. A value can be inserted at a particular location given by the
index ’i’ by calling the method insert(i,val). One can also append a list to
the array by calling the method fromlist(list).

The number of occurrences of a particular value ’val’ in an array can be given
by the method count(val). To remove the first occurrence of ’val’ from an
array, use the remove(val) method.

70 2 Introduction to Jython

2.14.1 Array Conversion and Transformations

Many Java methods return Java arrays. Such arrays are converted to Jython arrays
when Java classes are called from a Jython script.

Very often, it is useful to convert arrays to Jython list for easy manipulation. Use
the method tolist() as below:

>>> from jarray import *
>>> a=array([1,2,3,4], ’i’)
>>> print a.tolist()
[1, 2, 3, 4]

One can reverse all elements in arrays using the reverse() method. Finally, one
can also transform an array into a string applying the tostring() method.

There are no too many transformations for Jython arrays: in the following chap-
ters, we will consider another high-level objects which are rather similar to the
Jython arrays but have a large number of methods for numerical calculations.

2.14.2 Performance Issues

We have already noted that in order to achieve the best possible performance for
numerical calculations, one should use the built-in methods, rather than Python-
language constructs.

Below we show a simple benchmarking test in which we fill arrays with one
million elements. We will consider two scenarios: In one case, we use a built-in
function. In the second case, we use a Python-type loop. The benchmarking test
was done using the time module discussed in Sect. 2.9. The only new component in
this program is the one in which we format the output number: here we print only
four digits after the decimal point.

Benchmarking Jython arrays

import time
from jarray import *

start=time.clock()
a=zeros(1000000, ’i’)
t=time.clock()-start
print ’Build-in method (sec)= %.4f’ % t

start=time.clock()
a=array([], ’i’)
for i in range(0,1000000,1):

a.append(0)

2.15 Exceptions in Python 71

t=time.clock()-start
print ’Python loop (sec) %.4f’ % t

Run this small script by loading it in the editor and using the “[run]” button. The
performance of the second part, in which integers are sequentially appended to the
array, is several orders of magnitudes slower than for the case with the built-in array
constructor zeros().

Generally, the performance of Jython loops is not so dramatically slow. For most
examples to be discussed later, loops are several times slower than equivalent loops
implemented in built-in functions.

2.15 Exceptions in Python

Exception is an unexpected error during program execution. An exception is raised
whenever an error occurs.

Jython handles the exceptions using the “try”-“except”-“else” block. Let us give
a short example:

>>> b=0
>>> try:
>>> ... a=100/b
>>> except:
>>> ... print "b is zero!"

Normally, if you will not enclose the expression a=100/b in the “try”-“except”
block, you will see the message such as:

>>> a=100/b
Traceback (innermost last):

File "<input>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero

As you can see, the exception in this case is ZeroDivisionError.
Another example of the exceptions is “a file not found” which happens while

attempting to open a non-existing file (see the next chapter describing Jython I/O).
Such exception can be caught in a similar way:

>>> try:
>>> ... f=open(’filename’)
>>> except IOError, e:
>>> ... print e

72 2 Introduction to Jython

This time the exception is IOError, which was explicitly specified. The variable
e contains the description of the error.

Exceptions can be rather different. For example, NameError means unknown
name of the class or a function, TypeError means operation for incompatible
types and so on. One can find more details about the exceptions in any Python
manual.

2.16 Input and Output

2.16.1 User Interaction

A useful feature you should consider for your Jython program is interactivity, i.e.
when a program asks questions at run-time and a user can enter desired values or
strings. To pass a value, use the Jython method input():

>>> a=input(’Please type a number: ’)
>>> print ’Entered number=’,a

In this example, the input() method prints the string ‘Please type a number:’ and
waits for the user response.

But what if the entered value is not a number? In this case, we should handle an
exception as discussed in Sect. 2.15.

If you want to pass a string, use the method raw_input() instead of
input().

The above code example works only for the stand-alone Jython interpreter, out-
side the jHepWork IDE. For the jHepWork IDE, this functionality is not supported.
In fact, you do not need this feature at all: When working with the IDE, you are
already working in an interactive mode. However, when you run Jython using the
system prompt, the operations input() or raw_input() are certainly very use-
ful.

2.16.2 Reading and Writing Files

File handling in Jython is relatively simple. One can open a file for read or write
using the open() statement:

>>> f=open(FileName, option)

where ’FileName’ represents a file name including the correct path, ’option’
is a string which could be either ’w’ (open for writing, old file will be removed),
’r’ (open for reading) or ’a’ (file is opened for appending, i.e. data written to it
is added on at the end). The file can be closed with the close() statement.

2.16 Input and Output 73

Let us read a file ’data.txt’with several numbers, each number is positioned
on a new line:

>>> f=open(’data.txt’,’r’)
>>> s=f.readline()
>>> x1=float(s)
>>> s=f.readline()
>>> x2=float(s)
>>> f.close()

At each step, readline() reads a new line and returns a string with the number,
which is converted into either a float or integer.

The situation is different if several numbers are located on one line. In the sim-
plest case, they can be separated by a space. For such file format, we should split
the line into pieces after reading it. For example, if we have two numbers separated
by white spaces in one line, like ‘100 200’, we can read this line and then split it as:

>>> f=open(’data.txt’, ’r’)
>>> s=f.readline()
>>> x=s.split()
>>> print s
[’100’,’200’]

As you can see, the variable ’x’ is a list which contains the numbers in form of
strings. Next, you will need to convert the elements of this list into either float or
integer numbers:

>>> x1=float(x[0])
>>> x2=float(x[1])

In fact, the numbers can also be separated by any string, not necessarily by white
spaces. Generally, use the method split(str), where ’str’ is a string used to
split the original string.

There is another powerful method: readlines(), which reads all lines of a
file and returns them as a list:

>>> f=open(’data.txt’)
>>> for l in f.readlines():
>>> ... print l

To write numbers or strings, use the method write(). Numbers should be co-
erced into strings using the str() method. Look at the example below:

>>> f=open(’data.txt’, ’w’)
>>> f.write(str(100)+’\n’)

74 2 Introduction to Jython

>>> f.write(str(200))
>>> f.close()

here we added a new line symbol, so the next number will be printed on a new line.
One can also use the statement ’print’ to redirect the output into a file. This

can be done with the help of the >> operator. (Note: by default, this operator prints
to a console.). Let us give one example that shows how to print ten numbers from
zero to nine:

>>> f=open(’data.txt’, ’w’)
>>> for i in range(10):
>>> ... print >> f, i
>>> f.close()

One can check the existence of the file using the Jython module ’os’:

>>> import os
>>> b=os.path.exists(fileName)

where ’b=0’ (false in Java) if the file does not exist, and ’b=1’ (true in Java) in
the opposite case.

2.16.3 Input and Output for Arrays

Jython arrays considered in the previous section can be written into an external
(binary) file. Once written, one can read its content back to a new array (or append
the values to the existing array).

>>> from jarray import *
>>> a=array([1,2,3,4],’i’)
>>> f=open(’data.txt’,’w’)
>>> a.tofile(f) # write values to a file
>>> f.close()
>>> # read values
>>> f=open(’data.txt’,’r’)
>>> b=array([],’i’)
>>> b.fromfile(f,3) # read 3 values from the file
>>> print b
array(’i’,[1, 2, 3])

It should be noted that the method fromfile() takes two arguments: the file
object and the number of items (as machine values).

2.16 Input and Output 75

2.16.4 Working with CSV Python Module

The CSV (“Comma Separated Value”) file format is often used to store data struc-
tured in a table. It is used for import and export in spreadsheets and databases and to
exchange data between different applications. Data in such files are either separated
by commas, tabs, or some custom delimiters.

Let as write a table consisting of several rows. We will import Jython csv file
and write several lists with values using the code below:

Writing a CSV file

import csv

w=csv.writer(open(’test.csv’, ’w’),delimiter=’,’)
w.writerow([’London’, ’Moscow’, ’Hamburg’])
w.writerow([1,2,3])
w.writerow([10,20,30])

Execute this script and look at the current directory. You will see the file
’test.csv’ with the lines:

London,Moscow,Hamburg
1,2,3
10,20,30

This is expected output: each file entry is separated by a comma as given in the
delimiter attribute specified in our script. One can put any symbol as a delim-
iter to separate values. The most popular delimiter is a space, tab, semi-column
and the symbol ’|’. The module also works for quoted values and line endings,
so you can write files that contain arbitrary strings (including strings that contain
commas). For example, one can specify the attribute quotechar=’|’ to separate
fields containing quotes.

In the example below we read a CSV file and, in case of problems, we print an
error message using the Jython exception mechanism discussed in Sect. 2.15:

Reading a CSV file

import csv

r = csv.reader(open(’test.csv’, ’rb’), delimiter=’,’)
try:

for row in r:
print row

except csv.Error, e:
print ’line %d: %s’ % (reader.line_num,e)

Let us convert our example into a different format. This time we will use a double
quote (useful when a string contains comma inside!) for each value and tab for value

76 2 Introduction to Jython

separations. The conversion script is based on the same Jython csvmodule and will
look as:

Converting CSV file

import csv

reader=csv.reader(open(’test.csv’,"rb"),delimiter=’,’)
writer=csv.writer(open(’newtest.csv’,"wb"),\

delimiter=’\t’,\
quotechar=’"’, quoting=csv.QUOTE_ALL)

for row in reader:
writer.writerow(row)

The output file will look as:

"London" "Moscow" "Hamburg"
"1" "2" "3"
"10" "20" "30"

But what if we do not know which format was used for the file you want to
read in? First of all, one can always open this file in an editor to see how it looks
like, since the CSV files are human readable. One can use the jHepWork editor by
printing this line in the JythonShell prompt:

>>> view.open(’newtest.csv’, 0)

which opens the file ’newtest.csv’ in the IDE. Alternatively, one can deter-
mine the file format automatically using the Sniffer method for safe opening of
any CSV file:

Reading a CSV file using sniffer

import csv

f=open(’newtest.csv’)
dialect = csv.Sniffer().sniff(f.read(1024))
f.seek(0)
reader = csv.reader(f, dialect)
for row in csv.reader(f, dialect):

print row

This time we do not use the exception mechanism, since it is very likely that your
file will be correctly processed.

We will come back to the CSV file format in the following chapters when we
will discuss Java libraries designed to read the CSV files.

2.16 Input and Output 77

2.16.5 Saving Objects in a Serialized File

If you are dealing with an object from the Python-language specification, you may
want to store this object in a file persistently (i.e. permanently), so another applica-
tion can read it later. In Jython, one can serialize (or pickle) an object as:

>>> import pickle
>>> f=open(’data.pic’,’w’)
>>> a=[1,2,3]
>>> pickle.dump(a,f)
>>> f.close()

One can restore the object back as:

>>> import pickle
>>> f=open(’data.pic’,’r’)
>>> a=pickle.load(f)
>>> f.close()

In this example, we save a list and then restore it back from the file ’data.pic’.
One cannot save Java objects using the same approach. Also, any object which has
a reference to a Java class cannot be saved. We will consider how to deal with such
special situations in the following chapters.

2.16.6 Storing Multiple Objects

To store one object per file is not too useful feature. In many cases, we are dealing
with multiple objects. Multiple objects can be stored in one serialized file using the
shelve module. This Jython module can be used to store anything that the pickle
module can handle.

Let us give one example in which we store two Jython objects, a string and a list:

>>> import shelve
>>> sh=shelve.open(’data.shelf’)
>>> sh[’describe’]=’My data’
>>> sh[’data’]=[1,2,3,4]
>>> sh.close()

The example above creates two files, ‘data.shelf.dir’ and ‘data.shelf.dat’. The first
file contains a “directory” with the persistent data. This file is in a human-readable
form, so if you want to learn what is stored inside of the data file, one can open it
and read its keys. For the above example, the file contains the following lines:

78 2 Introduction to Jython

’describe’, (0, 15)
’data’, (512, 22)

The second file, ‘data.shelf.dat’, contains the actual data in a binary form.
One can add new objects to the “shelf” file. In the example below, we add a

Jython map to the existing file:

>>> import shelve
>>> sh=shelve.open(’data.shelf’)
>>> sh[’map’]={’x1’:100,’x2’:200}
>>> sh.close()

Let us retrieve the information from the shelve storage and print out all saved
objects:

>>> import shelve
>>> sh=shelve.open(’data.shelf’)
>>> for i in sh.keys():
>>> ...print i, ’ = ’,sh[i]
>>> sh.close()

The output of this code is:

describe = My data
data = [1, 2, 3, 4]
map = {’x2’: 200, ’x1’: 100}

Finally, one can remove elements using the usual del method.
As you can see, the “shelve” module is very useful since now one can create a

small persistent database to hold different Jython objects.

2.16.7 Using Java for I/O

In this section, we show how to write and read data by calling Java classes. Let
us give an example of how to write a list of values into a binary file using the
DataOutputStream Java class. In the example below we also use the Java class
BufferedOutputStream to make the output operations to be more efficient. In
this approach, data are accumulated in the computer memory buffer first, and are
only written when the memory buffer is full.

Writing data using Java

from java.io import *

2.16 Input and Output 79

fo=FileOutputStream(’test.d’)
out=DataOutputStream(BufferedOutputStream(fo))

list=[1.,2.,3.,4]
for a in list:

out.writeFloat(a)

out.close()
fo.close()

The output of this example is binary data. The DataOutputStream class al-
lows to write any of the basic types of data using appropriate methods, such
as boolean (writeBoolean(val)), double (writeDouble(val)), integers
(writeInt(val)), long (writeLong(val)) and so on.

Now let us read the stored float numbers sequentially. We will do this in an in-
finite loop using the ’while’ statement until we reach the end of the file (i.e.
until the “end-line” exception is thrown). Then, the break statement exits the in-
finite loop. Since we know that our data are a sequence of float numbers, we use
the method readFloat(). One can play with other similar methods, such as
readInt() (read integer values), readDouble() (read double values).

Reading data using Java

from java.io import *

fo=FileInputStream(’test.d’)
inf=DataInputStream(BufferedInputStream(fo))

while 1:
try:

f=inf.readFloat()
print f

except:
print ’end of file’
break

inf.close()
fo.close()

We will continue the discussion of high-level Java classes for I/O which allow us
to store objects or sequences of objects in Chap. 11.

2.16.8 Reading Data from the Network

Files with data may not be available from a local file storage, but exist in network-
accessible locations. In this case, one should use the module ’urllib2’ that can

80 2 Introduction to Jython

read data from URLs using HTTP, HTTPS, FTP file protocols. Here is an example
of how to read the HTML Jython web page with Jython news:

>>> from urllib2 import *
>>> f = urlopen(’http://www.jython.org/Project/news.html’)
>>> s=f.read()
>>> f.close()
>>> print s

This code snippet is very similar to the I/O examples shown above, with the only
one exception: now we open a file using the urlopen statement. The web access
is an unauthenticated. One can always check the response headers as f.info(),
while the actual URL can be printed using the string f.geturl(). As usual, one
can also use the method readlines() to put all HTML-page lines into a Jython
list.

One can also use a jHepWork module for downloading files from the Web. It has
one advantage: it shows a progress bar during file retrievals. This will be discussed
in Sect. 12.2.

If authentication is required during file access, a client should retry the request
with the appropriate name and password. The module ’urllib2’ also provides
such functionality, but we will refrain from further discussion of this advanced topic.

2.17 Real-life Example. Collecting Data Files

Here we will consider a rather common data-analysis task: we collect all files lo-
cated in a file system, assuming that all such files have the extension ’.dat’. The
files will be located in the root directory ’/home’, which is the usual user-home
directory on the Linux/UNIX platform. Our files contain numbers, each of which is
positioned on a new line. We will persuade the following task: we will try to sum up
all numbers in the files and calculate the sum of all numbers inside these files.

A snippet of a module ’walker.py’ which returns a list of files is given be-
low. The module accepts two arguments: the root directory for scanning and the
extension of the files we are interested in. The function builds a list of files with the
appended full path. We will call the function walk() recursively until all directo-
ries are identified:

File ’walker.py’

import os

def walker (dir,extension):
files=[]
def walk(dir, process):
for f in os.listdir(dir):
fpath = os.path.join(dir, f)
if os.path.isdir(fpath) and not os.path.islink(fpath):

2.17 Real-life Example. Collecting Data Files 81

walk(fpath, process)
if os.path.isfile(fpath):

if fpath.endswith(extension):
files.append(fpath)

walk(dir,files)
return files

Let us test this module. For this, we will write a small program which: (1) imports
the module ’walker.py’; (2) lists all descendant files and subdirectories under
the specified directory and fills the file list with all files which have the extension
’.dat’; (3) then it loops over all files in the list and reads the numbers positioned
on every new line; (4) Finally, all numbers are summed up. The code which does all
of this is given below:

File collector

import os
from walker import *

files= walker(’/home/’,’.dat’)

sum=0
lines=[]
for file in files:

ifile = open(file,’r’)
lines=lines+ifile.readlines()
ifile.close()
for i in range(len(lines)):

sum=sum+float(lines[i])
print "Sum of all numbers=", sum

The described approach is not the only one. The module which lists all files
recursively can look much sorter using the os.walk function:

Building a file list

def getFileList(rootdir):
fileList = []
for root, subFolders, files in os.walk(rootdir):
for f in files:

fileList.append(os.path.join(root,f))
return fileList

print getFileList(’/home/’)

This code builds a list of files in the directory “/home/”.

82 2 Introduction to Jython

In Sect. 12.9 we will show another efficient code based on the jHepWork Java
class which can also be used in pure-Java applications. As in the example above, it
builds a list of files recursing into all subdirectories.

The above code can significantly be simplified if we know that all input files are
located inside a single directory, thus there is no need for transversing all subdirec-
tories.

>>> list=[]
>>> for f in os.listdir(’/home/’):
>>> if not file.endswith(’.dat’): continue
>>> list.append(f)

Finally, there is a simpler approach: import the module ’glob’ and scan all
files:

>>> import glob
>>> list=glob.glob(’/home/*.dat’)

The asterisk (*) in this code indicates that we are searching for a pattern match, so
every file or directory with the extension ’.dat’ will be put into a list, without re-
cursing further into subdirectories. One can specify other wildcard characters, such
as ’/home/data?.dat’, that matches any single character in that position in the
name starting from ’data’. Another example: ’/home/*[0-9].dat’ string
considers all files that have a digit in their names before the extension ’.dat’.

Often, in order to process data stored in many files, it is useful to divide a list
with file names into several lists with equal number of files in each list. In this way,
one can process files in parallel using multiple computers or multiple processors.
This task can easily be achieved with the code given below:

File list splitter

def splitlist(seq, size):
newlist = []
splitsize = 1.0/size*len(seq)
for i in range(size):

k1=round(i*splitsize)
k2=round((i+1)*splitsize)
newlist.append(seq[int(k1):int(k2)])
newlist.append(seq[k])

return newlist

The code accepts a list of files and an integer size which specifies how many lists
need to be generated. The function returns a new list in which each entry represents
a list of files. The number of entries in each sublist is roughly equal.

2.18 Using Java for GUI Programming 83

2.18 Using Java for GUI Programming

Undoubtedly, the major strength of Jython is in its natural integration with Java, a
language used to build Jython. This opens infinite opportunities for a programmer.
Assuming that you had already a chance to look at one of these Java books [1–5],
you can start immediately use Java libraries to write a Jython code.

Below we show a small example of how to write a graphical user interface which
consists of a frame, a button and a text area. While the code still uses the Python
syntax, it calls classes from the Java platform.

Swing GUI using Jython

from java.awt import *
from javax.swing import *

fr = JFrame(’Hello!’)
pa1 = JPanel()
pa2 = JTextArea(’text’,6,20)

def act(event):
pa2.setText(’Hello, jHepWork’)

bu=JButton(’Hello’, actionPerformed=act)
pa1.add(bu)

fr.add(pa1,BorderLayout.SOUTH)
fr.add(pa2,BorderLayout.NORTH)
fr.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE)
fr.pack()
fr.setVisible(1)

In this example, we call Java swing components directly, like they are usual Python
classes. The main difference with Python is in the class names: Java classes always
have names starting with capital letters.

When comparing this code with Java, one should note several important differ-
ences: there is no need to use the ’new’ statement when creating Java objects. Also,
there is no need to put a semicolon at the end of each Java method or class declara-
tion. We should also recall that Java boolean values are transformed into either “1”
(true) or “0” (false) in Jython programs.

So, let us continue with our example. Create a file, say, ’gui.py’, copy the
lines from the example below and run this file in the jHepWork editor. You will
see a frame as shown in Fig. 2.1. By clicking on the button, the message “Hello,
jHepWork” should be shown.

In the following chapters, we try to follow our general concept: a Jython macro
is already a sufficiently high-level program style, so we will avoid detailed discus-
sion of GUI-type of program development. In this book, we aim to show how to
develop data analysis programs for which GUI-type of features are less frequent,

84 2 Introduction to Jython

Fig. 2.1 A Java Swing frame
with a button “Hello”

compare to “macro”-type of programming. Since Jython macros allow manipula-
tions with objects without dealing with low-level features of programing languages,
in some sense, they are already some sort of “user-interfaces”. In addition, Jython
macros have much greater flexibility than any GUI-driven application, since they
can quickly be altered and rerun.

Yet, GUI is an important aspect of our life and we will discuss how to add GUI
features to data-analysis applications in appropriate chapters.

2.19 Concluding Remarks

This concludes our introduction to the world of Python, Jython and Java. If there is
one message I have tried to convey here is that the combination of all these three
languages (actually, only two!) gives you an extremely powerful and flexible tool
for your research. There are dozens of books written for each language and I would
recommend to have some of them on your table if you want to study the topic in
depth. To learn about Jython, you can always pick up a Python book (version 2.5
at least). In several cases, you may look at Jython and Java programming books,
especially if you will need to do something very specific and non-standard using
Java libraries. But, I almost guarantee, such situations will be infrequent if you will
learn how to use the jHepWork libraries to be discussed in the following chapters.

References

1. Richardson, C., Avondolio, D., Vitale, J., Schrager, S., Mitchell, M., Scanlon, J.: Professional
Java, JDK 5th edn. Wrox, Birmingham (2005)

2. Arnold, K., Gosling, J., Holmes, D.: Java(TM) Programming Language, 4th edn. Java Series.
Addison-Wesley, Reading (2005)

3. Flanagan, D.: Java in a Nutshell, 5th edn. O’Reilly Media, Sebastopol (2005)
4. Eckel, B.: Thinking in Java, 4th edn. Prentice Hall PTR, Englewood Cliffs (2006)
5. Bloch, J.: Effective Java, 2nd edn. The Java Series. Prentice Hall PTR, Englewood Cliffs (2008)

Chapter 3
Mathematical Functions

Functions allow programming code reuse, and thus are essential in any program-
ming language. We have already discussed how to define general-purpose functions
in the Python language in Sect. 2.10. Now we will turn to the question of how to
build mathematical functions. First, we will remind how to construct mathematical
functions in Jython and then we will discuss Java implementations of mathemat-
ical functions in jHepWork. At the end of this chapter, we will discuss symbolic
manipulations with functions.

For many examples of this chapter, we will “glue” Python-type statements with
Java libraries. Therefore, we will stop using the word Python1 when refer to the code
snippets, and will switch to the word “Jython” as the main programming language
used throughout this book.

3.1 Jython Functions

As we already know, Jython functions can be declared with the def() statement.
In case of mathematical functions, it is very likely you will need to import the mod-
ule ’math’ before or during creation of Jython functions, so a general form of a
function definition would be:

>>> def FunctionName(arg1, arg2, ..) :
>>> ... import math
>>> ... -- math statements --
>>> ... return value

In this example, arg1, arg2 etc. is a comma-separated list of arguments. The
arguments could be values, lists, tuples, strings or any Jython object.

1This usually implies the CPython implementation of the Python programming language.

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_4, © Springer-Verlag London Limited 2010

85

86 3 Mathematical Functions

We have already discussed how to build functions in Jython in Sect. 2.10. Many
mathematical functions are already defined in the module ’math’, and one can list
all such functions using the dir(math) statement (after importing this module
first). Below we will consider several useful examples illustrating how to construct
an arbitrary function:

Absolute value:

>>> def abs(x) :
>>> ... ’absolute value’
>>> ... if x<0: return -x
>>> ... return x
>>>
>>> print abs(-200)
200

Factorial:

>>> def factor(x) :
>>> ... ’calculate factorial’
>>> ... if x<0:
>>> ... raise ValueError, ’Negative number!’
>>> ... if x<2: return 1
>>> ... return long(x)*factor(x-1)
>>>
>>> print factor(10)
3628800

One could build rather complicated mathematical functions, as shown in this exam-
ple with two arguments, x and y:

>>> def myfun(x,y) :
>>> ... ’calculate complicated function’
>>> ... from math import *
>>> ... return cos(x)*sin(y)+(2**x)+y**4
>>>
>>> print myfun(0.3,0.8)
2.3260608626777355

Jython mathematical functions become rather inefficient when they have to be
displayed, since any drawing involves loops with multiple calls to the same function
but with different arguments. Below we will discuss implementations of mathe-
matical functions in Java numerical libraries included into jHepWork. Being more
efficient and flexible, they are also tightly integrated into the jHepWork graphical
canvas used for object visualization.

3.2 1D Functions in jHepWork 87

3.2 1D Functions in jHepWork

For one-dimensional (1D) functions, we have to deal with a dependence of one
value, say y, on another, usually called x. jHepWork includes the F1D class to
describe, evaluate and display such functions. A 1D function can be instantiated
as:

>>> from jhplot import *
>>> f1=F1D(’definition’)

where the string ’definition’ should be replaced by a mathematical formula.
This string can contain any combinations of +, -, *, / operations, parenthesis ()
and predefined mathematical functions. For numerical values, the scientific nota-
tions “e”, “E”, “d”, “D” can be used. The only independent variable should be spec-
ified as x. The function definition can contain predefined mathematical functions
listened in Tables 3.1 and 3.2, as well as the constants given in Table 3.3.

To evaluate a function at a fixed point, use the eval(x) method. For evaluation
of a list of numerical values, pass a Jython list instead. In this case, the eval(x)
method returns an array of values y calculated at specific values x from the input
list.

Table 3.1 Mathematical
functions used to build the
F1D objects

Function Defined as

xy Power

∗∗ as before

exp(x) Exponential

sqrt(x)
√

x

log(x) Natural Logarithm

log10(x) Logarithm base 10

cos(x) Cosine

sin(x) Sine

tan(x) Tangent

cosh(x) Hyperbolic cosine

sinh(x) Hyperbolic sine

tanh(x) Hyperbolic tangent

acos(x) Arc Cosine

asin(x) Arc Sine

atan(x) Arc Tangent

acosh(x) Hyperbolic Arc Cosine

asinh(x) Hyperbolic Arc Sine

atanh(x) Hyperbolic Arc Tangent

rem(x) Reminder

atan2(x,y) Arc Tangent (2 parameters)

88 3 Mathematical Functions

Table 3.2 Special functions that can be included into the F1D definition

Function Defined as

j0 Bessel function of order 0 of the argument

j1 Bessel function of order 1 of the argument

jn Bessel function of order n of the argument

y0 Bessel function of the 2nd kind of order 0

y1 Bessel function of the 2nd kind of order 1

yn Bessel function of the 2nd kind of order n

fac(x) factorial x!
gamma(x) the Gamma function

erf(x) the Error function

erfc(x) the complementary Error function

normal(x) the normal function

poisson(k,x) sum of the first k terms of the Poisson distribution

poissonc(k,x) the sum of the terms k + 1 to infinity of the Poisson distribution

igam(a,x) incomplete Gamma function

igamc(a,x) complemented incomplete i Gamma function

chisq(d,x) area under the left hand tail (from 0 to x) of the χ2 probability density
function with “d” degrees of freedom

chisqc(d,x) area under the right hand tail (from x to infinity) of the Chi square
probability density function with “d” degrees of freedom

Let us give one example which makes this feature clear:
1D function

from jhplot import *
f1=F1D(’x^2+pi*sqrt(x)’)
print f1.eval(20)
a=f1.eval([10,20,30])
print a.tolist()

The execution of this script gives:

414.049629462
[109.934, 414.049, 917.207]

As you may note, since eval(d) returns an array, we converted this array into a
list using the tolist() method for shorter printout (still we truncated the output
numbers to fit them to the page width).

In many situations, it is useful to create a “parsed” function object to pass it to
some method or class inside a long loop. This can significantly boost performance
since the string parsing is done outside loops. This example illustrates how to print
ten numbers evaluated by the function x ∗ exp(x):

3.2 1D Functions in jHepWork 89

Table 3.3 Constants used to define the F1D functions

Constants Defined as

pi PI

e E

k Boltzman Constant: 1.3807e-16

ec Elementary Charge: 4.8032e-10

me Electron Mass. Units g: 9.1095e-28

mp Proton Mass. Units g: 1.6726e-24

gc Gravitational Constant. Units dyne-cm2/g2: 6.6720e-08

h Planck constant. Units erg-sec: 6.6262e-27

c Speed of Light in a Vacuum. Units cm/sec: 2.9979e10

sigma Stefan-Boltzman Constant. Units erg/cm2-sec-deg4: 5.6703e-5

na Avogadro Number. Units 1/mol: 6.0220e23

r Gas Constant. Units erg/deg-mol: 8.3144e07

g Gravitational Acceleration at the Earths surface. Units cm/sec2: 980.67

>>> from jhplot import *
>>> f=F1D(’x*exp(x)’)
>>> p=f.getParse()
>>> for i in range(10):
>>> ... print p.getResult(i)

Of course, one can also print the numbers using the eval() method (since the
string parsing is done during creation of the F1D object). However, there are many
situations in which a “parsed” function (i.e. the object “p” in this example) can be
used as an argument for methods inside loops.

One can find all the methods associated with this class as explained in
Sect. 1.4.10.

3.2.1 Details of Java Implementation

The object created in the above examples is an instance of the F1D Java class, thus
it does not belong to the Python programming language, although we call it us-
ing the Python syntax. When we instantiate the object of the class F1D, we call
the Java library package jhplot stored in the file jhplot.jar located in the
’lib/system’ directory. How can we check this? As usual, call the method
type():

>>> from jhplot import *
>>> f=F1D(’x*exp(x)’)

90 3 Mathematical Functions

>>> type(f)
<type ’jhplot.F1D’>

Even more: one can also use Java methods to access the class instance and its name:

>>> c=f.getClass()
>>> print c
<type ’jhplot.F1D’>
>>> print c.getCanonicalName()
jhplot.F1D
>>> print c.getMethods()
... list of all method

As you can see, one can use several “get” methods to access the name of this object.
This cannot be done if an object belongs to Jython. We can also print all methods
associated with this object using the method getMethods(). We do not print a
very long output from this method to save space.

Since we are dealing with the Java object, one can work with the F1D function
using either Java code or BeanShell. The only difference is in the syntax of your
program. We will discuss this topic later.

In the following sections we will learn now to build mathematical functions us-
ing several independent variables and how to create functions using Jython classes
which will allow to use rather complicated logic in the function definition. But be-
fore we will give some elements of calculus based on the F1D class, focusing mainly
on numerical integration and differentiation.

3.2.2 Integration and Differentiation

A F1D function can numerically be integrated in a region between min and max
using the integral(N,min,max) method, where N is the number of points for
integration. This method assumes the trapezoid rule for integration.

There are more options in which a particular integration method can be specified.
Assuming that a function f1 is created, one can integrate it between a minimum
value min and a maximum value max using the N number of integration points as:

>>> f1d.integral(type,N,min,max)

where type is a string which defines the type of integration. This string can take
the following values:

“gauss4” Gaussian integration formula (4 points)
“gauss8” Gaussian integration formula (8 points)
“richardson” Richardson extrapolation

3.3 Plotting 1D Functions 91

“simpson” using Simpson’s rule
“trapezium” trapezium rule

The code below tests different integration algorithms using the methods shown
above. We also benchmark the code (see Sect. 2.9.1) by printing the time spent by
each algorithm (in milliseconds):

Integration of a function

from jhplot import *
import time

f1=F1D(’sin(1.0/x)*x^2’)
methods=[’gauss4’, ’gauss8’, ’richardson’,\

’simpson’,’trapezium’]
for m in methods:

start = time.clock()
d=f1.integral(m,10000,1,10)
t = time.clock()-start
print m+’ =’,d,’ time (ms)=’,t*1000

The result of code execution is given below:

gauss4 = 49.1203116758 time (ms)= 42.245
gauss8 = 49.1203116758 time (ms)= 32.382
richardson = 49.1203116758 time (ms)= 12.162
simpson = 49.1203116758 time (ms)= 14.173
trapezium = 49.1203116663 time (ms)= 4.234

While the time needed for the integration could be different for your tests (clearly,
this depends on many factors), it appears that the fastest algorithm is that based on
the trapezium method.

A function can numerically be differentiated using the method:

>>> a=f1d.differentiate(N,min,max)

The method returns an array with the result of differentiation. The size of this array
is set using an integer value N .

In Sect. 3.9, we will again discuss the topic of integration and differentiation
using symbolic mathematical calculations.

3.3 Plotting 1D Functions

The remaining issue is how to visualize the F1D functions. Below we will learn how
to build a canvas suited for plotting F1D objects and discuss the main options for
their visualization.

92 3 Mathematical Functions

3.3.1 Building a Graphical Canvas

To plot the 1D functions, first we need to create a graphical canvas. This can be done
by instantiation of a canvas object of the HPlot class:

>>> from jhplot import *
>>> c1=HPlot(’Canvas’)

This creates a default canvas with the title ‘Canvas’ and with the default frame size
of 600 × 400 pixels. To display the canvas in a pop-up frame, execute the statement:

>>> c1.visible(1)

It should be reminded that “1” means boolean “true”, while “0” means “false”. One
can also use the shortcut visible() instead of visible(1). If you do not
want to pop-up the canvas frame and want to keep it in the computer memory, set
the argument of the method visible() to zero.

There are more constructors for this class. For example, one can customize the
frame size with the method:

>>> c1=HPlot(’Canvas’,800,600)

which creates a canvas with the frame size of 800 by 600 pixels. One can also resize
the canvas using the mouse.

The created canvas can be divided into several plot regions (or “pads”). In this
case, use the following initialization:

>>> c1=HPlot(’Canvas’,600,400,iX,iY)

which again creates a canvas of the size 600 by 400 pixels, but, in addition, the last
two numbers are used to make two plot regions inside the canvas frame. The first
integer number after 400 tells that we need iX plot regions in X, and the second
number is used to set the number of pads in Y . For example, after setting iX=2 and
iY=1, the above constructor creates two pads positioned horizontally.

A function can be plotted inside the canvas using the draw(obj) method,
where obj is an instance of the F1D class. One can navigate to the current re-
gion using the method cd(i1,i2), where i1 and i2 specify the pad in X and Y .
For example, if one needs to plot a function inside the first pad, use:

>>> c1.cd(1,1)
>>> c1.draw(f1d)

3.3 Plotting 1D Functions 93

where f1d represents an object of the F1D function. If the function should be shown
on the second region, use

>>> c1.cd(1,2)
>>> c1.draw(f1d)

By default, the HPlot canvas has the range between 0 and 1 for the X or Y axis.
One should specify the necessary range using the method:

>>> c1.setRange(x1,x2,y1,y2)

where x1 is a minimum value in X, x2 is a maximum value in X, and y1 and y2
are the same but for the Y -axis. Alternatively, one can set “auto-range” using the
method c1.setAutoRange().

Before plotting a function, one can show a global title of the entire canvas. This
can be done by using the method setGTitle(str), where str represents a
string. In the simplest case, it accepts one argument: a string with the title text. One
can customize the text color and/or the font size as will be shown later. As usual,
use the code assist (see Sect. 1.4.10) to learn about possible choices.

In addition to the global title, one can set titles for each drawing pad using the
method setName(s), with “s” being a string with some text. We can also anno-
tate X and Y axes. The methods for this are setNameX(s) and setNameY(s),
where “s” is an annotation string.

Let us give a more concrete example. First, import the Color class from the
Java AWT library and then set appropriate annotations:

>>> from java.awt import Color
>>> from jhplot import *
>>>
>>> c1.setGTitle(’GlobalTitle’,Color.red)
>>> c1.setNameX(’X axis’)
>>> c1.setNameY(’Y axis’)
>>> c1.setName(’Pad title’)
>>> c1.visible() # make it visible
>>> c.setAutoRange() # set autorange for X and Y

All the entries above are self-explanatory. One may add a background color for the
canvas using:

>>> c1.setBackgroundColor(c)

where ’c’ stands for the Java AWT color. Colors can be set using any of the static
methods shown in Table 3.4.

94 3 Mathematical Functions

Table 3.4 Colors from the
Java AWT library AWT Color Color

Color.black black color

Color.blue blue color

Color.cyan cyan color

Color.darkGray dark gray

Color.gray gray color

Color.green green color

Color.lightGray light gray color

Color.magenta magenta color

Color.orange orange color

Color.pink pink color

Color.red red color

Color.white white color

Color.yellow yellow color

A color can also be defined in a more flexible way using the constructor
Color(r,g,b), with specified red, green and blue values. Each value must be in
the range [0–1]. Alternatively, one can use the same constructor, but specifying red,
green, blue (integer) values in the range [0–255]. One can also define a transparency
level (or “alpha” value) using the forth argument. There are other constructors for
this class, so please refer to any Java textbook.

To check what colors are available and to define your own colors, use the jHep-
Work dialog window:

>>> import utils; utils.ShowColors()

The above command brings up an Java color chooser frame which can be used to
select a custom color using the mouse.

Custom fonts for the legends can be specified using the Font class from the
same AWT package:

>>> from java.awt import Font
>>> font=Font(’Lucida Sans’,Font.BOLD, 12)
>>> c1.setLegendFont(font)

Here we created a font instance from the font collection existing in your computer
environment. A custom font can be created with the statement Font(’name’,
style,size) from the specified font name, style and font size. The style can be
either Font.PLAIN (simple), Font.ITALIC (italic) or Font.BOLD (bold).

To find the names of fonts is more tricky, but possible. Use the methods
getAvailableFontFamilyNames or getAllFonts. The lengthy statement
below illustrates how to print out the available fonts installed on your system:

3.3 Plotting 1D Functions 95

>>> from java.awt import *
>>> e = GraphicsEnvironment.getLocalGraphicsEnvironment()
>>> print e.getAllFonts()
>>> print e.getAvailableFontFamilyNames()

When using jHepWork, call the predefined command which lists the available
fonts:

>>> import utils; utils.ShowFonts()

Use the above approach to find out necessary fonts to be used in Jython scrips to
setup graphical options for drawing of titles, and other labels. In addition, one can
use the GUI-dialogs of the HPlot canvas. For example, double-click on the global
title to bring up a setup dialog used to change the global text, fonts and colors. In a
similar way one can edit the margins of the pads.

3.3.2 Drawing 1D Functions

Once a canvas is ready, one can plot a 1D function discussed in Sect. 3.2 as:

>>> from jhplot import *
>>>
>>> c1=HPlot("Canvas")
>>> c1.visible()
>>> c1.setAutoRange()
>>> f1=F1D(’2*exp(-x*x/50)+sin(pi*x)/x’, -2.0,5.0)
>>> c1.draw(f1)

Obviously, −2.0 and 5.0 specify the range for the abscissa. There is an important
difference with respect to the function definition given in Sect. 3.2: now we explic-
itly tell what abscissa range should be used for evaluation and drawing. One can set
the range for the function later using the methods:

>>> f1.setMin(min)
>>> f1.setMax(max)

where min and max are a minimum and a maximum value for the abscissa. Natu-
rally, the corresponding “getter” methods getMin() and getMax() return these
values back. It should be noted that the specified abscissa range does not affect the
method eval(x) which determines the value of a function at a certain x value.

96 3 Mathematical Functions

Finally, you may need to determine the plotting resolution. By default, a func-
tion is evaluated at 500 points in the specified abscissa range. One can find this
using the getPoints() method. One can change this value using the method
setPoints(i), where ’i’ is an integer number (should be sufficiently large).
For a very large number, the price to pay is a larger memory consumption and slower
plotting.

In order to plot several functions on the same canvas, simply repeat the
draw(obj) statement for each function.

>>> f1=F1D(’2*exp(-x*x/50)+sin(pi*x)/x’, -2.0,5.0)
>>> f2=F1D(’exp(-x*x/10)+cos(pi*x)/x’, -2.0,5.0)
>>> c1.draw(f1)
>>> c1.draw(f2)

It should be noted that the method draw(obj) can also be used to visualize a
Jython list of F1D functions as in the example below:

>>> from jhplot import *
>>>
>>> c1=HPlot(’Canvas’)
>>> c1.visible()
>>> c1.setAutoRange()
>>> f1=F1D(’2*exp(-x*x/50)+sin(pi*x)/x’, -2.0,5.0)
>>> f2=F1D(’2*sqrt(x)’)
>>> c1.draw([f1,f2])

For all these examples, the color used for drawing is the same, thus it is difficult
to separate the plotted functions visually. One can draw the functions using various
colors after importing the Color class from the Java AWT package as discussed
before. Moreover, one can define the line width as:

>>> from java.awt import Color
>>> from jhplot import *
>>>
>>> f1=F1D(’2*exp(-x*x/50)+sin(pi*x)/x’, -2.0,5.0)
>>> f2=F1D(’exp(-x*x/10)+cos(pi*x)/x’, -2.0,5.0)
>>> f1.setPenWidth(2)
>>> f1.setColor(Color.green)
>>> f2.setColor(Color.red)
>>> c1.draw(f1)
>>> c1.draw(f2)

where the method setPenWidth(i) accepts an integer number for the line width
in terms of the number of pixels. To draw dashed lines, use the setPenDash()
method. One can change the dashed line length by specifying an integer value be-
tween 0 and 40. One can also use the update() method to redraw the plot.

3.3 Plotting 1D Functions 97

Table 3.5 The most important methods for graphical representations of the F1D class. For the
methods shown in this table, “b” indicates a boolean value (0 for true and 1 for false), while “i” is
an integer parameter. The notation “d” indicates a float value. The attributes “c” and “f” correspond
to the Color and Font classes of Java AWT. “text” represents a string

Methods Definitions

setColor(c) set line color

setPenWidh(i) width of the line

setPenDash(i) dashed style with “i” being the length

setLegend(b) set (b=1) or not (b=0) the legend

setTitle(text) set title text

The example above shows that a F1D function contains several methods for
drawing. Some most important graphical options are listed in Table 3.5.

As mentioned before, instead of using all these graphical methods in Jython
scripts, for function drawing, one can also edit function attributes using a GUI-
driven dialog: Navigate the mouse to the pad with the graph and select [Edit
settings] with the mouse button. Then select [Y item] and you will see a
pop-up window with various attributes. In a similar way one can edit the global title
and margins of the pads.

3.3.3 Plotting 1D Functions on Different Pads

To plot two or more functions on different plot regions, one should construct an
appropriate canvas. Before calling the method draw(obj), the current plotting
pad has to be changed using the cd(i1,i2) method. In the example below we
make a canvas with two pads and then navigate to the necessary pad when we need
to plot a function:

>>> from java.awt import Color
>>> from jhplot import *
>>>
>>> c1=HPlot(’Canvas’,600,400,1,2)
>>> c1.visible()
>>> c1.setAutoRange()
>>> f1=F1D(’2*exp(-x*x/50)+sin(pi*x)/x’, -2.0, 5.0)
>>> f2=F1D(’exp(-x*x/10)+cos(pi*x)/x’, -2.0, 5.0)
>>> f1.setColor(Color.green)
>>> c1.draw(f1)
>>> c1.cd(1,2) # go to the second pad (1,2)
>>> c1.draw(f2)

98 3 Mathematical Functions

3.3.4 Short Summary of HPlot Methods

Table 3.6 shows the major methods of the HPlot class. Note that there are more
than 300 methods associated with this class, which are divided into the “getter” (they
start from the “get” string) and “setter” (starting from “set”) groups of methods.

One can learn about the methods of the HPlot canvas using the jHepWork code
assist, i.e. typing c1. and pressing [F4] key, where c1 is an instance of the HPlot
class. One can also use the method dir(c1) to print the methods.

We will discuss the HPlot canvas in Sect. 10.2 in more detail. In addition, we
can show how to use other graphical tools to display functions in Chap. 10.

3.3.5 Examples

Let us show a complete script example for visualization of several 1D functions
using two plot regions. Save these lines in a file, say ’test.py’, load this file into
the jHepWork editor and click on the “[run]” button (or press [F8]) to execute
the script.

Using HPlot canvas

from java.awt import Color
from jhplot import *

c1 = HPlot(’Canvas’,600,400,2,1)
c1.visible()
c1.setGTitle(’F1D Functions’,Color.red)
c1.setNameX(’X axis’)
c1.setNameY(’Y axis’)

c1.cd(1,1)
c1.setAutoRange()
c1.setName(’Local title’)
f1 = F1D(’2*exp(-x*x/50)+sin(pi*x)/x’,-2.0,5.0)
f1.setPenDash(4)
c1.draw(f1)
f1 = F1D(’exp(-x*x/50)+pi*x’,-2.0,5.0)
f1.setColor(Color(10,200,50))
f1.setPenWidth(3)
c1.draw(f1)

c1.cd(2,1)
c1.setAutoRange()
f1 = F1D(’20*x*cos(x)’,-0,5.0)
f1.setColor(Color.red)
f1.setPenWidth(3)
c1.draw(f1)

3.3 Plotting 1D Functions 99

Table 3.6 Most important methods of the HPlot class. For the methods shown in this table, “b”
indicates a boolean value (0 or 1), while “a” is an integer parameter indicating axis (a=0 means
X-axis, a=1 means Y -axis). The notation “d” indicates a float value. The attributes “c” and “f”
correspond to the Color and Font classes of Java AWT. “text” represents a string

Methods Definitions

destroy() clean and destroy the canvas frame

draw(o) draw some object, like F1D etc.

clear() clean the current region

cd(X,Y) go to a current region in X and Y

clear(X,Y) clean one region given by X and Y

clearAll() clean all regions
clearData() clean data from the current region all graph

settings are kept
clearAllData() clean data from all regions all graph

settings are kept

visible(b) make canvas visible (b=1) or invisible (b=0)

visible() make canvas visible

setAutoRange() set autorange for all axes

setAutoRange(b) set autorange (b=1) or not (b=0) for all axes

setAutoRange(a,b) set (b=1) or not set (b=1) autorange for axis

setAxesColor(c) set color for axes

setBox(b) set or not a bounding box around the graph

setBoxOffset(d) offset of the bounding box

setBoxFillColor(c) fill color of the bounding box

setBoxColor(c) color of the bounding box

setBackgroundColor(c) background color of the graph

setGrid(a,b) show grid (b=1) or not (b=1) for axis

setGridColor(c) grid color

setGridToFront(b) grid in front of drawing (b=1) or behind (b=0)

update() update current plot defined by cd()

updateAll() update plots in all regions

setGTitle(text,f,c) set attributes for global title

setLegend(b) set legend (b=1) or not (b=0)

setLegendFont(f) set legend font

setLogScale(a,b) set (b=1) or not set (b=0) log scale for axis

setLegendPosition(a,pos) set legend position given by pos value

setTicsMirror(a,b) set (b=1) or not set (b=0) mirror ticks for axis

setGrid(a,b) show grid (b=1) or not (b=1) for axis

setRange(a,min,max) min and max for axis

setRange(minX,maxX,minY,maxY) min and max range for X and Y

setAntiAlias(b) set (b=1) or not set antialiase for graphics

removeAxes() remove all axes
export(FileName) export to an image (png, eps, ps)

Image format is given by the file extension

update() update the current plot

100 3 Mathematical Functions

Fig. 3.1 Several F1D functions plotted on two pads of the same HPlot canvas

f1 = F1D(’10*sqrt(x)+20*x’,0,5.)
f1.setColor(Color.blue)
f1.setPenWidth(3)
c1.draw(f1)

f1 = F1D(’15*sqrt(x)+20*x*x’,0,5.)
f1.setColor(Color.blue)
f1.setPenDash(3)
c1.draw(f1)

The execution of this script creates a canvas with several plotted functions as shown
in Fig. 3.1.

3.4 2D Functions

3.4.1 Functions in Two Dimensions

By considering functions with more than one independent variable, we are now
beginning to venture into high-dimensional spaces. To build a two-dimensional (2D)
function, jHepWork has the F2D class. It is defined in the same way as F1D. The
only difference - it takes two independent variables, x and y.

3.4 2D Functions 101

>>> from jhplot import *
>>> f1=F2D(’definition’)

where ’definition’ is a string that must be replaced by the actual mathematical
formula with two independent variables, x and y. As for the F1D class, the func-
tion definition can contain any combination of predefined operators, functions and
constants listened in Tables 3.1, 3.2 and 3.3.

To evaluate a 2D function at a fixed point (x, y), use the eval(x,y) method.
One can evaluate a function for lists with x and y values using the method
eval(x[],y[]) as in the example below:

>>> from jhplot import *
>>> f2=F2D(’sqrt(x)*sin(y)/x + y^3’)
>>> f2.eval(2,0.1)
0.07
>>> f2.eval([1,2],[2,4])
array([D,[array(’d’,[8.9,63.2]),array(’d’,[8.6,63.4])])

The output numbers below are truncated to fit them to the width of this page.
As for the F1D function, use a “parsed” object if you need to pass it to some

method inside long loops. Get it using the method getParse() which returns an
object for evaluation.

The F2D functions can numerically be integrated for a region between
minX-maxX (for x) and between minY-maxY (for y) using the method:

>>> f2.integral(N,minX,maxX,minY,maxY)

where N is the number of points for integration for each abscissa. The method as-
sumes the trapezoid rule for integration.

3.4.2 Displaying 2D Functions on a Lego Plot

The F2D functions can be shown using a three-dimensional HPlot3D canvas. This
canvas has very similar methods as those for the HPlot canvas, but allows to draw
objects in 3D. What we should remember is that we have to prepare the function for
drawing beforehand, which means one should specify the ranges for x and y axes
during the initialization (or after, but before drawing).

During the initialization step, one can set the ranges as:

>>> from jhplot import *
>>> f2=F2D(’sqrt(x)*sin(y)/x + y^3’,minX,maxX,minY,maxY)

102 3 Mathematical Functions

so the function will be plotted for x in the interval [minX-maxX], and in the
interval [minY-maxY] for the y independent variable.

After the initialization, one can set the range using the setMinX(min),
setMinX(max) methods for x, and analogously for y. The number of points for
the evaluation can be set using setPoints(n) methods (the default number of
points is 500).

Here is a typical example which shows how to plot either a single function or
two functions on the same lego plot:

Plotting 2D functions

from java.awt import Color
from jhplot import *

c1 = HPlot3D(’Canvas’,600,700, 2,2)
c1.visible()
c1.setGTitle(’F2D examples’)

f1=F2D(’cos(x*y)*(x*x-y*y)’, -2.0, 2.0, -2.0, 2.0)
f2=F2D(’cos(x+y)*x’, -2.0, 5.0, -2.0, 5.0)
f3=F2D(’sin(4*x)+x^2’, -2.0, 2.0, -2.0, 2.0)
f4=F2D(’x^2+y^2’, -2.0, 2.0, -2.0, 2.0)

c1.cd(1,1)
c1.setScaling(8)
c1.setRotationAngle(30)
c1.draw(f1)

c1.cd(2,1)
c1.setAxesFontColor(Color.blue)
c1.setColorMode(3)
c1.setScaling(8)
c1.setElevationAngle(30)
c1.setRotationAngle(35)
c1.draw(f2)

c1.cd(1,2)
c1.setColorMode(4)
c1.setLabelFontColor(Color.red)
c1.setScaling(8)
c1.setRotationAngle(40)
c1.draw(f3)

c1.cd(2,2)
c1.setColorMode(1)
c1.setScaling(8)
c1.setElevationAngle(30)
c1.setRotationAngle(35)
c1.draw(f4,f2)

3.4 2D Functions 103

Fig. 3.2 F2D functions shown using the HPlot3D canvas in several regions

The resulting figure is shown in Fig. 3.2.
This example features one interesting property of the HPlot3D canvas: Instead

of plotting one function as c1.draw(f1), we plot both functions on the same
pad after passing two functions as arguments (see the last line). This is somewhat
different from the HPlot behavior, where we could pass any number of functions
in a form of the list. For the HPlot3D canvas, one can plot two functions at most.
Also, the class does not accept lists of functions. Later we will show that one can
plot 2D histograms or even mixing histograms with functions using the method
draw(obj1,obj2).

For the three-dimensional canvas, the presentation style can be changed us-
ing setColorMode(i) method, where i=0 for wireframe, i=1 for hidden,
i=2 for color spectrum, i=3 for gray scale, i=4—for dualshades. The methods
setScaling(), setElevationAngle() and setRotationAngle() are
self-explanatory. The plots can be rotated with the mouse and the title can be mod-
ified using exactly the same way as for the HPlot canvas. We will return to the
HPlot3D canvas in Sect. 10.12.

104 3 Mathematical Functions

3.4.3 Using a Contour Plot

The 2D functions can also be shown using a contour (density) style. This
can be done with the help of the same HPlot3D canvas but adding the line
c1.setContour() after the definition of the c1 object. This is shown bellow:

Contour plot

from java.awt import Color
from jhplot import *

c1 = HPlot3D(’Canvas’,600,600)
c1.setNameX(’X’)
c1.setNameY(’Y’)
c1.setContour()
c1.visible()
f1=F2D(’x^2+y^2’, -2.0, 2.0, -2.0, 2.0)
c1.draw(f1)

The execution of this script leads to the plot shown in Fig. 3.3. The color bar
from the right indicates the density levels used for drawing in color. They can be
redefined using several methods of this canvas.

However, it is more practical to show the F2D functions using the canvas based
on the class HPlot2D. As we will discuss in Sect. 10.11, this class has significantly

Fig. 3.3 A contour representation of the function x2 + y2 using the HPlot3D canvas

3.5 3D Functions 105

more options to display the contour and density plots since it was designed mainly
for such types of plots.

3.5 3D Functions

3.5.1 Functions in Three Dimensions

You may already have guessed that for tree-dimensional (3D) functions, jHepWork
has the F3D class. It is defined in the same way as F1D and F2D, the only difference
is it can take up to three independent variables: x, y and z.

>>> from jhplot import *
>>> f3=F3D(’definition’)

where ’definition’ is a string that should be replaced by the actual formula. As
for the F1D and F2D classes, the function definition can be constructed from a com-
bination of operators, mathematical functions and constants, as given in Tables 3.1,
3.2 and 3.3.

To evaluate a 3D function at a fixed value (x, y, z), use the usual method
eval(x,y,z):

>>> from jhplot import *
>>> f3=F3D(’sqrt(x)*sin(y)/x + z^3’)
>>> f3.eval(2,0.1,4) # calculate for x=2, y=0.1, z=4
0.07159288589999416

Probably, we can stop here and will not go into the drawing part of this section.
We have to be creatures leaving in four-dimensional space in order to be interested
in how to draw such functions (actually, if such a creature is reading this book
and is still interested in this option, please contact me—we may discuss how to
plot such functions). One can also project 3D functions into a 2D space by fixing
some independent variables and then using the F2D and HPlot3D to display such
projections.

Below we will discuss more flexible classes for dealing with multidimensional
functions.

3.6 Functions in Many Dimensions

3.6.1 FND Functions

jHepWork supports functions with arbitrary number of independent variables using
the FND class. This class is more complicated and has its roots in the known JEP
Java package [1].

106 3 Mathematical Functions

>>> from jhplot import *
>>> fn=FND(’definition’, ’var1,var2,...varN’)

where the string ‘definition’ should be replaced by the actual mathematical for-
mula using a combination of predefined operators, functions and constants given in
Tables 3.1 and 3.3. The second argument tells which characters or strings must be
declared to be independent variables in the function definition. Unlike F1D, F2D
and F3D classes, variable names can be any strings (not only x, y and z). Func-
tions of the class FND can be simplified and differentiated and, obviously, can be
evaluated at fixed points. The example below shows this:

>>> import jhplot import *

>>> fn=FND(’1*x^4+x^2+y+z+h’,’x,y,z,h’)
>>> fn.simplify()
>>> print ’Simplify=’,fn.toString()
Simplify= x^4.0+x^2.0+y+z+h
>>>
>>> fn.diff(’x’) # differentiate using x
>>> print ’Differentiate=’,fn.toString()
Differentiate= 4.0*x^3.0+2.0*x
>>>
>>> fn=FND(’1*x^4+x^2+y+z+h’,’x,y,z,h’)
>>> print ’Print variables=’,fn.getVars()
Print variables=array(java.lang.String,[’x’,’y’,’z’,’h’])
>>>
>>> d=fn.eval(’x=4,y=1,z=2,h=0’)
>>> print ’Evaluate results=’,d
Evaluate results= 275.0

In this example, the evaluation of the function happens after fixing all three inde-
pendent variables.

3.6.2 Drawing FND Functions

The class FND for function representation is rather flexible. First of all, one can
easily deal with 1D functions using any names of independent variables (remember,
F1D can only accept x to define a variable). The only difference you have to keep
in mind is that before drawing a FND function, you should always call the eval()
method to allow for only one independent variable and friezing other variables to
fixed numbers.

3.7 Custom Functions Defined by Jython Scripts 107

Let us consider an example with two independent variables. In this case, we
should set the second variable to some value since we want to plot an one-
dimensional function:

Drawing a FND function

from jhplot import *

c1=HPlot()
f2=FND(’sqrt(var1)*sin(var2)’,’var1,var2’)
f2.eval("var1",1,100,’var2=2’) # var1 in range 1-100
c1.visible()
c1.setAutoRange()
c1.draw(f2)

In the example above, first we evaluate the function in the range between 1 and 100
and fixing var2 to 2 before calling the draw(obj) method.

Below is the example for a function with three independent variables. After fixing
two variables, we plot this function in 1D:

Drawing a FND function

from jhplot import *

c1 = HPlot(’Example’,600,400)
c1.setGTitle(’FND function’)
c1.visible()
c1.setAutoRange()
f2=FND(’x*x+y+20+z’,’x,y,z’)
f2.eval(’x’,-2,10,’y=2,z=100’)
c1.draw(f2)

Now we have fixed two variables, y and z, and plotted the function in terms of the
independent variable x between −2 and 10. It should be noted that the variables to
be fixed are separated by a comma in the eval() statement.

3.7 Custom Functions Defined by Jython Scripts
Building a custom mathematical function using Jython scripts makes sense when
the logic of the mathematical expression is so complicated that it’s better to define it
in a separate code block rather than to use a string and pass it during the instantiation
of the function. In this way one can build infinitely complicated functions in many
dimensions and evaluate them using jHepWork Java libraries.

3.7.1 Custom Functions and Their Methods

For constructing functions in this section, we will use the package shplot pro-
vided by jHepWork. Let us build a simple second-order polynomial function,

108 3 Mathematical Functions

y = c ∗ x2 + b ∗ x + a using a pure-Jython approach. For an educational purpose,
we will include some complication into the function definition: if x < 0, then we
assume that the polynomial behavior will vanish and the function will be just a con-
stant y = a.

Let us put the following code in a separate file called ’p2.py’:

File ’p2.py’

from shplot import *

class p2(ifunc):
def value(self, v):
if v[0]>0:

d=self.p[2]*(v[0]*v[0])+self.p[1]*v[0]+self.p[0]
else:

d=self.p[0]
return d

The example features several important properties: instead of the ’jhplot’ pack-
age we use the ’shplot’ library, which represents a high-level Jython module
based on the Java jhplot package. This module is imported automatically if one
uses jHepWork. If you are using something else, one can find this module in the di-
rectory ’system/shplot’. In the latter case, we remind that in order to be able
to use it, one should import the Jython module os and append the directory with the
shplot module to the Jython variable to the list ’os.path’.

Secondly, our class ’p2’ inherits properties of the ’ifunc’ class (see the class
inheritance topic in Sect. 2.11.2). This is important as it provides the necessary
functionality when we will decide to draw such function.

Finally, we specify our mathematical algorithm in the function value(), which
returns the results of the calculation. Obviously, self.p[] list represents our free
parameters a, b, c, while v[0] corresponds to the variable x.

One can also use any mathematical function provided by the ’math’ package
of Jython. In this section, but we will restrict ourselves to simple examples which
do not require calls to external mathematical functions.

Now, let us build a function from the class defined above. We will instantiate the
function object as:

>>> p=function(title,dimension,paramNumber)

where ’title’ is a string with the function title, ’dimen’ is a dimension of the
function and ’paramNumber’ is the number of free parameters. Names for the
variables and parameters will be set to default values. Alternatively, one can use
custom names for the variables and parameters using this constructor:

>>> p=function(title,names,pars)

3.7 Custom Functions Defined by Jython Scripts 109

where ’name’ and ’pars’ are lists of strings defining the names for independent
variables and parameters names (this overwrites the default names).

Let us come back to our example and instantiate the second-order polynomial
function given in the module ’p2.py’. We will create a function by assigning the
title ’p2’, dimension of this function (1) and the number of parameters (3 param-
eters).

Building a custom function

from p2 import *

p=p2(’p2’,1,3)
print p.title()
print p.dimension()
print p.numberOfParameters()
print p.parameterNames()
print p.variableNames()
print p.variableName(0)

The execution of this script gives:

p2
1
3
array(java.lang.String, [u’par0’, u’par1’, u’par2’])
array(java.lang.String, [u’x0’])
x0

Let us discuss the output in more detail: We print out the title of this function
with the method title() and the dimension with the method dimension().
The number of parameters is given by the method numberOfParameters().
The method parameterNames() returns the parameter names. Since we did
not assign any custom names, it prints the default names, ’par0’, ’par1’,
’par2’. Then we print the variable name (the default is ’x0’).

Now let us evaluate this function at several points. But before, let us assign some
numerical values to our free parameters. One can set a single value by calling the
parameter name, or setting it at once in form of list. Then we will evaluate the
function at x = 10 and x = −1:

Setting parameters

from p2 import *

p=p2(’p2’,1,3)
p.setParameter(’par0’, 10)
p.setParameter(’par1’, 20)
p.setParameter(’par2’, 30)

set all parameters in one go

110 3 Mathematical Functions

p.setParameters([10,20,30])

print "Value at x=10 =", p.value([10])
print "Value at x=-1 =", p.value([-1])

Note how this was done: first we pass a list to the function, and then return it with the
method value(). As you may guess, this is necessary in case if you have several
variables to pass to a function. Executing the above script gives:

Value at x=10 = 3210.0
Value at x=-1 = 10.0

Now, let us assign custom names for the parameters. This time will instantiate it
using the second constructor as:

Setting parameters

from p2 import *

p=p2(’p2’,[’x’],[’a’,’b’,’c’])
print p.parameterNames()
print p.variableNames()
p.setParameter(’a’, 10)
p.setParameter(’b’, 20)
p.setParameter(’c’, 30)

print "Value at x=10 =", p.value([10])
print "Value at x=-1 =", p.value([-1])

As you can see, we assign the names ’a’, ’b’, ’c’. We also set the variable name
to the convenient ’x’. One can see this from the output shown below:

array(java.lang.String, [u’a’, u’b’, u’c’])
array(java.lang.String, [u’x’])
Value at x=10 = 3210.0
Value at x=-1 = 10.0

More advanced users can look at the methods of the object ’p’. They will find
out that this object is constructed from the AIDA class IFunction and contains
many other methods which have not been discussed here.

3.7.2 Using External Libraries

Previously we have shown a rather simple example illustrating how to construct
a mathematical function. But we are not restricted here with constructions from

3.7 Custom Functions Defined by Jython Scripts 111

Jython: since our codding is based on Java, one can call a function or library from
Java API, or Java-based external library. We can direct you, for example, to the
Colt Java library [2] (included into jHepWork) which provides a large set of special
functions and functions commonly used for probability densities.

To build a function, you will need first to import necessary classes from third-
party libraries and replace parameters with self.p[], while variables should be
replaced with v[] in the method value(). Let us show how to make a simple
Jython module containing a Bessel function and Beta function:

Calling Java libraries. Module ’special.py’

from shplot import *

class bessel(ifunc):
def value(self, v):

from cern.jet.math import Bessel
return Bessel.i0e(v[0])

class beta(ifunc):
def value(self, v):

from cern.jet.stat.Probability import beta
return beta(self.p[0],self.p[1],v[0])

First, we import the Java package ’cern.jet.math’ from the Colt library men-
tioned above and use this library to construct the Bessel and Beta functions. Please
look at the Java API of the Colt library to learn about such functions. We will save
these lines in a module called ’special.py’.

Calling both functions from the module ’special.py’ is trivial. Just import
this module and take care of the number of parameters you pass to such functions
when calling them:

Calling special functions

from special import *

b1=beta(’Beta function’,1,2)
b2=bessel(’Bessel order 0’,1,0)

One can evaluate the functions at any allowed value ’x’ after specifying values for
free parameters. In case of the Bessel function, we do not have free parameters and
the evaluation of such function is straightforward.

3.7.3 Plotting Custom Functions

Now we know how to build function objects from a script. Next, we will show how
to manipulate with such custom functions and plot them.

112 3 Mathematical Functions

First thing you probably will need to do is to convert a function to F1D or F2D
objects for plotting. Below we show how to convert IFunction to the standard
F1D, using the function Bessel defined in the previously constructed module
’special.py’.

Conversion to F1D

from special import *
from jhplot import *

p=bessel(’Bessel’,1,0)
f=F1D(p)
print f.eval([0.1,0.2,0.5])

so, it looks easy: just pass the custom function to the constructor of the F1D func-
tion. In the above example, we evaluate this function at several points using a list
of x values. The execution of this script prints the output list of y values, [0.9071,
0.8269, 0.6450].

One can return the object IFunction back as getIFunction(), a handy
method of the F1D function. We will see that the IFunction class is very impor-
tant when dealing with curve fitting in Sect. 14.2.

Probably you have already realized how to plot our Bessel function. The script
below plots this function in the range [0–100]:

Conversion to F1D

from special import *
from jhplot import *

p=bessel(’Bessel’,1,0)
f1=F1D(p,1,100)
c1 = HPlot()
c1.visible()
c1.setAutoRange()
c1.draw(f1)

Plotting 2D functions is as easy as in the 1D case. First build a custom function
from the script using two variables. Then pass it to the F2D constructor exactly as in
the above example. Always pay attention to free parameters: they have to be defined
beforehand by passing the function object to the F2D constructor.

We will return to the subject of custom functions when we will discuss the class
IFunction in Sect. 14.2, which will be used for fitting experimental data. You
will also learn how to access predefined functions or create functions of the class
IFunction from a string.

3.8 Parametric Surfaces in 3D 113

3.8 Parametric Surfaces in 3D

3.8.1 FPR Functions

jHepWork has a support for drawing parametric functions or equations in 3D. This
feature has its root in the initial version of the 3D Graph Explorer program [3].

We remind that a parametric function is a set of equations with a certain number
of independent parameters. To build a parametric function, one should use the FPR
class (“F” abbreviates the word “function” and “PR” corresponds to “parametric”).
The general definition of a parametric function is:

>>> f1=FPR(’definition’)

where ’definition’ is a string representing the equation used for the function
definition. For parametric surfaces in 3D, we should define x, y and z in terms of
two independent variables, ’u’ and ’v’, which can vary in the range [0,1]. To
construct a string representing the parametric function, one can use the predefined
functions given in Table 3.1. In addition, the standard comparison operations “==”,
“!=”, “<”, “>”, “<=” and “>=” can be used.

For example, the equation:

u = 2 ∗ Pi ∗ u; x = cos(u); y = sin(u); z = v

defines a cylinder. Note, that “Pi” means the predefined π value, and the multipli-
cation sign can be replaced by a space. Each logical unit should be separated by a
semicolon, and the entire expression should be passed to the FPR constructor as a
string.

Let us show several other equations: A torus can be written as:

u = 2 ∗ Pi ∗ u; v = 2 ∗ Pi ∗ v; r = .6 + .2 ∗ cos(u)

z = .2 ∗ sin(u); x = r ∗ cos(v); y = r ∗ sin(v)

A cone can be written as:

u = 2 ∗ Pi ∗ u; z = 2 ∗ (v − .5)

x = z ∗ cos(u) ∗ .8 − 1; y = z ∗ sin(u) ∗ .8 + .6

A hex cylinder can be written as:

u = 2 ∗ Pi ∗ u; x = cos(u) ∗ .8 + .3

y = sin(u) ∗ .8 − .6; z = 2 ∗ (v − .5)

A sphere with a radius “r” is

r = 0.7; u = 2 ∗ Pi ∗ u; v = Pi ∗ v; x = r ∗ cos(u) ∗ sin(v)

y = r ∗ sin(u) ∗ sin(v)

z = r ∗ cos(v)

114 3 Mathematical Functions

In the above examples, we set the constants defining geometrical sizes to arbitrary
values for simplicity.

As it can be seen, to vary the parameters u and v over a different range than
[0,1], one should scale and shift them by a certain value. For example, if one
needs to change the range of u to [5,15], use this transformation: u = u ∗
(15 − 5) + 5.

The parametric functions can be shown using the HPlot3DP class (extra “P” in
its name means “parametric”). This class provides a canvas for drawing parametric
functions and can be used for interactive work with these functions (zooming and
rotations). One can draw a surface using the usual draw(obj) method, where
obj represents an object of the class FPR. One can make drawing pads as usual
and navigate to the pads using the cd(i1,i2) method. One can draw several
parametric functions on the same pad by repeating the draw(obj) method. This
is seen from this example:

Drawing parametric functions

from java.awt import Color
from jhplot import *

c1 = HPlot3DP(’Canvas’,700,600,2,1)
c1.setGTitle(’Parametric surfaces’)
c1.visible()

f1=FPR(’r=0.7; u=2 Pi u; v=Pi v; \
x=r cos(u) sin(v); y=r sin(u) sin(v); z=r cos(v)’)

f1.setDivisions(50,50)
f1.setLineColor(Color.blue);

f2=FPR(’u=2 Pi u; v=2 Pi v; r=.7+.2cos(u); \
z=.2 sin(u)-0.5; x=r cos(v); y=r sin(v)’)

f2.setFillColor(Color(20,170,170))

f3=FPR(’ang=atan2(y,x); r2=x*x+y*y;\
z=sin(5(ang-r2/3))*r2/3’)

c1.draw(f1)
c1.draw(f2)

c1.cd(2,1)
c1.setCameraPosition(-1.0)
c1.setFog(0)
c1.draw(f3)

In this example, the lengthy strings which define the functions were broken to fit the
page width. Figure 3.4 shows the resulting plot.

Let us discuss several graphical methods for the FPR functions. First of all, one
can set colors for the lines and for the filled area, as well as the line width as:

3.8 Parametric Surfaces in 3D 115

Fig. 3.4 Several parametric functions displayed using the HPlot3DP canvas

>>> f1.setFilled(b)
>>> f1.setFillColor(c)
>>> f1.setLineColor(c)
>>> f1.setPenWidth(i) # set line width "i"

where b is ether 0 (not filled area) or 1 (Java true) if the object has to be filled. ’c’
is the usual Java AWT Color class used to fill a surface. One can set the width of
the lines as setPenWidth(i), where “i” is an integer value. Finally, all above
graphical attributes can be obtained using the corresponding “getter” methods.

One can add a transparency level to the filled color by setting the so-called alpha
value for the AWT Color class. For example,

>>> f1.setFillColor(Color(0.1,0.9,0.7,0.5)

sets the transparency level for filled color to 50% (see the last argument 0.5).
The numbers of divisions for “u” and “v” independent variables are given by the

method:

>>> f1.setDivisions(divU, divV)

116 3 Mathematical Functions

where divU and divV are the numbers of divisions (21 is the default value).
The larger number of the divisions, the smoother surface is. However, this requires
more computer resources, especially during an interactive work, such as rotations or
zooming. One can also include the number of divisions during the construction of a
parametric function:

>>> f1=FPR(’definition’,divU,divV)

We will discuss several methods associated with the class HPlot3DP in
Chap. 10. One can also look at the corresponding API documentation of this class.

3.8.2 3D Mathematical Objects

In addition, jHepWork contains the 3D-XplorMathJ package [4] as a third-party li-
brary which allows to view various parametric functions in 3D. A user can specify
and draw any function using the menu of this program. The package contains an im-
pressive catalog of pre-build interesting mathematical objects, ranging from planar
and space curves to polyhedra and surfaces to differential equations and fractals.

The 3D-XplorMathJ can be started using [Tools]→ [3DXplorMath] from
the Tool bar menu the jHepWork IDE.

3.9 Symbolic Calculations

Symbolic calculations can be performed using the SymPy library for symbolic
mathematics [5]. This library is implemented in Python and included as a third-
party package in the directory ’python/packages’. When working with the
jHepWork IDE, this directory is automatically imported by Jython, so you do not
need to worry about how to install the SymPy library.

The SymPy library can perform differentiation, simplification, Taylor-series ex-
pansions, integration. It can be used to solve algebraic and differential equations,
as well as systems of equations. The complete list of features can be found on the
SymPy Web page [5]. Below we will show several examples illustrating how to
integrate this package with the jHepWork graphics libraries.

But, first of all, let us give several examples illustrating how to use this package
for analytic functions. We will start from the example illustrating how to perform a
series expansion of the expression x2/ cos(x).

Series expansion

from sympy import *

x = Symbol(’x’)
func=x**2/cos(x)

3.9 Symbolic Calculations 117

s=func.series(x, 0, 10)

print s
print latex(s)
pprint(s)

The statement ’Symbol()’ is rather important: in this package, symbolic vari-
ables have to be declared explicitly. The output of this example is printed in the
standard (“Python”) format when using the print command:

x**2 + x**4/2 + 5*x**6/24 + ..

(we have truncated the output). In addition, the example shows how to print a nicely-
formatted output using the pprint() method, close to that used in papers and
books. In addition, one can transform the output to the LaTeX format which is very
popular within the scientific community.

We should note that, as for the jHepWork functions, all mathematical defini-
tions given in Table 3.1 can be used to build SymPy functions as well. The func-
tions can be in any dimensions. For example, if you have a second independent
variable, y, in your mathematical formula, specify this variable using the method
y=Symbol(’y’).

Below we show a code snippet that gives you some feeling about what mathemat-
ical operations can be performed with the SymPy library. The names of the methods
shown below are self-explanatory, so we will be rather brief here:

SymPy examples

from sympy import *

x=Symbol(’x’)
f=x*sin(x)
print ’Differential=’,diff(f, x)
print ’Integral=’,integrate(f,x)
print ’Definite integral=’,integrate(f,(x,-1,1))
print ’Simplify=’,S(f/x, x)
print ’Numerical simplify’,nsimplify(pi,tolerance=0.01)
print ’Limit x->0=’,limit(f/(x*x), x, 0)
print ’Solve=’,solve(x**4 - 1, x)
y=Symbol(’y’)
z=Symbol(’z’)
print ’Combine together=’,together(1/x + 1/y + 1/z)

118 3 Mathematical Functions

The output of this script is given below:

Differential= x*cos(x) + sin(x)
Integral= -x*cos(x) + sin(x)
Definite integral= -2*cos(1) + 2*sin(1)
Simplify= sin(x)
Numerical simplify 22/7
Limit x->0= 1
Solve= [-1, I, 1, -I]
Combine together= (x*y + x*z + y*z)/(x*y*z)

The jHepWork libraries can be used for visualization of the symbolic calculations
performed by the SymPy program. Use the jHepWork functions, F1D and F2D, and
HPlot or HPlot3D (for 2D functions) for graphical canvases. For the conversion
between Java and SymPy Python objects, you will need to use the str() method
that moves SymPy objects into strings.

Below we show how to differentiate a function and show the result on the HPlot
canvas, together with the original function:

Function differentiation

from java.awt import Color
from jhplot import *

c1 = HPlot(’Canvas’)
c1.setGTitle(’Example’, Color.red)
c1.setName(’Differential’)
c1.visible()
c1.setAutoRange()

func=’2*exp(-x*x/50)+sin(pi*x)/x’
f1 = F1D(func, 1.0, 10.0)

now symbolic calculations
from sympy import *
x = Symbol(’x’)
d=diff(S(func), x)

f2 = F1D(str(d), 1.0, 10.0)
f2.setTitle(’Differential’)
f2.setColor(Color.green)
c1.draw([f1,f2])

The only non-trivial place of this code is when we moved the result from the dif-
ferentiation into a string using the str() method. For convenience, we also used
the simplify method, ’S()’, which converts the string representing F1D function
into the corresponding SymPy object. The rest of this code is rather transparent. The
result of the differentiation will be shown with the green line.

3.10 File Input and Output 119

Further discussion of the SymPy package is outside the scope of this book. Please
study the original SymPy documentation.

3.10 File Input and Output

The best way to save jHepWork functions in a file is to use the Java serializa-
tion mechanism. Jython serialization, such as pickle or shelve discussed in
Sect. 2.16, will not work as we are dealing with the pure-Java objects which can only
be saved using the native Java serialization. However, you can use the pickle or
shelve modules in case when you define a Jython function or when using a string
with the function definition.

One can save a function together with its attributes (including graphical ones)
using the Java serialization mechanism. For this, the Serialized class included
to the jhplot.io package can be useful. It takes an Java object and saves it into
a file using the method write(obj). Then one can restore this object back using
the method obj=read(). By default, all objects will be saved in a compressed
form using the GZip format.

Look at the example below which shows how to save a function into a file:

>>> from jhplot import *
>>> from jhplot.io import *
>>>
>>> f1=F1D(’2*sin(x)’)
>>> print p0.getName()
2*sin(x)
>>>
>>> Serialized.write(f1,’file.ser’)
>>>
>>> # deserialize F1D from the file
>>> f2=Serialized.read(’file.ser’)
>>> print ’After serialization:’,f2.getName()
After serialization: 2*sin(x)

The same can be achieved using the standard Java API, so the method write()
from Serialized class is equivalent to:

>>> from java.io import *
>>> f=FileOutputStream("file.ser")
>>> out=ObjectOutputStream(f)
>>> out.writeObject(f1)
>>> out.close()

120 3 Mathematical Functions

while the method read() from the Serialized class is equivalent to:

>>> file = File(’file.ser’)
>>> fin = ObjectInputStream(FileInputStream(file))
>>> f2 =fin.readObject()
>>> fin.close()

One can also write a list of functions, instead of a single function:
Serialization of functions

from jhplot import *
from jhplot.io import *

f1=F1D(’x*x+2’)
f2=F2D("x*y+10")
make list
a=[f1,f2]

write list to a file
Serialized.write(a,’file.ser’)

read functions from the file:
list=Serialized.read(’file.ser’)

f1=list[0]
f2=list[1]
print ’After serialization:\n’
print f1.getName()
print f2.getName()

At this moment, the serialization mechanism is not implemented for FND. How-
ever, generally, the jHepWork functions are relatively simple entities, therefore, one
can just serialize or write a string with the function definition into a file and then use
it to instantiate a new object of this function.

In Chap. 11 we will discuss the input-output (I/O) issues in more detail. We will
learn how to save an arbitrary mix of various jHepWork and Java objects, includ-
ing lists of functions, histograms and arrays. For example, one can write a large
sequence of functions persistently using the HFile class to be discussed later.

References

1. Funk, N.: A Java library for mathematical expressions. URL http://sourceforge.net/projects/jep/
2. The Colt Development Team: The COLT Project. URL http://acs.lbl.gov/~hoschek/colt/
3. Bose, A.: 3D Graph Explorer.
4. T.D.-X. Consortium: The 3D-XPLORMATHJ project. URL http://3d-xplormath.org/
5. SymPy Development Team: SYMPY: Python library for symbolic mathematics. URL http://

www.sympy.org

Chapter 4
One-dimensional Data

4.1 One Dimensional Arrays

Numerical computations based on repetitive tasks with values are not too efficient
in Jython, since loops over objects are slow. This has already been illustrated using
Jython arrays in Sect. 2.14.2. In most cases, what we really what is to manipulate
with primitive data types, such as floats or integers, rather than with immutable
objects used for representation of numbers in Jython. Therefore, our strategy for
this book will be the following:

Jython will be viewed as “interface” type of language, i.e. a language designed
to link and manipulate with high-level Java classes that implement repetitive
operations with primitive types.

In the following chapters, we will discuss objects used for data storage and
manipulation—building blocks from which a typical Java or Jython program can
be constructed. Unlike Jython classes, the objects to be discussed below will be
derived from pure Java classes and imported from the Java libraries of jHepWork.

In this chapter, we will discuss one-dimensional data, i.e. a data set represented
by a sequence of double-precision floating-point real values, N1, N2, . . . ,Nmax. This
is a rather common case for almost any data analysis. Each number can represent,
for example, a value obtained from a single measurement. Below we will discuss
how to build objects which can be used for: (1) generation of one-dimensional data
sets; (2) storing numerical values in containers; (3) writing to or reading from files;
(4) performing numerical analyzes and producing statistical summaries; (5) finally,
for visualization and comparisons with other data sets.

As we are progressing deeper into analysis of one-dimensional (1D) data, you
may be unsatisfied with the simplicity of JythonShell when typing a short code
snippets. We will remind that, in this case, one should write code in files with the
extension ’.py’ and execute such macros using the key [F8] or the [run] button
as described in Sect. 1.4.

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_5, © Springer-Verlag London Limited 2010

121

122 4 One-dimensional Data

4.2 P0D Data Container

The P0D class is among the simplest classes of jHepWork: it does not have any
graphical attributes. This class is designed to keep a sequence of real numbers. It is
similar to the Java ArrayList class, but keeps only double-precision real values
represented with 64 bit accuracy. In some extent, the class P0D is also similar to the
Jython list which keeps a sequence of objects.

For integer values, use the class P0I which has exactly the same methods as
P0D. For the P0I arrays, you may benefit from a lower memory usage and smaller
file size when writing this array into files. Below we will discuss only the P0D class.

Let us construct a P0D object to keep an one-dimensional data set. It is advisable
to annotate it, so we can easily obtain its attribute later:

>>> from jhplot import *
>>> p0=P0D(’measurement’)

where ’measurement’ is a string representing the dataset title.
Let us remind again how we can learn about all methods associated with jHep-

Work objects, like the p0 object described above. Here is the list of various methods
to learn about this object:

• If you are using the JythonShell prompt, type ’p0.’ and press [Ctrl]-
[Space];

• If you are using JythonShell or jHepWork source-code editor, use the method
dir(p) to print its methods;

• If you are using the jHepWork source-code editor, type ’p0.’ and press [F4].
You will get a detailed description of all methods in a pop-up frame. One can
select a necessary method and check its description using the mouse. In addition,
one can copy the selected method to the editor area as described in Sect. 1.4.10;

• If you are using Java instead of Jython and working with Eclipse or NetBeans
IDE, use the code assist of these IDEs. The description of these IDEs is beyond
the scope of this book.

In all cases, you might be impressed by the significant number of methods associated
with the P0D class. But let us go slowly and first discuss its most important methods.

One can obtain the title by calling the method getTitle():

>>> print p0.getTitle()
measurement

One can reassign a new title with the method:

>>> p0=P0D()
>>> p0.setTitle(’new measurement’)

4.2 P0D Data Container 123

Once the p0 object is created, one can add numbers to this container. In practice,
one-dimensional data can be filled from a file or some external sources (this will be
discussed later). Here we show how can add a value to the container:

>>> p0.add(1) # add an integer
>>> p0.add(-4.0) # add a float
>>> p0.add(-4E12) # add a float
>>> p0.set(2,200) # insert the value at the 2nd position

One can obtain the value at a specific index ’i’ using the method get(i).
It should be noted that all values are converted into “double” representation inside

the P0D. The size of the container can be found using the method size(). One can
remove all elements from the container using the method clear():

>>> print p0.size() # size of the data
3
>>> p0.clear() # clean up the container
>>> print p0.size() # again print the size
0

Data from the p0 instance can be obtained in a form of the Jython arrays dis-
cussed in Sect. 2.14:

>>> array=p0.getArray() # array with double numbers
>>> array=p0.getArrayInt() # array with integer numbers

If you want to return a list, instead of arrays, you can call the method
getArrayList() method. One can convert the array into a list using the method
tolist().

A P0D container can be initialized from a Jython list as:

>>> p0.setArray([1,2,3,4])

It should be noted again that, for scripting with Jython, one should use the
setArray() and getArray() methods which are optimized for the speed.
They are much faster than pieces of codes with the methods add() or set()
called inside Jython loops.

One can fill the current P0D from a file (see below), generate a sequence of
numbers or fill the P0D with random numbers. For example, to fill a P0D container
with a sequence of real numbers between 0 and 100, use:

>>> from jhplot import *
>>> p0=P0D(’sequence’)
>>> p0.fill(101,0,100) # numbers from 0-100 (step 1)

124 4 One-dimensional Data

A P0D container can be instantiated from the Jython list:

>>> p0=P0D(’title’,[1,2,3,4]) # with title
>>> p0.P0D([1,2,3,4]) # without title

P0D objects can also be filled with random numbers using a few built-in methods.
For example, uniformly-distributed numbers can be filled as:

>>> p0= P0D(’Uniform distribution’)
>>> p0.randomUniform(1000,0.0,1.0)

The first argument is the number of values to be filled, while the second and third
specify the range for random numbers. One can also generate an array with random
numbers in accordance with a Gaussian (normal) distribution with the mean 0 and
the standard deviation equals one as:

>>> p0= P0D(’Normal distribution’)
>>> p0.randomNormal(1000, 0.0, 1.0)

As before, 1000 is the total number of entries.
We will consider how to fill the P0D class with many other random distributions

in Sect. 9.5. In particular, we will explain how to fill a P0D with random numbers
using various functional forms of probability distributions in Sect. 9.6.

To print a P0D on the screen, use the method toString() that converts the
P0D object into a string representation:

>>> p0=P0D(’measurement’)
>>> p0.add(1); p0.add(2); p0.add(3);
>>> print p0.toString()
1.0
2.0
3.0

In some cases, it is convenient to show data as a table in a separate frame, so one
can sort and search for a particular value. In this case, use

>>> p0.toTable()

This line brings up a table with filled values. Finally, one can use the print()
method for printing using Java System.out.

4.2 P0D Data Container 125

4.2.1 P0D Transformations

One can add, subtract, multiply or divide two P0D objects. Having created two
P0D objects, say p0 and p1, one can apply several mathematical transformations
resulting to new P0D objects:

>>> p0=p0.oper(p1,’NewTitle’,’+’) # add
>>> p0=p0.oper(p1,’NewTitle’,’-’) # subtract
>>> p0=p0.oper(p1,’NewTitle’,’*’) # multiply
>>> p0=p0.oper(p1,’NewTitle’,’/’) # divide

To sort values or reverse their oder, use

>>> p0.sort() # sort in the natural order
>>> p0.reverse() # reverse

Other useful methods are given below:

>>> m=p0.search(val) # first occurrence of ’val’

Here are some other useful methods:

>>> p0=p0.merge(p1) # merge with p0 and p1
>>> p0.range(min,max) # get range between min and max

All values inside the P0D container can be transformed into a new set using an
analytical function and a F1D function discussed in Sect. 3.2. Functions can either
be defined from a string or using Jython functions as shown in Sect. 3.7. We remind
that, to define a function, a user should use the variable x and the functions listed in
Table 3.1. As usual, +, -, * or / and parenthesis () can be used in the definition.

Let us give a simple example. We will create a P0D, initialize it with the list
[1,2,3,4] and transform this list using the function x2 + 1:

Transforming P0D

from jhplot import *

f1=F1D(’x^2+1’)
p0=P0D(’numbers’,[1,2,3,4,5])
print p0.func(’squared+shift’, f1)

The output of this code is:

P0D squared+shift
2.0

126 4 One-dimensional Data

5.0
10.0
17.0
26.0

Note that, in all cases, the objects remain to be the same, only the values will be
modified. If one needs a copy of a P0D object, use the method copy().

One can obtain a new P0D object with all elements smaller, larger or equal of a
specified value. Assuming that p0 is an object with filled values, this can be done
using the following method:

>>> p1=p0.get(d,str)

The method returns a new array with values smaller, larger or equal to an input
value d. The type of operation is specified using a string (shown as str in the
above example), which can be equal to “<”, “>” or “=”, respectively.

4.2.2 Analyzing P0D and Summary Statistics

One can obtain several useful characteristics of the P0D class. First of all, let us
consider the most simple methods, which return double values with certain charac-
teristics of a p0 object of the class P0D:

>>> m=p0.size() # size of P0D
>>> m=p0.getMin() # min value
>>> m=p0.getMax() # max value
>>> m=p0.getMinIndex() # index of min value
>>> m=p0.getMaxIndex() # index of max value
>>> m=p0.mean() # mean value.
>>> m=p0.correlation(p1) # correlation coefficient p1
>>> m=p0.covariance(p1) # covariance
>>> m=p0.getSum() # sum of all values

In the above examples, p1 is another P0D object used to find correlations between
p0 and p1 arrays.

One can also perform a search for a specific value inside the P0D arrays. The
method contains(val) returns true if a value val is found. One can also find
an index of the first occurrence of the specified element inside a P0D array using
the method find(d).

The second set of methods is more elaborate, but it requires execution of the
method getStat(). This method returns a string charactering the entire data set.
Such a summary contains a very comprehensive statistical characteristics of one-
dimensional data set:

4.2 P0D Data Container 127

>>> from jhplot import *
>>> p0=P0D([1,2,3,3])
>>> m=p0.getStat() # evaluates statistics
>>> print m

The execution of the line with getStat() prints a rather long list with the sum-
mary statistics:

Size: 4
Sum: 10.0
SumOfSquares: 30.0
Min: 1.0
Max: 4.0
Mean: 2.5
RMS: 2.7386127875258306
Variance: 1.6666666666666667
Standard deviation: 1.2909944487358056
Standard error: 0.6454972243679028
Geometric mean: 2.213363839400643
Product: 23.99999999999999
Harmonic mean: 1.9200000000000004
Sum of inversions: 2.083333333333333
Skew: 0.0
Kurtosis: -2.0774999999999997
Sum of powers(3): 100.0
Sum of powers(4): 354.0
Sum of powers(5): 1300.0
Sum of powers(6): 4890.0
Moment(0,0): 1.0
Moment(1,0): 2.5
Moment(2,0): 7.5
Moment(3,0): 25.0
Moment(4,0): 88.5
Moment(5,0): 325.0
Moment(6,0): 1222.5
Moment(0,mean()): 1.0
Moment(1,mean()): 0.0
Moment(2,mean()): 1.25
Moment(3,mean()): 0.0
Moment(4,mean()): 2.5625
Moment(5,mean()): 0.0
Moment(6,mean()): 5.703125
25%, 50%, 75% Quantiles: 1.75, 2.5, 3.25
quantileInverse(median): 0.625
Distinct elements: [1.0, 2.0, 3.0, 4.0]
Frequencies: [1, 1, 1, 1]

128 4 One-dimensional Data

Once the method getStat() is called, one can access the following characteris-
tics:

>>> m=p0.variance() # variance
>>> m=p0.stddeviation() # standard deviation
>>> m=p0.standardError() # standard error
>>> m=p0.kurtosis() # kurtosis
>>> m=p0.skew() # skewness
>>> m=p0.median() # median
>>> m=p0.moment(k,c) # k-th order moment

The above methods are quite self-explanatory. The last method returns k-th order
moment of the distribution defined as

∑
i=0((x[i] − mean)k)/size().

4.2.3 Displaying P0D Data

There is only one way to show a P0D array: project it into a histogram. This topic
is extensively covered in Sect. 8.1. Here we will briefly point out that a histogram
is a chart of rectangles drawn on the x-axis whose areas are proportional to the
frequency of a range of variables.

One can build a histogram from a P0D using the two methods:

>>> h=p0.getH1D(bins)
>>> h=p0.getH1D(bins, min, max)

The first method creates a histogram with a given number of bins (bins is an integer
number). The minimum and the maximum values of the X range are determined
automatically. In the second case, one can explicitly specify the number of bins and
the minimum (min) and maximum (max) values.

One question you may ask is this: assume we have two P0D objects. One object
represents x values, the second represents y values. We already know how to check
correlations between these object - use the method correlation() as shown in
Sect. 4.2.2. But how one can display pairs (x, y) on X–Y plots? Below we show
how to do this:

Plotting P0D

from jhplot import *

c1 = HPlot(’Canvas’,600,400)
c1.setGTitle(’X Y plot’)
c1.visible()
c1.setAutoRange()

4.2 P0D Data Container 129

p1=P0D(’numbers’,[1,2,3,4,5])
p2=p1.copy()

f1=F1D(’x^2’)
p2.func(’squared’, f1)
pp=P1D(p1,p2)
c1.draw(pp)

You may notice that we made an extra step by creating an object P1D from two P0D

arrays. We will discuss this object in Sect. 5.1.

Below is an example which shows how to generate random numbers and trans-

form them using the F1D class. The output is shown as a histogram on the HPlot

canvas:

Plotting P0D

from java.awt import Color
from jhplot import *

build a canvas
c1 = HPlot(’Canvas’,600,400)
c1.setGTitle(’Example of P0D data array’, Color.blue)
c1.visible()
c1.setAutoRange()
p0= P0D(’Random normal distribution’)
p0.randomNormal(1000, 0.0, 1.0)

make a copy and transform to a function
f1=’x*cos(x)+2’
p01=p0.copy(f1)
p01.func(F1D(f1))

f2=’exp(x)-2’ # make a new copy and transform
p02=p0.copy(f2)
p02.func(F1D(f2))

h1=p0.getH1D(20) # histogram with 20 bins
c1.draw(h1)

h1=p01.getH1D(100) # histogram with 100 bins
c1.draw(h1)

h1=p02.getH1D(200) # show again
c1.draw(h1)

Run this script and try to make sense of it. If it is not easy, skip this section since we

will return to a very detailed discussion of the histograms in Sect. 8.1.

130 4 One-dimensional Data

4.3 Reading and Writing P0D Files

To fill a P0D object from a ASCII file, assuming that each number is on a new line,
use the method read(). For such files, use # or * for comments at the beginning
of each line.

>>> p0=P0D(’data from ASCII file’)
>>> p0.read(’FileName’)

where ’FileName’ is a string with the file name (the full path should be included).
Data can also be read from a compressed (“zipped”) file as:

>>> p0=P0D(’data from a ZIP file’)
>>> p0.readZip(’FileName’)

or from a gzipped format:

>>> p0=P0D(’data from a GZIP file’)
>>> p0.readGZip(’FileName’)

In all these cases, the methods read(), readZip() and readGZip() return
zero in case of success. Error code 1–2 means that the file not found and 3 indicates
a parse error.

To build a P0D from an ASCII file, use this constructor:

>>> p0=P0D(’measurement’, ’FileName’)

(in this case, GZIP and ZIP form is not supported).
To write a p0 back to an ASCII file, use:

>>> p0.toFile(’FileName’)

Data can be written to a binary file using the so-called big endian format as:

>>> p0.writeBinary(’FileName’)

To read data from an existing binary file, use

>>> p0.readBinary(’FileName’)

In this case, the old content of the p0 object will be erased.

4.3 Reading and Writing P0D Files 131

4.3.1 Serialization

One can save and restore a P0D object containing data and other attributes using the
Java object serialization. jHepWork has a short command for this:

>>> p0.writeSerialized(’FileName’)

The object p0 will be saved in a file with the name ’FileName’ using a com-
pressed format. The method returns zero in case of success. One can restore the
object from the file as:

>>> p1=p0.readSerialized(’FileName’)

where p1 is a new object restored from the input file.
Now let us show an example of how to write a P0D object into an external file

in a serialized form and then how to restore the object back using a handy static
method write(obj) of the class Serialized. To read a P0D object from the
file, use the method read() of the same class. The example below shows this:

Serialized I/O

from jhplot import *
from jhplot.io import *

p0=P0D(’test’)
p0.add(20)
p0.add(12)
print p0.toString()

write to a file
Serialized.write(p0,’file.ser’)

deserialize P0D from the file
p0s=Serialized.read(’file.ser’)
print ’After serialization:’,p0s.toString()

The method write(obj) in this example writes a compressed object obj into a
file. In Sect. 11.2, we will show how to deal with the case when no compression is
used. Often, a program can benefit from the use of uncompressed objects since, in
this case, the CPU time wasted for uncompressing files is avoided.

4.3.2 XML Format

In some cases, it is convenient to write an object to a human-readable XML file, so
one can open it using any editor and look at its structure as well as written data. For

132 4 One-dimensional Data

the XML format, one should use the following methods from the class Serial-
ized of the package jhplot.io:

writeXML(obj,’FileName’) writes a Java object (obj) into a file with the
name FileName;

readXML(’FileName’) reads a file with the name FileName and re-
turns a stored object.

Try to replace the corresponding lines in the above examples and check how the
output was written.

It should be noted that the XML-style is not recommended if there is a lot of data
to be stored, since XML tags increase the file size dramatically. In addition, this
approach may not work for all jHepWork classes.

For your convenience, the package ’jhplot.io’ provides two other important
methods. An object can easily be converted into a XML string using the methods
toXML(obj) and fromXML(str) of the Serialized class. Below we illus-
trate how to print an object in a XML form and then read it back:

>>> from jhplot import *
>>> from jhplot.io.Serialized import *
>>>
>>> p0=P0D(’data’)
>>> str=toXML(p0)
>>> print str
>>> p0=fromXML(str)

To make the code shorter, we imported all methods from the class Serialized.
It should be noted that the serialization can be done using the native Java API.

Below we rewrite the example discussed above using the standard Java serialization
class:

Java serialized I/O

from jhplot import *
from java.io import *

p0=P0D("test")
p0.add(20)
p0.add(12)
print p0.toString()

serialize P0D into a file
f=FileOutputStream("filename.ser")
out =ObjectOutputStream(f)
out.writeObject(p0)
out.close()

Deserialize P0D from the file
file = File(’filename.ser’)

4.3 Reading and Writing P0D Files 133

fin = ObjectInputStream(FileInputStream(file))
p0s =fin.readObject();
fin.close();
print ’After serialization:\n’,p0s.toString()

4.3.3 Dealing with Object Collections

The next question is how to write many P0D objects to a single file. This can easily
be done using Jython lists. The example below writes two P0D objects into a single
file:

Writing multiple P0D objects

from jhplot import *
from jhplot.io import *

p1=P0D(’p1’)
p1.add(10)
p1.add(12)

p2=P0D(’p2’)
p2.add(1000)
p2.add(2000)

make list
a=[p1,p2]

write to a file
Serialized.write(a,’file.ser’)
print ’Ready!’

We can restore all objects from the file as:

Reading multiple P0D objects

from jhplot import *
from jhplot.io import *

deserialize list from the file
f=Serialized.read(’file.ser’)

p1=f[0]
p2=f[1]
print "After serialization:\n"
print p1.toString()
print p2.toString()

134 4 One-dimensional Data

Similarly, one can write objects and read them back using the methods
writeXML(obj) and readXML() discussed before. Finally, one can use Jython
dictionaries for convenient access to the data using the keys.

The serialization can be used for almost any jHepWork class. In Sect. 5.4 we will
show how to use Jython dictionaries to store various objects in a serialized file and
fetch them later using the keys.

To write huge sequences of P0D arrays, the best approach would be to use the
class HFile which will be discussed in Chap. 11 dedicated to input and output of
Java objects.

Chapter 5
Two-dimensional Data

In the previous chapter we have considered the simplest possible data holder that
keeps information about an one-dimensional array of numbers. More frequently,
two-dimensional (or bivariate) data are necessary to consider, when each data point
on the (X,Y) plane is represented by two variables, x and y. Such bivariate arrays
are ideal to show a relationship between two sets of measurements.

5.1 Two Dimensional Data Structures

The P1D class is among the central classes designed for data manipulations in two
dimensions (2D). The name of the P1D class is similar to that of the class F1D used
to construct functions.

The declaration of a P1D object is rather similar to that considered for the P0D
class. However, this time, the container should be filled with at least two numbers
using the method add(x,y):

>>> from jhplot import *
>>> p1=P1D(’x-y points’)
>>> p1.add(10,20)
>>> p1.add(20.,40.)

In this short example we declare the object P1D with the title ’x-y points’ and
then fill it with two points using the method add(x,y). Each point is represented
by two numbers (either integer or float).

As it has been stated before, the method add(x,y) is not the most optimal,
especially when it is used inside Jython loops. To avoid performance penalty, use
high-level methods of this class for passing containers with numbers, rather than
numbers themselves. In the example shown below, we fill a P1D from two P0D
arrays which, in turn, can also be filled using high-level methods as discussed in the
previous chapter:

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_6, © Springer-Verlag London Limited 2010

135

136 5 Two-dimensional Data

>>> from jhplot import *
>>> p1=P1D(’x-y points’)
>>> p01=P0D(’px’); p02=P0D(’py’)
>>> ax=p01.randomNormal(100,1.0,0.5)
>>> ay=p02.randomNormal(100,10.0,1.0)
>>> p1.fill(ax,ay)

In the above example, we fill two P0D arrays with random numbers in accordance
with the normal distributions and use these arrays to fill a P1D object. The code
above can be shortened, since the P0D arrays can also be passed to the P1D con-
structor as:

>>> p1=P1D(’x-y points’,p01,p02)

Of course, make sure that the sizes of the input arrays are the same.
Having filled the array P1D, one can replace data points using the method

set(i,x,y), where ’i’ denotes a position (index) of the (x, y) point inside
the array. The array can be cleaned up with the method clear(), while the array
size can be found using the method size().

Finally, one can extract data points using the methods getX(i) and getY(i)
(0 ≤ i < size()). Or, one can get arrays for x and y values without looping over all
elements inside the container as:

>>> from jhplot import *
>>> p1= P1D(’x-y points’)
>>> p1.add(10,20)
>>> p1.add(20,50)
>>> ax=p1.getArrayX() # get all X values as array
>>> ay=p1.getArrayY() # get all Y values as array

One can also initialize a P1D from an external file as:

>>> p1= P1D(’data from file’,’data.d’)

The format of the input file is rather simple: each pair of numbers should be on a
new line. To include comments, use ’#’ at the beginning of each line. Later we will
discuss the I/O topics in more detail.

5.2 Two Dimensional Data with Errors

A P1D object is not as simple as it first may look like—it can also hold information
on errors on x and y values.

5.2 Two Dimensional Data with Errors 137

Fig. 5.1 An illustration of a
P1D array characterized by
ten numbers: two numbers
represent positions of a data
point on the (x, y) plane,
while other eight represent
1st and 2nd level
uncertainties (see the text).
The figure displays several
methods to access the
information on a single data
point defined by an index i

There are two different types of errors: one type comes from the fact that there
is always inherent statistical uncertainty in counting random events. Usually, such
uncertainties are called statistical or random errors. Also, we will call such errors
“1st-level errors” when discussing various technical aspects.

The second type of uncertainties are called “systematical errors”, which mainly
originate from instrumental mistakes. For the P1D, we will call such uncertainties
“2nd-level errors”.

Thus, a single point at a position (x, y) is characterized by ten double-precision
numbers: two numbers give the central position in (x, y) and other eight numbers
specify its errors. A single point with 1st and 2nd errors is illustrated in Fig. 5.1,
together with the “getter” methods used to access all characteristics of a P1D object.

Why do we need this complication when dealing with 2D data? Is it not enough
to represent a relationship between two sets of data with two arrays? For example,
a P1D can contain information on a set of points representing positions of particles
in two dimensions: Each particle will be characterized by the position on the (x, y)

surface, while the total number of particles will be given by the size of the P1D
array. Well, in this case, you do not need indeed extra information to be stored in
this data holder. Probably, you would not need even such a data holder, since one can
use the usual Jython or Java arrays or the PND class to be discussed in the following
chapters. However, there are many situations when each data point represents many
measurements. In this case, one should store possible uncertainties associated with
the measurements, which can have either statistical or systematical nature (or both).
And this is why P1D becomes really handy, since this class is optimized exactly for
such tasks.

Let us give a simple example. Assume we measure the average number of cars
parked per week day on some parking spot. If the measurements are done during
one month, there should be seven measurements for each day of the week. We cal-
culate the average for each week day, and represent the entire measurement with
seven numbers. Each number has a statistical uncertainty, which is assumed to be
symmetric. The measurements can be represented by a single P1D container which,
for example, can be filled for two week days as:

138 5 Two-dimensional Data

>>> from jhplot import *
>>> p1= P1D(’average number of cars with errors’)
>>> p1.add(1,av1,err1) # average for Monday
>>> p1.add(2,av2,err2) # average for Tuesday

where av1 and av2 are the averages for each week day, and err1 and err2
represent their statistical uncertainties.

Let us continue with our hypothetical example and estimate systematical uncer-
tainties which reflect inaccuracies of our apparatus. Of course, for this particular
example, we do not have any apparatus, but our measurements still may suffer from
the uncertainties related to inaccuracies of our observations. We again assume that
the systematical uncertainties are symmetric. In case of the 1st and 2nd level errors,
we can fill the P1D as:

>>> from jhplot import *
>>> p1= P1D(’average number of cars with errors’)
>>> p1.add(1,av1,0,0,err1,err1,0,0,sys_err1,sys_err1)
>>> p1.add(2,av2,0,0,err2,err2,0,0,sys_err2,sys_err2)

where av1 and av2 are the averages of two different measurements, ’err1’ and
’err2’ their 1st-level errors (i.e. statistical errors). The 2nd-level errors (system-
atical errors) are added using the ’sys_err1’ and ’sys_err2’ values.

You may wonder, why err and sys_err have been passed to the add()
twice? The reason is simple: we have used a rather general method, which can also
be applied for adding asymmetrical errors. In addition, we had to type “0” which
tells that there are no errors attributed for the X-axis. The last point can be clear if
we will give the most general form of the add() method:

>>> p1.add(x,y,xLeft,xRight, # 1st errors on X
yUpper,yLower, # 1st errors on Y
xLeftSys, xRightSys, # 2nd errors on X
yUpperSys,yLowerSys) # 2nd errors on Y

where xLeft (xRight) represents a lower (upper) 1st level error on the X-axis.
For the (x − y) plots, this is represented by a line started at the central position
and extended to the left (right) from the central point (see Fig. 5.1). Analogously,
yUpper (yLower) is used to indicate the upper (lower) uncertainty for the Y -axis.
Next, four other numbers are used to show the 2nd level uncertainties for the X and
Y axes. As discussed before, such uncertainties are usually due to some systematic
effects reflecting instrumental uncertainties not related to statistical nature.

In many cases, we do not care about systematical uncertainties, so one can use
several shortcuts. We have already shown that if one needs to specify only symmet-
rical statistical uncertainties on the Y -axis then one can use this method:

5.2 Two Dimensional Data with Errors 139

p1.add(x,y,err) # fills X,Y and symmetric error on Y

where err is a statistical error on the y value, assuming that it is equal to
yUpper=yLower. All other errors are set to zero. If the error on Y is asymmetric,
use this method:

p1.add(x,y,err_up, err_down)

where err_up and err_down are symmetric upper and lower error on y. If there
are only 1st-level errors, then one can fill a P1D as:

p1.add(x,y,xLeft,xRight,yUpper,yLower)

while the 2nd level errors are set to zero.
Table 5.1 lists the main “setter” methods associated with the P1D class.
Occasionally, it is convenient to reset all errors to zero. For this, use the method:

>>> p1.setErrToZero(a) # set 1st level errors to 0
>>> p1.setErrAllToZero(a) # set 1st and 2nd error to 0
>>> p1.setErrSysToZero(a) # set 2nd level error to 0

where a=0 for x values and a=1 for y values.
In addition, you may need to generate new errors from the numbers of counted

events, when statistical uncertainty for each y value is the squared root of counted
numbers [1]. If y represents the counted number of events, its statistical error is

√
y

(upper and lower). One can build a new P1D by assigning the 1st level errors for x

and y separately:

>>> p1.setErrSqrt(a) # set 1st level errors

Errors are set on x (y) when a=0 (a=1).
Table 5.2 gives “getter” methods used to access characteristics of this object.
To get index with either minimum or maximum value, use:

>>> p1=p1.getMinIndex(a) # index with min
>>> p1=p1.getMaxIndex(a) # index with max

where a=0 for x values and a=1 for y values.
Finally, one can use the method integral(i1,i2) that returns the integral

between two indexes, i1 and i2 of a P1D data. For this operation, the integration is
a sum over all y values, so it is rather similar to the integration of one-dimensional
functions.

140 5 Two-dimensional Data

Table 5.1 Some methods used to fill a P1D container. In the methods shown in this table, “b”
indicates a boolean value (1 for true and 0 for false), while “i” is an integer parameter

Methods Definitions

add(x,y) add (X,Y) (all errors are 0)

add(x,y,err) add (X,Y) and 1st level error on Y

add(x,y,up,down) add (X,Y) and asymmetric 1st level errors on Y

add(x,y,left,right,up,down) add (X,Y) and asymmetric 1st level errors on X

and Y

add(x,y,left,right,upper,lower,leftSys,
rightSys,upperSys,lowerSys)

add (X,Y) and asymmetric 1st and 2nd level
errors on X and Y insert (X,Y) at position i (all
errors are 0)

set(i,x,y,err) insert (X,Y) and 1st level error on Y

set(i,x,y,up,down) add (X,Y) and asymmetric 1st level errors on Y

set(i,x,y,left,right,up,down) insert (X,Y) and asymmetric 1st level errors on
X and Y

set(i,x,y,left,right,upper,lower,leftSys,
rightSys,upperSys,lowerSys)

insert (X,Y) and asymmetric 1st and 2nd level
errors on X and Y

replace(i,x,y) replace (X,Y) at position i (all errors are 0)

replace(i,x,y,err) replace (X,Y) and 1st level error on Y

replace(i,x,y,up,down) replace(X,Y) and asymmetric 1st level errors
on Y

replace(i,x,y,left,right,up,down) replace (X,Y) and asymmetric 1st level errors on
X and Y

replace(i,x,y,left,right,upper,lower,leftSys,
rightSys,upperSys,lowerSys)

replace (X,Y) and asymmetric 1st and 2nd level
errors on X and Y

fill(arrayX,arrayY) fills from 2 arrays

fill(arrayX,arrayY,arrayE) fills from 3 arrays with errors

fill(arrayX,arrayY,arrayUP,arrayDOWN) fills from 4 arrays with errors

fill(arrayX,arrayY ..+ 8 arrays with errors) fills from 10 arrays with full sets of errors

fill(P0D,P0D) fills from 2 P0D arrays

fill(P0D,P0D,P0D) fills from 3 P0D arrays with errors

setTitle(‘text’) set a title

5.2.1 Viewing P1D Data

In addition to the Java serialization mechanism used to store the P1D containers,
which will be discussed in detail later, one can store entries from a P1D in a human-
readable format. For example, one can write data in ASCII files using the method:

>>> p1.toFile(’newfile.d’)

5.2 Two Dimensional Data with Errors 141

Table 5.2 Some methods for accessing information about a P1D object. In the methods shown in
this table, “b” indicates a boolean value (“1” is false, “0” is true), while “a” is an integer parameter
indicating the axis (a=0means X-axis, a=1means Y -axis). The notation “d” denotes a float value,
while ‘text’ represents a string

Methods Definitions

copy() copy to new P1D

size() size of the data

getMin(a) min value for axis

getMax(a) max value for axis

getMaxIndex(a) get index of max value for axis

getMinIndex(a) get index of min value for axis

mean() mean value

integral(i1,i2) sum up all Y -values between i1 and i2

updateSummary() update summaries after adding a value

getArrayX() get array with all X values

getArrayY() get array with all Y values

getArrayXleft() get array with all left X-errors

getArrayXright() get array with all right X-errors

getArrayXleft() get array with all left X-errors

getArrayXrightSys() get array with all right X-2nd level errors

getArrayXleftSys() get array with all left X-2nd level errors

getArrayYlower() get array with all lower Y -errors

getArrayYupper() get array with all upper Y -errors

getArrayYlowerSys() get array with all lower 2nd-level Y -errors

getArrayYupperSys() get array with all upper 2nd-level Y -errors

getTitle() get title

getX(i) X value at index i

getY(i) Y value at index i

getXleft(i) left error on X at index i

getXright(i) right error on X at index i

getXleftSys(i) left 2nd error on X at index i

getXrightSys(i) right 2nd error on X at index i

getYupper(i) upper error on Y at index i

getYlower(i) lower error on y at index i

getYupperSys(i) upper 2nd error on Y at index i

getYlowerSys(i) lower 2nd error on Y at index i

142 5 Two-dimensional Data

where ’newfile.d’ is the name of the output file. One can also export data into
a LaTeX table as

>>> from java.text import DecimalFormat
>>> format=DecimalFormat("##.####E00")
>>> p1.toFileAsLatex("Output.tex",xformat,xformat)

One should specify an appropriate format for the numbers to be stored the LaTeX
table. We remind that the class DecimalFormat is used to format decimal num-
bers in the Java platform. The pound sign (’#’) denotes a digit, and the dot is a
placeholder for the decimal separator. Please refer to the Java API documentations
of this class.

Also, one can print a P1D container on the console as

>>> p1.print()

To print the stored values on the JythoShell prompt, convert the p1 object into a
string and print it using the standard print method:

>>> print p1.toString()

In some cases, it is convenient to show data as a table in a separate frame, so one
can sort and search for a particular value. In this case, use the statement:

>>> p1.toTable()

which brings up a frame showing the data inside a table. The method calls the
class HTable to be discussed in Sect. 12.4. Analogously, data can be exported
to a spreadsheet as discussed in Sect. 12.4.

5.2.2 Plotting P1D Data

In oder to display a P1D representing a set of bivariate data, the usual HPlot can-
vas discussed in Sect. 3.3 can be used. To plot data, follow the same steps as for
drawing F1D functions: first, create a canvas and then use the draw(obj) method
to display a P1D object on a scatter plot:

>>> from jhplot import *
>>> c1=HPlot(’Canvas’)
>>> c1.visible()
>>> c1.setAutoRange()
>>> p1=P1D(’x-y points’, ’data.d’)
>>> c1.draw(p1)

5.2 Two Dimensional Data with Errors 143

Table 5.3 The most important methods for graphical representation of a P1D. “b” indicates a
boolean value (1 for true and 0 for false), while “i” is an integer parameter. The notation “d”
indicates a float value. The attributes “c” and “f” correspond to the Color and Font classes of
Java AWT, while ‘text’ represents a Jython string

Methods Definitions

setStyle(‘text’) set as symbols (“p”) or line (“l”)

setSymbolSize(i) symbol size

setSymbol(i) symbol type i=0-12:

0: not filled circle

1: not filled square

2: not filed diamond

3: not filled triangle

4: filled circle

5: filled square

6: filed diamond

7: filled triangle

8: plus (+)

9: cross as (x)

10: star (*)

11: small dot (.)

12: bold plus (+)

setColor(c) set the line color

setPenWidh(i) width of the line

setPenDash(i) dashed style with “i” being the length

setLegend(b) set (b=1) or not (b=0) the legend

setTitle(‘text’) set a title

In this example, we first create a P1D object from an ASCII input file, and then we
display data as a collection of points on the (x, y) plane.

Table 5.3 shows the most important graphical attributes associated with the P1D
class.

It should be noted that one can edit the plot using a pop-up menu Edit which
allows to change some attributes. Click on the right mouse button to access a GUI-
driven dialog with the menu.

There are many methods which come together with the P1D data holder to dis-
play error bars, assuming that error values have been filled before. To display errors,
use the methods:

>>> p1.setErr(1) # show 1st level errors
>>> p1.setErrSys(1) # show 2nd level errors

which should be set before drawing the p1 object on the canvas.

144 5 Two-dimensional Data

Table 5.4 The most important methods for a graphical representation of the P1D errors. “b” in-
dicates a boolean value (1 for true and 0 for false), while “i” is an integer parameter. The notation
“d” indicates a float value. The attributes “c” and “f” correspond to the Color and Font classes
of Java AWT, while ‘text’ represents a Jython string

Methods Definitions

setErrAll(b) set all errors (1st and 2nd level)

setErrX(b) set error on X or not

setErrY(b) ser error on Y or not

setErrColorX(c) color used for X error bars

setErrColorY(c) color used for Y error bars

setPenWidthErr(i) line width for 1st level errors

setPenWidthErrSys(i) line width for 2nd level errors

setErrSysX(b) set or not 2nd level error on X

setErrSysY(b) set or not 2nd level error on Y

setErrFill(b) fill or nor the area covering errors

setErrFillColor(c) fill color

setErrFillColor(c,d) fill color + transparency level “d”

setErrSysFill(b) fill or not 2nd level errors

setErrSysFillColor(c) fill color

setErrSysColor(c,d) as before + transparency level “d”

Table 5.4 shows various methods for controlling the attributes of the errors bars.
As you can see, there are two separate methods to modify the horizontal and vertical
error bars. The “getter” methods are similar, but start with the “get” string instead
of “set”.

5.2.3 Contour Plots

The HPlot canvas can be used to display P1D data in a form of a contour plot.
For such type of plots, we draw colored regions which show the density population,
instead of showing separate particles. It is required to bin a (x, y) plane in x and y:
the smaller the bin size is, the more chances to resolve a fine structure for the plotted
density distribution.

To set up the canvas HPlot for showing contour plots, use the method
setContour(1). Table 5.5 shows some methods to setup a contour plot.

It should be noted that there is a special canvas, called HPlot2D, which is de-
signed to show the contour plots and has more options for manipulations. Please
read Sect. 10.11 for more details.

5.3 Manipulations with P1D Data 145

Table 5.5 HPlot methods for displaying contour plots. “b” indicates a boolean value (1 for true
and 0 for false), while “i” is an integer parameter

Methods Definitions

setContour(b) sets (or not) the contour style

setContourLevels(i) the number of color levels

setContourBins(iX,iY) the number of bins in X and Y

setContourBar(b) set (or not) a color line showing levels

setContourGray(b) set (or not) white-black style

5.3 Manipulations with P1D Data

The P1D containers are designed from the ground to support numerous mathemati-
cal operations. The operations do not create new objects, but just modify the original
containers. To create a new P1D object, use the method copy(). For example:

... p1 is created above...
>>> p2=p1.copy() # now p2 is different object
>>> c1.draw(p1) # draw two different objects
>> c1.draw(p2)

One can merge two P1D containers into one using the method merge(). One
can also add, divide, subtract and multiply the P1D objects. Let us read two P1D
containers from files and perform such operations:

>>> p1=P1D(’first’,’data1.d’)
>>> p2=P1D(’second’,’data2.d’)
>>> p3=p1.merge(p2) # merge 2 P1D’s into one
>>> p1.oper(p2,’NewTitle’,’+’) # add p1 and p2
>>> p1.oper(p2,’NewTitle’,’-’) # subtract p2 from p1
>>> p1.oper(p2,’NewTitle’,’*’) # multiply p1 by p2
>>> p1.oper(p2,’NewTitle’,’/’) # divide p1 by p2

The execution speed of these operations is significantly faster compare to equivalent
Jython codes based on loops, since all such methods are implemented in the form of
Java libraries. One can skip the string with a new title if you want to keep the same
title as for the original P1D. For example, in this case, the additive operation will
be p1.oper(p2,’+’). All graphical attributes are preserved during such data
manipulations.

For the above operations, the errors on p3 will be propagated accordingly as-
suming that all 1st and 2nd-level errors associated with p1 and p2 are independent
of each other. For the error propagation, we use a rather standard prescription [1].

To scale a P1D with a number, use the statement:

146 5 Two-dimensional Data

>>> p1.operScale(a, scaleFactor)

where scaleFactor is a double or an integer number. If a=0 (Java boolean
‘false’), the scaling is applied for x, if a=1, the scaling is applied for y. The ti-
tle is optional for this operation. It is important to know that the factor ’scale-
Factor’ scales the 1st and 2nd levels uncertainties as well. If you need to scale
only errors, use:

>>> p1.operScaleErr(a, scaleFactor)

which scales only the 1st-level errors for either X (a=0) or Y (a=1) axis. If one
needs to scale also the 2nd-level errors, use:

>>> p1.operScaleErrSys(a, scaleFactor)

which works exactly as the method operScaleErr(), but this time it is applied
for the 2nd-level errors.

Finally, to extract a range of P1D points from the original data container, use

>>> p1=p1.range(min,max)

where min and max are integer numbers denoting the range.

5.3.1 Advanced P1D Operations

5.3.1.1 Operations with Correlations

The operations considered above assume that there are no correlations between two
data holders. In reality, data from different measurements can correlate, so do P1D
containers corresponding to such measurements. In this case, one can also specify
a correlation coefficient and use it for mathematical operations. A correlation coef-
ficient should be represented with an additional P1D container used for the actual
mathematical manipulations. The correlation coefficients should be added using the
add() method and included at the positions of errors (statistical or systematical).
Look at the example below where we assume that there is a 50% correlation between
two data sets:

Adding data with correlations

from jhplot import *

5.3 Manipulations with P1D Data 147

fill data set 1 points with 2 points
p1= P1D(’data1’)
use only 1st-level errors on Y
p1.add(10,100,5,5)
p1.add(20,50,5,5)

fill data set 2 with 2 points
p2= P1D(’data2’)
use only statistical errors on Y
p2.add(10,40,5,5)
p2.add(20,40,5,5)

add with 50% correlations
corr=P1D(’correlation coefficients’)
corr.add(0,0,0.5,0.5)
corr.add(0,0,0.5,0.5)
add them. Do not do anything with X
p50=p1.copy()
p0=p1.copy()
p50.oper(p2,’added with 50% corr.’,’+’,’Y’,corr)
print p50.toString()
p0.oper(p2,’added with 0% corr.’,’+’)
print p0.toString()

The output of this script shows that the (x, y) values remain to be the same, but the
statistical errors are different for the case with 50% correlations and without any
correlations.

Analogously, one can include correlations for the 2nd-level errors (see the API
description for this method). The same feature is supported for any operation, such
as subtraction, multiplication and division.

5.3.1.2 Functional Transformation

One can also transform a P1D data using a mathematical function. The error prop-
agation is done for x or y components (or for both). The following functions are
supported: “inverse” (1/y), square (y ∗ y) “sqrt” (square root), “exp” (exponential),
“log” (log10(y)) and all trigonometrical functions. The example given below illus-
trates a generic usage of this functional transformation:

>>> p1=p1.move(’function’, ’a’)

where ’function’ is a string defining a function used for the transformation, and
’a’ is a string indicating the axis, which can either be “X” (apply the transforma-
tion for x values), “Y ” (apply the transformation for y values) or “XY ” (transform
both x and y). For example:

148 5 Two-dimensional Data

>>> p1=p1.move(’log’, ’Y’)

transforms all y values to log10(y). Errors for the p1 container will be transformed
appropriately.

5.3.1.3 Smoothing

For some situations, you may be interested in smoothing P1D values. This can be
done by averaging over a moving window of a size specified by the method param-
eter: if the value of the parameter is “k” then the width of the window is 2 ∗ k + 1. If
the window runs off the end of the P1D only those values which intersect are taken
into account. The smoothing may optionally be weighted to favor the central value
using a “triangular” weighting. For example, for a value of “k” equal to 2 the central
bin would have weight 1/3, the adjacent bins 2/9, and the next adjacent bins 1/9.
Errors are kept to be the same.

All of this can be achieved using the command:

>>> p2=p1.operSmooth(a,b,k)

where “a” defines the axis to which the smoothing is applied, i.e. it can be either
a=0 (for the “X” axis) or a=1 (for the “Y ” values). When b=1 (boolean “true”) then
x or y values are weighted using a triangular weighting scheme favoring bins near
the central bin, and “k” is the smoothing parameter which must be non-negative. If
zero, the original P1D object will be returned with no smoothing applied.

One can also convert a P1D into a Gaussian smoothed container in which each
band of the original P1D is smoothed by discrete convolution with a kernel approxi-
mating a Gaussian impulse response with the specified standard deviation. This can
be done using the command:

>>> p2=p1.operSmoothGauss(a,sDev)

where “sDev” is the standard deviation of the Gaussian smoothing kernel (must be
non-negative).

5.3.2 Weighted Average and Systematical Uncertainties

When there are several different measurements with different values xi and known
errors σi (or variance, σ 2

i), then it is reasonable to combine the measurements using
the so-called weighted average method. In this case, the value x for best estimate
and its variance are given by

5.3 Manipulations with P1D Data 149

x =
∑

(xi/σ
2
i)/

∑
(1/σ 2

i)

σ 2 = 1/
∑

(1/σ 2
i)

Such calculation can be done in one line as:

>>> p1.addAndAverage(P1D[])

Let us explain this method. Assume there is a measurement represented by a p1 and
additional measurements represented by an array of P1D objects. Then, after calling
the above method, p1 will represent a weighted average with the corresponding 1st-
level errors.

The class P1D is also very useful when one needs to evaluate systematical un-
certainties of many measurements. If we have several measurements with different
resulting outcomes, and each measurement is represented by a P1D data holder, one
can obtain a P1D representing the final measurement using the method getSys()
which returns the final P1D object with systematical uncertainties. Let us illustrate
this using generic example:

>>> p0= P1D(’default’) # original measurement
>>> pp=[]
>>> p1= P1D(’data1’) # other measurements
>>> pp.append(p1)
>>> p2= P1D(’data2’)
>>> pp.append(p2)
>>> p3= P1D(’data3’)
>>> pp.append(p3)
>>>
>>> psys=p0.getSys(pp) # build uncertainties
>>> psys.setErr(1)
>>> c1.draw(psys)

It should be noted that the systematical uncertainties are added in quadrature, thus
they are assumed to be independent of each other.

One can also face with the situation like this: there are three P1D objects, the
first contains an array with the central values and two others represent lower and
upper deviations. One can build a new P1D with the 2nd level errors that represent
the differences between the central P1D values and the upper and the lower P1D
using the method operErrSys(’title’,a, p1,p2), where ’a’ represents
the axis (0 for X, 1 for Y), and p1 and p2 are objects for the lower and upper errors.
The example below illustrates this for two data points:

Errors from two input P1D

from java.awt import Color
from jhplot import *

150 5 Two-dimensional Data

c1 = HPlot(’Canvas’)
c1.visible()
c1.setRange(5,25,70,120)
c1.setGTitle(’Uncertainties’,Color.blue)

p1= P1D(’Central’)
p1.setColor(Color.blue)
p1.add(12,100); p1.add(22,80)

p2= P1D(’Lower’)
p2.add(10,90); p2.add(20,75)
c1.draw(p2)

p3= P1D(’Upper’)
p3.add(10,110); p3.add(20,96)
c1.draw(p3)

p0=p1.operErrSys(’Data’,1,p2,p3)
p0.setErrSys(1)
p0.setPenWidthErrSys(2)
c1.draw(p0)

This script plots a p0 object with new 2nd-level errors given by the difference be-

tween the input P1D containers. The output plot is shown in Fig. 5.2. The container

with the central values can contain statistical errors, while statistical errors in the

input P1D containers are ignored.

Fig. 5.2 Displaying a new P1D object with the 2nd-level errors given by two other P1D containers

5.4 Reading and Writing P1D Data 151

5.4 Reading and Writing P1D Data

5.4.1 Dealing with a Single P1D Container

The P1D containers can be saved into a file and restored later. As for the P0D class,
one can fill a P1D container from a text ASCII file using the method read(). We
remind that each (x, y) pair should be on a separate line, and x and y should be
separated by a space. One can use the characters # or * at the beginning of each line
for comments:

>>> p0=P1D(’data from ASCII file’)
>>> p0.read(’FileName’)

In this example, ’FileName’ is a string with the file name (the full path should
be included). One can use a shorter version of the code above by passing a file name
directly to the constructor:

>>> p0=P1D(’data from ASCII file’, ’FileName’)

as was illustrated before. Data can also be read from a compressed (Zip) file:

>>> p0=P1D(’data from a ZIP file’)
>>> p0.readZip(’FileName’)

or from a file in the Gzip format:

>>> p0=P1D(’data from a GZIP file’)
>>> p0.readGZip(’FileName’)

In all cases, the methods read(), readZip() and readGZip() return zero in
case of success. The error code 1 or 2 tells that the file not found. If a parse error
occurs, the reaGZip() method returns 3.

To write a P1D data into an ASCII file, use the following method:

>>> p0.toFile(’FileName’)

There is another handy method: one can store data in the LaTeX format as:

>>> from java.text import DecimalFormat
>>> format=DecimalFormat(’##.####E00’)
>>> p0.toFileAsLatex(’FileName’, format, format)

152 5 Two-dimensional Data

where ’format’ is an instance of the DecimalFormat class from the Java
package java.text. We passed the object ’format’ twice, one for x values
and one for y values.

It should be pointed out that, for the above examples, we could only write (read)
data. All graphical attributes are completely lost after saving the data in ASCII files.
But there is another more elegant way to save a P1D object: As for any jHepWork
object, one can save and restore P1D data and other attributes (including those used
for graphical representation) using the Java serialization mechanism.

To serialize the entire P1D object into a file, use the method below:

>>> p0.writeSerialized(’FileName’)

which writes the object p0 including their graphical attributes into a file with the
name ’FileName’. The method returns zero in case of no I/O problem occurs.
One can restore the object from this file as:

>>> p1=p0.readSerialized(’FileName’)

where p1 is a new object from the file.
The example below shows how to write a P1D into an external file in a serialized

form and then restore the object back:

P1D serialization

from jhplot import *
from jhplot.io import *

p1=P1D(’x-y data’)
p1.add(10,20)
p1.add(12,40)
print p1.toString()

write to a file
Serialized.write(p1,’file.ser’)

deserialize P1D from the file
p1s=Serialized.read(’file.ser’)

print ’After serialization:’,p1s.toString()

The serialization to the XML format can be achieved using the writeXML()
and readXML() methods of the same Serialization class. This class also
allows to convert the container into XML strings using the toXML() method.

5.4 Reading and Writing P1D Data 153

5.4.2 Reading and Writing Collections

One can write any number of P1D objects into a single file using the serialization
mechanism. The idea is simple: put all P1D objects into a list and then serialize the
entire list in one step. Of course, one can use Jython tuples or dictionaries instead
of using lists.

Below we show how to save two different objects, P0D and P1D, into one file
and then restore them later:

Serialization of multiple containers

from jhplot import *
from jhplot.io import *

p1=P1D(’p1 data’)
p1.add(10,20); p1.add(12,40)
print p1.toString()

p2=P0D(’p2 data’)
p2.add(1000); p2.add(2000)
print p2.toString()

a=[p1,p2] # make a list

write to a file
Serialized.write(a,’file.ser’)

deserialize list from the file
list=Serialized.read(’file.ser’)

p1,p2 = list[0], list[1]
print ’After serialization:\n’
print p1.toString()
print p2.toString()

We should note again that one can also use the standard Java for the serialization
mechanism as shown in Sect. 4.3.

It is more convenient to use Jython dictionaries to store different objects, since
there will be no need for memorizing the order of objects in the list or tuple holding
other objects. We remind that, in case of dictionaries, we have one-to-one relation-
ship between the keys and the corresponding values. Below we write three objects
into a file, P1D, P0D and F2D, using the keys for easy retrieval:

Serialization using dictionaries

from jhplot import *
from jhplot.io import *

hold = {} # create empty dictionary

154 5 Two-dimensional Data

p1=P1D(’p1dobject’)
p1.add(10,20); p1.add(12,40)
hold[p1.getTitle()] = p1

p2=P0D(’p0dobject’)
p2.add(1000); p2.add(2000)
hold[p2.getTitle()] = p2

f1=F2D(’2*x*sqrt(2*y)’)
hold[’f2dobject’] = f1

write the dictionary to a file
Serialized.write(hold,’file.ser’)

deserialize the dictionary
newhold=Serialized.read(’file.ser’)

print newhold.keys() # print all keys

fetching objects using keys and print them
print ’After serialization:\n’
print ’P1D = ’,newhold[’p1dobject’].toString()
print ’P2D = ’,newhold[’p0dobject’].toString()
print ’F2D = ’,newhold[’f2dobject’].getName()

In this example, we create a dictionary hold to store different objects using the
keys (strings). We used the title strings as the keys for the P1D and P0D objects.
Then we write this dictionary into a file. In the second part of this code, we read
the dictionary from the file and restore all the objects back using the corresponding
keys. For example, the object newhold[’p1dobject’] gives an access to the
P1D object stored in the dictionary. It should be noted that the keys can be any
Jython objects, not only strings.

Finally, one can store and retrieve data using the HFile class which is de-
signed to work with large sequences of arbitrary Java objects, including P1D (see
Chap. 11).

5.5 Real-life Example I: Henon Attractor

We will illustrate a typical program based on the P1D class. For our example, we
will consider a Henon map (or Henon attractor) [2, 3]. The Henon map can be
written as the coupled equations:

xn+1 = yn + 1 − a ∗ x2
n

yn+1 = b ∗ xn

5.6 Real-life Example II. Weighted Average 155

The parameters are usually set to the canonical values, a = 1.4 and b = 0.3. This
simple equation is known to exhibit properties of an attractor with a fractal structure
of its trajectories (the so-called strange attractor).

Let us show how to program this attractor using the P1D class. To visualize the
attractor on the (x, y) plane, the SPlot canvas will be used as a light-weight alter-
native to the HPlot class considered before. The SPlot class will be discussed in
detail in Sect. 10.9. Here we will note that this canvas has a low memory footprint,
and can be used for easy zooming in to rectangle.

The code snippet that implements the Henon map with 10000 iterations are
shown below:

Henon attractor

from jhplot import *

a = 1.4; b = 0.3
p=P1D(’Henon attractor’)
p.setSymbol(11)
x=0
y=0
for i in range(10000):

x1=x
x=1+y-a*x*x
y=b*x1
p.add(x,y)

c1 = SPlot()
c1.setGTitle(’Henon attractor’)
c1.visible()
c1.setAutoRange()
c1.draw(p)

Figure 5.3 shows the resulting image for a = 1.4 and b = 0.3. One can exam-
ine the fine structures of this attractor by zooming into a specific rectangular
area of the plot by clicking and dragging the mouse to draw a rectangle where
desired. One can also replace the method setAutoRange() with the method
setRange(xmin,xmax,ymin,ymax) and re-running the script (the argu-
ments of this method define the zooming rectangle).

In Sect. 10.9, we will rewrite this example using another approach in which we
will directly populate the canvas with (x, y) points without using the intermediate
step based on the P1D class.

5.6 Real-life Example II. Weighted Average

In this section we will consider how to find a weighted average of several measure-
ments and plot it together with the original measurements. The weighted average

156 5 Two-dimensional Data

Fig. 5.3 The Henon attractor. Use the mouse for zooming in order discover its fine structure

of a list with P1D objects was already considered in Sect. 5.3.2. In addition, this
example shows somewhat technical issue: how to mix Java with Jython classes.

For an educational purpose, we will diverge from our original concept which
stated that all CPU intensive calculations should be managed inside Java libraries.
For this example, we create a custom Jython class “measurement” mixing Jython
with Java class P1D. The latter will be used mainly for graphical representation.

Let us create a file “measurement.py” with the lines:
"measurement.py" module

from jhplot import *

class measurement:
def __init__(self, number, value, error):
"A single measurement"
self.number = number
self.v = value
self.err = error
self.p1=P1D(str(self.number))
self.p1.setSymbolSize(8)
self.p1.setSymbol(4)
self.p1.setPenWidthErr(4)
self.p1.setPenWidthErrSys(2)
self.p1.add(self.v,self.number,self.err,self.err,0,0)

def echo(self):
print self.number,self.v,self.err

def getValue(self):
return self.v

def getError(self):
return self.err

def getNumber(self):
return self.number

def getPoint(self):
return self.p1

5.6 Real-life Example II. Weighted Average 157

An object of this class keeps information about a single measurement characterized
by an integer number (which defines the type of measurement), measured value
(can be accessed with the method getValue()), its statistical error (accessed as
getError()). Finally, we will return the measurement represented in the form of
a P1D object. Note the way how to fill this object: unlike the previous example, we
assign errors in x direction, rather than for the y axis. This is mainly done for better
representation of the final result.

Let us test this module. We will assume that two measurements have been per-
formed. We fill a list with these two measurements and then print the filled values.
Assuming a “counting” experiment in which the statistical error is the square root
of the counted numbers of events, our Jython module to add the measurements can
look as:

Adding data

from measurement import *
import math

data=[]
data.append(measurement(1,100, math.sqrt(100)))
data.append(measurement(2,120, math.sqrt(120)))

for m in data:
m.echo()

Now let us calculate a weighted average of an arbitrary number of measurements
with errors. The weighted-average and its error for two measurements with a com-
mon error σC are:

v3 = v1/(σ
2
1 − σ 2

c) + v2/(σ
2
2 − σ 2

C)

1/(σ 2
1 − σ 2

c) + 1/(σ 2
2 − σ 2

C)

σ 2
3 = 1

1/(σ 2
1 − σ 2

c) + 1/(σ 2
2 − σ 2

c)
+ σ 2

C

where v1 and v2 are measured values, σ1 and σ2 are their statistical errors, respec-
tively. We have introduced the common error for generality; in most cases, the com-
mon error σC = 0. The module which calculates the weighted average from a list of
measurements and a common error can be written as:

module "average.py"

from measurement import *
import math

def average(meas,c):
"Calculate weigthted average"
s1,s2=0,0

158 5 Two-dimensional Data

for m in meas:
e=m.getError()*m.getError()-c*c
w1= 1.0/e
w2= m.getValue()*w1
s1=s1+w1
s2=s2+w2

err=math.sqrt((1.0/s1)+c*c)
return measurement(len(meas)+1,s2/s1,err)

Put these lines into a file with the name “average.py”.
Now let us use this module and plot the original measurements as well as the

weighted average (for which we used a different symbol). This time, we will use the
class HPlotJa which has very similar methods as for the HPlot canvas, but can
be used for an interactive drawing with the mouse, as discussed in Sect. 10.10.

A weighted average

from measurement import *
from average import *
import math

c1 = JaPlot(’Canvas’)
c1.removeAxes()
c1.showAxis(0)
c1.setGridAll(0,0)
c1.setGridAll(1,0)
c1.setRange(50,150,0,5)
c1.setNameX(’Measurements’)
c1.visible()

data=[]
data.append(measurement(1,100, math.sqrt(100)))
data.append(measurement(2,120, math.sqrt(120)))

p=average(data,1.)
for m in data:

c1.draw(m.getPoint())

p1=p.getPoint()
p1.setSymbol(5)
c1.draw(p1)

Figure 5.4 presents the result. Two filled circles show the original measure-
ments, while the third point shows their weighted average calculated by the module
“average.py”.

References 159

Fig. 5.4 A weighted average (marked by the filled square and labeled as “3”) of two independent
measurements (indicated using the keys “1” and “2”)

References

1. Taylor, J.: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measure-
ments. University Science Books, Herdon (1997)

2. Henon, M.: Numerical study of quadratic area-preserving mappings. Q. Appl. Math. 27, 291–
312 (1969)

3. Gleick, J.: Chaos: Making a New Science. Penguin Books, New York (1988)

Chapter 6
Multi-dimensional Data

6.1 P2D Data Container

Now let us discuss how to deal with data in dimensions larger than two. A natural
extension of the P1D class for 3-dimensional data is the class P2D. It is rather sim-
ilar to the P1D, the only difference is that it keeps data in 3D phase space (x, y, z).
Also, it has less options for drawing and, in addition, statistical and systematical
errors are not supported. In Jython, one can add values to this container in the same
way as for P1D, only this time the method add(x,y,z) takes three arguments.
In the example below we create a P2D object and append a single point with the
components (1,2,3):

>>> from jhplot import *
>>> p2= P2D(’x-y-z points’)
>>> p1.add(1,2,3)

Table 6.1 shows the main methods of this class. We will not discuss in detail
since the P2D arrays are similar to P1D, and one can always look at the Java API
documentation to learn about this data holder.

6.1.1 Drawing P2D and HPlot3D Canvas

To draw a P2D, one should use the 3D canvas based on the HPlot3D class. This
class was discussed in Sect. 3.4.2 and used to draw F2D functions. In the example
below we draw two data sets shown in blue and red colors:

Drawing P2D data in 3D

from jhplot import *
from java.awt import Color

c1 = HPlot3D(’Canvas’)

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_7, © Springer-Verlag London Limited 2010

161

162 6 Multi-dimensional Data

Table 6.1 The main P2D
methods. In this table, “b”
denotes a boolean value (1 for
Java “true” and 0 for “false”),
while “i” is an integer
parameter. “a” indicates the
axis (a=0,1,2)

Methods Definitions

add(x,y,z) add (x, y, z)

set(i,x,y,z) insert (x, y, z) at position i

fill(arrayX, arrayY, arrayZ) fills from 3 arrays

setTitle(“text”) set title

getTitle() get title

size() get size

clear() clean from data

copy() copy to a new P2D

getArrayX() get arrays with X

getArrayY() get array with Y

getArrayZ() get array with Z

getX(i),getY(i),getZ(i) get points at index i

getMax(a) get max for axis

getMin(a) get min for axis

mean(a) get mean for axis

toTable() show in a table

merge(p2d) merge with another P2D

c1.visible()
c1.setNameX(’X axis’)
c1.setNameY(’Y axis’)
c1.setRange(-5,10,-5,5,-10,20)

h1= P2D(’blue data’)
h1.setSymbolSize(6)
h1.setSymbolColor(Color.blue)
h1.add(1,2,3)
h1.add(4,4,5)
h1.add(3,2,0)
c1.draw(h1)

h1= P2D(’red data’)
h1.setSymbolSize(6)
h1.setSymbolColor(Color.red)
for i in range(10):

h1.add(0.1*i, 0.2*i, 0.5*i)
c1.draw(h1)

Table 6.2 lists several most important methods used to draw P2D data on the
3D canvas. The number of methods is not very large, since many drawing methods
belong to the actual 3D canvas, rather then attributed to the P2D object itself. We
will discuss the HPlot3D methods in Sect. 10.12.

6.1 P2D Data Container 163

Table 6.2 Graphical
methods for displaying P2D
data. In the methods shown in
this table, “c” denotes the
Java Color class, while “i”
is used to indicate an integer
parameter

Methods Definitions

setSymbolColor(c) Set symbol color

setSymbolSize(i) Set symbol size

getSymbolColor() Get symbol color

getSymbolSize() Get symbol size

We will remind that the HPlot3D canvas is a rather similar to HPlot: One can
display several plots on the same canvas and change the plotted regions using the
cd(i1,i2) method:

>>> from jhplot import *
>>> c1=HPlot3D(’Canvas’,600,400,2,2) # 2x2 pads
>>> c1.visible() # set visible
>>> c1.cd(1,1) # go to the 1st pad
... draw some object ..
>>> c1.cd(1,2) # go to the 2nd pad

As for the HPlot canvas, first two integers in the constructor HPlot3D define the
size of the canvas (600 × 400 pixels for this example), while two other integers
define how many drawing regions (pads) should be shown (2 regions in X and 2
regions in Y).

Let us give a more concrete example of how to work with the P2D:

Graphical options for drawing P2D

from java.util import Random
from java.awt import Color
from jhplot import *

c1 = HPlot3D(’Canvas’)
c1.setGTitle(’Interactive 3D’)
c1.setNameX(’X’)
c1.setNameY(’Y’)
c1.visible()
c1.setRange(-5,10,-5,5,-10,30)

p1= P2D(’3D Gaussian 1’)
p1.setSymbolSize(6)
p1.setSymbolColor(Color.blue)

rand = Random()
for i in range(200):

x=1+rand.nextGaussian()
y=1+0.5*rand.nextGaussian()
z=10+4.5*rand.nextGaussian()
p1.add(x,y,z)

164 6 Multi-dimensional Data

Fig. 6.1 Two P2D objects
displayed using the
HPlot3D canvas

p2= P2D(’3D Gaussian 2’)
p2.setSymbolSize(10)
p2.setSymbolColor(Color.red)

for i in range(50):
x=2+2*rand.nextGaussian()
y=4+0.5*rand.nextGaussian()
z=6+1.5*rand.nextGaussian()
p2.add(x,y,z)

c1.draw(p1)
c1.draw(p2)

In this script, we fill two P2D containers with 3D Gaussian numbers and plot
them on the same canvas. The result of this script is shown in Fig. 6.1. Note that the
most efficient way to fill the containers is to fill P0D with Gaussian numbers using
the methods of the P0D class, and use three P0D containers for the input of the P2D
constructor.

6.2 P3D Data Container

You may wonder, what could be shown with the object called P3D, since by anal-
ogy, it must contain points in a 4-dimensional space. The P3D container, by design,
still can be used to show 3-dimensional data, but this time, points can have some
extension in 3D space. All methods of the P3D are very similar to that of P2D, the

6.2 P3D Data Container 165

only difference is that each data point in x, y, z, has an additional parameter rep-
resenting an extension of the point in the corresponding direction. As before, the
canvas HPlot3D should be used for drawing such objects. To fill a P3D container,
one should use the method add(x,dx,y,dy,z,dz) which takes exactly 6 argu-
ments, with dx, dy and dz being the extensions in corresponding direction.

Here we will stop the discussion of this class since it has a limited use for math-
ematical manipulations. Rather, we will show a simple example of how to use the
P3D to draw various shapes (lines, cubes and surfaces):

Working with P3D

from jhplot import *
from java.util import Random
from java.awt import Color

c1 = HPlot3D(’Canvas’)
c1.setGTitle(’3D plot with P3D objects’)
c1.setNameX(’X’)
c1.setNameY(’Y’)
c1.visible()

c1.setRange(-5,10,-4,10,0,20)
build P3D shape
h1 = P3D(’3D form in blue’)
h1.setPenColor(Color.blue)
build a 3D cube
h1.add(4.0,1.0,8.0,2.0,3.0,4.0)

build 2D panel (Z extension is 0)
h1.add(5.0,2.0,3.0,1.0,8.0, 0.0)

build 1D lines
h1.add(5.8,0.0,3.0,0.0,10.0, 3.0)
h1.add(-1.2,4.0,-2.0,0.0,10.0, 0.0)
h1.add(-1.2,0.0,-2.0,2.0,10.0, 0.0)

build a 3D cube
h2 = P3D(’3D form in red’)
h2.setPenColor(Color.red)
h2.add(-0.5,3.0,-1.0,2.0,6.0,2.0)

c1.draw(h1)
c1.draw(h2)

Figure 6.2 shows the resulting plot.
We should note that the P3D class was not designed for complicated drawings

in 3D. You may find more appropriate to visualize geometrical shapes using the
HView3D class discussed in Sect. 10.13.2 or the class HPlot3DP discussed in
Sect. 10.12.

166 6 Multi-dimensional Data

Fig. 6.2 P3D objects
displayed using the
HPlot3D canvas

6.3 PND Data Container

The PND class can be used to store data in many dimensions (this explains the
appearance of the “N” in its name). As usual, “D” in the class name means that the
object stores double values. Use the class PNI to store integer values.

Unlike other classes discussed so far, this class does not have any graphical at-
tributes, since it is mainly designed for data manipulations. To be able to visualize
multidimensional data, one should always project such data into a lower dimension,
or use the P1D or P2D classes for drawing.

Below we will discuss the class PND, since its clone for integer values, PNI, has
exactly the same methods.

As usual, one should first initialize a PND object and then fill it. This can be done
by appending lists with numbers using the method add(list). The lists can have
any size. The example below shows how to create and fill a PND:

>>> from jhplot import *
>>>
>>> p0=PND(’example’) # build a PND object
>>> p0.add([1,2,3]) # append some values
>>> p0.add([2,3,4])
>>> p0.add([2,3,4,3,4]) # append more columns
>>> p0.add([2,3]) # append less columns
>>> print p0.getDimension()
2
>>> print p0.toString()
PND: example
1.0 2.0 3.0
2.0 3.0 4.0

6.3 PND Data Container 167

2.0 3.0 4.0 3.0 4.0
2.0 3.0

It should be noted that the dimension for each row is not fixed, i.e. one can add an
array with arbitrary length. The method getDimension() returns the dimension
of the last appended array. If the dimension is different for each row, one could
expect problems for methods based on two-dimensional arrays with fixed number
of rows and columns. So, try to avoid the use of rows with different length to avoid
problems in future.

As for any other class, one can build a PND from an ASCII file. Once the object
is created, one can easily obtain an array from a certain column or row in the form
of P0D using the following methods:

>>> p0=PND(’PND from file’, ’FileName’)
>>> p0.getRow(i) # get a row at index "i" as P0D
>>> p0.getColumn(i) # get a column at index "i" as P0D

Table 6.3 shows the most important methods of the class PND.
To draw a PND object, create a histogram object first. This collects all values

stored in the array and project them in one dimension. Let us give a simple example
of how to display a PND values:

Showing PND as a histogram

from jhplot import *

c1 = HPlot(’Canvas’)
c1.visible()
c1.setAutoRange()

pnd=PND(’array’)
pnd.add([1,2,3,4])
pnd.add([5,6,7,8])
h1=pnd.getH1D(10)
c1.draw(h1)

We should note that the minimum and maximum values of the histogram are deter-
mined automatically. We have only specified the number of bins for data projection.
Alternatively, one can make a histogram from a given column of the PND array.

6.3.1 Operations with PND Data

One can perform various operations with the PND data. Below we will discuss the
most important methods. Please refer to the Java API documentation of this class.

To scale all data by a constant factor, use this method:

168 6 Multi-dimensional Data

Table 6.3 Some methods of the PND class. “i” and “j” denote integer indexes

Methods Definitions

setTitle() set title

clear() clean from entries

get(i) returns row “i” as array

get(i,j) returns value at row “i” and column “j”

toString() convert data to a string

getColumn(i) get P0D from column at index “i”

getRaw(i) get P0D from row at index “i”

getDimension() get dimension (last added entry)

getArrayList() get data in form of array list

getArray() get double array

getH1D(bins) get H1D histogram with “bins”

add(P0D) add P0D as row

add(array[]) add array

set(i,P0D) set P0D at index i

set(i,array[]) set array at index i

setArray(array[][]) set from double array

remove(i) remove a row at index i

getMin() get minimum value

getMax() get minimum value

size() get the size

copy(‘text’) new copy with a title ‘text’

standardize() convert each column to (xi − x̄)/σ

rescale(i) rescale each column to [0,1] (i=0) or [-1,1] (i=1)

>>> p0.operScale(scale)

where ’scale’ is a number used to scale all elements.
A PND can be rescaled to the range [−1,1] or [0,1] with the rescale()

method. Another operation is the so-called standardize(), which is useful for
the neural-network studies to be discussed in Sect. 15.1.1.

One can add, subtract, multiply and divide two PND arrays. Assuming p0 and
p1 are objects of the PND class, this can be done as:

>>> p2=p0.oper(p1,’NewTitle’,operation)

where ’operation’ is a string which can either be “+”, “/”, “*” or “/” (they are
self-explanatory). Finally, ’NewTitle’ is an optimal title which can be dropped.

6.4 Input and Output 169

6.4 Input and Output

All the containers discussed before, P2D, P3D and PND, can be serialized and re-
stored back in exactly the same way as discussed in Sect. 5.4.

In addition, one can write and read ASCII files with the instances pn of the class
PND using the methods:

>>> pn.toFile(’FileName’) # write to a file
>>> pn.write(’FileName’)
>>> pn.read(’FileName’) # read from files:

In case if a multidimensional collection of data must be stored in a single file,
the most convenient way would be to populate a Jython list or a dictionary with the
PND objects and serialize it to a file as shown in Sects. 4.3.3 and 5.4.

We will come back to the I/O methods in Chap. 11.

Chapter 7
Arrays, Matrices and Linear Algebra

jHepWork contains many types of arrays that can be used to hold data in the form
of primitive numbers. Typically, they come from third-party Java libraries.

One should not consider such external arrays as being completely independent of
the native jHepWork containers which come with the package jhplot. There are
many ways to convert the third-party arrays into the P0D, P1D and PND objects for
manipulation and graphical representation.

7.1 Jaida Data Containers

First, we will start from the Jaida library which is included to the jHepWork package
by default.

To keep data points with errors, one can use the Measurement class. It keeps
information on a single measurement with its errors. There are several constructors
for this class:

>>> from hep.aida.ref.histogram import *
>>> m=Measurement(d)
>>> m=Measurement(d,err)
>>> m=Measurement(d,errMinus, errPlus)

where ’d’ is a central measurement represented by a double value, ’err’ is its
error. ’errMinus’ and ’errPlus’ can be used to add asymmetric uncertainties
(i.e. a lower and an upper error).

To retrieve the measurement value and its errors, one should call the following
methods:

value() to obtain the measurement value
errorMinus() to obtain a lower error
errorPlus() to obtain upper error

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_8, © Springer-Verlag London Limited 2010

171

172 7 Arrays, Matrices and Linear Algebra

One should note that this class is conceptually rather similar to the P1D container.
A measurement can also be kept in a more general container, called Data-

Point. It has the following constructors:

>>> from hep.aida.ref.histogram import *
>>> DataPoint(d[])
>>> DataPoint(d[], err[])
>>> DataPoint(d[], errMinus[], errPlus[])

In contrast to the class Measurement, the DataPoint object can hold values
and their errors in many dimensions. One can access the values as:

dimension() get the data dimension
lowerExtent(i) the lower value at “i”
upperExtent(i) the upper value at “i”

Jaida has a special container to hold data represented by the class DataPoint,
called DataPointSet. It was designed for holding a set of DataPoint objects.
Below we give two most popular constructors:

>>> from hep.aida.ref.histogram import *
>>> DataPointSet(name,title, int dim)
>>> DataPointSet(name,title, int dim, int capacity)

The strings ’name’ and ’title’ are self-explanatory, dim is the dimension (in-
teger) and capacity is the default capacity (integer). Once the DataPointSet
object is created, one can add a DataPoint using the method addPoint(p),
where ’p’ is a data point represented by a DataPoint object.

A DataPointSet object can be translated into the usual P1D object discussed
in Sect. 5.1 and used for visualization using the jHepWork canvas. What one needs
to do is to build a P1D object passing a DataPointSet as argument:

>>> from hep.aida.ref.histogram import *
>>> from jhplot import *
>>> #.. create dp using DataPointSet class
>>> p1=P1D(dp) # convert to P1D

In this operation, only 1st-level errors of the P1D array will be filled. Table 7.1 lists
some methods of this container.

7.1.1 Jaida Clouds

Jaida cloud is a set of data points. These objects are rather similar to P0D, P2D etc.
containers of the jHepWork library.

7.1 Jaida Data Containers 173

Table 7.1 Some methods of
the DataPointSet from
the Jaida library

Methods Definitions

addPoint(p) add a DataPoint

clear() clear the array

dimension() returns the dimension

point(i) returns DataPoint at index ‘i’

removePoint(i) removes point at index ‘i’

scale(d) scales by a factor ‘d’

scaleValues(d) scales values by a factor ‘d’

scaleErrors(d) scales errors by a factor ‘d’

upperExtent(i) get a lower extent at index ‘i’

lowerExtent(i) get an upper extend at index ‘i’

To create a cloud in 1D, the following constructor should be used:

>>> from hep.aida.ref.histogram import *
>>> c=Cloud1D()

Once the cloud object has been initialized, one can fill it using two methods:

>>> c.fill(d)
>>> c.fill(d,w)

The second method fills a cloud with a value ’d’ which has a weight ’w’ (both
numbers are double). The notion of the weight is rather similar to that to be dis-
cussed in the section devoted to histograms (see the following chapter). In simple
words, the number ’w’ represents importance of a data point in the data set. By
default, the first method assumes w=1. To display a cloud, one needs to convert it
into a histogram. Table 7.2 shows some most important methods of the clouds:

A cloud can be created in 2D using the Cloud2D constructor:

>>> from hep.aida.ref.histogram import *
>>> c=Cloud2D()

which can be filled with two numbers (say, x, y):

>>> c.fill(x,y)
>>> c.fill(x,y,w)

As before, one can specify a weight ’w’ for each 2D point (x, y) (the default weight
is 1). The methods for this cloud are the same as those shown in Table 7.2, but this
time there are more methods since we have two values, instead of one. Therefore,

174 7 Arrays, Matrices and Linear Algebra

Table 7.2 Some methods of
the class Cloud1D from the
Jaida library. ‘d’ indicates a
double value and ‘i’ is an
integer index

Methods Definitions

fill(d) fill with data point ‘d’

fill(d,w) fills with ‘d’ and a weight ‘w’

histogram() create a histogram

lowerEdge() cloud’s lower edge

mean() the mean value

entries() the number of entries

rms() the standard deviation

scale(d) scale with a factor ‘d’

upperEdge() get the upper edge

value(i) get a value at the index ‘i’

weight(i) get a weight at the index ‘i’

each method characterizing the Coud1D class has extra “X” or “Y ” string at the
end of each method name. For example, meanX() denotes the mean value in x,
meanY() is the mean value in y.

Similarly, one can build a cloud in 3D using the constructor Cloud3D(). We
will leave the reader here as it is rather easy to guess how to fill and how to access
values of such cloud, reminding that one single point now is represented by three
numbers, (x, y, z).

7.2 jMathTools Arrays and Operations

Another package which is incorporated into jHepWork is jMathTool[1]. It contains a
collection of Java classes designed for engineering and general scientific computing
needs.

7.2.1 1D Arrays and Operations

Let us first create an one-dimensional array with double numbers as:

>>> from jhplot.math.DoubleArray import *
>>> a=one(N,d)

This example instantiates a 1D array with ’N’ numbers, all of which have the
same double value ’d’. Check the type which corresponds to the object ’a’ as
type(a). You will see that the object ’a’ is <type ’array.array’>. One
can find all the methods which could be used for manipulation with this object using
the code assist.

7.2 jMathTools Arrays and Operations 175

One can also build an array with numbers incremented by some value:

>>> a=increment(N,begin,val)

again, ’N’ is the total number of values, ’begin’ is an initial value, and
’val’ represents a double value used to increment it, x[0]=begin, x[n]=
x[n-1]+val. Below we describe some important methods for the 1D arrays (de-
noted by ’a’):

copy(a) returns a copy
min(a) the minimum value for array
max(a) the maximum values for array
minIndex(a) get index of the minimum value
maxIndex(a) get index of the maximum value
sum(a) sums of all values,

∑N
i=0 xi

cumSum(a) array with the cumulative sum, bk = ∑k
i=0 xi

product(a) product of all values,
∏N

i=0 xi

cumProduct(a) array with the cumulative product, bk = ∏k
i=0 xi

sort(a) sorts array
insert(a1,i,a2) inserts an array a2 to array a1 starting from index “i”
increment(N,d,p) initializes an array with size N , x[i] = d + i ∗ p

deleteRange(a,i,j) deletes range from ‘i’ to ‘j’
delete(a,i) deletes the range starting from ‘i’
random(i) creates an array of the size ‘i’ with random numbers
random(i,min,max) creates an array of size ‘i’ with random numbers be-

tween min and max

One can print the 1D array using the io.ArrayString method. Here is an
complete example of how to create an array, print it and sum-up its values:

>>> from jhplot.math.DoubleArray import *
>>> from jhplot.math.io.ArrayString import *
>>> a=increment(10,0,1)
>>> print ’Array=’+printDoubleArray(a)
Array=0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
>>> sum(a)
45

We remind that one can learn more about this type of arrays using the method
dir(obj). For the DoubleArray static Java class, call this lines:

>>> from jhplot
>>> dir(jhplot.math.DoubleArray)

176 7 Arrays, Matrices and Linear Algebra

7.2.2 2D Arrays

DoubleArray class can be used to build 2D arrays almost in the same way as it
for the 1D case above. Such arrays are ideal for storing matrix values. To initialize
a 2D array, the following class can be used:

>>> from jhplot.math.DoubleArray import *
>>> a=one(i1,i2,d)

where ’d’ is a number to be assigned for the entire matrix with the number ’i1’
of rows and the number ’i2’ of columns.

>>> from jhplot.math.DoubleArray import *
>>> from jhplot.math.io.ArrayString import *
>>> a=one(2,5,1)
>>> print printDoubleArray(a)
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0

Below we give a list of the most important methods of this class, where ’a’ indi-
cates an input array.

copy(a) returns exact copy
min(a) minimum value for array
max(a) maximum values for array
minIndex(a) an index of the minimum value
maxIndex(a) an index of the maximum value
sum(a) sums of all values,

∑N
i,j=0 ai,j

cumSum(a) array with cumulative sum, bk =∑k
i,j=0 ai,j

product(a) product of all values,
∏N

i,j=0 ai,j

cumProduct(a) array with cumulative product, bk =∏k
i,j=0 ai,j

increment(i,j, b[], p[]) initialize array ixj as a[i][j] = b[j] +
i ∗ p[j]

getSubMatrixRangeCopy(a,i1,i2,j1,j2) get submatrix using ranges
i1–i2 (rows) and j1–j2 (columns)

getColumnsRangeCopy(a,i1,i2) get columns between ‘i1–i2’
getColumnCopy(a,i) obtains a column ‘i’
getColumnsRangeCopy(a,i1,i2) obtains columns between ‘i1–i2’
getRowsRangeCopy(a,i1,i2) obtains rows between ‘i1–i2’
getRowCopy(a,i) obtains a row at ‘i’
getColumnDimension(a,i) the dimension of column at ‘i’
insertColumns(a1, a2, i) inserts a2[][] to a1[][] at column ‘i’
insertColumn(a1, a2, i) inserts a2[] to a1[][] at column ‘i’

7.3 Colt Data Containers 177

insertRows(a1, a2, i) inserts a2[][] to a1[][] at row ‘i’
insertRow(a1, a2, i) inserts a2[] to a1[][] at row ‘i’
deleteColumnsRange(a,i1,i2) deletes columns between ‘i1’ and ‘i2’
deleteRowRange(a,i1,i2) deletes rows between ‘i1’ and ‘i2’
sort(a) sorts the array
random(i) creates a 2D array of size ‘i’ with ran-

dom numbers
random(i,min,max) creates a 2D array of the size ‘i’ with

random numbers between min and max

7.3 Colt Data Containers

The Colt package [2] provides several enhanced data containers to store primitive
values and to perform manipulations with them. The arrays support quick access to
its elements which is achieved by non-bounds-checking methods. There are several
classes used to build the Colt arrays:

• IntArrayList
• DoubleArrayList
• LongArrayList

We will consider the DoubleArrayList container for further examples since
all these classes are very similar.

>>> from cern.colt.list import *
>>> a=DoubleArrayList() # empty list
>>> a=DoubleArrayList(d[]) # with elements d[]
>>> a=DoubleArrayList(initialCapacity)

The constructors above illustrate various ways to initialize the arrays. Try to look
at the methods of this class with the code assist. Table 7.3 lists some of the most
important methods of the DoubleArrayList class.

The data stored in the DoubleArrayList array can be analyzed using the
DynamicBin1D class from the same package:

>>> from cern.colt.list import *
>>> from hep.aida.bin import *
>>> a=DoubleArrayList()
>>> bin=DynamicBin1D()
>>> bin.addAllOf(a);
>>> print bin.toString()

This example prints a comprehensive statistical summary of the array. One should
also note that one can build a P0D from the DoubleArrayList object as:

178 7 Arrays, Matrices and Linear Algebra

Table 7.3 Methods for the DoubleArrayList. (IntegerArrayList and LongArrayList have the same
methods)

Methods Definitions

add(d) add a double value

size() get the size

copy() returns a DoubleArrayList copy

elements() returns elements as list

get(i) get double value at index ‘i’

getQuick(i) get double at index ‘i’ without checking

set(i,d) set double ‘d’ at index ‘i’

reverse() reverses the order

shuffleFromTo(i1,i2) randomly permutes from index ‘i1’ to ‘i2’

contains(d) returns true (1) if “d” exists

delete(d) deletes first element ‘d’

addAllOf(a) appends an array ‘a’

indexOf(d) returns index of the first occurrence

quickSortFromTo(i1,i2) Sorts the range [i1–i2] into ascending numerical order

toList() returns ArrayList

clear() clear the array

>>> from cern.colt.list import *
>>> from jhplot import *
>>> a=DoubleArrayList()
>>> p0=P0D(a)
>>> print p0.getStat()

File-based input/output can be achieved through the standard Java built-in serializa-
tion mechanism.

The Colt package also includes the class ObjectArrayList, which is similar
to the Java list discussed in the previous sections.

7.4 Statistical Analysis Using Jython

In addition to the Java libraries provided by jHepWork, one can also use third-party
libraries implemented using the Python language. The Python/Jython third-party
packages are located in the directory python/packages. There are several ad-
vantages in using programs implemented in Jython: (1) one can directly access the
code with the implemented numerical algorithms. (2) One can reuse the libraries in
CPython programs.

7.4 Statistical Analysis Using Jython 179

We remind that the directory ’python/packages’ is imported automatically
when using the jHepWork IDE, so there is no need to worry about appending this
directory location to the ’sys.path’ variable. If one uses another editor, make
sure that Jython looks at the directory ’python/packages’ to import the third-
party packages. For example, you can do it as:

>>> import sys
>>> sys.path.append(SystemDir+’/python/packages’)

where SystemDir is the directory with the installed jHepWork. Below we assume
that the reader uses the jHepWork IDE and does not need to specify this directory.

Here we will consider the module ’stats’ which provides basic statistical
functions for Jython collections. It allows calculations of simple characteristics from
a Jython list, such as the mean value and the standard deviation:

>>> from statlib.stats import *
>>> a = [1,2,3,4,5,6,7,8,10]
>>> print ’Mean=’,mean(a)
Mean= 5.1111
>>> print ’Standard deviation=’,stdev(a)
Standard deviation= 2.93446

Analogously, one can calculate other statistical characteristics, such as the me-
dian, variation, skewness, kurtosis and moments. Let us give their definitions: A mo-
ment of an order n for a list with N elements is given as

Mn = 1

N

N∑

i

(list(i) − mean)n

A skewness is defined via the moments, M3/(M2)
1.5, while the kurtosis is

M4/(M2)
2. A variation is given as the ratio of the biased standard deviation to

the mean. All such statistical characteristics can be assessed in one line of the code
using the describe(list) function:

>>> a = [1,2,3,4,5,6,7,8,10]
>>> stat=describe(a)
>>> print ’N=’,stat[0]
N= 9
>>> print ’tuple=’,stat[1]
tuple= (1, 10)
>>> print ’mean=’,stat[2]
mean= 5.1111
>>> print ’standard deviation=’,stat[3]
standard deviation= 2.93
>>> print ’skewness=’,stat[4]

180 7 Arrays, Matrices and Linear Algebra

skewness= 0.199
>>> print ’kurtosis=’,stat[5]
kurtosis= 2.00

The output values have been truncated to fit the page width.
In the next example, we will extend this code snippet by including calculations

of various characteristics of a list with 100 numbers. Moments about the mean for
this list will be calculated in a loop (up to the order nine):

Statistical analysis of lists

from statlib.stats import *

a=range(100)
print ’geometric mean=’,geometricmean(a)
print ’median=’,median(a)
print ’variation=’,variation(a)
print ’skew=’,skew(a)
print ’kurtosis=’,kurtosis(a)
for n in range(2,10):

print ’moment order ’+str(n)+’:’,moment(a,n)

The output of this code snippet is given below:

geometric mean= 0.0
median= 49.005
variation= 58.315
skew= 0.0
kurtosis= 1.799
moment order 2: 833
moment order 3: 0.0
moment order 4: 1249
moment order 5: 0.0
moment order 6: 2230
moment order 7: 0.0
moment order 8: 4.335+12
moment order 9: 0.0075

Again, we have reduced the precision of the output numbers to fit the page width.
The module allows calculations of correlation coefficients between two lists. Let

us generate two correlated lists using a Gaussian distribution and estimate their cor-
relations using several tests:

Correlation coefficients

from statlib.stats import *

from random import *
ran=Random()

7.5 Matrix Packages 181

mu,sigma=2.0,3.0

x,y=[],[]
for i in range(100):

t=ran.gauss(mu,sigma)
x.append(t)
y.append(t*2+ran.gauss(mu,sigma))

print stdev(x), ’+/-’,sterr(x)
print mean(y),’+/-’,sem(y)
print ’Covariance=’,lcov(x,y)
print ’Pearson (correlation coeff. prob)=’,lpearsonr(x,y)
print ’Spearman rank-order correlation=’,lspearmanr(x,y)

The output is shown below:

2.917 +/- 0.2917
6.610 +/- 0.6750
Covariance= 17.126
Pearson (correlation coefficient,prob)=(0.869,8.945e-32)
Spearman rank-order correlation=(0.848,8.361-29)

For clarity and in order to fit the output to the page width, we truncated several
numbers to three decimal digits.

The module ’stats’ has many statistical tests (including the Anova test) and
functions, please refer to the package description and the source code.

7.5 Matrix Packages

The construction of matrices and their manipulation can be performed with sev-
eral third-party Java libraries [3, 4]. They allow for basic linear algebra calcula-
tions based on two-dimensional matrices of double-precision floating-point num-
bers. Here is a short summary of features of such packages:

• Creation and manipulation with matrices;
• Calculation of derived quantities, such as condition numbers, determinants, ranks

etc.;
• Elementary operations, such as addition, subtraction, multiplication, scalar mul-

tiplication etc.;
• Various decompositions.

We will start our discussion with the Jama package [3] implemented in Java.
Below we show how to build a 2 × 2 matrix and print its values:

182 7 Arrays, Matrices and Linear Algebra

>>> from Jama import *
>>> m=Matrix([[1.,2.],[3.,4.]])
>>> print m.toString(3,2)

1.00 2.00
3.00 4.00

The example is rather simple: first we initialize the matrix from a Jython list, and
then print it out using the toString() method which converts the matrix into a
string. This method takes two integer parameters: the column width and the number
of digits after the decimal point. One can also pass the DecimalFormat instance
from Java API for nice printing, but this requires more typing.

Let us construct a “null” matrix or a matrix holding a constant value, say 100:

>>> from Jama import *
>>> m=Matrix(2,3)
>>> print m.toString(3,1)

0.0 0.0 0.0
0.0 0.0 0.0

>>> m=Matrix(2,3,100)
>>> print m.toString(3,1)

100.0 100.0 100.0
100.0 100.0 100.0

The constructor Matrix takes 2 arguments: the number of rows and the number of
columns. One can obtain a single value using the matrix induces:

>>> m=Matrix(2,3,100)
>>> m.set(1,1,200)
>>> print m.get(1,1)
200.0

It is relatively easy to construct a matrix from any array supported by jHepWork.
For example, one can build a matrix from two P0D classes discussed in Sect. 4.1
using the method getArray().

>>> from jhplot import *
>>> from Jama import *
>>> p1=P0D([2,3])
>>> p2=P0D([4,5])
>>> m=Matrix([p1,p2])

Finally, one can fill a matrix with the method m.random(n,m) using uniformly
distributed random elements. In this method, n is the number of rows and m is the
number of columns.

7.5 Matrix Packages 183

One can insert a sub-matrix of a matrix with the method:

>>> m.setMatrix(int[] r, int[] c, X)

where r is an array of row indexes and c is an array of column indexes. X is the
actual sub-matrix defined as A(r(:),c(:)).

Now let us consider the question of extraction of the information about a matrix.
First, one can access 2D array of a matrix using the method getArray(). To get
a single value, use the usual method get(i1,i2), where i1 is the row number
and i2 is the column number. One can return the entire matrix object or only a sub-
matrix using getMatrix(i1,i2,j1,j2), where i1 is the initial row index,
i2 is the final row index, j1 is the initial column index and j2 is the final column
index. One can also learn about other methods by looking at the corresponding API
documentation.

A matrix or a group of matrices can be saved into dictionaries or lists and se-
rialized into a file as any jHepWork object discussed in Chap. 11. This is possible
because the class Matrix implements the Java Serializable interface.

7.5.1 Basic Matrix Arithmetic

Assuming that you have two matrices, “A” and “B”, one can perform the following
operations:

B.minus(A) subtract matrix A from B
A.timesEquals(d) multiply a matrix by a scalar “d”, A =

d ∗ A
B.times(A) Linear algebraic matrix multiplication,

A ∗ B
B.plus(A) C = A + B
A.plusEquals(B) A = A + B
A.minusEquals(B) A = A − B
A.minus(B) C = A − B
A.arrayRightDivide(B) Element-by-element right division, C =

A./B
A.arrayRightDivideEquals(B) Element-by-element right division in

place, A = A./B
A.arrayLeftDivide(B) Element-by-element left division, C =

A. divide B
A.arrayLeftDivideEquals(B) Element-by-element left division in place,

A = A. divide B
A.arrayTimes(B) Element-by-element multiplication, C =

A. ∗ B

184 7 Arrays, Matrices and Linear Algebra

A.arrayTimeEquals(B) Element-by-element multiplication, A =
A. ∗ B

A.uminus() unary minus, i.e. −A

Finally, one can use the inverse()method to inverse all elements. One can obtain
the basic normalization methods, such as:

norm1() the maximum column sum, i.e. summing up absolute values of all
column numbers

normInf() the maximum row sum, i.e. summing up absolute values of all row
numbers

7.5.2 Elements of Linear Algebra

The Jama package provides more advanced operations with matrices than those dis-
cussed above. The determinant of a matrix can be obtained with the method det(),
while one can access its rank as rank().

There are several basic matrix decompositions:

• Cholesky Decomposition of symmetric, positive definite matrices;
• QR Decomposition of rectangular matrices;
• LU Decomposition of rectangular matrices;
• Singular Value Decomposition of rectangular matrices;
• Eigenvalue Decomposition of both symmetric and non-symmetric square matri-

ces.

The decompositions are accessed by the class Matrix to compute solutions of
simultaneous linear equations, determinants and other matrix functions.

Let us give a small example illustrating the power of the Jama package:

Solving a linear system

from Jama import *

A=Matrix([[2.,2.,3],[4.,5.,6.],[7.,8.,4.]])
print ’Determinant’,A.det()
B=Matrix([[7.,8.,1],[1.,7.,0.],[4.,1.,9.]])
X = A.solve(B)
print X.toString(1,2)
R = A.times(X).minus(B)
print ’normInf=’,R.normInf()

print ’EigenvalueDecomposition:’
Eig=A.eig()
D=Eig.getD()
V=Eig.getV()
print ’D=’,D.toString(1,3), ’V=’,V.toString(1,3)

7.5 Matrix Packages 185

The output is shown below:

Determinant -13.0
14.77 8.85 4.23
-13.00 -9.00 -2.00
1.15 2.77 -1.15

normInf= 1.50990331349e-14
EigenvalueDecomposition:
D=
13.765 0.000 0.000
0.000 0.307 0.000
0.000 0.000 -3.072

V=
0.291 0.761 -0.319
0.627 -0.675 -0.481
0.722 0.021 0.860

7.5.3 Jampack Matrix Computations and Complex Matrices

The package Jampack (Java Matrix PACKage) [4] is a complementary package.
Unlike the previous package, it supports complex matrices. In fact, it supports only
complex matrices, since the design proceeded from a more general case to the less
general. The package has all basic linear algebra operations and many decomposi-
tion methods:

• The Pivoted LU decomposition;
• The Cholesky decomposition;
• The QR decomposition;
• The eigendecompostition of a symmetric matrix;
• The singular value decomposition;
• Hessenberg form;
• The Schur Decomposition;
• The eigendecompostition of a general matrix.

In this package, a complex number is represented by the class Z(a,b), where
a represents a real part while b is an imaginary part of a complex number. One can
perform several simple arithmetical operations as shown below:

>>> from Jampack import *
>>> z1=Z(10,6)
>>> z2=Z(8,1)
>>> z1.Minus(z2)
>>> print ’Real part=’,z1.re, ’ Imaginary part=’,z1.im

186 7 Arrays, Matrices and Linear Algebra

The print statement is used to print real and imaginary parts of the complex num-
ber. Below we will give an example to help to get started with the complex matrices:

Complex matrices

from Jampack import *

initializes real and imaginary parts
A=Zmat([[1,2],[3,4]], [[3,4],[5,6]])
print Print.toString(A,4,3)

Frobenius normalization
nrm = Norm.fro(A)
then product
A=Times.o(H.o(A), A)
print Print.toString(A,4,3)

One should look at the API documentation of this package or use the jHepWork
help assist to learn about the package.

7.5.4 Jython Vector and Matrix Operations

In addition to the Java-based packages for matrix operations, jHepWork also con-
tains pure Jython packages for vector, matrix, and table math operations. These
operations are based on the Jython package ’statlib’ which is located in the
’python/packages’. We remind that this directory is imported by the jHep-
Work IDE during the startup. More details on how to import Jython libraries have
been discussed in Sect. 1.4.2.

The ’statlib’ package provides many basic vector operations. Below we will
show an example of how to call this library and perform a few basic operations with
two vectors, ’a’ and ’b’:

Vector operations

from statlib.matfunc import Vec

a = Vec([4, -2, 5])
b = Vec([3, 10, -6])
print a.dot(b) # the dot product of ’a’ and ’b’
print a.norm() # length of the vector
print a.normalize() # length 1
print a.cross(b) # cross product of ’a’ and ’b

One can learn more about the methods of this package using the code assist or
by calling the statement dir(obj) (obj represents an object of the class Vec).
Another option is to look at the module directly. Just open the Jython module
matfunc.py in the directory ’python/packages/statlib’.

7.5 Matrix Packages 187

Let us consider several examples of how to work with Jython-implemented ma-
trices. A matrix can be defined from a list of lists as in this example:

>>> from statlib.matfunc import *
>>> m=Mat([[1,2,3], [4,5,1,], [7,8,9]])
>>> print m
1 2 3
4 5 1
7 8 9
>>> print ’eigs:’, m.eigs()
eigs: 2.692799 -0.846943 13.154144
>>> print ’det(m):’, m.det()
det(m): 30.0

The class Mat has many useful methods, such as tr() (for transpose), star()
(for Hermetian adjoints), diag(), trace(), and augment(). All such methods
have their usual mathematical meaning. Matrix multiplications are accomplished by
the method mmul(), and matrix division by solve(b).

Let us give a more detailed example:
Vector operations

from statlib.matfunc import *

C = Mat([[1,2,3], [4,5,1,], [7,8,9]])
print C.mmul(C.tr())
print C ** 5
print C + C.tr()
A = C.tr().augment(Mat([[10,11,13]]).tr()).tr()
q, r = A.qr()
print ’q:\n’, q, ’\nr:\n’,r
q.mmul(r) == A
print ’\nQ.tr()&Q:\n’, q.tr().mmul(q)
print ’\nQ*R\n’, q.mmul(r)
b = Vec([50, 100, 220, 321])
x = A.solve(b)
print ’x: ’, x
print ’b: ’, b
print ’Ax: ’, A.mmul(x)
inv = C.inverse()
print ’inverse=\n’,inv
print ’C * inv(C):\n’, C.mmul(inv)

Because of the lengthy output, we will not show it in this book. Try to make sense of
all these operations. They are well documented in the file ’matfunc.py’ inside
the directory ’python/packages/statlib’.

188 7 Arrays, Matrices and Linear Algebra

7.5.5 Matrix Operations in SymPy

Another package designed for matrix operations, including operations with sym-
bols, is SymPy [5]. It was already discussed in Sect. 3.9. We remind that this library
is implemented in Python and included as a third-party package in the directory
’python/packages’.

Let us build a matrix using the SymPy package. Our matrix can contain numbers
as well as symbols which have to be declared with the statement Symbol():

>>> from sympy import *
>>> Matrix([[1,2], [3,4]])
[1, 2]
[3, 4]
>>> x = Symbol(’x’)
>>> Matrix([[1,x], [2,3]])
[1, x]
[2, 3]

There are several ways to construct predefined matrices based on the statements
eye (the identity matrix), zeros and ones:

>>> from sympy import *
>>> eye(2)
[1, 0]
[0, 1]
>>> zeros((2, 3))
[0, 0, 0]
[0, 0, 0]

One can use the standard mathematical operations, like *, /, -, + as shown in
the example:

>>> from sympy import *
>>> M1=Matrix(([1,2,3],[4,5,6]))
>>> M2=Matrix(([1,1,1],[2,2,2]))
>>> M3=M1-M2
>>> M3
[0, 1, 2]
[2, 3, 4]

A few linear-algebra operations are shown below:

>>> from sympy import *
>>> M1 = eye(3)
>>> M1.det()

7.6 Lorentz Vector and Particle Representations 189

1
>>> M1.inv()
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

There are many decomposition methods associated with the class Matrix of
this package. Check the SymPy web site [5] or look at the package ’sympy/
matrices’ inside the directory ‘python/packages’.

7.6 Lorentz Vector and Particle Representations

Containers that hold a group of numbers (arrays, vectors, matrices) are useful ab-
straction for keeping specific quantities in a structural form. In this section we will
discuss a concrete physics implementation—a representation of a particle using
four-momentum which is typically used in relativistic calculations. Such represen-
tation is particular useful for various transformations involving simulated (or real)
relativistic particles.

7.6.1 Three-vector and Lorentz Vector

Before going into the depth of four-vectors, let us first take a look at the simplest
case when a vector is represented by three coordinates, p = (px,py,pz). This situ-
ation is represented by a Hep3Vector class which can be instantiated as:

>>> from hephysics.vec import *
>>> v=Hep3Vector(x,y,z)

where x, y, z are coordinates of this vector. This class is useful for usual three-vector
transformations as illustrated below:

>>> from hephysics.vec import *
>>> v1=Hep3Vector(1,1,1)
>>> v2=Hep3Vector(2,2,2)
>>> v1.add(v2) # add vector v2
>>> v1.mult(10) # multiply by 10 (scale)
>>> v1.sub(v2) # subtract v2
>>> print v1.dot(v2) # dot product
168.0
>>> print v1.toString() # print
[28.0, 28.0, 28.0]

190 7 Arrays, Matrices and Linear Algebra

Next, a four-momentum of a particle can be represented by four numbers: three-
momentum p = (px,py,pz) and energy e. Similarly, a position of particle in space
and time can be represented with four coordinates, (x, y, z, t), where t is time.
This means that either position, in the momentum space or space-time, can be
described by four numbers. A class which can be used for such description is
HepLorentzVector:

>>> from hephysics.vec import *
>>> hp=HepLorentzVector(px,py,pz,e)

or, in the case of space-time:

>>> hp=HepLorentzVector(x,y,z,t)

There is a number of useful methods implemented for this class. First of all, one
can perform the standard arithmetic operations as with the usual three-vector. One
can access angles and perform transformations as with any other vector representa-
tion. Let us give a few examples:

>>> from hephysics.vec import *
>>> # (px,py,pz,energy)=(10,20,30,100)
>>> hp=HepLorentzVector(10,20,30,100)
>>> print hp.mag() # magnitude of 3-vector
>>> print hp.phi() # azimuthal angle
>>> print hp.perp() # transverse momenta.
>>> print hp.m() # invariant mass
>>> print hp.theta() # polar angle
>>> h.add(HepLorentzVector(1,2,3,10)) # add a new vector

The transverse momentum is calculated as
√

px2 + py2, while the invariant mass is√
e2 − px2 − py2 − pz2. Please refer to the corresponding API to find more meth-

ods of this class.
Now let us show how to visualize an object of the HepLorentzVector class.

One natural way to do this is to use the 3D canvas HPlot3D, and show a Lorentz
vector as a point with a symbol size proportional to the forth component (either
energy or time) as show below:

Visualizing a Lorenz vector

from jhplot import *
from hephysics.vec import *

hp=HepLorentzVector(10,20,30,10)

c1 = HPlot3D("Canvas",600,400)
c1.setGTitle("Lorenz Particle")

7.6 Lorentz Vector and Particle Representations 191

c1.setRange(0,100,0,100,0,100)
c1.setNameX(’pX’); c1.setNameY(’pY’); c1.setNameZ(’pZ’)
c1.visible()

p= P2D(’LorenzParticle’)
p.setSymbolSize(int(hp.e()))
p.add(hp.px(),hp.y(),hp.z())
c1.draw(p)

7.6.2 Classes Representing Particles

A particle in the package hephysics can be represented by the two classes,
LParticle (a “light-weight” class which is a direct extension of the class
HepLorentzVector) and HEParticle. The latter contains not only the basic
Lorentz-type coordinates, but also can be characterized by a spin, parity and other
characteristics which are typically used in particle physics. For simplicity, below we
will concentrate on the LParticle class.

The class LParticle can hold information about four-momentum, particle
name and even another LParticle object representing a parent particle. Let us
create a particle with the name “proton” and with a known mass (in MeV units):

>>> from hephysics.particle import *
>>> p1=LParticle(’proton’,939.5)
>>> p1.setPxPyPzE(10,20,30,300)

The second line of this code sets the three-momentum and energy. One can also
set charge of this particle via the method setCharge(c). One can access the
information about this particle using various “getter” methods which can be found
either using the code assist or the class API.

As for any other Jython/ or Java object, one can create a list of particles and store
them in a file. In case of Java, use the ArrayList class, in case of Jython, one can
use a Jython list:

>>> from hephysics.particle import *
>>> p1=LParticle(’proton’,939.5)
>>> p1.setPxPyPzE(10,20,30,300)
>>> p2=LParticle(’photon’,0.0)
>>> p2.setPxPyPzE(1,2,3,30)
>>> list=[p1,p2] # keep them in a list

The object list (as well as the objects of type LParticle) can be serialized into
a file as any other Java object to be discussed in Chap. 11. Particles can be visualized

192 7 Arrays, Matrices and Linear Algebra

in exactly the same way as shown for the HepLorentzVector class, since the
class LParticle is an extension of the class HepLorentzVector.

We will give detailed examples of how to work with the LParticle class in
Sect. 17.5 where we will discuss a simple Monte Carlo model for simulation of
particle decays.

References

1. JMATHTOOLS Java Libraries. URL http://jmathtools.berlios.de
2. The Colt Development Team: The COLT Project. URL http://acs.lbl.gov/~hoschek/colt/
3. Hicklin, J., et al.: Jama, a Java Matrix Package. URL http://newcenturycomputers.net/projects/

dif.html
4. Stewart, G.: Jampack, a Java package for matrix computations. URL ftp://math.nist.gov/pub/

Jampack/Jampack/
5. SymPy Development Team: SYMPY: Python library for symbolic mathematics. URL http://

www.sympy.org

Chapter 8
Histograms

A histogram is an elegant tool to project multidimensional data to lower dimensions,
a tool which is designed for graphical representation and visual inspection.

A histogram is a summary graph showing counts of data points falling into
various ranges, thus it gives an approximation of the frequency distribution of
data.

The histogram shows data in the form of a bar graph in which the bar heights
display event frequencies. Events are measured on the horizontal axis, X, which has
to be binned. The larger number of bins, the higher chances that a fine structure of
data can be resolved. Obviously, the binning destroys the fine-grain information of
original data, and only the histogram content can be used for analysis.

In this respect, the histogram representation is useful if one needs to create a
statistical snapshot of a large data sample in a compact form. Let us illustrate this:
Assume we have N numbers, each representing a single measurement. One can store
such data in a form of Java or Jython arrays. Thus, one needs to store 8 × N bytes
(assuming 8 bytes to keep one number). In case of a large number measurements, we
need to be ready to store a very big output file, as the size of this file is proportional
to the number of events. Instead, one can keep for future use only the most important
statistical summary of data, such as the shape of the frequency distribution and the
total numbers of events. The information which needs to be stored is proportional
to the number of bins, thus the file storage has nothing to do with the size of the
original data.

8.1 One-dimensional Histogram

To create a histogram in one dimension (1D), one needs to define the number of
bins, Nbins, and the minimum (Min) and the maximum (Max) value for a certain
variable. The bin width is given by (Max-Min)/Nbins. If the bins are too wide

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_9, © Springer-Verlag London Limited 2010

193

194 8 Histograms

(Nbins is small), important information might get lost. On the other hand, if the
bins are too narrow (Nbins is large), what may appear to be meaningful informa-
tion really may be due to statistical variations of data entries in bins. To determine
whether the bin width is set to an appropriate size, different bin sizes should be
tried.

jHepWork histograms are designed on the bases of the JAIDA FreeHEP li-
brary [1]. For an one-dimensional histogram, use the class H1D. To initialize an
empty histogram, the following constructor can be used:

>>> from jhplot import *
>>> h1=H1D(’data’, 100, 0, 20)

This creates a 1D histogram with the title ’data’, the number of bins Nbins=
100, and the range of axis X to be binned, which is defined by the minimum and
the maximum values, Min=0 and Max=20. Thus, the bin width of this histogram
is fixed to 0.2. The bin size and the number of bins are given by the following
methods:

>>> d=h1.getBinSize()
>>> i=h1.getBins()

We should note that a fixed-size binning is used. In the following sections, we will
consider a more general case when the histogram bin size is not fixed to a single
value.

The method fill(d) fills a histogram with a single value, where ’d’ is a
double number. The histograms can be displayed on the HPlot canvas using the
standard draw(h1) method.

We will discuss the main methods of the histogram class in the following section.
Here, to illustrate the methods discussed before, we give a complete example of how
to fill three histograms with Gaussian random numbers and then display them on
different pads.

Plotting histograms

from java.awt import Color
from java.util import Random
from jhplot import *

c1 = HPlot(’Canvas’,600,400,2,1)
c1.visible()

h1 = H1D(’First’,20,-2.0,2.0)
h1.setFill(1)
h1.setFillColor(Color.green)

h2 = H1D(’Second’,100,-2.5,2.5)

8.1 One-dimensional Histogram 195

r=Random()
for i in range(500):

h1.fill(r.nextGaussian())
h2.fill(r.nextGaussian())

h3 = H1D(’Third’,20,0.0,10.0)
h3.setFill(1)
for i in range(50000):

h3.fill(2+r.nextGaussian())

c1.cd(1,1)
c1.setAutoRange()
c1.draw([h1,h2])

c1.cd(2,1)
c1.setAutoRange()
c1.draw(h3)

After execution of this script, you should see the plots shown in Fig. 8.1. By default,
the lines on the histogram bars are drawn to indicate the size of statistical uncertainty
in each bin using the Gaussian estimation of uncertainties for counting experiments,
i.e. Err = √

N , where N is the number of events in each bin.

Fig. 8.1 Histograms with Gaussian numbers plotted with different numbers of bins (left) and a
larger number of events (right)

196 8 Histograms

In the above script, we have used two new methods of the H1D class. Due to their
importance, we will discuss them here:

setFill(b) fill a histogram area when b=1 (b=0 means the area is not
filled)

setFillColor(c) color for filling (Java AWT class)

As before, ’c’ denotes the Java Color class discussed in details in Sect. 3.3.1.
The example above illustrates the following important features:

• The height of bins depends on the bin size. Even when the number of entries is
the same, histograms are difficult to compare in shape when the histogram bins
are different, see Fig. 8.1 (left).

• Relative size of errors decreases with increasing the number of entries.

Below we will show a few basic manipulations useful for examining the shapes
of histograms, assuming that the underlaying mechanism for occurrence of events
reveals itself in shapes of event distributions, rather than in the overall statistics
or chosen bin size. The shape of the distributions is very important as it conveys
information about the probability distribution of event samples.

First of all, let us get rid of the bin dependence. To do this, we will divide each
bin height by the bin size. Assuming that ’h1’ represents a histogram, this can be
done as:

>>> width=h1.getBinSize()
>>> h1.scale(1/width)

After this operation, all histogram entries (including statistical uncertainties) will be
divided by the bin width. You may still want to keep a copy of the original histogram
using the method h2=h1.copy(), so one can come back to the original histogram
if needed.

Different histograms can contain different normalization. In case if we are in-
terested in the shapes only, one can divide each bin height by the total number of
histogram entries. This involves another scaling:

>>> entries=h1.allEntries()
>>> h1.scale(1/entries)

Obviously, both operations above can be done using one line:

>>> h1.scale(1/(h1.getBinSize()*h1.allEntries()))

The second step in comparing our histograms would be to shift the bins of the
third histogram. Normally, we do not know the exact shift (what should be don
in this case will be considered later). At this moment, for the sake of simplicity,
we assume that the shift is known and equals to −2. There is a special histogram
operation which does such shift:

8.1 One-dimensional Histogram 197

>>> h2.shift(-2) # shift all bins by -2

Now we are ready to modify all the histograms and to compare them. Look at the
example below:

Histogram operations

from java.util import Random
from jhplot import *

c1 = HPlot(’Canvas’,600,400)
c1.visible()
c1.setRange(0,-2,2)

h1 = H1D(’First’,20, -2.0, 2.0)
h2 = H1D(’Second’,100,-2.5, 2.5)
r=Random()
for i in range(500):
h1.fill(r.nextGaussian())
h2.fill(r.nextGaussian())

h3 = H1D(’Third’,20, 0.0, 10.0)
for i in range(50000):

h3.fill(2+r.nextGaussian())

h1.scale(1/(h1.getBinSize()*h1.allEntries()))
h2.scale(1/(h2.getBinSize()*h2.allEntries()))
h3.shift(-2)
h3.scale(1/(h3.getBinSize()*h3.allEntries()))

c1.draw(h1)
c1.draw(h2)
c1.draw(h3)

After execution of this script, you will find three overlaid histograms. The shapes
of all histograms will be totally consistent with each other, i.e. all bin heights will
agree within their statistical uncertainties.

The problem of the histogram comparison discussed above is not a theoretical
one. One can find many situations in which you may be interested in how well his-
togram shapes agree to each other. For example, let us assume that each histogram
represents the number of days with rainfall measured during one year for one state.
If the distributions are shown as histograms, it is obvious that bigger states have a
larger number of days with rainfalls compare to small states. This means that all
histograms are shifted (roughly by a factor proportional to the area of states, ignor-
ing other geographical differences). The measurements could be done by different
weather stations and the bin widths could be rather different, assuming that there

198 8 Histograms

is no agreement between the weather stations about how the histograms should be
defined. Moreover, the measurements could be done during different time intervals,
therefore, the histograms could have rather different numbers of entries. How one
can compare the results from different weather stations, if we are only interested
in some regularities in the rainfall distributions? The answer to this question is in
the example above: all histograms have to be: (1) normalized; (2) shifted; (3) a bin
dependence should be removed.

The only unclear question is how to find the horizontal shifts, since the normal-
ization issue is rather obvious and can be done with the method discussed above.
This problem will be addressed in the following chapters when we will discuss a
statistical test that evaluates the “fit” of a hypothesis to a sample.

8.1.1 Probability Distribution and Probability Density

The examples above tell that there are several quantities which can be derived from
a histogram. One can extract a probability distribution by dividing histogram entries
by the total number of entries. The second important quantity is a probability den-
sity, when the probability distribution is divided by the bin width, so that the total
area of the rectangles sums to one (which is, in fact, the definition of the probability
density).

Both the probability distribution and the density distribution can be obtained after
devisions of histogram entries as discussed above. However, these two characteris-
tics can be obtained easier by calling the following methods:

>>> h2=h1.getProbability()
>>> h2=h1.getDensity()

which return two new H1D objects: the first represents the probability distribution
and the second returns the probability density. In addition to the obvious simplicity,
such methods are very useful for variable-bin-size histograms, since this case is
taken into account automatically during the devisions by bin widths.

Also note the following: one can save computation time in case of the calculation
of the probability distributions if you know the total number of events (or entries)
Ntot beforehand. In this case, one can obtain the probability distribution by using
the weight w1 = 1.0/Ntot in the method fill(x,w1), without subsequent call
to the method getProbability(). After the end of the fill, the histogram will
represent the probability distribution normalized to unity by definition. In addition,
one can remove the bin dependence by specifying the weight as w2 = 1.0/BinSize.
Finally, the density distribution can be obtained using the weight w3 = w1 ∗ w2.

8.1.2 Histogram Characteristics

In this subsection we will continue to discuss the most important characteristics of
the H1D histogram class.

8.1 One-dimensional Histogram 199

The most popular characteristics of a histogram are the median and the standard
deviations (RMS). Assuming that h1 represents a H1D histogram, both (double)
values can be obtained as:

>>> d=h1.mean()
>>> d=h1.rms()

We already know that one can obtain the number of entries with the method
allEntries(). However, some values could fall outside of the selected range
during the fill() method. Luckily, the histogram class has the following list of
methods to access the number of entries:

>>> i=h1.allEntries() # all entries
>>> i=h1.entries() # number entries in the range
>>> i=h1.extraEntries() # under and overflow entries
>>> i=h1.getUnderflow() # underflow entries
>>> i=h1.getOverflow() # overflow entries

All the methods above return integer numbers.
Another useful characteristics is the histogram entropy. It is defined to be the

negation of the sum of the products of the probability associated with each bin with
the base-2 log of the probability. One can get the value of the entropy with the
method:

>>> print ’Entropy=’,h1.getEntropy()

8.1.3 Histogram Initialization and Filling Methods

In this subsection we will consider the major histogram methods used for histogram
initialization and filling. Previously, it has been shown how to initialize a histogram
with fixed bin sizes. One can also create a histogram using a simpler constructor,
and then using a sequence of methods to set histogram characteristics:

>>> h1=H1D(’Title’)
>>> h1.setMin(min)
>>> h1.setMax(max)
>>> h1.setBins(bins)

which are used to set the minimum, maximum and the number of bins. These meth-
ods can also be useful to redefine these histogram characteristics after the histogram
was created using the usual approach.

200 8 Histograms

One can also build a variable bin-size histogram by passing a list with the bin
edges as shown in this example:

>>> bins=[0,10,100,1000]
>>> h1=H1D(’Title’,bins)

This creates a histogram with three bins. The bin edges are given by the input list.
This constructor is handy when a data is represented by a bell-shaped or falling
distribution; in this case it is important to increase the bin size in certain regions
(tails) in order to reduce statistical fluctuations.

As we already know, to fill a histogram with numbers, use the method fill(d).
More generally, one can assign a weight “w” to each value as

>>> h1.fill(d, w)

where ’w’ is any arbitrary number representing a weight for a value ’d’. The
original method fill(d) assumes that all weights are 1.

But why do we need weights? We have already discussed in Sect. 8.1.1 that the
weights are useful to reduce the computational time when the expected final answer
should be either a probability distribution or density distribution. There are also
other cases when the weights are useful. We should note again that a histogram
object stores the sum of all weights in each bin. This sum runs over the number of
entries in a bin only when the weights are set to 1. Events may have smaller weights
if they are relatively unimportant compared to other events. It is up to you to make
this decision, this depends on a concrete situation.

The method fill(d) is slow in Jython when used inside loops, therefore, it is
more efficient to fill a histogram at once using the method fill(list), where
list is an array with the numbers passed from another program or file. As be-
fore, fill(list, wlist) can be used to fill a histogram from two lists. Each
number in list has an appropriate weight given by the second argument.

Instead of Jython (or Java) lists, one can pass a P0D array discussed in Sect. 4.2.3:

>>> h1.fill(p0d)

where p0d represents an object of the P0D class.
Analogously, one can fill a histogram by passing a PND multidimensional ar-

ray discussed in Sect. 6.3. This can be done again with the method fill(pnd),
where pnd is an array with any size or dimension. One can specify also weights in
the form of an additional PND object passed as a second argument to the method
fill(pnd, w).

Histograms can be filled with weights which are inversely proportional to the bin
size—as it was shown in the previous section, removing the bin size dependence is
one of the most common operations:

8.1 One-dimensional Histogram 201

>>> h1.fillInvBinSizeWeight(d)

It should be noted that this method works even when histograms have irregular
binning.

Finally, one can set the bin contents (bin heights and their errors) from an external
source as shown below:

>>> h1.setContents(values, errors)
>>> h1.setMeanAndRms(mean,rms)

where values and errors are input arrays. Together with the settings for the bin
content, the second line of the above example shows how to set the global histogram
characteristics, such as the mean and the standard deviation. There are more meth-
ods dealing with external arrays; advanced users can find appropriate methods in the
API documentation of the class H1D or using the code assist.

8.1.4 Accessing Histogram Values

One-dimensional histograms based on the H1D class can easily be viewed using the
following convenient methods designed for visual inspection:

toString() convert a H1D histogram into a string
print() print a histogram
toTable() show a histogram as a table

Once we know that a histogram is initialized and filled, the next question is to
access the histogram values. We will be brief in this section, since most methods are
obvious. Table 8.1 shows the most important H1D methods.

It should be noted that the bin heights and the numbers of entries are the same
when histogram weights used to fill histogram are set to one, i.e. when the method
fill(d) is used.

Finally, one can view the H1D histograms using already known toTable()
method. This method passes all histogram attributes to a pop-up table for easy visual
inspection.

8.1.5 Integration

Histogram integration is similar to the F1D functions considered in the previous
chapters: We simply sum up all bin heights. This can be done using the method
integral(). More often, however, it is necessary to sum up heights in a certain
bin region, say between a bin ’i1’ and ’i2’. Then use this method:

202 8 Histograms

Table 8.1 Several methods designed to access information about the H1D class. The following
notations are used: “i” denotes an integer, “d” is a double value, “a” corresponds to a 1D array and
“aa” is a 2D array

Methods Returns Definitions

allEntries() i number of all entries

entries() i number of entries in the range

getTitle() text get histogram title

mean() d mean of the histogram

rms() d RMS of histogram

sumAllBinHeights() d sum of all bin heights

getEntropy() d entropy of histogram

integral(i1, i2) d integrate between ‘i1’ and ‘i2’ bins

integralRegion(x1, x2) d integrate region [x1,x2]

extraEntries() i number of entries outside the range

getUnderflow() i underflow entries

getUnderflowHeight() d underflow heights

getOverflow() i overflow entries

getOverflowlowHeight() d overflow heights

getMin() d min value for bins

getMax() d max value for bins

getValues(i) a arrays with bins, heights and errors

i=0 when bin means, i=1 for bin centers

getProbability() H1D probability distribution

getDensity() H1D probability density

maxBinHeight() d maximum bin height

minBinHeight() d minimum bin height

binCenter(i) d center of ith bin

binCenters() a bin centers

binEntries(i) i entries in ith bin

binEntries() a entries in all bins

binError(i) d errors on entries in ith bin

binErrors() a errors on all entries

binHeight(i) d height of ith bin

binHeights() a heights for all entries

binLowerEdge(i) d low edge of ith bin

binLowerEdges() a low edges for all entries

binUpperEdge(i) d upper edge of ith bin

binUpperEdges() d upper edges of all bins

binMean(i) d mean value in ith bin

binRms(i) a RMS value in ith bin

findBin(d) i find a bin number from a coordinate

8.1 One-dimensional Histogram 203

>>> sum=h1.integral(i1,i2)

We should note that the integral is not just the number of events between these two
bins: the summation is performed using the bin heights. However, if the weights
for the method fill() are all set to one, then the integral is equivalent to the
summation of numbers of events.

The integration shown above does include multiplication by a bin width. If one
needs to calculate an integral over all bins by multiplying the bin content by the bin
width (which can be either fixed or variable), use the method:

>>> sum=h1.integral(i1,i2,1)

where the last parameter should be set to 1 (or to ‘true’ in case of Java codding).
The next question is how to integrate a region in X by translating X-coordinates

into the bin indexes. This can be done by calling the method findBin(x), which
returns an index of the bin corresponding to a coordinate X. One can call this
method every time when you need to identify the bin index before calling the method
integrate(). Alternatively, this can be done in one line as:

>>> sum=integralRegion(xmin,xmax,b)

The method returns a value of the integral between two coordinates, xmin and
xmax. The bin content will be multiplied by the bin width if the boolean value b is
set to 1 (boolean ‘true’ in Java).

8.1.6 Histogram Operations

Histograms can be added, subtracted, multiplied and divided. Assuming that we
have filled two histograms, h1 and h2, all operations can be done using the follow-
ing generic method:

>>> h1.oper(h2,’NewTitle’,’operation’)

where ’operation’ is a string which takes the following values: “+” (add), “-”
(subtract), “*” (multiply) and “/” (divide). The operations are applied to the his-
togram h1 using the histogram h2 as an input. One can skip the string with a new
title if one has to keep the same title as for the original histogram. In this case, the
additive operation will look as h1.oper(h1,’+’)

To create an exact copy of a histogram, use the method copy(). Previously, we
have already discussed the scale(d) and shift(d) operations.

204 8 Histograms

A histogram can be smoothed using the method:

>>> h1=h1.operSmooth(b,k)

This is done by averaging over a moving window. If ’b=1’ then the bins will
be weighted using a triangular weighting scheme favoring bins near the central bin
(’b=0’ for the ordinary smoothing). One should specify the integer parameter ’k’
which defines the window as ‘2*k + 1’. The smoothing may be weighted to favor
the central value using a “triangular” weighting. For instance, for ‘k=2’, the central
bin would have weight 1/3, the adjacent bins 2/9, and the next adjacent bins 1/9.
For all these operations, errors are kept to be the same as for the original (non-
smoothed) histogram.

One can also create a Gaussian smoothed version of a H1D histogram. Each band
of the histogram is smoothed by a discrete convolution with a kernel approximating
a Gaussian impulse response with the specified standard deviation.

>>> h2=h1.operSmoothGauss(rms)

where rms is a double value representing a standard deviation of the Gaussian
smoothing kernel (must be non-negative).

One useful technique is histogram re-binning, i.e. when groups of bins are joined
together. This approach could be used if statistics in bins is low; in this case, it makes
sense to make bins larger in order to reduce relative statistical uncertainty for en-
tries inside bins (we remind that in case of counting experiments, such uncertainty is√

N , where N is a number of entries). The method which implements this operation
is called rebin(group), where group defines how many bins should merged
together. This method returns a new histogram with a smaller number of bins. How-
ever, there is one restriction: the method rebin cannot be used for histograms with
non-constant bin sizes.

8.1.7 Accessing Low-level Jaida Classes

The H1D class is based on the two classes, IAxis and Histogram1D of the Jaida
FreeHep library. Assuming h1 represents a H1D object, these two Jaida classes can
be obtained as:

>>> a=h1.getAxis() # get IAxis object
>>> h=h1.get() # get Histogram1D class

Both objects are rather useful. Although they do not contain graphical attributes,
they have many methods for histogram manipulations, which are not present for the
higher-level H1D class. The description of these Jaida classes is beyond the scope

8.2 Histogram in 2D 205

of this book. Please look at the Java documentation of these classes or use the code
assist.

8.1.8 Graphical Attributes

Sometimes one has to spend a lot of typing and playing with various graphical op-
tions to present analysis results in an attractive and clear form. This is especially
important when one needs to show several histograms inside a single canvas. jHep-
Work provides many methods designed to draw histograms using different styles.

First of all, histograms can be shown either by lines (default) or by using symbols.
For the default option (lines), one can consider either to fill histogram area or keep
this area empty. The following methods below can be useful:

>>> h1.setFill(b)
>>> h1.setFillColor(c)

For the first method, Jython boolean ’b=1’ means to fill the histogram, while
’b=0’ (false) keeps the histogram empty. If the histogram area has to be filled,
you may consider to select an appropriate color by specifying Java AWT Color ob-
ject ’c’. How to find appropriate color has been discussed in Sect. 3.3.1.

Histograms can be shown using symbols as:

>>> h1.setStyle(’p’)

The style can be set back to the default style (histogram bars). This can be done
by passing the string ’h’ instead of ’p’. One can also use symbols connected by
lines; in this case, use the character ’l’ (draw lines) or the string ’lp’ (draw lines
and symbols).

Table 8.2 lists the most important graphical attributes of the H1D class. The
graphical attributes can be retrieved back using similar methods after substituting
the string “set” by “get” in the method names.

8.2 Histogram in 2D

A histogram in two dimensions (2D) is a direct extension of the 1D histogram
discussed in the previous section. To initialize such histograms, one should define
ranges and bins in X and Y . A 2D histogram can be visualized using the 3D canvas
discussed before.

The 2D histograms are implemented using the H2D class, which is based on the
JAIDA FreeHEP Histogram2D class [1]. To create a 2D histogram, one needs to

206 8 Histograms

Table 8.2 Methods for graphical representation of the H1D histograms. The following notations
are used: “i” means an integer, “d” means a double value, “b” corresponds to a boolean (“b=1”
means Java true and “b=0” means false), “c” is Java AWT Color class

Methods Definitions

setStyle(“text”) “p”—show symbols, “l”—show lines

“lp”—lines and symbols, “h”—as histogram bars

setPenWidthErr(i) line width

setPenDash(i) dashed line style,

“i” is the length of dashed line

setColor(c) set color for drawing

setFill(b) b=1—fill histogram area (b=0 not fill)

setFillColor(c) set AWT Java color for fill area

setFillColorTransparency(d) set the transparency (0 ≤ d ≤ 1)

setErrX(b) show or not errors on X

setErrY(b) show or not errors on Y

setErrColorX(c) set Java color for errors on X

setErrColorY(c) set Java color for errors on Y

setSymbol(i) symbol type: 0: circle;

1: square; 2: diamond;

3: triangle; 4: filled circle;

5: filled square; 6: filed diamond;

7: filled triangle; 8: plus (+);

9: cross; 10: star; 11: small dot;

12: bold plus;

setSymbolSize(i) set symbol size “i”

define the number of bins for X and Y axis, and the minimum and the maximum
values for each axis. Then the histogram can be initialized as:

>>> from jhplot import *
>>> h2= H2D(’Title’,binsX,minX,maxX,binsY,minY,maxY)

where binsX(binsY) is the number of bins for X (Y), minX(minY) and
maxX(maxY) are the minimum and the maximum values for the X (Y) axis, re-
spectively.

In addition to the fixed-bin-size case, one can create histograms with variable bin
sizes. One should call the constructor below which allows to pass lists with the bin
edges:

>>> from jhplot import *
>>> h2= H2D(’Title’,[1,2,3],[1,2,4,8])

8.2 Histogram in 2D 207

This constructor shows how to define the bin edges in X (the first input list) and Y

(the second input list).
To fill a 2D histogram, the method fill(x,y) should be used, where ’x’ and

’y’ values for the X and Y axis. It should be noted that the bin heights and the
numbers of entries are the same when weights used to fill the histogram are set to
one. Non-unity weights ’w’ can be specified in the method fill(x,y,w).

Table 8.3 shows the main methods of the H2D histogram class. Unlike the H1D
histogram, the H2D class has the setter and getter methods for each axis, X and Y .
For example, getMeanX() returns the mean value in X, while getMeanY()
returns the mean value in Y .

You may find that the methods given above are not enough for some com-
plicated operations. We should remind that the H2D class is based on the Jaida
classes, IAxis and Histogram2D, which are located in the Jaida package
hep.aida.ref.histogram.*. As a consequence, one can build H2D his-
tograms by creating the object of the class IAxis , which represents the axis in
one dimension, and then pass it to the H2D constructor.

>>> from hep.aida.ref.histogram import *
>>> from jhplot import *
>>> xAx=FixedAxis(10,0.0,1.0)
>>> yAy=FixedAxis(20,0.0,1.0)
>>> h2=H2D(’Title’,xAx,yAy)

Again, as for the one-dimensional case, both Jaida classes can be obtained as:

>>> aX=h2.getAxisX() # get IAxis object for axis X
>>> aY=h2.getAxisY() # get IAxis object for axis Y
>>> h=h2.get() # get Histogram2D class

assuming that h2 represents a H2D object. We will return to the Jaida histogram
package in Sect. 8.3.

8.2.1 Histogram Operations

All histogram operations are exactly the same as for the H1D class discussed in
Sect. 8.1.6. The H2D histograms can be added, subtracted, multiplied and divided
using the generic method:

>>> h1=h1.oper(h2,’NewTitle’,’operation’)

where ’operation’ is a string which can have the following values: “+” (add),
“-” (subtract), “*” (multiply) and “/” (divide) histograms, and h1 and h2 are ob-
jects of the class H2D. The histograms can be scaled using the method scale(d).

208 8 Histograms

Table 8.3 Some methods of the H2D class. The table uses the following notations: “i” indicates
an integer value, “d” means a double value, “a” corresponds to a 1D array, “aa” denotes a 2D
array

Methods Returns Definitions

fill methods

fill(x,y) – fill x and y

fill(x,y,w) – fill x and y with weight w

clear() – clean from all entries

getter methods

copy() H2D exact copy

getMeanX() d get the mean value in X

getMeanY() d get the mean value in Y

getRmsX() d get RMS in X

getRmsY() d get RMS in Y

getMinX() d get min value in X

getMaxX() d get max value in Y

getMinY() d get min value in Y

getMaxY() d get max value in Y

getBinsX() i number of bins in X

getBinsY() i number of bins in Y

allEntries() i number of all entries

entries() i number of entries in the range

getTitle() text get histogram title

sumAllBinHeights() d sum of all bin heights

extraEntries() i number of entries outside the range

getUnderflowX() i underflow entries in x

getUnderflowHeightX() d underflow heights in x

getUnderflowY() i underflow entries in y

getUnderflowHeightY() d underflow heights in y

getOverflowX() i overflow entries in x

getOverflowlowHeightX() d overflow heights in x

getOverflowY() i overflow entries in y

getOverflowlowHeightY() d overflow heights in y

binEntries(ix,iy) i entries in bins (ix,iy) bin

binError(ix,iy) d errors on a (ix,iy) bin

binHeight(ix,iy) d height of a (ix,iy) bin

getDensity() H2D density distribution

getProbability() H2D probability distribution

integral(i1,i2,j1,j2) d integral in the range

integralRegion(d1,d2,d1,d2) d integral in the range (coordinates)

8.2 Histogram in 2D 209

Table 8.3 (Continued)

Methods Returns Definitions

setter methods

setContents(d[][], e[][]) set heights and errors (double arrays)

setBinError(ix,iy,d) set the bin error for (ix,iy) bin

setMeanX(d) set the mean value for X

setMeanY(d) set the mean value for Y

setRmsX(d) set RMS for X

setRmsY(d) set RMS for Y

The probability and density distributions can be obtained as discussed in
Sect. 8.1.1:

>>> h2=h1.getProbability()
>>> h2=h1.getDensity()

Finally, one can obtain the sum of the bin contents in the range defined in terms
of the bin indexes or coordinate values using the methods shown in Sect. 8.1.5.

Finally, one can calculate an integral of histogram entries using the
integral() method. A histogram region can be integrated by passing bin in-
dexes.

8.2.2 Graphical Representation

The 2D histograms should be plotted using the three-dimensional canvas HPlot3D
which has been used before to plot F2D functions. One can find more details in
Sect. 3.4. The example below shows how to fill and display a H2D histogram:

Filling 2D histogram

from jhplot import *
from java.util import Random
c1 = HPlot3D(’Canvas’)
c1.visible()
c1.setNameX(’X axis’)
c1.setNameY(’Y axis’)
h1=H2D(’2D Test’,30,-3.0, 3.0, 30, -3.0, 3.0)
r=Random()
for i in range(1000):

h1.fill(r.nextGaussian(),r.nextGaussian())
c1.draw(h1)

Here we fill a 2D histogram with Gaussian random numbers and then plot it us-
ing exactly the same draw(obj) method (with obj being an object for drawing)
method as for the F2D functions.

210 8 Histograms

Below we show a more complicated example. We will fill several histograms
using Gaussian numbers after shifting the means for the sake of better illustration.
In addition, we show how to: (1) plot two histograms on the same plot; (2) plot a
histogram and a 2D function on the same plot. In both cases, we use the method
draw(obj1,obj2), where obj1 and obj2 could be either H2D or F2D object.

Multiple 2D histograms

from java.awt import Color
from java.util import Random
from jhplot import *

c1 = HPlot3D(’Canvas’,600,700, 2,2)
c1.visible()
c1.setGTitle(’H2D drawing options’)

h1=H2D(’H2D Test1’,30,-4.5,4.5,30,-4.0, 4.0)
h2=H2D(’H2D Test 2’,30,-3.0, 3.0, 30, -3.0, 3.0)
f1=F2D(’8*(x*x+y*y)’, -3.0, 3.0, -3.0, 5.0)

r=Random()
for i in range(10000):

h1.fill(r.nextGaussian(),0.5*r.nextGaussian())
h2.fill(1+0.5*r.nextGaussian(),-2+0.5*r.nextGaussian())

c1.cd(1,1)
c1.setScaling(8)
c1.setRotationAngle(30)
c1.draw(h1)

c1.cd(1,2)
c1.setScaling(8)
c1.setColorMode(2)
c1.setRotationAngle(30)
c1.draw(h1,h2)

c1.cd(2,1)
c1.setColorMode(4)
c1.setLabelFontColor(Color.red)
c1.setScaling(8)
c1.setRotationAngle(40)
c1.draw(f1,h2)

c1.cd(2,2)
c1.setColorMode(1)
c1.setScaling(8)
c1.setElevationAngle(30)
c1.setRotationAngle(35)
c1.draw(h1)

8.2 Histogram in 2D 211

Fig. 8.2 H2D and F2D objects shown on the HPlot3D canvas using different styles

The resulting plots are shown in Fig. 8.2. One can see that the default drawing
option for the H2D is histogram bars. The 2D functions are usually shown using a
surface-type representation.

We should note that, at the moment when this book was written, there was no
support for drawing 2D histograms with variable bin sizes.

The 2D histograms (as well as 2D functions) can be shown as a contour (or
density) plot, an alternative graphical method when each region in X and Y is rep-
resented by different color, depending on the density population of each area with
data points. To show such plot, one can use the method setContour(). The small
code snippet below illustrates this:

2D Contour histogram

from jhplot import *
from java.util import Random

c1 = HPlot3D(’Canvas’,600,600)
c1.setNameX(’X’)
c1.setNameY(’Y’)

212 8 Histograms

Fig. 8.3 A H2D histogram shown as a contour plot

c1.setContour()
c1.visible()

h1 = H2D(’Contour’,30,-3.0,3.0,30,-3.0,3.0)
rand = Random()
for i in range(100):

h1.fill(0.5*rand.nextGaussian(),rand.nextGaussian())
c1.draw(h1)

The execution of this script brings up a window with the contour plot shown in
Fig. 8.3.

As for the F2D and P1D objects, one can use the canvas HPlot2D for showing
H2D histograms. This canvas class was specifically designed to show the density
and contour plots as will be discussed in Sect. 10.11.

8.3 Histograms in Jaida

We have already mentioned that there is a way to access the so-called Jaida his-
tograms from the FreeHep scientific library. Essentially, every histogram class in
jHepWork is a derivative of the corresponding Jaida class.

The Jaida histograms can be created after importing the Java package
hep.aida.ref.histogram. Generally, one can use the so-called Java fac-

8.3 Histograms in Jaida 213

tories to create the Jaida histograms. In this section, however, we will concentrate
on a more basic histogram construction using Jaida.

Before building a Jaida histogram, first you have to define the “axis” object,
which can either contain fixed or variable size bins. The example below shows how
to create an one-dimensional Jaida histogram from the class Histogram1D:

>>> from hep.aida.ref.histogram import *
>>> ax=FixedAxis(bins,min,max)
>>> h1=Histogram1D(’name’,’title’,ax)

where ’bins’ represents the number of bins, ’min’ and ’max’ is the minimum
and the maximum value for the X range. The code above builds a 1D Jaida his-
togram using fixed-size bins. One should also specify the histogram name and its
title. They may not need to be the same. The passed name is used for the internal
Jaida purpose, so one can just set it to the histogram title.

Using the code assist, try to check the available methods of the object h1. You
may notice that they are rather similar to those of the H1D class. The only difference
is that the Histogram1D does not have any graphical attributes.

Analogously, one can build a Jaida histogram using a variable bin size. The code
is essentially the same, with the only one difference: the axis should be replaced by
the line with axis=VariableAxis(edges) with edges being an array with
the bin edges.

A two-dimensional Jaida histogram, Histogram2D can be constructed in a
similar way:

>>> from hep.aida.ref.histogram import *
>>> ax=FixedAxis(binsX,minX,maxX)
>>> ay=FixedAxis(binsY,minY,maxY)
>>> h1=Histogram2D(’name’,’title’,ax,ay)

Again, to make a 2D histogram with variable bin sizes, use the VariableAxis()
instead of FixedAxis.

To add graphical attributes to these Jaida classes, we have to move them to the
full-featured jHepWork histograms, H1D or H3D. One can do this rather easily by
using these constructors:

>>> from hep.aida.ref.histogram import *
>>> from jhplot import *
>>> h1d=H1D(h1) # build H1D from Jaida histogram
>>> h2d=H2D(h2) # build H2D from Jaida histogram

One can retrieve the Jaida histograms back as:

214 8 Histograms

>>> h1=h1d.get() # get Histogram1D object
>>> h2=h2d.get() # get Histogram2D object

But why do we need to use the Jaida histograms, if the jHepWork histograms
are direct derivatives of the corresponding Jaida classes? The answer is simple:
jHepWork does not map every single method of the Jaida histogram classes. In
most cases, jHepWork histograms inherent only the most common methods (and
add extra methods not present in Jaida). Therefore, if you find that jHepWork his-
tograms do not have necessary methods, try to access the IAxes, Histogram1D
and Histogram2D objects that may have the methods you need for your work.

8.4 Histogram in 3D

Histograms in three dimensions are a bit tricky. One cannot use them for a graphical
representation, therefore, jHepWork does not add extra features compared to those
present in the Jaida Histogram3D class.

In jHepWork, 3D histograms are implemented using the H3D class. In case of a
fixed-size binning, these histograms can be defined by building three axes in X, Y

and Z, and passing them to the histogram constructor:

>>> from jhplot import *
>>> from hep.aida.ref.histogram import *
>>> ax=FixedAxis(binsX,minX,maxX)
>>> ay=FixedAxis(binsY,minY,maxY)
>>> az=FixedAxis(binsZ,minZ,maxZ)
>>> h3=H3D(’title’, ax, ay, az)

The methods of the H3D class are rather similar to those discussed for H2D.
The only difference is this: now we should take care of the additional Z axis.
For example, to fill this histogram with weights, one needs to use the method
fill(x,y,z). We remind again that this type of histograms does not have
any graphical attributes—essentially, it is the exact mapping of the corresponding
Histogram3D Jaida class.

8.5 Profile Histograms

A profile histogram is used to show the mean value in each bin of a second variable.
The errors on the bin heights usually represent statistical uncertainties on the mean
values or data spreads (i.e. standard deviations) of event distributions inside bins.

8.5 Profile Histograms 215

8.5.1 Profile Histograms in 1D

The profile histograms in one dimension are implemented in the HProf1D class.
Such histograms are filled using the method fill(x,y), similar to the two-
dimensional histograms. The first variable x is used for binning, while the second
argument represents the variable for which the mean is calculated.

To show a profile histogram, use the method getH1D(). This method converts
the profile histogram into the usual H1D discussed in Sect. 8.1, which then can be
used for graphical representation. It can also accept a string to define a new title
after the conversion. By default, errors on the mean values in each bin are shown by
vertical lines. One can also display the mean values of y and their root-mean-square
(RMS) deviations from the mean for each bin. The RMS values are shown as errors
on the histogram heights when using the option ’s’ during the conversion with the
method getH1D(’title’,’s’).

Below we calculate the mean values of a Gaussian distribution as a function of
the second variable with uniform random numbers between zero and ten.

Profile histogram

from jhplot import *
from java.util import Random

c1 = HPlot(’Canvas’)
c1.setGTitle(’Profile histogram’)
c1.setRange(0,11,1.5,2.5)
c1.setNameX("X")
c1.setNameY(’Gaussian mean’)
c1.visible()

h2=HProf1D(’Profile1D’,10,0.0, 11.0)
r=Random()
for i in range(2000):

h2.fill(10*r.nextDouble(),r.nextGaussian()+2)

h1=h2.getH1D()
h1.setStyle(’p’)
c1.draw(h1)

The result of this script is shown in Fig. 8.4.

8.5.2 Profile Histograms in 2D

In contrast to the HProf1D histograms, the class HProf2D is designed to construct
a profile histogram in two dimensions. As before, such histograms represent the
mean of some distribution in each bin of two additional variables in X and Y .

216 8 Histograms

Fig. 8.4 A profile histogram
showing the mean values as a
function of a second variable

A HProf2D histogram can be created by specifying the number of bins in X and
Y , as well as the minimum and maximum values for each axis. Alternatively, one can
pass arrays with the bin edges, if the bin sizes should not be fixed to a constant value.
The HProf2D histograms should be converted to H2D histograms (see Sect. 8.1) for
graphical representation. The conversion can be done by either calling the method
getH2D() (error on the mean in each bin) or getH2D(’title’,’s’) (errors
correspond to RMS in each bin). Obviously, the HPlot3D canvas should be used
for plotting.

Below we show a simple example of how to display the mean of a Gaussian
distribution in two dimensions.

2D profile histogram

from jhplot import *
from java.util import Random

c1 = HPlot3D(’Canvas’)
c1.setGTitle(’Gaussian mean’)
c1.setRange(0,10,0.0,5)
c1.setNameX(’X’)
c1.setNameY(’Y’)
c1.visible()

h2=HProf2D(’Profile2D’,10,0.0,10.0,10,0.0,5.0)
r=Random()
for i in range(5000):

x=10*r.nextDouble()
y=5*r.nextDouble()
z=r.nextDouble()+2
h2.fill(x,y,z)

c1.draw(h2.getH2D())

8.6 Histogram Input and Output 217

8.6 Histogram Input and Output

All the histograms discussed above can be written into files and restored later. As
example, one can use the method toFile() to write a histogram into a file. As
for any jHepWork object, one can save collections of histograms using Jython lists,
tuples or dictionaries. Alternatively, one can use the Java containers, such as arrays,
sets or maps.

In case of Jython lists, one should always remember the order that was used to
store histograms inside the lists. In case of Jython dictionaries or Java maps, one
can use a human-readable description as the key for each histogram entry. Below
we illustrate how to use a Jython dictionary to store several histograms (including
their graphical attributes) in a serialized file: The code below writes a collection of
histograms filled with random numbers into the file ’file.ser’:

Writing histograms

from jhplot import *
from jhplot.io import *
from java.awt import Color
from java.util import Random

hold = {} # define a dictionary

h1=H1D(’Simple1’,20,-2.0,2.0)
h1.setFill(1)
h1.setFillColor(Color.green)
h2=H2D(’Simple2’,20,-3.0, 3.0, 20, -3.0, 3.0)
h3=HProf1D(’Profile1D’,10,0.0, 11.0)

r=Random()
for i in range(1000):

h1.fill(r.nextGaussian())
h2.fill(r.nextDouble(),r.nextGaussian())
h3.fill(10*r.nextDouble(),r.nextGaussian()+50)

put all objects in a dictionary with description
hold[’describe’]=’Collection of histograms’
hold[’h1’]=h1
hold[’h2’]=h2
hold[’h3’]=h3

write the collection into a file
Serialized.write(hold,’file.ser’)

Next, we will restore the histograms from the written file. First, we will read the
dictionary and then will fetch all the histograms from the file using their keys:

218 8 Histograms

Reading histograms

from jhplot import *
from jhplot.io import *

c1 = HPlot(’Canvas’)
c1.visible()
c1.setAutoRange()

deserialize dictionary object
hold=Serialized.read(’file.ser’)

print all keys
print hold.keys()
print ’Description: ’+hold[’describe’]

draw two 2D histograms
c1.draw(hold[’h1’])
c1.draw(hold[’h3’].getH1D())

In this example, we draw two histograms retrieved from the serialized file, H1D and
HProf1D. The latter histogram has to be converted to a H1D object for visualiza-
tion. We will remind that, in order to draw the H2D histogram, we will need a 3D
drawing canvas, HPlot3D.

Serializations into XML files can be done using the writeXML() and
readXML() methods from the same Serialization class. In addition, one
can convert a histogram into a XML string using the toXML() method.

Finally, we recall that one can store and retrieve multiple objects, including jHep-
Work histograms, using the class HFile. It is designed to work with a large se-
quence of any Java objects (see Chap. 11 for detail). In addition, one can use a GUI
browser to look at all stored objects inside the files created with the class HFile
and then plot them.

8.6.1 External Programs for Histograms

8.6.1.1 CFBook Package

Histograms can be filled by an external C++ or FORTRAN program. For this,
use the CFBook [2] or CBook [3] packages. The first package can be used to fill
histograms from a C++ or FORTRAN program, and write them into specially de-
signed XML files (which are optimized for storing numerical data). The second
package is based on compressed records constructed using the Google’s Protocol
Buffers. This approach will be discussed in Sect. 11.4.

The package CFBook package generates two static libraries: libcbook.a (to
be linked with C++) or libfbook.a (to be linked with FORTRAN). Histograms

8.6 Histogram Input and Output 219

filled by the CFBook library can be retrieved and visualized using the HBook class.
Let us give one example. We assume that histograms are filled by a C++ external
program and are kept in the ’cpp.xml’. One can read and retrieve histograms
from this file as:

>>> from jhplot import *
>>>
>>> hb = HBook() # create HBook instance
>>> hb.read(’cpp.xml’) # read input XML file
>>> print hb.listH1D() # list all histograms
>>> h1 = hb.getH1D(10) # get H1D histogram with ID=10
>>> c1.draw(h1) # draw it

In the code above, ’c1’ represents an instance of the HPlot class.
The HBook class can also be used to save histograms or other objects into XML

files. In this case, one should use its method write():

>>> from jhplot import *
>>>
>>> hb = HBook(’hbook’)
>>> h3=H1D(’test’,2,0.0,1.)
>>> h4=H2D(’test’,5,0.0,1.,4,0.,1.)
>>> hb.add(30,h3) # add to HBook with ID=30
>>> hb.add(40,h3) # add to HBook with ID=40
>>> p1=P1D(’test") # create P1D objects
>>> hb.add(10,p1) # add to HBook with ID=10
>>> print hb.listH1D() # list all histograms
>>> h1 = hb.getH1D(30) # get H1D histogram with ID=30
>>> ...
>>> hb.write(’out.xml’) # write to an XML file

This example illustrates that one can insert the histogram H1D, H2D or even the
containers like P1D into the HBook holder using some identification numbers
(10,20,30). These numbers can be used later for object retrieval. Also, we show
how to write all such objects into an external XML file.

8.6.1.2 ROOT Package

jHepWork can also read histograms saved into ROOT files [4, 5]. One can read
ROOT histograms using Jython scripts or using a GUI browser in order to navigate
to a certain histogram object inside the ROOT files. These topics will be discussed
in Sect. 11.5.1.

220 8 Histograms

8.7 Real-life Example. Analyzing Histograms from Multiple
Files

We will continue with the example discussed in Sect. 2.17. What we what to do
now is more complicated than before: (1) We want to identify all files with the
extension ’.dat’ and read them. The files contain numbers (one per line) and can
be compressed. (2) Then we will analyze all numbers in all these files by putting
them into a histogram. This histogram can be used to build statistical summaries of
data, such as the number of entries, the mean value and the standard deviation.

While the described tasks are notably more complicated than those considered so
far, our code will be at least a factor two smaller than that discussed1 in Sect. 2.17.
Below we show a Jython code which does the complete data analysis:

Reading histograms

from jhplot import *
from utils import *

c1 = HPlot(’Analysis’)
c1.visible()
c1.setAutoRange()

list=FileList.get(’/home/’,’.dat$’)
sum=P0D(’sum’)
for file in list:

p0=P0D(’data’,file)
sum=sum.merge(p0)

h1=H1D(’test’,100,0,200)
h1.fill(sum)
c1.draw(h1)
c1.drawStatBox(h1)

The execution of this script brings up a frame with the filled histogram. A box
with calculated statistics, displayed after calling the method drawStatBox(),
tells about all major statistical features of the data sample. Note that the method
FileListwas used to scan all files which have the extension ’.dat’. Obviously,
one can use rather sophisticated Java regular expressions to find a necessary patten in
the file names. Also, it should be noted that we first created a P0D object from ASCII
files. If the input files are zipped (gzipped), use the methods readZip(’name’)
or readGZip(’name’) instead. If you know that files are serialized using Java,
replace the read methods with the method readSerialized(’name’).

In exactly the same fashion one can use various jHepWork containers, such as
P1D, PND etc. To plot a particular slice of data (row or column), one can convert
these objects into Java arrays, Jython lists or P0D objects, which then can be passed
to either H1D or H2D histograms.

1Below we will skip the part which was necessary to remove duplicate files, since this task de-
scribed in Sect. 2.17 was used for an illustration only.

References 221

References

1. FreeHEP Java Libraries. URL http://java.freehep.org/
2. Chekanov, S.: CFBOOK histogram library. URL http://jwork.org/jhepwork/cbook
3. Chekanov, S.: CBOOK histogram library. URL http://jwork.org/jhepwork/cbook
4. Brun, R., Rademakers, F., Canal, P., Goto, M.: Root status and future developments. ECONF

C0303241 (2003) MOJT001
5. Brun, R., Rademakers, F.: ROOT: An object oriented data analysis framework. Nucl. Instrum.

Methods A 389, 81 (1997). URL http://root.cern.ch/

Chapter 9
Random Numbers and Statistical Samples

A random number, i.e. a number chosen by chance from a specified distribution, is
an essential concept for many scientific areas, especially for simulations of physical
systems using Monte Carlo methods.

For a set with random numbers, no individual number can be predicted from
knowledge of any other number or group of numbers. However, sequences of ran-
dom numbers in a computer simulation eventually contain repeated numbers after
generation of many millions of random numbers. Thus, it is only a good approxi-
mation to say that the numbers are random, and the definition “pseudo-random” is
more appropriate.

Another notion which is usually associated with a sequence of random numbers
is the so-called “seed” value. This is a number that controls whether the random
number generator produces a new set of random numbers after the code execution
or repeats a certain sequence.

For debugging of programs, it is often necessary to start generating exactly the
same random number sequence every time you start the program. In this case, one
should initialize a random number generator using the same seed number.

The seed must be changed for each run if you want to produce completely dif-
ferent sets of random numbers every time the program is executed. Usually, this can
be done by generating a new seed using the current date and time, converted to an
integer value.

9.1 Random Numbers in Jython

This section is going to be very short, since we have discussed this topic in Sect. 2.8.
The standard Jython (as well as CPython) module that implements a random num-
ber generator is called ’random’. It must be imported using the usual statement
import.

As before, it is advisable to use the standard jHepWork libraries to create arrays
with random numbers where possible, instead of filling lists with random values
using Jython loops. There are two reasons for this: (1) less chances that a mistake

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_10, © Springer-Verlag London Limited 2010

223

224 9 Random Numbers and Statistical Samples

can be made; (2) programs based on the standard Java libraries are significantly
faster. Look at the examples below: the first program is rather inefficient (and long),
while the second code snippet is a factor five faster (and shorter). Both programs fill
histograms with random numbers in the range between 0 and 100 and show them in
a canvas.

Jython random numbers

from java.util import Random
from jhplot import *
from time import clock

start=clock()
h1 = H1D(’Uniform distribution’,100, 0.0, 100.0)

rand = Random()
for i in range(2000000):

h1.fill(100*rand.nextDouble())

c1 = HPlot(’Canvas’)
c1.visible()
c1.setAutoRange()

c1.draw(h1)
send=clock()
print ’Time elapsed = ’,send-start,’ seconds’

The program below does the same, but it is faster by a factor seven:

jHepWork random numbers

from jhplot import *
from time import clock
from jhplot.math.StatisticSample import randUniform

start=clock()
fill histogram with random numbers
h1 = H1D(’Uniform distribution’,100, 0.0, 100.0)
h1.fill(randUniform(2000000,0.0,100.0))

c1 = HPlot(’Canvas’)
c1.visible()
c1.setAutoRange()
c1.draw(h1)
send=clock()
print ’Time elapsed = ’, send-start,’ seconds’

Here we recall that the method fill() of the class H1D accepts not only separate
values, but also arrays of different type—in this case, we build such array on-fly
using the method randUniform().

9.2 Random Numbers in Java 225

Below we will discuss in more detail how to use pre-build libraries from jHep-
Work and third-party libraries. But first will discuss the most common classes to
generate random numbers in Java.

9.2 Random Numbers in Java

Random numbers provided by Java API have already been used in the previous
sections. Let us remind that the class Random can be used to generate a single
random number. Below we check the methods of this class:

>>> from java.util import *
>>> r=Random() # seed from the system time.
>>> r=Random(100L) # user defined seed=100L
>>> dir(r)
[.. ’nextDouble’, ’nextFloat’, ’nextGaussian’,
...’nextInt’, ’nextLong’ ..]

In the first definition, the default seed comes from the computer system time. In
the second example, we initiate the random sequence from an input value to obtain
reproducible results for every program execution.

Below we describe the most common methods to generate random numbers: As
usual, ’i’ denotes an integer, ’l’ represents a long integer, ’d’ means a double
value while ’b’ corresponds to a boolean value.

i=r.nextInt(n) random int ≥ 0 and ≤ n

i=r.nextInt() random int (full range)
l=r.nextLong() random long (full range)
d=r.nextDouble() random double ≥ 0.0 and ≤ 1.0
b=r.nextBoolean() random boolean, true (1) or false (0)
d=r.nextGaussian() double from a Gaussian distribution with mean 0.0 and

standard deviation 1

To build a list containing random numbers, invoke a Jython loop. For example,
this code typed using JythonShell builds a list with Gaussian random numbers:

>>> from java.util import *
>>> r=Random()
>>> g=[]
>>> for i in range(100):
>>> ... g.append(r.nextGaussian())

It was already discussed before that Jython loops are not particularly fast, therefore,
it is recommended to use the predefined jHepWork methods to build lists. This is
also not the only problem: using the predefined methods to build collections with
random numbers grantees that the code is sufficiently short and free of errors.

226 9 Random Numbers and Statistical Samples

9.3 Random Numbers from the Colt Package

The Colt package provides a comprehensive list of methods to create ran-
dom numbers. The classes necessary to build random numbers come from the
package cern.jet. As example, let us consider a generation of reproducible
random numbers using the MersenneTwister class from the sub-package
random.engine. The macro below creates an array P0D with random numbers
and then prints the statistical summary of a Gamma distribution:

Colt random numbers

from cern.jet.random.engine import *
from cern.jet.random import *
engine = MersenneTwister()
alpha=1
lamb=0.5
gam=Gamma(alpha,lamb,engine)
from jhplot import P0D
p0=P0D()
for i in range(100):

p0.add(gam.nextDouble())
print p0.getStat()

Here we used the so-called “Mersenne-Twister” algorithm, which is one of the
strongest uniform pseudo-random number generators. We did not specify any ar-
gument for the engine, therefore, the seed is set to a constant value and the output is
totally reproducible. One can use the current system date for a seed to avoid repro-
ducible random numbers:

>>> import java
>>> engine=MersenneTwister(new java.util.Date())

Learn about all possible methods of this package as usual:

>>> import cern.jet.random
>>> dir(cern.jet.random)

The above command prints the implemented distributions:

Beta, Binomial, BreitWigner, BreitWignerMeanSquare,
ChiSquare, Empirical, EmpiricalWalker, Exponential,
ExponentialPower, Gamma, Hyperbolic, HyperGeometric,
Logarithmic, NegativeBinomial, Normal, Poisson,
PoissonSlow, StudentT, Uniform, VonMises, Zeta

All these classes operate on a user supplied uniform random number generator.

9.4 Random Numbers from the jhplot.math Package 227

Once you know which random number is necessary for your program, use the
code assist or Java API documentation to learn more.

There is one special distribution you have to be aware of. One can generate
random numbers from an array of predefined set of numbers given by some func-
tion. Such distribution is called “Empirical”. The probability distribution function
(PDF) should be provided as an array of positive numbers. The PDF does not
need to be provided in the form of relative probabilities, absolute probabilities are
also accepted. If LINEAR_INTERPOLATION constant is set, a linear interpolation
within the bin is computed, resulting in a constant density within each bin. When
NO_INTERPOLATION is passed, no interpolation is performed and the result is a
discrete distribution.

Empirical PDF from the Colt library

rom cern.jet.random.engine import *
from cern.jet.random import *
engine = MersenneTwister()
pdf=[1.,4.,4.,4.,3.,2.,1.,1.,1.]
enterpolation=Empirical.LINEAR_INTERPOLATION
em=Empirical(pdf,enterpolation,engine)
from jhplot import P0D
p0=P0D()
for i in range(100):

p0.add(em.nextDouble())
print p0.getStat()

Look also at the class EmpiricalWalker which implements the so-called
Walker’s algorithm.

9.4 Random Numbers from the jhplot.math Package

jMathTool [1] classes further extend the Java random number generators. This li-
brary is included into the package ’jhplot.math’.

The example below shows how to generate random numbers using the jMathTool
package:

>>> from jhplot.math.Random import *
>>> r=rand() # random number between 0 and 1
>>> i=randInt(min,max) # integer in the range [min,max]

Below we will show other possible options:

uniform(min,max) a random number between min and max.
dirac(d[], p[]) a random number from a discrete random vari-

able, where d[] array with discrete values, and
p[] is the probability of each value.

228 9 Random Numbers and Statistical Samples

normal(m,s) a random number from a Gaussian (Normal)
distribution with the mean (‘m’) and the stan-
dard deviation (‘s’).

chi2(i) a random number from a ξ2 random variable
with ‘i’ degrees of freedom.

logNormal(m,s) a LogNormal random variable with the mean
(‘m’) and the standard deviation (‘s’).

exponential(lam) a random number from an exponential distribu-
tion (mean = 1/lam, variance = 1/lam**2).

triangular(min,max) a random number from a symmetric triangular
distribution.

triangular(min,med,max) a random number from a non-symmetric trian-
gular distribution (“med” means a value of the
random variable with max density).

beta(a,b) a random number from a Beta distribution. ‘a’
and ‘b’ is the first and second parameter of the
Beta random variable.

cauchy(med,s) a random number from a Cauchy distribution
(Mean = Inf, and Variance = Inf). ‘med’ is
a median of the Weibull random variable, ‘s’
is the second parameter of the Cauchy random
variable.

weibull(lam,c) a random number from a Weibull distribution.
“lam” is the first parameter of the Weibull ran-
dom variable, ‘c’ is the second parameter of the
Weibull random variable.

Finally, one can generate a random number from an analytical function using
the known rejection method. This requires building a F1D function first and then
passing its parsed object to the rejection() method. Below we show how this
can be done:

>>> from jhplot import *
>>> from jhplot.math.Random import *
>>> f=F1D(’x*exp(x)’,1,2)
>>> p=f.getParse()
>>> print rejection(p,15,1,2)
1.4

The method rejection() takes three arguments: a parsed function, a maximum
value of the function (15 in this case) and a minimum and a maximum value for
the abscissa. The method returns a random number between 1 and 2, since these
numbers have been specified in the rejection() method.

9.5 Random Sampling 229

9.4.1 Apache Common Math Package

Random numbers can also be generated using the Apache common math package.
A random generator can be initialized using the RandomDataImpl() class. Then,
call its methods to generate a random number. The code below shows how to gen-
erate a single random number from different distributions:

>>> from org.apache.commons.math.random import *
>>> r=RandomDataImpl()
>>> dir(r) # check all methods
>>> d=r.nextUniform(0,1) # a random number in [0,1]
>>> d=r.nextExponential(1) # Exponential with the mean 1
>>> d=r.nextGaussian(0,1) # Gaussian (mean=0 and sigma=1)
>>> d=r.nextPoisson(1) # Poisson with mean 1
>>> s=r.nextHexString(10) # hex string of length len

Check the corresponding API documentation for more options. One can reseed the
random numbers using the reSeed() method (it sets the seed of the generator to
the current computer time in milliseconds). One can also reseed the random number
generator with the supplied seed using the method reSeed(i), where ’i’ is an
arbitrary integer number.

There are also the so-called “secure” methods, much are slower than those given
above. A secure random sequence has the additional property that knowledge of val-
ues generated up to any point in the sequence does not make it any easier to predict
subsequent values. Such values are useful for a cryptographically secure random se-
quence. As an example, check the method nextSecureHexString(10) which
generates a “secure” random string of size ten.

9.5 Random Sampling

When one needs to create a large array with random numbers obeying some prob-
ability distribution, it is inconvenient (and slow!) to create data containers using
Jython loops as shown at the beginning of this chapter. Instead, one should use the
Java libraries implementing generations of arrays with random numbers.

We have already discussed in Sect. 4.1 how to build a P0D and populate it with
random numbers:

>>> from jhplot import *
>>> p0= P0D()
>>> p0.randomUniform(1000,0.0,1.0) # Uniform distribution
>>> p0.randomNormal(1000,0.0,1.0) # Gaussian distribution

230 9 Random Numbers and Statistical Samples

In both cases we will fill an array with 1000 numbers populated by either a uniform
random generator (in the range [0–1]) or a Gaussian generator with the mean zero,
and with the standard deviation equals unity.

Below we will consider more options that specify how to fill the P0Dwith custom
random numbers.

9.5.1 Methods for 1D Arrays from jhplot.math

Static methods of the package ’jhplot.math’ can also be useful to generate
arrays with random numbers. We remind that the package is based on the original
class of jMathTools [1].

We will start from a simple example of how to create an array of size 10 with
random integer numbers distributed between 0 and 100. After creation, we print out
the array:

>>> from jhplot.math.StatisticSample import *
>>> a=randomInt(10,0,100)
>>> print a
array(’i’,[93, 19, 70, 36, 55, 43, 52, 50, 67, 38])

Analogously, randUniform(N,min,max) generates ’N’ random numbers
uniformly distributed between ’min’ and ’max’.

Below we show a list of methods designed to generate arrays with random num-
bers:

randomDirac(N,d[],p[]) a random array from a discrete random
variable, where d[] array with discrete
values and p[] is the probability of each
value.

randomNormal(N,m,s) a Gaussian (Normal) random numbers
with the mean (“m”) and standard devi-
ation (“s”).

randomChi2(N,i) a random array with ξ2 random numbers
with ‘i’ degrees of freedom.

randomLogNormal(N,m,s) a random array with a LogNormal ran-
dom numbers.

randomExponential(N,lam) an array with an exponential random vari-
able (mean = 1/lam, variance = 1/lam2).

randomTriangular(N,m1,m2) an array with symmetric triangular ran-
dom variable in the range [m1,m2].

randomTriangular(N,m1,m,m2) an array from a non-symmetric triangular
random distribution in the range [m1,m2]
(‘m’ indicates a value of the random vari-
able with the maximal density).

9.5 Random Sampling 231

randomBeta(N,a,b) an array with Beta distribution, “a” and
“b” are first and second parameter of the
Beta random variable.

randomCauchy(N,m,s) an array from a Cauchy random distribu-
tion (Mean = Inf, and Variance = Inf).
‘m’ is the median of the Weibull random
variable, ‘s’ is second parameter of the
Cauchy random variable.

randomWeibull(N,lam,c) an array with Weibull random variable.
‘lam’ is the first parameter of the Weibull
random variable (‘lam’), ‘c’ is the second
parameter of the Weibull random vari-
able.

In all cases, the names of the methods are exactly the same as those shown in
Sect. 9.4. The only difference now is in the extra argument “N” which specifies how
many random values should be generated in the output arrays.

Obviously, once a sequence of random numbers is generated, the next step would
be to verify it. This can be done as following:

• Convert the random array into a P0D object;
• Display accumulated statistics with the method getStat() or convert it to a
H1D histogram for visualization.

As example, let us generate an array with log-normal distribution, print statistics
and plot log-normal distribution in a form of histogram:

Checking random numbers

from jhplot import *
from jhplot.math.StatisticSample import *

a=randomLogNormal(1000,0,10)
p0=P0D(a)
print p0.getStat()

h=H1D(’LogNormal’,40,-50,50)
h.fill(a)

c1 = HPlot(’Show histogram’)
c1.setGTitle(’LogNormal’)
c1.visible()
c1.setAutoRange()
c1.draw(h)

By running this script you will see a very detailed statistical summary of the log-
normal distribution, plus a histogram with random numbers from this distribution.

232 9 Random Numbers and Statistical Samples

9.5.2 Methods for 2D Arrays from jhplot.math

The generation of 2D arrays (i.e. matrices) is rather straightforward. We will con-
tinue with the above example used to generate a random 1D array; This time, how-
ever, we will add an extra argument representing the number of rows in the matrix.
This time our code snippet creates a matrix 3×2 with random integer numbers from
0 to 100:

>>> from jhplot.math.StatisticSample import *
>>> a=randomInt(3,2,0,100)
>>> print a
array([I, [array(’i’, [79, 92]), array(’i’, [78, 81]),

array(’i’, [92, 72])])

We should point out that all methods to generate random 2D arrays have the same
names and the meaning as for the 1D case. The only difference now is that all such
methods have an additional argument representing the number of rows.

Now let us consider how to build arrays of random values in accordance with a
functional form. Below we will give an example which: (1) shows how to generate
a vector with 1000 random numbers distributed between 1 and 2 using the analytic
function x ∗ exp(x); (2) fill a histogram with such numbers and plot them together
with the function on the same canvas

Plotting random arrays with arbitrary PDF

from jhplot import *
from jhplot.math.StatisticSample import *

c1 = HPlot(’Canvas’,600,400)
c1.setGTitle(’Title’)
c1.visible()
c1.setAutoRange()

f=F1D(’x*exp(x)’,1,2)
c1.draw(f)

p=f.getParse()
a=randomRejection(1000,p,15,1,2)
h=H1D(’x*exp(x)’,100,1,2)
h.fill(a)
c1.draw(h)

Analogously, one can build a 2D array by adding one extra argument to the
randomRejection() method representing the number of columns.

9.6 Sampling Using the Colt Package 233

9.6 Sampling Using the Colt Package

We have already considered how to generate separate random numbers using the
Colt random engine in Sect. 9.3. Now we will learn how to use this package to
create 1D and 2D random arrays.

First, let us discuss how to fill a P0D container with random numbers using the
Colt package. Consider the code below:

Statistical summary of the Binomial PDF

from cern.jet.random.engine import *
from cern.jet.random import *
from jhplot import *
engine=MersenneTwister()
n,p=10,0.5
gam=Binomial(n,p,engine)
a=P0D()
a.random(100,gam)
print a.getStat() # print statistics

If you need to look at the actual numbers, just append the line ’print
a.toString(). The method applied to populate the P0D with random numbers
is rather powerful since many predefined distributions are available. In addition,
one can build an empirical distribution without making any assumptions about the
functional form of the population distribution that the data come from. See the class
Empirical() discussed in Sect. 9.3 for detail.

Analogously, one can fill the native Colt array called DoubleArrayList. This
is exactly what we will do in the next example: we change the random generator
engine, fix the seed value to 99 and then create an array with the random numbers:

Generating a Gamma PDF

from cern.jet.random.engine import *
from cern.jet.random import *
from cern.colt.list import *
engine=DRand(99)
alpha,lamb = 1, 0.5
gam=Gamma(alpha,lamb,engine)
a=DoubleArrayList()
a.fillRandom(100,gam)
print a

Similarly, one can populate the array IntArrayList with integer random num-
bers.

References

1. jMathTools Java Libraries. URL http://jmathtools.berlios.de

Chapter 10
Graphical Canvases

In this chapter we will step back from the numerical computations and discuss some-
what technical issues about how to present numerical results in a graphical form,
what graphical canvas should be used to plot data points, histograms, functions and
other objects.

The task of choosing the right graphical canvas may look daunting at first. It is
further complicated by large choice of canvases and large number of objects which
have to be visualized for numerical calculations. Below we summarize the canvases
included to jHepWork:

HPlot 2D canvas and contour plots for P1D, F1D, H1D and other graphical
primitives;

HPlotJa 2D canvas with interactive editor for drawing diagrams. Support for
the H1D, P1D, F1D, graphical primitives and Feynman diagrams;

SPlot a light-weight 2D canvas, supports H1D, P1D and arrays;
HPlot2D contour (or density) plots in 2D for classes P1D, H2D and F2D;
HPlot3D interactive 3D plots, P2D, P3D, H2D and F2D;
HPlot3DP interactive 3D surfaces for parametric and non-parametric functions

(FPR);
HChart 2D charts. Support for P1D, X–Y charts, area, bar, histogram, pie

charts;
HGraph interactive interconnected graphs.

Usually, all such canvases originate from different base classes and created for dif-
ferent visualization tasks. Most of these canvas are also implemented as Java sin-
gleton classes (see our discussion later). In the following sections we will describe
these canvases and help to identify the most appropriate canvas for representation
of your results.

We should remind that jHepWork is a graphics-intensive program, and the burden
of plotting graphs on various canvas on the CPU could be immense. The advise is to
build graphical canvas after performing all CPU-consuming numerical calculations.
In this book, we do not always use this rule since our examples are not too CPU
consuming. But, in real situations, one should consider to reorganize analysis codes
such that creation of graphical canvas goes after numerical calculations.

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_11, © Springer-Verlag London Limited 2010

235

236 10 Graphical Canvases

10.1 HPlot Canvas

In Sect. 3.3.1 we have already discussed the HPlot class. We will remind that it
can be used to show F1D, P1D and H1D objects on X–Y plane. In this section we
will discuss this canvas in more detail.

First, we will remind how to build this canvas and make it visible:

>>> from jhplot import HPlot
>>> c1=HPlot(’Canvas’)
>>> c1.visible(1)

If the canvas should not be shown, use the method visible(0) for Jython—in
this case it will be created in the computer memory. We remind that, Jython “1”
means Java ‘true’ and “0” corresponds to Java ‘false’. One can use also the method
visible() instead of visible(1).

The size of the canvas on the screen can be customized as:

>>> c1=HPlot(’Canvas’,600,400)

This creates an initial canvas of the size 600 by 400 pixels (explicitly defined). One
can resize the canvas frame later by dragging the edges of the canvas frame with
the mouse. Most objects, such as titles, labels, symbols, lines etc. should be resized
proportional to the canvas size.

The constructor:

>>> c1=HPlot(’Canvas’,600,400,1,2)

also creates a canvas of the size 600 by 400 pixels. In addition, the last two numbers
tell that two plot regions (or pads) will be created inside the same canvas. If the last
two numbers are, say 3 × 2, then 6 pads are created (3 pads are in X direction and 2
pads are in Y direction). One can navigate to the current pad using the cd(i1,i2)
method, where i1 is the location of the pad in X, and i2 is the location in Y . For
example, if one needs to plot a jHepWork object obj on the first pad, use:

>>> c1.cd(1,1)
>>> c1.draw(obj)

where obj could either be F1D, P1D or H1D. It should be also noted that one can
plot a list of objects at once:

>>> a=[]
>>> a.append(f1) # add first F1D

10.1 HPlot Canvas 237

>>> a.append(f2) # add second F1D
>>> c1.draw(a) # draw all functions in the list

One can navigate to the second pad using the method cd(). For example, if an
object obj should be shown on the second pad, use

>>> c1.cd(1,2)
>>> c1.draw(obj)

By default, the HPlot canvas has the range between 0 and 1 for the X or Y axis.
One should specify a necessary range using the method

>>> c1.setRange(Xmin,Xmax,Ymin,Ymax)

where Xmin (Xmax) and Ymin (Ymax) are the minimum (maximum) ranges for
X and Y axes. Alternatively, one can set “auto”-range mode using the method
setAutoRange(). After calling this method, the minimum and maximum val-
ues for the X-axis range will be determined automatically.

One can change color for many attributes of the canvas, as well as to annotate the
canvas. First, one should import the classes Color or Font from the Java AWT
library. How to use the class Color and Font has been discusses in Sect. 3.3.1.
How to set user-defined annotations is shown in the example below:

>>> from java.awt import Color
>>> c1.setGTitle(’Global canvas title’,Color.red)
>>> c1.setNameX(’X axis title’)
>>> c1.setNameY(’Y axis title’)
>>> c1.setName(’Current pad title’)
>>> c1.visible()
>>> c.setAutoRange()

All the statements above are self-explanatory. One may add a background color to
the canvas as:

>>> c1.setBackgroundColor(Color.yellow)

or one can specify custom fonts for the legends as:

>>> from java.awt import Font
>>> font=Font(’Lucida Sans’,Font.BOLD, 12)
>>> c1.setLegendFont(font)

Read the Java documentation of the HPlot class [1].

238 10 Graphical Canvases

Finally, you can edit pad titles and titles of the axes using the mouse. Simply
double click on the area with the text. We will discuss this in more detail in the
following section.

10.2 Working with the HPlot Canvas

There are several important operations you should know while working with the
HPlot canvas frame:

10.2.1 Find USER or NDC Coordinators

To determine the coordinate of the mouse in the USER coordinate system (i.e. de-
termined by the range of X or Y axis) or the NDC (a user-independent, given by
the actual size of the canvas on the screen) coordinate system, click on the middle
mouse button. The mouse pointer should be located inside the area with the drawing
pad. The located coordinates will be displayed at the bottom of the canvas frame.

10.2.2 Zoom in to a Certain Region

To zoom in, use the middle mouse button. The mouse location should be below the
X-axis or on the left side of the Y -axis. Drag the mouse holding the middle button.
A red line indicating a zoom region in X (or Y) will be shown. After releasing the
middle mouse button, you will see an updated HPlot canvas with the new axis
range. To set the axis range to the default, use the right mouse button and select a
pop-up menu “Default axis range”.

One can also click-and-drag the mouse pointer to create a zoom rectangle. To per-
form a zoom to rectangle, press the middle mouse button, hold, and drag the mouse
to draw a rectangle. Release the middle mouse button to complete the rectangle.

10.2.3 How to Change Titles, Legends and Labels

If one needs to change titles, legends and labels, select the appropriate object and
double click on the right mouse button. This brings up a window with all graph set-
tings. One can change the location of a selected object by dragging it while holding
the mouse button.

10.2 Working with the HPlot Canvas 239

10.2.4 Edit Style of Data Presentation

Click on the right mouse button. You should see a pop-up menu with several sub-
menu options. Click on “Edit” and this will bring up a new window which allows to
make necessary changes. In particular, one can change:

• axis ranges, set auto-range, logarithmic or linear scales;
• ticks size, numbers of ticks, colors, axis colors etc.;
• labels, legends, title, the names of X and Y ranges;
• the presentation style of data points or a histograms. One can select the fill style,

points, lines, colors for points. One can also remove (or add) statistical or system-
atical error bars. Refresh the canvas to update drawn graphics.

Of course, all these attributes can be changed using Jython macros. Read the API
documentation of the HPlot class. We remind that one can access API documen-
tation by calling the method doc() of the HPlot class (or any class).

10.2.5 How to Modify the Global Margins

To change the global title, which can be set using the setGTitle() method,
navigate the mouse to the title location at the very top of the frame, and click on
the right mouse button. A new pop-up menu will appear. Using this menu, one can
increase or decrease the divider location, make the divider invisible, change fonts
and colors.

One can edit left, right and bottom margins of the main frame using exactly the
same approach: navigate to the frame border and use the mouse pop-up menu. One
can access all attributes of the margins using this method:

>>> c1.panel()

This method returns the GHPanel class (an extension of the swing JPanel) which
keeps attributes of all four margins. Here are several operations associated with this
class (all sizes are given in pixels):

>>> # set margins as some location
>>> c1.setMarginSizeLeft(50)
>>> c1.setMarginSizeRight(20)
>>> c1.setMarginSizeBottom(50)
>>> c1.setMarginSizeTop(50)
>>>
>>> # get the margin size
>>> a=c1.getMarginSizeLeft()
>>> a=c1.getMarginSizeRight()
>>> a=c1.getMarginSizeBottom()

240 10 Graphical Canvases

>>> a=c1.getMarginSizeTop()
>>>
>>> # set text of the global margins
>>> c1.setTextBottom(’This is X’)
>>> c1.setTextLeft(’This is Y’)
>>> c1.setTextTop(’This is X’) # same as setGTitle()
>>> c1.setTextBottom(’This is Y’)
>>> # set global margin background
>>> c1.setMarginBackground(Color color)
>>> # returns JPanel of the global margins
>>> c1.getMarginPanelLeft()
>>> c1.getMarginPanelRight()
>>> c1.getMarginPanelTop()
>>> c1.getMarginPanelBottom()

Look at the jHPlot API documentation for more details.

10.2.6 Saving Plots in XML Files

One can save all drawings shown on the HPlot canvas into external files using
the File menu. The plots can be restored later using the same menu. This works
for most of the plotted objects, like HLabel, Primitives and other graphics
attributes to be discussed below.

The output files have the extension *.jhp and contain a XML file which keeps
all attributes of the HPlot canvas and the data files necessary to recreate figures
without running Jython macros. Look inside of this file after unzipping it (below we
show how to do this using a Linux/UNIX prompt):

>>> unzip [file].jhp

This creates the directory with the name [file] with [file].xml, where
[file] is the specified file name and several data files. The general form of the file
names is: plotXY-dataZ.d, where X are Y are the positions of the pads inside
the HPlot canvas and Z indicates the data set number.

It should be noted that all data files are just the outputs from P1D objects (see
Chap. 5). Therefore, one can easily read such files using the methods of the P1D
class. This is useful in case if the automatic procedure from the File menu fails,
and the user wants to re-plot the data using a different macro.

10.2.7 Reading Data

One can open a serialized (the extension ser) or PFile (the extension pbu) file for
browsing Java objects stored inside this file using the menu [File] and [Read

10.2 Working with the HPlot Canvas 241

data] of the HPlot canvas. This file should be created using the class HFile
as discussed in Sect. 11.3 (using the default compression). Select a file with the
extension “ser” or “pbu” and open it. You will see a dialog with all objects inside
the file. Select an object and click on the “Plot” button. If the object can be plotted,
you will see it inside the canvas. Most objects can be visualized on the HPlot
canvas, such as P0D, P1D , H1D histograms, functions and Java strings. The latter
are converted into a HLabel object on the fly for drawing inside the HPlot canvas.
In addition, one can store GUI dialogs based on the JFrame class of the Java swing
library.

We remind that the browser is based on the HFileBrowser and
PFileBrowser classes which can be called from the scrips. See Sects. 11.3.2
and 11.4.

10.2.8 Cleaning the HPlot Canvas from Graphics

All graphs on the same HPlot canvas can be removed using several methods. If
one needs to clean canvas from plotted objects (histogram, function etc.), use the
method cleanData(). Note: in this case, only the current plot defined by the
cd(i1,i2) method will be updated. If one needs to remove all objects from all
plots on the same HPlot canvas, use cleanAllData().

It is also useful in many cases to remove all user settings from a certain graph, as
well as to remove input objects. In this case, use the method clear(). One can also
use the method clear(i1,i2) to remove graphics on any arbitrary pad, since
i1 and i2 specify the pad location. The method clearAll() removes drawings
on all pads, but keeps the main canvas frame untouched. The method close()
removes the canvas frame and disposes the frame object.

10.2.9 Axes

The axis range can be set automatically by calling:

>>> c1.setAutoRange()

This method tells that the canvas determines the X and Y ranges automatically from
the objects passed to the method draw(obj).

A user can specify the X–Y range manually by calling the method:

>>> c1.setRange(xMin,xMax,yMin,yMax)

One can remove all drawn axes using:

>>> c1.removeAxes()

242 10 Graphical Canvases

If only one axis should be drawn instead of all four, first remove all axes and then
call the method:

>>> c1.setAxisY() # show only Y axis
>>> c1.setAxisX() # show only X axis

One can draw a small arrow at the end of axes as:

>>> c1.removeAxes()
>>> c1.setAxisX()
>>> c1.setAxisArrow(1) # arrow type 1
>>> c1.setAxisArrow(2) # another arrow type 2

If no mirror axes should be drawn, use these methods:

>>> c1.setAxisMirror(0,0) # no mirror axis on X
>>> c1.setAxisMirror(1,0) # no mirror axis on Y

If no ticks should be drawn, use:

>>> c1.setTickLabels(0,0) # no mirror axis on X
>>> c1.setTickLabels(1,0) # no mirror axis on Y

Finally, call the method update() to redraw the canvas.

10.2.10 Summary of the HPlot Methods

Table 10.1 shows the major methods of the HPlot class. This list is incomplete,
therefore, use the code assist or the Java API documentation to find more methods.

10.2.11 Saving Drawings in an Image File

One can export a graph shown on the HPlot canvas (including all its pads) into
an image using the method export(’FileName’), where ’FileName’ is a
string representing the file name. With this method, the graphs can be saved to a
variety of vector graphics formats as well as bitmap image formats.

The export() statement should always be at the end of your script, when all
objects have been drawn with the draw(obj) method or after the update()
statement.

In the example below:

10.2 Working with the HPlot Canvas 243

Table 10.1 The main methods of the HPlot class. The following notations are used: ‘i’ denotes
an integer value, ‘d’ means a double value, ‘b’ corresponds to a boolean (‘b=1’ means true and
‘b=0’ means false), ‘c’ is Java AWT color, ‘f’ is the Java AWT class. Finally, ‘axis’ defines axis:
‘axis = 0’ for X and ‘axis = 1’ for Y

Methods Definitions

visible(b) makes it visible (b=1) or not (b=0)

visible() sets to visible

setAutoRange() sets auto-range

cd(i1,i2) navigates to a specific region (i1 × i2)

update() updates a region defined by cd(i1,i2)

updateAll() updates all regions

drawStatBox(H1D) draws statistical box for a histogram

setMargineTitle(i) defines the region size for the global title

showMargineTitle(b) do not show the global title

setGTitle(string,f,c) sets the global title with Font and Color

viewHisto(b) shows Y starting from 0 (for histograms)

setLegendFont(f) sets the legend font

setLegend(b) draws the legend when b=1 (if b=0, do not draw it)

setLegendPosition(axis,d) sets legend for axis

setLogScale(axis,b) sets log scale (b=1) or not (b=0) for axis

setTicsMirror(axis,b) sets ticks (b=1) or not (b=0) for axis

setGrid(axis,b) shows grid (b=1) or not (b=0) for axis

setGridColor(c) sets grid color

setGridToFront(b) grid in front of drawing (b=1) or not (b=0)

setBox(b) bounding box around the graph (b=1) or not (b=0)

setBoxOffset(d) offset of the bounding box

setBoxFillColor(c) fill color of the bounding box

setBoxColor(c) color of the bounding box

setBackgroundColor(c) background color of the graph

setRange(axis,min,max) set the range for axis (axis = 0,1)

setRange(minX,maxX,minY,maxY) ranges for X and Y

setAutoRange(axis, b) sets auto-range for axis

setAutoRange(b) sets auto-range for X and Y

setLabel(string,f,c) sets a label at random position

>>> c1.export(’file.ps’)

we export drawings on the canvas HPlot (c1 represents its instance) into a
PostScript image file. One can also export it into PNG, JPEG, EPS, PDF etc. formats
using the appropriate extension for the output file name. Here are more examples:

244 10 Graphical Canvases

>>> c1.export(’file.eps’) # create an EPS file
>>> c1.export(’file.png’) # create an PNG file
>>> c1.export(’file.jpg’) # create a JPG file
>>> c1.export(’file.pdf’) # create a PDF file
>>> c1.export(’file.svg’) # create a SVG file
>>> ...

If you are not too sure which extension to use, look at the [File]-[Export]
menu which can give you some ideas about the supported graphics formats. One
can use this menu for exporting graphs into images without calling the method
export() inside your scripts.

It is also useful to create an image file using the same name as that of your script,
and in the same directory where the script itself is located. In this case, type:

>>> c1.export(Editor.DocMasterName()+’.ps’)

where the method Editor.DocMasterName() accesses the file name of the
currently opened script.

It is also possible to save the HPlot canvas to an image file with a pop-up dialog.
One should use the method exportDialog(file) for this task.

10.3 Labels and Keys

10.3.1 Simple Text Labels

Labels can be shown on the HPlot canvas using the Text class. It is impossible to
interact with such simple labels using the mouse, since this class is based on the stan-
dard Java 2D graphics. However, due to a low memory consumption, such labels can
be rather useful. The Text class is located in the Java package jhplot.shapes.
The example below shows how to access such labels:

Text label example

from jhplot.shapes import Text
from jhplot import *
c1=HPlot(’Canvas with a text’)
c1.visible()
lab=Text(’Label in USER system’, 0.5, 0.2)
c1.add(lab)
c1.update()

You may notice that, instead of the draw() method, we use the add() and
update() methods. This could be rather handy since now we can add many ob-

10.3 Labels and Keys 245

jects to the same canvas and then trigger update of the canvas to display all added ob-
jects at once. The text label will be drawn in the USER coordinate system at X = 0.5
and Y = 0.2. For the NDC system, use the method setPosCoord(’NDC’).

>>> lab=Text(’Text in the NDC system’, 0.5, 0.2)
>>> lab.setPosCoord(’NDC’)
>>> lab=Text(’Text in USER system’, 0.5, 0.2)
>>> lab.setPosCoord(’USER’)
>>> c1.add(lab) # add to HPlot canvas
>>> c1.update() # update the canvas

As before, one can set the text fonts, color and transparency level using
setFont(f) and setColor(c) methods, where ’f’ and ’c’ are Java AWT
Font and Color classes, respectively. The transparency level can be set using the
setTransparency(d) method (0 < d < 1, with d = 1 for completely transpar-
ent objects).

10.3.2 Interactive Labels

Once a HPlot is initialized, one can insert an interactive text label, which is signif-
icantly more memory consuming object than objects created using the Text class.
Such labels are created using the HLabel class. One can drag this label using the
mouse, adjust its position and edit the text using a GUI dialog after double clicking
on the label text. As before, use the method add(obj), and then make it visible
by calling the update() method. Here is a typical example:

>>> lab=HLabel(’HLabel in NDC’, 0.5, 0.2)
>>> c1.add(lab) # add it to HPlot object
>>> c1.update() # trigger update

In the code above, the HLabel object is inserted at the position 0.5 and 0.2 in the
USER coordinate system of the HPlot canvas. One can observe this by clicking
on the middle mouse button and by looking at text message at the bottom of the
HPlot frame. The status panel at the bottom of the frame should indicate the mouse
position in the USER system.

Alternatively, one can set the label location in the user-independent coordinate
system (“NDC”). We remind that this coordinate system is independent of the win-
dow size and is defined with two numbers in the range from 0 to 1. Again, one can
study this coordinate system by clicking on the middle mouse button.

The same label in the NDC system should be created as:

>>> lab=HLabel(’HLabel in NDC’,0.5,0.2,’NDC’)

246 10 Graphical Canvases

One can modify the label attributes using the usual setFont(f), as well as
setColor(c) method.

The position of the label can be adjusted using the mouse. A double click on the
label brings up a label property window.

One can also show a multi-line interactive label on the HPlot canvas using the
HMLabel class. It is very similar to HLabel, however, instead of a string, it takes
a list of strings. Each element of such list will be shown on a new line. We will show
a relevant example in Sect. 10.5.

It should be noted that to show a legend, global title or title for an axis, the
HLabel class is not necessary; one should use the special methods of the HPlot
canvas, such as setGTitle(), setNameX() and setNameY().

10.3.3 Interactive Text Labels with Keys

Unlike the HLabel class, the HKey class creates an interactive label with a text and
a key describing the shown data. It should be noted that it behaves differently than
the legend which is automatically shown with the corresponding data set. The HKey
object is not related to any data set and can be shown even if no data are plotted.
This class is rather similar to HLabel and has all the methods which the HLabel
class has. To make it visible, call the update() method. Here is a typical example
using the Jython shell:

>>> ... create c1 canvas
>>> h1 =HKey(’key type=32’,55,62) # key at x=55 and y=62
>>> h1.setKey(32,7.0,Color.blue) # key of type 32,size=7
>>> h1.setKeySpace(4.0) # space between a key and text
>>> c1.add(h1)
>>> c1.update()

Various key types are shown in Fig. 10.1. This figure was generated by the script
shown below:

Keys and their descriptions

from java.awt import Font,Color
from jhplot import *

c1=HPlot(’Canvas’,600,550)
c1.visible()
c1.setGridAll(0,0)
c1.setGridAll(1,0)
c1.setGTitle(’HKey types’)
c1.removeAxes()
c1.setRange(0,100,0,100)

for j in range(1,13):

10.3 Labels and Keys 247

title=’key type=’+str(j)
hh=HKey(title,15,97-7*j)
c=Color(0,65 + j*10,0)
hh.setKey(j,2.0,c)
hh.setKeySpace(4.0)
c1.add(hh)

h=HKey(’key type=20’,55,90)
h.setKey(20,7.0,Color.blue)
h.setKeySpace(4.0)
c1.add(h)

h1=HKey(’key type=21’,55,83)
h1.setKey(21,7.0,Color.blue)
h1.setKeySpace(4.0)
c1.add(h1)

h1 =HKey(’key type=30’,55,76)
h1.setKey(30,7.0,Color.blue)
h1.setKeySpace(4.0)
c1.add(h1)

h1 =HKey(’key type=31’,55,69)
h1.setKey(31,7.0,Color.green)
h1.setKeySpace(4.0)
c1.add(h1)

h1 =HKey(’key type=32’,55,62)
h1.setKey(32,7.0,Color.red)
h1.setKeySpace(4.0)
c1.add(h1)

c1.update()

Fig. 10.1 Various types of
the keys used by the
setKey() method

248 10 Graphical Canvases

10.4 Geometrical Primitives

The package jhplot.shapes can be used to display several (non-interactive)
geometrical primitives, including the text label discussed before:

Arrow(x1,y1,x2,y2) shows an arrow from (x1,y1) to (x2,y2)
Circle(x1,y1,R) inserts a circle with the radius R
Ellipse(x1,y1,rX,rY) inserts an ellipse with the radius rX (rY for Y axis)
Text(’text’,x1,y1) inserts a text label
Line(x1,y1,x2,y2) inserts a line from (x1,y1) to (x2,y2)
Picture(x1,y2,file) inserts a PNG or JPG figure
Rectan(x1,y1,w,h) rectangle with the width ’w’ and height ’h’

In all cases, the objects will be drawn in the USER coordinate system. But one
can also insert the primitives in the NDC system using the usual method
setPosCoord(’NDC’) to be applied to the objects above. As before, the method
setPosCoord(’USER’) sets the user coordinates.

To show all such graphical primitives on a canvas, use the add() method and
execute update() when you want all objects to be shown. To add a different color
or a line width, use additional arguments for the constructor. For example:

>>> from java.awt import Font,BasicStroke
>>> from jhplot.shapes import *
>>> stroke= BasicStroke(1.0)
>>> c=Circle(x1,y1,R,stroke,Color.red)

or, alternatively, one can use several “setter” methods:

>>> c=Circle(x1,y1,R)
>>> c.setFill(1)
>>> c.setColor(Color.red)
>>> c.setStroke(BasicStroke(1.0))
>>> c.setDashed(3.0)
>>> c.setTransparency(0.5)

The last line in the above code makes the circle filled with red color and sets its
transparency to 50%.

The arrow lines can be of two different types depending on the arrow style.
The style can be set using the setType(i) method, where i=1,2,3. The
length and the width of the arrows can be set as setEndLength(d) and
setEndWidth(d), where ’d’ is a double value.

To fill the primitives with a certain color, use the method setFill(1). The
color and the transparency level is set by the setColor(c) and setFont(f)
methods, respectively.

10.5 Text Strings and Symbols 249

10.5 Text Strings and Symbols

In the previous section, we have discussed several important classes to add anno-
tations to the HPlot plots. In many occasions, you would need to shows special
symbols on HKey, HLabel, Text labels or HPlot methods designed to show
global titles and axis names.

The text attributes can be set manually or via the label property dialog. Subscripts
and superscripts in the text should be included as for the standard LaTeX text files,
i.e. use the “underscore” symbol (_) to show subscripts and the “hat” symbol to
show superscript. To indicate over-line, use the reserved word #bar{symbol}.

Below we give a small code example which makes a label with several special
symbols:

Special symbols

from jhplot import *
c1=HPlot()
c1.visible()
s1=’ω,F^{2},F_{2},γ→e^{+} e^{-}’
s2=’g → q#bar{q}’
s=[s1,s2]
lab=HMLabel(s,0.3,0.7)
c1.add(lab)
c1.update()

This creates a multi-line label with the text:

ω,F 2,F2, γ → e+e−, g → qq̄

Symbols for the jHepWork labels must be encoded in HTML using the entity
reference notation of the ARENA project [2]. For instance, use ω symbol
to show the Greek letter ω. Figures 10.2 and 10.3 for lists of symbols supported by
jHepWork. These figures are generated by the example macros ’symbols1.py’
and ’symbols2.py located in the directory ’macros/examples’.

10.6 SHPlot Class. HPlot Canvas as a Singleton

During the debugging stage, it is often necessary to execute a script (using the key
[F8]) and then manually close the HPlot canvas. If you do not close the HPlot
canvas, a new instance of the canvas will be created next time you execute the same
(or different) script. It will overlay on the existing canvas, but the worst thing is that
it will consume the computer memory.

250 10 Graphical Canvases

Fig. 10.2 Symbols for jHepWork strings (Set I)

Several HPlot frames shown on the same desktop is useful in certain situations,
for example, when one necessary to compare plots generated by different Jython
scripts. But in many cases, the last thing you want is to create a new HPlot object
and manually dispose it in order to prepare for the next script execution.

One can avoid the creation of new canvas frame by using the SHPlot class:

>>> from jhplot import *
>>> c=SHPlot.getCanvas()
>>> c.visible()
>>> c.setAutoRange()

Here ’c’ represents a SHPlot object, which is a Java singleton extension of the
HPlot class. You can work with this class exactly as with the HPlot canvas. For
example, to set the overall size of the canvas to 600 × 400 pixels and to create 2 × 2
plotting pads, just type:

10.7 Visualizing Interconnected Objects 251

Fig. 10.3 Symbols for
jHepWork strings (Set II).
Some symbols could not be
available for some
platforms—this case is shown
as open squares

>>> c=SHPlot.getCanvas(’Canvas’,600,400,2,2)

When you create the canvas using SHPlot.getCanvas method, the HPlot
frame is instantiated only once, and only once. If the canvas frame already exists
from the previous run, it will be cleared and then a new graph will be drawn on the
same canvas. In this case, you do not close the canvas frame manually.

10.7 Visualizing Interconnected Objects

To visualize interconnected objects, one should use the HGraph class. It is very
similar to HPlot, since it also extends on the GHFrame class used as a basis for

252 10 Graphical Canvases

the HPlot frame. This means that one can set titles, margins and plotting pads in
exactly the same way as for the HPlot canvas. The example below shows how to
build interconnected objects:

A graph with interactive objects

from java.awt import Color
from jhplot import *

c1 = HGraph(’Canvas’)
c1.setGTitle(’Connected objects’)
c1.visible()

v1,v2,v3,v4 =’v1’,’v2’,’v3’,’v4’
c1.addVertex(v1)
c1.addVertex(v2)
c1.addVertex(v3)
c1.addVertex(v4)

set positions
c1.setPos(v1, 130, 40)
c1.setPos(v2, 60, 200)
c1.setPos(v3, 310, 230)
c1.setPos(v4, 380, 70)

set edges
c1.addEdge(v1, v2)
c1.addEdge(v2, v3)
c1.addEdge(v3, v1)
c1.addEdge(v4, v3)

The plot is fully interactive: one can drag the connected objects using the mouse to
modify their locations and even edit their attributes. Figure 10.4 shows the result of
the above script.

Fig. 10.4 Using the HGraph canvas to show interconnected objects

10.8 Showing Charts 253

10.8 Showing Charts

The HChart class is also very similar to the HPlot class. The HChart canvas
allows to create various charts (pie chart, bar char, histogram chart, line chart, area
chart). All charts are based on the jFreeChart package library [3]. This is a simple
example showing how to create two pads with a pie-like and a bar-like charts:

Chart examples

from jhplot import *
c1 = HChart(’Canvas’,600,400,2,1)
c1.setGTitle(’Chart examples’)
c1.visible()

c1.setChartPie()
c1.setName(’Pie chart’)
c1.valuePie(’Hamburg’,1.0)
c1.valuePie(’London’,2.0)
c1.valuePie(’Paris’,1.0)
c1.valuePie(’Bern’,1.0)

c1.cd(2,1)
c1.setChartBar()
c1.setName(’Bar charts’)
c1.valueBar(1.0, "First", "category1");
c1.valueBar(4.0, "Second", "category2");
c1.valueBar(3.0, "Third", "category3");

c1.update()

The result of the execution of this script is shown in Fig. 10.5.

Fig. 10.5 A pie and a bar-like charts using the HChart canvas

254 10 Graphical Canvases

When the HChart canvas is created, one can set the following types of charts:

>>> c1.setChartXY() # create a XY chart
>>> c1.setChartPie() # create a Pie chart
>>> c1.setChartPie3D() # create a Pie chart in 2D
>>> c1.setChartLine() # create a line chart
>>> c1.setChartAre() # create an area chart
>>> c1.setChartBar() # create a bar chart
>>> c1.setChartBar3D() # create a 2D bar chart
>>> c1.setChartHistogram() # create a histogram

Then one can add values using the value+ChartName() method. For example,
to add a value to the bar chart use valueBar() method. Check the HChart API
documentation for details. Finally, to display a chart, execute the usual update()
method.

One can access many jFreeChart components via several “getter” methods. For
example, c1.getChar() will return the JFreeChart class for further manipu-
lations.

10.9 SPlot Class. A Simple Canvas

For simple tasks involving drawings of X–Y plots, which do not require plotting
many graphical objects, or interaction with a canvas using the mouse, one can use a
light-weight canvas based on SPlot class (“S” originates from the word “simple”).
The class SPlot is based on the PTPlot package [4] which was originally designed
to make scatter plots on (x–y) planes and simple histograms.

The methods of the SPlot canvas are similar to those of the HPlot class, but
the number of such methods is not too large. However, this canvas requires much
less computer memory and thus is better suited for applets or to show streams of
data at runtime.

One can build the SPlot canvas as:

>>> from jhplot import SPlot
>>> c1=SPlot(’Canvas’)
>>> c1=visible()

This creates a default 600 × 400 canvas using the SPlot class. Now one can show
the names for X and Y axes as:

>>> c1.setNameX(’X’)
>>> c1.setNameY(’Y’)
>>> c1.setAutoRange()

Both axes can be set to an auto-range mode, so you do not need to worry about
setting proper axis ranges:

10.9 SPlot Class. A Simple Canvas 255

>>> c1.setAutoRange()

To set the ranges, use the method setRange(xmin,xmax,ymin,ymax),
where the arguments define the ranges for the X and Y axes.

To add a single point at a location (x, y), use the method:

c1.addPoint(0,x,y, b)

Usually, “b=0” (Java false) if points are not connected by lines. When “b=1”
(Java value true), then the point should be connected to the next one plot-
ted by calling the addPoint() method again. The data set is characterized
with an integer number (0 in the above example). Finally, the method
setMarksStyle(’various’) tells that each new dataset will be shown with
different symbols.

To add an error bar for a point at the location (x, y), use the method:

>>> addPointErr(dataset,x,y,yLow,yHigh,con)

where dataset is an integer number, yLow and yHigh are the lower and upper
errors for the Y axis, and con is a boolean value defining whether the points are
connected (= 1) or not (= 0).

After filling the data points in a loop, one should call update() to make data
visible on the canvas.

The method addPoint() adds a single point to the canvas and, as we already
know, to call methods inside a loop in Jython is CPU and memory consuming. How-
ever, as for the HPlot canvas, one can also use the method draw(obj) to draw
Java high level objects, such as histograms (H1D), data containers (P1D) or simply
arrays of numbers with x and y values. Data can be shown with symbols connected
by the lines if setConnected(1,set) is called with the first argument 1 (or
boolean true for Java), where set specifies the data set identification number (in-
teger). There is no need to call the update method after calling the draw(obj)
method, since the plot will be updated automatically.

The plot can be zoomed into a specific rectangular area by clicking and dragging,
to draw a rectangle where desired; this feature is also different from the HPlot
canvas where you can rescale axis ranges one at the time. Finally, one can save
the plot into an image using the usual export(file) method. Look at all other
methods associated with this class using the code assist.

Below we give a small example showing how to plot two different sets of data
points:

SPlot example

from java.util import Random
from jhplot import *

256 10 Graphical Canvases

c1 = SPlot()
c1.visible()
c1.setAutoRange()
c1.setNameX(’Time’)
c1.setNameY(’Data’)

p1=P1D(’data1’)
p2=P1D(’data2’)
r = Random()
for i in range(20):

x=100*r.nextGaussian()
y=200*r.nextDouble()
p1.add(x,y)
p2.add(x+x,y+y)

c1.draw(p1)
c1.draw(p2)
c1.addLegend(0,’Data1’)
c1.addLegend(1,’Data2’)
c1.update()

The execution of this script brings up a window with two sets of data points and the
inserted legends indicating each data set.

In Sect. 10.15 we will discuss how to use the class SPlot to draw streams of
data in real time, without using the draw(obj) method.

10.9.1 Henon Attractor Again

Let us give another example illustrating the SPlot canvas. In Sect. 5.5, we have
shown how to build the Henon strange attractor using the P1D class. One feature of
that script was that we could not see how (x, y) points are populating the canvas at
runtime, i.e. we have to wait until the P1D container is filled and only then we could
display the attractor. Being inconvenient, this also leads to a large memory usage.

Let us rewrite the same code using the addPoint() method of the SPlot
class. We will update the graph axes after generating 100 events. Execution of the
script shown below illustrates how points populate the attractor immediately after
the execution of this script.

Henon attractor

from jhplot import *

c1 = SPlot()
c1.setGTitle(’Henon attractor’)
c1.setMarksStyle(’pixels’)

10.10 Canvas for Interactive Drawing 257

c1.setConnected(0, 0)
c1.setNameX(’x’)
c1.setNameY(’y’)
c1.visible()
a = 1.4; b = 0.3
x=0; y=0
for i in range(100000):

x1=x
x=1+y-a*x*x
y=b*x1
c1.addPoint(0,x,y,1)
if i%1000==0: c1.update()

We will leave the reader here for more experimentation.

10.10 Canvas for Interactive Drawing

For complicated tasks which involve drawing diagrams together with the usual data-
driven plots, one should use the HPlotJa canvas. From the point of view of dis-
playing functions, arrays and histograms, this canvas is rather similar to the HPlot
class, i.e. one can use the same method draw(obj) to display instances of lists,
F1D, H1D and P1D objects. Yet, it has many advanced features such as:

• plots are more interactive. One can easily manipulate with different pads, make
inserts, overlays etc.;

• one can open ROOT or AIDA files in an object editor described in Sect. 11.5.3;
• one can draw diagrams using Jython scripts or using the object editor.

One should emphasize that this canvas is very easy to use for making inset
plots, i.e. showing one pad inside the other. This is technically impossible for the
HPlot canvas, in which each pad is built using the JPanel Java class. In case of
HPlotJa, the pads are located inside a single panel.

The HPlotJa canvas is based on the JaxoDraw package [5] designed to draw
Feynman diagrams used in high-energy physics. The original package was signifi-
cantly modified by adding the possibility to plot the standard jHepWork objects and
adding vector graphics capabilities.

To build an instance of the HPlotJa canvas, use the following code snippet:

>>> from jhplot import *
>>> c1=HPlotJa(’Canvas’)
>>> c1=visible()

The methods associated with the HPlotJa canvas are similar to those of the
HPlot class and we will not repeat them here. The largest difference with the

258 10 Graphical Canvases

HPlot is that there are many methods related to drawing axes which cannot be
called directly, but only via the method getPad() as shown in this example:

>>> from java.awt import Color
>>> from jhplot import *
>>> c1=HPlotJa(’Canvas’,1,2)
>>> c1=visible()
>>> c1.cd(1,2)
>>> pad=c1.getPad() # get current pad
>>> pad.setRange(0,0,1) # set axis range [0,1] on X
>>> pad.setFillColor(Color.red) # new color
>>> pad. + [F4] # check other methods

As for the original JaxoDraw package, the HPlotJa canvas has a complete
graphical user interface that allows to carry out all actions in a mouse click-and-
drag fashion. To bring up the graphical editor, go to the [Option] menu and select
[Show editor]. Now you can create and edit the graph objects using the mouse
clicks. One can draw many graphical objects, lines, circles etc. One can remove,
drag and resize all plotted objects, including the pad regions. Finally, one can edit
properties of all plotted objects.

10.10.1 Drawing Diagrams

Once an object of the HPlotJa canvas is created, one can draw diagrams using Jax-
oDraw mouse click-and-drag fashion. To do this, you have to select the [Editor]
option from the [Option] menu.

The power of Jython scripting allows to draw diagrams interactively or using
Jython macro files. This will require importing the static methods of the Diagram
class from the package jhplot.jadraw. Below we show a typical example of
how to draw “gluon” and “fermion” lines typically used for representation of Feyn-
man diagrams:

"gluon" and "fermion" lines

from jhplot import *
from jhplot.jadraw import *

c1=HPlotJa(’Canvas’,500,400,1,1,0)
c1.visible()
c1.showEditor(1)

draw text box
gl=Diagram.TextBox("Gluons and fermions",0.25,0.15)
c1.add(gl)

gluon line in NDC coordinates

10.10 Canvas for Interactive Drawing 259

Fig. 10.6 Drawing diagrams
on the HPlotJa canvas
using Jython

gl=Diagram.GlLine(0.3,0.2)
gl.setRelWH(0.0,0.5,’NDC’)
c1.add(gl)

gluon loop in NDC
gl=Diagram.GlLoop(0.5,0.4)
gl.setRelWH(0.0,0.1,’NDC’)
c1.add(gl)

fermion line
gl=Diagram.FLine(0.7,0.2)
gl.setRelWH(0.0,0.5,"NDC")
c1.add(gl)

c1.update()

It should be noted the way how the HPlotJa canvas is created: for this example,
we do not show axes, since the last argument in the constructor HPlotJa is zero
(Java false). Also, we use the add() and update() methods, as we usually do
when showing labels and graphical primitives.

Figure 10.6 shows the output of this example. One can further edit the diagram
using the editor panel. Please refer to the Java API documentation of the package
jhplot.jadraw to learn more about the classes and methods of this package.

10.10.2 SHPlotJa Class

Similar to the SHPlot class, one can create a singleton representing the HPlotJa
canvas object using the static class SHPlotJa. In this case, every execution of
a script does not create a new object of the canvas frame, but it just redraws the
existing one. The example below shows how to create such singleton:

>>> from jhplot import SHPlotJa
>>> c1=SHPlotJa.getCanvas()
>>> c1.setGTitle("Global title");
>>> c1.setNameX("Xaxis")

260 10 Graphical Canvases

>>> c1.setNameY("Yaxis")
>>> c1.visible(1)
>>>

Of course, all methods of the HPlotJa canvas are also applicable to the
SHPlotJa class.

10.11 HPlot2D Canvas

Although one can use the HPlot canvas to show 2D histograms, functions or ar-
rays as contour or density plots, it is not the best way of doing this, because this
canvas was not designed from the ground to support such types of plots. Instead,
use the HPlot2D canvas for such tasks. This canvas is partially based on the SGT
project [6].

The HPlot2D is very similar to the HPlot and shares many common methods.
The initialization of this canvas looks also very similar:

>>> from jhplot import *
>>> c1=HPlot2D(’Canvas’)
>>> c1.visible()

This brings up a frame with the HPlot2D canvas.
Now let us walk through several examples which show how to use this canvas.

First, let us draw a F2D function as a contour plot:

2D functions on HPlot2D

from jhplot import *
from java.awt import *

f1=F2D(’x^2+sin(x)*y^2’,-2,2,-2,2)
c1=HPlot2D(’Canvas’,600,700)
c1.visible()
c1.setName(’2D function’)
c1.setNameX(’X variable’)
c1.setNameY(’Y variable’)

c1.setStyle(2)
c1.draw(f1)

lab1=HLabel(’ω test’,0.7,0.5, ’NDC’)
lab1.setColor(Color.white)
c1.add(lab1,0.1)

c1.update()

10.11 HPlot2D Canvas 261

Fig. 10.7 2D function shown
as a density plot

The resulting plot is shown in Fig. 10.7. The methods used for the canvas object c1
are rather similar to the methods of the HPlot canvas. The only new feature is that
when we add a text label, we use the method add(obj,d), where ’d’ specifies
the label height.

We should mention that the HPlot2D canvas is fully interactive. One can move
and edit labels, click-and-drag the mouse pointer to create a zoom rectangle. One
can edit axis attributes by clicking on an axis (this pops-up a dialog where all mod-
ifications can be made).

There are several options for showing an object inside the canvas. They are con-
trolled with the method seStyle(style), where

style=0 draws data using a raster style;
style=1 draws using a contour style;
style=2 combined style (raster and contour);
style=3 draws data using filled areas.

One can access several objects for modifications inside Jython scripts. First, one
can obtain the axis object as getAxis(axis), where axis is either 0 (for X)
or 1 (for Y). Using the methods of this axis object, one can make necessary mod-
ifications, like setting new fonts, redefine colors etc. One can also access the color
bar-key as getColorBar(), which also has several useful methods.

One important method you should keep in mind is

>>> setRange(axis,min,max,bins)

which sets the range for X (axis = 0), Y (axis = 1) and Z (axis = 2). The variable
bins specifies how many divisions between min and max values should be used.
In case of the Z-axis, the variable bins specifies how many contour levels to draw.

Let us give another example. This time we will plot data using different styles.
We display a histogram and 2D array. In case of the histogram, we change the range
for X and Y axes using the setRange() method. We note that the last argument
for this method, which usually defines the number of bins between the minimum
and maximum values, does not do anything. This is because we plot the histogram

262 10 Graphical Canvases

which has its own binning, and this cannot be changed when the histogram is shown.

2D data on HPlot2D

HPlot2D. Showing H2D,P1D and 2D function
S.Chekanov

from jhplot import *
from java.util import *

h1=H2D(’Data’,30,-3.0, 3.0, 30,-3.0, 3.0)
p1=P1D(’Data’)

r=Random()
for i in range(1000):

x=r.nextGaussian()
y=r.nextGaussian()
h1.fill(0.6*x-0.5, y)
p1.add(0.4*x+1, y+0.5)

c1=HPlot2D(’Canvas’,600,400,3,1)
c1.visible()

c1.cd(1,1)
c1.setName(’H2D histogram’);
c1.setStyle(0)
c1.draw(h1)

c1.cd(2,1)
c1.setName(’H2D range’)
c1.setStyle(1)
c1.setRange(0,-2.0,2.0,50)
c1.setRange(1,0.0,1.0,50)
c1.draw(h1)

c1.cd(3,1)
c1.setName(’2D array’)
c1.setStyle(1)
c1.draw(p1)

The output of this script is shown in Fig. 10.8.

10.12 3D Canvas

We have already discussed canvases for 3D graphics in Sects. 3.4.2, 6.1.1 and 8.2.
Here we remind that one should use the classes HPlot3D and HPlot3DP for a 3D
representation of mathematical functions and data. The first class is used for plotting

10.13 HPlot3D Canvas 263

Fig. 10.8 2D data shown using different styles and ranges

H2D, P2D and F2D objects, while the second one for parametric equations based on
the FPR class, see Sect. 3.8.

10.13 HPlot3D Canvas

This canvas is used for visualization of H2D, P2D and F2D objects, which can be
drawn with the same draw(obj) method as for the 2D case. In case if two objects
should be shown, say obj1 and obj2, on the same canvas, one should call the
method draw(obj1,obj2). Table 10.2 lists the most important methods of the
HPlot3D Java class:

We should remind that if you are debugging a script and do not want to create
many pop-up windows with canvas frames after each script execution, you may want
to instantiate a singleton using the class SHPlot3D. In this case, every new macro
execution redraws the existing canvas, instead of creating a new canvas object. One
can build a singleton as usual:

>>> c1=SHPlot3D.getCanvas(’3D’,600,400,2,2)

This creates four plotting pads inside a 3D canvas of the size 600 × 400.

10.13.1 HPlot3DP Canvas

The second 3D canvas, HPlot3DP, is used to draw surfaces defined by an analytic
parametric or a non-parametric function of the type FPR, as shown in Sect. 3.8.

The HPlot3DP canvas can be constructed exactly in the same way as the
HPlot3D class. Specifically, one can define the frame size during object instan-
tiation and set any number of drawing pads. The major difference with HPlot3D
is following: if several objects should be shown on the same pad, then one can use

264 10 Graphical Canvases

Table 10.2 The main methods of the HPlot3D class. “b” indicates a boolean value (1 for true
and 0 for false), while “i” is an integer value. The notation “d” denotes a float value. The attributes
“c” and “f” correspond to the Color and FontAWT Java classes. “text” represents a string value.
The character “a” is a shortcut to “axis” (a=0 for X, a=1 for Y , a=2 for Z)

Methods Definitions

setRotationAngle(i) set rotation angle to ‘i’ degrees

getRotationAngle() get rotation angle

setScaling(i) set scaling factor to ‘i’ (default is 12)

getScaling() get scaling

setElevationAngle(i) set elevation angle to ‘i’ degrees

getElevationAngle() get elevation angle

setAxesFontColor(c) set fonts for axes labels

setColorMode(i) set color mode (from 1 to 4)

0: wire-frame

1: hidden

2: color spectrum 3: gray scale

4: dual shades

setDistance(d) set distance to objects

getDistance() get distance from object

setLabelFontColor(c) set color for labels

setPenWidthAxes(i) set line width for axes

getPenWidthAxes() get pen with for axes

setNameX(“text”) set name for axis X

setNameY(“text”) set name for axis Y

setNameZ(“text”) set name for axis Z

setLabelFont(f) set fonts for labels

setLabelFont(f) set fonts for axes numbers

setLabelColor(c) set label color

setTicFont(f) set fonts for ticks

setTicOffset(d) set ticks offset

setRange(Xmin,Xmax,Ymin,Ymax) set plot ranges

setRangeZ(Zmin,Zmax) set range for Z

cd(iX,iY) go to the pad (iX,iY)

clear() clean the current region

clear(iX,iY) clean the pad (iX,iY)

clearAll() clean all pads

quite() remove frame

update(iX,iY) update the pad (iX,iY)

updateData(iX, iY) update data shown in the pad (iX,iY)

updateData() update data on the current pad

updateAll() update all pads

getLabelOffset(a) get label offset for axis

draw(obj) draw an object (P2D, F2D..)

10.13 HPlot3D Canvas 265

Table 10.3 The main
methods of the HPlot3DP
class. “b” denotes a boolean
value (1 for true and 0 for
false), while “i” is an integer
value. The notation “d”
indicates a float value. The
attributes “c” and “f”
correspond to the Color and
Font AWT Java classes

Methods Definitions

setFog(b) sets the fog style for 3D

setAxes(b) shows or not axes

setAxes(b1,b2,b3) shows axes for X, Y , Z

setAxesColor(c) axes color

setBackgColor(c) background color

setNameX(text) text for X axis

setNameY(text) text for Y axis

setNameZ(text) text for Z axis

setCameraPosition(d) set camera position

zoom in for positive “d”

zoom out for negative “d”

setEyePosition(x,y,z) set eye positions

clear(object) clear the frame

cd(i1,i2) navigates to a i1 × i2 pad

update() updates the canvas

draw(obj) draws an object (FPR)

the draw(obj) methods several times, one after other. The main methods of this
canvas are given in Table 10.3.

One can zoom in the pad area using the right mouse button. In macro files, one
can zoom in and zoom out using the following method:

>>> c1.setCameraPosition(d)

where d is a double value, which should be positive for zooming in, and negative
for zooming out. One can change the location of axes and the object position using
the method setEyePosition(x,y,z). The graphs can be edited using the GUI
dialog and the [Edit] menu by clicking on the mouse button.

Below we show the use of several methods of the HPlot3DP class:
HPlot3DP canvas

from java.awt import Color
from jhplot import *

c1 = HPlot3DP(’Canvas’,600,600)
c1.setGTitle(’HPlot3DP examples’)
c1.visible()

f1=FPR(’u=2*Pi*u; x=cos(u); y=sin(u); z=v’)
c=Color(0.5,0.2,0.5,0.5) # color+transparency
f1.setFillColor(c)
f1.setLineColor(Color.green)

266 10 Graphical Canvases

Fig. 10.9 HPlot3DP canvas
and its graphical methods

f2=FPR(’u=2 Pi u; v=2 Pi v; r=0.6+.2cos(u); \
z=.8 sin(u); x=r cos(v); y=r sin(v)’)

f2.setFillColor(Color.blue)
f2.setFilled(1)

c1.setFog(0)
c1.setAxes(1)
c1.setNameX("X axis")
c1.setNameY("Y axis")
c1.setAxesColor(Color.gray)
c1.setAxesArrows(0)

print c1.getEyePosition()
print c1.getCameraPosition()
c1.setCameraPosition(-1.2) #zoom out
c1.draw(f2)
c1.draw(f1)

The above code brings up a frame with the image of a cylinder and a torus as shown
in Fig. 10.9. One can rotate objects and zoom into certain area using the mouse
button. In addition, one can further edit the figure using the [Edit] menu.

10.13.2 3D Geometry Package

The HView3D class also allows to draw 3D objects (cubes, shapes cylinders etc.)
which are already predefined Java classes, thus there is no need to define them using
parametric equations. Look at the Java API of the jhplot.v3d package. This is a
typical example of how to draw 3D shapes:

10.14 Combining Graphs with Java Swing GUI Components 267

Creating 3D objects

from java.awt import Color
from jhplot import *
from jhplot.v3d import *

c1 = HView3D(’Canvas’,400,400)
c1.visible(1)
c1.setGTitle("3D objects in HView3D")

o=Cube(c1.getModel(),40) # a cube of the size 40
o.setRot(45,45,45) # rotate
c1.draw(o)

o=Sphere(c1.getModel(),30.,80,80) # a sphere eithr=30
o.setTrans(40,-20,10) # move it
c1.draw(o);

o=Cone(c1.getModel(), 30, 100, 50)
o.setTrans(-20, 30, 0)
o.setColor(Color.red)
c1.draw(o);

o=Cylinder(c1.getModel(), 40, 100, 2)
o.setTrans(-1, 0, 0)
o.setRot(0, 60, 0)
o.setColor(Color.yellow)
c1.draw(o)

c1.update() # draw all objects

The execution of this script brings up a window with 3D objects using their attributes
passed to the constructors.

10.14 Combining Graphs with Java Swing GUI Components

In Sect. 2.18 we have shown how easy to use the Java Swing components in Jython.
Jython scripting allows a creation of graphical user interfaces (GUI) using the Java
GUI widgets, such as windows, menus, buttons, etc. One can make them to respond
to physical events (keyboard, mouse etc.) with a few lines of Jython code. This is
an important when it is necessary to make “control panels” or “graphical user inter-
faces” for applications in order to manipulate with Java programs at run time. Such
applications can be deployed as self-contained programs in jar files after compiling
Jython codes into the Java bytecodes, the machine language of the Java virtual ma-
chine. But how one can use the jHepWork canvas together with such components?
We will briefly discuss such topic in this section.

268 10 Graphical Canvases

Numerous methods of the canvases described in the previous sections are so rich
that one can always find a necessary method suited for your GUI application. The
most important method for the GUI development is that which returns the Swing
JFrame object holding the entire canvas panel. In the example of Sect. 2.18, an
instance of the Java class JFramewas created using the standard constructor. When
you are working with the jHepWork canvases, there is no need to do this. What you
will need is to use the getFrame() method which returns an appropriate JFrame
instance:

>>> c1 = HPlot(’GUI’)
>>> jframe=c1.getFrame()

Once you have retrieved the frame object, you can add the necessary Swing GUI
components (menu, buttons, sliders etc.) to control the displayed data.

Let us show an extensive example in which we illustrate how to attach a panel
with two Swing JButton buttons and a TextArea component directly to the
HPlot canvas object. One button will be used to generate a histogram populated
with Gaussian numbers. The second will be used to erase graphs from the canvas.
The text area displays a short message about what happens when you press these
buttons.

Combining HPlot canvas with Swing components

from java.awt import *
from javax.swing import *
from java.util import *
from jhplot import *

c1 = HPlot(’GUI’)
c1.setGTitle(’Plot area with GUI’)
c1.visible(1)
c1.setAutoRange()
fr=c1.getFrame()

h1 = H1D(’Histogram’,20, -2.0, 2.0)
h1.setFill(1)
h1.setFillColor(Color.blue)

pa0 = JPanel(); pa1 = JPanel()
pa2 = JTextArea(’GUI test’,6,20)
pa2.setBackground(Color.yellow)

def act1(event):
r=Random()
for i in range(100):

h1.fill(r.nextGaussian())
c1.draw(h1)
pa2.setText(’Generated 100 Gaussian numbers’)

10.14 Combining Graphs with Java Swing GUI Components 269

def act2(event):
c1.clearData()
pa2.setText(’Clear plot’)

pa0.setLayout(BorderLayout());
bu1=JButton(’Gaussian’, actionPerformed=act1)
pa0.add(bu1,BorderLayout.NORTH)
bu2=JButton(’Clear’, actionPerformed=act2)
pa0.add(bu2,BorderLayout.SOUTH)
pa0.add(pa2,BorderLayout.WEST)
fr.add(pa0,BorderLayout.EAST)
fr.pack()

After execution of this script, you will see the HPlot canvas with an attached panel
with the Swing components, see Fig. 10.10. Press the buttons to see the output of
this program.

By examining the script, you may wonder why do we need the method pack()
at the very end of this script. We call this method to avoid changes in the size of
the HPlot canvas, so the extra panel just extends the canvas without distorting its
default size (which is 600 × 400 pixels). If you will want to append extra canvas by
keeping the same size of the entire frame, remove the method pack() and, call any
method which updates the frame (calling setVisible(1) can do this).

Fig. 10.10 HPlot canvas together with a Swing control panel

270 10 Graphical Canvases

10.15 Showing Streams of Data in Real Time

Showing streams of data in real time is very often situation. Instead of collecting
data in some container, such as Java or Jython array, and plotting data at once using
the draw(obj) method, one can plot a fraction of data samples without waiting
until all data set become available and populate a data holder to be used for drawing.

In this section, we will show how to fill histograms or data holders and update the
canvas after each such operation. Let us illustrate this by using the Jython sleep()
function: we will fill a histogram and update the plot after each random Gaussian
number. Thus we will see how the histogram is filled at runtime. At the end of the
loop, we will clean up the canvas and then re-plot the final histogram. How to clean
the canvas from plotted data has been discussed in Sect. 10.2.8.

HPlot data stream

from java.awt import Color
from java.util import Random
from jhplot import *

c1 = HPlot(’Canvas’)
c1.setGTitle(’data stream’)
c1.visible()
c1.setLegend(1)
c1.setAutoRange()

h1 = H1D(’Updated histogram’,20,-2.0,2.0)
h1.setFill(1)
h1.setErrX(0)
h1.setErrY(1)
h1.setFillColor(Color.blue)
h1.setColor(Color.blue)

r = Random()
import time
for i in range(1000):

h1.fill(r.nextGaussian())
time.sleep(1)
c1.clearData()
c1.draw(h1)

c1.drawStatBox(h1)
time.sleep(2)
c1.draw(h1)

c1.clearData()
time.sleep(2)
c1.setLegend(1)
c1.draw(h1)

References 271

One may notice that, before each draw(obj) statement, we clean the canvas
from the data using the method clearData(). This is necessary in order to
avoid generating many objects during plot drawings, since each call of the method
draw(obj) creates a new object and this leads to an extensive memory usage.

For showing steams of data, it is good idea to use a light-weight canvas, such as
SPlot discussed in Sect. 10.9. Here is an example in which we fill a canvas with
data points and rescale the plot to fit all data:

A data stream using the SPlot canvas

from java.util import Random
from jhplot import *

c1 = SPlot()
c1.visible()
c1.setAutoRange()

c1.setMarksStyle(’various’)
c1.setConnected(1, 0)
c1.setNameX(’Time’)
c1.setNameY(’Data’)

r = Random()
import time
for i in range(20):

x=r.nextGaussian()
y=r.nextGaussian()
c1.addPoint(0,x,y,1)
c1.update()
time.sleep(1)

This example is rather fancy: you will see data points connected with various lines.
When one uses the addPoint() method, there is no need in removing data from
the canvas after each call to this method, since the method addPoint() does not
create a new object after each call.

References

1. Chekanov, S.: The JHPLOT package. URL http://hepforge.cedar.ac.uk/jhepwork/api/jhplot/
2. The ARENA project: URL http://www.w3.org/Arena/tour/symbols.html
3. jFreeChart package: URL http://www.jfree.org/
4. Ptplot 5.6: Ptolomy project. URL http://ptolemy.berkeley.edu/java/ptplot/
5. Binosi, D., Theussl, L.: JaxoDraw: A graphical user interface for drawing Feynman diagrams.

Comput. Phys. Commun. 161, 76 (2004). URL http://jaxodraw.sourceforge.net/
6. Denbo, D.W.: Scientific Graphics Toolkit. URL http://www.epic.noaa.gov/java/sgt/

Chapter 11
Input and Output

jHepWork has a large choice for file input and output (I/O) for efficient data storage
and processing. There are several mechanisms for I/O:

• streams to write or read data using the native JAVA platform. The Java libraries for
I/O are located in the java.io package which can be imported using the usual
’import’ statement. We will not discuss the Java I/O streams in this book as
they are described in detail in any Java book [1–5]. We have already discussed
the class DataOutputStream in Sect. 2.16 in context of writing and reading
data using Java called from Jython;

• native Python I/O discussed in Sect. 2.16;
• libraries included into the jHepWork Java package jhplot.io. In this chapter,

we will discuss these libraries in more detail;
• third-party Python libraries. We will discuss the package DIF from these libraries

in Sect. 11.10;
• third-party Java libraries included into the jHepWork. As example, we will dis-

cuss the Apache Derby relational database in Sect. 11.6.

File I/O, data streaming and format conversions are essential for any stage of
data analysis. Unfortunately, in the standard manuals and tutorials, details of file
I/O seem to be buried at the back. In this book, we will discuss this topic in great
detail, focusing on I/O libraries included into the jHepWork program.

11.1 Non-persistent Data. Memory-based Data

In simple words, non-persistent objects contain data that are kept in the computer
memory and cannot be restored after the end of the program execution. In contrast,
persistent objects are stored in files and can be restored at any moment.

Most scripts discussed in this books hold objects in a non-persistent way. For
example, when you create a histogram or an array with random numbers as:

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_12, © Springer-Verlag London Limited 2010

273

274 11 Input and Output

>>> from jhplot import *
>>> p=P0D(’test’)
>>> p.randomUniform(100000,0,1)

the object ’p’ is created in the computer memory. Watch out the memory-status
monitor at the bottom right corner of the jHepWork editor: you will see a notable
increase in the used memory. By increasing the number of random numbers in the
above example, one can eventually run out of memory, and an OutOfMemory-
Error message will be thrown.

Thus, you are very limited by the available memory of your computer (and avail-
able memory assigned to the virtual machine). The memory assigned to store objects
can be released manually: in Jython, to remove an object, say ’p’, call the state-
ment ’del p’. In addition, the Jython garbage collector takes care of reclamation
of memory space in an automatic mode. One can also invoke the Jython garbage
collector manually as:

>>> del p
>>> import gc
>>> gc.collect()

After calling the statement above, you will see a decrease in the used memory (again,
look at the bottom right corner of the jHepWork IDE).

The computer memory is like the work table. It is fine to work on it using small
portions of data because it is fast and effective. But in order to handle large pieces
of data, you have to put data on “a shelf”, i.e. copy them to a real file storage on a
disk. Below we will discuss how to store jHepWork data in files and how to bring
them back into the computer memory for fast operation.

11.2 Serialization of Objects

Before we have already discussed how to save separate objects into files. Most ob-
jects, like P1D or H1D, contain methods for writing them into files, which can be
either text files or binary files.

These objects have also the methods to instantiate themselves from files. Look at
the previous sections: Sect. 3.10 discusses this topic for functions, while Sects. 4.3,
5.4 and 6.4 for P0D, P1D and PND arrays, respectively. Section 8.6 describes the
histogram I/O operations. In all these sections, we have illustrated how to save and
restore all such objects using the standard Java serialization, including the serializa-
tion into a human-readable XML file format.

We also should remind that jHepWork objects can be saved into Jython lists, dic-
tionaries or Java collection classes using the Serialized class. This is a generic
example of how to save objects as lists:

11.2 Serialization of Objects 275

>>> from jhplot.io import *
>>> list=[]
>>> list.append(object1)
>>> list.append(object2)
...
write to a file
>>> Serialized.write(list,’file.ser’)
...
deserialize the list from the file
>>> list=Serialized.read(’file.ser’)

Similarly, one can use Jython dictionaries with the keys which are rather handy to
extract objects:

>>> from jhplot.io import *
>>> map={}
>>> map[’object1’]=object1
>>> map[’object2’]=object2
...
>>> # write to a file
>>> Serialized.write(map,’file.ser’)
...
>>># de-serialize the map from the file
map=Serialized.read(’file.ser’)

The class Serialized compresses data using the GZip format. One can also save
and read objects without compression using the following methods:

>>> Serialized.write(obj,’file.ser’,compression)
>>> obj=Serialized.read(’file.ser’,compression)

where a boolean compression should be set to zero (‘false’ for Java) if no com-
pression is applied.

One can also use a XML format for all such output files. This format is im-
plemented using the methods writeXML(obj) and readXML() from the same
Serialization class. However, this is not the most economic approach, since
string parsing is a CPU intensive and the XML files are significantly larger than files
with binary data.

In all such approaches, there was a significant drawback: we write data at the end
of numerical computations, so first we put the entire collection in a non-persistent
state, and then move it into a persistent state. This can only work if the data are not
too large and one can fit them in the computer memory.

276 11 Input and Output

Below we will discuss how to avoid such problems by writing objects with data
directly into files sequentially, without building collections of objects first and then
writing them using the Serialized class.

11.3 Storing Data Persistently

11.3.1 Sequential Input and Output

To load all data into a Jython or Java container and write it at once into a file using
the Serialized() class is not the only approach. One can also write or read
selected portions of data, i.e. one can sequence through data by writing or reading
small chunks of data that are easier to handle in the computer memory.

This time we are interested in truly persistent way of saving objects: instead
collecting them in the collections before dumping them into a file, we will write
each object separately into a file. In this case, one can write and read back huge data
sets to/from the disk.

The Java serialization mechanism for objects could be slower than the standard
Java I/O for streaming primitive data types. As usual, there is a trade-off between
convenience and performance and, in this book, we usually prefer convenience. In
case of the Java serialization, restored objects carry their types, and such “self-
description” mechanism is very powerful and handy feature as there is no need to
worry about what exactly data have been retrieved from a file.

If the serialization is slow for your particular tasks, one can always use the I/O
methods of jHepWork objects which are not based on the Java serialization. See, for
example, Sects. 4.3 and 5.4 for such examples.

To write objects sequentially into a file and read them back, one can use the
HFile class. A general call to create an instance of this class is:

>>> f=HFile(FileName,option,compression,buffersize)

where FileName is a string with the file name, ’option’ is a string which can
be either ’w’ (write into file) or ’r’ (read from a file). If the boolean variable
’compression’ is set to zero (‘false’ in Java), objects inside the file will not be
compressed. An integer value, ’buffersize’, specifies the buffer size. The class
HFile is constructed such that it writes data chunks to a memory buffer first, before
recording them on the disk. This dramatically increases the speed of I/O operations,
compare to the situations when writing one byte at a time. Selecting a correct buffer
size is important; typically this number should be multiples of 1024 bytes. If the
data chunks to be written are large, consider to increase the buffer size. This point
will be illustrated in more detail later.

The following shortcuts for creation of a HFile object can be useful:

11.3 Storing Data Persistently 277

>>> f=HFile(FileName,option,compression)
>>> f=HFile(FileName,option)
>>> f=HFile(FileName)

In all these initializations, the buffer size is set to 12 kilobytes (KB). The second con-
structor assumes data compression, while the third assumes that the file is opened
for reading objects only.

Let us give an example of how to store several Java objects in a file persistently.
The example below shows how to create an output file with several Java objects.
Some of them (like P1D) can contain data:

Writing Java objects

from jhplot.io import *
from jhplot import *
from javax.swing import JFrame

create a lsit with objects
list=[]
list.append(P0D(’title’))
list.append(P1D(’title’))
list.append(H1D(’histogram’,100,-5,5))
list.append(F1D(’x*x’,1,5))
list.append(’String’)
list.append(JFrame(’Frame’))

f=HFile(’output.ser’,’w’)
for i in list:

f.write(i)
f.close()

As we have mentioned before, data from the serialization contain a self-
description. Let us read the file from the above example and check the types of
the retrieved objects. In one case, we will use the Jython type(obj) method, in
second we will use the Java-oriented type of check:

Reading Java objects

from jhplot.io import *
from jhplot import *

f=HFile(’output.ser’)
while 1:

obj=f.read()
if obj == None:

break
print ’Type=’,type(obj)

f.close()

278 11 Input and Output

The output of this script is:

Type= <type ’jhplot.P0D’>
Type= <type ’jhplot.P1D’>
Type= <type ’jhplot.H1D’>
Type= <type ’jhplot.F1D’>
Type= <type ’unicode’>
Type= <type ’javax.swing.JFrame’>

In case if an object belongs to a Java class, one can also access the information
about this object using the getClass() method from the native Java API. This
has already been discussed in Sect. 3.2.1, but here we will remind how to do this
again:

>>> try:
>>> cla=obj.getClass()
>>> print ’Java=’,cla.getCanonicalName()
>>> except:
>>> print ’Non-Java class’;

11.3.2 GUI Browser for Serialized Objects

If a serialized file has been created with the help of the HFile class using its default
attribute (i.e. GZip compression), one can browser objects inside such file using
a specially-designed GUI browser. Start the jHepWork IDE and select [Tools]
and then [HPlot] menu, which brings up an empty HPlot canvas. Then select
[Read data] using the menu [File] from the tool bar. This opens an object
browser which will be discussed in more detail in Sect. 10.2.7.

In this section, we would rather show how to look at the serialized objects using
Jython scripting. In our next example, we create a canvas and open a HFile file
in the HFileBrowser dialog. You will see a list of objects stored in the file (to-
gether with their titles). One can select an object and plot it on the HPlot canvas.
The selected object can be either a F1D function, a H1D histogram, P0D or P1D)
array. This code snippet opens the file ’output.ser’ created before in the object
browser:

Java object browser

from jhplot.io import *
from jhplot import *

c=HPlot(’canvas’)
c.visible()

11.3 Storing Data Persistently 279

f=HFile(’output.ser’)
HFileBrowser(c,f,1)
f.close()

Select an entry, say “String” (which, obviously, means “Java String” object) and
push the button “Plot”. You will see the plotted text on the canvas. In exactly the
same way, one can bring up a serialized JFrame (note that we did not set the size
of this frame, so you will see only a small box). One can also plot other objects
(histograms, jHepWork arrays) stored in the file ’output.ser’.

11.3.3 Saving Event Records Persistently

Now let us come to the question of how to store large data sets in a sequential form.
The passed argument obj to the method write(obj) can be rather complex since
it can keep a data record with various types of containers and their graphical at-
tributes.

Below we will show a simple example of how to write 10000 events into a se-
rialized file. Each event is a list with the event identification information (a string),
P0D array with random numbers and a histogram H1D. We print a debugging in-
formation after each 100 events, showing how the file is growing after inserting the
data.

Writing event records

from jhplot.io import *
from jhplot import *

def makeEvent(entry):
’event with 3 objects’
label=’Event=’+str(entry)
p=P0D(label)
p.randomUniform(10,0,1)
h=H1D(label,10,-1,1)
h.fill(i)
return [label,p,h]

f=HFile(’output.ser’,’w’)
for i in range(10000):

ev=makeEvent(i)
if (i%100 == 0):

print ev[0]+’ size=’,os.path.getsize(file)
f.write(ev)

f.close()

280 11 Input and Output

One should note that the data stream is flushed1 after each 100 event by default. One
can increase or decrease this number by using the method setFlush(i) of the
HFile class, where ’i’ is the number of entries after which data should be flashed
to the disk. This is necessary since a serialization of multiple objects without reset-
ting the stream causes an increase of the memory used by the Java virtual machine.
We can call getEntries() to obtain the actual number of written entries and
getBufferSize() to return the default size of the buffer used to write data.

Now, let us read the saved file back and restore all the objects from the list. We
will read the events from the file in an infinite loop. When method read() returns
None (no entries to read), than this indicates that the end of the file is reached and
the loop should be terminated:

Reading events

from jhplot import *
from jhplot.io import *

f=HFile(’output.ser’)
while 1:

event=f.read()
if event == None:

print ’End of events’; break
print event[0]
p=event[1]
h=event[2]
print p.toString()
print h.toString()

print ’No of processed events=’,f.getEntries()
f.close()

We have commented out some debugging print statements intentionally: for a very
large loop, the JythonShell console will be very quickly populated with large CPU
consuming outputs.

We remind again that, when using the Java serialization, the retrieved objects
from the HFile files are self-described. This can be checked in the above example
by either uncommenting the debugging comments or checking the object types with
the method type(obj).

11.3.4 Buffer Size for I/O Intensive Operations

We have mentioned before that, in order to optimize the execution speed of an ap-
plication with I/O intensive operations, it is important to find a proper buffer size for

1For Java experts: flushing here means resetting ObjectOutputStream.

11.3 Storing Data Persistently 281

the HFile class. The buffer size depends on several factors, but one important fac-
tor is the size of the objects used for persistent storage on the disk. One simple way
to optimize I/O is to benchmark the write/read operations. In the example below, we
will create a relatively large array with random numbers and then write this array
multiple number of times to a file. The objects will be written in an uncompressed
way using the buffer size 1024 bytes.

Benchmarking I/O operations

from jhplot.io import *
from jhplot import *
import time

p1=P0D(’data’)
p1.randomUniform(1000000,0,1)

buffer=1024
start = time.clock()
f=HFile(’tmp.ser’,’w’,0,buffer)
for i in range(1000):

if (i%100 == 0):
print ’pocessed=’,i

f.write(p1)
f.close()
print ’ time (s)=’,time.clock()-start

Note the required time to complete the execution of this code. Then change the
buffer size. If you will set it to a small number (say, buffer=2) you will see a
dramatic slow down in the execution of this script. Increasing the buffer size usually
speeds up the I/O operations for large data sizes.

Of course, instead of the P0D array, one can use any jHepWork or Java object
which implements the Serializable interface (almost all jHepWork objects do).
After running the script above, do not forget to remove the temporary file tmp.ser
(it is about 130 MB) as:

>>> import os
>>> os.remove(’tmp.ser’)

11.3.5 Input and Output to XML Files

Analogously, one can write and read data using the XML format. This can be
achieved using the class HFileXML, replacing HFile by the HFileXML state-
ment in the above example. You will see that the output files are significantly larger
than in the case of using the HFile class; this time the data will be written to a
human-readable XML format and no compression is used.

282 11 Input and Output

11.3.6 Non-sequential Input and Output

Data can also be written in a non-sequential order using a database-type approach.
The database can be build using the HDataBase class.

A typical database associates a key of type string with each written record.
This has some similarity with Jython dictionaries, but this time we are dealing with
truly persistent approach. A data record can consist of only one “blob” of binary
data. The file can grow and shrink as records are inserted and removed. The database
operations do not depend on the number of records in the file, i.e. they will be
constant in time with respect to file accesses. The index is small enough to be loaded
into memory for efficiency.

Let us give a short example of how to create a small database. This will be a
simple address book with two entries. First, we will create a binary database file,
inserting two entries with the names of people as keys. Then we read the database
again, check the number of entries and print all entries inside the file using the keys:

An object database: an address book

from jhplot.io import *
from java.util import *

open a database for writing
f=HDataBase(’addressbook.db’,’w’)
f.insert(’steve’, ’Chicago’)
f.insert(’alexey’,’Minsk’)
f.close()

open database for reading
f=HDataBase(’addressbook.db’,’r’)
print ’Number of records=’,f.getRecords()
print ’Is record exists?’, f.isExists(’alexey’)
keys=f.getKeys()
while keys.hasMoreElements():

next = keys.nextElement()
print ’key=’,next,’ obj=’,f.get(next)

The output of this script is shown below:

Number of records= 2
Is record exists? True
key= steve obj= Chicago
key= alexey obj= Minsk

The same approach can be used to store more complicated objects and associate
them with the keys in form of strings. The example below shows how to build a
file (’data.db’) with object database which could be useful for writing arbitrary
event records:

11.4 Compressed PFile Format 283

An object database: Event records

from jhplot import *
from jhplot.io import *
import os.path

build event from 3 objects
def makeEvent(entry):

label=’Event=’+str(entry)
p=P0D(label)
p.randomUniform(10,0,1)
h=H1D(label,10,-1,1)
h.fill(i)
return [label,p,h]

write events into a database
f=HDataBase(’data.db’,’w’)
Events=1000
for i in range(Events):

event=makeEvent(i)
if (i%100 == 0):

print event[0]+’ size=’,os.path.getsize(’data.db’)
f.insert(str(i),event)

f.close()

f=HDataBase(’data.db’,’r’) # read the database
print ’extract event 26’; event=f.get(’26’)
print ’=== ’+event[0]+’====’
print event[1].toString()
print event[2].toString()
f.close()

Let us comment on this code. As before, for each insert(key,obj) method,
we used the key defined by a string. Each string represents an event number but, of
course, it can be any non-unique string. We access the event record No. 26 using the
random access feature of this database and then print its objects.

One can always remove an object from the file with the remove(key) method
or update an entry with the update(ob,key) method. Look at the Java API
documentation of this class.

11.4 Compressed PFile Format

Despite the power of the Java serialization mechanism, it is important to note several
its features when making decisions about input and output of numerical data:

284 11 Input and Output

• Java serialization can be slower in comparison with the usual I/O approach. It is
good approach for storing complex objects, but it has unnecessary overhead for
numerical data streams;

• It is not intended to be platform neutral. One cannot write or read data using other
programming languages (such as C++);

• The size of the files created by the Java serialization can be larger than expected
(even after compression). In fact, what we really need in many data-analysis ap-
plications is simply to write or read numerical values, rather than objects with all
associated graphical attributes.

This poses a certain trade-off between the power of being able to write essentially
any Java object into a Java serialized file and the shortcomings listened above. If
Java serialization is too heavy approach for numerical calculations, consider an al-
ternative I/O approach using the class called PFile. The methods of this class
allow to write and read compressed data records constructed using the Google’s
Protocol Buffers package [6] (which gives the origin of the first letter “P” in the
class name PFile). The Protocol Buffers program encodes structured data in a
platform-neutral format, similar to XML. But, unlike XML, the Protocol Buffers
approach is faster, simpler and the output file is smaller. This will be discussed in
more detail in Sect. 11.8.

There are several advantages in using the class PFile: it is faster for writing
compared to HFile and output data files generated by HFile are smaller. But,
more importantly, one can use external programs to write and read files as long as a
Protocol Buffers file which specifies data format is provided (again, see Sect. 11.8
for details). The class PFile is designed to keep data without their graphical at-
tributes, which leads to smaller output files. However, only a limited set of objects
is supported; at present, only objects from the package jhplot can be dealt by
PFile.

In the previous section, we have considered constructors of the HFile class.
An object of the class PFile can be created in a similar way. Below we list the
major constructors to open a file ’data.pbu’:

>>> f=PFile(’data.pbu’,’w’) # open for writing
>>> f=PFile(’data.pbu’,’r’,map) # open for reading and map
>>> f=PFile(’data.pbu’,’r’) # as above with map=1
>>> f=PFile(’data.pbu’) # as above with map=1

The file extension of the file is ’pbu’, which originates from the underlying Proto-
col Buffers format. The only difference from the HFile class is additional boolean
attribute ’map’. If this attribute is set to 1 (“true” in Java), we will create an associ-
ation between a numerical record position and an object name which can usually be
set using the setTitle() method. This is rather handy since one can retrieve an
object by using its name (which can be obtained using the method getTitle()),
rather than using its position in the PFile file. The price to pay is that it takes more
resources in case of large files, since the constructor must pre-process records in
order to make a map between object names and positions.

11.4 Compressed PFile Format 285

Let us give a detailed example. Below we generate two 1D arrays with 100 num-
bers and then create a two-dimensional array. We write all arrays in a compressed
file:

Writing jHepWork objects in PFile files

from jhplot.io import *
from jhplot import *

f=PFile(’data.pbu’,’w’)
x=P0D(’X’)
x.fill(100,0,1); f.write(x)
y=P0D(’Y’)
y.fill(100,0,1); f.write(y)

xy=P1D(’XY’,x,y); f.write(xy)
f.close()

Now let us read the objects from this file. As usual, we will open the file and check
what is inside:

Reading jHepWork objects

from jhplot.io import *
from jhplot import *

f=PFile(’data.pbu’)
print f.listEntries()
print ’No of entries=’,f.getNEntries()

for i in range(f.getNEntries()):
a=f.read(i+1)
print ’entry=’,i+1,type(a)

f.close()

We open the file in the read-only mode using the “name-mapping” option which
will allow us to retrieve objects by calling their names. We also print all entries
together with the record sizes using the method listEntries(). Finally, we
read all records in a sequential order and verify their types:

1 -> X --> 809
2 -> Y --> 809
3 -> XY --> 1613
No of entries= 3
entry= 1 <type ’jhplot.P0D’>
entry= 2 <type ’jhplot.P0D’>
entry= 3 <type ’jhplot.P1D’>

286 11 Input and Output

Since we have opened the file using the “mapped-name” option, one can take advan-
tage of this by retrieving objects using their names, instead of the record positions:

Reading objects using their names

from jhplot.io import *
from jhplot import *

f=PFile(’data.pbu’)
x=f.read(’X’); print type(x)
y=f.read(’Y’); print type(y)
xy=f.read(’XY’); print type(xy)
f.close()

Now we have convenient (and fast) access to records using their names. We should
note that when the name-mapping option is enabled, objects inside PFile cannot
contain duplicate names; check this by calling the method getTitle(). The name
returned by this method will be used as a key for object mapping.

At present, all “named” objects can be processed by the PFile class, such as
P0D-PND, F1D-F3D, FND, FPR, 1D and 2D histograms. One can also write strings.

One should point out again that the file format ’pbu’ is platform-neutral. It has
already been mentioned before that the record structure of the class PFile is con-
structed using a Protocol Buffers template file. This file, called HRecord.proto
and located in the directory ’macros/system’, can be used to build a C++ ap-
plication which can read the files created by the PFile class (and vice versa). How
to write more general data structures using the Google’s Protocol Buffers will be
discussed in Sect. 11.8.

If one needs to write jHepWork-specific objects from a C++ program, one can
use the CBook C++ programming library [7] which is designed to write several
major objects, such as H1D, H2D, P0D and P1D, into the ’pbu’ files. Such files
can later be opened by the Java PFile class, or can be analyzed and plotted using
the PFileBrowser object browser to be discussed below.

11.4.1 Browser Dialog for PFile Files

The files created by the PFile class can be studied using the PFileBrowser
dialog. This functionality is very similar to that of HFileBrowser class: Start
the jHepWork IDE and select [Tools] and then [HPlot] menu. This brings up
an empty HPlot canvas. Then press [Read data] using the option [File]
on the tool bar menu. This pops us a file dialog for file loading. Select a file with
the extension “pbu”. This automatically opens an object browser which will be
discussed in more detail in Sect. 10.2.7.

One can also call the browser from a code. In our next example we create a canvas
and open a PFile file in the PFileBrowser dialog. This script shows a typical
example:

11.5 Reading ROOT and AIDA Files 287

Java PFile browser

from jhplot.io import *
from jhplot import *

f=PFile(’test.pbu’,’w’)
for i in range(10):

p0= P0D(’Random=’+str(i))
p0.randomNormal(1000,0.0,1.0)
f.write(p0)

f.close()

c1=HPlot(’Browser’)
c1.visible()
f=PFile(’test.pbu’)
PFileBrowser(c1,f,1)

Select one entry, and push the button “Plot”. You will see a plotted histogram with
all entries from the saved P0D object. Similarly, one can plot H1D histograms, func-
tions and multidimensional arrays.

11.5 Reading ROOT and AIDA Files

11.5.1 Reading ROOT Histograms

One can read and view files created by the C++ ROOT data analysis framework
[8, 9]. At this moment, one cannot write ROOT files, but to read and extract his-
tograms or graphs written in the ROOT format should not be a problem. For this,
jHepWork uses the FreeHEP library.

First, open a ROOT histogram viewer as:

>>> from jhplot import *
>>> BRoot() # open a viewer, or
>>> BRoot(’Example.root’) # open a ROOT file

The latter version of the constructor opens a ROOT file iwith the name
Example.root’ inside the histogram viewer. The BRoot class is a simple wrap-
per of the HistogramBrowser class from FreeHEP.

One can read ROOT files also without invoking a GUI browser. Reading 1D, 2D
and 3D histograms can be done using the HRoot class which opens a ROOT file
and extracts histograms:

Reading a ROOT file

from jhplot import *

288 11 Input and Output

r=HRoot(’Example.root’)
print ’number of histograms=’,r.getNKeys()
print ’ROOT version=’,r.getVersion()
print ’List histograms=’,r.toString()

h1=r.getH1D(’mainHistogram’) # fetch a H1D
c1=HPlot(’ROOT’)
c1.setGTitle(’ROOT histogram’)
c1.visible()
c1.setAutoRange()
c1.draw(h1)

Here we first read the key of the ROOT histogram and then convert it into the H1D
histogram. Then, the object h1 can be plotted in the usual way using the draw(h1)
method of the HPlot class.

One can also use the class RootFileReader to do the same (but it takes more
typing):

Reading a ROOT file

from jhplot import *
from hep.io.root import *

r=RootFileReader(’Example.root’)
print ’Number of histograms=’,r.nKeys()
print ’ROOT version=’,r.getVersion()

key=r.getKey(’mainHistogram’) # read the key
his1=key.getObject()
h1=H1D(his1) # convert ROOT histogram to H1D

c1=HPlot(’ROOT’)
c1.setGTitle(’ROOT histogram’)
c1.visible(1)
c1.setAutoRange()
c1.draw(h1)

11.5.2 Reading ROOT Trees

The FreeHEP library contains a mechanism to read arbitrary ROOT objects, as
well as the so-called ROOT trees. A ROOT tree can contain a list of independent
branches, each can have its own definition. The RootIO package from the FreeHEP
library allows to read ROOT files which can contain user defined objects [10]. The
library is still under development and was tested with the ROOT 3.00 version. The
RootIO package is included into the jHepWork library in a slightly redesigned style.

11.5 Reading ROOT and AIDA Files 289

The topic of reading ROOT tree is rather common for high-energy physics, where
data in the form of objects are stored sequentially in a machine independent way.
Readers who are not familiar with this field can skip this section. For others, we
will give a step-by-step instruction of how to read a file with ROOT trees containing
user-defined objects (for example, particle tracks).

There are several steps in reading a ROOT file. First of all, one should look inside
the file using the BRoot() method described above. This can help to understand
the structure of the file.

Next, one should generate a Java interface library for the user-defined objects
contained in a ROOT file. This interface library pre-processes a ROOT file and gen-
erates classes with the description of ROOT objects. We will illustrate this by using
the ROOT file ’Event.root’ which is located in

http://projects.hepforge.org/jhepwork/examples/data/
or
http://jwork.org/jhepwork/examples/data/

One can also find this file as well as the ROOT source file used to generate this file
in [10].

Once the data file has been copied to a local directory, one should generate source
files for our interface library by using this ROOT file. This can be done by executing
the following code inside the jHepWork IDE:

Building an interface library

from hep.rootio.util import *

a=InterfaceBuilder(’Event.root’)
print a.message()

This script creates a directory ’hep’ with all necessary Java files. These files need
to be compiled into bytecode. There are many ways to do this. In case of jHepWork,
one can compile all files in this directory as: (1) Navigate to the directory ’hep’
using the project file menu, i.e. click on the button below the file menu (bottom left
of the IDE) and select the directory ’hep’. Then, from the tool bar menu, select
[Run] and [Javac all files]. You will see a message saying that all Java
files have been compiled (check the existence of the files with the extension class
in the directory ’hep’).

Now you are ready to write a code which reads this ROOT file. Below we show
how to access the ROOT tree and its branches inside the file ’Event.root’.
Then we will plot squared transverse momenta of all particles (in this case, charged
tracks).

Reading a ROOT tree with user-defined objects

from hep.rootio.interfaces import *
from hep.rootio import *
from jhplot import *

290 11 Input and Output

reader = RootFileReader(’Event.root’)
tree = reader.get(’T’)
branch = tree.getBranch(’event’)
n = branch.getNEntries()
print ’entries=’,n

h1=H1D(’Pt2’,100,0,10)
for i in range(n):

e = branch.getEntry(i)
l = e.getTracks()
print ’No=’,i,’ NTracks=’,e.getNtrack(),’ ’,l.size()
it = l.iterator()
while(it.hasNext()):

t = it.next()
px=t.getPx()
py=t.getPy()
h1.fill(px*px+py*py)

c1=HPlot(’Canvas’)
c1.visible()
c1.setAutoRange()
c1.draw(h1)

The example reads all stored events, accesses tracks and extract their momenta.
Then it plots squared transverse momenta of all stored tracks in the form of a 1D
histogram.

We will not discuss this example further, since everyone who knows ROOT will
not have any problems to understand it. We only note that one can also do all the
above steps using a shell prompt. Look at the example in ’RootIO’ stored in the
’example’ directory.

11.5.3 Plotting ROOT or AIDA Objects Using jHepWork IDE

On can use the jHepWork IDE to read data files written in the ROOT or AIDA
format in a GUI-driven fashion. One can do this as:

• Start the jHepWork IDE.
• Select the menu [Tools] and then [HPlotJa canvas]. You will see a new

window which can be used for data visualization (based on the class HPlotJa).
The HPlotJa class is described in Sect. 10.10.

• In the HPlotJa frame, go to the menu [Option] and select [Add pads].
You will see a sub-menu to build various pads (plotting regions), such as 1 × 1,
1 × 2, 2 × 1, 2 × 2. To create, for example, 4 plotting pads with X–Y axes, select
the sub-menu [pad 2x2].

11.6 Working with Relational SQL Databases 291

• Open a data file using the [File] menu and sub-menu [Open data] of the
HPlotJa window. The file extension should be ’*.root’ or ’*.aida’. You
will see an object browser from the right side of the HPlotJa frame. Using the
mouse, locate some entry and then plot it using the right mouse button, which
shows different choices of the pads where the object should be shown. One can
plot data points either on one pad by overlaying the points from different objects,
or one can plot data points on different pads.

One can do the same from a Jython script as:

>>> from jhplot import HPlotJa
>>> c1=HPlotJa(’Canvas’)
>>> c1.visible()
>>> c1.showBrowser(’file.root’)
>>> c1.showEditor(1) # open an object editor

Once the script is executed, you should see a browser (on the left of the main can-
vas) listing all objects inside the file. If one clicks on an entry of this list, a his-
togram or data set will be plotted. One can also plot data on different pads using the
mouse pop-up menu. One can learn more about how to read ROOT or AIDA files in
Sect. 11.5.1.

11.6 Working with Relational SQL Databases

We cannot avoid the discussion of relational databases based on the SQL standard,
since such databases are reality of our life.

So far we have discussed a “flat file” approach in which a binary or text file usu-
ally contains one record per line. A SQL-relational database has several advantages:
one can implement a server-client mode, scalability (indexing of records), and con-
currency when one needs to synchronize multiple updates at the same time.

However, I should warn you: in many cases you do not need such SQL databases
at all. For data analysis, we often read data sequentially, i.e. we read data records
from the top to the bottom all the way through. We are in less degree worry about
a random access, concurrency or client-server mode as it is implemented in many
relational databases. Straight file access is usually faster than executing a SQL query
and less memory consuming.

Thus, in terms of performance, a data-analysis code may not benefit from switch-
ing to the SQL databases. Using a SQL database may or may not be worthwhile.
Your decision should be based on complexity of the data access, where a database
software needs to be installed, and many other factors.

Below will consider the Apache (“Derby”) open-source relational database.
More detail about Java implementation of this database can be found elsewhere [11].

292 11 Input and Output

11.6.1 Creating a SQL Database

First of all, let us prepare a module which keeps common information about our SQL
database. This module will be necessary for creation and retrieval information in our
further examples. We will consider an embedded Derby database i.e. a database for
a simple single-user Java application. In this mode, only a single application can
access the database at the time and no network access is required.

Let us prepare a file ’openDB.py’ with the information necessary for creation
of database, such as drivers, protocol, name of database table. The name of our
database will be ’derbyDB’, which will keep a single table with the name “loca-
tion”. We also set a user name and a password for this database. Below is a script
which has all necessary information:

Common module: ’openDB.py’

from java.sql import *
from java.lang import Class
from java.util import Properties

framework = ’embedded’
driver = ’org.apache.derby.jdbc.EmbeddedDriver’
protocol = ’jdbc:derby:’
dbName=’derbyDB’
table=’location’

Class.forName(driver).newInstance()
props = Properties();
props.put(’user’, ’jhepwork’)
props.put(’password’, ’secret’)

This file will be imported for all Jython modules to be discussed below.
Now let us create a database called “derbyDB”. Here we will use the Jython

syntax to create a database and to insert several SQL statements into the table
’location’, which will keep information about the street name (type string) and
home number (integer).

The script below does the following: (1) loads the JDBC Java driver in order to
start-up the Derby database. (2) Creates a table inside the database, first checking
whether this table is already created. If it does exist, we remove it (see the statement
’drop table’+table. (3) Then we insert a few records with addresses.

Creating a SQL database

from openDB import *

scon=protocol+dbName+’;create=true’
conn = DriverManager.getConnection(scon, props)
s = conn.createStatement()

try:

11.6 Working with Relational SQL Databases 293

s.execute(’drop table ’+table)
except SQLException:

print ’no need to remove table’

s.execute(’create table ’+table+\
’(num int, addr varchar(40))’)

s.execute(’insert into ’+table+\
’ values (1956,\’Webster St.\’)’)

s.execute(’insert into ’+table+\
’ values (1910,\’Union St.\’)’)

s1=’update ’+table+’ set num=?, addr=? where num=?’
ps = conn.prepareStatement(s1)
ps.setInt(1,180)
ps.setString(2, ’Grand Ave.’)
ps.setInt(3, 1956)
ps.executeUpdate()
print ’Updated 1956 Webster to 180 Grand’
s.close()
conn.commit()

try:
DriverManager.getConnection(’jdbc:derby:;shutdown=true’)

except SQLException:
print ’all done’

This example shows how to use two alternative methods to insert and update the
database: (1) one is based on the standard SQL statements, and the second using a
prepared statement based on the method prepareStatement() for fast query.

It is important to close the database properly using the line:

’jdbc:derby:;shutdown=true’.

The DriverManager should raise only one exception : SQLException. The
database should be shut down so it can perform a checkpoint and releases its re-
sources.

After the execution of the script above, you will see a database directory
derbyDB with the stored information.

11.6.2 Working with a Database

Now let us read the database entries. As before, we will use exactly the same com-
mon module ’openDB.py’. This time, however, we will set create=false for
the argument of DriverManager.getConnection. Using two SQL queries,

294 11 Input and Output

we will print all database records and will search for a record with the string
’Union St.’. Finally, we close the database:

Reading database

from openDB import *

scon=protocol+dbName+’;create=false’
conn = DriverManager.getConnection(scon,props)
s = conn.createStatement()

s1=’SELECT num, addr FROM ’+table+’ ORDER BY num’
rs = s.executeQuery(s1)
while rs.next():

print ’sorted=’+rs.getString(1),rs.getString(2)

s2 = ’SELECT * FROM ’+table+’ WHERE addr=\’Union St.\’’
rs = s.executeQuery(s2)
while rs.next():

print ’Found=’,rs.getString(1),rs.getString(2)
s.close()
conn.commit()

try:
DriverManager.getConnection(’jdbc:derby:;shutdown=true’)

except SQLException:
print ’all done’

11.6.3 Creating a Read-only Compact Database

Sometimes it is useful to create a read-only database and compress it into a jar file.
This allows a database to be distributed as a single file instead of multiple files
within a directory. In this case, we will not be able to modify it, since the database
will be represented by a single self-contained file.

The operation discussed above can easily be done with the Jython module os.
This module will be used to create the file ’derbyDB.jar’ with the database
directory by calling the external jar command (it comes with the Java installation):

Compacting a database to a jar file

import os
cmd=’jar cMf derbyDB.jar derbyDB’
print os.system(cmd)

Now, how can we read the file ’derbyDB.jar’? This can be done in same spirit
as shown in Sect. 11.6.2: use the same script, but add the extra line shown below:

11.7 Reading and Writing CSV Files 295

protocol = ’jdbc:derby:jar:(’+dbName+’.jar)’

after the import statement. Try to execute the corrected script. After this, you
should be able to read the database stored in this jar file.

11.7 Reading and Writing CSV Files

The comma separated value files, CSV, are used to store information in a form of
tables. This format is especially popular for import and export in spreadsheets. Data
in such files are either separated by a comma or a tab, or by any other custom
delimiter.

We have already considered how to read and write the CSV files using the Jython
module csv (see Sect. 2.16.4). Below we will consider high-performance Java li-
braries to work with such files.

11.7.1 Reading CSV Files

jHepWork supports reading the CSV files as well as writing data into such files. Let
us create a typical CSV file using any text editor:

File ’table.csv’

Sales, Europe, Russia, USA
January, 10, 20, 20
February, 30, 20, 50
March, 10, 40, 100
April, 80, 7, 30
May, 300, 400, 90
June, 50, 10, 70

Dealing with CSV format couldn’t be much easier when using the jHepWork
Java classes—just open a CSV file using the class CSVReader and iterate over all
its entries as shown in the example below:

Reading table.csv file

from jhplot.io.csv import *

r=CSVReader(’table.csv’,’,’)
while 1:

line= r.next()
if line == None: break
print line

r.close()

296 11 Input and Output

As one can see, the method next() returns a list of strings for each line of the
CSV file. File reading stops when the end of the file is detected. If you want to
read arrays of lists, use the method readNext() instead. One can easily convert
strings inside the list representing each row to floats and integers, as float(str)
(returns a float value) or int(str) (returns an integer).

One can read all entries at once, instead of looping over all rows. This can be
done using the methods:

l=r.readList() read all elements into a 2D list;
l=r.readAll() read all elements into list, each row is represented as an array.

Let us take a closer look into the CSVReader class. It has several constructors:

>>> CSVReader(file, separator, quotechar, line)
>>> CSVReader(file, separator, quotechar)
>>> CSVReader(file, separator)
>>> CSVReader(file)

where file is the string with a file name, separator is the character used for
separating entries in each row, quotechar is the character to use for quoted el-
ements. Finally, line is an integer number representing the line number to skip
before start reading. When no separator is given, then the default separation is
done using a comma. If no quotechar is given, the default escaping quotes is [”],
and if no line is given, the default end of line is the new line symbol.

Finally, one can display a CSV file in a spreadsheet using the SPsheet class
discussed in Sect. 12.4.2. Once CSVReader object has been created, just pass it to
the SPsheet object as:

Showing entries from ’table.csv’ file

from jhplot import *
from jhplot.io.csv import *
r=CSVReader(’table.csv’,’,’)
SPsheet(r)

Now let us move to the next subject where we will discuss how to write data into
the CSV files.

11.7.2 Writing CSV File

To write data to CSV files is as easy as reading them. Instead of the CSVReader
class, one should use the CSVWriter class. It has the following constructors:

>>> CSVWriter(file, separator, quotechar, line)
>>> CSVWriter(file, separator, quotechar)

11.8 Google’s Protocol Buffer Format 297

>>> CSVWriter(file, separator)
>>> CSVWriter(file)

Here, file is an output file name, and other arguments are exactly as for the
CSVReader class.

Let us show an example illustrating how to write lists of objects line by line:
Writing ’out.csv’ file

from jhplot.io.csv import *

w=CSVWriter(’out.csv’,’,’)

w.writeNext([’Test1’,’20’,’30’])
w.writeNext([’Test2’,’100’,’50’])
w.writeNext([’Test3’,’200’,’100’])

w.close()

Check the output file. It has the following structure:

"Test1","20", "30"
"Test2","100","50"
"Test3","200","100"

One can write the entire file at once using the writeAll(list) method.

11.8 Google’s Protocol Buffer Format

Many situations require an analyzer to write structural data into a format which
can be understood by variety of programming languages. Imagine an experimental
apparatus producing a data stream. It is very likely that its code for data I/O is written
in C/C++, since most hardware drivers are implemented in this system language.
But, at the end of the day, this is a user who should analyze the data and who
may prefer a human-friendly language (like Java or Jython) for final analysis code.
Therefore, we should find a way to read structural data produced by experiments
using these higher-level languages. Or, imagine an opposite situation: an analyzer
produces data using Java or Jython, and an application implemented using a lower-
level language should read this data during communication with a hardware.

One way to deal with such kind of problems is to use a self-described file format,
such as XML. But there are several problems with this format when dealing with
large data volumes: (1) programs are slow for loading; (2) there is a significant
penalty on program’s performance; (3) data files are large due to tags overhead.

Taking into account that the XML format is too cumbersome to use as an encod-
ing method for large data files, one can use the ROOT format as an alternative. This

298 11 Input and Output

may seem to be rather heavy approach (installed ROOT takes several hundreds of
megabytes!), and to read most recent ROOT files in Java is not too easy: in fact,
the ROOT framework was not designed from the ground to be friendly for other
programming languages.

The Google team has recently released the Protocol Buffers package [6] which
deals with serializing structured data in a platform-neutral format. This data-
interchange format is used by Google for persistent storage of data in a variety
of storage systems. It is also well tested on many platforms. The Protocol Buffers
is self-describing format, which is equally well supported by C++, Java, Python
and by other languages using third-party packages. In comparison with the XML
format, the Protocol Buffers files are up to a factor 100 times faster to read, and
file sizes are significantly smaller due to a built-in compression. This format is also
very promising due to the offered backwards compatibility: new fields created by
new protocol versions are simply ignored during data parsing.

Even more. The Protocol Buffers helps to abstract from a language-specific de-
scription of data structures. More specifically, this means that an analyzer only needs
to produce a file describing his/her data records, and then the Protocol Buffers pro-
gram generates a C++ or Java code for automatic encoding and parsing data struc-
tures.

Below we will discuss the Protocol Buffers in more detail. The program is
included into jHepWork; look at the library protobuf.jar in the directory
lib/system. To develop applications in C++, the reader is assumed to install
the Protocol Buffers (at least version 2.2) from the official web site [6].

11.8.1 Prototyping Data Records

For our next example, we will assume the following experiment. We perform N

measurements, each measurement is characterized by an identification number, a
string (name) and arbitrary array with some other data. In each measurement, it
is assumed that we observe n number of particles. This number is not fixed, and
can vary from measurement to measurement. Finally, for each particle, we measure
particle’s energy and electric charge. We also assign a string with particle name.

Let us prototype an event record using the Protocol Buffers syntax, which is then
can be used to generate a C++ or Java code. The code is shown below:

Data prototype. File ’experiment.proto’

package proto;
option java_package = "proto";
option java_outer_classname = "Observations";

message Event {
required int64 id = 1;
required string name=2;
repeated double data = 3 [packed=true];

11.8 Google’s Protocol Buffer Format 299

message Particle {
required string name=1;
required sint32 charge=2;
required double energy=3;

}
repeated Particle particle = 4;

}
message Experiment {

repeated Event event = 1;
}

This file contains the description of all objects in self-described platform-indepen-
dent way, so later one can read or write data from a variety of languages. As one can
see, the class Event envelops the entire data. Instead of using the class name, the
Protocol Buffers uses the word “message”. Each event has 4 records, id (integer),
name (string), data (list of doubles) and the class Particle. Each such record (or
“message”) has numbered fields (in this example, running from 1 to 4). Such integer
values are unique “tags” used in the binary encoding.

The value types can be numbers, booleans, strings or other message types, thus
different messages can hierarchically be nested. The required field tells that such
field should always be present. One can also set the default value using the line
[default=value], where value is a given default value. The message field
can have other two types: optional—a message can have zero or one of this
field (but not more than one), and repeated—a message can be repeated any
number of times, preserving the order of the repeated values. The fields can include
enumerators for tight association of a specific value to a variable name.

In the above example, the message data can be repeated (similar to a
list), so we can append any number of double values in each record. The field
[packed=true] is used for a more efficient encoding of multiple data entries.
Finally (and this is very important), the message of the Particle type can also be
repeated, since we can have multiple number of particles in events.

As you may already have guessed, the message Particle keeps information
about a single particle, such as its name, charge and energy. This message is con-
structed in exactly the same way as the outer messages. The only difference is that
now we should specify the fields which are the most appropriate for defining particle
properties.

A scalar message field can have one of the following types shown in Table 11.1.
More types are given in [6].

11.8.2 Dealing with Data Using Java

Now let us generate a Java code using the above prototype file. Assuming that the
Prototype Buffer is properly installed, and assuming that we are working in the
Unix/Mac environment, we generate the Java code as:

300 11 Input and Output

Table 11.1 Scalar value
types used in .proto files
and their Java and C++
equivalents

Scalar message field types

int int (Java and C++)

double double (Java and C++)

int int (Java and C++)

bool boolean (Java) and bool (C++)

string String (Java) and string (C++)

fixed32 int (Java) and int32 (C++)

fixed64 long (Java) and int64 (C++)

Generating Java code

protoc --java_out=. experiment.proto

This creates a directory ’proto’ with the Observations.java file. The
–java_out option tells to generate Java classes to be used for data encoding. Simi-
lar options are provided for other supported languages. The dot after this option tells
to generate the output in the current directory. The output of this command is the
Java file Observations.java located in the directory proto, as specified in
the original experiment.proto file (see the Java-package statement).

Let us write a test code which generates 100 events with 10 particles in each
event. We will create the file WriteData.java and copy it into the directory
’proto’ together with recently generated file Observations.java:

Writing data into a file. ’WriteData.java’ file

package proto;
import proto.Observations.Experiment;
import proto.Observations.Event;
import java.io.FileOutputStream;

class WriteData {
public static void main(String[] args) throws Exception {

Experiment.Builder exp = Experiment.newBuilder();
FileOutputStream output =

new FileOutputStream("data.prod");
for (int e=0; e<100; e++){

Event.Builder ev = Event.newBuilder();
ev.setId(e); ev.setName("collision");
ev.addData(1); ev.addData(2);

for (int i=0; i<10; i++){
Event.Particle.Builder p =

Event.Particle.newBuilder();
p.setName("proton");
p.setCharge(1); p.setEnergy(1);
ev.addParticle(p);

};

11.8 Google’s Protocol Buffer Format 301

exp.addEvent(ev); } ;

exp.build().writeTo(output);
output.close();
}

}

Next we need to compile all Java files and build a jar library. For this, we define
an environmental variable JHEP as a directory with the installed jHepWork and then
compile and build a jar library.

Compiling Java code

javac -1.6 -cp $JHEP/lib/system/protobuf.jar proto/*.java
jar -cf proto.jar proto/*

This produces the file proto.jar with the compiled classes.
Let us test the above code. We will run the WriteData class in the usual Java

fashion.

Running WriteData program

java -cp $JHEP/lib/system/protobuf.jar:proto.jar \
proto.WriteData

The result of this command is the output file ’data.prod’ with our structural
data written in a binary form. Let us verify what is written by adding the code
ReadData.java into the directory ’proto’.

Reading data. ’ReadData.java’ file

package proto;
import proto.Observations.Experiment;
import proto.Observations.Event;
import java.io.FileInputStream;

class ReadData {

public static void main(String[] args) throws Exception {
Experiment exp=
Experiment.parseFrom(new FileInputStream("data.prod"));
for (Event ev: exp.getEventList()) {

System.out.println("Event id:" +ev.getId());
System.out.println("Event name:" +ev.getName());

for (Event.Particle p: ev.getParticleList()) {
System.out.println(p.getName());
System.out.println(p.getEnergy());

} }
} }

302 11 Input and Output

It opens the file data.prod and fetches all objects in a loop, until all events are
processed. For each event, the code extracts particles and their attributes. Let us
compile this code by invoking the compilation command javac as was done be-
fore, assuming that it is located in the same directory ’proto’. This will produce
a new jar file. Then, run the code using the command:

Running ReadData program

java -cp $JHEP/lib/system/protobuf.jar:proto.jar \
proto.ReadData

This code reads the data and prints all events with particle attributes.

11.8.3 Switching to Jython

In Sect. 12.12 we will discuss how to unwrap a Jython code into Java. In this
example we will show the opposite case: We will rewrite our example code
’WriteData.java’ into a compact Jython script:

Writing data into a file. ’WriteData.py’ file

from proto.Observations import Experiment
from proto.Observations import Event
from java.io import FileOutputStream

exp=Experiment.newBuilder()
for e in range(100):

ev = Event.newBuilder()
ev.setId(e); ev.setName(’collision’)
ev.addData(1); ev.addData(2)
for i in range(10):

p=Event.Particle.newBuilder()
p.setName(’proton’)
p.setCharge(1); p.setEnergy(1)
ev.addParticle(p)

exp.addEvent(ev)
exp.build().writeTo(FileOutputStream(’data.prod’))

As you can see, it is much smaller than the equivalent Java program. To run this
code, we must copy proto.jar file to a place where Java can see it (for example,
in the directory lib/user) or to include its location into Java CLASSPATH. Then
one can execute this script using jHepWork IDE.

Similarly, one can rewrite the Java code used to read the data as:

Reading data into a file. ’ReadData.py’ file

from proto.Observations import Experiment
from proto.Observations import Event

11.8 Google’s Protocol Buffer Format 303

from java.io import FileInputStream

exp=Experiment.parseFrom(FileInputStream(’data.prod’));
for e in exp.getEventList():

print e.getId()
print e.getName()
for p in e.getParticleList():

print p.getName(),p.getEnergy();

Again, run this code and you will see exactly the same output as in the case of Java.

11.8.4 Adding New Data Records

Now let us illustrate how to add a new event record to the existing file. To make our
codding shorter, we will use Jython and add an event (but without any particle) as:

Adding new records. ’AddData.py’ file

from proto.Observations import Experiment
from proto.Observations import Event
from java.io import FileOutputStream
from java.io import FileInputStream

exp=Experiment.newBuilder()
try:

input=FileInputStream(’data.prod’)
exp.mergeFrom(input); input.close()

except FileNotFound, e:
print ’The file was not found, going to backup file’

ev = Event.newBuilder() # add new event
ev.setId(99); ev.setName(’new entry’)
exp.addEvent(ev)

output=FileOutputStream(’data.prod’)
exp.build().writeTo(output)
output.close()

In this example we simply read the file and then write a new file with the additional
event.

11.8.5 Using C++ for I/O in the Protocol Buffers Format

Now we come to the main issue of how to generate the same file using a C++
program, so we can read it using Java, Jython or any other language. Of course,

304 11 Input and Output

we also need to test the opposite situation when reading the Java-generated file
’data.prod’ by a C++ program.

Below we will show the necessary steps to produce a C++ code which generates
exactly the same data file as that shown in the previous section, and then how to
read this file (or the file generated by the Java code above). We will use the same
prototype file ’experiment.proto’ as before. Let us generate a C++ code to
be used for data encoding:

Generating C++ code

protoc --cpp_out=. experiment.proto

Note the option cpp which tells to generated the C++ encoding code. After
execution of this line, we should find two files, experiment.pb.cc and
experiment.pb.h in the same directory. As in case of Java, they contain the
necessary information to be used for data serialization.

Let us write a small test program which creates the output file.

Writing data into a file. ’write_test.cc’ file

#include <iostream>
#include <fstream>
#include <string>
#include "experiment.pb.h"
using namespace std;

int main(int argc, char **argv)
{

GOOGLE_PROTOBUF_VERIFY_VERSION;
proto::Experiment exp;

for (int e=0; e<100; e++){
proto::Event* ev = exp.add_event();
ev->set_id(e); ev->set_name("collision");
ev->add_data(1); ev->add_data(2);

for (int i=0; i<10; i++) {
proto::Event::Particle* p=ev->add_particle();
p->set_name("proton");
p->set_energy(1); p->set_charge(1);
} };

cout << "Write data.prod" << endl;
fstream output("data.prod",

ios::out | ios::trunc | ios::binary);
if (!exp.SerializeToOstream(&output)) {

cerr << "Failed to write address book." << endl;
return -1; }

output.close();
google::protobuf::ShutdownProtobufLibrary();

11.8 Google’s Protocol Buffer Format 305

return 0;
}

For those who know C++ this code should look rather simple. Moreover, the code
logic is rather similar to that of the Java code. Since we declared the package proto
in the prototype file, one should use the corresponding C++ namespace for the
class declarations. The first statement in the main() method verifies that we have
not accidentally linked against the library which is incompatible with the version of
the headers.

Next, we will need to compile all these files. For this, we use GNU gcc compiler
installed by default on Unix/Linux systems

Compiling the source codes

gcc write_test.cc experiment.pb.cc \
-o write_test ‘pkg-config --cflags --libs protobuf‘

Finally, try to execute the program write_test. We will see the created file
’data.proto’. Check its size. It should have the same size as in the case of
Java example. Surely, this is a good sign, since it likely indicates that the new file is
correctly produced and, in fact, is totally identical to that generated previously using
Java.

Let us move on and write a C++ code which will read the data from this file.

Reading data from a file. ’read_test.cc’ file

#include <iostream>
#include <fstream>
#include <string>
#include "experiment.pb.h"
using namespace std;

int main(int argc, char **argv)
{
GOOGLE_PROTOBUF_VERIFY_VERSION;
proto::Experiment exp;

fstream input("data.prod", ios::in | ios::binary);
if (!exp.ParseFromIstream(&input)) {
cerr << "Failed to parse data file" << endl;
return -1; }

for (int i = 0; i < exp.event_size(); i++) {
const proto::Event& ev = exp.event(i);
cout << " ID: " << ev.id() << endl;
cout << " Name: " << ev.name() << endl;

for (int j = 0; j < ev.particle_size(); j++) {
const proto::Event::Particle& p = ev.particle(j);

306 11 Input and Output

cout << " - name: " << p.name() << endl;
cout << " - energy: " << p.energy() << endl;

} }
google::protobuf::ShutdownProtobufLibrary();
return 0;

}

The file reads the data and loops over all event entries. We can compile all source
files as usual:

Generating C++ code

gcc read_test.cc experiment.pb.cc \
-o read_test ‘pkg-config --cflags --libs protobuf‘

and run the executable program as read_test. We will see the print messages
included for debugging.

As a final exercise, try to use the Java or Jython code developed in the previous
subsection for reading file created by our C++ program.

11.8.6 Some Remarks

The Protocol Buffers is easy-to-use format to organize sequential data in a platform-
independent way. It is a good format for handling individual messages within a large
data set which consists of large number of small pieces. Each piece can also be a
structural data in the form of “messages”.

We have already discussed that the class PFile (see Sect. 11.4) is com-
pletely based on the Protocol Buffers format. Each record is compressed us-
ing the ZIP file format. The records are implemented using the Protocol Buffers
file HRecord.proto located in the directory ’macros/system’. The file
HRecord.proto can be used to construct applications in C++ which can read
and write files generated by the PFile Java class.

11.9 EFile Data Output

The usage of the Protocol Buffers encoding is simplified by the class EFile de-
signed to deal with stacking Protocol Buffers messages into compressed files. Each
message is written independently, which allows to write and read large data volumes
organized in separate data records.

The data structure of each data record is based on the file HEvent.proto lo-
cated in the directory macros/system. Since this file is rather short, we will
show it here:

11.9 EFile Data Output 307

File ’HEvent.proto’

message HEvent {
optional int64 id = 1;
optional string name=2;
repeated double da = 3 [packed=true];
repeated int64 ida= 4 [packed=true];
message Entry {
optional string name=1;
repeated double da=3 [packed=true];
repeated int64 ida=2 [packed=true];

}
message Group {
optional string name=1;
repeated Entry entry=2;

}
repeated Group group = 5;

}

This file specifies the structure of a single “event” record which can be written in
a sequential order using the class EFile. As usual, the strength of this approach
is that one can write and read structured data using any programming language, as
long as we can generate the source file with the language-specific implementation
of the template shown above.

The organization of each event record given by the file HEvent.proto is fol-
lowing: The outer message represents an “event”, which is characterized by an in-
teger value id, name (string) and arrays of double (da) and integer (ida) values.
In addition, each event HEvent holds a group of objects in a form of arrays. Each
group is characterized by its name and, in turn, contains an array of other objects,
called “entries”. Each entry holds arrays of double (da) and integer (ida) values.
In addition, each entry can have a name (string).

Surely, the structure given by the file HEvent.proto is not guaranteed to be
universal and may not fit to possible situations. But the file can easily be modified
and C++ or Java code source can be regenerated using this Protocol Buffers file
depending on circumstances.

Yet, the data structure discussed above can be appropriate for a large range of
situations. We will give here two examples where such event structure is adequate.
In case of astrophysics, each HEvent can characterize a certain cluster of galaxies.
Each cluster consists of galaxies which can be represented by an array of “Group”
messages. In turn, the “Group” message can contain a description of stars in form
of “Entry” messages. Finally, each “Entry” record can store information about a star
which can be characterized by arrays of integer or double values.

Let us give another example. For particle physics, each HEvent record can rep-
resent a result of collision of two particles. Then, the “Group” message will charac-
terize either “tracks” (charged particles) or all particles measured by a calorimeter
(we will call them “cells”). Next, each entry can keep details of either a track or a
cell characterized by its momenta, energy, location, etc.

308 11 Input and Output

Let us come to a specific example which illustrates a concrete program imple-
mentation of this approach. In case of jHepWork, the generated class from the above
prototype is called PEventFile. Using this class and the class EFile which
implements an I/O layer for each HEvent, one can create a file holding multiple
records as shown in this example:

Writing events into a file

from jhplot.io import *
from jhplot.io.PEventFile import *

f=EFile(’tmp.nbu’,’w’)
for i in range(1000):

ev = HEvent.newBuilder()
ev.setName(’collision’)
ev.setId(i); ev.addDa(1)

tracks = HEvent.Group.newBuilder()
tracks.setName(’tracks’)
for j in range(20):

track=HEvent.Entry.newBuilder()
track.setName(’pion’+str(i))
track.addDa(1); track.addDa(2)
tracks.addEntry(track)

ev.addGroup(tracks)

cells = HEvent.Group.newBuilder()
cells.setName(’cells’)
for j in range(20):

cell=HEvent.Entry.newBuilder()
cell.setName(’cell’+str(i))
cell.addDa(1);cell.addIda(1)
cells.addEntry(cell)

ev.addGroup(cells)

f.write(ev) # write event
f.close()

As the reader may notice, we use the second example from particle physics. For
each collision, we write two groups of objects, “tracks” and “cells”. Then we filled
“entries” characterized by one double and one integer number. Of course, nothing
prevents us from adding more groups, more entries or more primitive values for
each object. By convention, we will create an output file with the extension ’nbu’.

Now let us read this file. This part is rather simple:

Reading events

from jhplot.io import *
from jhplot.io.PEventFile import *

11.10 Reading DIF Files 309

f=EFile(’tmp.nbu’)
print f.getVersion()

for i in range(1,f.size()):
ev = f.read()
print ’Read =’,ev.getId(),ev.getName()
get groups

for j in range(ev.getGroupCount()):
g=ev.getGroup(j)
print g.getName()
get entries
for k in range(g.getEntryCount()):

e=g.getEntry(k)
print e.getDa(0)

f.close()

The above example shows how to loop over all HEvent entries, retrieve groups
and then entries from each group. The method getVersion() checks the version
of EFile implementation used to generate the file. The total number of HEvent
messages is given by the method size().

As was already said, Java and Jython allow to write arbitrary structural data vol-
umes in a simple and transparent way using their own classes and methods. But
the strength of the above approach is that data files can also be generated by other
programming languages using the Protocol Buffers template. More specifically, in
case of C++, the CBook [7] library can be used to write data structures using the
HEvent.proto prototype file implemented in C++. Therefore, one can generate
data using a C++ code and read data using the EFile Java class exactly as shown
in the previous example.

11.10 Reading DIF Files

The DIF (“Data Interchange Format”) format has a limited support in jHepWork.
Files in this format have the extension ’.dif’ and can be used to import or export
spreadsheets between various applications.

The current implementation of this package [12] is only for read-only mode.
There is no possibility for saving data into this file. To read such files, one should
import the module dif located in the ’macros/system’ directory. In the ex-
ample below, we read the file ’nature.dif’, extract all information into Jython
tuples and print the entries:

Reading the file nature.dif

import dif

f=open(’nature.dif’,’r’)
d = dif.DIF(f)

310 11 Input and Output

print d.header
print d.vectors
print d.data

Below we give some explanation:

d.header dictionary of header entities, with names shifted to lowercase for ease
of handling

d.data list of tuples with data
d.vectors list of vector names (or, better, column names)

Read more information about Python implementation of this module in [12].

11.11 Summary

It may well be that you get confused by the significant number of I/O formats sup-
ported by jHepWork. Below we will summarize the jHepWork I/O and give some
guiding tips about what exactly to use in certain situations.

11.11.1 Dealing with Single Objects

If we need to save one object at the time (like a histogram, function or a P-type
array), use their native methods. For example, to write an object into a file, use
the toFile() method, see Sects. 5.4 and 8.6. For reading data, one can use the
corresponding constructors which accept the name of the file with input data for
object initialization. This also includes a compression mechanism, see the method
readGZip() in Sect. 5.4. The good thing about this approach is that: (1) it is
fast; (2) data can be produced using other programming languages, as long as our
codding strictly follows the native jHepWork format.

A slower approach would be to use Java serialization, i.e. serializing separate
objects with the method writeSerialized(). By default, files will be com-
pressed. One can also write and read data stored in XML files using the method
writeXML() and readXML(). This will be the slowest approach, but the ad-
vantage is that the XML files are human-readable and human-editable. Finally, it is
rather easy to read such files using applications implemented in other programming
languages.

11.11.2 Dealing with Collections of Objects

To read and save collections of jHepWork objects, use the serialization method
writeSerialized() or readSerialized(). This can be done “in one go”,

References 311

if all Java objects are put either in a list or map. This approach also allows to deal
with the XML-type formats. As we have already mentioned, this is human-readable,
self-describing and platform-neutral protocol.

For large and complicated data structures, it makes sense to use the HFile class,
see Sect. 11.3. In most cases, objects can be viewed using a GUI browser. Data in
such files are compressed by default. As before, one can serialize data in XML using
the class HFileXML.

An arbitrary collection of structural data can also be written using the Google’s
Protocol Buffer format discussed in Sect. 11.8. It is a compact way of encoding data
in a binary format. The main advantage of this format is that data can be processed
by programs implemented in other programming languages.

If we are interested in the jHepWork objects only, use the class PFile. This
approach has several advantages compared to the Java serialization as discussed in
Sect. 11.4. The class PFile writes data in a form of compressed records based
the Google’s Protocol Buffer format. This approach encodes high-level jHepWork
objects (like histograms) in a platform-independent way. This means that data can
be generated by C++ programs using the package CBook [7] and processed using
the PFile class.

Similarly, one can use the class EFile (see Sect. 11.9) which deals with a rather
broad range of data structured in “events” and “records”. Both PFile and EFile
can be used to read a particular event or record, without uncompressing the whole
file. This feature is particularly useful for reading data in parallel using multi-core
processors (this will be discussed in Sect. 16.4).

Similarly, one can use the class HBook and the CFBook package, see Sect. 8.6.1,
which are mainly designed for XML-type outputs (but more optimized to keep large
data sets, removing unnecessary tags for arrays). No compression is used.

As discussed in this chapter, if one needs to find an association between a key
and a data object, one can use databases. In the simplest, non-persistent case, use
Jython dictionaries or Java maps. For storing information in a persistent state, one
can use a database based on the class HDataBase, see Sect. 11.3.6. Note that one
can use a similar database approach using the PFile class. As discussed earlier, it
can also be used for a direct association between a stored object inside a file and its
textual key (which is just object title). For complicated input queries, one can use
the Apache Derby SQL-type databases, see Sect. 11.6.

The format CSV is only useful for keeping data in simple tables. The only ad-
vantage of this approach is that it is simple and data can easily be converted by a
spreadsheet-like application.

Finally, one can use a pure-Python approach or calling Java classes, see
Sect. 2.16. The pure-Python method is generally not recommended for large data
files, but it is very useful when it comes to the simplicity.

References

1. Richardson, C., Avondolio, D., Vitale, J., Schrager, S., Mitchell, M., Scanlon, J.: Professional
Java, JDK 5th edn. Wrox, Birmingham (2005)

312 11 Input and Output

2. Arnold, K., Gosling, J., Holmes, D.: Java(TM) Programming Language, 4th edn. Java Series.
Addison-Wesley, Reading (2005)

3. Flanagan, D.: Java in a Nutshell, 5th edn. O’Reilly Media, Sebastopol (2005)
4. Eckel, B.: Thinking in Java, 4th edn. Prentice Hall, Englewood Cliffs (2006)
5. Bloch, J.: Effective Java, 2nd edn. The Java Series. Prentice Hall, Englewood Cliffs (2008)
6. Google Protocol Buffers project. URL http://code.google.com/p/protobuf/
7. Chekanov, S.: CBOOK histogram library. URL http://jwork.org/jhepwork/cbook
8. Brun, R., Rademakers, F., Canal, P., Goto, M.: Root status and future developments. ECONF

C0303241 (2003) MOJT001
9. Brun, R., Rademakers, F.: ROOT: An object oriented data analysis framework. Nucl. Instrum.

Methods A 389, 81 (1997). URL http://root.cern.ch/
10. Johnson, T.: FreeHEP RootIO. URL http://java.freehep.org/freehep-rootio/
11. Apache Derby: URL http://db.apache.org/derby/
12. Gonnerman, C.: Navy DIF file handler. URL http://newcenturycomputers.net/projects/dif.html

Chapter 12
Miscellaneous Analysis Issues Using jHepWork

In this chapter, we will consider several third-party libraries and classes which, be-
sides being educational, are shown to be very helpful for working with data and their
use directly translates to an increased productivity.

This chapter encompasses miscellaneous topics, such as how to retrieve files
from the web, extract data points from images, display tables and spreadsheets,
mixing Java and Jython codes in one program and many other.

12.1 Accessing Third-party Libraries

12.1.1 Extracting Data Points from a Figure

jHepWork includes a remastered Dexter package. This is a tool for extraction of
data points from figures in raster formats (GIF, JPEG or PNG). To start this program,
run the commands:

>>> from debuxter import *
>>> a=JDebux(FileName)

As before, the FileName indicates the file name of a GIF, PNG or JPEG figure.
If you are lucky to have a PDF, EPS or PS figure, enlarge it as much as possible
before converting it to the raster formats. There are plenty of tools around which
can be used for such transformation. For example, for Linux/Unix, use the command
convert.

After execution of the above lines, a frame with the Dexter program pops up
with the inserted figure. After calibration of the X and Y axes, one can locate data
points with the mouse and print their (x, y) values. Read the documentation of this
tool which can accessed by clicking on the help menu.

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_13, © Springer-Verlag London Limited 2010

313

314 12 Miscellaneous Analysis Issues Using jHepWork

12.1.2 Cellular Automaton

A cellular automaton was introduced by von Neumann and Ulam as a simple model
for self-reproduction [1]. On an abstract level, the automaton is the model of a spa-
tially distributed process. It consists of an array of cells, each of which is allowed
to be in one of a few states. During simulation, each cell looks to its neighbors and
determines what state it should change to using a predefined simple rule. Such steps
are repeated over the whole array of cells, again and again. The evolution of such
system with time can be very complex. The most famous two-dimensional cellu-
lar automaton is the “Game Of Life” invented by mathematician J. Conway in the
1960’s.

We will consider the cellular automaton in two-dimensions when each cell is
characterized by x and y values. To start the cellular automaton, one should first
create an instance of the HCellular class.1 Once the instance is created, it should
be easy to check the available methods of this instance as:

>>>from jhplot import *
>>>c=HCellular()
>>>print c.getRules()

[Aggregation, Aqua, AquaP2,
BlockVN, Check24, Check29,
Check35, Check25ByGA, CyclicCA8,
CyclicCA14, VN, Life, Life2,
Generation, GMBrain, Hodge,
Ising, Stripe]

Each rule is defined by a string value which specifies the Java class used for the ini-
tialization. Learn about the rules using the documentation help by calling c.doc().

The rules can be applied to the instance HCellular using the method
setRule(str). The code shown below illustrates how to initiate the well-known
“Game Of Life”:

>>> c.setRule(’Aggregation’)
>>> c.visible()

The first method sets the rule ‘Aggregation’ from the list of available rules. As for
any canvas, the method visible() brings up a window with the 2D cellular au-
tomaton.

The rule class and the initial configuration can be accessed using the methods
below:

1This instance is based on the Cambria [2] package.

12.2 Downloading Files from the Web 315

>>> print c.getRule()
>>> print c.getInitString()

One can change the initial configuration for a cellular automation with the
setInitString(str). The most convenient way is to write a configuration
to an external file and then read it using Jython as discussed in Sect. 2.16.

12.2 Downloading Files from the Web

In this section, we will show how to download files from the Web and display them
in the jHepWork IDE (of course, in case of simple textual files). This can be done us-
ing the Jython module ’web.py’ located in the directory ’macros/system’.
Essentially, it is rather similar to the well-known “wget” program available on the
Linux and Unix platforms, but it is much simplified and implemented using Jython
(thus it does not have platform dependencies). In case of the HTTP protocol, a file
can be downloaded using the Jython prompt as:

>>> from web import *
>>> wget(’http://www.jython.org/Project/news.html’)

This command retrieves the file ’news.html’ from the server to the current di-
rectory and shows the progress status during the download.

12.3 Macro Files for jHepWork Editor

To show a text file in the jHepWork editor, one can use JythonShell of the IDE.
Simply type the line:

>>> view.open(’news.html’,0)

which opens the file “news.html” (downloaded using the previous example) in a
new tab of the editor. The object view represents an “editor” text component of the
jHepWork IDE. This instance is imported by default during the IDE startup. One
can find the methods of this editor instance using the dir(view) method.

In order to find what can be done with the object view, run the program “test”
using JythonShell. It illustrates the major operations with the text editor and how to
manipulate with the example text loaded to the editor using various macros.

Let us show an example of how to work with text files using the object view.
Assuming that a file is loaded into the editor, use these commands from JythonShell:

316 12 Miscellaneous Analysis Issues Using jHepWork

>>> view.selectAll() # select all text in the editor
>>> mydoc=view.getText() # get text to mydoc string
>>> view.setText(’ ’) # clear the editor
>>> view.setText(’text’) # set new text

In this example, mydoc is a string with the text from the editor. To find and replace
a string are rather easy as shown in this code snippet:

>>> mydoc=mydoc.replace(’old’,’new’);
>>> view.setText(mydoc)

One can also find the current caret position and insert a text at a specified position
as:

>>> cc=view.getCaretPosition()
>>> view.insertString(’inserted text’, 4)

where “4” is the position where the text will be inserted. One can move the caret
to a specific line using the method view.goToLine(line), where line is the
line number.

As usual, learn about the view class using the usual approach:

>>> type(view)
>>> dir(view)

12.4 Data Output to Tables and Spreadsheets

12.4.1 Showing Data in a Sortable Table

In some cases, instead of plotting on canvases, it is convenient to show data in a
form of tables. jHepWork provides an excellent support for this. Use the HTable
class as in the example below:

>>> from jhplot import *
>>> HTable(obj)

where obj is an object of either H1D, P1D or F1D classes. After executing this
statement, one should see a frame with a table populated with the numbers repre-
senting one of such objects (by default, the numbers are formatted using the Java

12.4 Data Output to Tables and Spreadsheets 317

scientific format). Using this table, one can sort data by clicking at the top of each
column or search for a particular value or string. Note: it is impossible to mod-
ify the data as the class HTable was designed only for examining data contain-
ers.

One can pass a boolean value telling how you expect the data to be formatted. If
the data have to be shown as formatted strings using the Java scientific format, use
this constructor:

>>> HTable(obj,1)

If data values should not be formatted, set “0” (Java false) instead of “1”.
One can call the HTable object differently: if a data container is created, one

can use the toTable() method. For example, to display a H1D histogram, one
can use:

>>> HTable(h1) # where h1 is H1D histogram

or, alternatively,

>>> h1.toTable()

As before, if toTable() is used with the argument “0”, the numbers will not
be formatted using the scientific format.

The HTable viewer can be filled by the standard Java Vector class. In this
case, it accepts three arguments:

>>> HTable(’name’, nameVector, fillVector)

where nameVector is a vector with column names (string type) and
fillVector with input data. Let us give an example illustrating this:

Table with particles

from java.util import Vector
from jhplot import *

v1=Vector()
v1.add(’Name’)
v1.add(’Mass’)
v1.add(’Error’)

vv=Vector()
vv.add(’Electron’)
vv.add(0.5109)
vv.add(4.0E-8)

318 12 Miscellaneous Analysis Issues Using jHepWork

v2=Vector() # fill with data
v2.add(vv)

vv.add(’Proton’)
vv.add(938.27)
vv.add(8E-5)
vv=Vector()
v2.add(vv)

HTable(’Particles’,v1,v2);

One can see that the second vector contains rows of vectors with the input data. The
number of columns will be determined automatically by the HTable object.

12.4.2 Spreadsheet Support

For more flexibility, one can export data to a spreadsheet using the SPsheet class
which is designed to build a spreadsheet-like table, so the data can be modified and
edited in the usual way as for any Excel-like application.

To create an empty frame with the spreadsheet object, use

>>> from jhplot import *
>>> SPsheet()

One can open a CSV file by passing CSVReader object. This class was discussed
in Sect. 11.7.1 where we also have shown a small script used to open a CSV file in
the spreadsheet.

The functionality of the SPsheet class goes beyond simple manipulations with
the CSV files: if one needs to build a spreadsheet using data stored in other formats,
use the constructor:

>>> SPsheet(obj)

where obj represents an object of the type H1D, P1D or F1D.

12.5 Accessing External Java and Jython Libraries

If one needs to include Java external libraries deployed as jar files, one should first
create a new directory inside the ’lib’ directory and then put the jar files inside
this directory. Next time when you run the script ’jhepwork.sh’ (for Linux,
Unix, Mac) or the script ’jhepwork.bat’ (for Windows), your external classes

12.6 Working with a jHepWork Project 319

should be available in the JythonShell and for the jHepWork IDE editor. The start-up
script scans all directories inside the ’lib’ directory recursively.

Unlike Java jar files, external Jython macros should be put into the directory
’macros/user’. This directory is imported automatically when a custom script
is executed using the jHepWork IDE.

For more complicated Python packages, one should use the directory
’packages’ inside the directory ’python’. This directory is always scanned
by the jHepWork IDE and is included into the Jython ’os.path’ list.

One can add other directories visible for the Jython, but you should always import
the directory path in the initialization file ’jehepsys.py’. This file is located in
the directory ’macros/system’ and called every time when you run a custom
script using the jHepWork editor.

12.6 Working with a jHepWork Project

All examples of this chapter are located in the directory ’proj’ inside the directory
’macros/examples’. You may first look inside before you proceed further. One
can access the examples via the menu [Tool]-[jHPlot examples].

12.6.1 Pure Jython Project

To start a project, click on the button indicating your current directory (it is located
at the bottom of the jHepWork IDE editor, on the left part of the status bar). Select
some directory and populate it with some Jython files. Each file should contain the
line:

>>> import os
>>> os.path.append(ProjDir)

This adds the project directory to the system path of Jython. One can check this
by calling the line print sys.path which prints the system path. Execute the
scripts by clicking on the [run] button.

We have already mentioned that if a Jython package is copied into the direc-
tory ’python/packages’, then you do not need to worry about appending the
location of this directory into the os.path, since this directory is included auto-
matically by jHepWork.

320 12 Miscellaneous Analysis Issues Using jHepWork

12.6.2 Pure Java Project

In case of a pure Java project, use the example located inside the directory proj.
Click on the project button again (look at the bottom of the jHepWork IDE), and
select the directory proj using the file browser. Then open the main class file
example_java.java by double clicking using the mouse button. This is a
simple Java program which calls the external library, Calc.java, located in the
’example2’ directory.

First, build Java library files located inside the proj/example* directories. To
do this, select [Compile and jar] project files from the [Run] menu. After
executing it, a jar file ’classes.jar’ will appear in the main project directory.
It contains all the classes built from the source files located in the project library
directories.

If example_java.java is already opened in the jHepWork IDE, press
[Run] (or [Run java]) using the tool bar. You will see the output from the
class Calc in the BeanShell prompt.

One can further adjust the class path of external libraries by modifying the Bean-
Shell scrips in run_java* files in the director ’macros/user’.

12.6.3 Mixing Jython with Java

One can mix Jython and Java codes for CPU intensive tasks, such as large loops over
primitive data types, reading large files and so on. Such tasks must be implemented
in Java to achieve the best possible performance. Jython scripts can be used as a
glue language for various Java libraries with the source files located inside the main
project directory.

First, build a jar file which contains the byte-codes of Java classes. Again, for
this example, set proj as your project directory and select the menu [Compile
and jar] project files from the [Run] tool-bar menu. After executing it, a jar file
classes.jar appears in the main project directory, which contains the classes of
the source files located in the project directory.

Then, open the Jython file ’example_java.py’. This script calls the class
Calc and prints its output. Execute this Jython script by clicking on the [Run]
button on the tool-bar menu. The output result will be the Calc class located in the
directory example2/Calc.java.

One can modify the file example2/Calc.java and recompile the project
again using the sub-menu [javac all files] from the [Run]menu. One can
also rebuild the jar library. Note that, to trigger changes, you will need to reload the
BeanShell console using the small reload button on the BeanShell tab. Then run the
example_java.py again. You should see a different output from the class Calc.

12.7 Working with Images 321

12.7 Working with Images

12.7.1 Saving Plots in External Image File

We should remind that in order to export a canvas into an image file, one can use the
export(FileName)method after calling draw(obj) or update()methods.
This was discussed in Sect. 10.2.11. Below we will continue with this example.

12.7.2 View an Image. IView Class

If an image is saved in JPG, GIF or PNG format, one can view it using the IView
class. Below we will show how to use it.

Assume we have created a script which plots a histogram or any other object on
the HPlot canvas (or any other canvas). We assume that the instance of this canvas
is c1. If you want to create an image file and open it immediately after creation in
the IView frame, put these lines at the end of your Jython script:

>>> file=Editor.DocMasterName()+’.png’
>>> c1.export(file) # export to a PNG file
>>> IView(file) # view the image

where the method Editor.DocMasterName() accesses the file name of the
currently opened script. Execution of this file brings up a frame with the PNG image
inside.

12.7.3 Analyzing and Editing Images

If an image is saved in one of the raster formats, such as JPG, GIF, PNG, one can
edit it (crop, resize, add a text, etc.) using the IEditor class. This class is built
on the top of the ImageJ program [3], which is of the most advanced image editor
implemented in Java.

Let us show a typical example when a canvas, like HPlot or HPlot3D, is first
saved in an image file and then the IEditor class is used to edit and analyze the
created image:

>>> file=Editor.DocMasterName()+’.png’ # file name based
>>> c1.export(file) # export to a PNG file
>>> IEditor(file) # edit the created image

where c1 is a canvas object and Editor.DocMasterName() is the name of the
currently opened document in the IDE. The example shows how the image created
by the c1 object is redirected to the IEditor program for further editing.

322 12 Miscellaneous Analysis Issues Using jHepWork

12.8 Complex Numbers

We already know that Jython has support for complex numbers which comes from
the Python language specification, see Sect. 2.2.4. We remind that one can define a
complex number in Jython as x+yj, where j indicates an imaginary part.

In addition, jHepWork libraries provide a comprehensive support for usual
complex-number arithmetic operators and necessary standard mathematical func-
tions. Unlike Jython, the complex numbers and operations are implemented in Java,
thus one can use these libraries in pure Java projects.

Complex numbers in jHepWork are based on the class Complex from the
Java package jhplot.math. Unlike Jython, the imaginary part is denoted by
the conventional character ’i’. A complex number is defined by the constructor
Complex(real,img), where real is a real part and img is an imaginary part
of a complex number. Either part can be zero.

Below we show a simple example of how to deal with the complex numbers
using the Java jhplot.math package:

>>> from jhplot.math import *
>>>
>>> a=Complex(10,2)
>>> print a.toString()
10.0 + 2.0i
>>> b=Complex(20,1)
>>> cc=a.minus(b)
print cc.toString()
-10.0 + 1.0i
>>> cc=a.times(b)
>>> print cc.toString()
198.0 + 50.0i

There is a large number of methods associated with the class Complex. Look at
the API description of the class Complex or use the jHepWork code assists while
working with this class.

12.9 Building List of Files

Let us come back to the example given in Sect. 2.17 where we wrote a small Jython
script to transverse all subdirectories in order to collect files with a given file exten-
sion. This time, the jHepWork Java library will be used which significantly simpli-
fies the code, essentially reducing it to a single-line statement.

Instead of creating the function wolk() shown in Sect. 2.17, one can use a static
class from jHepWork called FileList as in this example:

12.10 Reading Configuration Files 323

>>> from utils import *
>>> files=FileList.get(’dir’,redex)

This creates a list files with the file names in the input directory, ’dir’,
and a Java regular expression string redex using the syntax from the standard
java.util.regex package. For the example discussed in Sect. 2.17, we should
use redex=’.dat$’.

There are a few advantages in using this approach: (1) it is significantly faster
than that based of the Jython loop implemented in the walk() function; (2) one
can use a very powerful Java regular expression engine; (3) Finally, it requires only
one line of the code to scan all directories to build the file list!

12.10 Reading Configuration Files

To facilitate efficient data processing, especially if one needs to run the same pro-
gram multiple number of times with different initial conditions, it is often necessary
to pass some initial values to this program at run time. Similarly, this is necessary
for computer simulation programs, when a program reads input parameters from a
file. Changing the simulation conditions will only require editing text in the input
file rather than editing and recompiling the source code.

It is very convenient to use the so-called Java configuration or property files. Un-
like binary files, the configuration files should be readable by a human, so the Java
serialization mechanism is not too convenient (unless you use a XML serialization,
and know how to go around in editing such XML files).

Below we will show several approaches how to read the configuration files. One
approach will be based on a pure Python class, while the second one will use Java.

12.10.1 Configuration Files Using Jython

Let us create a small file with the name ’jythonapp.conf’ with several entries
as in this example:

Configuration file example

this is a comment
Nr of events to process
events = 1000
release version
release = 1.1
input file
input = data.txt

324 12 Miscellaneous Analysis Issues Using jHepWork

This configuration file has the format: ‘name = value’. White spaces between these
elements are ignored during reading such files. A configuration file can contain com-
ments: by default, the ‘#’ character at the start of each line with a comment text.

How would you read such files in Jython? We will use a small Jython module
based on the package ConfReader [4] for this purpose. This code reads the con-
figuration file, parses all text lines and prints the input values and their types:

Reading configuration file

from Conf import *
try:

config = ConfReader(’jythonapp.conf’)
except IOError:

print ’Cannot read configuration file’

config.set(’release’, post=float)
config.set(’events’, post=int)
config.set(’input’, default=’/tmp’)

try:
config.parse()

except ConfigMissingError, why:
print ’Missing config’, why

except ConfigPostError, why:
print ’Postprocessing Error’, why

print config.release, type(config.release)
print config.events, type(config.events)
print config.input, type(config.input)

The parameters of the configuration file are retrieved with the help of the
set(str,option) function. It takes two arguments. The first argument is a
string which contains a parameter name. The second, option, should be in the
form post=value (to be discussed below). The example contains several excep-
tion statements which have briefly been discussed in Sect. 2.15.

Running the script shown above prints:

1.1 <type ’float’>
1000 <type ’int’>
data.txt <type ’str’>

As you can see, the program correctly identifies the input values and their type.
Let us come back to the set(str,option) function. As mentioned, the sec-

ond argument of this function should be in the form post=value, where the at-
tribute value can have the following values:

default the value returned if the config is not found
post post-processing function to use; can be a lambda form or any function

12.10 Reading Configuration Files 325

required set to 1 if config is required
list set to 1 if config should always be returned as list. Multiple entries will

be appended to the list, if this is not a list but a set; otherwise, the last entry
will be used

The above example is based on the module ’Conf.py’, which is located in the
directory ’system’ inside the ’macro’ directory. The module is rather flexible:
you can change the default syntax of your configuration file rather easily.

Optionally, the configuration file can be arranged in sections of data, which can
be used to organize references to multiple resources. Please read the documentation
given in the file ’Conf.py’

12.10.2 Reading Configuration Files Using Java

One can also read the configuration files using the Properties class from the
Java package java.util. The Properties can be used to save a property file
in a stream. Each key and its corresponding value in the property list is a string.

Below we show an example of how to read the configuration file created in the
previous section. We will use the strings ’release’, ’events’ and ’input’
as the keys. Then we print the loaded strings in the ISO 8859-1 character encoding.
Since we expect ’events’ to be an integer number, we convert it to the integer
type and modify its value. Finally, we set a new property using ’events’ as the
key and save it to a file with the optional comment ‘New settings’ (one can use also
‘None’ in case of no comments).

Reading a configuration file

from java.util import Properties
from java.io import *

p=Properties()

read property file
p.load(FileInputStream("jythonapp.conf"))
print p.getProperty("release")
print p.getProperty("input")
print p.getProperty("events")

save new file with x10 more events
ev=int(p.getProperty("events"))
ev=10*ev
p.setProperty("events",str(ev))
p.store(FileOutputStream("new.conf"),"New settings");

One should note that, in case of Java, the file extension of the property files is
’properties’ by convention, rather than that given in this example.

326 12 Miscellaneous Analysis Issues Using jHepWork

12.11 Jython Scripting with jHepWork

Throughout the book, we have considered a programming style with the direct
Jython calls to the jHPlot Java classes. Java, however, does not support operator
overloading, which is one of important features of object-oriented programming.
We will remind that “operator overloading” means that one can define custom types
and operations. For example, one can redefine operators like “+” or “-” depending
on the types for which these operators are used.

The operator overloading is useful since this feature can significantly simplify a
program and makes it more concise and readable. One can easily see a problem if
one wants to do a lot of elementary mathematical operations with objects, like to
add them, subtract etc. In this case, one should call Java methods which, usually,
have long names. For the simplest mathematical operations, such as addition and
subtraction, it is more convenient to use + and -.

jHepWork allows to use the operator overloading by calling the corresponding
Jython classes, which are directly mapped to the Java jHPlot classes. Such Jython
classes inherit all methods of the Java jHPlot classes. At the same time, the most
common arithmetical operators are overloaded. The package which allows to do this
is called shplot (where the first letter “s” means “scripted” or “simple” hplot), in
contrast to name jhplot (“Java j-hplot”)

Below is an example of how to build Jython histograms and to perform some
common operations:

Jython scripting with an operator overloading

from java.util import Random
from shplot import *

c1=hplot(’scripting’,1,2)
c1.visible()
c1.setAutoRange()

h1=h1d(’histogram1’,200,-5,5)
h2=h1d(’histogram2’,200,-5,5)

r=Random()
for i in range(500):

h1.fill(r.nextGaussian())
h2.fill(0.2*r.nextGaussian())

h1=h1+h2 # add 2 histograms
c1.draw(h1) # draw
h1=h1*2 # scale by a factor 2
c1.draw(h2)

c1.cd(1,2) # go to the next plot
c1.setAutoRange()
h1=h1-h2 # subtract 2 histograms
h1=h1/h2 # divide 2 histograms

12.11 Jython Scripting with jHepWork 327

h1=h1*10 # scale by factor 10
h1=h1/100 # divide by 100
c1.draw(h1)

One should note that all Jython classes which inherit Java jHPlot classes have ex-
actly the same names as the corresponding Java classes from the jhplot package.
The only difference is that Jython classes have to be typed in lower case. This means
that the statement such as:

>>> from jhplot import *
>>> c1=HPlot(’scripting’)

creates an instance of the Java class HPlot. However, when one uses the lower case
for the same class name, the corresponding Jython instance of this object is created:

>>> from shplot import *
>>> c1=hplot(’scripting’)

In this case, the major arithmetical operators are overloaded since ’c1’ is a pure
Jython object.

Analogously, one can look at the Jython equivalent of the Java H1D class:

>>> from shplot import *
>>> h1=h1d(’test’,200,-5,5)
>>> h1. # press [F4] to see all methods

One may notice that all jHPlot Java methods are inherited by the Jython class
h1d. Thus, even if you write a code using Jython shplot classes, one can easily
access the Java classes:

>>> from shplot import *
>>> h1=h1d(’test’,200,-5,5) # build a Jython histogram
>>> h1.setFill(1) # accesses a Java method

In the above example, setFill(1) was applied directly to the Java class H1D. If
one needs to subtract, add, divide, scale the data, use -, +, /, * or *factor, instead
of the long oper(obj) or operScale(obj) statements of the Java H1D class.

One can go even further in redesigning the Jython coding. When plotting an
object on a canvas, like a histogram, one can say that a histogram was added to the
canvas. So, why not, instead of the usual draw(obj) method, use the operation +?
Yes, this is also possible: Here is a code which shows how to draw three histograms
on the same canvas using a single line:

328 12 Miscellaneous Analysis Issues Using jHepWork

>>> c1+h1+h2+h3

Of course, the same operation can be done with any other class, like H1D or P1D,
which can also be drawn on the canvas. Note: subtraction of objects (which may
correspond to the removal of objects from the canvas) is not implemented for the
hplot Jython class.

In the same spirit, data can be shown in a table. Below we display histogram
values in a pop-up table:

>>> htable()+h1

where the Jython htable class is a direct mapping of the HTable Java class.
As before, one should use the jHepWork code assist to learn more about

Jython/Java methods. This time, the code assist will be applied to Jython objects,
rather than to Java ones.

Note that not all Java classes have been mapped to the corresponding Jython
classes. Please look at the directory ’macros/shplot’ to find out which Jython
modules are available. In the same directory, one can find several useful examples
(their names contain the string _test).

12.11.1 Jython Operations with Data Holders

In case of Jython scripting, all major operations for P0D, P1D and PND are over-
loaded as well:

>>> from shplot import *
>>> p1=p1d(’test1’) # a Jython p1d based on P1D
>>> p2=p1d(’test2’)
>>> p1=p1+p2 # all values are added

Note that, for the latter operation, all y-values are added (and errors are propagated
respectively), while x values remain to be the same. This operation cannot append
arrays, instead, use the merge() method.

Here are some other examples:

>>> p1=p1+p2 # all values are added
>>> p1=p1-p2 # subtraction
>>> p1=p1*p2 # multiplication
>>> p1=p1/p2 # division
>>> p1=2*p1 # scale by 2
>>> p1=p1/10 # scale by 0.1

12.12 Unwrapping Jython Code. Back to Java 329

To draw objects on a canvas, use “+” as before:

>>> c1+p1 # add p1d object to a canvas

Similarly, one can work with one-dimensional (P0D) or multidimensional (PND)
arrays.

12.12 Unwrapping Jython Code. Back to Java

In most cases, jHepWork libraries are just Java libraries deployed as jar files, so you
may choose to write a Java code instead of Jython scrips.

One can develop Java codes using the jHepWork IDE exactly as when working
with Jython scripts. Any Java IDE, such as Eclipse or NetBeans, is also good for
such task. Applications based on the jHepWork libraries can be converted to a Java
jar file and deployed together with other jar libraries which come with jHepWork.

For a Java application, you should remember to create the main() method,
which must be encapsulated into a class with the same name as the file name. Unlike
Jython, you should explicitly declare all variables and put the Java new operator
when instantiating a class. Do not forget changes to be made for loops. Lastly, put
semicolons at the end of each statement. Our next example illustrates the difference
between the Jython and Java syntax. In the case of Jython scripting, let us write our
example code as:

>>> p0=P0D(’test’)
>>> for i in range(5):

... p0.add(i)

... print i

The same code snippet in Java looks like:

P0D p0 = new P0D(’test’);
for (i=1; i<5; i++) {

p0.add(i);
System.out.println(i);
}

One should put these lines into a file (with the same name as the class name), com-
pile it using javac compiler and run it as any Java application. One can also put this
Java bytecode into a jar file. Comment lines should start from the usual Java com-
ment symbols instead of the symbol “#”. If you are using an external Java IDE, do
not forget to add the directory ’lib’ from the jHepWork installation into CLASS-
PATH, so all jHepWork libraries should be visible for Java.

330 12 Miscellaneous Analysis Issues Using jHepWork

Let us show a more detailed example. In Sect. 8.1 we have considered how to
plot three histograms using Jython. Now we will rewrite this code in Java:

File ’Example.java’

import java.awt.Color;
import java.util.Random;
import jhplot.*;

class Example
{
public static void main(String[] args)
{

HPlot c1 = new HPlot("Canvas",600,400,2,1);
c1.visible(true);
c1.setAutoRange();
H1D h1 = new H1D("First",20, -2.0, 2.0);
h1.setFill(true);
h1.setFillColor(Color.green);
H1D h2 = new H1D("Second",100, -2.5, 2.5);
Random r = new Random();

for (int i=0; i<500; i++) {
h1.fill(r.nextGaussian());
h1.fill(r.nextGaussian()); }

H1D h3 = new H1D("Third",20, 0.0, 10.0);
h3.setFill(true);
for (int i=0; i<50000; i++)

h3.fill(2+r.nextGaussian());

c1.cd(1,1);
c1.setAutoRange();
c1.draw(h1);
c1.draw(h2);

c1.cd(2,1);
c1.setAutoRange();
c1.draw(h3);

}
}

Save these lines into the file ’Example.java’ and open it inside the jHepWork
IDE. Now you can: (1) Compile and run the program by pressing the [Run] button.
(2) Or one can just compile the file loaded to the editor into bytecode using the
menu [Run] → [Javac current file]. Then you can run the compiled
code as: [Run] → [Run Java]. As you will see, the output will be identical to
that shown in Fig. 8.1 of Sect. 8.1.

12.13 Embedding jHepWork in Applets 331

We should note that the code above can be compiled manually, without any IDE.
One would only need to import all Java jar libraries from the jHepWork installation
directory. For an Unix-type environment (like Linux or Mac OS), you can compile
the code using the prompt:

bash> a_compile.sh Example.java

where ’a_compile.sh’ is a bash script which can look like:

Compilation script ’a_compile.sh’

#!/bin/bash
args=$#
if [$args == 0]
then

echo "did not specify input file!"
exit 1;

fi

for i in lib/*/*.jar
do

CLASSPATH=$CLASSPATH:"$i"
done

CP=$CP:$CLASSPATH
javac -classpath "$CP" $1
echo "File $1 compiled!"

The script scans all subdirectories inside the directory “lib” of the jHepWork in-
stallation directory, and appends all jar files into the CLASSPATH variable.

Analogously, one can run the compiled class file ’Example.class’ using
the same script, but replacing the statement javac by java, and passing the name
’Example’ (not Example.java!).

One can easily convert this program into a Java applet, build your own Java
library or to deploy it as an application. We will discuss how to build a Java applet
in the next section.

12.13 Embedding jHepWork in Applets

jHepWork numerical libraries can easily be deployed over the Web in form of ap-
plets. This is certainly one of the most significant advantage of Java compare to
other programming languages.

In this section, we will show how to write a small applet which brings up a
HPlot canvas filled with a histogram at run-time. If you have already some expe-
rience with Java, the code below will be rather trivial:

332 12 Miscellaneous Analysis Issues Using jHepWork

file ’Histogram.java’

import java.applet.*;
import java.awt.*;
import java.util.Random;
import jhplot.*;

public class Histogram
extends Applet implements Runnable {

private static final long serialVersionUID = 1L;
private HPlot c1;
private Thread thread;
private Random rand;
private H1D h1;
private int i;

public void init() {
c1 = new HPlot("Canvas");
c1.setGTitle("Gaussian random numbers");
c1.visible(true);
c1.setAutoRange();
h1 = new H1D("Random numbers",20, -2.0, 2.0);
h1.setColor(Color.blue);
h1.setPenWidthErr(2);
h1.setFill(true);
h1.setFillColor(Color.green);
c1.setNameX("X axis");
c1.setNameY("Y axis");
c1.setName("100 numbers and statistics");
rand = new Random();
i=0; }

public void start() {
(thread = new Thread(this)).start(); }

public void stop() {
thread = null;
c1.drawStatBox(h1); }

public void run() {
try {
while (thread == Thread.currentThread()) {
Thread.sleep(50);
h1.fill(rand.nextGaussian());
c1.clearData();
c1.draw(h1);
i++;
if (i >100) stop();

12.13 Embedding jHepWork in Applets 333

}
} catch (Exception e) {} }

}

Although it is a bit lengthy (it is not a Jython script!), the code itself is rather simple:
We create the usual HPlot and H1D objects and set some attributes. Then we fill
a histogram with random numbers in a thread. We animate the canvas, i.e., we plot
random numbers in a loop with a time delay. After the number of entries reaches
100, we stop filling the canvas and display the statistics.

Compile this code as discussed in the previous section, either inside the jHep-
Work IDE or with the help of the compilation script discussed in the previous sec-
tion:

bash> a_compile.sh Histogram.java

After compilation, you should see the file ’Example.class’. The next step is
to embed it into a HTML file or a PHP script which can be used for a Web browser.

Our preference is to use a PHP script which is more flexible as it allows automatic
scanning of all jar files inside a directory. First, copy the library directory ’lib’
with the jHepWork jar libraries to a location which can be accessible by the web
server. Then, write a script:

PHP script ’applet.php’

<?php
require("list_files.php");
$list=list_files("lib/system/") . ", " .

list_files("lib/freehep/");
$html_body = "";
$html_body .= <<<EOT
<html>
<body>
<h1>Histogram example</h1>
<APPLET

CODE="Histogram.class"
WIDTH=0 HEIGHT=0 ARCHIVE="$list">
Please use a Java-enabled browser.

</APPLET>
</body>
</html>
EOT;

print $html_body
?>

This PHP script creates the necessary HTML file with our applet “on-the fly”. The
only unusual variable is $list which is a comma-separated list of jar files from
the directory ’lib’. This list is created by the function ’list_files.php’,
which returns a list of files in a certain directory. This function is shown here:

334 12 Miscellaneous Analysis Issues Using jHepWork

PHP script ’list_files.php’

<?php
function list_files($dir)
{
$list="";
if ($handle = opendir($dir)) {

while (false !== ($file = readdir($handle))) {
if ($file != "." && $file != "..") {

$ff= $dir . $file;
$list .= $ff . ", ";

}
}
closedir($handle);

}
return $list;
}
?>

Now you are ready. Copy the three files above:

applet.php, list_files.php, Example.class

into a Web-server accessible directory. Make sure that this directory contains the
directory ’lib’ from the jHepWork installation directory (one can also make a
link to this directory). Consider to remove unnecessary jar files, if they are not used
to run the applet (this will make the execution faster). Then, point a Web browser to
the file ’applet.php’. The PHP module ’list_files.php’will scan all jar
files inside the directory ’lib’ and will pass it to the ’applet.php’ file. This
file will build a proper HTML file to be displayed inside a Web browser. You should
see a HPlot frame with filled histogram entries. After 100 entries, the animation
will stop and you will see the statistics for the filled histogram.

References

1. von Neumann, J.: The General and Logical Theory of Automata (1963), p. 288
2. Suzudo, T.: Cambria package
3. ImageJ Java library. URL http://rsb.info.nih.gov/ij/
4. Nottingham, M.: Confreader—Configuration File Reading Class (1998)

Chapter 13
Data Clustering

13.1 Data Clustering. Real-life Example

Clustering algorithms are important tools for an unsupervised classification of data
(compared to a “supervised” classification which will be discussed in the following
chapter). The main idea is to classify a given data set through a certain number
of clusters by minimizing distances between objects inside each cluster. A detailed
discussion of a clustering analysis can be found, for example, in several books [1–3],
but many details could also be found from many other (less costly) sources.

The data clustering in jHepWork is based the jMinHEP Java library [4] and in-
cludes:

• The K-means algorithm (single and multi-pass), when classification is done by
minimizing the sum-of-square distances between data points and the so-called
geometric centroids assuming that the number of clusters is fixed a priory. The
clustering is done in a single pass starting from seed centroids positioned at ran-
dom location. The algorithm assigns each object to a group of objects that have
the closest centroid, and then it recalculates the positions of new centroids. Then
this step is repeated until the centroids no longer move.

This algorithm has the disadvantage that it depends on the initial conditions,
thus jMinHEP has also an option to re-run the algorithm multiple number of times
until a stable solution is found. Typically, you will need to define a number of
expected clusters, a maximum number of iterations and/or a precision with which
the clustering is done. To get started, you may rely on the default values for the
precision and the maximum number of iterations.

• The C-means (fuzzy) algorithm. Unlike the K-means approach, this method of
clustering allows data points to belong to two or more clusters. The algorithm
usually uses a “fuzziness” coefficient (typically, it is set to 2) and an accuracy of
the calculations.

It is always a hard task to plot such clusters, since each point has a member-
ship probability to belong to a particular cluster. However, one could supply some
probability (say, 0.7) to illustrate data points which have a membership probabil-
ity above the specified value.

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_14, © Springer-Verlag London Limited 2010

335

336 13 Data Clustering

• The agglomerative hierarchical clustering algorithm. In this case, no a predeter-
mined number of clusters is set. The algorithm tries to determine the so-called
“natural grouping”. The clustering continues until all points are clustered into a
single cluster.

The clustering can be done with the package jminhep.algorithms. One
should follow these steps to perform the clustering:

• Create a data container using the class DataHolder. This data holder keeps
data in a multidimensional phase space, i.e. each data point can be characterized
by an arbitrary number of values.

• Each point is represented by the DataPoint class from the package
jminhep.cluster. Data points can be defined in a multidimensional phase
space. One should fill this data holder from an external source, or fill it on-the-fly
by simulating events. We will show how to do this in the example below.

• Create and initialize a clustering algorithm class and pass it the DataHolder()
constructor.

• Run the algorithm in a loop and retrieve the output.

Then one can print or plot the retrieved centroids of clusters by projecting multi-
dimensional space into X–Y plane, and optionally, one can plot the original points
used for the clustering.

13.1.1 Preparing a Data Sample

First, let us learn how to fill data into a DataHolder container. Once this data
holder is ready, we will save it into a file, and then we will read this file in order to
illustrate the clustering analysis.

One single point should be represented by a DataPoint object. For example,
a point with five components can be filled as:

>>> from jminhep.cluster import *
>>> p=DataPoint([1,2,3,4,5])
>>> print p.getDimension()
>>> print p.toString()

Then one should add each point represented by the DataPoint class to the
DataHolder container. Below we add two data points:

>>> from jminhep.cluster import *
>>> d=DataHolder(’data’)
>>> p=DataPoint([1,2,3,4,5])
>>> d.add(p)
>>> p=DataPoint([5,6,7,8,9])
>>> d.add(p)

13.1 Data Clustering. Real-life Example 337

One can apply the method add(obj) multiple number of times to fill in the
DataHolder container. One can get the data back to the usual arrays with the
getArrayList() or getArray() methods.

Here are a few useful methods of how to retrieve information about the container:

>>> from jminhep.cluster import *
>>> size=d.getSize() # get size
>>> p=d.getRow(n) # get DataPoint at index "n"
>>> min=d.getMin() # get min
>>> max=d.getMax() # get max
>>> print d.toString() # print
>>> d.clear() # clear data

Now let us generate data with three clusters. The data points will be generated in 3D
and clustered around three cluster centers, at the positions (−8,5,10), (10,20,5)

and (10,1,20). This can be done using Gaussian numbers as:

Creating a data set

from java.util import Random
from jhplot.io import *
from jminhep.cluster import *

data = DataHolder(’Clusters in 3D’)
r = Random()

for i in range(20): # 1st cluster
a =[]
a.append(r.nextGaussian()- 8)
a.append(2*r.nextGaussian()+ 5)
a.append(3*r.nextGaussian()+10)
data.add(DataPoint(a))

for i in range(30): # 2nd cluster
a =[]
a.append(10*r.nextGaussian()+10)
a.append(2*r.nextGaussian()+20)
a.append(5*r.nextGaussian()+ 5)
data.add(DataPoint(a))

for i in range(10): # 3rd cluster
a =[]
a.append(3*r.nextGaussian()+10)
a.append(2*r.nextGaussian() +1)
a.append(4*r.nextGaussian()+20)
data.add(DataPoint(a))

338 13 Data Clustering

Serialized.write(data,’data.ser’)

We should note that the sizes of the clusters are different—this is given by
the scaled factors used to multiply the random values generated by the method
r.nextGaussian(). The second cluster is rather broad—its radius spans 10
(arbitrary) units.

We have written the data in a compressed serialized file. One can also try to
use the writeXML() method to write data into a XML file for easy viewing.
We should remind: if you need to write a lot of data, the best way to do this
is to use the HFile or HFileXML classes, see Sect. 11.3. We can write each
DataPoint object persistently in a loop. This can be done rather straightfor-
wardly, since DataPoints objects can be serialized. As explained before, this
approach allows to create rather large files since we do not store all data in the
computer memory before writing them to a disk.

So, the data are filled with the help of the DataPoint class in three dimensions.
But how one can display such data, especially in cases when there are more than
three dimensions? One can project the DataHolder into a P1D array and plot it
using the standard HPlot class. For example, if our data are represented by a filled
DataHolder object, one can view 1st and 2nd components as:

>>> from jhplot import *
>>> c1=HPlot()
>>> c1.setAutoRange()
>>> c1.visible()
>>> p1=P1D(data,0,1) # fill 1st and 2nd component
>>> HTable(p1) # show data in a table
>>> c1.draw(p1) # draw 1st and 2nd component

13.1.2 Clustering Analysis

Assume we have prepared an object data of the type DataHolder. Now one can
perform a realistic clustering analysis. Generally, to run any clustering algorithm,
one needs to follow these steps:

>>> from jminhep.algorithms import *
>>> alg = [Algorithm]Alg(data)
>>> alg.setClusters(NumberOfClusters)
>>> alg.setOptions(some options)
>>> .. more options ..
>>> alg.run() # run over the data
>>> print ’algorithm: ’ + pat.getName()
>>> .. get results

13.1 Data Clustering. Real-life Example 339

In the above example, ’[Algorithm]’ is the name of clustering algorithm which
could be:

KMeansAlg(data) the standard K-Means cluster algorithm;
KMeansExchangeAlg(data) K-Means cluster algorithm using the exchange

mode;
FuzzyCMeansAlg(data) Fuzzy (C-means) cluster algorithm;
HierarchicalAlg(data) an agglomerative hierarchical clustering algo-

rithm.

Then one should set the expected number of clusters and other options. For ex-
ample, for the C-means algorithm, one should set the number of expected clusters,
the numerical precision of clustering and a fuzziness parameter. It is also possible to
set the maximum number of iterations to stop clustering if no appropriate solution
can be found. It is also useful to set the probability association if you need to know
which points belong to which cluster (this is not necessary for the K-means algo-
rithm). The description of each mode can be found with the method getName().

To run the algorithm over the data, call the method run(). This method should
be invoked for a fixed number of clusters. One may also consider to use the runBest()
method. In this case, the program will attempt to determine the number of clusters
by re-running the algorithm many times over the same data set. Then it calculates the
most optimal solution by minimizing the so-called “compactnesses” of the cluster
configuration. The smaller compactness is, the higher chance that a particular cluster
solution is the most optimal.

After the clustering (i.e. after running the method run()), one can find the
“compactness” of the cluster configuration by calling getCompactness(). The
centroid positions can be retrieved with the method getCenters() and the data
point association can be obtained using several built-in methods.

We now have all the machinery to perform a clustering analysis and below we
show a detailed example. Let us read the prepared data and run the K-means algo-
rithm over this data. First, we prepare a function printAnswer() designed to
print all relevant information about the cluster configuration. Then we will run the
K-means algorithm for: (1) one-pass using three clusters; (2) 10 passes with differ-
ent random seed locations. The algorithm returns the cluster configuration with the
smallest compactness; (3) Running the K-means algorithm using multiple number
of passes, and determining the best possible configuration with the smallest com-
pactness.

Running the K-means algorithm

from jhplot.io import *
from jminhep.algorithms import *

data=Serialized.read(’data.ser’)

def printAnswer(alg):
print ’Name=’+alg.getName()
print ’No of final clusters:’ +str(alg.getClusters())

340 13 Data Clustering

print ’No of points: ’ +str(alg.getNumberPoints())
print ’Compactness: ’ +str(alg.getCompactness())
centers = alg.getCenters()
print centers.toString()

alg=KMeansAlg(data) # run K-means algorithm
alg.setClusters(3)
alg.setOptions(1000,0.001)
alg.run()
printAnswer(alg)

alg.run(10) # run 10 times with different seeds
printAnswer(alg)

alg=KMeansExchangeAlg(data)
alg.setEpochMax(200)
alg.runBest() # find smallest compactness
printAnswer(alg)

The clustering results will be printed by the printAnswer() function. The short-
ened output from execution of the above example is given below:

Name=kmeans algorithm fixed cluster mode
No of final clusters:3
No of points: array(’i’, [30, 13, 17])
Compactness: 1.487
0 (-2.55, 3.93, 12.75)[0]
1 (2.40, 19.69, 6.22)[0]
2 (16.76, 19.80, 4.99)[0]

Name=kmeans algorithm for multiple iterations
No of final clusters:3
No of points: array(’i’, [21, 10, 29])
Compactness: 0.891
0 (-8.24, 6.0, 8.23)[0]
1 (8.70, 1.09, 20.40)[0]
2 (11.23, 19.78, 5.91)[0]

Name=K-means clustering for best estimate
No of final clusters:5
No of points: array(’i’, [15, 10, 5, 20, 10])
Compactness: 0.843
0 (17.52,19.77,4.36)[0]
1 (6.57, 19.27,9.48)[0]
2 (-2.46,20.64,1.11)[0]
3 (-8.18,5.36, 8.92)[0]
4 (8.700,1.09, 20.40)[0]

13.1 Data Clustering. Real-life Example 341

One may immediately see that the answers from all three algorithms are different.
This is not too surprising—the clustering analysis is an inherently ambiguous task,
especially when dealing with overlapping clusters.

Try to make some modifications to the input data to reduce the cluster overlaps.
One can simply set all multiplicative factors for the method r.nextGaussian()
to a smaller value (say, 1), see the code snipped given in Sect. 13.1.1. This reduces
the cluster size, and thus overlaps between the clusters. After re-running the above
code with the K-means clustering, you will see that all three algorithms give the
same answer.

Now let us visualize the clustering results. In the code below, we will read the
data prepared in the previous subsection, and plot them (only 1st and 2nd columns).
This time, however, we will run the C-means algorithm with a fixed number of
expected clusters.

C-means algorithm and visualization

from java.awt import Color
from jhplot import *
from jhplot.io import *
from jminhep.algorithms import *

data=Serialized.read(’data.ser’)

c1=HPlot()
c1.visible()
c1.setAutoRange()
p1=P1D(data,0,1) # 1st and 2nd component
c1.draw(p1)

alg = FuzzyCMeansAlg(data)
alg.setClusters(3)
alg.setOptions(1000, 0.001, 1.7)
alg.setProb(0.7)
alg.run()
print ’algorithm: ’ + alg.getName()
print ’Compactness: ’ + str(alg.getCompactness())
print ’No of final clusters:’ + str(alg.getClusters())
centers=alg.getCenters()
print ’No of points in cluster=’,alg.getNumberPoints()
p2=P1D(centers,’Centroids’,0,1)
p2.setColor(Color.red)
p2.setErrAll(0)
p2.setSymbol(9)
p2.setSymbolSize(15)
c1.draw(p2)

The resulting plot is shown in Fig. 13.1. The figure displays the input data projected
in 2D (black dotes) and the crosses show the centers of three clusters. You may
wonder: why the cluster centers are shifted from the visually expected positions?

342 13 Data Clustering

Fig. 13.1 The result of the
C-means clustering algorithm

The answer is simple: the clustering was done in 3D, while Fig. 13.1 shows only a
2D slice of the data.

13.1.3 Interactive Clustering with JMinHEP

One can always perform the clustering analysis using the JMinHEP program [4]
which allows to select the cluster algorithm and initial conditions using an interac-
tive menu.

One can start the jMinHEP cluster program using the HCluster class that
executes the main frame of the program. One can append data (in a form of
DataHolder object) to this canvas during the initialization.

Building a data set

from jhplot import *
from jhplot.io import *
data=Serialized.read(’data.ser’)
c1=HCluster(data)

Data can also be loaded using the menu of this frame.

References

1. Spath, H.: Cluster Analysis Algorithms. Wiley, New York (1980)
2. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis.

Wiley, New York (2005)
3. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, New York (1988)
4. Chekanov, S.: The JMINHEP package. URL http://hepforge.cedar.ac.uk/jminhep/

Chapter 14
Linear Regression and Curve Fitting

Very often, an empirical data set has to be explained using a model based on a
mathematical equation. To find a proper function and adjust free parameters of this
function that most closely match the data is the primary goal of curve fitting.

We start this chapter with the simplest linear case and then consider curve fitting
using arbitrary functions. The section below discusses the elements of the linear
regression which models a relationship between two variables by fitting a linear
equation to observed data. Then, in the following sections, we will discuss non-
linear regression.

14.1 Linear Regression

Linear regression is a method of finding a linear correspondence between two data
sets. The method is based on fitting a collection of data points by a simple linear
form, Y = A+BX. The variable X is considered to be an explanatory variable, and
the other, Y , is considered to be a dependent variable. Sometime, the variable A is
called the intercept, and B is the slope of the line.

Before going into the heart of the matter, it is useful to remind that it is always
a good practice to visualize a data set before attempting to fit it using the linear
function. For example, in case of two-dimensional data, one can make a contour
plot (see Sect. 5.2.3) in order to determine the strength of the relationship between
two variables.

14.1.1 Data Set

First, let us create a data set in order to illustrate a linear regression analysis. We
assume that an explanatory variable X is distributed in accordance with a Gaus-
sian distribution. We also assume that the “dependent” variable is a function of the
explanatory variable and an additional “noise” simulated using random Gaussian
numbers. Look at this code:

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_15, © Springer-Verlag London Limited 2010

343

344 14 Linear Regression and Curve Fitting

Creating a data set

from jhplot import *
from jhplot.io import *
from java.util import Random

p1=P1D(’data’)
r = Random()
for i in range(100):

x=10*r.nextGaussian()
y=20*x +200*r.nextGaussian()+50.0
p1.add(x,y)

Serialized.write(p1,’data.ser’)

In the example above, we fill a P1D using random values x and y (the latter depends
on x) and store it in a serialized file for the use in the next section.

14.1.2 Analyzing the Data Set

For the linear regression analysis of the created data, we will use the class LinReg
from the package jhplot.stat which provides all necessary tools for the linear
regression fits. To initialize the linear regression calculation, we should pass our
data in the form of P1D to the LinReg() constructor:

>>> from jhplot.stat import *
>>> r=LinReg(p1d)

We should note that one can also use the usual Java arrays or Jython lists for X and
Y values for the input, but here we will concentrate only on the P1D case.

After calling the constructor LinReg with the input P1D object, the calculation
is already done and the next step is to extract the linear regression results. First of
all, we are interested in the intersect and the slope values of the fit. Both values, in-
cluding their statistical uncertainties, can be extracted using the following methods:

>> print r.getIntercept(), ’+/-’,r.getInterceptError()
>> print r.getSlope(),’+/-’,r.getSlopeError()

Next, we could be interested in how to display the fitted values. This can be done
using the method getResult(), which returns a F1D function with the results of
the linear regression.

>>> f=r.getResult()

14.1 Linear Regression 345

Next, the prediction and the confidence levels of the linear regression can be
extracted as:

>>> d=r.getCorrelation()
>>> p1d=r.getResiduals()

The first method returns the usual correlation coefficient,

ρ = cov(X,Y)

σXσY

where cov(X,Y) is the covariance and σ is the standard deviation. We remind that
the correlation coefficient varies from −1 to +1, with −1 being for a perfect nega-
tive correlation between X and Y , and +1 for a perfect positive correlation.

The second method returns a P1D with the residuals, i.e. the vertical distances of
each point from the regression line.

In addition, one can also calculate the 95% confidence interval for the regression
line given by the method getResult(). This band encloses the true best-fit linear
regression line, leaving a 5% chance that the true line is outside the confidence
interval boundaries. The confidence interval is the area that has a 95% chance of
containing the true regression line. This typically means that many points could be
far away from the confidence-interval band.

Finally, we can calculate the 95% prediction interval. The prediction interval is
the area in which you should expect 95% of all data points to fall. As we would ex-
pect, the prediction interval is further away from the best-fit line than the confidence
bands.

Both the prediction and the confidence intervals can be obtained using the fol-
lowing two methods:

>>> a1=r.getPrediction()
>>> a2=r.getConfidence()

These two methods return two P1D objects representing the lowest and the highest
level for the prediction and the confidence level. We remind than one can easily
plot them with the method c1.draw(obj), where obj is either a1 or a2, since
this method can be used for displaying lists of P1D objects. There are several other
convenient methods which can be found by reading the API documentation of this
package.

Now let us illustrate how to analyze the data set generated in the previous section.
First, we read the data from the serialized file. Then we plot the data, the linear
regression fit result, the confidence interval and, finally, the predictions:

Linear regression analysis

from jhplot.io import *
from jhplot import *
from jhplot.stat import *

346 14 Linear Regression and Curve Fitting

from java.awt import Color

p1=Serialized.read(’data.ser’)

c1 = HPlot(’Canvas’,700,500,2,1)
c1.visible()
c1.setGTitle(’Linear regression’)
c1.setAutoRange()

r = LinReg(p1)
print r.getIntercept(), ’+/-’,r.getInterceptError()
print r.getSlope(),’+/-’,r.getSlopeError()
print ’Correlation=’,r.getCorrelation()

c1.cd(1,1)
c1.draw(p1)
c1.draw(r.getResult())
c1.draw(r.getConfidence())

c1.cd(2,1)
c1.setAutoRange()
c1.draw(p1)
c1.draw(r.getResult())
c1.draw(r.getPrediction())

The output of the script is shown below:

Intercept= 48.041 +/- 17.578
Slope= 20.248 +/- 1.728
Correlation= 0.76383

(as before, the output numbers are shown here with a reduced precision). At the
same time, the script generates two plots shown in Fig. 14.1.

14.2 Curve Fitting of Data

Now let us come to a non-linear case, when the relationship between X and Y values
cannot be explained by the linear behavior. In this case, we need to fit data points
using an arbitrary curve.

Moreover, each data point can represent a group of events or measurements, thus
points can have statistical (and systematical) errors. Obviously, the latter situation
must be considered in a different way, since points should not have the same statisti-
cal weight during the fit: points with larger errors should be taken into account with
a smaller weight.

14.2 Curve Fitting of Data 347

Fig. 14.1 A linear regression analysis using the class jhplot.stat.LinReg

A typical case is a histogram. Look at the example shown in Fig. 8.1. Each his-
togram height in a certain bin contains a statistical error. As we already know, in
case of a simple event-counting measurement, such error is equal to a variance σi

in a bin i, with the variance value proportional to the square root of the number of
entries in each bin. Thus, one can introduce a weight factor wi , which reflects the
degree of influence of each data point on the final parameter estimate. Typically, the
weight wi for the bin i is expressed in terms of the variance σi as wi = 1/σ 2

i .
Another example is when data points are represented by a P1D with arbitrary

statistical or systematical errors. If errors are known, one can perform a fit by at-
tributing a weight factor for each point. Of course, errors can be arbitrary, i.e. they
do not need to be exactly the same as in the case of the counting experiment.

To start the curve fitting, we should initially define:

• A fit method which defines a distance measure between data points;
• A mathematical function describing our model.

To find a proper function which is expected to describe data after adjusting free
parameters is non-trivial task. First of all, we should start with an initial guess for the
functional form and initial free parameters. The number of free parameters should
be as small as possible, and the quality of the fit should be sufficiently satisfactory,

348 14 Linear Regression and Curve Fitting

so one can claim that the analytical model describes the data. The degree of the fit
quality is usually characterized by the χ2 value:

χ2 =
N∑

i=0

[
yi − f (xi)

σi

]2

(14.1)

where fi(x) is a given function with free parameters that should be found after the
fitting procedure, yi is a data value in Y , σi is the data point variance (i.e. error in a
bin) in the bin i. The fitting procedure tries to find the values of free parameters of
the input function, so the χ2 has the minimum possible value.

As mentioned before, it is usually a good idea to plot data first to see how the fit
function may look like and what initial parameter values may have sense to produce
the desired result.

14.2.1 Preparing a Fit

First of all, let us initialize the curve fitting package by creating an instance of the
HFitter class.

>>> from jhplot import *
>>> f=HFitter()
>>> print f.getFitMethod()
[’chi2’,’cleverchi2’,’uml’,’bml’,’leastsquares’]

The example shows how to print the available methods of the HFitter class. The
most popular method is the so-called chi2. This method, which is based on the
minimization of (14.1), is the default method used by the HFitter() class if it in-
stantiated without passing any arguments. The χ2 method works the best if data are
represented by discrete points with Gaussian uncertainties. The main assumption is
that the points yi are normally distributed around a function f (xi), uncorrelated and
have a variances σi . If the number of events in each bin is larger than a certain min-
imum number (say, several hundred entries), then the distribution of the expected
events per bin is approximately Gaussian.

Next, the cleverchi2 method does not include the variance of experimental
data points. It is based on the minimization of the following function:

χ2 =
N∑

i=0

[
(yi − f (xi))

2

|f (xi)|
]

(14.2)

As before, yi is the data-point value (or the height of the bin i), xi is the center of
the ith bin, f (xi) is the value of the function calculated in the ith bin.

14.2 Curve Fitting of Data 349

Other two options, uml and bml, are unbinned and binned maximum likelihood
fits, respectively. If the dataset is binned (i.e. when we deal with a histogram), a
binned maximum likelihood should be used.1

The maximum likelihood method should be used if data are represented by inte-
ger numbers of events which follow a Poisson statistics, i.e. for rare events. Exper-
imentally, if you see a distribution with a small number of events in each bin, the
best bet would be to try to use the maximum likelihood method. If the amount of
data is very small, a larger bin size should be tried. In this case, it is preferable to
avoid data binning at all: the fit can be done using unbinned maximum likelihood
method.

The binned maximum likelihood method minimizes the quantity:

bml =
N∑

i=0

[
f (xi) − yi ln(f (xi))

]

while the unbinned method is based on:

bml = −
N∑

i=0

[
ln(f (xi))

]

Lastly, the leastsquares method assumes that the best-fit curve is the curve
that has the minimal sum of the deviations squared (least square error) from a given
set of data. Unlike the methods discussed above, this method does not use errors for
data points, i.e.

ls =
N∑

i=0

[
yi − f (xi)

]2 (14.3)

This method was considered for the linear regression and it will not be discussed it
anymore.

14.2.2 Creating a Fit Function

Let us assume we know which method should be used for the curve fitting. The next
question is how to find a function which expectedly describes our data. The package
contains several pre-built functions in the HFitter catalog, which can be printed
as:

1Note that for a small number of events, the binning can result in a loss of information and larger
statistical errors for the parameter estimates [1]. On the other hand, a benefit of the binning is that
it allows for a goodness-of-fit test.

350 14 Linear Regression and Curve Fitting

Table 14.1 The list of
implemented fit functions of
the HFitter class

Name Definitions

e Exponential

g Gaussian

g2 Double Gaussian

lorenzian Lorenzian

moyal Moyal

landau Landau

pow power-law, a ∗ (b − x)c

P0 y = a

P1 y = a + b ∗ x

P2 y = a + b ∗ x + c ∗ x2

Pn polynomial of nth order

>>> from jhplot import *
>>> f=HFitter()
>>> print f.getFuncCatalog()
[’e’, ’g’, ’g2’, ’lorentzian’, ’moyal’,
’p0’, ’p1’, ’p2’, ’p3’, ’p4’, ’p5’,
’p6’, ’p7’, ’p8’, ’p9’, ’landau’, ’pow’]

This command prints the names of the implemented fit functions as described in
Table 14.1.

There are several ways to create a function object to be used for the actual fit.
The simplest approach would be to pick up a predefined function from the catalog.
Alternatively, one can use a simple script to define any custom function (see later).

Generally, there is no need to include a custom function to the catalog using the
method addFunc(name,func), where func is a function of the type IFunc-
tion which was briefly discussed in Sect. 3.7. To use this method is rather straight-
forward when working with Java: One needs to implement a function class using the
examples located in jhplot.fit package. We will discuss this later.

14.2.2.1 Using Built-in Fit Functions

Let us create a Gaussian function using the predefined key ’g’ and print all at-
tributes of this function:

>>> f.setFunc(’g’)
>>> func=f.getFunc()
>>> print func
BaseModelFunction: Title=g, name=g

14.2 Curve Fitting of Data 351

Dimension: 1, number of parameters: 3
Codelet String: codelet:g:catalog
Variable Names: x0,
Parameters: amplitude=1.0, mean=0.0, sigma=1.0,
Provides Gradient:true,Provides Parameter Gradient:true
Provides Normalization: false

One may find this information a bit cryptic, but the important information can still
be found: This function is implemented in one dimension, has three free parame-
ters (amplitude, mean, sigma). One can also see the initial values assigned to this
function during the initialization.

It should be noted that the object func, which is returned by the method
getFunc(), belongs to the class IFunction. Let us illustrate some of them:

print ’Metatype and implementation:’,func.codeletString()
print ’Parameter names:’,func.parameterNames()
print ’List parameters’, func.parameters()
print ’No of free parameters’,func.numberOfParameters()
print ’Function title:’, func.title()
print ’Function value:’, func.value([1])

The last method is rather important: It accepts a list of values at which the func-
tion is evaluated. In case of an one-dimensional function, the list contains only one
value. Usually, the printed information is sufficient to understand the function im-
plementation. If you are not sure how the function is implemented, evaluate it at a
fixed value.

One can also set free parameters to certain values. For example, one can set the
mean of a Gaussian to ten using this method:

>>> func.setParameter(’mean’,10)

One can also set all three parameters by using a list:

>>> func.setParameters([100,10,1])

which sets the amplitude, the mean and the sigma to 100, 10, 1, respectively.
The real power of the pre-built fit functions comes when one needs to go beyond

the simple functions already existing in the catalog. One can easily construct new
functions using simple operations. For example, one can build a Gaussian function
plus a second-order polynomial using the string ’g+p2’, i.e.:

>>> f.setFunc(’g+p2’)
>>> func=f.getFunc()

352 14 Linear Regression and Curve Fitting

>>> print func.title()+’ has: ’,func.parameterNames()
’amplitude’, ’mean’, ’sigma’, ’p0’, ’p1’, ’p2’

Now you can add this function to the catalog as discussed above:

>>> from jhplot import *
>>> f=HFitter()
>>> f.setFunc(’g+p2’)
>>> func=f.getFunc()
>>> f.addFunc(’g+p2’,func)
>>> print f.getFuncCatalog()
array(java.lang.String, [... ’g+p2’ ..])

14.2.2.2 Building Functions from a String

One can also generate a custom IFunction object using an analytical expres-
sion, function dimension and the list of parameters. Let us illustrate how to build a
parabolic function from a string:

>>> f.setFunc(’parabola’,1,’a*x[0]*x[0]+b*x[0]+c’,’a,b,c’)
>>> func=f.getFunc()
>>> print func.title()+’ has: ’, func.parameterNames()
parabola has: [’a’, ’b’, ’c’]
>>> print func.codeletString()
parabola:verbatim:jel:1:a*x[0]*x[0]+b*x[0]+c:a,b,c:

The setFunc() method takes several arguments: the function title, the number of
dimensions, a string representing the function, and the names of the free parameters.
The only independent variable of this function is ’x[0]’. In case of 2D functions,
one can add a second variable ’x[1]’. The method codeletString() prints
the implementation details of this function.

14.2.2.3 Building Functions from a Script

Finally, one can build a IFunction using Jython scripts as discussed in Sect. 3.7.
In this case, one can include any logic you want into its definition (like if-else
statements), or even call external Java libraries to access special functions. We will
remind that one should create a custom class which is based on ifunc. This can
look as:

>>> from shplot import *
>>> class [name](ifunc):

14.2 Curve Fitting of Data 353

>>> def value(self, v):
>>> [equation]
>>> return [value]

where [name] is the function name, [equation] its functional form. The pur-
pose of the method value() is to return the calculated function value. Then one
can instantiate an object of this class which now will have all properties of the
IFunction class. This object can be used for the fits as usual.

14.2.2.4 Preparing a Fit Function

During the fit procedure, the fit optimization program tries to find the best pos-
sible parameters of the function which is expected to describe input data. It
starts fitting with some initial values. It is always a good practice to set ini-
tial values to some sensible numbers. This can be done using two methods
discussed before, either the method setParameters(list) or the method
setParameter(name,v), where ’v’ is an input value. One can also use
shorter names, like setPar(name,v) of the class HFitter (there should be
no any confusion here, since only one function is allowed for the fit).

>>> f.setPar(’mean’,10)

This sets the parameter ’mean’ to the value 10, assuming that setFunc(’g’)
has been called first as shown previously (i.e. ’f’ represents an instance of a Gaus-
sian function).

During the minimization, one can restrict parameter variations to a certain range:

>>> f.setParRange(’mean’, -10, 10)

This sets the range [−10,10] for the Gaussian mean.
Finally, in some situations, one may constrain certain fit parameters. Let us give

an example by creating a double-Gaussian function. During the fit, we want to keep
the mean of the first Gaussian exactly to be the same as for the second one:

>>> f.setFunc(’gauss2’,1,N*(a*exp(-0.5*(mean0-x[0])\
>>> *(mean0-x[0])/(s0*s0))+(1-a)*exp(-0.5*(mean1-x[0])\
>>> *(mean1-x[0])/(s1*s1)))’,\
>>> ’N,a,mean0,s0,mean1,s1’)
>>> f.setParConstraint(’mean0=mean1’)

The method setParConstraint() does the trick. Make sure that you have cor-
rectly assigned the names of the parameters during function creation.

354 14 Linear Regression and Curve Fitting

14.3 Displaying a Fit Function

Once the function is defined, one can display it in the usual way. This can be done
using either F1D or F2D functions, after passing an IFunction object to the func-
tion constructor:

>>> ff=F1D(f.getFunc(),min,max)
>>> c1.draw(ff)

where c1 is a HPlot canvas. How to display a F1D function was discussed in
Sect. 3.3. Analogously, one can build and display functions in 2D.

14.3.1 Making a Fit

Next, we will fit our data with the prepared function. This part is easy: if you have
P1D, H1D, H2D or PND containers filled with data, simply execute the method
fit(obj), where the obj is one of the objects mentioned above:

>>> f.fit(obj)

In case of 1D data, you may also restrict the fitting range with the method
setRange(min,max) applied to the object f. After the fit, one can get the re-
sulting function after the minimization as:

>>> func=f.getFittedFunc()

The method returns a IFunction function with the parameters determined by the
fit minimization.

Another way to retrieve the results is to use this method:

>>> result=f.getResult()

The object result is a rather sophisticated as it keeps essentially everything you
need to retrieve the fit results. Below we list the most important methods of this
class and comment some of them:

>>> result.fittedParameters()
>>> result.errors()
>>> result.constraints()
>>> result.covMatrixElement(0,1)
>>> result.engineName()
>>> result.errors() # parabolic errors

14.3 Displaying a Fit Function 355

>>> result.errorsMinus() # error -
>>> result.errorsPlus() # error +
>>> result.fitMethodName()
>>> result.fitStatus()
>>> result.fittedFunction()
>>> result.fittedParameter("mean")
>>> result.fittedParameterNames()
>>> result.fittedParameters()
>>> result.ndf() # number of degrees of freedom
>>> result.quality() # chi2/ndf for Chi2 method

We should point out that the quality of the fit can be obtained via the method
quality(), which represents the χ2 per degree of freedom. The smaller its value
is, the better the fit minimization.

It is time now to give a small example before going any further. Below we gen-
erate a Gaussian distribution and then we fit it with a Gaussian function.

Gaussian fit

from jhplot import *
from java.util import Random

f=HFitter()
f.setFunc(’g’)
f.setPar(’amplitude’,50)

h1 = H1D(’Data’,50, -4, 4)
h1.setPenWidthErr(2)
h1.setStyle(’p’)
h1.setSymbol(4)
h1.setDrawLine(0)

r = Random()
for i in range(1000):

h1.fill(r.nextGaussian())

c1 = HPlot(’Canvas’)
c1.visible()
c1.setAutoRange()
c1.draw(h1)

f.setRange(-4,4)
f.fit(h1)
ff=f.getFittedFunc()

r=f.getResult() # get fitted results
Pars = r.fittedParameters()
Errors = r.errors()
Names = r.fittedParameterNames()

356 14 Linear Regression and Curve Fitting

print ’Fit results:’
for i in range(ff.numberOfParameters()):

print Names[i]+’ : ’+str(Pars[i])+’ +- ’+str(Errors[i])

mess=’χ^{2}/ndf=’+str(round(r.quality()*r.ndf()))
mess=mess+’ / ’+str(r.ndf())
lab=HLabel(mess, 0.12, 0.69, ’NDC’)
c1.add(lab)

f2 = F1D(’Gaussian’,ff,-4,4)
f2.setPenWidth(3)
c1.draw(f2)
print ’Quality=’,r.quality(), ’ NDF=’,r.ndf()

The output of this program is shown below:

Fit results:
amplitude : 62.578 +- 2.465
mean : -9.484E-4 +- 0.032
sigma : 0.986 +- 0.023
Quality= 0.990 NDF= 34

In addition, the script generates Fig. 14.2 and shows the χ2/ndf value inside the
interactive label.

Fig. 14.2 Curve fitting example using a Gaussian function

14.4 Real-life Example. Signal Plus Background 357

14.4 Real-life Example. Signal Plus Background

With the curve fitting class in hand, now we will give a rather realistic example of
how to perform a fit of data using a Gaussian plus a background function. As usual,
we will divide the example into two parts: In one part, we will generate a histogram
with data, and in the second part, we will read this histogram and perform a fit.

14.4.1 Preparing a Data Sample

Let us prepare our input for the curve fitting, which will consists of two histograms,
H1D and H2D. The 1D histogram is filled with two Gaussian random numbers, one
is for a signal and the second is for background. The signal distribution is modeled
also by a Gaussian distribution by setting its width to some large value. Also, we
fill a 2D histogram with Gaussian numbers, but this time, we shifted their means
from zero and increased the widths. We will store these histograms in a dictionary,
in which a string will be used as a key. Then, we write the dictionary into a XML
file:

Histograms for curve fitting

from java.util import Random
from jhplot import *
from jhplot.io import *

h1 = H1D(’Data’,50, -7, 7)
h2 = H2D(’Data 3D’,40,-10,10,40,-10,10)

r= Random()
for i in range(10000):

if (i<5000): h1.fill(r.nextGaussian())
h1.fill(5*r.nextGaussian()+5)
h2.fill(2*r.nextGaussian(),2*r.nextGaussian()+3)

d={’h1’:h1,’h2’:h2,’description’:’Gaussian+background’}
Serialized.writeXML(d,’data.xml’)

Later we will read the ’data.xml’ file and will use the keys ’h1’ and ’h2’ to
retrieve the histograms from the dictionary.

14.4.2 Performing Curve Fitting

Let us now to fit the data prepared by the above script. After reading the serialized
file, we will retrieve the histograms and fit them using a Gaussian function with a
first-order polynomial describing the background under the signal peak:

358 14 Linear Regression and Curve Fitting

Signal+background fit

from jhplot import *
from java.util import Random
from java.awt import Color
from jhplot.io import *

d=Serialized.readXML(’data.xml’)
h1=d[’h1’]; name=d[’description’]

f=HFitter()
print f.getFuncCatalog()
f.setFunc(’g+p1’)
f.setPar(’p0’,10); f.setPar(’amplitude’,100)

c1 = HPlot(’Canvas’)
c1.visible()
c1.setAutoRange()

h1.setPenWidthErr(2)
h1.setStyle(’p’)
h1.setSymbol(4)
h1.setDrawLine(0)

c1.draw(h1)
f.setRange(-7,7)
f.fit(h1)

ff=f.getFittedFunc()
r=f.getResult()
fPars = r.fittedParameters()
fErrs = r.errors()
fNames = r.fittedParameterNames()
print ’Fit results:’
for i in range(ff.numberOfParameters()):

print(fNames[i]+’:’+str(fPars[i])+’ +- ’+str(fErrs[i]))
print ’Chi2/Ndf=’,r.quality()*r.ndf(),’/’,r.ndf()

f2 = F1D(’Gaussian’,ff,-7,7)
f2.setColor(Color.blue)
f2.setPenWidth(3)
c1.draw(f2)

This code snippet prints the fit results:

Fit results:
amplitude : 570.3 +- 11.3
mean : 0.08 +- 0.02

14.4 Real-life Example. Signal Plus Background 359

Fig. 14.3 Fitting a signal together with a background using the χ2 minimization

sigma : 1.04 +- 0.02
p0 : 121.1 +- 2.2
p1 : 17.2 +- 0.3
Chi2/Ndf= 9/45

The output plot is shown in Fig. 14.3.

14.4.3 Fitting Multiple Peaks

This time we will learn how to fit multiple peaks. For this, we will prepare a his-
togram with three Gaussian peaks plus a background. Unlike the example discussed
before, we will create the background distribution using random numbers generated
in accordance with the analytical function 10 + 10 ∗ x (see Sect. 9.5 for details).
Below we show how to do this:

A histogram with multiple peaks

from java.util import Random
from jhplot import *
from jhplot.io import *
from jhplot.math.StatisticSample import *

xmin,xmax=0,20
h1 = H1D(’Data’,200,xmin,xmax)

360 14 Linear Regression and Curve Fitting

f=F1D(’10+10*x’,xmin,xmax)
p=f.getParse()
max=f.eval(xmax)

r= Random()
for i in range(10000):

a=randomRejection(10,p,max,xmin,xmax)
h1.fill(a)
h1.fill(0.3*r.nextGaussian()+4)
h1.fill(0.6*r.nextGaussian()+10)
h1.fill(0.8*r.nextGaussian()+15)

Serialized.write({’h1’:h1},’data.ser’)

Note that, for each iteration, the object a is an array with 10 numbers between xmin
and xmax. The Gaussian peaks are located at 4, 10, 15 units (note the additive
factors) and have different widths, given by the scaling factors, 0.3, 0.6, 0.8. The
histogram is saved in a serialized file using a dictionary with the key h1.

Now let us fit this histogram. First, we will read the histogram using its key
and plot it. Then we fit a region around the first Gaussian, making sure that we fit
only the specified range before the second peak starts. Then we add an additional
Gaussian to a new fit function and use the results of the previous fit for initialization
of our new function: Our code which fits all Gaussian peaks and the background is
given below:

Fitting multiple peaks

from jhplot import *
from jhplot.io import *
from java.awt import Color

d=Serialized.read(’data.ser’)
h1=d[’h1’]

c1 = HPlot(’Canvas’); c1.setRange(0,20,0,2000)
c1.visible(); c1.draw(h1)

f=HFitter()
f.setFunc(’p1+g’) # first fit
func=f.getFunc()
f.setPar(’mean’,4); f.setPar(’amplitude’,100)
f.setRange(0,7)
f.fit(h1)

ff=f.getFittedFunc(); r=f.getResult()
fPars = r.fittedParameters()

f.setFunc(’p1+g+g’) # Next Gaussian

14.4 Real-life Example. Signal Plus Background 361

func=f.getFunc()
func.setParameters(fPars.tolist()+[500,10,0.5])
f.setRange(0,13)
f.fit(h1)

ff=f.getFittedFunc(); r=f.getResult()
fPars = r.fittedParameters()

f.setFunc(’p1+g+g+g’) # Next Gaussian
func=f.getFunc()
func.setParameters(fPars.tolist()+[500,15,0.5])
f.setRange(0,20)
f.fit(h1)

f2 = F1D(’Fit function’,f.getFittedFunc(),0,20)
f2.setPenWidth(1)
f2.setColor(Color.blue)
c1.draw(f2)

In this example, the list [500,10,0.5] simply specifies the initial parameters
for the new Gaussian function, and it is added to the list created from the array
fPars holding the parameter values from the previous fit. Similarly, we fit the
third peak. Finally, we extract the resulting function and plot it. If you are not sure
which parameter names are necessary to use at each step, print the outputs of the
methods func.parameterNames() and func.parameters().

The result of the fit is shown in Fig. 14.4.
One can access the fit results using the same approach as in the previous ex-

amples: Insert the line r=f.getResult() at the end of your code and use the

Fig. 14.4 Fitting multiple peaks and a background using the χ2 minimization

362 14 Linear Regression and Curve Fitting

methods of the object r to print the fit quality (χ2/ndf), fitted parameter values and
their statistical uncertainties.

14.4.4 Fitting Histograms in 3D

Let us turn to the H2D histogram which was filled with data but not yet analyzed.
This time, we have to prepare a fit function with two independent variables. As be-
fore, we will fit our 2D function using the HFitter class and extract the resulting
function using the same methods as for the 1D case. The output function should be
shown on the HPlot3D canvas. Look at the example below:

Fitting a 2D histogram

from jhplot import *
from jhplot.io import *

d=Serialized.readXML(’data.xml’)
h1=d[’h2’]
c1 = HPlot3D(’Canvas’,800,400,2,1)
c1.visible()

f=HFitter()
f.setFunc(’g2D’,2, ’N*(exp(-0.5*((mu0-x[0])*\

(mu0-x[0])+0.5*(mu1-x[1])*(mu1-x[1]))\
/(s0*s0)))’,’N,s0,mu0,mu1’)

f.setPar(’N’,100); f.setPar(’s0’,1.0)
f.setPar(’mu0’,0.0); f.setPar(’mu1’,1.0)
f.fit(h1)

ff=f.getFittedFunc()
r=f.getResult()
Pars = r.fittedParameters()
Errors = r.errors()
Names = r.fittedParameterNames()
print ’Fit results:’
for i in range(ff.numberOfParameters()):

print Names[i]+’: ’+str(Pars[i])+’ +- ’+str(Errors[i])

print ’chi2/ndf=’+str(round(r.quality()*r.ndf()))\
+’/’,r.ndf()

f1 = F2D(ff,-10,10,-10,10)
c1.setGTitle(’Fitting 2D data’)
c1.cd(1,1)
c1.draw(h1)

14.5 Interactive Fit 363

Fig. 14.5 Fitting a 2D histogram (left) and showing the fit result (right)

c1.cd(2,1)
c1.draw(f1)

The output figure is shown in Fig. 14.5.

14.5 Interactive Fit

One can fit 1D data (H1D histograms or P1D arrays) using an interactive dialog
based on the HFit class. Assuming that c1 represents the HPlot canvas and h1
is a H1D histogram, one can start this fitter dialog as:

>>>a=HFit(c1,’c1’,h1,’h1’)

The execution of this line brings up a fit dialog where one can select the necessary
analytical function (it must exist in the catalog). Note that we pass not only the
objects, but also the variable names for the HPlot and H1D class. This is necessary
if one needs to generate the JAIDA source code automatically. One should mention
that one can also pass a P1D object instead of the histogram.

The fit panel allows a user to add custom functions, fit methods and perform the
fit. One can also set up the initial parameters for the selected fit function using the
[Settings] button. Once the fit is acceptable, one can generate the output fit
parameters, which will be inserted directly to the editor in a form of Jython code.
One can also automatically generate the JAIDA source code which corresponds to
the fit. Once inserted, it can further be corrected using the editor. Then, HFit()
statement can be removed and the generated JAIDA code can be run manually.

One can also specify a user-defined 1D function and add it to the HFit dialog.
This is an example of how to insert a first order polynomial function to be used for
the curve fitting:

364 14 Linear Regression and Curve Fitting

Fig. 14.6 Fitting data with statistical errors using an interactive fitter

>>>a=HFit(c1,’c1’,h1,’h1’)
>>>a.addFunc(’User1’,’Tool tip’,’a*x[0]+b’,’a,b’)

After script execution, a new function with the name User1 will be added to the
list of known functions. Select it with the mouse and click on the button [add].
One can add several functions for the fit. Then, by pressing the button [fit], you
will see the fit result.

Let us give a complete example of how to fit data points with statistical errors
using a custom function:

Fitting data interactively

from java.awt import Color
from jhplot import *

c1 = HPlot(’Canvas’)
c1.visible()
c1.setAutoRange()

c1.setGTitle(’Fit’,Color.blue)
c1.setGrid(0,0)
c1.setGrid(1,0)

p1 = P1D(’Linear fit’)
p1.add(1.0,3, 1.0)
p1.add(2.0,2, 1.0)
p1.add(3.0,5, 1.0)
p1.add(4.0,5, 1.0)
p1.add(5.0,7, 2.0)

References 365

p1.setErr(1)
p1.setErrFillColor(Color.yellow,0.3)
c1.draw(p1)

a=HFit(c1,’c1’,p1,’p1’)
a.addFunc(’User1’,’My fit function’, ’a*x[0]+b’,’a,b’)

The result of this script, after pressing the button [add] followed by [fit] on
the HFit dialog, is shown in Fig. 14.6.

References

1. Eidelman, S., et al.: Review of particle physics. Phys. Lett. B 592, 1 (2004)

Chapter 15
Neural Networks

15.1 Introduction

A neural network is a powerful tool for data classification: if we know a source
with input data, and also have knowledge of how the output data looks like, one can
obtain a relationship between inputs and outputs. This can be done totally numeri-
cally, without using any predefined function as in the case of curve fitting discussed
before. Once such a relationship is established, one can perform predictions based
on the input, assuming that the data set has the same characteristics as those used
for determination of the relationship during the so-called “training” step. Here we
will recommend several books [1, 2] with detailed information about the neural net-
works. Below we will touch only the basics of this subject.

But what exactly should be used to perform such classification of inputs? The en-
tire concept of the neural-network approach tries to capture the essence of biological
neural systems. In particular, it tries to simulate the brain’s way of processing infor-
mation. A neural network consists of a number of interconnected “neurons” in oder
to simulate biological neural systems. We should remind that a human brain consists
of a very large number of interconnected neurons. Each neuron has an input and a
branching output structure. When a neuron is activated, it sends an electrochemical
signal via the synapses to other neurons which may, in turn, fire signals to inputs of
other neurons. The strength of the propagated signal depends on the efficiency of
the synapses.

Mathematically, a neural network consists of a set of interconnected units, called
nodes. Each node accepts a weighted set of inputs and responds with an output.
Each input has an associated weight representing the strength of that particular con-
nection. A multilayer network with several layers of units is rather popular. For such
networks, the output from one layer serves as input to the next.

Below we will consider a feedforward neural network, in which the data from
input to output units is strictly feedforward. For this type of network, no feedback
connection exists. This is the most popular network in many practical applications.

The number of neurons in the input layer depends on the number of inputs, while
the number of neurons in the output layer depends on the number of desired outputs.

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_16, © Springer-Verlag London Limited 2010

367

368 15 Neural Networks

The number of hidden layers and the number of neurons in each such layer must be
defined empirically.

Each neuron performs accumulation of incoming pulses from its inputs using
weights. All weights are sum up and the sum is passed into a non-liner activation
function. We will use the most popular sigmoid activation function, S(x) = 1/(1 +
e−x). The output of such neutron is formed by applying the sigmoid function as:
S(d+∑N

i=0 xiwi), where xi are the input values from other neurons, wi characterize
the weights for input connections and d is a real number called the threshold. This
number characterizes the neutron as whole.

The neural net should be trained to adjust wi and d parameters. Once the input
units have received the signal from outside and from output units with the result-
ing signal, one can adjust the weights in interconnected neurons such that one can
perform predictions. During the learning process, the output vector of numbers is
compared to the expected output. If the difference is not zero, the (“epoch”) error
on the prediction is calculated. The idea is to adjust the weights to minimize the
difference between the neural-net output and the expected output. In this case, such
networks can learn arbitrary associations between the input vector and the output.

15.1.1 Generating a Data Sample

Let us sketch a typical task which can be solved using the neural-net approach.
Assume we have many events with the input vector of numbers. We also know
some events in which the input vector produces a specific output. How to make
predictions in case when only the input is available?

We will start with the preparation of a data sample, so later we will use it for
our neural network studies. Let us assume that we have five variables generated in
accordance with some distributions. We generate a new variable from the inputs
using some functions. The vector with inputs and outputs will be stored persistently
in a serialized file as shown below:

Creating a data set

from java.util import Random
from jhplot import *
from jhplot.io import *

input=PND(’Data’)
out=PND(’Output’)
r= Random()
for i in range(1000):

x1=10*r.nextDouble()
x2=2**(10*r.nextDouble())
x3=1/(r.nextDouble()+0.0001)
x4=10*r.nextDouble()+0.0001
input.add([x1,x2,x3,x4])
out.add([x1/x4-x2+x3])

15.1 Introduction 369

d={’input’:input,’out’:out}
name=’data.ser’
Serialized.write(d,name)
print name+’ is ready’

The code generates four variables and calculates the output y using the relationship
y = x1/x4 − x2 + x3.

Of course, in reality, we do not know an analytic relationship between input and
output. In fact, we are not interested in this form at all, since the whole idea of
the neural network approach is to find a numerical relationship. In some cases, we
even do not know the contribution of each input variables to the output, thus some
contributions could be zero and the variable may have nothing to do with the actual
output.

So, the task is seemingly clear. We have the input array and the output (which,
in general, could be also an array). The question is how to establish the relationship
between these variables pretending that, in reality, we know nothing about it.

15.1.2 Data Preparation

For neural network studies, it is advisable to standardize the input and to rescale the
output to the range [0,1] or [−1,1], depending on the output activation function.

The standardization means that we rescale the data such that all inputs have the
same weights. Without it, a variable with the largest scale may dominate, thus pro-
ducing a bias towards the input of this variable. To circumvent this problem, each
column should be standardized, i.e. transformed to:

Si = (Xi − X̄)/σ

where Xi is the original value, X̄ is the mean and σ is the standard deviation of the
input data.

In order to standardize a PND, apply the following command:

>>> pnd.standardize()

where ’pnd’ is an input PND data container. The example below shows how to use
this method:

>>> from jhplot import PND
>>> pnd=PND(’pnd’)
>>> pnd.add([0.02,10,3])
>>> pnd.add([0.01,6,1])
>>> pnd.add([0.03,12,5])
>>> print pnd.standardize()

370 15 Neural Networks

0.0 0.21 0.0
-1.0 -1.09 -1.0
0.99 0.87 1.0

In contrast, a normalization or rescaling means that each column is transformed
such that all column values are either between [0,1] or [−1,1], depending on the
range of the activation function. To normalize a PND, use the rescale() method.
One should pass “0” as an argument in case if the rescaling should be done for the
range [0,1]:

Si = (Xi − Xmin)/(Xmax − Xmin)

In case of the range [−1,1], one should apply this transformation:

Si = 2 ∗ (Xi − midrange)/(Xmax − Xmin), midrange = 0.5(Xmax + Xmin)

which is implemented for the PND class using the method rescale(1). This
method returns an array which then is used to transform the PND back to the original
form. In this case, the output of the rescale method should be passed as an input to
the rescale(obj) method. Consider the example:

>>> from jhplot import PND
>>> pnd=PND(’pnd’)
>>> pnd.add([0.02,10,3])
>>> pnd.add([0.01,6,1])
>>> pnd.add([0.03,12,5])
>>> a=pnd.rescale(0)
>>> print pnd
0.5 0.66 0.5
0.0 0.0 0.0
1.0 1.0 1.0

>>> pnd.rescale(a)
>>> print pnd
0.02 10.0 3.0
0.01 6.0 1.0
0.03 12.0 5.0

One can see that the rescale method has restored the original array, once you have
passed the output from the first rescale(0) call which converts each column
to the range [0,1]. Analogously, if the rescale(i) method is called with the
argument “1”, all values will be moved to the range [−1,1], and the conversion
back will be done in exactly the same way as before.

In the next example we read the saved containers, standardize the input and nor-
malize the output. Then we save the resulting container into a dictionary. We also
save the array keeping the scaling factors, which can be used to restore the output
later.

15.1 Introduction 371

Standardizing data

from jhplot.io import *

d=Serialized.read(’data.ser’)
input=d[’input’]
out=d["out"]

input.standardize()
scale=out.rescale(0)

d={’input’:input,’out’:out,’scale’:scale}
name=’data_scaled.ser’
Serialized.write(d,name)
print name+’ is ready’

It should be noted that the standardization should be approached with caution
because it discards certain information. Generally, there are no ‘rules of thumb’ that
apply to all possible cases.

Now we are ready to use a fraction of the rescaled data for training of our neural
network. But before, let us discuss the machinery behind the construction of a neural
net.

15.1.3 Building a Neural Net

First, let us discuss how to build and visualize a neural network. In case of jHep-
Work, a neural net can be constructed using the class HNeuralNet which is based
on the Encog project [3]. In order to illustrate its usage, we will build a feedforward
neural network with an input layer, two hidden layers and one output layer. The in-
put layer will contain four neurons, two hidden layers will have five neurons each,
and the output layer will have a single neuron:

>>> from jhplot import *
>>> net = HNeuralNet()
>>> net.addFeedForwardLayer(4)
>>> net.addFeedForwardLayer(5)
>>> net.addFeedForwardLayer(5)
>>> net.addFeedForwardLayer(1)

The code above simply adds layers, staring from input to the output, passing in-
teger arguments and specifying the number of interconnected neutrons in each
layer.

The next step is to reset all neuron thresholds to some (random) values. This
should be done with the method reset().

372 15 Neural Networks

Fig. 15.1 A representation of a neural network with two hidden layers. The threshold values for
the activation matrix is shown for each neutron. In this example, they are random numbers gener-
ated with the reset() method

The constructed network can be visualized with the method showNetwork().
Below we show how to initialize the network and display it on the screen:

>>> net.reset()
>>> net.showNetwork()

The result of the last line is a pop-up window which displays the structure of the
network. This window is shown in Fig. 15.1. Each layer has the following notations:
“I” is the input layer, “H” is the hidden layer and “O” is the output layer.

Once the network is created, we should set the input and the output data for
training. This can be done with the method setData(input,output), where
input and output are data holders of the type PND. One can look at the data by
calling the editData() method which opens an editor with the neural-net input
and output.

Next, the created network should learn how to adjust the weights and the neuron
thresholds. This is done by applying the method:

>>> net.trainBackpopogation(b,max,learnRate,mom,err)

15.1 Introduction 373

where:

b is 1 (Java true) if a dialog window is required to show the learning
rate and its errors. The smaller error on Y , the higher chances that the
learning is successful. Make sure that the error value does not change
with iteration (or epoch) number. If b is Java false (“0” in Jython),
one cannot monitor the learning rate and error.

max is the maximal number of epochs for learning. The learning contin-
ues until max is reached, but only if the epoch error is larger than
errEpoch. If we reach a maximum count of iterations or epochs,
this will mean that the training was not successful.

learnRate is the rate at which the weight matrix will be adjusted based on learn-
ing (the so-called learning rate); This number is usually between 0.1
and 0.2.

mom is the influence that previous iteration’s training deltas will have on
the current iteration. Usually it is set to 0.1–0.4.

err is the “epoch” error for training at which the learning should be
stopped. If the specified error is not reached during the learning, the
program stops the learning after reaching “max” number of events.

It should be noted that the epoch error can also be obtained with the method
net.getEpochError() without opening the control window.

It is always a good idea to call the showNetwork() method to look at the new
threshold values. Once the network was trained, one can save the network in a file,
so one can restore it later. This can be done as:

>>> net.save(’test.eg’,’trainedNN’,’My trained NN’)

The first string is the output file name (’test.eg’ in this example), the second
is the name of the network (’rainedNN’) and the third argument is used for the
network description.

One can restore the saved network at any time by calling the method:

>>> net.read(’test.eg’,’trainedNN’);

where ’test.eg’ is an input file with the neural network.

15.1.4 Training and Verifying

The data after the standardization of the inputs and rescaling the outputs are ready
for the next step—training. We will create a neural net with four neutrons in the
input layer. The output layer will contain one neuron. Our hidden layer will contain
seven neurons. After creating the net, we will reset all inputs and load the first half
of our data (500 rows). The training will be done using 2000 epoches. During the
training, we will open a frame displaying the value of the epoch error. Once the

374 15 Neural Networks

training is finished, we will save the results into the file ’test.eg’, attributing
trainedNN string to the name of our neural net. We also display the neural net
after the training in order to verify that all thresholds indeed have been changed
after the training. The code below shows the entire training process:

Training a neural net

from jhplot import *
from jhplot.io import *

d=Serialized.read(’data_scaled.ser’)
input=d[’input’].getRows(’input’,0,500)
out=d[’out’].getRows(’result’,0,500)

net = HNeuralNet()
net.addFeedForwardLayer(4)
net.addFeedForwardLayer(7)
net.addFeedForwardLayer(1)
net.reset()

net.setData(input, out)
print net.trainBackpopogation(1,2000,0.01,0.02,0.005)

print "Epoch error=",net.getEpochError()
net.save("test.eg","trainedNN","My trained NN")
net.showNetwork()

Next, we will verify the performance of the network training using the second
half of our generated sample. We will read the data and the neural net saved in the
previous example, and generate predictions from the input. Then we will restore the
input (remember, previously we had to scale the input data to the range [0,1]) using
the “scale” arrays, and apply the same recovery procedure to the predicted array.
Then we will save restored output and neural net predictions in a separate file for
the next analysis step. The code is given below:

Neural net verification

from jhplot import *
from jhplot.io import *

d=Serialized.read(’data_scaled.ser’)

min,max =500,1000
input=d[’input’].getRows(’input’,min,max)
out=d["out"].getRows(’result’,min,max)
scale=d["scale"]

net=HNeuralNet()
net.read(’test.eg’,’trainedNN’);

15.2 Bayesian Networks 375

pred=net.predict(input)
pred.rescale(scale)
out.rescale(scale)

d={’predicted’:pred,’expected’:out}
Serialized.write(d,’data_verify.ser’)

Finally, we can look at the outputs and the predicted values. We will print the
values and also calculate the ratio of the predicted outputs to the original outputs.
We will create a histogram with this ratio as shown below:

Neural network predictions

from jhplot import *
from jhplot.io import *

d=Serialized.read(’data_verify.ser’)
predicted=d[’predicted’]
expected=d[’expected’]
ratio=predicted.copy(’ratio’)
ratio.oper(expected,’/’)

c1=HPlot()
c1.visible()
c1.setAutoRange()

h=H1D(’ratio’,50,-3,3.)
h.fill(ratio)
c1.draw(h)
c1.drawStatBox(h)

for i in range(100): # check first 100
p=predicted.getRow(i)
x=expected.getRow(i)
d1=p.get(0)
d2=x.get(0)
print ’predicted=’,d1,’ expected=’,d2

The script generates a canvas with the filled histogram. One can see that the his-
togram has a peak at unity as expected. The distribution has long tails indicating
that, for some rear events, the predictions could still be far away from the original
values.

15.2 Bayesian Networks

A Bayesian network (or “belief” network) is a graphical model for manipulating
probabilistic relationships among variables of interest, and building decision scenar-

376 15 Neural Networks

ios requiring reasoning under uncertainty. Such networks are widely used in man-
aging uncertainty in science, engineering, business and medicine [4, 5].

The Bayesian network is included into the jHepWork libraries using the
JavaBayes package [6]. It calculates marginal probabilities and expectations, pro-
duces explanations and performs robustness analysis. In addition, it allows a user to
import, create, modify and export networks.

The network editor can be called using the HBayes class:

>>> from jhplot import *
>>> HBayes()

This brings up the Bayesian-network editor and a console window. A user can follow
the step-by-step instruction given in the console. The JavaBayes network is rather
well documented and will not be discussed here further.

15.3 Self-organizing Map

In addition to the neural network algorithms which require a “learning” procedure,
there is a class of unsupervised learning algorithms which attempt to find the most
appropriate topological description of input data. Below we will consider a Bayesian
self-organizing map (BSOM), which represents a method for estimating a probabil-
ity distribution from input data on the basis of a Bayesian stochastic model. For this
model, the data recognition algorithm tries to find relationships in high-dimensional
data and converts this knowledge into a simple relationship using low-dimensions.

We will consider an example which can help to make the BSOM explanation
more illustrative. For this, we will use the class HBsom based on the BSOM program
[7].

The code below fills a histogram, converts it to a P1D container which is then
used for the algorithm input. We use 30 interconnected units to analyze the topolog-
ical shape in 2D, see the method setNPoints. The last line of the code brings up
a window with visualized data points and interconnected units. Also, we save the
generated input data (see the method toFile()), so we can use the same data for
the example to be shown in the next subsection.

Interactive self-organizing map

from java.util import Random
from jhplot import *

h1 = H1D(’Data’,20,-100.0, 300.0)
r = Random()
for i in range(2000):

h1.fill(100+r.nextGaussian()*100)

p1d=P1D(h1,0,0)

15.3 Self-organizing Map 377

p1d.toFile(’data.txt’)

bs=HBsom()
bs.setNPoints(30)
bs.setData(p1d)
bs.visible()

To start the algorithm, one should set up the values α and β . Then press the but-
ton “learn”. Initially the BSOM units are positioned randomly, then the algorithm
calculates the most optimal positions for interconnected units. The resulting plot is
shown in Fig. 15.2.

The BSOM model parameters, α and β , represent the strength of topological
constraint and the noise level expected in data, respectively. α and 1/β correspond to
the temperature of a physical system. For α � 0, topological constraint on the units
is not imposed and BSOM can be viewed as a data clustering based on a spherical

Fig. 15.2 The BSOM algorithm in action using an interactive mode

378 15 Neural Networks

Fig. 15.3 Using the BSOM algorithm in a non-interactive mode

Gaussian mixture model. When β is infinitely large, BSOM is very similar to the
K-means algorithm.

Running this algorithm will help to find an optimal configuration for data de-
scription. Usually, one should start learning from a high value of α and a low value
of β . One should note that BSOM can automatically search for the optimal val-
ues of the parameters by pressing the ‘auto’ button. The ‘density’ button shows the
estimated data density.

15.3.1 Non-interactive BSOM

It is more practical to run the BSOM program in a non-interactive mode. This
can be done by removing the line with the visible() method and inserting
the line run(). The results of the algorithm can be retrieved with the method
getResult() with the output in the form of P1D array. Then we plot the results
as in the code below:

Non-interactive BSOM

from jhplot import *
from java.awt import Color

c1 = HPlot("Canvas")
c1.setGTitle("Bayesian Self-Organizing Map")
c1.visible()
c1.setAutoRange()

p1d=P1D("data","data.txt")
p1d.setErrToZero(1)
bs=HBsom()
bs.setNPoints(30)
bs.setData(p1d)

15.4 Neural Network Using Python Libraries 379

bs.run()
result=bs.getResult()
result.setStyle("pl")
result.setColor(Color.blue)
c1.draw(p1d)
c1.draw(result)

One should note that we set all statistical errors of the input P1D to zero. The
resulting P1D is shown with symbols connected with the lines. The result of the
above script is shown in Fig. 15.3.

Let us give more details about the use of the HBsom in the non-interactive mode.
The method run() executes the learning algorithm. The learning stops if topolog-
ical changes between each step are smaller than some parameter, which can be set
via the method setDelta(). One can get the total number of iterations using the
method getNiterations().

For more complicated topologies of data in 2D, it is important to adjust the initial
α and β values using the method setAlphaBeta(a,b).

15.4 Neural Network Using Python Libraries

jHepWork packaged several libraries for neural-network studies implemented in
Python. In particular, one can use the PyANN program [8] which was initially writ-
ten for CPython. As you already know, numerical programs implemented in Python
are slow. Therefore, we will not gain anything in terms of execution performance
while running this package using Jython, compare to native Java or C++ libraries.
But there are several other advantages in using the Jython approach: (1) The code
is fully “transportable” and can be run using CPython; (2) There is a direct access
to the original code if one needs to understand it and make necessary modifications;
(3) Finally, you will get all benefits of the Python programming language, including
its interactivity for easy debugging.

In this section, we will illustrate how to use the PyANN library using jHep-
Work. The corresponding library is located inside the directory pyann in python/
packages. If you are using the jHepWork IDE, this directory is imported automat-
ically. Below we will learn how to run a multilayer algorithm, which implements a
feedforward, supervised algorithm for data classification.

As in the previous section, we will divide our work in several steps: (1) we will
prepare a common module, to make our codding compact; (2) we will create files
with input data for training and verifications. We will use the shelve module dis-
cussed in Sect. 2.16.6; (3) then we will build a neural net and train it. Finally, we
will verify the performance of this algorithm.

Let us first make a common module which imports the necessary libraries from
the PyANN package. Here we will also define several global parameters, as well

380 15 Neural Networks

functions for input and output. The example code is given below:

Common module "NNpython.py"

import sys,math,random,shelve

import pyann.mlp
from pyann.mlp.layer import *
from pyann.mlp.monitoring import *
from pyann.mlp.training import *
from pyann.mlp.training.backprop import *

WINDOW, MIN_VALUE, MAX_VALUE = 10,-1,1

def writeData(data,valid,pattern):
sh=shelve.open(’data.shelf’)
sh[’data’]=data
sh[’validate’]=valid
sh[’pattern’]=pattern
sh.close()

def readData():
return shelve.open(’data.shelf’)

Next, using the module above, we will create a file with the input data. We will use
sin(i) as an engine to generate our data. The data will have 73 rows, 63 will be
used for training and 12 for validation. Each row of data will be in a form of tuple
with 10 inputs, while we will have only one output (also in the form of tuple but
with one value).

Creating a data set

from NNpython import *

data = [] # Build data set
for i in range(-360, 361, 10):

data.append(math.sin(i))
print len(data)

start = len(data)-WINDOW-1
pattern=[] # Build pattern
while len(data[start : start+WINDOW]) == WINDOW:

input = tuple(data[start : start+WINDOW])
output = (data[start+WINDOW],)
pattern.append(pyann.mlp.Pattern(input, output))
start -= 1

valid = [] # validation pattern. 20% of data
for i in range(int(len(pattern)*0.2)):
valid.append(pattern.pop(random.randrange(len(pattern))))

15.4 Neural Network Using Python Libraries 381

writeData(data,valid,pattern)

In the above example, use the method type() for debugging which helps to un-
derstand what the above code is doing. All data will be saved into a file.

Now we come to the training. First, we build a neural net with 10 inputs, 5 nodes
for the hidden layer and one output node. Then we read the data and train the net us-
ing rather self-explanatory methods. The script prints the training (“epoch”) errors.
Finally, we will verify the net using our verification sample.

Neural network training and predictions

from NNpython import *

layers = (SigmoidInputLayer(WINDOW),\
SigmoidLayer(5),\
SigmoidOutputLayer(1,minValue=MIN_VALUE,
maxValue=MAX_VALUE))

net = pyann.mlp.Network(layers)

sh=readData()
data=sh[’data’]
validation=sh[’validate’]
patterns=sh[’pattern’]

monitor = VerboseMonitor()
stopOnMaxIter =MaxIterationsStopCondition(500)
stopOnMinError =MinErrorStopCondition(0.01)
stopOnVMinError =MinValidationErrorStopCondition(0.005)

trainer =BackpropagationTrainer(net, monitor)
trainer.setLearningRate(0.7)
trainer.setMomentum(0.5)
trainer.setRandomize(True)
trainer.setStopConditions((stopOnMaxIter,\

stopOnMinError,stopOnVMinError),\
joiner = ’or’)

trainInfo = trainer.train(patterns, validation)
print """
Epochs: %(epoch)s
Final error: %(error)s
Validation set error: %(validationError)s
""" % { ’epoch’: trainInfo.getIterationNumber(),

’error’: trainInfo.getError(),
’validationError’: trainInfo.getValidationSetError()}

for i in range(370, 725, 10):
start = len(data) - WINDOW

382 15 Neural Networks

predicted = net.classify(tuple(data[start:]))[0]
data.append(predicted)
print ’sin(%s) = %s’ % (i, predicted)

Run this code to see the result of the training. The code snippet prints out the pre-
dicted values, which are rather close to the true values of the sin(i) function.

References

1. Beale, R., Jackson, T.: Neural Computing: An Introduction. Institute of Physics Publishing,
Bristol (1990)

2. Bharath, R., Drosen, J.: Neural Network Computing. McGraw-Hill, New York (1994)
3. Heaton, J.: Contributions: The ENCOG project. URL http://code.google.com/p/encog-java/
4. Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall, New York (2003)
5. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn. Information

Science and Statistics. Springer, Berlin (2007)
6. Cozman, F.G.: Javabayes: Bayesian networks in Java. URL http://www.cs.cmu.edu/~

javabayes/
7. Utsugi, A.: Neural Comput. 9, 623 (1997)
8. PyANN, a Python framework to build artificial neural networks. URL http://sourceforge.net/

projects/pyann

Chapter 16
Steps in Data Analysis

In this chapter, we will consider rather common analysis techniques used to pro-
cess and analyze data before final visualization. We will gain insight into how to
transform data, reject unnecessary records or add additional information, remove
duplicate records, sort data and many other common operations. We will also learn
how to process data in parallel using multiple processors.

From the programming point of view, our discussion is heavily based on the
knowledge collected in the previous chapters.

16.1 Major Analysis Steps

A first step towards understanding of a general analysis strategy is to abstract from
a particular type of data and focus on generic steps for data processing, which can
consist of

Measurement A determination of numerical values of some observables and
collection of experimental results into data files. A group of
measured values forms an “event record”, or simply, “events”.
Each event can contain a set of records, each consisting of a set
of objects (strings, values, multi-dimensional arrays, histograms
etc.). The event record may represent various characteristics of
a single observation.

Transformation Transformation of the event records into the most appropriate
format for further manipulation. This can be done at any analysis
step, depending on a concrete situation. If event records are too
big for disk storage, they can be converted into a more compact
format. But keep in mind that we may pay for this later with
a lower processing speed during data analysis. If data requires
a lot of processing and the file storage is not an issue, one can
keep data in a less compact format.

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_17, © Springer-Verlag London Limited 2010

383

384 16 Steps in Data Analysis

Checking integrity Furthermore, if data files have to be moved between different
file storages using network, one should check data integrity. The
main question is whether the data records have been corrupted
during the process of copying. Data files can also be altered at
various stages of data manipulation (intentionally or uninten-
tionally), thus one should always verify if they are valid and
contain the original information.

Data skimming Reduction of data volume by rejecting uninteresting events.
First of all, one should reject events which do not pass selection
requirements or do not convey useful information, events with
duplicate records and so on. The reason for this is simple: run
time for most data analysis algorithms is roughly proportional
to the data volume. In addition, one can save disk space when
saving the data persistently. The choice of skimming criteria is
often a balance between many factors.

Data slimming Removing uninteresting information inside event records. In-
stead of dealing with complete event records, one may keep only
the most interesting objects to be used for the final analysis. The
reason is pretty much the same as for the skimming step.

Data thinning Reduction of information characterizing separate objects inside
remaining event records after the skimming. Again, the reason
for this step is the same as before: it guaranties that one deals
with a meaningful part of data records in future.

Data inclusion Adding necessary information to the event records. This infor-
mation can be derived from the remaining information stored in
the event records (or from the rejected information before the
previous “slimming” or “thinning” steps). For example, one can
add new collections which represent statistical summaries of the
event records by imposing some selection criteria.

Building metadata This is a process of constructing short event records that charac-
terize either the entire event or objects inside event records. The
metadata are usually necessary in order to quickly find necessary
events without reading the entire events, in case if data should
be processed more than once. The metadata information can be
inserted either inside the event records (using the data inclusion
process discussed above) or can be included into a separate file
for easy manipulation.

Final preparation This is a step which is necessary for final data mining, statistical
summaries and the final analysis. Typically, this stage includes
a data projection onto lower dimensions for data visualization.
It can also include data sorting, removal of duplicate entries or
transformation to the most useful format for analysis.

The prepared event records can be used for meaningful predictions on the basis
of discovered pattern. For instance, data can be visualized and used as inputs for the

16.2 Real Life Example. Analyzing a Gene Catalog 385

supervised or unsupervised learning algorithms discussed in the previous chapters.
Finally, the selected data should be compared with a certain theory.

The data skimming, slimming and thinning are not new concepts in data analysis.
However, in recent years, there has been growing interest in such analysis techniques
during preparation to data taking at the Large Hadron Collider to be constructed by
the international community in Geneva (Switzerland), where such concepts have
been reshaped and refined [1].

In this book, our approach will remain to be the same: Instead of being abstract,
we will illustrate the above analysis techniques using numerical examples.

16.2 Real Life Example. Analyzing a Gene Catalog

In this section will analyze a published gene catalog of human chromosome 11 and
illustrate most of the analysis steps discussed above. Other aspects of data analysis
will be discussed in the following sections.

Of course, we cannot discuss the actual measurement of the gene catalog; instead,
we will copy the available data from a public domain and then perform necessary
operations using Jython scripting. The analyzed data file can be copied from a web
page given in [2]. For easy manipulation, we have transformed the original file into
a CSV file (one can do this with any spreadsheet program).

Let us download a CSV file with the gene catalog and display it in the CSV
browser.

Getting the data

from jhplot.io.csv import *
from jhplot import *

http=’http://projects.hepforge.org/jhepwork/’
file=’nature04632-s16-2.csv’
wget(http+’examples/data/’+file)
r=CSVReader(file,’,’)
SPsheet(r)

As for the previous chapters, if the above web page location fails, use a mirror
site by replacing the http address with the string:

http=’http://jhepwork.sourceforge.net/’
or
http=’http://jwork.org/jhepwork/’

The above code brings up a spreadsheet filled with the data from the gene catalog.
A visual study of this file reveals that each gene symbol is characterized by several
records. In fact, each row representing a gene can be considered an “event record”
using the terminology adopted above. Each gene has its symbol, name, category,
location, length and so on. We will use this file as a starting point for our examples.

386 16 Steps in Data Analysis

16.2.1 Data Transformation

Now we will show how to transform the gene event records into a machine-readable
form. For many practical applications, this is necessary in order to save disk space
while storing the data, or for best performance while reading data.

In the example below we illustrate how to read the CVS file (see Sect. 11.7.1)
and convert the event records, line by line, into a compressed serialized file (see
Sect. 11.3):

Transforming data records

from jhplot.io.csv import *
from jhplot.io import *

r=CSVReader(’nature04632-s16-2.csv’,’,’)
f=HFile(’nature.ser’,’w’)

i=0
while 1:

line= r.next()
if line == None: break
if (i%100 == 0): print i
f.write(line)
i +=1

f.close()
r.close()

The code seemed very simple: We loop over all rows in the CSV file and serialize
them into the file ’nature.ser’ which keeps data in a compressed form. The
size of the output file is typically three times smaller than the original file size.

16.2.2 Data Skimming

Let us turn to the skimming stage during which the data volume is reduced after
rejecting uninteresting event records. For our example, we assume that some rows
convey no useful information for further analysis. In particular, we would like to
skip all genes with undefined gene names (“symbol”). By examining the CSV file
using a spreadsheet, one can find that a gene symbol entry is not defined if the first
column has the string ’undef’. So, let us rewrite the file by rejecting such entries:

Skimming data records

from jhplot.io import *

f1=HFile(’nature.ser’,’r’)
f2=HFile(’nature_skim.ser’,’w’)

16.2 Real Life Example. Analyzing a Gene Catalog 387

while 1:
row=f1.read()
if row == None: break
if row[0] == ’undef’ or len(row)<18: continue
f2.write(row)

f1.close()
f2.close()

The output will be saved into the file ’nature_skim.ser’. In the above code,
we included a simple check which verifies the correct length (18) for the processed
rows.

16.2.3 Data Slimming

This time we are not interested in storing all information withing each event record.
For example, we would like to remove two last columns for each row, which do
not convey any useful information for us, but keeping the same number of rows as
before. It takes only a few lines of the code to perform this manipulation:

Slimming data records

from jhplot.io import *

f1=HFile(’nature_skim.ser’,’r’)
f2=HFile(’nature_slim.ser’,’w’)

while 1:
row=f1.read()
if row == None: break
s=len(row)
del row[s-1]
del row[s-2]
f2.write(row)

f1.close()
f2.close()

16.2.4 Data Sorting

Next, we would like to sort the event records using some arbitrary criteria. Our
event records are not very simple because they are constructed from several objects.
Therefore, the standard use of the sort() method for Jython lists will not work: In
case if each row contains several records, the sorting of rows should be done using

388 16 Steps in Data Analysis

values stored in a certain column, thus we should use the standard Jython method
sort() in a somewhat different way.

Sorting of data will be performed in a computer memory to make the entire pro-
cess fast. For this example, we will sort the records based on the first column. We
will read data into a list and use the sort()method together with the cmp() func-
tion which provides a sorting algorithm. After the sorting, we will write the event
records into a new file:

Sorting records

from jhplot.io import *

f1=HFile(’nature_slim.ser’,’r’)
f2=HFile(’nature_sorted.ser’,’w’)

data=[]
while 1:

row=f1.read()
if row == None: break
data.append(row)

f1.close()

def cmp1(a,b): return cmp(a[0],b[0])

data.sort(cmp1)
for k in data:

f2.write(k)
f2.close()

In our example, the sort() method uses a custom cmt1() function, which
calls the standard Python cmt() function. However, one can build totally custom
cmp1(). For example, one can construct the cmp1() function used in the above
example as:

A custom sorting function

def cmp1(a,b):
if a[0]<b[0]: return -1
if a[0]==b[0]: return 0
if a[0]>b[0]: return 1

One can define the function cmt1() before the sort() command, and include
any logic for sorting.

We do not need always to use the Python-type objects. One can also use pure-
Java collections to store and sort elements. In Sect. 2.7 we have shown how to use
the List class to store data and how to sort records using the Collection class.

16.2 Real Life Example. Analyzing a Gene Catalog 389

16.2.5 Removing Duplicate Records

Removal of duplicate event records requires a small preparation step. First, let us
write a simple function which accepts a list containing other lists and sorts the list
in accordance with an input index. Then, we scan from the end of the list, deleting
duplicate entries based on the input index as we go:

Module ’unique.py’

def unique(s,inx):
def cmp1(a,b): return cmp(a[inx],b[inx])
s.sort(cmp1)
last = s[-1]
for i in range(len(s)-2, -1, -1):

if last[inx] == s[i][inx]:
del s[i]

else:
last = s[i]

return s

The function returns a list of elements without duplicate entries. We pass a variable
inx which defines the column number used for the duplicate removal.

Now we should make a test of this function. Assume we have a list in which each
element is another list. We will remove duplicate entries based on the first index (0),
and then remove duplicates based on the second index:

Testing module

from unique import *

L=[[1,2],[’a’,10],[’a’,100],[’b’,1],[’c’,2]]
print unique(L,0)
print unique(L,1)

The output of this code is given below:

[[1, 2], [’a’, 100], [’b’, 1], [’c’, 2]]
[[’b’, 1], [’c’, 2], [’a’, 100]]

As you can see, after the first call, we have removed [’a’,10] (based on the first
index), while the element [1,2] was rejected after the second call based on the
second index.

Now we are ready to remove duplicate records in our example of the gene cata-
log. We will remove duplicate rows based on the second column (index = 1):

Removing duplicate entries

from jhplot.io import *
from unique import *

390 16 Steps in Data Analysis

f1=HFile(’nature_sorted.ser’,’r’)
f2=HFile(’nature_unique.ser’,’w’)
data=[]
while 1:

row=f1.read()
if row == None: break
data.append(row)

f1.close()

unique(data,1)
for k in data:

f2.write(k)
f2.close()

16.2.6 Sorting and Removing Duplicate Records Using Java

We should also remind that there is no need for the Python-type approach for re-
moving duplicate objects while working with Jython. On can always convert data
into the Java collection Set discussed in Sect. 2.7. We have shown that one can
use the class HashSet implementation of the interface Set which, by construc-
tion, cannot contain duplicates. Moreover, one can use the class SortedSet that
always maintains its elements in ascending order, so there is no need to worry about
sorting and removing duplicates.

So, plan the analysis beforehand: if you think that the final data output should not
contain the same elements in the output container, just find appropriate container to
keep data records.

In the following subsections we will show two examples of how to work with
event records using pure Java collections.

16.2.6.1 Processing Big Event Sample

You may find yourself in a typical situation: One needs to read a huge data sample
and remove duplicate records based on some value. One cannot store all records
in the computer memory, but one can still store values used for duplicate removal.
In this case, there is no need for loading a full event into the computer memory:
just read the file and write the event back as you go. Use the class HashSet to skip
event records with exactly the same description (in our case, this is the first element).
When you add a description into the HashSet object, it returns ‘1’ (success) if no
duplicate is found and ‘0’ if a duplicate is found. Using this approach one should be
able to process big data files without too much load on the computer memory.

16.3 Using Metadata for Data Mining 391

16.2.6.2 Sorting and Removing Duplicate Records

In the next example we show how to sort and remove duplicate records using Java
classes. In particular, the class TreeMap will be used for sorting and removing du-
plicate objects at the same time. This example is similar to that shown in Sect. 2.7.6.
The only difference is that now we read and fill a file with the data using the List
class to decouple the first record with the description from the rest of the event
record. We use the description of genes as the keys for the TreeMap object which
removes duplicates and sorts the keys as we fill it in. Finally, we loop over all sorted
keys and restore the event records by combining keys with the key value.

Sorting and removing duplicates

from jhplot.io import *
from java.util import *

f1=HFile(’nature_slim.ser’,’r’)
map=TreeMap()
while 1:

row=f1.read()
if row == None: break
ln=row.size()
r=row.subList(1,ln)
map.put(row[0], row.subList(1,ln))

f1.close()

f2=HFile(’sorted_unique.ser’,’w’)
for i in map:

row=map[i]
row.set(0,i)
print row
f2.write(row)

f2.close()

At this stage, we cannot use the gene catalog for our further examples. Our re-
maining gene records are not sophisticated enough to perform thinning or building
a metadata file. The latter techniques will be illustrated using an appropriate data
sample.

16.3 Using Metadata for Data Mining

We will continue with our discussion of data analysis techniques by diving into the
notion of metadata. For this section, we cannot use the previous data sample as it
lacks the necessary volume and complexity with which we usually have to deal with
when the metadata records become necessary. The metadata is especially useful for
large, data-intensive tasks in which one observation (or event) contains many data
records.

392 16 Steps in Data Analysis

As mentioned before, the metadata is a short record which captures the basic
characteristics of the entire event or objects inside each event record. These char-
acteristics appear to be useful when one needs to find a necessary record as fast as
possible, without reading the entire data records.

The metadata concept is essential when one needs to find a few rear events, so
there is no too much sense in reading the data again and again if one single pro-
cessing can build a metadata file which can be used for searching. Especially, one
can gain a lot in terms of a program performance when a multiple data processing is
required. For example, one can benefit from the use of the metadata if data records
have to be analyzed by many users.

The reason why the metadata can be useful for multiple processing is simple:
in this approach, a program reads only a small (“metadata”) record. Usually, this is
neither IO nor CPU consuming. Of course, the metadata records should be first con-
structed using a priory knowledge about which data characteristics are important for
future analysis. We should also note that the process of construction of the metadata
files can be rather CPU consuming.

In this chapter we will illustrate the metadata concept using a few short code
snippets and Jython scripting.

16.3.1 Analyzing Data Using Built-in Metadata File

First, let us create event records for our examples. Each event will consist of a string,
representing the record number, and two arrays of the type P0D. The size of both
arrays is not fixed: it is determined by a Poisson distribution with the mean 500.
One array is filled with a uniform random numbers, while the second array is filled
with random numbers in the range between 0 and 1. We write 10,000 events into a
serialized compressed file ’data.ser’

Building a data file

from jhplot.io import *
from jhplot import *

ps=math.Poisson(500)
def makeEvent(entry):

p1,p2=P0D(’a’),P0D(’b’)
p1.randomUniform(ps.next(),0,1)
p2.randomNormal(ps.next(),0,1)
return [str(entry),p1,p2]

f=HFile(’data.ser’,’w’)
for i in range(10000):

ev=makeEvent(i)
if (i%100 == 0):

print ’pocessed=’,ev[0]

16.3 Using Metadata for Data Mining 393

f.write(ev)
f.close()

When the output file is ready, one question we may to ask themselves is this: how
can we find events in which the sum of all elements inside both arrays is above some
value cut? Of course, this can be any other data mining task. We just have picked
up this one as it is simple to implement and, at the same time, it well captures the
idea of using the metadata.

The code which reads the data file and counts all data records with the sum of all
elements above cut=320 inside both arrays can look like this:

Analyzing data

from jhplot import *
from jhplot.io import *
import time

f=HFile(’data.ser’)
start = time.clock()
i=0; cut=320
while 1:

event=f.read()
if event == None:

print "End of events"
break

if int(event[0])%1000 == 0:
print ’processed=’,event[0]

p1,p2=event[1],event[2]
v=p1.getSum()+p2.getSum()
if v>cut:

i+=1
t = time.clock()-start
print ’Nr above ’+str(cut)+’ =’,i, ’ after time (s)=’,t
f.close()

The above code also performs a very basic benchmarking. The output is listed be-
low:

End of events
Nr above 320 = 30 after time (s)= 10

Of course, the number of selected events and the execution time can be different for
your test.

Now, let us assume that we need to process the generated data file many times
using different values of the variable cut for the event selection. This means that
we should build a metadata by constructing an additional event record with the sum
of all elements inside the arrays.

394 16 Steps in Data Analysis

We are ready to design such code using the class HDataBase discussed in
Sect. 11.3.6. As the key value to be associated with each event record, we will use
a string which consists of two parts: the event number and a value representing the
sum of all elements inside both arrays. The event number and the sum are separated
by the underscore character.

A database approach to store data and metadata

from jhplot import *
from jhplot.io import *
import time

f=HFile(’data.ser’)
start = time.clock()

db=HDataBase(’data.db’,’w’)
while 1:

event=f.read()
if event == None:

print ’End of events’
break

p1=event[1]
p2=event[2]
v=p1.getSum()+p2.getSum()
db.insert(event[0]+"_"+str(v),event)

t = time.clock()-start
print ’Entries=’,f.getEntries(), ’ time (s)=’,t
f.close()
db.close()

After execution of this script, our data will be converted into a small database
’data.db’. The time necessary to build such database is a factor two larger than
that used in the previous example.

Now we can read this database by iterating over all keys. We extract the event
number and the sum value from the string. Then we access only events which have
the sum of all elements above the cut value cut.

Data analysis using metadata

from jhplot import *
from jhplot.io import *
import time

start = time.clock()
db=HDataBase(’data.db’)
keys=db.getKeys()
i=0; cut=320;
while keys.hasMoreElements():

next = keys.nextElement();
words = next.split(’_’)

16.3 Using Metadata for Data Mining 395

if int(words[0])%1000 == 0:
print ’processed=’,words[0]

if float(words[1])>cut:
i +=1
event=db.get(next)

t = time.clock()-start
print ’Nr above ’+str(cut)+’ =’,i, ’ after time (s)=’,t
db.close()

The above code prints:

End of events
Nr above 320 = 30 after time (s)= 1.5

Thus, the access time is significantly reduced compare to 10 seconds from the pre-
vious example when no metadata records were used.

16.3.2 Using an External Metadata File

The use of the metadata as a part of database keys is not the only possible approach.
One can write metadata into an external file, thus completely decoupling the meta-
data from the actual data volume.

The example below shows how to write such external metadata file:

Rebuilding external metadata

from jhplot import *
from jhplot.io import *
import time

f=HFile(’data.ser’)
start = time.clock()

meta=open(’data.meta’,’w’)
db=HDataBase(’data1.db’,’w’)
while 1:

event=f.read()
if event == None:

print "End of events"
break

p1,p2=event[1],event[2]
v=p1.getSum()+p2.getSum()
db.insert(event[0],event)
meta.write(event[0]+’ ’+str(v)+’\n’)

t = time.clock()-start
print ’Entries=’,f.getEntries(), ’ time (s)=’,t

396 16 Steps in Data Analysis

meta.close()
f.close()
db.close()

The file ’data.meta’ contains rows with the event numbers and the sum of all
elements inside the arrays in each event record. The database file has the keys based
on the event number only.

During data processing, first load the metadata file and identify interesting events.
Then read only selected event records using the keys:

Using external metadata records

from jhplot import *
from jhplot.io import *
import time

start = time.clock()
db=HDataBase(’data1.db’)
i=0; cut=320
for line in open (’data.meta’, ’rt’):

key, sum = [x for x in line.split()]
if int(key)%1000 == 0:

print ’processed=’,key
if float(sum)>cut:

event=db.get(key)
i=i+1

t = time.clock()-start
print ’Nr above ’+str(cut)+’ =’,i, ’ after time (s)=’,t
db.close()

The approach in which we decouple the metadata file from the actual data file is
rather convenient as it does not require rebuilding the database with new metadata
entries every time when we need to make modifications in our metadata definitions.

16.4 Multiprocessor Programming

Multiprocessor programming significantly increases program performance during
data analysis. Essentially, this is just breaking up a single programming task into
pieces, which can be executed in parallel. Then, the outputs will be combined upon
completion of all pieces. The code segments should preferably be independent of
each other. This allows to achieve the highest possible performance by taking advan-
tage of modern multi-core systems and enables us to write very efficient programs
that make maximum use of the CPU.

We remind that the Java language and, hence, Jython, have inherent multi-
threading support which significantly simplifies parallel programming. In this sec-

16.4 Multiprocessor Programming 397

tion, we will illustrate how to write analysis programs that contain two or more parts
that can run concurrently.

16.4.1 Reading Data in Parallel

One can achieve a better performance of a program using multiple threads when I/O
bandwidth is not a bottleneck. This, obviously, depends on hardware and the actual
calculations. Typically, numerical calculations can benefit from the use of parallel
cores when the time necessary for processing events is larger than the time needed
to access events from a file storage.

Let us illustrate the idea behind the parallel processing of data by looking at some
concrete examples. As usual, first we will prepare two data samples to work with
using a single thread. Both files contain a sequence of event records. Each event is
represented by a P0D array with 20 random numbers:

Generating data files

from jhplot.io import *
from jhplot import *

f1=HFile(’random1.ser’,’w’)
f2=HFile(’random2.ser’,’w’)
for k in range(100000):

p=P0D()
p.randomUniform(20,0,1.)
f1.write(p)
p.randomUniform(20,0,1.)
f2.write(p)
if k%1000==0: print ’done=’, k

f1.close()
f2.close()

Next, we will create a small class which reads the files ’random1.ser’ and
’random2.ser’. This class should accept a string with the file name, open this
file and read the file record-by-record. We refill the records, constructed from single
P0D arrays, with 200 random numbers distributed in accordance with the normal
distribution. We will use the Jython threads discussed in Sect. 2.13 to perform this
task:

Module ’readthread.py’

from jhplot.io import *
from jhplot import *
from threading import Thread

class testit(Thread):
def __init__ (self,fin):

398 16 Steps in Data Analysis

Thread.__init__(self)
self.fin = fin
self.k =0

def run(self):
f1=HFile(self.fin,’r’)
self.k=0
while 1:

row=f1.read()
if row == None: break
if self.k%10000==0:

print self.fin+" done=",self.k
row.sort()
row.getStat()
self.k=self.k+1

f1.close()

Our new class inherits the Thread class, i.e. we sub-classing the Thread interface
and overwrite its initialization and the method run(). In the method run(), we
open the file to read its records. Then we sort the 1D array and evaluate its statistical
characteristics.

In the example below we will read two data files using two independent threads.
Then we perform a simple benchmarking by printing the total number of processed
events and the timing.

Reading data in two threads

from readthread import *
import time

print ’Start at’,time.ctime()
list=[’random1.ser’,’random2.ser’]
list=[’random1.ser’]
t1 = time.clock()
tlist = []
for f in list:

cu=testit(f)
tlist.append(cu)
cu.start()

for t in tlist:
t.join()
print ’From ’,t.fin,’ processed: ’,t.k

t2=time.clock()-t1
print ’calculation takes’,int(t2),’ sec’

The code reads two files at the same time. But you can always read only one file
by removing one file name from the list (we have commented out this case). If your
computer has several computational cores, then what likely you will see is that the

16.4 Multiprocessor Programming 399

total processing time for two files will be less than the processing time for a single
file times factor two. For the author’s computer with two cores, 13 seconds were
spent to read two files in parallel and 10 seconds to read one file.

The advantages of this approach are obvious. If data are distributed in several
files, one can read these files in parallel. We were able to parallelize our program
without any effort, since Jython and Java take care of how to perform such paral-
lelization.

We should note that there is no too much point in using more threads than the
number of available cores: if the number of cores is less than the number of threads,
then you will end up in an illusion that you are still reading data in parallel; this will
not be quite true, since threads will share the same computational cores and you
will not gain a higher performance in comparison with the case when the number of
threads is equal to or less than the number of available processing cores.

16.4.2 Processing a Single Input File in Parallel

In the above example we have considered the case when parallel processing of data
is achieved by dividing data into several files. In principle, it is not too difficult to
parallelize a program designed to read a single input file. As before, we should note
that this approach makes sense for CPU intensive calculations which require input
data.

In Chap. 11 we have considered the PFile and EFile classes which can store
data in sequential oder using the Protocol Buffers format. One important feature
of these classes is that one can access a particular event record using the method
read(inx), where inx specifies a position of an event record inside the file.
This is important feature for parallel calculations, since one can jump to a necessary
record within a file without uncompressing the entire file.

Let us use the class PFile for our next example. We will create a file with 1D
arrays using the same approach as before:

Data writer. Module ’pwrite.py’

from jhplot.io import *
from jhplot import *
import time

f=PFile(’test.pbu’,’w’)
start = time.clock()
for i in range(90000):

if (i%1000 == 0):
print ’pocessed=’,i

p0= P0D(’event’+str(i))
p0.randomNormal(1000,0.0,1.0)
f.write(p0)

print ’PFile time (s)=’,time.clock()-start
f.close()

400 16 Steps in Data Analysis

Execution of this script creates an input file ’test.pbu’ (be careful: this file is
rather large, typically it has the size of 650 MB).

Next, we will prepare a module which takes a file name, initial and final position
of records within the input file and a name of the thread which calls this class:

Module ’readthread2.py’

from jhplot.io import *
from jhplot import *
from threading import Thread

class testit(Thread):
def __init__ (self,fin,process,i1,i2):

Thread.__init__(self)
self.fin = fin
self.process=process
self.k =0
self.i1,self.i2 = i1,i2

def run(self):
f1=PFile(self.fin,’r’)
self.k=0
for j in range(self.i1,self.i2):

row=f1.read(j)
row.sort()
row.getStat()
if row == None: break
if self.k%1000==0:

print self.process+’ done=’,self.k
self.k=self.k+1

f1.close()

As before, the program reads a 1D array and performs sorting and calculation of all
major statistical characteristics.

Finally, let us check our program. We will read all event records in one single
thread as shown below:

Data reader using 1 thread

from readthread2 import *
import time

print ’Start at’,time.ctime()
t1 = time.clock()
tlist = []

cu=testit(’test.pbu’,’cu’,1,90000)
tlist.append(cu); cu.start()
cu.start()

for t in tlist:

16.4 Multiprocessor Programming 401

t.join()
print ’From ’,t.fin,’ processed: ’,t.k

t2=time.clock()-t1
print ’calculation takes’,int(t2),’ sec’

For calculations in parallel on multiple cores, we will create three threads. Each
thread will read a fraction of data, such the total number of processed events will be
exactly as in the single-thread example:

Data reader using 3 threads

from readthread2 import *
import time

print ’Start at’,time.ctime()
t1 = time.clock()
tlist = []

cu = testit(’test.pbu’,’cu1’,1,30000)
tlist.append(cu); cu.start()

cu = testit(’test.pbu’,’cu2’,30001,60000)
tlist.append(cu); cu.start()

cu = testit(’test.pbu’,’cu3’,60001,90000)
tlist.append(cu); cu.start()

for t in tlist:
t.join()
print ’From ’,t.fin,’ processed: ’,t.k

t2=time.clock()-t1
print ’calculation takes’,int(t2),’ sec’

Run this code and compare the answers. For a computer with four cores, the sec-
ond program with three threads is typically 40% faster. This is not due to faster disk
I/O (which is still the same!), but due to the fact that the program can perform calcu-
lations in parallel. One can easily check this by removing our 1D array calculations
from the file ’readthread2.py’.

16.4.3 Numerical Computations Using Multiple Cores

Now let us move on and consider calculation-intensive programs which do not re-
quire access to data. Thus, instead of reading and processing objects using extensive
I/O, we will perform numerical calculations without any input data.

Again, we will prepare a class which inherits the properties of the Thread class.
This time, we pass a two-dimensional function F2D discussed in Sect. 3.4. We cal-

402 16 Steps in Data Analysis

culate the sum of all values in a double loop from 0 to 2000 inside the method
run():

Module ’functhread.py’

from jhplot.io import *
from jhplot import *
from threading import Thread

class functhread(Thread):
def __init__ (self,func):

Thread.__init__(self)
self.func = func
self.sum=0

def run(self):
for i in range(2000):

for j in range(2000):
self.sum += self.func.eval(i,j)

Next we will perform numerical evaluations of both input functions in parallel:
Parallel numerical computations

from functhread import *
import time

print "Start at",time.ctime()

f1=F2D(’cos(x*y)*x+y’)
f2=F2D(’cos(x*y)*y-x’)
list=[f1,f2]
list=[f1]
t1 = time.clock()
tlist = []
for f in list:

current = functhread(f)
tlist.append(current)
current.start()

for t in tlist:
t.join()
print ’From ’,t.func.getTitle(),’ processed: ’,t.sum

t2=time.clock()-t1
print ’calculation takes=’,int(t2),’ sec’

Run this script using two functions specified in the Jython list as given in this exam-
ple. Then, make a new test: Uncomment the line with the list containing only one
function. You will see that, for two functions, the calculation time is rather close to
the time necessary to evaluate a single function. Again, this can be seen if one uses
a computer with multiple cores.

16.5 Data Consistency and Security. MD5 Class 403

The conclusion of this section is simple: take advantage of multiple cores that
make maximum use of your computer. First, you should think about how to split up
your program into independent segments to increase efficiency of your calculations.
Then, write a custom class based on the Thread class and use the run() method
to include the necessary calculations.

16.5 Data Consistency and Security. MD5 Class

While your data analysis code grows, one may start to worry about consistency
and integrity of data objects which are either stored in the computer memory (non-
persistent data) or saved in files (stored persistently). Surely, any data container
can easily be modified inside an analysis code. In order to prevent deliberate (or
accidental) modifications of data, one should find fingerprints of the objects that
keep data, and compare them with those generated during object initializations. This
should be done at runtime, i.e. during the code execution.

More importantly, it is often necessary to check integrity of data files, to make
sure that files have not been modified by someone after posting them on the Web.
Again, what you will need is a fingerprint or some sort of unique signatures for such
files.

16.5.1 MD5 Fingerprint at Runtime

Maintaining data consistency is not too difficult: what you really need to do is to
use the well known MD5 algorithm. The usual procedure is following: a publisher
should provide a MD5 signature of an object or a file. A user confirms it by calculat-
ing the signature again and comparing it to the one provided by the publisher. If the
signatures do not match, then this will indicate that the object or the file was altered
since it was created.

Below we will generate a MD5 hash of a P1D object at runtime. This is simply a
string with a hexadecimal number which reflects the counts of each byte of your ob-
ject. Any recreation or modification of this object at runtime leads to a modification
of this string.

We use the class MD5 which accepts any Java object as an argument. After gen-
erating a MD5 string, we regenerate it again after modifying the P1D container by
adding a row of data:

>>> from jhplot.security import *
>>> from jhplot import *

>>> p1=P1D(’test’)
>>> p1.add(10,20)
>>> md5=MD5(p1)

404 16 Steps in Data Analysis

>>> print md5.get()
da14f51d302dd6756457f16f989b8eb9

>>> # modify a object and check MD5
>>> p1.add(20,30)
>>> md5=MD5(p1)
>>> print md5.get()
c5671fff0834bcc09489798ec1f3f752

The method get() returns a hex-string representing the array of bytes of the input
object. It should be noted that the printed strings in your case could be rather differ-
ent from those shown here, since every new creation of objects leads to a different
fingerprint. The important thing to remember is that they do not change at runtime.

One can perform a similar fingerprint using the Jython module md5. This ap-
proach works in case of jHepWork objects which are convertible into strings (usu-
ally, this means that the method toString() is implemented for such objects).
The syntax is somewhat different since now we pass strings to the md5 instance:

>>> from jhplot import *
>>> import md5
>>>
>>> p1=P1D(’test’)
>>> p1.add(10,20)
>>> # check MD5
>>> m=md5.new()
>>> m.update(p1.toString())
>>> print m.hexdigest()
c5671fff0834bcc09489798ec1f3f752

As before, the string returned by the method hexdigest() can be rather different
in your case.

16.5.2 Fingerprinting Files

Analogously, one can calculate a MD5 checksum for any file using the class MD5. In
case of files, a publisher should provide a MD5 signature and a user must confirm
it by calculating the signature again and comparing it to the one provided by the
publisher. If the signatures do not match then this will indicate that the file was
altered after it was published.

This time the fingerprint string is exactly the same as long as a file is not modified
on the file system. Below we calculate a MD5 checksum for the file ’file.txt’
and print it.

References 405

>>> from jhplot.security import *
>>> from java.io import *
>>>
>>> md5=MD5(File("file.txt"))
>>> print md5.get()

The string returned by the method get() is unique and can be used for detecting
file corruptions or deliberate modifications, since the chances of accidentally having
two files with identical MD5 checksums are very small.

References

1. Cranshaw, J., et al.: A data skimming service for locally resident analysis data. J. Phys. (Conf.
Ser.) 119, 072011 (2008)

2. Taylor, T., et al.: Human chromosome 11 DNA sequence and analysis including novel gene
identification. Nature 440, 495 (2006)

Chapter 17
Real-life Examples

Now we have all the machinery that is necessary to perform a realistic data analysis.
Unlike the previous chapters with the programming recipes, this chapter features
extensive real-research examples based on Java scripting.

Here we will learn how to simulate data and how to use data from the real world.
We will show how to perform a full-scale data analysis to make a first step in extrac-
tion of knowledge about the underlying nature of data. The self-contained examples
given in the following sections can provide the basis to conduct your own research.

17.1 Measuring Single-particle Densities

In this chapter, we will analyze particle distributions, starting from a single-particle
distribution and then moving towards studies of multi-particle densities, correlations
and fluctuations.

As usual, before doing actual analysis, first we should prepare an event sample
to be used for our research. We will create it in almost exactly the same way as
scientists usually do when they need to model real-world data: we will simulate
a data sample using some mathematical principles. The simulated samples usually
help us to understand and explain the underlying dynamics in the observed data,
especially if there are missing data or data distorted by experimental apparatus. In
this book, the simulated data will serve for an illustration of programming aspects
of data analysis.

We will consider the following experiment: Particles created or observed in an
experiment are counted in certain phase-space intervals. “Particles” could be real
elementary particles produced by an accelerator machine or by cosmic rays, photons
produced by a light source and so on. We do not need to go into such details, as well
as details of the underlaying particle production mechanism: We will use this notion
in a very generic way. For example, one can think about particles as people coming
to a store during a certain time interval, cars entering a highway, telephone calls per
time unit and so on.

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_18, © Springer-Verlag London Limited 2010

407

408 17 Real-life Examples

Each particle can be characterized by same continues characteristics. The mea-
sured number (N) of particles will depend on the time interval or/and the size of
some spatial region where particles are detected.

17.1.1 Preparing a Data Sample

To be more specific, let us consider a Rutherford-like experiment, when a beam of
particles from a radioactive source (or an accelerator) strikes a target (say, a thin
foil). A special detector counts all particles after interactions with the target and
measures the scattering angle θ . The distribution for cos(θ) is expected to be pro-
portional to

1

(1 − cos(θ))2 (17.1)

This is the famous Rutherford formula for scattering of particles from a given nu-
cleus. This form of the scattering angle is a signature for scattering off a point-like
object without structure (all such point-like objects are inside the thin foil). A devi-
ation of the measurement from this function is an indicator of structure inside the
target.

The code below was constructed from the code snippets which have already been
discussed in the previous chapters. We create a Poisson distribution with the mean
10 (can be any number!), and distribute particles in each event using our expected
functional form in (17.1). In addition, we will need to store extra information about
the incoming particle intensity, which was set to 1000 (using some arbitrary units).
To do this, we create a dictionary at the very beginning of the file record.

Creating a data set using the Rutherford formula

from jhplot import *
from jhplot.io import *
from jhplot.math.StatisticSample import *

Xmin,Xmax=0.1, 1
f=F1D(’0.01/(1-cos(x))^2’,Xmin,Xmax)
p=f.getParse()
max=f.eval(Xmin)
f=HFile(’events.ser’,’w’);
pos=math.Poisson(10)
f.write({’Intensity’:1000})
for i in range(10000):

if (i%1000 == 0): print ’Event=’,i
a=randomRejection(pos.next(),p,max,Xmin,Xmax)
f.write(a)

f.close()

We write events in a loop. Each event consists of a random number of particles with
the scattering angles distributed as described above. Then we create 10,000 events

17.1 Measuring Single-particle Densities 409

in a loop, writing each event into a file. In this form, our program is well scalable
since we do not leave any objects in the computer memory, unlike the case when
first we create a list of events and then write such list into a file.

17.1.2 Analyzing Data

Now we come to an analysis of the event sample generated in the previous section.
We remind that the file ’events.ser’ contains everything we need: the intensity
of the incoming beam of particles and the event records for multiple observations.
Each event contains a certain number of particles characterized by one-dimensional
quantity (in our example, this is the cosine of the scattering angle).

Our task is to read all information from the data file and plot what is called a
differential cross section calculated as:

dσ

dθ
= N

Δ · L
where L is the intensity of the incoming particles and Δ is the width of the histogram
bin where particles are counted. As you can see, the distribution above is nothing
but a probability density discussed in Sect. 8.1.1 scaled by the intensity value.

The distribution above conveys information about: (1) the shape of the particle
distribution. Note that the distribution itself does not depend on the chosen bin size
since we divide the counted number of particles in each bin by the bin size; (2) the
intensity with which events are happening. This is due to the scaling of the density
distribution by the intensity number, L.

Integration of the distribution must give a total cross section or a total rate of in-
teractions, σ , which is simply σ = Ntot/L, where Ntot is the total number of counted
particles after the interaction.

The code below shows how to extract the differential distribution and then visu-
alize it:

Analyzing a particle distribution

from jhplot import *
from jhplot.io import *

f=HFile(’events.ser’)
a=f.read()
Intensity=a[’Intensity’]
print ’Intensity=’,Intensity
h=H1D("Rutherford Scattering",40,0.1,1)
while(1):

p=f.read()
if p == None:

print ’End of events’
break

n=f.getEntries();

410 17 Real-life Examples

ntot=len(p)
if (n%1000 == 0):

print ’Event=’,n, ’ particles=’,ntot
h.fill(p)

f.close()

c1 = HPlot(’Scattering’)
c1.visible()
c1.setAutoRangeAll()
c1.setLogScale(1,1)
c1.setNameX(’cos θ [rad]’)
c1.setNameY(’dσ / d cos θ’)
h.scale(1/(h.getBinSize()*Intensity))
h.setFill(1)
c1.draw(h)

The code reads the data file and then extracts the intensity of the beam L using
the known key. Then we read the event records one by one, using the loop over all
entries until the end of the file is reached. For each event, we extract the array of
numbers representing the particle angles and then use this array to fill a histogram.
Note that the method fill(obj) accepts arrays (not single values!). Then we
scale the histogram using the bin width and the intensity value. The resulting plot is
shown in Fig. 17.1.

Fig. 17.1 A differential cross section extracted from a Java serialized file

17.2 Many-particle Densities, Fluctuations and Correlations 411

One can use the methods of the H1D class (see Sect. 8.1) to access a detailed
information about this distribution or even perform a fit as discussed in Sect. 14.2 to
make sure that we indeed observe the famous scattering-angle cross section given
in (17.1).

17.2 Many-particle Densities, Fluctuations and Correlations

Now we will discuss correlations between particles. The notion of correlations is
directly related to the question of fluctuations inside small intervals [1], and both
phenomena ultimately imply the existence of forces between particles.

In the previous example we distributed particles independent of each other, ig-
noring the fact that this may not be true in real situations. This time, our plan is to
model a data sample by introducing interdependence between particles. Then, us-
ing this simulation, we will try to measure the strength of correlations/fluctuataions
using several statistical tools included in jHepWork.

17.2.1 Building a Data Sample for Analysis

We will assume that each particle can be characterized by a continues value y. For
example, this can be a particle velocity, or a momentum, or the time at which a
particle is detected. First, we will consider a sample without any correlations in the
variable y, and then we will introduce correlations between particles.

17.2.1.1 Independently Produced Events

In the simplest case, we assume that the total number of particles falling into the
measured interval Δy = ymax − ymin is distributed in accordance with a Poisson
distribution:

Pn = λn exp(−λ)

n!
where λ defines the average number of particles in the counting interval, Δy. This
distribution naturally arises when the number of occurrences of rare events is mea-
sured in a long series of trials. Inside the interval Δy, particles are distributed inde-
pendent of each other.

Let us prepare such data sample and write it to an output file:

Creating a data set I

from jhplot import *
from jhplot.io import *
from cern.jet.random.engine import *
from cern.jet.random import *

412 17 Real-life Examples

Ymin,Ymax=0,1
file=HFile(’sample1.ser’,’w’)
ps=Poisson(50,MersenneTwister())
for i in range(10000):

if (i%1000 == 0): print ’Event=’,i
p=P0D(’Event=’+str(i))
ntot=ps.nextInt()
p.randomUniform(ntot,Ymin,Ymax)
p.sort()
file.write(p)

print ’Entries written =’, file.getEntries()
file.close()

This script assumes 10000 generated events. Each event record contains a certain
number of particles arriving inside the interval [0,1]. The global distribution is
given by a Poisson with the average 50. We distribute particles uniformly inside
the interval [0,1] using the method randomUniform(). Each event is put into a
P0D array which is then written into a serialized file.

To understand what is written, it is instructive to write the data into a XML file
using the HFileXML() class, instead of HFile(). One can view such XML file
using any favorite editor, but to store such file is not recommended since its size is
a factor eight larger than in the case of the compressed serialized file.

17.2.1.2 Including Interactions Between Particles

So far we have considered an idealized situation when particles are produced totally
independent of each other. For each event, particles produces at certain region do
not know anything about the presence of other particles.

Actually, this almost never happens in reality: there are always interactions be-
tween particles which can be detected by looking at particle correlations at any given
event. For example, for particle or cosmic-ray physics, each particles can interact
with other particles in accordance with some underlying dynamics.

Let us consider another example from the real life. Assume that our particles are
shop customers counted in certain time intervals. Usually, people come to stores
in groups of relatives and friends, thus customers are never independent of each
other. Of course, such bunching of people in certain time intervals is due to a social
mechanism which can be studied using various statistical tools.

There are two types of interactions: one type is attraction which can be charac-
terized by a positive correlation. In fact, this is the most frequent situation in our
example with the number of visitors per time interval. The second type of inter-
action is a repulsion, which features anti-correlations. Probably, you have already
guessed what does it mean: this corresponds to a hypothetical town where everyone
hates each other and people avoid meeting with other people in public places.

17.2 Many-particle Densities, Fluctuations and Correlations 413

Now let us introduce interactions between particles. Positive correlations will be
modeled by shifting particles closer to each other, while in case of anti-correlation,
we will increase the distance between particles. Before doing this, let us determine
the distribution of distances between particles. This can be done with this modified
code:

Distances between particles

from jhplot import *
from cern.jet.random.engine import *
from cern.jet.random import *

Ymin,Ymax = 0,1
h=H1D(’delta’,100,0,0.2)
ps=Poisson(50,MersenneTwister())
for i in range(10000):

if (i%1000 == 0): print ’Event=’,i
p=P0D(’Event=’+str(i))
ntot=ps.nextInt()
p.randomUniform(ntot,Ymin,Ymax)
p.sort()
for j in range(p.size()-1):

delta=p.get(j+1)-p.get(j)
h.fill(delta)

c1 = HPlot(’Delta’)
c1.visible()
c1.setAutoRange()
c1.draw(h)
c1.drawStatBox(h)

The code above calculates the distances between particles in an event and plots the
corresponding histogram, see Fig. 17.2. The distribution has exponentially falling
shape with the mean (and RMS) being around 0.02.

Try to fit this histogram using the method discussed in Sect. 14.5. This can be
done in the above code snippet by appending the lines:

a=HFit(c1,’c1’,h,’h’)
a.addFunc(’User1’, ’Tooltip’, ’b* exp(-a*x[0])’,’a,b’)

and rerun the script. You will see a dialog window for interactive curve fitting. Select
with the mouse the “User1” function (left list), and click on the “Add” button. Then
click on the “Fit” button. You will see that the histogram with the distances is well
described by the function:

1.8 · 104 · x31

Here we did not discover anything new: the exponential distributions are known
to describe distances between events with the uniform distribution in time or space.

414 17 Real-life Examples

Fig. 17.2 The distribution of distances between any two particles

The distribution above is proportional to λ exp(−nλ), with the mean 1/λ and vari-
ance 1/λ2. It is obvious that λ depends on the full phase-space and on the average
number of particles per event.

Our task is not to go into the details of this distribution, but try to introduce inter-
actions between particles by either shifting them closer to each other (correlations),
or moving them away from each other (anti-correlations).

Let us write a small function for this operation. We assume that the input for
such function is a P0D object which keeps the information about the original parti-
cle locations in an event. The output is a new P0D with a modified distance between
particles. We define R as a radius of interactions and will modify the distance be-
tween particles only if the size between any two particles is smaller than R. In this
case, we will set a new inter-particle distance as:

Creating a data set II

from jhplot import *
from jhplot.io import *
from cern.jet.random.engine import *
from cern.jet.random import *

Ymin,Ymax=0,1
file=HFile(’sample2.ser’,’w’)
ps=Poisson(50,MersenneTwister())
R=0.01
for i in range(10000):

if (i%1000 == 0): print ’Event=’,i

17.2 Many-particle Densities, Fluctuations and Correlations 415

p=P0D(’Event=’+str(i))
ntot=ps.nextInt()
p.randomUniform(ntot,Ymin,Ymax)
p.sort()
for j in range(p.size()-1):

delta=p.get(j+1)-p.get(j)
if delta<R:

newP=p.get(j)+R/4
p.set(j+1,newP)

file.write(p)
print ’Entries written =’, file.getEntries()
file.close()

The code above is sufficiently simple: The value newP is used to substitute the
original particle position if the distance delta is smaller than the interaction radius.

Let us prepare two samples with distinct interactions: in one case, we will use
R = 0.01 and change the particle distances using the algorithm newP=p.get(j)+
R/4, as given in the example above. This case corresponds to two-particle correla-
tion, since particles will arrive in pairs if the additional term R/4 is sufficiently
small.

The second sample is prepared using the algorithm newP=p.get(j)+R.
This sample contains anti-correlations, since normally particles are separated by
a smaller distance than R and now we require that they will always be separated
by R. We will write our modified event records into the file ’sample3.ser’.

Let us emphasize again that the examples above are just toy models. We made
simple interactions between two particles, ignoring the fact that interactions can
also happen between three or more particles. In the above case, we have introduced
only two-particle correlations. Also, we did not change the functional shape of the
distribution used to parametrize distances between objects.

17.2.2 Analyzing the Data

Now we are equipped with three data samples in the files ’sample1.ser’,
’sample2.ser’, ’sample3.ser’. The first file, ’sample1.ser’, contains
fully uncorrelated events and two other files contain data sets with toy-like interac-
tions characterized by the radii R = 0.01 and R = 0.1. How can we say what is
inside such files, pretending that we do not know anything about their content?

In general terms, the main question is following: assume we have a data sample
which represents occurrence of some events at specific interval (time or some phase
space), what tools should be used to understand interdependence of events? What is
the strength of such interactions? Is it attraction (“correlations”) or repulsion (anti-
correlations)? What is the mechanism behind such interaction?

The last question is difficult to answer, and, by no means, we will try to offer
a solution for such question. Our task is rather modest: we will try to understand

416 17 Real-life Examples

whether events are independent or not. If we will find that events are heavily inter-
dependent, then we will try to determine the type of such dependence (attraction or
repulsion). Furthermore, we will try to estimate the strength of interdependence.

We should also add that we are not going to offer a universal and comprehensive
approach to deal with such kind of problems. Our task is to illustrate what can be
done using Java scripting and the tools included in the jHepWork package.

17.2.3 Reading the Data and Plotting Multiplicities

First, let us read the prepared data files and plot a few basic distributions. We have
all necessary equipment for doing this. The code below shows how to read the data
files and plot multiplicity distributions inside a small region [0–0.5]. We remind that
our original points are distributed inside the phase space window [0–1]:

Multiplicity distributions

from jhplot import *
from jhplot.io import *
from java.awt import Color
import os

Ymax=0.5
h=[]
files=[’sample1.ser’,’sample2.ser’,’sample3.ser’]

for f in range(len(files)):
name=files[f]
if os.path.exists(name):

file=HFile(name)
print ’Open: ’+name
h.append(H1D(name,25,0,50))
while(1):

p=file.read()
if p == None:

print ’End of events’; break
i=file.getEntries();
if (i%1000 == 0): print ’Event=’,i
n=0
for j in range(p.size()):

if p.get(j)<Ymax: n=n+1
h[f].fill(n)

file.close()
c1 = HPlot(’Multiplicity’)
c1.visible()
c1.setAutoRange()

for i in range(len(h)):

17.2 Many-particle Densities, Fluctuations and Correlations 417

h[i].setFill(1)
color=Color.getHSBColor(0.3*i, 1.0, 1.0);
h[i].setColor(color)

h[1].setPenDash(2)
h[2].setPenDash(6)
c1.draw(h)

Running this script will bring a canvas with three distributions, each of them has
a Poisson-like shape. They are all very similar, so there is no way to say about
the difference we have introduced for two-particle distances. So, we should find a
better solution to tackle the problem of correlations. One solution would be to study
fluctuations inside small phase space windows.

Since we have introduced two-particle correlations, we should expect that the
multiplicity distributions inside small regions should deviate from a Poisson distri-
bution: in case of interactions, it should be broader than the standard Poisson (large
fluctuations). In case of repulsion between particles, the distribution should be nar-
rower.

When fluctuations of separate particles are measured, it is convenient to trans-
form a multiplicity distribution Pn(δ) inside a region δ to the following observables:

BP: ηq(δ) = q

q − 1

Pq(δ)Pq−2(δ)

P 2
q−1(δ)

(17.2)

NFM: Fq(δ) = [n(δ)]−q
∞∑

n=q

n!
(n − q)!Pn(δ) (17.3)

where the abbreviations denote the bunching parameters (BP) or the normalized
factorial moments (NFM). The parameter q defines the order of the BP or NFM.
Note that the experimental definitions of the BPs [2, 3] and the NFM [4, 5] are
different from those given above since, in reality, one should scan all phase space
regions to increase statistics when looking into ever smaller regions.

These two quantities measure deviations of a multiplicity distribution Pn(δ) from
a Poisson distribution for which Fq(δ) = ηq(δ) = 1. Note that such deviations are
measured differently by these three methods (for a review see [1]).

Uncorrelated particle production inside δ leads to the Poisson statistics, thus de-
viations of the NFM and BP from unity indicate correlations (interactions) between
particles leading to dynamical fluctuations (i.e. non-Poisson type of statistics). If
ηq(δ) or Fq(δ) are larger than one, one can say about positive correlations. This
case is expected for the first sample generated without including the toy interac-
tions. In contrast, if both quantities are smaller than unity for ever smaller δ regions,
one can say about anti-correlations (this, naturally, should be the case for our second
sample with defined repulsion).

jHepWork contains a Java library for calculations of both ηq(δ) and Fq(δ). We
will consider the class called BunchingParameters, and also a similar class
FactorialMoments from the package jhplot.stat.

We can initialize our calculations as:

418 17 Real-life Examples

>>> bp=BunchingParameters(MaxOrder,Bins,Step,Min,Max)

where MaxOrder is the maximum order of BP, Bins is the number of bins used
for the calculations, Step is any integer number to increase the binning step. The
bins are defined as 1 + i ∗ Step, where i runs from 2 to Bins. This number of bins
is used to divide the total phase space defined by Min and Max.

Once the object ’bp’ is created, we can use the method run(array[]) inside
the event loop, passing the array with all particles in the event. After the end of the
event loop, we should call the method eval() to evaluate the BPs values. To access
the values for BPs as a function of the number of phase-space divisions, one should
call the method getBP(order), which returns a P1D array with the BP values
and their statistical errors for a given order of BP.

Now we are ready. Let us read all three samples prepared in the previous section
and calculate the BP up to the third order. The code is shown below:

Studies of fluctuations

from jhplot import *
from jhplot.stat import *
from jhplot.io import *
Ymax=0.5
bp2,bp3=[],[]
files=[’sample1.ser’,’sample2.ser’,’sample3.ser’]

for i in range(len(files)):
name=files[i]
if os.path.exists(name):

file=HFile(name)
print "Open: "+name
bp=BunchingParameters(3,20,5,0,Ymax)
while(1):

p=file.read()
if p == None:

print ’End of events’; break
n=file.getEntries();
if (n%1000 == 0): print ’Event=’,n
bp.run(p.getArray())

bp.eval()
result=bp.getBP(2)
result.setTitle(’BP_{2} for ’+name)
result.setSymbol(3+i)
bp2.append(result)
result=bp.getBP(3)
result.setTitle(’BP_{3} for ’+name)
result.setSymbol(3+i)
bp3.append(result)
file.close()

17.2 Many-particle Densities, Fluctuations and Correlations 419

c1 = HPlot(’BP’,800,400,2,1)
c1.visible()
c1.setAutoRangeAll()
c1.cd(1,1)
c1.draw(bp2)
c1.cd(2,1)
c1.draw(bp3)

As you can see, we do this rather complicated calculations using a few lines of the
code. We build two lists which keep the results for η2 and η3 for all three processed
samples and then run over each of this sample. The result of this code is shown
in Fig. 17.3. As expected, the BPs for the sample without interactions are indeed
independent of δ = (Ymin − Ymax)/Bins and they are all equal to unity (“Pois-
son statistics”). The sample with the interactions, when particles arrive in bunches,
has a sharp increase for the calculated η2(δ) with decreasing δ. The η3(δ) does not
show too much variations with the number of bins, indicating that we are dealing
with two-particle correlations. For the third sample, η2(δ) decreases with δ (anti-
correlations) and stays constant when δ reaches some δmin, which roughly corre-
sponds to anti-correlation radius in our code (the parameter “R”).

Now, let us calculate the NFMs. This can be done by replacing the class name
BunchingParameters with the name FactorialMoments. To retrieve the
results, we should call getNFM() instead of getBP(). The resulting plot is shown
in Fig. 17.4. One can see a similar result as that shown on Fig. 17.3. The only notable
difference is that F3 for the sample with interactions still shows some increase with
the bin size. This is not totally surprising since F3 reflects not only three-particle

Fig. 17.3 Bunching parameters η2 (left) and η3 (right) as functions of the number of bins used
to divide the total phase space [0–0.5]. The calculations were done for three data samples: with
no correlations (’sample1.ser’) with correlations (’sample2.ser’) and with anti-correla-
tions (’sample3.ser’)

420 17 Real-life Examples

Fig. 17.4 The normalized factorial moments F2 (left) and F3 (right) as functions of the number
of bins used to divide the total phase space. The calculations were done for the three data sam-
ples: with no correlations (’sample1.ser’), with correlations (’sample2.ser’) and with
anti-correlations (’sample3.ser’)

correlations but also contains a contribution from two-particle correlations which
(we know!) have been included when the sample was generated. One can find more
details about the use and properties of BP or NFM in the review [1].

At the very end, you may still wonder why not just to look at the distribution of
distances between two particles if we want to know how particles are distributed
with respect to each other. We know that inter-particle distances should be dis-
tributed in accordance with the exponential distribution in case of the Poisson statis-
tics. In principle, this can be done as well, but then we should find a method to com-
pare such distributions with a reference distribution which is known to have exactly
the same properties (multiplicities, shapes of single-particle distributions) but with-
out any correlations between particles. This is not too easy and is outside the scope
of our example: the use of the BPs, NFMs or other tools is very handy since they do
not require construction of any reference sample [1].

17.3 Analyzing Macro Data: Nearby Galaxies

In this section, we give another real-life example: this time we plan to analyze data
on nearby galaxies. Our intention is not to be too scientific, nor to discuss in de-
tail topics which require special knowledge. What we want to do is to illustrate
the power of scientific scripting: in a few lines of the code we will perform almost
complete data analysis. It will consist of reading a data file, fetching necessary data
records and plotting one type of values against another. The readers who are inter-
ested in science will immediately find areas where the discussed code snippets can

17.3 Analyzing Macro Data: Nearby Galaxies 421

be reused for their own research or even to make a detailed study of the data file
discussed in this section.

What we are going to do now is to analyze the catalog of Southern spirals galax-
ies (Mathewson+ 1996) publicly accessible from the Astronomical Data server [6].
To simplify our task, we have prepared a file with the catalog to be used for this
tutorial.

Let us first copy the catalog with the galaxy’s data and open it in the jHepWork
editor in order to understand its format:

Getting data from the web

http=’http://projects.hepforge.org/jhepwork/’
file=’Mathewson1996.tsv’
wget(http+’examples/data/’+file)
view.open(file, 0)

The script above fetches the file ’Mathewson1996.tsv’ and opens it in a new
editor tab. If you are using this script outside jHepWork, do not forget to import
webustils package from the directory macros/system.

If the script above fails, try several other mirrors by replacing the http value
with the string:

http=’http://jhepwork.sourceforge.net/’
or
http=’http://jwork.org/jhepwork/’

By looking at the file structure, one can see that each entry in the row is separated
by a space. Thus, if we want to read this file line by line, one should find a way to
split each line of this file. Also, one can see that comment lines always start with the
symbol “#”. Such lines have to be ignored. Finally, we split the strings into pieces
and convert such sub-strings into float values.

We are dealing with a typical CSV file discussed in Sect. 2.16.4, thus it can be
opened using the class CSVReader. This class may not be flexible ehough, but the
good thing is that to write a small Jython code which parses a CSV file is very easy,
perhaps as easy as when using a ready-to-go third-party library!

So, let us write a small Jython code which reads a CSV file and performs the
necessary conversions. Our module will be designed for the following task: It splits
a string into n-size pieces using an arbitrary string as the delimiter and ignores the
lines which start from the symbols “#” or “*” (this will be necessary for our next
example). Finally, we will need to prepare a function which converts a string into a
number. Normally, this can be done with the float()method (in case if we expect
a real number). But we should take care of the situations when we need to convert
the strings such as “1/2”, “2/3” etc. into float values.

Let us create a Jython module file called ’reader.py’ with the following
code:

422 17 Real-life Examples

’reader.py’ module

def get(line, delim=None):
s=line.strip()
if s.startswith(’*’) or s.startswith(’#’): return None
if delim == None:

return s.split()
else:

return s.split(delim)

def conv(s):
try:
return float(s)

except ValueError:
try:

num, denom = s.split(’/’)
return float(num) / float(denom)

except ValueError:
return None

The function called ’get()’ takes any string and splits it into peaces using
the delim as a delimiter string. If the delim is not used, we assume that the
string should be split using a white space. In addition, we included the function
’convert()’ which accepts any string and converts it into a float value. For ex-
ample, if we pass “1/2” to this function, it will return the float 0.5. If no proper
conversion is possible, the function will raise an exception (see Sect. 2.15) and re-
turn None.

Now let us read this file and build a profile histogram 8.5. We would like to plot
the average value of rotation velocities versus the face-on diameter of the spiral
galaxies. By studying the file, one can easily see that we need to plot values in the
column 18 against values in the column 14. So, let us write the following simple
code:

Analyzing galaxies

from jhplot import *
from reader import *

c1 = HPlot(’Canvas’)
c1.setGTitle(’Southern Spiral Galaxies’)
c1.visible()
c1.setRange(-1,4,100,200)

h=HProf1D(’2447 galaxies (Mathewson+ 1996)’,20,0.05,3.0)
for line in open(’Mathewson1996.tsv’):

tab = get(line)
if tab == None or len(tab)<18: continue
x=conv(tab[13])
y=conv(tab[17])

17.4 Analyzing Micro Data: Elementary Particles 423

Fig. 17.5 A dependence of the rotational velocities on the galaxy size

if x != None and y!=None: h.fill(x,y)

c1.setNameX(’Face-on diameter [arcmin]’)
c1.setNameY(’< Rotation velocity [km/s] >’)
h1=h.getH1D()
h1.setStyle(’p’)
c1.draw(h1)

The example shows how to open a CVS file and read it line by line. We split each
line and make sure that we have the correct number of pieces (18). Then we fill the
profile histogram.

The resulting image is shown in Fig. 17.5. As we can see, there is rather obvious
dependence of the average velocity on the galaxy radius. I am sure some readers
will find this plot familiar and will connect it to some physics phenomena. If the
reader is not one of them, then this would be your entry to the world of science.

17.4 Analyzing Micro Data: Elementary Particles

In this section we plan to study elementary particles from the Particle Data Book [7].
A typical size of the galaxies analyzed in the previous example is 1020 meters, while
the proton size is 10−15 meters, so the examples in this book span more than 35
orders of magnitude in distances! Sure, the universe we leave in is a big place, and
we have to find a way to study it.

424 17 Real-life Examples

Let us first copy a file with particle characteristics from the Particle Data Group
web page [7]. To simplify our task, we have prepared an easy-to-copy file. We will
open this file in the jHepWork editor for a visual examination:

Reading a data file

http=’http://projects.hepforge.org/jhepwork/’
file=’mass_width_2008.csv’
wget(http+’examples/data/’+file)
view.open(file, 0)

As before, the script above fetches the data and opens the file in a new editor tab. If
the script above fails, try another mirror sites by replacing the value http with the
string:

http=’http://jhepwork.sourceforge.net/’
http=’http://jwork.org/jhepwork/’

Now let us show how to read this file and how to understand correlations between
different values in this file. Let us plot the squared mass of the hadron on the J value,
which is the total angular momentum. We will use the same module ’reader.py’
developed in the previous section. But, for this example, we will do something new:
We will attempt to read not only masses, but also errors on the masses and put all of
this into a P1D container (see Sect. 5.1) for plotting. We will use the delimiter “,”
for separation of values.

Analyzing elementary particles

from jhplot import *
from reader import *

p1=P1D(’hadrons’)
file=open(’mass_width_2008.csv’)
for line in file:

tab = get(line,’,’)
if tab == None : continue
id=conv(tab[12])
J=conv(tab[8])
if id>100 and id<100000 and J != None:
mass=conv(tab[0])
er1=conv(tab[1])
er2=conv(tab[2])
p1.add(J,mass,er1,er2)

p2=p1.copy()
p1.oper(p2,’*’)
c1 = HPlot(’Canvas’)
c1.setGTitle(’Hadrons’)
c1.setNameY(’M^{2} [MeV]’)

17.5 A Monte Carlo Simulation of Particle Decays 425

Fig. 17.6 A dependence of the hadron masses on the angular momenta

c1.setNameX(’J’)
c1.visible()
c1.setRange(-1,5,0,5000)
c1.draw(p2)

Figure 17.6 shows the result.
As you can see, there is a correlation between M2 and J . In fact, what we have

discovered here using a few lines of the code is a reflection of the well-known ob-
servation that hadrons from the same family lie on special trajectories (the so-called
Chew-Frautschi conjecture [8–10]). Such a relationship between J and M2, also
known as the principle of exchange degeneracy, is usually interpreted as a manifes-
tation of the linear potential of the strong forces between constituent quarks inside
the proton. One can see clear regularities using a rigorous linear regression fit and
the most recent data in this articles [11, 12].

Here we will stop discussing any further scientific issues: the example above is
just an invitation to science via the offered Java scripting and the jHepWork pro-
gram.

17.5 A Monte Carlo Simulation of Particle Decays

In this section we will build a simple Monte Carlo simulation of particle de-
cays based on the class HepLorentzVector discussed in Sect. 7.6. We will
consider two-body decays of a particle with a mass M which can be written as

426 17 Real-life Examples

M → M1 + M2, where M1 and M2 are masses of daughter particles. When a par-
ticle decays, one should keep in mind the usual four-momentum conservation. The
calculation itself can be organized in two steps: (1) a calculation of decays in center-
of-mass frame of daughter particles and; (2) transformation of four-momenta of
daughter particles to the laboratory frame using the Lorentz transformation.

In our numerical calculation we will be interested in the distribution of the max-
imum angle between daughter particles with respect to the initial particle. We will
look at this on a statistical bases by introducing some randomness of decay angles
in the center-of-mass frame of the original particle.

First, we define an initial particle to be a “top” quark, while daughter particles
will be called W and b. It should be said that this corresponds to quite realistic
situation in particle physics when a top quark decays into a W boson and b quarks.
At this stage, however, we will be more interested in the program implementation
of our task, rather than in physics interpretation of our results.

Let us take a look at the code below:

Particle decays

from jhplot import *
from java.awt import Color
from java.util import Random
from hephysics.particle import *
from math import *

P=100
Top=LParticle(’Top quark’,170)
Top.setV3(0,0,P)
W,b =LParticle(’W’,80),LParticle(’b’,5)

r = Random()
h1 = H1D("Θ_{max} angle",50, 0,3)
for i in range(10000):

if (i%1000==0): print ’event=’,i
Top.twoBodyDecay(W, b,1);
theta =acos(2.0*r.nextDouble()-1.0)
phi =6.28*r.nextDouble()
Top.setThetaPhiP(theta,phi,P)
W.boost(Top); b.boost(Top)
p=P0D(’max angle’)
p.add(Top.angle(W))
p.add(Top.angle(b))
pmax=p.getMax()
h1.fill(pmax)

c1 = HPlot(’Canvas’)
c1.setGTitle(’Max angle t → W b’)
c1.visible()
c1.setAutoRange()
c1.setNameX(’Θ_{max} [rad]’)

17.5 A Monte Carlo Simulation of Particle Decays 427

c1.setNameY(’Events’)
h1.setFill(1)
h1.setFillColor(Color.yellow)
c1.draw(h1)

Let us make some comments. First, we have defined three particles using the
LParticle class discussed in Sect. 7.6. The particles have the masses 170, 80,
5, respectively (using some arbitrary units). We have assumed that the total mo-
mentum (P) of the original particle is 100 (again, in arbitrary units). Then we have
generated 10,000 events, introducing a randomness in the azimuthal (φ) and polar
(θ) angle, since angles defined in the center-of-mass frame can have any values cov-
ering the full solid angle. The line 6.28*r.nextDouble() simply randomizes
the azimuthal angle in the range [0,2π]. We redefine four-momenta of the original
particle using the input φ and θ . Then we have performed the Lorentz boost and
calculated angles between the original particle and the daughter particles. Finally,
we have determined the maximum angle for each decay and filled a histogram.

Run this code and look at its output shown in Fig. 17.7. We can do the following
simple experiment with this code: change the initial momentum from 100 to a higher
value. We will see that the shape of this distribution will change depending on this
value.

Fig. 17.7 A distribution of angles between daughter particles and the original parent particle

428 17 Real-life Examples

17.6 Measuring the Speed of Light Using the Internet

Yes, this is correct. What we going to do now is to measure the speed of light. It is
not going to be the most precise measurement, probably it will be the most impre-
cise among other imprecise measurements, but it still be a measurement which can
give you ideas about this fundamental physical constant, and the way how it can be
extracted. At least, we guarantee that the value of the speed obtained in this chapter
will be of the same order of magnitude as the established value, 299,792 km/c. The
good thing about this measurement is that we do not need to have any apparatus:
a home computer with a reasonable Internet bandwidth should be sufficient for our
purpose.

We will only warn you before going into details of this experiment: for our mea-
surement, Linux or Mac computers are best suited as they usually have the “ping”
command. The program to be discussed below was tested using Ubuntu Linux, a
community developed Linux-based operating system. But one can use any operat-
ing system with the “ping” program, as long as it is installed. We will use jHepWork
in a combination with the ping program.

Now let us come to the main idea. The “ping” command is usually used for
testing connectivity and response time over networks. For example, when one types
ping -c1 www.google.com, it will test the response of the Google server.
The execution of this program prints the time necessary for a package to reach a
server and return to your PC.

We know that the signal in a vacuum travels with the speed of light, which ap-
pears to be very important physical constant with a value of 299,792 kilometers per
second. It travels a little bit slower in fiber optics, but we will ignore this for the mo-
ment since we are not too interested in such precision. The distance, between two
sufficiently separated points, say between Chicago and Berlin, is around 7,000 km.
Thus, if one pings a server in Berlin from Chicago, we should get the response at
least in 2 ∗ 23 milliseconds, where the factor two is introduced to take into account
the round signal trip. In the real word, the response time will be longer than 46 ms,
since the Internet signal does not travel along a straight line, and various switches
and routers slow down the transfer speed. If the signal is transported by a fiber, it
bounces around along the path. Therefore, it is a reasonable assumption that the
signal needs 40–50% more time to travel.

Now we can try to get a rough estimate of the speed of light on a statistical basis.
We will ping few servers in Europe, USA and Asia. Then we will make histograms
with the response time for each continent. Depending on the location, one can es-
timate an approximate distance between continents by analysing the histograms. If
you know what is the distance between the continents, one can measure the speed
of light with a certain precision.

Below we will develop the necessary modules to perform our measurement. The
example we are going to show is rather informative: we will illustrate how to use
Jython lists, how to call an external program, how to process data and use a random
number generator. Finally, the example will help you to develop a genuine feeling
for the quantities and concepts involved.

17.6 Measuring the Speed of Light Using the Internet 429

17.6.1 Getting Host Names in Each Continent

First, we should obtain the lists of hosts in each continent. For this, we will use again
the Web site of Ubuntu with a list of mirror servers located in different parts of the
world. We will use the same method as in the previous examples: to make things
easier, we will download three prepared files containing the computer host names in
a HTML form:

Getting data from the web

http=’http://projects.hepforge.org/jhepwork/’
list=[’ubuntu_usa.html’,\

’ubuntu_europe.html’,\
’ubuntu_asia.html’]

for file in list:
wget(http+’examples/data/’+file)

We remind that the script above fetches files from the Web. If you are using this
script outside jHepWork, do not forget to import webustils package from the di-
rectory macros/system. If the script above fails, try another mirror by replacing
the http value with the strings:

http=’http://jhepwork.sourceforge.net/’
or
http=’http://jwork.org/jhepwork/’

Upon download completion, open one of such files in the jHepWork editor. You
will see that this is a HTML file with the server names. Our task is to make a small
Jython module which reads the names of the servers from such files. The names
usually start with the string http://, and end after a quotation mark. We want to
make a list of servers from each file, and pick up only several random servers from
each list.

Getting host names. The module ’get_host.py’

from random import *

def get_host(file,number):
r=Random()
f = open(file)
list=[]
for line in f.readlines():

inx1=line.find(’//’)
if inx1>0:

ss=line[inx1+2:len(line)]
ss=ss[0:ss.find("/")]
list.append(ss)

430 17 Real-life Examples

list=r.sample(list,3)
return list

Let us test this module, assuming that it was saved in a file “get_host.py”. We will
print a list with four hosts in USA. The host names will be drawn at random using
the random module discussed in Sect. 2.8.

Testing the module ’get_host.py’

from get_host import *

print get_host("ubuntu_usa.html",4)

This script prints the list with the server names. If everything looks correct, we can
proceed to the next step.

17.6.2 Checking Response from Servers

Next we want to test the ping response for a certain server. We will write a small
module for this which will be put into the file ’get_ping.py’. The input to this
module is a list with the server names. For each remote server, the program calls the
external command “ping”. Each server will be ’pinged’ exactly three times. (see the
option -c3). The module returns a list with the response from each “ping” call.

Ping hosts. The module ’get_ping.py’

import os

def get_ping(list):
answer=[]
for i in list:

pingaling = os.popen(’ping -c3 ’+i,’r’)
while 1:

line = pingaling.readline()
if not line: break
line=line.strip()
if not line: continue
answer.append(line)

return answer

17.6.3 Creating Histograms with the Response Time

The module above returns the output from the ping command. Each output has
a string in the form time=Number ms, where Number is the response time in

17.6 Measuring the Speed of Light Using the Internet 431

milliseconds for each server. We should identify this number using the standard
Python string method (like the method find() and plot each number on a graph.

Our next module will be called “get_h1d.py”. It accepts the list with the server
names from the previous example, and identifies the response time. Then, a his-
togram with the response time will be filled for further investigation. We will also
pass the color for this histogram and the title for better visualization. Once the his-
togram is filled, the module will return the filled histogram.

Getting H1D using ’get_h1d.py’

from jhplot import H1D

def get_h1d(answer,title,color):
h1=H1D(title,50,0,500)
h1.setFill(1)
h1.setFillColor(color)
h1.setColor(color)
for m in answer:
inx1=m.find(’time=’)
if inx1>0:

ss=m[inx1+5:len(m)]
ss=ss[0:ss.find(’ms’)]
d=float(ss)
h1.fill(d)

return h1

17.6.4 Final Measurements

Now we are ready to collect all pieces together. First, we will import all functions
from the files we created so far. Then, we will prepare a list with the input files from
which the server names will be taken. Then, for each file, we will build a list with the
servers, ping at random several servers from each continent and fill the histograms
with response time. In addition, we will print the mean values of the server response
for each continent. This can be done using the method mean(). Here is our code
example:

Response-time measurement

from get_host import *
from get_ping import *
from get_h1d import *
from jhplot import *
from java.awt import Color

sites=[’europe’,’usa’,’asia’]
colors=[Color.red,Color.blue,Color.green]

432 17 Real-life Examples

all=[]
for i in range(len(sites)):

list=get_host(’ubuntu_’+sites[i]+’.html’,4)
answer=get_ping(list)
h1d=get_h1d(answer,sites[i],colors[i])
all.append(h1d)
print sites[i],’ mean=’,h1d.mean()

c1 = HPlot(’Canvas’)
c1.setGTitle(’Response time (ms)’)
c1.visible(1)
c1.setRange(0.0,300,0,10)
c1.draw(all)

The execution of this script prints the mean values and brings up a canvas with three
filled histograms. Each histogram is shown with different color and has appropriate
annotations.

For the author’s computer, the execution of the above script prints:

europe mean= 142.0
usa mean = 54.1
asia mean = 252.8

Let us try to make sense from these numbers: The author of this book is in USA,
and the average response time to a random server inside USA is 54 ms. The average
travel time to European servers is 142 ms. The signal needs to travel in one direction
roughly (142 − 54)/2 = 44 ms. This is a upper limit, since it does not take into
account how much time is lost in European servers, assuming that 54 ms is the time
which was lost in USA servers.

So, a lower limit on the speed of light is 159,090 km/s. It is twice lower than
expected, since we did not take into account many factors discussed above (server
response time, travel of light inside fibers rather than in a vacuum, large geographi-
cal spread of servers). But we kept our promise: we are close to the correct answer,
at least the order of magnitude for the extracted speed is correct.

Let us give a final comment: we would not recommend to increase the number
of servers and/or the number of pings for each server. This will not help you to
increase the precision of the measurement. If you really want to do this measurement
with a high precision, one should pick up a certain server and assess all the effects
discussed above. To do this is not easy. But what we can say is this: all such effects
are minimal if the ping test is done over very long distances. So, the advice is to
come back to this approach when you will be a scientist or seriously interested in
this type of measurements. Or, when you will be able to ping Internet servers on the
Moon or Mars from your home (in not too distant future!).

References 433

References

1. De Wolf, E.A., Dremin, I.M., Kittel, W.: Scaling laws for density correlations and fluctuations
in multiparticle dynamics. Phys. Rep. 270, 1–141 (1996)

2. Chekanov, S.V., Kuvshinov, V.I.: Bunching parameter and intermittency in high-energy colli-
sions. Acta Phys. Pol. B 25, 1189 (1994)

3. Chekanov, S.V., Kittel, W., Kuvshinov, V.I.: Generalized bunching parameters and multiplicity
fluctuations in restricted phase-space bins. Z. Phys. C 74, 517 (1997)

4. Bialas, A., Peschanski, R.B.: Moments of rapidity distributions as a measure of short range
fluctuations in high-energy collisions. Nucl. Phys. B 273, 703 (1986)

5. Bialas, A., Peschanski, R.B.: Intermittency in multiparticle production at high-energy. Nucl.
Phys. B 308, 857 (1988)

6. ADC, Astronomical data center, access to astronomy data and catalogs. URL http://adc.astro.
umd.edu/

7. Eidelman, S., et al.: Review of particle physics. Phys. Lett. B 592, 1 (2004)
8. Chew, G.F., Frautschi, S.C.: Principle of equivalence for all strongly interacting particles

within the s matrix framework. Phys. Rev. Lett. 7, 394–397 (1961)
9. Chew, G.F., Frautschi, S.C.: Regge trajectories and the principle of maximum strength for

strong interactions. Phys. Rev. Lett. 8, 41–44 (1962)
10. Frautschi, S.: Regge Poles and S-Matrix Theory. Benjamin, New York (1968)
11. Anisovich, V., et al.: Quark Models and High Energy Collisions. World Scientific, Singapore

(2004)
12. Chekanov, S.V., Levchenko, B.B.: Regularities in hadron systematics, Regge trajectories and

a string quark model. Phys. Rev. D 75, 014007 (2007)

Index of Examples

Analyzing a gene catalog Shows how to use data skimming,
sliming, removal of duplicates 385

Analyzing galaxies Read data with galaxies characteristics
and analyze them 420

Cluster analysis Using cluster algorithms for data analysis 335
Curve fitting Fitting a signal and background 357

Elementary particles Read a CVS file with particle data and
visualizes the data 423

Henon attractor Generating and displaying points in 2D
to study a Henon attractor 154

Histogram analyzer Collecting information about histograms
from multiple files 220

List of files Recursively find all files in a directory 80
List of files Sorting and removing duplicates 56
List with statistical errors Creating using Jython 47

Metadata Using metadata for data mining 391
Monte Carlo simulation Monte Carlo simulation of particle decays 425

Neural network Create a data sample, train a neural
network and make predictions 368

Parallel computation Calculations using multiple threads 401
Parallel reading a single file Reading a single file using multiple

threads 399
Parallel reading data files Reading data using multiple threads 397

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2, © Springer-Verlag London Limited 2010

435

436 Index of Examples

Single particle density studies How to generate and analyze particle
densities 407

Study of fluctuations Calculations of factorial moments and
bunching parameters 411

The speed of light Approximately determine the speed of
light using the Internet 428

Weighted average Weighted average of several measurements 155

Index

__builtin__, 60
__del__, 65
__doc__, 65
__init__, 65
__module__, 65
3D-XplorMathJ package, 116

A
Algorithms, FuzzyCMeansAlg, 339
Algorithms, HierarchicalAlg, 339
Algorithms, KMeansAlg, 339
Algorithms, KMeansExchangeAlg, 339
Applets, 331
ArrayList, Java, 50
Arrays, 68
Arrays of random numbers, 230
Attractor, Henon, 154, 256

B
Bash compilation script, 331
Bayesian network, 375
Bayesian self-organizing map, 376
BeanShell, 15
Benchmarking program, 59
BRoot class, 287
BunchingParameters class, 417

C
CBook library, 218, 286
Cellular automaton, 314
CFBook library, 218
Cloud2D, 173
Cloud3D, 174
Clustering, 342
cmath module, 34

Code assist in jHepWork, 21
Code assist in jHPlot, 22
Code assist in JythonShell, 21
Code assist using doc(), 22
Coefficient of correlations, 345
Color AWT, 93
Complex matrices, 185
Complex numbers, 185, 322
Configuration files, 323
Contour plot, 144
Contour plot, F2D, 104
csv, read and write, 295
csv files, Jython, 75
CSVWriter class, 296
Curve fitting, 346
CVSReader class, 295

D
Data streams, 270
Database, relational SQL, 291
DataHolder class, 336
DataOutputStream, Java, 78
DataPoint, 172
DataPoint class, 336
DataPointSet, 172
Derby database, 291
Dexter program, 313
Diagram class, 258
dic(), 64
dif, file format, 309
Differentiation, F1D, 91
Differentiation, SymPy, 118
dir(), 28, 30, 60
Distribution Beta, 226
Distribution Binomial, 226

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2, © Springer-Verlag London Limited 2010

437

438 Index

Distribution Breit-Wigner, 226
Distribution Breit-Wigner-MeanSquare, 226
Distribution Chi-Square, 226
Distribution Empirical, 226
Distribution EmpiricalWalke, 226
Distribution Gamma, 226
Distribution Hyper-Geometric, 226
Distribution Hyperbolic, 226
Distribution Logarithmic, 226
Distribution Negative Binomial, 226
Distribution Normal, 226
Distribution Poisson, 226
Distribution Student, 226
Distribution Uniform, 226
Distribution VonMises, 226
DoubleArrayList, 177
Downloading files from the web, 79
DynamicBin1D, 177

E
Eclipse, 23
Editor class, 17
EFile class, 306

F
F1D class, 87
F2D class, 100
F3D class, 105
FactorialMoments class, 417
FileList class, 322
FND class, 105
Font class, Java, 94
FPR class, 113
fromXML(), 132
Functional programming, 46
Functions, in Jython, 60
Functions, mathematical, 85, 107

G
Garbage collection, Jython, 274
getClass(), Java, 89
getStat(), P0D, 126
GHFrame class, 251
GHPanel, 239
Glob, Jython, 82
Google structured data, 297
GUI programming, Jython, 83

H
H1D class, 194
H2D class, 205

H3D class, 214
HashMap, Java, 55
HashSet, Java, 53
HBayes class, 375
HBook class, 218
HBsom class, 376
HCellular class, 314
HChart class, 253
HCluster class, 342
HDataBase class, 282
Henon map, 154, 256
Hep3Vector class, 189
HepLorentzVector class, 190
HFile class, 276
HFileBrowser dialog, 278
HFileXML class, 281
HFit class, 363
HFitter class, 348
HGraph class, 251
Histogram1D, 213
Histogram1D, Jaida, 204
Histogram2D, 213
Histogram3D, 214
HistogramBrowser class, 287
Histograms, Jaida, 212
HKey class, 246
HLabel class, 245
HMLabel, 246
HNeuralNet class, 371
HPlot canvas, 236
HPlot class, 92
HPlot2D canvas, 260
HPlot3D, 161
HPlot3D class, 101, 262
HPlot3DP class, 114, 262
HPlotJa class, 158, 257
HProf1D class, 215
HProf2D class, 215
HTable class, 316
HView3D class, 266

I
I/O buffer size, 280
IAxis, 207
IAxis, Jaida, 204
IDE, jHepWork, 14
IDE, running Jython scripts, 19
IEditor class, 321
If-else statement, 37

Index 439

IFunction, 110, 351
Installation, 13
IntArrayList, 177
Integral, H1D, 201
Integral, F1D, 90
Integral, F2D, 101
Integral, P1D, 139
Integration, SymPy, 118
IView class, 321

J
Jaida, 212
Jampack package, 185
Java, converting Jython, 329
Java classes, 66
JDebux class, 313
JFreeChart class, 254
jhepwork.bat, 13
jhepwork.sh, 13
JMinHEP, 342
Jython class, 63
Jython classpath, 17
Jython input and output (I/O), 72
Jython multiple object persistently, 77
Jython pickle module, 77
Jython urllib2 module, 79
JythonShell, 15
JythonShell, redirection, 20

K
Kurtosis, Jython, 179

L
Lambda, Jython, 46, 62
Linear algebra, 184
Linear-algebra calculation, 181
List, Jython, 40
List, removing duplicates, 43
List of files, 322
listdir, Jython, 80
LongArrayList, 177
Loops, 38
Lorentz vector, 189
LParticle class, 191

M
Math module, 33
Matrix operations, Java, 181
Matrix operations, Jython, 186

MD5 Class, 403
md5 module, Jython, 404
Mean, Jython, 178
Measurement, 171
Menu ‘Run’, 22
Menu ‘Search’, 22
Menu ‘Tool’, 22
Metadata, 391
Moments, Jython, 179

N
Netbean, 23
Neural network, Python, 379

O
ObjectArrayList, 178
Operator overloading, 326
os.path.exists(), 74
os.system, 36
Output, formated, 32

P
P0D class, 122
P0D.add(), 123
P0D.getArray(), 123
P0D.random(), 233
P0I class, 122
P1D class, 135
P1D.toFile(), 151
P1D.toFileAsLatex(), 152
P2D, 161
P3D, 164
Parametric function, 113
PFile class, 283
PFileBrowser class, 286
PND class, 166
PNI class, 166
Probability density, 198
Probability distribution, 198
Prodbuf, 297
Properties class, Java, 325

R
Random number, 223
Random numbers, Jython, 57
Random numbers, seed, 223
Random.beta, 228
Random.cauchy, 228
Random.chi2, 228
Random.dirac, 227

440 Index

Random.exponential, 228
Random.logNormal, 228
Random.normal, 228
Random.rand, 227
Random.randInt, 227
Random.rejection, 228
Random.triangular, 228
Random.uniform, 227
Random.weibull, 228
randomBeta(N,a,b), 231
randomCauchy(N,m,s), 231
randomChi2(N,i), 230
RandomDataImpl, 229
randomDirac(N,d[],p[]), 230
randomExponential(N,lam), 230
randomLogNormal(N,m,s), 230
randomNormal(N,m,s), 230
randomRejection, 232
RandomTriangular(N,m1,m2), 230
RandomTriangular(N,m1,med,m2), 230
RandomWeibull(N,lam,c), 231
Re-binning, H1D, 204
Readline(), 73
Readlines(), 73
Removing duplicates, 390
Removing duplicates, Java, 390
ROOT files, reading, 287
ROOT trees, reading, 288

S
Saving plots in an image, 242
Scatter plot, 142
Serialization, Java, 131
Serialization in Jython, 77
Serialized class, 119, 274
Serialized.read, 131
Serialized.readXML(), 132
Serialized.write, 131
Serialized.writeXML(), 132
Set, Java, 53
setGTitle(), 93
setName, 93
setNameX, 93
setNameY, 93
shapes.Arrow, 248
shapes.Circle, 248
shapes.Ellipse, 248
shapes.Line, 248
shapes.Picture, 248

shapes.Rectan, 248
shapes.Text, 248
Shelve module, 77
SHPlot class, 249
Shplot package, 107
SHPlot3D, 263
SHPlotJa class, 259
Simplification, SymPy, 118
Skewness, Jython, 179
Sort and remove duplicate, 55
SortedSet, Java, 54, 55
Sorting and removing duplicates, 56
Sorting Java lists, 52
Sorting lists, Java, 390
SPlot class, 254
SPsheet class, 296, 318
SQL, Derby database, 291
Standard deviation, Jython, 178
Statistical error, 136
Statistical functions, Jython, 178
Statistical uncertainty, 195
Symbolic calculations, 118
SymPy package, 118
sys.path, 63
Systematical errors, 137

T
Text class, 244
Text symbols, 249
Third-party libraries, Jython, 178
Threads, Jython, 67
Time, Jython, 59
Time module, Jython, 58
toXML(obj), 132

V
Vector, Jython, 186

W
walk(), Jython, 80
web.wget, 80
Weight, histogram, 200
Weighted average, 149, 155
Weighted average, P1D, 148
wget, downloading files, 315
Wildcard, pattern matches, 82

Z
Zoom in, 238

	Cover
	Advanced Information and Knowledge Processing
	ScientificData Analysis usingJython Scriptingand Java
	ISBN 9781849962865
	Preface
	Acknowledgements
	Contents
	Conventions and Acronyms

	Introduction
	Introduction to Data Analysis and Why This Book Is Special
	Who Is This Book for

	Chapter 1Jython, Java and jHepWork
	Introduction
	Books You May Read Before
	Yes, It Is Pure Java
	Some Warnings
	Errors

	Introduction to Scientific Computing
	Book Examples and the Power of Jython
	The History of jHepWork
	Why Jython?
	Differences with Other Data-analysis Packages
	How Fast It Is?
	Jython and CPython Versions

	Installation
	Introduction to the jHepWork IDE
	Source Code Editor
	jHepWork Java Libraries and Python Packages
	Jython and Bean Shell Consoles
	Accessing Methods of Instances
	Editing Jython Scripts
	Running Jython Scripts
	Running a BeanShell Scripts
	Compiling and Running Java Code
	Working with Command-line Scripts
	jHepWork Code Assist
	Other Features

	Third-party Packages and the License
	Contributions and Third-party Packages
	Disclaimer of Warranty
	jHepWork License

	References

	Chapter 2Introduction to Jython
	Code Structure and Commentary
	Quick Introduction to Jython Objects
	Numbers as Objects
	Formatted Output
	Mathematical Functions
	Complex Numbers

	Strings as Objects
	Import Statements
	Executing Native Applications

	Comparison Tests and Loops
	The `if-else' Statement
	Loops. The "for" Statement
	The `continue' and `break' Statements
	Loops. The `while' Statement

	Collections
	Lists
	List Creation
	Iteration over Elements
	Sorting, Searches, Removing Duplicates

	Removal of Duplicates
	Examples

	Tuples
	Functional Programming. Operations with Lists
	Dictionaries

	Java Collections in Jython
	List. An Ordered Collection
	Sorting Java Lists

	Set. A Collection Without Duplicate Elements
	SortedSet. Sorted Unique Elements
	Map. Mapping Keys to Values
	Java Map with Sorted Elements
	Real Life Example: Sorting and Removing Duplicates

	Random Numbers
	Time Module
	Benchmarking

	Python Functions and Modules
	Python Classes
	Initializing a Class
	Classes Inherited from Other Classes
	Java Classes in Jython
	Topics Not Covered

	Used Memory
	Parallel Computing and Threads
	Arrays in Jython
	Array Conversion and Transformations
	Performance Issues

	Exceptions in Python
	Input and Output
	User Interaction
	Reading and Writing Files
	Input and Output for Arrays
	Working with CSV Python Module
	Saving Objects in a Serialized File
	Storing Multiple Objects
	Using Java for I/O
	Reading Data from the Network

	Real-life Example. Collecting Data Files
	Using Java for GUI Programming
	Concluding Remarks
	References

	Chapter 3Mathematical Functions
	Jython Functions
	1D Functions in jHepWork
	Details of Java Implementation
	Integration and Differentiation

	Plotting 1D Functions
	Building a Graphical Canvas
	Drawing 1D Functions
	Plotting 1D Functions on Different Pads
	Short Summary of HPlot Methods
	Examples

	2D Functions
	Functions in Two Dimensions
	Displaying 2D Functions on a Lego Plot
	Using a Contour Plot

	3D Functions
	Functions in Three Dimensions

	Functions in Many Dimensions
	FND Functions
	Drawing FND Functions

	Custom Functions Defined by Jython Scripts
	Custom Functions and Their Methods
	Using External Libraries
	Plotting Custom Functions

	Parametric Surfaces in 3D
	FPR Functions
	3D Mathematical Objects

	Symbolic Calculations
	File Input and Output
	References

	Chapter 4One-dimensional Data
	One Dimensional Arrays
	P0D Data Container
	P0D Transformations
	Analyzing P0D and Summary Statistics
	Displaying P0D Data

	Reading and Writing P0D Files
	Serialization
	XML Format
	Dealing with Object Collections

	Chapter 5Two-dimensional Data
	Two Dimensional Data Structures
	Two Dimensional Data with Errors
	Viewing P1D Data
	Plotting P1D Data
	Contour Plots

	Manipulations with P1D Data
	Advanced P1D Operations
	Operations with Correlations
	Functional Transformation
	Smoothing

	Weighted Average and Systematical Uncertainties

	Reading and Writing P1D Data
	Dealing with a Single P1D Container
	Reading and Writing Collections

	Real-life Example I: Henon Attractor
	Real-life Example II. Weighted Average
	References

	Chapter 6Multi-dimensional Data
	P2D Data Container
	Drawing P2D and HPlot3D Canvas

	P3D Data Container
	PND Data Container
	Operations with PND Data

	Input and Output

	Chapter 7Arrays, Matrices and Linear Algebra
	Jaida Data Containers
	Jaida Clouds

	jMathTools Arrays and Operations
	1D Arrays and Operations
	2D Arrays

	Colt Data Containers
	Statistical Analysis Using Jython
	Matrix Packages
	Basic Matrix Arithmetic
	Elements of Linear Algebra
	Jampack Matrix Computations and Complex Matrices
	Jython Vector and Matrix Operations
	Matrix Operations in SymPy

	Lorentz Vector and Particle Representations
	Three-vector and Lorentz Vector
	Classes Representing Particles

	References

	Chapter 8Histograms
	One-dimensional Histogram
	Probability Distribution and Probability Density
	Histogram Characteristics
	Histogram Initialization and Filling Methods
	Accessing Histogram Values
	Integration
	Histogram Operations
	Accessing Low-level Jaida Classes
	Graphical Attributes

	Histogram in 2D
	Histogram Operations
	Graphical Representation

	Histograms in Jaida
	Histogram in 3D
	Profile Histograms
	Profile Histograms in 1D
	Profile Histograms in 2D

	Histogram Input and Output
	External Programs for Histograms
	CFBook Package
	ROOT Package

	Real-life Example. Analyzing Histograms from Multiple Files
	References

	Chapter 9Random Numbers and Statistical Samples
	Random Numbers in Jython
	Random Numbers in Java
	Random Numbers from the Colt Package
	Random Numbers from the jhplot.math Package
	Apache Common Math Package

	Random Sampling
	Methods for 1D Arrays from jhplot.math
	Methods for 2D Arrays from jhplot.math

	Sampling Using the Colt Package
	References

	Chapter 10Graphical Canvases
	HPlot Canvas
	Working with the HPlot Canvas
	Find USER or NDC Coordinators
	Zoom in to a Certain Region
	How to Change Titles, Legends and Labels
	Edit Style of Data Presentation
	How to Modify the Global Margins
	Saving Plots in XML Files
	Reading Data
	Cleaning the HPlot Canvas from Graphics
	Axes
	Summary of the HPlot Methods
	Saving Drawings in an Image File

	Labels and Keys
	Simple Text Labels
	Interactive Labels
	Interactive Text Labels with Keys

	Geometrical Primitives
	Text Strings and Symbols
	SHPlot Class. HPlot Canvas as a Singleton
	Visualizing Interconnected Objects
	Showing Charts
	SPlot Class. A Simple Canvas
	Henon Attractor Again

	Canvas for Interactive Drawing
	Drawing Diagrams
	SHPlotJa Class

	HPlot2D Canvas
	3D Canvas
	HPlot3D Canvas
	HPlot3DP Canvas
	3D Geometry Package

	Combining Graphs with Java Swing GUI Components
	Showing Streams of Data in Real Time
	References

	Chapter 11Input and Output
	Non-persistent Data. Memory-based Data
	Serialization of Objects
	Storing Data Persistently
	Sequential Input and Output
	GUI Browser for Serialized Objects
	Saving Event Records Persistently
	Buffer Size for I/O Intensive Operations
	Input and Output to XML Files
	Non-sequential Input and Output

	Compressed PFile Format
	Browser Dialog for PFile Files

	Reading ROOT and AIDA Files
	Reading ROOT Histograms
	Reading ROOT Trees
	Plotting ROOT or AIDA Objects Using jHepWork IDE

	Working with Relational SQL Databases
	Creating a SQL Database
	Working with a Database
	Creating a Read-only Compact Database

	Reading and Writing CSV Files
	Reading CSV Files
	Writing CSV File

	Google's Protocol Buffer Format
	Prototyping Data Records
	Dealing with Data Using Java
	Switching to Jython
	Adding New Data Records
	Using C++ for I/O in the Protocol Buffers Format
	Some Remarks

	EFile Data Output
	Reading DIF Files
	Summary
	Dealing with Single Objects
	Dealing with Collections of Objects

	References

	Chapter 12Miscellaneous Analysis Issues Using jHepWork
	Accessing Third-party Libraries
	Extracting Data Points from a Figure
	Cellular Automaton

	Downloading Files from the Web
	Macro Files for jHepWork Editor
	Data Output to Tables and Spreadsheets
	Showing Data in a Sortable Table
	Spreadsheet Support

	Accessing External Java and Jython Libraries
	Working with a jHepWork Project
	Pure Jython Project
	Pure Java Project
	Mixing Jython with Java

	Working with Images
	Saving Plots in External Image File
	View an Image. IView Class
	Analyzing and Editing Images

	Complex Numbers
	Building List of Files
	Reading Configuration Files
	Configuration Files Using Jython
	Reading Configuration Files Using Java

	Jython Scripting with jHepWork
	Jython Operations with Data Holders

	Unwrapping Jython Code. Back to Java
	Embedding jHepWork in Applets
	References

	Chapter 13Data Clustering
	Data Clustering. Real-life Example
	Preparing a Data Sample
	Clustering Analysis
	Interactive Clustering with JMinHEP

	References

	Chapter 14Linear Regression and Curve Fitting
	Linear Regression
	Data Set
	Analyzing the Data Set

	Curve Fitting of Data
	Preparing a Fit
	Creating a Fit Function
	Using Built-in Fit Functions
	Building Functions from a String
	Building Functions from a Script
	Preparing a Fit Function

	Displaying a Fit Function
	Making a Fit

	Real-life Example. Signal Plus Background
	Preparing a Data Sample
	Performing Curve Fitting
	Fitting Multiple Peaks
	Fitting Histograms in 3D

	Interactive Fit
	References

	Chapter 15Neural Networks
	Introduction
	Generating a Data Sample
	Data Preparation
	Building a Neural Net
	Training and Verifying

	Bayesian Networks
	Self-organizing Map
	Non-interactive BSOM

	Neural Network Using Python Libraries
	References

	Chapter 16Steps in Data Analysis
	Major Analysis Steps
	Real Life Example. Analyzing a Gene Catalog
	Data Transformation
	Data Skimming
	Data Slimming
	Data Sorting
	Removing Duplicate Records
	Sorting and Removing Duplicate Records Using Java
	Processing Big Event Sample
	Sorting and Removing Duplicate Records

	Using Metadata for Data Mining
	Analyzing Data Using Built-in Metadata File
	Using an External Metadata File

	Multiprocessor Programming
	Reading Data in Parallel
	Processing a Single Input File in Parallel
	Numerical Computations Using Multiple Cores

	Data Consistency and Security. MD5 Class
	MD5 Fingerprint at Runtime
	Fingerprinting Files

	References

	Chapter 17Real-life Examples
	Measuring Single-particle Densities
	Preparing a Data Sample
	Analyzing Data

	Many-particle Densities, Fluctuations and Correlations
	Building a Data Sample for Analysis
	Independently Produced Events
	Including Interactions Between Particles

	Analyzing the Data
	Reading the Data and Plotting Multiplicities

	Analyzing Macro Data: Nearby Galaxies
	Analyzing Micro Data: Elementary Particles
	A Monte Carlo Simulation of Particle Decays
	Measuring the Speed of Light Using the Internet
	Getting Host Names in Each Continent
	Checking Response from Servers
	Creating Histograms with the Response Time
	Final Measurements

	References

	Index of Examples
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

