
Lecture Notes in Artificial Intelligence 5433
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Sanjay Chawla Takashi Washio
Shin-ichi Minato Shusaku Tsumoto
Takashi Onoda Seiji Yamada
Akihiro Inokuchi (Eds.)

New Frontiers
in Applied
Data Mining

PAKDD 2008 International Workshops
Osaka, Japan, May 20-23, 2008
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Sanjay Chawla
University of Sydney, NSW, Australia
E-mail: chawla@it.usyd.edu

Takashi Washio
Akihiro Inokuchi
Osaka University, Osaka, Japan
E-mail: {washio,inokuchi}@ar.sanken.osaka-u.ac.jp

Shin-ichi Minato
Hokkaido University, Sapporo, Japan
E-mail: minato@ist.hokudai.ac.jp

Shusaku Tsumoto
Shimane University, Izumo, Shimane, Japan
E-mail: tsumoto@computer.org

Takashi Onoda
Central Research Institute of Electric Power Industry, Tokyo, Japan
E-mail: onoda@criepi.denken.or.jp

Seiji Yamada
National Institute of Informatics, Tokyo, Japan
E-mail: seiji@nii.ac.jp

Library of Congress Control Number: 2009920983

CR Subject Classification (1998): I.2, H.2.7-8, H.3, H.5.1, G.3, J.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-00398-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00398-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12613861 06/3180 5 4 3 2 1 0

Preface

As data mining techniques and tools mature, their application domains extend to
previous unchartered territories. The common theme of the workshops organized
along with the main 2008 Pacific Asia Conference on Knowledge Discovery and
Data Mining (PAKDD) in Osaka, Japan was to extend the application of data
mining techniques to new frontiers. Thus the title of the proceedings: “New
Frontiers in Application of Data Mining.”

For the 2008 program, three workshops were organized.

1. Algorithms for Large-Scale Information Processing (ALSIP). The focus of
the workshop was novel algorithms and data structures to deal with pro-
cessing of very large data sets.

2. Data Mining for Decision Making and Risk Management (DMDRM), which
emphasized applications of risk information derived from data mining tech-
niques on diverse applications ranging from medicine to marketing to
chemistry.

3. Interactive Data Mining (IDM), which emphasized the relationship between
techniques in data mining and human–computer interaction.

In total 38 papers were submitted to the workshops. After consultation with
the workshop Chairs who were asked to rank their submissions, 18 were accepted
for publication in this volume. We hope that the published papers propel further
interest in the growing field of knowledge discovery in databases (KDD).

The paper selection of the industrial track and the workshops was made by
the Program Committee of each organization. Upon the paper selection, the
book was edited and managed by the volume editors.

December 2008 Sanjay Chawla
Takashi Washio

Workshop on Algorithms for Large-Scale
Information Processing in Knowledge Discovery

The International Workshop on Algorithms for Large-Scale Information Process-
ing in Knowledge Discovery (ALSIP 2008) was held on May 20, 2008 at Hotel
Seagull Tempozan Osaka, Japan, in conjunction with the 12th Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining (PAKDD 2008). This work-
shop was co-organized by MEXT Japan Grant-in-Aid for Science Research and
Priority Area: Cyber Infrastructure for the Information-explosion Era, and the
JSPS G-COE program of Hokkaido University: Next-Generation Knowledge In-
formation Science for Future Science and Technology. The workshop aimed to
exchange fresh ideas on large-scale data processing in problems such as data
mining, clustering, machine learning, statistical analysis, and other computa-
tional aspect of knowledge discovery problems. Information created by people
has increased rapidly since the year 2000, and now we are in a time that we could
call the information-explosion era. To cope with such a large-scale information
space, novel algorithms and data structures are desired for solving various prob-
lems in the area of knowledge discovery. This workshop aimed to exchange fresh
ideas on large-scale data processing for various knowledge discovery problems.
The topics of the workshop in the call for papers included:

– Machine learning, clustering and statistical methods
– Large-scale itemset mining and associate rule mining
– Graph-based data structures for knowledge representation
– Knowledge data compression and indexing
– Knowledge discovery from text and the Web
– Knowledge discovery from unstructured and multimedia data
– Knowledge discovery from data stream and spatial/temporal data
– Knowledge discovery in network and link data
– Biomedical knowledge discovery, analysis of microarray and gene deletion

data
– Information extraction from scientific literature
– Active knowledge discovery
– Data and knowledge visualization
– Other computational aspects of knowledge discovery problems.

ALSIP 2008 was organized as a full-day workshop. All submitted papers were
reviewed for quality and originality by the Program Committee. We accepted
11 technical papers out of 16 submissions. We also invited a special talk “The
Challenge of Mining Billions of Transactions” by Osmar Zaiane (University of
Alberta, Canada). By additional reviewing after the workshop, we selected 10
papers for this proceedings volume.

We are grateful for the great support from the ALSIP 2008 Program Commit-
tee members. We are also grateful to the PAKDD 2008 committee for their help,

VIII Workshop on Algorithms for Large-Scale Information Processing

especially Takashi Washio for his arrangements in conjunction with the PAKDD.
We gratefully acknowledge Masaru Kitsuregawa, the leader of the MEXT project
of the Information-explosion Era, for giving us an opportunity to organize this
workshop, and Hiroki Arimura, the leader of the Hokkaido University GCOE
program, for his support of the ALSIP workshop.

Workshop Chair

Shin-ichi Minato Hokkaido University, Japan

Program Committee Members

Masaru Kitsuregawa University of Tokyo, Japan
Hiroki Arimura Hokkaido University, Japan
Jean-Francois Boulicaut INSA Lyon, France
Koichi Hirata Kyushu Institute of Technology, Japan
Hideki Isozaki NTT Communication Science Labs., Japan
Kimihito Ito Research Center for Zoonosis Control,

Hokkaido University, Japan
Yoshitaka Kameya Tokyo Institute of Technology, Japan
Hisashi Kashima IBM Tokyo Research Lab., Japan
Roni Khardon Tufts University, USA
Hiroyuki Kitagawa University of Tsukuba, Japan
YongJin Kwon Korea Aerospace University, Korea
Seishi Okamoto Fujitsu Labs. Japan
Jan Poland ABB Corporate Research Centers,

Switzerland
Michele Sebag LRI, University Paris-Sud, France
Masayuki Takeda Kyushu University, Japan
Koji Tsuda Max Planck Institute for Biological

Cybernetics., Germany
Shusaku Tsumoto Shimane University, Japan
Takeaki Uno National Institute of Informatics, Japan
Takashi Washio Osaka University, Japan
Akihiro Yamamoto Kyoto University, Japan
Thomas Zeugmann Hokkaido University, Japan

Workshop on Data Mining for Decision Making
and Risk Management

The organizations and systems in our modern society have become large and
complex to provide more advanced services due to the growing variety of social
demands. Such organizations and systems are efficient but highly complex, and
can cause various unexpected situations. According to this observation, the im-
portance of decision making and risk management of these organizations and
systems has been strongly emphasized in recent years. On the other hand, ac-
cumulation of a large amount of data on the operations of the organizations
and systems has become easier with the introduction of information technol-
ogy. These data can be used to support decision making or risk management in
organizations and systems.

This workshop focused on both data mining and statistical techniques to de-
tect and analyze the risks potentially existing in the organizations and systems
and to utilize the risk information for their better management and decision
support. The topics covered: (1) data mining and machine learning approaches,
(2) statistical approaches, (3) chance discovery, (4) active mining, and (5) appli-
cation of these techniques to medicine, marketing, security, decision support in
business, social activities, human relationships, chemistry and sensor data.

The topics of the workshop in the call for papers included:

– Data mining for decision making/risk management
– Novel statistical approach for decision making/ risk management
– Chance discovery for decision making/risk management
– Active mining for decision making/risk management
– Exploratory data analysis for decision making/risk management
– Machine learning for decision making/risk management
– Other techniques for risk detection, analysis and utilization of risk

information
– Applications in the fields (but not limited to) of:

• Medicine
• Marketing
• Security
• Decision support in business
• Social activities
• Human relationships
• Chemistry
• Sensor data

X Workshop on Data Mining for Decision Making and Risk Management

Workshop Chairs

Shusaku Tsumoto Shimane University, Japan
Hiroe Tsubaki Tsukuba University, Japan
Tzung-Pei Hong National University of Kaohsiung, Taiwan

Program Committee

Shoji Hirano Shimane University, Japan
Tony Hu Drexel University, USA
Genshiro Kitagawa Institute of Statistical Mathematics, Japan
T.Y. Lin San Jose State University, USA
Yukio Ohsawa The University of Tokyo, Japan
Vijay Raghavan University of Lousiana, USA
Yong Shi Chinese Academy of Science, China
Andrzej Skowron Warsaw University, Poland
Guoyin Wang Southwest Jiaotong University, China
Katsutoshi Yada Kansai University, Japan
Dirk Van den Poel Ghent University, Belgium
Ning Zhong Maebashi Institute of Technology, Japan

Workshop on Interactive Data Mining Overview

The International Workshop on Interactive Data Mining 2008 (IDM08) was held
in conjunction with the 12th Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD 2008), Osaka, Japan, May 2008. The workshop aimed
at sharing and comparing various fields of interactive data mining research such
as interactive information retrieval, information gathering systems, personaliza-
tion systems, recommendation systems, user interfaces and so on. In summary,
the workshop provided a discussion forum for researchers working on interac-
tive data mining where the attendees discussed various aspects of this field.
The motivation for the workshop is to discuss recent progress in the research
field of interactive data mining, which includes interactions between a human
and computers through Web systems, agent systems, sensor systems, or robot
systems. Various areas of interactive data mining research have been realized
through related technologies including interactive information retrieval, infor-
mation gathering systems, personalization systems, recommendation systems,
user interfaces and so on. Each study and development has been done inde-
pendently in different research fields such as the information retrieval research
field, Web intelligence research field, electric power systems research field, user
interfaces research field and so on. However, this situation might discourage us
from studying interactive data mining from the unified view of computer–human
interaction and making interactive data mining more friendly by applying com-
putational intelligence. Hence, we held the workshop entitled “Interactive Data
Mining” in the Pacific-Asia Conference on Knowledge Discovery and Data Min-
ing 2008, to gather together a variety of researchers in diverse fields such as
knowledge discovery, information retrieval, Web intelligence, electric power sys-
tems, user interfaces and data mining.

The topics of the workshop in the call for papers included, but were not limited
to:

– Interactive information retrieval
– Interactive information gathering systems
– Interactive personalization systems
– Interactive Web systems
– Interactive recommendation systems
– Interactive knowledge discovery
– Interactive user interfaces
– Interactive risk mining for electric power systems

All submitted papers were carefully peer reviewed by the Program Chairs.
We accepted five papers out of seven submissions. The acceptance rate

XII Workshop on Interactive Data Mining Overview

is approximately 70%. We would like to thank all the authors who submitted
papers to the workshop and participated in the interesting discussions at the
workshop.

Program Chairs

Takashi Onoda Central Research Institute of Electric Power
Industry, Japan

Seiji Yamada National Institute of Informatics, Japan

Workshop on Interactive Data Mining Overview

The International Workshop on Interactive Data Mining 2008 (IDM08) was held
in conjunction with The 12th Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD 2008), Osaka, Japan, May 2008. The workshop aimed
at sharing and comparing various interactive data mining researches such as in-
teractive information retrieval, information gathering systems, personalization
systems, recommendation systems, user interfaces and so on. In summary, the
workshop gave a discussion forum for researchers working on interactive data
mining where the attendees discussed various aspects on interactive data min-
ing. The motivation of the workshop is to discuss recent progress in the research
field of interactive data mining, which includes interactions between a human
and computers through web systems, agent systems, sensor systems, or robot sys-
tems. Various interactive data mining researches have been realized through re-
lated technologies including interactive information retrieval, information gath-
ering systems, personalization systems, recommendation systems, user interfaces
and so on. Each study and development has been done independently in differ-
ent research fields such as information retrieval research field, web intelligence
research field, electric power systems research field, user interfaces research field
and so on. However, this situation might discourage us from studying interactive
data mining from unified view of computer-human interaction and making inter-
active data mining more friendly by applying computational intelligence. Hence,
at this time, we will hold the workshop entitled ”Interactive Data Mining” in
the Pacific-Asia Conference on Knowledge Discovery and Data Mining 2008, to
gather a variety of researchers in diverse fields like knowledge discovery, informa-
tion retrieval, web intelligence, electric power systems, user interfaces and data
mining.

The topics of the workshop in call for papers included, but are not limited to:

– Interactive Information Retrieval
– Interactive Information Gathering Systems
– Interactive Personalization Systems
– Interactive Web Systems
– Interactive Recommendation Systems
– Interactive Knowledge Discovery
– Interactive User Interfaces
– Interactive Risk Mining for Electric Power Systems, etc

All submitted papers were carefully peer reviewed by program chairs. We ac-
cepted 5 papers out of 7 submissions. The acceptance rate is approximately 70%.

XII Workshop on Interactive Data Mining Overview

We would like to thank all the authors who submitted papers to the workshop
and participated in the interesting discussions at the workshop.

Program Chairs

Takashi Onoda Central Research Institute of Electric Power
Industry, JP

Seiji Yamada National Institute of Informatics, JP

Table of Contents

Workshop of ALSIP 2008

Flexible Framework for Time-Series Pattern Matching over
Multi-dimension Data Stream . 1

Takuya Kida, Tomoya Saito, and Hiroki Arimura

An Adaptive Algorithm for Splitting Large Sets of Strings and Its
Application to Efficient External Sorting . 13

Tatsuya Asai, Seishi Okamoto, and Hiroki Arimura

Incrementally Mining Recently Repeating Patterns over Data
Streams . 26

Jia-Ling Koh and Pei-Min Chou

A Graph-Based Approach for Sentiment Sentence Extraction 38
Kazutaka Shimada, Daigo Hashimoto, and Tsutomu Endo

Fuzzy Weighted Association Rule Mining with Weighted Support and
Confidence Framework . 49

Maybin Muyeba, M. Sulaiman Khan, and Frans Coenen

A Framework for Mining Fuzzy Association Rules from Composite
Items . 62

Maybin Muyeba, M. Sulaiman Khan, and Frans Coenen

Mining Mutually Dependent Ordered Subtrees in Tree Databases 75
Tomonobu Ozaki and Takenao Ohkawa

A Tree Distance Function Based on Multi-sets . 87
Arnoldo José Müller-Molina, Kouichi Hirata, and Takeshi Shinohara

Sibling Distance for Rooted Labeled Trees . 99
Taku Aratsu, Kouichi Hirata, and Tetsuji Kuboyama

Kernel Functions Based on Derivation . 111
Koichiro Doi and Akihiro Yamamoto

Workshop of DMDRM 2008

Dynamic Bayesian Networks for Acquisition Pattern Analysis: A
Financial-Services Cross-Sell Application . 123

Anita Prinzie and Dirk Van den Poel

XIV Table of Contents

An Automata Based Authorship Identification System 134
Tsau Young Lin and Shangxuan Zhang

Detection of Risk Factors as Temporal Data Mining 143
Shoji Hirano and Shusaku Tsumoto

Workshop of IDM 2008

Two-Phased Active Support Kernel Machine Learning 157
Yasusi Sinohara and Atsuhiro Takasu

Extracting Topic Maps from Web Pages . 169
Motohiro Mase, Seiji Yamada, and Katsumi Nitta

Interactive Abnormal Condition Sign Discovery for Hydroelectric Power
Plants . 181

Norihiko Ito, Takashi Onoda, and Hironobu Yamasaki

Interactive Visualization System for Decision Making Support in Online
Shopping . 193

Tomoki Kajinami, Takashi Makihara, and Yasufumi Takama

A Method to Recognize and Count Leaves on the Surface of a River
Using User’s Knowledge about Color of Leaves . 203

Fujio Tsutsumi and Yutaka Tateda

Author Index . 213

Flexible Framework for Time-Series Pattern

Matching over Multi-dimension Data Stream

Takuya Kida, Tomoya Saito, and Hiroki Arimura

Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814 Japan
{kida,saito,arim}@ist.hokudai.ac.jp

Abstract. In this paper, we study a complex time-series pattern match-
ing problem over a multi-dimension continuous data stream. For each
data stream, a pattern is given as a sequence of predicates, which specify
a sequence of element sets on the stream. The pattern matching problem
over such a multi-dimension data stream, is to find all occurrences where
all predicates in the patterns are satisfied. We propose a flexible and ex-
tensible framework to solve the problem, which is based on bit-parallel
pattern matching method that simulates NFAs for the pattern match-
ing efficiently by a few logical bit operations. We consider four types of
data streams especially: textual, categorical, ordered, and numeric, that
is, those are a sequence of strings, concepts with taxonomic informa-
tion, small integers, and real numbers (or large integers), respectively.
We also present the time complexities to do pattern matching for those
data types.

1 Introduction

Information retrieval is one of the basic means for extracting useful information
from massive collections of text data. In particular, pattern matching problem
studies the design and the analysis of efficient algorithms for textual problems
arising in information retrieval and provides theoretical basis for implementing
fast information retrieval systems with large text data.

On the other hand, by the rapid growth of network and sensor technologies,
a new class of data-intensive applications such as sensor networks and network
management emerged [1,2,3]. In these applications, the data are usually numeri-
cal, textual in some cases, or combinations of them. Moreover they are not static
collections but transient streams, where a data sequence is an unbounded and
rapid stream of individual data items that may arrive continuously. Then fast
and flexible pattern matching algorithms for such data stream are desired.

Harada [4,5] and Sadri et al.[6] considered complex time-series pattern match-
ing problem on streams consisting of single numerical values instead of charac-
ters, where a pattern is a sequence of numerical predicates on a set of inequations
and equations as shown in Fig. 1. For a stream S = (1, 5, 3, 5, 4, 2, 4, 1, 2, 2) of
length 10, for example, the pattern P in Fig. 1 matches at two positions from
the second to the 6-th and from the 5-th to the 9-th of S.

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 1–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 T. Kida, T. Saito, and H. Arimura

P = φ1 · φ2 · φ3 · φ4 · φ5 where
φ1 = (X > 2), φ2 = (X < 5), φ3 = (X > 2 ∧X < 7), φ4 = (X < 5),
and φ5 = (X < 3).

Fig. 1. An example of complex pattern over numerical streams

We addressed the problem and proposed in [7] a new approach to it. We
presented a family of efficient algorithms, called BPS(Bit-parallel matching on
Streams), that use bit-parallel matching method [8] for complex time-series pat-
terns over a numerical stream. Assuming that registers of the bit width w, say
32 or 64 bit, we show by theoretical analysis that a variant BPS tab algorithm
for ordered values finds the set of all occurrences of a given pattern of length m
in an input stream of length n in O(1

wmn) time and BPS bin algorithm for real
values runs in O(1

wmn logm) time. This time complex properly improves the
time complexity O(mn) of the previous algorithms. The keys of the BPS algo-
rithm is fast NFA (nondeterministic finite automata) simulation by bit-parallel
processing as well as a mechanism called a predicate lookup table, which is es-
sentially a lookup table for the indices of pattern predicates by a given key value.
By these techniques, we obtain O(w) times speed up in order to break O(mn)
barrier for complex pattern matching over single numerical streams.

Now our new goal and objective in the next stage is to deal with multi-
dimension data stream. We should consider here that a combination of several
types of data, such as numerical, textual, and so on, may arrive continuously.
Consider that, for example, a textual data stream with its morphological analysis
results and dependency parsing results which processed by some tools on the
fly, is inputed into a search system continuously. The stream will consist of
a sequence of records which may include parsed phrases (morphemes), word
classes, dependency scores, and other features. For such data stream, we are
eager to do pattern matching for a complex pattern like ‘string [Rr]iver or
[Mm]ountain after a noun (which is a superordinate concept of proper noun,
common noun, collective noun, material noun, and abstract noun) which follows
some adjective within 5 morphemes whose length is longer than 8,’ to find a
phrase “Seine River Cruise for a fantastic view.”

Another important example is a network access log. A web server logs informa-
tions about user requests and the server statuses continuously and permanently.
Each log entry may include the remote IP address, the access time and date, the
request command, the status code, and the transfer data size as follows:

192.168.0.1 [01/Oct/2008:10:48:19 +0900] "GET / HTTP/1.1" 200 13288

192.168.0.2 [01/Oct/2008:10:49:30 +0900] "GET /a.gif HTTP/1.1" 200 765

To do time-series pattern matching on such log data will help in detecting in-
trusions and analyzing the log data.

In this paper, we propose a unified framework for time-series pattern matching
over multi-dimension data stream, based on BPS algorithms. The framework
can treat categorical data streams, which is a sequence of sets of concepts with
a concept hierarchy (or taxonomic information) in addition to numerical and

Flexible Framework for Time-Series Pattern Matching 3

textual data streams, and it can allow complex and flexible time-series pattern
matching over them. In [9] we have already proposed a bit-parallel algorithm
which solves the pattern matching problem on a concept sequence with a concept
hierarchy. One of major contributions of this paper is to combine the algorithm
of [9] into the BPS scheme.

The key of our framework is to separate the matching mechanism into two
parts: one is to estimate each element of each data stream in order to decide
which predicates are satisfied, and the other is to estimate each pattern for each
stream. We use a suitable matching algorithm for each data type of the stream
to the former, and use the BPS scheme to the latter.

The organization of this paper is as follows. In Section 2, we prepare basic
definitions. In Section 3, we present our pattern matching framework for multi-
dimension data streams, and we conclude in Section 4.

Related works: We presented in [9] a pattern matching algorithm with taxonomic
information, where taxonomy is a partially ordered set of letters (concepts) de-
scribing an IS-A hierarchy, and the given pattern and text are both described as
a sequence of concepts. Each concept on the pattern can match any lower con-
cepts on the text. The algorithm is based on bit-parallel method, and it runs in
O(mn

w) time with O(m+ mh
w) preprocessing and O(mσ

w) extra space on a random
access machine (RAM), where h and σ are the size of the taxonomic information
and the cardinality of the taxonomy, respectively.

Harada [4,5] and Sadri et al.[6] presented efficient algorithms L2R [4,6] and
R2L [5] by extending well-known string pattern matching algorithms KMP [10]
and BM [11], respectively, for numerical streams, which use skipping of the
input values based on static dependency analysis on numerical attributes. Both
algorithms run in O(mn) times.

So-called point sequence matching or (δ, γ)-matching, often discussed in mu-
sic retrieval, are related to our pattern matching problem [12,13,14,15]. Such
pattern matching deals with single numerical data streams and allows some ap-
proximation.

Hyrro et al.[16] presented an efficient pattern matching algorithm of multi-
byte text based on bit-parallel method. They combine the outputs of Aho-
Corasick pattern matching machine [17], which recognize all multi-byte codes
and given patterns, into the inputs of bit-parallel pattern matching algorithms.
Its architecture is similar to that of our framework.

Arikawa et al.[18] developed a search based textual database, called SIGMA.
It is based on Aho-Corasik pattern matching machine, and provides flexible and
powerful search environment. Interstage Shunsaku Data Manager1 developed by
FUJITSU corporation is a powerful successor of SIGMA. However, time-series
pattern matching is not considered on those systems.

Matsumoto et al.[19] developed an annotated corpora management and search
system, called ChaKi. It provides a powerful search environment on annotated
corpora, such as word search, attribute search, and some kind of regular ex-
pression search for words and attributes, but it has neither combination search
1 http://interstage.fujitsu.com/jp/shunsaku/

4 T. Kida, T. Saito, and H. Arimura

of numerical data and the other data type, nor a kind of approximate search.
Our proposed framework may contribute to enhance the search ability of such
systems.

2 Preliminaries

We denote by N and R the set of all nonnegative integers and all real numbers,
respectively. Let Σ be an alphabet. Let binary relation � be an order on Σ. A
sorted alphabet is an ordered set (Σ,�). We call Σ as textual and its element as a
symbol or a character if Σ is a finite and � satisfies only reflective property. We
call Σ as categorical and its element as a concept if Σ is a finite and � is a partial
order. Moreover, for any concepts c, d ∈ Σ, we say that c matches d if c � d.
We call Σ as numerical and its element as a (numerical) value if Σ is a subset
of real numbers or large integers, and � is a total order. We call Σ as ordered
and its element as an (ordered) value if Σ is isomorphic with {1, . . . , c} ⊆ N for
a small positive integer c, and � is a total order. In this paper, we assume that
c is a 16-bit integer, say, 0 ≤ c ≤ 216 = 65, 535.

An element T = a1 · · · an(n ≥ 0) in Σ∗ is especially called a string or a
word for textual alphabet Σ, and a concept sequence for categorical alphabet Σ,
respectively. Then, the length of T is denoted by |T | = n. For 1 ≤ i ≤ |T |, the i-th
symbol of a concept sequence T is denoted by T [i] = ai, and for 1 ≤ i ≤ j ≤ |T |,
the factor of T that begins at position i and ends at position j is denoted by
T [i : j] = ai · · · aj.

Relational k-dimension data streams: Let Σs be a textual alphabet, Σc be a
categorical alphabet, Σo be an ordered alphabet. and Σn be a numerical al-
phabet. Let Δ be k-term class Δ = (Σ1, . . . , Σk) ∈ {Σs

∗, Σc, Σo, Σn}k. For
s = (s[1], . . . , s[k]) and Δ = (Σ1, . . . , Σk), we denote s ∈ Δ if s[i] ∈ Σi for every
1 ≤ i ≤ k, and also denote a sequence S = (s1, . . . , sn) over Δ by S ∈ Δn.

A relational k-dimension data stream (k-dimension data stream, for short) on
Δ is a sequence S = (s1, . . . , sn) ∈ Δn of length n, where si = (si[1], . . . , si[k]) ∈
Δ for each 1 ≤ i ≤ n. Note that a sequence (s1[j], s2[j], . . . , sn[j]) is an element
of Σj

n of length n for each 1 ≤ j ≤ k.

Example 1. S=((’She’, pronoun, 3), (’loves’, verb, 5), (’her’, pronoun-objective, 3),
(’baby’,noun-common, 4)) is a 3-dimension data stream of length 4 on Δ =
(Σ∗

s , Σc, Σo), where Σs is the ASCII character set, Σc is a categorical alphabet
of word class, Σo is an ordered alphabet.

Time-series patterns over predicates: For a integer k ≥ 1, let X be a set of k
variables X = {Xi | i = 1, . . . , k} on elements of Δ, namely Xi is a variable on
Σi. An atomic formula is the form of “Xi op C” for each i, where C ∈ Σi is a
constant and op is a relational operation on Σi. The constant and the operation
vary as the type of alphabet Σi. Concretely,

– C is an expression for some kind of string pattern and op ∈ {=s}, indicating
some kind of pattern matching, for textual data,

Flexible Framework for Time-Series Pattern Matching 5

– C is a concept of Σi and op ∈ {�} for categorical data, and
– C is a value of Σi and op ∈ {≤,≥, <,>,=, �=} for ordered or numerical data.

Then, we recursively define predicates on Σi for each i as follows: (i) An atomic
formula is a predicate. (ii) If φ and ψ are predicates, ¬φ, φ ∧ ψ and φ ∨ ψ are
predicates. (iii) Only expressions generated by the above rules are the predicates.
The size of a predicate φ, denoted by size(φ), is defined as the total number of
occurrences of operators, variables, and constant in φ. We define the truth-value
φ(s) ∈ {1, 0} of predicate on an element s ∈ Σi for each i in a similar way in
the predicate logic. An atomic formula φ′(s) = 1 if Xi matches C, otherwise 0,
for textual or categorical data, and φ′(s) = 1 if s satisfies the equality or the
inequalities over R or N, otherwise 0, for numerical or ordered data. We denote
by Pi = P(Xi) the set of all predicates on Σi.

A serial pattern (pattern, for short) of lengthm ≥ 0 onΔ is a k-term set of P =
(P1, P2, . . . , Pk), where each Pj = φj [1]·φj [2] · · ·φj [m] ∈ Pj

m for each 1 ≤ j ≤ k.
We call φj [i] ∈ Pi the i-th predicate of j-th pattern, and also call i the index. We
define the index set of Pj by Idx (Pj) = {1, . . . ,m}, the length of Pi by |Pi| = m,
and the size of Pi by the total size size(Pi) = size(φi[1]) + · · ·+ size(φi[m]). We
also define the length of P by |P | = m, and the size of P by the sum of size(Pi).

Let S = (s1, . . . , sn) ∈ Δn be a stream of length n. We say that the pattern
P occurs at position p in S if φi[j](sp+j−1) = 1 for every 1 ≤ j ≤ m and every
1 ≤ i ≤ k. Then, p is called an occurrence position of P on S. We denote by
Occ(P, S) ⊆ {1, . . . , n} the set of all occurrences of P on S.

The pattern matching problem: Now, we state our problem in this paper as
follows.

The pattern matching problem over k-dimension streams is, given a data
stream S = (s1, . . . , sn) ∈ Δn of length n and a serial pattern P = (P1, . . . , Pk) ∈
(P1, . . . ,Pk) of length m, to find the set of all occurrence positions Occ(P, S) of
P on S.

Example 2. Let P = (P1, P2, P3) be a pattern on Δ = (Σ∗
s , Σc, Σo) for Exam-

ple 1. When P1 = (X1 =s ’She’ ∨ X1 =s ’He’) · (X1 =s any-string) · (X1 =s

any-string) · (X1 =s any-string), P2 = (X2 � noun) · (X2 � verb) · (X2 � noun) ·
(X2 � any−words), and P3 = (X3 > 0)·(X3 > 0)·(X3 ≥ 1)·(X3 ≥ 4∧X3 < 10),
the pattern P matches the sequence S in Example 1.

Bit operations: In this paper, we assume as a computation model the RAM
(random access machine) model with arithmetic and bit operations on integer
registers of bit-width w = 32 ∼ 64 [20,8]. For bitmasks X = bm · · · b1 ∈ {0, 1}m

of length m ≥ 0, we assume bit-operations such as bitwise-and &, bitwise-or
| and bitwise-not ∼, the n-bit left shift << n. We denote by 0m the bitmask
consisting only of 0 bits and by Bit(S) ∈ {0, 1}m the bit-mask representation of
a subset S of {0, . . . ,m − 1}. For the bitmasks of width m, the arithmetic and
bit operations takes O(1) time if m ≤ w and takes O(�m

w �) time if m > w.

6 T. Kida, T. Saito, and H. Arimura

Fig. 2. The framework of our pattern matching algorithm over k-dimension data
streams

3 The Framework Based on BPS

In this section, We present a framework for serial pattern matching over k-
dimension data streams.

3.1 Outline of the Framework

First of all, given a serial pattern P = (P1, . . . , Pk), the matching machine parses
it and constructs k-set of NFAs and the bitmask informations, which is used at
the NFA simulation step and is stored as the predicate hit tables. The scanning
processing phase consists of four steps: (1) For each i-th pattern, at j-th position,
an element si[j] (1 ≤ j ≤ k) of each data stream is inputted to the machine,
and it is processed on the fly by proper algorithms to interpret the element si[j].
(2) Each bitmask for si[j] is decided for each serial pattern Pi. (3) The machine
simulates k-BPS algorithms [7] in parallel by using the bitmasks. (4) Finally, it
checks if all the NFAs reach their final states. Report if there is an occurrence
at the position j, and then repeat these steps. In Fig. 2, we show the outline of
our framework.

In what follows, we concentrate how to construct the predicate hit tables and
how to simulate the NFAs by bit-parallel technique over data streams.

3.2 Predicate Hit Table

A key of BPS is a mechanism called the predicate hit table (hit table, for short),
which is crucial to obtain the time complexity strictly below O(mn) time. For
simplicity, we will discuss here just a single data stream and its serial pattern
matching, namely Δ = (Σ) ∈ {Σs

∗, Σc, Σo, Σn}.
Let P = φ[1] · · ·φ[m] ∈ P∗ be a serial pattern with index set Idx (P) =

{1, . . . ,m}. The predicate hit table for P implements a function η : Σ → 2Idx(P)

that receives an input value x and returns the set η(x)={i ∈ Idx (P) | φ[i](x)=1}

Flexible Framework for Time-Series Pattern Matching 7

G

E

C D F

A B

Fig. 3. An example of a categorical alphabet and the predicate hit table for categorical
serial pattern P = (X � B)(X � A)(X � F)(X � A)(X � E). The symbol

√
indicates

that i ∈ η(x) for x ∈ {A, B, C, D, E, F, G}.

of all indices such that the corresponding predicates are satisfied on x. In the
algorithm, we encode the answer η(x) by a bitmask Bit(η(x)) ∈ {0, 1}m of width
m for the succeeding processing. A straightforward method takes O(||P ||) time
to compute η(x) in running time for every x ∈ Δ by testing all the predicates
sequentially. However, we can efficiently computes η(x) using appropriate pre-
processing as follows.

Hit table for categorical data stream: Recall that c matches d if c � d
for any concepts c, d ∈ Σc. Then, the set η(x) = {i ∈ Idx(P) | φ[i] � x}
in this case. A categorical alphabet is represented as a Hasse diagram. A Hasse
diagram for (Σc,�) can be viewed as a direct acyclic graph (DAG). For example,
given a serial pattern P = (X � B)(X � A)(X � F)(X � A)(X � E) for
({A, B, C, D, E, F, G},�) and � is given as the Hasse diagram of the left side of
Fig. 3, the predicate hit tables η(x) becomes as the right table in Fig. 3. From
the observation of relationships on the Hasse diagram, we have the following
lemmas which are translations of the lemmas in [9].

Lemma 1 (modified version of Kida et al.[9]). Let Σc be a categorical
alphabet and P be a serial pattern on Σc. For any x ∈ Σc, we obtain the formula:

η(x) =
⋃

y∈Upb(x)

θ(y),

where Upb(x) = {z ∈ Σc | z � x} and θ(x) = {i ∈ Idx (P) | φ[i] = x}.
Lemma 2 (modified version of Kida et al.[9]). Let Σc be a categorical
alphabet and P be a serial pattern on Σc. For any x ∈ Σc, we obtain the formula:

η(x) = θ(x) ∪
⋃

y∈Par(x)

η(y),

where Par (x) is the set of all parent nodes of x in the Hasse diagram.

We can compute Bit(η(x)) recursively from the above lemmas, by traversing the
DAG representing (Σc,�) for every x ∈ Σc.

8 T. Kida, T. Saito, and H. Arimura

Fig. 4. Predicate hit tables

Lemma 3 (modified version of Kida et al.[9]). For a categorical alphabet
Σc, let H be the DAG for (Σc,�) and P = P [1 : m] ∈ Σc

m be a categorical
serial pattern. Then, the bitmasks Bit(η(x)) for all x ∈ Σc can be computed in
O(m + m|H|

w) time instead of O(m +m|H|) time in naive algorithm, where |H|
is the number of vertices plus the number of edges of H.

Hit table for ordered data stream: Recall that an ordered domain is a set
Δ = {1, . . . , c} ⊆ N of small, say 16-bit, integers for some c. Suppose that the
data range c = |Δ| is constant. In this case, we represent a predicate hit table
simply by a table of its values as shown in (a) of Fig. 4. Then, we precompute
the bitmasks Bit(η(x)) for all x in advance. In Fig. 5, we show the procedure
HT build for building the lookup table B. The time and space for the prepro-
cessing is O(c||P ||) and O(cm

w), respectively. In running time, each table look-up
by a value x is done by a random access to B by index x in O(1) time.

Hit table for numerical data stream: Since a numeric domain Δ ⊆ R is
an infinite or large set, we cannot directly store the predicate hit table in main
memory. In this case, however, we can show that the whole domain Δ can be

procedure HT build(Σo, P)
global : An array B = (B[1], . . . , B[c]) of c = |Σo| bitmasks;
input : Ordered type Σo = {1, · · · , c} and a pattern P = φ[1] · · ·φ[m] on Σo;
output : An array B;
1: for x ∈ {1, · · · , c} do
2: B[x]← 0m;
3: for i ∈ {1, · · · , m− 1} do
4: if φ[i](x) = 1 then B[x]← B[x] | 1 << i;

procedure HT lookup(value x)≡return B[v] ∈ {0, 1}m;

Fig. 5. The procedure for preprocessing and looking up predicate hit tables for pat-
tern P1

Flexible Framework for Time-Series Pattern Matching 9

partitioned into a collection Δ = Δ1 ∪ · · · ∪Δk of equivalence classes such that
two values x, y ∈ Δ are equivalent each other if and only if η(x) = η(y) holds.
Furthermore, each equivalence class can be represented uniquely as the union of
open intervals and end points specified by the set of constants appearing in P
(See (b) of Fig. 4).

From these observations, we encode a predicate hit table η by a table as in
(c) of Fig. 4, whose keys are endpoints and the intervals I ⊆ Δ defined by the
inequalities of pattern P and the values are Bit(η(x)) for the representative (or
any) value x ∈ I. Since P contains at most M = ||P || atomic formulas and
so are the end points, the hit table contains O(M) entries. Therefore, the time
and space for the preprocessing is O(mM2

w) and O(mM
w), respectively. In running

time, each table look-up is done by a binary search on the keys in O(m log M
w)

time.

Hit table for textual data stream: In this case, Δ ⊆ Σ∗
s . If size(φ[i]) = 1

for every i and =s means exact matching, we can use the Aho-Corasick pattern
matching machine [17] as the interpreter at the first and the second step of the
scanning phase. That is, η(x) is computed as the set of indices of words which
appear in the predicates. Let w1, w2, . . . , wm be strings on Δ, and wi = Ci for
every i, where Ci is a constant of i-th predicate φ[i]. Running the Aho-Corasick
pattern matching machine for the set {w1, . . . , wm}, we can know the set of
indices for x as its outputs. On the other hand, If size(φ[i]) > 1 for some i or =s

means more complex matching like regular expression matching or approximate
string matching, we might use other sophisticated algorithms. However, we can
also know the set of indices in a similar way of the above case if we can know
which expression is matched to x.

Although we omit the detail, in both cases, we can compute in advance the
bitmask Bit(η(x)) for every x ∈ Δ, and then store them in the array B[1..|Δ|]
such that B[x] = Bit(η(x)) for every x ∈ Δ, and attach them to the pattern
matching machine as its outputs.

3.3 Simulation of NFA

NFA for serial patterns: We describe construction of NFA from a given pattern.
In general, given a pattern P in the form of a regular expression, the NFA for
pattern matching by P , denoted by NFA(P), is the NFA accepting the language
Δ∗L(P), where L(P) ⊆ Δ∗ is the language accepted by P as regular expression.

For serial patterns P = φ[1] · · ·φ[m] ∈ P , a straightforward approach is to
build the NFA that accepts the language of substrings of valuesΔ∗×Γ1×· · ·×Γm

that match P , where Γi = {x ∈ Δ | φ[i](x) = 1} is the set of all input values
that satisfies the i-th predicate φ[i]. However, since Δ and Γi’s may be infinite
or large, the straightforward implementation is not realistic.

Instead, we build the NFA NFA(P) as follows. Firstly, we represent each set
Γi of values simply by the index i for every 1 ≤ i ≤ m. Thus, the alphabet of
NFA(P) is ΣP = Idx (P)∪ {0} = {0, 1, . . . ,m}, where we assume that the index
0 corresponds to a special predicate true that is always satisfied by every value.

10 T. Kida, T. Saito, and H. Arimura

0 1 2<1> <2>

<0>

3 4 5<4> <5><3>

Fig. 6. NFA NFA(P1) for the serial pattern P1

procedure NFA run

1: I ← 0m−11; {The set of initial states}
2: F ← 10m−1; {The set of accepting states}
3: D ← I ;
4: for i = 1, . . . , n do
5: D ← ((D << 1) | I)&B[si];

{B[si] is the bit-mask for the next input value si ∈ Δ}
6: if (D&F) �= 0m then
7: Output occurrence occ = i−m + 1;

Fig. 7. Procedure NFA run

For clarity, we often write 〈i〉 for index i if it is treated as a letter. Then, the
target NFA is an NFA with a chain-like linear structure as the NFA in Fig. 6,
which is the NFA for the pattern P1 = φ[1] · · ·φ[5].

More precisely, the target NFA is NFA(P) = (QP , ΣP , δP , IP , FP), where (i)
ΣP = QP = Idx (P)∪{0} = {0, 1, . . . ,m} the alphabet and the set of states, (ii)
δP = {(i − 1, 〈i〉, i) | 1 ≤ i ≤ m} ∪ {(0, 〈0〉, 0)} ⊆ QP × ΣP × QP is the state
transition relation consisting of the set of forward transitions (i− 1, 〈i〉, i) ∈ δP
from state i− 1 to state i by letter 〈i〉 ∈ ΣP for every 1 ≤ i ≤ m and a self loop
(0, 〈0〉, 0) ∈ δP by letter 〈0〉, and (iii) 0 ∈ IP and m ∈ FP are the unique initial
state and the unique accepting state, respectively.

Fast simulation by bit-parallel method: In the running phase, BPS simulates NFA
NFP (P) by scanning an input data stream S in the left to right manner at once.
Although a straightforward implementation of NFA simulation takesO(mn) time
in total to make the pattern matching, we can simulate in O(mn

w) time by using
bit-parallel method as follows. For simplicity, we give a description in the case
of an ordered domain. Let Δ = {1, . . . , c} (c ≥ 0) be an ordered alphabet and
η(x) be the predicate lookup table built in preprocessing phase. Let B[1..c] be
the array of bitmasks obtained by η such that the α-th entry B[α] = Bit(η(α))
is the bitmask for every value x ∈ Δ (1 ≤ α ≤ c. In Fig. 7, we show a procedure
for simulating NFA(P) for serial patterns by bit-parallel method.

In Fig. 8, we show the overall algorithm BPS tab for the time-series pattern
matching on an ordered alphabet. From the above discussion and Theorem 1 of
[7], we have the following result:

Theorem 1. Let Δ be a k-term class of alphabets, and assume that the in-
terpretation of inputs can be done in O(1) time for each. Then, the algorithm
multi-dimensionBPS in Fig. 8 finds the set of all occurrences of a given pattern

Flexible Framework for Time-Series Pattern Matching 11

algorithm multi-dimensionBPS(Δ,P, S)
input: A k-term class of alphabets Δ = (Σ1, . . . , Σk), a pattern P = (P1, . . . , Pk) ∈
(P1

m, . . . ,Pk
m), and a stream S = (s1, . . . , sn) ∈ Δn. output: The set of occurrences

Occ(P, S) of P on S.
1: {Preprocessing phase:}
2: Build k arrays for the predicate hit table ηi of Pi by HT build(Σi, Pi) for every

i-th pattern Pi (1 ≤ i ≤ k);
3: {Scanning phase:}
4: for each position j do
5: Make state transition of each NFA NFA(Pi) for sj , by using bit-parallel method

with the array by HT lookup and NFA run;
6: Check if all NFAs reache its final state, and then report the occurrence.

Fig. 8. The overall algorithm of our framework

P of length m in an input stream S ∈ Δn of length n in O(kmn
w logm) time

using preprocessing O(km|Σ|) time and space O(km|Σ|
w) words, where w is the

bit-width of registers.

This time complexity is properly superior than the time complexityO(kmn logm)
of one based on the previous algorithms.

4 Conclusion

In this paper, we presented a flexible unified framework for time-series pattern
matching over multi-dimension data streams. The proposed framework can deal
with textual, categorical, ordered and numerical type data streams. Each pat-
tern for each data stream can be given as a sequence of predicates which specify
the set of elements on the stream. It enables us to search with a rather com-
plex pattern over data streams. We omitted in this paper, it is easy to extend
our framework into approximate matching (m of k-dimension match, Hamming
distance, Levenshtein distance, and so on), by using techniques in [8].

References

1. Morikawa, H., Asai, T., Arimura, H.: Efficient xpath processing for semi-structured
data streams. In: Proc. DBWS 2003, IPSJ-IEICE (2003) 28 (in Japanese)

2. Motwani, R., Widom, J., et al.: Query processing, approximation, and resource
management in a data stream management system. In: Proc. CIDR 2003 (2003)

3. Stonebraker, M., Cetintemel, U.: One size fits all: An idea whose time has come
and gone. In: Proc. ICDE 2005, pp. 2–11 (2005)

4. Harada, L.: Complex temporal patterns detection over continuous data streams. In:
Manolopoulos, Y., Návrat, P. (eds.) ADBIS 2002. LNCS, vol. 2435, pp. 401–414.
Springer, Heidelberg (2002)

12 T. Kida, T. Saito, and H. Arimura

5. Harada, L.: Pattern matching over multi-attribute data streams. In: Laender,
A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 187–193. Springer,
Heidelberg (2002)

6. Sadri, R., Zaniolo, C., Zarkesh, A.M., Adibi, J.: Optimization of sequence queries
in database systems. In: Proc. PODS 2001. ACM, New York (2001)

7. Saito, T., Kida, T., Arimura, H.: An efficient algorithm for complex pattern
matching over continuous data streams based on bit-parallel method. In: Proc.
of The Third IEEE International Workshop on Databases for Next-Generation
Researchers (SWOD 2007), pp. 13–18 (April 2007)

8. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings: Practical on-line
search algorithms for texts and biological sequences. Cambridge University Press,
Cambridge (2002)

9. Kida, T., Arimura, H.: Pattern matching with taxonomic information. In: Myaeng,
S.-H., Zhou, M., Wong, K.-F., Zhang, H.-J. (eds.) AIRS 2004. LNCS, vol. 3411,
pp. 265–268. Springer, Heidelberg (2005)

10. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J.
Comput. 6(2), 323–350 (1977)

11. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Comm. ACM 20(10),
62–72 (1977)

12. Mäkinen, V., Navarro, G., Ukkonen, E.: Matching numeric strings under noise.
In: Proceedings of the 8th Prague Stringology Conference (PSC 2003), pp. 99–110
(2003)

13. Crochemore, M., Iliopoulos, C.S., Navarro, G., Pinzon, Y.J.: A bit-parallel suffix
automaton approach for (δ, γ)-matching in music retrieval. In: Nascimento, M.A.,
de Moura, E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS, vol. 2857, pp. 211–223.
Springer, Heidelberg (2003)

14. Crochemorea, M., Iliopoulos, C.S., Navarro, G., Pinzon, Y.J., Salingerc, A.: Bit-
parallel (δ,γ)-matching and suffix automata. Journal of Discrete Algorithms 3(2-4),
198–214 (June 2005); (Combinatorial Pattern Matching (CPM) Special Issue)

15. Fredriksson, K., Mäinen, V., Navarro, G.: Flexible music retrieval in sublinear
time. International Journal of Foundations of Computer Science (IJFCS) 17(6),
1345–1364 (2006)

16. Hyrro, H., Takaba, J., Shinohara, A., Takeda, M.: On bit-parallel processing of
multi-byte text. In: Myaeng, S.-H., Zhou, M., Wong, K.-F., Zhang, H.-J. (eds.)
AIRS 2004. LNCS, vol. 3411, pp. 289–300. Springer, Heidelberg (2005)

17. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search.
Comm. ACM 18(6), 333–340 (1975)

18. Arikawa, S., Shinohara, T., Takeya, S.: Sigma: A text database management sys-
tem. Berliners Informatik Tag 5, 72–81 (1989)

19. Matsumoto, Y., Asahara, M., Kawabe, K., Takahashi, Y., Tono, Y., Ohtani, A.,
Morita, T.: Chaki: An annotated corpora management and search system. In: Pro-
ceedings from the Corpus Linguistics Conference Series, vol. 1, Corpus Linguistics
(July 2005), http://chasen.naist.jp/hiki/ChaKi/

20. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms (1974)

http://chasen.naist.jp/hiki/ChaKi/

An Adaptive Algorithm for Splitting Large Sets
of Strings and Its Application to Efficient

External Sorting

Tatsuya Asai1, Seishi Okamoto1, and Hiroki Arimura2

1 Fujitsu Laboratories Ltd, Kawasaki 211–8588, Japan
asai.tatsuya@jp.fujitsu.com, seishi@labs.fujitsu.com

2 Hokkaido University, Sapporo 060–0814, Japan
arim@ist.hokudai.ac.jp

Abstract. In this paper, we study the problem of sorting a large collec-
tion of strings in external memory. Based on adaptive construction of a
summary data structure, called adaptive synopsis trie, we present a prac-
tical string sorting algorithm DistStrSort, which is suitable for sorting
string collections of large size in external memory, and also suitable for
more complex string processing problems in text and semi-structured
databases such as counting, aggregation, and statistics. Case analyses of
the algorithm and experiments on real datasets show the efficiency of
our algorithm in realistic setting.

1 Introduction

Sorting strings is a fundamental task of string processing, which is not only
sorting the objects in associated ordering, but also used as a basis of more
sophisticated processing such as grouping, counting, and aggregation. With a
recent emergence of massive amount of semi-structured data [2], such as plain
texts, Web pages, or XML documents, it is often the case that we would like
to sort a large collection of strings that do not fit into main memory. Moreover,
there are potential demands for flexible methods tailored for semi-structured
data beyond basic sorting facilities such as statistics computation, counting, and
aggregation over various objects including texts, data, codes, and streams [1,15].

In this paper, we study efficient methods for sorting strings in external mem-
ory. We present a new approach to sorting a large collection of strings in ex-
ternal memory. The main idea of our method is to generalize distribution sort
algorithms for collections of strings by the extensive use of trie data structure.
To implement this idea, we introduce a synopsis data structure for strings, called
a synopsis trie, for approximate distribution, and develop an adaptive construc-
tion algorithm for synopsis tries for a large collection of strings with the idea of
adaptive growth.

Based on this technique, we present an external string sorting algorithm
DistStrSort. In Fig. 1, we show an architecture of our external sorting. Let
S = {s1, . . . , sm} ⊆ Σ∗ be an input string list over an alphabet Σ. This al-
gorithm first adaptively constructs a small synopsis trie as a model of string

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 13–25, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

14 T. Asai, S. Okamoto, and H. Arimura

STEP1: BuildDietTrie

STEP2: SplitDietTrie STEP3: SortBucket STEP4: Merge

In
pu

t S
tr

in
g

Li
st

 S

O
ut

pu
t S

tr
in

g
Li

st
 T

Growth
parameter α

S
or

te
d

S
or

te
d

B
uc

ke
t

S
or

te
d

B
uc

ke
t

S
or

te
d

B
uc

ke
t

B
uc

ke
t

B
uc

ke
t

B
uc

ke
t

Internal memory Internal memory

Synopsis Trie TαS

Fig. 1. The architecture of an external sorting algorithm DistStrSort using adaptive
construction of a synopsis trie

distribution by a single scan of the input string list S, splits input strings into a
collection of buckets using the synopsis trie as a splitter, then sorts the strings
in each bucket in main memory, and finally merges the sorted buckets into an
output collection.

By an analysis, we show that if both of the size of the synopsis trie and
the maximum size of the buckets are small enough to fit into main memory of
size M , then our algorithm DistStrSort correctly solves the external string
sorting problem in O(N) time within main memory M using 3N sequential read,
N random write, and N sequential write in the external memory, where N is the
total size of an input string list S. Thus, this algorithm of O(N) time complexity
is attractive compared with a popular merge sort-based external string sort
algorithm of O(N log N) time complexity. Experiments on real datasets show
the effectiveness of our algorithm.

As an advantage, this algorithm is suitable to implement complex data ma-
nipulation operations [11] such as group-by aggregation, statistics calculation,
and functional join for texts.

1.1 Related Works

In what follows, we denote by K = |S| and N = ||S|| be the cardinality and the
total size of an input list S = {s1, . . . , sm}.

On incore string sorting, a straightforward extension of quick sort algorithm
solves the string sorting problem in O(LK log K) time in main memory, where L
is the maximum length of the input strings and N = O(LK). This algorithm is
efficient if L = O(1), but inefficient if L is large. Sinha and Zobel presented a trie-
based string sorting algorithm, called the burst sort , and show that the algorithm
outperforms many of previous string sorting algorithms on real datasets [14].
However, their algorithm is an internal sorting algorithm, and furthermore, the
main aim of this paper is proposal of an adaptive strategy for realizing an efficient
external string sorting. Although there are a number of studies on sorting the
suffixes of a single input string [4,8,9,13], they are rather irrelevant to this work

An Adaptive Algorithm for Splitting Large Sets 15

since they are mainly incore algorithms and utilize the repetition structure of
suffixes of a string.

On external string sorting, Arge et al. presented an algorithm that solves
the string sorting problem in O(K log K + N) time in main memory [3]. The
String B-tree is an efficient dynamic indexing data structure for strings [5]. This
data structure also has almost optimal performance for external string sorting in
theory, while the performance degenerates in practice because of many random
access to external memory.

From the view of stream processing algorithms, the adaptive construction of a
trie for a stream of letters has been studied since 90’s in time-series modeling [7],
data compression [10], and bioinformatics [12]. However, the application of adap-
tive trie construction to external sorting seems new and an interesting direction
in text and semi-structured data processing. Recently, [15] showed the usefulness
of distributed stream processing as a massive data application of new type.

1.2 Organization

This paper is organized as follows. In Section 2, we prepare basic notions and
definitions on string sorting and related string processing problems. In Section 3,
we present our external string sorting algorithm based on adaptive construction
of a synopsis trie. In Section 4, we report experiments on real datasets, and
finally, we conclude in Section 5.

2 Preliminaries

In this section, we give basic notions and definitions on external string sorting.

2.1 Strings

Let Σ = {A, B, A1, A2, . . .} be an alphabet of letters, with which a total order
≤Σ on Σ is associated. In particular, we assume that our alphabet is a set of
integers in a small range, i.e., Σ = {0, . . . , C − 1} for some integer C ≥ 0, which
is a constant or at most O(N) for the total input size N . This is the case for
ASCII alphabet {0, . . . , 255} or DNA alphabet {A, T, C, G}.

We denote by Σ∗ the set of all finite strings on Σ and by ε the empty string.
Let s = a1 · · ·an ∈ Σ∗ be a string on Σ. For 1 ≤ i ≤ j ≤ n, we denote by |s| = n
the length of s, by s[i] = ai the i-th letter , and by s[i..j] = ai · · ·aj the substring
from i-th to j-th letters. If s = pq for some p, q ∈ Σ∗ then we say that p is a
prefix of s and denote p � s. We define the lexicographic order ≤lex on strings
of Σ∗ by extending the total order ≤Σ on letters in the standard way.

2.2 String Sorting Problem

For strings s1, . . . , sm ∈ Σ∗, we distinguish an ordered list (s1, . . . , sm), an un-
ordered list (or multiset) {{s1, . . . , sm}}, and a set {s1, . . . , sm} (of unique strings)
each other. The notations ∈ and = are defined accordingly. We use the intentional

16 T. Asai, S. Okamoto, and H. Arimura

notation (s | P (s)) or {s | P (s)} for ordered lists and unordered sets, respectively.
For lists of strings S1, S2, we denote by S1S2 (S1 ⊕ S2, resp.) the concatenation
of S1, S2 as ordered lists (as unordered lists , resp.).

An input to our algorithm is a string list of size K ≥ 0, that is, just an ordered
list S = (s1, . . . , sK) ∈ (Σ∗)∗ of possibly identical strings, where si ∈ Σ∗ is a
strings on Σ for every 1 ≤ i ≤ K. We denote by |S| = K the cardinality of S

and ||S|| = N =
∑K

i=1 |si| the total size of S. We denote the set of all unique
strings in S by uniq(S) = { si | i = 1, . . . , K }. A string list S = (s1, . . . , sn) is
sorted if si ≤lex si+1 holds for every i = 1, . . . , n − 1.

Definition 1. The string sorting problem (STR-SORT) is, given a string list
S = (s1, . . . , sK) ∈ (Σ∗)∗, to compute the sorted list π(S) = (sπ(1), . . . , sπ(K)) ∈
(Σ∗)∗ for some permutation π : {1, . . . , K} → {1, . . . , K} of its indices such that
Sπ(1) <Σ · · · <Σ Sπ(K).

We can extend our framework for more complicated string processing problems
as follows.

Definition 2. The string counting problem (STR-COUNT) is, given a string
list S = (s1, . . . , sK) ∈ (Σ∗)∗, to compute the histogram h : uniq(S) → N such
that h(s) is the number of occurrences of the unique string s ∈ uniq(S).

Let (Δ, ◦) be a pair of a collection Δ of values and a corresponding associative
operation ◦ : Δ2 → Δ. For example, (N, +) and (R, max) are examples of as-
sociative operation (Δ, ◦). A string database of size K ≥ 0 over dom(D) = Δ
is a list D = ((si, vi) | i = 1, . . . , K) ∈ (Σ∗ × Δ)∗ of pairs of a string and a
value. We denote by uniq(D) = { si | (si, vi) ∈ D } the set of unique strings in
S. For (Δ, ◦), the aggregate on s w.r.t. ◦, denoted by aggr◦(s), is defined as
aggr◦(s) = ◦ (v | (s, v) ∈ D) = v1 ◦ · · · ◦ vm, where (s1, v1), . . . , (sm, vm) ∈ D is
the list of all pairs in D with si = s.

Definition 3. The string aggregation problem w.r.t. associative operation (Δ, ◦)
(STR-AGGREGATE(Δ, ◦)) is, given a string database S=((si, vi) | i=1, . . . , K)
∈ (Σ∗ × Δ)∗, to compute the pair (s, aggr◦(s)) for every unique string s ∈
uniq(D).

The above string counting and string aggregation problems as well as string sort-
ing problem can be efficiently solved by a modification of trie-based sorter. In this
paper, we extend such a trie-based sorter for an external memory environment.

2.3 Model of Computation

In what follows, we denote by K = |S| and N = ||S|| the cardinality and the
total size of the input string list S = (s1, . . . , sm). We assume a naive model
of computation such that a CPU has random access to a main memory of size
M ≥ 0 and sequential and random access to an external memory of unbounded
size, where memory space is measured in the number of integers to be stored.
Though the external memory can be partitioned into blocks of size 0 ≤ B ≤ M ,

An Adaptive Algorithm for Splitting Large Sets 17

we do not study a detailed analysis of I/O complexity. In this paper, we are
particularly interested in the case that the input size does not fit into the main
memory but not so large, namely, N = O(M2).

3 Our Algorithm

3.1 Outline of the Main Algorithm

Fig. 1 shows the architecture of our external string sorting algorithm DistStr-

Sort using an adaptive construction of synopsis trie for splitting, which is a
variant of distribution sort for integer lists. In Fig. 2, we show an outline of
DistStrSort.

The key of the algorithm is Step 2 that splits the input list S into buckets
S1, . . . , Sd of at most B by computing an ordered partition defined as follows.
For string lists S1, S2 ∈ (Σ∗)∗, S1 precedes S2, denoted by S1 ≺ S2, if s1 <lex s2
for every combination of s1 in S1 and s2 in S2.

Then, an ordered partition of a string list S is a sequence of string lists
S1, . . . , Sd such that

(i) the sequence is a partition of S as unordered list, i.e., S = S1 ⊕ · · · ⊕ Sd,
(ii) Si precedes Si+1, i.e., Si � Si+1, for every i = 1, . . . , n − 1, and

Furthermore, an ordered partition of a string list S satisfies maximum bucket
size B if

(iii) |Si| ≤ B holds for every i = 1, . . . , n.

It is easy to see that if we can compute an ordered partition of an input
string list S of maximum size B ≤ M in main memory of size M and if we

Algorithm: DistStrSort

Input: A string list S = (s1, . . . , sK) ∈ (Σ∗)∗ and a maximal bucket size 0 ≤ B ≤M .
Output: The sorted string list T ∈ (Σ∗)∗.
1. Determine a growth parameter α ≥ 0. Build an adaptive synopsis trie Tα,S for S in

main memory with the growth parameter α and a bucket size B. (BuildDietTrie

in Fig. 4)
2. Split the input list S in external memory into partition of buckets S1, . . . , Sd of

size at most B (d ≥ 0) by using Tα,S, where Si � Si+1 for every i = 1, . . . , n− 1.
(BuildDietTrie in Fig. 5)

3. For every i = 1, . . . , K, sort the bucket Bi by arbitrary internal sorting algorithm
and write back to Bi in external memory. (BuildDietTrie in Fig. 6)

4. Return the concatenation T = B1 · · ·BK of sorted buckets.

Fig. 2. An outline of the external string sorting algorithm with adaptive splitting
DistStrSort

18 T. Asai, S. Okamoto, and H. Arimura

Fig. 3. A trie

can sort bucket of size B in O(B) main memory then the algorithm DistStr-

Sort in Fig. 2 correctly solves the string sorting problem in main memory M
(Theorem 7).

However, it is not easy to compute a good partition with maximum block size
B using only a limited main memory for a large input data S that does not fit
into main memory. Hence, we take an approach of computing an approximate
answer using adaptive computation in the following sections.

3.2 A Synopsis Trie

A synopsis trie for a string list S = (s1, . . . , sK) ∈ (Σ∗)∗ is the trie data structure
T for a subset of prefixes of strings in uniq(S) defined as follows.

A trie for a set S of strings on Σ [6] is a rooted tree T whose edges are
labeled with a letter in Σ. In Fig. 3, we show an example of a trie for a set
S = {AN, ART, BAG, BAT, BEAT, BEE, CAT, CAP, CUP} of strings.

We denote by T the set of all vertices of T and by L(T) ⊆ T the set of its
leaves. Each vertex v ∈ T represents the string str(v) ∈ Σ∗, called the path
string, obtained by concatenating the labels on the unique path from the root
root to v in T . Let Str(T) = {str(�) | � ∈ L(T)} be the set of strings represented
by the leaves of T . The vertices of a trie T are often labeled with some additional
information.

If a trie T satisfies that Str(T) = S then T is said to be a trie for S. The
trie T for a string list S can be constructed in O(N) time and O(N) space in
the total input size N = ||S|| for constant Σ [6].

Then, a synopsis trie for S is a trie T for S which satisfies that for every
string s ∈ uniq(S), some leaf � ∈ T represents a prefix of s, i.e., str(�) � s.
Note that a synopsis trie for S is not unique and the empty trie T = {root} is
a trivial one for any set S.

Given a string list S, a synopsis trie T for S can store a subset of strings
in S. For every leaf � ∈ L(T), we define the sublist of strings in S belongs
to � by list(�, S) = (s ∈ S | str(�) � s) and the count of the vertex by
count(�, S) = |list(�, S)|. The total space required to implement a trie for S is
O(||S||) even if we include the information on count and list. On the incore
computation by a trie, we have the following lemma.

An Adaptive Algorithm for Splitting Large Sets 19

Lemma 1. We can solve the string sorting, the string counting, and the string
aggregation problems for an input string list S in O(N) time using main memory
of size O(N), where N = ||S||.
We will extensively use this trie data structure in the following subsections in
order to implement the computation at Step 1, Step 2, and Step 3 of the main
sorting algorithm in Fig. 2.

3.3 STEP1: Adaptive Construction of a Synopsis Trie

In Fig. 4, we show the algorithm BuildDietTrie for constructing an adaptive
synopsis trie.

Although the empty trie T = {root} obviously satisfies the above condition,
it is useless for computing a good ordered partition. Instead, the goal is adaptive
construction of a synopsis trie T for S satisfying the following conditions:

(i) T fits into the main memory of size M , i.e., size(T) ≤ M .
(ii) For an input string list S, count(�, S) ≤ B for a parameter B ≤ M

The adaptive construction is done as follows. For an alphabetΣ={c0, . . . , cs−1},
each state v of the automaton is implemented as the list (goto(v, 0), . . . , goto(v,
s − 1)) of s pointers. For an alphabet of constant size, this is implemented as an
array of pointers. At the creation of a new state v, these pointers are set to NULL
and a counter count(v) is set to 1.

When we construct a synopsis trie T , the algorithm uses a positive integer
α > 0, called the threshold for growing. This threshold represents a minimum
frequency for extending a new state to the current edge.

Algorithm: BuildDietTrie

Input: A string list S = (s1, . . . , sK), a maximum bucket size M ≥ B ≥ 0, and a
growth parameter α > 0.

Output: A synopsis trie Tα,S for S.
1. T := {root};
2. For each i := 1, . . . , K, do the following:

(a) Read the next string s = si from the external disk; Let x := root;
(b) For each j := 1, . . . , |s|, do:

• y := goto(x, s[j]); (Trace the edge cj .)
• If y = ⊥ holds, then:
− If count(x) ≥ α holds, then:

Create a new state y; T := T ∪ {y};
count(y) := 1; goto(x, cj) := y;

− Else:
break the inner for-loop and goto the step 2(a);

• Else, x := y and
count(y) := count(y) + 1;

3. Return T ;

Fig. 4. An algorithm for constructing a synopsis trie

20 T. Asai, S. Okamoto, and H. Arimura

The algorithm firstly initializes a trie T as the trie T = {root} consisting of
the root node only. When the algorithm inserts a string s ∈ S into T , it traces
the corresponding edge to s starting from x = root by goto pointers. Each state
x in the synopsis trie T has an integer count(x) incremented when a string s
reaches to x. These counters represent approximate occurrences of suffixes of
input strings.

When there are no states the current state x transfers to by the next symbol
s[j], the synopsis trie tries to generate a new state. However, the algorithm does
not permit the trie to extend a new edge unless the counter count(x) of x is
more than the given threshold α. If count(x) exceeds α, the trie generates a new
state, and attach it to the current state with a new edge.

Lemma 2. Let S be an input string list of total size N . The algorithm Build-

DietTrie in Fig. 4 computes a synopsis trie for S in O(N) time and O(|T |)
space.

At present, we have no theoretical upper bounds of |T | and the maximum value
of count(�) according to the value of growth parameter α ≥ 0. Tentatively,
setting α = cB for some constant 0 ≤ c ≤ 1 works well in practice.

3.4 STEP2: Splitting a String List into Buckets

Let BID = {1, . . . , b} be a set of bucket-id ’s for some b ≥ 0. Then, a bucket-id
assignment for T is a mapping β : L(T) → BID that assigns bucket id’s to
the leaves. Let (T , BID) be a synopsis trie T whose leaves are labeled with the
bucket-id assignment β.

A bucket-id assignment β for T is said to be order-preserving if it satisfies
the following condition: for every leaves �1, �2, if str(�1)≤lex str(�2) then β(�1)≤
β(�2).

By the definition of a synopsis trie above, we know that for every string
s ∈ uniq(S), there is the unique leaf � ∈ L(T) such that str(�) � s. We denote
this leaf by vertex(s, T) = �. Then, the bucket-id assigned to s is defined by
bucket(T , β, s) = β(vertex(s, T)). Given an input string list S ∈ (Σ∗)∗, (T , β)
defines the partition

PART (S, T , β) = S1 ⊕ . . . ⊕ Sb

where Sk = (s ∈ S | bid(T , β, s) = k) holds for every bid k ∈ BID. Then,
the maximum bucket size of (T , BID) on input S is defined by max{ Sk | k =
1, . . . , b }. Clearly, S1 ⊕ . . . ⊕ Sb = S holds.

Lemma 3. If β is order-preserving then PART (S, T , β) is an ordered partition.

In Fig. 5, we show an algorithm SplitDietTrie for splitting an input string
list S into buckets PART (S, T , β) = B1 ⊕ . . . ⊕ Bb. We can easily see that the
bucket-id assignment computed by algorithm SplitDietTrie is always order-
preserving. Furthermore, we have the following lemma.

An Adaptive Algorithm for Splitting Large Sets 21

Algorithm: SplitDietTrie

Input: A string list S = (s1, . . . , sK) (in external memory), a synopsis trie Tα,S for S
(in internal memory), and a positive integer M ≥ B ≥ 0.

Output: An ordered partition B1 ⊕ · · · ⊕ Bb for S.
1. //Compute a bucket-id assignment β

– Let N ′ =
∑

�∈L(Tα,S) count(�); B′ = BN ′/N ; k = 1; A = 0;

– For each leaf � ∈ L(Tα,S) in the lexicographic order of str(�), do:
− If (A + count(�) ≤ B′), then bucket(�) := k and A := A + count(�);
− Else, k := k + 1 and A := 0;

– b = k;
2. //Distribute all strings in S into the corresponding buckets.

– For each k = 1, . . . , b, do: Bi := ∅;
– For each string s ∈ S, do:
− Find the leaf � = vertex(s,Tα,S) reachable from the root by s;
− Put s to the k-th bucket Bk in external memory for k = β(�).

Fig. 5. An algorithm SplitDietTrie for splitting an input string list

Lemma 4. Let S be an input list and T be a synopsis trie with bucket-id as-
signment for S. Suppose that |T | ≤ M . Then, the algorithm SplitDietTrie of
in Fig. 5, given S and T , computes an ordered partition of S in O(N) time and
O(|T |) space in main memory, where N = ||S||.

We have the following lemma on the accuracy of the approximation.

Lemma 5. Let B′ ≥ 0 (0 ≤ B′ ≤ M) and k ≥ 1 be any integers. Let T be the
synopsis trie for S. If the trie T on S satisfies 0 ≤ count(v) ≤ 1

kB′ for any
vertex � ∈ L(T), then the resulting ordered partition S = B1 ⊕ · · · ⊕ Bb (b ≥ 0)
satisfies that k−1

k B ≤ Bi ≤ B holds for any bucket Bi (1 ≤ i ≤ m).

3.5 STEP3: Internal Sorting of Buckets

Once an input string list S of total size N has been split into an ordered partition
S1 ⊕ . . . ⊕ Sb = S of maximum bucket size B ≤ M , we can sort each bucket

Algorithm: SortBucket

Input: A bucket B ∈ (Σ∗)∗.
Output: A bucket Ci ∈ (Σ∗)∗ obtained from B by sorted in ≤lex.
1. Build a trie TB for the bucket B in main memory;
2. Traverse all vertices v of TB in the lexicographic order of path strings str(v) and

output str(v).

Fig. 6. An algorithm SortBucket for sorting each bucket

22 T. Asai, S. Okamoto, and H. Arimura

Bi in main memory by using any internal memory sorting algorithm. For this
purpose, we use a internal trie sort which is described in Fig. 6.

Lemma 6. The algorithm SortBucket of Fig. 6 sorts a bucket B of strings
in O(N) time using main memory of size O(N), where N = ||B|| and Σ is a
constant alphabet.

3.6 STEP4: Final Concatenation

Step 4 is just a concatenation of already sorted buckets B1, . . . , Bb. Therefore,
this step requires no extra cost.

3.7 Analysis of the Algorithm

In this subsection, we give a case analysis of a practical performance of the
proposed external sorting algorithm assuming a practical situations for such an
algorithm. For the purpose, we suppose the following condition:

Condition 1. The synopsis trie computed by BuildDietTrie and SplitDiet-

Trie on the input string list S and the choice of a growth parameter α satisfies
the following conditions:

– The synopsis trie fits into main memory, that is, size(T) ≤ M .
– The maximum bucket size of the ordered partition computed by SplitDiet-

Trie at Step 2 does not exceed M .

For the above condition to hold, we know that at least the input S satisfies
that N = O(M2). Note that at this time, we only have a heuristic algorithm
for computing a good synopsis trie without any theoretical guarantee for its
performance. Finally, we have the following result.

Theorem 7. Suppose that the algorithms BuildDietTrie and SplitDiet-

Trie satisfy Condition 1 on the input S and α ≥ 0. The algorithm DistStr-

Sort correctly solves the external string sorting problem in O(N) time within
main memory M using 3N sequential read (Step 1–Step 3), N random write
(Step 2), and N sequential write (Step 3) in the external memory.

From Theorem 7 and Lemma 1, we can show the following corollary using mod-
ified version of DistStrSort algorithm.

Corollary 8. Let (Δ, ◦) be any associative binary operator, where operation ◦
can be computed in O(1) time. Suppose that the algorithms BuildDietTrie and
SplitDietTrie satisfy Condition 1 on the input S and α ≥ 0. There exists an
algorithm that solves the string counting (STR-COUNT), and the string aggre-
gation problems (STR-AGGREGATE(Δ, ◦)) for an input string list S in O(N)
time using main memory of size M in external memory.

An Adaptive Algorithm for Splitting Large Sets 23

4 Experimental Results

In this section, we present experimental results on real datasets to evaluate
the performance of our algorithms. We implemented our algorithms in C. The
experiments were run on a PC (Xeon 3.6GHz, Windows XP) with 3.25 gigabytes
of main memory.

We prepared two datasets data A and data B consisting of cookie values from
Web access logs. The parameters of the datasets are shown in Table 1.

Table 1. Parameters of the datasets

Dataset data A data B
File size 67MB 1.1GB
Number of records (with duplications) 140×104 2290×104

Number of records (no duplications) 22×104 109×104

Average of record length 45.0 44.9
Variance of record length 45.1 19.7
Maximum record length 58 58
Minimum record length 15 15

4.1 Size of Synopsis Trie

First, we studied sizes of synopsis tries constructed by the algorithm Build-

DietTrie by varying the growth parameter α = 100, 1000, or 10000. Table 2
shows the number of states of the constructed synopsis trie for each α on the
data A. We can see that the bigger α is, the smaller the size of the constructed
synopsis trie becomes.

Table 2. Sizes of the constructed synopsis tries

Growth parameter α 100 1,000 10,000
Number of states 426,209 92,768 5,030

4.2 Running Time

Next, we measured the running times of the subprocedures BuildDietTrie and
SplitDietTrie on the data A, by varying the number of buckets and the growth
parameter. Fig. 7 show the results. The horizontal axis in the figure represents
pairs of the number of buckets and the growth parameter. The vertical axis
represents the running time.

The results indicate that the running time is smaller as the growth parameter
α increases. Thus, a smaller synopsis trie can be constructed in a reasonable
computational time by adjusting α.

Finally, we studied the running time of the algorithm DistStrSort. Fig. 8
shows the running times on the data B of DistStrSort and the GNU sort 5.97.
From the figure, we observe that the running time of our algorithm scales linearly
with the size of data and is faster than the GNU sort for larger data sizes.

24 T. Asai, S. Okamoto, and H. Arimura

Fig. 7. Running time of BuildDietTrie

and SplitDietTrie

15

����1GB��2270�	
���
����������
������GNU sort ���� �!"�#$

�

���

���

���

���

���

���

	��

��

���

� ������� �������� �������� �������� ��������

�������	
����
���

�
�
�
�
��
�
	

�
�
�

�����������

	
������

Fig. 8. Running time of DistStrSort

and GNU sort

5 Conclusion

In this paper, we presented a new algorithm for sorting large collections of strings
in external memory. The main idea of our method is first splitting a set of strings
to some buckets by adaptive construction of a synopsis trie for input strings,
then sort the strings in each bucket, and finally merge the sorted buckets into
an output collection. Experiments on real datasets show the effectiveness of our
algorithm.

In this paper, we only made empirical studies on the performance of adaptive
strategy for construction of a synopsis trie for data splitting. The probabilistic
analysis of the upper bounds of |T | and the maximum value of count(�) con-
cerning to the value of growth parameter α ≥ 0 is an interesting future research.

We considered only the case that the input size is at most the square of the
memory size, and then presented a two-level external sorting algorithm. It is a
future research to develop a hierarchical version of our algorithm for inputs of
unbounded size. A stream-based distributed version of distribution string sort
algorithms is another possible direction.

References

1. Abiteboul, S., Agrawal, R., Bernstein, P.A., Carey, M.J., Ceri, S., Croft, W.B.,
DeWitt, D.J., et al.: The Lowell database research self-assessment. C. ACM 48(5),
111–118 (2005)

2. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web. Morgan Kaufmann, San
Francisco (2000)

3. Arge, L., Ferragina, P., Grossi, R., Vitter, J.S.: On Sorting Strings in External
Memory. In: Proc. the 29th Annual ACM Symposium on Theory of Computing
(STOC 1997), pp. 540–548 (1997)

4. Bentley, J., Sedgewick, R.: Fast Algorithms for Sorting and Searching Strings. In:
Proc. the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
1997), pp. 360–369 (1997)

5. Ferragina, P., Grossi, R.: The String B-tree: A New Data Structure for String
Search in External Memory and Its Applications. J. ACM 46(2), 236–280 (1999)

6. Fredkin, E.: Trie Memory. C. ACM 3(9), 490–499 (1960)

An Adaptive Algorithm for Splitting Large Sets 25

7. Laird, P., Saul, R.: Discrete sequence prediction and its applications. Machine
Learning 15(1), 43–68 (1994)

8. Manber, U., Myers, E.W.: Suffix Arrays: A New Method for On-Line String
Searches. SIAM J. Comput. 22(5), 935–948 (1993)

9. Manzini, G., Ferragina, P.: Engineering a lightweight suffix array construction algo-
rithm (Extended abstract). In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS,
vol. 2461, pp. 698–710. Springer, Heidelberg (2002)

10. Moffat, A.: Implementing the PPM data compression scheme. IEEE Trans. Com-
munications COM-38(11), 1917–1921 (1990)

11. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill Pro-
fessional, New York (2000)

12. Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic au-
tomata with variable memory length. Machine Learning 25(2-3), 117–149 (1996)

13. Sadakane, K.: A Fast Algorithms for Making Suffix Arrays and for Burrows-
Wheeler Transformation. In: Proc. the 8th Data Compression Conference (DCC
1998), pp. 129–138 (1999)

14. Sinha, R., Zobel, J.: Efficient Trie-Based Sorting of Large Sets of Strings. In:
Proc. the 26th Australasian Computer Science Conference (ACSC 2003) (2003)

15. Stonebraker, M., Cetintemel, U.: One Size Fits All: An Idea Whose Time Has Come
and Gone. In: Proc. the IEEE 21st International Conference on Data Engineering
(ICDE 2005), pp. 2–11, keynote (2005)

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 26–37, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Incrementally Mining Recently Repeating Patterns over
Data Streams*

Jia-Ling Koh and Pei-Min Chou

Department of Computer Science and Information Engineering
National Taiwan Normal University

Taipei, Taiwan 106, R.O.C
jlkoh@csie.ntnu.edu.tw

Abstract. Repeating patterns represent temporal relations among data items,
which could be used for data summarization and data prediction. More and
more data of various applications is generated as a data stream. Based on time
sensitive concern, mining repeating patterns from the whole history data se-
quence of a data stream does not extract the current trend of patterns over the
stream. Therefore, the traditional strategies for mining repeating patterns on
static database are not applicable to data streams. For this reason, an algorithm,
named appearing-bit-sequence-based incremental mining algorithm, for effi-
ciently discovering recently repeating patterns over a data stream is proposed in
this paper. The appearing bit sequences are used to monitor the occurrences of
patterns within a sliding window. Two versions of algorithms are proposed by
maintaining the appearing bit sequences of maximum repeating patterns and
closed repeating patterns, respectively. Accordingly, the cost of re-mining re-
peating patterns over a sliding window is reduced to that of monitoring fre-
quency changes of the maintained patterns. The experimental results show that
the incremental mining methods perform much better than the re-miming ap-
proach.

Keywords: repeating patterns, incremental mining, data streams.

1 Introduction

Repeating patterns represent temporal relations among data items in a data sequence,
which could be used for data summarization and data prediction. Therefore, repeating
patterns discovery is of great interest for applications with sequential data representa-
tions. There have been many approaches proposed for mining repeating patterns
[5][6][7][10]. The concept of repeating patterns was used in [5] to represent the sig-
nificant content of a music object. It proposed a data structure called correlative
matrix to aid the process for extracting repeating patterns. Moreover, for providing
more efficient processing, the String-Join algorithm was developed to extract non-
trivial repeating patterns instead of repeating patterns in a music object. In [6], we

* This work was partially supported by the R.O.C. N.S.C. under Contract No. 96-2221-E-003-

018 and 96-2524-S-003-001.

 Incrementally Mining Recently Repeating Patterns over Data Streams 27

designed bit index sequences to characterize note sequences of music objects. In the
mining process, the frequency of a candidate pattern was obtained by performing shift
and and operations on bit sequences and counting the number of 1s in the resultant bit
sequence. Therefore, frequency checking of a pattern could be performed quickly. In
addition, this approach avoided scanning the data sequences repeatedly. Fault-tolerant
data mining would discover more general and useful information for real-world dirty
data. By extending the idea of appearing bit sequences, fault-tolerant appearing bit
sequences were defined in [7] to represent the locations where candidate patterns
appear in a data sequence with insertion/deletion errors being allowed. Accordingly,
the fault-tolerant frequency of each candidate pattern could be obtained quickly.

Recently, the data stream, which is an unbounded sequence of data elements gen-
erated at a rapid rate, provides a dynamic environment for collecting data. Knowledge
discovery on streaming data is a research topic of growing interest especially for
learning concept drifts [4][12]. The lossy-counting algorithm is a representative ap-
proach for mining frequent itemsets over data streams [11]. For reducing the required
memory usage, the lossy-counting algorithm only maintained patterns with supports
being no less than an error tolerance parameter ε. Consequently, the frequency of a
pattern was estimated by compensating the maximum number of times that the pattern
could have occurred before being monitored. Time sensitivity is another important
issue when mining frequent itemsets over data streams. It is likely that the embedded
knowledge in a data stream will change quickly as time goes by. In order to catch
recent trend of data, the estDec algorithm [2] decayed the old occurrences of each item-
set to diminish the effect of old transactions on the mining result of frequent itemsets.
However, in particular applications, it is interested only the frequent patterns mined
from the recently arriving data within a fixed time period. A time-sensitive sliding win-
dow approach was proposed in [9] for mining recently frequent itemsets within the
current sliding window in a data stream. Accordingly, the recently frequent itemsets
were discovered from the most recent w blocks of transactions. For discovering closed
frequent itemsets in a sliding window, [3] proposed a compact data structure, named a
closed enumeration tree (CET), to monitor the itemsets which consist of the boundary
between closed frequent itemsets and the rest of the itemsets. Accordingly, the closed
frequent itemsets in a sliding window are discovered by maintaining the CET structure
incrementally. For achieving the similar purpose, a data structure called summary fre-
quent itemset forest was introduced in [8] for incremental maintaining the essential
information about maximal frequent itemsets embedded in a data stream.

Although the problem of mining frequent itemsets over data streams has been in-
vestigated in the above literatures [2][3][8][9][11], the temporal relations among data
items were not considered in these studies. Accordingly, it is essential to provide a
data structure for maintaining sequential information of items within a sliding window
to discover recently repeating patterns appearing in the window. Moreover, an incre-
mental pattern mining strategy is necessary to avoid performing re-mining when the
window slides. In this paper, an algorithm, named appearing-bit-sequence-based in-
cremental mining algorithm, for efficiently mining recently repeating patterns over a
data stream is proposed. The appearing bit sequences are used to monitor the occur-
rences of patterns within a sliding window. Two versions of algorithms are proposed
by maintaining the appearing bit sequences of maximum repeating patterns and closed
repeating patterns, respectively. Accordingly, the cost of mining repeating patterns in

28 J.-L. Koh and P.-M. Chou

a sliding window is reduced to that of mining frequency changes of the maintained
patterns. The experimental results show that the incremental mining methods perform
much better than the re-miming approach.

This paper is organized as follows. The related terms used in this paper are defined
in Section 2 first. In Section 3, the proposed algorithm for discovering recently repeat-
ing patterns incrementally from the maintained structure is introduced. The perform-
ance evaluation on the proposed algorithms is reported in Section 4. Finally, in Sec-
tion 5, we conclude this paper.

2 Preliminaries

2.1 Problem Definition

Let I = {I1 , I2 , I3 ……… Im} denote the set of data items in the specific application
domain. Suppose an item in I is inputted at each time point. Accordingly, a data
stream DS = [S1, S2, S3 …) is formed, where each Si denoting a data item in I is associ-
ated with an time identifier i. Under a predefined sliding window size W, the se-
quence window at time t, denoted as SWt, represents the sequence of items [St-W+1, St-

W+2, …, St]. The ith item in SWt is denoted as SWt[i]. A pattern P= p1 p2…pk (k ≥ 1) is a
data sequence consisting of one or more items in I. The number of items in pattern P
is called the length of P, denoted as |P|.

Suppose a sequence window SWt and a pattern P=p1p2…pm are given. If there ex-
ists an positive integer i such that SWt [i-m+1]SWt [i-m+2]…SWt [i] = p1p2…pm, it is
called that p appears in SWt and SWt contains p on position i. The number of posi-
tions in SWt, where SWt contains p, is named the recent frequency of p in DS at time
t, denoted as RFt

DS(p). Given a user specified minimum frequency, denoted as Fmin, a
pattern p is called a recently repeating patterns (RRPs) in DS at time t if RFt

DS(p) ≥
Fmin. A recently repeating pattern with length k is named a k-RRP.

2.2 Appearing Bit Sequences

In our previous work [6], the appearing bit sequences were proposed to speed up the
mining of repeating patterns in a data sequence with fixed length. For each kind of
data item N in a data sequence, N has a corresponding appearing bit sequence (de-
noted as AppearN). The length of an appearing bit sequence equals the length of the
data sequence. The leftmost bit is numbered as bit 1. If a data item appears on the ith
position of the data sequence, bit i in the appearance bit sequence of this data item is
set to be 1; otherwise, it is set to be 0. A bit index table is used to store the appearing
bit sequences for all the data items in the data sequence. Therefore, the frequency of a
data item is obtained according to the number of bits with value 1 in its appearing bit
sequence, without needing to scan the data sequence repeatedly.

Example 1. The bit index table of “BCBCABCABC” is given as shown in Figure 1.

1) Suppose we would like to get AppearAB. A position i where “AB” appears im-
plies “A” must appear on position i and “B” appears on the next position (i+1).

 Incrementally Mining Recently Repeating Patterns over Data Streams 29

Step1. Get AppearA=0000100100 and AppearB=1010010010 from Table 1.
Step2. Perform one right shift operation on AppearA (shift bit i to bit(i+1), where

1≤i≤9, and set bit 1 to be 0), R_shift(AppearA,1) = 0000010010.
Step3. AppearAB =R_shift(AppearA, 1) ∧ AppearB = 0000010010.

 B C B C A B C A B C

AppearA 0 0 0 0 1 0 0 1 0 0

AppearB 1 0 1 0 0 1 0 0 1 0

AppearC 0 1 0 1 0 0 1 0 0 1

Fig. 1. The bit index table for data sequence “BCBCABCABC.”

 2) Suppose we would like to get AppearABC after getting AppearAB. A position i
where “ABC” appears implies “AB” must appears on position i and “C” appears
on position i+1.
Step1. Obtain AppearC=0101001001 from Table 1.
Step2. Perform one right shift operation on AppearAB, R_shift(AppearAB,1) =

0000001001.
Step3. AppearABC = R_shift(AppearAB, 1) ∧ AppearC = 0000001001.

Accordingly, the frequency of “ABC” in the sample data sequence equals the number
of bits with value 1 in AppearABC (that is 2 in this case).

Suppose pattern P=P1P2…Pm, where Pi (i=1, …,m) is a data item and m>1. Let
P’=P1P2…Pm-1 and X=Pm. In general, AppearP is deduced from AppearP’ and AppearX
according to the following recursive formula:

AppearP= R_shift(AppearP’,1) ∧AppearX .

3 Incremental Repeating Patterns Mining

The processing of the incremental repeating patterns mining approach is characterized
into two phases: window initialization phase and window sliding phase. The window
initialization phase is activated when the first time the sequence window becomes full
occurs. In this phase, the appearing information of repeating patterns in the initial
sequence window is discovered and maintained. After that, the window sliding phase
is activated. A newly coming data item is inserted and the oldest data item has to be
removed from the sequence window. Without needing to re-perform repeating pat-
terns mining on the new sequence window, the RRPs are discovered incrementally
from the maintained information efficiently.

3.1 Window Initialization Phase

Definition 1. Prefix-subpattern and suffix-subpattern
Suppose a pattern P=x1x2…xk is given. For any pattern P1= x1x2…xi, where i<k, P1 is
named the i-prefix-subpattern of P. Pattern x1x2…xk-1 is called the maximum prefix-
subpattern of P. For any pattern P2= xjxj+1…xk, where 1<j, P2 is named the (k-j+1)-suffix-

30 J.-L. Koh and P.-M. Chou

subpattern of P. Pattern x2x3…xk is called the maximum suffix-subpattern of P. All the
prefix and suffix-subpatterns of P are named sub-patterns of P, and P is a super-pattern
of its sub-patterns.

Definition 2. Maximum repeating pattern
A maximum repeating pattern is defined as a RRP for which none of its super-
patterns are RRPs at the same time.

In the window initialization phase, a bit index table, named a recent bit index table, is
constructed to represent the initial sequence window. An Apriori-like algorithm is
developed to extract RRPs from the initial sequence window, in which appearing bit
sequences of patterns are used to count the recent frequencies of candidate patterns
efficiently. For providing incremental mining in the window sliding phase, the dis-
covered repeating patterns and their corresponding appearing bit sequences are main-
tained. In order to reduce required storage space of the maintained patterns, only the
maximum repeating patterns are remained.

First, the initial sequence window is scanned once to create the recent bit index ta-
ble. The 1-RRPs are those data items with recent frequencies being no less than Fmin.
A pair of (k-1)-RRPs are merged to produce a candidate k-pattern. To avoid generat-
ing duplicate candidates, a pattern P1 is merged with another pattern P2 only if they
have the same (k-2)-suffix-subpattern. The resulting candidate pattern P3 is a pattern
with length (k+1), which is obtained by concatenating pattern P1 with the last data
item of P2. The appearing bit sequence of P3 is derived by performing a right shift
operation on AppearP1 followed by an and operation with AppearP2. Then the recent
frequencies of the candidate (k+1)-patterns are counted from their appearing bit se-
quences efficiently.

Whenever a (k+1)-RRP P is discovered, the pattern P and its appearing bit se-
quence AppearP is inserted into a table for maintaining the recent maximum repeating
patterns. Moreover, all the sub-patterns of P are removed from the table. The above
process repeats until no more (k+1)-RRP is discovered.

3.2 Window Sliding Phase

In the window sliding phase, a new data item is appended into and the first data item
is removed from the sequence window. However, the middle part of SWt-1 is remained
in SWt. In our method, the RRPs in the new current sequence window are discovered
incrementally from the maintained information of previous window to prevent from
generating candidate patterns iteratively.

First, the recent bit index table is updated. Each appearing bit sequence in the table
is performed by a left shift operation to remove the first bit which corresponds to the
out-of-date time point. Besides, for the newly coming data item x, the last bit of Ap-
pearx is set to be 1.

Let y denote the removed data item. There are two cases that the recent frequencies
of patterns will be changed. The first case is for those patterns that are beginning with
y and have an occurrence at the removed data item. Then the recent frequencies of
these repeating patterns are reduced by one. Similarly, it is possible that the recent
frequency of a pattern ending with x is increased such that the pattern becomes a

 Incrementally Mining Recently Repeating Patterns over Data Streams 31

RRP. In the following, the process of incremental mining RRPs will be introduced
according to these two cases.

Step 1: remove the out-of-date data item y
For each pattern maintained in the maximum repeating pattern table, its appearing bit
index sequence is updated by performing a left shift operation. According to the new
appearing bit index sequence of a pattern P, let bit i denote the first non-zero bit in
AppearP. It is implied that P has an occurrence located out of the new sequence win-
dow if i <|P|. Therefore, bit i of AppearP is set to be 0 and the recent frequency of P
is reduced by one.

If the recent frequency of P after updating is less than Fmin, P is not a RRP any
more. However, all the suffix-subpatterns of P remain to be RRPs. Let P be denoted
by yp1p2…pk, where each pi (i=1,..k) is a data item. Therefore, the maximum suffix-
subpattern of P, denoted as P’, becomes a new maximum repeating pattern. AppearP’

is computed according to the information in the recent bit index table. The pattern P’
is inserted into the maximum repeating pattern table to replace pattern P.

Moreover, it is possible that part of the prefix-subpatterns of P remains to be RRPs. Ini-
tially, P” is set to be y and RFt

DS(P”) is obtained according to Appeary. If P” is a RRP, it
is appended with pi (i=1,..k) one by one until a maximum repeating pattern is discovered.

Step 2: append the newly coming data item x
Let z denote the last data item in the previous sequence window. If RFt

DS(x) is less
than Fmin, there is not any RRP newly generated. Otherwise, it is possible to form
longer repeating patterns for the repeating patterns ending with z.

According to the maintained maximum repeating patterns, there are two situations
to get the repeating patterns ending with z. The first one is to retrieve the suffix-
subpatterns of a maximum pattern ending with z. Let P denote a maximum repeating
pattern ending with z. The pattern P is appended with the newly coming data item x to
generate a longer pattern Px, where AppearPx is computed according to the maintained
information of AppearP and Appearx. If Px is certified to be a RRP, it is a new maxi-
mum repeating pattern. Accordingly, Px is inserted into the maximum repeating pat-
tern table to replace pattern P. In the case that Px is not a RRP, it is still possible to
find new RRPs by appending x to the suffix-subpatterns of P. Let P be denoted by
p1p2…pmz, where each individual pi (i=1,..m) is a data item. Each suffix-subpattern of
P, denoted by P’, is composed of pkpk+1…pmz for k≥ 2. Initially, P’ is set to be the 1-
suffix-subpattern of P, that is z in this case. Then, AppearP’x is computed according to
Appearz and Appearx. If P’x is a RRP, P’ is extended to be pmz, which is the 2-suffix-
subpattern of P. The appearing bit sequence of pmzx is obtained by performed two left
shift operations on Appearpm followed by an AND operation with Appearzx. The above
process repeats until finding a k such that P’=pk-1pk…pmz and RFt

DS(P’x) is less than
Fmin. Finally, pattern pk…pmzx is a maximum repeating pattern, which is inserted into
the maximum repeating pattern table.

In addition to the suffix-subpatterns of a maximum repeating pattern ending with z,
it is possible that a repeating pattern ending with z is contained in the middle of a
maximum repeating pattern. Let Q denote a maximum repeating pattern consisting of
q1q2…qmzqm+1…qn, where each individual qi (i=1,..n) is a data item. Let Q’ denote the
maximum prefix-subpattern of Q ending with z, which is composed of q1q2…qmz.
Then all the suffix-subpatterns of Q’ are repeating patterns ending with z. First, Q” is

32 J.-L. Koh and P.-M. Chou

set to be the 1-suffix-subpattern of Q’, that is z in this case. If Q”x is a RRP, Q” is
extended to be the 2-suffix of Q’. The above process repeats until finding a k such that
Q”x=qkqk+1…qmzx is a RRP but qk-1qk…qmzx is not or Q” has been identical to Q’.
Finally, pattern Q”x is a maximum repeating pattern, which is inserted into the maxi-
mum repeating pattern table.

SW20 A B C B C A B B C A B C B A B C B A B C

Data Item Appearing Bit Sequence Frequency
A 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 5
B 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 9
C 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 6

(a)

Pattern Appearing Bit Sequence Frequency
ABCB 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 3

(b)

SW21 B C B C A B B C A B C B A B C B A B C A
Data Item Appearing Bit Sequence Frequency

A 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 5
B 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 9
C 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 6

(c)

Pattern Appearing Bit Sequence Frequency
ABCB 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 3

(d)

Pattern Appearing Bit Sequence Frequency
ABC 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 3
BCB 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 3

(e)

Pattern Appearing Bit Sequence Frequency
ABC 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 3
BCB 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 3

 BCA 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 3
(f)

Fig. 2. The recent bit index table and maintained patterns of the example

According to the updated information in the maximum repeating pattern table, all
the RRPs could be enumerated. Moreover, it provides the hints for mining RRPs in-
crementally in the next sequence window.

Example 2. Suppose a data stream DS=[ABCBCABBCABCBABCBABCA…) is
given, the size of the sliding window is 20, and Fmin is set to be 3. Accordingly, the
initial sequence window SW20=[ABCBCABBCABCBABCBABC]. The correspond-
ing recent bit index table is constructed as shown in Figure 2(a). After window ini-
tialization phase is performed, the maximum repeating pattern ABCB is discovered
and maintained in the maximum repeating pattern table as shown in Figure 2(b).

When the sequence window slides to be SW21=[BCBCABBCABCBABCBABCA],
a data item “A” is newly inputted and the first “A” is removed. All the appearing bit

 Incrementally Mining Recently Repeating Patterns over Data Streams 33

sequences are performed by a left shift operation, individually. Besides, the last bit of
AppearA is set to be 1. The recent bit index table is updated to be the one shown in Fig-
ure 2(c). To eliminate the occurrence of the removed item “A”, the appearing bit se-
quence of the maximum repeating pattern “ABCB” is performed by a left shift opera-
tion to get the one shown in Figure 2(d). It is implied that the first occurrence of
“ABCB” is out-of-date because the first non-zero bit in AppearABCB, located on bit 3, is
less than the length of pattern “ABCB”. Accordingly, the bit is reset to be 0 and the
recent frequency of “ABCB” becomes to be 2. Since pattern “ABCB” is not a RRP in
SW21, the maximum suffix-subpattern of “ABCB”, “BCB” in this case, becomes a
maximum repeating pattern. The appearing bit sequence of “BCB” is obtained from a
series of computing on AppearB and AppearC. Furthermore, the prefix-subpatterns of
“ABCB” are enumerated to find a longest prefix-subpattern of “ABCB” which is a RRP.
Consequently, “ABC” is discovered to be a maximum repeating pattern in SW21. The
maintained maximum repeating table is updated to be the one shown in Figure 2(e).

The last data item in the previous sequence window, SW20, is “C”. It is possible to
generate a longer repeating pattern by appending the inputted item “A” to a repeating
pattern ending with “C”. First, the new data item “A” is appended to the maximum
repeating pattern ending with “C”, “ABC” in this case, to generate a longer pattern
“ABCA”. Since “ABCA” is not a RRP, the other RRPs ending with “C” are generated
by enumerating the suffix-subpatterns of “ABC”: “C” and “BC” in sequence. Finally,
“BCA” is discovered to be a newly generated maximum repeating pattern. After the
process of window sliding phase is performed, the maintained patterns in the maxi-
mum repeating table are shown as Figure 2(f).

3.3 Maintaining Closed Repeating Patterns

Definition 3. Closed repeating pattern
Given patterns P1 and P2, it is named that P1 is closed contained in P2 if P1 is a sub-
pattern of P2 and RFt

DS(P1)= RFt
DS(P2). A closed repeating pattern is defined as a

RRP which is not closed contained in any of its super-patterns.

Theorem 1. If pattern P is closed contained in pattern Px, the sub-patterns of P,
which are closed contained in P, are also closed contained in Px.

For providing a lossless compression of the whole collection of RRPs, the closed
repeating patterns in a sequence window are maintained instead of keeping the maxi-
mum repeating patterns. The processing steps described in the previous section are
performed similarly on the maintained closed repeating patterns. Besides, the follow-
ing properties are used to improve the processing efficiency.

Property 1. Let P=yp1p2…pk denote a closed repeating pattern in SWt. Besides, the
maximum suffix-subpattern of P, P’=p1p2…pk, is closed contained in P. In the case
that P becomes a non-repeating pattern in SWt+1 due to the removing of the out-of-
date data item y, P’ becomes a new closed repeating pattern in SWt+1 to replace P and
AppearP’=AppearP.

Property 2. Let P=yp1p2…pk denote a closed repeating pattern in SWt. Besides, a
prefix-subpattern of P, P”=yp1p2…pj (j<k), is closed contained in P. In the case that P
becomes a non-repeating pattern in WSt+1 due to the removing of the out-of-date data

34 J.-L. Koh and P.-M. Chou

item y, P” is also a non-repeating pattern in SWt+1. Accordingly, P is removed from
the list of maintained patterns without needing to check the prefix-subpatterns of P.

Property 3. Let z denote the last data item in SWt and P denote a closed repeating pattern
ending with z. In the case that Px becomes a repeating pattern in SWt+1 due to the insert-
ing of the new data item x, according to [Theorem 1], all the sub-patterns of P which are
closed contained in P are closed contained in Px if P is closed contained in Px. Therefore,
Px becomes a new closed repeating pattern in SWt+1 to replace P in this case.

Property 4. Let z denote the last data item in SWt and P denote a closed repeating
pattern ending with z. In the case that Px is not a RRP in SWt+1 due to the inserting of
the new data item x, for any suffix-subpattern of P, P’, being closed contained in P,
P’x is not a RRP in SWt+1. Therefore, it is not necessary to enumerate the suffix-
subpatterns of P for generating longer patterns.

Property 5. Let z denote the last data item in SWt and Q denote a closed repeating
pattern consisting of q1q2…qmzqm+1…qn. For any repeating pattern Q’, which is ending
with z and closed contained in the middle of Q, it only appears when Q ever appears.
Therefore, it is impossible that Q’ will become a repeating pattern in SWt+1 by insert-
ing the new data item x. Therefore, it is not necessary to enumerate the sub-patterns of
Q ending with z for generating longer patterns.

4 Performance Study

The proposed appearing-bit-sequence-based incremental mining algorithms were
implemented using Visual C++ 6.0. In the following experiments, according to the
properties of the maintained patterns, the two versions of algorithms are notated as I-
Maximum and I-Closed, respectively. Moreover, the appearing bit sequence approach
[6] is applied to discover RRPs within each sequence window for comparison, which
is notated as Re-mining algorithm. The experiments have been performed on a per-
sonal computer with 3.4GHz Intel Pentium IV CPU and 1 GB main memory.

The data sets are generated by the IBM data generator [1], where the generated se-
quential transaction data are concatenated together to simulate a sequence data stream
with hidden patterns. Two input parameters are varied when running the data genera-
tor, where I is used to specify the number of various data items and P denotes the
number of potential patterns in the generated data sequences.

In the following four experiments, the data sets are generated by concatenating
50,000 sequential data with I100P100 setting. The scalabilities of I-Maximum and
I-Closed algorithms on execution time and memory usage are compared with the ones
of Re-mining algorithm under various parameters setting. According to theses ex-
perimental results, the effectiveness of incremental mining of RRPs is observed.

Experiment 1. Changing the sliding window size (W)
In this experiment, Fmin is set to be W *0.01. Figure 3(a) shows the average running time
of I-Maximum, I-Closed, and Re-mining over a sliding window under different W set-
ting. It is reported that the execution efficiency of I-Maximum and I-Closed outperforms

 Incrementally Mining Recently Repeating Patterns over Data Streams 35

)b()a(

)d()c(

)f()e(

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

I100 I500 I1000 I2000
I

E
xe

cu
ti

on
 T

im
e(

se
c.

) Re-mining
I-Maximum
I-Closed

(g)

0

5

10

15

20

25

P10 P100 P1000 P5000

P

M
em

or
y

re
qu

ir
em

en
t(

M
B

)

Re-mining
I-Maximum
I-Closed

0

2

4

6

8

10

P10 P100 P1000 P5000

P

Ex
ec

ut
io

n
tim

e(
se

c.
) Re-mining

I-Maximum

I-Closed

0
1
2
3
4
5
6
7
8

500 1000 2000 3000 4000 5000
Window size

E
xe

cu
ti

on
 t

im
e(

se
c.

)
Re-mining
I-Maximum
I-Closed

0

5

10

15

20

25

30

500 1000 2000 3000 4000 5000
Window size

M
em

ro
y

R
eq

ui
re

m
en

t(M
B

)

Re-mining
I-Maximum
I-Closed

0

5

10

15

20

25

0.01 0.02 0.04 0.06 0.08 0.1
Fmin/W

M
em

or
y

R
eq

ui
re

m
en

t(
M

B
)

Re-mining
I-Maximum
I-Closed

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0.01 0.02 0.04 0.06 0.08 0.1

Fmin/W

E
xe

cu
tio

n
tim

e(
se

c.
) Re-mining

I-Maximum
I-Closed

Fig. 3. Results of Experiments

36 J.-L. Koh and P.-M. Chou

the one of Re-Mining algorithm significantly. When W increases, the execution effi-
ciency of Re-mining is much slower than the other two algorithms. Both I-Maximum and I-
Closed are linear scalable, but I-Closed has better scalability. The total space needed
for three algorithms are analyzed as shown in Figure 3(b). As W increases, due to the
increasing of the length of an appearing bit sequence, the memory requirements of all
the three algorithms grow linearly with the window size W. For I-Closed and I-
Maximum, the major memory space needed is to hold the maintained patterns for
incremental mining. Since the number of closed repeating patterns is much larger than
the one of maximum repeating patterns, the memory requirement of I-Maximum is
larger than the other two. Although the memory requirement of I-Closed is 5 times of
the one of Re-mining, the execution efficiency of I-Closed is near 1000 times faster
than Re-mining. Moreover, with slightly larger memory requirement than Re-mining,
20 times of execution efficiency is achieved by I-Maximum.

Experiment 2. Changing the minimum frequency threshold value (Fmin).
In this experiment, W is set to be 3000. Figure 3(c) shows the execution time of I-
Maximum, I-Closed, and Re-mining under different Fmin setting. As seen in the figure,
the execution time of Re-mining grows exponentially as Fmin decreases because the
number of satisfying patterns increases dramatically. However, the execution of I-
Maximum is faster than that of Re-mining nearly an order of magnitude. The execu-
tion of I-closed is even faster than that of I-Maximum. In the situations when Fmin is
larger than W*0.04, much fewer repeating patterns are discovered. Therefore, the
execution time of all the three algorithms is approximately the same. Because of the
reason described above, it is shown in Figure 3(d) that the memory requirements of
both I-Maximum and Re-mining increase as Fmin decreases. Although I-Closed has
the largest memory requirement among the three algorithms, the amount of its re-
quired memory keeps nearly stable.

Experiment 3. Changing the setting of P for generating data sets
In this experiment, parameter I is set to be 100. Besides, W and Fmin are fixed to be
3000 and W *0.01(=30), respectively. The execution times and memory requirements
of I-Maximum, I-Closed, and Re-mining under different P setting are shown in
Figure 3(e) and 3(f), respectively. As the number of potential patterns increases, more
processing cost is required by Re-mining for generating candidate patterns. Since the
main processing costs of I-Maximum, I-Closed are spent for mining frequency
changes caused by window sliding, the execution time of these two algorithms keeps
more stable than the one of Re-mining. The memory requirement of I-Closed is pro-
portional to the number of repeating patterns. Therefore, as shown in Figure 3(f), the
memory requirement of I-Closed grows as the number of various data items increases.
However, the observed space-time trade-off between I-Closed and Re-mining is coin-
cident with the one shown in [Experiment 1].

Experiment 4. Changing the setting of parameter I for generating data sets
In this experiment, parameter P is set to be 100. Besides, W and Fmin are set to be
3000 and W *0.01(=30), respectively. The execution time of I-Maximum, I-Closed,
and Re-mining under different I setting is shown in Figure 3(g). As the number of
various data items increases, the distribution of patterns in a sliding window becomes
sparser such that the number of satisfying patterns decreases. Accordingly, the execu-
tion time of Re-mining goes down as the number of various data items increases.

 Incrementally Mining Recently Repeating Patterns over Data Streams 37

However, for the same reason stated in [Experiment 3], the running time of both I-
Maximum and I-Closed remains stable.

5 Conclusion and Future Works

In this paper, the appearing bit sequences are used to monitor the occurrences of re-
peating patterns within a sliding window. Two versions of incremental algorithms are
proposed to maintain the maximum and closed repeating patterns in a sliding window,
respectively. Accordingly, the cost of re-mining repeating patterns over a sliding
window is reduced to that of mining frequency changes of the maintained patterns. It
is reported from the experimental results that the incremental mining methods per-
form much better than the re-miming approach.

References

[1] Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. of Int.
Conf. on Very Large Data Bases (1994)

[2] Chang, J.H., Lee, W.S.: Finding Recent Frequent Itemsets Adaptively over Online Data
Streams. In: Proc. the 9th ACM International Conference on Knowledge Discovery and
Data Ming (2003)

[3] Chi, Y., Wang, H., Yu, P.S., Muntz, R.R.: Moment: Maintaining Closed Frequent Item-
sets over a Stream Sliding Window. In: Proc. Int. Conf. on Data Mining (ICDM 2004)
(2004)

[4] Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proc. The 6th ACM In-
ternational Conference on Knowledge Discovery and Data Ming (2000)

[5] Hsu, J.L., Liu, C.C., Chen, A.L.P.: Discovering Nontrivial Repeating Patterns in Music
Data. IEEE Transactions on Multimedia (2001)

[6] Koh, J.L., Yu, W.D.C.: Efficient Feature Mining in Music Objects. In: Mayr, H.C.,
Lazanský, J., Quirchmayr, G., Vogel, P. (eds.) DEXA 2001. LNCS, vol. 2113, p. 221.
Springer, Heidelberg (2001)

[7] Koh, J.L., Kung, Y.T.: An Efficient Approach for Mining Top-K Fault-Tolerant Repeat-
ing Patterns. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS,
vol. 3882, pp. 95–110. Springer, Heidelberg (2006)

[8] Li, H., Lee, S., Shan, M.K.: Online Mining (Recently) Maximal Frequent Itemsets over
Data Streams. In: Proc. of RIDE-SDMA 2005 (2005)

[9] Lin, C.H., Chiu, D.Y., Wu, Y.H., Chen, A.L.P.: Mining Frequent Itemsets from Data
Streams with a Time-Sensitive Sliding Window. In: Proc. SIAM International Confer-
ence on Data Mining (2005)

[10] Liu, N.-H., Wu, Y.-H., Chen, A.L.P.: An Efficient Approach to Extracting Approximate
Repeating Patterns in Music Databases. In: Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.)
DASFAA 2005. LNCS, vol. 3453, pp. 240–252. Springer, Heidelberg (2005)

[11] Manku, G.S., Chen Motwani, R.: Approximate Frequent Counts over Data Streams. In:
Proc. of the 28th International Conference on Very Large Database (2002)

[12] Wand, H., Fan, W., Yu, P.S., Han, J.: Mining Concept Drifting Data Streams using En-
semble Classifiers. In: Proc. the 9th ACM International Conference on Knowledge Dis-
covery and Data Ming (2003)

A Graph-Based Approach for Sentiment
Sentence Extraction

Kazutaka Shimada, Daigo Hashimoto, and Tsutomu Endo

Department of Artificial Intelligence, Kyushu Institute of Technology
680-4 Iizuka Fukuoka 820-8502 Japan

{shimada,d hashimoto,endo}@pluto.ai.kyutech.ac.jp

Abstract. As the World Wide Web rapidly grows, a huge number of
online documents are easily accessible on the Web. We obtain a huge
number of review documents that include user’s opinions for products.
To classify the opinions is one of the hottest topics in natural language
processing. In general, we need a large amount of training data for the
classification process. However, construction of training data by hand is
costly. In this paper, we examine a method of sentiment sentence ex-
traction. This task is to classify sentences in documents into opinions
and non-opinions. For the task, we use the Hierarchical Directed Acyclic
Graph (HDAG) proposed by Suzuki et al. We obtained high accuracy in
the sentiment sentence extraction task. The experimental result shows
the effectiveness of the method based on the HDAG.

Keywords: Sentiment Analysis, Sentiment Sentence Extraction, Graph-
based Approach, Hierarchical Directed Acyclic Graph, Similarity.

1 Introduction

As the World Wide Web rapidly grows, a huge number of online documents are
easily accessible on the Web. Finding information relevant to user needs has
become increasingly important. The most important information on the Web is
usually contained in the text. We obtain a huge number of review documents
that include user’s opinions for products. When buying products, users usually
survey the product reviews. More precise and effective methods for evaluating
the products are useful for users. To classify the opinions is one of the hottest
topics in natural language processing. Many researchers have recently studied
extraction and classification of opinions [8, 11, 12, 16, 17].

There are many research areas for sentiment analysis; extraction of senti-
ment expressions, identification of sentiment polarity of sentences, classification
of review documents and so on. In this paper, we focus on sentiment sentence
extraction. Extraction of sentiment expressions or sentiment sentences is one of
the most important tasks in the sentiment analysis because classification tasks
usually need a large amount of training data to generate a high accuracy clas-
sifier. There are several reports for classification of sentences [9, 11]. However,
the purpose of these studies is to classify sentences into positive and negative
opinions. Our purpose in this paper is to classify sentences into opinions and

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 38–48, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Graph-Based Approach for Sentiment Sentence Extraction 39

non-opinions. Touge et al. [15] and Kawaguchi et al. [7] have proposed meth-
ods for opinion extraction. However, these approaches essentially need a large
amount of training data for the process. Construction of training data by hand is
costly. Kaji and Kitsuregara have reported a method of acquisition of sentiment
sentences in HTML documents [5]. The method required only several rules by
hand and obtained high accuracy. Also they have proposed a method for build-
ing lexicon for sentiment analysis [6]. The knowledge extracted from the Web
by using the proposed methods contains the huge quantities of words and sen-
tences. Takamura et al. also have reported a method for extracting polarity of
words [14]. These dictionaries are versatile and valuable for users because they
do not depend on a specific domain. Here, assume that we need to construct
a system for a domain. In that case, we often desire domain-specific knowledge
for the system. Therefore, we need to efficiently extract sentiment sentences,
which depend on a particular domain or topic. For the process, we need not
only pattern-rules or grammatical information to identify sentiment sentences
but also surface information of sentences of target domains.

In this paper, we propose a method of sentiment sentence extraction. The
method can deal with grammatical information and surface information of sen-
tences. Also our method does not require dictionaries of sentiment expressions.
It uses several sample sentences for the extraction process. In the process, we
compute a similarity between the sample sentences and target sentences. For the
similarity calculation, we employ the graph-based approach, called Hierarchical
Directed Acyclic Graph (HDAG), which has been proposed by Suzuki et al [13].

In Section 2, we explain the HDAG data structure and layers. In Section 3,
we describe a sentiment sentence extraction process with similarity calculation
based on the HDAG. In Section 4, we evaluate the performance of the method
and conclude this paper in Section 5.

2 A Graph-Based Data Structure

In this section, we explain a graph-based data structure to compute a similarity.

2.1 Hierarchical Directed Acyclic Graph

In natural language processing, bag-of-words representation is the most general
way to express features of a sentence for the similarity calculation. However, it
is insufficient to represent the features of a sentence because of lack of relations
between words. To solve this problem, many researchers have proposed new ap-
proaches: a string kernel [10], a word-sequence kernel [1] , an extended string sub-
sequence kernel [3] and a tree kernel [2]. These kernels are usually more effective
as compared with bag-of-words based methods. However, they are not the best
representation for deep and complex features, such as semantic or grammatical
information, in a sentence because they are somewhat of a simple representation.

To solve the problems, Suzuki et al. have reported a new graph-based ap-
proach, called Hierarchical Directed Acyclic Graph kernels (HDAG) [13]. The

40 K. Shimada, D. Hashimoto, and T. Endo

Tensou Sokudo ga Osoi desu.
(The transfer rate is low.)

Bunsetsu Bunsetsu

common noun case particle adjective auxiliary verb

Tensou
(transfer)

Sokudo
(rate) ga Osoi

(low)
desu
(is)

common noun + case particle adjective + auxiliary verb

Combined POS tag layer

POS tag layer

Word/
Compound noun layer

Directed link Vertical link

Fig. 1. An example of an HDAG expression

method can handle many linguistic features in a sentence and includes charac-
teristics of tree and sequence kernels. The HDAG is a hierarchized graph-in-graph
structure. It represents semantic or grammatical information in a sentence. In
this paper, we use the HDAG structure for the sentiment sentence extraction.
We compute a similarity between HDAGs generated from sentences. See [13] for
more information about the HDAG.

2.2 Layer

Layers in the HDAG denote semantic or grammatical information in a sentence. To
compute similarity between sentences correctly, we add new layers to the original
and naive HDAG. The HDAG in this paper consists of three layers as follows:

– Combined POS tag layer
This layer consists of part of speech tags of words. We unify the POS tags
of words in a bunsetsu1 into one node.

– POS tag layer
This layer consists of the POS tags of each word or each compound noun.

– Word/Compound noun layer
This layer contains two roles; the layer for words and compound nouns. The
layer for each word contains the surface expression of a word. We can use the
surface information for calculation of similarity by adding this layer. The 2nd
role is handling compound nouns in bunsetsus. This layer often resolves a
problem of difference between surface expressions. We unify nouns belonging
to a compound noun and then dispose it under the POS node of its com-
pound nouns. For example, we flexibly treat the difference of the following

1 A bunsetsu is a linguistic unit in Japanese. It usually consists of one content word
and its function words.

A Graph-Based Approach for Sentiment Sentence Extraction 41

expressions in similarity calculation by adding this layer:“file downloading
software”, “downloading software” and “software”.

Figure 1 shows an example of an HDAG expression in this paper. In the HDAG,
the elements, such as “Bunsetsu” and “Common noun”, in each rectangle are
the attributes of each node. The directed links are a kind of the dependency
relation between elements. The double-headed arrows denote the link between a
node and a sub-graph enclosed with a dashed line.

3 Similarity Calculation

In this section, we explain a method of similarity calculation based on the HDAG
structure. First, we describe a conversion method of sentences into the HDAGs.
Next, we explain an extraction method of hierarchical attribute subsequences
from HDAG structures for the similarity calculation. Finally, we introduce a
method of similarity calculation and the extraction process using it.

3.1 Preprocessing

There are two processes as the preprocessing for similarity calculation; conver-
sion and extraction of hierarchical attribute subsequences. First we explain the
conversion process. To convert sentences into the HDAG structure, we need to
analyze them, that is morphological analysis and dependency analysis. In this
paper we use JUMAN2 as the morphological analyzer and KNP3 as the depen-
dency analyzer. Figure 2 shows the graph structure4 generated from the sentence
“Sokudo ga Osoi desu. (The transfer rate is low.)5.”

Next we need to extract hierarchical attribute subsequences for the similarity
calculation. A hierarchical attribute subsequence is an attribute list with hier-
archical structures. The similarity is computed from corresponding hierarchical
attribute subsequences extracted from sentences that we want to compare.

Here Suzuki et al. [13] introduced two factors; β and λ. The β (β > 0) is the
factor for the correspondence. The value of each hierarchical attribute sequence
is multiplied by

√
β

m where m represents the number of attributes in the hier-
archical attribute sequence. The λ is the decay factor λ (0 ≤ λ ≤ 1). The system
allows not only exactly matching structures but also similar structures by using
this factor. The actual decay value of a skipping node vi is Λ(vi) = λn+1 where n
is the number of nodes in a graph G if vertical link exists, or Λ(v) = λ otherwise.

Figure 3 shows an example of hierarchical attribute subsequences and the
factors. In the figure, a dependency relation and a hierarchical relation are

2 http://nlp.kuee.kyoto-u.ac.jp/nl-resource/juman.html
3 http://nlp.kuee.kyoto-u.ac.jp/nl-resource/knp.html
4 In this simplified explanation, the graph structure for an example is expressed with-

out the layers described in the previous section.
5 Sokudo is a noun (transfer rate), ga is a case particle, Osoi is an adjective (low), and

Desu is an auxiliary verb (is).

http://nlp.kuee.kyoto-u.ac.jp/nl-resource/juman.html
http://nlp.kuee.kyoto-u.ac.jp/nl-resource/knp.html

42 K. Shimada, D. Hashimoto, and T. Endo

Bunsetsu Bunsetsu

Common noun Case particle Adjective Auxiliary verb

Fig. 2. An example of a graph structure

Bunsetsu Bunsetsu

Common noun Case particle Adjective Auxiliary verb

Bunsetsu Bunsetsu

Common noun Case particle Adverb

Bunsetsu

Adjective Auxiliary verb

 e.g. Onshitsu ga Totemo Yoi Desu.
 The sound quality is very good.

 Hierarchical Attribute Subsequence Weight

<Bunsetsu<Noun,Particle>, Bunsetsu<Adj,Aux>> β 3

 e.g. Sokudo ga Osoi Desu.
 The speed is low.

 Hierarchical Attribute Subsequence Weight

<Bunsetsu<Noun,Particle>, Bunsetsu<Adj,Aux>> β2 3

Fig. 3. An example of extraction of corresponding hierarchical attribute subsequences
and the weight

expressed by using a comma and a nested structure, respectively. For the
two HDAGs, the hierarchical attribute subsequence <Bunsetsu<Noun,Particle>,
Bunsetsu<Adj,Aux>> appears in both sentences. Since the number of attributes
in the hierarchical attribute subsequence is 6, the value of β is

√
β

6 = β3. The
hierarchical attribute subsequence of the 2nd sentence in the figure is generated
by skipping a node, Adverb. Therefore, the weight contains λ1+1 = λ2. These
weights are used in the similarity calculation process.

3.2 Similarity between Two Sentences

Next, we compute a similarity between two HDAG structures. First, we search
the common hierarchical attribute subsequences between HDAGs (See Figure 3).
Then we multiply the weight values of them. For example, the correspondence
of them in Figure 3 is λ2β6. Finally, we divide the sum total of correspondence

A Graph-Based Approach for Sentiment Sentence Extraction 43

values by the product of the numbers of bunsetsus of the two sentences. We
handle this value as the similarity between them.

Here we consider the factor β. Suzuki et al. [13] defined the range of the β
as 0 < β ≤ 1. However, we define the range as β > 0 in this paper. Also we
categorize the range into two types; 0 < β ≤ 1 and β > 1. Our method computes
the similarity focusing on structural information if β ≤ 1. If the β is more than 1,
it computes the similarity focusing on surface expressions. This is due to layers
that we constructed. In our layers, the word layer and compound noun layer are
lower layer than the structural layer, i.e., the POS tag layer. Therefore surface
expressions are treated as important element in the case that β > 1 because the
elements in deeper layers possess high weight values. We apply these two types
of the parameter β into our method.

3.3 Sentence Extraction

In this subsection, we explain the sentence extraction process based on the
HDAG and the similarity calculation. The process is as follows:

1. prepare sample sentences as seeds for similarity calculation,
2. compute the similarity between each seed and target sentences,
3. extract n-best lists of each seed as sentiment sentence lists,
4. combine n-best lists obtained by two different parameters of β.

For the combination in the last step, we compare two strategies.

Conversion into the HDAG structure

Morphological and Dependency analysis

Similarity Calculation

 Focusing on
surface expressions

 Focusing on
structural information

Output Output

Combination: CombAND / CombOR

Final output

Target sentences Sample Sentences

se si

Fig. 4. The outline of the sentence extraction process

44 K. Shimada, D. Hashimoto, and T. Endo

CombAND: We extract the intersection of each n-best list as the output.
CombOR: We extract the union of each n-best list as the output.

Figure 4 shows the outline of the extraction process.

4 Experiment

In this section we evaluated the proposed method with a review document set.

4.1 Dataset and Criteria

We used review documents of a portable audio player6 posted in the bulletin
board system of kakaku.com7. We extracted 1052 Japanese sentences from the
review documents. The dataset consists of 610 sentiment sentences and 442 non-
sentiment sentences. For the experiment, we prepared 10 sample sentences as
seeds for the sentence extraction process. All the seed sentences in this exper-
iment were sentiment sentences. We generated the seed sentences on the basis
of some evaluation criteria which were mentioned in the review documents; e.g.,
“design of the product”, “Sound quality” and so on.

In this experiment, we set λ = 0.5. Also we set β = 0.5 as the parameter for
focusing on structural information and β = 1.5 as the parameter for focusing on
surface expressions. The number of sentences we extracted in this experiment
is 5 for each seed sentence, that is 5-best list. In other words, we extracted the
top 5 sentences that possessed high similarity as the sentiment sentences that
were estimated from each sample sentences. We did not employ any thresholds
for the similarity in the extraction process.

We used the following three criteria for this evaluation.

– Sentreal: This criterion is the number of sentiment sentences extracted cor-
rectly from target sentences.

– Sentnon: This criterion is the number of non-sentiment sentences extracted
from target sentences.

– Acc: This criterion is the accuracy computed from Sentreal and Sentnon.

Acc =
Sentreal

Sentreal + Sentnon

Note that we omitted same sentences in the output from the proposed method
when we counted Sentreal and Sentnon in this experiment.

4.2 Results

Table 1 shows the experimental result. In the table, the BOW denotes a simi-
larity calculation method based on the COS measure and bag-of-words features.
6 SONY Walkman NW-A808.
7 http://www.kakaku.com/

http://www.kakaku.com/

A Graph-Based Approach for Sentiment Sentence Extraction 45

Table 1. The experimental result

Sentreal Sentnon Acc

Structural information 32 4 0.889
Surface expressions 43 4 0.915

CombAND 22 1 0.957
CombOR 53 7 0.883

BOW (Baseline) 42 7 0.857

Table 2. The extracted sentences (translated into English)

Rank SI (β ≤ 1) SE (β > 1)
1 The sound quality is barely good. The sound quality is barely good.
2 The display is easily viewable. The sound quality is wonderful.
3 The machine body is somewhat heavy. The sound quality is great.

This is a baseline in this experiment. The accuracy rates of each approach in our
method outperformed the baseline method based on BOW features. Our meth-
ods obtained high accuracies even without combinations, namely CombAND
and CombOR. In addition, the method focusing on surface expressions (SE)
outperformed the method focusing on structural information (SI) in terms of all
criteria. Table 2 shows the top 3 sentences extracted from target sentences in
the case that the seed sentence was ”The sound quality is good.”.

For the combinations, the accuracy of the CombOR was the lowest of the
methods although the number of sentiment sentences extracted correctly was
the best of them. On the other hand, the accuracy of the CombAND produced
the best performance. Although the number of extracted sentences with the
CombAND drastically decreased, the output possessed high reliability.

Besides, our method usually obtained long sentences as compared with seed
sentences. The average lengths of seed sentences and output sentences were 5.5
and 9.1 words respectively. The maximum length in the output sentences was 27
words. This result shows that our method can extract great variety of sentiment
sentences. The following sentences are the instances of seed sentences and their
output sentences:

Seed1: I am almost satisfied with this product (Zentai-teki ni manzoku dekiru
seihin desu).

Output1: I think that a good thing equipped with the function that I want was
released (Yatto watashi ga nozomu kinou ga zyuzitusita yoi mono ga deta
to iu kanzi desu).

Seed2: It is difficult to push the play button (Saisei botan ga oshi nikui desu).
Output2: It is not convenient for WinMediaPlayer users to use attached music

file transfer software XYZ (Sen-you no ongaku fairu tensou sohuto XYZ ha
WinMediaPlayer kara no norikae niha tukai durai desu).

46 K. Shimada, D. Hashimoto, and T. Endo

5 Discussion and Conclusions

In this paper, we proposed a method of sentiment sentence extraction based on a
graph-based approach, called Hierarchical Directed Acyclic Graph. Our method
can extract sentiment sentences with several sample sentences. We obtained high
accuracy in the experiment. However, the number of extracted sentences was not
enough, that is the recall rate was low (less than 10%).

One of the solutions of this problem is to apply a bootstrapping approach
into our method. We might acquire more sentiment sentences by adding the ex-
tracted sentences as new seeds for the extraction process because the accuracy
of CombAND was extremely high. To use CombOR is one of the ideas to extract
large quantities of sentences in the case that the number of sentences extracted
in the bootstrapping process is saturated, i.e., the final step of the bootstrapping
approach. Another approach to improve the recall rate is use of the extracted
sentences for the training data of the sentiment classification task. Wiebe and
Riloff [18] have proposed a method for creating subjective and objective clas-
sifiers from unannotated texts. They used some rules for constructing initial
training data. Then they used the data for generating a classifier. We think that
the outputs from our method also can be used for the training data of a classifier
for this sentiment sentence classification task.

The value of n of the n-best list is one of the most important factors for the
improvement of the recall rate although the accuracy decreases. We evaluated
our method with different n values: n = 10 and n = 15 (The original value was
5). Table 3 shows the experimental result. The accuracy rates decreased in the
case that the n became large. We need to discuss the appropriate number of
sentences that we extract in our method.

Our method depends on seed sentences. If the seed sentences are changed, the
accuracy also changes. We examined other seed sentences after the experiment in
the previous section. As a result, the accuracy fluctuated; approximately ±5%.
To generate appropriate seed sentences is one of the most important tasks for
our method.

In the previous section, we evaluated our method with fixed parameters. How-
ever, these are not always the best parameter values. The parameters β and λ
are important factors for the similarity calculation. We compared several values
of these parameters. Tables 4 and 5 show the experimental results. The best

Table 3. The n and accuracy

n = 10 n = 15
Sentreal Sentnon Acc Sentreal Sentnon Acc

Structural information 54 15 0.783 77 22 0.778
Surface expressions 74 14 0.841 103 26 0.798

CombAND 34 6 0.850 54 11 0.831
CombOR 94 23 0.803 126 37 0.773

A Graph-Based Approach for Sentiment Sentence Extraction 47

Table 4. The best parameter for SI

β
Ave0.1 0.3 0.5 0.7 0.9

0.1 0.867 0.897 0.826 0.875 0.896 0.872
0.3 0.875 0.867 0.881 0.891 0.851 0.873

λ
0.5 0.833 0.800 0.889 0.886 0.870 0.856
0.7 0.800 0.875 0.920 0.897 0.907 0.880
0.9 0.833 0.857 0.727 0.938 0.950 0.861
1.0 0.833 0.857 0.778 0.926 0.919 0.863

Ave 0.840 0.859 0.837 0.902 0.899 0.867

Table 5. The best parameter for SE

β
Ave1.1 1.3 1.5 1.7 1.9

0.1 0.896 0.896 0.896 0.896 0.896 0.896
0.3 0.915 0.917 0.915 0.915 0.915 0.915

λ
0.5 0.894 0.915 0.915 0.894 0.913 0.906
0.7 0.935 0.891 0.891 0.872 0.896 0.897
0.9 0.930 0.933 0.957 0.938 0.938 0.939
1.0 0.975 0.932 0.956 0.957 0.957 0.955

Ave 0.924 0.914 0.922 0.912 0.919 0.918

accuracy rates of the SI and the SE in this dataset were 0.950 (λ = 0.9, β = 0.9,
Sentreal = 38, Sentnon = 2) and 0.975 (λ = 1.0, β = 1.1, Sentreal = 39,
Sentnon = 1) respectively. However, these values depend on the dataset in the
experiment. Although we evaluated these parameters with another dataset, the
method with the parameters did not produce the best accuracy. Therefore we
need to consider the automatic determination of these parameters. The average
accuracy rates for the dataset in the previous section were 0.867 for the SI and
0.918 for the SE respectively. The standard deviation values were 0.048 for the
SI and 0.025 for the SE. These results show that our method provides high and
stable accuracy.

Our future work includes (1) evaluation of our method in a large-scale dataset
and other datasets, (2) improvement of the accuracy by adding other layers to
the HDAG structure, such as semantic features of words [4], and (3) construction
of a sentiment sentence maintenance tool based on this approach.

References

[1] Cancedda, N., Gaussier, E., Goutte, C., Renders, J.M.: Word-sequence kernels. J.
Machine Learning Research 3, 1059–1082 (2003)

[2] Collins, M., Duffy, N.: Convolution kernels for natural language. In: Advances in
Neural Information Processing Systems, vol. 14 (2002)

48 K. Shimada, D. Hashimoto, and T. Endo

[3] Hirao, T., Suzuki, J., Isozaki, H., Maeda, E.: Dependency-based sentence align-
ment for multiple document summarization. In: Proceedings of the 20th Interna-
tional Conference on Computational Linguistics (COLING 2004) (2004)

[4] Ikehara, S., Miyazaki, M., Shirai, S., Yokoo, A., Nakaiwa, H., Ogura, K., Ooyama,
Y., Hayashi, Y. (eds.): Goi-Taikei. A Japanese Lexicon (in Japanese). Iwanami
Shoten (1997)

[5] Kaji, N., Kitsuregawa, M.: Automatic construction of polarity-tagged corpus from
html documents. In: Proceedings of the 21st International Conference on Compu-
tational Linguistics (COLING/ACL 2006), pp. 452–459 (2006)

[6] Kaji, N., Kitsuregawa, M.: Building lexicon for sentiment analysis from massive
html documents. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP-CoNLL 2007) (2007)

[7] Kawaguchi, T., Matsui, T., Ohwada, H.: Opinion extraction from weblog using
svm and newspaper article (in Japanese). In: The 20th Annual Conference of the
Japanese Society for Artificial Intelligence (2006)

[8] Kobayashi, N., Iida, R., Inui, K., Matsumoto, Y.: Opinion extraction using a
learning-based anaphora resolution technique. In: Proceedings of the Second In-
ternational Joint Conference on Natural Language Processing (IJCNLP 2005),
pp. 175–180 (2005)

[9] Kudo, T., Matsumoto, Y.: A boosting algorithm for classification of semi-
structured text. In: Proceedings of the Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP) (2004)

[10] Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text clas-
sification using string kernel. J. Machine Learning Research 2, 419–444 (2002)

[11] Osajima, I., Shimada, K., Endo, T.: Classification of evaluative sentences using se-
quential patterns. In: Proceedings of the 11nd Annual Meeting of The Association
for Natural Language Processing (in Japanese) (2005)

[12] Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification us-
ing machine learning techniques. In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 79–86 (2002)

[13] Suzuki, J., Sasaki, Y., Maeda, E.: Hierarchical directed acyclic graph kernel. Sys-
tems and Computers in Japan 37(10), 58–68 (2006)

[14] Takamura, H., Inui, T., Okumura, M.: Extracting semantic orientations of words
using spin model. In: Proceedings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL 2005), pp. 133–140 (2005)

[15] Touge, Y., Ohashi, K., Yamamoto, K.: Extracting opinion sentence adapted to
topic using iteration learning (in Japanese). In: IPSJ SIG Notes, pp. 43–50 (2004)

[16] Tsutsumi, K., Shimada, K., Endo, T.: Movie review classification based on a
multiple classifier. In: the 21th Pacific Asia Conference on Language, Information
and Computation (PACLIC) (2007)

[17] Turney, P.D.: Thumbs up? or thumbs down? semantic orientation applied to un-
supervised classification of reviews. In: Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, pp. 417–424 (2002)

[18] Wiebe, J., Riloff, E.: Creating subjective and objective sentence classifiers from
unannotated texts. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp.
486–497. Springer, Heidelberg (2005)

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 49–61, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Fuzzy Weighted Association Rule Mining with
Weighted Support and Confidence Framework

Maybin Muyeba1, M. Sulaiman Khan2, and Frans Coenen3

1 Dept. of Computing, Manchester Metropolitan University, Manchester, M1 5GD, UK
2 School of Computing, Liverpool Hope University, Liverpool, L16 9JD, UK

3 Dept. of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK
M.Muyeba@mmu.ac.uk, khanm@hope.ac.uk, frans@csc.liv.ac.uk

Abstract. In this paper we extend the problem of mining weighted association
rules. A classical model of boolean and fuzzy quantitative association rule
mining is adopted to address the issue of invalidation of downward closure
property (DCP) in weighted association rule mining where each item is
assigned a weight according to its significance w.r.t some user defined criteria.
Most works on DCP so far struggle with invalid downward closure property
and some assumptions are made to validate the property. We generalize the
problem of downward closure property and propose a fuzzy weighted support
and confidence framework for boolean and quantitative items with weighted
settings. The problem of invalidation of the DCP is solved using an improved
model of weighted support and confidence framework for classical and fuzzy
association rule mining. Our methodology follows an Apriori algorithm
approach and avoids pre and post processing as opposed to most weighted
ARM algorithms, thus eliminating the extra steps during rules generation. The
paper concludes with experimental results and discussion on evaluating the
proposed framework.

Keywords: Association rules, fuzzy, weighted support, weighted confidence,
downward closure.

1 Introduction

The task of mining Association Rules (ARs) [11] is mainly to discover association
rules (with strong support and high confidence) in large databases. Classical
Association Rule Mining (ARM) deals with the relationships among the items present
in transactional databases [9, 10] consisting of binary (boolean) attributes. The typical
approach is to first generate all large (frequent) itemsets (attribute sets) from which
the set of ARs is derived. A large itemset is defined as one that occurs more
frequently in the given data set than a user supplied support threshold. To limit the
number of ARs generated a confidence threshold is used. The number of ARs
generated can therefore be influence by careful selection of the support and
confidence thresholds, however great care must be taken to ensure that itemsets with
low support, but from which high confidence rules may be generated, are not omitted.

50 M. Muyeba, M.S. Khan, and F. Coenen

Given a set of items },...,{ 21 miiiI = and a database of transactions

},...,{ 21 ntttD = where },...,{ 21 piiii IIIt = , mp ≤ and II ji ∈ , if IX ⊆

with K = |X| is called a k-itemset or simply an itemset. Let a database D be a multi-set
of subsets of I as shown. Each DT ∈ supports an itemset IX ⊆ if TX ⊆
holds. An association rule is an expression X Y, where X, Y are item sets
and ∅=∩YX holds. Number of transactions T supporting an item X w.r.t D is
called support of X, ||/}|{|)(DTXDTXSupp ⊆∈= . The strength or

confidence (c) for an association rule X Y is the ratio of the number of transactions
that contain X U Y to the number of transactions that contain X, Conf (X Y) =
Supp (X U Y)/ Supp (X).

For non-boolean items fuzzy association rule mining was proposed using fuzzy sets
such that quantitative and categorical attributes can be handled [12]. A fuzzy
quantitative rule represents each item as (item, value) pair. Fuzzy association rules are
expressed in the following form:

If X is A satisfies Y is B

e.g. if (age is young) (salary is low).
Given a database T, attributes I with itemsets IYIX ⊂⊂ , and

},...,{ 21 nxxxX = and },...,{ 21 nyyyY = and ∅=∩YX , we can define fuzzy

sets },...,,{ 21 nfxfxfxA = and },...,,{ 21 nfxfxfxB = associated to X and

Y respectively. For example),(YX could be (age, young), (age, old), (salary, high)

etc. The semantics of the rule is that when the antecedent “X is A” is satisfied, we can
imply that “Y is B” is also satisfied, which means there are sufficient records that
contribute their votes to the attribute fuzzy set pairs and the sum of these votes is
greater than the user specified threshold.

However, the above ARM frameworks assume that all items have the same
significance or importance i.e. their weight within a transaction or record is the same
(weight=1) which is not always the case. For example, [wine salmon, 1%, 80%]
may be more important than [bread milk, 3%, 80%] even though the former holds
a lower support of 1%. This is because those items in the first rule usually come with
more profit per unit sale, but the standard ARM simply ignores this difference.

Weighted ARM deals with the importance of individual items in a database [2, 3, 4].
For example, some products are more profitable or may be under promotion, therefore
more interesting as compared to others, and hence rules concerning them are of greater
value.

Table 1. Weigted Items Database Table 2. Transactions

ID Item Profit Weight …
1 Scanner 10 0.1 …
2 Printer 30 0.3 …
3 Monitor 60 0.6 …
4 Computer 90 0.9 …

TID Items
1 1,2,4
2 2,3
3 1,2,3,4
4 2,3,4

 Fuzzy Weighted Association Rule Mining 51

In table 1, items are assigned weights (w) based on their significance. These
weights may be set according to an item’s profit margin. This generalized version of
ARM is called Weighted Association Rule Mining (WARM). From table 1, we can
see that the rule Computer Printer is more interesting than Computer Scanner
because the profit of a printer is greater than that of a scanner. The main challenge in
weighted ARM is that “downward closure property” doesn’t hold, which is crucial for
efficient iterative process of generating and pruning frequent itemsets from subsets.

In this paper we address the issue of downward closure property (DCP) in WARM.
We generalize and solve the problem of DCP and propose a weighted support and
confidence framework for datasets with boolean and quantitative items for classical
and fuzzy WARM (FWARM). We evaluate our proposed framework with
experimental results.

The paper is organised as follows: section 2 presents background and related work;
section 3 & 4 give problem definitions 1 & 2 respectively; section 5 details weighted
downward closure property; section 6 presents FWARM algorithm, section 7 reviews
experimental results and section 8 concludes the paper with directions for future work.

2 Background and Related Work

In classical ARM, data items are viewed as having equal importance but recently
some approaches generalize this where items are given weights to reflect their
significance to the user [4]. The weights may correspond to special promotions on
some products or the profitability of different items etc. Currently, two approaches
exist: pre- and post-processing. Post processing solves first the non-weighted problem
(weights=1 per item) and then prunes the rules later. Pre-processing prunes the non-
frequent itemsets earlier by considering their weights in each database scan. The issue
in post-processing weighted ARM is that first; items are scanned without considering
their weights. Finally, the rule base is checked for frequent weighted ARs. This gives
us a very limited itemset pool for weighted ARs and may miss many potential
itemsets. In pre-processing, fewer rules are obtained as compared to post processing
because many potential frequent super sets are missed.

In [2] a post-processing model is proposed. Two algorithms were proposed to mine
itemsets with normalized and un-normalized weights. The K-support bound metric
was used to ensure validity of the closure property. Even that didn’t guarantee every
subset of a frequent set being frequent unless the k-support bound value of (K-1)
subset was higher than (K).

An efficient mining methodology for Weighted Association Rules (WAR) is
proposed in [3]. A Numerical attribute was assigned for each item where the weight
of the item was defined as part of a particular weight domain. For example, soda[4,6]

 snack[3,5] means that if a customer purchases soda in the quantity between 4 and 6
bottles, he is likely to purchase 3 to 5 bags of snacks. WAR uses a post-processing
approach by deriving the maximum weighted rules from frequent itemsets. Post WAR
doesn’t interfere with the process of generating frequent itemsets but focuses on how
weighted AR’s can be generated by examining weighting factors of items included in
generated frequent itemsets.

52 M. Muyeba, M.S. Khan, and F. Coenen

Similar techniques were proposed for weighted fuzzy quantitative association rule
mining [5, 7, 8]. In [6], a two-fold pre processing approach is used where firstly,
quantitative attributes are discretised into different fuzzy linguistic intervals and
weights assigned to each linguistic label. A mining algorithm is applied then on the
resulting dataset by applying two support measures for normalized and un-normalized
cases. The closure property is addressed by using the z-potential frequent subset for
each candidate set. An arithmetic mean is used to find the possibility of frequent
k+1itemset, which is not guaranteed to validate the downward closure property.

Another significance framework that handles the DCP problem is proposed in [1].
Weighting spaces were introduced as inner-transaction space, item space and
transaction space, in which items can be weighted depending on different scenarios
and mining focus. However, support is calculated by only considering the transactions
that contribute to the itemset. Further, no discussions were made on interestingness
issue of the rules produced.

In this paper we present a fuzzy weighted support and confidence framework to
mine weighted boolean and quantitative data (by fuzzy means) to address the issue of
invalidation of downward closure property. We then show that using the proposed
framework, rules can be generated efficiently with a valid downward closure property
without biases made by pre- or post-processing approaches.

3 Problem Definition One (Boolean)

Let the input data D have transactions },,,,{
321

nttttT = with a set of items

},,,,{ ||321 IiiiiI = and a set of weights },,,{ ||21 IwwwW = associated with

each item. Each ith transaction it is some subset of I and a weight w is attached to

each item][ji it (“jth” item in the “ith” transaction).

Thus each item ji will have associated with it a weight corresponding to the set

W , i.e. a pair),(wi is called a weighted item where Ii ∈ . Weight for the “jth” item

in the “ith” transaction is given by]][[wit ji .

We illustrate the concept and definitions using tables 3 and 4. Table 3 contains
transactions for 5 items. Table 4 has corresponding weights associated to each item i
in T. In our definitions, we use sum of votes for each itemset by aggregating weights
per item as a standard approach.

Table 3. Transactional Database Table 4. Items with weights

T Items
t1 A B C D E
t2 A C E
t3 B D
t4 A D E
t5 A B C D

Items i Weights (IW)
A 0.1
B 0.3
C 0.6
D 0.9
E 0.7

 Fuzzy Weighted Association Rule Mining 53

Definition 1. Item Weight IW is a non-negative real value given to each item

ji ranging [0..1] with some degree of importance, a weight][wi j .

Definition 2. Itemset Transaction Weight ITW is the aggregated weights (using
some aggregation operator) of all the items in the itemset present in a single
transaction. Itemset transaction weight for an itemset X is calculated as:

∏
=

∈∀=
||

1
)]][[(]][[satisfying for vote

X

k
kiXwii witXt (1)

Itemset transaction weight of itemset (B, D) is calculated as: ITW(B, D) = 0.3×0.9 = 0.27.

Definition 3. Weighted Support WS is the aggregated sum of itemset transaction

weight (votes) ITW of all the transactions in which itemset is present, divided by
the total number of transactions. It is calculated as:

()
n

wit

T

X
XWS

n

i

X

k
kiXwi∑∏

= =
∈∀

== 1

||

1
)]][[(]][[

in records ofNumber

 satisfying votesof Sum

(2)

Weighted Support WS of itemset (B, D) is calculated as:

162.0
5

81.0

in recordsofNumber

 D)B,(satisfying votesof Sum
),(===

T
DBWS

Definition 4. Weighted Confidence WC is the ratio of sum of votes satisfying
both YX ∪ to the sum of votes satisfying X . It is formulated (with YXZ ∪=) as:

∑
∏

∏
=

=
∈∀

=
∈∀

==→
n

i
X

k
kiXwi

Z

k
kiZwz

wxt

wzt

XWS

ZWS
YXWC

1
||

1
)]][[(

||

1
)]][[(

]][[

]][[

)(

)(
)((3)

Weighted Confidence WC of itemset (B, D) is calculated as:

89.0
18.0

16.0

)(

)(

)(

)(

)(

)(
),(==∪=∪==

BWS

DBWS

XWS

YXWS

XWS

ZWS
DBWC

4 Problem Definition Two (Quantitative/Fuzzy)

Let a dataset D consists of a set of transactions },,,,{
321

nttttT = with a set of

items },,,,{ ||321 IiiiiI = . A fuzzy dataset D′ consists of fuzzy transactions

54 M. Muyeba, M.S. Khan, and F. Coenen

},...,,,{ 321 n
ttttT ′′′′=′ with fuzzy sets associated with each item in I , which is

identified by a set of linguistic labels },...,,,{ ||321 LllllL = (for example

}arg,,{ elmediumsmallL =). We assign a weight w to each l in L associated

with i . Each attribute][ji it ′ is associated (to some degree) with several fuzzy sets.

Table 5. Fuzzy Transactional Database Table 6. Fuzzy Items with weights

X Y TID
Small Medium Small Medium

1 0.5 0.5 0.2 0.8
2 0.9 0.1 0.4 0.6
3 1.0 0.0 0.1 0.9
4 0.3 0.7 0.5 0.5

Fuzzy Items
i[l]

Weights
(IW)

(X, Small) 0.9
(X, Medium) 0.7

(Y, Small) 0.5
(Y, Medium) 0.3

The degree of association is given by a membership degree in the range]1..0[,

which indicates the correspondence between the value of a given][ji it ′ and the set of

fuzzy linguistic labels. The “kth” weighted fuzzy set for the “jth” item in the “ith” fuzzy

transaction is given by]]][[[wlit kji′ . Thus each label kl for item ji would have

associated with it a weight, i.e. a pair)]],[([wli is called a weighted item where

Lli ∈]][[is a label associated with i and Ww∈ is weight associated with label l .

We illustrate the fuzzy weighted ARM concept and definitions using tables 5 and 6.
Table 5 contains transactions for 2 quantitative items discretised into two overlapped
intervals with fuzzy values. Table 4 has corresponding weights associated to each
fuzzy item i[l] in T.

Definition 5. Fuzzy Item Weight FIW is a value attached with each fuzzy set. It is a
non-negative real number value range]1..0[w.r.t some degree of importance (table 6).

Weight of a fuzzy set for an item ji is denoted as]][[wli kj .

Definition 6. Fuzzy Itemset Transaction Weight FITW is the aggregated weights
of all the fuzzy sets associated to items in the itemset present in a single transaction.
Fuzzy Itemset transaction weight for an itemset (X, A) is calculated as:

∏
=

∈∀ ′=′
||

1
)]]][[[(]]][[[satisfying for vote

L

k
kjiXwlii wlitXt (4)

Let’s take an example of itemset <(X, Medium), (Y, Small)> denoted by (X,
Medium) as A and (Y, Small) as B. Fuzzy Itemset transaction weight FITW of
itemset (A, B) in transaction 1 is calculated as FITW (A, B) = (0.5 × 0.7) × (0.2 × 0.5)
= (0.35) × (0.1) = 0.035.

 Fuzzy Weighted Association Rule Mining 55

Definition 7. Fuzzy Weighted Support FWS is the aggregated sum of FITW of
all the transactions itemset is present, divided by the total number of transactions. It is
denoted as:

()
T

X
XFWS

in records ofNumber

 satisfying votesof Sum=

n

wlit
n

i

L

k
kjiXwli∑∏

= =
∈∀ ′

= 1

||

1
)]]][[[(]]][[[

(5)

Weighted Support FWS of itemset (A, B) is calculated as:

043.0
4

172.0

in recordsofNumber

 B)A,(satisfying votesof Sum
),(===

T
BAFWS

Definition 8. Fuzzy Weighted Confidence FWC is the ratio of sum of votes
satisfying both YX ∪ to the sum of votes satisfying X with YXZ ∪= . It is
formulated as:

∑
∏

∏
=

=
∈∀

=
∈∀

′

′
==→

n

i
X

k
kiXwi

Z

k
kiZwz

wxt

wzt

XFWS

ZFWS
YXFWC

1
||

1
)]][[(

||

1
)]][[(

]][[

]][[

)(

)(
)(

(6)

FWC (A, B) is calculated as: 19.0
227.0

043.0

)(

)(

)(

)(
),(==∪==

AWS

BAWS

XWS

ZWS
BAFWC

5 Downward Closure Property (DCP)

In a classical Apriori algorithm it is assumed that if the itemset is large, then all its
subsets should also be large and is called Downward Closure Property (DCP). This
helps the algorithm to generate large itemsets of increasing size by adding items to
itemsets that are already large. In the weighted ARM case where each item is assigned

Table 7. Frequent itemsets with invalid DCP (weighted settings)

Large Itemsets Support
(40%)

Large? Weighted Support
(0.4)

Large

AB 40% Yes 0.16 No
AC 60% Yes 0.42 Yes

ABC 40% Yes 0.4 Yes
BC 40% Yes 0.36 No
BD 60% Yes 0.72 Yes

BCD 40% Yes 0.72 Yes

56 M. Muyeba, M.S. Khan, and F. Coenen

a weight, the DCP does not hold. Because of the weighted support, an itemset may be
large even though some of its subsets are not large. This violates DCP (see table 7).

Table 7 shows four large itemsets of size 2 (AB, AC, BC, BD) and two large
itemsets of size 3 (ABC, BCD), generated using tables 3 and 4. In classical ARM,
when the weights are not considered, all of the six itemsets are large. But if we
consider item weights and calculate the weighted support of itemsets according to
definition 3 and 7, a new set of support values are obtained. In table 7, although the
classical support of all itemsets is large, if ABC and BCD are frequent then their
subsets must be large according to classical ARM. But considering the weighted
support, AB and BC are no longer frequent.

5.1 Weighted Downward Closure Property (DCP)

We now argue that the DCP with boolean and fuzzy data can be validated by using
this new weighted framework. We give a proof and an example to illustrate this.
Consider figure 1, where items in the transaction are assigned weights and a user
defined supports threshold is set to 0.01.

In figure 1, for each itemset, weighted support WS (the number above each
itemset) is calculated by using definition 3 and weighted confidence WC (the number
on top of each itemset i.e. above weighted support) is calculated by using definition 4.
If an itemset weighted support is above the threshold, the itemset is frequent and we
mark it with colour background, otherwise it is with white background, meaning that
it’s not large.

Fig. 1. The lattice of frequent itemsets

 Fuzzy Weighted Association Rule Mining 57

It can be noted that if an itemset is with white background i.e. not frequent, then
any of its supersets in the upper layer of the lattice can not be frequent. Thus
“weighted downward closure property”, is valid under the “weighted support”
framework. It justifies the efficient mechanism of generating and pruning significance
iteratively.

We also briefly prove that the DCP is always valid in the proposed framework. The
following lemma applies to both boolean and fuzzy/quantitative data and is stated as:

Lemma. If an itemset is not frequent them its superset cannot be frequent and
)()(supersetWSsubsetWS ≥ is always true.

Proof. Given an itemset X not frequent i.e. wsXws min_)(< . For any itemset

YXY ⊂, i.e. superset of X, if a transaction t has all the items in Y, i.e. tY ⊂ ,

then that transaction must also have all the items in X, i.e. tX ⊂ . We use tx to
denote a set of transactions each of which has all the items in X, i.e.

)},(,|{ tXtxtTtxtx ⊂∈∀⊆ . Similarly we have { }),(,| tYtytTtytx ⊂∈∀⊆ .

Since YX ⊂ , we have tytx ⊂ . Therefore)()(tyWStxWS ≥ . According to the

definition of weighted support,
n

wit
X

n

i

X

k
kiXwi∑∏

= =
∈∀

= 1

||

1
)]][[(]][[

)WS(the denominator

stays the same, therefore we have)()(YWSXWS ≥ . Because <)(Xws

wsmin_ , we get wsYws min_)(< . This then proves that Y is not frequent if its

subset is not frequent.
Figure 1 illustrates a concrete example. Itemset AC appears in transaction 1, 5 and

8, therefore the WS (AC) = 0.018. Intuitively, the occurrence of its superset ACE is
only possible when AC appears in that transaction. But itemset ACE only appears in
transactions 1 and 8, thus WS (ACE) = 0.0024, where WS (ACE) <WS (AC).
Summatively, if AC is not frequent, it’s superset ACE is impossible to be frequent;
hence there is no need to calculate its weighted support.

6 FWARM Algorithm

For fuzzy weighted association rule mining standard ARM algorithms can be used or
at least adopted after some modifications. The proposed Fuzzy Weighted ARM
(FWARM) algorithm belongs to the breadth first traversal family of ARM
algorithms, developed using tree data structures [13] and works in a fashion similar to
the Apriori algorithm [10].

The FWARM algorithm is given in Table 8. In the Table: kC is the set of candidate
itemsets of cardinality k , w is the set of weights associated to items I . F is the set of
frequent item sets, R is the set of potential rules and R′ is the final set of generated
fuzzy weighted ARs.

58 M. Muyeba, M.S. Khan, and F. Coenen

Table 8. FWARM Algorithm

Input:

T = data set
w = itemset weights
ws = weighted support
wc = weighted confidence
Output:

R′ = Set of Weighted ARs
1. k = 0; Ck = ∅; Fk = ∅

2. sets item 1 ofSet =kC

3. 1⇐k
4. Loop

5. if ∅=kC break

6. kCc ∈∀

7. c.weightedSupport⇐weighted support count

8. if min_wsupportw. >eightedSc

9. cFF ∪⇐

10. 1+⇐ kk
11. Ck = generateCandidates(Fk-1)
12. End Loop
13. Ff ∈∀

14. generate set of candidate rules },...,{ 1 nrr

15. },...,{ 1 nrrRR ∪⇐

16. Rr ∈∀
17. r.weightedConfidence⇐weighted confidence value

18. if r.weightedConfidence>min_wc rRR ∪′⇐′

7 Experimental Results

We performed several experiments using a T10I4D100K (average of 10 items per
transaction, average of 4 items per interesting set, 10K attributes and 100K
transactions) synthetic data set. The data set was generated using the IBM Quest data
generator. Two sets of experiments were undertaken with four different algorithms
namely Boolean WARM (BWARM), Fuzzy WARM (FWARM), Classical Apriori
ARM and Classical WARM shown in the results below:

1. In the first experiment we tested algorithms using both boolean and fuzzy
datasets and compared the outcome with classical ARM and WARM algorithms.
Experiments show (i) the number of frequent sets generated (using four

 Fuzzy Weighted Association Rule Mining 59

algorithms), (ii) the number of rules generated (using weighted confidence) and
(iii) execution time using all four algorithms.

2. Comparison of execution times using different weighted supports and data sizes.

7.1 Experiment One: Quality Measures

For experiment one, the T10I4D100K dataset described above was used with
weighted attributes. Each item is assigned a weight range between]1..0[. With fuzzy

dataset each attribute is divided into five different fuzzy sets. Figure 3 shows the
number of frequent itemsets generated using (i) weighted boolean dataset and (ii) with
weighted quantitative attributes with fuzzy partitions (iii) classical ARM with boolean
dataset and (iv) and WARM with weighted boolean datasets. A range of support
thresholds was used.

Fig. 2. No. of frequent Itemsets Fig. 3. No. of Interesting Rules

As expected the number of frequent itemsets increases as the minimum support
decreases in all cases. In figure 2, BWARM shows the number of frequent itemsets
generated using weighted boolean datasets. FWARM shows the number of frequent
itemsets using attributes with fuzzy linguistic values, Classical Apriori shows the
number of frequent itemset using boolean dataset and classical WARM shows number
of frequent itemsets generated using weighted boolean datasets with different
weighted support thresholds. More frequent itemsets and rules are generated because
of a large itemset pool.

We do not use Apriori ARM to first find frequent itemsets and then re-prune them
using weighted support measures. Instead all the potential itemsets are considered
from beginning for pruning using Apriori approach in order to validating the DCP. In
contrast classical WARM only considers frequent itemsets and prunes them (using pre
or post processing). This generates less frequent itemsets and misses potential ones.

Figures 3 shows the number of interesting rules generated using weighted
confidence, fuzzy weighted confidence and classical confidence values respectively.
In all cases, the number of interesting rules is less as compared to figure 2. This is
because the interestingness measure generates fewer rules. Figure 4 shows the
execution time of four algorithms.

60 M. Muyeba, M.S. Khan, and F. Coenen

Fig. 4. Execution time to generate frequent itemsets

The experiments show that the proposed framework produces better results as it
uses all the possible itemsets and generates rules using the DCP. Further, the novelty
is the ability to analyse both boolean and fuzzy datasets with weighted settings.

7.2 Experiment Two: Performance Measures

Experiment two investigated the effect on execution time caused by varying the
weighted support and size of data (number of records). A support threshold from 0.1
to 0.6 and confidence 0.5 was used. Figures 5 and 6 show the effect on execution time
by increasing the weighted support and number of records. To obtain different data
sizes, we partitioned T10I4D100K into 10 equal horizontal partitions labeled 10K,
20K... 100K.

Different weighted support thresholds were used with different datasets. Similarly
from figures 5 and 6, the algorithms scales linearly with increasing weighted support
and fuzzy weighted support thresholds and number of records, similar behaviour to
Classical ARM.

Fig. 5. Performance: weighted support Fig. 6. Performance: fuzzy weighted support

 Fuzzy Weighted Association Rule Mining 61

8 Conclusion and Future Work

In this paper, we have presented a weighted support and confidence framework for
mining weighted association rules with (Boolean and quantitative data) by validating
the downward closure property (DCP). We used classical and fuzzy ARM to solve the
issue of invalidation of DCP in weighted ARM. We generalized the DCP and
proposed a fuzzy weighted ARM framework. The problem of invalidation of
downward closure property is solved using improved model of weighted support and
confidence framework for classical and fuzzy association rule mining.

There are still some issues with different measures for validating DCP, normaliza-
tion of values etc which are worth investigating.

References

1. Tao, F., Murtagh, F., Farid, M.: Weighted Association Rule Mining Using Weighted
Support and Significance Framework. In: Proceedings of 9th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Washington DC, pp. 661–666 (2003)

2. Cai, C.H., Fu, A.W.-C., Cheng, C.H., Kwong, W.W.: Mining Association Rules with
Weighted Items. In: Proceedings of 1998 Intl. Database Engineering and Applications
Symposium (IDEAS 1998), Cardiff, Wales, UK, pp. 68–77 (July 1998)

3. Wang, W., Yang, J., Yu, P.S.: Efficient Mining of Weighted Association Rules (WAR).
In: Proceedings of the KDD, Boston, MA, pp. 270–274 (August 2000)

4. Lu, S., Hu, H., Li, F.: Mining Weighted Association Rules. Intelligent data Analysis
Journal 5(3), 211–255 (2001)

5. Wang, B.-Y., Zhang, S.-M.: A Mining Algorithm for Fuzzy Weighted Association Rules.
In: IEEE Conference on Machine Learning and Cybernetics, vol. 4, pp. 2495–2499 (2003)

6. Gyenesei, A.: Mining Weighted Association Rules for Fuzzy Quantitative Items. In:
Proceedings of PKDD Conference pp. 416–423 (2000)

7. Shu, Y.J., Tsang, E., Yeung, D.S.: Mining Fuzzy Association Rules with Weighted Items.
In: IEEE International Conference on Systems, Man, and Cybernetics (2000)

8. Lu, J.-J.: Mining Boolean and General Fuzzy Weighted Association Rules in Databases.
Systems Engineering-Theory & Practice 2, 28–32 (2002)

9. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: 20th VLDB
Conference, pp. 487–499 (1994)

10. Bodon, F.: A Fast Apriori implementation. In: ICDM Workshop on Frequent Itemset
Mining Implementations, Melbourne, Florida, USA, vol. 90 (2003)

11. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items
in Large Databases. In: 12th ACM SIGMOD on Management of Data, pp. 207–216 (1993)

12. Kuok, C.M., Fu, A., Wong, M.H.: Mining Fuzzy Association Rules in Databases.
SIGMOD Record 27(1), 41–46 (1998)

13. Coenen, F., Leng, P., Goulbourne, G.: Tree Structures for Mining Association Rules. Data
Mining and Knowledge Discovery 8(1), 25–51 (2004)

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 62–74, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Framework for Mining Fuzzy Association Rules from
Composite Items

Maybin Muyeba1, M. Sulaiman Khan2, and Frans Coenen3

1 Department of Computing and Mathematics, Manchester Metropolitan University,
Manchester, M1 5GD, UK

2 Liverpool Hope University, Liverpool, L16 9JD, UK
3 Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK
M.Muyeba@mmu.ac.uk, khanm@hope.ac.uk, frans@csc.liv.ac.uk

Abstract. A novel framework is described for mining fuzzy Association Rules
(ARs) relating the properties of composite attributes, i.e. attributes or items that
each feature a number of values derived from a common schema. To apply
fuzzy Association Rule Mining (ARM) we partition the property values into
fuzzy property sets. This paper describes: (i) the process of deriving the fuzzy
sets (Composite Fuzzy ARM or CFARM) and (ii) a unique property ARM
algorithm founded on the correlation factor interestingness measure. The paper
includes a complete analysis, demonstrating: (i) the potential of fuzzy property
ARs, and (ii) that a more succinct set of property ARs (than that generated
using a non-fuzzy method) can be produced using the proposed approach.

Keywords: Association rules, fuzzy association rules, composite attributes,
quantitative attributes.

1 Introduction

Association Rule Mining (ARM) now a well known and established data mining topic
among researchers. Mainly, ARM finds frequent items (attributes, usually binary
valued) and then identifies patterns in the form of Association Rules (ARs) from large
transaction data sets [5, 6, 12]. ARM has been applied to quantitative and categorical
(non-binary) data [1, 13, 16]. With the former, values can be split into linguistically
labeled ranges such that each range represents a binary valued; for example “low”,
“medium”, “high” etc. Values can be assigned to these attribute ranges using crisp or
fuzzy boundaries. The application of the former is referred to as fuzzy ARM (FARM)
[1]. Objectively, fuzzy ARM identifies fuzzy ARs. Fuzzy ARM has been shown to
produce more expressive ARs than the “crisp” methods [1, 3, 4,]. ARM (both fuzzy
and standard) algorithms typically operate using the support-confidence framework,
however with a number of disadvantages including (among others) the tendency to
generate many and mostly redundant ARs not any more useful, expressive, succinct
or significant. In contrast, the correlation measure produces a more succinct set of
rules [3] and we explore this aspect.

 A Framework for Mining Fuzzy Association Rules from Composite Items 63

We approach the problem differently in this paper by introducing “Composite
item” Fuzzy ARM (CFARM) whose main objective is the generation of fuzzy ARs
associating the “properties” linked with composite attributes [15] i.e. attributes or
items composed of sets of sub-attributes or sub-items that conform to a common
schema. For example, given an image mining application, we might represent
different areas of each image in terms of groups of pixels such that each group is
represented by the normalized summation of the RGB values of the pixels in that
group. In this case the set of composite attributes (I) is the set of groups, and the set
of properties (P) shared by the groups is equivalent to the RGB summation values
(i.e. P = {R,G,B}). Another could be market basket analysis where I is a set of
groceries, and P is a set of nutritional properties that these groceries posses i.e. P =
{Pr, Fe, Ca, Cu,..} standing for protein, Iron etc[10]. Note that the actual values
(properties) associated with each element of I will be constant, unlike in the case of
the image mining example. We note that there are many examples depending on
application area but we limit ourselves to these given here. For quantitative attributes,
we can partition them into intervals [13] and rename these with linguistic values
(fuzzy sets) [1].

The contributions in this paper are :

• The framework of the concept of “Composite item” mining of property ARs
• The potential of using property ARs in many applications
• Greater accuracy using the certainty factor measure as against confidence
• Demonstration of a more succinct set of property ARs (than that generated

using a non-fuzzy method) can be produced using the proposed approach.

The paper is organised as follows. In section 2 we present the background and related
work to the proposed composite fuzzy ARM approach described, Section 3 presents a
sequence of formal definitions for the work and section 4, the detail of the CFARM
algorithm; a complete analysis of the CFARM algorithm is given in Section 5, and
section 6 concludes the paper with a summary of the contribution of the work and
directions for future work.

2 Background and Related Work

Most ARM algorithms in general concentrate on performance [2, 3, 5] by first
generating all large (frequent) itemsets and then find ARs from them. To limit the
number of ARs generated a confidence threshold is used. However great care must be
taken not to remove low support items but from which high confidence rules may be
generated. In literature the term “composite item” has been used in the context of data
mining. In [8, 16], a composite item is defined as a combination of several items e.g.
if itemset {A, B} and {A, C} are not large then rules {B} {A} and {C} {A} will
not be generated, but by combining B and C to make a new composite item {BC}
which may be large, rules such as {BC} {A} may be generated. In this paper we
define composite items differently as indicated earlier, to be an item with properties
(see Section 3) and also in [15], composite attributes are defined in this manner.

In ARM, quantitative attributes are usually discretised into various partitions, with
each partition regarded as a binary valued attribute. One major problem in this

64 M. Muyeba, M.S. Khan, and F. Coenen

approach is that of “sharp boundary problems”. Fuzzy ARM [3, 7, 14] has been
shown to resolve this problem by mapping numeric values to membership degrees
from their partitions with total individual item contributions to support counts
remaining as unity value (1.0) regardless of whether an item value belongs to one or
more fuzzy sets (similar to the approach in [1]). Detailed overviews of FARM are
given in [1, 3, 9, 14].

To illustrate the concepts, we consider super market basket analysis (table 1) where
the set of groceries (I) (or edible items) have a common set of nutritional quantitative
properties.

Table 1. Example composite attributes (groceries) with their associated properties (nutrients)

Items/Nutrients Protein Fibre Carbohydrate Fat …
Milk 3.1 0 4.7 0.2 …
Bread 8 3.3 43.7 1.5 …
Biscuit 6.8 4.8 66.3 22.8 …
… … … … … …

To illustrate the context of our problem, composite items (edible items) have

common properties like Protein, Fibre, Iron etc and are defined by the same five
fuzzy sets {Very Low, Low, Ideal, High, Very High}. The objective is then to identify
patterns linking these properties and so derive fuzzy association rules (see next
section).

3 Problem Definition

In this section a sequence of formal definitions is presented to define composite
attributes, describe FARM concept, the normalization process for Fuzzy Transactions
(FT) and interestingness measures.

3.1 Terms and Definitions

Definition 1: A Fuzzy Association Rules [3] is an implication of the form:

if XA, then YB,

where A and B are disjoint itemsets and X and Y are fuzzy sets.

Definition 2: Raw Dataset (the input data) D consists of a set of transactions

},,,,{
321

nttttT = , composite items },,,,{ ||321 IiiiiI = and properties

},,,,{ 321 mppppP = . Each transaction it is some subset of I , and each item

][ji it (the “jth” item in the “ith” transaction) is a subset of P . Thus ji has associated

sets of values in set P , i.e. { }mji vvvvvit ,,,,|][321= .

 A Framework for Mining Fuzzy Association Rules from Composite Items 65

Table 2. Example raw dataset D

TID Record
1 {<a,{2,4,6}>, <b,{4,5,3}>}
2 {<c,{1,2,5}>, <d,{4,2,3}>}
3 {<a,{2,4,6}>, <c,{1,2,5}>, <d,{4,2,3}>}
4 {<b,{4,5,3}>, <d,{4,2,3}>}

The “kth” property (categorical or quantitative) value for the “jth” item in the “ith”

transaction is given by]][[kji vit . An example is given in Table 2 where each

composite item is represented using the notation <label, value>. In the rest of this
paper the term “item” is used to mean an item in an itemset as used in traditional
ARM, and the term attribute is used to mean a property item (sub-item).

Definition 3: A given raw dataset D is initially transformed into a property data

set pD with property transactions },,,,{
321

p

n

pp ttttT pp = and property attributes

P (instead of a set of composite items I). Thus Pt p
i ⊂∀ . The value for each

property attribute][j
p

i pt (the “jth” property attribute in the “ith” property transaction)

is obtained by aggregating the numeric values for all jp in it (See Table 3). Thus:

Prop
||

]][[

])[Value(

||

1

i

t

j
kji

j
p

i t

vit

pt

i

∑
==

(1)

Table 3. Example property data set
pD generated from raw data set given in table 2

TID X Y Z
1 3.0 4.5 4.5
2 3.0 2.0 4.0
3 2.3 2.3 4.7
4 4.0 3.5 3.0

Definition 4. Once a property data set pD is defined, it is then transformed into a
Fuzzy Dataset D′ . A fuzzy dataset D′ consists of fuzzy transactions

},...,,,{ 321 n
ttttT ′′′′=′ and a set of fuzzy property attributes P′ each of which has

fuzzy sets with linguistic labels },...,,,{ ||321 LllllL = . Each property attribute

][j
p

i pt is associated (to some degree) with several fuzzy sets and given by a

membership degree value in]1..0[in some fuzzy linguistic labels. The “kth” label for

66 M. Muyeba, M.S. Khan, and F. Coenen

the “jth” property attribute for the “ith” fuzzy transaction is given by]][[kji lpt ′ . The

nature of the user defined fuzzy ranges is expressed in a properties table (see definition

6 below). The numeric values for each property attribute ti
p[p j] are fuzzified

(mapped) into the appropriate membership degree values using a membership function

)],[(kj
p

i lptμ that applies the value of][j
p

i pt to a label Llk ∈ , e.g.

)}]],[(,),]],[(),]],[(),]],[({][||321 Lj
p

ij
p

ij
p

ij
p

iji lptlptlptlptpt μμμμ=′ . The

complete set of fuzzy property attributes P′ is then given by LP × . A fuzzy data
(Table 4) based on the property data set (Table 3) is given.

Table 4. Example Fuzzy data set (}largemedium,small,{=L , μ unspecified)

X Y Z TID
Small Medium Large Small Medium Large Small Medium Large

1 0.0 1.0 0.0 0.0 0.4 0.6 0.0 1.0 0.0
2 0.0 1.0 0.0 1.0 0.0 0.0 0.3 0.7 0.0
3 0.3 0.7 0.0 1.0 0.0 0.0 0.0 0.9 0.1
4 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0

Definition 5. Composite Itemset Value (CIV) table allows us to get property values
for specific items. Note that a CIV table is not always required; the values may be
included in the raw data as in the case of the example raw dataset presented in Table 2
where property values are all in the range [1..6]. The CIV table for the example raw
dataset given in Table 2 is given in Table 5 below.

Table 5. Composite Itemset Value Table for raw dataset given in Table 2

Property attributes Item
X Y Z

A 2 4 6
B 4 5 3
C 1 2 5
D 4 2 3

Definition 6. Properties Table is a table that maps all possible values for each

property attribute ti
p[p j] onto user defined (and overlapping) linguistic labels L . An

example is given in Table 6 for the raw data set given in Table 2.

Definition 7. A property attribute set A , where LPA ×⊆ , is a Fuzzy Frequent
Attribute Set if its fuzzy support value is greater than or equal to a user supplied
minimum support threshold (see sub-section 3.2 below).

 A Framework for Mining Fuzzy Association Rules from Composite Items 67

Table 6. Properties Table for raw dataset given in Table 2

Linguistic values Property
Low Medium High

X 3.2≤kv 7.30.2 ≤< kv kv<3.3

Y 3.3≤kv 3.40.3 ≤< kv kv<1.4

Z 0.4≤kv 1.56.3 ≤< kv kv<7.4

Definition 8. Fuzzy Normalisation is the process of finding the contribution to the

fuzzy support value, m′ , for individual property attributes (ti
p[p j[lk]]) such that a

partition of unity is guaranteed. This is given by the equation (where μ is the

membership function):

∑
=

=′
||

1

]])[[(

]])[[(
]][[L

x
xj

p
i

kj
p

i
kji

lpt

lpt
lpt

μ

μ

(2)

Without normalisation, the sum of the support contributions of individual fuzzy sets
associated with an attribute in a single transaction may no longer be unity. This is
illustrated in Tables 7 and 8. In the tables, the possible values for the item “Proteins”
have been ranged into five fuzzy sets labelled: “Very Low” (VL), “Low” (L), “Ideal”,
“High” (H) and “Very High” (VH). Table 7 shows a set of raw membership degree
values, while Table 8 shows the normalised equivalents. The normalisation process
ensures membership values for each property attribute are consistent and are not
affected by boundary values.

Table 7. Fragment data set without normalization Table 8. Fragment data set with normalization

Proteins … TID

 VL L Ideal H VH …
1 0.0 0.0 0.0 1.0 0.32 …
2 0.83 0.38 0.0 0.0 0.0 …
3 … … … … … …

Proteins TID

 VL L Ideal H VH …
1 0.0 0.0 0.0 0.76 0.24 …
2 0.69 0.31 0.0 0.0 0.0 …
3 … … … … … …

3.2 Fuzzy Support and Confidence

The support-confidence framework can also be applied to fuzzy association rule
mining through fuzzy support (significance) values. Fuzzy Support (FS) is typically
calculated as follows [1]:

FS A()= Sum of votes satisfying A

Number of records in T

68 M. Muyeba, M.S. Khan, and F. Coenen

where },...,,,{ ||321 AaaaaA = is a set of property attribute-fuzzy set (label) pairs such

that A ⊆ P × L. A record ′t i “satisfies” A if A ⊆ ′ t i . The individual vote per record is

found by multiplying the membership degree with an attribute-fuzzy set pair Ali ∈]][[:

∏
∈∀

′=
Ali
ii litAt

]][[

]][[satisfying for vote (3)

So we have,

n

lit

A

ni

i Ali
i∑ ∏

=

= ∈∀

′
= 1]][[

]][[

)FS(

(4)

Frequent attribute sets with fuzzy support above the specified threshold are used to
generate all possible rules. A fuzzy AR derived from a fuzzy frequent attribute set C
is of the form:

BA →

where A and B are disjoint subsets of the set LP × such that .CBA =∪ Fuzzy
Confidence (FC) is calculated in the same manner that confidence is calculated in
classical ARM:

)(

)(
)(

AFS

BAFS
BAFC

∪=→

(5)

3.3 Fuzzy Correlation

The Fuzzy Confidence measure (FC) described does not use)(BFS but the fuzzy
correlation measure (FCORR) addresses this. The correlation measure is a statistical
measure founded on the concepts of covariance (Cov) and variance (Var) and is
calculated as follows:

)()(

),(
)(

BVatAVar

BACov
BAF CORR

×
=→

(6)

In statistics covariance is calculated by subtracting the product of the individual
expected values for A and B from the expected value of C where BAC ∪= .
The value of correlation ranges from -1 to +1. Value -1 means no correlation and +1
means maximum correlation. Thus we are only interested in rules that have a
correlation value that is greater than 0. As the certainty value increases from 0 to 1,
the more related the attributes are and consequently the more interesting the rule.

4 The CFARM Algorithm

Fuzzy ARM can use standard ARM algorithms and few works report on their efficient
implementations [7]. Fuzzy ARM do a significant amount of processing (filtration,
conversions, normalization) to prepare the raw data prior to mining it.

 A Framework for Mining Fuzzy Association Rules from Composite Items 69

The proposed Composite Fuzzy ARM (CFARM) algorithm (similar to Apriori [5]),
belongs to the breadth first traversal family of ARM algorithms, developed using tree
data structures [6]. The CFARM algorithm consists of four major steps:

1. Transformation of ordinary transactional data set (T) into a property data set

(pT).

2. Transformation of property data set (pT) into a fuzzy data set ′ T .
3. Apply an Apriori style fuzzy association rule mining algorithm to ′ T using

fuzzy support, confidence and correlation measures of the form described
above to produce a set of frequent item sets F .

4. Process F and generate a set of fuzzy ARs R such that Rr ∈∀ the
certainty factor (either confidence or correlation as desired by the end user) is
above some user specified threshold.

Table 9. rawToPropertyDataSetConverter(T) Table 10. propertToFuzzyDataSetConverter(Tp)

The algorithms for steps 1and 2 are presented in Tables 9 and 10. To illustrate
steps 1 and 2 a fragment of a raw data set (T) is given in Table 11(a). This raw

data is then cast into a properties data set (PT) by averaging the property values
for each transaction (see definition 3 and table 3). For example, assuming the

CIV table given in table 5 and considering transaction },{1 bat = , from Table 5, a

has property values {2, 4, 6} and b has property values {4, 5, 3}. Thus

}2/)36(,2/)54(,2/)42{(1 +++=pt }5.4,5.4,0.3{= , assuming the properties table

of the form presented in Table 4 where }LargeMedium,mall,{SL = . The result is

as shown in Table 11(b) which is then cast into a fuzzy data set T ′ as shown in
Table 11(c).

An alternative approach is to discretise the data. For example, again assum-
ing no overlapping (say) Small < 2, 2 < Medium < 4 and 4 < Large, then
the values in Table 12(b) can be discretised into the set of attributes

},,,,,,,,{ LargeMediumSmallLargeMediumSmallLargeMediumSmall ZZZYYYXXX and then

70 M. Muyeba, M.S. Khan, and F. Coenen

assigned to a sequence }9,8,7,6,5,4,3,2,1{ . In that case the property data set in

Table 11(b) could be represented in conventional ARM terms, which can then be
mined using a conventional ARM algorithm. The significance is that we shall use an
example property dataset cast into this format for evaluation purposes in Section 5.

The final part of the CFARM algorithm is given in Table 12. In the Table: kC is

the set of candidate itemsets of cardinality k , F is the set of frequent item sets, R is

Table 11. Some example data sets (raw, property, conventional)

(a) Raw data (T) (b) Property data set

(
PT)

(c) Fuzzy data set (T ′)

TID Items
1 a, b
2 c
3 a, b, d
4 …

TID X Y Z
1 3.0 4.5 4.5
2 1 2 5
3 3.3 3.3 4.0
4 … … …

TID X Y Z
 S M L S M L S M L
1 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.7 0.3
2 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.2 0.8
3 0.0 0.7 0.3 0.4 0.6 0.0 0.0 1.0 0.0
4 … … … … … … … … …

Table 12. fuzzyDataSetToFuzzyARs(T ′)

 A Framework for Mining Fuzzy Association Rules from Composite Items 71

the set of potential rules and R′ is the final set of generated fuzzy ARs. Note that the
certainty factor can be confidence or a correlation or some other certainty measure.

5 Experimental Results

To demonstrate the effectiveness of the approach, we performed several experiments
using a T10I4N0.6KD100k data set generated using IBM Quest data generator [11].
The data is a transactional database containing 100K records. For the purpose of the
experiment we mapped the 600 item numbers onto 600 products in a real RDA table.

5.1 Experiment One: Quality Measures

Our experiment in the first instance compares CFARM, with and without normalisation,
against standard (discrete) ARM with respect to: (i) the number of frequent sets
generated and (ii) the number of rules generated (using both the confidence and the
correlation measure). Figure 1 shows the results and demonstrates the difference
between the number of frequent itemsets generated using (i) Standard ARM using
discrete intervals, (ii) CFARM with fuzzy partitions without normalization (CFARM1),
and (iii) Fuzzy ARM with fuzzy partitions with normalization (CFARM2).

For standard ARM, the Apriori-TFP algorithm was used [6] with a range of
support thresholds. As expected the number of frequent itemsets increases as the
minimum support decreases. From the results, it is clear that standard ARM produces
more frequent itemsets (and consequently rules) than fuzzy ARM (figure 1).

This is because the frequent itemsets generated more accurately reflect the true
patterns in the data set than the numerous artificial patterns resulting from the use of
crisp boundaries in standard ARM. At low support threshold levels, the approach with
normalization (CFARM2) starts to produce less frequent itemsets than the approach
without normalization (CFARM1). This is because the average contribution to support
counts per transaction is greater without using normalization than with normalization.

Fig. 1. Number of frequent Itemsets

72 M. Muyeba, M.S. Khan, and F. Coenen

Fig. 2. No. of Interesting Rules using confidence Fig. 3. No. of Interesting Rules using Correlation

Figures 2 and 3 shows the comparison of number of interesting rules generated
using user specified fuzzy confidence and fuzzy correlation values respectively. In
both cases, the number of interesting rules is less as using CFARM2; this is a direct
consequence of the fact that CFARM 2 generates fewer frequent itemsets. Note that
fewer, but arguably better, rules are generated using the correlation measure (Figure 3)
than the confidence measure (Figure 2). The experiments show that using the proposed
fuzzy normalization process less fuzzy ARs are generated. In addition, the novelty of
the approach is its ability to analyse datasets comprised of composite items e.g.
nutritional properties. Some example fuzzy ARs generated has the form:

IF Protein intake is Low THEN Vitamin A intake is High.
IF Protein intake is High AND Vitamin A intake is Low THEN Fat intake is High.

These rules would be useful in analysing customer buying patterns concerning their
nutrition.

5.2 Experiment Two: Performance Measures

Experiment two investigated the effect on execution time by varying the number of
attributes and the size of data (number of records) with and without normalization
using a support threshold of 0.3, confidence 0.5 and correlation value to 0.25. Figure 4

Fig. 4. Execution time: No. of Records Fig. 5. Execution time: No. of Attributes

 A Framework for Mining Fuzzy Association Rules from Composite Items 73

shows the effect of increasing the number of records partitioned into 10 equal partitions
10K, 20K,..,100K with all 27 nutrients (properties) used [10]. Both algorithms have
similar timings with execution time scales linearly with the number of records. Figure 5
shows the effect on execution time using different numbers of attributes each with 5
fuzzy sets and thus uses 135 columns (27x5).

6 Conclusion and Future Work

In this paper, we have presented a novel framework for extracting fuzzy ARs from
“composite items” with quantitative properties (sub itemsets) using derived fuzzy
sets. The CFARM algorithm produces a more succinct set of fuzzy association rules
using fuzzy measures and correlation as the interestingness (certainty) measure and
thus presents a new way for extracting association rules from items with properties.
This is different from normal quantitative ARM. We also showed the experimental
results with market basket data where edible items were used with nutritional content
as properties. Largely, CFARM offers potential to apply this framework in varied
applications with composite items.

References

1. Gyenesei, A.: A Fuzzy Approach for Mining Quantitative Association Rules. Acta
Cybernetical 15(2), 305–320 (2001)

2. Lee, C.H., Chen, M.S., Lin, C.R.: Progressive Partition Miner, an Efficient Algorithm for
Mining General Temporal Association Rules. IEEE Trans. on Knowledge and Data
Engineering 15(4), 1004–1017 (2003)

3. Kuok, C., Fu, A., Wong, H.: Mining Fuzzy Association Rules in Databases. ACM SIGMOD
Record 27(1), 41–46 (1998)

4. Dubois, D., Hüllermeier, E., Prade, H.: A Systematic Approach to the Assessment of Fuzzy
Association Rules. DM and Knowledge Discovery Journal 13(2), 167–192 (2006)

5. Bodon, F.: A Fast Apriori implementation. In: Proc. (FIMI 2003), IEEE ICDM Workshop on
Frequent Itemset Mining Implementations, Florida, USA, vol. 90 (2003)

6. Coenen, F., Leng, P., Goulbourne, G.: Tree Structures for Mining Association Rules. Data
Mining and Knowledge Discovery 8(1), 25–51 (2004)

7. Chen, G., Wei, Q.: Fuzzy Association Rules and the Extended Mining Algorithms.
Information Sciences 147(1-4), 201–228 (2002)

8. Wang, K., Liu, J.K., Ma, W.: Mining the Most Reliable Association Rules with Composite
Items. In: Proc. ICDMW 2006, pp. 749–754 (2006)

9. Delgado, M., Marin, N., Sanchez, D., Vila, M.A.: Fuzzy Association Rules, General Model
and Applications. IEEE Transactions on Fuzzy Systems 11(2), 214–225 (2003)

10. Muyeba, M., Sulaiman, M., Malik, Z., Tjortjis, C.: Towards Healthy Association Rule
Mining (HARM), A Fuzzy Quantitative Approach. In: Corchado, E., Yin, H., Botti, V., Fyfe,
C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 1014–1022. Springer, Heidelberg (2006)

11. Agrawal, R., Srikant, R.: Quest Synthetic Data Generator. IBM Almaden Research Center
12. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items in

Large Databases. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, Washington,
D.C, pp. 207–216 (1993)

74 M. Muyeba, M.S. Khan, and F. Coenen

13. Srikant, R., Agrawal, R.: Mining Quantitative Association Rules in Large Relational Tables.
In: Proc. ACM SIGMOD Conf. on Management of Data, pp. 1–12. ACM Press, Montreal
(1996)

14. Au, W.H., Chan, K.: Farm, A Data Mining System for Discovering Fuzzy Association Rules.
In: Proc. 8th IEEE Int’l Conf. on Fuzzy Systems, Seoul, Korea, pp. 1217–1222 (1999)

15. Kim, W., Bertino, E., Garza, J.: Composite objects revisited. ACM SIGMOD Record 18(2),
337–347 (1989)

16. Ye, X., Keane, J.A.: Mining Composite Items in Association Rules. In: Proc. IEEE Int. Conf.
on Systems, Man and Cybernetics, pp. 1367–1372 (1997)

Mining Mutually Dependent Ordered Subtrees
in Tree Databases

Tomonobu Ozaki1 and Takenao Ohkawa2

1 Organization of Advanced Science and Technology, Kobe University
2 Graduate School of Engineering, Kobe University
1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan
tozaki@cs.kobe-u.ac.jp, ohkawa@kobe-u.ac.jp

http://www25.cs.kobe-u.ac.jp/

Abstract. In this paper, in order to discover significant patterns, we
focus on the problem of mining frequent mutually dependent ordered
subtrees, i.e. frequent ordered subtrees in which all building blocks are
mutually dependent, in tree databases. While three kinds of mutually
dependent ordered subtrees are considered based on the building blocks
used, we propose efficient breadth-first algorithms for each kind of sub-
trees. The effectiveness of the proposed framework is assessed through
the experiments with synthetic and real world datasets.

Keywords: tree mining, mutually dependent patterns, h-confidence.

1 Introduction

Recently, frequent pattern mining in tree-structured domain has been paid a big
attention and several algorithms have been proposed [2, 3, 4, 6, 13, 14]. How-
ever, frequent subtree miners often discover unmanageable number of patterns.
To overcome this problem, several algorithms for mining condensed representa-
tion [5, 8, 10] as well as constrained patterns [9, 15] have been proposed.

On the other hand, in order to discover significant patterns and to decrease
the number of patterns to be extracted, the concept of hyperclique pattern has
been proposed [11, 12] in the research area of frequent itemset mining. A hy-
perclique pattern is a set of highly-correlated items that has high value of an
objective measure h-confidence which is designed for capturing the strong affinity
relationship. The h-confidence measure of an itemset P = {i1, · · · , im} is defined
as follows [11, 12].

hconf(P) = min
l=1,···,m

{conf(il → P \ {il})} = sup(P)/ max
l=1,···m

{sup({il})}

where sup and conf are the conventional definitions of support and confidence in
association rules [1], respectively.

In this paper, as a tree-structured version of hyperclique pattern, we consider
the problem of discovering mutually dependent ordered subtrees, i.e. subtrees in
which all components or building blocks are highly correlated with each other.

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 75–86, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

76 T. Ozaki and T. Ohkawa

While it is obvious that the building blocks of an itemset are items contained in
the set, the meaningful building blocks of a subtree are not necessarily obvious.
Thus, we propose the three kinds of mutually dependent ordered subtrees based
on the building blocks used. To discover each kind of subtrees efficiently, we
propose three algorithms which are based on an existing breadth-first frequent
ordered subtree miner named AMIOT [6].

This paper is organized as follows. In section 2, we introduce basic notations
and definitions on ordered subtree mining and give a brief overview of AMIOT
as the basis of the proposed algorithms. In section 3, we propose three kinds of
mutually dependent ordered subtrees. Our mining algorithms for each kind of
mutually dependent ordered subtrees are also proposed in this section. We show
the results of the experiments in section 4. Finally, we conclude this paper and
describe future work in section 5.

2 Preliminaries

2.1 Notations and Definitions

In this subsection, we introduce basic notations and definitions on the ordered
subtree mining according to [2, 4, 6].

A labeled ordered tree t = (V, E, S, L, r) on a finite set of labels L consists of
a vertex set V , an edge set E ⊆ V × V which represents the set of parent-child
relations, S ⊆ V × V which represents the set of sibling relations, a labeling
function L : V → L which gives a label l ∈ L of a vertex, and a unique vertex r
that has no entering edges. The label of a vertex v ∈ V is denoted as l(v). The
depth of v, denoted as d(v), is defined as the number of edges from the root to v.
Given two labeled ordered trees t = (Vt, Et, St, Lt, rt) and s = (Vs, Es, Ss, Ls, rs),
t is called induced ordered subtree of s, denoted as t ≺ s, if there exists an injective
function φ : Vt → Vs which satisfies the following conditions: (1)(v1, v2) ∈ Et ⇔
(φ(v1), φ(v2)) ∈ Es, (2)(v1, v2) ∈ St ⇔ (φ(v1), φ(v2)) ∈ Ss, and (3)Lt(v) =
Ls(φ(v)). We show examples of ordered trees in Fig. 1. In this figure, for a
vertex ©F in t0, l(©F) = F and d(©F) = 2, respectively. t6 ≺ t5 ≺ t3 ≺ t0 holds.
Hereafter, we refer labeled ordered tree as tree and induced ordered subtree as
subtree simply.

A vertex having no child is called a leaf. A tree having just one leaf is called
a serial tree. Given a tree t, rl(t) and ll(t) denote the rightmost and leftmost
leaf in t, respectively. A set of all paths from the root to leaves in t is denoted
as B(t). rb(t) = (r, · · · , rl(t)) ∈ B(t) and lb(t) = (r, · · · , ll(t)) ∈ B(t) denote

©C ©D
©B

©F ©G
©E

t0
©A

©D
©B
©F ©G
©E

t1
©A

©C
©B
©F ©G
©E

t2
©A

©C ©D
©B

©G
©E

t3
©A

©C ©D
©B

©F
©E

t4
©A

©C ©D
©B

t5
©A

©C

t6
©B

©C
©B

t7
©A

©D
©B

t8
©A

Fig. 1. Example of Ordered Trees

Mining Mutually Dependent Ordered Subtrees in Tree Databases 77

the rightmost and leftmost branch in t, respectively. We denote a set of non-
rightmost and non-leftmost branches in t as Cb(t) = B(t) \ {rb(t), lb(t)}. In
Fig. 1, t6, t7 and t8 are serial trees. While rl(t0) is ©G , ll(t0) is ©C . On the paths
from a root to leaves, B(t0) = {(©A , ©B , ©C), (©A , ©B , ©D), (©A , ©E , ©F), (©A , ©E , ©G)}
holds. rb(t0) is (©A , ©E , ©G) and lb(t0) is (©A , ©B , ©C), respectively. While Cb(t0) =
{(©A , ©B , ©D), (©A , ©E , ©F)} holds, Cb(t5) = ∅ because t5 has only two leaves.

The size of a tree t is denoted as |t| and is defined as the number of vertices
in t. P(t) = {t′ ≺ t | |t′| = |t| − 1} denotes a set of all immediate subtrees
of t. While pl(t) ∈ P(t) denotes the tree obtained by removing rl(t) from t,
pr(t) ∈ P(t) denotes the tree obtained by removing ll(t). For a serial tree t, a
tree obtained by removing the root from t is denoted as pd(t).

Given a tree t, while t · (d, l) denotes a tree obtained by adding a vertex v
such that d(v) = d and l(v) = l as the rightmost leaf to t, (d, l) • t denotes a tree
obtained by adding v as the leftmost leaf to t. Given a vertex v, we also use the
notation t · v and v • t to represent t · (d(v), l(v)) and (d(v), l(v)) • t for the sake
of the simplicity. In Fig. 1, P(t0) = {t1, t2, t3, t4}, pl(t0) = t4 and pr(t0) = t1,
respectively. For a serial tree t7, pd(t7) = t6 holds. While t0 = (2, C) • t1 =
t4 · (2, G) holds, t5 = (2, C) • t8 = t7 · (2, D) holds.

Let D = {t1, · · · , tN} be a database of labeled ordered trees. The support of a
tree t in D is defined as follows.

sup(D, t) =
∑

s∈D

Occ(t, s) where Occ(t, s) =
{

1 (t ≺ s)
0 (otherwise)

Given a user defined threshold σ > 0, a tree t is called a frequent induced
ordered subtree in D, if sup(D, t) ≥ σ holds.

2.2 Breadth-First Frequent Induced Ordered Subtree Miner

In this subsection, as the basis of the algorithm for solving the problems of
mutually dependent subtree mining introduced later, we introduce a frequent
induced ordered subtree miner named AMIOT [6].

AMIOT [6] is a natural extension of apriori algorithm [1] and it discovers
all frequent induced ordered subtrees in a breadth-first search strategy. In order
to enumerate all frequent subtrees without duplication, AMIOT employs two
enumeration techniques. For each two frequent subtrees t and s such that pr(t) =
pl(s), a new candidate t·rl(s) = ll(t)•s is obtained. This operation is called Right
and Left Tree Join. In addition, a set of candidates C = {t·(d(rl(t))+1, l) | l ∈ L}
is generated from a frequent serial tree t. This operation is called Serial Tree
Extension. For example in Fig. 1, while t0 will be generated by joining t4 and
t1, t5 will be obtained from t7 and t8.

AMIOT generates all frequent subtrees without duplication by repeatedly
applying these two kinds of operations to frequent subtrees by size [6]. The
pseudo code of AMIOT is shown in Fig. 2. In this figure, c.sup denotes a support
value of a tree c and sup(D, c) means the actual computation of support value.
A set F1 = {t | sup(D, t) ≥ σ, |t| = 1} denotes a set of all frequent subtrees of

78 T. Ozaki and T. Ohkawa

Algorithm AMIOT(F1, D, σ)
1: for each t ∈ F1

2: output t
3: end for
4: AMIOT -Enum(F1, D, σ)

Function AMIOT-Enum(F , D, σ)
1: F ′ := ∅
2: for each t, s ∈ F s.t. pr(t) = pl(s)
3: c := t · rl(s); c.sup := sup(D, c)
4: if c.sup ≥ σ then F ′ = F ′ ∪ {c}; output c
5: end for
6: for each l ∈ L and t ∈ F s.t. t is a serial tree
7: c := t · (d(rl(t)) + 1, l); c.sup := sup(D, c)
8: if c.sup ≥ σ then F ′ = F ′ ∪ {c}; output c
9: end for

10: if F ′ �= ∅ then AMIOT-Enum(F ′, D, σ)

Fig. 2. Pseudo Code of AMIOT

size 1. In AMIOT -Enum, line 2–5 and line 6–9 correspond to Right and Left
Tree Join and Serial Tree Extension, respectively. By utilizing the anti-monotone
property of support value, i.e. ∀t′ � t (sup(D, t′) ≤ sup(D, t)), AMIOT avoids
enumerating candidate subtrees having no chance to be frequent. As a result,
AMIOT succeeds in reducing the number of candidates to be evaluated.

3 Discovery of Mutually Dependent Ordered Subtrees

3.1 Mutually Dependent Ordered Subtrees

To understand the meaning of a structured pattern, we often pay attention to
the relation between whole pattern and its building blocks. In case of ordered
subtrees, the relation between a subtree t and its building block c ≺ t can be
represented in the tree association rule c → t. In this rule, the strength of rela-
tion is measured as confidence conf(c → t) = sup(D, t)/sup(D, c). We believe
that ordered subtrees which have strong relations in arbitrary building blocks
are meaningful, significant and easy to understand because such patterns do not
contain redundant parts. Motivated by these backgrounds, as patterns concern-
ing the relation between arbitrary building blocks and the whole, we propose
mutually dependent ordered subtrees, which can be regarded as an extension of
hyperclique pattern to ordered subtrees.

Given a database D of ordered subtrees and a user defined threshold hc, then
a subtree t such that hconfD(t) ≥ hc is called a mutually dependent ordered
subtree (MDOT in short).

hconfD(t) = min
c≺t

{conf(c → t)} = sup(D, t)/ max({sup(D, c) | c ≺ t})

= sup(D, t)/ max({sup(D, c) | c ≺ t, |c| = 1})

In case of tree structured patterns, it is not necessarily obvious what mean-
ingful building block is. Therefore, it may be not suitable to use all subtrees for
measuring the affinity relationship within a pattern. To overcome this drawback,
instead of using all subtrees, we consider that only subtrees satisfying some prop-
erty contribute for evaluating the affinity relationship. According to the property

Mining Mutually Dependent Ordered Subtrees in Tree Databases 79

that subtrees should satisfy, we propose three kinds of MDOT named (1)sMDOT,
(2)iMDOT and (3)pMDOT. In the computation of h-confidence in sMDOT, only
subtrees whose size is more than or equal to k are considered. While immediate
subtrees are used in iMDOT, all paths from the root to leaves are considered in
pMDOT.

In the following subsections, we give the formal definitions of each kind of
MDOT and those mining problems.

3.2 Discovery of sMDOT

sMDOT is a subtree in which every subtrees whose size is more than or equal to
k are mutually dependent, where k is a user defined parameter. This means that
too small subtrees as building block are not considered. Given a database D and
a user defined parameter k(≥ 1), we define the modified version of h-confidence
for sMDOT as follows.

hconfsD(t, k) = sup(D, t)/ max({sup(D, c) | c ≺ t, |c| ≥ k})
= sup(D, t)/ max({sup(D, c) | c ≺ t, |c| = k})

By using this measure, our data mining problem is stated formally as follow.

(σ, hc, k)-sMDOT Discovery Problem. Given a database D of labeled or-
dered trees, one positive number hc ≥ 0 and two integers σ ≥ 1 and k(≥ 1),
then the problem of (σ, hc, k)-sMDOT discovery is to find all subtrees t in
D such that |t| > k, sup(D, t) ≥ σ and hconfs

D(t, k) ≥ hc.

Note that, the (σ, hc, 1)-sMDOT discovery problem is identical with the prob-
lem of finding all frequent MDOTs, in which the original h-confidence is employed
as a measure for affinity.

The measure hconfsD satisfies the anti-monotone property. Formally speaking,
given an ordered subtree t, the relation ∀t′ � t (hconfs

D(t′, k) ≤ hconfs
D(t, k))

holds because {c′ | c′ ≺ t′} ⊇ {c | c ≺ t} holds. By incorporating the pruning
capability based on the anti-monotone property of hconfsD into AMIOT , we
propose an algorithm named MINE-sMDOT for the (σ, hc, k)-sMDOT discovery
problem. The pseudo code of MINE-sMDOT is shown in Fig. 3. Instead of Serial
Tree Extension in AMIOT , every serial trees will be generated by joining two
serial trees (line 7–8 in sMDOT-Enum). Any subtree c keeps the value c.max
for computing hconfs

D efficiently. In addition to the support-based pruning (line
2 in sMDOT-Chk), another pruning based on h-confidence is realized (line 5 in
sMDOT-Chk). The correctness of MINE-sMDOT is derived from the complete
enumeration of frequent subtrees based on AMIOT and the admissible pruning
guaranteed by the anti-monotone property of hconfs

D.

3.3 Discovery of iMDOT

Intuitively speaking, iMDOT is a subtree, all of whose immediate subtrees are
iMDOT and are tightly correlated with each other. The h-confidence is modified

80 T. Ozaki and T. Ohkawa

Algorithm MINE-sMDOT(F1, D, σ, k, hc)
1: for each t ∈ F1

2: t.max := t.sup
3: end for
4: sMDOT-Enum(F1, D, σ, k, hc)

Function sMDOT-Chk(t, s, d, D, σ, k, hc)
1: c := t · (d, l(rl(s))); c.sup := sup(D, c)
2: if c.sup < σ then return ∅
3: if |c| > k then
4: c.max := max({p.max | p ∈ P(c)})
5: if c.sup/c.max < hc then return ∅
6: output c
7: else
8: c.max := c.sup
9: return {c}

Function sMDOT-Enum(F , D, σ, k, hc)
1: F ′ := ∅
2: for each t, s ∈ F s.t. pr(t) = pl(s)
3: F ′ := F ′ ∪
4: sMDOT-Chk
5: (t, s, d(s), D, σ, k, hc)
6: end for
7: for each t, s ∈ F s.t. t and s are
8: serial trees and pd(t) = pr(s)
9: F ′ := F ′ ∪

10: sMDOT-Chk
11: (t, s, d(s)+1, D, σ, k, hc)
12: end for
13: if F ′ �= ∅ then
14: sMDOT-Enum(F ′, D, σ, k, hc)

Fig. 3. Pseudo Code of sMDOT

for considering only the immediate subtrees as follows.

hconfi
D(t) =

{
sup(D, t)/ max({sup(D, c) | c ∈ P(t)}) (|t| > 1)
1 (|t| = 1)

By using the measure hconfi
D, the formal definition of iMDOT is given as

follows: (1)a subtree c of size 1 is iMDOT and (2)a subtree c such that |c| > 1
is iMDOT if hconfi

D(c) ≥ hc and all of c′ ∈ P(c) are iMDOT, where hc is a user
defined parameter. Note that, the definition of iMDOT is recursive.

Based on the above preparation, we propose the second data mining problem.

(σ, hc)-iMDOT Discovery Problem. Given a database D of labeled ordered
trees, an integer σ ≥ 1, and a positive number hc ≥ 0, then the problem
of (σ, hc)-iMDOT discovery is to find all subtrees t in D such that |t| > 1,
sup(D, t) ≥ σ, and t is iMDOT.

iMDOT satisfies the anti-monotone property by definition. In other words, if
a subtree t is not iMDOT, then any subtree t′ � t must not be iMDOT. Thus, as
similar to the case of sMDOT, an effective mining algorithm can be composed by
introducing the pruning capability based on hconfi

D into AMIOT . The algorithm
MINE-iMDOT for the (σ, hc)-iMDOT discovery problem is shown in Fig. 4. The
pruning based on hconfi

D is realized in line 3–4 in iMDOT-Chk. The completeness
of this algorithm is derived from the complete enumeration of frequent patterns
in AMIOT and the safe pruning based on the anti-monotone property of support
value and hconfiD.

3.4 Discovery of pMDOT

The third kind of mutually dependent ordered subtrees is referred to as pMDOT.
We regard that pMDOT is composed of a set of paths from the root to the

Mining Mutually Dependent Ordered Subtrees in Tree Databases 81

Algorithm MINE-iMDOT(F1, D, σ, hc)
1: iMDOT-Enum(F1, D, σ, hc)

Function iMDOT-Chk(t, s, d, D, σ, hc)
1: c := t · (d, l(rl(s))); c.sup := sup(D, c)
2: if c.sup < σ then return ∅
3: max := max({p.sup | p ∈ P(c)})
4: if sup/max < hc then return ∅
5: output c
6: return {c}

Function iMDOT-Enum(F , D, σ, hc)
1: F ′ := ∅
2: for each t, s ∈ F s.t. pr(t) = pl(s)
3: F ′ := F ′ ∪ iMDOT-Chk
4: (t, s, d(s), D, σ, hc)
5: end for
6: for each t, s ∈ F s.t. t and s are
7: serial trees and pd(t) = pr(s)
8: F ′ := F ′ ∪ iMDOT-Chk
9: (t, s, d(s)+1, D, σ, hc)

10: end for
11: if F ′ �= ∅ then
12: iMDOT-Enum(F ′, D, σ, hc)

Fig. 4. Pseudo Code of iMDOT

leaves. The h-confidence measure for considering paths only is defined formally
as follows.

hconfpD(t) = sup(D, t)/ max({sup(D, c) | c ∈ B(t)})

In the following, we state the third data mining problem.

(σ, hc)-pMDOT Discovery Problem. Given a database D of labeled ordered
trees, an integer σ ≥ 1, and a positive number hc ≥ 0, then the problem of
(σ, hc)-pMDOT discovery is to find all non-serial subtrees t in D such that
sup(D, t) ≥ σ and hconfpD(t, k) ≥ hc.

Unlike the case of sMDOT and iMDOT, the measure hconfp
D does not satisfy

the anti-monotone property since B(t) ⊆ B(t′) does not hold for two subtrees
t ≺ t′. Therefore, other pruning criterion is necessary for the efficient discovery of
pMDOT. As described before, any non-serial subtree must be generated by Right
and Left Tree Join in AMIOT . In this operation, a new tree will be obtained by
adding one vertex to the rightmost or leftmost branch of the existing tree. No
vertex will be added to the branches other than rightmost and leftmost ones.
Thus, given a non-serial subtree t and t′ which is obtained via t in AMIOT ,
then Cb(t) ⊆ Cb(t′) holds. By utilizing this relation, we propose three pruning
techniques.

1. Center Branch Pruning: In the enumeration strategy of AMIOT , if a non-
serial tree t satisfies the following condition, then t will be pruned.

sup(D, t)/ max({sup(D, c) | c ∈ Cb(t)}) < hc

The admissibility of this pruning is proved as follows. Let t′ be a subtree ob-
tained via t in AMIOT . From the previous discussion, Cb(t′) ⊇ Cb(t) as well as
max({sup(D, c) | c ∈ Cb(t′)}) ≥ max({sup(D, c) | c ∈ Cb(t)}) hold. In addition,

82 T. Ozaki and T. Ohkawa

Algorithm MINE-pMDOT(F1, D, σ, hc)
1: pMDOT-Enum(F1, D, σ, hc)

Function pMDOT-Enum(F , D, σ, hc)
1: F ′ := ∅
2: for each t, s ∈ F s.t. pr(t) = pl(s)
3: if t.sup/ max({p.sup | p ∈ Cb(t) ∪ {rb(t)}}) < hc

4: ∧ d(rl(t)) ≥ d(rl(s)) then continue
5: if s.sup/ max({p.sup | p ∈ Cb(s) ∪ {lb(s)}}) < hc

6: ∧ d(ll(s)) ≥ d(ll(t)) then continue
7: c := t · rl(s); c.sup := sup(D, c)
8: if c.sup < σ then continue
9: if Cb(c) �= ∅ ∧ c.sup/ max({p.sup | p ∈ Cb(c)}) < hc then continue

10: if c.sup/ max({p.sup | p ∈ B(c)}) ≥ hc then output c
11: F ′ := F ′ ∪ {c}
12: end for
13: for each t, s ∈ F s.t. t and s are serial trees and pd(t) = pr(s)
14: c := t · (d(rl(s)) + 1, l(rl(s))); c.sup := sup(D, c)
15: if c.sup ≥ σ then F ′ := F ′ ∪ {c}
16: end for
17: if F ′ �= ∅ then pMDOT-Enum(F ′, D, σ, hc)

Fig. 5. Pseudo Code of pMDOT

because of t′ � t, sup(D, t′) ≤ sup(D, t) also holds. By these inequalities, the
following inequality is obtained.

sup(D, t′)
max({sup(D, c) | c ∈ Cb(t′)})

≤ sup(D, t)
max({sup(D, c) | c ∈ Cb(t)})

≤ hc

2. Rightmost Branch Pruning: In the enumeration strategy of AMIOT , if a non-
serial tree t satisfies the following condition, then we prune any subtree t · (d, l)
such that d < d(rl(t)).

sup(D, t)/ max({sup(D, c) | c ∈ Cb(t) ∪ {rb(t)}}) < hc

Because Cb(t · (d, l)) = Cb(t) ∪ {rb(t)} holds, the center branch pruning will
be applied to t · (d, l) as a result. This shows the admissibility of this pruning.

3. Leftmost Branch Pruning: In the enumeration strategy of AMIOT , if a non-
serial tree s satisfies the following condition, then we prune any subtree (d, l) • s
such that d < d(ll(s)).

sup(D, s)/ max({sup(D, c) | c ∈ Cb(s) ∪ {lb(s)}}) < hc

The admissibility of this pruning is guaranteed by the same reason of right-
most branch pruning.

Mining Mutually Dependent Ordered Subtrees in Tree Databases 83

On the ground of the above discussion, we propose an algorithm named MINE-
pMDOT for the (σ, hc)-pMDOT discovery problem in Fig. 5. In Fig. 5, center
branch pruning is realized in line 9 in pMDOT-Enum. The rightmost and left-
most branch prunings are realized in line 3–4 and line 5–6, respectively. In this
algorithm, while non-pMDOT will be output by the check of hconfp

D(line 10),
all pMDOT will be generated because of the complete enumeration strategy of
AMIOT and safe prunings.

4 Experimental Evaluation

To assess the effectiveness of the proposed framework, we implement three al-
gorithms MINE-sMDOT, MINE-iMDOT and MINE-pMDOT in Java and conduct
experiments with the datasets shown in Table 1. Datasets 10K and 50K are
synthetically generated by Tree Generator [13]. Glycan [7] and CSLOGS [13] are
real world datasets. While the former is a set of biochemical compounds, the
latter contains the access trees to the website.

In the experiments, we measure the number of MDOTs obtained and the exe-
cution time with the decrease of minimum support and minimum h-confidence
gradually. All experiments were run on a PC (CPU: Intel(R) Core2Quad 2.4GHz)
with 4GB of main memory running Windows XP. The experimental results are
shown in Table 2 and Table 3. In these tables, while “closed” means the number
of frequent closed induced ordered subtrees [5], “d-free” means frequent δ = d-
free induced ordered subtrees [10] which are noise-tolerant minimal frequent
subtrees. The rows of “tree ar” mean the numbers of tree association rules sat-
isfying the minimum confidence hc in form of c → t where c and t are restricted
to closed patterns and c ≺ t.

In all the experiments, MDOTs are extracted within a very small computa-
tional time. These results show the effectiveness of the proposed criteria for
the pruning based on the h-confidence. Although the minimal size for sMDOT

increases as the value of k in sMDOT discovery is enlarged, the number of ex-
tracted sMDOTs increases. The reason might be that the number of subtrees
for computing hconfs

D decreases. Regardless of the kinds of MDOT, compared
with closed patterns, δ-free patterns and tree association rules, the number of
obtained MDOT is very small in almost all cases. From these results, we believe
that only significant subtrees have been selectively discovered in the proposed
frameworks.

Table 1. Overview of Datasets

|D| Size Depth |L|
10K 10,000 15.00 / 143 5.99 / 10 100
50K 50,000 10.66 / 143 4.83 / 10 100

|D| Size Depth |L|
Glycan 10,951 6.52 / 54 3.71 / 25 875

CSLOGS 59,691 12.93 / 428 3.43 / 85 13,355
|D|: Number of trees in the database, Size: Average / Maximal number of nodes
per tree, Depth: Average / Maximal height per tree, |L|: Number of labels

84 T. Ozaki and T. Ohkawa

Table 2. Experimental Results for Synthetic Datasets: Number of Extracted Patterns

10K 50K

hc σ = 50 σ = 25 σ = 10 σ = 250 σ = 100 σ = 50
sMDOT(k=1) 7 (0.2) 7 (0.2) 7 (0.2) 7 (0.7) 7 (0.8) 7 (0.7)
sMDOT(k=3) 59 (1.1) 69 (1.1) 82 (1.1) 93 (3.5) 110 (4.2) 115 (4.3)
sMDOT(k=5) 0.9 127 (1.4) 152 (1.5) 202 (1.6) 197 (6.5) 247 (6.9) 268 (6.9)

iMDOT 7 (0.2) 7 (0.2) 7 (0.2) 7 (0.0) 7 (0.8) 7 (0.7)
pMDOT 0 (2.6) 0 (3.0) 0 (3.2) 0 (8.6) 0 (14.4) 0 (15.5)

sMDOT(k=1) 15 (0.3) 15 (0.2) 15 (0.2) 16 (0.7) 16 (0.8) 16 (0.8)
sMDOT(k=3) 96 (1.1) 118 (1.1) 161 (1.2) 124 (3.6) 147 (5.0) 169 (5.1)
sMDOT(k=5) 0.8 229 (1.5) 284 (1.4) 432 (1.5) 267 (6.6) 340 (6.8) 408 (6.9)

iMDOT 15 (0.3) 15 (0.3) 15 (0.3) 16 (0.0) 16 (0.8) 16 (0.8)
pMDOT 0 (2.4) 0 (3.1) 7 (3.3) 0 (10.9) 0 (10.7) 0 (11.4)

sMDOT(k=1) 16 (0.3) 16 (0.3) 16 (0.3) 20 (0.7) 20 (0.8) 20 (0.8)
sMDOT(k=3) 130 (1.0) 164 (1.1) 260 (1.1) 137 (4.3) 172 (4.2) 217 (4.3)
sMDOT(k=5) 0.7 312 (1.4) 410 (1.4) 713 (1.7) 297 (6.7) 415 (6.3) 541 (7.8)

iMDOT 16 (0.3) 16 (0.3) 16 (0.3) 20 (1.3) 20 (1.3) 20 (0.8)
pMDOT 0 (2.7) 0 (3.0) 56 (3.2) 18 (8.6) 18 (10.5) 18 (14.6)

closed 8,925 21,605 65,933 2,974 9,108 20,320
0-free 9,148 22,387 70,665 3,046 9,386 21,254
3-free 5,868 12,677 30,985 1,872 5,008 10,511
5-free 5,005 10,417 22,547 1,535 4,061 8,321

tree ar 0.9 9,468 19,527 43,091 5,336 14,619 27,147
tree ar 0.8 15,787 35,184 89,311 7,080 20,748 40,906
tree ar 0.7 21,716 51,781 147,129 9,105 27,126 54,422

* Numbers in parentheses are execution time in second.

Table 3. Experimental Results for Real Datasets: Number of Extracted Patterns

Glycan CSLOGS
hc σ = 30 σ = 20 σ = 10 σ = 150 σ = 125 σ = 100

sMDOT(k=1) 0 (0.2) 0 (0.2) 1 (0.2) 1 (1.3) 1 (0.9) 1 (1.0)
sMDOT(k=3) 1 (0.4) 1 (0.4) 3 (0.5) 108 (4.0) 139 (4.7) 192 (5.8)
sMDOT(k=5) 0.9 2 (0.5) 3 (0.6) 5 (0.7) 385 (4.3) 453 (5.3) 828 (6.0)

iMDOT 0 (0.2) 0 (0.2) 1 (0.2) 1 (0.8) 1 (0.9) 1 (1.4)
pMDOT 3 (0.5) 7 (0.6) 13 (0.7) 148 (4.3) 340 (4.8) 1,646 (6.7)

sMDOT(k=1) 2 (0.2) 3 (0.2) 4 (0.3) 5 (0.9) 5 (1.3) 6 (1.4)
sMDOT(k=3) 6 (0.4) 7 (0.4) 10 (0.5) 229 (4.2) 300 (5.0) 491 (5.8)
sMDOT(k=5) 0.8 7 (0.5) 14 (0.5) 25 (0.6) 774 (4.3) 1,261 (5.1) 4,894 (6.0)

iMDOT 2 (0.2) 3 (0.2) 4 (0.3) 6 (1.0) 6 (1.3) 7 (1.5)
pMDOT 4 (0.5) 15 (0.6) 23 (0.7) 266 (4.3) 931 (5.1) 7,925 (10.1)

sMDOT(k=1) 2 (0.2) 3 (0.3) 4 (0.3) 19 (0.9) 19 (1.4) 22 (1.4)
sMDOT(k=3) 18 (0.4) 20 (0.4) 32 (0.5) 521 (4.1) 672 (5.0) 1,302 (5.9)
sMDOT(k=5) 0.7 24 (0.5) 42 (0.6) 71 (0.7) 1,532 (4.3) 4,764 (5.1) 15,221 (6.8)

iMDOT 3 (0.3) 4 (0.2) 5 (0.2) 24 (1.3) 24 (1.4) 27 (1.0)
pMDOT 21 (0.5) 35 (0.5) 74 (0.7) 524 (4.2) 2,355 (5.4) 76,167 (64.8)

closed 2,073 2,709 4,532 1,717 2,527 4,282
0-free 2,091 2,769 4,753 1,724 2,540 4,439
3-free 1,478 1,904 2,966 1,661 2,412 3,884
5-free 1,307 1,677 2,517 1,602 2,295 3,534

tree ar 0.9 2,650 2,910 3,480 267 637 2,918
tree ar 0.8 5,283 5,874 7,255 608 1,441 6,661
tree ar 0.7 7,599 8,610 11,016 1,031 2,375 10,407

* Numbers in parentheses are execution time in second.

To assess the difference of the kinds of MDOT, we show the numbers of subtrees
which are extracted as each kinds of MDOT only in Table 4. It is understood
that different subtrees have been discovered in sMDOT and pMDOT. These results

Mining Mutually Dependent Ordered Subtrees in Tree Databases 85

Table 4. Number of Uniquely Extracted Patterns

Glycan CSLOGS
hc σ = 30 σ = 20 σ = 10 σ = 150 σ = 120 σ = 100

sMDOT(k=3) 0 (0.00) 0 (0.00) 2 (0.67) 95 (0.88) 122 (0.88) 170 (0.89)
sMDOT(k=5) 0.9 2 (1.00) 3 (1.00) 4 (0.80) 325 (0.84) 388 (0.86) 715 (0.86)

iMDOT 0 (–) 0 (–) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
pMDOT 2 (0.67) 6 (0.86) 11 (0.85) 84 (0.57) 269 (0.79) 1,525 (0.93)

sMDOT(k=3) 5 (0.83) 6 (0.86) 9 (0.90) 154 (0.67) 205 (0.68) 308 (0.63)
sMDOT(k=5) 0.8 7 (1.00) 14 (1.00) 24 (0.96) 602 (0.78) 970 (0.77) 3,699 (0.76)

iMDOT 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
pMDOT 3 (0.75) 14 (0.93) 21 (0.91) 83 (0.31) 621 (0.67) 6,740 (0.85)

sMDOT(k=3) 16 (0.89) 18 (0.90) 29 (0.91) 213 (0.41) 280 (0.42) 535 (0.41)
sMDOT(k=5) 0.7 20 (0.83) 37 (0.88) 62 (0.87) 1,025 (0.67) 3,310 (0.69) 10,344 (0.68)

iMDOT 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.04) 1 (0.04) 1 (0.04)
pMDOT 14 (0.67) 27 (0.77) 61 (0.82) 71 (0.14) 969 (0.41) 71,498 (0.94)

* Numbers in parentheses are ratios of patterns extracted as unique pattern.

mean that the patterns which are extracted will greatly depend on the building
blocks employed. In addition, these results show that it may be possible to
extract more reasonable patterns by considering appropriate size and shape of
building blocks which are suitable for the application domains.

5 Conclusion

In this paper, we formulate the problems of mining mutually dependent ordered
subtrees. To solve these problems efficiently, we developed the breadth-first min-
ing algorithms based on an existing frequent subtree miner. Through the ex-
periments, compared to the condensed representation mining, we show that the
proposed algorithms can discover small number of patterns within reasonable
computational time.

For future work, (1)a theoretical analysis of the proposed framework, (2)de-
tailed examinations of the quality of obtained subtrees and (3)further experi-
ments with large scale real world datasets are necessary. We also plan to apply
the proposed framework to mining more complex structured data such as un-
ordered tree and graphs.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proc. of 20th International Conference on Very Large Data Bases
(VLDB 1994), pp. 487–499 (1994)

2. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient
substructure discovery from large semi-structured data. In: Proc. of the 2nd SIAM
International Conference on Data Mining (2002)

3. Asai, T., Arimura, H., Uno, T., Nakano, S.: Discovering frequent substructures in
large unordered trees. In: Proc. of the 6th International Conference on Discovery
Science, pp. 47–61 (2003)

86 T. Ozaki and T. Ohkawa

4. Chi, Y., Nijssen, S., Muntz, R.R., Kok, J.N.: Frequent subtree mining – an
overview. Fundamenta Informaticae 66(1-2), 161–198 (2005)

5. Chi, Y., Xia, Y., Yang, Y., Muntz, R.R.: Mining closed and maximal frequent
subtrees from databases of labeled rooted trees. IEEE Transactions on Knowledge
and Data Engineering 17(2), 190–202 (2005)

6. Hido, S., Kawano, H.: Amiot: Induced ordered tree mining in tree-structured
databases. In: Proc. of the 5th IEEE International Conference on Data Mining
(ICDM 2005), pp. 170–177 (2005)

7. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., Hattori, M.: The KEGG re-
source for deciphering the genome. Nucleic Acids Research 32, D277–D280 (2004)

8. Ozaki, T., Ohkawa, T.: Efficient mining of closed induced ordered subtrees in tree-
structured databases. In: Proc. of the 6th IEEE International Conference on Data
Mining - Workshops, pp. 279–283 (2006)

9. Ozaki, T., Ohkawa, T.: Efficiently mining closed constrained frequent ordered sub-
trees by using border information. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD
2007. LNCS, vol. 4426, pp. 745–752. Springer, Heidelberg (2007)

10. Ozaki, T., Ohkawa, T.: Mining frequent δ-free induced ordered subtrees in tree-
structured databases. In: Proc. of the 5th Workshop on Learning with Logics and
Logics for Learning (LLLL 2007), pp. 3–9 (2007)

11. Xiong, H., Tan, P.-N., Kumar, V.: Mining strong affinity association patterns in
data sets with skewed support distribution. In: Proc. of the 3rd IEEE International
Conference on Data Mining (ICDM 2003), pp. 387–394 (2003)

12. Xiong, H., Tan, P.-N., Kumar, V.: Hyperclique pattern discovery. Data Mining and
Knowledge Discovery 13(2), 219–242 (2006)

13. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proc. of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
71–80 (2002)

14. Zaki, M.J.: Efficiently mining frequent embedded unordered trees. Fundamenta
Informaticae, special issue on Advances in Mining Graphs, Trees and Sequences
(2005)

15. Zou, L., Lu, Y., Zhang, H., Hu, R.: Mining frequent induced subtree patterns with
subtree-constraint. In: Proc. of the 6th IEEE International Conference on Data
Mining - Workshops, pp. 3–7 (2006)

A Tree Distance Function Based on Multi-sets

Arnoldo José Müller-Molina, Kouichi Hirata, and Takeshi Shinohara

Department of Artificial Intelligence, Kyushu Institute of Technology
Kawazu 680-4 Iizuka 820-8502, Japan
arnoldo@daisy.ai.kyutech.ac.jp,
{hirata,shino}@ai.kyutech.ac.jp

Abstract. We introduce a tree distance function based on multi-sets.
We show that this function is a metric on tree spaces, and we design
an algorithm to compute the distance between trees of size at most n
in O(n2) time and O(n) space. Contrary to other tree distance func-
tions that require expensive memory allocations to maintain dynamic
programming tables of forests, our function can be implemented over
simple and static structures. Additionally, we present a case study in
which we compare our function with other two distance functions.

Keywords: Tree edit distance, Program matching, Triangle inequality,
Metric.

1 Introduction

Analysis of tree structured data is required in many fields [6, 9, 18]. Our re-
search group is particularly interested in the field of approximate binary pro-
gram matching for the detection of Open Source/Libre software license violations
[11, 12]. A recent technique in this field works by generating fragments, that are
regarded as trees, from control flow graphs. By means of a tree distance function,
the similarity of two programs can be computed. We are interested in distance
functions that satisfy the triangle inequality. If this property is satisfied, then
we can employ dimension reduction techniques like SMAP [14], and therefore
matching speed on massive databases improves considerably. Additionally, it is
desirable that the distance function is a metric. Specifically, it is necessary for
the distance function to satisfy the property: d(x, y) = 0 if and only if x = y. If
this property is satisfied, the matching of programs is “safer” and false positives
are reduced.

An overview of current literature [2] presents a tree edit distance function
and several variants. To compute every distance function that is metric in [2],
it is necessary at least O(n2) time where n is the maximum number of nodes in
two given trees. In this paper, we propose a new tree distance function based
on multi-sets that is simple to compute, and that does not require dynamic pro-
gramming or intensive memory allocations. The main contribution of this paper
is to introduce a metric for rooted ordered labeled trees that can be computed
in O(n2) time and O(n) space. We denote this metric as mtd. The rest of the

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 87–98, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

88 A.J. Müller-Molina, K. Hirata, and T. Shinohara

paper is organized as follows. Section 2 introduces related works. In Section 3,
the proposed distance mtd is described and in Section 4, a naive algorithm to
compute mtd is presented. Finally in Section 5, we present a case study.

2 Related Works

The generally accepted similarity measure for trees is the tree-edit distance met-
ric (ted) introduced by Tai[15] in 1979. Klein[10] proposed an O(n3 log(n)) al-
gorithm to compute ted. This problem is known to be NP-hard for unordered
trees[19]. Currently, the fastest algorithm for ordered trees is O(n3)[5].

Chawathe et al.[3] introduced an approach in which the set of edit operations
is extended. This distance is NP-complete, and the fastest heuristic runs in O(n3)
time. A different variation [4] is linear, however it is not clear if these similarity
functions are metrics nor if they satisfy the triangle inequality.

The tree alignment distance introduced by Jiang et al.[7] is not a metric. Fi-
nally, the fastest metric that we are aware of is the constrained edit distance[17],
with time O(n2) and space O(n log(n)). The distance functions described above
can be seen as an edit script minimization problem. On the other hand, functions
based on q-grams [1, 13, 16] are a vector feature distance minimization. These
functions have linear complexity, but they are not metrics.

2.1 Approximate Program Matching

The function presented in this paper, is intended to be used in the context of
approximate binary program matching field. Müller-Molina and Shinohara in-
troduced a technique based on extracting program fragments [11] from binary
programs. A program fragment is a tree whose nodes are machine-level instruc-
tion codes. They are extracted from program control flow graphs. By analyzing
the frequency distribution of the fragments, it is possible to employ “standard”
information retrieval techniques to rank programs by similarity. The technique
also uses tree distance functions to find similar pairs of program fragments. In
this way, even if fragment normalization rules fail, the distance function can com-
pensate for differences introduced by a program transformation. This process is
analogous to the stemming process web information retrieval engines apply to
each word of a natural language query. The distance introduced in this paper has
been employed successfully in this context, but its properties were not studied
formally.

3 Tree Similarity Distance

A tree is a connected graph without cycles. For a tree T = (V, E), we sometimes
denote v ∈ T instead of v ∈ V , and |T | instead of |V |. A rooted tree is a tree
with one node r chosen as its root .

Let r be a root of T and v a node in T . Then, the parent of v(�= r) is its
adjacent node in a path from v to r in T , and the ancestors of v(�= r) are the

A Tree Distance Function Based on Multi-sets 89

nodes contained in a path from the parent of v to r in T . The parent and the
ancestors of the root r are undefined. We say that u is a child of v if v is the
parent of u, and u is a descendant of v if v is an ancestor of u. A leaf is a node
having no children. Furthermore, a complete subtree of T at v is a subtree of T
of which its root is v and that contains all descendants of v.

A rooted tree T = (V, E) is labeled (by an alphabet Σ of labels) if there exists
an onto function l : V → Σ such that l(v) = a (v ∈ V, a ∈ Σ). A tree is ordered
if a left-to-right order for the children of each node is given; unordered otherwise.
In this paper, we call a rooted labeled ordered tree simply by a tree.

Next, we introduce the notions of multi-sets. Intuitively, a multi-set is a set
that allows an element to occur more than once. The multiplicity mA(x) of an
element x in a multi-set A is the number of the occurrences of x in A. For a
(standard) set A, it holds that mA(x) = 1 for every x ∈ A. It is clear that x �∈ A
if mA(x) = 0. The set view v(A) of a multi-set A is a set {x ∈ A | mA(x) ≥ 1}.
For example, for a multi-set A = {a, a, a, b, c, c}, it holds that v(A) = {a, b, c}.
Additionally, the cardinality |A| of a multi-set A is defined as

∑
x∈v(A) mA(x).

We now introduce the multi-set operations. Let A and B be multi-sets. Then,
the intersection A � B, the union A � B and the additive union A � B of A and
B are defined as follows.

A � B = {x ∈ v(A) ∩ v(B) | mA�B(x) = min{mA(x), mB(x)}},
A � B = {x ∈ v(A) ∪ v(B) | mA�B(x) = max{mA(x), mB(x)}},
A � B = {x ∈ v(A) ∪ v(B) | mA�B(x) = mA(x) + mB(x)}.

For example, let A = {a, a, b, c, c} and B = {a, b, b, c}. Then, it holds that
A � B = {a, b, c}, A � B = {a, a, b, b, c, c} and A � B = {a, a, a, b, b, b, c, c, c}.

Based on the previous operations, we define a similarity measure for multi-
sets:

δ(A, B) = |A � B| − |A � B|. (1)

Finally, we introduce the function s(T) which is the multi-set of all complete
subtrees of T . For example, in Figure 1 the tree C(B) is not a complete subtree of
T1, but C(B, E) is a complete subtree of T1. The function n(T), is the multi-set
of all the nodes of T .

3.1 Distance Definition

The first step to calculate our similarity function is to convert a tree into two
multi-sets, one multi-set of complete subtrees and another multi-set that contains
all the nodes (without children) of the tree. This can be achieved by invoking
functions s and n. Once the multi-sets of the trees have been generated, the
function mtd can be computed. The function mtd is defined as:

ds(T1, T2) = δ(s(T1), s(T2)), (2)

dn(T1, T2) = δ(n(T1), n(T2)), (3)

mtd(T1, T2) =
ds(T1, T2) + dn(T1, T2)

2
. (4)

90 A.J. Müller-Molina, K. Hirata, and T. Shinohara

The mtd function is composed of two different distance operations: ds and
dn. The first function ds is a measure based on the number of equal complete
subtrees between T1 and T2. Note that a change of only one leaf node can
have multiple repercussions in all its parents. In general, this measure is very
sensitive to changes and quickly the intersection s(T1) � s(T2) becomes void.
Nevertheless, an important reason to have this intersection is that it makes sure
that mtd(T1, T2) = 0 iff T1 = T2. Additionally, trees that share many common
complete subtrees will receive a high score.

The second function dn is a measure that is likely to find matches since only
individual nodes are considered. Note that dn is Kailing’s distance based on the
label histogram [8]. Using only this measure would make trees very similar to
each other, however it is necessary to balance the strictness of ds.

To summarize, the intuitive idea of our matching procedure is that a very
strict matching (ds) combined with a permissive matching (dn) brings a balance
to the scoring technique. In the context of binary program matching, we have
found that both mtd and ds return acceptable results. Function mtd produces
slightly better results than ds.

Note that mtd always returns a natural number. Precisely, we have the fol-
lowing proposition:

Proposition 1. ds(T1, T2) + dn(T1, T2) is even for any trees T1 and T2.

Proof. For multi-sets A and B, since |A � B| + |A � B| = |A � B| , it holds that
|A � B| − |A � B| = |A � B| − 2|A � B|. Then, for multi-sets s(Ti), and n(Ti)
(i = 1, 2), the following equation holds:

|s(T1) � s(T2)| − |s(T1) � s(T2)| + |n(T1) � n(T2)| − |n(T1) � n(T2)| (5)

= |s(T1) � s(T2)| − 2|s(T1) � s(T2)| + |n(T1) � n(T2)| − 2|n(T1) � n(T2)| (6)

Since |s(Ti)| = |n(Ti)|, let |n(Ti)| = |s(Ti)| = ki. Hence, we can obtain the
following even expression:

2k1 + 2k2 − 2|s(T1) � s(T2)| − 2|n(T1) � n(T2)|. (7)

��
In what follows, we give some examples of mtd.

In Figure 1 three examples are displayed. In the first example, mtd(T1, T2),
returns 2 because it does not consider in which place a complete subtree is found
(multi-sets do not record the position of the subtrees). The function ted(T1, T3)
returned 2 because “C” is deleted, and a new “C” node is inserted over the two
“B” nodes.

In the second example, mtd(T1, T3) is calculating the distance of two node
renaming operations. The result is again the same for ted(T1, T3). In the third
example, mtd(T4, T5) returns 5 because all of the complete subtrees of T4 except
“E” and “F” are not in T5. The deeper the modification is, the greater the
distance will be. In the context of binary program matching[12] this behavior
is desirable because changes in the deepest part of an expression are likely to

A Tree Distance Function Based on Multi-sets 91

T1 T2 T3 T4 T5

A

B C

B E

A

C

B B

E

A

E C

B B

A

B

F C

D E

A

B

F C

G E

s(T1) = {A(B, C(B, E)), B, C(B, E), B, E} n(T1) = {A, B, C, B, E}
s(T2) = {A(C(B, B), E), C(B, B), B, B, E} n(T2) = {A, C, B, B, E}
s(T3) = {A(E, C(B, B)), E, C(B, B), B, B} n(T3) = {A, E, C, B, B}
s(T4) = {A(B(F, C(D, E))), B(F, C(D, E)), F, C(D, E), D, E} n(T4) = {A, B, F, C, D, E}
s(T5) = {A(B(F, C(G, E))), B(F, C(G, E)), F, C(G, E), G, E} n(T5) = {A, B, F, C, G, E}

|s(T1) � s(T2)| = 3 |s(T1) � s(T3)| = 3 |s(T4) � s(T5)| = 2
|n(T1) � n(T2)| = 5 |n(T1) � n(T3)| = 5 |n(T4) � n(T5)| = 5

mtd(T1, T2) = (7−3)+(5−5)
2 = 2 ted(T1, T2) = 2

mtd(T1, T3) = (7−3)+(5−5)
2 = 2 ted(T1, T3) = 2

mtd(T4, T5) = (10−2)+(7−5)
2 = 5 ted(T4, T5) = 1

Fig. 1. This example calculates mtd(T1, T2), mtd(T1, T3), and mtd(T4, T5). T1 and
T2 illustrate the cost of complete subtree movement. T1 and T3, illustrate two label
modification operations. T3 and T4 depict the cost of one node modified at deep levels
of the tree.

change more drastically the “meaning” of the expression than changes in upper
layers of the expression.

In Figure 2, an example in which mtd returns a smaller value than ted is
shown. In this case, mtd(T1, T2) returns a smaller distance than ted(T1, T2) be-
cause swapped nodes (rooted in “C” and “D”) were children of a node whose
label was modified. Because the algorithm does not differentiate when the root
node and the children are modified, the score is lower. The function ted(T1, T2)
returns 3 because “A” is renamed by “H”, “D” is deleted, and finally, “D” is
inserted to the left of “C”.

Proposition 2. For any trees T1, T2 and T3, the following statements hold:

1. mtd(T1, T2) ≥ 0 non-negativity
2. mtd(T1, T2) = mtd(T1, T2) symmetry
3. mtd(T1, T2) = 0 ⇐⇒ T1 = T2 identity of indiscernibles
4. mtd(T1, T3) ≤ mtd(T1, T2) + mtd(T2, T3) triangle inequality

Proof. Properties 1 and 2 are obvious. Property 3 can be deduced from the fact
that T1 and T2 are returned by the ds function. If there is any change between
the trees, the original tree will not be matched in the intersection operation and
a distance greater than zero will be computed.

We now prove property 4. It is sufficient to prove that δ satisfies the triangle
inequality, δ(A, C) ≤ δ(A, B) + δ(B, C).

92 A.J. Müller-Molina, K. Hirata, and T. Shinohara

T1 T2

A

B C

E F

G

D

H

B D C

E F

G

s(T1) = {A(B, C(E, F (G)), D), B, C(E, F (G)), E, F (G), G, D} n(T1) = {A, B, C, E, F, G, D}
s(T2) = {H(B, D, C(E, F (G))), B, D, C(E, F (G)), E, F (G), G} n(T2) = {H, B, D, C, E, F, G}

|s(T1) � s(T2)| = 6 |n(T1) � n(T2)| = 6
mtd(T1, T2) = (8−6)+(8−6)

2 = 2 ted(T1, T2) = 3

Fig. 2. In this example, mtd returns a smaller distance than ted

The function δ(A, B) can be rewritten as:

δ(A, B) =
∑

x∈v(A)∪v(B)

|mA(x) − mB(x)|. (8)

Since:

|mA(x) − mC(x)| ≤ |mA(x) − mB(x)| + |mB(x) − mC(x)|, (9)

the triangle inequality holds. Therefore mtd is a metric on tree spaces. ��

4 Naive Algorithm for Computing mtd

In what follows, we describe a naive algorithm for computing δ and mtd. Once δ
is obtained, mtd can be computed easily. In lines 3 to 7 of Algorithm 1, the tree v
is compared against all the trees of size |v| of the multi-set A. This optimization
is necessary to keep the complexity quadratic as we shall see later. The function
δ (lines 12 to 14) calculates the intersection between the multi-sets A and B
by obtaining the minimum of the multiplicity of the common elements. Finally
in line 15, the cardinality of the union of |T1| and |T2| is subtracted from the
cardinality of the intersection of T1 and T2 and the result is returned to the
caller.

We now proceed to analyze the complexity of algorithm mtd. The following
lemma is useful:

Lemma 1. Every tree of size m has at most m
n complete subtrees of size n.

Theorem 1. The distance function mtd(F, G) can be computed in O(|T1|×|T2|)
time and O(|T1| + |T2|) space.

A Tree Distance Function Based on Multi-sets 93

Algorithm 1. δ and m functions implementation
Receives a multi-set an a tree

1: function m(A, v) � Returns mA(v)
2: c← 0 � Multiplicity counter
3: for m ∈ A such that |v| = |m| do � Only compare trees of size |v|.
4: if m = v then
5: c← c + 1
6: end if
7: end for
8: return c
9: end function

Receives two multi-sets
v(x) receives a multi-set x and returns a set “view” of x.

10: function δ(A,B) � Returns δ(A,B)
11: c← 0 � Intersection counter
12: for v ∈ v(A) do
13: c← c + min(mA(v), mB(v))
14: end for
15: return |A �B| − c
16: end function

Proof. It is necessary to consider the cost involved in comparing the equality
of two trees. For two trees T1 and T2, it is obvious that checking whether or
not T1 = T2, can be computed in O(|T1|) time. The computation of s and n
can be achieved in linear time. Additionally, the space required by the multi-
sets returned by s and n is linear because it is sufficient to store pointers to
the original trees. Regarding m, we can see in line 3 of Algorithm 1 that for a
complete subtree v ∈ A, the function will only compare complete subtrees of size
|v| in B.

Since dn matches only nodes (trees of size 1), it can be computed in linear time,
therefore we will focus only on ds. Each equality comparison for any complete
subtree v ∈ F will take at most |v| steps, and will be executed at most |T2|

|v| times.
This is because we will only match complete subtrees in F of size |v| (Algorithm
1, line 3) and because Lemma 1 guarantees that |T2| has only |T2|

|v| complete
subtrees of size |v|. Therefore, the multiplicity ms(T2)(v) can be computed in
O(|v| × |T2|

|v|) = O(|T2|) time. Since the multiplicity function m will be called by
δ at most |T1| times, the function mtd(T1, T2) can be computed in O(|T1|× |T2|)
time. Since it is possible to create a multi-set of pointers to the original nodes
of the tree, the space complexity for mtd(T1, T2) is O(|T1| + |T2|). ��

Our current implementation uses hash tables to improve performance. Hash
codes have greater pruning power than the pruning by tree size described above,
however this is not enough to lower the complexity of the algorithm. In the
experiments of section 5, we will see that in practice, our hash-based mtd imple-
mentation matches the performance of a linear q-gram based distance function.

94 A.J. Müller-Molina, K. Hirata, and T. Shinohara

5 Case Study

In this section, we compare our function against BDist [16] and ted [15]. Cur-
rently, we are not able to run ted on our approximate program matching frame-
work1 because of its enormous computational cost. Therefore, our experiments
were executed on real tree data extracted from program fragments[12] but focus
on the distance functions only. The procedure to extract these fragments is de-
tailed in [12]. Our data-set2 includes 244668 trees. The average depth is 4.75, the
average number of nodes is 11.11, and the number of nodes range between 1 to
20 nodes. In the experiment, we randomly selected 1000 trees (queries) from the
data-set and compared them against the rest of the data-set. About 244 million
tree comparisons were performed.

We implemented the ted [5] that can be computed in O(n3) time, BDist[16]
that can be computed in O(n) time, and mtd that has a time complexity of
O(n2). The distance functions were implemented in Java. The source code of the
functions is available under the GPL license3. For the performance benchmarks,
we loaded all the trees into memory and the time is counted after all the trees
have been loaded. The experiments were executed on a Intel(R) Xeon(R) CPU
2.66 GHz with 4 processors. Four threads were created to reduce execution time.
Each thread performs the same job.

Regarding the q-gram function, we used Yang’s BDist function[16]. In this
case, BDist will create |T | grams from a tree T by creating for each node v ∈ T , a
triple of the left child of v, v, and the right sibling of v. The original motivation
of the paper was to create a similarity search engine by creating an inverted
file of each q-gram. In this paper we simply calculated BDist in a sequential
manner to show the real cost of a linear distance function. By using the similarity
index presented by Yang, better performance results can be achieved for BDist.
Finally, it can be proved that BDist(T1, T2) ≤ 5 × ted(T1, T2)[16].

Distance Evaluation

In Figure 3, we show the distribution of data according to distances between
data and queries. In the y axis, the percentage of calculations that returned
the distance shown in the x axis is displayed. We can see that all the functions
maintain a similar, normal distribution.

In Figures 4(a) and 4(b), we compare respectively, how mtd and BDist vary
from the result returned by ted. For mtd, the mean and standard deviation are
closer than BDist. Additionally, maximum values for mtd tend to be smaller
than for BDist. On the other hand, Bdist’s minimum values seem to be closer
to ted. When BDist is used in its similarity search framework (and when a
range r is provided), additional pruning can be performed by the pre-order and
post-order counts of the node. In this case, BDist cannot satisfy the triangle
inequality and that is why we did not include this pruning. BDist is returning
1 http://www.furiachan.org
2 http://furia-chan.googlecode.com/files/trees1-20.tar.bz2
3 http://furia-chan.googlecode.com/files/mtd-1.tar.bz2

http://www.furiachan.org
http://furia-chan.googlecode.com/files/trees1-20.tar.bz2
http://furia-chan.googlecode.com/files/mtd-1.tar.bz2

A Tree Distance Function Based on Multi-sets 95

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40

%
of

ca
lc

ul
at

io
ns

Distance

Distance Distribution

ted
mtd

BDist

Fig. 3. Distribution of data according to distances between data and queries

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35M
ea

n,
st

d.
de

vi
at

io
n,

m
in

an
d

m
ax

ted distance

Variation of mtd when ted is x

ted avg/std dev.

(a) mtd

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35M
ea

n,
st

d.
de

vi
at

io
n,

m
in

an
d

m
ax

ted distance

Variation of Bdist when ted is x

ted avg/std dev.

(b) BDist

Fig. 4. Variation of mtd and BDist with respect to the result x of ted

bigger results than mtd because subtree movements return lower values than
for BDist as siblings are not taken into account. For example in Figure 2, the
distance returned by BDist is 8 for T1 and T2. Since the shape of the distribution
and the overall distance results are closer to ted, we can conclude that mtd
performs better than BDist.

In Figures 5(a) and 5(b), we compare how ds and dn vary from the result
returned by ted. We can see how ds has bigger maximum values than mtd
(Figure 4(a)). On the other hand, dn has smaller minimum values than mtd
or ds. Finally, we can see that mtd’s minimum and maximum range is improved
by the combination of ds and dn. The mean and standard deviation for mtd is

96 A.J. Müller-Molina, K. Hirata, and T. Shinohara

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35M
ea

n,
st

d.
de

vi
at

io
n,

m
in

an
d

m
ax

ted distance

Variation of ds when ted is x

ted avg/std dev.

(a) ds

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35M
ea

n,
st

d.
de

vi
at

io
n,

m
in

an
d

m
ax

ted distance

Variation of dn when ted is x

ted avg/std dev.

(b) dn

Fig. 5. Variation of ds and dn with respect to the result x of ted

centered between ds and dn. If we base our comparison on ted, the use of dn is
justified. It is interesting to see that the closest function to ted when considering
only the standard deviation is dn.

Benchmarks

For the same experiment described at the beginning of the section, we recorded
the execution time for ted, BDist and mtd. The function ted took about 85
hours to complete, BDist took 8 minutes, and mtd took 7.4 minutes. The small
difference between BDist and mtd might be related to the hash function being
called more times in BDist than in mtd. On the other hand, mtd was imple-
mented recursively and there is much room for improvement. One of the reasons
ted is performing so poorly is that for each distance computation, many objects
are being created (dynamic programming table objects and forests created and
destroyed during the search). On the contrary, mtd and BDist only have to
access some static structures that are computed once during the lifetime of a
tree. From the benchmarking results, can see how the actual performance of our
function seems to be on par with a linear q-gram distance function.

6 Conclusions and Future Work

We have introduced a tree distance function that is based on multi-sets. When
compared to ted, our function is more sensitive to changes. This is in general an
undesirable property, however the performance gains are considerable enough to
make it a worthwhile candidate for matching trees. Our function is fast because
it can perform matchings without resorting to expensive dynamic programming
table memory allocations. Our hash table based implementation achieved similar

A Tree Distance Function Based on Multi-sets 97

performance than BDist[16], a q-gram based function that runs in time O(n).
Our distance function also has the added property of being a metric.

Regarding future works, because mtd is faster than ted, it can be employed
by techniques like SMAP [14] to find a subset of the data suitable for pivoting.
From that subset, a set of pivots based on ted could be computed. Finally, we
would like to study the effect of adding N-grams greater than 1 to function n.

References

[1] Augsten, N., Bhlen, M., Gamper, J.: Approximate matching of hierarchical data
using pq-grams. In: VLDB 2005, pp. 301–312 (2005)

[2] Bille, P.: A survey on tree edit distance and related problems. Theoretical Com-
puter Science 337(1-3), 217–239 (2005)

[3] Chawathe, S.S., Garcia-Molina, H.: Meaningful change detection in structured
data. SIGMOD Rec. 26(2), 26–37 (1997)

[4] Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection
in hierarchically structured information. SIGMOD Rec. 25(2), 493–504 (1996)

[5] Demaine, E., Mosez, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 146–157. Springer, Heidelberg (2007)

[6] Garofalakis, M., Kumar, A.: Xml stream processing using tree-edit distance em-
beddings. ACM Trans. Database Syst. 30(1), 279–332 (2005)

[7] Jiang, T., Wang, L., Zhang, K.: Alignment of trees - an alternative to tree edit.
Theoretical Computer Science 143(1), 148–157 (1995)

[8] Kailing, K., Kriegel, H.-P., Schönauer, S., Seidl, T.: Efficient similarity search
for hierarchical data in large databases. In: Bertino, E., Christodoulakis, S., Plex-
ousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT
2004. LNCS, vol. 2992, pp. 676–693. Springer, Heidelberg (2004)

[9] Klein, P., Tirthapura, S., Sharvit, D., Kimia, B.: A tree-edit-distance algorithm
for comparing simple, closed shapes. In: SODA 2000, Philadelphia, USA. Society
for Industrial and Applied Mathematics, pp. 696–704 (2000)

[10] Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In:
Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS,
vol. 1461, pp. 91–102. Springer, Heidelberg (1998)

[11] Müller-Molina, A.J., Shinohara, T.: On approximate matching of programs for
protecting libre software. In: CASCON 2006, pp. 275–289. ACM Press, New York
(2006)

[12] Müller-Molina, A.J., Shinohara, T.: Fast approximate matching of programs for
protecting libre/open source software by using spatial indexes. In: SCAM 2007,
pp. 111–122. IEEE Computer Society, Los Alamitos (2007)

[13] Ohkura, N., Hirata, K., Kuboyama, T., Harao, M.: The q-gram distance for or-
dered unlabeled trees. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005.
LNCS (LNAI), vol. 3735, pp. 189–202. Springer, Heidelberg (2005)

[14] Shinohara, T., Ishizaka, H.: On dimension reduction mappings for approximate
retrieval of multi-dimensional data. In: Arikawa, S., Shinohara, A. (eds.) Progress
in Discovery Science. LNCS, vol. 2281, pp. 224–231. Springer, Heidelberg (2002)

[15] Tai, K.-C.: The tree-to-tree correction problem. JACM 26(3), 422–433 (1979)
[16] Yang, R., Kalnis, P., Tung, A.K.H.: Similarity evaluation on tree-structured data.

In: SIGMOD 2005, pp. 754–765 (2005)

98 A.J. Müller-Molina, K. Hirata, and T. Shinohara

[17] Zhang, K.: Algorithms for the constrained editing distance between ordered la-
beled trees and related problems. Pattern Recognition 28(3), 463–474 (1995)

[18] Zhang, K.: Computing similarity between rna secondary structures. In: INTSYS
1998, pp. 126–132 (1998)

[19] Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered
labeled trees. Information Processing Letters 42(3), 133–139 (1992)

Sibling Distance for Rooted Labeled Trees�

Taku Aratsu1, Kouichi Hirata2, and Tetsuji Kuboyama3

1 Graduate School of Computer Science and Systems Engineering
2 Department of Artificial Intelligence

Kyushu Institute of Technology
Kawazu 680-4, Iizuka 820-8502, Japan

{aratsu,hirata}@dumbo.ai.kyutech.ac.jp
3 Computer Center, Gakushuin University

Mejiro 1-5-1, Toshima, Tokyo 171-8588, Japan
kuboyama@gakushuin.ac.jp

Abstract. In this paper, we introduce a sibling distance δs for rooted la-
beled trees as an L1-distance between their sibling histograms, which con-
sist of the frequencies of every pair of the label of a node and the sequence
of labels of its children. Then, we show that δs gives a constant factor
lower bound on the tree edit distance δ such that δs(T1, T2) ≤ 4δ(T1, T2).
Next, we design the algorithm to compute the sibling histogram in O(n)
time for ordered trees and in O(gn) time for unordered trees, where n
and g are the number of nodes and the degree of a tree. Finally, we give
experimental results by applying the sibling distance to glycan data.

1 Introduction

It is one of the important tasks for data mining from tree-structured data such as
HTML and XML data in web mining or DNA and glycan data in bioinformatics
to introduce a similarity measure between two rooted labeled trees (trees , for
short), and compare them based on the similarity measure. Here, a tree is ordered
if a left-to-right order for the children of each node is given; unordered otherwise.

We can divide such similarity measures between two trees into two types.
One type is the similarity measure based on the maximization of the size of a
common pattern. In this type, two trees sharing a larger common pattern are
regarded as more similar. The most famous similarity measure of this type is the
tree edit distance [3,12]. While it is a metric, computing the tree edit distance is
not efficient; O(n3) time [4] for ordered trees, where n is the maximum number
of nodes of two trees, and intractable for unordered trees [11,13].

Another type is the similarity measure based on the maximization of the fre-
quencies of common patterns . In this type, two trees sharing a larger number of
common patterns are regarded as more similar. Such a similarity measure is for-
mulated by the leaf histogram, the degree histogram and the label histogram [5],
the frequency of binary branches (through the binary tree representation for
� This work is partially supported by Grand-in-Aid for Scientific Research 17200011,

19300046 and 20500126 from the Ministry of Education, Culture, Sports, Science
and Technology, Japan.

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 99–110, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

100 T. Aratsu, K. Hirata, and T. Kuboyama

ordered trees) [10], the q-gram [7,8], the bifoliate q-gram [6], or the pq-gram [2].
While none of them is a metric, we can compute all of them by traversing a
single tree just once, which implies more efficient computing. Furthermore, some
of them give constant factor lower bounds on the tree edit distance and can
be applied to unordered trees with preserving efficiency. We summarize such
similarity measures in Figure 1.

In this paper, we introduce a new similarity measure between (both ordered
and unordered) trees based on the maximization of the frequency of common
patterns. First, we introduce a sibling sequence of a node as a pair of the label
of the node and the sequence of labels of its children, and a sibling histogram
as a histogram of the frequencies of sibling sequences for every node. Then, we
formulate a sibling distance δs as an L1-distance between sibling histograms.

Note that δs is a natural extension of the distance based on the degree his-
togram [5], denoted by δd. While δs is not a metric as similar as other similarity
measures based on the maximization of the frequencies of common patterns, we
show that δs gives a constant factor lower bound on the tree edit distance δ such
that δs(T1, T2) ≤ 4δ(T1, T2). In particular, we show that δd(T1, T2) ≤ δs(T1, T2).

Next, by representing a tree as its depth and label sequences based on pos-
torder traversal , we design the algorithm to compute the sibling histogram in
O(n) time for ordered trees and in O(gn) time for unordered trees, where n and
g are the number of nodes and the degree of a tree. Also the algorithm requires
O(dg) space, where d is the depth of a tree. Furthermore, if the number of labels
in a tree is bounded by some constant, then we can reduce the space complexity
O(dg) to O(d) for ordered trees and O(d + g) for unordered trees.

Finally, in order to evaluate that the sibling distance δs is appropriate to
approximate the tree edit distance δ, we give experimental results by computing
the above distances (and δd) for glycan data.

the basis of computation time constant factor
the similarity measure ordered unordered lower bound on δ

tree edit distance O(n3) [4] intractable [11,13] (δ)

leaf histogram [5] O(n) O(n) ≤ δ
degree histogram [5] O(n) O(n) ≤ 3δ
label histogram [5] O(n) O(n) ≤ 2δ
binary branch [10] O(n) not applicable ≤ 5δ (ordered)

q-gram [7,8] O(qln) O(qln) not exist
bifoliate q-gram [6] O(qd min(q, d)ln) O(qd min(q, d)ln) not exist

pq-gram [2] O(pqn) not applicable not exist

sibling histogram O(n) O(gn) ≤ 4δ

Fig. 1. Summary of the similarity measures for trees based on the maximization of the
frequencies of common patterns. Here, n, l, d and g denote the number of nodes, the
number of leaves, the depth and the degree of a tree.

Sibling Distance for Rooted Labeled Trees 101

2 Preliminary

A tree is a connected graph without cycles. For a tree T = (V, E), we sometimes
denote v ∈ T instead of v ∈ V , and |T | instead of |V |. A rooted tree is a tree
with one node r chosen as its root . For each nodes v and u in T , let UPv(u) be
the unique path from v to u in T .

For a root r of T , we call the number of edges in UPr(v) the depth of v (in
T) and denote it by dep(v). In particular, since UPr(r) has no edges, we set
dep(r) = 0. For a tree T , we call max{dep(v) | v ∈ T } the depth of T and
denote it by dep(T). The parent of v(�= r) is its adjacent node on UPr(v). We
say that u is a child of v if v is the parent of u. A leaf is a node having no
children. Two nodes are siblings if they have the same parent. The number of
all children of a node v is called the degree of v and denoted by deg(v). For a
tree T , max{deg(v) | v ∈ T } is called the degree of T and denoted by deg(T).

A rooted tree T = (V, E) is labeled (by an alphabet Σ of labels) if there exists
an onto function l : V → Σ such that l(v) = a (v ∈ V, a ∈ Σ). A tree is ordered if
a left-to-right order for the children of each node is given; unordered otherwise. In
this paper, we call a rooted labeled ordered tree and a rooted labeled unordered
tree a tree and an unordered tree, respectively.

Next, we introduce the tree edit distance [3,4,11,12,13]. Let ε �∈ Σ denote a
special blank symbol and define Σε = Σ ∪ {ε}. We often define a cost function
γ : (Σε × Σε) \ (ε, ε) �→ R on pairs of labels.

Definition 1 (Edit operations for ordered trees). Let T be an ordered la-
beled tree. Then, we call the following tree operations edit operations for ordered
trees . See Figure 2.

1. Substitution: Change the label of the node v in T .
2. Deletion: Delete a non-rooted node v in T with parent v′, making the children

of v become the children of v′. The children are inserted in the place of v as
a subsequence in the left-to-right order of the children of v′.

3. Insertion: The complement of deletion. Insert a node v as a child of v′ in T
making v the parent of a consecutive subsequence of the children of v′.

Here, we represent each edit operation by (l1 �→ l2), where (l1, l2) ∈ (Σε × Σε) \
(ε, ε). The operation is a substitution if l1 �= ε and l2 �= ε, a deletion if l2 = ε,
and an insertion if l1 = ε. Also we extend the notation such that (v �→ w) for
nodes v and w denotes (label (v) �→ label (w)).

For unordered trees, we can define the operations similarly, by replacing a sub-
sequence with a permutation in the deletion and the insertion.

We constrain a cost function γ to be a distance metric. For a cost function γ,
we define the cost of an edit operation by setting γ(l1 �→ l2) = γ(l1, l2). The cost
of a sequence S = s1, . . . , sk of edit operations is given by γ(S) =

∑k
i=1 γ(si).

Then, the tree edit distance δ(T1, T2) between T1 and T2 is defined as follow:

δ(T1, T2) = min
{

γ(S)
∣∣∣∣
S is a sequence of edit operations
transforming from T1 to T2

}
.

102 T. Aratsu, K. Hirata, and T. Kuboyama

Substitution v �→ w

v

�→
w

Deletion v �→ ε

v′

v

�→
v′

Insertion ε �→ v

v′

�→

v′

v

Fig. 2. Edit operations for ordered trees

3 Sibling Distance

In this section, we introduce a sibling sequence and a sibling distance, and show
the several properties of the sibling distance.

Definition 2 (Sibling sequence). Let v be a node in a tree T with label
function l and v1, . . . , vn the sequence of all children of v from left-to-right. We
denote the sequence l(v1) · · · l(vn) of labels by cl(v). Then, a pair 〈l(v), cl(v)〉 is
called a sibling sequence of v. The sibling sequence of a leaf v is 〈l(v), ε〉.
Definition 3 (Sibling histogram and sibling distance). The histogram
for the frequencies of sibling sequences for every node in T is called a sibling
histogram and we denote it by sh(T). Also we call the L1-distance between sh(T1)
and sh(T2) a sibling distance between T1 and T2, and denote it by δs(T1, T2).

In other words, let Σ be an alphabet and g = max{deg(T1), deg(T2)}. Also let
f(T, 〈a, w〉) denote the frequency of a sibling sequence 〈a, w〉 in T , where a ∈ Σ
and w ∈ Σg. Then, the sibling distance between T1 and T2 is defined as follows:

δs(T1, T2) =
∑

a∈Σ,w∈Σg

|f(T1, 〈a, w〉) − f(T2, 〈a, w〉)|.

Example 1. Consider the trees T1 and T2 in Figure 3, where δ(T1, T2) = 3. Then,
we obtain the following sibling histograms sh(T1) and sh(T2) of T1 and T2, where
we omit the case that the frequency is 0.

〈l(v), cl(v)〉 freq.

〈a, bbe〉 1
〈b, cd〉 2
〈c, ε〉 2
〈d, ε〉 2
〈e, ε〉 1

〈l(v), cl(v)〉 freq.

〈a, bcde〉 1
〈b, cdb〉 1
〈b, e〉 1
〈c, ε〉 2
〈d, ε〉 2
〈e, ε〉 2

sh(T1) sh(T2)

Hence, it holds that δs(T1, T2) = 7.

Sibling Distance for Rooted Labeled Trees 103

a

b

c d

b

c d

e

a

b

c d b

e

c d e

T1 T2

Fig. 3. Trees T1 and T2 in Example 1

Proposition 1. The sibling distance δs is a pseudo-metric, that is:

1. δs(T1, T2) ≥ 0 and δs(T1, T1) = 0.
2. δs(T1, T2) = δs(T2, T1).
3. δs(T1, T3) ≤ δs(T1, T2) + δs(T2, T3).

Proof. Since the statements 1 and 2 are obvious, we just show the statement 3.
Let g be max{deg(T1), deg(T2), deg(T3)} and Σ an alphabet of labels in T1, T2
and T3. Then, we obtain the following sequence.

δs(T1, T3) =
∑

a∈Σ,w∈Σg

|f(T1, 〈a, w〉) − f(T3, 〈a, w〉)|

≤
∑

a∈Σ,w∈Σg

|f(T1, 〈a, w〉) − f(T2, 〈a, w〉)|

+
∑

a∈Σ,w∈Σg

|f(T2, 〈a, w〉) − f(T3, 〈a, w〉)|

= δs(T1, T2) + δs(T2, T3). ��

Example 2. Unfortunately, δs is not a metric, that is, there exist two trees T1
and T2 such that δs(T1, T2) = 0 but T1 and T2 are not isomorphic as Figure 4.

a

b a

a

a

a

b a

T1 T2

Fig. 4. Non-isomorphic trees T1 and T2 such that δs(T1, T2) = 0

The sibling distance δs gives a constant factor lower bound on the tree edit
distance δ as follows.

Theorem 1 (Constant factor lower bound on δ). δs(T1, T2) ≤ 4δ(T1, T2).

Proof. Let v be a node in T with the parent v0. It is sufficient to show that the
sibling distance δs changes at most 4 when an edit operation is applied.

(1) Deletion : Let T ′ be a tree obtained by deleting a node v in T . When
transforming from T to T ′, the frequencies of 〈l(v), cl(v)〉 and 〈l(v0), cl(v0)〉 in

104 T. Aratsu, K. Hirata, and T. Kuboyama

T decrease 1, and the frequency of 〈l(v0), cl (v0)〉 in T ′ increases 1. Hence, it
holds that δ(T, T ′) ≤ 3.

(2) Substitution : Let T ′ be a tree obtained by changing the label of a node v in
T from l to l′ such that l(u) = l′(u) if u �= v and l(v) �= l′(v). When transforming
from T to T ′, the frequencies of 〈l(v), cl(v)〉 and 〈l(v0), cl(v0)〉 in T decrease 1,
and the frequencies of 〈l′(v), cl(v)〉 and 〈l′(v0), cl(v0)〉 in T ′ increase 1. Hence, it
holds that δ(T, T ′) ≤ 4. ��

Let D(T, m) be the number of nodes with degree m in T . Then, Kailing’s distance
δd based on the degree histogram [5], called the degree distance in this paper, is
defined as follows:

δd(T1, T2) =
max{deg(T1),deg(T2)}∑

m=0

|D(T1, m) − D(T2, m)|.

It is known that δd(T1, T2) ≤ 3δ(T1, T2) [5]. Furthermore, we can characterize
the relationship between δs and δd as follows.

Theorem 2. δd(T1, T2) ≤ δs(T1, T2).

Proof. Note that |cl(v)| = m if deg(v) = m. Then, for every T and m, it holds
that D(T, m) =

∑

|w|=m

f(T, 〈a, w〉). Hence, the following sequence holds.

|D(T1, m) − D(T2, m)| =

∣∣∣∣∣∣

∑

|w|=m

f(T1, 〈a, w〉) −
∑

|w|=m

f(T2, 〈a, w〉)

∣∣∣∣∣∣
≤

∑

|w|=m

|f(T1, 〈a, w〉) − f(T2, 〈a, w〉)|. ��

Note that the sibling sequence, the sibling histogram and the sibling distance
can be applied to not only ordered trees but also unordered trees, with sorting w
by a lexicographic order on Σ for every sibling sequence 〈a, w〉. Then, Theorem 1
and 2 also hold for unordered trees.

4 Algorithm to Compute a Sibling Histogram

In this section, we design the algorithm to compute sibling histograms. In the
following, for a tree T , we assume that n = |T |, d = dep(T) and g = deg(T).

First note that we can compute the sibling histogram for an ordered tree in
O(gn) time, by traversing every node v in T and then by collecting all of the
labels of children of v. On the other hand, in this section, we design a more
efficient algorithm by using depth and label sequences under postorder traversal.

Let T be a tree with the root v and the children v1, . . . , vm of v. The pos-
torder traversal (postorder , for short) of T is obtained by visiting vi (1 ≤ i ≤ m)
in order, recursively, and then visiting v. Furthermore, suppose that the sequence

Sibling Distance for Rooted Labeled Trees 105

v1 · · · vn is the postorder of T . Then, we formulate the depth sequence D(T) and
the label sequence L(T) of T as follow.

D(T) = dep(v1) · · · dep(vn), L(T) = l(v1) · · · l(vn).

We design the algorithm SibHist in Algorithm 1 to compute a sibling his-
togram from the depth and the label sequences of a given tree. Here, D[i] and
L[i] denotes the i-th element of a depth sequence D and a label sequence L,
that is, D[i] = dep(vi) and L[i] = l(vi). Also SH [l][w] stores the frequency of the
sibling sequence 〈l, w〉. The algorithm SibHist uses an array S of strings with
the size dep(T). If S is an empty array ∅, then we assume that every S[i] is set
to an empty string ε. Furthermore, “·” denotes the concatenation of strings.

procedure SibHist(D,L)
/* D : a depth sequence, L: a label sequence */
S ← ∅; SH ← ∅; /* S: an array of strings, SH [l][w]: the frequency of 〈l, w〉*/1

pd ← 0; /* pd : the depth of the previous node in postorder traversal */2

for i = 1 to |D| do3

if pd = D[i] then4

S[D[i]]← S[D[i]]·L[i]; SH [L[i]][ε]++;5

if pd < D[i] then6

S[D[i]]← L[i]; SH [L[i]][ε]++;7

else8

/* pd > D[i], that is, pd = D[i] + 1 */
SH [L[i]][S[pd]]++; S[pd]← ε; S[D[i]]← S[D[i]]·L[i];9

pd ← D[i];10

return SH ;11

Algorithm 1. SibHist

Example 3. Consider the trees T1 and T2 in Example 1 (Figure 3). Then, the
depth and the label sequences of Ti are given as follows.

D(T1) = 22122110,
L(T1) = cdbcdbea,

D(T2) = 223211110,
L(T2) = cdebbcdea .

The results applying them to the algorithm SibHist are described as Figure 5.

Theorem 3. The algorithm SibHist correctly computes the sibling histogram of
a tree T in O(n) time and in O(dg) space.

Proof. First, we show the correctness of the algorithm SibHist . Remember that
D[i] = dep(vi). For i > 1, it holds that pd = D[i − 1]. Since the depth sequence
is postorder, it holds that pd ≤ D[i] if and only if vi is a leaf.

Consider the case pd = D[i]. Suppose that vj is a parent of vi−1. By postorder,
it is obvious that j > i, so vj does not appear until the i-th iteration in the
algorithm SibHist . Then, it holds that pd = D[i] if and only if vj is a parent of
vi. In this case, for the sibling sequence 〈l(vj), w〉 of vj , w contains the substring

106 T. Aratsu, K. Hirata, and T. Kuboyama

T1

i 1 2 3 4 5 6 7 8
D[i] 2 2 1 2 2 1 1 0
L[i] c d b c d b e a
pd 0 2 2 1 2 2 1 1

pd ◦ D[i] < = > < = > = >
SH 〈c, ε〉 〈d, ε〉 〈b, cd〉 〈c, ε〉 〈d, ε〉 〈b, cd〉 〈e, ε〉 〈a, bbe〉
S[0] ε ε ε ε ε ε ε a
S[1] ε ε b b b bb bbe ε
S[2] c cd ε c cd ε ε ε

T2

i 1 2 3 4 5 6 7 8 9
D[i] 2 2 3 2 1 1 1 1 0
L[i] c d e b b c d e a
pd 0 2 2 3 2 1 1 1 1

pd ◦ D[i] < = < > > = = = <
SH 〈c, ε〉 〈d, ε〉 〈e, ε〉 〈b, e〉 〈b, cdb〉 〈c, ε〉 〈d, ε〉 〈e, ε〉 〈a, bcde〉
S[0] ε ε ε ε ε ε ε ε a
S[1] ε ε ε ε b bc bcd bcde ε
S[2] c cd cd cdb ε ε ε ε ε
S[3] ε ε e ε ε ε ε ε ε

Fig. 5. The results applying T1 and T2 to the algorithm SibHist

l(vi−1)l(vi). Furthermore, since S[D[i]] is corresponding to the substring of w
ends the label l(vi−1), the algorithm SibHist concatenates S[D[i]] to l(vi) and
then increments the frequency of 〈l(vi), ε〉 since vi is a leaf.

Consider the case pd < D[i]. Suppose that vj is a parent of vi, where vj does
not appear in the i-th iteration in the algorithm SibHist . In this case, for the
sibling sequence 〈l(vj), w〉 of vj , w contains the label l(vi) and, in particular,
starts the label l(vi). Then, the algorithm SibHist substitutes l(vi) to S[D[i]],
and then increments the frequency of 〈l(vi), ε〉 since vi is a leaf.

Consider the case pd > D[i]. In this case, it always holds that pd = D[i] + 1,
so vi is a parent of vi−1, and vi−1 is the right-most child of vi. Since S[d] ends
the label l(vi−1) and w is the sequence of siblings of vi, the algorithm SibHist
increments the frequency of 〈l(vi), w〉. Furthermore, it stores the sibling of vi by
concatenating S[D[i]] to l(vi). Hence, the algorithm SibHist runs correctly.

It is obvious that the running time of the algorithm SibHist is O(n). Further-
more, since the size of the array S is d and the size of the element of the array
is at most g, the space complexity of the algorithm SibHist is O(dg). ��

If |Σ| is bounded by some constant k, then we can reduce the space complexity
in the algorithm SibHist by using an integer encode of a string as a k-ary integer
as follows. Suppose that Σ = {a1, . . . , ak}. Then, the integer code âi of a label
ai is defined as âi = i. Also the integer code ŵ of a string w = v1 · · · vn is defined
as ŵ =

∑n
i=1 v̂ik

n−i, where ε̂ = 0 (cf., [9]). For the concatenation w·a of a string
w and a label a in lines 5 and 9, we can compute the integer code ŵ·a as ŵk+ â.
Hence, we can extend Theorem 3 as follows.

Corollary 1. If |Σ| is bounded, then we can compute the sibling histogram of a
tree T in O(n) time and in O(d) space.

Sibling Distance for Rooted Labeled Trees 107

On the other hand, the size O(d) of an array in the algorithm SibHist is tight,
because there exists the tree described in Figure 6 necessary to use the array
with size d.

a

a a

a a

a a

Fig. 6. A tree necessary to use the array in the algorithm SibHist of which size coincides
with the depth of the tree

Next, consider how to compute the sibling histogram for an unordered tree.
By dealing with unordered trees as ordered trees under some order of children,
we can compute a sibling histogram for an unordered tree in O(g(log g)n) time,
by traversing every node v in T and then by collecting all of the labels of children
of v. Here, O(g log g) denotes the time to sort all of the labels of children.

On the other hand, we can design a more efficient algorithm, named as USib-
Hist , as an extension of the algorithm SibHist to unordered trees. First note that
it is necessary for the algorithm USibHist to store an element of S after sorting
lexicographically under a fixed order on an alphabet Σ of labels, which can be
realized as an insertion of a label of the node into an appropriate position. This
process requires O(g) time for every node, so the total time of the algorithm
USibHist is O(gn). As similar as Corollary 1, if |Σ| is bounded, then it is neces-
sary for USibHist to decode an integer code of an element in S when applying
the insertion, so we can reduce the space complexity from O(dg) to O(d + g).

Corollary 2. We can compute the sibling histogram of an unordered tree T in
O(gn) time and in O(dg) space. Furthermore, if |Σ| is bounded, then we can
reduce the space complexity to O(d + g).

5 Experimental Results

In this section, we apply the sibling distance to N-glycan data from KEGG1,
the number of which data is 2151. Then, we compute the sibling distance, the
degree distance and the tree edit distance between every pair of N-glycan data.
Since the difference of the sibling distance between ordered trees and unordered
trees is negligible (about 1%), we deal here with just the latter.

First, we analyze the distributions of the tree edit distance δ (for ordered
trees), the degree distance δd and the sibling distance δs between N-glycan data.
In Figure 7, the x-axis is the distance and the y-axis is the ratio of the number
of pairs of N-glycan data with distance (plotted on the x-axis) to the number of
all pairs of N-glycan data.
1 KEGG: Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg

108 T. Aratsu, K. Hirata, and T. Kuboyama

Fig. 7. The distributions of δ, δd and δs between N-glycan data

Fig. 8. The distributions of δd and δs for δ (upper) and of δs/4δ and δd/3δ (lower)

Figure 7 shows that all of the distributions are nearly normal, and the distri-
bution of δ is located to the right of the distribution of δd and to the left of the
distribution of δs.

Next, we investigate the relationship among δ, δs and δd. Figure 8 (upper)
describes the distributions of δs (left) and δd (right) for δ, respectively, where
the x-axis is the value of δ, and the y-axis is the distance δs (left) and δd (right)
between the pairs of trees with the tree edit distance δ plotted on the x-axis. The
dashed vertical lines represent the ranges from minimum to minimum values, and
the solid vertical lines represent the standard deviations of the mean values.

Sibling Distance for Rooted Labeled Trees 109

Furthermore, we investigate experimentally the constant lower bounds that
δ(T1, T2) ≤ 3δd(T1, T2) [5] and δ(T1, T2) ≤ 4δs(T1, T2) in Theorem 1. Figure 8
(lower) shows the distributions of δs/4δ (left) and δd/3δ (right) for tree edit
distance δ, respectively, where the y-axis is the values of δs/4δ (left) and δd/3δ
(right), and the others are the same as in Figure 8 (upper). The solid horizontal
lines indicate 1/4 (left) and 1/3 (right) corresponding to the tree edit distance.

Figure 8 (upper) shows that the distributions of δs are closer to the values
of δ than ones of δd. In particular, most of distributions of δs are upper than δ,
while all distributions of δd are lower than δ.

On the other hand, Figure 8 (lower) implies that the mean values of δs/4δ
tend to get close to the values of δ when it increases, while the average value of
δd/3δ is always lower than the value of δ. The reason why δs/4δ becomes larger
than δd/3δ for the value of a small value of δ is that the value of δs increases
sensitively by applying all of the edit operations, while the value of δd does not
change when the relabeling is applied.

We can observe in Figure 8 that the ranges for δ ≥ 48 are far from ones for
δ < 48. The number of pairs that δ ≥ 48 is just 6 and such pairs consist of the N-
glycan G03655 (the number of nodes is 34) and one of the N-glycans G04045 (36),
G04206 (37), G09054 (31), G10095 (31), G11846 (38) and G11347 (37). Since all
the nodes in G03655 are labeled with “Mannose” while the other N-glycans in
the pairs contain just 3 nodes with label “Mannose,” the values of δs and δs/4δ
are large. On the other hand, since the difference between degree histograms of
such pairs is not larger than one between the occurrences of labels, the values of
δd and δd/3δ are small.

Hence, we can conclude that the sibling distance δs is more appropriate to
approximate the tree edit distance δ than the degree distance δd for N-glycan
data, in particular, when the value of δ is large.

6 Conclusion

In this paper, we have introduced a sibling distance as the similarity measure for
both ordered and unordered trees. Then, we have shown that it gives a constant
factor lower bound on the tree edit distance, and can be computed efficiently.
Finally, we have given the experimental results that the sibling distance is more
appropriate to approximate the tree edit distance than the degree distance.

It is a future work to compare the sibling distance with other similarity mea-
sures in Figure 1, in particular, the binary branch distance [10]. Also it is a future
work to obtain the experimental advantage of the sibling distance, by applying
it to other tree-structured data.

Since the sibling distance is not a metric, it does not have any upper bound
on the tree edit distance. Recently, Akutsu [1] has given both lower and upper
bounds on the tree edit distance for the string edit distance between Euler strings
of ordered trees , which can be computed in O(n2) time. It is an important future
work to formulate a distance with both lower and upper bounds that can be
computed in nearly O(n) time and applied to both ordered and unordered trees.

110 T. Aratsu, K. Hirata, and T. Kuboyama

References

1. Akutsu, T.: A relationship between edit distance for ordered trees and edit distance
for Euler strings. Inform. Proc. Let. 100, 105–109 (2006)

2. Augsten, N., Böhlen, M., Gamper, J.: Approximate matching of hierarchical data
using pq-grams. In: Proc. VLDB 2005, pp. 301–312 (2005)

3. Bille, P.: A survey on tree edit distance and related problems. Theoret. Comput.
Sci. 337, 217–239 (2005)

4. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 146–157. Springer, Heidelberg (2007)

5. Kailing, K., Kriegel, H.-P., Schönauer, S., Seidl, T.: Efficient similarity search for hi-
erarchical data in large databases. In: Bertino, E., Christodoulakis, S., Plexousakis,
D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004.
LNCS, vol. 2992, pp. 676–693. Springer, Heidelberg (2004)

6. Kuboyama, T., Hirata, K., Aoki-Kinoshita, K.F.: An efficient unordered tree kernel
and its application to glycan classification. In: Washio, T., Suzuki, E., Ting, K.M.,
Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 184–195. Springer,
Heidelberg (2008)

7. Kuboyama, T., Hirata, K., Ohkura, N., Harao, M.: A q-gram based distance mea-
sure for ordered labeled trees. In: Proc. LLLL 2006, pp. 77–83 (2006)

8. Ohkura, N., Hirata, K., Kuboyama, T., Harao, M.: The q-gram distance for ordered
unlabeled trees. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005. LNCS
(LNAI), vol. 3735, pp. 189–202. Springer, Heidelberg (2005)

9. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches.
Theor. Comput. Sci. 92, 191–211 (1993)

10. Yang, R., Kalnis, P., Tung, A.K.H.: Similarity evaluation on tree-structured data.
In: Proc. SIGMOD 2005, pp. 754–765 (2005)

11. Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled
trees. Inform. Process. Let. 49, 249–254 (1994)

12. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput. 18, 1245–1262 (1989)

13. Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered
labeled trees. Inform. Process. Let. 42, 133–139 (1992)

Kernel Functions Based on Derivation

Koichiro Doi and Akihiro Yamamoto

Graduate School of Informatics, Kyoto University,
Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

{doi,akihiro}@i.kyoto-u.ac.jp

Abstract. In this paper we explain the fundamental idea of designing
a class of kernel functions, called the intentional kernel, for structured
data. The intentional kernel is designed with the property that every
structured data is defined by derivation. Derivation means transforming
a data or an expression into another. Typical derivation can be found
in the field of formal language theory: A grammar defines a language
in the sense that a sequence belongs to a language if it is transformed
from a starting symbol by repeated application of the production rules
in the grammar. Another example is in mathematical logic: A formula is
proved if it is obtained from axioms by repeated application of inference
rules. Combining derivation with the kernel-based learning mechanism
derives the class of the intentional kernel.

1 Introduction

Kernel functions are very powerful tool for learning mechanisms that construct
linear separating functions by using dot-products. Support Vector Machine
(SVM) is the most popular in such mechanisms [1,14]. A kernel function is
defined as

K(xi,xj) = φ(xi) · φ(xj),

where φ maps every data x to a point in Rd (d ≤ ∞). The mapping is used
for not only constructing non linear separating function but also treating non-
numerical data, which we call structured data, such as Boolean valued data,
characters, and trees [3]. In the learning mechanism based on dot-products only,
what we need is not the mapping φ itself, but the kernel function K. This is
why kernel functions attract much attention.

Various kernel functions were designed. We have already proposed several
kernel functions for applying SVM to structured data[2,13]. All of them are in
the class that we named the intentional kernel [13]. In this paper we precisely
explain the fundamental idea of designing the class intentional kernel.

The intentional kernel is defined with the property that every structured data
is defined by derivation. Derivation means transforming a data or an expression
into another. Typical derivation can be found in the field of formal language
theory: A grammar defines a language in the sense that every sequence is in
the language if it is obtained from a starting symbol by repeated application of
the grammar. Another example is deduction in mathematical logic: A formula is

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 111–122, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

112 K. Doi and A. Yamamoto

proved if it is obtained from axioms by repeated application of inference rules.
Introducing derivation with the kernel-based learning mechanism derives the
class of the intentional kernel.

Combining logical deduction with Machine Learning is investigated in the field
of Inductive Logic Programming [9,16]. We can find some research of combination
of deduction and kernel functions, and some kernel functions invented in the
research are intentional kernel functions. Our aim of introducing the intentional
kernel is to give a uniform view to combining deduction and kernel-based learning
mechanisms.

The rest of this paper is organized as follows: We propose the definition of the
intentional kernel in Section 2. Section 3 shows instances of the intentional kernel,
and Section 4 shows an intentional kernel for RNA classification. We describe
some complexity analyses for intentional kernel in Section 5, and conclusion in
Section 6.

2 Intentional Maps and Kernel Functions

2.1 An Introductory Example

We explain the fundamental idea of intentional kernel with a simple example,
where we treat sequences of symbols and design a kernel function by using a
context free grammar.

Let us treat sequences consisting of two terminal symbols a and b. When a
context free grammar (CFG) G is given, we define a kernel function KG(x, y) for
x and y ∈ {a, b}∗ as the number of expressions that occur at least one derivation
of x and at least one derivation of y, where an expression means a sequences of
symbols and non-terminal symbols in this section.

We give a concrete example. Suppose that x = aaabbb, y = aababb, and the
production rules of G are

S → SS ,
S → aSb ,
S → ab ,

where S is the only non-terminal symbol in this grammar.
The kernel value KG(aaabbb, aababb) is computed by using the derivations of

aaabbb and aababb from S. A derivation of aaabbb from S is

d1 : S � aSb � aaSbb � aaabbb,

and there is no other one. For aababb there are two derivations from S:

d2 : S � aSb � aSSb � aabSb � aababb,
d3 : S � aSb � aSSb � aSabb � aababb.

Then expressions in {a, b, S}∗ occurring in d1 are

S, aSb, aaSbb, aaabbb,

Kernel Functions Based on Derivation 113

while expressions in d2 or d3 are

S, aSb, aSSb, aabSb, aSabb, aababb.

The expressions common to both of the two lists are S and aSb, and therefore
we define

KG(aaabbb, aababb) = 2.

In order to represent the kernel function KG(x, y) with the dot product for
the two vectors in R∞, we define a mapping φG : {a, b}∗ −→ R∞. At first we
give an injective (one-to-one) function ι : {a, b, S}∗ −→ N which represents each
expression with a “code” of a natural number. With this injection the mapping

φG(x) = (φ1(x), φ2(x), . . .)

is defined as

φι(e)(x) =
{

1 if e occurs in a derivation of x from S, and
0, otherwise.

For example, φι(aSb)(aaabbb) = 1, φι(aSSb)(aaabbb) = 0, and we obtain the prop-
erty that

φG(x) · φG(y) =
∑

e∈{a,b,S}∗

φι(e)(x) · φι(e)(y).

2.2 Formal Definitions

As explained in the previous subsection, an intentional kernel function is designed
by using derivation as characterization of structured data. A derivation of a
structured data is represented in the form of

F0 � F1 � · · · � Fk � x,

where Fi is an expression which represents a set C(F) of data, and Fi � Fj

denotes that Fj is directly derived from Fi. In this paper a set of data is called a
concept . In the case of using a CFG G, an expression of a concept is a finite se-
quence of terminal symbols and non-terminal symbols, and Fj is directly derived
from Fi if Fi = uαw and Fj = uβw for some rule α → β in G.

The key idea of designing the intentional kernel is interpreting every expression
F as a co-ordinate of Rd (d ≤ ∞) . Let U be the set of structured data that we
are treating, F be the set of expressions, and every F in F represent a subset
C(F) of U . In the theory of computational learning, every expression in F is
sometimes called a hypothesis . We assume that different expressions represent
different subsets, that is, the mapping C : F −→ 2U is an injection. We also
assume that every F ∈ F represents a co-ordinate ι(F) of Rd and every co-
ordinate is represented by a unique expression, that is, ι : F −→ N is a bijection.
When a mapping φ : U −→ Rd is represented as

φ(x) = (φ1(x), φ2(x), . . .),

we write φF (x) instead of φι(F)(x).

114 K. Doi and A. Yamamoto

Definition 1. A mapping φ : U −→ Rd is called an intentional mapping if
φF (x) > 0 ⇐⇒ x ∈ C(F). A kernel function K(x, y) (x, y ∈ U) is called an
intentional kernel function if it is defined with the set

E(x, y) = {F ∈ F | x ∈ C(F) and y ∈ C(F)}.

Note that for an intentional mapping, it holds that φF (x) · φF (y) > 0 ⇐⇒ x ∈
C(F) and y ∈ C(F).

For an intentional mapping φ, it is not guaranteed that the series

φ(x) · φ(y) =
∑

F∈F
φF (x) · φF (y)

converges. In order to guarantee the convergence, we need some restriction to φ
or modify the definition of dot product. In designing intentional kernel we define
a restriction by using the concept introduced in the theory of computational
learning.

In computational learning of formal languages, we say that the class C =
{C(F) | F ∈ F} has the finite thickness property if, for every data x ∈ U ,
there exists only finitely many C(F) ⊂ U such that x ∈ C(F). Because we are
assuming that C is an injection, the set F has the finite thickness property if, for
every data x ∈ U , there exists only finitely many F ∈ F such that x ∈ C(F).

Definition 2. If F has the finite thickness property, K(x, y) = �E(x, y) is an
intentional kernel function, where �E(x, y) denotes the number of elements in
E(x, y). The kernel function is called a counting intentional kernel function.

It is easy to know that a counting intentional kernel function is defined with an
intentional mapping φ such that

φF (x) =
{

1 if x ∈ C(F), and
0, otherwise.

Now we introduce derivation into designing kernel functions.

Definition 3. A function r : F −→ 2F is a derivation rule1 if

– r(F) is finite for all F ∈ F , and
– G ∈ r(F) =⇒ C(F) ⊇ C(G).

An expression F ∈ F is maximal if there is no G such that F ∈ r(G). F is
minimal w.r.t. a data x ∈ U if d ∈ C(F) and d �∈ C(G) for any G ∈ r(F).

We illustrate this semantics in Fig. 1. In the figure, every node of the graph
represents an expression in F and every directed edge from a node F to G
means that G ∈ r(F). When F has finite thickness, the nodes surrounded by
the bold line square are used for the counting intentional kernel function.

1 In ILP r is also called a refinement [6,15].

Kernel Functions Based on Derivation 115

Fig. 1. Derivation and intentional kernel

We give semantics to E(x, y) when U ⊂ F and a data x ∈ U itself is an
expression which represents the set {x}. The example of using a CFG presented
in the last subsection is such a case. We define a relation
′

r as

x
′
r y ⇐⇒ y ∈ r(x)

and
r as the reflexive transitive closure of
′
r. Then it holds that

E(x, y) = {z ∈ U | z
r x and z
r y}.

3 Instances of the Intentional Kernel

In this section we put some kernels proposed in previous works into the class of
the intentional kernel.

3.1 Boolean Kernels

Sadohara [11,12] and Khardon et al. [5] independently investigated to apply
SVM to learning of Boolean functions. We show that the kernels introduced in
their research are intentional kernel functions. We follow the definitions in [11].

Let B = {0, 1} and assume that U = Bn, and we prepare Boolean variables
x1, x2, . . . , xn so that each variable xi represents the i-th element of Boolean
vectors in Bn. As expressions representing subsets of Bn, we adopt conjunctions
of literals in which each variable xi occurs at most once, and we let F be the
set of such conjunctions. For every conjunction F ∈ F , we define C(F) ⊂ Bn as
follows:

x = (b1, b2, . . . , bn) ∈ C(F) ⇐⇒
For every i = 1, 2, . . . , n
bi = 1 if the positive literal xi occurs in F , and
bi = 0 if the negative literal ¬xi occurs in F .

116 K. Doi and A. Yamamoto

For two data x = (b1, b2, . . . , bn) and y = (c1, c2, . . . , cn) in Bn, we let s(x,y)
denote the number of i such that bi = ci. Then by using the property that

φ(x) · φ(y) =
s(x,y)∑

i=1

(
s(x,y)

i

)
,

we define the kernel function KBOOL as

KBOOL(x,y) = −1 + 2s(x,y).

This function is called the DNF kernel function.
The DNF kernel function is a counting intentional kernel, by defining a deriva-

tion rule r as

G ∈ r(F) ⇐⇒
G is a conjunction obtained by adding to F
a literal whose variable does not occur in F.

Maximal conjunctions are those consisting of only one literal and the minimal
conjunction Fx w.r.t. a data x = (b1, b2, . . . , bn) is such ones that

– the positive literal xi occurs in F if bi = 1, and
– the negative literal ¬xi occurs in F if bi = 0

for every i = 1, 2, . . . , n. From the definition of C(F), we get

x · y = �E(x,y).

Figure 2 illustrates the derivation and computing of KDNF for the case that
x = (1, 0, 0, 1) and y = (1, 0, 1, 0).

The monotone DNF kernel function is defined by using conjunctions of posi-
tive literals (Boolean variables). The kernel is defined as

KmBOOL(x,y) = −1 + 2s′(x,y),

where s′(x,y) represents the number of i such that bi = ci = 1, for every x =
(b1, b2, . . . , bn) and y = (c1, c2, . . . , cn).

3.2 Kernel Function for Terms in First-Order Logic

We proposed a kernel function for terms in first-order logic as data [2]. Let T
be the set of terms in first-order logic. For the convenience of application and
computation we remove singleton variables from T .

By using the least common anti-instances [7,10] of two terms, which is a well-
known concept in ILP, we define the kernel function KTERM as

KTERM(s, t) = size(lca(s, t)),

Kernel Functions Based on Derivation 117

where lca(s, t) is the least common anti-instances of s and t. The function size(u)
denotes the number of such terms that t = uθ for some substitution θ. This
function makes KTERM be a counting intentional kernel function.

We let U = F = T with assuming that

C(t) = {s ∈ U | s = tθ for some substitution θ}
for every t ∈ F . For a term t let

φs(t) =
{

1 if t = sθ for some substitution θ, and
0, otherwise.

It has shown that F has the finite thickness property, and from the property it
holds that

KTERM (s, t) = φ(x) · φ(y).

A derivation r for terms is defined as

r(t) = {s | s = tσ for some primitive substitution σ for t },

where a primitive substitution for t is either

– a substitution which replaces x in t with a term f(x1, . . . , xn)(f is a function
symbol, x1, . . . , xn are mutually distinct variables not occurring in t, n ≥ 0),
or

– a substitution which unifies different variables x and y by replacing y with x.

The maximal term is of the form f(x1, . . . , xn) (f is a function symbol, x1, . . . , xn

are distinct variables, n ≥ 0) and t itself is the minimal term w.r.t. t.
Figure 3 shows the definition of KTERM with the case that x = f(g(b, a), h(a))

and y = f(g(c, a), h(a)). The terms in the bold line square are used for computing
the value of KTERM(x, y).

x
1

¬x
1

x
2

¬x
2

x
3

¬x
3

...

x
1
∧ x

2
¬x

1
∧ x

2
x

1
∧ ¬x

2
¬x

1
∧ ¬x

2

x
1
∧ ¬x

2
∧ ¬x

3
x

1
∧ ¬x

2
∧ x

3

x
1
∧ ¬x

2
∧ ¬x

3
∧ x

4
x

1
∧ ¬x

2
∧ x

3
∧¬ x

4

ϕ ϕ

(1 0 0 1) (1 0 1 0)
K

DNF
: 22 – 1 = 3

Fig. 2. Derivation of conjunctions of literals and the DNF kernel

118 K. Doi and A. Yamamoto

f(g(X,Y),h(a))f(g(X,a),h(Z))

f(g(X,Y),W)

f(g(X,a),W)

f(g(b,a),h(a))

f(g(X,a),h(a))

f(g(X,Y),h(Y))

f(V,h(Z))

f(V,h(a))f(g(X,Y),h(Z))

f(g(c,a),h(a))

Least common

anti-instance

f(g(b,X),h(a))

f(g(b,X),h(Y))

f(g(c,X),h(a))

f(g(c,X),h(Y))

f(V,W)

K
TERM

(f(g(b,a),h(a), f(g(c,a),h(a))

Non linear

term

Fig. 3. Counting intentional kernel function KTERM for terms

3.3 Context Sensitive Languages

The simple example in Subsection 2.1 is a counting intentional kernel for a
context free languages (CFLs). We can construct the counting intentional kernel
for not only CFL but also context sensitive languages (CSLs) based on the same
idea.

Let Σ be the set of non-terminal symbols in a grammar G, N be the set of
terminal symbols, S be the start symbol. Assume that U = F = (Σ ∪ N)∗ and

C(w) = {u| u is derived from w by G}

for every w in F . A derivation rule is defined as

r(w) = {u| u is derived from w by using a production rule once in G}.

We consider the restriction for a production rule α → β that β be at least as
long as α in derivation rules. The resulting grammar is called a context sensitive
grammar (CSG). Each CSL is generated by a CSG. The number of expressions
generating a string w is finite because the lengths of the expressions are equal
to or less than |w|. Therefore we can construct the counting intentional kernel
for a CSG.

4 More Complex and Practical Example

We proposed a class KRNA of kernel functions for RNA classification by using a
CFG representing secondary structures of RNA sequences [13] as a subclass of
the intentional kernel. The function is based on a CFG but the formalization is
different from that of the example in Subsection 2.1.

The CFG GRNA for KRNA is defined with terminal symbols a, u, c, and g,
and non-terminal symbols P , L, R, S, and E.

Kernel Functions Based on Derivation 119

a

a

a

u

u

a

u

u

a

a

a

u

u

a

u

u

(1) (2)

a

a

a

u

u

a

u

u

a

a

a

u

u

a

u

u

(3) (4)

Fig. 4. Common secondary structures of σ1 = aauu and σ2 = auau

The production rules are

S → P | L | R | E ,
P → xPy | xLy | xRy | xEy ,
L → xP | xL | xR | xE ,
R → Px | Lx | Rx | Ex ,
E → ε ,

where x ∈ {a, u, c, g} and (x, y) ∈ {(a, u), (u, a), (c, g), (g, c)}.
In designing kernel functions in KRNA we let U = {a, u, c, g}∗. We do not use

{a, u, c, g, P, L, R, S, E}∗ for the set F , because it is not appropriate to repre-
senting secondary structures of RNA sequences. Instead we use the set

{e1 → e2 → · · · → en | n ≥ 1 and ei ∈ {P, L, R, S, E}∗ for i = 1, 2, . . . , n}

for F . Expressions in F are similar to derivations of GRNA but lack symbols
a, u, c, g in it. For every sequence σ ∈ {a, u, c, g}∗, σ ∈ C(F) if there is a deriva-
tion (in the normal sense) d of σ such that d can be transformed into an expres-
sion in F . We do not give the precise definition of the transforming method, but
illustrate it as a simple example below. Kernel functions in KRNA are designed
just as in the definition in the previous section by using F .

Consider a sequence σ = aauu. An example of derivation of aauu is

d4 : S � P � aPu � aaEuu � aauu.

Based on this derivation, we define that aauu belongs to C(S → P → P),
C(S → P → P) and C(S → P). Another derivation of aauu is

d5 : S � L � aR � aPu � aaEuu � aauu,

and this derivation makes aauu belongs to C(S → L → R → P). Each expression
in F corresponds to a secondary structure as illustrated in Fig. 4.

Figure 5 shows the definition of KRNA with the case KRNA(aauu, auau). The
expressions in the bold line square are used for computing the value.

120 K. Doi and A. Yamamoto

S

L P R

L R L R

P P

L R
P

P

L R

aauu

aauu

auau

P

L R

auau

Fig. 5. Common expressions for σ1 = aauu and σ2 = auau

5 Computational Complexity

With the two works we also showed some computational aspects of the inten-
tional kernel. The complexity of computing the value of an intentional kernel
function K depends on the derivation rules in G with which K is defined. Let
Fi � Fj is a fragment of a derivation of x or y by G. If the expression Fj is
obtained from Fi by replacing a subexpression of Fi with giving affection to no
other subexpressions, just as in the case that G is a context free grammar, we
can apply dynamic programming to computing the value of K(x, y).

In our work on KRNA, we showed that dynamic programming makes the
computation of KRNA(x, y) efficient, theoretically and practically, with combi-
nation of another technique of improving efficiency based on the data structure
of sequences. If the derivation rule G is not purely “context free,” we need some
search mechanism for computing K(x, y). The kernel function KTERM is such
a kernel. In computing KTERM (x, y), we divide every common derivation d of

f(g(X,Y),h(a))f(g(X,a),h(Z))

f(g(X,Y),W)

f(g(X,a),W)

f(g(b,a),h(a))

f(g(X,a),h(a))

f(g(X,Y),h(Y))

f(V,h(Z))

f(V,h(a))

f(V,W)

f(g(X,Y),h(Z))

f(g(c,a),h(a))

f(g(X,a),h(a))

f(V,W)

f(g(X,Y),h(a))f(g(X,a),h(Z))

f(g(X,Y),W)

f(g(X,a),W)

f(g(b,a),h(a))

f(g(X,a),h(a))

f(g(X,Y),h(Y))

f(V,h(Z))

f(V,h(a))

f(V,W)

f(g(X,Y),h(Z))

f(g(c,a),h(a))

f(g(X,a),h(a))

f(V,W)

Least common anti-instance

f(V,h(Z))f(g(X,Y),W)

f(V,W)

f(g(X,Y),h(Z))

f(V,h(a))

f(V,h(Z))

f(g(X,a),h(a))

f(g(X,Y),h(a))f(g(X,Y),h(Y))f(g(X,a),h(Z))

f(g(X,Y),h(Z))

f(V,W)f(V,W)

f(g(X,a),W)

f(g(X,Y),W)

f(g(X,a),W)

f(g(X,Y),W)

f(g(X,a),W)

f(g(X,Y),W)

1, function substitution

2, variable unification and

constant substitution

Fig. 6. The computation for KTERM

Kernel Functions Based on Derivation 121

two terms x and y into two parts d1 and d2 so that d1 is not “context free” and
d2 is “context free.” To the part d2 we apply dynamic programming while we
use a depth-first search for d1. We have proposed an algorithm in [2] (Fig. 6).

6 Concluding Remarks

In this paper we have explained the fundamental idea of designing intentional
kernel functions. We have discussed neither their theoretical properties nor ex-
perimental results here. In our previous work [2] we provided theoretical prop-
erties of the intentional kernel function KTERM for first-order terms. In another
previous paper [13] we reported preliminary experimental results of a kernel
function in KRNA for RNA sequences, and now preparing more results on them.

The convolution kernel proposed by Haussler [4] is the most popular class of
kernels for structured data. The fundamental idea of designing the convolution
kernel is that every structured data is composed of small substructures, and
that a kernel should be defined with the values for the small substructures. In
mathematical expression, the idea is expressed as

K(x, y) =
∑

u∈s(x)

∑

v∈s(y)

Ks(u, v),

where s(x) and s(y) are respectively the sets of all proper substructures of x
and y. Two classes of the convolution kernel and the intention kernel are closely
related in the case that the definition of the mapping s is defined with some CFG
and dividing a structured data into substructures could be “parsing” with the
CFG. The kernel function KTERM would not be regarded as a convolution kernel
because the derivation rule for KTERM has unification of two variables and is
not context free. If we remove the unification rule, we could not treat terms such
as f(X, X) and the value of KTERM(f(a, a), f(b, b)) would be 1, which is 2 as an
intentional kernel. We are now continuing numerical experiments of the kernel
functions, in particular, in KRNA with comparing other kernels. We would like
report the results in near future.

Acknowledgment

This research is partially supported by Grant-in-Aid for Scientific Research (B)
19300046 and Young Scientist (B) 20700135 from MEXT and JSPS.

References

1. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and
Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge
(2000)

122 K. Doi and A. Yamamoto

2. Doi, K., Yamashita, T., Yamamoto, A.: An Efficient Algorithm for Comput-
ing Kernel Function Defined with Anti-unification. In: Muggleton, S., Otero, R.,
Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 139–153.
Springer, Heidelberg (2007)

3. Gärtner, T.: A Survey of Kernel for Structured Data. SIGKDD Explorations 5(1),
268–275 (2003)

4. Haussler, D.: Convolution Kernels on Discrete Structures, Technical Report UCS-
CRL-99-10, University of California - Santa Cruz (1999)

5. Khardon, R., Roth, D., Servedio, R.: Efficiency versus Convergence of Boolean
Kernels for On-Line Learning Algorithms. Journal of Artificial Intelligence Re-
search 24, 341–356 (2005)

6. Laird, P.D.: Learning from Good and Bad Data. Kluwer Academic Publishers,
Dordrecht (1988)

7. Lassez, J.-L., Maher, M.J., Marriott, K.: Unification Revisited. In: Minker, J.
(ed.) Foundations of Deductive Databases and Logic Programming, pp. 587–626.
Morgan-Kaufman, San Francisco (1988)

8. Muggleton, S., Lodhi, H., Amini, A., Sternberg, M.J.E.: Support Vector Inductive
Logic Programming. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005.
LNCS (LNAI), vol. 3735, pp. 163–175. Springer, Heidelberg (2005)

9. Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming.
Springer, Heidelberg (1997)

10. Plotkin, G.D.: A Note on Inductive Generalization. Machine Intelligence 5, 153–163
(1970)

11. Sadohara, K.: Learning of Boolean Functions Using Support Vector Machine. In:
Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS (LNAI), vol. 2225,
pp. 106–118. Springer, Heidelberg (2001)

12. Sadohara, K.: On a Capacity Control Using Boolean Kernels for the Learning of
Boolean Functions. In: Proceedings of the IEEE International Conference on Data
Mining, pp. 410–417 (2002)

13. Sankoh, H., Doi, K., Yamamoto, A.: An Intentional Kernel Function for RNA
Classification. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS
(LNAI), vol. 4755, pp. 281–285. Springer, Heidelberg (2007)

14. Scholkopf, B., Smola, A.J.: Learning With Kernels: Support Vector Machines, Reg-
ularization, Optimization and Beyond. MIT Press, Cambridge (2001)

15. Shapiro, E.Y.: Inductive Inference of Theories From Facts, Technical Report 192,
Department of Computer Science, Yale University (1981); also in: Lassez, J.-L.,
Plotkin, G. (eds.) Computational Logic, pp. 199–254.The MIT Press, Cambridge
(1991)

16. Yamamoto, A.: Inductive Logic Programming: Yet Another Application of Logic.
In: Umeda, M., Wolf, A., Bartenstein, O., Geske, U., Seipel, D., Takata, O. (eds.)
INAP 2005. LNCS (LNAI), vol. 4369, pp. 102–116. Springer, Heidelberg (2006)

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 123–133, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Dynamic Bayesian Networks for Acquisition Pattern
Analysis: A Financial-Services Cross-Sell Application

Anita Prinzie1, 2 and Dirk Van den Poel2

1 Marketing Group, Manchester Business School, The University of Manchester,
Booth Street West, Manchester M15 6PB, UK

Anita.Prinzie@mbs.ac.uk
2 Department of Marketing, Ghent University, Tweekerkenstraat 2, 9000 Ghent, Belgium

{Anita.Prinzie,Dirk.VandenPoel}@UGent.be

Abstract. Sequence analysis has been employed for the analysis of longitudinal
consumer behavior with the aim to support marketing decision making. One of
the most popular applications involves Acquisition Pattern Analysis exploiting
the existence of typical acquisition patterns to predict customer’s most likely
next purchase. Typically, these cross-sell models are restricted to the prediction
of acquisitions for a limited number of products or within product categories.
After all, most authors represent the acquisition process by an extensional,
unidimensional sequence taking values from a symbolic alphabet. This sequen-
tial information is then modeled by (hidden) Markov models suffering from the
state-space explosion problem. This paper advocates the use of intensional state
representations exploiting structure and consequently allowing to model com-
plex sequential phenomena like acquisition behavior. Dynamic Bayesian Net-
works (DBNs) represent the state of the environment (e.g. customer) by a set of
variables and model the probabilistic dependencies of the variables within and
between time steps. The advantages of this intensional state space representa-
tion are demonstrated on a cross-sell application for a financial-services pro-
vider. The DBN models multidimensional customer behavior as represented by
acquisition, product ownership and covariate sequences. In addition to the abil-
ity to model structured multidimensional, potentially coupled, sequences, the
DBN exhibits adequate predictive performance to support the financial-services
provider’s cross-sell strategy.

1 Introduction

Sequence analysis has become common-place in the longitudinal analysis of con-
sumer behavior. One of the most popular applications is Acquisition Pattern Analysis,
describing the next logical product/service acquisition for a customer, based on the
sequential pattern of customer’s acquisition history and on the pattern of other cus-
tomers. Extant research exploits the order in which household units acquire durable
goods [Prinzie and Van den Poel 2007] or financial services [Kamakura et al. 1991,
Li et al. 2005, Paas et al. 2007, Prinzie and Van den Poel 2006] to support cross-sell
strategies. Typically, the customer’s longitudinal acquisition sequence is represented
as an unstructured, unidimensional sequence, thereby limiting the practical value of
any cross-sell model inferred from it in multiple ways.

124 A. Prinzie and D. Van den Poel

Firstly, the unidimensional representation impedes capturing the acquisition behav-
ior at a sufficient level of detail or for the full product range. For example, in an lth-
order Markov model the next acquisition is described by l-previous values of one
random variable Xt , taking values from a symbolic alphabet N={1, …, M}. This
extensional representation of the customer’s acquisition state, one in which each state
is explicitly named rather than described by variables [Boutilier, Dean and Hanks
1999], rapidly results in an explosion of the state space and as a consequence compu-
tational intractability of the methods modelling this information. In practice, the state-
space explosion problem forces the researcher either to select a limited set of products
or to analyse the acquisition behavior at less detailed level, e.g. product categories. In
both scenarios, the cross-sell predictive performance and practical value are limited.
In the first scenario, the customer might acquire a product or service not included in
the acquisition pattern analysis. In the last scenario, marketing communication at the
product category level might lack specificity and consequently effectiveness.

Secondly, the analysis of acquisition behavior as a unidimensional process largely
neglects that the longitudinal acquisition behavior might be related to other longitudi-
nal behavior like portfolio evolution and other covariates changing over time. Latent
Markov analysis has been employed [Paas et al. 2007] to link the acquisition process
to covariates changing over time. However, a latent Markov model assumes that,
when controlling for covariate values at time t, the latent class membership only de-
pends on the previous class membership at time t-1. Unlike Dynamic Bayesian Net-
works (DBNs), a latent Markov model does not allow to model coupled processes like
the simultaneous evolution of the acquisition sequence with the evolution of one or
more covariates also exhibiting a Markov property.

Thirdly, the adoption of an extensional rather than factored or intensional state
space representation largely ignores the structure exhibited by the product/service
space and typically results in a simplified representation of the decision environment.
However, most marketing problems, including cross-sell problems, exhibit consider-
able structure and thus can be solved using special-purpose methods that recognize
that structure [Boutilier, Dean and Hanks]. Amongst other techniques, Dynamic
Bayesian Networks (DBNs) could be employed to exploit the structure of the state.
DBNs generalize (hidden) Markov models by allowing states to have internal struc-
ture. DBNs represent the state of the environment (e.g. customer) by a set of
variables; i.e. intensional state representation as opposed to (hidden) Markov’s exten-
sional state representation. The DBN models the probabilistic dependencies of the
variables within and between time steps. If the dependency structure is sufficiently
sparse, it is possible to analyse real-life problems with much larger state spaces than
using Markov models. In addition to reducing computational complexity while main-
taining the decision problem’s complexity, DBN’s intensional state-space representa-
tion enables the marketing manager to gain insight in the structure of the problem, in
case the customer’s acquisition process.

This paper illustrates the advantages of Dynamic Bayesian Networks (DBNs) for ac-
quisition pattern analysis with the aim to support the cross-sell strategy of a financial-
services provider. The DBN models multidimensional customer behavior as represented
by acquisition, product ownership and covariate sequences. The results convey that, in
addition to the ability to model structured multidimensional, potentially coupled,

 DBNs for Acquisition Pattern Analysis: A Financial-Services Cross-Sell Application 125

sequences, the DBN exhibits adequate predictive performance to support the finan-
cial-services provider’s cross-sell strategy.

The remainder of the paper is structured as follows. In the Methodology Section,
we briefly present the Dynamic Bayesian Networks. In Section 3, we describe the
cross-sell application demonstrating the advantage of DBNs for acquisition pattern
analysis. Section 4 discusses the main findings. Finally, the last section draws conclu-
sions and suggests avenues for further research.

2 Methodology

2.1 Dynamic Bayesian Networks as an Extension of Bayesian Networks

A Bayesian Network encodes the joint probability distribution of a set of variables,
{Z1, …, Zd} as a directed acyclic graph expressing conditional dependencies and a set
of conditional probability models. Each node corresponds to a variable, and the model
computes the probability of a state of the variable given the state of its parents. The
set of parents of Zi, denoted by Pa(Zi), is the set of nodes with an arc to Zi in the
graph. The structure of the network encodes that each node is conditionally independ-
ent of its non-descendants given its parents. The probability of an arbitrary event

Z=(Z1, …, Zd) is computed as () ())(1 ii
d
i ZPaZPZP =∏= .

Dynamic Bayesian Networks (DBNs) [Dean and Kanazawa 1989] extend Bayesian
Networks for modelling dynamic systems thereby also exploiting conditional inde-
pendence. In a DBN, a state at time t is represented by a set of random variables
Zt=(Zi,t, …, Zd,t). In a two-time slice Bayesian Network the state at time t+1, Zt+1 is
only dependent on the immediately preceding state Zt, i.e. P(Zt+1|Zt) or first-order
Markov property. Typically, the transition models are assumed to be invariant across
time slices, i.e. a stationary process. A DBN is a pair of Bayesian networks (B0, B)
where B0 represents the initial distribution P(Z0) and B is a two-time slice Bayesian
Network (2TBN) defining the transition distribution. Studying these initial and transi-
tion distributions as embodied by the respective Conditional Probability Tables
(CPTs) enable the manager to gain insight into the within and between time-slice
dependencies. The set of Zt could be divided into unobserved state variables Xt and
observed state variables Yt. The joint distribution represented by a DBN is obtained
by unrolling the 2TBN (1):

()∏
=

−=
T

t
ttttT ZPaZPZZPZPaZPZPZZP

1
10000)()()(()(),...,((1)

2.2 Predictive Model Evaluation: Class-Specific PCCs and wPCC

The predictive performance of the Dynamic Bayesian Network is evaluated in terms of
class-specific Percentage Correctly Classified (PCCs) and the overall wPCC on a sepa-
rate validation and test set, i.e. data sets of instances not used for model estimation.

In absence of a specific predictive objective, e.g. predict classes k=1 and k=3 well,
we evaluate the DBN in terms of its’ ability to correctly classify cases in all classes K.
Given this objective and the class imbalance of the dependent, it is inappropriate

126 A. Prinzie and D. Van den Poel

[Barandela et al. 2003] to express the classification performance in terms of the aver-
age accuracy like the Percentage Correctly Classified (PCC) [Morrison 1969]. The
predictive evaluation of the models should take the distribution of the multinomial
dependent into consideration [Morrison]. Firstly, we will weigh the class-specific
PCCs with regard to the prior class distribution. Each class k (k ∈ K) of the depend-
ent has a strict positive weight wk (2), with fk referring to the relative frequency of the
class on the dependent variable. The class-specific weights sum to one as in (2).
Given the weights, the weighted PCC is (3):

∑
=

−

−
=

K

k
k

k
k

f

f
w

1
1

1
 s.t. ∑

=
=

K

k
kw

1
1 (2)

 ∑ == K
k kwPCCwPCC 1

 (3)

with kkk PCCwwPCC *= . The weighted PCC is related to the balanced error rate.

We penalize models predicting several alternatives by equally dividing the 100%
classified over all alternatives predicted. Secondly, we benchmark the model’s per-
formance to the proportional chance criterion Crpro rather than the maximum chance
criterion Crmax [Morrison].

3 A Financial-Services Cross-Sell Application

The benefits of Dynamic Bayesian Networks (DBNs) for acquisition pattern analysis
are illustrated in a financial-services cross-sell application. From a data warehouse of
an international financial-services provider a household’s acquisition sequence in
eleven service categories (Table 1) is derived. Notice that the acquisition sequences
are constructed at the household level, as household units are the principal decision-
making unit in the financial-services market [Guiso et al. 2002]. The objective is to
extract patterns from the acquisition sequences enabling to predict for each household
the next financial service acquisition. However, unlike most previous research in
Acquisition Pattern Analysis, the longitudinal acquisition behavior is augmented with
other longitudinal behavior like the household’s service portfolio sequence at each
acquisition event. Furthermore, we address the effect of the age of the head of the
family on the household’s service portfolio at a given acquisition moment. Table 2
defines the intensional state space representation. The ownership state variables
clearly reflect the structure of financial services, which can be partitioned into in-
vestments, credits, checking accounts and insurances. The latter reflects how DBNs
exploit structure intrinsic to the environment. The age state variable is a proxy for the
family-life cycle. As such, the age state variable has been discretized to reflect the
notion that households residing in different stages of the family-life cycle typically
hold different service portfolios due to household need evolution [Kamakura et al.].
Figure 1 shows the Dynamic Bayesian Network modeling 1) the within-time slice
effect of age on a household’s service portfolio and 2) the between-time slice effects

 DBNs for Acquisition Pattern Analysis: A Financial-Services Cross-Sell Application 127

T
ab

le
 1

. F
in

an
ci

al
-S

er
vi

ce
s

P
ro

du
ct

 G
ro

up
s

T
ab

le
 2

. S
ta

te
 S

pa
ce

 D
ef

in
iti

on

A
qu

is
iti

on
 (A

cq
)

11
Ac

qu
is

iti
on

 o
f o

ne
 o

r m
or

e
se

rv
ic

es
 fr

om
 s

er
vi

ce
 c

at
eg

or
y

on
e

to
 e

le
ve

n.
O

wn
er

sh
ip

 In
ve

st
m

en
t (

O
wn

_I
nv

)
4

1:
 n

o
ow

ne
rs

hi
p

O
wn

er
sh

ip
 C

re
di

t (
O

wn
_L

oa
n)

2:
 o

ne
 o

r t
wo

 s
er

vi
ce

s
ow

ne
d

O
wn

er
sh

ip
 C

he
ck

in
g

Ac
co

un
t (

O
wn

_C
A)

3:
 th

re
e

or
 fo

ur
 s

er
vi

ce
s

ow
ne

d
O

wn
er

sh
ip

 In
su

ra
nc

es
 (O

wn
_I

ns
ur

)
4:

 fi
ve

 o
r m

or
e

se
rv

ic
es

 o
wn

ed
Ag

e
(A

ge
)

3
1:

 y
ou

ng
er

 th
an

 3
5

2:
 fr

om
 3

5
to

 5
4

ye
ar

s
ol

d
3:

 5
5

ye
ar

s
ol

d
or

 o
ld

er

c

128 A. Prinzie and D. Van den Poel

O
w

n_
In

su
r

O
w

n_
L

oa
n

O
w

n_
In

v

O
w

n_
L

oa
n

O
w

n_
C

A

O
w

n_
In

su
r

A
ge

A
cq

O
w

n_
In

v

O
w

n_
C

A

A
ge

A
cq

F
ig

. 1
. D

yn
am

ic
 B

ay
es

ia
n

N
et

w
or

k
M

od
el

in
g

L
on

gi
tu

di
na

l A
cq

ui
si

ti
on

 B
eh

av
io

r
fo

r
F

in
an

ci
al

 S
er

vi
ce

s

 DBNs for Acquisition Pattern Analysis: A Financial-Services Cross-Sell Application 129

of service portfolio and service acquisition on the household’s next service acquisi-
tion. The reader should keep in mind that the network structure shown in Figure 1 is
only one of the many networks possible. For example, the network could be extended
with a first-order Markov effect between service portfolio. Furthermore, extending the
2TBN to a higher-order Dynamic Bayesian Network could control for higher-order
acquisition effects. Finally, in the application at hand, the acquisition state variable
adopts the services partition as used by the financial-services provider. However, one
could decompose the acquisition state variable with as many state variables as there
are relevant service features to predict what features the next most likely acquired
service would have.

From the original database of the financial-services provider containing informa-
tion on approximately 860,000 households, households are selected with at least two
acquisition dates. Households with an exceptional high number of services acquired
or with too many missing values on the service category are deleted. After data prepa-
ration, 600,340 households are retained. We randomly assigned 200,113 households
to the estimation sample, 200,114 households to the validation sample and the re-
maining 200,113 households to a test sample.

4 Results

4.1 Predictive Performance

We estimated the DBN illustrated in Figure 1 using the full-length acquisition se-
quences of the households in the estimation sample. The predictive performance of the
DBN indicates how well it is able to predict for all households in a specific sample the
2-nd until last acquisition event. The robustness of the predictive performance of the
DBN is assessed by applying the DBN on the validation and test sample. Table 3 reports
the predictive performance on the estimation, validation and test samples with respect to
the wPCC and the service category-specific PCCs. The results show that the DBN is
fairly robust as reflected by similar predictive performance measures across the estima-
tion, validation and test samples. The DBN has a weighted PCC of 34.91% on the test
sample, indicating that when correcting for the prior distribution of the financial-
services groups, the DBN allows to correctly classify almost 35% of the next acquisi-
tions. The wPCC on all three samples largely outperforms the proportional chance
criterion Crpro of 0.18. The service category specific PCCs are independent of prior class
probabilities. The DBN has a high hit rate for car insurances (7), investment products
with low risk and fixed short term (1) and for investments with limited revenue risks,
without capital risks nor duration (2). The DBN predicts at least 30% of the acquisitions
in the other product groups with the exception of other type of insurances (8) and check-
ing accounts (11). The off-diagonal cells of the confusion table in Table 4 provide in-
sight in the pattern of misclassifications. The last row reports the percentage difference
between the percentage predicted and the actual percentage of acquisitions in a given
service category. For instance, the DBN predicts too many car insurance acquisitions
(+14.59). All in all, given DBN’s adequate predictive performance, the DBN could be
implemented by the financial-services provider to support the cross-selling strategies for
all services except for other type of insurances and checking accounts.

130 A. Prinzie and D. Van den Poel

T
ab

le
 3

. D
B

N
’s

 P
re

di
ct

iv
e

P
er

fo
rm

an
ce

w
P

C
C

P
C

C
1

P
C

C
2

P
C

C
3

P
C

C
4

P
C

C
5

P
C

C
6

P
C

C
7

P
C

C
8

P
C

C
9

P
C

C
10

P
C

C
11

E
st

im
at

io
n

35
.1

5
73

.0
3

56
.4

0
34

.4
3

33
.8

8
31

.2
8

33
.5

3
75

.0
8

0.
93

37
.7

1
19

.7
6

2.
74

V
al

id
at

io
n

34
.6

4
73

.4
4

55
.7

6
34

.3
2

34
.3

0
29

.6
7

33
.2

3
74

.9
1

0.
73

34
.9

3
20

.0
4

1.
99

T
es

t
34

.9
1

73
.0

0
55

.7
0

34
.9

9
34

.4
8

31
.7

2
33

.0
4

74
.9

0
0.

67
36

.0
6

19
.4

6
2.

02

T
ab

le
 4

. C
on

fu
si

on
 M

at
ri

x
fo

r
T

es
t S

am
pl

e

Pr
ed

ic
te

d
A c

tu
al

1

2
3

4
5

6
7

8
9

10
11

1
19
81
4

50
78
.7

49
.8
2

74
1.
07

39
5.
82

32
8.
65

58
3.
65

14
.8
2

10
5.
90

11
.0
7

17
.8
2

27
14
1.
31

2
38
39
.8
0

26
23
3

54
0.
96

25
73
.9
0

84
4.
63

36
30
.7
0

53
03
.1
0

15
5.
15

28
71
.3
0

66
1.
80

43
9.
93

47
09
4.
27

3
62
.2
7

10
56
.1
0

63
07
.1
0

66
9.
23

15
3.
44

28
45
.8
0

64
61
.7
0

38
.5
6

33
4.
98

57
.8
1

39
.0
6

18
02
6.
05

4
11
84
.8
0

48
79
.3
0

70
5.
60

64
76
.7
0

83
3.
17

13
28
.6
0

28
78
.8
0

41
.1
2

33
0.
95

49
.7
2

75
.2
7

18
78
4.
05

5
49
4.
30

17
39

23
6.
64

79
1.
14

21
37

35
3

73
7.
20

17
.6
7

16
5.
54

27
.8
4

37
.6
7

67
37

6
34
2.
61

51
39
.3
0

24
87
.1
0

10
84
.9
0

22
6.
94

34
48
3

57
22
1

31
1.
28

22
15
.8
0

60
8.
07

26
0.
05

10
43
80
.0
5

7
42
6.
47

51
14
.6
0

35
40
.7
0

14
64
.4
0

29
3.
97

25
63
8

12
16
10

11
8.
14

36
29
.2
0

25
8.
79

27
0.
82

16
23
65
.0
9

8
12
4.
82

17
95
.9
0

13
53
.1
0

35
7.
27

76
.9
9

10
70
8

23
97
9

26
8.
65

84
3

19
7.
93

12
0.
08

39
82
4.
74

9
13
9.
29

53
33
.2
0

49
4.
29

36
8.
69

13
1.
19

38
22
.3
0

75
06
.2
0

10
8.
96

10
84
7

93
5.
76

38
9.
84

30
07
6.
72

10
37
.5
9

16
50
.4
0

26
2.
59

19
4.
35

60
.6
7

24
60
.8
0

30
19
.2
0

46
.8
5

13
77
.1
0

22
29
.7
0
11
5.
77

11
45
5.
03

11
67
0.
80

12
49
4

37
8.
05

66
4.
55

22
1.
72

30
61
.9
0

49
21

98
.7
9

29
20
.7
0

48
3.
37

53
3.
14

26
44
8.
22

27
13
6.
75

70
51
3.
5

16
35
5.
95

15
38
6.
2

53
75
.5
4
88
66
0.
75

23
42
20
.8
5
12
19
.9
8

25
64
1.
67

55
21
.8
5
22
99
.4
4
49
23
32
.4
8

Pr
ed

ic
te

d
%

5.
51

14
.3
2

3.
32

3.
13

1.
09

18
.0
1

47
.5
7

0.
25

5.
21

1.
12

0.
47

Ac
tu

al
 %

5.
51

9.
57

3.
66

3.
82

1.
37

21
.2
0

32
.9
8

8.
09

6.
11

2.
33

5.
37

D
iff

er
en

ce
0.
00

4.
76

-0
.3
4

-0
.6
9

-0
.2
8

-3
.1
9

14
.5
9

-7
.8
4

-0
.9
0

-1
.2
1

-4
.9
0

 DBNs for Acquisition Pattern Analysis: A Financial-Services Cross-Sell Application 131

T
ab

le
 5

. E
xt

ra
ct

 f
ro

m
 th

e
D

B
N

’s
 C

on
di

ti
on

al
 T

ra
ns

iti
on

 P
ro

ba
bi

li
tie

s

10
2

2
2

1
0.

02
27

0.
25
00

0.
02

27
0.

02
27

0.
04

55
0.

11
36

0.
04

55

0.
04

55
0.

11
36

0.
18

18
0.

13
64

10
2

2
2

2
0.

00
00

0.
07

14
0.

00
00

0.
02

38
0.

00
00

0.
50
00

0.
07

14

0.
09

52
0.

04
76

0.
09

52
0.

09
52

T
ab

le
 6

. I
nf

lo
w

 in
to

 C
at

eg
or

y
6;

 F
ir

e
In

su
ra

nc
es

 (
T

ra
ns

iti
on

 P
ro

ba
bi

li
ti

es
 o

f
A

t L
ea

st
 0

.7
0)

6
1

4
1

2
0.

74
53

6
3

4
1

2
0.

70
00

10

1
4

3
2

0.
76

92
10

2

4
3

2
0.

72
73

6
3

4
3

2
0.

71
43

6
1

4
1

3
0.

74
47

6
4

4
1

3
0.

80
00

10

4
2

4
3

0.
75

00
2

3
4

4
3

0.
75

00
8

4
4

1
4

0.
80

00
6

1
4

2
4

0.
70

00
10

4

2
3

4
0.

75
00

132 A. Prinzie and D. Van den Poel

4.2 Managerial Insights

From a managerial point of view, it is vital to gain insight into the longitudinal acqui-
sition process and its’ influential factors. Inspecting the Conditional Probability Ta-
bles (CPTs) of a Dynamic Bayesian Network analysis enables this.

The DBN’s initial conditional probabilities indicate the effect of state variables
within a time slice. In the application at hand, the six initial state probability distribu-
tions document respectively 1) the initial distribution of acquisitions in the eleven
service categories, 2) the initial ownership of investments given the household head’s
age group, 3) the initial ownership of credits given the household head’s age group,
4) the initial ownership of checking accounts given the household head’s age group,
5) the initial ownership of insurances given the household head’s age group and 6) the
initial distribution of households over the three age groups defined. Inspecting these
initial state probability distributions reveals that ownership of investment services
substantially increases with age. Almost 30% of all households with a household head
being 55 years old or older hold at least five investment products in their portfolio, as
compared to only 8.65 for households in age group 2 ([35,55[). Furthermore, these
older households tend to have fewer insurance policies. The latter might be explained
by the investments/cash being the older household’s insurance. Finally, the ownership
of credits decreases with age.

The DBN’s conditional probabilities reflect the effect of state variables between
time slices and as such to learn the systems dynamics. In the application at hand, there
is one conditional probability table describing the effect of the household’s previous
service portfolio at time t, as expressed by the four service ownership state variables,
and the household’s previous service acquisition at time t on the next acquisition at
time t+1. Managers and analysts can use these inter-time slice probability distribu-
tion(s) to interpret realistic settings. In Table 5 we show an excerpt from the large
transition table. The setting “10 2 2 2 1” describes a typical household who, during
the previous purchase occasion took out a mortgage. The household’s service portfo-
lio at the pervious purchase occasion includes one or two investment products, loan
products, checking account but no insurance policies. We observe that this profile of
households has the highest probability of acquiring next an investment product (sec-
ond column: conditional probability of 0.25), followed by another mortgage (0.18).
These probabilities differ substantially from the second set “10 2 2 2 2”, which repre-
sent the transitions for a household owning one or two investment products, loan
products, checking account and insurance(s). This second household type has a very
high probability of acquiring a “fire insurance” policy.

The conditional transition probabilities table also allows managers to analyze the
inflow into a particular service category. Let us consider the inflow into category 3;
investment services with limited revenue risks but no capital risks for fixed long dura-
tion (>10 years). All transitions originate from category 3. A similar analysis is
presented in Table 6 for service category 6; fire insurance. In this case, popular transi-
tions into this category not only originate from category 6, but also from 2, 4, 8, and
10. Especially, the transition from mortgage acquisition to fire insurance subscription
is very popular, which seems quite logical.

 DBNs for Acquisition Pattern Analysis: A Financial-Services Cross-Sell Application 133

5 Conclusion

One of the major short comings of past research on Acquisition Pattern Analysis is
the extensional, one-dimensional sequential representation of the customer’s acquisi-
tion behavior. This typically results in a simplification of the acquisition process and
consequently reduces the practical value of any cross-sell model inferred from it. This
paper advocated the use of intensional state representations exploiting structure and
consequently allowing to model longitudinal acquisition behavior in its full complex-
ity. The advantages of this intensional state space representation have been demon-
strated on a cross-sell application for a financial-services provider. A Dynamic
Bayesian Network was developed modeling multidimensional customer behavior as
represented by acquisition, product ownership and covariate sequences. The DBN
exhibited adequate predictive performance to support the financial-services provider’s
cross-sell strategy. Furthermore, it has been illustrated how DBN’s intensional state-
space representation enables the marketing manager to gain insight in the customer’s
acquisition process by analysing the conditional probability tables. The current appli-
cation adopted a 2TBN to illustrate the value of DBNs for acquisition pattern analy-
sis. Future research should compare the 2TBN with higher-order DBNs to assess the
presence of higher-order acquisition dependencies.

References

1. Barandela, R., Sánchez, J.S., Garcia, V., Rangel, E.: Strategies for learning in class imbalance
problems. Pattern Recognition 36(3), 849–851 (2003)

2. Boutilier, C., Dean, T., Hanks, S.: Decision-Theoretic Planning: Structural Assumptions and
Computational Leverage. Journal of Artificial Intelligence Research 1, 1–93 (1999)

3. Dean, T., Kanazawa, K.: A model for reasoning about persistence and causation. Computa-
tional Intelligence 5(3), 142–150 (1989)

4. Guiso, L., Haliossos, M., Jappelli, T.: Household Portfolios. MIT Press, Cambridge (2002)
5. Kamakura, W.A., Ramaswami, S.N., Srivastava, R.K.: Applying latent trait analysis in the

evaluation of prospects for cross-selling of financial services. International Journal of Re-
search in Marketing 8(4), 329–350 (1991)

6. Li, S.B., Sun, B.H., Wilcox, R.T.: Cross-selling sequentially ordered products: an application
to consumer banking services. Journal of Marketing Research 42(2), 233–239 (2005)

7. Morrison, D.G.: On the interpretation of discriminant analysis. Journal of Marketing Re-
search 6, 156–163 (1969)

8. Paas, L.J., Vermunt, J.K., Bijmolt, T.H.A.: Discrete time, discrete state latent Markov model-
ling for assessing and predicint household acquisition of financial products. J. R. Statist. Soc.
A 170(4), 955–974 (2007)

9. Prinzie, A., Van den Poel, D.: Investigating purchasing sequence patterns for financial ser-
vices using Markov, MTD and MTDg models. European Journal of Operational Re-
search 170(3), 710–734 (2006)

10. Prinzie, A., Van den Poel, D.: Incorporating sequential information into traditional classifica-
tion models by using an element/position-sensitive SAM. Decision Support Systems 42(2),
508–526 (2006)

11. Prinzie, A., Van den Poel, D.: Predicting home-appliance acquisition sequences: Markov/
Markov for Discrimination and survival analysis for modelling sequential information in
NPTB models. Decision Support Systems 44(1), 28–45 (2007)

An Automata Based Authorship Identification
System

Tsau Young Lin and Shangxuan Zhang

Department of Computer Science, San Jose State University
San Jose, California 95192, USA

z shangxuan@hotmail.com, tylin@cs.sjsu.edu

Abstract. This paper uses the learning capability of finite automata to
develop an authorship identification system. Based on ALERGIA algo-
rithm, we use writing samples of an author to build a stochastic finite
automaton. This automaton represents the writing characteristics of the
author. This automaton, then, can be used to test whether an anonymous
writing piece belongs to this author. Initial tests are quite successful.

1 Introduction

Based on the Kolmogorv complexity K(x) for binary string x, in 1993, Lin pro-
posed to use the opposite of random-ness as the concept of patterns [3], namely,
a sequence x has pattern if K(x) < length(x). Obviously, one can conclude that a
sequence is said to have pattern if and only if there exists a constant subsequence
(Lin stated for infinite sequences; note that finite sequences are automatically
included). This could be viewed as the foundation of frequent itemsets (high fre-
quency patterns). In [4], Lin ported the idea to numerical world. In [2], the idea
was ported to the world of finite automata, in which the automata were used
to detect (learning the patterns) the sequences of system calls in program. Here
we switch the applications from the intrusion detection system to authorship
identification system, in latter one we use an automaton to detect the string of
stop words in a book.

It is well-recognized that every author has some particular writing style; it
often can be captured by some statistic characteristics and their hidden relations
between the context: average word length, average sentence length in words, word
frequency, etc. and their hidden Markov model that reveals the relations among
them. Given an anonymous writing piece and possible authors samples, one can
investigate these writing characteristics and identify the author of this piece[1].

The aim of this paper is to study authorship identification through function
words based on the theory of automata. Function words have long ago been
used to identify the writing style. Recently, some interesting work has been done
along this direction.

This project apply a similar idea of the work of P.Baliga and T.Y.Lin on the
intrusion detection system [2], to text processing. More precisely, writing samples
of a prescribed author, instead of programs, are examined by automata. From

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 134–142, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Automata Based Authorship Identification System 135

each sample, we keep the function words for each sentence and wipe out all other
information. These sequences of function words are actually the realization of a
hidden automaton. Our goal is to use this data and machine learning technique
to figure out this automata, which is our representation of the normal writing
pattern of the author.

For any other writing sample, our program will test the structure of function
words sentence by sentence. We record the proportion of sentences which pass
the test. The higher the proportion, the more likely this sample belongs to the
author. It is recommended to combine this result with other classical methods
of authorship identification to get a more accurate result.

The content of this paper is organized as follows. In section 1, we review
stochastic finite automata. In section 2, we describe the ALERGIA algorithm
which is used to build an automaton from sample data. In section 3, we handle
the data of writing samples, and describe the application of the algorithm to our
specific problem. Finally in section 4, we present partial results of the running
of our program. S. Zhang would like to thank her advisor T.Y.Lin for his helpful
discussion during the research on this topic.

2 Stochastic Finite Automata

In this section we shall review the notion of finite automata and its variation
stochastic finite automata [5,6]. In this paper, we shall limit ourselves to deter-
ministic automata.

A deterministic finite automaton(DFA) is a five-tuple (Q, A, δ, q0, F), where
Q = {q0, q1, · · · , qn} is its set of states, A its input symbols, δ its transition
function that takes a state and an input symbol as arguments and return a
state, q0 its start state, and F its set of accepting states. One simplest nontrivial
DFA is an on/off switch. This device has two states: “on” and “off”. The user
can press the button to switch one state to another state. For general purpose,
one can assign “off” as start state and “on” as accepting state. In reality, a lot
of phenomena are actually random. It motivates the following generalization of
deterministic finite automata to stochastic finite automata.

A stochastic finite automata(SFA) consists of a DFA (Q, A, δ, q0, F) and a set
P of probability matrices pij(a) for each symbol a ∈ A. Each pij(a) gives the
probability of the a transition from the state qi to state qj led by the symbol a.
We let pif be the probability that the string end at state qi. Then we have the
following constraint:

pif +
∑

qj∈Q

∑

a∈A
pij(a) = 1.

Intuitively, it means that for each state qi, the sum of the probabilities end at
qi and the probabilities start at qi should equal to one. Let A∗ be the set of all
strings on A. For each string w, one can define the probability p(w) inductively
as usual. The language generated by the automaton is defined as:

L = {w ∈ A∗ : p(w) �= 0}.

136 T.Y. Lin and S. Zhang

A stochastic regular language(SRL) is defined to be the language generated by
an SFA. Two SRLs are said to be equivalent if they contain the same set of
strings with the same corresponding probabilities, that is,

L1 ≡ L2 ⇔ p1(w) = p2(w), ∀w ∈ A∗,

where L1 and L2 are two SRLs, and pi(w) is the probability of the transition
led by w in language Li.

3 ALERGIA Algorithm

In this section we recall the ALERGIA algorithm to deal with the following
problem: Given a fixed SFA, we have a SRL defined by this SFA. Now suppose
we are not informed the structure of this SFA, instead we know a large random
subset of strings in the SRL generated by this SFA. The goal is to reconstruct
the SFA from this given set of strings. For details of the method in this section,
please c.f. [6].

Now we describe the approach to solve this problem. First of all, we build a
tree from these data. This tree is call a prefix tree adapter(PTA). Each node of
the PTA represents a state. For each node of the tree, we assign the frequency
of transition led by each symbol. Next, we compare each node of the PTA. We
shall define the equivalence of nodes. According to this equivalence, we classify
the nodes and merge the equivalent nodes of the PTA. At the end, we recalculate
the frequencies and get a SFA which is an approximation of the original SFA.

We start with the definition of PTA. Now suppose the set of sample data is
S = {s1, s2, · · · , sm}. We describe the PTA inductively. For each string sk =
a1a2 · · · ak, we begin with the initial node q0. Suppose there is a transition from
q0 to one of its child node qi led by a1, we follow this transition and move to
the node qi. Otherwise, we add a new node to this tree, the transition from q0
to this new node is thus led by a1. Either way, we move to a new node, now we
look at symbol a2 and continue this process. In the end, we reach a node that
accepting this string. One example of this procedure is given in the next section.

When we run through all the sample data, we can assign the frequency of
appearance of each symbol as a transition between nodes, and the number of
strings entering each node, the number of string accepting by each node. We
denote by ni the number of strings arriving at node qi, fi(a) the number of
strings following transition δi(a) and fi(�) the number of strings ending at node
qi. Obviously, fi(a)/ni and fi(�)/ni gives estimate of the probabilities pi(a) and
pif respectively.

After we obtain the PTA, we introduce the notion of equivalence between two
nodes. Two nodes are said to be equivalent if for all symbols ′a′ belongs to A,
“he associated transition probabilities from the nodes are equal; the termination
probabilities for the nodes are equal; and the destination nodes of the two tran-
sitions for each symbol are equivalent according to a recursive application of the
same criteria.” In symbols, we have

qi ≡ qj ⇒ ∀a ∈ A,we have pi(a) = pj(a) and δi(a) ≡ δj(a).

An Automata Based Authorship Identification System 137

In the application of this notion, since we seldom have two equal frequencies by
statistic fluctuations in experimental results, the equivalence of two nodes must
also be accepted within a confidence range. To this end, we call two nodes are
compatible if they are equivalent within some pre-described confidence range.

Since for a Bernoulli variable with probability p and frequency f out of n
tries, the confidence range is given by the Hoeffding bound as follows:

∣∣∣p − f

n

∣∣∣ <

√
1
2n

log
2
α

with probability larger than (1 − a).

When the two estimated probabilities differ more than the sum of the confidence
ranges, the ALERGIA algorithm will reject equivalence.

∣∣∣
f

n
− f ′

n′

∣∣∣ >

√
1
2

log
2
α

(1√
n

+
1√
n′

)
.

Finally, when two nodes are merged, we should recalculate their frequencies and
node numbers in order to ensure that the SFA remains deterministic and order-
preserving.

4 Automata Based Modeling

In this section we shall describe how to model the authorship identification
problem using automata. Our authorship identification approach utilizes func-
tion words based automata modeling. In this approach, the first step is to choose
an author and collect as many writing samples as possible for use as training
data sets that are representative of standard writing style for this author. In the
sequel, we shall use the following paragraph as writing sample to illustrate the
idea. This piece is cited from the beginning of Harry Potter And The Prisoner
Of Azkaban.

“Harry Potter was a highly unusual boy in many ways. For one thing, he
hated the summer holidays more than any other time of year. For another, he
really wanted to do his homework but was forced to do it in secret, in the dead
of night. And he also happened to be a wizard.” After choosing the sample, we
fix the basic unit of training data, which can be one sentence, one paragraph
or one whole article, then cut all writing samples into the predetermined units.
In this paper, we use one sentence as a unit. The result is finer if the unit is
made bigger. However, the running time is longer if we choose larger unit and
we need more sample data to keep the number of units large enough to use the
ALERGIA algorithms effectively.

In our example, we have four sentences. So we get four units in the sample
data. For each unit in the sample, we keep the function words and remove all
the other content words. This can be done by choosing a predetermined function
words list. We compare each word in the unit according and if the word match a
word in the list, we keep it. Applying this to the example, we obtain the following
four sequences:

138 T.Y. Lin and S. Zhang

was a in many
for one he the more than any other of
for another he to do his but was to do it in in the of
and he also to be a

Now since the number of function words is around several hundred, to build a
tractable automaton, this number is still large as the alphabet of an automaton.
The next step is to replace each function word with its part of speech. Usually,
we have the following classes of function words: adverb, auxiliary verb, pronoun,
preposition, conjunction, interjection and number.

In the following, we use the digits 0, 1, 2, 3, 4 to represent adverb, auxiliary
verb, preposition/conjunction, pronoun and number respectively. This way, we
greatly simplify the data of each unit into a sequence of numbers. As an example,
we obtain the following sequence of digits.

1 3 2 3
2 4 3 3 3 2 3 3 2
2 3 3 2 1 3 2 1 2 1 3 2 2 3 2
2 3 0 2 1 3

Now from this data we follow the method described in the previous section,
we can build the following PTA.

��0 1 ��1 3 ��2 2 ��3 3 �4��
��

���
2

��5 4 ��6 3 ��7 3 ��8 ��9 ��10 ��11 ��12 �13��
��

���
3

��14 3 ��15 2 ��16 1 ��17 ��18 ��19 ��20 ��21 ��22 ��23 ��24 ��25 ��26 �27��
��

���
0

��28 2 ��29 1 ��30 3 �31��
��

One can calculate the frequency for the transition from each node to it chil-
dren. Let’s take a look at node 5 in our example. We have totally four strings in
sample data, out of which the last 3 strings arriving node 5. By our notation in
section 2, we have n5 = 3, where the subscript 5 represents node 5. Notice that
node 5 has two children, one is node 6, another one is node 14. There is only
one string follow the transition symbol 4 from node 5 to node 6, thus f5(4) = 1.
Likewise we have f5(3) = 2 and f5(a) = 0 for a �= 3, 4. Since a node with a
double circle means there is at least one string ending at this node, we know
there is no string ending at node 5, and obtain f5(�) = 0.

In the example, we have insufficiently few data, so the frequency is not accu-
rate as the approximation of probabilities. Ideally, when we go through a large set
of sample data, we can get a large PTA which approximate the probabilities quite
well. From this PTA, one can merge the compatible nodes to get an SFA. We
regard this resulting SFA as an representative of the writing style of the author.

An Automata Based Authorship Identification System 139

As an example, we look at another set of data as sample. Suppose we have a
set of strings:{0, 01, 01, 011, 0101, 0101, 0101, 0101, 0101, 010101, 010101}, we can
build the following PTA according to the method described earlier:

��0 0 ��1 1
��
��

��2 1
��
��

�3��
��

���
0

��4 1 ��5 0
��
��

��6 1 �7��
��

We calculate the values of ni, fi(�) and fi(a) for a = 0, 1 and 0 ≤ i ≤ 7 in the
following table.

Node i 0 1 2 3 4 5 6 7
ni 11 11 10 1 7 7 2 2
fi(�) 0 1 2 1 0 5 0 2
fi(0) 11 0 7 0 0 2 0 0
fi(1) 0 10 1 0 7 0 2 0

It is obvious from the table that node 3 and node 7 are equivalent. If we let
α = 0.7, then one can check that node 5 and node 7(or 3) are compatible because

∣∣∣
f5(�)
n5

− f7(�)
n7

∣∣∣ =
2
7

<

√
1
2

log
2

0.7

(1√
n5

+
1√
n7

)
.

∣∣∣
f5(0)
n5

− f7(0)
n7

∣∣∣ =
2
7

<

√
1
2

log
2

0.7

(1
√

n5
+

1
√

n7

)
.

Similarly, one can verify that node 4 and node 6 are compatible. For other
pair of nodes, this inequality does not hold. So we can merge nodes 3, 5, 7 and
get the following SFA:

��0 0 ��1 1
��
��

��2 1
��
��

�3��
��

���
0

�4
�1

�
0

Now for any piece of writing, we form the sequences of digits according to
the method mention above. Suppose the number of sequences is m. For each
sequence, we test if it is accepted by the SFA. The number of accepting sequences
is denoted by ma. Therefore we get a quotient ma/m which is called the accepting
probability.

For instance, if we have a set of 4 strings {01010101, 0111, 001, 01010} which
are all different from our sample strings. Applying our test program, we see that
only the first string 01010101 is accepted by this SFA. The accepting probabil-
ity is then equal 1

4 . We remark that the accepting probability depends on the

140 T.Y. Lin and S. Zhang

parameter α in our method. This parameter is used to control the accuracy of
our merge process. Sometimes it is possible to merge non-equivalent states when
α is too small.

5 Results

In this section we present the results of the running of our program. The author
we choose is J.K.Rowling and the writing sample is her book Harry Potter and
the Order of the Phoenix. The test writings are her other three books:

Book 1 : Harry Potter and the Sorcerer’s Stone

Book 2 : Harry Potter and the Chamber of Secrets

Book 3 : Harry Potter and the Prisoner of Azkaban

and one book of Gabriel Garcia Marquez:

Solitude : One Hundred Years Of Solitude

In our program, we choose a sentence as a unit. One reason is that we already
get good results with this choice. Another reason is that if we choose larger unit,
the program will run longer. Since our results are good enough to distinguish
authors, we don’t bother to waste time to get similar results.

As we use one sentence as unit, the patterns we catch all have size smaller
than one sentence. Any larger size pattern can be absorbed in the automaton.
Now we give an example to illustrate this situation. The following paragraph
consists of five sentences:

dabad.caba.baba.cabad.cabacaba.

One pattern is the repeat of string aba appeared in every sentence.

dabad.caba.baba.cabad.cabacaba.

According to our method, the automaton is

�start � �0 b,c,d ��1 a ��2 b ��3 a �4��
��

�d �5��
���

·
�

·

�
c

Note that there is another larger pattern abad.caba across sentences:

dabad.caba.baba.cabad.cabacaba.

This string can be accepted by the previous automaton. If we use two sentences
as a unit, we can get a PTA, after merging, we will get the same automaton as

An Automata Based Authorship Identification System 141

above. However, it takes more time using this algorithm. So it is this technical
reason we choose one sentence as a unit. Next, we present our results. First of
all, we use the PTA as our SFA, that is, we do not merge the states of the PTA.
In this case, the PTA accepts exactly the set of strings of the sample data. The
following table gives the result:

� total sentences � accepted sentences accepting probability
Book 1 6186 3904 0.631102
Book 2 6360 4007 0.630031
Book 3 8425 5554 0.659228
Solitude 5678 1751 0.308383

In this table, one can find a big gap of the accepting probabilities between the
book of same author and the book of different author. Next we fix the parameter
α = 0.7. Then after merging we get an SFA as the writing pattern of the author.
The result of accepting probability are given in the following table.

� total sentences � accepted sentences accepting probability
Book 1 6186 4285 0.692693
Book 2 6360 4390 0.690252
Book 3 8425 6021 0.714659
Solitude 5678 2079 0.36615

The accepting probabilities in this table is greater than the correspondence
probabilities in the table before merging. This is because after merging, the new
SFA can accept more strings than the one before merging. These new strings
cannot be identified by the sample data. We remark that if we take the parameter
α ≤ 0.55 in our program, then a lot of non-equivalent states will merge due to
a large error used in the comparison of frequencies. The accepting probability is
greater than 0.97 in all four books. This phenomenon does not imply that our
method is not effective. It reminds us to pick the parameter appropriately to
get the best result. In fact, our first table of accepting probability obtained from
the PTA(before merging) has already show the difference between Book 1–3 and
Solitude.

We believe that there are tremendous potential generalization of this method.
For instance, one can change the size of the segment from one sentence to several
sentences, or one can use a finer classification of the set of function words instead
of part of speech. Even further, one can also include some type of content words
into the sample data instead of the set of function words.

Another direction to refine the result is to combine this method with the tra-
ditional statistic methods. The author is working on this direction and obtained
partial results.

142 T.Y. Lin and S. Zhang

References

1. Grieve, J.: Quantitative Authorship Attribution: An evaluation of Techniques. Lit-
erary and Linguistic Computing 22(3), 251–270 (2007)

2. Baliga, P., Lin, T.Y.: Kolmogorov Complexity Based Automata Modeling for In-
trusion Detection. In: Proceeding of the 2005 IEEE International Conference on
Granular Computing, Beijing, China, July 25-27, pp. 387–392 (2005)

3. Lin, T.Y.: Rough Patterns in Data-Rough Sets and Foundation of Intrusion De-
tection Systems. Journal of Foundation of Computer Science and Decision Sup-
port 18(3-4), 225–241 (1993)

4. Lin, T.Y.: Patterns in Numerical Data: Practical Approximations to Kolmogorov
Complexity. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS,
vol. 1711, pp. 509–513. Springer, Heidelberg (1999)

5. Carraso, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS
(LNAI), vol. 862, pp. 139–152. Springer, Heidelberg (1994)

6. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guage, and Computation. Addison Wesley, Reading (2001)

7. Paek, T., Chandrasekar, R.: Windows as a Second Language: An Overview of
the Jargon Project. In: Proceedings of the First International Conference on Aug-
mented Cognition (2005)

8. Koppel, M., Argamon, S., Shimoni, A.: Automatically categorizing written texts
by author gender. Literary and Linguistic Computing 17(4), 401–412 (2002)

9. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A Fast Automaton-Based Method
for Detecting Anomalous Program Behaviors. In: Proceedings. 2001 IEEE Sympo-
sium on Security and Privacy (2001)

10. Young-Lai, M., Tompa, F.: Stochastic Grammatical Inference of Text Database
Structure. Machine Learning, 111–137 (2000)

11. Mosteller, F., Wallace, D.L.: Inference and disputed authorship: The Federalist.
Addison-Wesley, Reading (1964)

Detection of Risk Factors as Temporal Data Mining

Shoji Hirano and Shusaku Tsumoto

Department of Medical Informatics, Shimane University, School of Medicine
89-1 Enya-cho, Izumo, Shimane 693-8501, Japan

hirano@ieee.org, tsumoto@computer.org

Abstract. Hosptial information system (HIS) collects all the data from all the
branches of departments in a hospital, including laboratory tests,physiological
tests, electronic patient records. Thus, HIS can be viewed as a large heterogenous
database, which stores chronological changes in patients’ status. In this paper, we
applied trajectory mining method to the data extracted from HIS. Experimental
results demonstrated that the method could find the groups of trajectories which
reflects temporal covariance of laboratory examinations.

1 Introduction

It has passed about twenty years since clinical information are stored electronically as
a hospital information system since 1980’s. Stored data include from accounting infor-
mation to laboratory data and even patient records are now started to be accumulated: in
other words, a hospital cannot function without the information system, where almost
all the pieces of medical information are stored as multimedia databases. Especially, if
the implementation of electronic patient records is progressed into the improvement on
the efficiency of information retrieval, it may not be a dream for each patient to benefit
from the personal database with all the healthcare information, “from cradle to tomb”.
However, although the studies on electronic patient record has been progressed rapidly,
reuse of the stored data has not yet been discussed in details, except for laboratory data
and accounting information to which OLAP methodologies are applied. Even in these
databases, more intelligent techniques for reuse of the data, such as data mining and
classical statistical methods has just started to be applied from 1990’s[1,2].

In this paper, we applied trajectory mining method to the data extracted from HIS.
Experimental results demonstrated that the method could find the groups of trajectories
which reflects temporal covariance of laboratory examinations.

The remainder of this paper is organized as follows. In Section 2 we describe the
methodoology, including preprocessing of the data. In Section 3 we show experimental
results on chronic hepatitis data (albumin-platelet trajectories and cholinesterase-
platelet trajectories). Section 4 shows comparison of the clusters obtained and risk
analysis of platelet counts. Finally, Section 5 is a conclusion of this paper.

2 Methods: Overview

Figure 1 shows an overview of the whole process of clustering of trajectories. First, we
apply preprocessing of a raw temporal sequence for each variable. Secondly, a trajectory

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 143–156, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

144 S. Hirano and S. Tsumoto

Preprocessing

Segmentation and Generation of
Multiscale Trajectories

Segment Hierarchy Trace
and Matching

Calculation of Dissimilarities

Clustering of Trajectories

Fig. 1. Overview of Trajectory Clustering

of laboratory tests is calculated for each patient, segmentation technique is applied to
each sequence for generation of a segmentation hiearchy. Third, we trace segemented
sequences and search for matching between two sequences in a hiearchical way Then,
dissimilarities are calculated for matched sequences. Finally, we apply clustering to the
dissimilarities obtained.

2.1 Preprocessing

For further details on each methodology, please refer to [3,4,5].

3 Experimental Results

We applied our method to the chronic hepatitis dataset which was a common dataset
in ECML/PKDD discovery challenge 2002-2004 [6]. The dataset contained time series
laboratory examinations data collected from 771 patients of chronic hepatitis B and C.
In this work, we focused on analyzing the temporal relationships between platelet count
(PLT), albumin (ALB) and cholinesterase (CHE), that were generally used to examine
the status of liver function. Our goals were set to: (1) find groups of trajectories that
exhibit interesting patterns, and (2) analyze the relationships between these patterns
and the stage of liver fibrosis.

We selected a total of 488 cases which had valid examination results for all of PLT,
ALB, CHE and liver biopsy. Constitution of the subjects classified by virus types and
administration of interferon (IFN) was as follows. Type B: 193 cases, Type C with IFN:

Detection of Risk Factors as Temporal Data Mining 145

17 clusters solution
c1 c17

17 clusters solution
c1 c17

Fig. 2. Dendrogram for ALB-PLT tra-
jectories in Type C without IFN dataset

Table 1. Cluster constitutions of ALB-PLT tra-
jectories, stratified by fibrotic stages. Small
clusters of N < 2 were omitted.

Cluster # of Cases / Fibrotic stage Total
F0,F1 F2 F3 F4

5 0 1 0 3 4
7 3 2 2 9 16
9 6 2 0 0 8

11 7 0 0 0 7
14 2 1 0 0 3
15 17 2 7 1 27
16 1 0 1 0 2
17 20 2 1 0 23

296 cases, Type C without IFN: 99 cases. In the following sections, we mainly describe
the results about Type C without IFN cases, which contained the natural courses of Type
C viral hepatitis.

Experiments were conducted as follows. This procedure was applied separately for
ALB-PLT, CHE-PLT and ALB-CHE trajectories.

1. Select a pair of cases (patients) and calculate the dissimilarity by using the proposed
method. Apply this procedure for all pairs of cases, and construct a dissimilarity
matrix.

2. Create a dendrogram by using conventional hierarchical clustering [4] and the dis-
similarity matrix. Then perform cluster analysis.

Parameters for multiscale matching were empirically determined as follows: starting
scale = 0.5, scale interval = 0,5, number of scales = 100, weight for segment replacement
cost = 1.0. We used group average as a linkage criterion for hierarchical clustering. The
experiments were performed on a small PC cluster consisted of 8 DELL PowerEdge
1750 (Intel Xeon 2.4GHz 2way) workstations. It took about three minutes to make the
dissimilarity matrix for all cases.

Results on ALB-PLT Trajectories. Figure 2 shows the dendrogram generated from
the dataset on Type C without IFN cases. The dendrogram suggested splitting of the data
into two or three clusters; however, in order to carefully examine the data structure, we
avoided excessive merge of clusters and determined to split it into 17 clusters where
dissimilarity increased relatively largely at early stage. For each of the 8 clusters that
contained ≥ 2 cases, we classified cases according to the fibrotic stage. Table 1 shows
the summary. The leftmost column shows cluster number. The next column shows the
number of cases whose fibrotic stages were F0 or F1. The subsequent three columns
show the number of F2, F3, and F4 cases respectively. The rightmost column shows the
total number of cases in each cluster.

From Table 1, it could be recognized that the clusters can be globally classified into
one of the two categories: one containing progressed cases of liver fibrosis (clusters 5 and
7) and another containing un-progressed cases (clusters 9, 11, 14, 15, 16 and 17). This

146 S. Hirano and S. Tsumoto

Cluster 5: N=4 (0/1/0/3)

ALB

PLT

t=0

t=T

Upper Normal
(350 x103/ul)

Lower Normal
(120 x103/ul)

Upper Normal
(5.0 g/dl)

Lower Normal
(3.9 g/dl)

<Legend>

Cluster 5: N=4 (0/1/0/3)

ALB

PLT

t=0

t=T

Upper Normal
(350 x103/ul)

Lower Normal
(120 x103/ul)

Upper Normal
(5.0 g/dl)

Lower Normal
(3.9 g/dl)

<Legend>

Fig. 3. Trajectories in Cluster 5

Cluster 7: N=16 (3/2/2/9)Cluster 7: N=16 (3/2/2/9)

Fig. 4. Trajectories in Cluster 7

can be confirmed from the dendrogram in Figure 2, where these two types of clusters
appeared at the second devision from the root. This implied that the difference about
ALB and PLT might be related to the fibrotic stages.

In order to recognize the detailed characteristics of 8 clusters, we observed the fea-
ture of grouped trajectories. Figures 3-6 show the examples of grouped ALB-PLT tra-
jectories. Each quadrate region contains a trajectory of ALB-PLT values for a patient.
If the number of cases in a cluster was larger than 16, the first 16 cases w.r.t. ID number
were selected for visualization. The bottom part of Figure 3 provides the legend. The
horizontal axis represents ALB value, and the vertical axis represents PLT value. Lower
end of the normal range (ALB:3.9g/dl, PLT:120×103/ul) and Upper end of the normal
range (ALB:5.0g/dl, PLT:350 × 103/ul) were marked with blue and red short lines on
each axis respectively. Time phase on each trajectory was represented by color phase:
red represents the start of examination, and it changes toward blue as time proceeds.

Figure 3 shows cases grouped into cluster 5 which contained remarkably many F4
cases (3/4). The skewed trajectory of ALT and PLT clearly demonstrated that both val-
ues decreased from the normal range to the lower range as time proceeded, due to the
dysfunction of the liver. Cluster 7, shown in Figure 4, also contained similarly large
number of progressed cases (F4:9/16, F3:2/16) and exhibited the similar characteris-
tics, though it was relatively weaker than in cluster 5.

On the contrary, clusters that contained many un-progressed cases exhibited different
characteristics. Figure 5 shows the trajectories grouped into cluster 17, where the num-
ber of F0/F1 cases was large (20/23). Most of the trajectories moved within the normal
range, and no clear feature about time-direction dependency was observed. Figure 6
(top) shows the trajectories in cluster 11, where all of 7 cases were F0/F1. They moved
within the normal range, but the PLT range was higher than in cluster 17.

Figure 6 (bottom) shows the trajectories in cluster 14, where trajectories exhibited
skewed shapes similarly to cluster 5. But this cluster consisted of F0/F1 and F2 cases,
whereas cluster 5 contained mainly progressed cases. The reason why these cases were

Detection of Risk Factors as Temporal Data Mining 147

Cluster 17: N=23 (20/2/1/0)Cluster 17: N=23 (20/2/1/0)

Fig. 5. Trajectories in Cluster 17

Cluster 11: N=7 (7/0/0/0/)

Cluster 14: N=3 (2/1/0/0/)

Cluster 11: N=7 (7/0/0/0/)Cluster 11: N=7 (7/0/0/0/)

Cluster 14: N=3 (2/1/0/0/)Cluster 14: N=3 (2/1/0/0/)

Fig. 6. Trajectories in Cluster 11 and 14

separated into different clusters should be investigated further, but it seemed that the
difference of progress speed of liver fibrosis, represented as a velocity term, might be a
candidate cause.

Results on CHE-PLT Trajectories. Figure 7 shows the dendrogram generated from
CHE-PLT trajectories of 99 Type C without IFN cases. Similarly to the case of ALB-
PLT trajectories, we split the data into 15 clusters where dissimilarity increased largely
at early stage. Table 2 provides cluster constitution stratified by fibrotic stage. In Table
2, we could observe a clear feature about the distribution of fibrotic stages over clusters.
Clusters such as 3, 4, 6, 7 and 8 contained relatively large number of F3/F4 cases, whereas
clusters such as 9, 11, 12, 13, 14, 15 contained no F3/F4 cases. These two types of clusters
were divided at the second branch on the dendrogram; therefore it implied that, with
respect to the similarity of trajectories, the data can be globally split into two categories,
one contains the progressed cases and another contained un-progressed cases.

Now let us examine the features of trajectories grouped into each cluster. Figure
8 shows CHE-PLT trajectories grouped into cluster 3. The bottom part of the figure
provides the legend. The horizontal axis corresponds to CHE, and the vertical axis cor-
responds to PLT. This cluster contained four cases: one F3 and three F4. The trajectories
settled around the lower bounds of the normal range for PLT (120×103/ul), and below
the lower bounds of CHE (180 IU/l), with global direction toward lower values. This
meant that, in these cases, CHE deviated from normal range earlier than PLT.

Figure 9 shows trajectories grouped into cluster 4, which contained nine F3/F4 cases
and three other cases. Trajectories in this cluster exhibited interesting characteristics.
First, they had very clear descending shapes; in contrast to trajectories in other clusters
in which trajectories changed directions frequently and largely, they moved toward the
left corner with little directional changes. Second, most of the trajectories settled below
the normal bound of PLT whereas their CHE values ranged within normal range at early
phase. This meant that, in these cases, CHE deviated from normal range later than PLT.

148 S. Hirano and S. Tsumoto

15 clusters solution

c1 c15

15 clusters solution

c1 c15

Fig. 7. Dendrogram for Type C without
IFN dataset (CHE-PLT trajectories)

Table 2. Cluster constitutions of CHE-PLT tra-
jectories, stratified by fibrotic stages. Small
clusters of N < 2 were omitted.

Cluster # of Cases / Fibrotic stage Total
F0,F1 F2 F3 F4

3 0 0 1 3 4
4 2 1 2 7 12
6 3 0 1 2 6
7 5 2 3 3 13
8 9 8 4 2 23
9 1 2 0 0 3

11 4 2 0 0 6
12 2 0 1 0 3
13 5 0 0 0 5
14 8 0 0 0 8
15 12 0 0 0 12

Figure 10 shows trajectories grouped into cluster 6, which contained three F3/F4
cases and three other cases. Trajectories in this cluster exhibited descending shapes
similarly to the cases in cluster 4. The average levels of PLT were higher than those in
cluster 4, and did not largely deviated from the normal range. CHE remained within the
normal range for most of the observations.

Figure 11 shows trajectories grouped into cluster 15, which contained twelve F0/F1
cases and no other cases. In contrast to the high stage cases mentioned above, trajec-
tories settled within the normal ranges for both CHE and PLT and did not exhibit any
remarkable features about their directions.

These results suggested the followings about the CHE-PLT trajectories on type C
without IFN cases used in this experiment: (1) They could be globally divided into two
categories, one containing high-stage cases and another containing low-stage cases, (2)
trajectories in some high-stage clusters exhibited very clear descending shapes. (3) in a
group containing descending trajectories, PLT deviated from normal range faster than
CHE, however, in another group containing descending trajectories, PLT deviated from
normal range later than CHE.

Results on ALB-CHE Trajectories. Figure 12 shows the dendrogram generated from
the dataset on Type C without IFN cases. The dendrogram suggested splitting of the data
into two or three clusters; however, in order to carefully examine the data structure, we
avoided excessive merge of clusters and determined to split it into 15 clusters where
dissimilarity increased relatively largely at early stage. For each of the 8 clusters that
contained ≥ 2 cases, we classified cases according to the fibrotic stage. Table 1 shows
the summary. The leftmost column shows cluster number. The next column shows the
number of cases whose fibrotic stages were F0 or F1. The subsequent three columns
show the number of F2, F3, and F4 cases respectively. The rightmost column shows the
total number of cases in each cluster.

Detection of Risk Factors as Temporal Data Mining 149

Cluster 3: N=4 (0/0/1/3)

CHE

PLT

t=0

t=T

Upper Normal
(350 x103/ul)

Lower Normal
(120 x103/ul)

Upper Normal
(430 IU/l)

Lower Normal
(180 IU/l)

<Legend>

Cluster 3: N=4 (0/0/1/3)

CHE

PLT

t=0

t=T

Upper Normal
(350 x103/ul)

Lower Normal
(120 x103/ul)

Upper Normal
(430 IU/l)

Lower Normal
(180 IU/l)

<Legend>

Fig. 8. Trajectories in Cluster 3

Cluster 4: N=12 (2/1/2/7)Cluster 4: N=12 (2/1/2/7)

Fig. 9. Trajectories in Cluster 4

Cluster 6: N=6 (3/0/1/2)Cluster 6: N=6 (3/0/1/2)

Fig. 10. Trajectories in Cluster 6

Cluster 15: N=12 (12/0/0/0)Cluster 15: N=12 (12/0/0/0)

Fig. 11. Trajectories in Cluster 15

Fig. 12. Dendrogram for ALB-CHE tra-
jectories in Type C without IFN dataset

Table 3. Cluster constitutions of ALB-CHE
trajectories, stratified by fibrotic stages. Small
clusters of N < 2 were omitted.

Cluster # of Cases / Fibrotic stage Total
F0,F1 F2 F3 F4

2 0 0 0 2 2
4 0 0 0 3 3
5 0 0 1 1 2
6 0 0 0 4 4
7 3 1 2 5 11
8 1 1 0 0 2
9 2 0 0 0 2

11 22 9 8 1 40
13 2 2 0 0 4
14 3 0 0 0 3
15 19 2 0 1 22

150 S. Hirano and S. Tsumoto

Fig. 13. Trajectories in Cluster 4 Fig. 14. Trajectories in Cluster 6

Fig. 15. Trajectories in Cluster 7 Fig. 16. Trajectories in Cluster 11

From Table 3, it could be recognized that the clusters can be globally classified into
one of the two categories: one containing progressed cases of liver fibrosis (clusters 2,
4, 5, 6and 7) and another containing un-progressed cases (clusters 8, 9, 11, 13, 14 and
15). This can be confirmed from the dendrogram in Figure 12, where these two types of
clusters appeared at the second devision from the root. This implied that the difference
about ALB and PLT might be related to the fibrotic stages.

In order to recognize the detailed characteristics of 8 clusters, we observed the fea-
ture of grouped trajectories. Figures 3-6 show the examples of grouped ALB-PLT tra-
jectories. Each quadrate region contains a trajectory of ALB-PLT values for a patient.
If the number of cases in a cluster was larger than 16, the first 16 cases w.r.t. ID num-
ber were selected for visualization. The bottom part of Figure 3 provides the legend.
The horizontal axis represents ALB value, and the vertical axis represents CHE value.

Detection of Risk Factors as Temporal Data Mining 151

Fig. 17. Trajectories in Cluster 11(2) Fig. 18. Trajectories in Cluster 15

Time phase on each trajectory was represented by color phase: red represents the start
of examination, and it changes toward blue as time proceeds.

Figures 13 and 14 shows cases grouped into cluster 4 and 6 which contained only
F4 cases (3 and 4). The skewed trajectory of ALT and CHE clearly demonstrated that
both values decreased from the normal range to the lower range as time proceeded, due
to the dysfunction of the liver. Cluster 7, shown in Figure 15, also contained similarly
large number of progressed cases (F1: 3, F2: 1, F3: 2, F4: 5) and exhibited the similar
characteristics, though it was relatively weaker than in cluster 4 and 6.

On the contrary, clusters that contained many un-progressed cases exhibited different
characteristics. Figures 16 and 17 show the trajectories grouped into cluster 11, where
the number of F0/F1 cases was large (31/40). Most of the trajectories moved within
the normal range, but some decreasing cases were included in this cluster, and no clear
feature about time-direction dependency was observed. Figure 18 shows the trajectories
in cluster 15, where 19 of 22 cases were F0/F1 and the sequences moved within the
normal range.

In summary, the degree of covariance between ALB and CHE is higher than those
between ALB and PLT or CHE and PLT. Samples are better split into F4-dominant
cases and F0/F1-dominant cases.

4 Discussion: Risk Analysis

4.1 Comparison of Clustering Results

Table 4 compares the characteristics of clustering results. As shown in the table, it seems
that a combination of ALB and CHE generates a slightly better results than other pairs
with respect to the degree of seperation of fibrotic stages.

Table 5 shows the contingency table between CHE-PLT and ALB-PLT whose exam-
ples belong to Cluster No.7 in ALB-CHE. Compared with the results in Table 2 and

152 S. Hirano and S. Tsumoto

Table 4. Comparison of Clustering Results

Pair #Clusters #Examples Most Impurity Clusters
> 1 # F1 F2 F3 F4

ALB-PLT 17 8 16 3 2 2 9
CHE-PLT 15 11 13 5 2 3 3
ALB-CHE 15 11 11 3 1 2 5

Table 5. Contingency Table of Cluster No.7 in ALB-CHE

ALB-PLT
No.7 No.14 No.15 Total

CHE-PLT No. 4 7 1 0 8
No. 6 2 0 0 2
No. 7 0 0 1 1
Total 9 1 1 11

Table 1, these cases covers impure clusters in CHE-PLT and ALB-PLT. This observa-
tion shows that this cluster should be carefully examined by additional information,
since the cluster includes several F0/F1 cases whose PLT is decreasing.

4.2 Risk Analysis for Liver Fibrosis Based on the PLT Counts

Determination of the stage of liver fibrosis is usually done with liver biopsy, which is
an invasive examination. In recent years, platelet count has been receiving considerable
attention as an non-invasive index reflecting the liver dysfunctions, which may be asso-
ciated with the fibrotic stage in chronic hepatitis. Several researchers has reported the
relationships between platelet counts and fibrotic stages. For example, Matsumura et al.
[7] showed the data that F1: 20.3 ± 5.2(×104μl), F2: 16.0 ± 4.9, F3: 13.0 ± 4.0, F4:
11.8±4.1 and in LC 11.8±4.1. Pohl et al. [8] proposed combination of AST/ALT with
PLT as a predictor of fibrotic stages.

Matsumura et al. [7] also reported the progress speed of liver fibrosis examined on
the patients of Type C chronic hepatitis in Japan. They used the date of blood trans-
plants, which could be associated with F0, and the date and results of liver biopsy for
calculating the progress speed. The results was about 0.12 ± 0.15 stage/year.

The goal of our study is to analyze, without information about blood transplants, the
progress speed of liver fibrosis. As a preliminary stage, we attempted to calculate (1)
years required for reaching F4 stage, and (2) years elapsed between stages, by combin-
ing the fibrotic stages predicted from PLT level and observed by liver biopsy.

Here we made an assumption: “If the PLT level of a patient is continuously lower
than the normal range for at least 6 months, and after that never keeps normal range
more than 6 months, then the patient is F4.” Based on this assumption, we first examined
whether and when a patient became F4. Then by subtracting dates and stages from those
obtained by biopsy, we calculated the elapsed years.

Detection of Risk Factors as Temporal Data Mining 153

Table 6. Result of sequence classification. Judging criteria for declination are: (1) PLT becomes
continuously lower than the normal range over 6 months, (2) Recovered PLT level cannot contin-
uously maintain the normal range for 6 months. Both criteria should be satisfied.

No Short Inhomo- Available Total
biopsy geneous Declinated Normal

222 82 28 97 291 720

As a pre-process, we selected the cases to analyze according to the following
procedure.

1. Exclude cases that meet any of the following three conditions from analysis: (1)
No biopsy - biopsy information is not available. (2) Short sequence - the number of
examinations is less than 2 or the duration of examination is shorter than 2 years.
(3) Inhomogeneous sequence - Deviation of examination intervals is larger than 1
year.

2. Rearrange the sampling intervals of each sequence into one-week. The starting date
of re-sampling is selected independently to each case, based on two criteria that (1)
it is the day of a week on which the patient most frequently received examina-
tions, and (2) it is the closest date to the first examination. If examination data were
missing, we inserted a predicted value by linearly interpolating nearest examination
results. In the following procedures we used these rearranged sequences.

3. Smooth each sequence in order to remove short-term changes. We performed con-
volution with discrete Gaussian kernel with support width of 6 month (26 weeks;
σ = 2.8).

4. From the head of a sequence, search the first point that satisfies both of the follow-
ing two conditions.
(a) PLT level becomes continuously lower than the normal range over the next

6 months. Duration of IFN therapy is not included therein as it may induces
short-term decrease of PLT.

(b) Recovered PLT level cannot continuously maintain the normal range for 6
months.

If found, let the detected point the date of declination from normal range. Oth-
erwise, the case was considered to keep normal PLT range and removed from
analysis.

Table 6 shows the result of sequence classification by the above four procedure. A
total of 97 cases classified as ’declinated’ were the subject of analysis.

Table 7 summarizes calculated years for reaching F4 (first examination date basis),
for the 97 declinated cases in Table 6, stratified by the virus types and fibrotic stage.
Note that years=0 if the date of declination was earlier than the date of first examination.
For each of type B, C with IFN and C without IFN groups, we performed statistical tests
(ANOVA) aiming at detecting differences of mean years for reaching F4 with respect
to the biopsy-based fibrotic stages. The result of Type C IFN was p = 0.012(< 0.05),
indicating that significant differences of years exist among fibrotic stages. However,
this is primarily due to one exceptionally long case in F0; tests after removing this
case yielded p = 0.291, indicating that there was no significant difference on the years

154 S. Hirano and S. Tsumoto

Table 7. Years for reaching F4 (First-exam basis) stratified by virus types and fibrotic stages.
Summary for 97 declination cases in Table 6.*

Type Fibrotic Stage Cases Years for reaching F4,
first-exam basis (years)
Mean Median SD

B 1 5 2.36 0 3.53
2 9 5.04 1.79 6.29
3 8 2.44 0.66 3.62
4 9 1.43 0 2.56

subtotal 31 2.89 0.56 4.38
C IFN 0 1 13.08 13.08 –

1 8 4.05 3.87 3.15
2 6 3.89 3.70 3.90
3 10 2.26 2.30 2.43
4 15 1.84 0 3.02

subtotal 40 2.98 2.32 3.46
C w/o IFN 1 7 4.29 4.50 3.52

2 2 4.05 4.05 5.72
3 5 2.49 0.12 3.64
4 12 2.21 0 3.15

subtotal 26 2.97 0.65 3.42
Total 97 2.95 1.19 3.73

*Fibrotic stages in the second column are based on biopsy. Years for reaching F4 was
years from first exam to the date of declination under assumption that the fibrotic stage
at the date of declination was F4. If the date of declination was the same as or before
the first exam, years were treated as 0.

for reaching F4 among fibrotic stages. Results for Type B and Type C w/o IFN were
p = 0.357 and p = 0.613 respectively, indicating no significant differences. Kruscal-
Wallis tests yielded the same conclusion. Between-group comparison of Type B, Type
C with IFN and Type C w/o IFN groups was p = 0.960.

Years for reaching F4 in Table 7 were years between the first dates of PLT exam-
inations and the date of PLT declination. Therein we assume that the fibrotic stage at
first examination is the same as that at first biopsy. However, the date of first biopsy and
the date of first PLT examination are generally different; in some cases they are several
years apart. This implies that the stages might also be different. Therefore, we calcu-
lated years for reaching F4 biopsy basis, which is years from the date of first biopsy to
the date of PLT declination. Additionally, based on the assumption that the stage at PLT
declination should be F4, we calculated elapsed years between stages by the following
formula: (date of declination - date of first biopsy) / (4 - fibrotic stage at biopsy). If dec-
lination occurred before the first biopsy, years were treated as 0. Table 8 summarizes
the results.

As we did in the first-exam basis results, for each of type B, C with IFN and C
without IFN groups, we performed statistical tests with ANOVA aiming at detecting
differences of mean years for reaching F4 w.r.t. the fibrotic stages. The results were
p = 0.421, 0.020(< 0.05), 0.119 for each group respectively. In Type C IFN there
appeared significant difference among stages, however, this was primarily due to one

Detection of Risk Factors as Temporal Data Mining 155

Table 8. Years for reaching F4 (biopsy basis) and years between stages stratified by virus type
and fibrotic stages. Summary for 97 declination cases in Table 6.**

Type Fibrotic Cases Years for reaching F4, Years between stages
Stage biopsy basis (years) (years/stage)

Mean Median SD Mean Median SD

B 1 5 3.70 3.71 3.46 1.23 1.24 1.51
2 9 4.26 2.85 5.45 2.13 1.42 2.73
3 8 2.12 0.22 3.72 2.12 0.22 3.72
4 9 1.31 0 2.54 — — —

subtotal 31 2.77 0.52 4.00 1.92 0.62 2.80
C IFN 0 1 13.08 13.08 — 3.27 3.27 —

1 8 2.44 2.38 2.36 0.81 0.79 0.79
2 6 2.54 0.83 3.42 1.27 0.41 1.71
3 10 1.99 2.14 2.05 1.99 2.14 2.05
4 15 2.01 0 3.51 — — —

subtotal 40 2.44 1.18 3.30 1.49 1.07 1.66
C w/o IFN 1 7 1.47 1.17 1.76 0.49 0.39 0.58

2 2 3.70 3.70 5.24 1.85 1.85 2.62
3 5 2.27 0 3.54 2.27 0 3.54
4 12 0.26 0 0.54 — — —

subtotal 26 1.23 0 2.27 1.32 0.20 2.30
Total 97 2.22 0.44 3.34 1.6 0.80 2.25

**Fibrotic stages in the second column are based on biopsy. Years for reaching F4 were
years from first biopsy to the date of declination under assumption that the fibrotic stage
at the date of declination was F4. If the date of declination was the same as or before
the first biopsy, years were treated as 0. Years between stages were calculated by (years
for reaching F4)/(4− stage at biopsy).

exceptionally long case in F0; tests after removing this case yielded p = 0.970, indi-
cating that there was no significant difference on the years for reaching F4 even in the
biopsy-date basis measurement. Kruscal-Wallis tests yielded the same conclusion.

Similarity, for each of type B, C with IFN and C without IFN groups, we performed
statistical tests with ANOVA aiming at detecting differences of mean elapsed years
between stages w.r.t. the fibrotic stages. In this test we removed F4 cases as we could not
measure the elapsed years. For the same reason, we excluded F4 cases for calculating
values such as mean and SD in Table 8. The results of ANOVA were p = 0.836, 0.425,
0.340, indicating that there was no significant differences among stages, including F0,
for all of the three groups.

In summary, the results suggests that there were no significant difference of years for
reaching F4 and of elapsed years between stages, with respect to fibrotic stages, virus
types and administration of IFN. However, it is interesting that the elapsed years be-
tween stages were 1-2 years/stage in almost all groups. Let us simply invert it into
progress speed for comparison with other resources. The result is about 1/1.32 =
0.76stage/year for example of Type C w/o IFN cases. This is faster than in [7] (0.12 ±
0.15 stage/year), implying that the liver fibrosis might proceed faster.

It should be noted that the results of analysis should not be generalized because (1)
we assume that a patient can be regarded as F4 when PLT level continuously declinates

156 S. Hirano and S. Tsumoto

from the normal range over long time, (2) we selected only exacerbating cases in which
PLT continuously decreased, and (3) we did not take into account patient background
information such as history of drinking. However, we consider that our approach of
measuring elapsed years between stages by combining fibrotic stages obtained from
biopsy and inferred from PLT level lead to find interesting results.

5 Conclusions

In this paper we propose a trajectory clustering method as multivariate temporal data
mining and shows its application to data on chronic hepatits. Our method consists of a
two-stage approach. Firstly, it compares two trajectories based on their structural simi-
larity and determines the best correspondence of partial trajectories. Next, it calculates
the value-based dissimilarity for the all pairs of matched segments and outputs the total
sum as dissimilarity of the two trajectories.

Clustering experiments on the chronic hepatitis dataset yielded several interesting
results. First, the clusters constructed with respect to the similarity of trajectories well
matched with the distribution of fibrotic stages, especially with the distribution of high-
stage cases and low-stage cases, for ALB-PLT, CHE-PLT and ALB-CHE trajectories.
Among three combinations, ALB-CHE shows the highest degree of covariance, which
means that CHE can be used to evaluate the trends of ALB.

Our next step is to extend bivariate trajectory analysis into multivariate one. From
the viewpoint of medical application, our challenging issue will be to find a variable
whose chronological trend is fitted to PLT.

References

1. Tsumoto, S.: Knowledge discovery in clinical databases and evaluation of discovered knowl-
edge in outpatient clinic. Information Sciences, 125–137 (2000)

2. Tsumoto, S.: G5: Data mining in medicine. In: Kloesgen, W., Zytkow, J. (eds.) Handbook of
Data Mining and Knowledge Discovery, pp. 798–807. Oxford University Press, Oxford (2001)

3. Hirano, S.: Tsumoto, S.: Multiscale comparison and grouping of trajectories on hospital labo-
ratory examinations. Jounral of Knowledge and Information Systems (submitted, 2009)

4. Everitt, B.S., Landau, S., Leese, M.: Cluster Analysis, 4th edn. Arnold Publishers (2001)
5. Hirano, S., Tsumoto, S.: An indiscernibility-based clustering method with iterative refinement

of equivalence relations - rough clustering -. J. Advanced Computational Intelligence and
Intelligent Informatics 7, 169–177 (2003)

6. http://lisp.vse.cz/challenge/ (2004)
7. Matsumura, H., Moriyama, M., Goto, I., Tanaka, N., Okubo, H., Arakawa, Y.: Natural course

of progression of liver fibrosis in patients with chronic liver disease type c in japan - a study
of 527 patients at one establishment in japan. J. Viral. Hepat. 7, 375–381 (2000)

8. Pohl, A., Behling, C., Oliver, D., Kilani, M., Monson, P., Hassanein, T.: Serum aminotrans-
ferase levels and platelet counts as predictors of degree of fibrosis in chronic hepatitis c virus
infection. Am. J. Gastroenterol 96, 3142–3146 (2001)

http://lisp.vse.cz/challenge/

Two-Phased Active Support Kernel Machine
Learning

Yasusi Sinohara1 and Atsuhiro Takasu2

1 Central Research Institute of Electric Power Industry,
2-11-1 Iwado-kita, Komae-shi, Tokyo 201-8511, Japan

sinohara@criepi.denken.or.jp
2 National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
takasu@nii.ac.jp

Abstract. Since SVMs have met with significant success in numerous
real-world learning, SVM-based active learning has been proposed in
the active learning context and it has been successfully applied in the
domains like document classification, in which SVMs using linear kernel
are known to be effective for the task. However, it is difficult to apply
SVM-based active learning to general domains because the kernel used
in SVMs should be selected properly before the active learning process
but good kernels for the target task is usually unknown. If the pre-
selected kernel is inadequate for the target data, both the active learning
process and the learned SVM have poor performance. Therefore, new
active learning methods are required which effectively find an adequate
kernel for the target data as well as the labels of unknown samples in
the active learning process.

In this paper, we propose a two-phased SKM-based active learning
method for the purpose. By experiments, we show that the proposed
SKM-based active learning method has quick response suited to inter-
action with human experts and can find an appropriate kernel among
linear combinations of given multiple kernels.

1 Introduction

Support vector machines (SVMs) are kernel-based learning machines originally
developed by Vapnik and co-workers [9]. Since they have met with significant
success in batch learning of numerous real-world tasks, several researchers [2,4,8]
have independently proposed the use of SVMs in active learning context, that is,
situations in which unlabeled data is abundant but labeling data is expensive.
The active linear-SVM learning has been successfully applied in the domain of
text classification. But it can be an exceptional domain and it is usually diffi-
cult to apply active SVM learning to general problems because of the following
reason.

In active learning, one kernel (specified by its kernel-type and kernel pa-
rameters) should be selected before active learning and if the selected kernel

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 157–168, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

158 Y. Sinohara and A. Takasu

is inadequate for the target problem, the performances of both the active learn-
ing process and the learned SVM greatly decrease. However, the kernel good
for learning the target problem is usually unknown before active learning. Ex-
ceptionally in the domain of text classification, the linear kernel can be selected
because the linear kernel is known to be effective.

To overcome the issue of kernel pre-selection, we first propose the use of
support kernel machines (SKMs) instead of SVMs in active learning. Because
solving SKMs is more time-consuming than solving SVMs, simple use of SKMs
takes too much response time, i.e., the time to select an unlabeled sample for next
labeling after one labeling. To reduce the response time important to interact
with human experts, we further propose a two-phased active SKM learning which
has both high responsiveness while active learning and the accurate classification
power after learning.

2 Support Kernel Machines

Both SVM[9] and SKM[1] learn a separator f(x) and predict the label y ∈ {±1}
of input x by y = sign(f(x)). In this section, we introduce SVMs and SKMs
in view of the radius-margin bound R2/M2 closely related to the generalization
error of SVMs [9].

2.1 Support Vector Machines (SVMs)

For a given set of training samples {(xi, yi)}i=1,...,N and a given (non-linear)
feature mapping φ(x) or kernel K(x, z) = φ(x)�φ(z), the SVM finds a large
margin separator f(x) = w�φ(x) + b by solving the following optimization
problem.

min
w,b,ξi

1
2 R2 ‖w‖2 + C

∑
i ξi subject to yi(w�φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0 (1)

R is the radius of the smallest hyper-sphere covering the feature vectors {φ(xi)}
and M = 1/‖w‖ is called the margin, which is the minimum of the distances
from the consistently labeled samples to the separating plane. The first term is
for minimization of the radius-margin bound R2/M2 = R2 ‖w‖2 and the sec-
ond term is for minimization of errors ξi and the cost parameter C controls
their trade-off. We shall henceforth refer to the optimal objective function value
(1) as the error index. By duality, the following maxα S(α) equals to the error
index.

max
αi∈[Ai,Bi]∑

αi=0

∑

i

αiyi − 1
2

∑

i,j

αiαj
K(xi, xj)

R2

︸ ︷︷ ︸
S(α)

(2)

where [Ai, Bi] = [min(yi C, 0), max(yi C, 0)]

Two-Phased Active Support Kernel Machine Learning 159

By the optimal α∗, the optimal w∗ =
∑

α∗
i

φ(xi)
R2 and f(x) =

∑
α∗

i
K(xi,x)

R2 + b.
The samples whose α∗

i �= 0 are called support vectors.

2.2 Support Kernel Machines (SKMs)

In contrast to the SVM which uses a given single kernel K(x, z), the SKM finds
the SVM with the least error index whose kernel is a linear combination of given
M kernels K(x, z; β) =

∑M
k=1 βk Kk(x, z)/R2

k. We refer Kk(x, z) = φk(x)�φk(z)
as the k-th component kernel and φk(x) as the k-th feature mapping. Rk and
ck is the radius and the center of the smallest sphere covering k-the feature
space {φk(xi)} respectively. βk is the fractional rate for the k-th kernel (βk ≥ 0,∑

βk = 1). We also refer K(x, z; β) as a composite kernel and its corresponding
feature vector φ(x; β) is φ(x; β) = (. . . ,

√
βkφk(x)/Rk, . . .).

‖φ(xi; β) − c(β)‖2 =
∑

k βk
‖φk(x)−ck‖2

R2
k

≤ 1 when c(β) = (. . . ,
√

βk ck/Rk, . . .)
and the equality holds when β is a unit vector. Hence approximating the radius
of the smallest sphere covering {φ(xi; β)} by 1 for all β, the SKM solves the
following min-max problem (3) (minimization of the error index of the SVM
with kernel K(·, ·; β)) or the dual max-min problem (4) [1].

min
βk≥0∑

βk=1

max
αi∈[Ai,Bi]∑

αi=0

S(α; β) (3)

max
αi∈[Ai,Bi]∑

αi=0

min
βk≥0∑

βk=1

S(α; β) (4)

where S(α; β) =
∑

i

αiyi − 1
2

∑

i,j

αiαjK(xi, xj ; β) =
∑

k

βkSk(α)

Sk(α) =
∑

i

αiyi − 1
2

∑

i,j

αiαj
Kk(xi, xj)

R2
k

Sk(α) is the objective function of the SVM with the k-th component kernel.
SKM problem (3),(4) is an SVM problem w.r.t. α and a linear programming

(LP) w.r.t. β and hence the optimal α∗,β∗ are sparse. The samples whose α∗
i �= 0

and the kernels whose β∗
k > 0 are called the support vectors and the support

kernels respectively. The optimal separator f(x) =
∑

k β∗
k

∑
i α∗

i
Kk(xi,x)

R2
k

+ b.
Thus, SKM can extract only critical samples and kernels for classification from
given samples and component kernels.

Because S(α∗; β∗)=
∑

k βk Sk(α∗)=mink Sk(α∗) 1 and Sk(α∗) ≤ maxα Sk(α),
the error index of the SKM is less than that of any SVM with a component
kernel. Consequently the SKM can be expected to have higher precision than
the SVM with any component kernel but there remain possibilities that the
precision of an SVM with some single component kernel exceeds than that of
the SKM because the SKM minimizes the error index but not the generalization
error itself.
1 S(α∗; β∗) = maxα mink Sk(α) = mink Sk(α∗) because the inside of (4) is the LP-

formulation of mink Sk(α). β∗ can be determined because it satisfies
∑

β∗Sk(α) ≤
S(α∗; β∗) for all α.

160 Y. Sinohara and A. Takasu

2.3 Batch Solution Algorithm of SKM

SKM problem (3) is equivalent to the following semi-infinite LP (SKM-ILP).

min
θ,β≥0∑
k βk=1

θ s.t.
∑

k βkSk(α) ≤ θ for all α ∈ {α|αi ∈ [Ai, Bi],
∑

i αi = 0} (5)

SKM-ILP can be solved by repeating the following steps starting from the
initial constraint set CS = {βk ≥ 0,

∑
k βk = 1} and some α0,β0 [6].

S1. (approximate SVM solution) find αt s.t. S(αt; βt−1) > S(αt−1; βt−1).
S2. (update constraints) add constraint

∑
k βkSk(αt) ≤ θ to the constraint set

CS of LP.
S3. (LP) get βt by solving the LP problem min(θ,β)∈CS θ.

The tightest constraint CS for βt is obtained when αt is the exact SVM solution
α = argmaxS(α; βt−1). The optimal SKM solution (α∗, β∗) is obtained when
θt
0 = maxS(α; βt−1) becomes θt.

3 SKM-Based Active Learning Algorithm

3.1 Issue of Kernel Selection in Active SVM Learning

The active SVM learning algorithm is as follows:
1: specify a kernel K(·, ·).
2: specify an initial set of labeled samples L containing at least one positive

and one negative sample and an initial set of unlabeled samples U .
3: while |L| ≤ N do
4: obtain the optimal SVM solution α∗ and the optimal f(x) using L.
5: select an unlabeled sample i by sampling strategy SS based on f(x) and

obtain its label yi from an oracle (human expert).
6: (L, U) ← (L ∪ {i}, U − {i}).
7: end while

We use the popular MARGIN strategy (i = argmini∈U |f(xi)|) as sampling strat-
egy SS.

In active SVM learning, the selection of kernel K(·, ·) has great impact on
the performance of both the active learning process and the learned SVM. For
example, consider the case that many samples are uniformly scattered in a square
and the samples within a circle covering less than a half of the square are labeled
as +1 and as −1 otherwise. In the active learning, we initially knows only the all
inputs {xi} and the labels {yi} of the small initial L. But i from this knowledge,
t is usually impossible to guess the shape of the separating boundary and hence
to select a proper kernel. In this example, the non-homogeneous quadratic kernel
(x�z +1)2 is a good choice and if we select this kernel, the active SVM proceeds
effectively and the learned SVM has an almost exact separating boundary. But
if we select a wrong kernel which cannot express the circle, for example, the

Two-Phased Active Support Kernel Machine Learning 161

linear kernel (x� z), no consistent separating boundary exists and the optimal
separator f(x) = −1 whose error rate is the area ratio r of the circle to the
square. Thus after several sampling in the active learning, f(x) becomes −1 and
the separating boundary vanishes and the error rate stays at the area ratio r
after that. Therefore the active learning process as well as the learned SVM has
poor performance.

As shown in this illustrative example, it is impossible to select the kernel good
for active SVM learning before learning without prior knowledge and the selec-
tion of improper kernel causes great decrease of performances in active learning.

3.2 Basic Active SKM Learning Algorithm

To solve the above difficulty of pre-selection of proper kernels, we propose the
use of SKMs instead of SVMs in active learning.

The basic active SKM learning algorithm differs only in two points from active
SVM learning algorithm in 3.1. In line 1, component kernels {Kk(·, ·)}k=1,...,M

is specified in stead of K(·, ·) and in line 4, f(x) is obtained from SKM solution
(α∗, β∗) in stead of SVM solution α∗.

This basic active SKM learning algorithm automatically finds a composite
kernel K(·, ·; β) fitting to the current labeled data L and forms a separator f(x).
There remain the probabilities that the separating boundary vanishes in the
middle of active learning but such possibilities are greatly reduced because all
the SVMs with a component kernel cannot form any separating boundary in
such case.

However, it takes much time to obtain the optimal (α∗, β∗) because SKM is
solved by the repetition of SVM and LP and the computation of the composite
kernel takes M times of the computation of a single kernel as mentioned in 2.3.

Therefore, the basic active SKM learning algorithm takes too much response
time to select the next sample for labeling after one labeling and is inadequate
for the active learning in interactive environments.

3.3 Twho-Phased Active SKM Learning Algorithm

For the active learning in interactive environments, we propose a two-phased ac-
tive SKM learning algorithm depicted in Algorithm 1 and 2. We use the following
approaches.

– follow the SKM-ILP algorithm in 2.3 basically.
– reduce the number of evaluations of f(x) used in MARGIN strategy by a

randomized approximation algorithm for maximization.
– use an approximate solution αt of the SVM problem maxα S(α; βt−1) in

active learning phase to achieve responsiveness
– optimize the SKM problem completely after active learning to achieve accu-

rate classification.

162 Y. Sinohara and A. Takasu

Algorithm 1. Update Function of SVM’s solution α

function update(α, g[k], β, α-mode,L)
if α-mode = full then

//SVM solution
repeat

(α, g[k])← update(α, g[k], β, wss2,L).
gs ←∑

βk g[k]s,∀s ∈ L.
(i, j)← (argmin{gs|αs > As, s ∈ L}, argmax{gs|αs < Bs, s ∈ L})

until (gi − gj ≤ τ)
else

gs ←∑
βk g[k]s,∀s ∈ L.

(i, j)← (argmin{gs|αs > As, s ∈ L}, argmax{gs|αs < Bs, s ∈ L})
if gi − gj > τ then

if α-mode = wss1 then
λ← argmax{S(α + λ (ei − ej), β)|α + λ(ei − ej) ∈ [A, B], λ > 0}.

else if α-mode =wss2 then
(λ, j)← argmax{S(α + λ (ei − ep), β)|α + λ(ei − ep) ∈ [A, B], λ > 0, p ∈ L}.

end if
α← α + λ(ei − ej).
g[k]s ← g[k]s − λ (Kk(xi, xs)−Kk(xj , xs)), ∀s ∈ L, k = 1, . . . , M .
gs ←∑

k βkg[k]s ∀s ∈ L.
(i, j)← (argmin{gs|αs > As, s ∈ L}, argmax{gs|αs < Bs, s ∈ L})

end if
end if
return (α, g[k]).

Reduction of the Number of Evaluations of f(x) in Sampling. To se-
lect the best sample using MARGIN strategy in the select function in line 11
in Algorithm 2, we need to evaluate f(xi) of all unlabeled samples xi ∈ UD
However, when the number of unlabeled samples |U| is large, these evaluations
take very long time. To keep the system’s responsiveness, we use a random-
ized approximation algorithm for minimization. We select the best sample in
randomly selected n samples instead of all unlabeled samples. The probability
whose the minimum of the random n samples is less than the 100 × p-percentile
of {f(xi)}i∈U is 1 − (1 − p)n. For example, the probability that the minimum
under the 5-percentile is about 92% (= 1 − 0.9550) and the probability that the
minimum under the 10-percentile is about 99.5% (= 1 − 0.9050). Thus we can
select a nearly optimal sample within a constant time without depending on the
number of unlabeled samples |U|.

Approximation Methods of SVM Solutions. The update function (Al-
gorithm. 1) obtains an approximate solution αnew of the SVM problem
maxα S(α; β) satisfying S(αnew; β) > S(α; β) according to the given approx-
imation mode α-mode. There are three approximation modes full, wss1 and
wss2. We use wss1- or wss2-mode in active learning phase and use full-mode in
complete optimization phase. τ controls the level of suboptimality of the solution
in ‘full’.

Two-Phased Active Support Kernel Machine Learning 163

Algorithm 2. Two-pahsed Active SKM (toplevel)
1: function two-phased-SKM(L,U , {(xi, yi)})

//Initialize t, constraint set CS, kernel weight β
2: t← 0. CS ← {βk ≥ 0,

∑
βk = 1}. β0 ← (1/M, · · · , 1/M).

//Learn the initial labeled samples L using kernel K(·, ·; β0).
3: L0← {}.
4: for all s ∈ L do
5: L0← L0 ∪ {s}. α0

s ← 0.
6: g0

[k]s ← ys −∑
i∈L0 α0

i K(xi, xs; β0).
7: (α0, g0

[k])← update(α0, g0
[k], β

0, α-mode,L0).
8: end for

//Active Learning Phase
9: repeat

10: bt ← intercept(gt
[k], β

t,L)
11: it+1 ← select(αt, βt, bt,U). //MARGIN strategy
12: (L,U)← (L ∪ {iit+1},U − {it+1}).
13: g[k]it+1 ← yit+1 −

∑
i∈L αi K(xi, xit+1 ; βt).

14: repeat
15: t← t + 1.

//appriximate SVM solution αt

16: (αt, gt
[k])← update(αt−1, gt−1

[k] , βt−1, α-mode,L).
17: St

k ← Sk(αt), k = 1, . . . , M
18: θt

0 ←
∑

βt−1
k St

k.
19: CS ← CS ∪ {∑k βkSt

k ≤ θ}.
//LP’s solution θt = S(αt; βt) ≤ θt

0

20: (θt, βt)← argmin{θ|(θ, β) ∈ CS}.
21: until (β-mode = once) or (θt

0 > 0 and |1− θt/θt
0| ≤ ε1)

22: until |L| ≥ N
//Complete Optimization Phase

23: repeat
24: t← t + 1.

//SVM solution αt = argmax S(α; βt−1)
25: (αt, gt

[k])← update(αt−1, gt−1
[k] , βt−1, full,L).

26: St
k ← Sk(αt), k = 1, · · · , M

27: θt
0 ←

∑
βt−1

k St
k. //θt

0 = S(αt; βt−1)
28: CS ← CS ∪ {∑k βkSt

k ≤ θ}.
//LP solution θt = S(αt; βt)

29: (θt, βt)← argmin{θ|(θ, β) ∈ CS}.
30: until θt

0 > 0 and |1− θt/θt
0| ≤ ε0

function intercept(g[k], β,S)
gs ←∑

k βkg[k]s ∀s ∈ S .
(i, j)← (argmin{gs|αs > As, s ∈ S}, argmax{gs|αs < Bs, s ∈ S})
(b, δ)← ((gi + gj)/2, gi − gj).
return b.

164 Y. Sinohara and A. Takasu

(i, j) = (argmin{gi|αi > Ai}, argmax{gj|αj < Bj}) is called the most violat-
ing pair where gradient gi = ∂

∂αi
S(α; β) = yi −

∑
αjK(xj , xi; β). The intercept

b of the separator f(x) satisfies gj ≤ b ≤ gi and in the strictly optimal solution,
the difference of the gradients of the most violating pair, δ = gi − gj, is equal
to 0.

In wss1-mode, we improve α by analytically solving the following subproblem
in λ 2 for the most violation pair (i, j)[3],

max
λ

S(α + λ(ei − ej); β) subjective to α + λ(ei − ej) ∈ [A, B] (6)

In wss2-mode, we obtain the optimal λ as well as the optimal sample coupling
with one of the most violating pair (i, j), which is fixed in case of wss1.

In full-mode, we obtain (sub-)optimal α by repeatedly updating α using wss1
or wss2 until δ becomes less then a given small positive τ like the SMO-type
algorithm [3],

Top-level function of two-phased active SKM learning. The top-level
function of the two phased active SKM learning algorithm (Algorithm 2) ba-
sically follows the solution algorithm of SKM-ILP in 2.3 but it has the active
learning phase and complete optimization phase after the initialization phase.

In active learning phase, there are 3 control variables (α-mode, β-mode, n) to
obtain an approximate SVM solution αt satisfying S(αt; βt−1) > S(αt−1; βt−1).
n is the number of random samples for selection samples, α-mode is the approxi-
mation mode of α described in the previous subsection. β-mode controls whether
the update of α and β executes once (once) or repeatedly until satisfying the
convergence conditions (full). In the complete optimization phase, we optimize
the SKM completely. The different setting of the SKM convergence conditions ε1
and ε0 is allowed because it can take too much response time in active learning
when ε1 is set to the value as small as ε0 in case of β-mode=full.

The basic active SKM learning algorithm in 3.2 is the case when the mode
(α-mode, β-mode, n)=(full, full, ∞) and it completely optimizes SKM every time
even in the active learning phase. Sonnenburg[5,6] proposes a batch algorithm
called ‘chunked MKL’ to solve SKM based on SKM-ILP formulation in which
use the optimal solution for the partial data as αt. This algorithm is similar
to the case of mode (full, once, ∞) except that a sampling strategy SS for
batch learning is used. In contrast, the proposed two-phased active SKM uses in
active learning phase (wss1, once, n) or (wss2, once, n) which gives more rough
approximation of the optimal SVM solution to achieve the responsiveness.

4 Experiments

We conducted the following experiments to compare the performances of ac-
tive SKM learning and active SVM learning, and the effects on error rates and
response time of the modes in two-phased active SKM learning algorithm.
2 Because S(α + λ(ei − ej)) = S(α) + (gi − gj)λ− 1

2λ2D2
i,j ,

D2
i,j = K(xi, xi)+K(xj , xj)−2K(xi, xj), λ = min{(gi− gj)/D2

i,j , αi−Ai, Bj −αj}.

Two-Phased Active Support Kernel Machine Learning 165

4.1 Experimental Settings

We use our code written in MATLAB, which solves LP by linprog function built
in MATLAB and caches the kernel matrix [K(xi, xj)]i,j∈L, [Kk(xi, xj)]i,j∈L for
the labeled samples L to avoid the recalculation. [K(xi, xj)] is recalculated from
[Kk(xi, xj)] when β is updated, R2

k is calculated before starting active learning
by the Support Vector Data Description (SVDD)[7] for all the data L ∪ U .

Table 1 shows the features of the 5 benchmark dataset3 we used. Each dataset
has 100 pairs of training and test data and we use the 1st to 5th pairs for our
experiments. The tuned SVM in Table 1 is the average error rate for the 1st to
5th pairs of SVMs with tuned C and γ.

Table 1. Benchmark Datasets

number of data error rate(%)
tuned active

dataset learning test SVM SKM
banana 400 4900 11.6 12.3
breast 200 77 28.0 27.5
flare 666 400 35.9 32.0
image 1300 1010 3.0 2.8
splice 1000 2175 10.8 10.6

Table 2. Modes in two-phased SKM learn-
ing algorithm

name α-mode β-mode n

basic full full ∞
fullfull full full 50
full full once 50
wss1 wss1 once 50
wss2 wss2 once 50

In the experiments, we conduct the active SVM or SKM learning for the
training data in each pair in a dataset using the 15 RBF kernels exp(γ ‖x− z‖2)
where γ ∈ (2, , 5, 10)× (10−2, 10−1, 1, 10, 102) and the cost parameter C = 1000,
the tolerance τ = 10−3, ε1 = 10−2 in active learning phase and ε2 = 10−6

in the complete optimization phase. We recorded the response time and the
error rate for the corresponding test data when the number of labeled samples
becomes 1, 2, . . . , 49, 50, 60, . . . , 90, 100, 150, . . . , 450, 500, 600, . . . , 900, 1000. The
error rate of active SKM when the number of labeled samples is k is that of
the completely optimized SKM when the k samples are labeled. In the following
evaluation, we use the average of the error rates or the response time of the 1st
to 5th pairs in the dataset.

4.2 Active SVM Versus Active SKM

For the 5 datasets, we compared the changes of error rates as the progress of
the sampling among the basic active SKM learning algorithm with the 15 RBF
kernels and the active SVM learning using each RBF kernel. The first column in
Figure 1 shows the result. The solid, dotted, dashed line is the error rate of the
active SKM, the best SVM whose final error rate is the smallest and the worst

3 http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm. The tuned parame-
ters C and γ for each dataset are shown and we recalculate the average error rate of
the tuned SVM in Table 1 from the errors file in the site.

166 Y. Sinohara and A. Takasu

100 200 300 400
0

20

40

60

ba
na

na

SKM vs SVM(error rate%)

50 100 150 200
0

20

40

br
ea

st
−

ca
nc

er

200 400 600
0

20

40

fla
re

−
so

la
r

200 400 600 800 1000
0

20

40

60

im
ag

e

200 400 600 800 1000
0

20

40

60

number of labeled samples

sp
lic

e

100 200 300 400
0

20

40

60

Error Rates(%)

50 100 150 200
0

20

40

200 400 600
0

20

40

200 400 600 800 1000
0

20

40

60

200 400 600 800 1000
0

20

40

60

number of labeled samples

100 200 300 400
0

2

4

6
Response Time(sec)

50 100 150 200
0

0.5

1

1.5

200 400 600
0

2

4

200 400 600 800 1000
0

2

4

200 400 600 800 1000
0

0.5

1

number of labeled samples

active SKM
worst activeSVM
best active SVM

basic
full
wss1

basic
full
wss1

Fig. 1. Experimental Result

SVM whose final error rate is the largest respectively. In the datasets of banana,
image, splice, the difference of the error rates of the best SVM and the worst
SVM are greater than 20% and hence the selection of kernel greatly affects the
performance of active SVM. Each active SKM have the compatible performance
with the best SVM for all datasets. We show the final error rates of active SKMs

Two-Phased Active Support Kernel Machine Learning 167

in Table 1. We fixed the C to 1000 in the experiments but the active SKMs have
similar performance to the SVMs with tuned C and γ. For these result, we think
the proposed active SKM learning algorithm is a versatile and powerful active
learning methods.

4.3 Modes of Two-Phased SKM

In the section, we compare the error rate and the response time of the two-phased
SKM with different modes in Table 2. We show only “basic”, “full”, “wss1” in
the 2nd and 3rd column of Figure 1 because the results of fullfull and wss2 are
almost same with full and wss1 respectively.

The error rate are almost the same for the modes, while the response time
of the wss1 and wss2 is spontaneous (less than 0.2 sec) but those of basic and
fullfull, full are over several seconds (8 secs.) in cases.

From these results, the two-phased SKM learning with mode wss1 or wss2 has
high responsiveness proper for active learning interacting with human experts
and also can learn an accurate classifier.

5 Conclusions

As we showed in the experiments, the performance of the active SVM learning
greatly depends on the kernel selected before learning. However, the selection of
an effective kernel is impossible before active learning without prior knowledge.
Therefore in this paper, we propose the active SKM learning and showed the
active SKM with 15 RBF kernels can perform the active learning comparable
with the best SVM learning for the popular 5 benchmark datasets. We also
propose the two-phased active SKM learning having responsiveness necessary for
the interaction with human experts and showed that the response time during
the active learning can be greatly reduced without sacrificing the precision of
the learned machine. From these result, the proposed two-phased SKM learning
is a versatile and powerful active learning method which can learn the highly
precise separators and the labels effectively for a wide range of datasets and has
the responsiveness necessary for the interaction with human experts.

References

1. Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic dual-
ity, and the smo algorithm. In: Proc. of 21st International Conference of Machine
Learning (2004)

2. Campbell, C., Cristianini, N., Smola, A.: Query learning with large margin classi-
fiers. In: Proc. of 17th International Conference on Machine Learning, pp. 111–118
(2000)

3. Platt, J.: Fast training of support vector machines using sequential minimal op-
timization. In: Advances in Kernel Methods, pp. 185–208. MIT Press, Cambridge
(1998)

168 Y. Sinohara and A. Takasu

4. Schohn, G., Cohn, D.: Less is more: Active learning with support vector machines.
In: Proc. of 17th International Conference on Machine Learning, pp. 839–846 (2000)

5. Sonnenburg, S., Raetsch, G., Schaefer, C., Schoelkopf, B.: Large scale multiple kernel
learning. Journal of Machine Learning Research 7, 1531–1565 (2006)

6. Sonnenburg, S., Ratsch, G., Schafer, C.: A general and efficient multiple kernel
learning algorithm. In: Advances in Neural Information Processing Systems, vol. 15.
MIT Press, Cambridge (2006)

7. Tax, D.M.J., Duin, R.P.W.: Data domain description using support vectors. In:
Proc. of 7th European Symposium on Artificial Neural Networks, pp. 251–256 (1999)

8. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. Journal of Machine Learning Research 2, 45–66 (2001)

9. Vapnik, V.: Statistical Learning Theory. John Wiley and Sons Inc., Chichester
(1998)

Extracting Topic Maps from Web Pages

Motohiro Mase1, Seiji Yamada2, and Katsumi Nitta1

1 Tokyo Institute of Technology, Japan
2 National Institute of Informatics, Japan

Abstract. We propose a framework to extract topic maps from a set of
Web pages. We use the clustering method with the Web pages and ex-
tract the topic map prototypes. We introduced the following two points
to the existing clustering method: The first is merging only the linked
Web pages, thus extracting the underlying relationships between the top-
ics. The second is introducing weighting based on similarity from the
contents of the Web pages and relevance between topics of pages. The
relevance is based on the types of links with directories in Web sites
structure and the distance between the directories in which the pages
are located. We generate the topic map prototypes from the results of
the clustering. Finally, users complete the prototype by labeling the top-
ics and associations and removing the unnecessary items. For this paper,
at the first step, we mounted the proposed clustering method and ex-
tracted the prototype with the method.

Keywords: Web information extraction, Topic Maps, clustering.

1 Introduction

Information gathering that references a huge amount of Web pages is very useful
and essential for Web users. However, finding the necessary information from the
Web when users need it and organizing the gathered information are both big
problems [6]. There are many works currently underway to solve these problems,
and one of them is Topic Maps [7]. Topic Maps are an international standard
for organizing and classifying information along with a user’s knowledge and
concepts. Topic maps are composed of three elements; topics, associations, and
occurrences. This standard can connect the various information resources with
the knowledge and concepts of the user, represent the relations between the
concepts, and help users more easily access the information they need. It takes
the information resources and the selection of target domains and topics to
build topic maps. The user needs to manually do these tasks, although the user
can reduce costs by using editors for the topic maps, such as Ontopoly 1. By
converting the existing metadata, such as XML and RDF, previous studies have
been able to automatically generate topic maps [9][12]. Although the amount of
structured metadata on the Web is growing, many of the Web pages that users
utilize on a daily basis are semi-structured data and HTML files, and using
1 http://www.ontopia.net/solutions/ontopoly.html

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 169–180, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

170 M. Mase, S. Yamada, and K. Nitta

the previous method with them is difficult. Therefore, this process requires a
method to directly extract topic maps from semi-structured data. However, we
aim to extract topic map prototypes from the Web pages by using the clustering
method, because it is difficult to automatically extract complete topic maps.
Then, users finally complete the topic map prototypes by evaluating the topics
and associations, and by adding and removing them.

In this paper, we at first propose a method for extracting a topic map pro-
totype from a set of Web pages and conduct an experiment to evaluate the
extracted topic maps. By utilizing the topic map that is extracted from the Web
pages in the user’s browsing history and neighboring pages, which the user has
not visited, a user can easily manage the collected information and then access
the information that they have never seen before.

The contents of Web pages and structures of Web graphs that consist of nodes
as pages and edges as links contain the underlying topics of pages’ contents and
relationships between the topics. Our approach is to extract the involved infor-
mation as topic maps by clustering the Web pages by the contents of their pages
and the structures of the Web graphs. In this field, many previous works have
studied on the extraction of information from Web communities from the struc-
tures of the Web graphs. Broder et al. extracted the communities by searching a
complete bipartite graph which is a community signature [2]. Flake et al. found
the communities from the Web by using a maximum flow algorithm [3]. Girvan
and Newman extracted the structures of the communities within networks by
using a clustering method based on the edge betweenness, which is the number
of shortest paths between all pairs of vertices that run through it [5]. Newman
proposed a hierarchical clustering method that maximizes the modularity[11],
which is a function to quantify how good a particular division is: we call the
method the Newman’s method. These preliminary works focused only on the
extraction of structures from the Web graphs. Although our method is based on
Newman’s method, the method uses the similarity between the contents of the
Web pages and the relevance between the topics of pages which is based on the
structures of the Web site’s directories in addition to the structures of the Web
graphs, to extract topic maps.

2 Topic Maps

Topic Maps is an ISO/IEC 13250 standard and a solution for representing a
concept and connecting the concept to its related information resources [7]. A
topic map is composed of topics, which represent any concept or subject in
the real world; associations, which represent the relation between topics; and
occurrences which represent the connection between topics and the information
resources related to them. Topic maps have a lot of flexibility, and allow their
creators to define the types of topics, associations and occurrences, and good for
representing various topics and relationships concerning them on the Web. One
of the syntaxes of Topic Maps is XML Topic Maps (XTM) [15]. Some information
items and named properties are essential for representing topic maps using XTM.

Extracting Topic Maps from Web Pages 171

We extract only the items concerning the topics, associations, and occurrences,
because it is hard to extract all the items and properties from Web pages. We
were able to get three types of items from the results of using our clustering
method on a set of Web pages, by assuming the clusters were topics, the edges
were associations, the pages related to the clusters were occurrences, and then
generate prototypes of the topic maps with the extracted items. Finally, users
complete the prototype by labeling the topics and associations and removing the
unnecessary items.

3 Framework to Extract a Topic Map from a Set of Web
Pages

3.1 Overview

We propose the framework to extract a topic map from a set of Web pages using
the following procedure.

1. Collect a set of Web pages from the user’s Web history.
2. Use the clustering method on the set of pages.
3. Extract the items of the topic map from the result of clustering and build a

topic map prototype
4. Finally, a user completes the extracted prototypes by evaluating, labeling,

and modifying the items.

In this paper, we propose a method to extract the topic map prototypes. Topic
maps have to show not only the topics that are found in the Web pages, but
also the relationships between them. However, existing contents-based cluster-
ing methods [8] can measure the similarities between the topics that the clusters
represent by using the contents of the Web pages, but not extract what the rela-
tionship between the topics is. In contrast, structured-based clustering methods
focus only on the structures of networks without any reference to the contents
of the pages. We proposed a clustering method based on Newman’s method,
structure-based clustering methods, regarding both the similarities between the
contents of Web pages and the relevance between the topics of pages based on
the graph structures of links on Web.

Structure of links between Web pages. In general, site creators manually
generate links on the Web, and the linked pages cover the relevant topics [10].
These links have underlying relations between the topics. However, even if a
creator link pages that have relevant topics and the links represent some relation
to the topics, the contents-based methods can’t find the relation for lower value
similarities for the pages’ contents. We cluster pages by merging only the linked
pages and extract the relations from the remaining links, which are represented
as the edges between clusters, at the end of clustering.

Types of links with directories in Web sites structure. We build denser
clusters, taking into consideration the weights of links between Web pages. Utiliz-
ing the similarities between the contents of linked pages is one of the calculation

172 M. Mase, S. Yamada, and K. Nitta

methods for the weights. In contrast, we use the relevance between the topics of
the Web pages based on the types of links.

The relevance between the topics based on the types of links are computed by
grouping the links with directories in which linked pages exist on a Web site and
using the distance between the directories, without focusing on the contents of
the pages. We presume that the creators of Web pages probably make directories
on Web sites and locate pages in the directories as follows: 1) Web pages are
classified into directories along with the topics of pages. 2) The topics of pages in
child directories are a specialization of pages’ topics in their parent directories.
3) The topics of pages are similar to them in closer directories than distant
directories. We compute the relevance from the previously mentioned estimation.
As for related research, Spertus categorized the types of links with hierarchical
relationships of directories in which linked pages exist, and introduced heuristics
to estimate the meanings of the links [14].

To estimate the relevance between the topics of the Web pages using the
types of links, we sorted all the links between pages to three types listed by the
directories in which the pages are located, and introduced a measure, the distance
of the directories. The measure is the number of directories on the shortest path
between any two pages, which we put in a tree structure that consists of pages
and directories used as nodes.

1. upward/downward is a link between a page and it in a higher or lower
directory on the same Web site.

2. crosswise is a link between the pages on the same Web site, except for the
upward/downward links.

3. outward is a link between pages on two different Web sites.

We calculated the relevance by giving priority to the types of links as follows.

– We prioritize by assigning crosswise links over upward/downward ones. Since
the creators of pages sort them into directories by content, the topics of pages
reached through upward/downward links are specialized or generalized topics
and are uncorrelated with the topics of pages in the same directory.

– We assign priority to the outward links over the upward/downward ones,
because the outward links represent pointers to related information resources
on other sites made by the creators of them, and linked pages with outward
links have mutual topics.

– We prioritize links that have lower values for the distances of their directories.
Pages in the same directory have similar topics and the topics of the pages
are poorly correlated as the distances between the directories in which the
pages are involved increase.

With this in mind, we compute the relevance by the types of links. We generate
concentrated clusters by weighting based on the similarities between the contents
of the Web pages and the relevance between the topics of the pages by the types
of links. As for the details, we note them in the next section.

Extracting Topic Maps from Web Pages 173

3.2 Weighting Links between Web Pages

For the weight between Web pages p and q, w(p, q) is computed as a weighted
liner sum of the similarity between contents of the pages, sc(p, q), and the rele-
vance between the topics of pages by the types of links, sl(p, q). w(p, q) is defined
as follows:

w(p, q) = αsc(p, q) + (1 − α)sl(p, q) (1)

Where, at this time, the value of α is 0.5. We aim to generate dense clusters by
using the relevance between the Web pages’ topics which is unable to calculate
with the similarity between the contents of the pages in addition to the similarity.
Then, we evenly use the weighting based on values of the similarities and the
relevance.
Similarity between contents of pages. We construct a document vector of
a page by applying the TF-IDF method [13] to all the words extracted from
the page’s HTML file. The document vector vi is vi = (wi1, wi2, ..., win), where
wij is the tfidf value of word j in page i. The similarity between pages p and q,
sc(p, q) is defined as follows:

sc(p, q) =
vp · vq

‖ vp ‖ ‖ vq ‖ (2)

Relevance between the topics of pages by types of links. We calculate
the relevance between the topics of pages based on the types of links by using
the relationships between the directories of the linked pages and the distances
of the directories, along with the line of weighting shown in Section 3.1. The
relevance between topics of pages p and q, sl(p, q) is defined as follows:

sl(p, q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.25
d

Cl (upward/downward)

0.5
d

Cl (crosswise)

0.4 Cl (outward, τs ≤ s(p, q))

0 (outward, s(p, q) < τs)

(3)

where Cl is decided by the direction of the link. When the link between the pages
is cross-linked, Cl = 2. The value of Cl for a single link is 1, Cl = 1. d is the
distance between the directories of the pages, as has been previously described.
τ is average of all the values of sc(p, q), which are the similarities between the
pages that are connected by an “outward” link.

3.3 Algorithm

To generate topic maps, we use the clustering method for the Web pages and
extract the items for the topic maps from the results of the clustering. Our

174 M. Mase, S. Yamada, and K. Nitta

clustering method is based on Newman’s method, although Newman’s method
only focuses on the structure of the network and we introduce the weighting for
the links that were introduced in Section 3.1 to Newman’s method. We calculate
the value of the weight in the way hereinafter prescribed. Newman’s method
[11] is the agglomerative hierarchical clustering method and has the modularity
Q, which shows the quality of a cluster division. In the clustering in Newman’s
method, a pair of clusters that provide the maximal value of increment in Q are
joined at each step. The definition of Q is as follows:

Q =
∑

i

(eii − a2
i) (4)

ΔQij = 2(eij − aiaj) (5)

where eij represents the fraction of edges between clusters i and j in the network,
and is calculated as the value for the number of edges between clusters i and
j divided by the total number of the edges in the network. ai is the fraction of
edges belonging to cluster i and is denoted as ai =

∑
i eij . Q is the difference

between the fraction of the number of edges within all the clusters in the network
and the expected value for the same cluster division in a network whose edges
are randomly connected. If the number of edges within the clusters is lower than
the random connected edges, we will obtain Q = 0. The maximal value of Q is
1; a high value represents a good partitioning of the network.

We cluster Web pages using our method which is based on Newman’s method,
using above mentioned weights, and according to the following procedure.

1. Set a cluster as a page, and an edge as a link in a given set of Web pages.
2. Calculate all the values of the weight for the links, and apply them to the

edges. Each weighted value of an edge is normalized by the total value of the
edges.

3. Select a pair of linked clusters that have a maximal value of ΔQ. Terminate
if the ΔQ of the selected pair has a negative value.

4. Merge the pair of clusters into a new cluster.
5. Recalculate the values of eij and ai, which are related to the new cluster and

Go to back to Step 3.

Finally, we extract a topic map prototype from the result of the clustering.

3.4 Extracting and Visualizing Topic Map Prototypes

To generate topic maps, we use the clustering method for the Web pages and
extract the items for the topic maps from the results of the clustering. Our
clustering method is based on Newman’s method, although Newman’s method
only focuses on the structure of the network and we introduce the weighting for
the links that were introduced in Section 3.1 to Newman’s method. We calculate
the value of the weight in the way hereinafter prescribed. Next, we calculate
the weights of links and apply the weights to the links in the set of Web pages.
Finally, we cluster the set of the Web pages, which have weighted links, by

Extracting Topic Maps from Web Pages 175

Newman’s method and generate the topic map prototypes by assuming that the
clusters are the topics, the edges are the associations, and the Web pages related
to the topics are the occurrences from the results of the clustering. We visualize
the topic map prototype on a graph using graphviz [4], which is one of the graph
visualization tools. On the graph, the topics are represented as nodes and the
associations are represented as edges. The area of a node is dependent on the
number of pages related to the topic.

4 Experiments

We conducted experiments to evaluate our proposed method by comparing the
topic map prototypes that were generated using our method to those using New-
man’s method. The comparison with the forms generated by the two methods
explains the effect of the introduction of the weighting. Sixteen participants took
part in this experiment. Each participant supplied two sets of browsing histo-
ries, which were used to collect the sets of Web pages, and also evaluated four
topic maps generated from the sets of pages using both methods. The order for
evaluating the topic maps was random.

4.1 Extracting Topic Map Prototypes

In this experiment, we used the sets of Web pages that were collected using the
browsing histories of the participants as seeds. As these sets of pages consisted
of pages related to the browsed pages, they easily evaluated the extracted topic
map prototypes. The histories are restricted to a sequence of five pages searching
for some sort of issue. The pages in the histories have to be connected to each
other, because our method is based on the links between pages. We obtained a
set of Web pages by following the links four times from the pages of the histories.
There were three selected links in each of the pages and the links were selected at
random. The sets of pages contained around 600 pages. We extracted topic map
prototypes from these sets of pages using both methods, and visualized them on
an interface for evaluation. The interface shows the clusters that have pages in
the histories as ringed nodes.

4.2 Evaluation

The topic maps had no labels for the topics and associations when they were ex-
tracted. The participants gave appropriate names and annotations to the topics
and associations. The interface shows the extracted topic map, representing the
topics as nodes and the associations as edges between the topics. By clicking the
nodes and edges, the interface shows the information window for the topics and
associations that correspond to the nodes and edges. The participants get the
information concerning the topics and associations through the window.

Evaluating topics. As the topic of the cluster is a concept represented by a
set of Web pages within it, the name of the topic is the name of the concept.

176 M. Mase, S. Yamada, and K. Nitta

The participants judge what the concept of the set of pages is, and appropriately
name the topic, referring to the following information:

– Title, URL, and content of the pages related to the topic.
– Three domain-specific terms.

When the cluster has a number of topics of the Web pages, the participants
evaluate the cohesiveness of the topics of the Web pages and select a major
one and name it. If the topics in the cluster are vary widely, the participants
don’t give the proper name to the cluster. The participants also evaluate the
granularity of the cluster’s topic in terms of results. Then, the granularity of the
individual topics in the topic maps varies. We call the topics named properly
“valid topics”. On other hand, the topics that have no name are called “invalid
topics”.

Evaluating associations. The associations are described as edges between
clusters that present topics, and represent some kind of relationship between
the topics. The participants judge what relation between the topics is. If fea-
sible, they give proper annotation to the associations, referring to following
information:

– The information concerning the two topics that have an association.
– The information concerning the links between the pages that consist of the

edges.

As in the case of the topics, we call the associations that are provided with appro-
priate annotations, “valid associations”. The associations having no annotations
are called “invalid associations”.

4.3 Experimental Results

We evaluate whether the topics and the associations are valid and whether the
individual ones are appropriately extracted. We don’t evaluate whether they
are useful for the participants. Because the problems of evaluating the utility
of the topic and the associations depend on the knowledge and information of
the participants, it’s hard to evaluate it. Thus, in this experiment, we evaluate
the validity of the topic map prototypes by the participants’ evaluation for the
cohesiveness and the granularity of the individual topics and associations in the
prototypes.

We extract topic map prototypes from the set of pages, show them to the
users. The users finally have to modify and fix the topic map prototypes, so
they can be used as the topic maps. It’s preferable that the prototype contains
valid topics and associations that are extracted broadly. The tasks for adding
insufficient topics and associations is more costly than those for reducing the
unnecessary items.

To evaluate the fitness of the prototypes, we evaluate the number of valid
topics and associations, especially those regarding the topic maps extracted by

Extracting Topic Maps from Web Pages 177

0

5

10

15

20

25

30

35

topic associations

Newman's

 method

Proposed

 method

12.3

18.4

15.8

22.2

T
h
e
 n

u
m

b
e
r

o
f
to

p
ic

s
 a

n
d
 a

s
s
o
c
ia

ti
o
n
s

Newman's

 method

Proposed

 method

Fig. 1. No. of valid topics and associations

both methods. In this case, recall [1], which is often used to evaluate the per-
formance in the field of IR, is unusable, because the complete topic maps in the
sets of pages is not obvious and the topics and associations that are required to
be extracted are unclear.

Fig. 1 shows the average number of valid topics and associations. The results
showed that the average number of valid topics was 12.3 (standard deviation:
7.84) when using the Newman’s method, 18.4 (6.89) for the proposed method,
and the same value of valid associations was 15.8 (12) for the Newman’s method,
but 22.2 (13.22) for our method. Regarding the number of topics, a comparison
made using Wilcoxon signed-ranks test showed a significant difference between
both methods (p= 0.000012, α= 0.05). The comparison in the number of asso-
ciations using a paired t-test also showed a significant difference (p= 0.002, α=
0.05). These results show that our proposed method can extract topic maps that
have more valid topics and associations than that by the Newman’s method.

5 Discussion

5.1 Utilizing Meta Information of Web Pages

The results of the experiments show that our proposed method can extract topic
maps that have more valid topics and associations than that by the Newman’s
method. However, our proposed method weights the links depending on the
directories in the Web site structure, so it’s hard to accommodate the Web
pages in flat directories in the Web site structure and the pages of the news sites
are sorted to the directories by date.

To solve the problem, we used tags or categories given to Web pages, in
place of the directories sorted by date in the Web sites. We introduced a virtual
directory to the URL of the page by using given tags and convert the URL as
shown by Fig. 2. We similarly calculated the weights as shown in Section 3 and
extracted the topic map prototypes. We experimentally extracted a topic map

178 M. Mase, S. Yamada, and K. Nitta

URL: http://plusd.itmedia.co.jp/pcuser/articles/0711/09/news006.html

URL: http://plusd.itmedia.co.jp/pcuser/articles/notepc/news006.html

Convert URL

Tag : notepc

Fig. 2. Converting URL

JUST SYSTEM DIY PC Printer Complex Machine
Branded PC

Vista Tips

TOSHIBA

Storage

Adobe

Note PC

Apple

Graphic Card

Branded PC

DELL

Power Supply

TV Tuner

PC Parts

Mother Board

Akihabara
LCD

PLC
PC Shop

HP

PC

Vista

Epson Direct

Mouse

Battery

Note PC

Note PC

Note PC

IE7 Tips

HD/DVD Blu-ray Tablet

USB Memory
Note PC

Fig. 3. Topic map from PCUSER

from a set of Web pages that are collected from PCUSER, which is a Japanese
news site about PC, by our proposed method with converted URLs. Fig. 3 shows
the extracted topic map from the Web pages of PCUSER. The pages of PCUSER
have some tags given from 293 tags according to the topics of the pages and are
sorted into the some categories. The classification by the tags is too detailed
and complicated. We can find the topics presented by the categories in the Web
pages of PCUSER, but which the topics are related is unclear.

In contrast, for example, the extracted topic map shown as Fig. 3 shows some
topics related to PC and relationships between the topics. We find the topic
“PC parts” and the related topics, such as “graphic card”, “mother board” and
“power supply” around “PC parts”. Also, we can find the relationships between
“PC parts” and the related topics. The extracted topic map supports a survey
of the Web sites.

Extracting Topic Maps from Web Pages 179

5.2 Interactive Improvement of Topic Map Prototypes

In this paper, we proposed the method for extracting the topic map prototypes
from a set of Web pages. We have to build the interface that enables interac-
tive improvement of the prototypes by user. The interface needs the following
functions.

– Editing of topics and associations. User can name the topics and the associ-
ations, remove the unnecessary items, add the missing items, and merge the
items which have the same name.

– Display of information about the topics and associations. User can name and
add the items by referring to the information.

– Support for editing of items. User can spread the changes to the prototypes
by an edit once. For example, when user remove an association between
topic “A” and “B”, the other associations between topic “A” and “B” are
automatically deleted.

– Feedback from user’s editing to the prototypes. The system regard the Web
pages, which are contained in the unnecessary topics removed by the user,
as non-relevant documents in document classification and classify the next
set of Web . The system previously removes unnecessary Web pages which
are classified as the non-relevant documents, and reduce the procedure for
removing the unnecessary topics and associations from the user’s editing of
the prototypes.

In our future work, we will build the interface which has the function to assist
user to complete the topic map prototypes.

6 Conclusion

We proposed a framework in this paper to extract topic maps from a set of
Web pages. First, we proposed a method to extract the topic map prototypes.
Our method was based on Newman’s method using a weighting scheme based
on the similarities between the contents of pages and the relevance between
the topics of the Web pages by the types of links. We conducted experiments
to evaluate the proposed method by comparing it to Newman’s method. The
results of the experiments showed that our method can extract the topic maps
that have enough topics and associations with the topic map prototypes. In our
future work, we will build the interface for user’s interaction to complete the
topic map prototypes.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley,
Reading (1999)

2. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the web: experiments and models. In:
5th International World Wide Web Conference (2000)

180 M. Mase, S. Yamada, and K. Nitta

3. Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of Web communities.
In: KDD 2000: Proceedings of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 150–160 (2000)

4. Gansner, R.E., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software – Practice and Experience 30(11), 1203–
1233 (2000)

5. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. PNAS 99(12), 7821–7826 (2002)

6. GVU’s WWW Surveying Team: GVU’s 10th WWW User Survey: Problem Using
the Web (1998), http://www.gvu.gatech.edu/user surveys/

7. International Standard Organization: ISO/IEC 13250 Topic Maps: Information
Tecknology Document Description and Markup Language (2000)

8. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall Inc., Upper
Saddle River (1998)

9. Kerk, R., Groschupf, S.: How to Create Topic Maps (2003),
http://www.media-style.com/gfx/assets/HowtoCreateTopicMaps.pdf

10. Menczer, F.: Lexical and semantic clustering by web links. Journal of American
Society Information Science and Technology 55(14), 1261–1269 (2004)

11. Newman, M.E.J.: Fast algorithm for detecting community structure in networks.
Physical Review E 69, 066133 (2004)

12. Reynolds, J., Kimber, W.E.: Topic Map Authoring With Reusable Ontologies and
Automated Knowledge Mining. In: XML 2002 Conference (2002)

13. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Information Processing & Management 24(5), 513–523 (1988)

14. Spertus, E.: ParaSite: mining structural information on the Web. In: The 6th
International World Wide Web Conference, pp. 1205–1215 (1997)

15. TopicMaps.Org: XML Topic Maps 1.0 (2001),
http://www.topicmaps.org/xtm/1.0/

http://www.gvu.gatech.edu/user_surveys/
http://www.media-style.com/gfx/assets/HowtoCreateTopicMaps.pdf
http://www.topicmaps.org/xtm/1.0/

Interactive Abnormal Condition Sign Discovery
for Hydroelectric Power Plants

Norihiko Ito1, Takashi Onoda1, and Hironobu Yamasaki2

1 System Engineering Research Laboratory,
Central Research Institute of Electric Power Industry,
2-11-1, Iwado Kita, Komae-shi, Tokyo 201-8511, Japan

{norihiko,onoda}@criepi.denken.or.jp
2 The Power System Engineering Department,

Kyushu Electric Power Co.,Inc.,
2-1-82, Watanabe-Dori, Chuo-ku, Fukuoka 810-8720, Japan

Hironobu Yamasaki@kyuden.co.jp

Abstract. Kyushu Electric Power Co.,Inc. collects various sensor data
and weather information to maintain hydroelectric power plants while
the plants are running. However, it is very rare to occur abnormal and
trouble condition data in power equipments. And in order to collect the
abnormal and trouble condition data, it is hard to construct an experi-
mental hydroelectric power plant. Because its cost is very high. In this
situation, we have to find abnormal condition data as a risk manage-
ment. In this paper, we consider that the abnormal condition sign may
be unusual condition data. This paper shows results of unusual condi-
tion data of bearing vibration detected from the collected various sensor
data and weather information by using one class support vector machine.
The result shows that our approach may be useful for unusual condition
data detection and maintaining hydroelectric power plants. Therefore,
the proposed method is one of risk management for hydroelectric power
plants.

Keywords: Data Mining, Abnormal Condition Detection, Support Vec-
tor Machine, Hydroelectric Power Plant.

1 Introduction

Recently, electric power companies have begun to try to shift a Time Based
Maintenance (hereafter, we use TBM) to a Condition Based Maintenance (here-
after, we use CBM) for electric equipment management to realize an efficient
maintenance and reduce the cost of maintenance [1,2]. TBM is to check and
change the equipment based on the guaranteed term recommended by makers.
And CBM is to check, repair and change the equipment based on the state of
equipment [3]. The state consists of the present state of equipment, the operation
term of equipment, the load in an operation, and etc [3]. Therefore, this CBM
is a kind of risk management for electric power companies’ management.

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 181–192, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

182 N. Ito, T. Onoda, and H. Yamasaki

In order to realize the CBM, it is important for electric power companies
to collect the data of equipment. The data consist of normal condition data of
equipment, abnormal condition sign of equipment, and etc. Especially, to reduce
the maintenance cost by the improvement of the equipment management and
maintenance based on CBM, it is the most important to collect much data
utilized to make management and maintenance.

It is necessary to collect and analyze the past abnormal condition sign and
the past trouble condition data, in order to discover an abnormal condition sign
of power equipment [4,5]. For instance, there are the discovery of an abnormal
condition sign from sensor data of the hydroelectric power plant. However, it
is very rare to occur abnormal and trouble condition in the power equipments
in Japan. Because power companies have changed the power plant equipment
in certified term by makers for the conventional maintenance. And in order
to collect the abnormal and trouble condition sign, it is hard to construct an
experimental hydroelectric power plant. Because its cost is very high.

In the above situation, Kyushu Electric Power Co.,Inc. has been analyzing the
causal relation between the bearing vibration and various sensor data to establish
the detection method of an abnormal condition sign for the bearing vibration in
the hydroelectric power plants. However, it is hard to discover a causal relation
between the bearing vibration and various sensor data. Because the relation
is too complex. And recently, the power plant equipment has not experienced
an abnormal and trouble condition in the conventional maintenance. So, it is
impossible to acquire the sensor data in the abnormal and trouble condition and
we can measure the normal condition only.

In order to discover abnormal condition sign of hydroelectric power plants,
Kyushu Electric Power Co.,Inc. and Central Research Institute of Electric Power
Industry are researching the discovery of abnormal condition sign based on the
unusual condition detection using various sensor data, now. In our research, we
consider that the increase of generation of some unusual condition data coincide
with the abnormal condition sign nearly, because we can measure the normal
condition data only from a regular operation hydroelectric power plant. In fact,
the abnormal condition is very rare case and very unusual condition. And we
developed the discovery method based on the unusual condition detection from
regular condition data in the hydroelectric power plant. This method based on
the interaction between human expertise and the unusual condition detection
system.

In this paper, we describe the measured sensor data briefly in the next section.
In the third section, we briefly explain our proposed approach to discover ab-
normal condition sign from regular operation condition data. And our proposed
method is also an interactive data mining method between human expertise
and systems. The experimental results are shown in the forth section. Finally,
we conclude the concept of the abnormal sign discovery of the hydroelectric
power plant bearing vibration based on the detection method of the unusual
data.

Interactive Abnormal Condition Sign Discovery 183

Table 1. Outline of a targeted Hydroelectric Power Plant

Generated Output 18,000kW
Working Water 45m3/s
Effective Head 46.3m
Turbine Type Vertical Shaft Francis Turbine
Rated Revolutions Per Minute 240rpm

Upper Bearing Oil Self Contained Type Segment Bearing
(Natural Cooling)

Bearing Bottom Bearing Oil Self Contained Type Segment Bearing
(Natural Cooling)

Type Turbine Bearing Oil Self Contained Type Cylindrical Bearing
(Natural Cooling)

Thrust Bearing Oil Self Contained Type Pivot Spring Bearing
(Natural Cooling)

Operation Pattern Process Control Operation
(An operation pattern is generated at everyday.)

2 Measurement Data

Table 1 shows the outline of a hydroelectric power plant. The hydroelectric power
plant has various sensors to measure data related to bearing vibration. In this
paper, the measurement data is collected from the hydroelectric power plant and
analyzed by our proposed method. The measurement data, which is related to
bearing vibration, is collected from March 16, 2004 to November 23, 2004.

One data has been composed of the sensor and weather information on 38
measurement items for five seconds the measurement interval. All measurement
data is normal condition data and does not include an abnormal condition such
as accidental condition, trouble condition, and etc.

3 Abnormal Condition Sign Detection

In this section, we describe the outline of the approach of detecting the abnormal
condition sign using the unusual condition data.

Generally, the discovery of an abnormal sign is to detect a peculiar case that
appears only before an existing abnormal condition by comparing between nor-
mal conditions and abnormal conditions. However, it is a fact that there is few
data of abnormal conditions in the electric power equipment, because the electric
power plants is designed with the high safety factor and maintained appropri-
ately. Currently, our bearing vibration data of the hydroelectric power plant
also does not have abnormal conditions and accidental conditions. Therefore,
it is impossible to detect a peculiar case before abnormal conditions and acci-
dental conditions happen, because it is hard to take the abnormal or accidental
conditions and it is impossible to compare normal conditions with abnormal
or accidental conditions. Then, we think the relation between a peculiar condi-
tion before an abnormal condition happen (hereafter, we call it the abnormal
condition sign) and unusual conditions as the following relation.

The abnormal condition sign ≈ The increase of generation rate of
selected unusual condition.

184 N. Ito, T. Onoda, and H. Yamasaki

Fig. 1. Image of Unusual Condition Detection

It is possible to change the discovery of the abnormal sign to monitor the genera-
tion rate of selected unusual conditions in the normal conditions. In other words,
it is think that the unusual condition data with low probability of existing in
the normal condition data have the relation with abnormal condition signs.

The figure 1 shows a concept of detection of unusual condition data in the nor-
mal condition data. In this figure, the gray oblique line area denotes the normal
condition data area. In this research, the unusual condition data are detected
from this normal condition data. From the figure 1, if we can find a hyper-
sphere, which can cover the 99% of the normal condition data, we can think
that the other 1% data unusual condition data. This 99% normal condition data
are called “general condition data”. In the figure 1, the inside of a circle shown
a black solid line is general condition data area, and black stars denote unusual
condition data. Therefore, if we can find a boundary of α% area in the normal
condition area correctly, it is possible to detect unusual condition data which do
not belong the α% area of normal condition data. We adopt One Class Support
Vector Machine (hereafter One Class SVM) to find the boundary correctly [6].
After extracting unusual condition data, our proposed method shows the un-
usual condition data to human expertise, and human expertise evaluates them
and selects abnormal condition data. And our method monitor the generation
rate of selected abnormal condition data in new data.

4 One-Class SVM

Schölkopf et al. suggested a method of adapting the SVM methodology to one
class classification problem [6]. Essentially, after transforming the feature via a
kernel, they treat the origin as the only member of the second class. The using
“relaxation parameters” they separate the image of the one class from the origin.
Then the standard two class SVM techniques are employed [7,8,9].

Interactive Abnormal Condition Sign Discovery 185

Origin

＋１

－１

Fig. 2. One Class SVM Classifier: the origin is the only original member of the second
class

One Class SVM [6] returns a function f that takes the value +1 in a “small”
region capturing most of the training data points, and -1 elsewhere.

The algorithm can be summarized as mapping the data into a feature space
H using an appropriate kernel function, and then trying to separate the mapped
vectors from the origin with maximum margin(see Figure 2).

Let the training data be x1, . . . ,x� belonging to one class X , where X is a
compact subset of RN and � is the number of observations. Let Φ : X → H be
a kernel map which transforms the training examples to feature space. The dot
product in the image of Φ can be computed by evaluating some simple kernels

k(x,y) = (Φ(x) · Φ(y)) (1)

such as the Gaussian kernel

k(x,y) = exp
(

‖x − y‖2

c

)
. (2)

The strategy is to map the data into the feature space corresponding to the
kernel, and to separate them from the origin with maximum margin. Then, To
separate the data set from the origin, one needs to solve the following quadratic
program:

min
w∈H,ξ∈R�ρ∈RN

1
2
‖w‖2 +

1
ν�

∑

i

ξi − ρ

subject to (w · Φ(xi)) ≥ ρ − ξi, (3)
ξi ≥ 0.

Here, ν ∈ (0, 1) is an upper bound on the fraction of outliers, and a lower bound
on the fraction of Support Vectors.

186 N. Ito, T. Onoda, and H. Yamasaki

Since nonzero slack variables ξi are penalized in the objective function, we
can expect that if w and ρ solve this problem, then the decision function

f(x) = sgn ((w · Φ(x)) − ρ) (4)

will be positive for most examples xi contained in the training set, while the SV
type regularization term ‖w‖ will still be small. The actual trade-off between
these two is controlled by ν. For a new point x, the value f(x) is determined by
evaluating which side of the hyper-plane it falls on, in feature space.

Using multipliers αi, βi ≥ 0, we introduce a Lagrangian

L(w, ξ, ρ, α, β) =
1
2
‖w‖2 +

1
ν�

∑

i

ξi − ρ

−
∑

i

αi((w · xi) − ρ + ξi) −
∑

i

βiξi (5)

and set the derivatives with respect to the primal variables w, ξi, ρ equal to zero,
yielding

w =
∑

i

αixi, (6)

αi =
1
ν�

− βi ≤ 1
ν�

,
∑

i

αi = 1. (7)

In Eqn. (6), all patterns {xi : i ∈ [�], αi > 0} are called Support Vectors. Using
Eqn. (1), the SV expansion transforms the decision function Eqn. (4)

f(x) = sgn

(
∑

i

αik(xi,x) − ρ

)
. (8)

Substituting Eqn. (6) and Eqn. (7) into Eqn. (5), we obtain the dual problem:

min
α

1
2

∑

i,j

αiαjk(xi,xj) (9)

subject to 0 ≤ αi ≤ 1
ν�

,
∑

i

αi = 1. (10)

One can show that at the optimum, the two inequality constraints Eqn. (3)
become equalities if αi and βi are nonzero, i.e. if 0 < α ≤ 1/(ν�). Therefore, we
can recover ρ by exploiting that for any such αi, the corresponding pattern xi

satisfies
ρ = (w · xi) =

∑

j

αjxj · xi. (11)

In our research, we used the LIBSVM. This is an integrated tool for support
vector classification and regression which can handle One Class SVM using the
Schölkopf etc algorithms. The LIBSVM is available at http://www.csie.ntu.edu.
tw/˜cjlin/libsvm.

Interactive Abnormal Condition Sign Discovery 187

5 Unusual Data Detection Experiment

In this section, we describe our experiment by using the measurement data, which
is explained in section 2. Especially, we briefly introduce our experimental setup,
how to verify our experimental results, experimental results, and the evaluation.

5.1 Experimental Setup

Our experiment analyzed the measurement data, which is explained in section 2.
The measurement data is composed of 38 measurement items. However, in order
to detect the unusual condition data, we extracted the related measurement
items to the bearing vibration from all measurement items. So, 16 measurement
items were selected by the expertise of the bearing vibration of the experts to
analyze the unusual condition data. Table 2 shows these selected 16 measurement
items.

The starting condition data and the parallel off condition data are very few
in our dataset relatively. The parallel operation condition data are very large. If
we analyze the all measurement data to detect the unusual condition data, the
detected condition data are the starting condition data or the parallel off condi-
tion data. This is not good situation for our analysis. So, the all measurement
data is divided into the following four groups by expertise of experts. In practice,
these operations should be defined by the operation record of the hydroelectric
power plant. However, in order to verify our proposed approach, we defined the
four groups by using the expertise of the experts intentionally.

Starting condition:
Generator Voltage(V-W) < 10kV and Guide Vane Opening ≥ 10% and Rev-
olutions Per Minute ≥ 200 rpm.

Parallel operation condition:
Generator Voltage(V-W) ≥ 10kV and Revolutions Per Minute ≥ 200 rpm.

Parallel off condition:
Generator Voltage(V-W) < 10kV and Guide Vane Opening < 10% and Rev-
olutions Per Minute ≥ 200 rpm.

Stopping condition:
Otherwise.

Table 2. Measurement Items

Measurement Items for Detection Analysis
A. Generated Output(MW) B. Revolutions Per Minute
C. Room Tempe.(C̊) D. Water Tempe.(C̊)
E. Oil Cooler Inlet Air Tempe.(C̊) F. Oil Cooler Outlet Air Tempe.(C̊)
G. Upper Bearing Tempe.(C̊) H. Bottom Bearing Tempe.(C̊)
I. Upper Bearing Oil Tempe.e(C̊) J. Turbine Bearing Tempe.(C̊)
K. Turbine Bearing Oil Tempe.(C̊) L. Thrust Bearing Tempe.(C̊)
M. Bottom Oil Tank Oil Tempe.(C̊) N. Bottom Bearing Inlet Air Tempe.(C̊)
O. Generator Shaft Vibration P. Turbine Shaft Vibration

(X axis)(μm) (X axis)(μm)

188 N. Ito, T. Onoda, and H. Yamasaki

Table 3. The typical unusual condition data in the starting condition data

Measurement Item Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

A.Generated Output(MW) -0.192 -0.192 -0.192 -0.192 -0.192 -0.192 -0.162 -0.192 -0.18
B.Revolutions Per Minute 239 224 238 243 243 238 330 233 224
C.Room Tempe.(C̊) 15.0 16.1 15.2 23.1 23.1 29.8 28.8 27.4 26.8
D.Water Tempe.(C̊) 10.1 10.9 10.4 21.1 21.1 27.9 27.4 25.8 24.5
E.Oil Cooler Inlet Air Tempe.(C̊) 20.3 22.9 18.0 25.9 25.9 36.6 30.9 28.6 27.9
F.Oil Cooler Outlet Air Tempe.(C̊) 25.4 27.6 21.8 35.0 34.8 40.9 40.5 29.9 28.5
G.Upper Bearing Tempe.(C̊) 40.0 41.0 36.2 46.4 46.5 50.3 50.8 32.2 30.6
H.Bttm Bearing Tempe.(C̊) 36.3 35.1 32.9 44.3 44.3 44.5 50.9 31.2 29.6
I.Upper Bearing Oil Tempe.(C̊) 35.9 36.8 32.1 42.9 42.8 47.7 47.5 31.6 29.5
J.Turbine Bearing Tempe.(C̊) 34.1 31.7 30.8 41.1 41.1 40.8 43.8 24.6 22.5
K.Turbine Bearing Oil Tempe.(C̊) 32.3 30.0 29.2 33.1 33.1 38.2 37.0 24.8 22.5
L.Thrust Bearing Tempe.(C̊) 40.4 41.3 36.5 54.6 54.8 51.3 59.7 32.1 30.4
M.Bottom Oil Tank Oil Tempe.(C̊) 33.3 32.5 29.7 40.5 40.4 43.3 47.8 30.1 28.6
N.Bottom Bearing Inlet Air Tempe.(C̊) 18.8 21.0 18.1 24.3 24.5 33.5 29.2 29.1 27.8
O.Generator Shaft Vibration(X axis)(μm) 11 22 16 12 8 15 23 11 14
P.Turbine Shaft Vibration(X axis)(μm) 21 33 31 34 27 35 33 20 22

Table 4. No. of data in Each Condition

Group The number of data
Stopping condition 433,935
Starting condition 120
Parallel operation condition 2,368,756
Parallel off condition 132
Total 2,804,113

These groups defined by the expertise of the experts. Table 4 shows the number
of data in each group.

In the stopping condition group, the bearing does not rotate. This group data
were omitted from the analyzed data. In other words, the unusual condition data
were detected in each group, which is starting condition or parallel operation
condition or parallel off condition. In order to ignore the different measurement
units, the measurement data is normalized into the average 0 and the variance
1 at each measurement item.

5.2 Detection Results and Evaluation

The unusual condition data were detected in each group data of the starting
condition, the parallel operation condition and the parallel off condition by ap-
plying One Class SVM, which is introduced in section 3. Our experiments made
the trial that changes the detected number of unusual condition data. In this sec-
tion, we report the analysis result to each group data in the number of unusual
condition data. The experts judged that the number was appropriate.

Detection of the unusual condition data in the starting condition data.
The starting condition data were applied One Class SVM to detect unusual
condition data in these data. The parameter ν, which can determine the rate
of the unusual condition data in the analyzed data, was set 0.05. This analysis
can detect the unusual condition data, whose existence probabilities are smaller
than 0.05. We could detect 9 unusual condition data by the analysis. Table 3
shows the typical unusual condition data, which are detected by our experiment.

Interactive Abnormal Condition Sign Discovery 189

Table 5. Data Before and After Case 4 and 5

Measurement Items -15 sec. -10 sec. -5 sec. Case 4 Case 5 +10 sec. +15 sec.
A.Generated Output(MW) 4.272 4.32 4.452 -0.192 -0.192 4.26 2.352
B.Revolutions Par Minute 243 243 243 243 243 243 243
C.Room Tempe.(C̊) 23.2 23.1 23.1 23.1 23.1 23.1 23.2
D.Water Tempe.(C̊) 21.2 21.0 21.1 21.1 21.1 21.2 21.2
E.Oil Cooler Inlet Air Tempe.(C̊) 25.9 26.1 25.9 25.9 25.9 26.1 26.1
F.Oil Cooler Outlet Air Tempe.(C̊) 34.8 35.0 34.9 35.0 34.8 34.9 34.8
G.Upper Bearing Tempe.(C̊) 46.4 46.6 46.5 46.4 46.5 46.3 46.6
H.Bottom Bearing Tempe.(C̊) 44.3 44.3 44.3 44.3 44.3 44.5 44.2
I.Upper Bearing Oil Tempe.(C̊) 42.9 42.8 42.8 42.9 42.8 43.0 43.0
J.Turbine Bearing Tempe.(C̊) 41.1 41.1 41.1 41.1 41.1 41.1 41.1
K.Turbine Bearing Oil Tempe.(C̊) 33.1 32.9 33.2 33.1 33.1 33.0 33.2
L.Thrust Bearing Tempe.(C̊) 54.8 54.8 54.8 54.6 54.8 54.6 54.8
M.Bottom Oil Tank Oil Tempe.(C̊) 40.4 40.6 40.4 40.5 40.4 40.6 40.3
N.Bottom Bearing Inlet Air Tempe(C̊) 24.5 24.4 24.5 24.3 24.5 24.6 24.4
O.Generator Shaft Vibration(X axis)(μm) 14 11 9 12 8 11 9
P.Turbine Shaft Vibration(X axis)(μm) 40 25 26 34 27 31 34

Table 6. The typical unusual condition data in the parallel operation condition data (1)

Measurement Item Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
A.Generated Output(MW) 1.602 2.112 1.542 2.622 1.122 16.68 16.26
B.Revolutions Per Minute 242 242 242 242 242 243 242
C.Room Tempe.(C̊) 15.0 14.8 15.0 15.0 12.1 23.3 28.6
D.Water Tempe.(C̊) 10.2 10.3 10.7 10.3 12.2 20.8 27.4
E.Oil Cooler Inlet Air Tempe.(C̊) 18.4 18.3 16.9 16.7 11.1 25.9 31.2
F.Oil Cooler Outlet Air Tempe.(C̊) 24.2 24.4 22.9 23.2 22.0 34.3 40.6
G.Upper Bearing Tempe.(C̊) 37.9 38.1 37.0 37.3 39.6 45.8 50.7
H.Bottom Bearing Tempe.(C̊) 35.0 35.2 34.6 35.6 44.3 42.6 51.0
I.Upper Bearing Oil Tempe.(C̊) 34.1 34.2 33.0 33.2 35.1 42.2 47.6
J.Turbine Bearing Tempe.(C̊) 32.5 32.9 32.9 33.5 43.3 39.7 44.1
K.Turbine Bearing Oil Tempe.(C̊) 29.4 29.3 29.1 29.0 35.5 31.9 37.4
L.Thrust Bearing Tempe.(C̊) 39.6 40.3 39.1 40.6 46.9 53.9 59.8
M.Bottom Oil Tank Oil Tempe.(C̊) 32.1 32.4 31.6 32.0 39.2 38.7 47.8
N.Bottom Bearing Inlet Air Tempe.(C̊) 16.3 16.3 15.9 15.7 12.1 24.5 29.0
O.Generator Shaft Vibration(X axis)(μm) 18 21 21 19 24 17 22
P.Turbine Shaft Vibration(X axis)(μm) 40 35 42 44 87 26 51

In the table 3, the case 4 and 5 should belong to the parallel operation condi-
tion actually. Table 5 shows the data before and after 15 seconds of the case 4.
In this table, we can recognize that the case 4 and 5 should belong to the parallel
operation condition. This situation shows that the expertise of experts could not
describe the starting condition completely. However, our proposed approach can
detect the case 4 and 5, which should belong to the parallel operation condition,
as the unusual condition data. This fact shows that our approach can find the
appropriate unusual condition data, which should be detected in the starting
condition. In the table 3, the case 7 is an accidental interruption. This fact was
researched by using an operation record, an daily report, and etc. The accidental
interruption denotes a power plant parallel off when the power system has an
accident, and is very rare case.

Detection of the unusual condition data in the parallel operation con-
dition data. The parallel operation condition data were applied One Class

190 N. Ito, T. Onoda, and H. Yamasaki

Table 7. The typical unusual condition data in the parallel operation condition data (2)

Measurement Item Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14
A.Generated Output(MW) 15.792 14.64 -0.192 -0.192 -0.192 -0.18 1.632
B.Revolutions Per Minute 242 243 232 231 229 233 242
C.Room Tempe.(C̊) 28.6 28.7 26.8 26.8 26.7 27.6 12.4
D.Water Tempe.(C̊) 27.4 27.6 25.6 25.6 25.6 25.7 13.1
E.Oil Cooler Inlet Air Tempe.(C̊) 30.8 30.6 28.1 28.0 28.0 28.6 12.8
F.Oil Cooler Outlet Air Tempe.(C̊) 40.3 40.0 35.3 35.3 35.3 30.6 22.5
G.Upper Bearing Tempe.(C̊) 50.5 50.7 45.6 45.6 45.8 36.8 39.2
H.Bottom Bearing Tempe.(C̊) 50.7 50.9 43.5 43.7 43.8 32.8 44.2
I.Upper Bearing Oil Tempe.(C̊) 47.3 47.4 42.4 42.6 42.4 34.7 35.1
J.Turbine Bearing Tempe.(C̊) 43.8 43.7 39.9 40.0 39.9 27.4 43.8
K.Turbine Bearing Oil Tempe.(C̊) 36.5 36.0 31.1 31.1 31.1 25.2 36.3
L.Thrust Bearing Tempe.(C̊) 59.7 59.4 52.9 52.9 53.1 38.1 46.8
M.Bottom Oil Tank Oil Tempe.(C̊) 47.8 48.1 40.3 40.2 40.2 30.8 39.0
N.Bottom Bearing Inlet Air Tempe.(C̊) 29.2 29.1 26.8 26.7 26.8 28.5 11.7
O.Generator Shaft Vibration(X axis)(μm) 20 22 23 18 12 10 23
P.Turbine Shaft Vibration(X axis)(μm) 54 63 70 54 47 24 87

Table 8. The typical unusual condition data in the parallel off operation condition
data

Measurement Item Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11

A.Generated Output(MW) -0.21 -0.192 -0.192 -0.192 -0.192 -0.192 -0.192 -0.18 -0.192 -0.192 -0.192
B.Revolutions Per Minute 227 208 239 233 240 208 242 261 208 225 236
C.Room Tempe.(C̊) 15.6 16.4 13.8 16.9 22.8 22.7 29.9 28.8 28.8 26.7 27.6
D.Water Tempe.(C̊) 9.4 9.6 13.2 14.7 20.6 20.4 28.7 27.6 27.6 25.7 25.6
E.Oil Cooler Inlet Air 17.6 18.6 13.9 20.1 26.3 26.3 32.3 31.1 31.1 28.0 28.6

Tempe.(C̊)
F.Oil Cooler Outlet Air 27.4 28.0 24.1 29.1 32.0 31.9 41.1 40.6 40.5 35.3 30.8

Tempe.(C̊)
G.Upper Bearing Tempe. 42.4 42.3 40.3 43.0 42.6 42.8 50.8 50.6 50.7 45.6 36.6

(C̊)
H.Bottom Bearing Tempe. 45.6 45.6 44.7 44.7 38.1 38.1 51.6 50.7 50.9 43.7 32.5

(C̊)
I.Upper Bearing Oil 38.3 38.3 36.2 39.0 39.0 39.3 48.1 47.6 47.7 42.6 34.6

Tempe.(C̊)
J.Turbine Bearing Tempe. 42.4 42.6 42.6 41.5 35.5 35.6 48.1 44.0 43.9 40.0 26.8

(C̊)
K.Turbine Bearing Oil 35.5 35.0 34.8 34.0 31.9 31.9 43.0 37.0 37.0 31.1 25.3

Tempe.(C̊)
L.Thrust Bearing Tempe. 50.2 49.9 47.9 50.9 45.6 45.8 59.4 59.7 59.7 53.1 37.2

(C̊)
M.Bottom Oil Tank Oil 41.0 41.1 39.7 40.2 35.4 35.4 48.8 47.7 47.9 40.3 30.9

Tempe.(C̊)
N.Bottom Bearing Inlet Air 16.4 17.1 14.1 17.9 24.6 24.6 31.0 29.2 29.4 26.6 28.2

Tempe.(C̊)
O.Generator Shaft Vibration 11 11 12 12 13 13 12 17 10 12 9

(X axis)(μm)
P.Turbine Shaft Vibration 35 33 34 33 28 23 46 37 37 34 23

(X axis)(μm)

SVM to detect unusual condition data in these data. The parameter ν, which
can determine the rate of the unusual condition data in the analyzed data, was
set 5 × 10−6.

We could detect 14 unusual condition data by the analysis. Table 6 and 7
shows the typical unusual condition data, which are detected by our experiment.
In the table 7, the case 10, 11 and 12 of these unusual condition data were test
operation. This fact was researched by using an operation record, an daily report,
and etc. The test operation denotes a short term operation to check the electric
power plant, and is very rare case. This fact shows that our approach can find
the appropriate unusual condition data, which should be detected in the parallel
operation condition.

Interactive Abnormal Condition Sign Discovery 191

Detection of the unusual condition data in the parallel off condition
data. The parallel off condition data were applied One Class SVM to detect
unusual condition data in these data. The parameter ν, which can determine the
rate of the unusual condition data in the analyzed data, was set 0.05.

We could detect 11 unusual condition data by the analysis. Table 8 shows
the typical unusual condition data, which are detected by our experiment. In
the table 8, the case 8 and 9 of these unusual condition data were an accidental
interruption. The other two cases (the case 10 and 11) of the unusual condition
data were a test operation. These facts were researched by using an operation
record, an daily report, and etc. The test operation and the accidental inter-
ruption are very rare case. These facts show that our approach can find the
appropriate unusual condition data, which should be detected in the parallel off
condition.

5.3 Inexplainable Unusual Condition Data

In our experiment, there are some inexplainable unusual condition data in the
above described unusual condition data. Our approach could detect nine unusual
condition data in the starting condition. The two data should belong to the
parallel operation condition. The other one pattern is the accidental interruption.
However, the rest six data are inexplainable unusual condition data. This thing
occurs in the parallel operation condition data and the parallel off condition
data. These inexplainable unusual condition data are very important for the
discovery of the abnormal condition sign.

It is easy for experts to manage the explainable unusual condition data, be-
cause the experts understand the evidence of generation of the unusual condition
data. However, it is difficult to manage the inexplainable unusual condition data,
because the experts can not understand the evidence of generation of the un-
usual condition data without the experience of the different abnormal conditions.
Therefore, the following two parts are important for the discovery of abnormal
condition signs and the risk management of hydroelectric power plants.

1. A system discovers the unusual condition data, and then human experts
evaluate the discovered data and select the inexplainable data. We call the
inexplainable unusual condition data “abnormal condition data”.

2. A system classifies the inexplainable data as abnormal condition data in
unseen data and monitors the trend of generation of the inexplainable data.

6 Conclusion

In this paper, we described the discovery method of abnormal condition signs
based on the unusual condition detection data in hydroelectric power plants and
the interactive method between human expertise and systems to select abnormal
condition data. Our proposed approach is a kind of the interactive data mining
for hydroelectric power plants. We proposed an unusual condition detection of
bearing vibration in hydroelectric power plants base on the One Class SVM. And

192 N. Ito, T. Onoda, and H. Yamasaki

we show that our proposed approach could select some unusual condition data
as abnormal condition data in hydroelectric power plants by using expertise of
experts.

References

1. Yamana, M., Murata, H., Onoda, T., Oohashi, T., Kato, S.: Comparison of pattern
classification methods in system for crossarm reuse judgment on the basis of rust
images. In: Proceedings of Artificial Intelligence and Applications 2005, pp. 439–444
(2005)

2. Jardine, A.K.S.: Repairable system reliability: Recent developments in CBM opti-
mization. In: 19th International Congress and Exhibition on Condition Monitoring
and Diagnostic Engineering Management (COMADEM), Luleä, Sweden, June 13-15
(2006)

3. Tsang, A.H.C., Yeung, W.K., Jardine, A.K.S., Leung, P.K.: Data management for
CBM optimization. Journal of Quality in Maintenance Engineering 12, 37–51 (2006)

4. Lin, D., Banjevic, D., Jardine, A.K.S.: Using principal components in a proportional
hazards model with applications in condition-based maintenance. The Journal of the
Operational Researche Sciety 57, 910–919 (2006)

5. Zuashkiani, A., Banjevic, D., Jardine, A.K.S.: Incorporating expert knowledge when
estimating parameters of the proportional hazards model. In: Proceedings of Relia-
bility and Maintainability Symposium, Newport Beach, CA, January 23-26 (2006)

6. Schölkopf, B., Smola, A., Williamson, R., Bartlett, P.: New support vector algo-
rithms. Neural Computation 12, 1083–1121 (2000)

7. Cortes, C., Vapnik, V.: Support Vector Networks. Machine Learning 20, 273–297
(1995)

8. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg
(1995)

9. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

Interactive Visualization System
for Decision Making Support in Online Shopping

Tomoki Kajinami, Takashi Makihara, and Yasufumi Takama

Tokyo Metropolitan University,
6-6 Asahigaoka, Hino, Tokyo, 191-0065 Japan

Abstract. This paper proposes an interactive visualization based on
decision making approach, which helps a user to make a comparison be-
tween items and to select certain item in online shopping. This paper
employs an interactive visualization system Keyword Map, which is de-
signed for general-purpose visualization of graph structure. The system
has several functions for emphasizing user’s intentions and can reflect
those to a map. In this paper, improved Keyword Map is proposed and
applied to interactive retrieval process of online shopping. Experiments
with test subjects are performed to compare user’s behaviors in online
shopping between the proposed system and ordinary Web browser. The
results show that subjects using proposed system tend to analyze rela-
tionship between items, which leads to the acceleration of concept artic-
ulation of online shopping.

Keywords: Interactive Retrieval, Decision Making, Information Visu-
alization, Relevance Feedback.

1 Introduction

Recently, we can receive several services through many online stores on the Web.
Many methodologies of the site design have been studied to win customers and
to increase sales [3]. In online shopping, a user tends to compares items in order
to buy a better one among several candidates. For example, many people want to
buy good items at popular prices. They would analyze those from various view-
points (e.g. price, color, design, brand, and so on.), using manufacturer sites
and/or price comparison sites (e.g. Kakaku.com1). In any case, a user decides
which item to buy through analyzing items from several viewpoints. Therefore,
acceleration of concept articulation is also important in online shopping. Con-
cept articulation means that when a user initially has only vague requirements
for items, he/she gradually clarifies requirements for those through interactive
analysis from various viewpoints [4].

Information visualization techniques have been studied to help a user’s per-
ception about multi-dimensional data, complicated relationship between objects,
and so on [1]. We regard the comparison of items by a user as the perception

1 Kakaku.com — http://kakaku.com/ (Japanese site).

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 193–202, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

194 T. Kajinami, T. Makihara, and Y. Takama

of relationship between objects, and apply information visualization techniques
for supporting online shopping. A Keyword Map has been studied for general-
purpose visualization of relationship between objects (keywords) [2]. However,
the Keyword Map treats only one kind of relationships between keywords, which
means a user has to perceive relationships between keywords from one viewpoint.

In this paper, we extend existing Keyword Map so that a user can ana-
lyze/view relationship between keywords from various viewpoints, and propose
the Keyword Map-based online shopping support system. We show through ex-
periments with test subjects that proposed system can offer various viewpoints
to a user, which leads to support his/her decision making in online shopping.

In section 2, we first describe basic algorithm of the Keyword Map and sum-
marize its features. And we introduce Multiple Relevance Controller as the new
feature of the Keyword Map. The Multiple Relevance Controller enables a user
to analyze/view relationship between keywords from various viewpoints. In sec-
tion 3, we perform a preparatory experiment with test subjects for confirming
the effectiveness of the Multiple Relevance Controller. In section 4, we propose
the Keyword Map-based online shopping support system. In section 5, we per-
form experiments with test subjects for evaluating the effectiveness of proposed
system.

2 Keyword Map: Interactive Information Visualization
System

2.1 Overview of Keyword Map

Keyword Map is an interactive information visualization system designed for
general-purpose visualization of graph structure. The system employs the spring
model which is a kind of the force-directed graph drawing methods to arrange
keywords on 2D space. The basic algorithm of Keyword Map is as follows.

1. Define the distance lij between keyword i and j based on their degrees of
relationship Rij ∈ [−1, 1] by Eq.(1) (m is positive constant).

lij = m(1 − Rij). (1)

2. The moving distance of keyword i in each step, (δxi, δyi), is calculated by
Eq.(2).

(δxi, δyi) =
(

c
∂Eij

∂xi
, c

∂Eij

∂yi

)
, (2)

Eij =
∑
i

∑
j

1
2kij(dij − lij)2, (3)

dij =
√

(xi − xj)2 + (yi − yj)2. (4)

3. By repeating above calculation and update of coordinates, a keyword ar-
rangement is closing to one of local optimal arrangements.

Interactive Visualization System for Decision Making Support 195

Fig. 1. Screenshot of Keyword Map

The keywords with the high Rij will be arranged close to each other, while
those with low or negative Rij will be arranged far away from each other.

Figure 1 shows the screenshot of Keyword Map. Keyword Map receives a
set of keywords and their degrees of relationship as an input and draws the
graph structure on 2D space with an animation. A keyword is represented as a
rectangle. A link is displayed between keywords when its degree of relationship
is positive.

Keyword Map provides several interactive functions. A user can drag arbi-
trary keywords for changing positions (enclosed with circles in Fig.1). When
a position of a keyword is changed, the positions of its related keywords are
also changed in real-time. A user can also disable arbitrary keywords, which
are ignored by the real-time calculation. Keyword Map also provides high level
of interactive functions such as keyword concentration, keyword separation, and
keyword formation.

Figure 2(a) shows an example of how the keyword concentration function
is used. This function makes a keyword cluster, in which a user is interested
(enclosed with a circle in left of Fig.2(a)). By using this function, a user can
gather relevant keywords related with an arbitrary keyword (enclosed with a
circle in right of Fig.2(a)). Figure 2(b) shows an example of how the keyword
separation function is used. This function divides a keyword cluster (enclosed
with a circle in left of Fig.2(b)) into two or more clusters (enclosed with two
circles in right of Fig.2(b)). By using this function, a user can arrange keywords
clusters separately as different topics. Figure 2(c) shows an example of how the
keyword formation function is used. This function lines up keywords or keyword
clusters downward/rightward. By using this function, a user can align keywords
or keyword clusters in order of their importance. These functions can be used
for emphasizing/reflecting user’s intention and viewpoint [2].

196 T. Kajinami, T. Makihara, and Y. Takama

Fig. 2. High level interactive functions

2.2 Introduction of Multiple Relevance Controller

Previous study has investigated the effectiveness of the system in terms of user’s
concept articulation in his/her decision making process (e.g. tourist route de-
cision, college course decision) [2]. The experimental result showed that users
can reflect his/her own intention in keywords arrangement using the interactive
functions and make his/her own concept clear. However, when initial keywords
arrangement made by the system is similar to what a user expected, his/her
motivation to edit a map tends to decrease, which makes it difficult to find new
interpretation. This means a user interprets a map only from one viewpoint if
the system arranges keywords according to single relevance type. A relevance
type is one of factors of relationships between keywords. When keywords are
arranged according to different relevance type, a user can analyze/view a map
from different viewpoint.

In online shopping, alike shopping in the real world, a user tends to examine
various attributes items, such as brands, colors, shapes, in addition to price.
That is, a user analyzes items from various viewpoints. Therefore, The keyword
Map needs a new function to offer multiple viewpoints to a user based on the
combination of multiple relevance types. In this section, we introduce new func-
tion “Multiple Relevance Controller” into existing Keyword Map, so that it can
combine multiple relevance types by changing their weights. By introduction the

Interactive Visualization System for Decision Making Support 197

Fig. 3. The Keyword Map equipped with the Multiple Relevance Controller

Multiple Relevance Controller, it is expected that a user can analyze/view a data
set from various viewpoints.

The controller is realized by extending definition of Rij in existing Keyword
Map. When relationship between keyword i and j has n relevance types, the rmij

is relevance value of m(∈ N) relevance type. The gm(≥ 0) is its weight. The Rs
ij

is weighted sum of relevance values (Eq.(6)). The extended Rij(−1 ≤ Rij ≤ 1)
is defined by Eq.(5). Where, Rs

max is maximal value of |Rs
ij |.

Rij =
Rs

ij

Rs
max

, (5)

Rs
ij =

n∑
m=1

gmrmij . (6)

A user can change gm in order to reflect his/her thought about the importance
degree of each relevance type to Rij .

Figure 3 shows the screenshot of Keyword Map equipped with Multiple Rel-
evance Controller. Not only a single relevance type, but also the combination
of multiple relevance types is available. The selection/combination of relevance
types are performed with sliders on the right side of the window in Fig.3. Each
relevance type is assigned to a different slider, on which using a wheel of a
mouse adjusts its degree of influence on visualization. Hereinafter, Keyword Map
equipped with Multiple Relevance Controller is simply called Keyword Map.

198 T. Kajinami, T. Makihara, and Y. Takama

3 Effectiveness of the Multiple Relevance Controller

In this section, we confirm effectiveness of the Multiple Relevance Controller
through a preparatory experiment with test subjects. The purpose of the exper-
iment is to confirm difference of the users’ interpretation according to different
weight settings of relevance types. If subjects make different interpretation de-
pending on the weight settings of relevance type, it can be said that the Multiple
Relevance Controller can offer subjects various viewpoints to analyze a map.

First, we prepared a data set that has thirty keywords and three relevance
types. All keywords’ labels are drawn as “keyword and keyword’s number” on
the map, i.e., “keyword 1,” “keyword 2,” and “keyword 30.” Relevance values
of three relevance types are defined at random, each of which is expected to

Fig. 4. Typical clusters found in each effective relevance type

Interactive Visualization System for Decision Making Support 199

give users different viewpoints. Second, we presented a map to test subjects.
Each weight of two relevance types in a map is set to zero. That means subjects
view/analyze a map depending on only one of relevance types—in this section, it
is called an effective relevance type. Next, subjects were asked to cluster keywords
that represent features of the map. Their task is to find at most three clusters
in the map. When performing the task, a condition that each cluster contains
three to six keywords is imposed on test subjects. We presented three maps in
turn, each of which is drawn with one of relevance types. This experiment was
performed by 10 test subjects.

Figure 4 shows that keyword clusters found by test subjects in each effective
relevance type. The clusters enclosed with circles are found by more than 6
subjects. In Figure 4(a), the most typical cluster includes keyword 17, 23, and 29,
which was found by 9 subjects. Another one cluster was also found by 9 subjects,
which includes keyword 19, 21, and 25. In Figure 4(b), the most typical cluster
includes keyword 17, 21, and 30, which was found by all subjects. In Figure 4(c),
the most typical cluster includes keyword 13, 18, and 25, which was found by 9
subjects.

From the results, it can be said that test subjects make different interpreta-
tion of the map that consists of the same keyword set, when the map is drawn
according to the effective relevance types. That means subjects viewed the map
from different viewpoints. Therefore, it is expected the introduction of Multiple
Relevance Controller makes it possible for users to view the same map from
multiple viewpoints.

4 Keyword Map-Based Online Shopping Support System

We propose a Keyword Map-based online shopping support system. Figure 5
shows the system architecture. The system combines the Keyword Map with
backend system. The backend system makes data set for the Keyword Map from
Amazon.co.jp (using AmazonAPI2). The Keyword Map can read data set from
the backend system, and outputs an edit log of a map by a user to the backend
system. The backend system extracts user’s intention from the log and makes
new data set. This process is called Keyword Map-based relevance feedback [5].

5 Experiment

5.1 Purpose of Experiment and Preparation

The purpose of the experiment is to confirm difference of users’ behaviors in
online shopping, by comparing the behaviors when using the proposed system
with that when using ordinary Web browser (e.g. Internet Explorer). It can be
said that the proposed system can support decision making through users’ trial
and errors, if they can find new conceptions and search items more actively com-
pared with when they use ordinary Web browser. The subject’s task is to select
2 Amazon.co.jp — http://www.amazon.co.jp (Japanese site).

200 T. Kajinami, T. Makihara, and Y. Takama

Fig. 5. Architecture of the Keyword Map-based online shopping support system

a movie’s DVD item for a gift to his/her friend and parents. Actual searching
process using the system is as follows.

1. A subject views a map constructed from a seed (initial query) item.
2. He/she edits the map, during which he/she analyzes relationship between

items using the interactive functions including the Multiple Relevance Con-
troller.

3. From the edited map, the backend system including the AmazonAPI searches
movie DVDs, and makes new data set for the keyword map.

4. Step2 and 3 are repeated until he/she makes a decision on buying a certain
item.

Data set for the Keyword Map includes three relevance types; actors, director,
and genre. And Keyword labels are movies’ titles. Therefore, test subjects can
view/analyze relationship between movies with the combination of these rele-
vance types. By selecting an arbitrary movie as a seed, a subject starts search-
ing process either using the proposed system or accessing Amazon.co.jp with an
ordinary Web browser. We compare subjects’ behaviors by the proposed system
with that by an ordinary Web browser. This experiment was performed by six
test subjects.

5.2 Experimental Results and Discussion

Table 1 summarizes results obtained from questionnaire and test subjects’ behav-
ior logs. Average score of amusement level and satisfaction level are evaluated by

Interactive Visualization System for Decision Making Support 201

Table 1. Comparing proposed search process with ordinary one

Ordinary Web browser Proposed system
Avg. score of amusement level 2.83 4.00
Avg. score of satisfaction level 2.83 2.67

Avg. # of repeat search 6.33 8.17
Mean task time (minutes) 7.17 10.67

questionnaire. Their evaluations are given with five scale (1-5, 5 is the highest).
Furthermore, they are asked to give as many comments as possible.

From Table 1, when the proposed system is used, amusement level is higher
than the ordinary Web browser (significant, |t| = 2.44, P = 0.03 < 0.05), and the
averagenumber of repeated search and mean task time increase. From the result, it
can be said that the proposed system encourages test subjects to repeatedly search
items while enjoying the process itself. On the other hand, as for using the ordinary
Web browser, test subjects did not search items so actively, compared to when test
subjects used the proposed system. It is also observed that test subjects using
the proposed system tended to use one or two relevance types at the same time,
which means they can analyze items’ relationships from multiple viewpoints for
finding new conceptions. Moreover, obtained typical comments about the reason
for choosing movies, and used interactive functions are as follows.

– Test subjects using ordinary Web browser
• He/she wants to find famous movies.
• He/she is interested in favorite movies.
• He/she is interested in known movies.

– Test subjects using proposed system
• He/she wants to examine relationships between movies.
• He/she is interested in particuler relevance type and selects it using the

Multiple Relevance Controller.
• He/she is interested in common relationship between unknowing movies.

From the result, characteristic of test subjects’ behaviors in search are sum-
marized as follows: test subjects using the ordinary Web browser tend to search
items based on their already-known information. But whose who use the pro-
posed system tend to search items based on interactive data analysis of maps
from various viewpoints. It means that they make their concept articulation on
purchase through trial and errors.

From the results, it can be said that the proposed Keyword Map-based online
shopping support system can support a user’s decision making on online shop-
ping, by accelerating trigger of concept articulation based on interactive data
analysis from various viewpoints.

6 Conclusions

The Keyword Map-based online shopping support system is proposed for sup-
porting decision making in online shopping. The proposed system makes it

202 T. Kajinami, T. Makihara, and Y. Takama

possible for users to analyze relationships between items from various viewpoints.
We perform an experiment with test subjects for investigating the effectiveness
of the proposed system. Experimental results show that subjects can analyze
items from various viewpoint using the proposed system, which means the pro-
posed system can support a user’s decision making by accelerating their concept
articulation through interactive item analysis from various viewpoints. Future
studies include the application of the Keyword Map to various fields including
visual data mining and chance discovery, as well as the detailed analysis of users’
exploratory activities on Keyword Map.

References

1. Information Visualization. In: Card, S.T., Mackinlay, J.D., Shneiderman, B. (eds.)
Reading in Information Visualization: Using Vision to Think, ch. 1, pp. 1–34. Mor-
gan Kaufman, San Francisco (1999)

2. Kajinami, T., Takama, Y.: Examination of Arrangement Support Functions for
Emphasizing User’s Intentions on Keyword Map. In: ICARCV 2006, pp. 1667–1671
(2006)

3. Lohse, G.L., Spiller, P.: Electronic Shopping. Communications of the ACM 41(7),
81–88 (1998)

4. Shoji, H., Hori, K.: S-Conart an interaction method that facilitates concept articu-
lation in shopping online. AI&Society 19(1), 65–83 (2005)

5. Takama, Y., Kajinami, T.: Keyword Map-based Relevance Feedback for Web In-
formation Retrieval. In: 2nd Pan-Pacific Symposium on Information Technology,
pp.41–44 (2004)

A Method to Recognize and Count Leaves
on the Surface of a River

Using User’s Knowledge about Color of Leaves

Fujio Tsutsumi1 and Yutaka Tateda2

1 System Engineering Research Laboratory,
Central Research Institute of Electric Power Industry,
2-11-1, Iwado kita, Komae-shi, Tokyo 201-8511, Japan

2 Environmental Science Research Laboratory,
Central Research Institute of Electric Power Industry,

1646 Abiko, Abiko-shi, Chiba 270-1194, Japan

Abstract. This paper proposes a recognition and count method of leaves
on the surface of a river to be used in mangrove ecosystem monitoring.
Conventionally counting leaves required considerable manual labor for
precise monitoring of material flow in the ecosystem. Therefore an efficient
counting method was needed. Our method automatically recognizes and
counts the number of floating leaves in recorded video using color and mo-
tion features. The color feature is represented by 3 dimensional histogram
of a color space. We have developed a user interface based on the inter-
active machine learning model to acquire the color feature from video im-
ages. The user can easily produce a huge number of sample data to extract
the color feature by the user interface in the same way as coloring a picture.
For the motion feature, speed and acceleration of the targets are used. The
counting method proposed in this paper has been applied to three videos
(total five hours) which recorded about 20,000 leaves, and high recall and
precision rates of 96% and 94%, respectively, have been achieved.

Keywords: Video Image Processing, Color Image Processing, Environ-
mental Monitoring, Interactive Machine Learning.

1 Introduction

In the mangrove ecosystem, by photosynthesis of trees, CO2 is absorbed from the
atmosphere and mangrove forests store carbon. Moreover, it is known that or-
ganic matters of the mangrove origin, such as fallen leaves, turn into a sediment,
accumulate them into mangrove forests, and they store carbon as a peat layer.
However, it turns out that some fallen leaves flow out of a river into the coast,
and it is decomposed by work of bacteria etc., and returns to inorganic carbon.
Therefore, measurement of the number of mangrove leaves which flow out of a
river is one of the important factors for grasping the final amount of CO2 fixa-
tion of mangrove forests [1](fig. 1). Since conventional counting methods (such
as the litter trap method) require considerable manual labor for monitoring, an
efficient counting method was needed.

S. Chawla et al. (Eds.): PAKDD 2008 Workshops, LNAI 5433, pp. 203–212, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

204 F. Tsutsumi and Y. Tateda

mangrove forest

photonic synthesisphotonic synthesis
carbonaceous

organic matter

carbonaceous

organic matter

deposition

export of carbon fluxes

to tidal creek

organics

decomposition

Fig. 1. Fringe forest carbon budget

We propose a count method for leaves on the surface of a river to be used in
ecosystem monitoring. The method automatically counts the number of floating
leaves in recorded video images using color and motion features. Conventionally,
it was difficult to carry out automatic measurement of the number of natural
objects using color information. The difficulty is caused by the fact that natural
objects have various colors, and also because the colors change frequently with
available light. In order to use the various colors of the targets, a structure which
can memorize the various colors correctly is required. Furthermore, a support
tool with which a human can easily teach the colors of the targets to a computer
is also required.

2 Related Works

Numerous object tracking and recognition algorithms in outdoors have been
proposed in the computer vision community. Especially many tracking methods
for cars and pedestrians in outdoor environments have been proposed in recent
years for the needs of security and ITS (intelligent transport systems) [2,3,4,5,6].
However, the algorithm which can track arbitrary objects in arbitrary environ-
ments does not exist, because it is difficult to find out the appearance invariant
of target objects in outdoors.

For the robust tracking during the change of the lighting environment, many
conventional techniques adopt motion, shape or texture feature for the pedes-
trian [2,3,4], and the edge or texture feature for the automobile [5,6]. On the
other hand, in the tracking of floating leaves, although many motion features
of leaves are common, shape and texture of them have few common features.
Furthermore, since the river always changes its surface under the influence of
wind and reflection, the conventional tracking techniques for cars or pedestrians
cannot distinguish the leaves from the surface of a river and tracking cannot be
carried out correctly.

Since there is a common color feature in the floating leaves, it is possible to
apply many tracking methods based on color features to detect human’s faces

A Method to Recognize and Count Leaves on the Surface 205

and hands [7,8]. However, the methods are premised on indoor environment, and
there is a limitation of the number of the tracking objects. On the other hand,
the color of a leaf changes with the differences in change of the weather, and
the angle of a leaf frequently. Moreover, since there are many color variations of
leaves, it is not easy to find out the common color feature of the huge number
of leaves.

As an application in the problem similar to the proposal technique, the tech-
nique of counting the number of fruits is proposed [9]. The system can automat-
ically count the number of oranges in farm from the images captured with the
panning camera. In the system, common color feature of oranges is manually
defined and used in a partial space separated with several discriminative plains
in a color space. Since the definition of color is too simple, by this technique,
only about 76% of counting accuracy has been attained to the only 59 images.

Several techniques of recognizing and retrieving kinds of leaf are also pro-
posed [10,11]. Since those techniques aim at the recognition of a leaf in closeup
pictures, and they use the shape of the leaf as an important feature, the tech-
niques are not applicable to the floating leaf detection.

3 A Method to Recognize and Count Leaves on the
Surface of a River

3.1 Extracting Candidates of Leaves Using Color Filter

Our count method extracts the candidate of leaves from video images using the
color characteristic of leaves at first. However, the filtering does not necessarily
extract the whole pixels of the leaves. The leaves contain the same color as
floating non-targets, reflection of the water surface, etc. Therefore, if it is going
to extract the whole pixels of the leaves, many things which are not leaves will
be also extracted and it will become a cause of incorrect counting.

Our method uses the color filter using three-dimensional color space, for ex-
ample RGB color space. A three-dimensional color space is classified in the form
of lattices, and the frequency (npos) where it appears as color of leaves, and
the frequency (nneg) where it appears as color which is not leaves are totaled
for every lattices. Therefore, color values corresponding to the lattice with big
(npos − nneg) express color characteristics of the leaves.

The color filter is applied to video images as follows (fig. 2). At first, all pixels
of the color value corresponding to the positive bins (npos − nneg > 0) pass
the filter and the connected pixels are grouped as a candidate area. Because a
leaf area is generally divided into two or more scattered partial areas, the areas
within a fixed distance are grouped. Calculating the minimum rectangle which
includes the combined area inside, the method extracts a leaf candidate. Fig.3
is a processed screen shot of a video. Leaves extracted with the color filter are
indicated by small rectangles.

206 F. Tsutsumi and Y. Tateda

leaves

filtered areas

area

center

All pixels of the color value

corresponding to the posi-

tive bins (npos - nneg > 0)

pass the filter.

leaf candidates

The areas within the fixed

distance between the

center are grouped.

Fig. 2. Process of filtering and detecting candidates

T
a

rg
e

t ra
n

g
e

 fo
r c

o
u

n
tin

g

Extracted leaves by color filter

Fig. 3. A screen shot of extracting leaves by color filter

3.2 User Interface to Acquire the Color Information of Leaves

We have developed a user interface based on the Interactive Machine Learning
model (IML)[12]. IML prepares the software environment where the user can
label data easily (indicating training samples and instructing correct answers).
Moreover, if the user changes the labels, the recognition result based on the
labels is immediately visualized. The user can detect suitable training data which
should be labeled by using the direct manipulation style user interface.

The mechanism of the developed user interface is shown in Fig.4. (1) First, the
user indicates a leaf on the screen in the same way as coloring a picture with a
mouse-dragging operation. The mouse-dragging operation has two modes, paint-
ing mode and elimination mode. The user can indicate positive examples in the
painting mode, and negative examples in the elimination mode. (2) The system
increments the histogram bin corresponding to the color of the pixel which the
user indicated as a positive example, and decrements for a negative one. (3) In
the target range of the screen, all pixels of the color values corresponding to pos-
itive bins pass the filter. The filtered pixels are painted in red on the screen as
soon as the histogram is changed. The user can easily check whether the system

A Method to Recognize and Count Leaves on the Surface 207

R

G

B

(3) The filtered image is

immediately overlapped.

(1) User indicates the

color of a leaf using

mouse-dragging.

Color filter uses a

3D histogram storing

the color feature of

leaves.

(npos , nneg)

(2) The bin corresponding to

 the indicated color is

 updated.

update

Fig. 4. Interaction mechanism of the user interface to indicate color information

can distinguish leaves appropriately, by looking at the screen which changes at
every moment during the dragging operation.

Our user interface resembles a conventional color range tool which is adopted
in commercial photo retouch softwares. However, since the tool has not memo-
rized frequency, if user make a mistake in the specification at least one point,
it exerts a big change on the filter. In our user interface, in order for a system
to become wise gradually, color memory of the system is stabilized after the
sufficient specification. Therefore, influence of mistakes decreases in the mem-
ory of the system, and the user comes to be able to indicate color information
comfortably.

3.3 Counting Leaves Using Motion Feature

The proposal method tracks the extracted leaf candidates over two or more
frames, in order to distinguish leaves from reflections of the sunlight in a water
surface etc. Since the reflections similar to the color of leaves do not move syn-
chronously with the flow of a river, our method can avoid incorrect calculation
by the tracking.

The outline of tracking and counting leaves is shown in Fig.5. The center of a
leaf candidate at frame t is (xt, yt). The method looks for the nearest candidate
within vy in the direction of the lower stream at frame t + 1. The vy value is
the upper limit of the flow velocity for one frame (1/30 seconds). The system
decides that the candidate which is possible for tracking in n frames is a leaf
as the target of measurement. The values of vy and n are set up by the user in
advance.

208 F. Tsutsumi and Y. Tateda

(x
t
, y

t
)

(x
t+1

, y
t+1
)

(x
t+2

, y
t+2
)

(x
t+n

, y
t+n
)

v
y

Detecting a leaf

candidate by the

color filter

tracking the

candidate for

n frames

Deciding the floating

leaf and Counting

tracking only the leaf

candidate with the

speed under v
y

Fig. 5. Tracking and counting of leaves

4 Evaluation Using Five Hours Video Which Recorded
20,000 Leaves

The counting method proposed has been applied to three videos (total five hours)
which recorded about 20,000 leaves. The videos were recorded at Fukido river,
Okinawa prefecture, in Japan.

We used RGB color space as the color space for the experimental, since the
RGB color space is the most commonly used color space. The each number of
quantization for R, G and B axes was set to 20. Besides RGB, many color spaces,
such as Yxy, HSV, L*a*b*, and L*u*v* have been proposed. The performance
evaluation of the technique by the difference in color space is a future subject.
The number of quantization influences the speed of response of the color speci-
fication user interface. The quantization number (= 20) was set up so that the
direct manipulation feature of the user interface might not be lost. If the num-
ber of quantization is increased, color filter can distinguish delicate differences in
color, but the color information which user should specify increases. Evaluation
of influence of the quantization number is also a future subject.

The parameters in the tracking step were determined from the preliminary
experiment using a part of sample video. The maximum move pixel (vy) to the
direction of the lower stream in tracking of leaves was 12 pixels. The number
of tracking frames (n) was set to 7. In the case of the computer used for the
experiment1, processing speed of automatic counting was about 30 minutes to
the examination video for 120 minutes.

Fig.6 illustrates a three-dimensional histogram created using the developed
user interface. This histogram was created by the user’s indication operation to
4 minutes video (1 minute every 30 minutes from a two hour video). The colors

1 OS: Windows XP Professional sp2, CPU: Intel Core2Duo E6600 2.4GHz, Memory:
2GB.

A Method to Recognize and Count Leaves on the Surface 209

R

G

B R

G

B

Fig. 6. Color distribution of mangrove leaves in the RGB color space

Table 1. Precision and recall rates of automatic counting

Date Precision Recall
2004/7/30 80% 91%
2004/7/31 98% 97%
2004/8/1 96% 97%

of the mangrove leaves are intricately and discontinuously distributed from dark
brown to bright yellow in the color space.

For comparison, two human subjects counted the leaves manually using slow
playback and stop motion function, taking a long time2.

Fig.7 illustrates the automatic counting results using color indication of only
1 minute video. These figures show that correct counting is difficult when the
system is trained by the color indication based on each 1 minute video. The
cause of the difference between the result of July 30 and the other result is the
change of situation of a river. 82 minutes just before tide pulls are recorded on
the video on July 30. Although there is some depth of water and the water is
flowing in the first half of the video, the flow of the river stopped in the second
half of the video, and it has resulted in the state where it is exposed of a part
of river bottom for a short time.

From the result of other videos in Fig.7, we can find that the exact counting is
possible using only one minutes indication, if we can choose the appropriate time
zone to indicate the color of leaves. However, we can not find out the appropriate
time zone before crawling the whole of video.

Fig.8 is the experimental results of automatic count with the color indication
using several minutes of video. The automatic count method showed results
mostly in agreement with the manual counting results. We calculated precision
and recall rates by considering the manual measurement as the correct answer.
Table 1 shows the precision and recall rates for each example videos. The total
precision and recall rates for the five hour video are 96% and 94%, respectively.

2 Counting by the subjects took several weeks for the five hour video.

210 F. Tsutsumi and Y. Tateda

0

100

200

300

400

500

0 20 40 60 80

(a)

(b)

(c)

(e)

Number of leaves per 5 minutes

2004-7-30 0

100

200

300

400

500

0 20 40 60 80 100

(a) (b)

(c)

(d)(e)

2004-7-31

Number of leaves per 5 minutes

0

200

400

600

800

1000

0 20 40 60 80 100 120

Number of leaves per 5 minutes

(b) (c) (d)(a)

(e) Average number of results counted manualy by two persons

(a)

(b)
(c)

(d) (e)

Automatic count based on the training of 1 min. video

2004-8-1

minutes (after start of video) minutes (after start of video)

minutes (after start of video)

0 20 40 60 80 100

training period of (a)

minutes
(after start of video)

training period of (b) training period of (c) training period of (d)

Fig. 7. Results of automatic count for video (case of 1 min. training)

Through the user interface, the average number of registered pixels is 23,190
pixels per one minute video clip, and the color instruction operation for a 1
minute video took an average of 7 minutes. This means that the proposed user
interface is efficient for data input, as a large number of color samples could be
registered in a short time. Moreover, since the information resulted in correct
counting, the user interface is applicable when building effective color samples
for video.

In the tracking phase, when training of color is not enough, the counting
system has to track a lot of wrong candidates. In such case, the tracking error
occurred frequently. Since these errors are not reduced even if parameters of
the tracking are changed, these errors cannot be avoided by the simple tracking
algorithm that we used. On the other hand, there were few tracing errors in the
stage with sufficient training (such as 4 min.). However, when two or more leaves
overlapped and separated, some tracking errors occurred. If pattern matching
technology is added to the tracking algorithm, tracking errors may be able to be

A Method to Recognize and Count Leaves on the Surface 211

0

100

200

300

400

500

0 20 40 60 80

Number of leaves per 5 minutes

minutes

Average number of results counted manualy
by two persons

Automatic count (3 min. training)
Automatic count (6 min. training)

2004-7-30
0

100

200

300

400

0 10 20 30 40 50 60 70 80 90 100

minutes

Average number of results counted manualy
by two persons

Automatic count (4 min. training)
Automatic count (7 min. training)

2004-7-31

Number of leaves per 5 minutes

0

200

400

600

800

1000

0 20 40 60 80 100 120

Number of leaves per 5 minutes

minutes

Average number of results counted manualy
by two persons

Automatic count (4 min. training)
Automatic count (8 min. training)

2004-8-1

Fig. 8. Results of automatic count for video (case of multiple minutes training)

reduced even when training is not enough. Moreover, the method of optimizing
tracking parameters (vy and n) suitable for a new video automatically is required
practically. We are planning to tackle these as future subjects.

5 Conclusion

In this paper, an automatic video counting method of the leaves on the surface
of a river for an ecosystem monitoring was proposed. The method uses the color
and motion feature of the leaves to detect them. The system using the method
makes user specify the color feature of the leaves by using a user interface based
on the Interactive Machine Learning model. User can easily indicate the color
information to the system by using the interactive software tools. Based on
the color information which the user specified, a color filter is constructed and

212 F. Tsutsumi and Y. Tateda

leaf candidates are extracted by the filter from video data. Furthermore, after
tracking the motion of the candidates, the method counts the leaves.

The method proposed in this paper has been applied to three videos (total
five hours) which recorded about 20,000 leaves, and high recall and precision
rates of 96% and 94%, respectively, have been achieved.

Although the proposed method achieved high accuracy as a whole, changes
in weather and river flow causing rapid visual changes could result in deviating
from the built color information. This shows the necessity for a mechanism which
can automatically catch changes in the video, and request the user’s input for a
new color set.

References

1. Ong, J.E.: Mangroves: a carbon source and sink. Chemosphere 27(6), 1097–1107
(1993)

2. Lanz, O.: Approximate Bayesian multibody tracking. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 28(9), 1436–1449 (2006)

3. Viola, P., Jones, M.J., Snow, D.: Detecting Pedestrians Using Patterns of Motion
and Appearance. International Journal of Computer Vision 63(2), 153–161 (2005)

4. Wu, B., Nevatia, R.: Detection and Tracking of Multiple, Partially Occluded Hu-
mans by Bayesian Combination of Edgelet based Part Detectors. International
Journal of Computer Vision 75(2), 247–266 (2007)

5. Dahlkamp, H., Nagel, H.H., Ottlik, A., Reuter, P.: A Framework for Model-Based
Tracking Experiments in Image Sequences. International Journal of Computer Vi-
sion 73(2), 139–157 (2007)

6. Kamijo, S., Nishida, T., Sakauchi, M.: Occlusion Robust and Illumination Invari-
ant Vehicle Tracking for Acquiring Detailed Statistics from Traffic Images. IEICE
TRANSACTIONS on Information and Systems E85-D(11), 1753–1766 (2002)

7. Medionia, G., Francoisa, A.R.J., Siddiquia, M., Kima, K., Yoonb, H.: Robust real-
time vision for a personal service robot. Computer Vision and Image Understand-
ing 108(1-2), 196–203 (2007)

8. Polat, E., Yeasin, M., Sharma, R.: Robust tracking of human body parts for col-
laborative human computer interaction. Computer Vision and Image Understand-
ing 89(1), 44–69 (2003)

9. Annamalai, P., Lee, W.S., Burks, T.F.: Color vision system for estimating citrus
yield in real-time. In: ASAE Annual International Meeting, Paper Number: 043054
(2004)

10. Im, C., Nishida, H., Kunii, T.L.: Recognizing Plant Species by Leaf Shapes - A
CaseStudy of the Acer Family. In: Proc. of ICPR 1998, pp. 1171–1173 (1998)

11. Wang, Z., Chi, Z., Feng, D.: Shape based leaf image retrieval. Proc. IEE Vision
Image and Signal Processing 150(1), 34–43 (2003)

12. Fails, J.A., Olsen Jr., D.R.: Interactive machine learning. In: Proc. of the 8th
International Conference on Intelligent User Interfaces, pp. 39–45 (2003)

Author Index

Aratsu, Taku 99
Arimura, Hiroki 1, 13
Asai, Tatsuya 13

Chou, Pei-Min 26
Coenen, Frans 49, 62

Doi, Koichiro 111

Endo, Tsutomu 38

Hashimoto, Daigo 38
Hirano, Shoji 143
Hirata, Kouichi 87, 99

Ito, Norihiko 181

Kajinami, Tomoki 193
Khan, M. Sulaiman 49, 62
Kida, Takuya 1
Koh, Jia-Ling 26
Kuboyama, Tetsuji 99

Lin, Tsau Young 134

Makihara, Takashi 193
Mase, Motohiro 169
Müller-Molina, Arnoldo José 87
Muyeba, Maybin 49, 62

Nitta, Katsumi 169

Ohkawa, Takenao 75
Okamoto, Seishi 13
Onoda, Takashi 181
Ozaki, Tomonobu 75

Prinzie, Anita 123

Saito, Tomoya 1
Shimada, Kazutaka 38
Shinohara, Takeshi 87
Sinohara, Yasusi 157

Takama, Yasufumi 193
Takasu, Atsuhiro 157
Tateda, Yutaka 203
Tsumoto, Shusaku 143
Tsutsumi, Fujio 203

Van den Poel, Dirk 123

Yamada, Seiji 169
Yamamoto, Akihiro 111
Yamasaki, Hironobu 181

Zhang, Shangxuan 134

	front-matter.pdf
	Ch 1
	Flexible Framework for Time-Series Pattern Matching over Multi-dimension Data Stream
	Introduction
	Preliminaries
	The Framework Based on BPS
	Outline of the Framework
	Predicate Hit Table
	Simulation of NFA

	Conclusion

	Ch 2
	An Adaptive Algorithm for Splitting Large Sets of Strings and Its Application to Efficient External Sorting
	Introduction
	Related Works
	Organization

	Preliminaries
	Strings
	String Sorting Problem
	Model of Computation

	Our Algorithm
	Outline of the Main Algorithm
	A Synopsis Trie
	STEP1: Adaptive Construction of a Synopsis Trie
	STEP2: Splitting a String List into Buckets
	STEP3: Internal Sorting of Buckets
	STEP4: Final Concatenation
	Analysis of the Algorithm

	Experimental Results
	Size of Synopsis Trie
	Running Time

	Conclusion

	Ch 3
	Incrementally Mining Recently Repeating Patterns over Data Streams
	Introduction
	Preliminaries
	Problem Definition
	Appearing Bit Sequences

	Incremental Repeating Patterns Mining
	Window Initialization Phase
	Window Sliding Phase
	Maintaining Closed Repeating Patterns

	Performance Study
	Conclusion and Future Works
	References

	Ch 4
	A Graph-Based Approach for Sentiment Sentence Extraction
	Introduction
	A Graph-Based Data Structure
	Hierarchical Directed Acyclic Graph
	Layer

	Similarity Calculation
	Preprocessing
	Similarity between Two Sentences
	Sentence Extraction

	Experiment
	Dataset and Criteria
	Results

	Discussion and Conclusions

	Ch 5
	Fuzzy Weighted Association Rule Mining with Weighted Support and Confidence Framework
	Introduction
	Background and Related Work
	Problem Definition One (Boolean)
	Problem Definition Two (Quantitative/Fuzzy)
	Downward Closure Property (DCP)
	Weighted Downward Closure Property (DCP)

	FWARM Algorithm
	Experimental Results
	Experiment One: Quality Measures
	Experiment Two: Performance Measures

	Conclusion and Future Work
	References

	Ch 6
	A Framework for Mining Fuzzy Association Rules from Composite Items
	Introduction
	Background and Related Work
	Problem Definition
	Terms and Definitions
	Fuzzy Support and Confidence
	Fuzzy Correlation

	The CFARM Algorithm
	Experimental Results
	Experiment One: Quality Measures
	Experiment Two: Performance Measures

	Conclusion and Future Work
	References

	Ch 7
	Mining Mutually Dependent Ordered Subtrees in Tree Databases
	Introduction
	Preliminaries
	Notations and Definitions
	Breadth-First Frequent Induced Ordered Subtree Miner

	Discovery of Mutually Dependent Ordered Subtrees
	Mutually Dependent Ordered Subtrees
	Discovery of sMDOT
	Discovery of iMDOT
	Discovery of pMDOT

	Experimental Evaluation
	Conclusion

	Ch 8
	A Tree Distance Function Based on Multi-sets
	Introduction
	Related Works
	Approximate Program Matching

	Tree Similarity Distance
	Distance Definition

	Naive Algorithm for Computing mtd
	Case Study
	Conclusions and Future Work

	Ch 9
	Sibling Distance for Rooted Labeled Trees
	Introduction
	Preliminary
	Sibling Distance
	Algorithm to Compute a Sibling Histogram
	Experimental Results
	Conclusion

	Ch 10
	Kernel Functions Based on Derivation
	Introduction
	Intentional Maps and Kernel Functions
	An Introductory Example
	Formal Definitions

	Instances of the Intentional Kernel
	Boolean Kernels
	Kernel Function for Terms in First-Order Logic
	Context Sensitive Languages

	More Complex and Practical Example
	Computational Complexity
	Concluding Remarks

	Ch 11
	Dynamic Bayesian Networks for Acquisition Pattern Analysis: A Financial-Services Cross-Sell Application
	Introduction
	Methodology
	Dynamic Bayesian Networks as an Extension of Bayesian Networks
	Predictive Model Evaluation: Class-Specific PCCs and wPCC

	A Financial-Services Cross-Sell Application
	Results
	Predictive Performance
	Managerial Insights

	Conclusion
	References

	Ch 12
	An Automata Based Authorship Identification System
	Introduction
	Stochastic Finite Automata
	ALERGIA Algorithm
	Automata Based Modeling
	Results

	Ch 13
	Detection of Risk Factors as Temporal Data Mining
	Introduction
	Methods: Overview
	Preprocessing

	Experimental Results
	Discussion: Risk Analysis
	Comparison of Clustering Results
	Risk Analysis for Liver Fibrosis Based on the PLT Counts

	Conclusions

	Ch 14
	Two-Phased Active Support Kernel Machine Learning
	Introduction
	Support Kernel Machines
	Support Vector Machines (SVMs)
	Support Kernel Machines (SKMs)
	Batch Solution Algorithm of SKM

	SKM-Based Active Learning Algorithm
	Issue of Kernel Selection in Active SVM Learning
	Basic Active SKM Learning Algorithm
	Twho-Phased Active SKM Learning Algorithm

	Experiments
	Experimental Settings
	Active SVM Versus Active SKM
	Modes of Two-Phased SKM

	Conclusions

	Ch 15
	Extracting Topic Maps from Web Pages
	Introduction
	Topic Maps
	Framework to Extract a Topic Map from a Set of Web Pages
	Overview
	Weighting Links between Web Pages
	Algorithm
	Extracting and Visualizing Topic Map Prototypes

	Experiments
	Extracting Topic Map Prototypes
	Evaluation
	Experimental Results

	Discussion
	Utilizing Meta Information of Web Pages
	Interactive Improvement of Topic Map Prototypes

	Conclusion

	Ch 16
	Interactive Abnormal Condition Sign Discovery for Hydroelectric Power Plants
	Introduction
	Measurement Data
	Abnormal Condition Sign Detection
	One-Class SVM
	Unusual Data Detection Experiment
	Experimental Setup
	Detection Results and Evaluation
	Detection of the unusual condition data in the starting condition data.
	Detection of the unusual condition data in the parallel operation condition data.
	Detection of the unusual condition data in the parallel off condition data.

	Inexplainable Unusual Condition Data

	Conclusion

	Ch 17
	Interactive Visualization System for Decision Making Support in Online Shopping
	Introduction
	Keyword Map: Interactive Information Visualization System
	Overview of Keyword Map
	Introduction of Multiple Relevance Controller

	Effectiveness of the Multiple Relevance Controller
	Keyword Map-Based Online Shopping Support System
	Experiment
	Purpose of Experiment and Preparation
	Experimental Results and Discussion

	Conclusions

	Ch 18
	A Method to Recognize and Count Leaves on the Surface of a River Using User’s Knowledge about Color of Leaves
	Introduction
	Related Works
	A Method to Recognize and Count Leaves on the Surface of a River
	Extracting Candidates of Leaves Using Color Filter
	User Interface to Acquire the Color Information of Leaves
	Counting Leaves Using Motion Feature

	Evaluation Using Five Hours Video Which Recorded 20,000 Leaves
	Conclusion

	back-matter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

