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Preface

On behalf of the organizers we would like to welcome all participants to the
“Robot Vision 2001” workshop. Our objective has been to bring together re-
searchers in robot vision, and to promote interaction and debate. Participants
of the workshop come from Europe, US, the Middle East, the Far East, and of
course from New Zealand.

Fifty-two papers were submitted to the workshop, and each paper was thor-
oughly reviewed by at least three reviewers. Seventeen papers were selected for
oral presentation, and seventeen papers were selected for poster presentation.
There were no invited technical papers, to give all participants the sense of
equal opportunity.

The technical scope of the workshop is very wide, and includes presentations
on motion analysis, 3D measurements, calibration, navigation, object recogni-
tion, and more. The schedule of the workshop was therefore prepared to allow,
in addition to the technical presentation, ample time for discussions and inter-
action. We hope that interaction among researchers of such different areas, yet
all part of robot vision, will result in better understanding and research of the
robot vision area.

February 2001 Reinhard Klette, Shmuel Peleg, and Gerald Sommer
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Visual Cues for a Fixating Active Agent

Mårten Björkman and Jan-Olof Eklundh

Computational Vision and Active Perception Laboratory (CVAP)
Department of Numerical Analysis and Computing Science

Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden
{celle,joe}@nada.kth.se

Abstract. In order for an active visual agent to act in a dynamic en-
vironment, it needs the ability to fixate onto objects that might be of
interest. In this article we will discuss issues concerning the design of a
binocular system with such capabilities. The problems range from gaze
shifting and saccading, to epipolar geometry and ego-motion estimation.
In the end of the paper it will be shown how scene parts of independent
motion, that will be used to trigger saccades, can be efficiently detected.

1 Introduction

A person that moves around in the world, while looking at various locations and
things in his way, will experience that objects will enter and leave his field of
view, due to his ego-motion or the motion of the objects. He will sometimes shift
his gaze to such objects, to find out e.g. if their trajectories cross his path or to
determine what kind of things they are. In fact, he may be looking for specific
types or instances of objects, for example they may be obstacles to avoid or
something he needs.

These activities form part of what an intelligent agent, acting and existing
in the world, use visual perception for. In our research we are engaged in a
long-term effort to study principles and methods for developing such agents
and implement them in terms of mobile robots, capable of a set of behaviors,
including also grasping and manipulating things. These systems will be engaged
in various foreground and background tasks, defined by their interests and drives.
In this paper we will discuss work on the early visual mechanisms of such an
active and purposive agent, and present how it can derive a spatial understanding
of its environment that can serve higher level processes, such as recognition, and
also motor behaviors.

2 Gaze Shifting and Saccading

Depending on the task at hand, an active visual agent moves its gaze differently
from occasion to occasion. An agent that has found an object of interest, fixates
onto the object and tracks it as it moves, in order to gather as much information
about the object as possible. If the agent is looking for something special, it keeps

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 1–9, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



2 Mårten Björkman and Jan-Olof Eklundh

moving its cameras between different locations, extracting enough information
to judge whether an object is of interest has been found. It could also be the case
that the agent is not at all interested in what is going on in the neighborhoods
and moves its cameras only to stabilize the image data. To detect objects that
might enter the scene, it is necessary to have a background process, that reacts
on radical changes in the images. If the visual data is not stabilized, such changes
might not be properly detected.

There can be a number of reasons why saccades are triggered in a system like
ours. If the agent loses interest in an object that is being tracked, the cameras
may be moved towards a more interesting part of the scene, which means that
saccades are triggered by the robot itself in a top-down fashion. A triggering
might also originate from low-level processes that pass information about pos-
sible interesting objects entering the field of view bottom-up, so that the visual
system can react accordingly. Consequently, it is necessary for an artificial sys-
tem to include low-level vision processes that are capable of detecting areas, that
might be of interest, over the whole visual field.

A difficult question is what is supposed to be considered as interesting. Ob-
jects that directly affect the performance of the agent, will always be necessary
to identify. There are a number of visual cues that might be important for the
agent to know where to look next and since they all might be useful, they have
to be considered in parallel. In this study we have been concentrating on the
ability to identify areas of independent motion. The work is much in the spirit
of [12], but rather than using image motion, figure-ground segmentation is per-
formed using motion in 3D. In cases of translations, it might otherwise be hard
to separate moving objects from the background.

3 Epipolar Geometry Estimation

In order to identify image regions as objects in 3D space, an agent would benefit
from the use of binocular disparities. Disparities have been used extensively
in active vision and robotics, but the applications have often been limited to
behaviors such as navigation and obstacle avoidance [16,9] or simply binocular
tracking [4]. In robotics, cameras have typically been mounted in parallel, so
as to simplify the procedure of calculating the actual disparities. However, if
the binocular camera system is to be used in for example manipulation, parallel
cameras might lead to objects only being visible in one of the two cameras. In
order to maximize the applicability and flexibility of the system, it is necessary
for the system to be able to verge dynamically.

The reason why verged cameras are seldom used in practise, is because it
is hard to keep track of the epipolar geometry, that is the relative position and
orientation of the cameras. Knowing the epipolar geometry is essential if image
features are to be matched between the two cameras and distances measured in
metric space. Most stereo head systems have counters on their motors, which
can be used to estimate the epipolar geometry. However, all systems include
delays and if the cameras are in continuous motion it is often hard to know the
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true relation between two newly grabbed images. The problem gets even harder
when the computational load of the system is varying as the agent goes from
one task to another. In our study, we have concluded that motor counters are
preferably used to get a rough estimate of the epipolar geometry, but if you like
to calculate a dense disparity map, the epipolar geometry better be estimated
using information available in the images themselves.

3.1 The Essential Matrix

Typically the essential matrix E is used to describe the relationship between
the projections of 3D points onto the left and right image planes [11]. For a
system such as the one used in this study, an image point xl in the left image is
constrained to a line, defined by the corresponding projection in the right image
xr, according to the equation:

xT
l Exr =


xl

yl

1




T 
 0 −sin(αl) 0

−sin(αr) 0 cos(αr)
0 −cos(αl) 0





xr

yr

1


 = 0. (1)

In the equation the projections, xl and xr, are in homogeneous coordinates. The
pan angles, αl and αr, are the unknown parameters to be searched by the epipolar
estimation process. The stereo head is constrained such that it only involves two
degrees of freedom, even if a typical binocular stereo system might have as many
as six [3]. However, rotations around the optical axes do not change the visual
data, only its orientation, and will not be needed here. Since the system always
will be in fixation, there is no relative tilt between the cameras. A joint tilt of
both cameras does not change the nature of the problem.

In our work, the angles αl and αr are iteratively searched in a least square
framework. In order to minimize the influence of outliers, we use random sam-
pling. Random sets of six points each are generated and for each set the angles are
estimated. Unlike RANSAC [6,15], where a winner is selected among the result-
ing estimates, we simply calculate the mean of all values that can be considered
as feasible. It turns out that sets including outliers result in slower convergence
and can easily be eliminated from the final result. Further details and evaluations
can be found in [2].

3.2 An Optical Flow Model

The essential matrix has got one major disadvantage. If the cameras are located
almost parallel, the least square problem described in Section 3.1 will be illcondi-
tioned and the results can not be trusted. The problem originates from the fact
the flow induced by a small rotation can not be separated from a translation
along the baseline, since the depths have been eliminated in the essential matrix
and the magnitude of the translational flow can not be used.

In the presented system, we use an alternative model based on optical
flow [10], that is typically used in structure from motion algorithms. The dispar-
ities, that is the difference in image position between the two cameras, can be
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described as follows:(
dx
dy

)
=

(
1 + x2

xy

)
β +

1
Z

(
cos(αl)− x sin(αl)

−y sin(αl)

)
. (2)

The vergence angle β is the sum of the two pan angles, αl and αr, but unlike the
essential matrix, the depth Z has not been eliminated from the equation and has
to be estimated as well. The reason why this approximate model is rarely used in
stereo vision, is because it collapses if the difference in position and orientation
between the cameras is too large. However, our study show that the model is in
fact appropriate for a stereo head system under typical working conditions.

The unknown parameters are solved iteratively, with one pass estimating the
angles and another pass determining the depths. Considering the fact that hori-
zontal disparities never change ordering as the cameras are verging, it is possible
to get a rough estimate of the vergence angle, that can be used to initialize
the procedure. We match a guessed median depth of points in 3D space to the
median disparity of extracted feature points and calculate the corresponding
vergence angle. Simulations show that the procedure will converge, even if the
initial depth is relatively far away from the truth. If the guess is within a factor
of two from the true value, the procedure rarely diverges, but if the error is as
large as 400%, the iterations often diverge for large vergence angles.

3.3 Simulations

Both methods were tested through a number of simulations based on randomly
generated 3D points, spread around an area 10 to 30 baselines in front of the
cameras. Gaussian noise, with a standard deviation of one pixel, was added to
the points that were projected onto two 360 × 288 pixel image planes. Each
simulation included about 500 feature correspondences, out of which 20% were
outliers. These outliers, that were modeled with an additional noise source of 30
pixels, represent features that have been wrongly matched, in the sense that the
two projections do not originate from the same point in 3D space.

The results can be divided into two components, a rotational component and
a translational one, that is the vergence angle and the position of right camera in
the coordinate frame of the left. Figure 1 shows the translational and rotational
errors for a number of cases. The rotational error is about 0.2◦ for the optical flow
method and slightly larger for the essential matrix. For near parallel systems,
the translation is considerably harder to estimate and for vergence angles of 2◦,
this error can be as much as ten times larger. Asymmetric systems are slightly
harder, then symmetric ones. The major difference between the methods is in
the convergence. As the essential matrix method rarely converges for parallel
systems, the second method have problems with vergence angles larger than
15◦, especially if the initial median depth is far from the truth. The optical flow
method is about twice as fast as the first method and requires about 27 ms on
a 195 MHz MIPS R10K processor.
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Fig. 1. The standard deviation in degrees of the rotational (a) and translational
(b) errors for various combinations of true rotations and translations. The results
of the optical flow based method are shown in the first four bars of each group, for
different errors in the initial median depth. The last bar in each group represents
the results based on the essential matrix

4 Ego-Motion Estimation

Knowing the motion of the agent itself, the ego-motion, is essential in order to
stabilize the image data and find image regions of independent motion. Just
like the case of epipolar geometry estimation using motor feedback, odometry
can be used to get an idea of the ego-motion, but the problem is somewhat
harder than that. If any conclusions are to be drawn from the images based
on ego-motion, the estimated ego-motion has to be relative to the cameras,
not to the agent itself. As the agent is moving, the neck is rotating and the
cameras are constantly changing orientation, its terribly hard to know the exact
direction and position of the cameras at every instance of time, especially since
all systems involve delays that may be hard to predict. It becomes a necessity
for the system to estimate the ego-motion based on extracted image data, even
if an initial prediction based on odometry might still be of good use.

In a monocular system estimating ego-motion is a very difficult problem, if
the cameras are in translation. There are a number of alternative methods that
can be used [8,14], but so far none of these reach the requirements on robustness
and speed needed for a system like ours. Fortunately, the problem is greatly
simplified in the binocular case. In our system we use reconstructed 3D features,
that are easily found once the epipolar geometry is known, and try to minimize
the equation

N∑
i=1

‖yi − (Rxi + t)‖2, (3)

where R is a rotation matrix, t a translation and, xi and yi are the reconstructed
feature points of two consecutive time frames. Since it can be expected that the
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clouds of 3D points have the same shape in both instances of time, the translation
can be found as the difference in position between the centers of the two clouds,
that is t = ȳ − x̄. Subtracting the centers from the 3D points, we get two new
sets of points x́i = xi − x̄ and ýi = yi − ȳ.

We use an approach based on singular value decomposition (SVD), as pro-
posed by Arun et al [1]. It can be shown that minimizing Equation 3 is equivalent
to maximizing

f2(R) =
N∑

i=1

ýT
i Rx́i = Trace(RH), (4)

where H =
∑N

i=1 x́iýT
i . The rotational component R̂ that maximizes f2(R)

can be found by first performing a SVD of H. The decomposition H = UDVT

consists of two orthogonal matrices U and V, and a diagonal matrix D of non-
negative elements. The minimizer of Equation 4 is then given by R̂ = VUT,
which will be used as our estimated rotation. In practise we perform these oper-
ations twice and use weights, to minimize the influence of reconstructed points
with large errors.

4.1 Simulations

Simulations show that the rotational errors are rarely more than about 0.1◦,
which only happens in cases of large rotations and small translations parallel to
the image plane. In such cases the translational error might be as large as 6◦ in
direction and 0.03 baselines in speed, whereas typical errors are 0.02◦ in rotation,
2◦ in translational direction and 0.01 baselines in speed. The feature points
involved in the simulations were generated such as described in Section 3.3. Since
features have to be visible in both cameras at two different instances of time, only
100 reconstructed points were used, with 20% being outliers representing areas
of independent motion. A systematic error of 0.3◦ was added to the vergence
angle before reconstruction, modeling the inaccuracy of the epipolar geometry
estimation. The computational cost of the method is as low as 3 ms, excluding
the matching of corner features. Since it relies on reconstructed 3D points, the
features have to be matched in stereo, as well as in motion, such as shown in
Fig. 2. The feature extraction itself costs as much as about 15 ms per image,
using Harris [7] corner detector. Further details about the matching processes
and how outliers are identified, can be found in [2].

5 Independent Motion

The benefit of knowing the ego-motion of the cameras is the fact that images of
future time frames can be predicted. Changes in the scene can then easily be de-
tected through simple image subtraction, even if the agent itself is in continuous
motion. In the system presented here, disparities are calculated using a method
based on correlations and dynamic programming [13,5]. These calculations are
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(a) (b) (c)

Fig. 2. The left image (a), the right image including stereo feature correspon-
dences (b) and features matched in motion (c)

done after images have been rectified, using the results from the epipolar estima-
tion. Using the disparities, such as the example in Figure 3(a), and the estimated
ego-motion, a warping is then performed from the current image to the next one.
This predicted image is then subtracted from the true next image. Results after
thresholding can be seen in Fig. 3(b). Points above the threshold are finally put
into a three-dimensional histogram, the largest peak of the histogram is found
and a segmentation, such as the one shown in Fig. 3(c), can be done.

(a) (b) (c)

Fig. 3. The disparity map (a), the result after warping and subtraction (b) and
image regions of independent motion (c)

The methods presented in previous sections were implemented on a Nomad
200 platform, powered by a 450 MHz Pentium III. The complete system runs
in about 6 Hz, including feature extraction, matching, epipolar and ego-motion
estimation, as well as the calculation of dense disparity maps and segmentation.

6 Discussion

In the presented paper we have been dealing with the problem of designing a
system capable of dynamic fixation. The technical part of the paper included a
presentation of two different methods for estimating the epipolar geometry of a
binocular system. It was shown that this is in fact feasible in terms of speed, as
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well as robustness. Once feature points have been reconstructed in 3D space, the
ego-motion was estimated at a very low computational cost. In the end of the
article we show how knowledge about depth and ego-motion can be used to find
image region of independent motion. An issue that has not been covered is how to
exploit the available 3D information during tracking and gradually improve the
speed as new information becomes available. How information about objects in
3D space is to be stored and updated is another important and difficult question.
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Abstract. In this paper we apply a novel pose estimation algorithm to
the tracking problem. We make use of error measures of the algorithm
which enable us to characterize the quality of an estimated pose. The key
idea of the tracking algorithm is random start local search. The princi-
ple of the heuristic relies upon a combination of iterative improvement
and random sampling. While in many approaches a manually designed
object representation is assumed, we overcome this condition by using
accumulated object representations and combine these successfully with
the tracking algorithm.

1 Introduction

In this work we apply a novel 2D-3D pose estimation algorithm [12] to the
tracking problem. This algorithm shows some interesting characteristics which
makes it especially useful for this purpose. Beside features such as stability in
the presence of noise and online–capabilities its main advantage in the track-
ing context is that it can unify different kinds of correspondences within one
algebraic framework. which were

To apply the pose estimation algorithm to the tracking problem we intend
to solve two problems which were avoided in [12] but are important for further
applications like robot navigation or object recognition:

1. Correspondences: Correspondences between model data and image data
have been defined manually.

2. Object Representation: A manually designed representation of the object
to be tracked has been presupposed.

In this paper we describe an automatic procedure to find correspondences be-
tween an object model and its image projection which makes use of features of
the pose estimation algorithm [12] and of the specific tracking condition. We
suppose a 3D model of the object consisting of 3D points and 3D lines and we
extract lines in the image sequence by a Hough transformation combined with a
new algorithm to extract lines from the Hough array. We find correspondences
between 3D lines and 2D lines by a local search. The essential attribute is that
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a discrete local neighborhood of states is defined with respect to the current
state, in this context the Hamming distance n–neighborhood [11]. Further, we
allow correspondences only for entities with small distance. This assumption is
justified by the specific tracking situation. The pose estimation algorithm is able
to use correspondences as 3D point to 2D point, 3D point to 2D line and 3D line
to 2D line to estimate the rotation and translation between two frames. In this
paper only line correspondences are used. Note that this kind of correspondence
allows to avoid the so called aperture problem, i.e. the impossibility to define
correspondences between a point on a line in two frames.

To avoid a manually designed object representation we also applied the track-
ing algorithm with an accumulated object representation consisting of local 3D
line segments. The object accumulation is based on a scheme which accumulates
confidences for entities representing the object and which allows to extract rep-
resentations in even quite complicated environments [4]. We could show, that
with such a representation tracking is possible and therefore both assumptions
of manual intervention in [12] can be substituted by automatic procedures.

2 Description of the Tracking

In this context tracking means to minimize a matching error by solving two
problems:

1. The correspondence problem: Determine the mapping between model ele-
ments (here 3D model lines) and image features (extracted Hough lines).

2. The spatial fitting problem (pose estimation): For each correspondence de-
termine the best parameters (here rotation R and translation t), so that the
spatial fit error of the model lines to image lines is minimized.

In the following sections we describe the automatic extraction of lines (sec-
tion 2.1), the pose estimation algorithm (section 2.2), the automatic finding of
correspondences (section 2.3), and the accumulating of object representations
(section 2.4).

2.1 Hough Transformation

To extract lines in an image we apply the well known Hough transformation [3].
The robustness of the Hough transformation can be increased by using not only
information about the presence of edges but by also checking the agreement
of lines and local orientation, i.e. by applying the orientation selective Hough
transformation [9]. The Hough transformation results in an accumulator array
(see Fig. 1) from which the representative lines show up as peaks. These are
easily detectable for ’simple’ images such as the one in Fig. 1 but difficult to
extract in more complex situations.

To avoid the extraction of additional lines caused by locally neighbored peaks
in the accumulator array (often occurring in the presence of noise in the image
data) usually some kind of metric on the accumulator array is defined to allow
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Fig. 1. Standard-Hough-transformation and Orientation selective Hough-
transformation

Fig. 2. Representative Hough lines extracted by different methods

only lines corresponding to peaks with certain distance. A problem of these
methods is that important lines may have small distance in the Hough space
(see e.g., narrow parallel lines in Fig. 2). To extract the significant lines we
also use information about the areas which do support lines, i.e. we evaluate
also image information. This allows us to extract lines with small distance in
the accumulator array which are usually not extractable by other methods (for
details see [1]).

Figure 2 shows extracted Hough lines using different kind of metrics. In the
left image our method has been used, in the middle image for each selected peak
a neighborhood in the accumulator array is set to zero (as, e.g. in [8]), while in
the right image connected areas which occur after thresholding the accumulator
array are treated as one line (as e.g., in [6]). Note that the narrow parallel lines
could only be extracted by our method. The procedure used in the middle image
extracts the most significant lines but not the narrow parallel lines because the
corresponding peaks are too close in the accumulator array. The procedure used
for the right image has great difficulties with locally neighbored peaks which are
above threshold.

2.2 Pose Estimation

The problem of pose estimation means to estimate the transformation (the rigid
body motion) between the two coordinate frames of measured data and model
data. In [12,10] the problem of 2D-3D pose estimation is described in the al-
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gebraic language of kinematics. The key idea is that the observed 2D entities
together with their corresponding 3D entities are constraint to lie on other,
higher order entities which result from the perspective projection. The observed
2D entities in this context are extracted Hough lines.

To be more detailed, in the scenario of figure 3 we describe the following
situation: We assume 3D points Yi, and lines Si of an object or reference model.
Further, we extract line subspaces li in an image of a calibrated camera and
match them with the model. Three constraints can be depicted:

1. 3D point 2D point correspondence: A transformed point, e.g. X1, of
the model point Y1 must lie on the projection ray Lb1, given by c and the
corresponding image point b1.

2. 3D point 2D line correspondence: A transformed point, e.g. X1, of the
model point Y1 must lie on the projection plane P12, given by c and the
corresponding image line l1.

3. 3D line 2D line correspondence: A transformed line, e.g. L1, of the
model line S1 must lie on the projection plane P12, given by c and the the
corresponding image line l1.
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Fig. 3. The scenario. The solid lines at the left describe the assumptions: the
camera model, the model of the object and the initially extracted lines on the
image plane. The dashed lines at the right describe the actual pose of the model,
which leads to the best fit of the object with the actual extracted lines

The use of the motor algebra [2] allows to subsume the pose estimation
problem by compact constraint equations since the entities, the transformation
of the entities and the constraints can be described economically in one unifying
language. Furthermore the constraint equations express a natural distance mea-
sure, in this case the Hesse distance between the entities, which is also explained
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in [12]. This property is important for the robustness of our algorithms since we
work with digital images and noisy data. To solve these constraint equations a
special extended motor Kalman filter was developed [13].

2.3 Testing of Correspondences

It is well known, that for l = m × n potential pairs, there are S = 2|l| cor-
respondences. This means, the search space is in general very large and not
practicable for applications. The tracking assumption allows to use local crite-
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Fig. 4. Match example for a rectangle. The model lines are labeled with letters
and the extracted image lines are labeled with numbers. The table indicates the
correspondence space with the allowed possibilities (white/black), the impossible
matches (cross) and the current match (black)

ria like distances and angles to reduce the search space significantly, depending
on the error boundaries. In this context the correspondence space for m model
lines and n image lines is represented by a m×n fit-matrix. In this matrix flags
represent the needed information for a match, mismatch or potential match,
Fig. 4 shows an example. In this example the model lines are labeled with let-
ters and the extracted image lines are labeled with numbers. The table indicates
the correspondence space with the allowed matches (white/black), the impos-
sible matches (cross) and the current match (black). See also [11] for further
information.

Random start local search [11] is the basis for our algorithm, which is sum-
marized in Fig. 5. The principle of the heuristic relies upon a combination of
iterative improvement and random sampling. Iterative improvement refers to a
repeated generate-and-test principle by which the algorithm moves from an ini-
tial state to its local optimum. So the algorithm consists of two main steps: First
find an initial state for a minimum of correspondences and then refine the result
by the other correspondences. For the first step we choose five random model
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testing of all possibilities are not fulfilled

stabilize the estimated pose

are not fulfilled

Hough transformation, object model

fitmatrix

repeat if error boundaries

initial state

linear search to refine and

repeat if error boundaries

reduce the search space
lokal characteristics to 

 random model lines,

result: correspondences and pose

Fig. 5. A scheme of the tracking algorithm

Fig. 6. Accumulation of an object representation (first and fifth iteration). The
robot has physical control over the object. Line segments corresponding to the
background vanish after a few iterations. Left: the stereo images of left and right
camera. Middle: Representation extracted from one stereo image pair. Right:
Accumulated representation

lines and try every combination of the object lines to the allowed image lines to
estimate an optimal pose and use the error function to characterize the quality
of the pose. This is possible since the error measure corresponds directly to the
Hesse distance and leads to a suitable error measure. Once the initial pose is
estimated, in the second step an additional model line will be tried to match
an allowed image line to stabilize and refine the result. Note, that this part of
the algorithm is linear, since the use of the Kalman filter leads to recognizable
peaks for the detection of mismatches [14]. So the first assumption of [12], i.e.
the knowledge of the correspondences can be solved by the algorithm, which is
summarized in Fig. 5.

2.4 Object Accumulation

The second assumption, i.e., a manually designed object model can be avoided
by applying the methods described above with a model extracted from a stereo
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Fig. 7. Tracking with a manually designed object representation

image sequence. The key idea of the algorithm (described more precisely in [4]
and [5]) is to accumulate evidences for entities used to represent an object over
time. In our case the object was manipulated by a robot (see Fig. 6). This allows
us to solve the correspondence problem during accumulation since the knowledge
of the parameters of motion could be used in the accumulation scheme. Here the
entities used to represent an object are local 3D line segments. However, the
accumulation scheme can be applied for a wide range of visual entities. After
forty iterations the object model was good enough to be applied in our tracking
algorithm.

3 Experiments

In our first experimental scenario we use a manually designed model of a house
for tracking. Figure 7 shows some results of the sequence with the superimposed
model of the house. The slight displacements between the model and the house
on the image in some of the frames emerge from calibration errors, extraction
errors and match errors.

In our second experimental scenario we accumulate an object representation
of a model house by the algorithm described in section 2.4. Our accumulated
object model consists of 130 line segments.1 Though the accumulated represen-
1 Our object representation consists of a large number of statistically very dependent

entities. For matching it would be advantageous if these entities become connected
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Fig. 8. Tracking with an accumulated object model. In this sequence we show
the results before tracking and after tracking for each image to visualize the
movements

tation also consists of noisy line segments, which do not belong to the house, the
algorithm is able to estimate the transformations, which are necessary to get a
good fit of the object model with the image lines. Since our algorithm is also
able to neglect object lines, our algorithm is able to deal with hidden or not ex-
tracted object features in the image, or noisy line segments of the object model.
Some results of the required and estimated movements are visualized in Fig. 8.
The performance of our algorithm is not optimized yet and the main steps, the
Hough transformation and the testing of correspondences are not in real time.
The Hough transformation itself needs about two seconds, and the testing of
the correspondences needs about 5 seconds to 15 seconds in artificial designed
objects and 3 to 5 minutes with the accumulated object (because of its 130 line
segments). But still the algorithm is heuristic and we also had cases where it
never converged. The time performance is also dependent on the parameters of
the tracking assumptions and the parameters of the Hough transformation.

4 Conclusion and Outlook

We applied the novel pose estimation algorithm described in [12] to the track-
ing problem. For tracking we could automatically find correspondences between
model data and Hough lines by a local search algorithm. Furthermore, we could

by some kind of grouping process to achieve a representation with a smaller set of
more complex features to speed up matching. The formalization of such grouping
processes is part of our research.
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demonstrate that tracking is even possible with an accumulated object repre-
sentation.

In this paper we only used 2D line to 3D line correspondences. However,
with a more elaborated object representation consisting of point features (such
as corners) as well as line features, other kind of correspondences could be applied
for tracking as well. The possibility to deal with these different entities within
one framework as in the pose estimation algorithm in [12] would be an interesting
extension of the tracking algorithm introduced here.

In this paper tracking and accumulation are distinct competences, for object
accumulation it was necessary to have physical control over the object by a robot
to solve the correspondence problem. With the tracking algorithm introduced
here we aim to replace the need of physical control. The pose estimation gives us
the parameters of object motion which are needed in our accumulation scheme
and which were granted by the knowledge of the motor commands of the robot.
Therefore, by combining tracking and accumulation we might achieve learning
while doing object tracking.

All algorithms introduced here were implemented in the C++–software li-
brary KiViGraP [7] which allows us to combine competences as the one intro-
duced in this paper into one system. In [5] a framework of such a system is
discussed in which basic competences can be combined to more complex behav-
ior patterns.
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Abstract. This paper describes a system, which acquires 3D data and
tracks an eleven degree of freedom human model in real-time. Using four
cameras we create a time-varying volumetric image (a visual hull) of
anything moving in the space observed by all four cameras. The sensor
is currently operating in a volume of approximately 500,000 voxels (1.5
inch cubes) at a rate of 25 Hz. The system is able to track the upper
body dynamics of a human (x,y position of the body, a torso rotation,
and four rotations per arm). Both data acquisition and tracking occur
on one computer at a rate of 16 Hz. We also developed a calibration
procedure, which allows the system to be moved and be recalibrated
quickly. Furthermore we display in real-time, either the data overlaid
with the joint locations or a human avatar. Lastly our system has been
implemented to perform crane gesture recognition.

1 Introduction

Due to the enormous number of applications involving human-computer inter-
action, real-time 3D human motion-tracking has become a highly valued goal.
Applications such as virtual reality, telepresence, smart rooms, human robot in-
teraction, surveillance, gesture analysis, movement analysis for sports, and many
others all have a need for real-time human motion-tracking. Accordingly there
has been a lot of work done in this field. Most of the work has been done off-
line, where images are acquired in real-time and analyzed at a later time [1,2].
However, this does not allow for any human-computer interaction. Therefore we
must move to a real-time system. The approaches that work in real-time can
be divided into two categories. The first category works in the 2D domain and
attempts to get 3D information either from a single view or through combining
2D information from multiple cameras [3,4,5]. The problem with this type of ap-
proach is that modeling 3D articulated objects from 2D data is often an ill-posed
problem due to occlusion/self-occlusion. The second category works directly in
the 3D domain. At the time of this paper only one other team has attempted to
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work directly in the 3D domain [6]. In their work ellipsoids are fit to body seg-
ments that provide a coarse model of the body. Our system uses a similar data
acquisition approach, but instead fits a stick model of the human so that joint
angles can be recovered. In this way a detailed analysis of the human motion
can be performed for a wide variety of applications. Specifically, our system is
recovering the shoulder and elbow joint angles, which allows us to use a much
richer set of pose-analysis functions.

The system developed in this paper acquires data of an area composed of
500,000 3D volume elements (voxels) of dimension 1.5 inches at a rate of 25
Hz. The system then uses the data to track an eleven degree-of-freedom (DOF)
humanoid stick figure model at 16 Hz, which is fast enough to track very rapid
movements. Currently our upper body model incorporates the (x,y) horizontal
location of the torso, a rotation of the torso about the vertical (z) axis, and 4
rotations for each arm (3 in the shoulder and 1 at the elbow). However, testing
to allow 6 DOF in the torso and include leg dynamics has already begun. When
the user is in the workspace real-time visual feedback is provided to the user in
terms of viewing the voxels overlaid with the joint locations or viewing a human
avatar driven from the tracking results. Our system has also been implemented
for a crane gesture analysis system and achieved excellent results.

Our system can be divided into three main components. The first acquires
our 3D data using 4 cameras and a technique called shape-from-silhouette. The
second component uses the data to track our model. The last component uses the
tracked model to provide feedback to the user and to perform gesture recognition.

2 The 3D Video Motion Detector

The system we are using to acquire 3D data is a real-time shape-from-silhouette
sensor that we call the 3D Video Motion Detector, or 3DVMD. This sensor uses
a combination of industry standard components including a high-end PC, four
RS170 monochrome video cameras, and four PCI-bus frame grabber cards. Using
this hardware we create a time-varying volumetric image of the visual hull of
whatever object is moving in the space observed by all four cameras.

2.1 Algorithm Description

The algorithm for performing the shape from silhouette involves extracting sil-
houettes from the four images using an adaptive background subtraction and
thresholding technique, much like the algorithm described in detail in [7]. This
algorithm indicates which pixels have changed from the background in each of the
cameras. The calibration procedure creates look up tables that store voxel-pixel
associations, which relate each voxel to a pixel in each camera. By traversing
the voxels and examining the appropriate image-pixels we can tell which voxels
are occupied. Voxels that are occupied will have the appropriate pixel in each of
the cameras active. To speed the process of traversing through the voxels we are
defining a subvolume around the region in which the person is moving, thereby



Real-Time Tracking of Articulated Human Models 21

minimizing the search. This results in a very fast, low-latency system that is
appropriate for our tracking work, as well as for development of uninstrumented
3D user interfaces. Figure 1 shows an example of our data.

Fig. 1. An example of 3DVMD data

2.2 Calibration of the 3DVMD Sensor

The 3DVMD system relies on an accurate calibration of each camera’s intrinsic
and extrinsic parameters. We estimate parameters for each camera’s intrinsic
characteristics by recording six images of a flat 8 by 10 inch checkerboard at a
variety of angles between the target plane and the camera. From this information
we can determine the focal length, center pixel location, and the coefficients of
radial distortion[8]. The next step is to estimate the camera’s world-frame posi-
tion. We place targets on the floor of the space we are observing and determine
their image-plane locations with subpixel accuracy. We then use the same planar
calibration methods, but instead of solving for the intrinsic parameters, we now
solve for the extrinsic parameters. Because all of the cameras observe the targets
in the same positions, we are able to obtain the relative positions of each camera
in a global coordinate frame. By using this analytical calibration method, we can
now set these systems up much more rapidly than previous manual calibration
methods.

3 Tracking the Humanoid Model

3.1 Initialization

To simplify tracking we require that the user performs an initialization pose upon
entering the workspace. The pose is a simple cross formation with the user facing
along the y axis with his arms extending parallel to the floor and straight out to
the sides of the body (along the x axis). Once in this pose, the system measures
the body parameters required for tracking: body radius, shoulder height, and
arm length. Currently the user must always begin by initializing the system.
However, the model parameters can easily be saved to a file and read in before
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the user enters the workspace. Our system already uses voice communication,
therefore it would be easy to incorporate an option to simply tell the system
your name while entering the workspace and skip the initialization phase.

3.2 Tracking

The tracking procedure it broken into two phases. The current algorithm first
finds the (x,y) location and heading (the direction the person is pointed) of the
torso. We can then predict the location of the shoulders, and assume that their
locations remain constant for a particular torso orientation. These locations are
then used to anchor the arms. In this way we only need to solve for the angles at
which the upper arms extend from the shoulders, and then for which the lower
arms extend from the elbows.

Currently we only compute the x, y location of the torso and a rotation about
z; accordingly we are assuming the user is standing straight up. The x, y location
can easily be computed using the median value of all the voxels. The heading is
computed by fitting an ellipsoid to all the data within the body radius of the x,
y location. This is done by performing an eigen-decomposition on the moment
matrix M. The eigenvectors of this matrix correspond to the principal axes of
the ellipsoid. The principal axis closest in orientation to the last known heading
is taken as the new heading of the person.

M = 4
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Myz Myy Myz

Mxz Mzy Mzz
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To compute the angles for a particular arm segment, we simply compute
the angles from all voxels that are not within the body radius to the anchor
point. The result is used as a pulling force from the current orientation to a
new orientation that passes through this voxel, as shown in Fig. 2. In this way
each voxel can have an effect on all of the arm segments, which overcomes the
problem of having to decide which arm segment a voxel belongs to. However,
we weight each pull by the distance, d, to each arm segment, so that a voxel
exerts a stronger pull on closer arm segments than on those further away. For
each voxel, let the minimum distance to any arm segment be denoted as dm.
The weight for each segment is given by (dm / d)3. Accordingly as the model
is pulled into the correct orientation, the forces exerted from a particular voxel
should be almost entirely on the segment closest to the voxel. This weighting
strategy works extremely well for small adjustments, which is all it should have
to make since our tracking rate is extremely high. In addition we employ zero
weighting to any arm segment further than a certain distance from the voxel (dt,
computed from a maximum arm velocity divided by our tracking rate). Also, if
a voxel is within a very small distance of an arm segment (less than ds ), then
we assume that it belongs to only that segment, and assign a zero weight to all
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other segments. The weighting assignment is shown below:

Weight =




1 if d = dm

(dmin

d )3 if dm < d < dt

0 if d > dt

0 if d > dm and dm < ds

. (2)

Once the adjustment is computed for all voxels outside of the body radius, an
adjustment is made to each of the arm segment angles and the loop repeats. The
process stops for each arm segment when either the adjustment is too small or
the move was bad (fewer points are close to new orientation of the segment).

Fig. 2. Example of alignment forces (the weight to the upper arm is 1 while the
weight to the lower arm, which is further away, is scaled down)

Currently our system stops tracking an arm when the arm lies along the body.
If we hope to track the arms when they are extremely close to the body we must
move to a much more precise torso model (work is in progress). In addition we
will need data which has far less noise from shadows. Employing color cameras
and using hue to distinguish shadows as done by Cheung and Kanade [6] might
solve this problem.

The process also has a recovery algorithm in case it ”loses” an arm. If too
few voxels are close to one of the arm segments, the process assumes that the
optimization has failed and attempts to grow the arm instead. Since we know
the shoulder position, we start a growing algorithm from this point. Growing can
include any neighboring point outside of the body radius, and continues until no
new points are found. In this way the last point found should again be the hand
and the elbow should be somewhere in the middle. Accordingly we compute the
elbow to be at the voxel that was 2/3 of the way down the arm. Angles are
calculated using these locations. The growing algorithm may not be able to find
the arm if we have missing data (data acquisition has failed to find the arm
voxels) or if the arm lies within the body radius. In this case our algorithm will
leave the arm where it was last located and wait for the next set of data.
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4 Results

The current system is able to collect data and track our model at 16 frames
per second on one computer, while a second computer provides visual feedback
to the user as shown in Fig. 3. Currently we are not able to indicate precisely
how accurate our tracking is because we do not know the ground truth for
the users movement within the workspace (see future work). However, the fit
looks good when comparing the movement of the user and the avatar side by
side (http://egweb.mines.edu/cardi/3dvmd.htm). In addition we were able to
use the joint angles to distinguish several gestures to control a crane as will be
discussed in the application section.

Fig. 3. The two figures show the two display options. On the left is our human
3D avatar. On the right is a display of the voxels with large colored spheres
representing joint positions (the body voxels have been removed)

In general the system worked extremely well when the arms were moved at
normal velocities, and were held away from the body and from each other. How-
ever, when the arms were positioned close to one another the arm segments from
one arm would be pulled towards the other. A similar problem occurred when
the elbow was bent well past ninety degrees. In this configuration the pull from
the upper arm voxels on the lower arm was often large enough to dominate.
Accordingly when the actual arm was straighten the tracking algorithm would
leave the elbow bent. Lastly when an arm was moved extremely fast the algo-
rithm can fall behind and eventually loose the arm. In general our routine was
able to detect that it had lost the arm in these situations, and would then revert
to the growing algorithm to find the arm.

5 Application

We employed our system to perform crane gesture analysis. A separate computer,
with a voice recognition system, was utilized to read the joint locations, use them
to interpret gestures, and control the crane.
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The process follows this pattern. When a user enters the workspace the com-
puter says ”Hello” and asks the user to verbally identify himself (eventually this
will be used to skip the initialization step). The user is then asked to stand in
the initialization pose and the system verbally communicates when initialization
is done and gesturing can begin. Once in this state, the system continuously
inspects the joint angles to see if a gesture is occurring. Because joint angles are
being used for gesture interpretation the size of the user has no impact, and the
user can perform a gesture facing any direction and even while moving. Cur-
rently the system is able to reliably interpret all of the gestures shown in Fig. 4.
A movie can be seen at http://egweb.mines.edu/cardi/3dvmd.htm.

Fig. 4. The 17 gestures depicted were successfully recognized by our system
(gestures on the top row can be performed with the arms switched)

6 Conclusions and Future Work

The system we have developed is able to collect high-resolution 3D voxel data
at 25 Hz. We have also developed a calibration procedure that allows the system
to be rearranged or even moved and to be quickly recalibrated. We are currently
able to use the hardware and software that we have developed to track a low-
dimensional human avatar figure at 16 Hz. The avatar we are using has a total
of eleven degrees of freedom: four in each arm, and XY-theta for the position of
the body. The system provides visual feedback in real-time with either human
avatar display or through displaying the voxels overlaid with the joint positions.
Lastly we were able to employ our system to perform crane gesture interpretation
and successfully interacted with a system using a robotic arm to simulate crane
movement.

By working directly in the 3D domain we eliminate problems caused by oc-
clusion/self-occlusion, thereby allowing complicated motions to be accurately
captured and tracked. By tracking a human stick figure model we are able to
directly calculate human joint angles, which greatly simplifies motion analysis.
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In addition, because our system works at a high cycle rate, we are able to track
extremely fast motions.

This project is currently undergoing many improvements. We are currently
testing a tracking algorithm that will use a tighter torso model and allow for
six DOF movement. The new torso model will contain both shoulder and hip
locations, hence our current tracking algorithm can be implemented to track the
legs. Once this is complete we plan to further extend our algorithm to track
the head and possibly even some hand orientations. We also plan to test the
accuracy of our system by obtaining a ground truth to compare to the joint angles
obtained through tracking. This will be accomplished by comparing our tracking
results to values obtained with a traditional electromagnetic tracking system
(Ascension’s Flock-of-Birds). In addition, we plan to implement our system in
several applications. For instance, the system will allow us to interact in real-time
with another human avatar driven at a remote location (a 3D conference-call).
Lastly we would like to extend our algorithms to allow for multiple people to
interact within the workspace of a single sensor.
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Abstract. This contribution describes a camera-based approach to fully
automatically extract the 3D motion parameters of persons using a model
based strategy. In a first step a 3D body model of the person to be tracked
is constructed automatically using a calibrated setup of sixteen digital
cameras and a monochromatic background. From the silhouette images
the 3D shape of the person is determined using the shape-from-silhouette
approach. This model is segmented into rigid body parts and a dynamic
skeleton structure is fit. In the second step the resulting movable, person-
alized body template is exploited to estimate the 3D motion parameters
of the person in arbitrary poses. Using the same camera setup and the
shape-from-silhouette approach a sequence of volume data is captured to
which the movable body template is fit. Using a modified ICP algorithm
the fitting is performed in a hierarchical manner along the the kinematic
chains of the body model. The resulting sequence of motion parame-
ters for the articulated body model can be used for gesture recognition,
control of virtual characters or robot manipulators.

1 Introduction

In recent time emphasis has been put on the extraction of human body shape and
motion parameters from videosequences. Application areas appear in the TV and
film production where virtual actors have to be taught to exhibit human behavior
like human facial expressions and human gestures. Another area of application
is the control of remote systems from the passive observation of body motions.
Examples are remote control of avatars in multi-player games or the remote
control of robots which may act in hazardous and dangerous environments. The
creation of those models consists mainly of two parts: firstly the extraction of
the shape and texture of the real person and secondly the automatic adaptation
and fitting of an interior skeleton structure to extract motion.

In this paper an approach for motion estimation using a hierarchic ICP al-
gorithm is presented. This is illustrated in Fig. 1. From a real person an initial
3D surface model is obtained. The motion of the person and its model can be
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arbitrary pose
3D pointcloud of Set of 3D motion

parameters

Initial 3D model Skeleton

Movable 3D template

using hierarchic ICP

Motion estimation

Fig. 1. System Overview for model based 3D estimation of arbitrary human
poses

described by the motion of a skeleton, which is fitted to and connected to the
model surface. When an arbitrary pose of the same person represented again
as surface model is obtained the parameters of this pose can be determined by
a model based approach. As model serves the movable 3D template which has
been obtained in the first step. The result of the analysis is a set of 3D motion
parameters, which describes for a sequence of poses the motion of the gesture.

2 Body Modeling

As shown in Fig. 1 the model based motion estimation requires two steps: the
creation of a 3D segmented movable model of the person and the fitting of that
model to a 3D measurement of the same person in an arbitrary pose. The first
step is performed with a camera based passive full body scanner.

2.1 Shape from Silhouette

The shape from silhouettes or ”method of occluding contours” approach is a well
known technique for the automatic reconstruction of 3D objects from multiple
camera views [4]. In this section the reconstruction technique is described briefly.

To capture the body model and to extract the sequence of volume data for
motion estimation a special setup of sixteen digital cameras has been constructed
which is suitable for using the shape-from-silhouette approach (Fig. 2). The
person is situated in front of a monochromatic coated background which is used
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Digital Cameras

Monochromatic
Background

Fig. 2. Principal measurement setup (left) and input image and segmented fore-
ground (center and right)

(a)                                                                      (b)     

line of sights through 
silhouette contour points

image plane 
with silhouette

focal point 

boundary of a 
volume cone

cameras  

(c)

Fig. 3. Volume reconstruction: (a) Construction of a volumetric cone, (b) Top-
view of the cone intersection, (c) 3D modeling result

later on for silhouette extraction. The combination of background and camera
positions need to fulfil mainly two important constraints: firstly, all cameras
must see the complete person in front of the monochromatic background and
secondly no camera should be visible from any other camera.

The principle of the silhouette-based volumetric reconstruction can be di-
vided into three steps. In the first step, the silhouette of the real object must be
extracted from the input images as shown in Fig. 2. In the proposed environment
the segmentation of the person against the background is facilitated by using
the monochromatic background (”blue screen technique”).

In the second step, a volumetric cone is constructed using the focal point of
the camera and the silhouette as shown in Fig. 3a. The convex hull of the cone
is formed by the lines of sight from the camera focal point through all contour
points of the object silhouette. For each view point such a volumetric cone is
constructed, and each cone can be seen as a first approximation of the volume
model.
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In the last step, the volumetric cones from different view points are inter-
sected in 3D and form the final approximation of the volume model. This is
performed with the knowledge of the camera parameters, which give the infor-
mation of the geometrical relation between the volumetric cones. In Fig. 3b a
two dimensional top view of the intersection of the cones is shown. In Fig. 3c a
triangulated 3D point cloud representing the volume model surface is shown.

After the reconstruction of the geometry the model can automatically be
textured using the original camera images giving a highly realistic impression [1].

2.2 Skeleton Fitting

To extract the 3D motion parameters of a moving person a template based ap-
proach has been used. Therefore an internal skeleton structure is needed which
controls the model movements. In order to find the correct set of motion pa-
rameters the body model has to be adapted to the specific person that is to
be tracked later. Normally this requires a tedious manual positioning of the
joint positions within the model. In order to reduce the costs of model cre-
ation it is desirable to automate this process. As opposed to other algorithms

Fig. 4. Extracted features and cal-
culated skeleton (left) - Automatic
segmentation in body parts (right)

that use the thinning of 3D data[2][3] we
propose to find the skeleton as a multi-
step process based on re-projected images
of the voxel model of the person.

In a first step a principal axis analysis
is performed to transform the model into
a defined position and orientation. Using a
virtual camera – not to be confound with
one of the real cameras – a synthetic sil-
houette from a frontal viewpoint is cal-
culated. The outer contour of this image
is used to extract certain feature points
like the bounding box, the position of the
neck, the hands and so on as can be seen
in Fig. 4 on the left. In the last step the 2D
joint positions of the desired skeleton are
derived directly from the detected feature
points using certain ratios (Fig. 4, left).
Using the real model and the virtual cam-
era these 2D joint positions are extended
to their real 3D positions. In Fig. 4 on the right the skeleton has been used to
segment the model into different body parts.

The resulting reference model describes the relation between the elements
of the skeleton and the surface points of the model and it contains parameters
like the bone length which are assumed to remain constant during the following
motion analysis. The reference model has been derived from a special pose, which
exhibits most distinctly the elements of the model skeleton, like the neck, head,
the torso, the limbs and their parts. During pose analysis this reference model
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Fig. 5. The used coordinate systems within the kinematic chain(left) and the
skeleton structure in neutral position (right)

serves as a movable 3D template in order to estimate the free parameters of
the internal skeleton from the observation of the recorded surface points of the
particular pose under investigation.

3 3D Motion Analysis

From the body scanner mentioned above a cloud of 3D surface points is obtained
for each pose from a real person. The task of the motion analysis is to estimate
for each pose the free parameters of the underlying skeleton, i.e. the location of
the skeleton and the angular positions. An overview in the area of visual analysis
of human movement can be found in [7].

The known approaches for this motion estimation problem can be divided
into two different types. The first kind, which is often based on optical flow, tries
to register the differential motion of an object between subsequent frames like for
instance in [8]. This approach lacks the possibility to find an appropriate motion
for sequences of arbitrary length because estimation errors from frame to frame
add up until the tracking is lost. The second approach which is proposed here
normally requires some kind of a (3D) model. It dispenses with the information
yielded from prior processing stages and thus avoids the mentioned problem.
Because of the larger movements between the initial pose of the model and the
pose to be estimated finding the motion is more difficult. The proposed approach
tries to eliminate manifolds in the solution by exploiting the motion hierarchy
of the model.

3.1 Skeleton Hierarchy

The internal skeleton structure as shown in Fig. 5 on the right is organized in
form of a kinematic chain as shown in Fig. 5 on the left. Each body part is
described as a bone of a certain length and is connected to a parent and child
part respectively through a joint. Each joint is equipped with a set of two local
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coordinate systems. The first gives the transformation of the parent to the child
in its neutral position and the second coordinate system describes the actual
movement around a joint. This approach has been chosen to be able to control
maximum rotation angles around the axes of the fixed coordinate system. In
addition the fixed local coordinate systems are oriented within the skeleton such
that the Z-axis always runs along the longitudinal orientation of the body part
and the X-axis is oriented along the viewing direction of the person. The Y -
axis follows from a right handed coordinate system. This makes sure that for
instance the maximum twist of a body part can always be controlled employing
a minimum and maximum rotation angle around the Z-axis.

To transform the coordinates of a locally given point or into the global world
coordinate system the following operation has to be performed:

P G =
n∏

i=1

M(i)
R ·M(i)

B (α, β, γ) · P L, (1)

where the homogenous matrix M(i)
R is constructed from the directions of the

coordinate axes X, Y , Z and the position T of the fixed coordinate system:

M(i)
R =

(
X(i) Y (i) Z(i) T (i)

0 0 0 1

)
. (2)

The homogeneous matrix M(i)
B (α, β, γ) is a rotation matrix

M(i)
B (α, β, γ) =




0
R(i)

X,Y,Z(α, β, γ) 0
0

0 0 0 1


 , (3)

whose coefficients contain the product of the rotations around the X-, Y - and
Z-axis with the values α, β and γ respectively.

Each joint carries two coordinate systems that are responsible for the overall
motion. M(i)

R is the transformation of the fixed coordinate system and gives the
neutral position as shown in Fig. 5 on the right whereas M(i)

B gives the actual
motion depending on the angles α, β and γ respectively.

The task of motion estimation is to find the matrices M(i)
B such that the

deformed template fits into the 3D measured point cloud of an arbitrary pose.
From the matrices the values α, β and γ are derived and can be used to animate
computer graphic models or robot manipulators.

3.2 Hierarchical ICP

The body part which exhibits within several poses of a gesture the smallest
motion is the lower torso. Therefore the lower torso serves as root of the mo-
tion hierarchy in Fig.6 and its motion is investigated first. The ICP (Itera-
tive Closest Point)-algorithm[5] is used to calculate the translation and rota-
tion parameters of the ”closest points” from the measured surface data. The
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Fig. 6. Estimation hierarchy

translational and rota-
tional parameters of the
lower torso represent the
body position and orien-
tation of the pose under
investigation. In the next
step the rotation of the
lower torso of the refer-
ence model is adapted ac-
cording to the previous
measurements. The mo-
tion parameters of the child node in Fig.6 (left), here the upper torso, are cal-
culated using a modified version of the ICP algorithm which only calculates the
rotational parameters. The center point for this calculation is given by the joint
position of that particular body part which has been determined already through
the motion parameters of the hierarchically higher body part (in this case the
lower torso). The five independent kinematic chains from Fig. 6 are calculated
in the described hierarchic manner from the root (lower torso) to the respective
end effectors. Measured pose points, which have served for the previous adapta-
tion are eliminated from the data set in order to prevent manifold assignments
of points for the following estimation steps of the hierarchy.

In order to consider the differing degrees of freedom for the different joints
along the kinematic chains from the root to the end effector a post processing
step follows which shifts additional degrees of freedom (DOF) between joints.
E.g. the additional DOFs in the elbow joint (the algorithm estimates 3 rotational
DOFs) are shifted to the motion in the shoulder joint which must be responsible
for the additional motion since the elbow is only equipped with a single DOF.

Fig. 7. 3D segmented body model
(left) and initial pose of skeleton
within the pose “carry”

4 Results

Figure 7 shows the pose under investiga-
tion overlaid by the skeleton of the ref-
erence model. The differences in the arm
and leg positions are obvious. Fig. 8 shows
the results of an automated pose estima-
tion as described in this paper. Since the
pose estimation is done in three dimen-
sions, the fitting of the skeleton to the
cloud of surface points in the pose under
investigation is illustrated by views from
four different spatial positions. It can be
seen, that in this case the skeleton has
been adapted to the pose almost perfectly.
Right now each pose is treated indepen-
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Fig. 8. Estimation results: The initial body skeleton has been fit to the pose
“carry”

dently from the others by match against the same, locally adapted reference
model. For future applications where body parts merge, for instance in a pose,
where an arm is pressed against the torso, it might be necessary to process poses
in their natural sequence in order to track the skeleton. However, this endan-
gers the accumulation of estimation errors, which is prevented by our present
approach.
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Abstract. Knowing its position in an environment is an essential ca-
pability for any useful mobile robot. Monte-Carlo Localization (MCL)
has become a popular framework for solving the self-localization prob-
lem in mobile robots. The known methods exploit sensor data obtained
from laser range finders or sonar rings to estimate robot positions and
are quite reliable and robust against noise. An open question is whether
comparable localization performance can be achieved using only camera
images, especially if the camera images are used both for localization and
object recognition. In this paper, we discuss the problems arising from
these characteristics and show experimentally that MCL nevertheless
works very well under these conditions.

1 Introduction

In the recent past, Monte-Carlo localization has become a very popular frame-
work for solving the self-localization problem in mobile robots [4,5,6]. This
method is very reliable and robust against noise, especially if the robots are
equipped with laser range finders or sonar sensors. In some environments, how-
ever, for example in the popular RoboCup domain [7], providing a laser scanner
for each robot is difficult or impossible and sonar data is extremely noisy due to
the highly dynamic environment. Thus, enhancing the existing localization meth-
ods such that they can use other sensory channels, like uni- or omni-directional
vision systems, is a state-of-the-art problem in robotics. In this work, we present
a vision-based MCL approach using visual features which are extracted from the
robot’s unidirectional camera and matched to a known model of the RoboCup
environment. Additionally, we try to use the same feature detectors for a com-
pletely different environment – in an office.

2 Monte Carlo Localization

Monte Carlo localization (MCL) [5] is an efficient implementation of the general
Markov localization approach (see e.g. [4]). Here, the continuous probability dis-
tribution Bel(l) expressing the robotś belief in being at location l is represented
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by a set of N samples S = {s1, . . . , sN}. Each sample si = 〈li, pi〉 consists of a
robot location li and weight pi. As the weights are interpreted as probabilities,
we assume

∑N
i=1 pi = 1.

The algorithm for Monte Carlo localization is adopted from the general
Markov localization framework. Initially, a set of samples reflecting initial knowl-
edge about the robot’s position is generated. During robot operation, the fol-
lowing two kinds of update steps are iteratively executed:

Sample Projection across Robot Motion: As in the general Markov algorithm,
a motion model P (l|l′, m) is used to update the probability distribution Bel(l).
In MCL, a new sample set S is generated from a previous set S′ by applying
the motion model as follows: For each sample 〈l′, p′〉 ∈ S′ a new sample 〈l, p′〉 is
added to S, where l is randomly drawn from the density P (l|l′, m).

Observation Update and Weighted Resampling: Sensor inputs are used to update
the robot’s beliefs about its position. All samples are re-weighted by incorpo-
rating the sensor data o and applying the observation model P (o|l′). Given a
sample 〈l′, p′〉, the new weight p for this sample is given by

p = α P (o|l′) p′ (1)

where α is a normalization factor which ensures that all beliefs sum up to 1. These
new weights for the samples in S′ provide a probability distribution, which is
then used to construct a new sample set S. This is done by randomly drawing
samples from S′ using the distribution given by the weights.

3 Vision-Based Localization

There are mainly two cases where MCL based on distance sensor readings can-
not be applied: (i) If distance sensors like laser range finders or sonars are not
available. (ii) If the readings obtained by these sensors are too unreliable, e.g. in
a highly dynamic environment. In these cases, other sensory information must
be used for localization. A natural candidate is the visual channel, because many
robots include cameras as standard equipment. An example for using visual in-
formation for MCL has been provided by Dellaert et al. [1].

An interesting and open question is whether the MCL approach still works
when the number of observations is significantly reduced and when particular
observations can be made only intermittently. In the following, we show how to
adapt the MCL approach in order to overcome these problems.

3.1 Feature-Based Modeling

As described in Equ. 1, the sensor update mechanism needs a sensor model P (o|l)
which describes how probable a sensor reading o is at a given robot location l.
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Fig. 1. Detection of post, corner and edge features in the RoboCup domain

This probability is often computed by estimating the sensor reading õ at loca-
tion l and determine some distance dist(o, õ) between the given measurement o
and the estimation õ.

As it is not possible to efficiently estimate complete camera images and then
compute image distances for hundreds of samples, we use a feature-based ap-
proach. In the RoboCup domain, we use the following features (see [3]): 1) goal
posts of blue and yellow goal, 2) corners, and 3) distances to field edges. In the
office environment, we only use the distance features in an initial try to show
the feasibility of the approach.

Feature Detection: The feature detection process for the RoboCup domain works
as follows: In a first step the camera image is segmented into color regions. Based
on the segmented image, filters are applied to detect color discontinuities.

The goal post detector detects a vertical white-blue or a white-yellow transi-
tion for the blue or yellow goal post, respectively (see left image in Fig. 1). The
corner detector searches for vertical green-white-green transitions in the image
(middle image in Fig. 1). The distance estimator estimates the distance to the
field edges based on detected horizontal green-anything transitions in the image.
Currently, we select four specific columns in the image for detecting the field
edges (right image in Fig. 1).

In Fig. 2, a corridor inside our office building can be seen. The left image
shows the original camera image while the right image shows the detected edges.
The grey lines starting from the bottom of the image visualize the estimated
distances to the walls. Note that there are several errors mainly in the door
areas.

In Fig. 3, the estimated distances are projected to a horizontal plane. The
brighter dots show the estimated distances by the visual feature detector, while

Fig. 2. Detection of distance features in the office environment
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Fig. 3. Distance estimator. The bigger dots are estimated distances, the smaller
ones are laser readings for comparison

the smaller darker dots show the laser readings in the same situation. Note,
that in the left image a situation is shown where a lot of visual distances can
be estimated, while in the right image only four distances are estimated at all.
Due to the simplicity of the applied feature detector often only few distance
features are detected and therefore the situation is comparable to the RoboCup
environment.

Weight Update Let the sensor data o be a vector of n features f1 . . . fn. If we
assume that the detection of features depends solely on the robot’s position and
does not depend on the detectability of other features, then the features are
independent and we can conclude:

P (o|l′) = P (f1 . . . fn|l′)
= P (f1|l′) . . . P (fn|l′) (2)

camera image

estimated scan

Probability

P(corner | here)

P(blue-left | here)

P(blue-right | here)

relative camera angle

Fig. 4. Heuristics for estimating the probabilities p(fi|l) from the current camera
view
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The sensor model P (fi|l) describes how likely it is to detect a particular
feature fi given a robot location l. In our implementation, this sensor model is
computed by comparing the detected feature with an estimated feature given
a geometrical world model. The distance measurement between the features is
mapped to a probability estimate by applying a heuristic function as illustrated
in Fig. 4.

The application of these heuristics to the examples used in Fig. 1 are illus-
trated in Fig. 5. Probabilistic combination of evidence for several features yields
significantly better results, as convincingly demonstrated by the rightmost image
in Fig. 5.

The figure illustrates various properties of our approach. The shape of the
function causes all samples with comparatively high angular error to be dras-
tically down-valued and successively being sorted out. Thus, detecting a single
goal post will reshape the distribution of the sample set such that mostly loca-
tions that make it likely to see a goal post in a certain direction will survive in
the sample set. Secondly, there is only a single heuristic function that captures
all of the ambiguous corner features. Each actually detected corner is succes-
sively given a probability estimate. If the corner detector misses corners that we
expected to see, this does not do any harm. If the detector returns more cor-
ners than actually expected, the behavior depends on the particular situation:
detecting an extra corner close to where we actually expected one, has a small
negative influence on the weight of this sample, while detecting a corner where
none was expected at all has a much stronger negative effect.

Figure 6 shows a similar probability distribution inside a corridor. The distri-
bution is computed for the estimated scan in Fig. 3. As can be seen, the locations
along a straight line in the middle of the corridor are the most probable. One
can easily imagine, that an additional door detector would strongly reduce the
number of possible locations.

4 Experiments

The described method was implemented and evaluated on a Sparrow-99 robot,
a custom-built soccer platform equipped with an uni-directional camera [2].

Fig. 5. Probability distributions P (fi|l) for all field positions l (with fixed orien-
tation) given the detection of a particular feature fi or all features, respectively.
From left to right: goal posts, corners, distance measurements, all three combined
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Fig. 6. Probability distributions P (fi|l) for all positions in the corridor using
visually estimated distances

Additionally, we performed an experiment with the B21 robot “Stanislav”
for investigating the feasibility of the feature-based localization approach.

Experiment 1: Number of Features In this experiment, we show that the robot
can localize robustly and that the accuracy can be improved by adding more
features. A Sparrow-99 robot was placed in one corner of the field (the right top
circle of Fig. 7). In order to have an accurate reference path, we moved the robot
by hand along a rectangular trajectory indicated by the dots.

The first image in Fig. 7 displays the odometry data when moving four rounds
and shows the drift error that occurs. The second image displays the corrected
trajectory which does not drift away. The third image displays the first round
corrected by the localization algorithm using only the goal posts as features. In
the fourth image we can see a more accurate path found using all three feature
types.

Experiment 2: Number of Samples Implementing sample-based localization, it
is important to have an idea of how many samples you need. Obviously, a small
number of samples is preferred, since the computational effort increases with
the number of samples. On the other side, an appropriate number of samples is

Fig. 7. A single round of the Sparrow-99 being pushed along a rectangular path
in the RoboCup field.(Odometrie path, corrected path using goal post features,
corrected path using all features)



Vision-Based Robot Localization Using Sporadic Features 41

0 10 20 30 40 50 60
0

500

1000

1500

Distance moved [m]

A
ve

ra
ge

 e
st

im
at

io
n 

er
ro

r 
[m

m
]

50 samples
100 samples

150 samples
1000 samples
5000 samples

 50 100 150 1000 5000  
0

200

400

600

800

1000

1200

1400

1600

1800

Number of Samples

E
rr

or
 [m

m
]

   Maximum error

   Average error

Fig. 8. Left: Average localization errors of the different sample numbers. Right:
Average error and maximum error of the same five runs (50,100,150,1000 and
5000 samples used)

needed in order to achieve the desired accuracy. In this experiment, we moved
four rounds exactly as in the previous experiment. This time, we used five dif-
ferent numbers of samples: 50, 100, 150, 1000, 5000

In the left image of Fig. 8, the average localization errors of the different
sample numbers are shown. One can see that the error decreases when more
samples are used. On the other hand, the difference in accuracy does not increase
very much from 150 samples over 1000 to 5000. The right image of Fig. 8 shows
both the average error and the maximum error of the same five runs (50, 100,
150, 1000 and 5000 samples). Again, you can see that above 150 samples, the
accuracy hardly increases.

Experiment 3: Feasibility for Office Environments With this experiment, we
wanted to see whether our approach chosen for the RoboCup environment was
also feasible for more complex environments, like regular corridors and rooms.
Since the first feature detector we implement was the distance estimator, we
performed the following qualitative experiment with distance features only.

Fig. 9. Robot “Stanislav”
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Our B21 robot “Stanislav” was initially located at the beginning (left side of
Fig. 9) of a corridor of about 20 m length and 2.2 m width. We used 1000 samples
which were initialized at the approximating robot position with a diameter of 1
meter and an angular uncertainty of 20 degrees.

You can see that the robot was able to track the path along the corridor up
to the right side and the way back to the starting point. Then, while rotating 180
degrees, to many visual artifacts were detected and the samples drifted away.

5 Conclusions

In this paper, we used the Monte-Carlo approach for vision-based localization of
a soccer robot on the RoboCup soccer field. Unlike many previous applications,
the robot could not use distance sensors like laser scanners or sonars. Also, special
camera setups were not available. Instead, the onboard camera was used for local-
ization purposes in addition to object recognition tasks. As a consequence, sensor
input to update the robot’s belief about its position was low-dimensional and
sporadic. Nevertheless, the experimental evaluation demonstrated that Monte
Carlo localization works well even under these restrictive conditions.

We could also show that even with a small number of detected features lead-
ing to sporadic observation updates, the localization results are usable. However,
by increasing the number of visual features the accuracy enhances dramatically.

The lifting of the presented approach from the RoboCup environment to
an office delivery robot seems promising. However, in this area it is still more
important to combine different kinds of feature in order to yield a robust system
behavior.
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Abstract. The paper reports about a performance comparison within
a joint project of computer vision, and sport and exercise sciences. The
project is directed on the understanding of human motion based on shape
features and kinetic studies. Three shape recovery techniques, a tradi-
tional technique as used in sport and exercise sciences (manual measure-
ment based on an elliptical zone assumption) and two computer vision
techniques (based on a small number of occluding contours, and a new
combination of photometric stereo and shape from boundaries), are com-
pared using a mannequin as test object. The computer vision techniques
have been designed to go towards dynamic shape recovery (humans in
motion). The paper reports about these three techniques and their mea-
surement accuracies.

1 Introduction

In sport science, biomedical engineering or ergonomics, accurate measurements
of segmental anthropometry are often required for the estimation of resultant
moments and forces acting on body segments. As it is not possible to directly
measure the forces and moments acting on the human body, it is necessary to
calculate them from measures of the external forces, the kinematic characteris-
tics of the segment (linear and angular position, velocity and acceleration) and
estimates of the segment’s inertial parameters (center of mass location, segment
length and segment moment of inertia).

We specify features of interest [11]. We assume an XYZ-cartesian world coor-
dinate system with the Z-axis being the axis of gravitation, i.e. the weight acts
in Z-direction. Consider a human body segment s and its local xyz-coordinate
system with its origin at the center of mass of s, and with the z-axis aligned
with the main (”long”) axis of the segment. We assume and use uniform density
estimates for human body segments [2,3]. The forces acting on the center of mass
are in world coordinates

Fj1,s + Fj2,s + (0, 0, ws) = ms · as ,

where j1, j2 are the joints of the given segment s (note: there is only one joint
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Fig. 1. Left: forces acting on a cross section of a thigh. Right: general scheme of
the segment

for some segments), Fj,s = (FX , FY , FZ) are the forces acting on the segment s
at joint j, ms is the mass of the segment s, and as = (aX , aY , aZ) are the
accelerations of the segmental center of mass, all expressed with respect to the 3D
world coordinate system. Figure 1 shows the forces acting on a two-dimensional
cross section of the thigh, with j1 = knee, j2 = hip.

Kinematic studies require estimates of the center of mass (which requires
shape data), of accelerations as (which requires video sequence analysis) and
of ms, i.e. of the volume of s using uniform segmental density estimates for
deriving ms. The location of the center of mass (in 2D specified by a value of r,
see Fig. 1) is estimated based on shape analysis results in general, and an often
used simplification is to assume that it is on the line of slope θ from joint to
joint. The motion of the segment is assumed to be in the YZ-plane.

Furthermore, the moment of force in X-direction acting on the center of mass
is [12]

Mj1,X +Mj2,X + q · sinθ · Fj1,Y − q · cosθ · Fj1,Z − r · sinθ · Fj2,Y

+r · cosθ · Fj2,Z = Ix · αx ,

where q = l − r, Mj = (Mj,X ,Mj,Y ,Mj,Z) are the moments of force acting at
joint j (we are not using Mj,Y ,Mj,Z), Ix, Iy , Iz are the values in the segmental
moment of inertia tensor (Iy, Iz are not of interest), and αs = (αx, αy, αz) is
the angular acceleration of the segment. The base length of the segment is given
by the distance l between both joints, and r represents the distance from the
center of mass to one of these joints, θ is the angle made by the line connecting
the joints, and the horizontal axis. Kinematic studies require estimates of the
segmental moment of inertia Ix and of the segmental angular acceleration αx.

Accurate estimations of the listed parameters are essential to accurate calcu-
lations of forces and moments of forces. In this paper we only discuss estimates
of the static parameters (center of mass, of the volume, and of the moments



A Comparison of Feature Measurements 45

of inertia). The dynamic parameters (acceleration, angular acceleration) will
be discussed in another publication. Traditional techniques for estimating these
static parameters as used in sport and exercise sciences include proportional
estimates from cadaver measures, regression equations, mathematical modelling
and scanning/imaging (MRI) techniques.

We also make use of a standard simplification of the model assuming that
segments are only considered in a 2D YZ-coordinate system as shown in Fig. 1,
and moments of force are considered with respect to rotation about the x-axis
only.

Automatic computer-vision based whole body reconstruction systems that
are currently available include a whole body color 3D scanner WB4, developed by
Cyberware [4], a phase based body measurement system, developed by TC2 [13],
and a PC cluster system, under development at Kyoto university [14].

Cyberware’s system uses structured lighting with four scanning instruments
mounted on two vertical towers. The scanning instruments start scanning from
the person’s head and continue down to capture the shape and color of the hu-
man body. Recently such a scan requires about 17 seconds. The system is priced
at US$410,000 each, excluding the graphical workstations required to run the
system. TC2’s system uses a phase based approach to recover surface informa-
tion. Six stationary sensors capture different light patterns that are projected
onto the body. Recently a scan requires 8 seconds and the system is priced at
US$100,000. The cited PC cluster system uses the shape from contours approach
for shape reconstruction and is intended to achieve the reconstruction of a hu-
man body in real time. The cluster system includes 9 cameras and 10 PCs with
dual Pentium-III 600 MHz CPUs and 256MB memories, connected by a high
speed network.

The paper is structured as follows. Section 2 describes two methods for mea-
suring the static parameters. Section 3 compares the results obtained by both
methods.

2 Methods

For our performance test we choose the elliptical zone method [7] which is still
in use for manual shape recovery, shape from contours (with a limitation to just
a small number of contours, say 9), and a new computer-vision based method
which combines photometric stereo based 2.5D shape data and an even smaller
number of captured contours (say 3 or 4) to recover a full 3D shape. The moti-
vation is that these methods allow dynamic 3D shape estimation due to possible
frequencies. However, we have to answer the question up to what accuracy. We
compare these techniques with the traditional elliptical zones method. True vol-
ume data may be obtained by water displacement measurement. A mannequin
is used as a test object which is positioned on a turntable for both computer
vision approaches (allowing that only one camera has to be used).
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2.1 Elliptical Zones

The elliptical zone technique [7] is a traditional technique in sport and exercise
sciences. It considers each segment to be composed of a sequence of right elliptical
cylinders e that follow the shape fluctuations of the segment. High resolution
digital images from the front and side of a body are taken. For the segment
under consideration assume that the side view corresponds to a projection into
the YZ-plane.

An interactive program allows to divide a segment s into elliptical cylinders e.
The two axes of such an elliptical cylinder, xe, ye, are measured in x- and y-
direction of the segment, and the height he (which is typically about 2 cm)
in z-direction. The volume of an elliptical cylinder e is estimated by

ve = π · xe · ye · he ,

and the volume of a segment is simply the sum of the volumes of all of its
elliptical cylinders. The mass me of this elliptical cylinder is its volume times its
density (which is assumed to be uniform).

The center of mass of a segment s with n elliptical cylinders is estimated as
follows: we assume that all centers of mass of all the elliptical cylinders are on
the z-axis of the segment. The 50%-percentile specifies the center of mass of the
segment, calculated by adding me-values along the segment’s z-axis using the
value l.

The moments of inertia of the base b (i.e. that’s a planar region in 3D space)
of such an elliptical cylinder e about its centroidal axes are denoted by Ix,b, Iy,b,
Iz,b, and they are estimated by

Ix,b =
π

4
· xe · y3

e , Iy,b =
π

4
· x3

e · ye , and Iz,b = Ix,b + Iy,b .

The moments of inertia of the 3D cylinder e about its centroidal axes are

Ix,e = Ix,b · ρe · he , Iy,e = Iy,b · ρe · he , and Iz,e = Iz,b · ρe · he ,

where ρe is the cylinder’s (uniform) density. For the entire segment, the moments
of inertia about its centroidal axes are defined with respect to its local xyz-
coordinate system, and they are found by applying the parallel axes theorem
and summing for e = 1, ..., n:

Ix,s =
n∑

e=1

(Ix,e +me · d2
e) ,

where de is the distance between the center of mass (centroid) of the eth elliptical
cylinder and the segmental centroid. Due to our assumption that the cylinder
centroids are located on the z-axis it follows that the summed cylinder centroid
inertia tensor is on the principal segmental axes.
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2.2 Shape from Photometric Stereo and Contours

Shape from contours is a method that obtains a 3D model from the occlud-
ing contours of an object [10]. The shape from contours approach is a robust
method that gives reliable 3D shape estimation. Nevertheless, due to the nature
of the approach, surface cavities that are obstructed from the viewing direc-
tions by other regions on the surface are unable to be recovered, and normally
many contours (say 80 ... 150) are used to complete a 3D shape scan. We will
limit our approach to a small number of contours (viewing directions). We use
Tsai’s calibration method [15,16] for obtaining intrinsic and extrinsic camera
parameters.

Furthermore we use a new combination of photometric stereo and shape
from contours. The photometric stereo approach for surface recovery calculates
local surface orientations according to surface irradiance values [6,8,17]. Local
surface orientations are globally integrated to recover the surface depth values.
The photometric stereo approach allows to recover 2.5D surfaces in real-time.
However, the recovered surface depth values are relatively scaled.

Three light sources successively illuminate the object from directions s1, s2

and s3, and images Ei1, Ei2 and Ei3 are respectively acquired, where i is the
index of current position. After three images have been acquired, the turntable
is rotated by φ degrees to rotate the object into the next viewing direction, with
the index of i + 1. The process of image acquisition is repeated for all of the
required viewing directions, typically 3 or 4 only. Photometric stereo method
is used to recover 2.5D surfaces from the three input images in any viewing
direction.

Each layer e in the 3D image data has a height of 1 pixel, which is typically
about 2.5 mm on the surface of the mannequin in our set-up. In any layer, all
contours from all viewing directions define a convex polygon, as shown by the
light gray region in Fig. 2(a). The surface pixels recovered by photometric stereo
for the eth layer are fitted into the polygon according to the assumption that all
surface pixels must lie within the polygon defined by the contours. The center
of mass of the polygon is calculated and each viewing direction is specified as
a vector starting from the center of mass. A surface pixel obtained at viewing
direction i is accepted if it lies within φ/2 from either side of the viewing direc-
tion. Figure 2(b) shows the accepted surface pixels in black. The rejected pixels,
which lie outside of the φ/2 threshold, are shown in gray. The accepted surface
pixels form a 3D model of the object, as shown by Fig. 2(c).

A region Re is defined by the accepted surface pixels in one layer as indicated
by the dark gray region in Fig. 2(a). The number of pixels that lie within Re

specifies the area of the region, ae.
The volume of the object at the eth cross section ve, is estimated by counting

the number of pixels that belongs to ae and multiplied by the pixel to metric
ratio k (approximately 2.5 mm in our set-up)

ve = k3 · ae .
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(a) (b) (c)

Fig. 2. (a), (b) A layer of the recovered mannequin torso and (c) reconstructed
2.5D surfaces of mannequin torso

The mass of the cross section is its volume multiplied by its density ρe, as for
the elliptical zones approach. The center of mass (cx, cy) for the eth layer is

cx =
1
ae

∑

(x,y)∈Re

x , cy =
1
ae

∑

(x,y)∈Re

y .

The segment’s center of mass along its z-axis is specified as the 50%-percentile
of the cumulative sum of the cross section masses.

The moment of inertia for the base of a cross section about its center of mass
is

Ix,b = k2·ae·
∑

(x,y)∈Re

(x−cx)2, Iy,b = k2·ae·
∑

(x,y)∈Re

(y−cy)2, and Iz,b = Ix,b+Iy,b .

The moment of inertia for the entire segment about its centroidal axes are as
given for the elliptical zones approach.

3 Results

In the situation where mass cannot be measured directly, accurate volume mea-
surement is crucial to the estimation of mass, since mass is obtained by multi-
plying volume by density. The center of mass and moment of inertia can then
be calculated once the mass for any layer of the segment can be estimated.

In this section, the segmental features calculated from different shape recov-
ery techniques are compared with measurements that are obtained by physically
measuring the object. Different approaches are discussed with respect to the
applicability, performance and possible improvement.

3.1 Comparisons

The measurements are compared with measurements obtained by water dis-
placement, balancing, and pendulum approaches. It is assumed that the density



A Comparison of Feature Measurements 49

is uniform over the entire object. The values for center of mass are given as
distances from the apex of the head. The values of the moment of inertia are
calculated with respect to a horizontal axis that passes through the center of
mass.

Table 1. Resultant volume measurements and relative percentage error, where
the volume obtained by water displacement is 32.82 L

Method Result (L) Error (%)

Elliptical zone 30.01 8.56%
Shape from contours (9 views) 32.90 0.24%

Shape from PS and contours (3 view) 27.30 16.82%

Table 2. Resultant center of mass measurements and relative percentage error,
where the center of mass obtained by balance is 0.42 m from the apex

Method Result (m) Error (%)

Elliptical zone 0.35 16.67%
Shape from contours (9 views) 0.45 7.14%

Shape from PS and contours (3 views) 0.45 7.14%

Table 3. Calculated moment of inertia, where the moment of inertia obtained
by pendulum is 0.49 kgm2. This points out that the density of the mannequin
is actually not uniform, which leads to calculated results that do not correspond
well with the measurement

Method Result (kgm2)

Elliptical zone 1.33
Shape from contours (9 views) 1.31

Shape from PS and contours (3 views) 0.87

3.2 Discussion

From the results it can be seen that shape from contours with 9 viewing directions
has provided the closest estimated values to the reference volume, as well as for
the reference center of mass. The reason is that shape from contours is robust
and reliable for obtaining the 3D shape of the object. Nevertheless, the accuracy
of this method is limited, since some cavity regions are irrecoverable from shape
from contours alone.

The shape from photometric stereo and contours method has obtained an
estimated value for the center of mass that is closest to the reference value.
A cause of error in the experiment may be that the depth values obtained by
photometric stereo have been incorrectly scaled, leading to larger cavities in the
recovered 3D model and thus reducing the total volume of the object.
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The traditional elliptical zones model approach has not obtained values that
are closest to the reference values in any of the feature measurements. One
possible factor which limits the accuracy obtained by the elliptical zones model
approach is the assumption that segment cross-sections are ellipsoidal.

Overall, the accuracy of the shape from photometric stereo and contours
method is not limited by cavities on the the segments, nor assumptions of the
segment shapes. The accuracy is dependent on the reflectance properties of the
surface, the number of viewing directions and the resolution of the cameras. The
3D data can further be refined with control points to improve the accuracy of
the proposed method.

In the experiment, the density is assumed to be uniform over the entire
object for simplicity. In reality, the density is not uniform, and the assumption
influences the accuracy for the calculated center of mass, which in turn, effects
the calculated moment of inertia. Particularly in the mannequin, where the head
is much denser than the torso. Thus the value obtained by physically measuring
the moment of inertia does not correspond well to the calculated results under
the uniform density assumption.

The ratio for converting from pixel to metric is assumed to be constant
throughout the image data and in all x, y and z directions. Nevertheless, due to
distortions in image acquisition, the ratio may be varied in different directions.

Water displacement, balancing and pendulum methods have been used to
generate the ground truth for volume, center of mass and the moment of inertia.
However, in practice, it is not feasible to immerse a person (or part of) in water
to obtain the volume of body parts. It is also not possible to locate the center of
mass by balancing the object, or obtain the moment of inertia by swinging the
object. Furthermore, neither of the physical approaches, nor the elliptical zones
method, is applicable for dynamic shape recovery. The shape from photometric
stereo and contours method has very low time requirement for image acquisition
and shape recovery. It is possible to achieve surface recovery with photometric
stereo in real time. The reduction in time requirement reduces errors caused by
the object’s movement.

4 Conclusion

A new computer vision method for fast 3D shape recovery is proposed and com-
pared with the traditional elliptical zones method in this work. The proposed
method combines photometric stereo and shape from contours for 3D shape
recovery, and is aimed at recovering the static parameters of body segments.
Descriptions are given for calculating body segment parameters, such as mass,
center of mass, and moment of inertia, using either method. A full-sized man-
nequin is used to provide consistent measurements throughout the experiment.
The elliptical zones method, shape from contours method, as well as the pro-
posed shape from photometric stereo and contours method are compared with
respect to the accuracy in estimating static segmental parameters. From pre-
liminary results it has been seen that the proposed method with only 3 viewing
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directions has provided results that are comparable with the traditional ellipti-
cal zones approach. Possible approaches for improving the accuracy of the shape
from photometric stereo and contours method are proposed.
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Abstract. In this paper we present a framework to recognize objects
and to determine their pose from a set of objects in a scene for automatic
manipulation (bin picking) using pixel-synchronous range and intensity
images. The approach uses three-dimensional object models. The object
identification and pose estimation process is structured into three stages.
The first stage is the feature collection stage, where the feature detection
is performed in an area of interest followed by the hypothesis generation,
which tries to form hypotheses from consistent features. The last stage,
the hypothesis verification, tries to evaluate the hypotheses by comparing
the measured range data to the predicted range data from hypothesis and
the model.

1 Introduction

In many industrial assembly applications (i.e. in the automotive industry) the
parts are palletized and no recognition is needed. If the parts are delivered in an
unsorted way, which is mostly less expensive than the palletizing, a recognition
and/or object identification stage must be inserted into the assembly process.
Vision based object identification and pose1 estimation is increasingly more dif-
ficult as the complexity of the target object or the complexity of the scene
increases. Depending on the object type different features (3D) could be more
or less suitable for the identification and determination of its pose. I.e. an arc
provides more information about the type and pose of an object than a line and
a line more than just a point. Therefore arcs or two adjacent edges with a certain
angle are more distinctive features than a single line (or a single edge), because
it provides more spatial information and decreases the degrees of freedom.

On the other hand a single arc of a certain radius and a certain length or
adjacent edges with a certain angle can provide a very strong hypothesis for
the object type and its pose. The more distinctive a feature is the faster the
recognition process will lead to a result.

In our application a special sensor system is used (laser-range-camera [11]
by ASTRIUM - European Space Systems Company) which provides pixel-syn-
chronous dense range images and intensity images as well (see Figs. 3 and 4).
1 Pose is the object’s position and orientation
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The great advantage is that the feature extraction process can be performed
as well in the range image as in the intensity image and get then the range
information for each pixel of each extracted feature later from the range image.
Hence it is possible to collect more distinctive features with spatial information
in the scene than just from the range image.

1.1 Related Work

Bolles and Horaud [1] developed an object identification and pose estimation
system (3DPO) for industrial parts with smooth/simple surfaces using the 3D
range finder. The hypothesis generation and verification is similar to the one that
was used in this approach. Grimson [3] employs 2-D local features to recognize
and localize cluttered objects in a scene. His methods are limited to the case
where the objects are located on a flat worktable and therefore the appearance
distortion from 3-D rotations is not admissible. Rahardja and Kosaka [10] are
using stereo vision as sensor system, but they are also modelling complex in-
dustrial parts (i.e. alternator covers) with simple features/cues. All indexing or
hashing strategies like the MULTI-HASH system by Kak and Edwards [6] or the
Geometric Hashing by Lamdan and Wolfson [8] or even the Structural Indexing
can not be used in our case, because the memory requirements for a set of differ-
ent complex objects are extremely high. Faugeras and Hebert [2] describe shape
surfaces by curves and patches, which are represented by linear primitives, such
as points, lines and planes, but deal only with single objects. Another approach
was presented by Zha et al. [13] [4] which uses triangular meshes. The problem
again is, that it can be only used for single objects. The TRIPOD OPERATORS
by Pipitone [9] or the spin images by Johnson [5] are not promising applicable
for cluttered scenes with many similar and overlapping objects. Very promising
approaches to 3D object recognition are presented by T. Stahs in [12], who in-
vented an new framework for the recognition and pose estimation for industrial
parts, and by B. Krebs in [7], who analyzed the statistical behavior of features
and objects using Bayesian networks.

2 Approach

The object identification and pose estimation process is divided into three stages.
After the data acquisition (range and intensity image) is performed in the first
stage the ”highest point” in the scene (the uppermost point of the most upper
object) is determined from the range data. This point defines the center of an
area of interest in which the feature detection is performed. The types of objects
expected in the scene define the kind of features which are searched for, i.e. arcs
will be searched if there are cylindric objects expected to be found. If there is no
information about the scene and its content available, all supported features will
be extracted. The whole feature extraction process is performed on the range-
image as well as on the intensity-image. After a sufficient number of features has
been collected the hypothesis generation stage starts to form hypotheses from
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consistent features. Each hypothesis starts with one feature. This feature is used
to predict some possible compatible feature. If a second feature is found the two
features are used to predict a third one and so on.

In the last stage, the hypothesis verification, all hypotheses which are ”strong
enough” are validated. In the evaluation process the measured range data are
compared to the predicted range data from hypothesis and the model.

If a hypothesis is verified the object type and its pose is ascertained. In a
post recognition stage a trajectory for the manipulation can be calculated or an
approach-vector for grasping the object can be provided.

Two main ideas were followed. The first is to model complex objects by
simple features, thus invariance to the object complexity is established. The
second idea is to use features from the range image as well as from the intensity
image. This benefit is provided by the pixel-synchronous range and intensity
images. I.e. if there is an arc in the scene it will be rather difficult to find the
edge of this arc, which is a roof edge (see Fig. 2) in a noisy range image and
to determine its position precisely. On the other hand it will be much easier to
find the corresponding jump edge (see Fig. 1 in the intensity image, supposed
the illumination is not too unfavorable.

z

x
Fig. 1. A jump edge

z

x
Fig. 2. A roof edge

3 Object Modelling

It is assumed that all objects O in the scene are members of the set of possible
objects O known a priori. All objects in the scene which are not members of the
set of possible objects O are rejected. For each known object Oi a model Mi is
provided, which contains all distinctive features fmodel and their spatial relation.
Each distinctive feature fmodel,j is of certain type t with its specific parameters p
(i.e. radius of an arc). For each model feature fmodel,k it is also denoted whether
it is intended to be found in the intensity or in the range image or in even both.
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So each feature fmodel is represented by the four-tuple consisting of its type t
and its parameters p, a homogenous 4 × 4 coordinate transformation matrix
T which represents position and orientation regarding to the object coordinate
system2 as well as a description of its occurrence in both images o.

fmodel = (t,p,T, o)

Each model also provides some surface information as supporting features
smodel for the verification of a hypothesis. Supporting features are small, round
surface patches with a diameter of approximately five millimeters. These sup-
porting features are used to predict expected range measurements, thus each
model is represented by a two-tuple consisting of its distinctive features fmodel

and its supporting features smodel.

M = (fmodel, smodel)

Fig. 3. Range image of a scene with
five simple objects

Fig. 4. Intensity image of the same
scene

4 Feature Extraction

Regarding the rather noisy range images (see Fig. 3) that the laser-range-camera
[11] by ASTRIUM provides, some image rectification steps must be performed
before the real work can be done. The feature detection starts determining the
center of an area of interest, as described above. This area is a hemisphere in
the range data and a circle in the intensity image. The radius in both cases is
defined by the greatest elongation of all expected objects O. It can be calculated
using the Cartesian coordinates of the ”highest point” in the range image and
the parameters of the camera.
2 The spatial relation of distinctive features among each other can be calculated by
multiplying and inverting the matrices.
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Depending on the expected objects all legitimately possible features fscene in
the area of interest are extracted. All features fscene are represented by a four-
tuple, like the model features, which consists of its type t and its parameters
p, a transformation T which represents position and orientation regarding to
the sensor coordinate system as well as a description of its occurrence in both
images o.

fscene = (t,p,T, o)

The feature extraction process is performed in the range image as well as in
the intensity image (see Figs. 5 and 6).

Fig. 5. Range image of the scene
with detected lines and arcs

Fig. 6. Intensity image of the scene
with detected lines and arcs

5 Hypothesis Generation and Feature Prediction

If either a sufficient number of features in the area of interest is detected,
i.e. about 20 features in a tidy or about a 100 in a cluttered scene, or even
all features are extracted, the hypothesis generation starts. A hypothesis H con-
sists of a three-tuple which is composed of a model Mi, a transformation T that
determines the position and orientation of the objects regarding to a world co-
ordinate system and a set of consistent features fscene belonging to the object
respectively to its model Mi.

H = (Mi,T, fscene)

First every hypothesis Hi consists only of one distinctive feature fscene,i. No
model and no transformation is assigned. In the next step for each model Mj

including features from the same type t with the same parameters as fscene,i,
a new set of hypotheses is generated consisting of one feature, the model Mj

and the transformation T, that determines the position and orientation of the
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object regarding to the world coordinate system.One hypothesis is generated for
each matching feature of the model. Now for all hypotheses a prediction of other
features is possible, since the spatial relation of all model features regarding
to the model coordinate system is known. If one of the predicted features is
found in the scene the hypothesis grows. If the pose, defined by the two features,
is non-ambiguous the hypothesis can enter the verification stage. In case the
hypothesis provides an ambiguous interpretation of the pose a third feature
must be predicted and found. Then it must be tested again if the pose, defined
by the three features, is non-ambiguous and so on. If no more consistent features
for an ambiguous hypothesis can be found the hypothesis is rejected.

6 Hypothesis Verification

If a hypothesis Hi contains a sufficient number of consistent distinctive fea-
tures fscene,j (typically three to six, depending on the type of object and the
type of features), the hypothesis verification starts. For the evaluation of a hy-
pothesis Hi the supporting features (surface patches) are used. The hypothesis
verification works as follows. Since the hypothesis provides the pose of the object
it can be determined which parts of the surface are potentially ”visible” for the
sensor and which are not. Occlusion of other objects is so far not taken into
account. All surface patches, that are visible and whose normal vector points
approximately into the direction of the sensor are selected. Any of these can be
used to predict a range measurement.

A hypothesis is verified if no measured value is bigger than the predicted
one (the object is farther away than assumed) and at least a certain number
of predictions are correct. If the measured value is smaller than the predicted
measurement, it is an indicator for occlusion.

7 Experimental Results

The experimental results show that combining features of the gray image and the
intensity image leads to a benefit in accuracy of position and orientation. The
knowledge of exact position of the features in intensity image empowers the sys-
tem to find the corresponding range information by using the pixel-synchronism
of the range and intensity images. An improvement of the recognition time of
simple objects (barbells) could not be observed. The reason for this is, that there
are not significantly different or more features in the intensity image than in the
range image.

In the case of occlusion between several object a decrease of the accuracy of
the estimated pose could be observed for the occluded objects. Occluded objects
can not be identified and their pose can not be estimated if the number of visible
and extracted distinctive feature of this object is too small, i.e. less than the
above mentioned number of features that are necessary for a hypothesis to enter
the verification stage. In this context the problem of self-occlusion is treated as
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the occlusion by other objects. The experiments were done with simple, single-
colored objects (barbells) in tidy scenes like shown in Fig. 4 and showed, that
the accuracy of the pose estimation process can be increased between 12% and
15% for the translatorial deviation depending on the object type, using range
information as well as intensity information. An increase of the angular precision
could not be observed. The overall accuracy is between 6 millimeters and 9
millimeters and the angular precision is about 5 degrees.

8 Summary and Conclusions

As the experimental results are showing the accuracy of the recognition using
range information as well as the intensity image increases. The approach to col-
lect object features in the intensity image and then get the range information
form the pixel-synchronous range image is suitable to increase the recognition
accuracy of the position and orientation for objects in noisy range images. A fur-
ther increase of the recognition accuracy and a decrease of recognition time can
be expected if objects with a special texture or artificial markers are used. The
obtained accuracy is sufficient for bin picking operations for industrial assembly.
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Abstract. This paper deals with the analysis of uncertainty of epipole
localizations in case of noisy stereo images. Initial uncertainty in point
locations can be propagated through to an uncertainty in epipole local-
ization, resulting in a region in the image called epipolar zone.

1 Introduction

Epipole computation is a step of major importance in self-calibration of stereo-
scopic systems. The procedure for estimating the epipolar geometry without
previous camera calibration is actually well known [3,7,9,12]. It depends upon
estimations of some image point correspondences (typically using correlation
methods) to apply a fundamental matrix calculation algorithm. The results ob-
tained show that image noise influences the uncertainty in the epipole localiza-
tion, and more matches need to be available to improve the precision in this
computation.

Statistical and analytical methods have been presented [2] to analyze the
uncertainty of fundamental matrices. The results obtained show that the esti-
mation of the epipoles is good enough even when the noise reaches 3 pixels with
the analytical method. In case of the statistical method, a good estimation for
the epipoles is obtained only if the noise’s standard deviation satisfies δ ≤ 2.

In the case where the images are very noisy (noise greater than 3 pixels),
we can not apply this approach. We show in this paper that it is possible to
analyze the uncertainty in the epipole localization for any noise affecting the
2D primitives. From a set of 2D line segments that have been matched on a
pair of images using a stereoscopic algorithm, we propose a geometric analysis
of the uncertainty measure that assumes noisy 2D edge points and propagates
the effect of this edge detection noise to various stages of the epipole localization
method of Mohr and Arbogast [11]. This allows to locate a zone containing the
theoretical epipole that will be denoted as epipolar zone.

2 Hypothesis

The stereoscopic vision system used is modeled on two image planes P1 and P2 ,
on which scenes are projected through two centers L1 and L2, see Fig. 1. We as-
sume that the stereoscopic images are segmented and line segments approximate
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Fig. 1. Epipole localization process

their contour points. We assume also that the observed scene contains at least
one planar surface with four or more vertices located in each image plane as a
chain of closed 2D line segments [5]. We assume that P1, P2 are matched without
calibration using correlation-based algorithms [13]. Our aim is to calculate the
epipole position using only the relative disposition of different features in the
two image planes.

3 Epipole Localization from Correspondences

Using projective geometry [1,10] Mohr and Arbogast in [11] proposed a method
for epipole localization. We briefly cite its basic principles as follows:

We denote S1
i (resp. S2

j ) as the ith (resp. jth) 2D surface region in P1

(resp. P2). Let (S1
i1

, S2
i2

), (S1
j1

, S2
j2

) be the images on P1, P2 of two 3D surfaces
patches Si, Sj belonging to different planes Πi and Πj (see Fig. 1). Let S2

p be
the 2D surface homologous to S1

j1
so that its preimage in the three-dimensional

space belongs to the plane containing Si.
We can deduce from this construction (see Fig. 1) that the lines Mjk

Mpk

(k = 1, ..., nv, where nv is the number of vertices of Sj) pass through L1 and
their images on P2 converge toward the same point E2

p : the image of L1 on P2

is called the epipole.
To calculate the vertices of the hypothetical surface S2

p knowing the corre-
spondence between S1

i1 , S
1
j1 and S2

i2 , S
2
j2 , we use the cross-ratio invariance by

Fig. 2. Localization of S2
p
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projection [1,10]. We assume that (see Fig. 2) M1
i1,k, k = 1, ..., 4, and M2

i2,k, k =
1, ..., 4, are some vertices of S1

i1
and S2

i2
, respectively, S1

j1
and S2

j2
are defined

by nv vertices M1
j1,k and M2

j2,k, k = 1, ..., nv, respectively, and for each ver-
tex M1

j1,k of S1
j1 we calculate its projective coordinates r1k, r2k relatively to the

projective basis (M1
i1,1, M

1
i1,2, M

1
i1,3, M

1
i1,4).

The localization on P2 of the corresponding vertex M2
pk

so that its projec-
tive coordinates relatively to the projective basis (M2

i2,1, M
2
i2,2, M

2
i2,3, M

2
i2,4) are

equal to r1k, r2k allows to assert that the preimage of (M1
j1,k, M2

pk
) belongs to

the plane containing the preimage of (S1
i1

, S2
i2

). According to this result, the
procedure operating over (S1

i1 , S
2
i2 , S

1
j1 , S

2
j2) starts to calculate for each M1

j1,k

of S1
j1

its projective coordinates (r1k, r2k) relatively to the projective basis
(M1

i1,1, M
1
i1,2, M

1
i1,3, M

1
i1,4). It computes after the position of M2

pk
on P2 which

has the same projective coordinates (r1k, r2k) relatively to the projective basis
(M2

i2,1, M
2
i2,2, M

2
i2,3, M

2
i2,4). Once the S2

p vertices are calculated, the E2
p point is

located as the intersection of the nv lines M2
j2,kM2

pk
, see Fig. 1.

So, as the E2
p position is unique for each stereoscopic system, the repetition of

this procedure with all 2D surfaces (S1
i1 , S

2
i2) and (S1

j1 , S
2
j2) for each (i1, i2) and

(j1, j2) produces a group of bundles of lines passing through the same epipolar
point E2

p .
We note that if Si and Sj are in the same plane, the S2

p located coincides
with S2

j2
and therefore E2

p can not be calculated.
With the following algorithm, the epipolar point is calculated NbS · (NbS −1)

times where NbS is the number of 2D surfaces in correspondence:

1 : Begin
2 : for each (S1

i1
, S2

i2
) of (P1 × P2)

3 : do for each (S1
j1

, S2
j2

) of (P1 − {S1
i1
} × P2 − {S2

i2
})

4 : do for each M1
j1,k of S1

j1 (k = 1, ..., nv)
5 : do
6 : Calculation of (r1

k, r2
k): projective coordinates of M1

j1,k

7 : relatively to Si1
1.

8 : Location on P2 of M2
pk

having (r1
k, r2

k) as projective
9 : coordinates relatively to S2

i2
.

10 : enddo
11 : Calculation of Set : the intersection of nv lines joining
12 : M2

pk
and S2

j2
vertices

13 : if Card(Set)=1 then
14 : Set={E2

p}
15 : else
16 : Set={E2

1 , E2
2 , . . . , E2

ne
}, ne ≤ 6

17 : endif
18 : enddo
19 : enddo
20 : End
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Fig. 3. Noise Modeling

4 Adaptation of the Algorithm to Noise

It is well known that it is necessary to adapt each method based on exact data
to real data where there is positional uncertainty. Concerning the previous algo-
rithm, its sensitivity to noise appears at the level of:

– Calculation of r1
k, r2

k cross-ratios for each image point M1
j1,k of S1

j1
relatively

to the projective basis S1
i1

. Each value r1
k and r2

k is obtained from four noisy
points and the calculated points I1, J1

k , K1
k , see Fig. 2.

– Localization of the image point Mpk
2 that corresponds to M1

j1,k(S2
p vertex)

using r1
k, r2

k and S2
i2 . As r1

k, r2
k are calculated with uncertainty, and the S2

i2
vertices are noisy, the estimated image point vertex of S2

p is also noisy.
– Calculation of the intersection of lines joining S2

p and S2
j2

vertices. As the
vertices of the calculated surface S2

p and S2
j2

are noisy, so are the lines joining
them. The intersection point of two lines altered by a slight noise could be
very far away from the theoretical intersection point.

Based on a Gaussian model of the noise, Deriche et al. show in [4] that each
extremity of a line segment, which fits a set of noisy edge points, appertains to
an ellipse with a probability following a χ2 distribution.

Fig. 4. Calculation of the theoretical cross-ratios
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Fig. 5. Localization of the theoretical point M2t
pk

If we consider two connected line segments, a theoretical vertex belongs with a
certain probability to the intersection of two ellipses as shown in Fig. 3. The form
of its intersection zone can be assimilated to a disc. This hypothesis corresponds
to the model of noise used by Grimson et al. in [8], where each theoretical image
point M1t

i (or M2t
i ) is supposed to belong to the δ -disc denoted by D(M1

i , δ)
(or D(M2

i , δ)) with a center located at image point M1
i (or M2

i ), see Fig. 3.
To ensure that the previous algorithm functions correctly in spite of noise

affecting the vertices, it is necessary to include all of the theoretical image points
in the different calculations. Thus the adaptation strategy consists to apply each
stage of the algorithm with the disc that encompasses the noisy image in such a
way that the obtained result is valid for the theoretical image points. The steps
of the algorithm require modifications that must be carried out:
Calculation of theoretical cross-ratios r1

k and r2
k: Theoretical cross-ratios

r1t
k , r2t

k will be calculated using theoretical image points, see Fig. 4.

– Firstly it is necessary to locate the zone containing the theoretical line join-
ing two theoretical vertices: it is the bundle of lines joining the two discs

Fig. 6. The intersection of theoretical lines
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Fig. 7. Intersection of set of convergence zones

encompassing the two noisy vertices and defined from the parallel pair of
tangent to the two discs.

– The next step is the localization of the zone containing both theoretical
points I1t, J1t

k and K1t
k obtained as intersection of corresponding bundles.

The geometric shape of the three zones is a parallelogram.

The cross-ratios r1t
k and r2t

k can be limited between the maximum and minimum
values of r1

k and r2
k calculated using intersection points between the different

bundles: r1
kmin ≤ r1t

k ≤ r1
kmax and r2

kmin ≤ r2t
k ≤ r2

kmax

Localization of the theoretical point M2t
pk

: The theoretical point M2t
pk

will
be located on the image plane P2 from its projective coordinates r1t

k and r2t
k

relatively to the basis projective (M2t
i2,1, M

2t
i2,2, M

2t
i2,3, M

2t
i2,4), see Fig. 5.

The first step is the localization of the zones containing both theoretical
image points I2t, J2t

k and K2t
k . Each zone is of quadrilateral form. The next

step is the localization of the zone containing the theoretical line, joining two
noisy points encompassed by a disc and a quadrilateral. It is a bundle of lines
delimited by the two pairs of tangents to the disc and passing through the vertices
of the quadrilateral. Each theoretical image point M2t

pk
is then obtained as the

intersection of the theoretical lines M2t
i2,1J

2t
k and M2t

i2,2K
2t
k , thus it belongs to the

intersection zone of the two bundles of lines B(M2t
i2,1, J

2t
k ) and B(M2t

i2,2, K
2t
k ). Its

form is a quadrilateral.

Table 1. (dx − dy) of each epipolar zone (unity=pixel)

SfNb δn = 0.01 δc = 0.1 δc = 0.5 δc = 1.0 δc = 2.0

2 152.3-3.93 2667-42 11761-414 17700-1644 17932-2997

5 91.5-1.33 957-23 4222-98.6 8921-618.6 5829-430

10 46.6-1.73 178-16 1234-41.13 4348-294.6 1902-55.4

15 3.55-.86 46-4.66 124.5-17.33 538.5-40.73 899-41

20 3.55-0.55 46-4.66 124.5-17.33 538.5-40.73 898-41
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Table 2. (dx − dy) of each epipolar zone (unity=pixel)

δn (pixels) Φ= 30.21◦ Φ = 19.15◦ Φ = 15.37◦ Φ = 10.28◦

0.01 29-4.13 113.5-4.66 129-6.5 137-8

0.1 178-16.6 1122-47 1121-62 1325-48

0.2 538-25.3 1788-73 2045-114 2845-87

0.5 792-116 1865-85 2140-166 3551-267

1.0 974-110 2120-266 2961-220 5079-272

2.0 974-134 2412-522 3234-981 5665-322

Fig. 8. Stereoscopic images of scene 1

Theoretical lines joining the vertices of S2
p and S2

j2
: As each theoretical

image point of S2
p belongs to a zone of a quadrilateral form, and each theoretical

vertex of the surface S2
j2 belongs to a zone of a disc form, each theoretical

line M2t
j2,kM2t

pk
belong to the bundle delimited by the two pairs of tangent to the

disc and passing by the quadrilateral, as is illustrated by the Fig. 6. From this
geometric construction, the theoretical epipole belongs to the zone located as
the intersection of the set of bundles B(M2t

j2,k, M2t
pk

) , k = 1, ..., nv where nv is
the number of S2

j2
vertices.

To improve the precision in the localization of the theoretical epipole, we
must repeat this procedure with all quadruplets (S1

i1
, S2

i2
, S1

j1
, S2

j2
). This allows

to produce a set of convergence zones,where everyone contains the theoretical
epipole. Their intersection contains the theoretical epipole and will be noted
epipolar zone. Its area decreases when the number of 2D surfaces used increases.

5 Experimental Results

We first report on noisy artificial images.
Determination of δc: In practice, the noise δn affecting the 2D surfaces is
unknown, the use of δc noise supposed to affect the image points has an influence
on convergence zone coherence. For this, if δc ≥ δn, the convergence zone contains
the epipolar point as we have shown in the proposed geometric approach. For
all tests done over noisy artificial images the area of epipolar zone obtained with
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Fig. 9. Stereoscopic images of scene 2

(δc ≥ δn) is always greater than the area of epipolar zone obtained with (δc ≤ δn).
The minimal area of epipolar zone is obtained with δc = δn. To determine the
optimal computation noise δc, we begin the calculation with δc = 4 pixels and
we repeat this process decreasing δc until to obtain the minimal area of epipolar
zone.
Influence of noise and surface numbers on epipolar zone area: Table 1
illustrates, using (dx − dy) where dx (resp. dy) is the maximal distance (pixels)
between the x (resp. y) coordinates of all vertices of this zone, the variation
of epipolar zone area in terms of the 3D surfaces number SfNb and the noise
affecting its vertices (we use δc = δn). It is clear that to reduce the epipolar
zone, we must use a maximum of 2D surfaces and the epipolar zone area is
disconcerted to one pixel2 for SfNb = 20 and δc = 0.01 pixels.
Influence of the convergence angle (Φ) on the epipolar zone area: Table
2 illustrates using (dx − dy) the area variation of epipolar zone in terms of
convergence angle Φ for δc = δn and the focal length, distance between the two
cameras are equal to 9mm and 135mm. These results show that the decrease of
convergence angle Φ implies the increase of the epipolar zone area because the
epipolar point is moving away from the image center and the dx of the epipolar
zone becomes larger.

Finally we briefly report on applications using real images, see Figs. 8 and
9. As the algorithm treats the vertices of the 2D surfaces, it is necessary to
recover the vertices as intersection of neighboring lines. Each connected contour
graph is considered as potential correspondent to a flat surface. The number
of 2D surfaces in the left and right images are 42, 37 for scene 1 and 26, 26
for scene 2. Applying this method to the two pairs of stereoscopic images pair
with various dc beginning with δc =1.5 to 0.1 pixels, the area of epipolar zones
located contains the theoretical epipole. The coordinates of the epipolar point
are (x = 8900 pixels, y = 250 pixels). To compute the epipolar zone we have
used different numbers of 2D surfaces.
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Abstract. We present an approach to color segmentation and object lo-
calization for small-embedded systems. The algorithm defines sub-spaces
in the main color space (RGB), each sub-space being a color class. A
look-up table is used to speed up pixel classification in color classes. A
binary image is computed for every color class. After noise reduction, we
obtain a color class pixel list; after each object’s image coordinates are
found and transformed to world-coordinates depending on the camera
position.

1 Introduction

We introduce an algorithm for real-time color segmentation on small-embedded
systems, i.e. an electronic platform (EyeBot MK 3, [1]) based on a Motorola
68332. A normalized RGB space is used, as the conversion from the standard
RGB space is much easier than the conversion into HSI or HSV spaces. The
normalized RGB space is also robust to different lighting conditions for color de-
tection. In order to achieve color segmentation, we divide the main color space
into sub-spaces, each sub-space being a color class. A color class look-up table is
filled to associate every (R,G,B) triplet with a class. Using this table, we obtain
one binary image for each class. We reduce its noise using an “erosion” (mor-
phological image operator) routine and localize object boundaries. Object image
coordinates are then transformed back to world coordinates, which requires a
camera calibration for angle offsets and relative distance. We implemented the
color segmentation algorithm presented here for mobile robot systems using on-
board vision at the “RoboCup 2000” robot soccer competition. Therefore, our
examples are based on distinguishing the three colors used at this competition
(blue and yellow for the goals and orange for the ball). We also present a gen-
eral color class segmentation approach, in order to be able to use the presented
algorithm in any general cases. A similar, but more computation-intense ap-
proach to color segmentation on larger computer systems has been proposed as
“CMVision” [2]

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 69–76, 2001.
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Color C(R, G, B)

Color C(r, g, b)

b>Blue Threshold r> Red Threshold

Blue Class Orange Class Yellow Class

Fig. 1. Color Segmentation Algorithm

2 Color Space and Color Classes

The use of a color space like HSV (Hue, Saturation, Value) would be most
appropriate to solve the task of color segmentation. However, we opted for a
normalized RGB [3] color space instead for efficiency reasons, since the camera
delivers only RGB data and because it is robust to lighting condition changes [4].
The normalized RGB color space (rgb) is defined by equation 1:

r =
R

R+G+B
, g =

G

R+G+B
, b =

B

R +G+B
(1)

Assuming the luminosity L = R + G + B, we now have L′ = r + g + b = 1 for
all (r, g, b). A color C would have different components in the RGB space for
different lighting conditions, where the luminosity is always 1 for the rgb space.
As we want to process as quickly as possible, we need to be able to build a “color-
class” look-up table, i.e. knowing for each (R,G,B) triplet, which color-class it
belongs to [2]. This table will associate a class (i.e. a color) to every (R,G,B)
triplet in the space. If the R, G and B values are coded on 8 bits, then, this
table would be (28)3 = 16Mb, which is too large for our platform. Practically
we use only the five most significant bits, i.e. (25)3 = 32kb, which we have found
to be sufficient by experiment. We give an example on how to differentiate three
colors: blue, orange and yellow. As we do not have much processing power,
we need to use ideas as easy as possible, i.e. the blue class will be for colors
containing mostly blue. Yellow and orange will be for colors having mostly red.
Figure 1 shows the color segmentation algorithm. The orange and yellow classes
need two criteria: red and green (we make the difference between yellow and
orange by the amount of green). This becomes clear by observing a straight line
between red and green on the C.I.E. chromaticity diagram. Threshold denotes
the initially calibrated constant threshold values. We are only comparing the
normalized color component to a certain level to find out if the color belongs
to one class or not. In order to improve the speed of the algorithm we can
use R, G and B values (camera input) in equation 2, i.e. we avoid a complete
image conversion from RGB to rgb space. The relation b > Thresholdblue can be
expressed as B > Thresholdblue · (R + G + B), i.e. B > ThresholdBlueFloat · L,
where L = R+G+B is the luminosity. And finally,
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100 ·B > ThresholdBlueInteger · L First Class Condition, (2)

If the result of this relation is true, then the color C(R,G,B) belongs to the
first color class (blue). By multiplying B by 100, ThresholdBlue is now an integer
between 0 and 100 instead of a floating-point between 0 and 1. Now, this relation
only uses integers with multiplications and additions. Equations 3 and 4 show
the same kind of relation for the second and third colors:

(100 ·R > ThresholdRed · L) AND (100 ·G > ThresholdGreen ·G), (3)

(100 ·R > ThresholdRed · L) AND (100 ·G < ThresholdGreen ·G). (4)

3 Color Calibration

We now have a way to distinguish the three colors we are looking for. For
this method to work, we need to define the thresholds for red, green and blue.
The blue class only needs the ThresholdBlue value, so we put the camera at a
known distance of the blue object, take an image, process it incrementing the
ThresholdBlue value, unless we find a rectangle of the size this object should be
at that distance (dpix). For the ThresholdRed, we can use exactly the same algo-
rithm, i.e. looking at the yellow object while incrementing the threshold value
until we find it; this will give us the red value for both yellow and orange classes.
We need then to find the ThresholdGreen to make the difference between these
two classes. We take an image of the yellow object, applying the red condition
with a decrementing ThresholdGreen as long as we find the object. That way, we
find the lowest ThresholdGreen for the yellow color, i.e. the highest for the orange
color.
Figure 2: dpix = αpix · θreal

αreal
, and finally:

dpix = αpix · arctan(dreal/Dreal)
αreal

. Object Width in Pixels (5)

Index "pix" notes values in image coordinates
Index "real" notes values in world coordinates

d is half the goal width
D is the distance from the camera to the goal

is half the goal view angle
is the camera lens view angle

d

D
α/2

θ

α
θ

Fig. 2. Object Size Determination
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During the calibration the camera is at a known distance (D) from the object
(See Fig. 2). We also know the width, d, of the object. α is known as it depends on
the camera. Then we know the width in pixels dpix (See equation 5) of the object
on the image. Therefore, we know when to stop incrementing or decrementing
the thresholds while calibrating. Once these three levels have been set up, we fill
in the color class look-up table. For each color C(R,G,B) we process all three
relations. If none is true, then the color belongs to no color class, if only one
relation is true, then the color belongs to that class. If several relations are true,
the color belongs to no class to avoid conflicts. As we are not describing each
color unambiguously, it may happen that several relations are true for the same
R, G and B values. Practically, this problem occurs for low levels of R, G and
B (black, dark grey) or for high levels of R, G and B (white, light grey); i.e. for
levels where the colors are uncertain and not clearly defined. In practice, our
approach works for separating three classes. For more color classes, we would
need a more precise description of every color. As an example, equation 6 gives a
more precise rectangle around the selected color and one can think of any other
topological way of describing a color in the RGB color space.

(100 ·R > ThresMinRed · L) AND (100 ·R < ThresMaxRed · L),
(100 ·G > ThresMinGreen · L) AND (100 ·G < ThresMaxGreen · L), (6)
(100 · B > ThresMinBlue · L) AND (100 ·B < ThresMaxBlue · L).

4 General Approach to Color Class Segmentation

We described an easy but specific approach to color segmentation in a particular
case. In order to give to this algorithm a general use, we need to be able to define
any color class easily. In the HSV (Hue, Saturation, Value) color space, the color
information is contained by the hue value. The conversion from RGB to Hue is
described by equation 7 (see [3]):

H = arccos

(
(R −G) + (R−B)

2 ·√(R−G)2 + (R −B)(G−B)

)
RGB to Hue (7)

As this conversion is not trivial, we will need to build a conversion table. As
previously, we decided to use only the five most significant bits. We can now
have a single hue information out of R, G and B values. The idea to characterize
the color we want to define is to put the object in front of the camera and
detect its hue. For this, we convert the middle area of the image (4×4 pixels for
example) from RGB to hue; then we compute the median hue. We also need to
specify a hue range to build the color class. To fill the RGB color class lookup
table, we process every (R,G,B) triplet, convert it into hue, and check if this
hue is within the specified range. This way, every single cell of the RGB space is
filled. We can add more classes by looking at other objects, finding their median
hue and fill the RGB space. Again, in case of conflict we describe the color as
belonging to no class. Remark: in the HSV space, hue is only describing the
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color. The saturation describes the amount of white the color is mixed with (i.e.
full color → no color i.e. white). That means, that in this space, white is only
described by saturation (and intensity. . . ) value and may have any hue value.
So, we either have to treat white as separate color class (that we can directly
fill in the RGB space: R = G = B), or have to consider a saturation threshold
while building the color class.

5 Noise Reduction of Segmented Images

We now have a color class look-up table to compute binary images (one for each
color class) out of the initial color image. Each binary image is filled with 1 if a
pixel belongs to a color class and 0 if not. To find the object limits we have to
reduce the noise on these binary pictures. The noise is mainly random dots or
lines, so we use a single “erosion” method (morphological operator), i.e. we keep
only the pixels having top, bottom, right and left neighbors of the same color
class. Each time we find a valid pixel, we add its coordinates into an object pixel
list. We process the image in a known order, from top to bottom and from left
to right. By knowing this, we accelerate finding the object limits: the first pixel
in the object pixel list will always be the topmost pixel and the last pixel will
always be the bottommost pixel. Finally, we just need to perform maximum and
minimum tests to find the rightmost and leftmost values. We are assuming that
there will be only one object of a certain color in the image. Therefore we can
use “color class” or “object” to describe the same thing. We now have, for every
color class, the coordinates of the four points of the rectangle surrounding them.
We need to adjust these values, as the erosion noise reduction method destroys
one pixel around the object.

6 Camera Calibration

In order to localize objects found in the image, we need to have a reference
position for the camera (see Fig. 3). Since we use a panning camera, we need to
determine for which position the camera is looking straight towards the front.
To know the horizontal offset angle we place an object in front of the camera
and rotate until we find it in the middle of the picture. We also need to know the
vertical initial angle, i.e. the angle of the normal middle axis (βnorm) compared
to the camera middle axis (βcam). We place an object (here: the ball) in front
of the camera (see Fig. 3) and we need to find the camera middle axis position
offset, βoffset = βnorm − βcam, where:

βnorm = arcsin
(
Camheight −Objradius

Distance

)
βcam =

bcol − bmid

PicHeight/2
· CamViewAngle

2
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Fig. 3. Horizon Offset Calibration

7 Determination of Object Position

Once we know the object limits in the image coordinates (see Fig. 4), we can
easily estimate its position in world coordinates by projection (see Fig. 5). The
distance between the robot and the object is |C′B|. We know the height of the
center of the camera, C, and the center of the object, B. We determine the angles
and distances by projection. We will determine α and β′ by the coordinates of
the ball on the picture (see Fig. 4). We are only taking into account the middle
pixel of the detected object P (row, col). If we put the middle of the axes in the
middle of the screen, the new value is P (Objectrow−midrow,Objectcol−midcol).
Knowing the view angle of the lens, we determine from Fig. 4:

α =
brow − bmid

Picwidth/2
· (ViewAngle/2), β′ =

bcol − bmid

Picheight/2
· (ViewAngle/2).

Knowing α and β′ we can determine C′B′. We project on the x axis. We find
β′ in the C′′B′B triangle. From Fig. 5, we have BB′ = C′B · cosα. We obtain
finally:

C′B =
Cz′′ − br
sinβ′ · cosα. Relative Distance, (8)

where br is the ball radius. We can now get the distance of the object for every
position of its center on the image. We can build several 2D look-up tables

mid(row,col)

Object(row,col)

Fig. 4. Object Position
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’
B

α

C’’ is at the height of C above B,
B’ is the projection of B on the x axis,
C’ is the projection of C onto the plane,

z

x

y
α
ββ β

B’

C

C’

C’’

β ’ is the angle between BC’’ and BB’
is the angle between BC and B’C’,
is the angle between C’y and C’B,

Fig. 5. Camera to Object Distance

containing the object distance (if we know its size) as well as the values of α
and β′: so we can easily have the angle position of any object without knowing
its size as α and β′ are only functions of the position of the middle pixel in the
image. Each table would be width × length × size bytes long. In our case, we
used 16 bit integers and the image size is 80× 60 which is 9600 bytes.

8 Experiments and Results

We conducted a number of object recognition experiments in the context of robot
soccer. However, the algorithm is very general and can be applied to a number
of other areas by changing the color class description and calibration method.
The platform used is an EyeBot MK3 [1], based on a 25 MHz 32 bit controller
(Motorola 68332), 1MB RAM, 512KB ROM for system and user programs. On
this system, color segmentation and object recognition for three classes (two
soccer goals and one ball) takes between 0.02 and 0.03 seconds: 0.02 if no object
is present in the picture, 0.03 if a large object is found. The ball can be detected
from a distance up to 60 cm – 70 cm in front of the robot, the goals up to 1,50 m.
The example, on the top of Fig. 6 shows, on the left, the initial image; the center
picture shows the binary image resulting from the yellow segmentation; finally,
the picture on the right shows the result after noise reduction. The right picture
is in fact only a pixel-list among which we look for the topmost, bottommost,
rightmost and leftmost position to define the object coordinates (represented by
the grey rectangle). We can observe that the image is having several lines of noise
(the upper ones, with for example a computer screen) and that the algorithm is
finding the goal quite precisely at the good position. The example on the bottom
part of Fig. 6 is containing two different classes : the yellow goal (black pixels)
and the orange ball (medium grey pixels). The binary image (in the center) is in
fact the superposition of the two binary images from the two classes. The right
image shows, in light grey the found boxes around the two objects to detect.
Again the noise here is coming from the upper lines and from one of our robots
in front of the goal. We can observe that as long as the robot is not completely
hiding one side of the goal, we still manage to find the complete length of the
goal.



76 Philippe Leclercq and Thomas Bräunl

Fig. 6. Sample of the LibVision with one Class (up) and two Classes (down)

9 Conclusion

We have demonstrated a simple and effective real-time color segmentation algo-
rithm that can be implemented on embedded systems with limited computing
performance. This approach is much more efficient but not as robust as some
others based on the mean shift algorithm [5] needing several seconds on a stan-
dard workstation for bigger pictures (512× 512) or neural networks [6] used by
the Azzura Robot Team in the middle size league. However, it brings real time
for the small size league robot vision and is reliable enough for a limited number
of color classes.
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Abstract. A digital panoramic camera system is introduced consisting
of a CCD line scanner and a high precision turntable. This combination
allows the use of such a digital imaging systems for photogrammetric,
robot vision, artistic and other applications. Additionally, these images
with a reduced resolution or parts of it can be used for internet applica-
tions. Typical fields of application are photogrammetry in architecture,
digital archiving of cultural objects and virtual reality. The imaging ge-
ometry causes panoramic distortions, therefore the images must be trans-
formed into plane coordinate systems in order to work with them. Basic
equations are given for these projections.

1 Introduction

EYESCAN, a digital panoramic camera, is a joint development between the Ger-
man Aerospace Center and KST (Kamera Systemtechnik) Dresden. The camera
will be preliminary used as a measurement system to create high resolution 360
degrees panoramic images for photogrammetric purposes. The sensor principle
is based on a CCD line, which is mounted on a turntable parallel to the rotation
axis. The second image dimension is generated by rotating the turntable. To
reach highest resolution and a large field of view a CCD line with about 10.000
detector elements is used. This CCD is a RGB triplet and allows to acquire true
color images. A high SNR electronic design allows a short capture time for a
3600 scan.

EYESCAN is designed for field experiments as well as for laboratory mea-
surements. Combined with a robust and powerful portable PC it becomes easy
to capture seamless digital panoramic images.

This paper describes the camera modules, the control and processing software
as well as some important applications for the camera.

2 The Sensor System

The sensor system consists of three main parts, the

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 77–83, 2001.
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Fig. 1. EYESCAN camera and its basic parameters

– camera head,
– optical part,
– high precision turntable with a DC-gearsystem motor.

The following sections describe these modules more in detail.

– Camera head module - measurement unit
Figure 1 shows the EYESCAN-camera. The essential parameters of the cam-
era head are listed in the table. The camera head is connected to the PC
with a bidirectional fiber link for data transmission and camera control. The
camera head is mounted on a tilt unit for vertical tilts of ±300 (steps of 150).
The axis of tilt and rotation are in the needlepoint.

– Optics
The system uses a high performance Rhodenstock lens APO-Sironar digital
HR 4/60 with a optical adjustment in 5 steps for distances of 20m, 9m, 6m,
4m, 2.8m. Other measurement lenses can be used by applying adjustment
rings. The camera is fully geometrically calibrated.

– Turntable
The camera head is mounted on a high precision turntable with a sinus-
commutated DC-gearsystem motor, internal motion control and direct con-
trolling by the PC. Rotation speed and scan angle are pre-selectable and
correspond to the shutter speed, image size and focal length of the lens.

3 Camera Control and Data Preprocessing

The data processing and the complete control of the camera is integrated in a
graphical user interface. The next sections will describe it.

– Camera head control
This software initializes the camera head and selects all parameters being
essential for capturing an image, like clock time and integration time.
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– Turntable control
This tool realizes an automatic control for the motor, e.g. set rotation angle
and speed, read status of the motor, etc

– Data reception, caching and storage
The framegrabber writes the image data in the PC memory. With a caching
approach, which is realized as a multithredding program, the data can be
written on harddisk.

– This part consists of data correction (photo response non-uniformity, dark
signal non-uniformity, offsets) and a (non linear) radiometric normalization
to cast the data from 16 to 8 bit. All this procedures can be run in real time
or off-line. Additional software packages allow a visualisation of the data
of the current scan line, a fast preview for scene selection and a quicklook
during data recording. Typical commercial image processing programs are
not able to handle the huge raw data amount for one 3600 panoramic scan
of about 3 GByte. Therefore some routines have been developed for
• spatial shift between the RGB channels to correct the effect of the triplet
view,

• 900 rotation of the whole image,
• visualisation of selected image parts,
• histogram and contrast equalization,
• correction of the panoramic effect.

The last processing step is necessary for real photogrammetric approaches
to transform image data from the cylindrical panorama view into a classical
plane view. This procedure will be explained in the next section.

4 Post Processing and Application

Based on the recording geometry it is necessary to transform the images for the
different applications. Analog to the transformation of images acquired by air-
planes (correction of roll, pitch and yaw) it is possible to transform the panoramic
images into different cartesian coordinate systems. Examples for such transfor-
mation are

– from a cylindrical panorama view into a classical plane view,
– from a conical panorama view into a classical plane view

The basics of these transformations are well-known [1,2]. The following equation
can be derived easily:

r = r0 + t.A(φ2) · A(j.∆Θ).A(φ1) · rd (1)

[r] - vector of the object point with r = (x, y, z)T

[r0] - vector of the camera position with r0 = (x0, y0, z0)T

[t] - scale
[A] - rotation matrix
[rd] - vector of the pixel position in the focal plane with rd = (0, yd − f)T
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Fig. 2. Gendarmenmarkt (Berlin), cylindrical image coordinates

[j] - line number of the image
[∆Θ] - rotation angle increment
[φ1] - inclination of the optical axis (constant for a scan)
[φ2] - - inclination of the rotation axis

Figure 2 shows the Gendarmenmarkt in Berlin (Germany). This image is not
modified after capturing, the image coordinates are cylindrical. The angles in the
image space are the same as in the object space. This means that straight lines in
the object space are curved in the image. This effect can be observed in this image
on the pavement. Figure 3 shows the transformation from a cylindrical panorama
view into a plane view. This image corresponds now to a matrix camera view.
Now it is possible to measure in these images (stereo pairs) and incorporate
this data in conventional photogrammetric stereo systems. Capturing panorama
image data with a suitable camera and φ1 �= 0, φ2 = 0 one is able to record floors
and ceilings of rooms in a practical way. Based on equation (1) the following
equation of transformation are obtained [3]

j
′
= Q · sin(j · ∆Θ) · (i · δ · sinφ1 + f · cosφ1) (2)

i
′
= Q · cos(j · ∆Θ) · (−i · δ · sinφ1 − f · cosφ1) (3)

Q =
f

δ′ · (i · δ · cosφ1 − f · sinφ1)
(4)

[i] - sample in the original image,
[j] - line in the original image,
[i

′
] - sample in the transformed image,

[j
′
] - line in the transformed image,

[δ] - scaling factor in the original image,
[δ

′
] - scaling factor in the transformed image
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Fig. 3. Gendarmenmarkt (Berlin), cartesian image coordinates

Figure 4 presents a 3600 scan in the Grottensaal (Neues Palais, Potsdam Sans-
souci) with f = 450. For the acquisition of these images the WAAC camera from
German Aerospace Center DLR was used [4]. This camera had a configuration
with no antiblooming electronic. This is the reason for the saturation in region
of the windows. By using equations (2) to (4) the transformed image in Fig. 5 is
obtained. Such a kind of panoramic views allows to generate 4π spherical data
sets. This transform is executed as follows

Θ = j∆Θ (5)

Fig. 4. Ceiling of the Grottensaal (Potsdam), conical image coordinates
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Fig. 5. Ceiling of the Grottensaal (Potsdam), cartesian image coordinates

Φ = arctan(
i · δ · cosφ1 + f · sinφ1

f · cosφ1 − i · δ · sinφ1
) (6)

[Θ] - longitude angle,
[∆Θ] - increment of the longitude angle,
[Φ] - latitude angle.

Figure 6 shows an image being transformed from two separate scans into one
spheric 4π image. By using suitable software it is possible to project parts of
this image onto a plane view. So the whole hemisphere can be depicted into a
field of view of a virtual observer.

5 Conclusions

We introduced a CCD line camera in combination with a high precision turnta-
ble. This approach makes possible the use of such a digital imaging systems for
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Fig. 6. Ceiling, floor and walls of the Grottensaal, 4π hemisphere

photogrammetric, artistic and other applications. In addition, the same images
with reduced resolution can be used for internet applications. The mathematic
basics are described in order to project the images into cartesian coordinate
systems. Current work is focused on applying this system in the field of pho-
togrammetry.
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Abstract. This paper presents a wavelet-based algorithm for height
from gradients. The tensor product of the third-order Daubechies’ scal-
ing functions is used to span the solution space. The surface height is
described as a linear combination of a set of the scaling basis functions.
This method efficiently discretizes the cost function associated with the
height from gradients problem. After discretization, the height from gra-
dients problem becomes a discrete minimization problem rather than dis-
cretized PDE’s. To solve the minimization problem, perturbation method
is used. The surface height is finally decided after finding the weight co-
efficients.

1 Introduction

Shading-based 3D shape recovery techniques, e.g. shape from shading (SFS),
photometric stereo method (PSM), normally provide gradient values (vector
field) for a discrete set of visible points on object surfaces. These gradient values
have to be integrated to achieve relative height or depth values. See Fig. 1 for
an illustration of such a mapping of a vector field into a depth map. However,
no much work was done so far in integration techniques for the gradient vector
field.

Essentially there are two main classes of integration techniques for discrete
gradient vector field: local integration techniques and global integration techniques
(for a review, see Klette and Schlüns [8]). Suppose that a surface Z(x, y) is
defined over a region Ω which is either the real plane R2 or a bounded subset
of this plane, and that the gradient values of this surface at discrete points
(x, y) ∈ Ω

p(x, y) =
∂Z(x, y)
∂x

= Zx, q(x, y) =
∂Z(x, y)
∂y

= Zy (1)

are only available as input data, for instance, in the form of a needle diagram(see
the left picture in Fig. 1). Local integration methods [2,5,12] are based on the
following curve integrals:

Z(x, y) = Z(x0, y0) +
∫

γ

p(x, y)dx+ q(x, y)dy. (2)

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 84–90, 2001.
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where γ is an arbitrarily specified integration path from (x0, y0) to (x, y) ∈ Ω.
Starting with initial height values, the methods propagate height values accord-
ing to a local approximation rule (e.g., based on the 4-neighborhood) using the
given gradient data. Such a calculation of relative height values can be repeated
by using different scan algorithms. Finally, resulting height values can be deter-
mined by averaging operations. Generally, local integration methods are easy to
implement and do not explicitly implement any assumption of the integrability
condition. However, initial height values have to be provided. The locality of the
computations strongly depends on data accuracy, and the propagation of errors
may occur due to the propagation of height increments along paths. Therefore,
local integration techniques perform badly when the data are noisy.

Integration of discrete gradient vector fields is thought to be an optimization
problem in global integration techniques [4,6,7]. That is, the problem of finding Z
from p and q can be solved by minimizing the following functional (cost function):

E =
∫∫

Ω

[(Zx − p)2 + (Zy − q)2]dxdy. (3)

Comparing with the local methods, the Frankot-Chellappa algorithm [4] is more
robust against noise and leads to considerably better results for the task of
calculating height from gradients (see Klette et al. [9]). Figure 1 shows a result
of the global method. Nevertheless, the height values obtained in the algorithm

Fig. 1. The left picture shows a needle map representation of surface normals of
a human face calculated based on photometric stereo. The middle image shows
a depth map obtained from the normals using the global integration method
by Frankot-Chellappa. The right image visualizes the recovered 3D shape of the
human face
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may suffer from high frequency oscillations and this method needs slightly more
computing time.

Wavelets theory has proved to be a powerful tool in various applications such
as numerical analysis, pattern recognition, signal and image processing. Using
wavelet decomposition it is possible to detect singularities, irregular structure
and transient phenomena exhibit by a function. This paper presents a new in-
tegration technique for discrete gradient fields. The tensor product of the third-
order Daubechies’ scaling functions is used to span the solution space. The sur-
face height is described as a linear combination of a set of the scaling basis
functions. This method efficiently discretize the cost function associated with
the height from gradients problem. After discretization, the height from gradi-
ents problem becomes a discrete minimization problem rather than discretized
PDE’s. To solve the minimization problem, perturbation method is used. The
surface height is finally decided after finding the weight coefficients.

The rest of this paper is organized as follows. In the next section, the basic
concepts of the wavelet transform and the relevant properties of Daubechies
wavelet will be briefly addressed. Then,in Section 3, the proposed wavelet-based
algorithm for height from gradients will be described. In this short note the
pertinent results are presented only. Finally, a conclusion is given in Section 4.

2 Daubechies Wavelet Basis and Connection Coefficients

In this section, we will briefly describe the basic idea of wavelet transform.
Wavelets are mathematical functions that cut up data into different frequency
components, and then study each component with a resolution matched to its
scale. They have advantages over traditional Fourier methods in analyzing phys-
ical situations where the signal contains discontinuities and sharp spikes. They
provide the methods for representing a set complex phenomena in a simpler,
more compact, and thus more efficient manner.

Let φ(x) and ψ(x) are the Daubechies scaling function and wavelet, respec-
tively. They both are implicitly defined by the following two-scale equation [3]

φ(x) =
∑
k∈Z

akφ(2x− k), ψ(x) =
∑
k∈Z

(−1)ka1−kφ(2x− k),

where ak are called the Daubechies wavelet filter coefficients. Denote by L2(R)
the space of square integrable functions on the real line. Let Vj be the closure
of the function subspace spanned by φj,k(x) = 2j/2φ(2jx − k), j, k ∈ Z, and
suppose that Wj , the orthogonal complementary of Vj in Vj+1, be the closure
of the function subspace generated by ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z. Then
the function subspaces Vj and Wj have the following properties: Vj ⊆ Vj+1, for
all j ∈ Z;⋂

j∈Z

Vj = {0};
⋃
j∈Z

Vj = L2(R); Vj+1 = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wj ,
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where ⊕ denotes the orthogonal direct sum. On each fixed scale j, the scaling
functions {φj,k(x), k ∈ Z} form an orthonormal basis of Vj and the wavelets
{ψj,k(x), k ∈ Z} form an orthonormal basis of Wj . The set of subspaces Vj is
called a multiresolution analysis of L2(R).

Let J be a positive integer. A function f(x) ∈ VJ can be represented by the
wavelet series

f(x) =
∑
k∈Z

cJ,kφJ,k(x),

where the expansion coefficients cJ,k are specified by cJ,k =
∫
f(x)φJ,k(x)dx.

Since VJ = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕WJ−1, f(x) can be alternatively represented
by

f(x) =
∑
k∈Z

c0,kφ0,k(x) +
J−1∑
j=0

∑
k∈Z

dj,kψj,k(x).

The wavelet series expansion coefficients c0,k and dj,k can be computed via the
decomposition algorithm [3].

The connection coefficients [1,10] play an important role in representing the
relation between the scaling function and differential operators. Throughout this
paper, we assume that the scaling function φ(x) has N vanishing moments. For
k ∈ Z, we define that

Γ 0
k =

∫
φ(x)φ(x − k)dx,

Γ 1
k =

∫
φ(x)(x)φ(x − k)dx,

Γ 2
k =

∫
φ(x)(x)φ(x)(x− k)dx.

Then we have the following properties: Γ 1
0 = 0; for the scaling function φ(x)

which has N vanishing moments, Γ 1
k = Γ 2

k = 0, k /∈ [−2N + 2, 2N − 2]; and

Γ 0
k =

{
1, k = 0,
0, otherwise.

The connection coefficients for Daubechies’ wavelet with N = 3 vanishing mo-
ments are shown in the following table [11]:

3 Wavelet-Based Height from Gradients

In this section, we will derive a new wavelet-based algorithm for solving the
height from gradients. First of all, we assume that the size of the domain of
the surface Z(x, y) is M ×M , and the surface Z(x, y) is represented by a linear
combination of a set of the third-order Daubechies scaling basis functions in the
following format:

Z(x, y) =
M−1∑
m=0

M−1∑
m=0

zm,nφm,n(x, y), (4)
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Table 1. Connection Coefficients with N = 3

Γ 1
k Γ 2

k

Γ 1
−4 =0.00034246575342 Γ 2

−4 = -0.00535714285714
Γ 1
−3 =0.01461187214612 Γ 2

−3 = -0.11428571428571
Γ 1
−2 =-0.14520547945206 Γ 2

−2 = 0.87619047619052
Γ 1
−1 =0.74520547945206 Γ 2

−1 = -3.39047619047638
Γ 1

0 =0.0 Γ 2
0 = 5.26785714285743

Γ 1
1 =-0.74520547945206 Γ 2

1 = -3.39047619047638
Γ 1

2 =0.14520547945206 Γ 2
2 = 0.87619047619052

Γ 1
3 =-0.01461187214612 Γ 2

3 = -0.11428571428571
Γ 1

4 =-0.00034246575342 Γ 2
4 = -0.00535714285714

where zm,n are the weight coefficients, φm,n(x, y) are the tensor product of the
third-order Daubechies scaling functions, i.e., φm,n(x, y) = φ(x − m)φ(y − n).
For the known gradient values p(x, y) and q(x, y), we assume that

p(x, y) =
M−1∑
m=0

M−1∑
m=0

pm,nφm,n(x, y), (5)

q(x, y) =
M−1∑
m=0

M−1∑
m=0

qm,nφm,n(x, y), (6)

where the weight coefficients pm,n and qm,n can be determined by

pm,n =
∫ ∫

p(x, y)φm,n(x, y)dxdy, qm,n =
∫ ∫

q(x, y)φm,n(x, y)dxdy.

Substituting (4), (5) and (6) into (3), we have

E =
∫ ∫ 

(
M−1∑

m,n=0

zm,nφ
(x)
m,n(x, y) −

M−1∑
m,n=0

pm,nφm,n(x, y)

)2

+

(
M−1∑

m,n=0

zm,nφ
(y)
m,n(x, y) −

M−1∑
m,n=0

qm,nφm,n(x, y)

)2

 dxdy

= E1 +E2, (7)

where φ(x)
m,n(x, y) = ∂φm,n(x, y)/∂x and φ(y)

m,n(x, y) = ∂φm,n(x, y)/∂y.
In order to derive the iterative scheme for Z, let ∆zi,j represent the up-

dating amounts of zi,j in the iterative equation, z′i,j be the value after update.
Then z′i,j = zi,j + ∆zi,j . Substituting z′i,j into E1, E1 will be changed by an
amount ∆E1, that is,
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E′
1 = E1 +∆E1

=
∫ ∫ [( M−1∑

m,n=0

zm,nφ
(x)
m,n(x, y) −

M−1∑
m,n=0

pm,nφm,n(x, y)

)

+∆zi,jφ
(x)
i,j (x, y)

]2
dxdy

= E1 + 2∆zi,j
M−1∑

m,n=0

zm,nΓ
2
i−mΓ

0
j−n

−2∆zi,j
M−1∑

m,n=0

pm,nΓ
1
i−mΓ

0
j−n +∆z2i,jΓ

2
0 . (8)

Using the same derivation, we have

E′
2 = E2 +∆E2

= E2 + 2∆zi,j
M−1∑

m,n=0

zm,nΓ
0
i−mΓ

2
j−n

−2∆zi,j
M−1∑

m,n=0

qm,nΓ
0
i−mΓ

1
j−n +∆z2i,jΓ

2
0 . (9)

Substituting (8) and (9) into (7), it is shown that

∆E = ∆E1 +∆E2

= 2∆zi,j
M−1∑

m,n=0

zm,n

(
Γ 2

i−mΓ
0
j−n + Γ 0

i−mΓ
2
j−n

)

−2∆zi,j
M−1∑

m,n=0

pm,nΓ
1
i−mΓ

0
j−n

−2∆zi,j
M−1∑

m,n=0

qm,nΓ
0
i−mΓ

1
j−n + 2∆z2i,jΓ

2
0 .

In order to make the cost function decrease as fast as possible, ∆E must be
maximized. From ∂∆E/∂∆zi,j = 0, we have

∆zi,j =
1

2Γ 2
0

2N−2∑
k=−2N+2

[
(pi−k,j + qi,j−k)Γ 1

k − (zi−k,j + zi,j−k)Γ 2
k

]

From the above results, the iterative equation can be represented as follows:

z
[t+1]
i,j = z[t]i,j +∆zi,j , t = 0, 1, ... (10)

The initial values are zero.
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4 Conclusions

In this paper, we presented a new iterative algorithm for solving the height from
gradients problem. Wavelet transform is a generalization of Fourier transform,
and a power tool for efficiently representing images. Therefore, the proposed
method takes the advantages of wavelet transform. By applying the wavelet
transform, the objective function associated with the original height from gra-
dients problem is converted into the wavelet-based format. In the new iterative
algorithm, the step size can be easily determined by maximizing the decrease of
the objective function. we only presented the pertinent results in this short note.
In the future the new algorithm should be studied in combining and comparing
it with existing height from gradients techniques.
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Abstract. In the domain of stereo vision, the presence of repetitive pat-
terns results in multiple matching hypotheses. The choice of the wrong
hypothesis leads to an incorrect distance measurement. In applications
such as automotive vision-based navigation a high precision in match-
ing and distance calculation is vital. A common approach is the use
of multiple cameras. Unfortunately, in vehicle applications this is often
not feasible. However, the shiny varnished body parts of the car supply
a free-form surface mirror. In combination with a camera system they
form virtual cameras with a different viewing direction. This additional
information can be used to select the correct matching hypothesis and
to increase the depth measurement accuracy. The free-form surface mir-
rors yield distorted pictures without a single viewpoint which prevents a
purely perspective reconstruction. We will discuss the problems arising
from the use of free-form surface mirrors and present solution strategies
to take advantage of the information.

1 Introduction

Stereo vision using two cameras to recognize and match objects and estimate
their distances is a common method for vision-based navigation (Franke et
al. [5]). Objects are matched in the images and their disparity is computed.
The distances are calculated from this result on the basis of triangulation know-
ing the baseline distance of the cameras. There are different ways to build a
stereo vision system. The most obvious is to use two cameras and align them
with parallel optical axes and without rotational differences in the image planes.
These two conditions facilitate the matching task and increase the computa-
tional speed. However, the adjustment is difficult and time consuming. If the
stereo vision system is intended for use in automotive applications with motions
at higher velocities, it is also necessary to ensure a time-correlated readout of
the images in the cameras.

To overcome these problems a variety of single camera systems using mirrors
to produce stereo images have been proposed. Cafforio et al. [3], Goshtasby
et al. [7] and Inaba et al. [8] introduce different, so-called catadioptric1 systems
1 Dioptric systems consists of lenses, catoptric systems of mirrors. For the combination
of mirrors and lenses the name catadioptric has been established.
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using planar mirrors in special configurations. These applications produce stereo
images with a single lens and camera, with adjustable fields of view, without
undesired geometry or intensity differences and with corresponding points in the
same image row. Using just one physical camera and producing the stereo image
with virtual cameras yields the advantage of easy adjustment and no problems
with time-correlated image readout. However, planar mirror systems have the
disadvantage of small fields of view or short baseline distances of the virtual
cameras. This makes it difficult to achieve a high accuracy at large distances.

Other proposals use non-planar mirrors to increase the field of view. Nayar [9]
uses a rigid configuration of two specular spheres to determine depth in a large
field of view and proves that this is possible with non-planar reflective surfaces. In
these cases, it is not possible to calculate distances in the usual way. Nevertheless,
due to the known geometry, the distance of objects can be recovered. However,
all of these systems use special configurations or specifically designed mirrors
and cameras to produce virtual cameras with desired intrinsic parameters.

In certain applications it is not possible to rely on special design systems
to achieve an increase in accuracy or field of view. One of them is vision-based
navigation in the automotive area. These systems use CCD-based stereo cameras
with aligned optical axes and adjusted rotational differences in the image planes
(Franke et al. [5]). Nevertheless, it is important to achieve high accuracy in
matching objects and calculating their distances.

Fig. 1. A traffic scene reflected in the hood of a car

Stereo vision systems using two images always face the problem of correctly
matching repetitive patterns, particularly if a part of the pattern is occluded for
one of the cameras. A solution to this problem is the use of additional cameras.
These cameras do not have to be physical. Virtual cameras produced by mirrors
will do as well. In the case of an automotive application, such a mirror can be
provided by the car body. Fig. 1 shows a traffic scene reflected in the shiny
varnished surface of the hood.
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These car body parts are not designed to be used as mirrors nor do they have
special geometric properties such as the mirrors in the applications mentioned
above. Nevertheless, they are useful to provide additional information to improve
the probability of choosing the correct matching hypothesis.

In combination of the different ideas introduced above, we intend to use free-
form surface reflections in the hood of a car to produce virtual cameras2. These
will assist a common two camera stereo vision system in selecting the correct
matching hypothesis. We will discuss the problems arising from the use of free-
form surface mirrors in Section 2, present strategies to solve them in Section 3
and draw our conclusions in Section 4.

2 Simulation of Free-Form Surface Mirror Reflections

2.1 Description of Free-Form Surfaces

Free-form surfaces in computer aided design systems are usually described using
non-rational uniform b-splines (NURBS). In our simulation we will focus on the
convex central part of the hood. The other concave parts between the hood and
the fender are not considered. The resolution there is poor and the significant
objects for our application are not visible.

2.2 Perspective Imaging

Most algorithms in computer vision are based on perspective imaging, a map-
ping of the three dimensional world onto a plane through a pinhole. This way
of mapping is commonly used because it is similar to human vision. In order to
reconstruct a distorted reflected image into a purely perspective pinhole image it
is necessary for the catadioptric system to retain a single viewpoint from where
the reflected rays seem to originate. Shree K. Nayar’s group at the Columbia
University, New York, has extensively researched this problem. Baker et al. [2]
study three criteria for catadioptric sensors: the shape of the mirrors, the reso-
lution of the cameras, and the focus settings of the cameras. In particular, they
derive the complete class of mirrors that can be used with a single camera to
give a single viewpoint. The mirrors that satisfy this single-viewpoint constraint
are conic sections and planes in combination with perspective or orthographic
cameras. Chahl et al. [4] research the same topic, using a differential equation.
They draw the same conclusions from their results.

2.3 Simulation Results

We used ray-tracing methods in the ASAP3 application to confirm these results
in our special case. Fig. 2 shows the setup of the simulation.
2 patent pending
3 Advanced Systems Analysis Program by Breault Research Organization Inc.
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Fig. 2. Simulation of the reflection of a regular grid and intersection of the rays
with a plane P, 5m in front of the car. Not all of the simulated rays intersected
with the reflective surface

The central part of the hood was used as a mirror and a camera was placed
above the surface. A regular grid of points was projected through a pinhole onto
the surface and the reflected rays were intersected with a plane P at a distance
of 5 m, perpendicular to the ground plane. We calculated different patterns to see
the impact of extrinsic camera calibration. We also determined the focal points
of each bundle of reflected rays to see the distribution of viewing points. In the
presented simulation (Fig. 3) the optical axis of the camera enclosed an angle
of -35 ◦ with the ground plane. The results clearly show that a single viewpoint
cannot be achieved and the extrinsic calibration of the camera is essential for the
results. The violation of the single-viewpoint constraint signifies that a purely
perspective, planar reconstruction of the image is not possible (Gluckman et
al. [6]).

The distortion of the circular-shaped ray bundles, due to the circular shape
of the simulated pinhole can be viewed in Fig. 3. In addition the distortion of
the rectangular grid due to the curvature of the surface is also visible (Seidel
aberrations).

An additional problem is due to the colored varnish of the hood. The contrast
within the reflected picture is degraded. For this reason, correlation algorithms
using normalized gray values are necessary.

3 Solution Strategies

Due to the results presented in paragraph 2.2 we had to refrain from a perspective
reconstruction of the image in the usual sense and develop new ideas how to make
use of the information contained in the reflection seen in the hood.

Nayar [9] proves that the knowledge of the geometry is sufficient to recon-
struct the object direction. He uses regular spheres which make it much easier
to calculate the ray directions. Nevertheless, NURBS descriptions of free-form



Enhanced Stereo Vision Using Free-Form Surface Mirrors 95

0

200

400 0

50

100

150

200

400

600

800

1000

0

200

400

plane P

[mm]

[mm]

[mm]

viewpoint and mean viewing direction
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P (see Fig. 2). Right: Distribution of the focal points and mean viewing direc-
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surfaces yield the same information but they are harder to handle mathemati-
cally.

We were able to show that the extrinsic calibration of the camera is crucial
for successfully calculating the direction of the reflected ray. We use an algorithm
based on the concept presented by Tsai [10]. This approach provides the intrinsic
and extrinsic camera parameters so that we are able to position the camera
within the coordinate system determined by the data of the free-form surface.
With this information, we are able to relate a ray direction with each pixel of the
reflected vision area. Fig. 4 shows the basic triangulation scheme that is applied.

With our approach it is necessary to use a matching algorithm that is ca-
pable of handling a distorted, intensity warped image and an ordinary image.
One of these algorithms is the normalized mean-free cross-correlation function
(CCFMF) presented by Aschwanden et al. [1]. The contrast of the reflected im-
age is degraded but the gray value distribution form remains the same. The
CCFMF is able to compensate for this effect. The intensity is compared in
two two-dimensional image areas along epipolar lines. The epipolar lines can
be recovered using Fermat’s principle: the path of light is such that the time of
propagation is minimal.

Looking at Fig. 4 it is obvious that the object point, the point of reflection on
the surface, and the pinhole form a plane. The lines connecting these points are
in the same plane and consequently, the points of intersection with the image
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Fig. 4. Basic triangulation scheme using geometric data of the free-form surface

plane too. If the object point is moved along the line of the direct view the
corresponding point of reflection will move along the convex reflective surface
according to the direction of the object movement. To proof this we analyze it
in two dimensions. The function f(x) describes the convex segment. Without
loss of generality we can choose the direction of direct view along the coordinate
axis. The parameter u describes the location along this axis. This results in a
distance function s(x, u):

s(x, u) =
√

x2 + f(x)2 +
√

(x − u)2 + f(x)2

The evaluation of the derivatives dus(x, u) and dxs(x, u) yields the result.
The same argument can be applied to the direction perpendicular to the

plane described by the three initial points depicted in Fig. 4. The path of light
for these points is minimal. The point of reflection for another object location
along the line of direct view cannot leave the plane. This is due to that fact
that any other point outside the plane would prolong the path and therefore
the time of propagation. One restriction in this argument is the use of a convex
surface. The convex surface has a continuous negative curvature that produces a
minimum in the action functional and therefore a stable solution. We analyzed
this in three dimensions using the same assumptions. The convex surface is
described by f(x, z) and this results in a distance function s(x, z, u):

s(x, z, u) =
√

x2 + f(x, z)2 +
√

(x − u)2 + z2 + f(x, z)2

The evaluation of the derivatives dus(x, z, u) and dxs(x, z, u) again yields the
result. The quantitative analysis of this proof with f(x) being a NURBS function
is not a part of this paper and a topic of our ongoing research.Nevertheless, these
simple formulations and their evaluation on convex surfaces conveys the proof.

A concave surface could exhibit a different behavior. However, we have re-
stricted ourselves to examine only the convex part of the hood. The conclusion
drawn from this argument is that for a certain pixel in the direct view area of
the image the corresponding pixel can be found along a straight line in the re-
flected view area of the image. The straight lines do not necessarily correspond
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to an image line or row. This behavior is similar to the epipolar geometry of
two cameras in an ordinary setup. However, the disparity along this epipolar
line cannot be converted to a distance using a simple reciprocal function. The
structure of the epipolar distance relationship is warped by the geometry of the
convex surface and can be recovered either through calculation using geometric
data of the surface or through calibration of the setup.

Using these results we are able to set up an algorithm to evaluate the in-
formation in the reflected image. We match pixels along the epipolar lines and
calculate, using triangulation, the distance to the matched object (see Fig. 5).
This distance can be used directly to choose the correct matching hypothesis
provided by the evaluation of the two direct view stereo images.

Fig. 5. Processing of the traffic scene. We evaluate correspondences along epipo-
lar lines (here corresponding to a and b). Matching of features in A and B and
the knowledge of the intrinsic geometry yields the distance to the object

4 Conclusion

We have presented a new approach to extract information contained in the re-
flections from free-form surfaces. The reconstruction of the image information
uses the special geometric properties and a known matching algorithm to ob-
tain an object’s distance. This information is used to choose the correct match
amongst different matching hypotheses provided by a stereo vision system. This
additional information is crucial in resolving ambiguous cases such as partially
occluded repetitive patterns. It also offers a variety of new matching possibilities
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(Fig. 6). It is also possible to implement such a solution strategy in a single
camera application. Furthermore, it can be used as a fallback system. In a two
camera system one image might be temporarily unusable due to the windshield
wiper or raindrops. This is important for real-time applications especially in the
automotive field.

Fig. 6. Object matching possibilities using a free-form surface mirror (hood)
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Abstract. One of the reasons for organizing robotic games is that they
allow researchers to evaluate their systems and approaches on a level
playing field. This evaluation is important in a quickly developing field
such as robotics with few real world applications. This paper investi-
gates through a case-study how much participating at the RoboCup-99
competition has benefited a MSc. student at the University of Auckland.
Although the participation was certainly stimulating, its influence on the
research was indirect. The paper makes a number of suggestions that will
make it easier to quantitatively evaluate research at these competitions
and thus influence research more directly.

1 Introduction

Robotic games are extremely popular. Apart from their entertainment value,
the ability to evaluate research progress and compare one’s own approach in a
competitive environment against that of other teams is often cited as one of the
reasons for organizing competitions.

However, there is only anectodal evidence of the impact of robotic games on
research programmes.

This paper describes the experiences of a student, Nicholas Hildreth, partici-
pating in the RoboCup robotic soccer competitions and how they influenced his
research in path planning for mobile robots.

Section 2 gives a short introduction to the All Botz, the University of Auck-
land RoboCup team. The adaptive path planner is briefly introduced in section 3.
Section 4 discusses how the robotic games were used to support the empirical
evaluation of the adaptive path planner. Section 5 summarizes the paper and
suggests some ways in which robotic games could have better supported the
evaluation of our research.

2 History of the All Botz

Nick’s first experience with robotics was when he took the graduate course on
“Intelligent Active Vision” at the University of Auckland starting in February
of 1998. The course description of this paper reads as follows:

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 99–106, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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Control of autonomous mobile agents in a realistic, dynamic, and uncer-
tain environment. It covers a variety of different areas including robotics,
planning and machine learning.

The paper was offered for the first time and things were a bit chaotic. We used
remote controlled toy cars for the practical work in the paper, since there was
insufficient funding to purchase a “real robot.” We designed and built parallel
port interfaces to the remote control transmitters so that the cars could be
controlled from a computer. Position and orientation information for the robots
are provided by a global vision system mounted on the ceiling.

It was a real eye opener to see how difficult it was to do even simple things,
such as driving a straight line, with these toy cars. However, the course turned
out to be very motivating in the end. The culmination of the project was a
race amongst different groups of students, the so-called Aucklandianapolis. To
complete this challenge successfully, a team of students had to implement a
complete mobile robot system including video processing, path planning, and
path tracking control. Figure 1 shows our first mobile robot competition.

Fig. 1. The First Aucklandianapolis Competition

After the course finished in June 1998, Nick started a project on the design
of an agent architecture for a mobile robot. The project resulted in some pre-
liminary work. However, at the same time, we learned about the PRICAI-98
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RoboCup competition. Since we had had good success at the Aucklandianapolis
competition, we decided to extend the current architecture to create a team to
enter the competition. After having implemented a striker and a goal keeper, we
thought we were ready for the competition.

Two weeks before the competition, we found out that our toy cars were too
large. However, with luck we managed to buy some used smaller toy cars that
operated on the same frequency and could be controlled with the parallel port
interfaces that we had built.

After recalibrating the system for the new cars, we managed to be ready for
our first international competition. Our team consisted of only two players: a
striker and a goal keeper.

At the competition, we realized that our approach to the problem was differ-
ent from that of other teams. The difference in hardware became apparent. The
All Botz were the only team that used non-holonomic robots and a camera that
is mounted on the side. All other teams used holonomic robots and mounted
the camera directly overhead. However, not all teams were following this trend
and had developed their own approach. For example, the CIIPS glory team from
UWA, Perth, was the only local vision team at the competition. It was interest-
ing to see the wide variety of approaches. Some teams focuses on the mechanics
on their robots, putting a lot of effort into the selection of motors and tires.
Other teams focused on the embedded controller and the electronics. The main
emphasis for these teams are additional sensors, such as ultrasound, infrared,
or even local vision. yet other teams emphasize the cooperation amongst the
individual players of a team.

At the competition, we noticed our path planner, an extension of Bicchi’s non-
holonomic path planner ([1]), did not perform well in the dynamic environment.
Our robots would spent most of their time planning, but before the planner
would finish, an object would move in the domain and the path planner hat to
be restarted.

One of the disappointing aspects of the games were the amount of set plays
that were used by some of the teams. Some teams spent a long time manually
positioning their robots for free kicks and other stoppages in play. This was
disappointing, since our main goal was to advance our research, not to take part
in a game of robot chess.

3 Adaptive Path Planning

The experiences at the PRICAI-98 RoboCup competition motivated Nick to
work on his Master’s thesis and he chose the topic: “the problem of path planning
for car-like mobile robots in highly dynamic environments” [3]. This section is
a brief introduction into the basic idea behind adaptive path planning and the
methodology used for evaluating this research.

At the PRICAI-98 competition, we used a version of Bicchi’s path planner
that was optimized for the RoboCup domain. This planner proved to be too slow
for a soccer game. On a Pentium 200MMX running the Linux operating system,
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the planner would take more than one second to create a path. The level of the
competition in Singapore was such that the ball would rarely sit still for more
than a second, so that our path planner would spent a lot time replanning. In
few cases would it actually start executing a plan.

The main motivation for the adaptive path planner that he developed in his
thesis was the realization that:

– Path planning is an expensive operation, so the result of this work should
be reused if possible.

– The result or output of a path planner is a path
– Assuming that changes in the domain are small between individual planning
episodes, the current plan will be structurally similar to the plan for the new
situation.

This motivation is similar to Hammond’s case-based planning ([2]) with some
important differences. Firstly, case-based planning assumes that a plan database
exists with previous plans and that the most similar plan to the current situation
can be found by using a similarity metric. Secondly, the database of previous
plans needs to be maintained; new plans need to be added so they can be reused
in the future or old plans that are not useful must be removed. So, a lot of work
on case-based planning focuses on the design of suitable similarity metrics and
on database policies.

In adaptive path planning, we assume the existence of a albeit slow static
path planner that can be used to create an initial plan. The previous plan is the
most similar one to the current situation and that therefore, there is no need to
maintain a plan database.

At the heart of any path planner is the plan representation. A plan consists
of a sequence of path segments. Most other path planners use a representation
with different segment types such as straight lines, turns to the left, etc. This
representation makes it difficult to adapt a path, since the adaptations will need
to be specific for a given segment type.

To simplify the adaptation, the adaptive path planner uses a uniform repre-
sentation for all path segments. Each segment contains the following information:

– start point I
– initial bearing α
– length of the segment L
– radius of the segment R
– time limit to traverse the segment T
– A possibly empty attachment A. An attachment is used to attach an object
to a path segment, so that if the object moves, all attached path segments
will move as well.

This representation, shown in Fig. 2, proved very useful, because plans in this
representation can be easily adapted to compensate for movements of objects or
goal locations in the domain.
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Objects are attached and detached from path segments dynamically. If an
obstacle moves too close to a path, the path is split at the closest point to the
obstacle and a new segment is inserted which is attached to the object. As the
object continues to move the attached segment will move as well. Once the object
is too far from the path, the object is detached from the path segment.

3.1 Evaluation Methodology

Although an intuitive argument can be made for the advantages of the adaptive
path planner, to quantitatively evaluate the performance of such a path planner
is difficult. For example, it is also intuitive that an adaptive path planner will
perform poorly if there is no relationship between the current state and the next
state of the world.

Firstly, the adaptive part of the path planner is not complete, that is there
are situations in which the adaptive planner will find a suitable combinations
of adaptations to create a valid path, but such a path exists in practice. In this
case, the static path planner is called to create a new plan from scratch. This
usually occurs when the world state changed dramatically from the current one.
The worst case run-time of the adaptive path planner is thus worse than that
of the static path planner. The motivation is that for sustained planning, the
adaptive path planner can avoid calling the static path planner often.

It is true, that in principle any adaptive path planner that can delete and
insert segments into a plan can be converted into a complete path planner. In
the worst case, the planner would delete all segments from the path and then
start creating a new path from scratch. However, if this is done, the worst case
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complexity would be similar to that of other static path planners. This would
be missing the point of an adaptive path planner completely. One would replace
one search problem with another one in a similar space. The main point is that
there is a small set of highly specific repair strategies that can adapt a path to
the new situation quickly. The success rate of these repair strategies must be
high and they planner must be able to apply them quickly.

This argument then relies on a sequence of path planning problems that
reflect the dynamics of the application environment.

Through an empirical evaluation of a simulated world and a number of case-
studies, the evaluation of the adaptive planner shows that this set of adaptations
is sufficient to fix a plan in most cases, yet small enough to not increase the
run-time of the path planner significantly. The repair strategies have specific
pre-conditions, which when met result in the new path having a high chance of
being able to be completed.

However, the method used to create the random path planning problems and
case studies is under control of the designer of the algorithm to be tested. Even
with his best intentions, it is difficult to prevent subconscious assumptions from
entering both the design of the synthetic as well as the path planner. It would
be far more convincing to have a standard environment for mobile robots that
could be used to compare the different path planning approaches on realistic
problems.

There are few real world applications for mobile robots that are convincing
and general enough to allow different robots to take part in them. The state
of the art in mobile robots is currently a vacuuming robot that can maneuver
through an unstructured environment.

Therefore, it was decided that the research should be evaluated at the
RoboCup competition. The motivation was that a complex robotic competition
is the next best thing to an unbiased environment.

4 Evaluation at RoboCup-99

A prototype version of this path planner was finished just in time for RoboCup-
99. It was the intention, that we would use the competition as an opportunity
to test the new path planner under real world conditions.

However, this turned out to be much more difficult than expected. The main
problem is that every team has only a few games and there was no opportunity
for practice games. The first few games were very important, so we used our best
path planner. For a proper empirical evaluation, we needed to play two sessions
against each team, one with the adaptive path planner and one with a standard
path planner.

Another disappointment was that the promised video tapes of our games
were not made available, so we had no possibility to view our games afterwards.

Nevertheless, the competition proved valuable, since we noticed some re-
curring patterns, which the prototype path planner was not able to deal with
efficiently. After returning from RoboCup-99, we redesigned part of the path
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planner and completed its implementation paying attention to the patterns that
emerged during the competition.

Figure 3 shows a case study of a situation that was inspired by the RoboCup
competitions. It shows how the adaptive path planner changes the path to com-
pensate for a moving ball and an interfering object.

Fig. 3. Case Study Derived From Observed RoboCup Competition

Furthermore, Nick gained some important information by talking to other
researchers at the competition and at the workshop. For example, Nick learned
about practical potential field path planning through informal discussions with
other teams. The most impressive performance was that of the Robotics team
from Korea, which showed the best control. The Robotics robots moved about
three times faster than the other teams.

Flexibility and robustness, obviously very important characteristics for a
robot to survive in the real world, have taken a back seat to special purpose solu-
tions. The RoboCup committee suggested that instead of every team mounting
their own camera, a high quality camera would be provided by the organizing
committee. All teams except the All Botz refused to even try the idea. One
team forced the organizing committee to repaint all playing fields, since the cen-
ter line was 2mm too wide and they could not compensate for this change in
their software. Also, most teams did not switch sides at half time, since their
robots performed significantly better on one half of the field than on the other.
Even during the RoboCup-99 finals, teams remained on their own side.

5 Conclusion

This paper describes a student’s involvement in the RoboCup initiative and the
influence that the participation at the robotic competitions had on his research.

The main impact that the competition had on his research were two-fold.
Firstly, experiences gained in the soccer games provided a better understanding
of the path planning problem in real-world situations. Secondly, it gave Nick an
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excellent opportunity of discussing with researchers that were extremely familiar
with the issues.

The robotic games did not provide sufficient opportunity to evaluate quan-
titatively the performance of the adaptive path planner. It would have been a
good idea to setup a special playing field so that teams can hold short practice
games.

Nick Hildreth has now completed his MSc. and is considering doing a PhD
in Computer Science.
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Abstract. This paper describes a novel approach to detecting orien-
tation and identity of robots using a global vision system. Instead of
additional markers, the original shape of the robot is used to determine
an orientation using a general Hough transform. In addition the move-
ment history as well as the command history are used to calculate the
quadrant of the orientation as well as the identity of the robot. An em-
pirical evaluation shows that the performance of the new video server is
at least as good as that of a traditional approach using additional colored
markers.

1 Introduction

This paper describes a new approach to image processing in the RoboCup do-
main, that has been implemented in the video server of the All Botz, the Uni-
versity of Auckland F180 team.

In the F180 league, most teams use a global vision system to control up to
five robots per team in a game of robotic soccer. In order to be able to control
the robots, colored markers or bar codes are put on top of the robots to simplify
the vision task.

Colored markers or bar codes are an easy and robust method, but have two
big disadvantages. Firstly, the calibration of sets of colors, so that they can
be detected over the entire playing field and do not interfere with each other
is a very time consuming task. The resulting calibration is not robust. Even
small changes in the lighting conditions require a re-calibration. Secondly, these
methods do not scale to large teams of robots with eleven players or more.

Therefore, the All Botz developed a new flexible and scalable approach, that
uses the original shape of the robot as its sole source of vision information. In
other words, the robots are unaltered except for the addition of a marker ball,
which is required by the F180 RoboCup rules. A generalized Hough transform is
used to infer the orientation of the robot from a sub-image. The image processing
determines an exact orientation of one side of the robot (an angle between 0 and
90 degrees), but there is not sufficient information to determine the quadrant of
the angle. Thus, the quadrant is determined by correlating the movement history
(e.g., dx, dy) and current command (e.g., move forward) to the motion of the
robot.

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 107–114, 2001.
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The most difficult vision problems in the RoboCup domain is to determine
the identity of a robot. All other teams use unique features of the robots to
determine their id. As the number of robots increases it becomes more difficult
to find unique features that can be recognized efficiently and robustly. In our
system, the identity of the robot is determined through correlating the command
stream from the individual controllers to the observed behavior of the robot.

Section 2 describes the vision problems associated with the F180 league and
how these problems were addressed by other teams previously. Section 3 de-
scribes the design of Horus, the new video server of the All Botz. The results
of an empirical evaluation comparing the performance of Horus against that of
a traditional video server are shown in section 5. Directions for future research
and further improvements are shown in section 6.

2 Global Vision in the RoboCup

Most teams in the F-180 league of the RoboCup initiative use a global vision
system to obtain information about objects in the domain, including the robots,
the opponents, and the ball.

There are three important pieces of information that the global vision system
must provide: position, orientation, and identification. The following subsections
describe related work in obtaining the necessary information.

2.1 Position

The rules of the F-180 league require each robot to mount a colored table tennis
ball in the center of the robots. Each team is assigned a color (either yellow or
blue). The two goal boxes are also painted yellow and blue respectively. The
yellow team shoots on the blue goal and vice versa.

The position of a robot can easily be determined by the image coordinates
of this marker ball. Given the height of the robot as well as the extrinsic and
intrinsic camera parameters, this location can be mapped back to real world
coordinates. The All Botz use a pinhole camera model with two non-linear lens
distortion parameters.

The geometry of the All Botz video camera setup makes the accuracy of the
camera parameters more important and the computation of these parameters
more difficult than that of other teams. However, this side view setup is general
and versatile.

Briefly, a calibration pattern is used to find real world coordinates for a
number of image coordinates. This mapping from image to real world coordinates
is computed using an automatic iterative method. Given this set of calibration
points and their real world coordinates, the Tsai camera calibration method is
used to compute the parameters of the camera model [4].
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2.2 Orientation

Although a single point on the robot is sufficient to determine its position, addi-
tional information (e.g., a second point or a vector) is needed to determine the
orientation of a robot.

Most teams in the RoboCup competition use additional colored markers to
create a second point on the robot. In the simplest case, the two points have a
distinct color, which makes it easy to determine the orientation of the robot by
relating it to the orientation of the line between the two points.

The distance between the two points determines the accuracy of the orienta-
tion: the further apart the two points, the better the orientation. The maximum
length of the robot is limited by the rules.

The All Botz used this method previously with good success. The variance
in the orientation for a static object was less than 10 degrees at the far side of
the field.

2.3 Identification

One of the most difficult aspects of the vision processing is the visual identifica-
tion of robots. To be able to control a robot, the control system needs to know
the identity of the robot, so that the commands are sent to the correct robot
(e.g., Robot 3 move forward).

So far, the only solution to this problem suggested by teams competing in the
RoboCup are to use individual color markers, “bar codes” or manual tagging.

Most teams identify their robots through different colors. The major problem
is that it is non-trivial to find a parameters for a color model that allows the
detection of a color over the entire playing field.

Another possibility is to identify a robot using some easily distinguishable
geometrical pattern. Popular methods are to identify different patterns based on
their size or their aspect ratio.

A third possibility is to manually identify (tag) each robot before game starts.
For example, the user may click on robot one through five in turn. The vision
server then continues to track the robot until there is an occlusion or the robot
is occluded. This occurs usually during a stoppage in play.

This procedure is time consuming and error prone. Assigning an identification
takes about 30 seconds, but needs to be done in every stoppage in play. Also,
in the heat of battle it is easy to mistake two robots. Furthermore, as the skill
level increases and stoppages in play become less common, there will be fewer
chances to change an erroneous assignment.

3 The Horus Videoserver

The solutions described in the previous section have severe disadvantages since
they do not scale up to larger teams and to more flexible camera positions. If
we do not want to use additional patterns, then what else is there? The only
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information left is the image of the robot itself. So the goal was to design a
videoserver that uses only a single marker ball and no other patterns on the
robot.

Position information in the current implementation is still based on the
marker ball on top of the robot. Since the rules require this marker, it seems rea-
sonable to use it for position information. Since the processing of the orientation
(described in more detail in the next section) is computationally more expensive
than simple blob detection, the position information is used to “anchor,” that is
to constrain the following computation to a small subimage (approximately 64
by 64 pixels).

3.1 Orientation Information Using the Generalized Hough
Transform

Figure 1 contains three zoomed views of our robots from our video camera. The
views correspond to the worst case (i.e., the robot is at the far end of the playing
field) for our vision system. As can be seen, the most prominent features are the
edges along the top of the robot. Other features (e.g., the wheels are not always
visible and hard to distinguish). Therefore, we decided to use these edges as
features and to infer the orientation of the robot from them.

Fig. 1. Some sample images of our robots taken at the far side of the field

This idea faces an immediate problem, since the robots are almost square.
This means that it is impossible to determine the orientation of the robot from
a single image. Given the angle of the edge, there are four possible orientations
for the robot, which can not be distinguished without further information.

Furthermore, since all robots have exactly the same shape, it is impossible
to identify the robot. Therefore, we decided to use additional information (e.g.,
history of the cars, current commands, motion of the robot) available to the
video server to disambiguate the orientation and to identify the robot. This part
of the system is described in section 4.

Given the real world coordinates of the robot, the surrounding image corre-
sponding to a square area of the diameter of the robot is extracted. The max-
imum size of this window depends on the geometry of the camera position. In
most “practical” situations, the size of the window is less than 64 * 64 pixels.
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All further processing is limited to this local neighborhood. The image is divided
into four regions, which are shown in the Fig. 2.

– Pixels that are more than half a diameter away from the position. These can
not be part of the robot and are ignored.

– Pixels that belong to the marker ball or are very close to it. These pixels are
usually noisy and are ignored.

– Pixels that match the top color of the robot.
– Pixels that belong to the contour of the robot. These pixels are determined
after tracing the contour of the robot using a standard edge walking algo-
rithm.

Figure 2 shows the output for the three sample images given in Fig. 1. The
contour of the robot is shown in black. As can be seen, using even a very coarse
color calibration, the edges of the robot can be traced accurately even under
worst case conditions.

Fig. 2. The image of the robot after preprocessing. Pixels that are too far or too
close are ignored. Pixels matching the color of the top of the robot and pixels
on the contour

Given the position of the edge pixels, a general Hough transform is used to
compute the possible orientation of the robot in the first quadrant [1].

The Hough transform is a popular method in computer vision to find lines
and other shapes. The basic idea for the Hough transform is to collect evidence
to support different hypothesis. The evidence for different hypotheses is accumu-
lated and the hypothesis with the strongest support is returned as the solution.

Figure 3 shows an example of the geometry in our problem. Each edge pixel
can be at most on four possible edges (E1, E2, E3, E4 in the figure). It is easy to
see that

α = sin−1(w/d)
β = sin−1(l/d)

Therefore, the corresponding angles for the edges can be computed as:

E1 = θ + β
E2 = θ − β
E3 = θ + α
E4 = θ − α
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Fig. 3. The four possible edges E1, E2, E3, and E4 (and therefore, the possible
orientations) for an edge pixel (XE , YE)

Edges E1 and E2 are only possible solutions if the distance d between the
center point (XC , YC) and the edge pixel (XE , YE) is greater than the length of
the robot l. Similarly, edges E3 and E4 are only solutions if d is greater than the
width w of the robot.

In theory, this information is sufficient to determine the orientation of the
robot +/- 180 degrees. In practice, we normalize the angles to within 90 degrees,
since the distance between the edge pixel and the center point is noisy. This
makes little difference in resolving the disambiguity about the quadrant, since
for a car-like robot two of the four possible orientations can immediately be rules
out, since a car can not move sideways.

The hough space consists of a one-dimensional array with 18 entries, which
gives us a resolution of 5 degree. For each edge pixel, the value in the array for
that position is incremented. Finally, the angle corresponding to the maximum
value is returned.

4 Identification Using Bayesian Probability

As mentioned previously, since all robots in our team look identical, the vision
information is insufficient to identify them. Horus uses two additional sources
of information to determine the identity.

Horusmaintains a probability for the identity of each robot. We use a simple
Bayesian model to update this probability when new evidence is encountered.

Firstly, Horus predicts the motion of the robot and tracks it. Should the
robot be found in the predicted position, its identity and its associated proba-
bility is not changed. If the robot is found in the neighborhood of the predicted
position, its identity is not changed, but the probability in the identity is reduced
by a factor of 0.9 or 0.7, dependent on how far the robot was found from the
predicted position.
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Secondly, Horus observes the motion of the robot over a number of frames
and assigns it one of seven states: not moving, forward left, forward straight,
forward right, backwards left, backwards straight, and backwards right. The
actual steering angle is not determined, so there is no difference between, for
example, full left and gently left.

Initially as well as after some errors in the assignment, a robot will have an
unknown identity. If a robot has an unknown identity, Horus will assign it the
first free identity that matches the observed behavior of the robot. The initial
probability of this identity assignment is 0.5.

5 Evaluation

The performance of Horus was compared against the performance of our origi-
nal video server, both with respect to speed and accuracy. The evaluation shows
that the performance of the new videoserver is at least as good as that of our
original video server. The performance of the vision processing is not a limiting
factor in the overall system.

5.1 Horus’ Processing Speed

The Hough transform is a compute intensive method, which as a rule should
be avoided in real time applications. However, since the position of the robot
is known, only a small neighborhood (64x64 pixels) of the image needs to be
considered. Also, the number of edge pixels in that neighborhood is small. In
the worst case, there are 256 edge pixels. Also, the Hough space is reduced, since
we are not interested in the location of the line and since the possible orientations
are only between 0 and 90 degrees.

These factors explain why there is no noticeable difference in the process-
ing speed of the two videoservers. Both videoservers are able to maintain a 50
fields/second frame rate in the RoboCup domain with eleven objects.

5.2 Horus’ Accuracy

Evaluating the accuracy of the orientation information is more difficult.Horus is
unable to determine the orientation completely from just a single image or from
a stationary object.

Knowing the orientation of static objects is rarely useful though. We are
interested in moving our robots to their targets, so the accuracy of the orientation
information for a dynamic object is much more important. A dynamic evaluation
is more difficult than a static one, since we have no way of knowing the correct
orientation for a moving object.

We tested Horus by driving a simple pattern (a circle to the left in the
center of the playing field at constant speed) and by observing the orientation
information. The correct information was inferred from a kinematic model of the
robot. This test showed that the average error of Horus was slightly less (less
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than approx. 5 degrees) than that of our original videoserver (less than approx.
10 degrees).

Another factor that determines the quality of the videoserver is its inter-
action with the control algorithm. For example, it is unclear if the maximum
or average errors are more important. Therefore, we tested the interaction of
the orientation information with a non-holonomic control algorithm based on
Egerstedt’s controller ([3]. This control algorithm was used in time-trials on the
Aucklandianapolis race track ([2]) using orientation information from the two
video servers. The times were identical in both cases. The limiting factor for
the speed was in this case not the accuracy of the video server information, but
rather the latency in the control loop, which is at least 20ms.

6 Conclusion

This paper presents a new approach to vision in the RoboCup domain. Instead of
colored markers, the system uses geometrical features of the robots to determine
their orientation.

This means, that the only colored marker on the robots are marker balls,
which are used to determine the position of the robot. The orientation is deter-
mined by the projection of the robot in the image.

The system uses a generalized Hough transform to find edges in the neigh-
borhood of the position of the robot. These edges are used to determine four
possible angles (offset by 90 degrees) for the orientation of the robot.

The videoserver correlates the movement of the different robots with the
observed behavior to disambiguate the angles and identify each robot.
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Po. del Conde de los Gaitanes, 177, 28109 La Moraleja, Madrid, Spain

{aroa,rafgarcia,jmmunoz}@ree.es

Abstract. The present paper describes the objectives, structure, present
stage, results and future milestones of the project ELEVA. This project
is aimed to control an autonomous helicopter in order to follow an over-
head power cable by means of a stereo computer vision system. The
helicopter is aimed to have always in sight the overhead power cable, to
follow it by using it as an external visual reference guide and to record it
for its ulterior visual inspection. These objectives are achieved by using
a 3D computer vision system to generate the reference trajectory to be
followed and by using internal sensors to control its stability and its tra-
jectory. The paper presents the results obtained so far: visual detection
and tracking of the power cable, robust under changing environments,
and robust stationary control of the helicopter, now linked to a safety
mechanical platform. Finally this paper describes the future challenges
of the project and its temporal milestones.

1 Introduction

The ELEVA project is an application-oriented research project for the automatic
inspection of overhead power cables. Some top research institutes in the world
are developing unmanned helicopters able to follow predefined trajectories [3],
some of these projects use computer vision for recognition of the terrain and for
some kind of spatial orientation. Most of these unmanned helicopter projects use
the available accuracy of GPS systems for the global trajectory guidance [13].

1.1 Motivation

The key differing feature of this fully application-motivated project, which arises
directly from its main goal, is the fact that the helicopter uses the overhead power
cable-layout as a permanent visual guidance for its trajectory. This fact presents

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 115–124, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



116 Pascual Campoy et al.

two countered aspects. In one hand it has the advantage of having a permanent
physical guide for the helicopter to be used as its three dimensional reference.
And on the other hand, the cable has to be always in sight in order to be recorded
and inspected, i.e. the cable is not only an external reference but also the aim
of the helicopter flight, which has to be continuously followed.

The overhead power cable has to be in sight and recorded and it has to
be achieved continuously under a high variety of backgrounds and illuminations.
This fact encourages the desired robustness of the vision algorithms in a changing
outdoors environment. If the cable is instantly out of sight or if it becomes lost
anyhow, the vision system has to track the cable again and the helicopter has
to accomplish a recovering strategy in order not to lose any part of the cable to
be inspected.

1.2 State of Art

Nowadays dangerous tasks like rescues, inspections or works in contaminated
areas or military missions are performed by human piloted aircrafts. Some of
these tasks could be performed using autonomous systems. Modern navigation
systems like differential GPS, sophisticated inertial sensors and small powerful
computers allow to control small flying aircrafts.

Several universities have his own prototype that performs different tasks in
the annual UAV (Unmanned Aerial Vehicle) Competition (MIT, Stanford, CMU,
Georgia Tech...). The competition consists on simulations of real dangerous situa-
tions. Typically the helicopter must find some targets on ground using computer
vision and transport it to specific places marked. There are commercial heli-
copters used for spraying rice fields or look for fish banks in Japan [Sugeno 99],
others like Scandicraft and the CAMCOPTER by Schiebel.

Visual guidance of autonomous vehicles is one of the most recent and lively
research fields in Computer Vision. There are already quite a lot of research cen-
ters involved in developing of both aerial [2,13] and ground [10,11,12] (intended
to work in either indoor or outdoor unstructured environments) autonomous
vehicles. However, after studying the state-of-the-art it becomes that current
vision-based navigation systems are mostly focused on tracking strategies of
mobile ground references whose size and shape are well-known. In those cases
difficulties fall on locating such ground reference (as said above, an accurate
visual model is available for it), identifying its motion and, as a result of that,
assisting the control and navigation system of the helicopter in order for it to
be able to track that reference. In other cases, research goes into how certain
obstacles can be identified and avoided and static well-known ground objects lo-
cated. Such features are intended to emulate an actual unmanned aerial rescue
operation.

The present prototype of vision-guided autonomous helicopter differs from
those referred above in the properties of the reference that must be tracked, the
power cable, since such reference, even though static, is unbounded and does not
show any salient geometric features (like corners or edges) that can be modelled
for cable identification to get easier. As a result of that it can stated that the
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present helicopter actually brings up a new and challenging research project in
the field of vision-guided vehicles.

2 The ELEVA Project

The ELEVA project is a three year long project supported by the CICYT (Span-
ish National Research Program) and by Red Eléctrica de España, that is the
owner company of the transmission network within the Spanish electrical sys-
tem, and is responsible for its operation, maintenance and construction. The
project is planned to be finished at the end of year 2000, and after this period
the whole results of the project are to be evaluated and a work plan is to be
analyzed for its future extension.

The specific objectives to be fulfilled within the project ELEVA are scheduled
in three main millstones:

– Milestone 1:
1. Simulation system for 3D image acquisition, which includes the heli-

copter fight and several actual backgrounds.
2. Flight data acquisition using internal sensors when prototype is manually

controlled.
3. Cable detection and tracking in the simulated system for several illumi-

nation conditions and backgrounds.
4. Flight control of the prototype linked to an indoor safety mechanical

platform.
– Milestone 2:

1. Dynamic 3D co-ordinates estimation using stereo computer vision and
robustness analysis under changing environmental conditions.

2. Flight control of the helicopter linked to an outdoor six degrees of free-
dom platform, using its internal sensors.

– Milestone 3:
1. Autonomous unmanned flight of the prototype following a real overhead

power cable in a tested field, using both internal sensors and the com-
puter vision system.

2. Results evaluation and conclusions about the functionality of the devel-
oped prototype and analysis of its extrapolation to bigger prototypes.

3 General Structure of the Project

Figure 1 shows the architecture of ELEVA prototype. It can be differentiated
two subsystems, one on board the helicopter and the other in ground. On board
system is composed by sensors, microcontrollers, cameras, and wireless commu-
nications devices.

In order to estimate the attitude and the position of the helicopter an Inertial
Measurement Unit is used. It provides angular velocities and accelerations using
strap down systems navigation algorithms implemented into a microcontroller.
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Fig. 1. Architecture of ELEVA Prototype

This information goes to the ground control computer via radio link and also
to the on board control microcontroller. The use of a laser telemeter allows to
determine the distance between the craft and ground. Control algorithms use
this information to generate new servo references.

By other hand, using a commercial control panel for models, a man can su-
pervise the flight. If something not expected happens, only by touching a key the
human operator would take the control of the helicopter. The ground computer
sends high level commands to the on board controller, generating trajectories
corrections using the information from the vision system. In order to generate 3D
coordinates, two video cameras are mounted on the helicopter. Signals from these
cameras are multiplexed and sent to the ground image-processing computer. The
ground control and vision computers are connected by a local network. Image
processing computer is able to send movement commands to the cameras servos
trough the control computer using a specific interface with the control panel.

3.1 Autonomous Control

The helicopter model is based on other previous works by Furuta et al. [5] ,
Johansson [7], Persson and Klang [9] and Maki [8]. These studies conclude that
the helicopter model may be separated in two parts. The first part represents
the main rotor and the second one represents the tail rotor dynamic. The mini-
helicopter mathematical model is obtained in Aguirre et al. [1].
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Fig. 2. Control block diagram for pitch
and roll

Fig. 3. Control block diagram for
yaw

Robustness is considered as the main requirement of control in miniheli-
copters. The control action must give a precise answer at any time in such a
manner to minimize the risk of a crash. The helicopter has a very particular and
complex dynamics due to its couplings and high non-linearities. The first control
goal is to attempt to control the attitude of the craft (roll, pitch and yaw).

The first step to build a controller is to model the dynamics of the helicopter
near the operation point, which in our case is hovering. Once the mathematical
model is obtained using the empirical measurements from the craft, the next
step is to propose the type of control to be implemented. Due to the facilities of
the mathematical model represented in state space, a Linear Quadratic Gaussian
Control (LQG) is selected for controlling the roll and pitch of the craft in hover.

Linear Quadratic Control is utilized to calculate the controller necessary to
fulfill the planned objectives. Due to the fact that the only disposed variable is
position, it is recommended to estimate the other variables. To estimate variables
Kalman Filter is applied. The Linear Quadratic Gaussian Control refers to an
optimal control problem for a linear plant model in which Linear Quadratic
Control and Kalman Filter are utilized.

Figure 2 shows the block diagram utilized for control of the roll and pitch
movements of the craft. After the linearization in hover, the proposed linear
model will be composed of four states and two control variables. Due to the
use of potentiometers, only positions are acquired. The use of Kalman filter is
required to calculate the velocity, thus Kalman filter performs the estimation
of the variables. Once the state variables are obtained, the control action is
calculated using the Linear Quadratic Regulator [3]

An internal regulation is done using a piezoelectric gyroscope for the yaw.
A higher level regulation is obtained using a proportional control. The control
scheme for the yaw control could be seen in Fig. 3.

In hover, the control maintains the craft near hover as shown in Fig. 4. The
main characteristic of hover is that roll and pitch angles must be close to zero. It
can be seen that the three orientation angles, corresponding to the roll, pitch and
yaw angles of the minihelicopter, maintain their reference values of zero degrees
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Fig. 4. Roll, pitch and yaw in hover

with a small error. The control is obtained for the three angles and keeps the
helicopter in hover. The maximum error committed by the pitch and roll value
with respect the reference of 0 degrees is of 1 degree but in most of the samples,
the error is close to 0. For the yaw figure there are some peaks in short period of
time that the error approaches 3.5 degrees and then it maintains the value close
to the reference.

To evaluate the robustness of the controller, a test was carried out by disturb-
ing the helicopter attitude while it was in hover. The disturbances were imposed
upon the craft by pulling the helicopter out of the hover position with a cable
connected to the test platform. An air compressor was also used to disturb the
helicopter orientation. As can be seen in Fig. 5, the orientation of the helicopter
returns to the reference values once the perturbation is compensated by the con-
trols’ actions. The disturbances are introduced in sample 0 and in sample 400.
The outputs of the system show that the controller works very well leading the
helicopter to a stationary flight. The system delays 4 seconds in returning to the
reference values after the perturbations were imposed.

As seen in Fig. 5, the Linear Quadratic Gaussian Regulator calculated for
the roll and pitch movements behaves very well and is robust in the presence
of external disturbances. The PID control for yaw also works correctly in the
presence of external disturbances.

Fig. 5. Roll, pitch and yaw evolution in presence of disturbances
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Fig. 6. Simulator user interface for the Vision System

3.2 Vision Guidance

In order to justify why a visual guidance is needed just bear in mind how the
helicopter must fly: the reference that it has to follow is the cable itself, so global
coordinates systems would be useless for navigation (unless UTM coordinates
of every pylon were available, on-board navigation equipment included GPS
and, furthermore, both georeferences are accurate enough). What is more, there
are three conditions the flight must complies with all the time, one related to
trajectory and the two others related to position, always with respect to the line:

– a safety lateral distance (of about 8 m) related to the nearest cable must be
kept.

– a relative height with respect to such cable must also be guaranteed in order
to improve visual guidance accuracy.

– parallelism between the cable and helicopter trajectory must not be lost.

The first two topics are related to the so-called ”vision-based lateral control” [10]
and the latest to the ”longitudinal control” of the helicopter. These are the
majors goals reached so far:

– A software simulator for the on-board helicopter image acquisition system
has been built.

– Robust algorithms in order for the cable to be identified and tracked, over
both real an virtual image sequences, have been developed.

The software-based image acquisition simulator allows to generate virtual in-
spections according to any desired line topology and flight trajectory and to
obtain the sequence of images that a real inspection of such line would supply
if such trajectory were followed. This tool provides an excellent testbed since it
let assess the performance of differences line identification algorithms as well as
that of cameras pan-tilt positioning algorithms. Furthermore, extreme situations
can be simulated whose critical nature can derive from either how dangerous it
may become (e.g.: the helicopter approaches the line too much) or how difficult
visual tracking may get in such conditions. Figure 6 shows the user interface of
the application and one of the pair of images generated over a simulation.

Image processing algorithms intended to cable identification have also been
developed for both virtual (simulator-generated) and actual (coming from a real
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Fig. 7. Results of cable detection under several environments

inspection of the 400 kV line Aragñn-Escatrñn) sequences. Algorithms devel-
oped so far make possible for a single-circuit line to be identified and tracked
along a flight trajectory. Current work is focused on generalizing those results
for double-circuit lines. It must be noticed that images used to assess the perfor-
mance of these algorithms have been mainly those stemming from real inspection
sequences, since virtual images are not as complex as real images are. This fact is
due to the big variety of textures and types of grounds that real images bring up
as well as the presence of luminous reflections on the cables landscape features
and vegetation. Bear in mind that all these factors generally make line tracking
more difficult. Figure 7 shows some line identification examples over a set of
real images. Notice that certain landscape features, like tracks or furrows, can
suppose a problem to deal with.

The image processing algorithms that have been implemented exploit ad-
vanced techniques for straight lines detection, based on the vector-gradient
Hough transform [4] applied in a multiresolution strategy [6], that is to say, firstly
the approximate position of the line is determined and next a high-resolution
processing is carried out around that position. Once the line has been located
in the first image, only the second processing stage (high-resolution) has to be
run over the next images in order to track it., making use of the past history of
the line position for this task to become easier. Figure 8 shows the low and high
resolution Hough transforms applied on the first of the previous images.

The control structure of Fig. 9 ensures the visual tracking of the cable by
both cameras. The three dimensional position of the vision system (and therefore

Fig. 8. Hough transform of images for detection of most significant lines
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Fig. 9. Visual control structure

of the helicopter) is calculated from the orientation of the cameras tracking the
line. This data is deliver to the control system and also used by the individual
controllers of the cameras in order to adapt their internal parameters.

4 Future Stages and Goals

The final objective of the ELEVA’s project is to develop an autonomous aerial
vehicle capable to navigate by his own while it detects electrical fails in the
cable lines. To obtain the final goal of the ELEVA’s prototype the following
propositions are made to be developed:

– Integration of the vision system on board the minihelicopter utilizing DSP’s.
– Automatic detection of electrical lines visual failures.
– Developments of emergency routines on board the craft when communication

is lost.
– Development of a master-slave with force reflection system to teleoperate

the craft.
– Study of a bigger helicopter that could allow more payloads.

5 Conclusion

Use unmanned aerial vehicle for inspection of electrical power line allows a sig-
nificant reduction of cost and risk of this task. Two main problems must be
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resolved in order to achieve this objective: Visual guidance system and Auto-
matic unmanned helicopter control. In the actual stage, ELEVA project permits
the hovering control of the vehicle, and the location of the power line using com-
puter vision. In the future, other kind of fly control will be implemented and the
visual guidance system will be integrated with a GPS and a remote telecontrol
station in order to be able to perform power line unmanned inspection test.
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Abstract. With the population aging in most of the developed coun-
tries, using robot for health care and related service industry is of in-
creasing importance in recent years. This paper describes the design and
development of a 3D stereo vision-based [1] nursing robot for elderly
health care home. It focuses on presenting a novel image segmentation
method, and an innovative and effective method of locating the facial
features, which include the two nose points, for reliable mouth detec-
tion. A 3D stereo vision-based method for determining the 3D position
of the mouth is also described. Experimental results are discussed.

1 Introduction

The system consists of a six-axis seven drive modular robot, a vision sub-system,
and a voice recognition sub-system, as shown in Fig. 1.

The vision sub-system, which is 3D stereo vision-based, uses 2 cameras, and
acts as the eyes of the nursing robot. Its main function is to locate the mouth
of the person, and in determining the 3D positions, so that the robot can be
calibrated to feed the patient with food, or medical pills. The IC-Async frame
grabber from Imaging Technology, which is able to support up to 4 cameras, is

Fig. 1. 3D stereo vision-based nursing robot

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 125–130, 2001.
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Fig. 2. Stereo views of segmented image with two nose points above the mouth

used. The voice recognition sub-system, which is built in the central processor,
enables the patient to activate the radio or television through voice commands.
As a safety feature, the system is equipped with touch sensors.

2 Image Segmentation for Mouth Detection

The stereo images are first captured, and then the noises are filtered out through
median filter. The segmentation algorithm is then applied to detect the mouth.
The image segmentation algorithm can be divided into the following major steps:

1. The threshold value, which will change adaptively according to the environ-
mental lighting conditions, and the skin color of the person, is first set to a
fixed value of 100.

2. A 1st level decision algorithm that eliminates impossible blobs that might
be caused by unwanted noise and marking of the person is then executed.
These blobs are usually of much smaller sizes, and can be eliminated easily.

3. A 2nd level decision algorithm that makes use of the logical relationship
between the position of the nose and that of the mouth is next executed.
As the noise will appear as two black holes, the algorithm can determine
the nose positions easily, and uses the logical relationship between the nose
position and the mouth (nose will be above the mouth by a certain known
distance) to further rule out impossible matches. A typical segmented image
is shown in Fig. 2.

4. A 3rd level decision algorithm that ignores those blobs that are caused by
the hairs of the persons is executed next. These blobs are usually on the
sides of the ROI, and thus touch the boundary, as shown in Fig. 3.

5. If a reliable mouth that has two nose points above it and within acceptable
distance cannot be detected at both the stereo cameras, the threshold value
will be changed to a new value. Steps 2 to 4 are then repeated. The threshold
is changed adaptively, in a converging manner, until a reliable mouth is
detected.

Note that the computational speed for mouth detection is slower during the
system set up stage, which takes about 1 second, running on a Pentium III 450
MHz PC. Subsequent mouth detection can be determined at a much faster speed.
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3 Enhancing the Robustness of Mouth Detection

The above image segmentation was found working under many situations, except
for the situations where the nose shapes are sharp, and are thus more difficult to
locate. This section presents two methods of enhancing the robustness of mouth
detection.

3.1 Method 1: Inclusion of Eyes

In enhancing the algorithm, we first include the eyes of the patients’ eyes to
enhance the robustness of detection. Figure 4 shows the stereo images where
mouths are reliably detected, with the inclusion of eyes. That is, the eyes and
nose points act as the conditions in determining the location of mouth, as they
are above the mouth by a more-or-less fixed distance ranges, and thus similar
algorithms as explained in Section 2 can be used.

3.2 Method 2: Pointing the Camera Slighting Upward

The above inclusion-of-eye method works at the expenses of additional compu-
tational complexity in the detection of eyes and provided that the spectacles
are coated. Figure 5 shows that if the spectacles that the patients wear are not
coated, the eyes cannot be found reliably.

In view of the above limitations, we have adopted an innovative method,
which is more effective, in solving the problem, with better results and with no
increase in computational loads. The method is to lower the cameras to a level
that is lower than the mouth’s level by about 8.00 cm to 10.00 cm, and pointing
the stereo cameras upward so that the nose’s location can be extracted reliably,
regardless of the nose shape of the patient. This is shown in Fig. 6 below.

4 Determining the 3D Position of Mouth

Once the 2D location of the mouth is determined on both cameras, the next
step is to use stereo vision for finding the 3D mouth location. The 3D stereo
vision systems consist of two cameras, aligning in parallel, pointing towards

Fig. 3. Segmented image with hair that touches the side of the ROI boundary
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Fig. 4. Segmented stereo images with the inclusion of eye for enhancing the
robustness

Fig. 5. Segmented stereo images with non-coated spectacles (eyes cannot be
located)
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Fig. 6. Segmented stereo images with reliable mouth detection (with cameras
pointing slightly upward, and with coated spectacle)

the person. Such parallel alignment of cameras is adopted for the simplicity in
implementation. This in terms gives the speed needed when implemented on
Pentium III PC, for greater customer satisfaction.

As the environment is controlled, both cameras can image the mouth clearly,
within a selected field-of-view. As the patient, who sits on a wheel chair, will
be pushed by a human nurse to a position that his/ her mouth is within the
field-of-view of both cameras, no occlusion problem or strong specular-highlights
problems need to be resolved. The key problems are the changing skin color and
environmental lighting, which have already been tackled by the image segmen-
tation algorithm, as described in the previous sections.

5 Experimental Results and Discussion

It was noted that the image segmentation algorithm works reliably, especially
when the mouth is opened, which gives a dark spot, which is ideal for image
segmentation. As the patient have to open the mouth when they want to eat
their food, or taking the medical bills, the 3D stereo vision-based nursing robot
works reliably in the health care nursing home.

The camera-pointing-slightly-upward method has further improved the
mouth location algorithm, and it works with patients of all kind of nose shape
(sharp nose, flat nose, high nose etc..), and is regardless of whether the spectacles
that the patients wear are coated, or not.

The next task is to examine the 3D depth accuracy. System calibration is
carried out to determine the exact 3D coordinates of the person, by taking the
average and peak deviation of 50 actual and measured distances, for 4 different
persons having different skin color. The measurements are taken over the mea-
suring depth range of approximately 500 mm to 650 mm. The results obtained
show that it has a maximum distance deviation from the actual distance of only
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14.5 mm, which is acceptable to the present application. The distance deviation
is also within the tolerance of the mouth movement of the patient.

Better accuracy can be obtained by performing sub-pixel measurement, by
performing multi-file-of-view and multi-resolution image analysis, or through
adaptive movement of the robotic arm, which improves the accuracy, at the
expense of increased response time. As the fast response time of the nursing
robot is more important for greater customer satisfaction than the accuracy in
the present application, the system has not adopted these computational more
expensive approaches [2].

6 Conclusion

This paper describes the design and development of a 3D stereo vision-based [1]
nursing robot for elderly health care home. A novel image segmentation method,
and a simple and effective method of locating the two nose points, for reliable
mouth detection are presented. A 3D stereo vision-based method for determining
the 3D position of the mouth is also described. Experimental results show that
the 3D stereo-based vision system that we have developed for nursing robot can
effectively lessen the major problem face by the elderly health care industry.
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Abstract. For the EMS-vision system realized on distributed general-
purpose processors with a set of video cameras on an active gaze control
platform, an efficient method for exploiting area-based image informa-
tion has been developed (as opposed to edge features preferred in real-
time vision systems up to now). It relies on the same oriented intensity
gradient operators as have been used for edge localization in the past
(K(C)RONOS). However, the goal achieved now is fast derivation of
one-dimensional intensity profiles with piecewise linear shading models.
First, regions of large intensity changes (so-called ’non-homogeneous’ re-
gions) are separated from ’homogeneous’ ones containing at most mod-
erate intensity changes (to be specified by a threshold parameter). The
average intensity values and ternary mask responses in these areas yield
information for a coarse linear (first order) intensity model. Then, in the
homogeneous regions, the one-dimensional equivalent of a pyramid (a
triangle-) representation is derived for the residues between the actual
intensity values and the coarse linear model. Depending on the size of the
homogeneous region and the number of intensity peaks, a certain triangle
level for further processing is selected. Again, a (different) ternary mask
operator is used for intensity gradient computation and for finding the
zero-crossings of the gradient. This information is sufficient for determin-
ing the fine structure of regions with linear shading models. Examples
are given for road and vehicle detection and recognition.

1 Introduction

In the 4-D approach to dynamic machine vision, it has been proven that modeling
over time with dynamical models for motion representation can lead to advan-
tages in image sequence understanding, if the image evaluation frequency can
be kept sufficiently high for exploiting temporal continuity conditions (Wuen-
sche 1987; Dickmanns and Graefe 88). This is an extension of the well-known
Extended Kalman Filter (EKF) to perspective mapping. In order to achieve
fast image evaluation, image processing had been confined to intelligently con-
trolled edge feature extraction in certain areas based on expectations derived
from spatio-temporal predictions.

Most of the applications have been confined to well structured environments
like vehicle guidance on highways or landmark navigation for low flying aircraft

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 131–139, 2001.
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(Schell 1992; Werner 1997). The general method developed has led to third gen-
eration systems based on Commercial-off-the-shelf (COTS) hard- and software
components (Gregor et al. 2000); it has been dubbed ’Expectation-based, Multi-
focal, Saccadic’- (EMS-) Vision and makes use of a number of features developed
in biological vertebrate vision systems like: 1. Foveal-peripheral joint evaluation
of parallel visual data streams based on, 2. full spatio-temporal models for active
agents; 3. similar models for visual/inertial data integration. For the own body,
inertial measurements allow pose predictions almost without time delays; with
delay times in vision of typically several hundred milliseconds, this considerably
alleviates visual dynamic scene understanding under strong perturbations.

EMS-vision has been realized in object-oriented programming with the lan-
guage C++. The 3-D environment is represented by a scene-tree, the edges of
which are homogeneous coordinate transformations. The actual best estimates
for the states of all objects or components are collected in a dynamic object
database (DOB) common to all interacting distributed devices. With this gen-
eral framework in place, visual recognition has to be improved in order to lift the
performance level further. However, processing power still is not yet sufficient
to fully digest several video data streams in parallel in real time. This has led
to the concept of intelligently controlled 1-D ’cuts’ through image regions for
determining intensity profiles; proper selection of these cuts allows a wide range
of interpretations:

1. Equally spaced vertical stripes allow to understand the static environment
by sampling and interpolation;

2. at the same time, moving objects can be detected: they will receive special
attention by tracking groups of features with crosswise centering of search
stripes on them in future frames.

3. Looking almost parallel to the ground, horizontal lines in the images directly
correspond to distances on the ground. Linking this to features far away (near
the horizon) allows determining pitching motion of the own body (redundant
to inertial pitch estimation).

4. Specially oriented search stripes may allow tracking of important features, for
example, broken lane markings in perspective projection for vehicle guidance;
the corners of the lane markings allow distance and speed estimation not
available from solid lines.

2 Edge Localization with Ternary Masks

Oriented ternary mask evaluations in search stripes have shown to be very ef-
ficient because of multiple use of intermediate computational steps (Kuhnert
1988; Mysliwetz 1990; Dirk Dickmanns 1997). The expected edge orientation is
used first for collapsing all pixel within the mask width into a single (direction-
ally low-pass filtered) vector. The actual mask response is then computed using
combinations of these data; for example, a commonly used mask sums up n pixel
values to each side of a central region (e.g.: — -1 -1 -1 — 0 — +1 +1 +1 —).
The extremum value of this mask response yields the position of the strongest
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gradient in intensity; it may be determined to the precision of a small fraction
of a pixel.

The average intensity value in one half-field of the mask may allow associat-
ing some area-based information with the object part yielding the edge. This has
proven useful in the past for tracking objects in more complex scenes. Based on
this experience, the current approach has been developed for systematic appreci-
ation of intensity profiles in connection with spatio-temporal models of objects.
Homogeneous regions are to be separated from non-homogeneous ones, and the
homogeneous ones are to be represented by a few significant numbers for scene
interpretation like average intensity level, shading effects or some measure of
texture on different geometrical scales.

3 Image Stripes for 1-D Intensity Profiles

Of course, full image interpretation would require a 2-D analysis of the image
data; however, it is well known that for certain application areas with known
continuity conditions, crosswise 1-D sub-sampling will provide most of the in-
formation available in 2-D at a small fraction of the cost. Depending on the
homogeneity of the scene and on the geometrical scale to be resolved, different
stripe widths and orientations may be selected. This point is not elaborated
here; it may vary according to the field of application and the point of interest.
We start here from a stripe vector of width 1, into which the original stripe
has been condensed taking preferred directions into account. For this vector,
piecewise linear approximations to the intensity profile have to be found. These
analytically represented parameters and ranges are used as additional features
for object recognition and tracking in the recursive estimation approach underly-
ing EMS-vision (’4-D approach’ (Dickmanns, Wuensche 1999)). This embedding
assures both spatial (in 3-D) and temporal continuity conditions, respectively
points of discontinuity.

4 Separation of Homogeneous and Non-homogeneous
Regions

Discontinuities (like sharp edges) have to be preserved since they, usually, corre-
spond to boundaries between objects or regions of different qualities. Therefore,
the first step is to isolate regions with relatively strong intensity gradients. In
order to achieve this, first the response to the following mask over the entire
vector is evaluated: — -1 -1 — 0 — +1 +1 —; this operator, shown as heavy
line in Fig. 1, has the advantage of twofold smoothing. First, it averages two
values to each side (empty squares = image intensity at pixel position) before,
second, it forms the central difference known to be a second order approxima-
tion to the slope. One sixth of the mask response is a good approximation to the
slope d(intensity)/d(pixel) of image intensity in vector direction. Figure 2 gives
a typical response of this operator to a step change in image intensity. It shows
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Fig. 1. Visualization of mask response as slope of a function

twice the amplitude of the simple central difference (lower triangles), has a wider
range of response, but the same location of the peak. In many tests with typical
image data, this operator seemed to yield the best results in the average; it is
computationally not too expensive, and yet has a good smoothing effect. During
its computation, statistical data of the intensity distribution in the stripe are
also evaluated like: minimum, mean and maximum values of the intensity and
of the mask response (correlation values or intensity gradients).

A threshold factor for multiplying the difference between the maximum and
minimum correlation value is selected in order to arrive at an absolute threshold
value for separating homogeneous from non-homogeneous regions; factors be-
tween 5 and 30 More experience has to be accumulated in order to resolve the
question, how an optimal value can be selected automatically.

5 Linear Coarse (Low Spatial Frequency) Models for
Homogeneous Regions

With a threshold value fixed, all regions showing larger mask responses in mag-
nitude, or short ranges of smaller mask responses of extension smaller than a
minimal segment length ’segmin’ are collected as ’non-homogeneous segments’
in a separate statistic (CharNonHom). These represent regions in the image with
rapid intensity changes at rather large spatial frequencies. The other segments
with limited gradient values are represented with their statistical data in a ta-
ble (CharHom). These tables contain beginning and end of the segments, the

Fig. 2. Mask response (lower triangles) to step input (upper squares)
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minimal, maximal and mean values of image intensity and mask response, lo-
cation of appearance and other values of potential interest. Keeping track of
the mean values of both the signed and the unsigned mask responses (absolute
values) allows some insight into the average ’texture’ of the segment. Note, that
there are only two parameters to be specified beforehand, first the threshold
factor for multiplying the difference between the actually measured maximum
and minimum correlation value, and second the minimal segment length.

In EMS-vision, the new photometric data are used for grouping regions with
similar features in neighboring or orthogonal stripes into candidates for objects.
In this way, the 2-D extension of objects in the image can be explored with
relatively little effort (a few 1-D cuts). These regions are then tracked over time
(3 to 5 cycles); after arrival at a consistent feature set, a jump to a 4-D object
hypothesis (or several ones in parallel) is made encompassing three essential
ingredients: (3-D) shape, aspect conditions and dynamical model. This big jump
has been a standard step in the 4-D approach for over a decade and has proven
to be viable; the additional photometric aspects becoming available with the
present extension are used for arriving at more robust recognition processes.

The mean values of segment intensity and of mask response (the latter one
divided by 6 for obtaining the average single pixel intensity gradient (dI/dpel)),
yield a coarse straight-line approximation (I = a * x + b) to the intensity function
over segment length (from pixel k to pixel m, say). This allows to easily compute
the end points of this straight line. When the magnitude of ’a’ is small, a large
image segment may be characterized by the intensity value ’I’ from pixel k to
pixel m. The average value of the magnitude of mask response (relative to ’a’)
allows to judge the goodness of fit. The residues as differences between pixel
intensity measured and the value corresponding to the coarse-line- model are
taken as input to a second, finer approximation step. However, in order to be
efficient, a multiple scale representation like the ’pyramid’ in 2-D (Burt 1981)
has been chosen for this vector, yielding higher levels with half the pixel count
each level up. In correspondence, this is called ’triangle-representation’; it is
computed by averaging the intensity of two neighboring pixels on the lower level
into one on the next higher triangle level. This is repeated until the base vector
is represented by a small number of pixels (8 to 16 pixels have shown to be
convenient); this defines the index ’TriaLevMax’ up to which triangle levels are
determined. During this process, statistical information is collected on all triangle
levels, including the number of zero crossings; this information is stored in a table
like Table 1. It can be seen how maximal and minimal values of the intensity
in the stripe approach the mean value with increase in triangle level (rows 1, 3
and 5 from left to right), and how dynamic range is reduced due to averaging
(row 7). The mean magnitude of the intensity in relation to the intensity range
on the triangle level may increase (row 8). The location of occurrence of the
extremum values may jump (a factor of two downward from left to right would
be normal); the location of the maximum mask response (row 12) shows this
behavior. Depending on the grouping of pixel, the gradient values on the triangle
levels may increase considerably (rows 9, 11, 13 and 14). This is an indication for



136 Ernst Dieter Dickmanns

Table 1. Statistical data on image intensity and mask response — - 0 + — in
a homogeneous segment for the residues relative to the coarse linear model on
all computed triangle levels 1 to TriaLevMax

ipelmax = [177 88 44 22 11]; number of pixels on triangle level

TriaYChar

row 1 2 3 4 5 triangle level (TriaLev)

1 -96.5 -96.1 -94.6 -83.3 -64.5 minimum intensity Imin
2 143.0 72 36.0 18.0 9.0 minimum intensity location/pel
3 97.2 92.5 91.4 90.4 87.9 maximum intensity Imax
4 93.0 47 23.0 12.0 6.0 maximum intensity location/pel
5 3.56 3.55 3.55 3.55 3.55 mean intensity
6 41.4 41.5 41.3 41.0 40.3 mean —intensity—
7 194.0 188.0 186.0 173.0 152.0 intensity range Imax - Imin
8 0.214 0.220 0.222 0.236 0.265 mean —intensity—/(Imax-Imin)

9 -27.6 -37.7 -51.3 -88.4 -115.3 minimum mask response
10 11.0 6.0 3.0 2.0 1.0 minimum mask response location/pel
11 18.4 27.8 34.1 44.0 72.9 maximum mask response
12 69.0 87.0 43.0 8.0 4.0 maximum mast response location/pel
13 -0.14 -0.45 -1.25 -2.21 -5.24 mean mask response
14 6.60 11.4 19.6 33.9 50.6 mean —mask response—
15 -0.021 -0.040 -0.064 -0.065 -0.103 ratio —mask response—
16 37.0 13.0 5.0 3.0 3.0 number of zerocrossings

regions with rather smooth local brightness changes on a high-spatial frequency
scale, but large intensity changes on a low-spatial-frequency scale. This spatial-
frequency-dependent texture is reflected in the values of row 15.

The last line of the table shows the decrease of the number of zero crossings
of the mask response with triangle level. Zero crossings in the gradient function
correspond to extremum values in intensity. On the lower levels, many of these
occur due to noise corruption and minor local extremum values not of interest
here; a drastic reduction in zero crossings can usually be observed when mov-
ing up the triangle level. For capturing essential information on the finer but
not too local structure of the intensity signal, a linear representation between
extremum intensity values on a higher triangle level might be sufficient. This,
however, corresponds to a line segment interpolation in the region between two
zero crossings of the gradient mask response. This is done in a similar way as
for coarse segmentation.

6 Derivation of Medium-Spatial-Frequency Intensity
Structure from Suitable Triangle Level

Looking for at most half a dozen to a dozen piecewise straight-line approx-
imations in each homogeneous segment (for efficiency reasons), the following
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Fig. 3. Road scene analyzed with stripes selected; counting starts from top to
bottom (hor.) and left to right (vert.)

approach, based on the discussion above, has been selected. From the last row
shown in table 1, select that level ’TriaLevFine’ for further fine approximation
of the residues with linear sub-segments, for which the number of zero crossings
is below a limit value for the first time. In the example given, a value of 10 has
been selected as the limit, and TriaLevFine = 3 results. The ensuing interpola-
tion is done as follows: For a sub-segment to be accepted as a homogeneous one,
a minimal number of pixels ’SegMinTriaFine’ to the next zero crossing on the
level TriaLevFine is requested. This is equivalent to the number of pixels with
the same sign of the slope dI/dpel. Because of the magnification factor relative
to the original pixel base, a value around 3 has shown to be a good compromise.
The straight-line approximation again is obtained from the mean value of the
intensity and the mean value of the mask response, both localized at the center
of the sub-segment (all of this is done in original pixel values). If the condition
SegMinTriaFine is not met (the so-called non-homogeneous sub-case), two cases
may occur: A single such element is just ignored and no interpolation is done.
For several such cases occurring in a row (corresponding to a textured area on
this scale), the same interpolation is done as for the homogeneous case; however,
it may be specially marked. This approach has tried to avoid multiplications and
divisions for fast computation in real time; the results are surprisingly good as
may be seen from the next section.

7 Experimental Results

The algorithm (developed with Matlab) has been tested on a large number of
road scenes like the one given in Fig. 3. The grid shown by white lines are the
stripes for which the intensity profiles have been determined. The results for the
horizontal lines 8 to 10 are shown in Fig. 4. The horizontal scale units are image
pixels (1 to 768). Vertically, the image intensity is shown, basically, however with
a bias for showing the results of multiple stripes in a single image. The thin lines
are the result of coarse segmentation; it can be seen that for stripe row 10 the
shadow underneath and to the left side of the truck as well as the one underneath
the left car are clearly separated from the rest of the scene mapped. However,
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Fig. 4. Intensity profiles from three horizontal cuts (stripes 8 to 10 in Fig. 3,
spread vertically)

local shading effects are represented only poorly. The fine segmentation, however,
indicated by solid lines, yields sufficiently good information on local shading. In
the central part of Fig. 4 (horizontal stripe row 9) a cut through the lower
end of the truck body in front right (a typical non-homogeneous region from
fine-segmentation) is shown to the right; average intensity values are improved
as compared to the coarse segmentation result. The initial neighboring shading
effect to the left side on the truck body is represented well; then, however, the
part with constant lower shade bound has local intensity dynamics prohibiting a
line fit. [In EMS-vision, this situation would request attention by one of the tele-
cameras with improved resolution (factors 3 and 10).] The two cars to the left
with dark paint are clearly indicated as discontinuities from coarse segmentation.
Since this cut happens to go through the rear light group and the license plate,
the vehicle appears quite non-homogeneous on this level. Note, however, that in
our overall approach, each moving objects will be tracked by a separate tracker
(with its own representation in the scene tree and its own set of feature extractors
centering on the object by crosswise adjustment of search stripes from the 4-D
model).

The upper stripe (row 8) clearly shows the white body of the truck on the
left. The second truck in front and the two cars to the left, however, are cut
through the lower edge, respectively the upper part of the body where intensity
changes happen to be strong and inconclusive. This confirms previous experience
that boundary regions of vehicles have to be interpreted with special care; one
should concentrate on central regions and entire intensity profiles for robust
recognition. [Here, limited space does not allow discussion of the results derived
from the vertical stripes.]
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8 Conclusion

Vision is considered to be an animation process in the ’mental’ world of inter-
nal representations built from these knowledge elements on the one side and
feature collections derived from image sequence processing on the other side.
Area based features allow generating more secure object hypotheses and more
robust dynamic scene understanding. In addition to the frame-oriented stripes
shown for recognition of the general background, sets of local, cross-wise oriented
short stripes are scheduled for tracking each object in smooth pursuit over time
by prediction error feedback. The algorithm developed and its exploitation for
dynamic scene understanding allow a next step towards full area-based image
sequence analysis in real-time (several 2-D signals in parallel at video rate) with
computing power actually available at moderate costs. Linear shading elements
on a coarse and a fine scale are derivable with moderate computing effort from
ternary mask responses hitherto used for edge localization only. These additional
features are used for more robust object hypothesis generation and testing in the
4-D approach. Only a joint interpretation of intelligently selected horizontal and
vertical sets of stripes with edge positions will yield sufficiently robust feature
sets for starting and running 4-D estimation processes
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Abstract. In this paper, we show that randomized sampling and vot-
ing processes allow to treat linear flow field detection as a model-fitting
problem. If we use an appropriate number of images from a sequence of
images, it is possible to detect subpixel motion in this sequence. We use
the accumulator space for the unification of these flow vectors which are
computed from different time intervals.

1 Introduction

In this paper, we deal with a random sampling and voting process for linear
flow detection. In a series of papers [1,2], the author introduced the random
sampling and voting method for problems in machine vision. The method is an
extension of the randomized Hough transform which was first introduced by a
Finnish school for planar image analysis [3]. Later they applied the method to
planar motion analysis [4] and shape reconstruction from detected flow fields [5].
These results indicate that the inference of parameters by voting solves the
least-squares problem in machine vision without assuming the predetermination
of point correspondences between image frames. We show that the randomized
sampling and voting process detects linear flow fields. We introduce a new idea
to solve the least-square model-fitting problem using a mathematical property
for the construction of a pseudoinverse of a matrix. If we use an appropriate
number of images from a sequence of images, it is possible to detect subpixel
motion in this sequence. In this paper, we use the accumulator space for the
unification of flow vectors detected from many time intervals.

2 Random Sampling and Voting Process

For a system of equations

ξ�
α a = 0, α = 1, 2, · · ·m, (1)

setting
Ξ = (ξ1, ξ2, · · · , ξm)� , (2)
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the rank of matrix Ξ is n if vector xα is an element of Rn. Therefore, all n× n
square submatrces N of Ξ are nonsingular. Setting Nij to be the ij-th adjacent
of matrix N , we have the equality

fα1N11 + fα2N21 + · · ·+ fαnNn1 = 0, (3)

if the first column of N is ξ = (x�
α , 1)

�. Therefore, the solution of this system
of equations is

a = (n11, n21, · · · , nn1)�, ni1 =
Ni1√∑n
j=1N

2
j1

, (4)

that is, the solutions distribute on the positive semisphere. If the dimension of
the parameter of the model is 3, we have the solution

aαβ =
ξα × ξβ

|ξα × ξβ |
, (5)

for a pair of randomly selected vectors.
A generalization of this property is based on the following proposition.

Proposition 1 [7] Assuming that matrices P k and O are a k× k permutation
matrix and the (m − n) × n null matrix, respectively, for an m × n matrix A
such that m > n and rankA = n. Let vector c such that

b =
(
A−1

n O
)
c (6)

for
An = (P n O)P mA . (7)

Then it holds that vector c minimizes the criterion |c − Ax|2.
There are ambiguities for the selection of P n and P m. The proposition implies
that if an m× n system matrix is column full-rank,

1. selecting n equations from the system of equations, and
2. solving this nonsingular equation,

we obtain a solution of the least-squares optimization. If we randomly select
column vectors, this method also derives an extension of the randomized Hough
transform.

3 Flow Field Detection

Setting f(x, y, t) to be a time dependent gray-scale image, the linear optical flow
u = (u, v, 1)� is the solution of the linear equation

f�u = 0,
df(x, y, t)

dt
= f�u, (8)



142 Atsushi Imiya and Keisuke Iwawaki

where

f =
(
∂f(x, y, t)

∂x
,
∂f(x, y, t)

∂y
,
∂f(x, y, t)

∂t

)�
. (9)

Assuming that the flow vector u is constant in an area S, the flow vector in an
area is the solution of a system of equations

f�
α u = 0, α = 1, 2, · · · , N, (10)

where

fα =
(
∂f(x, y, t)

∂x
,
∂f(x, y, t)

∂y
,
∂f(x, y, t)

∂t

)�∣∣∣∣∣
x=xα,y=yα

(11)

for a sample point (xα, yα)� in an area S, see [8].
For a system of equations defined in eq. (10) in a windowed area, we have

a =
fα × fβ

|fα × fβ |
, a = (A,B,C)�, (12)

if we assume that |a| = 1. Furthermore, since u = (u, v, 1)�, that is, assuming
that ∂f(x,y,t)

∂t = 0, setting

u = λ(fα × fβ), α = (α, β, γ)� (13)

for a nonzero real constant λ, we have u = (α
γ ,

β
γ , 1)

�.

4 Computation of Subpixel Motion

For a sequence of images

Sm = 〈f(x, y,−m), f(x, y,−m+ 1), f(x, y,−m+ 2), · · · , f(x, y, 0)〉, (14)

setting f (k), which is computed from f(x, y,−k) and f(x, y, 0), to be the spa-
tiotemporal gradient between k-frames, we define the k-th flow vector u(k) as
the solution of a system of equations

f�
(k)αu(k) = 0, α = 1, 2, · · · ,m (15)

for each windowed area. From a sequence of images Sm, we can obtain flow
vectors u(1), u(2), · · ·, u(m), For this example, if we assume the size of a window
is a× a, we have (a×a)C2 ×m constraints among m frames.

Setting s = kt, we have the equation,

fx
dx

ds
+ fy

dy

ds
+ fs

ds

dt
= 0. (16)

Since ds
dt = k, this constraint between the flow vector and the spatiotemporal

gradient of an image derives the expression u(k) = (dx
ds ,

dy
ds , k)

� for the flow
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vector detected from a pair of images f(x, y, (−k + 1)) and f(x, y, 0). If the
speed of an object in a sequence is 1/k-pixel/frame, the object moves 1 pixel in
sequence S(k−1). Therefore, in the spatiotemporal domain, we can estimate the
average motion of this point between a pair of frames during the unit time as

uk = (
1
k
uk,

1
k
vk, 1)�. (17)

form vector u(k) = (uk, vk, k)�. We vote 1 to point uk on the accumulator
space for the detection of subpixel flow vectors from a long sequence of images.
Therefore, we can estimate the motion of this object from {u(k)}m

k=1 which is
computed from f(x, y, 1) and f(x, y,m). For the unification of vector field u(k),
we use the accumulator space.

In the accumulator space, we vote w(k) for u(k) for a monotonically decreas-
ing function w(k), such that w(1) = m and w(m) = 1. In this paper, we adopt
w(k) = {(m+ 1)− k}. This weight of voting means that we define large weight
and small weight for short-time motions and long-time motions, respectively.

5 Numerical Examples

We have evaluated the performance of the random sampling and voting process
for solving LMS in the flow-vector detection.

5.1 Evaluation for Synthetic Data

For this evaluation, we detected the flow vectors in synthetic images, the “Trans-
lating tree” and “Divergent tree.” We used frames 7, 8, 9, 10, and 11. In
these examples, the total number of combinations of linear constraints is 600. In
these examples, we detected flow vectors whose votes are more than 50%×600,
and we have evaluated the performance of the random sampling and voting pro-
cess for presmoothed images, because the gray levels of these images are not so
smooth for the detection of linear flow fields which are given as a collection of
linear constraints in windowed areas. In Tab. 1, we have listed the statistical
data for the performance analysis of the traditional method and our method.

In this evaluation, we have computed the angle φ

φ(x, y) = cos−1

(
v�

EvR

|vE | · |vR|
)

(18)

for each pixel where vE = (uE , vE , 1)� and vR = (uR, vR, 1)� are the expected
flow vector and the estimated flow vector of each pixel (x, y), respectively, for a
synthetic image sequence. Furthermore, we have used the averages and densities
of φ(x, y) over the domain. This table shows that the performance of our method
for obtaining smooth imagesequences with stationary motion is good compared
to the traditional method.
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Table 1. Statistics of Motion Detection

Methods Avarage Errors [deg] Density[%]

Proposed Method 11 1.75 25.8

Proposed Method 22 4.04 54.4

Horn and Schunck 3 λ = 0.5 11.16 100.0

Lucas and Kanade 4 λ ≥ 0.5 1.09 51.5

Nagel 41.76 100.0

Anadan 4.54 100.0

1. threshold=99%×600, with presmoothing.
2. threshold=90%×600, with presmoothing.
3. with presmoothing.
4. with presmoothing.
The definition of λ is based on Barron et.al [8]

Fig. 1. Detection of Subpixel Motion
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5.2 Detection of Subpixel Motion

The next evaluation is for the performance analysis of the multiframe effect for
the detection of slow motion. In this examples, we set the size of the windowed
area to be 5×5 for Fig. 1(b) and Fig. 1(c), and 7×7 for Fig. 1(d). Furthermore, we
have utilized frames 1, 2, 3, 4, 5, and 6. Without presmoothing, we detected the
median from the voting of all combinations for the selection of linear constraints.

Figures 1(a), 1(b), 1(c), and 1(d) show the original image for frame 1, the
flow field detected using frames 1 and 2, the flow field detected using frames 1
and 5, and the flow field detected using frames 1, 2, 3, 4, 5 and 6, and using
weighted voting in the accumulator space. In Fig. 1(b), we could not detect the
motion of a pedestrian because the speed of the pedestrian was 0.5 frame/pixel.
In Fig. 1(c), we can detect the motion of this pedestrian because, during 5
frames, the pedestrian moves 1.2 pixels. However, the flow vectors for three cars
contain large amount of error because during 5 frames these cars move 9 pixels.
Therefore, the lengths of flow vectors on each car are longer than the length
of the edge of windows. In Fig. 1(d), we could see good performance for the
detection of all moving objects in the scan. Furthermore, there is no error in the
background of the scan, although there exists errors on the walls of houses in
the results of “Lucas and Kanade”, as shown in Fig. 2.

In Fig. 2, (a) shows the flow field detected by “Lucus and Kanade” method,
and (b) the field detected by our method.

We compared the results for same images using Lucas and Kanade with
preprocessing. The preprocessing is summarized as follows [8].

– Smoothing using an isotropic spatiotemporal Gaussian filter with a standard
deviation of 1.5 pixels-frames.

– Derive the 4-point central difference with mask coefficients 1
12 (−1, 8, 0, 8, 1).

– The spatial neighborhood is 5× 5 pixels.
– The window function is separable in vertical and horizontal directions, and
isotropic. The mask coefficients are (0.00625, 0.25, 0.375, 0.25, 0.00625).

– The temporal support is 15 frames.

Fig. 2. Comparision of (a) Lucus and Kanade-method and (b) Voting Method



146 Atsushi Imiya and Keisuke Iwawaki

However, our method does not require any preprocessing. Therefore, we detect
the flow field from at least two images.

For “Hamburg Taxi,” our method detects all motions of a taxi which is
turning in the center of this scan and two cars which are crossing the scan in
opposite directions. Furthermore, the method detects the subpixel motion of
a pedestrian using five frames without presmoothing. However, we could not
detect a walking pedestrian using Lucas and Kanade method even if we used
the 15-frame support.

From these numerical results, the performance of our new method without
preprocessing is of the same level as Lucas and Kanade, which is a very
stable method. For the detection of flow vectors, we selected 50% combinations
of equations from all possible combinations of a pair of linear equations in the
windowed area. The weight for voting is considered as filtering. Therefore, our
method involves postprocessing for the detection of motion in a long sequence
of images.

For the detection of flow vectors at time t = 0, traditional methods require
the past observations

Pm = {f(x, y,−m), f(x, y,−m+ 1), f(x, y,−m+ 2), · · · , f(x, y, 1)}, (19)

the present observation N = {f(x, y, 0)}, and the future observations,

Fm = {f(x, y, 1), f(x, y, 2), · · · , f(x, y,m)}, (20)

if methods involves spatiotemporal smoothing. Therefore, the traditional meth-
ods involve a process which causes timedelay with respect to the length of the
support of a smoothing filter with respect to the time axes.

Our method detects flow vectors of time t = 0 using m images f(x, y,−m+
1), f(x, y,−m + 2), · · ·, f(x, y, 0), which are obtained for t ≤ 0, that is, the
we are only required data from past. As we will show our method does not
require any spatiotemporal preprocessing for this sequence. Our method permits
the computetation of flow vectors from past and present data, although the
traditional methods with spatiotemporal presmoothing require future data for
the computation flow vector. In this sense, our method satisfies the causality
of events. Therefore, our method computes flow vectors at time t = 0, just
after observing image f(x, y, 0). This is one of the advantages of our method.
Furthermore, in traditional method, oversmoothing delete slow motions in a
sequence of images. Our method preserves slow motions in a sequence of images
since the method does not require presmoothing. This is the second advantage
of our method.

6 Conclusions

In this paper, we showed that the random sampling and voting process detects
a linear flow field. We introduced a new method of solving the least-squares
model-fitting problem using a mathematical property for the construction of
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a pseudoinverse of a matrix. The greatest advantage of the proposed method
is simplicity because we can use the same engine for solving multiconstraint
problem with the Hough transform for the planar line detection. Our method
for the detection of flow vectors is simple because it requires two accumulator
spaces for a window, one of which is performed by a dynamic tree, and usually it
does not require any preprocessing. Furthermore, the second accumulator space
is used for the unification of the flow fields detected from different frame intervals.
These properties are advantagous for the fast and accurate computation of the
flow field.

References

1. A. Imiya, I. Fermin: Voting method for planarity and motion detection. Image and
Vision Computing, 17 (1999) 867–879. 140

2. A. Imiya, I. Fermin: Motion analysis by random sampling and voting process. Com-
puter Vision and Image Understanding, 73 (1999) 309–328. 140

3. E. Oja, L. Xu, P. Kultanen: Curve detection by an extended self-organization map
and related RHT method. Proceed. Internat. on Neural Network Conf., 1 (1990)
27–30. 140
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Abstract. Tracking a number of persons moving in cluttered scenes is
an important issue in computer vision. It is the first step of automatic
video-based surveillance systems. In this paper we present a binocular
vision system using stereo information for moving head detection and
tracking. After background subtraction, the remained foreground dis-
parity image is used as a mask to delete background clutter as well as
to reduce the search space, which greatly improve the tracking perfor-
mance when occlusion happens. With a local sampling method together
with the stereo information obtained, we are now able to reliably detect
and track people in cluttered natural environments at about 5 Hz on
standard PC hardware.

1 Introduction

Tracking multiple persons moving in cluttered scenes is a key problem in video
surveillance. It is also a challenging research topic in computer vision. The dif-
ficulty includes high-dimensional parameter space and complicated situations
such as occlusion.
Over the years numerous algorithms for person tracking have been proposed,

such as methods that use color information [1] and sets of point features [2,3],
and systems that use deformable template [4] and curved outlines [5], but all the
methods have difficulties in tracking multiple moving objects. That is because
they use only one attribute for global tracking. As the estimation progresses
over many frames, the posterior state density estimation may increasingly bias
towards objects with dominant likelihood. One solution is to keep multiple hy-
potheses about the object locations in image [6,7]. This allows a wider range of
motion to be supported by keeping enough information to recover from locally
bad situations. An obvious drawback of keeping multiple hypotheses is that as
the problem size increases, it rapidly becomes impractical to perform such an
exhaustive search for the object in real time. Another problem is it is unable to
adequately detect occlusions.
With the fast increasing processing speed of microcomputers, real-time

stereoscopic analysis becomes a reality. This paper presents an approach to near

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 148–156, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Tracking of Moving Heads in Cluttered Scenes from Stereo Vision 149

real-time person tracking in crowded environments with stereo information ob-
tained from a binocular vision system. Doing background subtraction with range
information makes the detection and tracking more robust to shadows and light-
ing changes [8]. Besides, occluding surfaces can also be found and dealt with.
This is one of the most important properties of stereo.
In the next sections of this paper we will introduce our stereo based tracking

system. Section 2 is an overview of our system; Section 3 and Section 4 introduce
how the stereo information is used in person detection and tracking; In Section
5 we present experimental results of the system, and Section 6 is the conclusion.

2 System Overview

The system architecture is shown in Fig. 1. The stereo system has two different
cameras, one color, one monochrome. The color camera is used for color based
person detection and recognition, which is not in the scope of this paper. For the
stereo based detection and tracking, we do not use the color information right
now. We first change the color image into 8 bit gray one, then the 2 gray images
are fed into the stereo unit, which performs efficient area correlation algorithm
to extract disparity information [9]. By a simple background subtraction, the
moving objects, whose disparities are different from the learned background,
will be isolated into different layers. Therefore, the influence of the cluttered
background is eliminated.

Fig. 1. Flowchart of the system

In detection, we use standard head-shoulder contours as our initial pattern
for each person. First we adjust each contour to several possible sizes according
to the disparity layer the person is in, then match them with edges in the masked
intensity image. By some adjustment of contours’ shape according to the moving
head they match, we create initial contour model set of each person in the
scene. All the obtained contour sets are sent to the tracking module, and will
be updated in each step of tracking operation. We use a local sampling method
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to track moving heads with these contour models, which greatly improves the
system performance. If a person is no longer recognized in the scene, the system
will delete him by eliminating his contour models from model sets. If there are
any unmatched moving objects in the scene, we treat them as new objects and
will call detector for them. The result will be added to the contour sets if they are
new heads. In next two sections we give detailed descriptions of the algorithms.

3 Person Detection by Head Contour and Disparity Info

The purpose of person detection is to get initial head-shoulder contours of each
person, which can be used in subsequent steps for fast and robust tracking. To
deal with background noise and occluded heads, we incorporate range infor-
mation from stereo vision since range information is less sensitive to lighting
conditions or extraneous motion.

3.1 Background Subtraction On Disparity Map

A pair of stereo images is taken from the binocular stereo vision system. A
disparity image is obtained from each stereo pair, using the area correlation
method. For an ideal pinhole camera with the optical axis being set to parallel
to the ground, the disparity is inversely related to the depth according to the
formula:

d = bf/z , (1)

where d is the disparity, z is the normal distance from the image plane to the
object, b is the baseline of the binocular stereo system, f is camera’s focal length.
The larger d is, the closer the object is to the camera plane. Observing that there
are more vertical feature lines than horizontal ones in an indoor environment,
we have set our cameras aligned vertically to get better distance resolution.
This setup will also help to accommodate people of different heights, which may
provide another useful feature for human recognition in the future.
We first apply Laplacian of Gaussian (LoG) filter on the input images. This

filtering enhances the image features as well as removing the effect of intensity
variations on images due to ambient light, difference of camera gains, etc. Sample
images before and after LoG filter are shown in Fig. 2.a and Fig. 2.b. Next, we
implement a correlation-based stereo algorithm following the approach taken by
Fua [9]. The algorithm computes similarity scores for every pixel in the image
by taking a fixed window in one image and shifting it along the epipolar line in
the other image. The scores are determined using the normalized mean-squared
difference of gray levels:

s = max(0, 1− c) , with (2)

c =
Σ((Iu(x + i, y + j)− Īu)− (Ii(x+ dx+ i, y + dy + j)− Īi))2√
Σ(Iu(x+ i, y + j)− Īu)2 −Σ(Ii(x+ dx+ i, y + dy + j)− Īi)2

.
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Fig. 2. Example images: (a) input image, (b) after LoG filter, (c) disparity image

Iu,Ii are intensities of the upper and lower image respectively. Īu,Īi are their
average values over the correlation window. and represent the disparity of x
and y along the epipolar line, the pair that maximizes s is the best answer. In our
system, the size of captured image is 384(W )× 288(H) pixels. After calibration,
the obtained epipolar line is almost vertical. Along the epipolar line from top to
bottom, the maximum dx is 5 pixels. That is, for a disparity searching range of
60 pixels, the difference of dx is only 1 pixel. Therefore, we set dx = 0 to make
calculation simpler without much error. A sample result is in Fig. 2.c. After
background subtraction, the obtained foreground disparity image is separated
into different layers. Each layer is a connected region contains only pixels of
similar disparities. For example, in Fig. 2.c there are two layers, one is brighter,
the other is darker.
After separating foreground objects into layers, we come to the next step:

find heads of people.

3.2 Head Detection

People detection is a computation intensive operation, involving searching over
the image and matching against the model. The problem is quite complicated
since a person may appear in different sizes (scale change), and facing different
directions.
To deal with different head orientations, we use a template of head-shoulder

contour, which is insensitive to head rotation. The initial model C0 is obtained
manually beforehand in the following way: First, take pictures of different per-
sons facing the camera. Next, draw points along their head and shoulder edges,
connect the points with B-Spline curves to get initial contours. Put these con-
tours together we get C0. To handle the scale change, the detection is carried
on in each layer, which can be divided into following steps (presume there are L
layers. i = n = 0):

1. Select the layer that is closest to cameras, labeled as Layer(d) (d is the
disparity)

2. Use Layer(d) as a mask to get the corresponding region in intensity image
as Id, do edge detection in Id to get the edge image Ed.
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Fig. 3. Samples of contour detection

3. Change contours in to suitable sizes with affine shape transformation by the
limit of disparity d to get candidate contours Cij , j = 1, ..., N .

4. For j = 1, .., N , match candidate contours Cij to the upper part of image Ed.
If the fitness of any Cij is higher than a threshold, we consider there is
a person in this layer, therefore create a candidate contour set Cn,k, k =
1, ...,M for him with best M contours in Cij , j = 1, ..., N .

5. Delete Layer(d) from current frame; n = n + 1; i = i + 1; if i < L, go to
step 1.

After head detection, the obtained contour set Cn,k of each person is sent to
the tracking module, which is used as his head model for subsequent tracking
operations. The detailed operation of step 3 is explained as follows: Consider a
person with width w standing a distance z from the camera, he should project
to a width w in the image plane, so by similar triangles we get:

z

w
=
f

w1
⇒ w1 =

fw

z
, (3)

combine with equation (1) we can get

w1 = d · w/b (4)

where w/b is a constant that can be measured in calibration step. When pro-
cessing the layer with disparity d, we change the size of contours C0 in by planar
affine shape transformation to make their width around w1. This transformation
is summarized as:

Cij =WXj + C0 (5)

where

W =
(
1 0 Cx

0 0 0 Cy
0

0 1 0 Cy
0 C

x
0 0

)
(6)

is a 6 degree shape matrix and

X =
(
a b c d e f

)T (7)

is a shape-space vector. For details, please refer to [10]. In detection, we use 25
predefined shape-space vectors to change each contour in C0 to get the initial
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Fig. 4. Occluded head detection with contour: (a) without stereo information,
(b) with the help of stereo information

sample contours. Figure 3 shows the robustness of our contour match algorithm.
See the left person, no matter how much he turns his head around, we can always
locate his head correctly.
Figure 4 gives a comparison between detection with and without stereo infor-

mation when occlusion happens. In left image, the contours are attracted by the
edges of the person in the behind, so the obtained contours are much larger than
the actual size of the person’s head in the front, and locate with deviation from
their right position. In the right image, because we can get proper contour size
from disparity, we locate the person in the front with suitable contours around
his head. The improvement is quite obvious.

4 People Tracking

In the process of tracking, we consider that at any time instance t, the state of an
object xt ∈ X is only influenced by its previous state xt−1. Its observation zt is
independent of other previous object states or observations. This is summarized
as

P (x1, ..., xn; z1, ..., zn) = P (x1)P (z1 | x1)Πn
t−2[P (xt | xt−1)P (zt | xt)] (8)

The tracking problem can be termed as the computation of the a posteriori
distribution P (xt | Zt) for given observations Zt = {z1, z2, . . . , zt}. To increase
speed, we use a sampling algorithm to estimate the a posteriori densities. In our
test, we use image coordinate system (x, y, d) to represent a 3D position with x
axis parallel to the ground and x−y plane vertical to the floor; d is disparity. The
position in world coordinate system (X,Y, Z) can be obtained from projection
transform.
Global sampling method such as the factored sampling algorithm used in [11]

has a disadvantage that many samples are required to get accurate estimation,
which is very time consuming. Therefore, we use a local sampling method in-
stead. Presume that each person moves no more than a speed limit in front of
the cameras, our algorithm is summarized as follows (after background subtrac-
tion, L persons in scene, i = 0):
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1. For person i, estimate his possible head centroid position

(xmin, xmax), (ymin, ymax)

and (dmin, dmax) for current frame from its last position (x1, y1, d1).
2. Threshold foreground disparity map between [dmin, dmax] to generate a dis-
parity layer, named Layer(d), which covers area within [xmin, xmax] and
[ymin, ymax]. If no layer is found, delete person i, i = i + 1. if i < L, go to
step 1; else, stop.

3. Map Layer(d) as a mask back to the input image to get the masked intensity
image Id. Do edge detection in Id to get the edge image Ed.

4. Create M samples Cij , j = 1, . . . ,M fromCi obtained in last step [11], change
each sample contour Cij to suitable size with affine shape transformation by
the limit of disparity d to get new candidate contours Cij,k, k = 1, . . . , N .

5. Match all N ×M candidate contours Cij,k to the upper part of image Ed.
Keep best M contours in Ci. If the maximum fitness of newly obtained
contours is less than a threshold, delete person i. Else, save person average
location (x, y, d).

6. Set i = i+ 1. If i < L, go to step 1; else, stop

The step 4 in tracking is similar to the step 3 in detection. The difference is,
in detection, because the contours in C0 are different from persons in scene, we
need to do more changes to find the best contours for each person. So we use
a larger N . In our test, each model contour is changed for 25 shapes. But in
tracking, because we take samples from contours obtained in last circle of the
same person, we only need to do small changes of the shape, so a smaller N will
be fine. In our test, we use N = 3, which greatly improves the tracking speed.
After all candidate persons are distinguished, if there are still some disparity

areas left, then we consider that there are new objects enter the scene. The
system will call person detection module automatically for these areas. Any
newly matched persons will be added to the candidate set automatically.

5 Experimental Results

Our binocular stereo vision system is connected to a standard PC with Intel
Pentium III processor at 700 MHz. For stereo, we use 2 CCD cameras aligned
vertically, one is SONY XC-73 CCD Monochromic Video Camera, the other is
SONY XC-003 Color Video Camera. The baseline of the system is 15cm, the
maximum disparity search is 60 pixels in a 384× 288 image.
To test the system, we place it inside an office room facing the door, as shown

in figures above. We catch three video sequences for our test, one contains one
person walking inside the scene, another contains two persons walking without
occlusion, and the last one contains two persons move with occlusion. We judge
the tracking performance as follows: If the obtained contour locates at the head
position of the person with a suitable size, we take it as ”good”, otherwise
it is ”not good”. By this criterion, we define two parameters: Tracking Rate
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Table 1. Experiment result of our system. TR: tracking rate, FM: false match

Persons in scene Has occlusion With stereo Without stereo

TR FM TR FM

1 no 93% 0% 90% 9%

2 no 92% 2% 86% 7%

2 yes 82% 6% 55% 20%

(TR),which is the percentage of person number that the best contour of him is
good to total person number appeared in all frames. False Match (FM) is the
frame percentage that has wrong match of contour to a place without a person.
The system performance can be seen in table 1. The result is obtained with a
preset of M = 10. To make compare, we also test the tracking result without
stereo information, which is also added into Tab. 1. We can find that the system
performance is greatly improved when occlusion happens.

6 Conclusion

In this paper we introduced our near real-time stereo based human head tracking
system. With the help of the range information obtained from stereo system, we
can greatly decrease the influence of occlusion. By using a stereo based local
sampling algorithm, we achieve a tracking speed of 5 frames per second with
images of 384 × 288 in size. We can also handle the situation such as newly
added person easily, which is very important for a robust surveillance system.
However our system still needs further improvement. For example, in Fig. 4,

when occlusion happens, it is quite clear that their are two persons in the scene,
and the one in the back is clear enough for us to recognize who he is. But for our
system, we lost him because the remained part of his head is quite different from
our head-shoulder contour model. We are currently working on combining skin
color model together with our contour model for a better detection and tracking
system.
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Abstract. Image-based effector servoing is a process of perception-ac-
tion cycles for handling a robot effector under continual visual feedback.
Apart from the primary goal of manipulating objects we apply servoing
mechanisms also for determining camera features, e.g. the optical axes of
cameras, and for actively changing the view, e.g. for inspecting the ob-
ject shape. A peg-in-hole application is treated by a 6-DOF manipulator
and a stereo camera head. The two robot components are mounted on
separate platforms and can be steered independently. In the first phase
(inspection phase), the robot hand carries an object into the field of
view of one camera, then approaches the object along the optical axis
to the camera, rotates the object for reaching an optimal view, and fi-
nally inspects the object shape in detail. In the second phase (insertion
phase), the system localizes a board containing holes of different shapes,
determines the relevant hole based on the extracted object shape, then
approaches the object, and finally inserts it into the hole. At present, the
robot system has the competence to handle cylindrical and cuboid pegs.
For treating more complicated objects the system must be extended with
more sophisticated strategies for the inspection and/or insertion phase.

1 Introduction

Image-based robot servoing (visual servoing) is the backbone of Robot Vision
systems. The book edited by Hashimoto [3] collects various approaches of au-
tomatic control of mechanical systems using visual sensory feedback. A tutorial
introduction to visual servo control of robotic manipulators has been published
by Hutchinson et al. [5]. Quite recently, a special issue of the International Jour-
nal on Computer Vision has been devoted to image-based robot servoing [4].

Our work demonstrates the usefulness of servoing for treating all sub-tasks
involved in an overall robotic application. The novelty is to consider servoing as
a universal mechanism for camera-robot calibration, active viewing, shape inspec-
tion, and object manipulation. Furthermore, we consider minimalism principles
by extracting just the necessary image information and avoiding 3D reconstruc-
tion, which leads to real-time usage. Related to the particular application of

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 157–166, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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peg-in-hole assembly operations it is favorable to integrate video and force infor-
mation [6]. Due to limited paper size, we concentrate on servoing mechanisms
for the vision-related sub-tasks of the overall peg-in-hole application.

As a survey, we describe (in Section 2) the components of the robot system,
present (3) the general measurement-based control mechanism, use (4) servoing
for determining the optical camera axis, apply (5) the servoing mechanism for
optimally viewing and inspecting the object (Fig. 1), and use (in Sections 6
and 7) servoing to suitably approach the object to the relevant hole (Fig. 2).

2 System Description

The computer system consists of a Sun Enterprise (E4000 with 4 UltraSparc
processors) for image processing and of special processors for computing the in-
verse kinematics and motor signals. The robot system is composed of a robot
manipulator including a hand with parallel jaw fingers and a robot head in-
cluding two monochrome, stereo cameras. Based on six rotational joints of the
manipulator the robot hand can be moved in arbitrary position and orientation
within a certain working space. Additionally, there is a linear joint at the robot
hand for opening and closing the two fingers. The tool center point is defined at
the position of the hand tip, which is fixed in the middle point between the two
finger tips. The robot head is mounted on a mobile platform and is equipped
with motorized pan, tilt, and vergence degrees-of-freedom (DOF). Additionally,
the stereo camera has motorized zooming and focusing facilities.

Fig. 1. Robot head, manipulator; ap-
proach an object towards a camera for
shape inspection

Fig. 2. Vision-based approach-
ing a cylindrical peg to a circular
hole

3 Mechanism of Measurement-Based Control

The robot system is characterized by a fixed state vector Sc which is inherent
constant in the system, and by a variable state vector Sv(t) which can be changed
through a vector of control signals C(t) at time t. State and control vector
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are specified in the manipulator coordinate system. A subsequent state vector
Sv(t+1) is obtained by a transition function f ts, e.g. addition of Sv(t) and C(t).

Sv(t + 1) := f ts(Sv(t), C(t)) (1)

A control function f ct is responsible for generating the control vector C(t).
It is based on the current state vector Sv(t), a current measurement vector Q(t)
and a desired measurement vector Q∗.

C(t) := f ct(Sv(t), Q(t), Q∗) (2)

A measurement function fms is responsible for taking and analyzing images, and
thereof generating the current and desired measurement vectors Q(t) and Q∗.
They are represented in the coordinate systems of the cameras.

Q(t) := fms(Sv(t), Sc) (3)

Control function f ct describes the relation between changes in different coor-
dinate systems, e.g. Sv(t) in the manipulator and Q(t) in the image coordinate
system. For defining this function, the Jacobian will be computed for a projec-
tion matrix M which linearly approximates (in projective spaces) the relation
between the manipulator coordinate system and the image coordinate system.

M :=


Mv

1

Mv
2

Mv
3


 ; with

Mv
1 := (m11, m12, m13, m14)

Mv
2 := (m21, m22, m23, m24)

Mv
3 := (m31, m32, m33, m34)

(4)

The usage of the projection matrix is specified according to [2, pp. 55-58].
Given a point in homogeneous manipulator coordinates P := (X, Y, Z, 1)T , the
position in homogeneous image coordinates p := (x, y, 1)T can be obtained.

p := fpr(P ) :=


fpr

1 (P )
fpr
2 (P )

fpr
3 (P )


 :=

1
ξ
· M · P ; with ξ := Mv

3 · P (5)

Matrix M is determined with simple linear methods by considering the
training samples of corresponding 3D points and 2D points. The scalar param-
eters mij represent a combination of extrinsic and intrinsic camera parameters
which we leave implicit. The specific definition of normalizing factor ξ in equa-
tion (5) guarantees that function fpr

3 (P ) is constant 1, i.e. the homogeneous
image coordinates of position p are in normalized form. The Jacobian J for the
transformation fpr in equation (5), i.e. for projection matrix M, is computed as
follows.

J (P ) :=




∂fpr
1

∂X (P ) ∂fpr
1

∂Y (P ) ∂fpr
1

∂Z (P )

∂fpr
2

∂X (P ) ∂fpr
2

∂Y (P ) ∂fpr
2

∂Z (P )


 :=




m11·Mv
3 ·P−m31·Mv

1 ·P
(Mv

3 ·P )·(Mv
3 ·P ) · · ·

...
. . .




(6)
Control function f ct is based on deviations between current and desired image

measurements and should generate changes in manipulator coordinates. For this
purpose, the pseudo-inverse of the Jacobian is relevant (see following sections).
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4 Servoing for Estimating Optical Axes

For estimating the optical axis of a camera relative to the basis coordinate system
of the manipulator we apply image-based hand-effector servoing. The optical axis
intersects the image plane approximately at the center. By servoing the hand-
effector such that the two-dimensional projection of the hand tip reaches the
image center, we finally obtain a 3D position which is a point on the optical axis,
approximately. By applying this procedure at two different distances from the
camera one obtains two distinct points located (approximately) on the optical
axis which are used for its estimation. Two virtual planes are specified which
are parallel to the (Y , Z) plane with constant offsets X1 and X2 on the X-
axis. The movement of the hand-effector is restricted just to these planes (see
Fig. 3). Accordingly, the generic definition of the Jacobian J in equation (6) can
be restricted to the second and third columns, because the coordinates on the
X-axis are fixed. A quadratic Jacobian matrix is obtained (with two rows and
columns) which must be inverted, i.e. J †(P ) := J−1(P ).

X

Y

Z

P1

P

X 1

2

X 2

x

y

Fig. 3. Hand-effector servoing for estimating
the optical axis of a camera

            

Fig. 4. Course of detected
hand tip towards image cen-
ter

The current measurement vector Q(t) is defined as the 2D image location of
the hand tip and the desired measurement vector Q∗ as the image center point.
Hough transformation and normalized cross correlation are used in combination
for detecting the hand tip in the images. The variable state vector Sv(t) consists
of the two variable coordinates of the tool center point in the selected plane
(X1, Y , Z) or (X2, Y , Z). With these redefinitions of the Jacobian we can apply
the following control function.

C(t) :=
{

s · J †(Sv(t)) · (Q∗ − Q(t)) : ‖Q∗ − Q(t)‖ > η
0 : else

(7)

A proportional control law is defined, i.e. the change is proportional to the de-
viation between desired and current measurements. Servoing factor s influences
the step-size of approaching the goal place. The hand position is changed by a
non-null vector C(t) if desired and current positions in the image deviate more
than a threshold η. According to our strategy, first the hand tip is servoed to
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the intersection point P1 of the unknown optical axis with plane (X1, Y , Z),
and second to the intersection point P2 with plane (X2, Y , Z). Figure 4 shows
for the hand servoing on one plane the succession of the hand tip extracted in
the image, and the final point is located at the image center. The two resulting
positions define a straight line in the manipulator coordinate system which is
located near to the optical axis. The estimated line will be used to approach an
object towards the camera for detailed inspection.

5 Servoing for Shape Inspection

Prior to the inspection phase of the peg-in-hole application the object must be
grasped with the parallel jaw fingers of the robot hand [7, pp. 127-129, 210-
217]. The grasped object is carried to a specific pose in the viewing space of one
camera. Concretely, the specific position is the intersection point of the optical
axis and the bottom rectangle of the pyramid viewing space, and the specific
orientation of the fingers is orthogonal to the optical axis. As an example, the
orientation of a grasped cylinder is such that the camera has an orthogonal view
from the top or bottom, circular cylinder face. Due to the large distance from
the camera (most distant viewing position), the depiction of the circular face is
small. In order to inspect the shape of an object face it is desirable to have the
face depicted in the image as large as possible. For this purpose, the robot hand
must be servoed along the optical axis towards the camera, which is illustrated
in Fig. 1 for one step of movement.

For this servoing process it is convenient to take as image measurements the
appearance of the robot fingers. Due to their well-known shape the fingers can be
extracted much easier (e.g. through Hough transformation) than the unknown
shape of the object. We take the width of a robot finger (number of pixels)
for defining current and desired measurement scalars (instead of vectors) Q(t)
and Q∗. Just as the measurements, also the control vector C(t) is a scalar. With
this definitions the control function of equation (7) can be applied for reaching
the optimal viewing distance. The Jacobian may be simply defined by constant
value 1, because servoing factor s can be used anyway for affecting the step-size.
After having finished the approaching process we obtain an acceptable size of
the depicted object, like in the first image of Fig. 5.

The inspection of the object shape is based on extracting the relevant region
in the image. Especially, the regions of the robot fingers must be suppressed. This
task can be simplified by first applying once again hand servoing. It is intended
to obtain a standardized (i.e. vertical) appearance of the robot fingers, as shown
in the second image of Fig. 5. For this purpose, the robot hand must rotate
around the optical axis with the tip of the robot hand taken as the rotation
center. For the servoing process we take as image measurement the finger tilt
relative to the vertical image axis. Just as the measurements, also the control
vector C(t) is scalar. Therefore, a simple control procedure can be applied.

The usefulness of the standardized finger appearance is to be able to apply
simple pattern matching techniques. We use the second image of Fig. 5, then
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Fig. 5. (a) Appropriate size of depicted situation; (b) Vertical appearance of
robot fingers; (c) Binary image with object and fingers; (d) Extraction of grasped
object

move the robot hand outside the viewing space and take an image from the
background. The subtraction of both images reveals a binary image contain-
ing only the fingers and the object (third image of Fig. 5). The suppression of
the finger regions is reached with given finger patterns which were acquired in
an offline phase under similar viewing conditions. Actually, it is this matching
process which can be performed efficiently due to the standardized finger ap-
pearance. The right image in Fig. 5 is obtained which contains just the relevant
object region. Undesired noisy effects (isolated white pixels) can be suppressed
by applying simple morphological operations.

Our approach for describing the shape of the region is based on the autore-
gressive model proposed by Dubois [1]. It results in a characterizing vector of
features which is invariant under region translation and rotation. The same ap-
proach is applied as well for describing the holes of the board which results in a
characterizing vector for each hole, respectively. Based on euclidean metric one
determines the hole whose shape is most similar to the shape of the peg. This
concludes the inspection phase of the peg-in-hole application. The second phase
consists in approaching the peg appropriately to the relevant hole.

6 Servoing for Object Assembly

The two cameras take images continually for the visual feedback control of ap-
proaching an object to a goal place. In each stereo image both the object and
the goal place must be visible for determining the distance between current and
desired measurement vectors, respectively. The critical issue is to extract the rel-
evant features from the stereo images. For example, let us assume a cylindrical
object and a circular goal place as shown in the first image of Fig. 6.

The binarization based on thresholding the gradient magnitudes is shown in
the second image of Fig. 6. In the next step, a specific type of Hough transfor-
mation is applied for approximating and extracting half ellipses (third image in
Fig. 6). This specific shape is expected to occur at the goal place and at the top
and bottom faces of the object. Instead of full ellipses we prefer half ellipses,
concretely the lower part of full ellipses, because due to the specific camera
arrangement this feature is visible throughout the complete process. From the
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Fig. 6. (a) Cylindrical object, circular goal place; (b) Thresholded gradient mag-
nitudes; (c) Extracted half ellipses; (d) Specific point on half ellipses of object
and goal place

bottom face of the object only the specific half ellipse is visible. The process of
approaching the object to the goal place is organized such that the lower part of
the goal ellipse remains visible, but the upper part may become occluded more
and more by the object. The distance measurement between object and goal
place just takes the half ellipse of the goal place and that from the bottom face
of the object into account. For computing a kind of distance between the two
relevant half ellipses we extract from each a specific point and based on this we
can take any metric between 2D positions as distance measurement. The fourth
image in Fig. 6 shows these two points, indicated by gray disks, on the object
and the goal place.

The critical aspect of extracting points from a stereo pair of images is that
reasonable correspondences must exist. A point of the first stereo image is in
correspondence with a point of the second stereo image, if both originate from
the same 3D point. In our application, the half ellipses extracted from the stereo
images are the basis for determining corresponding points. However, this is by
no means a trivial task, because the middle point of the contour of the half
ellipse is not appropriate. The left picture of Fig. 7 can be used for explanation.
A virtual scene consists of a circle which is contained in a square (top part of left
picture). Each of the two cameras produces a specific image, in which an ellipse
is contained in a quadrangle (bottom part of left picture). The two dotted curves
near the circle indicate that different parts of the circle are depicted as lower
part of the ellipse in each image. Consequently, the middle points p1 and p2 on
the lower part of the two ellipses originate from different points P1 and P2 in
the scene, i.e. points p1 and p2 do not correspond. Instead, the right picture of
Fig. 7 illustrates an approach for determining corresponding points.

We make use of a specific geometric relation which is invariant under geomet-
ric projection. Virtually, the bottom line of the square is translated to the circle
which results in the tangent point P . This procedure is done as well in both
stereo images, i.e. translating the bottom line of the quadrangle parallel towards
the ellipse to reach the tangent points p1 and p2. Due to different perspectives
the two bottom lines have different orientations and therefore the resulting tan-
gent points are different from those extracted previously (compare bottom parts
in left and right picture of Fig. 7). It is observed easily that the new tangent
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Fig. 7. (a) Extracted image points p1, p2 originate from different scene
points P1, P2; (b) Extracted image points correspond, i.e. originate from one
scene point P

points p1 and p2 correspond, i.e. originate from the same scene point P . This
kind of projective compatibility can be exploited for our peg-in-hole application.
The boundary of the board, which contains the holes, can be used as supporting
context for stereo matching. Accordingly, both the board and the object must
be fully included in the viewing space of both stereo cameras, respectively. For
each stereo image the orientation of the bottom boundary line can be used for
determining relevant tangent points at the relevant ellipse, i.e. virtually move
the lines to the ellipses and keep orientation. Tangent points must be extracted
at the half ellipse of the goal place and at the half ellipse of the bottom face of
the object. These points have already been shown in the fourth image of Fig. 6.

For defining the control vector we must describe the relationship between
displacements of the robot hand and the resulting displacements in the two
stereo images taken by the stereo cameras. For this purpose we introduce two
Jacobians J1(P ) and J2(P ) which depend on the current position P of the hand
tip. If we would multiply the Jacobian J1(P ) (respectively Jacobian J2(P )) with
a displacement vector of the hand position, then the product would reveal the
displacement vector in the left image (respectively in the right image). The two
Jacobians are joined together which results in a (4× 3) matrix depending on P .

J (P ) :=
(J1(P )
J2(P )

)
(8)

In order to transform a desired change from stereo image coordinates into ma-
nipulator coordinates the pseudo inverse J†(P ) is computed.

J †(P ) :=
(J T (P ) · J (P )

)−1 · J T (P ) (9)
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The current position P (t) of the hand tip defines the variable state vector Sv(t).
The desired measurement vector Q∗ is a 4D vector comprising the 2D positions of
a certain point of the goal place in the stereo images. The current measurement
vector Q(t) represents the stereo 2D positions of a relevant point on the object.

Q∗ :=
(

p∗1
p∗2

)
; Q(t) :=

(
p1(t)
p2(t)

)
(10)

With these new definitions we can apply control function of equation (7).

7 Peg-In-Hole Application for other Objects

The basic assumption behind the presented technique is that the peg can be
inserted successfully by taking only the shape of the bottom object face into
account. Accordingly, the object surface must be composed of a top and a bot-
tom face, which are parallel and of equal shape, and the other faces must be
orthogonal to them. Apart from cylinders this constraint also holds for cuboids,
whose treatment will be mentioned briefly (Fig. 8). The procedures involved in
the inspection phase can be applied without any change. However, in the in-
sertion phase we must consider that the object is not rotation-symmetric. In
addition to the positions of hole and object, also the orientations have to be
taken into account. Hough transformation and strategies for line organization
are applied for extracting the boundaries of object and hole, respectively [7, pp.
29-98]. Based on the hole boundary and the top face boundary of the object we
determine hole and object orientation. Furthermore, we take the middle point
of two appropriately selected boundary lines of hole and object to determine
their positions. Altogether, the current measurement vector Q(t) consists of 6
components with 3 for each stereo image. These are composed of one scalar for
the orientation and 2 scalars for the position of the object. Similarly, the desired
measurement vector Q∗ is defined for the hole. The control vector C(t) consists
of 4 components, i.e. three for the position and one for the horizontal orienta-
tion of the robot hand. Based on these definitions we determine the Jacobian
and apply the control function of equation (7). Figure 8 shows the peg-in-hole
application for the cuboid object, which includes in the second image the object
boundary and the selected point for defining the measurement vector.

8 Summary

For peg-in-hole applications we used a two-component robot system which con-
sists of a robot manipulator (including a parallel jaw gripper) and a robot head
(including monochrome stereo cameras). The usefulness of image-based hand-
effector servoing was demonstrated for characterizing the camera-manipulator
relation, for optimal viewing and inspecting the object, and for appropriately
approaching the object to the relevant hole. In our current implementation, one
servoing cycle for inserting the cylindrical peg requires about 0.5 seconds. Gen-
erally, the velocity depends on the complexity of the object shape.
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Fig. 8. (a) Grasped cuboid object; (b) Set of object boundary lines, selected
point specifying object position in the image; (c) Insertion of cuboid into rect-
angular hole

References

1. S. Dubois, F. Glanz: An autoregressive model approach to two-dimensional shape
classification. IEEE Trans. on Patt. Anal. and Mach. Intel. 8 (1986) 55–66. 162

2. O. Faugeras: Three-Dimensional Computer Vision. The MIT Press (1993). 159
3. K. Hashimoto: Visual Servoing. World Scientific Publishing (1993). 157
4. R. Horaud, F. Chaumette (eds.): Internat. J. of Computer Vision, special issue on

Image-based Robot Servoing 37 (2000). 157
5. S. Hutchinson, G. Hager, P. Corke: A tutorial on visual servo control. IEEE Trans.

on Robotics and Automation 12 (1996) 651–670. 157
6. M. Lanzetta,G. Dini: An integrated vision-force system for peg-in-hole assembly

operations. Intel. Comp. in Manufact. Eng. (1998) 615–621. 158
7. J. Pauli: Development of camera-equipped robot systems. Christian-Albrechts-

Universität zu Kiel, Institut für Informatik, Technical Report 9904 (2000). 161,
165



Robot Localization Using Omnidirectional Color

Images

David C. K. Yuen� and Bruce A. MacDonald

The Department of Electrical and Electronic Engineering
The University of Auckland, Private Bag 92019, Auckland, New Zealand

{d.yuen,b.macdonald}@auckland.ac.nz

Abstract. We describe a vision-based indoor mobile robot localization
algorithm that does not require historical position estimates. The method
assumes the presence of an a priori map and a reference omnidirectional
view of the workspace. The current omnidirectional image of the envi-
ronment is captured whenever the robot needs to relocalise. A modified
hue profile is generated for each of the incoming images and compared
with that of the reference image to find the correspondence. The cur-
rent position of the robot can then be determined using triangulation as
both the reference position and the map of the workspace are available.
The method was tested by mounting the camera system at a number of
random positions positions in a 11.0m × 8.5 m room. The average local-
ization error was 0.45 m. No mismatch of features between the reference
and incoming image was found amongst the testing cases.

1 Introduction

Under the traditional deliberative motion control architecture, a robot needs to
know its own position in the environment before making a navigation plan. If the
robot is first switched on or wants to re-position itself after getting lost, no reli-
able previous position estimates will be available for the localization stage. Many
common localization methods, notably dead-reckoning using extended Kalman
filtering [4], cannot cope with such a condition.

In this paper, we describe a passive, vision-based localization technique that
does not involve the use of historical position estimates, and takes advantage
of the richer information in an image. An omnidirectional imaging system is
introduced to provide color and textual information to the system. The distinc-
tive features from an incoming image are extracted using a region segmentation
method. The extracted features are then matched with those from a reference
image to generate matched landmarks. The placement of artificial landmarks in
the environment is unnecessary.

In section 2, we review previous work in vision-based localization methods
that do not require historical position estimates. Section 3 outlines our local-
ization approach. It also describes the image segmentation and triangulation
� This work was supported in part by the Foundation for Research, Science and Tech-
nology, New Zealand, with a Top Achiever Doctoral Scholarship.
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techniques adopted in the system. The test results are discussed in section 4
before summarizing the paper in section 5.

2 Maps and Landmarks

Map matching can usually be carried out without the use of an image. A local
map is first generated for the area around the robot, using the measurements
from a laser or ultrasonic range finder [2,7]. The local map is then matched
against different regions of a global map, at different orientations. Since the map
matching uses a local distance map, the localization process can be confounded if
objects with similar shapes are present in the environment. Also, the correlation
operation requires considerable computation.

Many industrial robots are guided by bar codes [5], reflective tape [3, p313–
317], ceiling light patterns [3, p472–477] or other artificial landmarks. A global
positioning system (GPS) is a notable example of an artificial emitter in an
outdoor navigation. While the landmark recognition step is usually quite simple,
the cost of laying out and maintaining the well calibrated landmarks can be very
expensive, and impractical in some environments.

Visual images usually have high spatial resolution and can provide details
such as the color and texture of the object being observed. With the extra infor-
mation provided by visual sensors, the robot can have a better understanding of
the complex surroundings. In many cases, natural landmarks can be extracted
from the incoming images.

Using the concept of a “view field” [1], tiny visual features may be extracted
from an image together with their relative spatial relations, to form a landmark.
The memory requirement for the storage of typical indoor scenes is thus reduced
to about 16000 bytes per m2. Both Lin and Zhang [6,8] process the sparsely
sampled omnidirectional image with neural networks to extract landmarks for
localization, in which 120 and 1600 bytes were retained respectively for each
image frame. While the storage of these landmarks requires only modest amount
of memory, the image capturing stage involves a lot of preparative work and
makes the localization system quite inflexible.

3 Vision-Based Localization System

Algorithm 1 shows the overall process of localization. Our method assumes an
a priori map for the environment. An omnidirectional image is used to simplify
camera motion; panning control is not required.

To locate the robot, a vertically central strip of an omnidirectional image is
segmented into regions by analyzing the horizontal hue profile, then matched
against region boundaries in a reference image, and triangulation is used to
calculate the new robot position.

The imaging system comprises two Sony EVI-D31 cameras and two OMT
SEQ-P1S frame grabber cards with a Pentium based controller, to be mounted on



Robot Localization Using Omnidirectional Color Images 169

Algorithm 1 Localize

1: On first invocation, call Initialize()
2: CurrentImage = ObtainImage()
3: Create all tokens of 3 consecutive region MHI median values for ReferenceImage
4: Create all tokens of 3 consecutive region MHI median values for CurrentImage
5: Find longest token match between ReferenceImage and CurrentImage
6: for each of the first, middle and last matching boundary pairs: do
7: Triangulate position from the map position of the boundary pair
8: end for
9: return the average of the three position estimates

ObtainImage:

1: Take 8 images at 45o increments, link them together to one image
2: Extract the 30 pixel high central strip
3: Calculate the MHI for each pixel in the strip
4: for each 10-pixel wide band do
5: Calculate the band MHI median
6: end for
7: Find region boundaries by differentiating the band median sequence
8: for each region between boundaries do
9: calculate the region MHI median
10: end for
11: return the sequence of region MHI values

Initialize:

1: ReferenceImage = ObtainImage()
2: Load the environment map
3: Calculate the map positions of boundaries in ReferenceImage

our mobile robot as a multi-purpose flexible vision system. To ensure controllable
images for testing the current development stage, a single camera is mounted on
a tripod. The images captured for this study have a resolution of 320×240 pixels
and a color depth of 24 bits. To facilitate comparing results, the zoom control of
the camera was adjusted for a view angle of 45o (horizontal) × 34o (vertical) at
84cm above the floor. At each location, 8 images were taken in 45o increments.
At present the camera head should face the same direction when taking the first
image amongst each series; the purpose is to discover the robot position and
later we expect to remove this constraint and also discover the orientation. The
8 images were linked together to form a panoramic view of the environment,
shown in Fig. 1. A horizontal strip of 2560×30 pixels is then cut from the center
of the omnidirectional image and used for the rest of the processing.

The representation of the image may be further simplified by extracting the
hue channel of an HSV model. For humans, color discontinuity often represents
separation between objects. While the hue channel is relatively immune to vari-
ations in illumination, some hue values have little meaning and are sensitive to
minor changes, notable values near white, gray and black. The modified hue
index (MHI) is then defined:
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a

b

Fig. 1. Omnidirectional view of the workspace: a) the original panoramic image.
b) The horizontal strip cut from original view, which is marked by the white
box shown in image a). (The view shown in b) has been stretched vertically for
better display.)

MHI =




−2/3 ∗ π S >= 0.15 and V >= 10 (black)
−1/4 ∗ π S < 0.15 and V >= 90 (gray)
−1/3 ∗ π S < 0.15 and V > 90 (white)
H otherwise (other colours)

(1)

where H,S,V represents the hue [0, 2π), saturation [0, 1] and value [0, 100].
The image is divided into 10-pixel wide vertical bands and the median MHI

is computed for each band. Most of the smaller uncharted objects, e.g. network
cable ducts, electric switches etc, are removed by band median filtering.

When viewing a large object, we may find regions with relatively constant
values in the MHI band median profile, as illustrated in Fig. 2. The regional
boundaries may represent object edges or distinctive changes in the surface fea-

Fig. 2. (a) The modified hue index profile. (b) the differentiation of the MHI
profile
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tures of objects. We can locate potential regional boundary lines by thresholding
the differentiated MHI band median profile. To facilitate the later matching op-
eration, a “region median” is calculated for each detected region by calculating
the median MHI of all the bands within the region boundaries.

3.1 Preparations for the Map and Reference Image

Since the band median filtering method removes minor features, the level of
detail required in the map is not high, and maps should not be difficult to
maintain. The complexity of the environment determines the minimum number
of reference images that needs to be taken. If the visibility of different parts of the
workspace to the reference point is blocked, more reference points are required.
In this study, a simpler environment was considered where only one reference
point was sufficient. The exact position of the reference point was determined
by surveying before taking the first image.

The viewing angle from the reference point to the edges of the large objects
can be calculated from the coordinates of the regional boundaries on the om-
nidirectional image. The map position of these objects can then be estimated
by extending the line-of-sight at the given viewing angle until an intersection is
formed on the map, as depicted in Fig. 3.

3.2 Localization System

An omnidirectional snapshot of the environment is taken whenever the robot
needs to re-locate itself, and the MHI is calculated to identify regions. Since
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Fig. 3. Mapping of the observed feature for the reference image. The map po-
sition of an observed feature can be found by extending the line-of-sight at the
given viewing angle until an intersection is formed
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the positions of large objects are known, the current position of the robot can
be identified using triangulation once enough matches have been established be-
tween boundary lines in the reference and current images, that represent features
in the map.

The feature matching process is crucial to the performance of the localization
stage. When the robot moves to different parts of the room, the relative size of the
regions on the MHI profile may change. Some features may become too small
and be left unaccounted for. Due to the presence of uncharted objects, some
unexpected features may appear while some expected ones may be occluded.
Also changes in reflectance of object surfaces may appear as features after MHI
processing. The proposed matching algorithm should be tolerant to these defects.

Omnidirectional images have the important property that the sequence of
modified hue regions remains the same, providing all the objects are still visi-
ble to the observer. A sequence of triples is formed for the reference image by
grouping the region median values of three consecutive regions (that is for re-
gions {(1, 2, 3), (2, 3, 4), (3, 4, 5), . . .}) into “tokens.” The list of region median
values for the current image is then searched to locate the possible matches for
each of the reference tokens. A match is declared if the region medians for each
of the three consecutive regions of current image are within a certain tolerance
from the respected regions of the reference token. The tolerance level was set to
5
36π radians in this study. Ideally, we can obtain a token sequence match from
the incoming image that contains as many regions as the reference. In practice
the longest token is taken as the best match.

The location and orientation of the robot (x, y, φ) can be found by solving
the following non-linear simultaneous equations:

tan(2 ∗ π − φ − θi) =
yi − y

xi − x
(2)

where xi, yi, represent the x, y coordinates of the ith object edge on the map,
and θi represents the observed angle of the ith object edge from the robot. See
Fig. 4 for further explanation.

0o

90o

φ

θi

(x, y, φ)

(xi, yi)

y

x

Fig. 4. Geometric conventions
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In this study, the camera head was aligned to a fixed direction before taking
the first image. The localization module thus needs to solve for only the two
position variables (x, y), So a minimum of two matched features are required.

As an initial investigation, the average is taken of three sets of position esti-
mates, which are generated by taking the observed angles of the first, last and
the middle regional boundaries of the longest token match from equation 2.

4 Results and Discussions

The vision-based localization method was tested in an 11.0m × 8.5m laboratory.
As shown in Fig. 5, nine random testing positions were generated. The test
results are shown in Table 1. The average localization is 0.45 m with a standard
deviation of 0.22 m. No mismatch was found between the reference and current
image when examined the longest token match for each testing case.
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Fig. 5. The testing environment for the localization algorithm. The influence
of partial occlusion is demonstrated. The dotted lines from location A and the
reference point represent their line-of-sight when supposedly viewing the same
edge of an object. Due to partial occlusion, the robot at location A is not really
the true edge and thus leads to a large localization error

Although the proposed method may not be accurate enough for the use
in a standalone localization system, that does not poise a serious problem. In
this study, we intend to develop a vision-based localization system that does
not depend on the historical position estimates. In this way, the relative rough
position estimates can be refined using more established localization methods,
such as extended Kalman filtering.
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Table 1. Localization error of the testing cases

Position A B C D E F G H I

x-coordinate (m) 5.57 2.11 3.93 2.70 5.58 4.53 2.95 1.98 3.69
y-coordinate (m) 2.98 3.10 3.82 4.14 4.91 5.13 7.02 7.43 7.79
localization error (m) 0.66 0.91 0.50 0.38 0.25 0.45 0.23 0.27 0.44

The test samples that give large localization error are located far away from
the reference point. The view can be quite different from that captured at the
reference point. For example, only a fraction of the partition can be visualized
at location A. As a result, the observed boundary at location A is not really the
true edge of the partition (circled with dots in Fig. 5) and thus leads to a large
error.

In the current system, the robot position was calculated using only three of
the matched features with the rest being discarded. These other matches could
potentially be used to improve the accuracy and robustness of the technique. In
addition, range sensors can be introduced to the system to reduce the ambiguities
arisen during various stage of the operation.

5 Conclusion

A vision-based robot localization system is proposed that does not involve the
use of historical position estimates. A modified hue profile is generated for each
of the incoming omnidirectional images. The extracted hue regions are matched
with that of the reference image to find corresponding region boundaries. As
the reference image, exact location of the reference point and the map of the
workspace are available, the current position of the robot can be determined by
triangulation.

The method was tested by placing the camera set-up at a number of different
random positions in a 11.0m × 8.5m room. The average localization error was
0.45 m. No mismatch of features between the reference and incoming image was
found. While the proposed localization method may not be sufficiently accurate
if used alone, it provides a good initial position estimate for the use of other
more established localization methods, such as extended Kalman filtering.
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Abstract. This paper reviews papers on tracking people in a video
surveillance system, and it presents a new system designed for being
able to cope with shadows in a real-time application for counting people
which is one of the remaining main problems in adaptive background
subtraction in such video surveillance systems.

1 Introduction

Video surveillance systems seek to automatically identify events of interest in
a variety of situations. Example applications include intrusion detection, activ-
ity monitoring, and pedestrian counting. The capability of extracting moving
objects from a video sequence is a fundamental and crucial problem of these
vision systems. For systems using static cameras, background subtraction is the
method typically used to segment moving regions in the image sequences, by
comparing each new frame to a model of the scene background, see, e.g., [6,13].

1.1 Evaluation Criteria

When the above methods are applied to a video surveillance problem, there are
a number of key attributes and scenarios that must be handled. These are:

– The choice of models for key components.
– Initialization of the model parameters when the system is first started.
– Distinguishing objects of interest from illumination artifacts such as shadows
and highlights.

– Handling uncontrollable illumination level changes, such as occur in outdoor
scenes.

– Adapting to changes in the scene, such as when a new chair is introduced
into a restaurant.

– Detecting when something is wrong with the processing, and re-initialization
in response.

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 176–183, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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2 Review of Existing Methods

In this section, we discuss existing methods with respect to the choice of a
background model and how it is maintained in the face of illumination changes,
how the foreground is differentiated from the background, and what strategies
are used to correct classification errors.

2.1 Background Models

The simplest and most common model for the background is to use a point
estimate of the color at each pixel location, e.g., [12]. This point estimate is
usually taken to be the mean of a Gaussian distribution. In some systems, e.g.,
[17], the variance of the intensity is also modelled.

To cope with variation in the illumination, the background estimate Bt has
to be updated with each new image It. In [12], this is updated using

Bt+1 = αIt + (1− α)Bt (1)

In [5], the background is maintained as the temporal median of the last N frames,
with typical values of N ranging from 50 to 200. The updating of the background
estimate is often restricted to pixels which have been classified as background.
In [9,10,11], three parameters are estimated at each pixel: M, N, and D, which
represent the minimum, maximum, and largest interframe absolute difference
observable in the background scene.

Such simple background estimates fail to cope with scenes which contain
regularly changing intensities at a pixel, such as occurs with flashing lights and
swaying branches. Several more complex background models have been devel-
oped to handle such scenarios. In [7,20,14], each pixel is separately modeled by
a mixture of K Gaussians

P (It) =
K∑

i=1

ωi,t · η(It;µi,t, Σi,t) (2)

where K = 4 in [14] and K = 3 . . . 5 in [20]. In [7,20], it is assumed that
Σi,t = σ2

i,t · I. The background is updated before the foreground is detected.
In [4], three background models are simultaneously kept, a primary, a secondary,
and an old background. They are updated as follows:

1. The primary background is updated as in (1). At pixels marked as foreground
a much reduced value of α is used.

2. The secondary background is updated as in (1), but only at pixels where the
incoming image is not significantly different from the current value of the
secondary background.

3. The old background is a copy of the incoming image from 9000 to 18000
frames ago. It is not updated.
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In [21], two background estimates are used which are based on a linear predictive
model:

Bt = −
p∑

k=1

akIt−k and B̂t = −
p∑

k=1

akBt−k (3)

where the coefficients ak are reestimated after each frame is received so as to
minimize the prediction error. The second estimator B̂t is introduced because
the primary estimate Bt can become corrupted if a part of the foreground covers
a pixel for a significant period of time. As well as the above, an estimate of the
prediction error variance is also maintained:

E(e2
t ) = E(I2

t ) +
p∑

k=1

akE(ItIt−k) . (4)

2.2 Foreground Detection

The method used for detecting foreground pixels is highly dependent on the
background model. But, in almost all cases, pixels are classified as foreground
if the observed intensity in the new image is substantially different from the
background model, e.g., varies bymore than a predefined threshold, or by a fac-
tor dependent on the variance estimate also maintained within the background
model. In systems that maintain multiple models for the background, then a
pixel must be substantially different from all background values to be classified
as foreground. In [4], an adaptive thresholding with hysteresis scheme is used.

In the mixture of Gaussians approach, the foreground is detected as follows.
All components in the mixture are sorted into the order of decreasing ωi,t/‖Σi,t‖
and pixels matching the first couple are marked as background.

In [21], which uses two predictions for the background value, a pixel is marked
as foreground if the observed value in the new image differs from both estimates
by more than a threshold τ = 4

√
E(e2

t ), where E(e2
t ) is calculated in (4).

2.3 Error Recovery Strategies

The section above on background models describes how the various methods are
designed to handle gradual changes in illumination levels. Sudden changes in
illumination must be detected and the model parameters changed in response.
In [21], the strategy used is to measure the proportion of the image that is
classified as foreground and if this is more than 70%, then the current model
parameters are abandoned and a re-initialization phase is invoked. In [12], if a
pixel is marked as foreground for most of the last couple of frames (the values of
‘most’ and ‘couple’ are not given), then the background is updated as Bt+1 = It.
This correction is designed to compensate for sudden illumination changes and
the appearance of static new objects.

Another common problem are regular changes in illumination level, such
as that from moving foliage. Multiple model schemes such as the mixture of
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Fig. 1. Value distribution in the Blue channel of a region of the background: left
- with shadow, right - without. This shows a typical situation: shadow means
reduced intensity and reduced ‘dynamics’

Gaussians explicitly handle such problems. However, they present a problem
for single model schemes. In [12], to compensate for these problems, a pixel is
masked out from inclusion in the foreground if it changes state from foreground
to background frequently.

3 An Approach Incorporating Foreground Classification

The purpose of foreground classification is to distinguish objects of interest such
as pedestrians from illumination artifacts such as shadows and highlights. This
is usually accomplished by evaluating the color distribution within a foreground
region [13]:

A shadow region has similar hue and saturation to the background but a lower
intensity (see Fig. 3).

A highlight region has similar hue and saturation to the background but a
higher intensity.

and, consequently, an object region has a different hue and saturation to the
background.

3.1 The Background Model

The background observed at each pixel is modelled by a multidimensional Gaus-
sian distribution in RGB space. The estimates of the mean and variance are
updated with each new frame at pixels that have been classified as background,
as follows:

µ = (1− α)µ + αIi
σ2 = (1− α)σ2 + α(Ii − µ)2

Here, α is the predefined learning rate. Initially the distributions of the back-
ground are not known. The mean is initialised with the value in the first frame.
The variance and brightness distortion are initialised with arbitrary large values.
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3.2 Pixel Classification

Each pixel in a new image is classified as one of background, object, shadow,
or highlight. Pixels are classified as background if the observed color value is
within the ellipsoid of probability concentration (the region of minimum volume,
centered around the background mean, that contains 99% of the probability mass
for the Gaussian distribution).

The distinction between objects, shadows, and highlights among the pix-
els not classified as background is made using the brightness distortion [13].
This detects shifts in the RGB space between a current pixel and the corre-
sponding background pixel. Let Ei represent the expected background pixel’s
RGB value, Ii represents the current pixel’s RGB value in the current frame,
σi represents its standard deviation. The brightness distortion αi is obtained by
minimizing φ(αi) = (Ii − αiEi)2. If the current pixel’s intensity is greater than
the background intensity and the current pixel’s brightness distortion value is
less than the corresponding background pixel’s brightness distortion value, this
pixel will be marked as highlight. If the current pixel’s intensity is less than the
background intensity and the current pixel’s brightness distortion value is less
than the corresponding background pixel’s brightness distortion value, this pixel
will be marked as shadow. Otherwise the pixel is marked as an object of interest.

4 Our Results

Figure 2 shows that the algorithm works accurately in a uniformly lighted scene:
The moving person is marked as light green, the shadow is marked as dark red
successfully. Figure 3 shows how the algorithm is able to cope with global il-
lumination changes after adding two extra lights. Figure 4 shows a result after
initialization by using static frames without moving people. We obtain good
foreground subraction and shadow detection results in real-time. Figure 5 shows
that after static initialization, the background model can be updated adaptively.
The algorithm updates a new background model while frames with moving peo-
ple are captured. It also illustrates the robustness of background updating. Even
when we capture a very different frame with moving people, this algorithm still
can refine the background model and we obtain good subtraction results.

5 Conclusion and Further Work

This paper presents and discusses a background subtraction approach which
can detect moving people on a background while also allowing for shadows and
highlights. The background is adaptively updated. The approach has been tested
in RGB space. The method is efficient with respect to computation time and
storage. It only requires to store a background model and brightness distortion
values. This allows real-time video processing.

The method has a number of limitations that will be addressed in future work.
A static background without moving people is needed during the initialization
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Fig. 2. Backgrond subtraction for uniform lighting: left - the original frame,
right - the result after background subtraction

Fig. 3. Backgrond subtraction for lighting coming from window plus two extra
lights: left - the original frame, right - the result after background subtraction

Fig. 4. Here, all frames before the current frame have been static (i.e. without
moving people): left - the current frame, right - the result after background
subtraction
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Fig. 5.Here, starting with static frames (i.e. without moving people) we continue
with 5 frames showing moving people until the current frame: left - the current
frame, right - the result after background subtraction

phase, otherwise it takes a substantial amount of time to reliably classify pixels
as foreground. Very dark parts of people are still classified as either background,
or shadows. Another limitation is that shadows on very dark backgrounds or
several shadows added together will not be detected effectively. Bright highlights
are also a problem because of saturation in the camera sensor.
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Abstract. This paper deals with stable monotonic matching (SMM),
which is a generalization of stable matching that includes ordering con-
straint. The matching algorithm is fast, does not optimize any explicit
cost functional, processes one epipolar line at a time, and requires only
two parameters for disparity search range.
A designed experiment demonstrates that SMM has no occluding bound-
ary artifacts, that it detects half-occluded regions reliably even if they
are wide, and that it rarely misses thin objects in the foreground, unless
the ordering is violated. On the other hand, the resulting disparity map
is often not dense, especially in weakly textured areas.

1 Introduction

Stereo matching is one of the inverse problems well known in computer vision.
Because of its ill-posedness much work has been devoted to posing the problem
such that a prior continuity model could be incorporated while keeping the com-
putational complexity of the matching algorithm low. Since the classical heuristic
solution due to Pollard, Mayhew and Frisby [7] many authors tried to pose the
problem in the framework of statistical estimation theory. The difficulty was that
discontinuities and half-occlusions must be accounted for. The ML estimators
of early 90’s, based on dynamic programming, were later put on a more sound
basis by Belhumeur [1] (assuming continuity along epipolar lines) and by Robert
and Deriche [8] (assuming isotropic continuity prior). Recent disparity compo-
nent matching [2] and network flow [6,9] formulations of the matching task also
include isotropic prior model but their computational complexity is lower.

Standard stereo matching algorithms that incorporate a prior continuity
model often produce mismatches when the image SNR is low. They fail when
the prior model becomes locally stronger than the constraints given by the in-
put data, which results in interpolation of the solution within the boundaries
surrounding the weakly-textured region. But such interpolation is quite often
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erroneous, especially in scenes of deep range and relatively thin objects (like
trees scene in a park). A low match error rate becomes important when point
models obtained from partial views by stereo matching are to be interpreted by
a high-level geometric model.

This led us to the formulation of stereo matching problem that relies just on
the evidence available in input data and that does not involve any prior models.
Rather than interpolating the textureless areas it rejects all matches there but
does not require any prior match rejection threshold to be chosen. The approach
is based on the notion of stability which turns out to be a powerful constraint
for stereo matching. Like the known ordering constraint it only requires certain
condition to hold. But unlike the ordering constraint it provides a necessary and
sufficient condition for the existence of a unique matching. Since no optimization
of a criterion function is directly involved, the algorithm is very fast (and simple).

Stability is a notion naturally capturing the competition among candidate
matches for being selected. Roughly speaking, stable matching is one in which
each selected match dominates its potential competitors. A precise definition
will be given in the next section.

The Stable Matching Problem is also known as the Stable Marriage Prob-
lem [5] and has been studied intensively since Gale and Shapley published their
classical paper [4]. In this paper we define stable matching for the special case
when all potential matches can be globally ranked. This is often the case in
area-based stereo using similarity measure like the sum of squared differences or
normalized cross-correlation.

The main result of this paper deals with stable monotonic matching, which is
a generalization of stable matching that includes ordering constraint. We propose
a fast O(m n2 log n) matching algorithm for m × n images and show how it can
be used in binocular stereo. We will not deal with polynocular stereo in this
paper, we refer the interested reader to our report [10].

2 Theory

Let I, J = {1, 2, . . . , n} be two sets indexing pixels on the left-image and the
right-image epipolar lines, respectively and let P ⊆ I × J . The element p =
(i, j) ∈ P will be called a pair. Let c: P → R be a function assigning each
pair p a value. In the stereo correspondence problem the c(i, j) is a measure of
how much binocular measurements at respective positions i and j correspond to
the images of the neighborhood of the same scene point. There is an array of
functions that can serve as the correlation measure but we will not distinguish
among them here. For the purpose of this paper we convert all values c(i, j) to
respective ranks, so that the pair of the highest correlation value has the rank
of |P |. We obtain a function r: P → {1, 2, . . . , |P |}. For given P and r, the tuple
(P, r) will be called the matching problem. It can be arranged in a correlation
table which is visualized by a diagram as in Fig. 1 in which each crossing (circled
or not) represents a pair from P .
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p ∈ P X(p) ⊆ P F (p) ⊆ P

Fig. 1. A pair p in correlation table P (left), the X-zone X(p) (center, empty
circles), and the F -zone F (p) (right)

The X-zone X(p) ⊆ P of a pair p = (i, j) ∈ P consists of all pairs q ∈ P
with the same row index i or column index j, except for the pair p itself, as
shown in Fig. 1. Similarly, the F -zone F (p) ⊆ P of a pair p ∈ P is formed
by two opposite quadrants around (i, j). Two pairs p, q such that p ∈ F (q) will
be called discordant. The union of X(p) and F (p) will be called the FX-zone,
FX(p) = X(p) ∪ F (p).

A bipartite matching M is a subset of P in which each i ∈ I and each j ∈ J
is represented at most once. For the sake of brevity, we omit the word ‘bipar-
tite’ in the following text. The cardinality of the matching is |M |. A maximum
cardinality matching has the greatest number of pairs possible.

2.1 Stable Complete Matching

Definition 1. A matching M ⊆ P is stable iff for each pair p ∈ M and every
pair q ∈ X(p) such that r(q) > r(p) there is a pair s ∈ M ∩ X(q) such that
r(s) > r(q).

In other words, a pair p is matched if for each stronger pair q that competes
with p there is a still stronger candidate s over-competing q.

Here we consider the maximum cardinality stable matching. To avoid the
words ‘maximum cardinality stable matching’ we use a simpler term stable com-
plete matching. Where we want to stress a matching is complete (maximum
cardinality), we put a bar above the letter, e.g., M̄ .

An efficient algorithm exists because of the decomposability of the stable
complete matching problem into a series of nested subproblems as follows:

Theorem 1. Let (P1, r) be a matching problem. Let a matching subproblem
(P2, r) be constructed such that P2 = P1 \ (X(p1) ∪ {p1}), where p1 is the
highest-rank pair in P1. Then the following holds:

1. If M̄1 is a stable complete matching for (P1, r) then M̄2 = M̄1 \ {p1} is a
stable complete matching for (P2, r).

2. If N̄2 is a stable complete matching for (P2, r) then N̄1 = N̄2 ∪ {p1} is a
stable complete matching for (P1, r).
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For proof see [10]. As a corollary we have that for a given problem (P, r) there
is always a unique stable complete matching which may be found as follows:
The complexity of Alg. 1 is O(n2 log n) time and O(n2) space. Each of the fixed-

Algorithm 1 Stable Complete Matching

1. (a) For each column j = 1, 2, . . . , n of the correlation table c(i, j) create a max-
rooted heap H(j) of pairs p(k, j) with keys c(k, j), k = 1, 2, . . . , n.

(b) Create a max-rooted heap L of heaps H(j), in which the key for each H(j) is
the key of its root and j = 1, 2, . . . , n.

(c) Create a flag array C of length n and initialize it to zeros.
(d) Initialize M to an empty set.

2. Let H be the root of L and let p = (i, j) be the root of H .
(a) If C(i) = 1, remove p from H and update the key of the root in L.
(b) Otherwise, add p to M , set C(i) := 1, and remove H from L.

3. If L is empty, terminate and return stable complete matching M . Otherwise go
to Step 2.

size heaps in Step 1a can be created in linear time [11], which sums to O(n2)
time. Step 2a is executed O(n2) times and each execution requires O(log n) time.
Step 2b is executed O(n) times and each execution requires O(log n) time.

The stable complete matching itself is not very useful for stereoscopic vision:
it ignores half-occlusions and assigns a match to every pixel. Its importance
lies in the fact that any stable matching must be a subset of stable complete
matching as stated by the following:

Theorem 2. For a given matching problem (P, r), any stable matching N on
(P, r) is a subset of stable complete matching M̄ on (P, r).

We refer the reader to our report [10] for proof. As will be seen shortly, the prac-
tical importance of this result is that it enables the existence of a fast O(n2 log n)
algorithm for stable monotonic matching which is in the main focus of this paper.

2.2 Stable Monotonic Matching of Maximum Cardinality

A matching M is monotonic iff for each two pairs p, q ∈ M , p = (i, j), q = (k, l)
such that k > i it holds that l > j. We may observe that the necessary and
sufficient condition for monotonicity is that no pair p ∈ M is in the forbidden
zone of a pair q ∈ M : For each p, q ∈ M it must hold that p /∈ F (q). To include
the monotonicity constraint we generalize the notion of stability as follows:

Definition 2. A matching M ⊆ P is FX-stable iff for each pair p ∈ M and
every pair q ∈ FX(p) of higher rank r(q) > r(p) there is a pair s ∈ M ∩ FX(q)
such that r(s) > r(q).
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Note the definition is very similar to Def. 1, the only formal difference is
in what subset of P are the competing pairs drawn from. As a corollary of
Theorem 2 we see that a unique FX-stable matching always exists for a given
problem (P, r) and is a monotonic subset of stable complete matching.

The FX-stable matching for a given matching problem will be called stable
monotonic matching. The computational problem of finding a stable monotonic
matching of maximum cardinality is more difficult than that of stable complete
matching. As we saw, it is possible to first find the stable complete matching
and then select the largest subset that is monotonic and remains stable. Note
however that not every monotonic subset is stable in the sense of Def. 2. Let M̄ be
a stable complete matching for a given problem (P, r). Consider three pairs p, q,
and s from P , such that r(p) > r(q) > r(s), q ∈ X(p) ∩ X(s), s ∈ F (p), and
p, s ∈ M̄ . According to Def. 2, if p is removed from M̄ , the matching becomes
unstable because of the pair q, r(q) > r(s). To restore stability, the pair s must
be removed as well. We say the (deleting of the) pair s ∈ M̄ is conditioned by the
pair p ∈ M̄ , which we call the conditioning pair. If a matching is to remain stable
after a conditioning pair p is removed, the corresponding conditioned pair s has
to be removed too. This may be implemented by extending the F -zone of s to
F̄ (s) = F (s) ∪ F (p). With this extension of the discordance relation it is now
possible to find the largest stable monotonic matching as follows:

Algorithm 2 Maximum Cardinality Stable Monotonic Matching

1. Solve the stable complete matching problem on (P, r) by Alg. 1 to get matching M .
2. Initialize M∗ and C to empty sets. Sort elements of M in the order of their de-

creasing rank.
3. If M is empty, terminate. The set M∗ is a stable monotonic matching.
4. Let p be the first element in M . Move it from M to C and do the following: If there

is no pair in C that conditions p, add p to M∗ and remove all q ∈ F (p) from M .
5. Go to Step 3.

The proof of correctness of Alg. 2 is based on the idea of extension of F -
zones for conditioned pairs and on the equivalent of Theorem 1 that exist for
FX-stable matchings. We omit the details of the proof for lack of space.

Alg. 2 requires O(n2 log n) time and space, which is the complexity of the first
step. Step 4 is executed n times and performs at most n conditioning tests. Step 2
requires no overhead since M is already ordered as a side-effect of executing
Alg. 1.
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3 Experiments

Figure 2 shows what results on standard test sets may be expected from Alg. 2.
Modified normalized cross-correlation was used

c(i, j) =
cov(Wi, Wj)

var(Wi) + var(Wj)
,

where Wi, Wj represent image values in 5× 5 matching windows in the left and
right image, respectively. Note the percentage of mismatches is very low although
the algorithm searches large disparity range. Note also that individual leaves are
distinguished in the foreground bush in the Parking Meter disparity map. Holes
(shown as white) appear in extremely low-contrast areas (like in the car back
in the lower-right image corner in the Parking Meter set or in the featureless
ground area in the Birch Tree set) or in ambiguous areas (like in the west wing
of the building in the Pentagon set, which is imaged as a very regularly repeated
pattern). In the Birch Tree disparity map, small gaps in the foreground tree
trunk are present because ordering is locally violated: the solution is switching
between the foreground and the background depending on the relative texture
strength. Note that the occluding boundaries are crisp even if the matching was
done for each epipolar line independently.

Fig. 2. Results of Alg. 2 (SMM) on three standard stereo pairs. Disparity is
coded by grey-level (bars); small disparity is black, large disparity bright, holes
are white. The Parking Meter set (left), frame 2 and 14 were used with disparity
range 〈0, 30〉. The Pentagon set (center), range 〈−10, 10〉. The Birch Tree set
(right), range 〈0, 55〉
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Fig. 3 compares SMM with maximum likelihood monotonic matching with
minimum horizontal discontinuities (MLMH) implemented by dynamic program-
ming minimizing SSD error functional with disparity discontinuity penalty of
α [3]. The MLMH algorithm was modified to use a 5 × 5 matching window to
improve its behavior in terms of mismatches and to make it comparable with
the SMM which also uses a 5× 5 matching window. A real scene consisting of a
triple of long thin stripes (object) in front of a flat wall (background) was used.
The object-background distance was chosen as the largest possible such that the
ordering constraint still holds. The stripes are 14 pixels wide. The scene was
illuminated by texture projector of varying intensity, which simulated varying
texture contrast. The contrast was measured as the mean value of the left image.
The smallest-contrast texture was invisible to the human eye but still detectable
(contrast value of 3.0) and the largest-contrast texture image is shown upper
left in Fig. 3 (contrast value of 74.0). The upper left plot shows the relative fre-
quency of missing an object pixel in disparity map computed as the sum of false
negatives and error in disparity larger than 1. Relative frequency is plotted with
respect to the number of object pixels in ground-truth disparity map (shown
lower left). The MLMH estimate used the value of α = 500 selected as one that
minimizes the error for the maximum texture contrast. We can see that the error
generally decreases with increasing intensity. The SMM has a significantly better
error rate when detecting a narrow object.

The upper right plot shows the relative frequency of false positive in half-
occluded area with respect to the size of the area. The SMM gives small error
even under very low texture contrast and performs by the order of magnitude
better than the MLMH method.

The lower left plot shows the relative frequency of holes in the disparity map,
which measures the disparity map sparsity. We can see that SMM gives much
sparser disparity maps than MLMH method when texture contrast is low.

The lower right plot shows the total error in disparity map (the sum of false
positives and pixels of disparity error larger than 1) with respect to the matched
area and captures thus the mismatch rate in the resulting set of all assigned
matches. We can see that SMM performs consistently better than MLMH.

4 Conclusions

The class of stable matchings was studied from which the stable monotonic
matching (SMM) is the most useful for computational stereo. The SMM algo-
rithm (1) does not explicitly optimize any criterion function, (2) can handle
sparse matching problems, (3) processes one epipolar line at a time, and (4)
requires only two parameters for disparity search range (the parameters are usu-
ally set to infinity). The fact it is parameter-free makes the algorithm useful for
mobile robotics since the large variability of outdoor/indoor scenes usually does
not allow to choose a globally optimum value for such crucial parameters as the
match rejection threshold or the continuity term weight.
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Fig. 3. Matching error probability for SMM and MLMH algorithms (plots). The
target is a triple of thin objects in front of a planar background (top left). The
ground-truth disparity map includes half-occluded regions (bottom left, white)

As long as ordering holds, SMM rarely misses thin foreground objects in front
of a distant background. As opposed to functional-based matching algorithms,
SMM does not suffer from the ‘streak’ effect. Moreover, SMM is suitable when
low percentage of false positives is required in disparity map. The price is that
the map is usually sparser, especially in the areas of weak and/or ambiguous
texture. But the result can be made denser by taking another look and fusing the
binocular maps, at which SMM is very efficient, especially for large polynocular
stereo sets. More on polynocular stereo and disparity map fusion can be found
in [10].
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Abstract. In the series of papers, we proposed a method for three-
dimensional reconstruction from an image sequence without predetecting
feature correspondences. In the method, we first collect all images and
sample data, and second apply the reconstruction procedure. Therefore,
the method is categorized into an off-line algorithm. In this paper, we
deal with an on-line algorithm for three-dimensional reconstruction, if we
sequentially measure images. Our method is based on the property that
points and lines in space are uniquely computed from their projections
between two images and among three images, respectively, if a camera
system is calibrated. Using these property, our method determines both
feature correspondences and three-dimensional positions of points and
lines on an object.

1 Introduction

In the series of papers [1,2], we propesed a method for three-dimensional recon-
struction from an image sequence without predetecting feature correspondences.
For searching feature correspondences and estimating three-dimensional posi-
tions of rigid objects, we introduced random sampling and voting process. In
the method, we first collect all images and sample data, and second apply the
reconstruction procedure. Therefore, the method is categorized into an off-line
algorithm. However, since the method based on random sampling and voting
process needs not to predetermine the numbers of images and sample data, the
method is applicable to time-varying data. In this paper, we deal with an on-
line algorithm for three-dimensional reconstruction, if we sequentially observe
images.

In 1962, Hough introduced voting process for line detection, called the Hough
transform. Subsequently, the Hough transform was extended to conic detection
and arbitrary shape detection. Comprehensive surveys of the Hough transform
can be found in references [3,4]. In the last decade, for the reduction of the com-
putational complexity of the Hough transform, the technique of random sampling
has been introduced to the Hough transform. The Hough transform with ran-
dom sampling is called the probabilistic or randomized Hough transform [5].In
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recent years, the two techniques of random sampling and voting process have
been introduced in the field of motion analysis [6,7].

A typical Hough transform detects planar lines and conics. These two curves
are expressed by ax + by + c = 0 and ax2 + 2bxy + cy2 + 2dx + 2ey + f = 0,
respectively. Therefore, these two curves have the form

ξ�a = 0, (1)

where ξ is a vector whose elements are polynomial functions of x and y and a is
a parameter vector to be detected. Here, we have ξ = (x2, 2xy, y2, 2x, 2y, 1)� for
conics and ξ = (x, y, 1)� for lines. If k samples are on the ith line ai, we obtain
kC2 independent equations to compute ai. Thus we have systems of equations

Ξiai = 0, i = 1, . . . ,m, (2)

where Ξ�
i = [ξi(1), . . . , ξi(k)]. This selection of partial equations in eq. (2) is the

key concept of the Hough transform [8].
In this paper, we demonstrate that the three-dimensional reconstruction of

points and lines are all expressed in the same form as eq. (2), if we measure
an image sequence, using a calibrated image system. Therefore, it is possible to
reconstruct points, lines and planes in a space, which are usually linear features
on a rigid object, using the same concept of the Hough transform.

Bober et al. [9] proposed an estimation method for the fundamental matrix,
using the Hough transform. Torr and Zisserman proposed MLESAC [10], which
is a generalization of RANSAC [11], for the estimation of image geometry. These
methods deal with the image geometry of two views. Our method deals with the
case of an image sequence. Furthermore, compared to these methods, our method
has very simple implementation.

2 Geometry of Points and Lines

We assume that our imaging system is a pinhole camera. Using the pinhole
camera model, in this section, we summarize the geometry between points and
lines in space and their projections onto image planes.

2.1 Geometry of Points

Let y = (X,Y, Z)� be a three-dimensional point in a world coordinate system
and x = (x, y)� be the projection of y onto an image plane. The relationship
between y and x, where express a three-dimensional point and its image point,
respectively, can be written as

λ

[
x
1

]
= P

[
y
1

]
, (3)

where λ is an arbitrary nonzero scalar and P is a 3 × 4 matrix called the per-
spective projection matrix.Setting ξ = (x, y, 1)� and υ = (X,Y, Z, 1)�, we can
compactly rewrite eq. (3) as

λ ξ = Pυ. (4)
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Eliminating scale factor λ in eq. (4), we obtain a pair of equations

(xp3 − p1)�υ = 0, (yp3 − p2)�υ = 0, (5)

where P� = [ p1 p2 p2 ].
If we have m points {yi}mi=1 in a space and observe m points from n cameras

represented by {P j}nj=1, we obtain a collection of projections {xj
i}m n

i=1j=1 on each
image. Therefore, setting υi = (yi, 1)�, we have m systems of equations

(xj
i p

j
3 − pj

1)�υi = 0, (yj
i p

j
3 − pj

2)�υi = 0, (6)

where xj
i = (xj

i , y
j
i )� and P j� = [pj

1 pj
2 pj

3], for integers i and j such that
1 ≤ i ≤ m and 1 ≤ j ≤ n. Note that point correspondences among image frames
form sequences, < x1

j ,x
2
j , . . . ,x

n
j >, j = 1, . . . ,m, in an image sequence.

2.2 Geometry of Lines

Setting x1 and x2 to be two points on an image plane, the planar line through
these two points is defined by λη = ξ1 × ξ2 up to a scale factor, where ξ�

1 =
(x�

1 , 1) and ξ�
2 = (x�

2 , 1). Therefore, from eq. (4), we obtain the following rela-
tionship,

λη = Pυ1 × P υ2 =


 (p2 ∧ p3)�

(p3 ∧ p1)�

(p1 ∧ p2)�


 [

υ1 ∧ υ2

]
, (7)

where ∧ is the exterior product [12]. In eq. (7), a 6 × 1 vector λρ = υ1 ∧ υ2

expresses a spatial line through the two points y1 and y2 in a space [13,12].
The coordinates of ρ are called the Plücker coordinates of a spatial line. The
relationship between ρ and η, where express a spatial line and its image line,
respectively, can be written as

λη = P Lρ, (8)

where P L is the 3 × 6 matrix defined by P�
L = [ p2 ∧ p3 p3 ∧ p1 p1 ∧ p2 ].

Eliminating scale factor λ in eq. (8), we obtain a pair of equations,

(ap1 ∧ p2 − cp2 ∧ p3)�ρ = 0, (bp1 ∧ p2 − cp3 ∧ p1)�ρ = 0, (9)

where η = (a, b, c)�.
If we have m lines {ρi}mi=1 in a space and observe m points from n cameras

represented by {P j
L}nj=1, we obtain a collection of projections {ηj

i}m n
i=1j=1 on

each image. Therefore, we have m systems of equations

(aj
i p

j
1 ∧ pj

2 − cjip
j
2 ∧ pj

3)�ρi = 0, (bjip
j
1 ∧ pj

2 − cjip
j
3 ∧ pj

1)�ρi = 0 (10)

where ηj
i = (aj

i , b
j
i , c

j
i )� and P j�

L = [ pj
2 ∧ pj

3 pj
3 ∧ pj

1 pj
1 ∧ pj

2 ], where integers i
and j such that 1 ≤ i ≤ m and 1 ≤ j ≤ n. Note that line correspondences
among image frames form sequences, < η1

i ,η
2
i , . . . ,η

n
i >, i = 1, . . . , n, in an

image sequence.
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3 Shape for Image Set

Equations (6) and (10) have the same form with eq. (2) which is the funda-
mental form for the Hough transform. Thus, if we predetermine the perspective
projection matries {P j}nj=1, the reconstruction of points and lines is the simi-
lar problem of the detection of lines and conics on an image set. This property
means that the Hough transform can achieve the reconstruction of points and
lines from an image sequence. In this section, we review the off-line algorithm
for three-dimensional reconstruction [1,2].

Equations (6) and (10) have 2n×4 and 2n×6 coefficient matrices, respectively.
Selecting four rows from eq. (6) and six rows from eq. (10), we can solve the
following systems of equations, for k ∈ {j1, j2},

(xk
i pk

3 − pk
1)�υi = 0, (yk

i pk
3 − pk

2)�υi = 0, (11)

and for k ∈ {j1, j2, j3},

(ak
i pk

1 ∧ pk
2 − cki pk

2 ∧ pk
3)�ρi = 0, (bki pk

1 ∧ pk
2 − cki pk

3 ∧ pk
1)�ρi = 0. (12)

If we assume that points and lines on images are not occluded, there are nC2 and
nC3 combinations for the selection of rows. Therefore, we obtain nC2 and nC3

systems of equations for obtaining υi and ρi for each i. On the other hand, if a
pair (νj1

i ,ν
j2
i′ ) and a triple (ηj1

i ,η
j2
i′ ,η

j3
i′′) are not combinations of corresponding

features, respectively, the parameters which are computed from the false combi-
nations do not coincide with parameters for other pairs and triplets. Therefore,
if the number of images, n, is large, we obtain many correct pairs and triples for
randomly selected pairs and triplets.

It is well known that eqs. (11) and (12) have constraint equations irrelevant
to parameters of υi and ρi, which are called epipolar constraints and trifocal
constraints, respectively. These constraints provide conditions which allow the
existence of υi and ρi. Using these constraints, we can avoid meaningless voting
process. This property derives the following algorithm based on random sampling
and voting for the reconstruction of points and lines. This idea can be found in
references [14].

Algorithm 1
1. Set k = 2 for points (or k = 3 for lines).
2. Randomly select k samples from different images.
3. Check whether the k samples satisfy the constraint equations. If they are

satisfied then go to 4, otherwise return to 2.
4. Solve the system of equations for the selected k samples.
5. Vote 1 to this solution in the accumulator space.
6. Repeat 2 to 5 for a predefined number of iterations.
7. Detect peaks in the accumulator space.
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4 Shape for Image Sequence

In the previous section, we dealt with the algorithm, for which sample data are
precollected from entire images. We call this algorithm “Shape from image set.”
However, if images are successively measured, the type of data is an image se-
quence. In this section, assuming that images are successively measured, we deal
with the problem of “Shape from image sequence.” One of the authors developed
an on-line algorithm for the detection of piecewise-linear signals, using random
sampling and voting [15]. Here, using the common concept with the previous
papaer [15] for the feature extraction from time-varying data, we develop an
algorithm for the reconstruction of three-dimensional shape from the image se-
quence. In the following, for simplicity, we will deal with the three-dimensional
reconstruction of points. The arguement is easily extended to line reconstruction.

Let It be an image observed at time t. Since we deal with a collection of points
for image It, image It can be considerd as a collection of points. Therefore, we
set

It = {xt
1, . . . ,x

t
m(t)}, (13)

where m(t) is the number of points in image It. For image sequence 〈I1, I2, . . . ,
It〉, we assume that

si =
〈
xt−k

i(t−k),x
t−k+1
i(t−k+1), . . . ,x

t
i(t)

〉
(14)

is a sequence of corresponding points for 0 < k < t. Since projections of a point
in a space determine a sequence of corresponding points, si is the collection of
projections of a point, say yi, in a space. In eq. (14), yi is observed over the
past k times.

If new image It+1 is observed with holding a sequence of images 〈I1, I2, . . . , It〉
and a sequence of corresponding point si in the memory, eq. (14) should be
updated as

si ← si ◦
〈
xt+1

i

〉
, (15)

where xt+1
i is the projection of yi to It+1. Here, ◦ is the concatenation op-

eration.1 However, since we do not know point correspondences among image
frames, we cannot find xt+1

i which is the projection of yi from image It+1. The
determination of point correspondences is an inverse problem. For infernce of
point correspondences between a point in si and a point in It+1, we adopt ran-
dom sampling and voting process.

Selecting a pair of points xt+1
j and xt′

i ∈ si, we compute three-dimensional
point yi according to the algorithm described in the previous section. After an
1 The concatenation operation ◦ is defined by,〈

xi1 , . . . ,xik

〉
◦

〈
xik+1 , . . . ,xin

〉
=

〈
xi1 , . . . ,xik ,xik+1 , . . . ,xin

〉
. (16)
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appropriate number of iterations of random sampling and voting, if we have
a peak at the position yi in the accumulator space, we conclude that xt+1

j

corresponds to points in sequence si. However, if the height of the peak in the
accumulator space is lower than a predefined threshold, we conclude that xt+1

j

has no corresponding points in si. Setting A(yi) to be the height of the peak in
the accumulator space for yi and γ to be an predefined threshold, this property
of sample points in the image sequence derives the following updating rule

si ←
{
si ◦

〈
xt+1

i

〉
, if A(yi) > γ,

si, otherwise.
(17)

Using the updating rule in eq. (17), we develop Algorithm 3 for “Shape from
image sequence”.

Algorithm 2
1. Set t=1.
2. Randomly select a pair of sample points (xt+1

j ,xt′
j′) such that 0 < t′ ≤ t.

3. Check whether the pair (xt+1
j ,xt′

j′) satisfy the epipolar constraint. If they
are satisfied then go to 4, otherwise return to 2.

4. Compute the three-dimensional point yl from the pair (xt+1
j ,xt′

j′ ).
5. Increment the accumulator A(y) by one.
6. If γ > A(yl), update sl ← sl ◦

〈
yt+1

j

〉
and remove yt+1

j from It+1.
7. Repeat from 2 to 6 for a predefined number of iterations.
8. If A(yl) > γ, detect yl and sl.
9. Set t:=t+1 and go to 2.

Algorithm 2 tracks corresponding points frame by frame, using multiple
epipolar constraints for an image sequence. Since the epipolar constraint is a
necessary condition for point correspondences, Algorithm 2 infers point corre-
spondences, collecting multiple necessary conditions.

Fig. 1. A sequence of grid pattern images
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5 Experiments

Using synthetic data, we evaluated the performance of our method. We recon-
structed points and lines which form a grid pattern in three-dimensional space.
We uesd images from 20 different views. Figure 1 shows a sequence of images
taken from 20 views. The images are digitized as 256 × 256 pixels. In the ex-
periments, we assume that the coordinates of points and lines on each image
are predetected, using a corner detector and a line detector, respectively. For
the detection of these features in each image, we adopt the conventional Hough
transform.

We evaluated the error using the criterion

∆y =

√√√√ 1
m

m∑
α=1

||ȳα − yα||, (18)

where ȳα and yα are the original and estimated spatial points on the grid pat-
tern, respectively. According to eq. (18), we obtained ∆y = 1.726041.

The Plücker coordinates of a line in a space are not intuitively interpreted
for geometric meaning. The line L in a space is represented by the point r
on L which is closest to the coordinate origin and the unit vector u which is the
orientation of L. For the evaluation of estimated lines in a space, we decomposed
the Plücker coordinates ρ, of L into r and u. We evaluated the error using the
criterions

∆r =

√√√√ 1
m

m∑
α=1

||r̄α − rα||, ∆u =

√√√√ 1
m

m∑
α=1

(ū�
α uα), (19)

(a) (b)

Fig. 2. (a) Reconstructed points. (b) Reconstructed lines
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where r̄α and ūα are the original parameters and rα and uα are the estimated pa-
rameters. According to eq. (19), we obtained ∆r = 1.844175 and ∆u = 0.999895.

6 Conclusions

In this paper, we first shown that the three-dimensional reconstruction of points
and lines is expressed in a form which is suitable for the Hough transform if
we measure an image sequence using a calibrated image system. Next, we pro-
posed off-line algorithms for three-dimensinaol reconstruction which is based on
the the Hough transform, using epipolar and trifocal constraints. Finally, for
time-varying data, we proposed on-line algorithms for three-dimensinaol recon-
struction which is based on the the Hough transform, using epipolar and trifocal
constraints.
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Abstract. A novel approach to computational binocular stereo based
on the Neyman–Pearson criterion for discriminating between statistical
hypotheses is proposed. An epipolar terrain profile is reconstructed by
maximizing its likelihood ratio with respect to a purely random profile.
A simple generative Markov-chain model of an image-driven profile that
extends the model of a random profile is introduced. The extended model
relates transition probabilities for binocularly and monocularly visible
points along the profile to grey level differences between corresponding
pixels in mutually adapted stereo images. This allows for regularizing
the ill-posed stereo problem with respect to partial occlusions.

1 Introduction

Computational binocular stereo that reconstructs 3D terrains from stereo pairs
of images is an ill-posed inverse photometric problem because a rich variety
of different optical surfaces can produce the same stereo pair [11,12]. The ill-
posedness is caused mainly by partial occlusions hindering stereo observation
of some terrain points and by uniform or repetitive coloring of the surface. To
partially regularize the problem, stereo images have to be matched with due
regard to binocular and monocular visibility of terrain points.

Most of the known stereo matching algorithms (see, for instance, [1,2,8,9,13])
state and solve the stereo problem as a statistical problem of estimating a hidden
Markov model of an epipolar terrain profile. The prior profile model is combined
with the conditional model of stereo images, given the profile, to derive the
posterior model and use it for measuring similarity between the stereo images
for each possible profile. Then the reconstruction is conducted by maximizing
the similarity between the images. In many cases the similarity is measured with
no explicit account of possible partial occlusions.

Symmetric Dynamic Programming Stereo (SDPS) discussed in [3,6] follows
the same scheme but allows for discriminating between the binocularly (BVP)
and only monocularly visible points (MVP) along the profile during the recon-
struction. All variants of an epipolar profile are represented by continuous paths
in a specific graph of profile variants (GPV). Each GPV-node has three states
specifying whether it represents the BVP yielding two corresponding pixels in a
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stereo pair or the MVP depicted only in the left or in the right stereo image. The
allowable transitions between the successive GPV-nodes along the profile depend
on their visibility states. In this case the similarity for the BVPs is obtained by
comparing the corresponding pixels but some heuristic weights for the MVPs
have to be involved to search for a profile yielding the best similarity between
the images [4].

This paper proposes another approach that is based on the Neyman–Pearson
criterion [10] and involves explicit Markov models of an epipolar profile: the re-
constructed profile has to maximize the likelihood ratio with respect to a purely
random one. The Markov-chain model of a random epipolar profile introduced
in [4,5] is extended below by relating the transition probabilities for each GPV-
node to grey values in the corresponding pixels of a stereo pair. Transitions to
the GPV-nodes representing BVPs depend on grey level deviations between the
mutually adapted stereo images, the adaptation tending to reduce relative pho-
tometric distortions of the binocularly visible corresponding parts of the images.
Each BVP-transition specifies also the probabilities of transitions to the adjacent
nodes representing MVPs so that all the transition probabilities in the GPV are
related to the images. Thus the proposed model allows for a partial probabilistic
regularization of terrain reconstruction such that the transition probabilities for
purely random profiles constitute the regularizing parameters [7].

The paper is organized as follows. Section 2 considers the profile reconstruc-
tion based on maximizing the likelihood ratio. The extended probabilistic model
of an epipolar profile is presented in Section 3. Experimental results and conclu-
sions are given in Section 4.

2 Profile Reconstruction Using Log-Likelihood Ratio

Let x denote the x-coordinate of the GPV-node, p be the integer x-parallax,
or disparity between the corresponding pixels with integer coordinates xL and
xR in stereo images, and s ∈ {B, ML, MR} be the visibility state indicating the
BVP or MVP visible only in the left or right image, respectively. It holds for the
symmetric stereo geometry [3,6] that x = (xL+xR)/2, p = xL−xR, xL = x+p/2,
and xR = x − p/2.

Figure 1 shows a fragment of the GPV, each GPV-node (x, p, s) having seven
admissible transitions to the next three nodes (x+0.5, p−1, s′), (x+0.5, p+1, s′),
and (x+1, p, s′). According to the explicit generative Markov model of the profile
variants, every epipolar profile p = [(xi, pi) : i = 1, . . . , n] with n GPV-nodes is
generated as a Markov chain of n−1 successive admissible transitions from each
current GPV-node (xi, pi, si) to the next one (xi+1, pi+1, si+1); i = 1, . . . , n− 1.

Let gL and gR be the left and right images of a stereo pair. Let Pr(p|gL, gR)
and Pr(p) specify the probability distributions of profiles in the GPV under
two simple statistical hypotheses: an “image-driven” or a purely random pro-
file, respectively. Thus the profile reconstruction can be based on the Neyman–
Pearson criterion [10] of choosing the first hypothesis by comparing to a par-
ticular threshold Θ the likelihood ratio or, what is the same, the log-likelihood
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ratio L(p|gL, gR) of an image-driven profile with respect to a random profile:

L(p|gL, gR) = log Pr(p|gL, gR) − log Pr(p) ≥ Θ. (1)

The most adequate profile in the GPV can be chosen by maximizing the log-
likelihood ratio in Equ. (1):

p∗ = argmax
p

L(p|gL, gR). (2)

x − 0.5                         x                            x + 0.5                     x + 1

p+1

p

p−1

 P     (∆)B|B

 P       (∆)B|MR

 P      (∆)ML|B

P      (∆)
MR|B

P      (∆)
B|ML

 P       (∆)ML|ML

 P         (∆)MR|MR

MR

MR

 B B

 ML

Fig. 1. Transition probabilities for the GPV

Because the similarity between stereo images is given in terms of the likeli-
hood ratio, this approach allows for comparing profiles of different length and
solving Equ. (2) with sequential decision rules to accelerate the reconstruction.
In this latter case some profile variants can be rejected after comparing their ini-
tial parts of length m < n if the likelihood ratio becomes lower than a particular
threshold that depends generally on m.

The SDPS algorithm in [3,6] is easily modified to implement the reconstruc-
tion process of Equ. (2) if both the probability distributions Pr(p|gL, gR) and
Pr(p) in Equ. (1) are represented by the products of transition probabilities
specified by particular explicit Markov-chain models.

3 Markov-Chain Models of a Profile

A purely random profile is described in [4,5] as a stationary Markov chain of the
GPV-nodes with the transition probabilities Ps′|s that depend only on the visi-
bility states. Both the monocular cases ML and MR are equivalent by symmetry
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and can be denoted as M:

PML|ML = PMR|MR ≡ PM|M;
PB|ML = PB|MR ≡ PB|M = 1 − PM|M;
PML|B = PMR|B ≡ PM|B = 0.5

(
1 − PB|B

)
.

(3)

Thus the stationary Markov chain producing purely random profiles is specified
by the two transition probabilities PB|B and PM|M.

For the image-driven Markov chain generating the actual terrain profiles,
stereo images are assumed to be mutually adapted along each profile. The adap-
tation is performed within a given range E = [2 − emax, emax]; 1 ≤ emax < 2, of
admissible ratios between grey level increments for the corresponding successive
BVPs in both stereo images (see [3,6] for more detail). It has a goal of excluding
or reducing relative photometric image distortions. Then the probability of tran-
sition from a current GPV-node (x, p, s) to the next node representing a BVP
(x′, p′, B) can be related to the residual grey level difference ∆x′,p′ between the
corresponding points x′

L and x′
R in the adapted images for each profile under

consideration.
The transition probabilities Prs′|s(∆x′,p′) ≡ Prs′|s(∆) satisfy the obvious

conditions of Equ. (3), the two last MVP-transitions being equalized from the
same considerations of symmetry:

PrML|ML(∆x+0.5,p+1) = 1 − PrB|ML(∆x+0.5,p+1);
PrMR|MR(∆x+0.5,p−1) = 1 − PrB|MR(∆x+1,p);
PrMR|B(∆x+0.5,p−1) = PrML|B(∆x+1,p)

= 0.5 · (1 − PrB|B(∆x+1,p)
)
.

(4)

The log-likelihood ratio l(xi, pi, si; xi−1, pi−1, si−1|gL, gR) for the i-th transi-
tion along a profile p combines the transition probabilities of Equ. (4) depending
on a given stereo pair (gL, gR) with the probabilities of Equ. (3) that specify a
purely random profile:

l(xi, pi, si; xi−1, pi−1, si−1|gL, gR) =
log Prsi|si−1(∆xi,pi) − log Psi|si−1 .

(5)

Thus the log-likelihood ratio for the total profile p is an additive functional with
respect to p

L(p|gL, gR) =
n∑

i=1

l(xi, pi, si; xi−1, pi−1, si−1|gL, gR) (6)

that can be maximized by dynamic programming techniques.
Experiments in Section 4 show that the probabilities PM|M and PB|B of

Equ. (3) can be considered in Equ. (2) as regularizing parameters that define
smoothness and visual quality of the reconstructed terrain. The final reconstruc-
tion results depend also on the image adaptation range E and on the chosen
probability function Prs′|s(∆) in Equ. (4).



Binocular Stereo by Maximizing the Likelihood Ratio 205

4 Experimental Results and Concluding Remarks

Several digital x-parallax maps (DPM) consisting of the epipolar terrain profiles
reconstructed from the artificial stereo pair “Corridor” and the natural stereo
pair “Pentagon” in Fig. 2 are presented in Fig. 3. The “ground truth” with the
total disparity range [0,10] in Fig. 2, (c), allows for checking the actual quality
of reconstruction of the “Corridor” scene.

a b c d e

Fig. 2. Artificial stereo pair 256×256 “Corridor” (a, b) with the known “ground
truth” in terms of ideal integer disparities shown in the range image (c) and the
natural stereo pair 512 × 512 “Pentagon” (d, e)

These and other experiments (see, for instance, [7]) show that the recon-
structed DPMs are in close agreement with visual perception within a sufficiently
wide “triangular” domain of the regularizing parameter space. But it is worth
noting that the orthoimages of these scenes, formed from the stereo pairs in line
with the DPMs, are quite similar over almost the total parameter space. Thus
even visually unacceptable solutions yield close similarity between the images as
could be expected from the ill-posedness of the problem.

The reconstruction results are rather similar for the following three different
probability functions with σ = 5, . . . , 15:

PrB|s(∆) = 0.998 exp
(
−∆2

σ2

)
+ 0.001; (7)

PrB|s(∆) = 0.998 exp
(
−|∆|

σ

)
+ 0.001; (8)

PrB|s(∆) = 0.998 exp

(
−
√

|∆|
σ

)
+ 0.001, (9)

and for the different adaptation ranges E = [0.8, 1.2] . . . [0.4, 1.6] although the
reconstructed terrains become smoother for the larger values of σ and larger
adaptation ranges. The “Corridor” and “Pentagon” scenes in Fig. 3 are recon-
structed using the same image adaptation range E = [0.8, 1.2] but different
transition probabilities of Equ. (8) and Equ. (7), respectively, with σ = 10.

In principle, the functions PrB|s(∆) can be empirically estimated using train-
ing samples of the epipolar stereo pairs with known terrain models. But the
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Fig. 3. Range images of the reconstructed scenes “Corridor” and “Pentagon”
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experiments show that reconstruction results depend much more on the regular-
izing parameters.

Table 1. Mean absolute differences (m.a.d.) and standard deviations (st.d.) of
the reconstructed “Corridor” from the ground truth in Fig. 2, (c)

Transition probabilities of Equ. (8) with σ = 5

PM|M 0.10 0.20 0.40 0.60 0.80 0.90 0.95 0.99

PB|B = 0.40 m.a.d. 2.99 2.93 2.07 1.26 1.03 1.41 1.91 1.97
st.d. 1.96 2.05 2.12 1.74 1.35 1.49 1.64 1.61

0.30 m.a.d. 2.97 2.89 1.50 0.92 0.86 0.97 1.48 1.95
st.d. 1.99 2.08 1.94 1.47 1.29 1.28 1.51 1.61

0.20 m.a.d. 2.96 2.54 0.97 0.68 0.65 0.76 0.91 1.88
st.d. 2.01 2.13 1.60 1.25 1.10 1.14 1.22 1.61

0.10 m.a.d. 2.87 1.27 0.56 0.46 0.44 0.48 0.56 1.08
st.d. 2.08 1.84 1.06 0.85 0.44 0.48 0.56 1.08

0.05 m.a.d. 1.88 0.65 0.43 0.38 0.38 0.37 0.40 0.70
st.d. 2.09 1.19 0.79 0.67 0.65 0.62 0.66 1.02

0.01 m.a.d. 0.48 0.37 0.35 0.35 0.34 0.34 0.34 0.37
st.d. 0.90 0.62 0.54 0.55 0.53 0.54 0.53 0.55

Transition probabilities of Equ. (8) with σ = 10

PM|M 0.10 0.20 0.40 0.60 0.80 0.90 0.95 0.99

PB|B = 0.40 m.a.d. 3.02 2.98 1.79 0.80 0.74 1.42 2.08 2.22
st.d. 2.05 2.09 2.04 1.39 1.08 1.51 1.65 1.71

0.30 m.a.d. 3.02 2.87 0.94 0.48 0.54 0.75 1.52 2.20
st.d. 2.05 2.12 1.58 0.91 0.87 1.06 1.53 1.71

0.20 m.a.d. 3.01 2.42 0.51 0.36 0.39 0.49 0.71 2.16
st.d. 2.08 2.12 1.00 0.63 0.66 0.76 1.01 1.72

0.10 m.a.d. 2.83 0.75 0.37 0.36 0.35 0.36 0.41 0.98
st.d. 2.12 1.40 0.62 0.55 0.57 0.57 0.62 1.23

0.05 m.a.d. 1.50 0.39 0.35 0.35 0.35 0.34 0.35 0.51
st.d. 1.90 0.66 0.54 0.54 0.54 0.53 0.55 0.78

0.01 m.a.d. 0.35 0.35 0.34 0.34 0.34 0.33 0.34 0.35
st.d. 0.54 0.53 0.54 0.54 0.53 0.53 0.53 0.53

Table 1 shows the mean absolute differences and standard deviations between
the reconstructed digital x-parallax models of the “Corridor” scene and the
ground truth of Fig. 2,c for the transition probabilities of Equ. (8) with σ = 5
and σ = 10. The latter reconstruction results are shown in Fig. 3. This scene
has the dominant uniform or almost uniform coloring, and the best results with
the mean absolute error 0.34 and standard deviation 0.53 – 0.54 in the total
disparity range [0, 10] are obtained for PB|B = 0.01 and PM|M = 0.80 . . .0.95
(σ = 5) or 0.40 . . .0.95 (σ = 10). The “Pentagon” scene with more textured
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coloring gives the apparently best visual results for larger values of PB|B, e.g.,
PB|B = 0.10 . . .0.20 and PM|M = 0.80 in Fig. 3, and the like results are even
better for σ = 5 as shown in [7].

These experiments suggest that the proposed approach offers advantages over
conventional reconstruction techniques based on stereo matching that allows for
partial occlusions. Also, it shows promise of taking account of image coloring
uniformity if this latter could be properly related to the regularizing parameters.
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Abstract. The paper defines polycentric panoramas as a generalized
model of panoramic images which covers a wide range of previously
introduced models such as single-center panoramas, multi-perspective
panoramic images, or concentric panoramic images. This paper presents
geometric fundamentals towards the stereo reconstruction of scenes or
objects based on captured pairs of polycentric panoramas. The paper dis-
cusses the image acquisition model, epipolar geometry and basics of cor-
respondence analysis. The derived general epipolar curve theorem holds
for pairs of polycentric panoramas. This is briefly illustrated by adjust-
ing the general formula of the theorem to specific panoramic image pairs.
Experimental results (for two different types of polycentric panoramas)
towards stereo reconstruction also demonstrate the practical relevance
of the derived geometric fundamentals.

Keywords: Panoramic images, stereo reconstruction, epipolar geome-
try.

1 Introduction

A 360 degrees full-view panoramic image can be acquired in different ways [17].
Image stitching techniques introduce errors into the resulting panorama [1]. A
better ways is using a slit camera [12]. A slit camera is characterized geometri-
cally by a single focal point and a 1D linear image slit. To acquire a polycentric
panoramic image, a slit camera rotates with respect to a fixed 3D axis (e.g. the
rotation axis of a turntable) and captures one slit image in every constant angular
interval. Each slit image contributes to one column of a polycentric panoramic
image. To be more precise, we assume a rotation of a slit camera with respect to
a fixed rotation axis and taking slit images consecutively at equidistant angles
αt, for 1 ≤ t ≤ WP . Let the distance between the slit camera’s focal point and
the rotation axis be R + εt for any of these angles αt. We assume that these
focal points are in a plane (exactly) orthogonal to the rotation axis, and this
paper only considers cases with εt = 0, for all t, i.e. accurate positionings of the
camera’s focal point on a circle of radius R. We call this the base circle of this
panoramic image. The optical axes of the slit camera are always assumed to be in
the plane of the base circle. Let ωt be the angle between the normal vector of the

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 209–218, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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base circle at the associated focal point and the optical axis of the slit camera.
We assume that all angles ωt are constant for one panoramic image. Figure 1
depicts the assumed acquisition situation. Thus a panoramic image is character-
ized by radius R of the base circle, angle ω, an effective focal length f (which
always remains constant for all WP positions of the slit camera for capturing one
panoramic image), and the number WP of image columns. Panoramic images are
captured on a straight cylinder of radius R, where the resolution HP of the line
camera specifies the number HP of image rows. Altogether, a panoramic image
can be considered as being a planar HP × WP rectangular array.

A panoramic image acquired with a slit camera having its focal point exactly
on the rotation axis, i.e. R = 0, is referred to as a single-center panoramic image.
The base circle degenerates to a point. Studies about stereo reconstructions based
on given pairs of single-center panoramic images have been carried out in [7,5].
In this case, the epipolar lines can be described by sine curves, and all of them
pass through both epipoles. Curve parameterization and image resampling may
be carried out before stereo matching takes place.

A panoramic image with a radius R > 0 is referred to as a multi-perspective
panoramic image. This type of panoramic images is receiving much attention
recently for applications of 3D scene visualizations and reconstructions, for in-
stance, [3,10,13,15,16,11].

In particular, a set of panoramic images all acquired with respect to the same
base circle, a constant focal length f , but different values ω, are referred to as a
set of concentric panoramic images. H-Y. Shum and R. Szeliski [16] have shown
that epipolar geometry consists of horizontal lines if two concentric panoramic
images are symmetric with respect to the normal vector of the base circle at the
associated focal point (i.e. angles ω and −ω).

The authors of this paper are not aware of further studies of epipolar geom-
etry of panoramic images. We define a set of polycentric panoramic images as a
collection of panoramic images acquired with respect to different (but parallel)
rotation axes, where the associated value R for each image can be either greater
than or equal to zero, and where angles ω and the focal length f of these images
may differ, but where it is assumed that all base circles are coplanar.

Since single-center, multi-perspective, or concentric panoramic images can
be regarded as special cases of these polycentric panoramic images, the epipolar
curve equation derived for a pair of polycentric panoramas provides a unified
approach for computing epipolar curves in those more specific types of panoramic
images. In this paper, we elaborate the derivation of the general epipolar curve
equation and provide examples for two typical panoramic image cases visualizing
a synthetic 3D scene.

Material about stereo matching in panoramic image pairs can be found
in [4,2,9]. Among them, only S.B. Kang and R. Szeliski [4] attempt to find corre-
sponding points along epipolar curves. They attribute their negative result to the
inaccurate estimation of epipolar geometry and the difficulty of correct match-
ing in case of singular situations when the projection ray of the second camera
passes through the focal point of the first camera. J. Gluckman et al. [2] use a
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Fig. 1. The image acquisition model of a panoramic image. To acquire a
panoramic image P a slit camera rotates with respect to a fixed 3D axis and
captures one slit image I in every constant angular interval. Each slit image
contributes to one column of P . The orientation of the slit camera is defined
by the angle ω between the normal vector of the dashed base circle C at the
associated focal point and the optical axis of the slit camera

co-axis panoramic pair1 such that the epipolar lines are straight and emitting
radially from the epipole to the boundary of the image. Matching is done based
on the correlation method with a rectangular support-region. M. Ollis et al. [9]
studied various configurations of catadioptric panoramic image-acquisition mod-
els. Nevertheless, all of them are of co-axis type; hence, the epipolar geometry is
basically the same as in the work reported by J. Gluckman et al. They propose
a skewed-rectangular shape of a support-region, which is reported as giving a
better matching result.

Unlike the co-axis situations there is no one-to-one correspondence between
epipolar curves in a pair of polycentric panoramic images. We derive an equation
of the epipolar curve in one image corresponding to a given point in the other
image. This search space restriction can then be used to detect corresponding
points. We illustrate that by using an adaptive support-region matching scheme
as described in [14,6]. As a result, the accuracy of point matches seems to be
acceptable, see Fig. 3 and Fig. 4.

The paper is organized as follows. The acquisition model of polycentric
panoramic images has been defined in Section 1. The derivation of the epipo-
lar curve equation through various geometric transformations is elaborated in
Section 2. The 3D reconstruction formula is given in Section 3. Some experimen-
tal results of stereo reconstructions for polycentric panoramas are provided in
Section 4. Future work and conclusions are drawn in Section 5.

2 Epipolar Curve Equation

Consider a pair of polycentric panoramic images, a source image P and a des-
tination image P ′. If an image point p of P is given, then a 3D projection ray,
1 Two panoramic images are acquired using the same rotation axes.
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Fig. 2. The geometrical relationship among a slit camera coordinate system with
the origin C, an associated turning-rig coordinate system with the origin O, and
the world coordinate system with the origin W

denoted as 
c, emitting from a focal point C through the point p with respect
to the slit camera coordinate system can be described by P+ λD, where P is a
3-vector, λ ∈ � is any scalar, and D is a unit directional vector, we have

D = (0, sinφ, cosφ)T ,

where φ is the angular coordinate for the point p on the slit image (see Figure 2).
We define a 3D turning-rig2 coordinate system, as shown in Figure 2, for the

source panoramic image. The origin, denoted as O, coincides with the center of
the base circle C. The projection ray 
c is first transformed from the slit camera
coordinate system to the turning-rig coordinate system. The resulting ray is
denoted as 
o. The transformation formula is as follows:


o = R−1
oc P + Toc + λR−1

oc D,

= Toc + λR−1
oc D,

=


 R sin θ

0
R cos θ


 + λ


 cos(θ + ω) 0 − sin(θ + ω)

0 1 0
sin(θ + ω) 0 cos(θ + ω)



−1 

 0
sinφ
cosφ


 , (1)

where the 3×3 rotation matrix Roc and the 3×1 translation vector Toc specify
the orientation and the location of a slit camera coordinate system with respect
to the turning-rig coordinate system (see Figure 2).

The projection ray 
o is then transformed to the turning-rig coordinate sys-
tem of the destination panoramic image P ′ through the world coordinate system,
denoted as 
o′ ,


o′ = Rwo′(R−1
woToc + Two − Two′) + λRwo′R−1

woR
−1
oc D

= Rwo′


R−1

wo


 R sin θ

0
R cos θ


+ Two − Two′


+ λRwo′R−1

wo


 sin(θ + ω) cosφ

sinφ
cos(θ + ω) cosφ


,(2)

2 For example, a turntable or a turning head on a tripod.
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where the 3 × 3 rotation matrix Rwo (Rwo′) and the 3 × 1 translation vector
Two (Two′) specify the orientation and the location of the turning-rig coordinate
system of the source panoramic image P (the destination panoramic image P ′)
with respect to the world coordinate system.

The epipolar curve equation is an equation in terms of x′ and y′ which are the
image coordinates of the destination panoramic image P ′. Every point (x′, y′) is
the projection of some 3D point on the ray 
o′ . In other words, every (x′, y′) is
possibly the corresponding point of the given image point p (i.e. with the image
coordinates (x, y)) of P . Let I′ denote the slit image which contributed to the
column x′ of P ′ and let C′ denote the associated slit camera’s focal point. For
each column x′, the corresponding y′ value can be found by the following two
steps. First find the intersection point, denoted as Q′, of the ray 
o′ and the
plane ℘′ passing through C′ and I ′. Second, obtain the value of y′ by projecting
point Q′ to the slit image I ′.

The position of the focal point C′ with respect to the turning-rig coordinate
system of P ′ can be described by (R′ sin θ′, 0, R′ cos θ′), where R′ is the radius
of the circle C′ and θ′ = (2πx′)/(W ′

P), where W ′
P is the width of the destination

panoramic image. A unit vector perpendicular to the plane ℘′ is (− cos(θ′ +
ω′), 0, sin(θ′ + ω′)), where ω′ is the angle between the normal vector of C′ at C′

and plane ℘′. Therefore, the equation of plane ℘′ is

− cos(θ′ + ω′)X + sin(θ′ + ω′)Z = R′ sinω′ , (3)

where the variables X and Z are with respect to the turning-rig coordinate
system of the destination panoramic image P ′.

We substitute the x- and z-components of the projection ray 
o′ in Equ. 2
into the plane equation Equ. 3, and solve the value of λ. The intersection point
Q′ can then be calculated from Equ. 2. We denote the obtained coordinates of
Q′ as (Xo′ , Yo′ , Zo′). We have


Xc′

Yc′

Zc′


 =


 Xo′ cos(θ′ + ω′)− Zo′ sin(θ′ + ω′) + R′ sinω′

Yo′

Xo′ sin(θ′ + ω′) + Zo′ cos(θ′ + ω′)− R′ cosω′


 ,

which transforms the point Q′ to the slit camera coordinate system associated
to the slit image. For each image column x′, now we project the 3D point
(Xc′ , Yc′ , Zc′) on the associated slit image I ′. This allows us to formulate the
following general epipolar curve theorem for polycentric panoramic images:

Theorem 1. The corresponding value of y′ for each x′ can be obtained by

y′ =
f ′Yo′

Xo′ sin(2πx′
W ′

P
+ ω′) + Zo′ cos(2πx′

W ′
P

+ ω′)− R′ cosω′ , (4)

where f ′ is the effective focal length of the slit camera acquiring p′.

Note that the corresponding point p′ with coordinates (x′, y′) is only valid
if the value of the denominator of y′ is greater than zero.
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3 Reconstruction Formula

We consider a pair of corresponding points (x, y) and (x′, y′) in the source
panoramic image P and in the destination panoramic image P ′ respectively.
We denote the intersecting point of the projection rays defined by these two im-
age points by Q. We are interested to calculate the coordinates of Q with respect
to the turning-rig coordinate system of the source panoramic image. The equa-
tion of the projection ray defined by (x, y) is given in Equ. 1. The point Q can
be described by Equ. 1 with a particular value of λ, say λQ. The value of λQ can
be interpreted as being the length of the line segment CQ, where C is the focal
point of the slit camera associated to the image column x. Previously, we have
calculated a λ value by substituting the x- and z-components of the projection
ray 
o′ in Equ. 2 into the plane equation Equ. 3, which actually gives the desired
λQ. Thus, we may summarize it in the following reconstruction theorem:

Theorem 2. The point Q in Euclidean space, identified by such a pair of cor-
responding points, is

Q =


 R sin(2πx

WP
)

0
R cos(2πx

WP )


 + k


 sin(2πx

WP
+ ω) cos(tan−1( y

f ))
sin(tan−1( y

f ))
cos( 2πx

WP + ω) cos(tan−1( y
f ))




with respect to the source panorama’s turning-rig coordinate system, where

k =
R′ sinω′ + cos(2πx′

W ′
P

+ ω′)rT
1 (Toc −Too′)− sin(2πx′

W ′
P

+ ω′)rT
3 (Toc −Too′)

sin(2πx′
W ′

P
+ ω′)rT

3 (R−1
oc D)− cos(2πx′

W ′
P

+ ω′)rT
1 (R−1

oc D)
.

In this theorem, the 3 × 3 rotation matrix Roo′ and the 3 × 1 translation
vector Too′ specify the orientation and the location of the destination turning-rig
coordinate system of origin O′ with respect to the source turning-rig coordinate
system of origin O (i.e. Roo′ = Rwo′R−1

wo and Too′ = Two′T−1
wo), where rT

1 and
rT
3 are the first and third row vectors of the matrix Roo′ , respectively.

4 Experimental Results

We present two stereo reconstruction results of two typical types of polycen-
tric panoramic image pairs. One is for R > 0, which is referred to as a multi-
perspective panoramic pair, and the other is for R = 0, which is referred to as a
single-center panoramic pair. All of the panoramic images for our experiments
are captured in a 3D synthetic scene: a squared room containing different objects
such as sphere, box, knot etc. with mapped real images.

Consider two multi-perspective panoramic images, a source panoramic image
P and a destination panoramic image P ′, as shown on the top and in the middle
of Fig. 3, respectively. The middle panoramic image P ′ was acquired at the same
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Fig. 3. An example of a polycentric panoramic image pair, a multi-perspective
panoramic pair: The top (source) panoramic image shows 55 test points in la-
beled ‘∗’ and enumerated positions, the middle (destination) panoramic image
shows the corresponding epipolar curves and the bottom panoramic image shows
the corresponding points found in the destination panoramic image for those 55
test points in the source panoramic image

height3 with 2m to the east and 1m to the north of the top panoramic image
P . The effective focal lengths of the slit cameras used for acquiring these two
panoramic images are both equal to 35.704 mm. The radiuses of the base circles,
where slit camera’s focal points lie on, are both equal to 40 mm. The orientations
of the slit cameras with respect to each rotation axes are both equal to 45◦. Each
slit camera takes 1080 slit images for one panoramic image.

The orientations and the positions of the turning-rig coordinate systems of
P and P ′ with respect to the world coordinate system can be defined as: Rwo =
Rwo′ = I3×3 and Two = (0, 0, 0)T and Two′ = (tx, 0, tz)T, respectively. Given
3 The y-components of their associated rotation centers’ coordinates with respect to
the world coordinate system are equal.
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Fig. 4. An example of a polycentric panoramic image pair, a single-center
panoramic pair: The top (source) panoramic image shows 55 test points in la-
beled ‘∗’ and enumerated positions, the middle (destination) panoramic image
shows the corresponding epipolar curves and the bottom panoramic image shows
the corresponding points found in the destination panoramic image for those 55
test points in the source panoramic image

an image point (x, y) on P , Equ. 4 of the epipolar curve on P ′ is

y′ = y
f ′

f


R′ sinω′−R sin(2πx′

W ′
P
− 2πx

WP
+ω′)−tx cos(2πx′

W ′
P

+ω′)+tz sin(2πx′
W ′

P
+ω′)

−R sinω−R′ sin(2πx′
W ′

P
− 2πx

WP
−ω)−tx cos(2πx

WP
+ω)+tz sin(2πx

WP
+ω)


 .

In Fig. 3, the destination panoramic image in the middle shows the corre-
sponding epipolar curves of those 55 test points in the source panoramic image.
We observed that the epipolar curves associated to the image points on the same
column of the source image converge to the same point. Thus, there are multi-
ple epipolar curve converging points (i.e. multiple epipoles). All the converging
points are clustered together in a small line segment. We also observed that those
epipolar curves are different in length and are crossing each other. An important
observation of the epipolar curves in this type of the panoramic images is that
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there is no one-to-one correspondence between epipolar curves. For example, an
image point p in the source panoramic image defines an epipolar curve L′ in
the destination panoramic image. Choose any two image points p′

1 and p′
2 on

the epipolar curve L′. The corresponding epipolar curves for p′
1 and p′

2 in the
source panoramic image only intersect at point p. Based on these observations,
the adaptive support-region matching scheme [14,6] and correlation cost function
are used. The overall results of the matching are reasonable good under such a
serious image distortion. In Fig. 3, the bottom image shows the corresponding
points found in the destination panoramic image for those 55 test points selected
in the source panoramic image.

As a second example consider two single-center panoramic images, a source
panoramic image P and a destination panoramic image P ′, as shown on the top
and in the middle of Fig. 4, respectively. The image acquisition settings of these
two are the same as the ones for acquiring multi-perspective panoramas except
that any of the focal points of the used two slit cameras is incident with the
respective rotation axis. Given an image point (x, y) on P , the equation of the
epipolar curve in P ′ is

y′ = y

(
f ′

f

)
−tx cos(2πx′

W ′
P
) + tz sin(2πx′

W ′
P
)

−tx cos(2πx
WP

) + tz sin(2πx
WP

)


= y · k

(
tz sin

(
2πx′

W ′
P

)
− tx cos

(
2πx′

W ′
P

))
,

where

k =


 f ′

f
(
tz sin(2πx

WP )− tx cos(2πx
WP )

)



is a scalar.
From Fig. 4 we observed that all the epipolar curves converge to a single

point (i.e. the epipole). The epipolar curves are different in length, but they do
not cross each other in this case. An important feature of the epipolar curves in
the single-center panorama pair, which is not true in case of multi-perspective
panoramic pairs, is that corresponding points of image points which lie on the
same epipolar curve in the destination image, also lie on the same epipolar curve
in the source image. Thus, in this special case of single-center panoramic images
there is a one-to-one correspondence between epipolar curves.

5 Future Work and Conclusion

In this paper, we defined a basic acquisition model of polycentric panoramas. The
general epipolar curve equation is derived and can easily be modified with respect
to any more specific image acquisition case (e.g. single-center panoramas). In this
study, we assume that the motion (i.e. the 3D spatial relationship) between a
panoramic pair is given, but practically it needs to be calculated in advance by
calibration of the panoramic image acquisition process. For a set of uncalibrated
panoramic images, it is interesting to know how many corresponding points are
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necessary to calibrate the desired parameters. There is no one-to-one correspon-
dence between epipolar curves of a pair of polycentric panoramic images, except
for a few very special cases such as single-center panoramic images, due to the
nature of multiple optical centers. The adaptive support-region matching scheme
is used to obtain reasonable results. However, to improve the matching quality,
the shape of support-region can be adapted non-uniformly along epipolar curves
and an algorithm also incorporating global optimization should be developed.
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Abstract. In this paper, two modules of a behavior based robotic–vision
system are described: An attention mechanism, and an accumulation
algorithm to extract stable object representations within a perception–
action cycle.

1 Introduction

The aim of our research is the design and implementation of an active vision
system coupled with a robot arm (see Fig. 1a) which is able to recognize and
grasp objects with autonomously learned representations. The system shall gain
robot control over new objects (i.e., grasp a new object in a scene) by an instinc-
tive and rudimentary behavior pattern and use the control over the object to
accumulate a representation of the object and finally apply these representations
to robustly track, grasp and recognize the object in a complex scene.

In this paper, two modules of such a system are described: A visual and (po-
tentially) haptic attention mechanism, and an accumulation algorithm to extract
stable object representations. In the first module (described in section 2) the sys-
tem directs its attention to new objects and manipulates the active components
(i.e., cameras and grasper) such that a situation is achieved in which grasping
becomes easier: grasper and object appear in the center of a zoomed stereo im-
age pair (see Fig. 1h). In this situation grasping of the object can be performed
using only relative positions between grasper and object. The high resolution
allows to accurately extract 3D–Information about the relative position and ori-
entation of grasper and object by stereo. Note that our attention mechanism
is planned not to be only vision–based. We are currently redeveloping a haptic
sensor [16] which allows to explore an object haptically. Therefore, our attention
mechanism potentially focuses visual and haptic attention to the new object.
The attention mechanism is to a wide degree predetermined but also contains
adaptable components: The grasper is permanently tracked by the system. The
information of motor commands and tracking results allow a self–calibration
during the perception–action cycle [9,17].

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 219–226, 2001.
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biii) biv)

g) h)

a) bi) bii)

d)

e) fi) fii)

fiii)

c)

Fig. 1. a) Active binocular head with robot arm. bi-biv) Images of a person
entering the scene, putting an object into the scene and leaving the scene. c)
Graph indicating a dynamic period by the magnitude of differences between
images. d-h) Stereo images: d) Difference image before and after the dynamic
period e) Similarities of a Gabor jet extracted from the center of gravity in the
left image to the jets extracted from other pixel positions of the difference area.
Maxima are defined as corresponding points. fi) Fixation of the new object. fii)
Similarities of the Gabor jets for fine tuning of fixation. fiii) Fixation after a
second camera action. g) Movement of the robot arm to a position near the
object. h) Zoom

The second module (described in section 3) uses control over the object to
extract a stable representation. We account for the vagueness of semantic infor-
mation extracted from single images by assigning confidences to this information
and accumulating this information over an image sequence of a controlled moving
object. Although the information extracted from single images contains errors
(see the representations on the left hand side of Fig. 3) a more stable representa-
tion can be achieved by combining information from different images (see right
hand side of Fig. 3). Because the object can change its position and orientation
— and this change might be wanted because another view of the object gives
new information which might not be extractable from former ones — we face
the correspondence problem: Correspondences between entities describing the
object in different images (or 3D interpretations extracted from stereo images)
are not known. However, the parameters of motion are known since the robot
manipulates the object and the transformations of entities can be compensated
for each frame of the sequence. Knowing the correspondences, an algorithm can
be applied to update and improve the object representation iteratively within a
perception–action–cycle.

One important aspect of the design of a complex behavior based vision system
is the interaction of modules developed by different people within one software
package to derive complex competences from the combination of more primitive
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competences. We are currently developing a C++–library (KiViGraP, Kieler
Vision and Grasping Project) in which this interaction is going to occur (for
details see [13]).

2 Attention Mechanism Based on Visual–Robotic
Perception–Action Cycles

Our basic behavior aim at a tactile contact with a new object can be divided into
a number of more simple competences (described below). The behavior pattern
can be understood to a wide degree as a reflex action: The system shall “aim” to
get in contact to new objects to explore them visually and haptically. Going even
further, it “aims” to grasp the object using a rudimentary representation to learn
a more sophisticated and efficient representation (see section 3). During robot
actions a permanent tracking of the grasper allows to permanently recalibrate
the system.

The module described in this section is going to initiate a situation in which
grasping and tactile exploration is facilitated. Since for the accumulation scheme
(section 3) it is essential that the system has physical control over the object, the
module described in this section can be understood as part of a bootstrapping
process, that (once the system’s experience has been grown) can be substituted
by or transformed into a more goal–oriented behavior pattern. However, the
bridge between attention and grasping has not yet been built and is part of
current research.

In the following we describe some submodules used to achieve tactile contact.
The modules described here are not understood to be performed in a sequential
process but as competences which interact with each other (e.g., tracking and
self–calibration) and which can be applied depending on the actual system’s
goal. It is likely that at the very beginning of the bootstrapping process the
structure and relations of the competencies are more predetermined than after
a period of adaptation.

– Detection of a new object and detection of a suitable time interval
for robot action: A new object is detected by the difference in each of
the two stereo images before and after a dynamic period, i.e., a period in
which people or other objects enter the scene (see Fig. 1bi–iv). For reasons
of grasping success and maintaining safety for people interacting with the
robot, it is necessary not to intervene in a dynamic situation. The system
searches for a new object when a dynamic period occurred — a person puts
a new object into the scene — followed by a stable period — the person
leaves the scene (see Fig. 1bi–iv). Figure 1c shows a graph indicating the
dynamic in a scene. During a period in which the graph shows high values
the robot is not allowed to intervene. The behavior pattern, responsible for
robot and people safety can be understood as a permanent (self)protection
expert which restricts all other robot processes.
In case that the person puts a new object into the scene, the object is de-
tected by the difference in the images before and after the dynamic period
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(see Fig. 1d). Since simple differences of grey–level images are unstable due
to little movements of the camera or variation of illumination, we also com-
pute the difference of the magnitude of Gabor wavelet responses. For effi-
cient computation we make use of the separability of quaternionic Gabor
wavelets [5].

– Fixation, approaching and zooming: In case of detection of a change in
the images before and after the dynamic period we fixate the new object. The
internal camera parameters of our binocular camera-head are calibrated at
an initialization stage. Then the system recalibrates itself after a movement
by computing the new projection parameters from the motion commands
given to the camera head. This recalibration is relatively stable even after a
number of movements.
The two areas which represent differences in the image (or more precisely
their center of gravity) give us two corresponding points for which we can
compute a 3D–position with our calibrated system. Knowing its 3D–position
we could easily fixate the object. However, since the correspondence of two
objects is defined by the center of gravity of areas (which might not be
very precise), the system may additionally use information about similarities
within a small area around our difference areas. We compare image patches
(with a method similar to [12] based on Gabor wavelets and jets) to find more
precise correspondences in the two stereo images (see Fig. 1e). The system
can achieve a higher robustness by iteratively computing the distance of the
object and the image center after fixation. Note that these distances also
can be used as a measure for the performance of the system, i.e., can also
be used in a more global feedback loop to optimize the system.
Finally, the robot arm is moved to a position near the computed 3D–position
of the object (see Fig. 1g) and the system can perform a zoom to get a higher
resolution of both, the object and the grasper (see Fig. 1h). Object and
grasper appear magnified and their relative distance can be used for grasper
manipulation with high accuracy. It is expected that this relative distance
can be extracted with higher accuracy than absolute distances from stereo
images.

– Tracking and self–calibration: The system is equipped with a permanent
grasper–tracking mechanism which is also based on the jet–representation
in [12]. The 2D–tracking results and the motion parameters given to the
robot can be compared to recalibrate the system by a simple update rule. It
seems to be important that calibration does not only occur at the beginning
of a process (often with an artificial calibration pattern) but is performed
permanently during the normal perception–action cycle. Therefore, we have
to face the tracking of the grasper in our quite uncontrolled environment.
This is known as a very hard matching task which we are able to solve even
with our rudimentary object representation by allowing only ’sure’ matches
to be used for self–calibration (for details see [18]). Here again, the system’s
ability to measure the success of performing competences is of significant
importance.
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We would like to finish this section with the remark that, although in its
current state the behavior pattern is to a huge degree predetermined, we do
intend to achieve a more robust, more flexible and more–goal oriented behav-
ior pattern in a complex system through learning. Self–calibration by grasper
tracking already supports an even better estimate of internal and external pa-
rameters and therefore a more robust behavior. Furthermore, the module can
measure its success of fixation (Fig. 1fi-iii) and is intended to detect the success
of tactile contact and grasping. Therefore, this information can be used as feed-
back for a more global learning which may allow to achieve direct contact and
successful grasping more frequently by optimizing free parameters of the system.
Finally, after achieving robot control more complex object representations can
be learned (see section 3) and the original reflex behavior can be transformed
into a more goal–oriented behavior, e.g., an object is only grasped when it hasn’t
been learned so far.

Fig. 2. The accumulation scheme. The entity e1 (here represented as a square)
is transformed to T 1,2(e1). Note that without this transformation it is nearly
impossible to find a correspondence between the entities e1 and e2 because the
entities show significant differences in appearance and position. Here a corre-
spondence between T 1,2(e1) and e2 is found because a similar square can be
found close to T 1,2(e1) and both entities are merged to the entity ê2. The confi-
dence assigned to ê2 is set to a higher value than the confidence assigned to e1

indicated by the width of the lines of the square. The same procedure is then
applied for the next frame for which again a correspondence has been found. By
this scheme information can be accumulated to achieve robust representations

3 Accumulation of Inaccurate Information to a Robust
Object Representation

After grasping the object, an accumulation scheme can be applied to extract
a representation of the object (see Figs. 2 and 3). Feature extraction faces the
problem that semantic information extracted by artificial systems from a single
image or stereo images even under optimal conditions is necessarily imperfect.
For instance, although there exist a large amount of edge detectors none of
them is comparable to human performance. Moreover, we see it as an important
problem to extract object representations in real situations and not in artificially
adapted conditions (such as homogeneous background, controlled pose etc.), i.e.,
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Fig. 3. left) top: left and right image of an object. bottom: the projected 3D
representation extracted from the stereo images. middle) Two pairs of stereo im-
ages (top: left camera image, middle: right camera image) and the the projected
3D representation (bottom). right) Projected 3D Representation accumulated
over a set of stereo images. The system’s confidence for the presence of line
segments is represented as grey value (Dark values represent high confidences)

we intend to fulfill the requirements situatedness formulated by Brooks [3]. One
important reason for the extremely good performance of humans on these tasks in
even very difficult situations is that the human visual system applies constraints
to interpret a certain scene or situation [7,10]. An important constraint is the
utilization of the coherence of objects during a rigid body motion which allows to
accumulate information over time. Furthermore, in an active vision–based robot
system we are able, instead of only passively perceiving a certain situation, to
support learning by our own actions. This corresponds to embodiment as another
requirement formulated by Brooks [3].

Our accumulation algorithm can be defined independently of the entities used
to represent objects. The algorithm also is independent of the concrete equiva-
lence relation or transformation used to define correspondences. It only requires
an object representation by certain entities for which a metric is defined and
to which certain transformations or equivalence relations (such as rigid body
motion) can be applied. This accumulation algorithm is an extension of an al-
gorithm introduced in [11,14] which has only dealt with 2D representation and
translational motion.

Let e ∈ E be an entity used to describe objects (for instance a 2D–line
segment, a structure tensor [8] extracted from an image, 3D–line segments ex-
tracted from a stereo image pair or any other kind of object descriptor) and
d(e, e′) be a distance measure on the space of entities E. Furthermore, let T be
a transformation or equivalence relation, for instance a rigid body motion or the
projective map corresponding to a rigid body motion. If ei is an entity extracted
from frame i of a sequence of events then T i,i+1(ei) is the transformation T i,i+1

from the i–th to the (i+ 1)–th frame applied to ei.



Two Modules of a Vision–Based Robotic System 225

Let ei+1 be an entity extracted from the (i+1)–th frame of the sequence.
We say that ei and ei+1 are likely to correspond to each other if d(T (ei), ei+1)
is small. Often it might not be possible to find an exact correspondence with
d(T (ei), ei+1) = 0. For example, if we want to compare local image patches in two
images knowing the exact projective transformation corresponding to the rigid
body motion of an object from the first to the second frame, the corresponding
image patches can not be expected to be exactly equal because of factors such
as noise during the image acquisition, changing illumination, non–Lambertian
surfaces or discretization errors, i.e., the features are quasi–invariant. The prob-
lem may even become more severe when we extract more complex entities such
as 3D or 2D line segments or 3D–surface patches. Therefore it is advantageous
to formalize a confidence of correspondence by using a metric.

The accumulation of information can now simply be achieved by the follow-
ing update rule: If there exists an entity ei+1 in the (i+1)–th frame for which
d(T (ei), ei+1) is small (i.e., a correspondence is likely), then merge T (ei) and ei+1

by some kind of average operator, êi+1 = merge(T (ei), ei+1), and set the con-
fidence for êi+1 to a higher value than the confidence assigned to ei. If there
exists no entity ei+1 in the (i+1)–th frame for which d(T (ei), ei+1) is small,
the confidence for entity ei to be part of the object is decreased. In Fig. 2 a
schematic representation of the algorithm is shown for two iterations.

The accumulation scheme could also be interpreted as an iterative clustering
scheme with an in build equivalence relation to compensate the motion of the
object. It is also related to, so called ’dynamic neural nets’ [6,4], in which cells
appear or vanish according to some kind of confidence measure.

Figure 3 shows the application of this scheme to representations consisting
of 3D line–segments extracted from stereo images. For these entities the change
of the transformation (i.e., T i,i+1(e)) and a metric can be computed explicitly
(for details see [1]). Up to now, only one aspect of an object can be accumulated
because correspondences are needed which are not granted when occlusion does
occur. That means, that when the robot rotates the object by a larger degree, it is
likely that new edges occur in the stereo images and other edges disappear. In the
current state we ensure that the same aspect is presented to the system by only
allowing movements within a small subspace of the space of rigid body motions.
To define such a subspace of possible rigid–body motions we make explicitly use
of the metric defined on the space of unit–quaternions corresponding to rotations
in Euclidean space [2].

4 Outlook

We have introduced two basic competences of an object recognition and manip-
ulation system. In both modules perception and action are tightly intertwined
within perception–action cycles [9,17].

Important components of such a system are still missing, such as performing
grasping of the object after the attention mechanism. However, for such a grasp
the attention mechanism gives a good starting point, because we have only to
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operate with relative positions and since we gained high resolution of the impor-
tant aspects of the scene by active control of the camera. A further important
problem is the application of our extracted representations to recognition and
grasping tasks. In [15] we could successfully apply one of our accumulated rep-
resentations to the tracking problem.
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12. M. Lades, J. C. Vorbrüggen, J. Buhmann, J. Lange, C. von der Malsburg, R. P.
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Abstract. We apply an eye-on-hand Robot Vision system for treating
the following three tasks: (a) Tracking objects for obstacle avoidance; (b)
Arranging certain viewing conditions; (c) Acquiring an object recogni-
tion function. The novelty is the use of so-called compatibilities between
motion features and view sequence features. Under real image forma-
tion, compatibilities are more general and appropriate than exact in-
variants. We demonstrate the usefulness for constraining the search for
corresponding features, for parameterizing correlation matching proce-
dures, and for fine-tuning approximations of appearance manifolds.

1 Introduction

During the late eighties Computer Vision scientists realized that the human
intelligence underlying the perception of the environment is not only based on
views but also on accompanying actions. Since then, cameras have been mounted
on agile devices in order to enable active viewing and study vision in combination
with actions. Although this new paradigm of Robot Vision (or Active Vision)
produced exciting solutions for problems which are too difficult for static vision,
the potential usefulness is far from being fully realized [1].

Our work demonstrates the usefulness of controlled camera movements for
three exemplary applications, i.e. tracking objects for obstacle avoidance, ar-
ranging certain viewing conditions, acquiring an object recognition function. In
this context the theoretical concept of invariance is relaxed into the practical
concept of compatibility. Regarding this, the first attempt has been undertaken
by Binford and Levitt [3], who introduced quasi-invariance under transforma-
tions of geometric features. Our compatibility concept considers more general
transformations, maybe with different types of features prior and after the map-
ping, and considers robot actions as the source of the transformations, and thus
integrates real-world actions and perception.

We focus on compatibilities between 3D motion features and 2D view se-
quence features. Based on visual demonstration, statistical measurements are
taken to evaluate the deviation from the exact invariance and thus specify the
compatibility, which can be used in subsequent online applications. We study
compatibilities for typical sub-tasks of the mentioned applications, i.e. constrain-
ing the search for corresponding features (section 2), parameterizing correlation
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Fig. 1. (a) and (b) Two consecutive images with gray value corners: (c) Image
with motion vectors at the gray value corners

matching procedures (section 3), and fine-tuning approximations of appearance
manifolds (section 4). For the applications we used a 6-DOF robot arm (Stäubli-
RX90) and a monochrome video camera mounted on the back of the robot hand.
Within a working space of a cube with sidelength 500mm the camera can be
arranged in any position and orientation.

2 Constraining the Search for Corresponding Features

We would like to acquire depth features from a collection of objects, e.g. bottles
and cans in a refrigerator. For this purpose the camera will be translated con-
tinually in front of the objects. Gray value corners can be extracted (e.g. with
SUSAN [7]) and must be tracked along the image sequence. Based on corre-
spondences, shape-from-motion strategies can be applied to obtain the relevant
information. For example, Fig. 1 shows two consecutive images (left and middle)
with gray value corners extracted by SUSAN, and the right image depicts motion
vectors at these points. We are interested to restrict the search for corresponding
corners, i.e. determine an individual disparity range for each corner.

In an experimentation (offline) phase we put a calibration pattern onto the
ground plane. It depicts a regular distributed set of black dots. Both at nearest
and farthest distance to the ground (i.e. the top and bottom borders of the view-
ing space), the camera makes a certain step of movement, respectively. Motion
vectors for the calibration dots are determined in the images, resulting in two
vector fields V 1 and V 2. Figure 2 shows images of the calibration pattern prior
and after lateral camera translation (at top border of viewing space). The flow
of dots from left to right results in vector field V 1 (not depicted). Figure 3 just
shows the lengths of motion vectors of V 1, which are not constant due to large
image distortions (caused by a lense with small focal length, 4mm). For the
specified camera movement, the two vector fields impose expectations on motion
vectors which can be used later on during the online phase. Let us assume an
image point pi which originates from an arbitrary 3D point within the viewing
space, and assume a step of camera movement as specified according to the cali-
bration phase. For the image point the angles of the motion vector taken from V 1

or V 2 are approximately the same. Furthermore, the length of the motion vector
must be in the interval of the relevant lengths given in V 1 and V 2. Consequently,
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a point pi in the first image and a point qj in the second image is a candidate
pair for correspondence, only if the following constraints hold:

Φ(V 1(pi)) ≈ Φ(qj − pi) ≈ Φ(V 2(pi)) (1)

L(V 1(pi)) ≥ ‖qj − pi‖ ≥ L(V 2(pi)) (2)
Symbol Φ denotes the angle and L the length of a vector. Just these carefully
selected candidate pairs are taken for applying normalized cross correlation in
order to determine the most appropriate one, as shown in Fig. 1 (right image).
The compatibility is represented by the two equations (1) and (2).

3 Parameterizing Correlation Matching Procedures

The robot hand including the hand-mounted camera should be arranged in a
certain relation to the object. This can be regarded as a sub-task of a grasping
process or a sub-task leading to optimal viewing of an object. A servoing mech-
anism will be applied which does the arrangement step by step and is based
on continual visual feedback and correlation matching in the series of images.
In section 2 we treated exemplary the case of camera translation, and now we
consider compatibilities for the case of camera rotation. If a camera is rotating
around the optical axis, which is normal to the object surface, then log-polar
transformation (LPT) can be applied to the gray value images [4]. The motiva-
tion is that the transformed object pattern is shifting instead of rotating, which
makes the correlation matching more efficient during the servoing process. Fig-
ure 4 shows two images of an integrated circuit (IC) object under rotation by a
turning angle of 90◦. These are two examples from a collection of 24 images taken
under angle offset of 15◦, respectively. Figure 5 shows the horizontal translation
of the log-polar transformed pattern of the rotating object.

However, in a view sequence perfect invariance only holds for a flat 2D ob-
ject without any side faces, and a simulated pinhole camera is assumed whose
optical axis must be kept normal to the object surface. In realistic applications,

Fig. 2. Calibration pattern prior/after lateral
camera translation, flow of dots from left to right

Fig. 3. Lengths of mot. vec-
tors for lateral camera trans-
lation
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Fig. 4. Integrated circuit object under rotation by
turning angle 90◦

Fig. 5. Horizontal trans-
lation of LPT pattern

resampling error occur certainly, the objects are of three-dimensional shape pre-
sumably, the camera objectives may cause unexpected distortions, and possibly
the optical axis is not exact normal to the object surface (misalignment). Be-
cause of these realistic imponderables, certain variations of the LPT patterns
will occur. We are interested in determining the real deviations from invariance
in order to obtain tolerance parameters for correlation matching.

By demonstrating sample objects and performing typical camera rotations
relative to the objects, one can make measurements of real deviations from in-
variance, i.e. actual variations of the LPT patterns. Despite of these variations,
it is expected that the manifold of LPT patterns is much more compact and eas-
ier to describe than the original manifold of appearance patterns. For example,
presumably, a single multi-dimensional Gaussian, specified by a center vector
and a certain covariance matrix, may approximate the variation.

For illustration, we perform a simple experiment which is based on histograms
of edge orientations. Specifically, orientations of gray value edges are considered
in order to demonstrate the influence of LPT to a rotating 3D object, i.e. mea-
suring the deviation from pure pattern translation in the log-polar transformed
image. The image library consists of 24 images, as mentioned above. The his-
tograms should be computed from the relevant area of the LPT image containing
the object pattern, respectively. To simplify this sub-task a nearly homogeneous
background has been used such that it is easy to extract the gray value structure
of the IC object. We compute for the extracted LPT patterns a histogram of
gradient angles of the gray value edges, respectively.

Figure 6 (left) shows a histogram determined from an arbitrary image in the
library. The mean histogram is computed from the LPT patterns of the whole
set of 24 images, shown in Fig. 6 (middle). Next, we compute for each histogram
the deviation vector from the mean histogram. From the whole set of deviations
once again a histogram is computed, which is shown in Fig. 6 (right).

This latter histogram can be approximated as a Gaussian with the maximum
value at 0 and the Gaussian turning point approximately at the value σ = 5.
Under ideal (simulated) conditions the Gaussian would be an impulse function
with extent 0. However, the real value of σ is a measure for the deviation from
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perfect invariance. It can be used to parameterize approaches of pattern match-
ing, e.g. specifying thresholds for the coefficient of normalized cross correlation
in order to obtain reasonable matching hypotheses.

4 Fine-Tuning Manifold Approximations for Recognition

For the recognition of a scene object in an image we need to have an appropriate
recognition function. This function can hardly be implemented manually and
instead should be learned automatically in the task-relevant environment. Based
on a robot-controlled process of taking sample views we can incorporate action-
related information for improving the generalization in the learning mechanism.

Appearance-Based Object Recognition

A holistic learning approach can be applied which is based on 2D appearance
patterns of the relevant objects or response patterns resulting from specific fil-
ter operations. The main interest is to represent or approximate the pattern
manifolds such that an optimal compromise between efficiency, invariance and
discriminability of object recognition is achieved. It is essential to keep these
manifolds as simple as possible, because the complexity is correlated to the time
needed for object recognition. In section 3 we restricted camera poses and move-
ments and thereby reduced the manifold complexity by LPT. However, in this
section we accept general viewing poses. Apart from the efficiency criterion the
recognition function must respond with constant high values for any appearance
of the object (invariance criterion), and must be able to discriminate between
target and other objects (discriminability criterion).

The most popular approach of manifold approximation is based on principal
component analysis (PCA) for a collection of views [5]. This is done for each
object leading to an object-specific Eigenspace, respectively. An unknown view
can be recognized by computing proximity values to the training samples in the
Eigenspaces, and determining the most relevant manifold. An improvement of

Fig. 6. (a) Histogram of edge orientations under LPT for one image; (b) Mean
histogram for several images; (c) Accumulation of orientation deviations
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this one-nearest-neighbor approach is obtained by applying a clustering approach
for the purpose of generalization. Closely located training samples are clustered
and the clusters approximated as a multi-dimensional Gaussian, respectively.
However, clustering procedures such as ISODATA search for neighboring ele-
ments according to simple metric, and do not consider any inherent topology
between training samples. For example, if training samples are acquired by con-
secutively rotating the camera around the object, then we know in advance that
the pattern variation can be approximated as a one-dimensional course in the
space of patterns. Consequently, the clustering procedure should generate seg-
ments of this course by taking the succession of training views into account. By
imposing a topology onto the collection of sample views, which is obtained from
the process of image taking, we can cluster more adequately.

Role of Temporal Context in Object Recognition

In addition to the one-dimensional topology we also take advantage of the tem-
poral continuity of gray values between the views in the image sequence.1 For
an object under rotation the temporal continuity can be observed exemplary in
a series of histograms of orientations of gray value edges. Figure 7 shows four
gray value images (a,b,c,d) of a transceiver box which has been rotated slightly
in four discrete steps of 5◦. Figure 8 depicts the overlay of four histograms of
edge orientations for these four images (but suppressing the gray values of the
background). The histogram curves move to the right continually under slight
object rotation.2 These sequential correlations between consecutive images hold
for small changes in the relation of object and camera. They are considered for
fine-tuning the manifold approximation.

Incorporating Temporal Context for Manifold Approximation

Let us assume that the clustering is already performed under the constraint of
a one-dimensional topology. This leads to a representative view for each cluster,
respectively, which will be taken as seed views for manifold approximation. A se-
quence of Gaussian basis functions is used for approximating the one-dimensional
course in the space of patterns. Each seed view is the basis for specifying the
center of a multi-dimensional Gaussian with the dimension equal to the number
of pixels. Each Gaussian is almost hyper-spherical except for one direction whose
Gaussian extent is stretched. The exceptional direction at the current seed view
is determined on the basis of the difference vector between the previous and the
next seed view. For illustrating the principle, we take two-dimensional points
which represent the seed views. Figure 9 shows a series of three seed views, i.e.
previous, current and next seed view (Xs

i−1, X
s
i and Xs

i+1). At the current seed
view the construction of an elongated Gaussian is depicted. Actually, an ellipse
is shown which represents the contour related to a certain Gaussian altitude.
1 The importance of temporal context in object recognition is well-known [2].
2 The variation of the accumulation values is due to changing lighting conditions or
due to the appearing or disappearing of object faces.
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Fig. 7. Four gray value images of a
transceiver box under rotation in dis-
crete steps of turning angle 5◦

Fig. 8. Overlay of four histograms of
edge orientations computed for the
four images in Figure 7

The Gaussian extent along this exceptional direction must be defined such
that the significant variations between successive seed views are considered. For
orthogonal directions the Gaussian extents are only responsible for taking ran-
dom imponderables into account such as lighting variations. Consequently, the
Gaussian extent along the exceptional direction must be set larger than the
extent along the orthogonal directions. It is reasonable to determine the ex-
ceptional Gaussian extent dependent on the euclidean distance measurement
between the previous and the next seed view. We avoid mathematical details
because they are simple. However, it is worth to mention a similarity of this ap-
proach of manifold approximation with the so-called “oriented particle system”
for surface modeling, introduced by Szeliski and Tonnesen [8].

Fig. 9. Constructing hyper-ellipsoidal basis functions for time-series of seed vec-
tors
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Applying the Fine-Tuned Manifold for Object Recognition

Although our approach is very simple, both efficiency and robustness of the
recognition function increases significantly. The usefulness of constructing elon-
gated Gaussians is illustrated for recognizing the transceiver box in Fig. 7. For
learning the recognition function the object is rotated in steps of 10◦ leading
to 36 training images. All of them are used as seed images (for simplicity). The
computation of gradient magnitudes followed by a thresholding procedure yields
a set of gray value edges for each seed image. From each thresholded seed image
a histogram of edge orientations is computed. A Gaussian basis function (GBF)
network is installed by defining elongated GBFs according to the mentioned ap-
proach. Histograms of the seed images are used as the Gaussian center vectors
and the Gaussians are modified based on previous and next seed histograms (and
applying a user-defined stretching factor). In the GBF network the combination
factors for the Gaussians are determined by the pseudo inverse technique.

For assessing the network of elongated Gaussians, we also construct a net-
work of spherical Gaussians and compare the recognition results computed by
the two GBF networks. The testing views are taken from the transceiver box
but different from the training images. The testing data are subdivided in two
categories. The first category consists of histograms of edge orientations arising
from images with a certain angle offset relative to the training images. Tempo-
ral continuity of object rotation is considered purely. For these situations the
relevant recognition function has been trained particularly. The second category
consists of histograms of edge orientations arising from images with angle off-
set and are scaled, additionally. The recognition function composed of elongated
Gaussians should recognize histograms of the first category robustly, and should
discriminate clearly the histograms of the second category. The recognition func-
tion composed of spherical Gaussians should not be able to discriminate between
both categories due to an increased generalization effect, i.e. accepting not only
the angle offsets but also scaling effects. The desired results are shown in the
diagrams of Fig. 10. By applying the recognition function of spherical Gaussians
to all testing histograms, we can hardly discriminate between the two categories
(left). Instead, by applying the recognition function of elongated Gaussians, we
can define a threshold for discriminating between both categories (right).

5 Summary and Discussion

For an eye-on-hand system we presented three typical applications, i.e. tracking
objects for obstacle avoidance, arranging certain viewing conditions, and acquir-
ing an object recognition function. The concrete tasks have been to constrain
the search for corresponding features, to parameterize correlation matching, and
to fine-tune appearance manifolds. For solving the first task, specific steps of
motion are performed during an experimentation phase in order to acquire con-
straints for motion vectors. By restricting the kind of motion to these specific
ones during the online phase we can exploit the acquired constraints in the search
for correspondences. For solving the second task, a specific course of motion is
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Fig. 10. Confidence values of recognizing an object based on histograms of edge
orientations. For testing, the object has been rotated by an offset angle relative
to the training images (result in curve a), or the object has been rotated and
the image has been scaled additionally relative to the training images (result in
curve b). (Left) Curves show the courses under the use of spherical Gaussians,
both categories of testing data can hardly be distinguished; (Right) Curves show
the courses under the use of elongated Gaussians, both categories of testing data
can be distinguished clearly

performed during an experimentation phase in order to determine real devia-
tions from a theoretical invariance, i.e. the variation of an LPT pattern under
camera rotation. The distribution of deviations has been approximated by a
Gaussian. The Gaussian extent can be used to determine a threshold in proce-
dures which make use of correlation matching. For solving the third task, the
camera is moved step by step for acquiring appearance patterns from an object.
The pattern manifold is fine-tuned by making use of the known one-dimensional
topology and the temporal continuity of the gray-values.

All three examples have in common that specific movements of the camera
lead to certain changes in the images. From an abstract point of view, these
are compatibilities between 3D motion features and 2D view sequence features.
They are approximated during an experimentation phase based on statistical
evaluations. Also, the examples show the usefulness of repeatable actions, i.e.
the pre-specified actions in the experimentation phase must be repeatable in
the application phase. The usefulness is due to the applicability of action-based
information for supporting image processing in the application phase.

Apart form compatibilities for the perception-action cycle, which have been
treated exemplary in this work, we also studied other compatibilities for the
purpose of boundary extraction (published in [6]). The advantage is to reduce
the amount of object-specific knowledge and instead make extensive use of con-
straints which are inherent in the three-dimensional nature of objects and in the
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process of image formation. For high-level Robot Vision applications a further
category of compatibility is of interest. It is the compatibility between a delib-
erate plan (e.g. a strategy for solving a task) and the concrete servoing process
(which is based on visual feedback). Generally, a compromise is needed between
plan fulfillment and plan adjustment with the latter being triggered by require-
ments in the observed reality. Our approach of considering such compatibilities
is based on dynamic potential fields (a publication will be prepared soon).
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Abstract. In this paper we study trifocal tensors with Grassmann-
Cayley algebra. We propose a new method to derive relations among
epipoles, fundamental tensors and trifocal tensors of three pinhole cam-
eras. By this method we can find some new constraints satisfied by tri-
focal tensors.

1 Introduction

The trifocal tensor appears to be one of the most interesting theoretical con-
structions for three view vision. It was discovered by Shashua (1994) and Hartley
(1994) using epipolar geometry. A systematic way of deriving its necessary and
sufficient conditions was proposed by Faugeras and Mourrain (1995a, b). In the
same publications three groups of degree-six constraints of the trifocal tensor
were also discovered, and were later used by Faugeras and Papadopoulo (1997,
1998) in projective estimation.

The major mathematical tool used by Faugeras and Mourrain (1995a, b) is
the so-called Grassmann-Cayley algebra of R4, which is a 16-dimensional graded
vector space equipped with two multilinear, associative and grade-dependent
anti-commutative products: the wedge product ”∧” and the meet product ”∨”.
Elements in the algebra are called multivectors. When R4 is taken as a 3-
dimensional projective space, the wedge product of two (or three) vectors rep-
resents the line (or plane) passing through them. The meet product of two (or
three) planes is a vector, which represents the line (or point) of intersection of
the planes. The meet product of a line and a plane is a vector representing their
point of intersection.

In this paper, we also use the Grassmann-Cayley algebra to study trifocal
tensors. The difference is that we rely on different expansions of the meet prod-
uct to derive constraints satisfied by the trifocal tensor, instead of the Cramer’s
rule used by Faugeras and Mourrain (1995a, b). This approach is very efficient.
With only seven meet products we can derive all the constraints on fundamen-
tal tensors and trifocal tensors of three cameras mentioned in (Faugeras and
Mourrain, 1995a, b; Faugeras and Papadopoulo, 1997, 1998), and make consid-
erable generalization by finding new constraints that have not appeared in the
literature.

In section 2 we discuss various coordinate systems. In section 3 we use brack-
ets to express epipoles, fundamental tensors and trifocal tensors. In section 4
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we propose a method to derive relations among epipoles, fundamental tensors
and trifocal tensors, which is based on different expansions of meet products
into brackets. In section 5 we present some new constraints on trifocal tensors
derived with the method.

2 Coordinate Systems

Let C be a vector in R4 representing the optical center of a pinhole camera,
p1,p2,p3 be vectors in R4 representing points or directions in the image plane.
Assume that

det(C,p1,p2,p3) = 1. (1)

Then {C,p1,p2,p3} is called a projective camera coordinate system. The space
C ∧R4 is 3-dimensional, called the projective space of images. It is spanned by
{C ∧ p1,C ∧ p2,C ∧ p3}, the latter being called a projective image coordinate
system.

The bracket [x1x2x3x4] of four vectors x1,x2,x3,x4 refers to det(x1,x2,x3,
x4). It is also a linear function of the wedge product X = x1 ∧ x2 ∧ x3 ∧ x4,
called the dual of X and also denoted by [X ].

The dual operator can be extended linearly to the whole Grassmann-Cayley
algebra. The following linear function [x1∧x2∧x3] is called the dual of x1∧x2∧x3:

x �→ [x1x2x3x], for xinR4. (2)

The dual [x1x2] of x1 ∧x2, and the dual [x1] of x1, can be defined similarly. The
importance of dual operator lies in that, for any multivectors x, y,

[x ∧ y] = [x] ∨ [y], [x ∨ y] = [x] ∧ [y], (3)

i.e., the wedge product and the meet product are dual to each other.
For a coordinate system {x1,x2,x3,x4} of R4, the linear function defined by

x∗
4 =

[x1 ∧ x2 ∧ x3]
[x1x2x3x4]

(4)

satisfies x∗
4(x4) = 1, x∗

4(x1) = x∗
4(x2) = x∗

4(x3) = 0, so x∗
4 is just the reciprocal

vector of x4 with respect to the basis {x1,x2,x3,x4}. The reciprocal vectors of
x1,x2,x3 can be obtained similarly. {x∗

1,x
∗
2,x

∗
3,x

∗
4} is the reciprocal coordinate

system, or reciprocal basis, of {x1,x2,x3,x4}.
In this paper, all computations are carried out in the reciprocal coordinate

systems of projective camera coordinate systems and projective image coordinate
systems.

3 Epipoles, Fundamental Tensors and Trifocal Tensors by
Brackets

For two cameras with optical centers C,C′ respectively, the image of point C′

in camera C is ECC′
= C ∧C′, called the epipole of C′ in camera C. Similarly,

the epipole of C in camera C′ is EC′C = C′ ∧ C.
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In the projective image coordinate system {C∧p1,C∧p2,C∧p3}, ECC′
is

the following vector:

ECC′
=




ECC′
1

ECC′
2

ECC′
3


 =




[Cp2p3C′]
[Cp3p1C′]
[Cp1p2C′]


 . (5)

Let {C∗,1,2,3} be the reciprocal basis of {C,p1,p2,p3}. Let {C′,p′
1,p

′
2,p

′
3}

be a projective coordinate system of camera C′, and let {C′∗,1′,2′,3′} be the
corresponding reciprocal basis. Using (3), we obtain

ECC′
=




[11′2′3′]
[21′2′3′]
[31′2′3′]


 . (6)

Any image x in camera C can be represented by C ∧ x, where xinR4. Simi-
larly, Any image x′ in camera C′ can be represented by C′∧x′. The fundamental
tensor FCC′

of the two cameras is the following bilinear symmetric function:

FCC′
(C ∧ x,C′ ∧ x′) = [CxC′x′]. (7)

In the projective coordinate systems {C∧p1,C∧p2,C∧p3}, {C′∧p′
1,C

′ ∧
p′

2,C
′∧p′

3} of the two image planes, the fundamental tensor takes the following
matrix form, called the fundamental matrix:

FCC′
=




FCC′
11 FCC′

12 FCC′
13

FCC′
21 FCC′

22 FCC′
23

FCC′
31 FCC′

32 FCC′
33


 =




[Cp1C′p′
1] [Cp1C′p′

2] [Cp1C′p′
3]

[Cp2C′p′
1] [Cp2C′p′

2] [Cp2C′p′
3]

[Cp3C′p′
1] [Cp3C′p′

2] [Cp3C′p′
3]


 . (8)

In the corresponding reciprocal bases {2∧3,3∧1,1∧2}, {2′∧3′,3′∧1′,1′∧2′},
the fundamemtal matrix is in the following form:

FCC′
=




[232′3′] [233′1′] [231′2′]
[312′3′] [313′1′] [311′2′]
[122′3′] [123′1′] [121′2′]


 . (9)

For three cameras with optical centers C,C′,C′′ respectively, the trifocal
tensor of camera C with respect to cameras C′,C′′ is the following trilinear
function, which is antisymmetric with respect to its last two arguments:

T (C ∧ x,C′ ∧ x′ ∧ y′,C′′ ∧ x′′ ∧ y′′) = (C ∧ x) ∨ (C′ ∧ x′ ∧ y′) ∨ (C′′ ∧ x′′ ∧ y′′). (10)

Two other trifocal tensors can be defined by interchanging C with C′,C′′:

T ′(C′ ∧ x′,C ∧ x ∧ y,C′′ ∧ x′′ ∧ y′′) = (C′ ∧ x′) ∨ (C ∧ x ∧ y) ∨ (C′′ ∧ x′′ ∧ y′′), (11)

T ′′(C′′ ∧ x′′,C ∧ x ∧ y,C′ ∧ x′ ∧ y′) = (C′′ ∧ x′′) ∨ (C ∧ x ∧ y) ∨ (C′ ∧ x′ ∧ y′). (12)
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In the projective coordinate systems {C∧p1,C∧p2,C∧p3}, {C′∧p′
1,C

′ ∧
p′

2,C
′ ∧ p′

3}, {C′′ ∧ p′′
1 ,C′ ∧ p′′

2 ,C′ ∧ p′′
3} of the three image planes, the trifocal

tensor T has the following components:

Tijk = (C ∧ pi) ∨ (C′ ∧ p̌′
j) ∨ (C′′ ∧ p̌′′

k), (13)

where 1leqi, j, kleq3, p̌1 = p2 ∧ p3, p̌2 = p3 ∧ p1, p̌3 = p1 ∧ p2. Using the
reciprocal bases, we get

(T1jk T2jk T3jk) = ([23j′k′′] [31j′k′′] [12j′k′′]). (14)

4 Deriving Relations on Epipoles, Fundamental Tensors
and Trifocal Tensors

Consider the following vectors in R4:

{1,2,3,1′,2′,3′,1′′,2′′,3′′}. (15)

According to (6), (9) and (14), in the reciprocal bases of the projective coordinate
systems of the three image planes, any epipole, fundamental tensor or trifocal
tensor of the three cameras has it components in the form of brackets of vectors
in (15). Conversely, any nonzero bracket of vectors in (15) equals a component
of one of the epipoles, fundamental tensors and trifocal tensors up to the sign.

ECC′ ↔ {ij′k′l′}, EC′C ↔ {i′jkl}, ECC′′ ↔ {ij′′k′′l′′},
EC′′C ↔ {i′′jkl}, EC′C′′ ↔ {i′j′′k′′l′′}, EC′′C′ ↔ {i′′j′k′l′},
FCC′ ↔ {ijk′l′}, FCC′′ ↔ {ijk′′l′′}, FC′C′′ ↔ {i′j′k′′l′′},
T ↔ {ijk′l′′}, T′ ↔ {i′j′kl′′}, T′′ ↔ {i′′j′′kl′}.

(16)

The only constraints on vectors in (15) are that {1,2,3}, {1′,2′,3′}, {1′′,2′′,
3′′} are triplets of linear independent vectors. Thus, all relations among the
epipoles, epipolar tensors and trifocal tensors can be proved using the so-called
Grassmann-Plücker relations (see Li and Wu, 1999). Although it is easy to verify
geometric relations with the Grassmann-Plücker relations, it is difficult to derive
geometric relations.

In this paper we follow a Grassmann-Cayley algebra approach (see Li and
Sommer, 2000) to finding geometric relations on epipoles, epipolar tensors and
trifocal tensors, and in particular, to finding constraints of the trifocal tensors.
We consider the set of meet products of all possible wedge products of vec-
tors in (15). Since the meet product is associative and grade-dependent anti-
commutative, for the same meet product there are different ways to expand it.
The equalities of these expansions lead to equalities of brackets. Those equalities
which are independent of indices of vectors in (15) can be changed into equalities
on epipoles, epipolar tensors and trifocal tensors.

The following is an example on deriving a relation among the fundamental
tensor FCC′′

and the epipoles ECC′
, EC′′C, EC′′C′

. The wedge product C′ ∧
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C∧C′′ represents the projective plane passing through the three optical centers.
Using (3), we get

[C′ ∧ C ∧ C′′] = (1 ∧ 2 ∧ 3) ∨ (1′ ∧ 2′ ∧ 3′) ∨ (1′′ ∧ 2′′ ∧ 3′′). (17)

Expanding the meet product differently, we get the conclusion that for any
1leqileq3 and any even permutation j−, j, j+ of 1, 2, 3,

lambda
∑

limits3
j=1E

CC′
i FCC′′

ij = EC′′C
j+ EC′′C′

j− − EC′′C
j− EC′′C′

j+ , (18)

where lambda is a nonzero scale independent of the indices. In matrix form, (18)
can be written as

lambda(FCC′′
)T ECC′

= EC′′C × EC′′C′
. (19)

The geometric meaning is that the epipolar line of ECC′
in camera C′′ passes

through epipoles EC′′C, EC′′C′
.

5 Some New Constraints on Trifocal Tensors

(1) Degree-four constraints.

Let k1 �= k2, and let 1leqi, j1, j2leq3. Then

tij1k1tij2k2 = tij1k2tij2k1 , (20)

where
tijk = Tij+k+Tij−k− − Tij+k−Tij−k+ , (21)

j−, j, j+ and k−, k, k+ being even permutations of 1, 2, 3.

(2) The first group of degree-six constraints.

2.a. Let i1 �= i2, i3 �= i4, and let 1leqj1, j2, j3, j4leq3. Then

u′′
i1i2j1j2u

′′
i3i4j3j4 = u′′

i1i2j1j4u
′′
i3i4j3j2 , (22)

where
u′′

i1i2j1j2 = ti1j11Ti2j21 + ti1j12Ti2j22 + ti1j13Ti2j23. (23)

2.b. Let i−, i, i+ be an even permutation of 1, 2, 3, and let 1leqj1, j2, j3, j4leq4.
Then

u′′
ii+j1j2u

′′
ii−j3j4 = u′′

ii−j1j2u
′′
ii+j3j4 . (24)

Remark. (22) includes as a special case the first group of degree-six constraints
of Faugeras and Mourrain (1995a, b): for any 1leqk1, k2, l1, l2leq3, if k1 �= l1, k2 �=
l2, then

|Tk1k2. Tk1l2. Tl1l2.| |Tk1k2. Tl1k2. Tl1l2.|
= |Tk1k2. Tl1k2. Tk1l2.| |Tl1k2. Tk1l2. Tl1l2.|, (25)
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where Tk1k2. = (Tk1k21,Tk1k22,Tk1k23)T . The reason is as follows.
Let i1 �= i2, and let j, j1, j2 be a permutation of 1, 2, 3 with permutation sign

ε(j, j1, j2). Define
v′′i1i2j1j2 = ε(j, j1, j2)u′′

i1i2jj2 . (26)

It can be proved that

|Tk1k2. Tk1l2. Tl1l2.| = v′′k1l1k2l2
,

|Tk1k2. Tl1k2. Tl1l2.| = v′′l1k1l2k2
,

|Tk1k2. Tl1k2. Tk1l2.| = v′′k1l1l2k2
,

|Tl1k2. Tk1l2. Tl1l2.| = v′′l1k1k2l2
.

(27)

So (25) can be written as

v′′k1l1k2l2v
′′
l1k1l2k2

= v′′k1l1l2k2
v′′l1k1k2l2 , (28)

or using (26) and assuming k = {1, 2, 3} − {k2, l2},

u′′
k1l1kl2u

′′
l1k1kk2

= u′′
k1l1kk2

u′′
l1k1kl2 , (29)

which is a special case of (22) under the correspondences

k1 ↔ i1 = i4, l1 ↔ i2 = i3, k ↔ j1 = j3, l2 ↔ j2 �= j1, k2 ↔ j4 �= j3. (30)

(3) The second group of degree-six constraints.

3.a. Let i1 �= i2, i3 �= i4, and let 1leqk1, k2, k3, k4leq3. Then

u′
i1i2k1k2

u′
i3i4k3k4

= u′
i1i2k1k4

u′
i3i4k3k2

, (31)

where
u′

i1i2k1k2
= ti11k1Ti21k2 + ti12k1Ti22k2 + ti13k1Ti23k2 . (32)

3.b. Let i−, i, i+ be an even permutation of 1, 2, 3, and let 1leqk1, k2, k3, k4leq4.
Then

u′
ii+k1k2

u′
ii−k3k4

= u′
ii−k1k2

u′
ii+k3k4

. (33)

Remark. (31) includes as a special case the second group of degree-six con-
straints of Faugeras and Mourrain (1995a, b): for any 1leqk1, k2, l1, l2leq3, if k1 �=
l1, k2 �= l2, then

|Tk1.k2 Tk1.l2 Tl1.l2 | |Tk1.k2 Tl1.k2 Tl1.l2 |
= |Tl1.k2 Tk1.l2 Tl1.l2 | |Tk1.k2 Tl1.k2 Tk1.l2 |, (34)

where Tk1.k2 = (Tk11k2 ,Tk12k2 ,Tk13k2)T . The reason is as follows.
Let i1 �= i2, and let k, k1, k2 be a permutation of 1, 2, 3. Define

v′i1i2k1k2
= ε(k, k1, k2)u′

i1i2kk2
. (35)
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It can be proved that

|Tk1.k2 Tk1.l2 Tl1.l2 | = v′k1l1k2l2
,

|Tk1.k2 Tl1.k2 Tl1.l2 | = v′l1k1l2k2
,

|Tk1.k2 Tl1.k2 Tk1.l2 | = v′k1l1l2k2
,

|Tl1.k2 Tk1.l2 Tl1.l2 | = v′l1k1k2l2
.

(36)

So (34) can be written as

v′k1l1k2l2v
′
l1k1l2k2

= v′k1l1l2k2
v′l1k1k2l2 , (37)

or using (35) and assuming k = {1, 2, 3} − {k2, l2},
u′

k1l1kl2u
′
l1k1kk2

= u′
k1l1kk2

u′
l1k1kl2 , (38)

which is a special case of (31) under the correspondences

k1 ↔ i1 = i4, l1 ↔ i2 = i3, k ↔ k1 = k3, l2 ↔ k2 �= k1, k2 ↔ k4 �= k3. (39)

(4) The third group of degree-six constraints.

4.a. Let j1 �= j2, k1 �= k2, k3 �= k4, then

uj1j2k1k2uj2j1k3k4 = uj1j2k3k4uj2j1k1k2 , (40)

where
uj1j2k1k2 = t′1j1k1

T1j2k2 + t′2j1k1
T2j2k2 + t′3j1k1

T3j2k2 , (41)

t′ijk = Ti+jk+Ti−jk− − Ti+jk−Ti−jk+ , (42)

i−, i, i+ and k−, k, k+ being even permutations of 1, 2, 3.
4.b. Let j1 �= j2, j3 �= j4, and let k−, k, k+ be an even permutation of 1, 2, 3.
Then

uj1j2kk+uj3j4kk− = uj1j2kk−uj3j4kk+ . (43)

Remark. (40), (43) both include as a special case the third group of degree-six
constraints of Faugeras and Mourrain (1995a, b): for any 1leqk1, k2, l1, l2leq3,
if k1 �= l1, k2 �= l2, then

|T.k1k2 T.k1l2 T.l1l2 | |T.k1k2 T.l1k2 T.l1l2 |
= |T.k1k2 T.l1k2 T.k1l2 | |T.l1k2 T.k1l2 T.l1l2 |, (44)

where T.k1k2 = (T1k1k2 ,T2k1k2 ,T3k1k2)T . The reason is as follows.
Let j1 �= j2, and let k, k1, k2 be a permutation of 1, 2, 3. Define

vj1j2k1k2 = −ε(k, k1, k2)uj1j2kk2 . (45)

It can be proved that

|T.k1k2 T.k1l2 T.l1l2 | = vk1l1k2l2 ,
|T.k1k2 T.l1k2 T.l1l2 | = vl1k1l2k2 ,
|T.k1k2 T.l1k2 T.k1l2 | = vk1l1l2k2 ,
|T.l1k2 T.k1l2 T.l1l2 | = vl1k1k2l2 .

(46)
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So (44) can be written as

vk1l1k2l2vl1k1l2k2 = vk1l1l2k2vl1k1k2l2 , (47)

or using (45) and assuming k = {1, 2, 3} − {k2, l2},

uk1l1kl2ul1k1kk2 = uk1l1kk2ul1k1kl2 , (48)

which is a special case of (40) under the correspondences

k1 ↔ j1, l1 ↔ j2, k ↔ k1 = k3, l2 ↔ k2, k2 ↔ k4, (49)

and also a special case of (43) under the correspondences

k1 ↔ j1 = j4, l1 ↔ j2 = j3, k ↔ k, l2 ↔ k+, k2 ↔ k−. (50)
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Camera Calibration Using Rectangular Textures
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Abstract. This paper describes a practical method for the camera cal-
ibration given a single image of a regular texture. This paper uses the
calibration of images of skyscrapers as an example. The paper introduces
two algorithms for the assignment of real world coordinates to feature
points. The first algorithm selects five closely connected feature points
and determines the orientation of the rectangular pattern. The second
algorithm iteratively sorts the feature points and assigns real world co-
ordinates to them. Lastly, the Tsai camera calibration algorithm is used
to compute the camera parameters.

1 Introduction

This paper describes an application of our camera calibration method, which
was initially developed for RoboCup.

RoboCup is an international competition of fully autonomous robots play-
ing soccer [4]. The first competition was organized in 1997, and it has rapidly
increased in popularity.

Apart from the obvious challenges in robotics, control theory, path planning,
artificial intelligence, and machine learning, RoboCup also presents an inter-
esting domain for real-time computer vision. In the small league, robots are
identified using a global vision system. To achieve adequate control, a vision
system must track ten robots, a ball and compute their position, orientation,
velocity with a cycle time of less than 20ms. More details about the All Botz
videoserver can be found in [1].

This paper shows how the camera calibration method which was originally
developed for the RoboCup domain can be used to compute the calibrate images
of any regular textures or co-planar feature points using a single image.

Section 2 is an introduction to camera calibration in general and the chal-
lenges of calibration using regular textures. The extraction of calibration points
is shown in section 3. The Tsai camera calibration used as back end to compute
the final calibration parameters is described in 4. The paper concludes with
section 5.

2 Camera Calibration

Accurate camera calibration is an essential ingredient in any computer vision
system. Therefore, it has been a very active and productive research area. A

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 245–251, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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number of different camera calibration methods have been developed [5]. Most
of these methods are based on the pin-hole camera model.

The input to camera calibration methods is a set of image features and their
associated real-world attributes. For example, the well known Tsai calibration
uses a set of image points with known real world coordinates as input. Haralick
proposes a calibration method that use the image coordinates of parallel lines[3].

Most camera calibration methods use calibration objects, for example cubes
with color patches. These calibration objects allow accurate control over their
feature points and allow therefore accurate calibration.

Calibration of pictures of natural scenes requires a different approach because
the calibration objects are too small. For example, assume that we need to
calibrate the geometry of the images shown in Fig. 2. It is clearly impractical to
build a calibration cube of this dimension.

As can be seen though, both images contain regular feature points that can
be used for calibration. For example, if the distance between floors and between
windows is known, then the position of the centers of the windows can be calcu-
lated. This is the basic method in our approach. However, the problem with real
world scenes is that the features are hard to extract from the image. Further-
more, there are many feature points and to assign them manually would be time
consuming and error prone. Lastly, not all feature points can be extracted from
the image and some of them will be missing. The following section discusses a
system to automatically deal with these problems.

Skyscraper (Singapore) Wall Street (New York)

Fig. 1. Sample Calibration Pictures
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3 Extraction of Calibration Points

This section describes the algorithm for sorting the feature points and assigning
real world coordinates to them. Our system uses a semi-automatic approach.
First, a manual preprocessing step is used to segment the image (Subsection 3.1).
Secondly, an automatic routine is used to compute the centers of the feature
points, to sort them, to correct for missing features, and to assign real world
coordinates to the points.

3.1 Image Preprocessing

The first step in the camera calibration routine is a manual preprocessing step
to clean up the image, to remove unwanted artifacts, and to select suitable
parameter settings for the color segmentation routines. Figure 3.1 shows the
output of the pre-processing step for the Singapore skyscraper (see Fig. 2).

As can be seen, some of the features were not distinct enough to be recognized
and are missing in the preprocessed image.

3.2 Sorting of Feature Points

This section describes the heart of the calibration routine — the algorithm to
assign real world coordinates to the feature points that were extracted in the

Fig. 2. Output of the Preprocessing Step
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pre-processing step. The algorithm consists of two main parts: (a) algorithm 1
computes an initial guess of the translation matrix. (b) algorithm 2 is an iterative
algorithm which assigns real world coordinates to the feature points and updates
the guess of the transformation matrix.

Algorithm 1 Algorithm to Assign Real World Coordinates

1: S = extractCentres(Image)
2: P = selectSeedPoints(S)
3: MXY = computeTransformationMatrix(S, realWorldCoords(S))
4: MY X = computeTransformationMatrix(S, swapCoord(realWorldCoords(S)))
5: if error(MXY ) < error(MY X) then
6: MInitial = MXY

7: else
8: MInitial = MY X

9: swapCoordinates(S)
10: end if
11: CS = assignCentres(S, MInitial)

In line 1 of algorithm 1, the centers of the features are extracted. Then in
line 2, a number of seed points are selected. These seed points are used to com-
pute the initial transformation matrix. Five seed points are selected to form a
cross in the two-dimensional plane. To guarantee a good estimate of the initial
transformation matrix, the five centers that form a cross closest to the center
of the image are selected. The routine computeTransformationMatrix called in
line 3 uses the Boyer-Moore pseudo inverse method to compute a least means
square (LMS) approximation for the 3×4 transformation matrix for the perspec-
tive projection. Since our system assumes that the distances between squares are
not identical, the algorithm checks both possible orientations for the width and
the height of the features and selects the best match (Line 4).

Algorithm 2 describes the method for the assignment of real world coordi-
nates to the feature points. This algorithm iteratively selects the unassigned
feature points that are closest to an already assigned point. In line 8, the vari-
ables bx and by contain the closest number of blocks given the current estimate M
of the transformation matrix. This estimate of the number of blocks allows the
algorithm to compensate for missing feature points. Once the real world coor-
dinates have been assigned to the new point, a new transformation matrix is
computed (line 11). This process is repeated until all points have been assigned.

The output of the system is shown in Fig. 4 shows the output of our system.
All feature points are correctly aligned and the system correctly corrects for the
missing features. The initial five seed points are shown in the gray shaded region.
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Algorithm 2 Algorithm to Assign Real World Coordinates(S, MInitial)

1: M = MInitial

2: N =
3: while S �= do
4: for all s ∈ S do
5: sNorth, sEast, sSouth, sWest = findNearestNeighbors(s, M)
6: end for
7: for all n ∈ {sNorth, sEast, sSouth, sWest} do
8: bx = dist((s − n)/width, M), by = dist((s − n)/height, M)
9: nx, ny = sx + bx ∗ width, sy = by ∗ height

10: N = N + n, S = S − n
11: M = computeTransformationMatrix(N, realWorldCoords(S))
12: end for
13: end while
14: return N

4 Tsai Camera Calibration

After the computation of the matching points, we use a public domain imple-
mentation of Tsai’s camera calibration to compute the extrinsic and intrinsic
parameters of the camera model.

The Tsai calibration method uses a four step process to compute the param-
eters of a pin hole camera with radial lens distortion.

Firstly, the position (XT , YT , ZT ) and the orientation (RX , RY , RZ) of the
camera with respect to the world coordinate system is computed. This involves
solving a simple system of linear equations. This step translates the 3DWorld co-
ordinates into 3D camera coordinates and computes the six extrinsic parameters
of the camera model.

In Step 2, the perspective distortion of a pin hole camera is compensated for.
This step is a non-linear approximation and computes the focal length f of the
camera. The output of this step are the ideal undistorted image coordinates.

Thirdly, the radial lens distortion parameters (κ1, κ2) are computed. These
parameters compensate for the pin cushion effect of video cameras, that is
straight lines along the edges of the camera are rounded. The output of step
3 are the distorted image coordinates.

Lastly, the image coordinates are discretized into the real image coordinates
by taking the number of pixels in each row and column of an image into consid-
eration.

The last three steps compute five intrinsic parameters of the camera model
(focal length, lens distortion, scale factor for the rows, and the origin in the
image plane).

The Tsai method is a very efficient, accurate, and versatile camera calibra-
tion method and is therefore very popular in computer vision. Nevertheless, one
of the shortcomings of Tsai’s method is that it is not able to compute the un-
certainty factor SX from only co-planar calibration points. In practice, this does
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Fig. 3. Assignment of Real World Coordinates

not present a big problem, since most natural 3D textures consist of several pla-
nar textures. The calibration points that are extracted using our method can be
concatenated into a large set of 3D calibration points.

Furthermore, during the sorting of the feature vectors, our extraction algo-
rithms use a simple pin hole camera model to compute the perspective projec-
tion parameters. Therefore, our method is independent of the exact calibration
method used.

5 Conclusion

This paper presents a practical system for the accurate calibration of real world
scenes that have a regular texture. Our system is currently limited to rectangular
textures, but this limitation is due to the current implementation. In theory, any
regular texture is suitable.

The Tsai calibration does not provide an efficient method for calculation of
the uncertainty factor Sx given co-planar calibration points. We are investigating
other suitable methods as the one described in [2].
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Abstract. In this article we propose a novel approach to compute the
optical flow directly on log-mapped images. We propose the use of a
generalized dynamic image model (GDIM) based method for computing
the optical flow as opposed to the brightness constancy model (BCM)
based method. We introduce a new notion of “variable window” and use
the space-variant form of gradient operator while computing the spatio-
temporal gradient in log-mapped images for a better accuracy and to
ensure that the local neighborhood is preserved. We emphasize that the
proposed method must be numerically accurate, provides a consistent in-
terpretation and is capable of computing the peripheral motion. Experi-
mental results on both the synthetic and real images have been presented
to show the efficacy of the proposed method.

1 Introduction

Computation of optical flow in log-mapped images is a challenging issue due
to complex neighborhood connectivity and the lack of shift invariant processing.
There are several implementations to compute optical flow in the log-polar plane,
i.e. [1,2,3,4], but these implementations have a number of limitations:

1. Traditionally, optical flow on log-polar images has been computed based on
the BCM using Cartesian domain gradient operator. The computed optical
flow based on the BCM method fails to provide an un-ambiguous interpre-
tation of optical flow and is numerically inaccurate.

2. The use of the standard Cartesian domain derivative operator to compute
the spatio-temporal gradient on log-mapped image is incorrect as the spatial
neighborhood is broken by the logarithmic mapping.

3. Existing implementations of computing optical flow in log-mapped images
considers only the foveal part of the image and will produce erroneous esti-
mate if one has to estimate motion using peripheral part of images.

To overcome the above mentioned problems, we present a novel approach to
compute optical flow on log-mapped images. We propose the use of a general-
ized dynamic image model (GDIM) based method as opposed to the traditional
� This work was partially supported by NSF ITR grant IIS-0081935 and NSF CA-
REER grant IIS-97-33644.
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BCM model based method and employ the space-variant form gradient operator
(see [5] for details) to compute the optical flow directly on log-mapped image
plane. We introduce a new notion called the variable window while computing
the spatio-temporal gradient on a log-mapped image to ensure the local neigh-
borhood structure is preserved. We show that the inclusion of above mentioned
modifications significantly enhance the accuracy of optical flow computation di-
rectly on log-mapped images.

The rest of the article is organized as follows. In Sec. 2 we briefly review the
literature related to the computation of optical flow. In the subsequent (Sec. 3)
we propose a novel method to compute optical flow on a log-polar image. Fol-
lowing this we present the computed optical flow using the proposed method on
a log-mapped images in Sec. 4. Finally, Sec. 5 concludes the article.

2 Computation of Optical Flow

Optical flow has commonly been defined as the apparent motion of image bright-
ness patterns in an image sequence, but the common definition of optical flow
as an image displacement field does not provide a correct interpretation. In the
most recent effort to avoid this problem a revised definition of optical flow has
been given in [6]. The revised definition of optical flow permits us to relax the
brightness constancy model (BCM). To compute the optical flow, the so-called
generalized dynamic image model (GDIM) has been proposed [6]:

I(x + δx) = M(x)I(x) + C(x) . (1)

The radiometric transformation from I(x) to I(x + δx) is explicitly defined
in terms of the multiplier and offset fields M(x) and C(x), respectively. The
geometric transformation is implicit in terms of the correspondence between
points x and x + δx. If we write M and C in terms of variations from one and
zero, respectively, M(x) = 1 + δm(x) and C(x) = 0 + δc(x), we can express
GDIM explicitly in terms of the scene brightness variation field

I(x + δx) − I(x) = δI(x) = δm(x)I(x) + δc(x) . (2)

Despite of a wide variety of approaches to compute optical flow, the algorithms
can be classified into three main categories: gradient-based methods [10], match-
ing techniques [11], and frequency-based approaches [12]. But a recent review [13]
on the performance analysis of different kinds of algorithm suggests that the
overall performance of the gradient-based techniques are superior. Hence, in this
article we adopt gradient-based approach to compute the optical flow using the
proposed GDIM-based method.

3 Proposed Method

In this article, we compute the optical flow on log-mapped images, in particular,
we use the log(z +a) mapping model proposed by [14]. To perform the mapping,
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the input image is divided into two half-planes along the vertical mid-line. The
mapping for the two hemi-fields can be concisely given by the equation

Ω = log(z + κa) − log(a) , (3)

where z = x + iy is the retinal position and Ω = ξ + iη is the corresponding
cortical point, while κ = sgn x = ±1 indicates left or right hemisphere. The
combined mapping is conformal within each half plane. In a strict mathematical
sense, the properties of scale and rotation invariance are not present in the
mapping. However, if |z| � a, then log(z + a) ∼= log(z), and therefore, these
properties hold. Also, since the log(z + a) template has a slice missing in the
middle, circles concentric with and rays through the foveal center do not map
to straight lines.

We use the revised definition of optical flow as opposed to the traditional
definition of optical flow. This discrimination is very important as the mapping
of the gray-value image I(x, y) to the gray-value image I(ξ, η) in the log-mapped
image is by no means trivial. Using the coordinate transformation we can ex-
actly map the Cartesian motion field on the log-mapped plane, however, the
deformation of the gray-value image causes new apparent shifts of the gray-
value function or eliminates the existing one. It is important to note that, by
using the GDIM-based method we are not trying to model the nonuniform sam-
pling by a multiplier and offset field, rather we adopt a systematic approach of
computing optical flow which provides consistent interpretation. The problem of
nonuniform sampling is partially tackled using the notion ’variable window’ and
’space-variant form of derivative operator’.

In [1], the optical flow on log-polar plane was computed by assuming that
the optical flow constraint based on the BCM has the same functional form:

vξIξ + vηIη + It = 0, (4)

where the symbols Iξ, Iη and It are spatio-temporal derivatives of the image.
Note that the brightness constancy assumption is severely violated in real world
scenes. We address this problem by adopting the revised definition of optical flow,
based on GDIM, which allows the variation of intensity in successive frames.
By applying first order Taylor series approximation on the left hand side of
Equ. 1 and using the similar argument used in [1] the GDIM based optical flow
constraint equation on the log-mapped image can be written as

It + vξIξ + vηIη − (Iδm + δc) = 0, (5)

where Ip stands for partial derivative with respect to p. By writing, It = δg +
δI, where δg = − (Iξvξ + Iηvη), one can quantify explicitly the geometric and
radiometric components of variation in an image sequence. The ratio δg/δI can
be used a measure of relative strength of geometric and radiometric cues.

Application of Equ. 5 for the computation of optical flow has been discussed
in earlier work. One way to solve this is by imposing smoothness through min-
imization of energy functionals [8]. Alternatively, smoothness can be imposed
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based on the assumption that flow fields are constant within small regions around
each point [6]. Requiring the flow field to be constant within a small region
around each point and using least-square optimization we obtain the equations
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where W is a neighborhood region. Note that in a log-mapped image this neigh-
borhood region is complicated and variable due to the nonlinear properties of
the logarithmic mapping. We address this issue by using a new notion called a
variable window (see Fig. 2(a)). By solving Equs. (6) we can compute the optical
flow directly on log-mapped images.

4 Experimental Results

The log-mapping is conformal, i.e., it preserves local angles. In order to retain
this property after discretization, we chose identical discretization steps in ra-
dial and angular directions. We have experimented with both synthetic and real
image sequences. For real images we consider image sequences of an indoor labo-
ratory, an outdoor and an underwater scene to show the efficacy of the proposed
algorithm. Synthetically generated examples include the computed image mo-
tion using both the BCM and GDIM-based method to demonstrate the effect of
neglecting the radiometric variations in an image sequence.

4.1 Synthetic Image Sequences

We use synthetic images in a first experiment to demonstrate a number of issues
using artificial ground truth. The first image is that of a textured 256 × 256
face image (see Fig. 1(a)). Using a known motion (0.4 pixel horizontal motion in
the Cartesian space which corresponds to 0 − 30 pixel image motion in the log-
mapped image) and a radiometric transformation field (a Gaussian distribution
of radiometric transformation field (δm) in the range between 0.8−1.0 and δc=0),
we compute the second image. The third image was derived from the first image
using the above radiometric transformation only. Two sequences using frame 1−2
and 1 − 3 are considered. Figure 1(b) shows a sample transformed log-mapped
image (derived from Fig. 1(a)).

We compute optical flow directly on log-mapped images by solving Equs. (6),
using the weighted Least-square technique. The least square problems are solved
using pseudo-inverse without any thresholding. Image gradients were calculated
using the space-variant form of the gradient operator for a better numerical
accuracy in optical flow computation. A new notion of variable window (for
example, by transforming a 5 × 5 window using logarithmic mapping) has been
introduced to preserve the local-neighborhood structure on a log-mapped image



256 Mohammed Yeasin

Fig. 1. Sample images: (a) sample synthetic image; (b) log-polar transformed
image

Fig. 2. Simulated optical flow: (a) Variable window: size of the window varies
across the image, and (b) True image motion used to generate synthetic image
sequence

(see Fig. 2(a)). In our experiment we use only the peripheral part of the image
i.e., the portion of the log-mapped image right to the white vertical line for the
computation of optical flow (see Fig. 1(b)). The idea of using the periphery stems
from biological motivation and also to increase the computational efficiency.

To analyze the quantitative performance we compared the error statistics for
both the BCM and GDIM methods. The error measurements used here are the
root mean square (RMS) error, the average relative error (given in percentage),
and the angular error (given in degrees). The average relative error in some
sense gives the accuracy of the magnitude part while the angular error provides
information related to phase of the flow field. Compared are, at a time, the two
vectors (u, v, 1) and (û, v̂, 1), where (u, v) and (û, v̂) are the ground truth and
estimated image motions, respectively. The length of a flow vector is computed
using the Euclidean norm. The relative error between two vectors is defined as
the difference of length in percentage between a flow vector in the estimated flow
field and the corresponding reference flow field:

∑ ||(û − u, v̂ − v)||2∑ ||(u, v)||2 · 100. (7)

The angular error between two vectors is defined as the difference in degrees
between the direction of the estimated flow vector and the direction of the cor-
responding reference flow vector.
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Fig. 3. Computed optical flow in case of both geometric and radiometric trans-
formations. (a) and (b) represents the computed flow field using BCM and GDIM
methods, respectively

We first tested on synthetically generated images with ground truth to show
both the qualitative and the quantitative performance of the proposed algorithm.
Figure 2(b) shows the true log-mapped image motion field which has been used to
transform the image sequence 1 − 2. Figures 3(a) and 3(b) shows the computed
image motion as Quiver diagram for the sequence 1 − 2 using the BCM and
GDIM, respectively. A visual comparison of Fig. 2(b) with Figs. 3(a) and 3(b)
reveals that the image motion field estimated using GDIM method is similar to
that of the true image motion field, unlike the BCM method.

We provide a quantitative error measure to compare the performance of
the proposed algorithm with the traditional method. First, we consider the the
average relative error, which in some sense reflects the error in estimating the
magnitude of the flow field. We obtain the average relative error 7.68 and 6.12
percent for the BCM and GDIM, respectively. To provide a more meaningful
information about the error statistics we now look at the average angular error,
which in some sense reflects the error in estimating the phase of the flow field.
The average angular error was found to be 25.23 and 5.02 degree for the BCM
and GDIM, respectively. We also compute RMS error, which was found to be
0.5346 and 0.1732 for the BCM and the GDIM method, respectively. The above
error statistics clearly indicates that the performance of the proposed GDIM-
based method is superior to the BCM method. Figures 4(a) and 4(b) display
the computed optical flow using sequence 1 − 3, where there is no motion (only

Fig. 4. Computed optical flow in case of radiometric transformation. (a) and (b)
represents the computed flow using BCM and GDIM methods, respectively
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the radiometric transformation has been considered to transform the image).
It is clear from the Fig. 4(a), when employing BCM, we obtain the erroneous
interpretation of geometric transformation due to the presence of radiometric
variation. On the contrary, the proposed GDIM-based method shows no image
motion (see Fig. 4(b)), which is consistent with ground truth.

4.2 Real Image Sequences

To further exemplify the robustness and accuracy of the proposed method, we
experimented with real sequence of images captured under a wide range of veiling
condition. We capture the real images (both the indoor and the outdoor) using
an Olympus digital camera and use a special underwater camera to capture
under water images by fixing the camera parameters. The motion for the under
water and the outdoor sequence of images were dominantly horizontal motion,
while the motion for the indoor laboratory was chosen to be the combination of
rotation and horizontal translational motion.

In all our experiments we use the peripheral portion of images i.e., right side
to the white vertical line (see Figs. 5(b), 6(b) and 7(b)) for the computation
of optical flow. Figures 5(a)-(c), 6(a)-(c) and 7(a)-(c) show a sample frame,
log-polar transformed image and the computed image motion for under water,
indoor, and outdoor scenery images, respectively. We use the GDIM method
only to show the results. We do not present results using BCM method as we
have already shown that the performance of the BCM method is inferior to that
of modified GDIM-based method.

From Figs. 5(c) and 6(c) it is clear that the flow distribution for the underwa-
ter and outdoor scenery images are similar to that of the Fig. 2(b), as expected.
But, the flow distribution of the indoor laboratory sequence (see Fig. 7(c)) is
different from that of the Fig. 2(b), which is due to that we have chosen different
motion profile. As mentioned earlier, the rotation in the image plane produces a
constant flow along the radial direction. Hence, the flow distribution of Fig. 7(c)
can be seen as the superposition of the flow distribution of the translational flow
and that of the constant angular flow.

Fig. 5. Optical flow computation using an under water scene. (a) sample image
from the under water scene; (b) the log-polar transformed image and, (c) the
computed image motion
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Fig. 6. Similar results shown in Fig. 5 using outdoor scene. (a) sample image
from the outdoor scenery image; (b) the log-polar transformed image and (c)
the computed image motion

Fig. 7. Similar results shown in Fig. 5 using an indoor laboratory scene. (a)
sample image from the outdoor scene; (b) the log-polar transformed image and
(c) the computed image motion

These results show the importance of taking into account the radiometric
variation as well as the space-variant form of the derivative operator for log-
mapped images by providing a accurate image motion estimation and unambigu-
ous interpretation of image motion. It is clear from the results that the proposed
method is numerically accurate, robust and provide consistent interpretation.
It is important to note that the proposed method has error in computing op-
tical flow. The main source of error is due to the non-uniform sampling as we
have transformed the standard images using the logarithmic transformation. The
error could be reduced further by filtering the images after sampling.

5 Conclusions

We proposed a GDIM-based method to compute the optical flow which allows
image intensity to be vary in the subsequent images as opposed to the traditional
BCM-based method. We use the space-variant form of the derivative operator
to calculate the spatio-temporal gradients as opposed to the Cartesian domain
derivative operator, which fails to take into account the scaling factor inherent in
logarithmic mapping. We have also introduced a notion called variable window
while computing the spatio-temporal gradient to ensure that the local neighbor-
hood is preserved. Experimental results on both the synthetic and real images
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clearly indicates that the proposed method provides a consistent interpretation
and yields an accurate result.
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Abstract. The Selective Attention Scheme has attracted renowned in-
terest in the field of sensorimotor control and visual recognition problems.
Especially, selective attention is crucial in terms of saving computational
cost for constructing a sensorimotor control system, as the amount of
sensory inputs over the system far exceeds its information processing
capacity. In fact, selective attention plays an integral role in sensory
information processing, enhancing neuronal responses to important or
task-relevant stimuli at the expense of the neuronal responses to irrele-
vant stimuli. To compute human selective attention scheme, we assume
that each attention modeled as a probabilistic class must correctly be
learned to yield the relationship with different sensory inputs by learning
schemes in the first place (sensory modality). Afterwards, their learned
probabilistic attention classes can straightforwardly be used for the con-
trol property of selecting attention (shifting attention). In this paper, the
soundness of proposed human selective attention scheme has been shown
in particular with perceptual sensory modality. The scheme is actually
realized by a neural network, namely PFC-based network.

1 Introduction

Recently, researchers in different fields such as cognitive science and computer
science have explored the development of brain-like computers. Especially, for
the case of motor learning, the brain processes sensory and motor information in
multiple stages. At each stage, neural representations of neural stimulus features
or motor commands are manipulated. Gomi (1996) has proposed a hypothesis
that the brain possesses and utilizes an “internal model” of arm for determining
the motor command, and then a feedback process is performed based on visual
information about the location of the target to manually figure out the final
angle joints and muscle lengths in a ’supervised’ fashion. They however haven’t
described on how the location of a target can computationally be obtained in
’self-organized’ fashion.

Koshizen (2000) has recently proposed a hypothesis for controlling (or sift-
ing) the location of a target by revealing the relationship between minimum
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variance theory initiated by (Harris, 1998) and human selective attention. Ac-
cording to the minimum variance theory there is an infinite number of possible
motor control outputs in time-varying, whereas ones tend to learn stereotyped
actions concerning to minimize the control variance. We then posited that the
minimum variance theory can strongly be tied with human selective attention
scheme which involves a neural network engendered by the PreFrontal Cortex
(PFC) in particular.

Selective attention is also important in the view of saving computational cost
about the sensorimotor control system, because the amount of sensory informa-
tion flowing into the system far exceeds its information processing capacity. In
fact, neurobiologically it has already been recognized that the PFC could un-
dertake the position of a governor between archicortex and neocortex because
of its high cognitive capability. In our framework, PFC-based network allows
initially each attention to be modeled as a probabilistic class. Afterwards, each
probabilistic class of attention can be correlated to different kinds of modality
over the sensory input of sensorimotor control system.

In this paper, a selective attention scheme is considered in particular with
visual sensor. Selective attention in vision involves dynamic interplay between
attentional control systems and sensory brain structures. Several works in rela-
tion to understand the neural mechanism of human selective attention in vision
has been investigated so far. Especially, the perceptual ability of the pattern of
attentional modulations of sensory processing, visual sensory modality, which
motivates toward shifting (controlling) attention, has been observed in many
visual sustained selective attention tasks, using PET (e.g., Heinze, 1994), event-
related potentials (ERPs) (e.g., Mangun, 1993) and functional magnetic reso-
nance (fMRI) (e.g., Hillyard et al., 1997). A saliency-based selective attention
in vision has been computed by Itti (1999). It is actually designed based on
underlying neuronal architecture of the early primate visual selective attention,
whereas our selective attention scheme is computed based on human selective
attention involving statistical nature in neocortex where PFC enables the per-
ceptual ability of sensor modality.

Our experimental results relevant to the control of a radio-based helicopter
indicate the soundness of hypothetical modeled human selective attention by a
PFC-based network with respect to the perceptual sensory modality.

2 Proposed Selective Attention Mechanism

2.1 Probabilistic Class of Attention

In our scheme, each class of attention Ωl is a (hidden) parameter modeled by a
normal probability distribution function (pdf) as N (µ, ς), where µ and ς are the
mean and variance of the probability distribution p(Ωl) because a parameter of
the class Ωl implicates a statistical column over neurons belonging to the frontal
cortex (LaBerge, 1995).
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Fig. 1. PFC-Based Network

Suppose that the following two mappings are given:

f : Ii(t) �→ Qi(t), f ∈ F , and (1)

h : Qi(t) �→ Ωl(t), h ∈ H (2)

where Ωl is the l-th class of attention. In addition, Ii denotes sensory inputs,
whereas Qi is motor control outputs.

2.2 PFC-Based Network

We hereby describe the architecture of a PFC-based network that has a com-
bined structure of an unsupervised and supervised scheme that is somehow a
reminiscent of the Radial Basis Function Network, initiated by Poggio (1990).
The network basically is composed of three layers of nodes as shown in Fig. 1.
Fig. 2 illustrates an overview of the proposed selective attention scheme consid-
ering with its perceptual ability of sensory modality.

The algorithm of our PFC-based network is described as follows.

The algorithm:

1. Suppose we have a dataset over motor control outputs Q(t) : = {Qi(t)|i =
1, ...,m} given each sensory input, which can be obtained by mapping f ∈ F .

2. The obtained motor control outputs where Q(t) is categorized by the
number of the column l as shown in Fig. 2 in accordance with a value function
in the basal ganglia that which qualifies Ql(t) as either positive or negative with
the reinforcement value task. In this sense, the form of the value function must
satisfy the minimum variance theory.

3. An unsupervised EM algorithm is used to compute the expected value of
attention Ωl as hidden parameters using each motor control output Qi

l(t). The
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computation actually corresponds to the mapping h ∈ H given by Equ. (2).
The EM algorithm (Dempster, 1977) is to find θ to maximize the expectation of
log(p(Qi

l(t)|Ωl, θ)) given the observed data Qi
l(t) as well as current estimate of

θ, by iterating the two following steps - E step of the following expectation of
the complete (observed and hidden) data:

ϕ(θ|θ(k)) = ΣiΣlp(Qi
l(t)|Ωl; θ(k))log × (p(Qi

l(t), Ωl; θ(k))) (3)

and M step on updating of the parameter θ(k) at each iteration k as follows,

θ(k+1) = argmaxθϕ(θ, θ(k)) (4)

As a consequence, each class of selective attention Ωl can be assigned to each
component of the density p(Qi

l(t)|Ωl; θ(k)) using by a maximum posterior: Note
that l̂ denotes the l-th predictive class of the probabilistic attention.

4. PFC-based network enable to learn the relationship between each class of
attention Ωl and sensory data I(t) : = {Ii(t), i = 1, ...,m} to estimate the prob-
ability density pλ(Ii(t)|Ωl; θ(k)). This is also resulted by the synthetic function
in f ◦h to calculate pλ(Ii(t)|Ωl) as implicated in Fig. 1. Symbol λ stands for the
synaptic weight matrices of the PFC-based network that is especially learned by
an error correction in a supervised fashion.

5. After computing each pλ(Ii(t)|Ωl), the Bayes’ rule is applied with the
following manner:

l̂ = argmax{Ωl}l, l = 1, ..., n (5)

subject to maximum a posterior probability (MAP). Proposed human selective
attention scheme (see Fig. 2) enables sensory information to distinctly discrimi-
nated with each probabilistic class of attention using the Bayes’ rule:

p(Ωl̂(t)) =
p̄(Ωl̂(t))p(Ii(t)|Ωl̂(t))∑
k p(Ωk(t))p(Ii(t)|Ωk(t))

(6)

Where p̄ denotes the prior probability, and p(Ωl̂(t)) may be called the belief of
Ωl̂(t). Note that Fig. 2 also shows that the relationship between the statistical
attention classes and the columns is identified by 1:1.

3 Example

In this section, we implement a PFC-based network as elucidated in the previous
section with respect to two probabilistic attention classes for controlling the
radio-based helicopter shown in Fig. 3 with the use of visual sensor. Selective
visual attention mechanism in playing a rule of a control processing, which is
also essential to visual perception. Fig. 4 shows visual sensory input (x-axis only)
derived from Laplacian filter of raw image taken at each time and the obtained
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Fig. 2. Overview of the proposed Human Selective Attention Scheme

motor control outputs. Fig. 4 also illustrates a lineament of 100 data points for
the visual sensory input represented by (◦) and for the motor control output (∗) .
It is noted that motor control outputs were collected under the manual operation
which was alternatively repeated by stability (l=1) and instability (l=2) during
this experiment. In this implementation, 360 data points were used for training
for each probabilistic class of attention as well as 150 test data points. Moreover,
each motor control output was divided into l=1 or l=2 by the following value
function:

if |Q̆i − Qi| ≥ δ then Qi
1 ⇐ Qi (Positive) else Qi

2 ⇐ Qi (Negative) (7)

In this case, the ’positive’ reward corresponds to l = 1 but the ’negative’ reward
is l = 2. In addition, Q̆i means the motor control values that maintain under the
stability. Q̆i also sets to 82 as well as δ = 1.0 being the threshold that represents
a tolerance of stability.

Note that Q̆i denotes the mean value of the probability distribution p(Q).
Basically, the value function Equ.(7) plays a role of reinforcement task sufficing
σ(Q1) < σ(Q2) (the minimum variance theory). Such reinforcement-type value

Fig. 3. Radio-Based Helicopter
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Fig. 4. Visual Sensor (*) and Motor Control (o)

function neurobiologically known to exist in the basal ganglia, including ventral
tegmental area in the brain. That is, a main feature of the value function in
the basal ganglia is to predict the reward (Schultz, 1990) for each motor control
output Ql

i.
Fig. 6 shows the network in the case of two attention classes. Initially, each

sensory input vector Ii is transformed into each motor control output Qi by f †

in Equ.(1). Each motor control output Q then is able to be divided into ei-
ther Q1 or Q2 by the value function Equ.(7). Since PFC-based network enables
such probabilistic attention classes to be regarded as hidden parameters that
can be obtained by the EM algorithm in accordance with Equ.(3) and (4), the
relationship between the two attention classes (Ω1, Ω2) and the given sensory
information can be yield as well as training the synaptic weights λ. Importantly,
the two attention classes Ω1, Ω2 could be identical to excitatory neurons recur-
rently connected via excitatory synapses S1 and S2 existed in neocortex, with
the input space I. In this sense, the excitatory neurons inhabit the input space
I via inhibitory neurons endowed with neuronal signals (Rao, 2000) from the
basal ganglia.

In addition, each (actual) variance of the motor control outputs Q1,Q2 over
the two attention classes is 0.6542 (positive reward) and 6.5912 (negative re-
ward) where the outputs are collected in the experiment. Fig. 6 shows that the
probability distribution of two attention classes which are calculated by the EM
after each motor control output is reinforced discriminated by the Equ.(7). The
dashed line denotes the predicted parameters by the EM algorithm, while the
solid line is the actual ones. In addition, Fig. 6 represents the result of the pre-
dicted distributions in which EM is required 6 iterations for its convergence.
The predicted variances of the motor control outputs are 0.5288 to Q1(Left)
and 8.6246 to Q2(Right) are illustrated in Fig. 6.
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The belief error of probabilistic attention class is also illustrated in Fig. 7
where each result is obtained based on the predicted distribution shown in Fig. 6.
In particular, the lower result in Fig. 7 is obtained based on the predicted dis-
tribution incorporated with Bayes’ rule shown in Equ.(6) whereas the upper one
does not consolidate with the rule. Apparently, Fig. 7 indicates that the lower
one in Fig. 7 is more accurate and smoothed estimates than the upper one be-
cause of the Bayesian which ensures to be able to further reduce uncertainty of
the predicted distribution shown in Fig. 6.

4 Conclusion

In this paper, human selective attention scheme in vision has computationally
been proposed. Selective attention, in fact, plays an integral role in sensory infor-
mation processing, enhancing neuronal responses to important or task-relevant
stimuli at the expense of the neuronal responses to irrelevant stimuli. In this pa-
per, prefrontal cortex (PFC) was hypothetically modeled in terms of its percep-
tual ability of the visual sensory modality over different motions. In this sense,
the PFC can also be true to regulate inhibition and excitation in distributed
(recurrent) networks existing in visual cortex. Moreover, proposed selective at-
tention scheme requires Bayesian property which can favorably be coped with
spatiotemporal data such as image by the effective use of its prior information
as suggested by Weiss (1998). Consequently, the experiment result has shown
the soundness of the proposed scheme in particular for the perceptual ability of
sensory modality which was actually computed by PFC-based network. Further
work may allow the PFC-based network to consolidate with underlying neuronal
property of posterior parietal cortex (PPC), which is concurrently known as shift-
ing attention based on the perceptual ability of PFC. In other worlds, modeling
the flotal lobe including PFC, premotor and the PPC computationally would be
attractive, in order to reveal human visual selective attention mechanism.

Fig. 5. Network in Two Excitatory Neurons on Attention
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Abstract. During the past two years the company LH Systems and
the German Aerospace Center (DLR) have developed the commercial
airborne digital sensor ADS40 based on the three-line principle. By as-
sembling additional CCD lines into the same focal plane, the sensor is
capable of generating a number of color images. In the first part, the
sensor system itself is introduced shortly. The main concept and the key
features are described and an overview of the data processing scheme is
given. After that, we will focus on the results of test flights. The empha-
sis is placed on the properties of the overall system including the sensor
itself, platform, airplane, and inertial measurement unit. The effect of us-
ing staggered CCD lines is discussed. Flights over well known test areas
are used to prove the accuracy of derived data products. Differences in
data processing methods are pointed out in comparison to sensor systems
based on CCD matrices or film.

1 Introduction

LH Systems, in co-operation with the German Aerospace Center (DLR), has
developed an airborne three-line digital imaging sensor, the ADS40 [1]. With
the help of this sensor a completely digital chain is realized, starting with im-
age acquisition, continuing with image processing, and finally leading to digital
products. The new sensor provides imagery suitable for both high precision pho-
togrammetric mapping and thematic data interpretation.
During the development phase certain test models were built and flown for

a stepwise development and in order to provide continuous tests. The most
important goal of the test flights was to prove the functionality of the entire
ADS system including the sensor, the platform and the inertial measurement
unit (IMU). A check of the system under real flight conditions was necessary. The
main objectives of the ADS test flights were defined as: test of the entire sensor
system, verification of the hardware noise behavior, test of the synchronization
between image and attitude data, test of the pre-processing facilities, evaluation
of the staggered array approach, proof of the accuracy demands.
This paper describes essential parameters of the ADS40 system, the necessary

data pre-processing and the results obtained from the ADS tests.

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 270–277, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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Table 1. Parameters of the ADS40 sensor

Focal length 62.5 mm

Pixel size 6.5 µm

Panchromatic line 2 X 12.000 pixels

Color lines 12.000 pixels

Field of View (across track) 640

Stereo angles 140, 280, 420

Dynamic range 12 bit

Radiometric resolution 8 bit

Ground sampling distance (3000 m altitude) 16 cm

Swath width (3000 m altitude) 3.75 km

Read out frequency per CCD line 200 - 800 Hz

In flight storage capacity 200 - 500 GByte

2 The Sensor System ADS40

The ADS40 is based on the tree-line principle. Although the application of CCD
matrices would have a number of advantages over linear arrays with respect
to data processing, CCD lines are the only sensors that provide the ground
resolution combined with a swath width which fulfil the specifications given by
photogrammetry at present and in the near future. The stereo capability of the
ADS40 is achieved by using three lines with different viewing directions (forward,
backward, nadir). Since line scanners are not able to vary the base-to-height ratio
the stereo angles between the three lines are set to different values (Table 1) in
order to have a certain flexibility.
Because of the linear sensor structure, the second dimension of the image is

generated by the aircraft movement. So the attitude disturbances influence the
raw image. To overcome this problem and to correct this effect, exact attitude
and position measurements are necessary for each image scan line. This is realized
by an Inertial Measurement Unit (IMU) from Applanix mounted directly to the
sensor.
In order to assure the desired high number of detector elements per line, so-

called staggered arrays are used. These detectors consist of two single 12k CCD
lines positioned close to each other with an across-track shift of half a pixel.
In addition, several 12k color lines are assembled allowing multispectral imag-

ing. Therefore, interference filters are placed directly on the CCDs. A telecentric
optics provides the optical path required for these filters. The RGB lines are opti-
cally superimposed during the flight using a beam splitter consisting of dichroitic
mirrors. These mirrors divide the light into different color components. So the
loss of energy is small contrary to classical beam splitters or sequentially applied
filters. The RGB bands are co-registered without postprocessing. Table 1 shows
the most important sensor parameters.
The ADS40 system has to be understood not only as a camera, it also includes

additional modules, like IMU, platform, flight control and management system,
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camera computer, etc. Therefore, test flights must take into consideration all
these items.

3 Data Processing

All data retrieved during the flight must be extracted from the mass memory
system and converted into a usable format. In order to prove the overall system
functionality including the sensor electronics and optics, the platform and the
IMU data processing was not stopped after consistency checks, but was extended
to more complex tasks, e.g. generating elevation models.
All CCD lines with 24,000 pixels each generate a file with a size of about

1.5 GByte assuming a typical number of scan lines (60,000) and a radiometric
resolution requiring a one-byte data format (normalized data). The size of each
color line image amounts a quarter of a panchromatic image. Since this procedure
is independent of the ADS40 hardware itself, it is the first part in which one is
able to detect systematic electronic errors.
The processing of the attitude data was done using the Applanix software

POSProc. It determines 50 and 200 Hz solutions including the real-time data and
the reference data by applying certain signal processing algorithms, e.g. Kalman
filtering. The position data were transformed to a local coordinate system or to
UTM. Image and attitude data are synchronized by using the events triggering
the sensor. This results in an attitude file containing the parameters of the
exterior orientation for each scan line. The parameters of interior orientation are
determined using the results of the geometric calibration performed at the DLR
calibration labs.

4 Results of the Test Flights

The following system parameters were of special interest during the test flights
in order to check the functionality and to evaluate the capabilities of ADS40:

– radiometry and noise behavior of the sensor
– evaluation of the platforms,
– accuracy of the attitude parameters,
– staggered arrays.

4.1 Radiometry

One of the main advantages in favor of digital sensor systems over film-based
cameras is the much higher radiometric dynamics, equivalent to a greater range
of grey values within an image. This has a significant impact on the subsequent
data processing (e.g. matching). The dynamic range is described by the radio-
metric resolution and is limited by different noise sources. Both parameters,
radiometric dynamics and noise, were main points of our investigations.



Results of Test Flights with the Airborne Digital Sensor ADS40 273

Fig. 1. Radiometric zoom, depicting grey values of the first (left) and the last
(right) 8 bits within the original 12 bit grey level range

Figure 1 gives an impression of having 12 bit data instead of 8 bit data at one’s
disposal. Depicting either the first 8 or the last 8 bits within the original 12 bit
grey level range results in two different images. The first shows the bright parts,
but no structure in the dark parts is detectable. The second image inverts the
situation: in the dark parts we can see details, the bright pixels look saturated.
But again, both images result from the same 12 bit image.
A noise analysis must be performed to ensure the estimated radiometric

resolution. In general, it can be differentiated between dynamic and static noise.
A number of homogeneous targets in certain test images were selected in order
to investigate the dynamic, time dependent noise. A nearly gaussian distribution
with a standard deviation is about 2 grey values could be observed.
The pixel response non-uniformity (PRNU) describes the pixel-dependent

(and time independent) digital output of a CCD sensor for a constant amount
of input radiance. Limb shading caused by the optical parts can be described in
the same way. This effect is important for real-time compression algorithms and
must be corrected before data compression, because it influences the quality of
decompressed image data drastically [2]. The ADS40 system compensates the
PRNU in real-time by using look-up tables for correction values. Tests showed
that remaining PRNU effects are smaller than 1 grey level.
With these tests we could prove the capability of the ADS40 to generate

images with a radiometric resolution of 12 bits.

4.2 Evaluation of the Platforms

An adaptation of the platform control concerning the sensor allows an optimal
damping of the system. No special adaptation was done for the test systems.
In all EM raw images an oscillation could be observed (Fig. 2). Even if these

motions were recorded correctly by the IMU, the image quality decreases because
of the necessary resampling process. The amplitude of this oscillations is about
1-2 pixels in image space and the period is about 15 scan lines, which is related to
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Fig. 2. Power spectrum of the oscillations of ADS40 EM on the non-adapted
PAV11 during the flight (left) and on the shaker (right)

a time interval of about 50 ms. This oscillation results from the 20 Hz revolution
frequency of the Cessna engine. The applied platforms were not able to suppress
these vibrations. Figure 3 (left) shows the power spectrum of the processed IMU
data. The 20 Hz peak can be seen clearly.
In order to validate these results the EM and the Applanix system were put

together on a shaker. Its stimulating oscillation was swept from 1 Hz to 100 Hz
and the system response was recorded by the IMU. Figure 3 (right) shows a part
of the test data. For vibrations between 10 and 15 Hz the platform is too inert
for a damping of the EM. Damping works for stimulating oscillations beyond 15
Hz. The most interesting detail in this figure is the resonance frequency at 20
Hz which confirms the evaluation of the image and attitude flight data.
In order to minimize the oscillation effects even for test flights in future it

was decided to apply additional weights to the sensor until the new, adapted
platform is available. The commercial ADS40 uses an adapted platform.

4.3 Accuracy of the Attitude Parameters

To evaluate the quality of the attitude data we performed a rectification of image
data to a reference plane (correction of the flight motions) and the generation
of a coarse digital elevation model (DEM).
After processing of the IMU data, a simple way to verify the alignment

between image scan lines and an appropriate attitude data set can be done
by projecting all pixels of the raw image to a reference plane (rectification,
Fig. 3). The visual impression of a rectified image is the first, essential indicator
of the quality of the attitude data. This method helped us to detect different
synchronization problems, e.g. a temporary shift between attitude and image
data.
Although the exact photogrammetric data interpretation was not our goal

at this stage, we proved the stereo capability of the test systems. With a small
number of control points and simple algorithms we already achieved an error
(rms) of about one pixel in the x- and y-directions and about three pixels in
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Fig. 3. Raw and rectified image

the z-direction taking into account additional built-in offsets for roll, pitch, and
yaw. The sources of error were in our opinion:

– incorrect synchronization between image and attitude data,
– difficulties during the attitude data processing,
– inexact geometric calibration.

With the help of the position and attitude data we generated digital elevation
models. This task is very interesting, because it is the last element in a huge,
complex chain, starting with the optics and electronics, including aeroplane and
platform, and ending with data processing. Some errors can only be detected at
this final stage. Only when all elements of this chain work together successfully,
high quality photogrammetric products can be obtained.
The first additional criterion for successful processing is the correlation be-

tween the stereo images. The matching algorithm worked very well (about 90the
12 bit data.

Fig. 4. Test pattern scanned with a 12k sensor (left) and a 24k staggered sensor
(right)
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Fig. 5. Cross-section through 20 cm bars (left) within the test pattern and
through the 50 cm bars (right)

Two independent DEMs were built automatically with the help of an tool
developed at DLR [3] for two different tracks (one south-north, another one
north-south) flown over the same target area within one hour. Superimposing
both DEMs showed deviations smaller than 1.5 pixels (rms). This relative height
error includes all error sources, e.g. attitude data error, matching error, and
reconstruction error.

4.4 Staggered Arrays

One of the special points of interest during the test phase was the effect of
using staggered arrays instead of linear arrays. The main question was whether
or not the theoretical expectations can be fulfilled and the application of such
detectors can improve the spatial resolution. Therefore, two special test targets
were customized, a Siemens star and different patches with test bars both with
a size of 8m × 8m.
In order to compare a sensor with a single CCD line (12k) versus a staggered

array sensor (24k), a single line sensor was simulated using image data just of
one of the two staggered lines with a clock time double as high as the staggered
one. The results are shown in Figs. 4 and 5. The following conclusions could be
drawn:

– Observing the Siemens star in both images lead to similar results. In both
cases the modulation transfer functions (MTF) of the optics and the detector
element are evaluated. Please note, that actually the optics are too good for
a 12k sensor, because spatial frequencies larger than the Nyquist frequency
are transmitted. So in worst-case situations aliasing can occur. If the optics
were adapted to the 12k sensor, the blurred region would be larger in the
24k image.

– The comparison of the bar patterns shows the improvement of using a 24k
sensor instead of the 12k sensor. The most interesting part is the upper
right patch. The 12k image low contrast and aliasing (non-parallel bars) can
be observed. Cross sections in the 20 cm and 50 cm patches illustrate the
situation. Both, the spatial frequencies and the contrast are better for the
staggered arrays.
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– The spatial resolution does not only depend on the system MTF (mainly
determined by the optics and the pixel size), but as expected, from the
sampling distance (sampling theorem) as well.

5 Conclusions

This paper describes the results of the flights of the ADS test systems. Our main
goal was to prove the capabilities of the new sensor system under field conditions.
These tests must complement laboratory tests and the development of retrieval
algorithms. It is the only way to detect error sources at an early stage and can
confine the development risks drastically. With the help of the test flights, we
were able to identify a number of sources of hardware errors and could acquire a
lot of know-how dealing with the sensor system. The resolution-enhancing effect
of applying staggered arrays could be demonstrated.
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Abstract. A three-dimensional vector quantization system is introdu-
ced suitable for video compression. The basic characteristics of slow or
repeated scenes in robot vision are used as the basic assumptions of the
proposed approach. Accordingly, the localized history of the sequence is
used to create localized codebooks, thus representing current visual infor-
mation as transformed versions of previous details. The results indicate
a high compression ratio with high quality of the perceived sequence.
The structure of the algorithm is mostly parallel, making it suitable for
efficient hardware implementation1.

1 Introduction

Video compression has been a basic design goal for years [1,2,3]. In many appli-
cations, such as robot vision, where the communication channels are of limited
bandwidth, this requirement of video compression is further emphasized. Since
the distortions of video sequences tend to concentrate mainly at very specific
areas like edges and moving details, their contribution to the global SNR is
sometimes rather small, giving a good result although the artifacts are quite no-
ticeable. The concept of edge coding has been dealt with successfully in several
works (e.g., [4]) on coding the high frequency component of video sequences. A
similar approach to coding of oriented edges is reported also by Giunta et al. [5]
for the case of 64 Kbit/sec coding. Those methods are based on decomposition
of the sequence into several bands [6], [7], with various techniques applied to
different bands. This approach of subband decomposition is in accordance with
many findings related to the basic structure of the human visual system, where
cells and groups of cells are sensitive to limited spatial-frequency bands, and
are likely to be parts of different processing mechanisms of the human pattern
recognition systems [8].

Naturally, there is a trade-off between the complexity of the transmitter/re-
ceiver and the compression ratio obtained. However, higher complexity is more
acceptable if parallel processing is available. In such a case the speed of the
1 Initial parts of this research were carried out at Bell Labs, Murray Hill NJ. A patent
with N.S. Jayant was applied for by Bell Labs. Later work was carried out at the
Technion and was supported in part by the Fund for the Promotion of Research at
the Technion and by the Ollendorff Research Center.
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whole process is higher, and the implementation in hardware (VLSI) is simpler,
as repeated sub-circuits organized systematically. In this paper a new model-
based approach is introduced based on the above principles and motivation. The
proposed system is based on a model of slow scenes, and provides a very high
compression ratio that can be implemented in a parallel manner.

2 The Model and the System

The model used in this study assumes specific properties related to the nature
of slow machine vision. In particular, the main assumption is that motions of
recent history are likely to re-appear in the same area of the frame where they
have previously appeared. If not similarly repeated (up to allowed distortion),
they are likely to be encoded as transformed versions of previous details [9].
Furthermore, if a specific motion cannot be matched accurately according to
coarse partitioning of the frame, a more refined description is used [10].

According to this model, frames are divided into blocks and sub-block as
shown in Fig. 1. In this figure an image is divided into sub-blocks or vectors of
4x4x4 pixels. Sixteen vectors comprise a block. Typically, an image is divided into
at least 25 or 36 blocks, each of them plays a localized role in the compression
of the sequence.

Based on the above assumptions and structure, the proposed system is pre-
sented in Figs. 2 and 4. In the first stage of the process (Fig. 2), the blocks of the
image are used for training localized codebooks using the LBG algorithm [11].
These codebooks are based on the recent localized history of the sequence, thus
contain significant information which can be readily used for quantizing the
next frames of the sequence. An illustration, which indicates the size of the lo-
calized codebooks, is shown in Fig. 3. This example relates to a sequence of

Fig. 1. Blocks and sub-blocks. Each block contains 4 consecutive frames
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Fig. 2. Block diagram of the first stage. CB=Codebook, D=Delay, Q=Quantizer

Miss America, which represents a slow scene. In this illustration, codebooks of
the background are small in size (indicated by dark gray and black) while code-
books of active areas like the head, and in particular the eyes and the mouth,
are larger (light gray and white).

Most of the sub-blocks (vectors) of each block are adequately encoded in
this stage by relatively sparse codebooks, with up to 512 code-words in the
illustrated example. Some of the vectors, however, require additional attention
due to distortion above the pre-determined threshold. It is assumed that these
vectors refer to motions that have crossed the borders of their block (codebook),
thus can be found in one of the adjacent codebooks (Fig. 4). It is also assumed
that in such a case translation or other similarity-transform operators might be
needed (e.g., rotation, affine).

Fig. 3. Size of codebooks, black=0, white=512 (Miss America)
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Fig. 4. The second stage of the system. Similar notations as in Fig. 2, here
T=Transform

The model has several parameters. In terms of history, two parameters relate
to the duration of the history used, and to the typical duration of each move-
ment, respectively. The latter also determines the minimum expected delay of
the system. A localization parameter relates to the size of areas considered as

Fig. 5. Original (left) and reconstructed (right) frame from the sequence ”Miss
America” using localized codebooks with 4x4x4 blocks. The compression is to
0.078 bpp



282 Moshe Porat

likely to contain repeated motions during the time period defined as history. As
to the transformation process of adjacent codebooks, an additional parameter
determines where similar transformed details are searched.

In the next stages of the system, a refined process is carried out with regard
to those areas that were not encoded adequately in the first two stages. Usually
only very small number of vectors require this additional process. This pyramidal
approach introduces additional parameters, mainly the factor by which the size
of the blocks is changed between adjacent levels of the pyramidal representation.
There are 9x9 blocks in this example (from Miss America), where the gray level
of each block represents the number of code-words used. The maximum number
of codewords is 512 (white in Fig. 3).

3 Implementation and Results

The system was implemented according to the structure illustrated in Figs. 2
and 4, with three pyramidal levels. The length of the history used for training
the codebooks was of 28 frames (approx. one second), with a delay of 4 frames.
To avoid the need to transmit the codebooks to the receiving end, the recent
history of the transmitted sequence was used for training the codebooks so that
the same codebooks could be created at the remote receiver, thus only an index
representing each codebook was transmitted via the transmission medium.

A typical result is shown in Fig. 5. In this example a compression ratio of
more than 100:1 at 0.078 bpp was obtained, with high quality of the perceived
sequence.

4 Summary

This paper has presented a new model-based approach to video compression
using localized history of the sequence as a training set for vector quantization.
In addition to the quality of the resultant sequences, the implementation of this
approach can be systematically organized in parallel by its very nature, since lo-
calized codebooks are created for each block and searched for independently. It
should be noted that even for communication by serial machines, reduced com-
plexity is achieved by processing of many small codebooks instead of a combined
one.

This approach resembles the technique described in [12,13], however, here
the codebooks and the VQ process are localized, thus providing both higher
quality and more efficient results. Based on its performance and the quality
of the compressed sequences, it is suggested that the new localized approach
to video compression be further analyzed and integrated in presently available
methods.
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