Lecture Notes in Computer Science 1102
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Advisory Board: W. Brauer D. Gries J. Stoer

Rajeev Alur Thomas A. Henzinger (Eds.)

Computer Aided
Verification

8th International Conference, CAV '96
New Brunswick, NI, USA

July 31 - August 3, 1996
Proceedings

Springer

Series Editors
Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University NY, USA

Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Rajeev Alur
Bell Laboratories, Lucent Technologies
700 Mountain Avenue, Murray Hill, NJ 07974, USA

Thomas A. Henzinger

Department of Electrical Engineering and Computer Science
University of California at Berkeley

Berkeley, CA 94720, USA

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Computer aided verification : 8th international conference :
proceedings / CAV ’96, New Brunswick, New Jersey, USA, July
31 - August 3, 1996. Rajeev Alur ; Thomas A. Henzinger (ed.). -
Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong
Kong ; London ; Milan ; Paris ; Santa Clara ; Singapore ;
Tokyo : Springer, 1996

(Lecture notes in computer science ; Vol. 1102)

ISBN 3-540-61474-5
NE: Alur, Rajeev [Hrsg.]; CAV <8, 1996, New Brunswick, NJ>; GT

CR Subject Classification (1991): E3,D.2.4,D.2.2,F4.1,B.7.2,C.3,1.2.3

ISSN 0302-9743
ISBN 3-540-61474-5 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
inits current version, and permission for use must always be obtained from Springer -Verlag. Violations are
liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1996
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10513330 06/3142-543210 Printed on acid-free paper

Preface

This volume contains the proceedings of the Eighth International Conference on
Computer Aided Verification (CAV ’96), organized July 31-August 3, 1996, in
New Brunswick, New Jersey. The annual CAV series is dedicated to the advance-
ment of the theory and practice of computer-assisted formal analysis methods for
software and hardware systems. The conference covers the spectrum from the-
oretical results to concrete applications, with an emphasis on verification tools
and the algorithms and techniques that are needed for their implementation.
This year’s call-for-papers invited submissions in two separate categories: regular
research contributions, and short descriptions of tools and case studies. Of the 93
submissions in the first category, 32 were selected for presentation at the confer-
ence. From an enthusiastic response to the second category, 20 submissions were
chosen.

The conference will include four invited lectures, and a morning session with in-
vited talks by representatives from industry. Invited lectures will be given by
Michael Rabin (Harvard University, USA, and Hebrew University, Israel) on
Randomization and Protocol Verification, by John Rushby (SRI International,
USA) on Automated Deduction and Formal Methods, and by Bill Roscoe (Oxford
University, UK) on Refinement-based Model Checking. Amir Pnueli (Weizmann
Institute, Israel) will give an after-banquet speech on The Potential and Sensi-
ble Scopes of Formal Methods. The industrial session will include invited talks
by Justin Harlow and Peter Verhofstadt (Semiconductor Research Corporation,
USA) on Formal Methods in the IC Industry: Trends and Directions, by Patrick
Scaglia (Cadence Berkeley Labs, USA) on From Wired Homes to Automated
Highways: A Perspective on Verification in the 21st Century, by Wolfram Biittner
(Siemens Corporate Research and Development, Germany) on Formal Verifica-
tion at Siemens: Achievements, Problems, Trends, by Gary De Palma (Lucent
Technologies, USA) on User Ezperiences with FormalCheck, by Carl Pixley (Mo-
torola, USA) on Formal and Informal Functional Verification in a Commercial
Environment, and by Shoham Ben-David (IBM Haifa Research Lab, Israel) on
Model Checking at Work.

The program of CAV ’96 was selected by a program committee consisting of
R. Alur (co-chair, Bell Labs, USA), R.K. Brayton (University of California at
Berkeley, USA), K. Cerans (University of Latvia, Latvia), D.L. Dill (Stanford
University, USA), E.A. Emerson (The University of Texas at Austin, USA), O.
Grumberg (The Technion, Israel), T.A. Henzinger (co-chair, University of Califor-
nia at Berkeley, USA), K.G. Larsen (Aalborg University, Denmark), D.E. Long
(Bell Labs, USA), K.L. McMillan (Cadence Berkeley Labs, USA), A.K. Mok
(The University of Texas at Austin, USA), D. Peled (Bell Labs, USA), A. Pnueli
(Weizmann Institute, Israel), C.-J.H. Seger (Intel Development Labs, USA), J.
Sifakis (VERIMAG, France), S.A. Smolka (SUNY at Stony Brook, USA), M.K.
Srivas (SRI International, USA), W. Thomas (Universitat Kiel, Germany); F.
Vaandrager (Nijmegen University, The Netherlands), M.Y. Vardi {Rice Univer-
sity, USA), and P. Wolper (Université de Liége, Belgium).

Vi

The following researchers helped in the evaluation of the submissions, and we are
grateful for their efforts: L. Aceto, J. Andersen, E. Asarin, P. Attie, F. Balarin, C.
Barrett, T. Basten, 1. Beer, H. Ben-Abdallah, S. Ben-David, S. Berezin, K. Bern-
stein, B. Bloom, B. Boigelot, D. Bosscher, A. Bouajjani, R. Bryant, N. Buhrke,
S.-T. Cheng, C.-T. Chou, D. Clarke, D. Cyrluk, D. Dams, S. Dawson, Z. Dayar, S.
Edwards, C. Eisner, K. Engelhardt, J. Esparza, A. Felty, J.-C. Fernandez, T. Fer-
nando, M. Fisher, W. Fokkink, N. Francez, H. Garavel, T. Gelsema, R. Gerth,
D. Giest, P. Godefroid, S. Graf, D. Griffioen, E. Gukovski, P. Habermehl, N.
Halbwachs, W. Hesselink, R. Ho, R. Hojati, G. Holzmann, A. Hu, H. Huttel, A.
Ingolfsdottir, C.N. Ip, A. Isles, S.P. Iyer, B. Jacobs, H.E. Jensen, M. Kaltenbach,
S. Katz, A. Kerbrat, J. Kleist, S. Krishnan, K. Kristoffersen, K. Kuehnle, Y.
Kukimoto, Y. Lakhnech, A. Landver, K. Laster, D. Lee, H. Lescow, A. Levin, X.
Liu, S. Ma, O. Maler, F. Maraninchi, E. Mikk, H. Miller, F. Moller, L. Mounier,
M. Mukund, K. Namjoshi, V. Natarajan, D. Niwinski, S. Park, C. Petersohn,
A. Philippou, L. Polak, A. Ponse, C. Puchol, S. Rajamani, Y.S. Ramakrishna,
R. Ramanujam, R. Ranjan, P. Raymond, A. Rensink, J. Romijn, H. Rue8, J.
Sanghavi, I. Schiering, R. Segala, 5. Seibert, N. Shankar, T. Shiple, V. Singhal,
A. Skou, O. Sokolsky, J. Springintveld, R. Staerk, M. Staskauskas, F. Stomp, K.
Stroetmann, R. Sumners, K. Sunesen, G. Swamy, S. Tasiran, P.S. Thiagarajan,
R. Trefler, J. Tretmans, S. Tripakis, S. Ur, A. van Deursen, M. van Hulst, B.
Victor, T. Villa, J. Voege, T. Vos, I. Walukiewicz, P. Weidmann, H. Wupper,
C.H. Yang, M. Yannakakis, and 5. Yovine.

The CAV steering committee consists of the conference founders Ed Clarke
(Carnegie Mellon University, USA), Bob Kurshan (Bell Labs, USA), Amir Pnueli
(Weizmann Institute, Israel), and Joseph Sifakis (VERIMAG, France). We thank
them and Pierre Wolper (Université de Liége, Belgium), the conference chair of
CAYV 95, for valuable advice on the organization of the conference.

This year, CAV will be part of the Federated Logic Conference (FLoC ’96), and
organized jointly with the 13th International Conference on Automated Deduc-
tion (CADE), the 11th Annual IEEE Symposium on Logic in Computer Science
(LICS), and the 7th International Conference on Rewriting Techniques and Ap-
plications (RTA). FLoC ’96 will be hosted by the Center for Discrete Mathematics
and Computer Science (DIMACS), an NSF Science and Technology Center lo-
cated at Rutgers University, as part of a Special Year on Logic and Algorithms.
The FLoC steering committee consists of Stephen Mahaney (Rutgers Univer-
sity, USA) and Moshe Vardi (chair, Rice University, USA). The FLoC organizing
committee consists of Rajeev Alur (Bell Labs, USA), Leo Bachmair (SUNY at
Stony Brook, USA), Amy Felty (Bell Labs, USA), Doug Howe (Bell Labs, USA),
and Jon Riecke (chair, Bell Labs, USA). We gratefully acknowledge the help
of Priscilla Rasmussen from ARCS, who is responsible for registration and site
arrangements.

FLoC ’96 receives financial support from DIMACS, and also from AT&T Re-
search, IBM Almaden Research, the IEEE Computer Society, Lucent Technolo-
gies Bell Labs, and the Max-Planck Institute. Student registration-at CAV ’96 is

Vil

subsidized due to financial support from Cadence Berkeley Labs, Lucent Tech-

nologies, and Siemens Corporate Research and Development. We thank all spon-
sors for their generosity.

Murray Hill, New Jersey
Berkeley, California

May 1996

Rajeev Alur
Tom Henzinger

Table of Contents

B. Boigelot, P. Godefroid
Symbolic verification of communication protocols with infinite state
spaces using QDDs

K.L. McMillan
A conjunctively decomposed boolean representation for symbolic model
checking

G.S. Avrunin
Symbolic model checking using algebraic geometry

M. Pistore, D. Sangiorgi
A partition refinement algorithm for the m-calculus

C. Baier
Polynomial-time algorithms for testing probabilistic bisimulation and
simulation

1. Walukiewicz
Pushdown processes: games and model checking

O. Kupferman, M.Y. Vardi
Module checking

E.A. Emerson, K.S. Namjoshi
Automatic verification of parameterized synchronous systems

S.K. Shukla, H.B. Hunt IIi, D.J. Rosenkrantz
HORNSAT, model checking, verification, and games

E.M. Clarke, S.M. German, X. Zhao
Verifying the SRT division algorithm using theorem proving techniques

H. RueB, N. Shankar, M.K. Srivas
Modular verification of SRT division

D. Kapur, M. Subramaniam
Mechanically verifying a family of multiplier circuits

C.N.Ip, D.L. Dill

Verifying systems with replicated components in Mury

M. Fyjita

Verification of arithmetic circuits by comparing two similar circusts

J.M. Rushby
Automated deduction and formal methods

A. Pnueli, E. Shahar
A platform for combining deductive with algorithmic verification

13

26

38

50

62

75

87

99

111

123

135

147

159

169

184

S. Graf, H. Saidi

Verifying invariants using theorem proving

H.B. Sipma, T.E. Uribe, Z. Manna
Deductive model checking

N. Berregeb, A. Bouhoula, M. Rusinowitch
Automated verification by induction with assoctative-commutative
operators

S. Tripakis, S. Yovine
Analysis of timed systems based on time-abstracting bisimulations

J. Bengtsson, W.0.D. Grifficen, K.J. Kristoffersen, K.G. Larsen,
F. Larsson, P. Pettersson, W. Yi
Verification of an audio protocol with bus collision using UPPAAL

S. Campos, O. Grumberg
Selective quantitative analysis and interval model checking: verifying
different facets of a system

A. Aziz, K. Sanwal, V. Singhal, R.K. Brayton
Verifying continuous-time Markov chains

M.R. Greenstreet
Verifying safety properties of differential equations

L. de Alfaro, Z. Manna
Temporal verification by diagram transformations

S. Park, D.L. Dill

Protocol verification by aggregation of distributed transactions

E.P. Gribomont
Atomicity refinement and trace reduction theorems

S. Bensalem, Y. Lakhnech, H. Saidi
Powerful techniques for the automatic generation of invariants

H. Miller, S. Katz
Saving space by fully exploiting invistble transitions

J.-C. Fernandez, C. Jard, T. Jéron, G. Viho
Using on-the-fly verification techniques for the generation of test
suites

R. Nelken, N. Francez
Automatic translation of naturai-language system specifications into
temporal logic

O. Kupferman, M.Y. Vardi
Verification of fair transition systems

196

208

220

232

244

257

269

300

311

323

336

348

360

372

Xi

Tools and Case Studies

G.J. Holzmann, D. Peled
The state of SPIN

D.L. Dill
The Murp verification system

R. Cleaveland, S. Sims
The NCSU Concurrency Workbench

R. Cleaveland, P.M. Lewis, S.A. Smolka, O. Sokolsky
The Concurrency Factory: a development environment for concurrent
systems

D. Clarke, H. Ben-Abdallah, 1. Lee, H.-L. Xie, O. Sokolsky
XVERSA: an integrated graphical and teztual toolset for the
specification and analysis of resource-bound real-time systems

P. Merino, J.M. Troya
EVP: integration of FDTs for the analysis and verification of
communication protocols

S. Owre, S. Rajan, J.M. Rushby, N. Shankar, M.K. Srivas
PVS: combining specification, proof checking, and model checking

N. Bjgrner, A. Browne, E. Chang, M. Colén, A. Kapur, Z. Manna,
H.B. Sipma, T.E. Uribe

STeP: deductive-algorithmic verification of reactive and real-time
systems

E.M. Clarke, K.L. McMillan, S. Campos, V. Hartonas-Garmhausen
Symbolic model checking

R.H. Hardin, Z. Har’El, R.P. Kurshan
COSPAN

R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi,
A. Aziz, 5.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo,
S. Qadeer, R.K. Ranjan, S. Sarwary, T.R. Shiple, G. Swamy,

T. Villa

VIS: a system for verification and synthesis

K.D. Anon, N. Boulerice, E. Cerny, F. Corella, M. Langevin, X. Song,
S. Tahar, Y. Xu, Z. Zhou
MDG tools for the vertfication of RTL designs

J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu,
M. Sighireanu
CADP: a protocol validation and verification toolbox

A. Bouali, A. Ressouche, V. Roy, R. de Simone
The FC2Tools set

385

390

394

398

402

415

419

423

428

433

437

441

Xl

L.E. Moser, P.M. Melliar-Smith, Y.S. Ramakrishna, G. Kutty,
L.K. Dillon
The real-time graphical interval logic toolset

B. Steffen T. Margaria, A. Clafien, V. Braun
The METAFrame’95 environment

F. Koob, M. Ullmann, S. Wittmann
Verification support environment

D. Ambroise, B. Rozoy
MARRELLA: a tool for simulation and verification

G. Gonthier

Verifying the safety of a practical concurrent garbage collector

C. Capellmann, R. Demant, F. Fatahi-Vanani, R. Galvez-Estrada,
U. Nitsche, P. Ochsenschlager

Verification by behavior abstraction: a case study of service
tnteraction detection in intelligent telephone networks

List of Authors

446

450

454

458

462

466

471

Symbolic Verification of Communication Protocols
with Infinite State Spaces Using QDDs
(Extended Abstract)

Bernard Boigelot* Patrice Godefroid
Université de Liege Lucent Technologies — Bell Laboratories
Institut Montefiore, B28 1000 E. Warrenville Road
4000 Liege Sart-Tilman, Belgium Naperville, IL 60566, U.S.A.
Email: boigelot@montefiore.ulg.ac.be Email: god@bell-labs.com
Abstract

We study the verification of properties of communication protocols modeled by a finite set
of finite-state machines that communicate by exchanging messages via unbounded FIFO queues.
It is well-known that most interesting verification problems, such as deadlock detection, are
undecidable for this class of systems. However, in practice, these verification problems may very
well turn out to be decidable for a subclass containing most “real” protocols.

Motivated by this optimistic (and, we claim, realistic) observation, we present an algorithm
that may construct a finite and ezact representation of the state space of a communication
protocol, even if this state space is infinite. Our algorithm performs a loop-first search in the state
space of the protocol being analyzed. A loop-first search is a search technique that attempts to
explore first the results of successive executions of loops in the protocol description (code). A new
data structure named Queue-conient Decision Diagram (QDD) is introduced for representing
(possibly infinite) sets of queue-contents. Operations for manipulating QDDs during a loop-first
search are presented.

A loop-first search using QDDs has been implemented, and experiments on several com-
munication protocols with infinite state spaces have been performed. For these examples, our
tool completed its search, and produced a finite symbolic representation for these infinite state
spaces.

1 Introduction

State-space ezploration is one of the most successful strategies for analyzing and verifying properties of
finite-state concurrent reactive systems. It proceeds by exploring a global state graph representing
the combined behavior of all concurrent components in the system. This is done by recursively
exploring all successor states of all states encountered during the exploration, starting from a given
initial state, by executing all enabled transitions in each state. The state graph that is explored is
called the state space of the system. Many different types of properties of a system can be checked by
exploring its state space: deadlocks, dead code, violations of user-specified assertions, etc. Moreover,
the range of properties that state-space exploration techniques can verify has been substantially
broadened during the last decade thanks to the development of model-checking methods for various
temporal logics (e.g., [CES86, LP85, QS81, VW86]).

" “Aspirant” (Research Assistant) for the National Fund for Scientific Research (Belgium). The work of this author
was done in part while visiting Bell Laboratories.

Verification by state-space exploration has been studied by many researchers (cf. [Liu89, Rud87}).
The simplicity of the strategy lends itself to easy, and thus efficient, implementations. Moreover,
verification by state-space exploration is fully automatic: no intervention of the designer is required.
The main limit of state-space exploration verification techniques is the often excessive size of the
state space. Obviously, this state-ezplosion problem is even more critical when the state space being
explbred is infinite.

In contrast with the last observation, we show in this paper that verification by state-space explo-
ration is also possible for systems with infinite state spaces. Specifically, we consider communication
protocols modeled by a finite set of finite-state machines that communicate by exchanging messages
via unbounded FIFO queues. We present a state-space exploration algorithm that may construct
a finite and ezect representation of the state space of such a communication protocol, even if this
state space is infinite. From this symbolic representation, it is then straightforward to verify many
properties of the protocol, such as the absence of deadlocks, whether or not the number of messages
stored in a queue is bounded, and the reachability of local and global states.

Of course, given an arbitrary protocol, our algorithm may not terminate its search. Indeed, it
is well-known that unbounded queues can be used to simulate the tape of a Turing machine, and
hence that most interesting verification problems are undecidable for this class of systems [BZ83].
However, in practice, these verification problems may very well turn out to be decidable for a
subclass containing most “real” protocols. To support this claim, properties of several communication
protocols with infinite state spaces have been verified successfully with the algorithm introduced in
this paper.

In the next section, we formally define communication protocols. Our algorithm performs a loop-
first search in the state space of the protocol being analyzed. A loop-first search is a search technique
that attempts to explore first the results of successive executions of loops in the protocol description
{code). This search technique is presented in Section 3. A new data structure, the Queue-content
Decision Diagram (QDD), is introduced in Section 4 for representing (possibly infinite) sets of queue-
contents. Operations for manipulating QDDs during a loop-first search are presented in Section 5.
A loop-first search using QDDs has been implemented, and experiments on several communication
protocols with infinite state spaces are reported in Section 6. This paper ends with a comparison
between our contributions and related work.

2 Communicating Finite-State Machines

Consider a protocol modeled by a finite set M of finite-state machines that communicate with each
other by sending and receiving messages via a finite set @ of unbounded FIFO queues, modeling
communication channels. Let M; denote the set of messages that can be stored in queue g;, 1 <i <
|@|. For notational convenience, let us assume that the sets }; are pairwise disjoint. Let C; denote
the finite set of states of machine M;, 1 <1 < [M].

Formally, a protocol P is a tuple (C,co, 4,@, M,T) where C = Cy x +-+ x Cjp| is a finite set
of control states, co € C is an initial control state, A is a finite set of actions, Q is a finite set of
unbounded FIFO queues, M = Ulc__nlM,- is a finite set of messages, and T is a finite set of transitions,
each of which is a triple of the form (c;,0p, ;) where ¢; and ¢y are control states, and op is a label
of one of the forms ¢;!w, where ¢; € @ and w € M}, ¢;Tw, where ¢; € Q and w € M}, or a, where
a€ A

A transition of the form (), ¢;!w, c;) represents a change of the control state from ¢; to ¢z while
appending the messages composing w to the end of queue g;. A transition of the form (c1,¢i%w, ¢z)
represents a change of the control state from ¢; to ¢; while removing the messages composing w from
the head of queue g;.

A global state of a protocol is composed of a control state and a gueve-content. A queue-content

RtoS?ack! S10R!msg0 StoR ’msg1 RioStackl

timeout

StoR'msg0
Rto8ack0

StoR!'msg!

RioSlackl ~~ StoRmsgl
N\ 3

timeout

Rto5lack0 StoR?msgQ

StoR!msg1 RtoS%ack0

SENDER RECEIVER

Figure 1: Alternating-Bit Protocol

associates with each queue ¢; a sequence of messages from M;. Formally, a global state v, or simply
a state, of a protocol is an element of the set C) X - -+ x Cjaqy x M x s X MI‘Q,. A global state
¥ = (c(1),¢(2),...,c(|M]), w(1),w(2),...,w(|Q|)) assigns to each finite-state machine M; a “local”
(control) state ¢(i) € Ci, and associates with each queue ¢; a sequence of messages w(j) € M
which represents the content of g; in the global state . The initial global state of the system is
Yo = (co(1),¢0(2),...,co(| M|}, ¢,...,¢), i.e.,, we assume that all queues are initially empty.

A global transition relation — is a set of triples (v, a,7'), where v and ' are global states, and
a € AUu{r}. Let ¥ = +' denote (v,2,7') € . Relation — is defined as follows:

o if (c1,¢:'w,¢2) € T, then (c1(1),e1(2), - .., ca (IM]), w'(1),w'(2),. .., w'(IQN) =
(c2(1),e2(2),. .., c2(IM]), w" (1), w"(2), ..., w"(|Q])) where w"(z) = w'(i}w and w"(j) = w'(5),
7 # 1 (the control state changes from ¢; to ¢; and w is appended to the end of queue g¢;);

o if (cl,qi?w,cz) € T7 then (Cl (1)7C1 (2,)7 s 7C1(IM])7w’(1)7 w’(z)! .- 7w’(IQ|)) ;
(e2(1),e2(2), - .., c2(|M]), w" (1), w"(2),...,w"(|Q])) where w'(i) = ww" (¢) and w"(j) = w'(5),
7 # 1 (the control state changes from ¢; to ¢, and w is removed from the head of queue g;);

o if (c1,a,¢2) €T, then (c;(1),e1(2),. .., e (M), w'(1), w'(2),.-.,w'(|Q])) >
(e2(1),€2(2); - c2(IM]), w"(1),w"(2), ..., w"(IQ])) with w"(i) = w'(d), for all 1 < i < |Q
(the control state changes from ¢; to ¢; while the action a is performed).

A global state 7' is said to be reachable from another global state «y if there exists a sequence of
global transitions (v;—1,a:,%), 1 <4 < n, such that v = v0 3 4 - Y1 3 v, = 7. The global
state space of a system is the (possibly infinite) set of all states that are reachable from the initial
global state ;.

Example 1 As an example of communication protocol, consider the well-known Alternating-Bit
Protocol [BSW69)]. This protocol can be modeled by two finite-state machines Sender and Receiver
that communicate via two unbounded FIFO queues StoR (used to transmit messages from the Sender
to the Receiver) and RtoS (used to transmit acknowledgments from the Receiver to the Sender).
Precisely, the Alternating-Bit Protocol is modeled by the protocol (C, co, 4,Q, M, T) where C =
Csender X CReceivers Where Csender = {1,2,3,4,5,6,7,8,9,10} and Creceiver = {1,2,3,4,5,6,7,8};
co = (1,1); A = {Snd, Rev, timeout}; Q = {StoR, RtoS}; M = Msj,r U Mpy,s, where Mg =
{msg0,msgl} and Mpios = {ack0,ackl}; and T contains the transitions ((s1,71), 0p, (s2,2)) where

either 7y = r2 and (s;,0p,s2) is a transition in the Sender machine of Figure 1, or s; = s and
(r1,0p,72) is a transition in the Receiver machine of Figure 1. The action Snd models a request to
the Sender, coming from a higher-level application, to transmit data to the Receiver side. The actual
data that are transmitted are not modeled, only message numbers msg0 and msgl are transmitted
over the queues. Similarly, the action Rev models the transmission of data received by the Receiver
to a higher-level application. The actions labeled by timeout model the expiration of timeouts. B

3 Loop-First Search

All state-space exploration techniques are based on a common principle: they spread the reachability
information along the transitions of the system to be analyzed. The exploration process starts with
the initial global state of the system, and tries at every step to enlarge its current set of reachable
states by propagating these states through transitions. The process terminates when a stable set is
reached.

In order to use the above state-space exploration paradigm for verifying properties of systems
with infinite state spaces, two basic problems need to be solved: one needs a representation for
infinite sets of states, as well as a search technique that can explore an infinite number of states in
a finite amount of time.

In the context of the verification of communication protocols as defined in the previous section,
our solution to the first problem is to represent the control part explicitly and the queue-contents
“symbolically”. Specifically, we will use special data structures for representing (possibly infinite)
sets of queue-contents associated with reachable control states.

To solve the second problem, we will use these data structures for simultaneously exploring
(possibly infinite) sets of global states rather than individual global states. This may make it possible
to reach a stable representation of the set of reachable global states, even if this set is infinite.
In order to simultaneously generate sets of reachable states from a single reachable state, meto-
transitions [BW94] can be used. Given a loop that appears in the protocol description and a centrol
state ¢ in that loop, a meta-transition is a transition that generates all global states that can be
reached after repeated executions of the body of the loop. By definition, all these global states have
the same control state c.

The classical enumerative state-space exploration algorithm can then be rewritten in such a way
that it works with sets of global states, i.e., pairs of the form {control state, data structure}, rather
than with individual states. Initially, the search starts from an initial global state. At each step
during the search, whenever meta-transitions are executable, they are explored first, which is a
heuristic aimed at generating many reachable states as quickly as possible. This is why we call such
a search a loop-first search. The search terminates if the representation of the set of reachable states
stabilizes. This happens when, for every control state, every new deducible queue-content is tncluded
in the current set of queue-contents associated with that control state. At this moment, the final
set of pairs {control state, data structure) represents ezactly the state space of the protocol being
analyzed.

In order to apply the verification method described above, we need to define a data structure
for representing (possibly infinite) sets of queue-contents, and algorithms for manipulating these
data structures. Specifically, whenever a transition or a meta-transition is executed from a pair
{control state, data structure) during a loop-first search, the new pair {control state, data structure)
obtained after the execution of this (meta-)transition has to be determined. Therefore, from any
given such data structure, one needs to be able to compute a new data structure representing the
effect of sending messages to a queue (g;!w) and receiving messages from a queue (g;?w), as well as
the result of executing frequent types of meta-transitions, such as repeatedly sending messages on a
queue ((g;'w)*), repeatedly receiving messages from a queue ({g;?w)*), and repeatedly receiving the

sequence of messages w; from a queue g; followed by sending another sequence of messages w2 on
another queue g;, i # j, ((¢:7wy; g;lw2)*}. Finally, basic operations on sets are also needed, such as
checking if a set of queue-contents is included in another set, and computing the union of two sets
of queue-contents.

4 Queue-content Decision Diagrams

Queue-content Decision Diagrams (QDDs} are data structures that satisfy all the constraints listed
in the previous section. A QDD is a special type of finite-state automaton on finite words. A finite-
state automaton on finite words is a tuple A = (£, 5, A, s, F'), where T is an alphabet (finite set of
symbols), S is a finite set of states, A © 5 x (¥ U {e}) x § is a transition relation (¢ denotes the
empty word), sy € S is the initial state, and F C S is a set of accepting states. A transition (s, a, s')
is said to be labeled by a. A finite sequence (word) w = ajaz . .. a, of symbols in I is accepted by the
automaton A if there exists a sequence of states ¢ = s5...5, such that V1 <i < n: (821,84 8;) € A,
and s, € F. The set of words accepted by A is called the language accepted by A, and is denoted by
L(A). Let us define the projection w|p, of a word w on a set M; as the subsequence of w obtained
by removing all symbols in w that are not in M;. An automaton is said to be deterministic if it
does not contain any transition labeled by the empty word, and if for each state, all the outgoing
transitions are labeled by different symbols.

Precisely, QDDs are defined as follows.

Definition 2 A QDD A for a protocol P is a deterministic finite-state automaton (M, S, A, sg, F)
on finite words such that
Yw e L(A) : w=wipwpm - . w|u,-

A QDD is associated with each control state reached during a loop-first search, and represents a
set of possible queue-contents for this control state. Each word w accepted by a QDD defines one
queue-content w|yy; for each queue g; in the protocol.

By Definition 2, a total order < is implicitly defined on the set @ of all queues g; in the protocol
such that, for all QDDs for this protocol, transitions labeled by messages in M; always appear before
transitions labeled by messages in M; if i < j. Therefore, for all QDDs for a protocol, a given
queue-content can only be represented by one unique word. In other words, Definition 2 implicitly
defines a “canonical” representation for each possible queue-content. Note that this does not imply
that QDDs are canonical representations for sets of queue-contents.

5 Operations on QDDs

Standard algorithms on finite-state automata on finite words can be used for checking if the language
accepted by a QDD is included in the language accepted by another QDD, for computing the union
of QDDs, etc. (e.g., see [LP81]). In what follows, 4; U 4, will denote an automaton that accepts
the language L(A4,) U L(A4z), while DETERMINIZE(A) will denote a deterministic automaton that
accepts the language L(4). We will write “Add (s, w, s') to A” to mean that transitions {s;_,as, 8:),
1 <7< n,suchthat w = ayas...an, o = 3, s, = &', and s;,1 < i < n, are new {fresh) states, are
added to A.

We now describe how to perform the other basic operations on QDDs listed in Section 3.

Let 4 be the QDD associated with a given control state c. Let L(.A) denote the language accepted
by A, and let Lo,(A4) denote the language that has to be associated with the control state ¢’ reached

SEND{queue.d 7, word w, QDD (M, S, A, s0, F)) {
For all states s € S such that
Ju' € (Ui, My) 150 B s,
do the following operations:
e Add a new state s’ to S;
e For all transitions ¢ = (s,m,s") € A such that m € M;,j > i
Replace ¢ by (s',m,s");
e For all transitions t = (s, m,s) € A such that m € M;,j > #:
Replace £ by {s",m,s');
s Add (s,w,s') to A;
¢ Ifs€ F,add s to F, and remove s from F;

Return DETERMINIZE((M, S, A, s, F)).
}

RECEIVE(queue.id i, word w, QDD (M, 5, A, 50, F)) {
For all states s € 5 such that

3w’ € (UZ1M;)" 150 B 5,

do the following operations:

e Add a new state s’ to S

® For all transitions ¢ = (s,m, s’) € A such that m € M;,j > i
Replace t by (¢',m,s");

» For all transitions t = (s”,m, s) € A such that m € M;,7 > &
Replace ¢ by (s",m, s');

o For all states s” € S such that &' = 5":
Add a transition (s, £,s") to A;

e fsc F,add ¢ to F, and remove s from F;

Return DETERMINIZE((M, 5, A, s6, F)).
}

Figure 2: ¢;'w and g;?w

after the execution of a transition (c,op,c') from the control state ¢, with op € {gilw,¢;?w}. We
have the following:

o Lo (A) = {30’ € L{(A): w' |y, = wipw AVG # i wiy, = w'lng)
o Loru(A) = {w"|3w' € L{A) : vy, = ww"|yr, AYG # 4 w'|ag = w'lag)

Algorithms for computing a QDD 4’ that accepts all possible queue-contents obtained after the
execution of a transition of the form g¢;'w or ¢;?w on a QDD 4 = (}M, S, A, so, F) are given in
Figure 2. The correctness of these algorithms is established by the following two theorems.

Theorem 3 Let A be a QDD, let A’ denote the automaton returned by SEND(i, w, A), and let
L(A") denote the language accepted by A'. Then A' is a QDD such that L(A') = Lg1(4).

Proof Proofs are omitted here due to space limitations. See the full paper. B

Theorem 4 Let A be o QDD, let A’ denote the automaton returned by RECEIVE(i, w, A), end let
L(A") denote the language accepted by A’. Then A’ is ¢ QDD such thet L(A') = Lg;7.(A4).

SEND-STAR(queue.id i, word w, QDD {M, S, A, 80, F)) {
For all states s € S such that
Jw' € (Ui M;)* 1 80 B s,
do the following operations:
e Add two new states s’ and s” to S;
o For all transitions ¢ = (s, m,s") € A such that m € M;,; >
Replace t by (s",m, s'");
o For all transitions £ = (s"',m, s) € A such that m € M;,j > i:
Replace t by (s"',m,s");
e Add (s,g,5'), (s',e,8") and (s',w, ') to A;
s fsecF,add s to F;
Return DETERMINIZE((M, S, A, so, F)).
}
RECEIVE-STAR(queue.id i, word w, QDD (M, S, A, s0, F)) {
For all states s € S such that

Ju' € (UiZ M) 50 B s,

J=1-1"7
do the following operations:

o Add a new state s’ to S;

o For all transitions ¢ = (s,m,s") € A such that m € M;,j > i:
Replace t by (s',m, s");

e For all transitions ¢ = (s",m, s) € A such that m € M;,j >«
Replace t by (s, m,s');

o For all states s € S such that 3w’ € {w}” : ¢ = s
Add a transition (s,¢,5") to A;

o Ifsc F,add s’ to F;

Return DETERMINIZE((M, S, A, z0, F)).
}

Figure 3: (g;!w)* and (g;?w)*

Proof See the full paper. &

We now consider the meta-transitions discussed in Section 3. The operation (g;!w)* denotes
the union of all possible queue-contents obtained after sending k sequences of messages w € M to
the queue g; of the system, for all k > 0. The operation (g;?w)* denotes the union of all possible
queue-contents obtained after receiving & sequences of messages w € M from the queue g; of the
system, for all k£ > 0. The operation {g;?w; g;lwe)* denotes the union of all possible queue-contents
obtained after receiving k sequences of messages w; € M} from the queue g; and sending & sequences
of messages wz € M to the queue gj, for all £ > 0, and for i # j.

Let A be the QDD associated with a given control state c. Let L(A) denote the language accepted
by A, and let Lop(A) denote the language that has to be associated with the control state ¢ reached
after the execution of a meta-transition (¢, op, ¢) with op € {(g:i!w)*, (¢:?w)*, (¢iTw1; gjlwz)*}. We
have the following:

o Liguy(4) = {w"|3w' € L(A),k 2 0: w”|y, = w'haw* AVj # iz w|a = w'|n,),

o Ligouwy(A) = {w" 3w’ € L(A),k > 0: w'|py, = whw’|ar, AV #i:w”|p, = w'lag),

RECEIVE-SEND-STAR(queue.id i, word ws, queue.id j, word we, QDD (M, S, A, s0, F)) {
Let n be the greatest integer such that
331,...87..).1 €ES: 8 3322 1'gs,.qq,
withVi<k<I<n+1l:s;#a;
Let Ap denote the QDD (M, S, A, 8¢, F);
For all k, 1 £ k < n+ 1, compute 4y = SEND(j, ws, RECEIVE(i, wq, Ax-1));
U L(Ang) =@
¢ Return DETERMINIZE(UZ_Aw);
If L(Anyy) # O
o Letp=1;
o While L(An+1) 3% L(RECEIVE(i, w}, Any1)):
p=p+];
o For all k, 2 < k < p, compute An4x = SEND(j, w2, RECEIVE(®Z, w1, Anyi-1));
» Compute An4p41 =SEND-STAR(j, w}, DETERMINIZE(U; 17 a1 Ar));
» Return DETERMINIZE(U;Z2¥! A,).

Figure 4: (g;7ws;g;lwe)”

o Ligtuyigiiu,)-(A) = {w"]3w' € L(A)k 2 0 : w'|p, = whwla Aw”|a; = w’]Mng AVl g
{63} 10"y = w'lg }-

Algorithms for computing a QDD A’ that accepts all possible queue-contents obtained after

the execution of a meta-transition of the form (g;'w)*, (g:?w)*, or {g;?wy;g;!wz)* on a QDD A =

(M, S, A, so, F) are given in Figures 3 and 4. The correctness of these algorithms is established by
the following theorems.

Theorem 5 Let A be e QDD, let A’ denote the automaton returned by SEND-STAR(i, w, A), and
let L(A') denote the language accepted by A'. Then A' is e QDD such that L{(A’) = L(g14)- (A).

Proof See the full paper. B

Theorem 6 Let A be a QDD, let A' denote the automaton returned by RECEIVE-STAR(i, w, A),
end let L{A') denote the language accepted by A'. Then A' is a QDD such that L(A’) = L(g,2.)+ (A)-

Proof See the full paper. #

Lemma 7 Let n and A1 be as defined in the algorithm RECEIVE-SEND-STAR(i,wy,j,ws, A),
with i # j. If the language accepted by Ap.y is not empty, then there exists p such thet 0 < p <
(n+1)}, and L(An4,) = L{RECEIVE(i,w}, Apns1))-

Proof See the full paper. ®

Theorem 8 Let A be a QDD, let A' denote the automaton returned by RECEIVE-SEND-STAR(i,
wy, J, we, A), , with i # j, and let L{A’) denote the language accepted by A'. Then A’ is o QDD
such that L(A") = Lg;2u0,:q;tws)= (4).

Proof See the full paper. @

It is worth noticing that, as a corollary of the last theorem, the language L(q‘.-‘,w,;qj'_w).(A) is
regular.

6 Experimental Results

Consider again the Alternating-Bit protocol of Example 1. Meta-transitions are added to the proto-
col description for loops that match either {(g;!w)*, (¢:;?w)*, or (¢;?w); gjlws)*. Precisely, the meta-
transitions (3, (RtoS?ackl; StoR!msg0)*,3), (3, (StoR!msg0)*,3), (8, (RtoS?ack0; StoR!msgl}*,8),
(8, (StoRimsgl)*,8) are added to the set of transitions of the Sender, while the meta-transitions
(1, (StoR?msgl; RtoSlackl)™, 1) and (5, {StoR?msg0; RtoSlack0)*, 5) are added to the set of transi-
tions of the Receiver.

We have implemented (in C) a “QDI)-package” containing an implementation of the algorithms
for manipulating QDDs described in the previous section, and we have combined it with a loop-first
search. Starting with the control state (1,1) and the QDD (M, {so}, {}, 50, {$0}), which corresponds
to the queune-content ¢ for both queues StoF and RtoS, the execution of the loop-first search for the
Alternating-Bit protocol terminates after 5.9 seconds of computation on a SPARC10 workstation.
The number of {meta-)transitions executed is 331, The largest QDD constructed during the search
contains 21 states, and 52 control states are reachable from the initial state.

Many properties can be checked on the symbolic representation of the state space of the protocol
obtained at the end of the search. For instance, it is then straightforward to prove that the protocol
does not contain any deadlocks, that there are reachable control states where the number of messages
in a queue is unbounded, that messages are always delivered in the correct order, etc.

Our tool has also been tested on several variants of the Alternating-Bit protocol, where the tran-
sitions labeled by “timeout” are removed from the protocol description, where the Sender/Receiver
have various number of control states, etc. An interesting variant is the case where queues may lose
messages (to model unreliable transinission media). In order to handle this case, it is sufficient to
define one additional algorithm SEND-LOSSY (4, w, A), that merely returns AU SEND(3, w, A). We
also performed experiments on several simple sliding-window protocols [Tan89], with various window
sizes. For all these examples with infinite state spaces (more than 20 in total), our tool was able
to successfully terminate its search within a few minutes of computation. This shows that, at least
for this particular though important class of examples, our verification method is very useful and
robust.

7 Comparison with Other Work and Conclusions

Although most verification problems are undecidable for arbitrary protocols modeled by communicat-
ing finite-state machines, decision procedures have been obtained for the verification of specific prop-
erties for limited sub-classes [KM69, RY86, GGLR87, CF87, Fin88, Jer91, S291, AJ93, AJ94, CFP96].
These sub-classes do not cover, e.g., the Alternating-Bit Protocol and the properties discussed in the
previous section, which were easily verified using a loop-first search and QDDs.

Clearly, a necessary, but not sufficient, condition for the termination of our algorithm is that,
for all reachable control states of the protocol, the language of queue-contents associated with that
control state can be represented by a QDD. The class of protocols characterized by the above nec-
essary condition is equivalent to the class of protocols for which, for each reachable control state
of the protocol, the set of possible queue-contents can be described by a recognizable expression
(i.e., a finite union of cartesian products of regular expressions). Indeed, it can be shown that any
recognizable language can be represented by a QDD, and that any set of queue-contents represented
by a QDD is a recognizable language.

In [Pac87], it is pointed out that several verification problems are decidable for the above class of
protocols. However, no method is given for constructing a recognizable expression representing all
possible queue-contents for each control state of the protocol. Actually, from [CFP96], it is easy to
show that an algorithm for constructing such recognizable expressions, for any protocol in the class

10

defined above, cannot exist. In contrast, our contribution is to provide a practical algorithm which
is able to compute such a representation for protocols in the above class, although not for all of them
~ this is impossible anyway.

In this paper, we have presented algorithms on QDDs for computing the effect of executing three
frequent types of meta-transitions. These algorithms were sufficient for analyzing the protocols
considered in the previous section. However, it is possible to design algorithms on QDDs for other
types of meta-transitions as well. Interesting future work is to characterize precisely the set of meta-
transitions that preserve recognizability and to provide a generic algorithm for computing the effect
of the execution of any meta-transition in this class. These topics will be addressed in a forthcoming
paper.

In [PP91], a verification method based on data-flow analysis is used to generate “fow equations”
from the description of a set of communicating finite-state machines. By computing approximations
of solutions for these equations, it is possible to show that the original system is free of certain types
of errors. In contrast, our algorithm is able to produce an ezact representation of the state space
of the protocol being analyzed. This enables us not only to prove the absence of errors, but also
to detect errors and to exhibit to the user sequences of transitions that lead to errors. Note that,
obviously, approximations could also be used in our framework, e.g., for simplifying QDDs when
they become too complex, or when the search does not seem to stop. For the examples we have
considered so far, no approximations were necessary.

The idea of representing states partly explicitly (control part) and partly symbolically (data part)
already appeared in [ACD93] for the verification of real-time systems, where dense-time domains are
represented by polyhedra. This idea also appeared in [BW94], where the values of integer variables
are represented by periodic vector sets. These symbolic representations are quite different from
QDDs.

For digital hardware verification [BCM*90}, the most commonly used symbolic representation is
certainly the Binary Decision Diagram (BDD) [Bry92], which represents a boolean function (with
a finite domain) as a directed acyclic graph. In [GL96), it is shown how QDDs can be combined
with BDDs to improve the efficiency of classical BDD-based symbolic model-checking methods for
verifying properties of communication protocols with large finite state spaces.

8 Acknowledgments

We wish to thank Michael Merritt and Mark Staskauskas for helpful comments on a preliminary
version of this paper.

References

[ACD93] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Information
and Computation, 104(1):2-34, May 1993.

[AJ93] P. A. Abdulla and B. Jonsson. Verifving programs with uanreliable channels. In Proceed-
ings of the 8th IEEE Symposium on Logic in Computer Science, 1993.

[AJ94] P. A. Abdulla and B. Jonsson. Undecidable verification problems for programs with
unreliable channels. In Proc. ICALP-94, volume 820 of Leciure Notes in Computer
Science, pages 316-327. Springer-Verlag, 1994.

[BCM*90] J.R. Burch, EM. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 10%° states and beyond. In Proceedings of the 5th Symposium on Logic in
Computer Science, pages 428-439, Philadelphia, June 1990.

[Bry92]
[BSWeo]

[BW94]

[BZ83]

[CES86]

[CFs7]

[CFP96]

[Fin88]

[GGLRS87]

[GL96]

[Jer91]

[KMé69]

[Liug9]
[LP&1]

[LP85]

[Pac87]

[PP91]

11

R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293-318, 1992,

K. Bartlett, R. Scantlebury, and P. Wilkinson. A note on reliable full-duplex transmis-
sions over half-duplex lines. Communications of the ACM, 2(5):260-261, 1969.

B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Proc. 6th Confer-
ence on Computer Aided Verification, volume 818 of Lecture Notes in Computer Science,
pages 5567, Stanford, June 1994. Springer-Verlag.

D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the
ACM, 2(5):323-342, 1983. :

EM. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244~263, January 1986.

A. Chéquet and A. Finkel. Simulation of linear FIFO nets having a structured set of
terminal markings. In Proc. 8th European Workshop on Application and Theory of Petri
Nets, pages 95-112, Saragoza, 1987.

G. Cécé, A. Finkel, and S. Purushothaman. Unreliable channels are easier to verify than
perfect channels. Information and Computation, 124(3):20-31, 1996.

A. Finkel. A new class of analyzable cfsms with unbounded FIFO channels. In Proc. 8th
IFIP WG 6.1 International Symposium on Protocol Specification, Testing, and Verifica-
tion, pages 1-12, Atlantic City, 1988. North-Holland.

M. G. Gouda, E. M. Gurari, T. H. Lai, and L. E. Rosier. On deadlock detection in
systems of communicating finite-state machines. Computers and Artificial Intelligence,
6(3):209-228, 1987.

P. Godefroid and D. E. Long. Symbolic Protocol Verification with Queue BDDs. In
Proceedings of the 11th IEEE Symposium on Logic in Computer Science, New Brunswick,
July 1996.

T. Jeron. Testing for unboundedness of FIFO channels. In Proc. STACS-91: Symposium
on Theoretical Aspects of Computer Science, volume 480 of Lecture Notes in Computer
Science, pages 322-333, Hamburg, 1991. Springer-Verlag.

R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and
System Sciences, 3(2):147-195, 1969.

M.T. Liu. Protocol engineering. Advances in Computing, 29:79-195. 1989.

H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice
Hall, 1981.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In Proceedings of the Twelfth ACM Symposium on Principles
of Programming Languages, pages 97-107, New Orleans, January 1985.

J. K. Pachl. Protocol description and analysis based on a state transition model with
channel expressions. In Proc. 7th IFIP WG 6.1 International Symposium on Protocol
Specification, Testing, and Verification. North-Holland, 1987.

W. Peng and S. Purushothaman. Data flow analysis of communicating finite state ma-
chines. ACM Transactions on Programming Languages and Systems, 13(3):399-442, 1991.

[Qs81)

[Rud87)

[RY86]

[5291)

[Tang9]
[VWa6]

12

J.P. Quielle and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In Proc. 5th Int’l Symp. on Programming, volume 137 of Lecture Notes in Computer
Science, pages 337-351. Springer-Verlag, 1981.

H. Rudin. Network protocols and tools to help produce them. Annual Review of Computer
Science, 2:291-316, 1987.

L. E. Royer and H. C. Yen. Boundedness, empty channel detection and synchronization
for communicating finite automata. Theoretical Computer Science, 44:69-105, 1986.

A.P. Sistla and L. D. Zuck. Automatic temporal verification of buffer systems. In Proc.
3rd Workshop on Computer Aided Verification, volume 575 of Lecture Notes in Computer
Science, pages 93103, Aalborg, July 1991, Springer-Verlag.

A, Tanenbaum. Computer Neworks. Prentice Hall, 1989,

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of the First Symposium on Logic in Computer Science, pages
322-331, Cambridge, June 1986.

A Conjunctively Decomposed Boolean Representation
for Symbolic Model Checking

K. L. McMillan

Cadence Berkeley Labs
1919 Addison St., suite 303
Berkeley, CA 94704-1144
memillan@cadence.com

Abstract. A canonical boolean representation is proposed, which de-
composes a function into the conjunction of a sequence of components,
based on a fixed variable order. The components can be represented
in OBDD form. Algorithms for boolean operations and quantification
are presented allowing the representation to be used for symbolic model
checking. The decomposed form has a number of useful properties that
OBDD’s lack. For example, the size of conjunction of two independent
functions is the sum of the sizes of the functions. The representation also
factors out dependent variables, in the sense that a variable that is de-
termined by the previous variables in the variable order appears in only
one component of the decomposition. An example of verifying equiva-
lence of sequential circuits is nsed to show the potential advantage of the
decomposed representation over OBDD’s.

1 Introduction

Symbolic model checking, and related finite-state verification techniques use
heuristically compact boolean representations, such as ordered binary decision
diagrams (OBDD’s), to implicitly represent sets and relations (notably the tran-
sition relation of a model, and its set of reachable states). The implicit represen-
tation may be compact even thought the number of states or transitions is very
large, thus allowing systems with very large state spaces to be verified automat-
ically. However, in many cases the OBDD representation is not compact. To a
first approximation, the OBDD representing a set of states can be thought of as
a finite state automaton that reads the values of the state variables in some fixed
order, and finally accepts or rejects the given valuation. Figuratively speaking,
this automaton must “remember” some amount of information about the vari-
ables seen so far, in order to decide whether the remaining variable assignments
are consistent with those already seen. Hence, to obtain a compact representa-
tion, the variable order must be such that the mutual information across any cut
through the order is small. This implies that state variables that strongly corre-
late each other must be nearby in the variable order. Often, however, this is not
possible. For example, in a protocol, a state variable representing the contents of
a message buffer is likely to be correlated with both the state of the sender and

14

the state of the receiver. Since all pairs of senders and receivers cannot generally
be made close in the variable order, there is no suitable place for the variable
representing the message buffer.

In other cases, the relationships between variables are not fixed, but vary
according to some global control information. For example, suppose we wish
to verify that two hardware implementations of a bounded FIFO queue are
equivalent (see figure 1). This can be done by building a single model in which
the two implementations run in parallel, and verifying that the outputs always
agree. Let one implementation be a “shift register”, in which the most recent
item is always stored in location 0, and all items shift over when a new item is
inserted. Let the other implementation be a “ring buffer”, where a “head pointer”
points to the oldest item, and the items themselves remain fixed. Given the state
of the head pointer, there is a one-to-one correspondence between locations in
the two implementations. However, since the head pointer is not fixed, we cannot
fix an OBDD variable order that will put related state variables together.

shift register ring buffer
tail tail head
{out) {out) {in)

Fig. 1. Two implementations of FIFO queue.

This paper introduces a canonical boolean representation that may be com-
pact in such cases, where OBDD’s are not. The intuition behind this represen-
tation is that many state variables, such as the message buffers in a protocol, or
the data items in the ring buffer, have a property of “conditional independence”.
That is, once a core set of state variables is fixed, the remaining variables are
not mutually correlated. For example, once we the contents of the shift register
and the head pointer are fixed, the contents of the ring buffer are determined,
and hence uncorrelated. Similarly, the contents of the message buffers in a pro-
tocol may provide no mutual information, once the states of the communicating
processes are fixed. The representation introduced here decomposes the repre-
sentation of a boolean function into the conjunction of sequence of components.
Each component, which may be represented as an OBDD, fixes the possible
values of just one state variable, given a feasible assignment to the previous
variables. The variable order used for this decomposition may be distinct from
the OBDD variable order. The decomposed form has the property that con-
ditionally independent variables are “factored out” into separate components,
thus eliminating the need to find a suitable place for these variables in a global
OBDD variable order. Among other things, this implies that the conjunction of

15

functions with independent support is additive (not true for OBDD’s), as is the
conjunction of components in the transition relation of a state machine.

There are a number of examples of conjunctive forms in the literature. Hu
and Dill use a technique of checking conjunctive properties where fixed points are
computed in parallel, and each conjunct is used to simplify the other conjuncts
at each iteration [HD93]. This can yield a more compact representation than
an explicit conjunction, but the original decomposition of the problem must be
provided by the user. Also, the representation is not canonical, as it is here. Burch
and Long use implicitly conjoined transition relations, but do not decompose
the representation of the set of reached states, as we do here [BCL91]. Their
representation is also not canonical. Jain also describes a canonical disjunctive
representation [JABF92], which has a conjunctive dual. It is not directly related
to the current method, however, as is it obtained by dividing the truth table
into ad hoc regions and using one OBDD for each region.

This paper is organized as follows: Section 2 defines the decomposed repre-
sentation, and proves some useful theorems about the size of the representation
for certain classes of functions. Section 3 introduces algorithms for conjunction,
disjunction and existential quantification {projection) on the decomposed form.
Section 4 discusses model checking using the above algorithms, and provides
performance results for verifying the equivalence of the two FIFO queue im-
plementations mentioned above. We find that as the depth of the queues is
increased, the size of the decomposed representation for the reachable states
increases quadradically, while the OBDD representation increases exponentially.

In this paper, most of the proofs have been omitted due to space limitations.

2 Conjunctive decompositions

Let f be a boolean function of independent boolean variables V' = (v1,...,vn).
We will use the notation f(), where 0 < ¢ < n, to stand for the projection of f
onto (v1,...,v;). That is,

f(i) = 3(’05.{.1, .. .,’Un). f

In addition, we will use the notation f|g, where f and g are two boolean func-
tions, denote the “generalized cofactor” of f relative to g. This function, which
can be read as “f given g”, agrees with f whenever g is true [CBM89, TSL*90].
Those values where g is false are mapped to the “nearest” point where g is true,
according to a distance measure on truth assignments. Thus, if two functions
agree wherever g holds, then their cofactors relative to g are equal:

fag=fng iff flg=1Flg

We will use the projection and cofactor operations to decompose a boolean
function f into a vector of boolean functions (f1, ..., f,), where

fi = fO)7E

16

Intuitively, the component f; determines the set of possible values of variable v;,
given a feasible evaluation of the variables (v1,...,v;_1). We will show that the
function f is equal to the conjunction of the components f;:

F= N\
i=1

2.1 Generalized cofactor

If f and g are two boolean functions of boolean variables (v1, ..., v;—1), then flg
is a boolean function whose value is obtained for a given truth assignment = by
finding the “nearest” truth assignment to = that satisfies g, and evaluating f at
this point. For this purpose, the distance between two truth assignments z and
y is determined by treating their boolean difference (exclusive-or) as a binary
number. To be more precise,

Definition1. Let A be the set of truth assignments V' — {0,1}, and let W =
(wi,...,wy,) be a permutation of V. For any z,y € 4, let

d(x’ y) = Z?:l2n_i(m(wi) & y(wi))

Notice that we have an arbitrary choice of the order W on the variables that
defines the distance between truth assignments. Also note for future reference
that we have weighted the variables so that w; is the most significant, and wy,
is the least significant.

Definition2. Let B be the boolean algebra 24. For any z € A, and g € B,
where g # 0, let £ — g be the unique y € g minimizing d(z, y).

That is, £ — ¢ is the nearest point to z that satisfies g. Note that z — g is
uniquely defined for g # 0, because the boolean difference between z and any
other truth assignment is a unique number. This lets us define the generalized
cofactor as follows:

Definition3. For any f,g € B, and any z € A:

— if g # 0, then (flg)(z) = f(z — g),
~ else flg = 0.

As an example, suppose that W = (vy,vs,v3), that f = vz, ¢ = (—-v1) A
(va Vv3), and that we want to evaluate f|g at the truth assignment z = (1, 0, 0).
The truth assignments satisfying g are (0,0,1), (0,1,0) and (0,1, 1), of which
the nearest to z is y = (0,0, 1), yielding a distance of d(z,y) = 5. The value of
(flg)(=) is thus f(y) = L.

We note that generalized cofactor, as defined above, is exactly the “constrain”
operator on OBDD’s [CBM89] in the special case when the OBDD variable order
is W. In the sequel, however, we will not assume that this is the case.

17

2.2 Properties of generalized cofactor

We will rely on a variety of properties of the generalized cofactor operation
in defining the conjunctive decomposition and in constructing algorithms on
decompositions. One very important property of f|g is that it agrees with f
everywhere that g is true. Another is that, if two function f and f agree wherever
g is true, then flg = f’|g. That is, f|g is independent of the value of f anywhere
that g is false. Letting juxtaposition denote conjunction, and | associate to the
left, we also have:

Theorem4. I. fg= f'giff flg=f'lg.

2. (flo)g = fg
3. ifg#0, thenglg=1
4. flglg = flg

We also note that generalized cofactor distributes over pointwise operators:

Theorem 5. For any operator -, such that (f - 9)(z) = f(z) - 9(=):

(f - 9)lh = (Flh) - (glh)

The following theorem is key to the algorithms on conjunctive decomposi-
tions, since it allows us, in certain cases, to cofactor relative to a conjunction of
functions without explicitly forming the conjunction:

Theorem 6. For any f,g,h € B, if g = glh, then f|(gh) = flhlg.
The name “generalized cofactor” derives from the following property [TSL*90]:

Theorem 7 Touati, et al.. For any f € B and v; € V,

- flvi = flv;'=1
- fwz = fiv.’=0

We say that a function f depends on v; when fly,=0 # f|v;=1. The support
of a function is the set of variables on which it depends. Two functions are said
to be independent when their supports are disjoint. When two functions are
independent, then cofactoring one by the other has no effect:

Theorem8. If f and g have independent support, then flg = f.

An immediate corollary of this result and theorem 6 is that cofactoring with
respect to two independent functions can be done in either order, without af-
fecting the result:

Corollary 9. Ifg and h have independent support, then f|(gh) = flglh = flhlg.

In addition, we.can show that projection distributes over cofactor in the much
the same way it distributes over conjunction:

Corollary 10. If g is independent of v;, then Jv;.(flg) = (Fvi.f)lg.

18

2.3 Definition of decomposition

We are now ready to define our canonical conjunctive decomposition of a boolean
funetion:

Definition11. For all f € B, for all 1 <7 < n, let f; = f®|fG-1
We will refer to the functions (fi,..., f,) as the components of f (relative to

V and W). We now show that a function is equal to the conjunction of its
components:

Theorem 12. f = Al f;

Proof. We take as our inductive hypothesis that fU) = /\f:=1 fi, for all 1 <
7 < n. For the case where f is identical to false, this clearly holds, since all the
components f; are also false. Otherwise, in the base case we have f; = f|f(0) =
FfOJ1 = fO), For the inductive step we have:

Nafi = (NI A S (1)
= fU=D A (FD|FU-1)) (2)
= fU-D A 50 (3)
= fO (4

Note equation 3 is a case of theorem 4, part 2. That is, FO|fG-1) agrees with
fU) where fU-1 is true.

Theorem 12 implies that the vector (fi, ..., fn) is a canonical representation
of f, given a fixed V and W. That is, each function has exactly one decomposi-
tion, and no two functions have the same decomposition.

There are a number of useful facts about this representation, independent of
the component representation and of the choice of permutation W, that defines
the generalized cofactor operation. For example, if a function f # 0 does not
depend on some variable v;, then the corresponding component f; is identical to
true. That is, if f is independent of v;, then f) = =1 Hence f; = f®|f#) =
1, by theorem 4. More generally, we can show that the the ¢th component of f
constrains only variable v;. That is:

Theorem 13. If f #0, then Jv;.fi = 1.

2.4 Decompositions and disjointness

If two functions f and g have disjoint support, then the components of their con-
junction can be obtained by simply taking the conjunction of the corresponding
components of f and g, regardless of V or W. Since disjointness implies that
every component must be identically true in either f or g or both, it follows that
the size of the conjunction is less than or equal to the sum of the sizes of f and
g

Theorem 14. If f and g have independent support, then

— (f9)i = f; when f depends on v;, and

19

- (f9)i = g; when g depends on v;, and
— otherwise (fg); = 1.

From the above, it follows immediately that the size of fg is bounded by
the sum of the sizes of f and g. This result is independent of the underlying
representation of the components.

Corollary 15. If f and g have independent support, then
Zil(fg)il £ Zilfil + Zilgil

It is worth noting that the OBDD representation [Bry86] has this property
only in case the OBDD variable order separates the supports of f and g.

2.5 Decompositions and dependent variables

We now consider the special case where the permutation W is the identity (that
is, the order of the components f; is the same as the order that determines the
distance measure for generalized cofactor). In this case, if a given variable v; is
functionally determined by its predecessors v ...v;—1 in the variable order, then
we can show that variable v; appears only in component f;.

Definition16. Given a function f, a variable v; is funciionally determined by
a set of variables S C V when any two truth assignments agreeing on S must
also agree on v;. If this condition holds, we write f: 5 — v;.

Theorem 17. If W = (v1,...,v,) and f: (v1,...,vi-1) — v;, then f; depends
on v; only if j = 1.

The fact that the decomposed representation is capable of factoring out de-
pendent variables is useful for verifying certain kinds of sequential circuits, as
we will observe. It is also a heuristic argument for using W = V in practice.

2.6 Decompositions and conditional independence

The following result generalizes the previous results on independent functions
and dependent variables. We will say two variables are conditionally independent,
relative to a function f, when fixing the value of the preceding variables in the
order makes the choice of values of the two variables independent. For example,
suppose the function f is (¢ = b)(a = ¢). If we fix the value of a, then our
choices for & and ¢ become independent. Assuming that the variable order W
is (a, b, ¢), it follows that b and ¢ are conditionally independent. From this we
can infer that b occurs only in component f;, while ¢ occurs only component f3.
That is, conditionally independent variables factor out in the decomposition. In
general, we have the following result:

Theorem18. Let f,g € B, suck that f) = ¢, and f and g have disjoint
support over viy1...vn. Then

— (f9); = f; when f depends on v;, and

20

- (f9); = 9; when g depends on v;, and
— otherwise (fg); = 1.

Once again, the conjunction of f and g requires additive space. Note that
the result for disjoint functions (theorem 14) is the special case where i = 0,
while the fact that dependent variables factor out (theorem 17) is the special
case where v; is independent of later variables because its value is fixed.

3 Algorithms

To use our decomposed form as a representation for symbolic model checking, we
need algorithms for computing boolean combinations and for existential quan-
tification (projection) over boolean variables.

3.1 Logical conjunction

We begin with the algorithm for conjunction. It should be noted at the outset
that in general it is not the case that (fg); = fig; (though this is true for the case
when f and g are independent). In general, it may be the case that, though f()
and ¢() are both true for a given assignment to (vy, ..., v;), the assignments to
the remaining variables that make them true may be different, and hence (fg);
may be false. Thus (fg); may be stronger than f;g;.

To avoid this problem, we first compute appropriate approximations k; to
(f9); for all i. These terms are computed by conjoining the terms f;g; in de-
scending sequence, projecting out v; at each stage. This “early quantification”
step is justified by the fact that the remaining terms in the descending sequence
do not depend on v;, and prevents computing an explicit conjunction of all the
terms, which would defeat the purpose of a decomposed representation.

Next, we must “normalize” the representation by cofactoring each approxi-
mation to k; by (f¢){=V). Since we have no direct representation of the latter,
we obtain the desired effect by cofactoring each k; by the preceding components
(f9)1...(fg)i-1 in sequence. This result derives from the following lemma:

Lemma 19. For any functions ¢ and h,

o|(Ajzrhy) = elhalhal -+ |

Proof.
2l(Aj=ihs) = 2(hs A KED) (5)
= .‘L'lh(ij—l)|hi (6)
= z|(AJZ1hs) R (7

which by induction gives us the lemma. Equation 6 is a case of theorem 6, while
equations 5 and 7 are by theorem 12.

21

We will state the conjunction algorithm formally in terms of a theorem:

Theorem 20. Let h = fg and lel

kpn = fagn (8)
kioy = fic1gi—13v5.ks (9)

Then
h,‘ = kilhlthi"'lhi—-l (10)

A conjunction operation on the decomposed representation involves O(n)
conjunction operations on the underlying representation, O(n) one-variable pro-
jection operations, and O(n?) cofactor operations. The latter is unfortunate, but
seems to be necessary in order to avoid explicit construction of the terms (fg){®).

3.2 Logical disjunction

We now consider computing logical disjunction of two functions represented
by their components. First, we should note that in general (f V ¢); # fi V ¢;.
Consider, for example, computing & = fVg, where f = @béd...and g = abed
The components of these functions are, respectively, fi = @, fo = b, elc., and
g1 = a, g» = b, etc. Thus, the disjunction of f; and g; is 1, for every ¢, which is
clearly wrong. The problem here is that because we are forming a disjunction,
h; is “defined” over a potentially larger domain than f; and g;. To correct this
problem, we would like to broaden the domains of f; and g; before taking the
disjunction. That is, we would like to compute:

fi = fORtY

g = O R6=D
However; we would like to do this without explicitly computing f®, ¢ and
h(=1), This leads us to the following algorithm:
Theorem21. Let h= fVg and

fi=h 91 = g1
flor = fira(Filhi) gigr = giva(gilhe)
Then h; = f] V g..

3.3 Projection

The approach to existential quantification over boolean variables is very similar
to the disjunction algorithm. The algorithm is as follows:

Theorem 22. Let h=3S.f, where SCV, and
fi=h (11)
fiys = firr(£ilhs) (12)
Then h; = 3S.f}.

22

The above algorithm is effective in practice for projecting out small numbers
of variables. However, if we consider the limiting case, where S = V, we see that
h =1, and therefore f, = f, which clearly defeats the purpose of the decompo-
sition. For projecting out a large number of variables, an effective strategy is to
successively project out small groups of variables, in descending order. In this
way, each step tends to simplify the problem for the next step.

3.4 Implementing the algorithms with OBDD’s

Ordered binary decision diagrams (OBDD’s) are a particularly effective repre-
sentation for the components of a function because of the efficient algorithms
for conjunction and disjunction [Bry86] and for generalized cofactor [CBM89].
The OBDD representation for a function is determined by a permutation U =
(u1,...,upn) on the boolean variables. In the special case where U = W, there
is a quadratic-time algorithm for generalized cofactor on OBDD’s. In the case
U =V = W, we can also show that the size of the decomposed representation
of f 1s never larger than n times the size of the direct OBDD representation of

I
Theorem 23. IfU =V =W, then |filoBpp < |floBpD

4 Symbolic model checking and decompositions

In symbolic model checking, we use a boolean formula to represeni the transi-
tion relation of a model, and we use fixed point iterations to evaluate formulas
in certain modal logics relative to this model. The most important operation
in these iterations is computing the image of some set of states, relative to the
transition relation. The transition relation is represented by using a set of vari-
ables vy,...,v, to represent the “pre-state”, and a corresponding set v{,..., v}
to represent the “post-state”. A boolean formula over these variables character-
izes the set of transitions. In other words, a set of states is represented thus:
S = AV.xs, while a transition relation is represented thus: R = A(V,V').xg.
The forward image of S w.r.t. R 1s

Image(R, S) = AV’ .3V.(S(V) A R(V, V"))
while the reverse image is
Image(R™1,8) = AV.AV'.(S(V) A R(V, V"))

Evaluating images thus requires conjunction, projection and variable substitu-
tion. The fixed point computations required to compute, for example, the set of
states reachable from set S, also use the disjunction operation. Negation 1s not
strictly needed, since all formulas can be put in positive normal form, in which
negation applies only to literals.

Thus, we have all of the operations necessary to do symbolic model checking
based on the component representation of functions. It is necessary only to

23

choose appropriate orders V, W and U, We note that transition relations are
often of the form xg = AfL;Ci(v}, v1,...,vs). That is, each post-state variable
Is typically constrained relative to the pre-state variables, but the post-state
variables are independent given a valuation of the prestate variables. In addition,
for each ¢, 3v}.C; = 1. That is, the transition relation does not constrain the pre-
state variables in any way. If this is the case, then there is a distinct advantage
to using the order V = (v1,...,vp,v},...,v,). In this case, by theorem 18, the
component in the decomposition corresponding to v} is exactly R;, while all the
components corresponding to v; are equal to 1. That is, the conjunction of the
transition relation parts is formed essentially for free. This makes 1t unnecessary
to the “conjunctive partitioning” technique to avoid an explosion in the size of
the transition relation [BCL91].

4.1 Exampie

One of the advantages of the decomposed representation is the fact that con-
ditionally independent variables are “factored out”. As an example of this phe-
nomenon, we consider verifying the equivalence of the two FIFO queue imple-
mentations of figure 1. The basic technique is to compute the reachable states of
the two running in parallel [CBM89]. As mentioned previously, there is no fixed
correspondence between locations in the two queues. However, once we fix the
shift register contents and the ring buffer “head pointer”, the ring buffer data
elements become independent (since they are either uninitialized, or determined
by the corresponding shift register element). This suggests that in the variable
order V control should precede shift register data, which in turn should precede
ring buffer data (or the roles of the two implementations could be reversed). In
this case, when representing the set of reachable states, each component corre-
sponding to a ring buffer data bit is a linear-size OBDD, which in essence reads
the value of the head pointer, then compares the ring buffer bit to the corre-
sponding shift register bit. As a result, the overall size of the representation is
quadratic in the number of data bits.

On the other hand, since there is no fixed correspondence between the data
bits, there is no interleaving of the bits that will yield a small OBDD for the
reachable state set. This is illustrated in the graphs of figures 2-4. In these
graphs, the ordinal axis is the number of data bits in each queue (the queues are
one bit wide, however essentially the same results apply to wider queues). In the
first graph, we see the size of the decomposed representation of the transition
relation. This is the same as the size of the conjunctively partitioned transition
relation, for reasons mentioned above. The second figure shows the size of the
decomposed representation for the largest state set obtained in the reachable
states iteration (which happens to be last iteration in all cases). This is well fit
to a quadratic curve, as expected. The third figure shows the size of the OBDD
representation of the reachable states. Note that the scale here is two orders
of magnitude larger than the previous graph. This graph shows the expected
exponential explosion, since the OBDD representation must in essence record
the entire contents of one queue in order to compare it to the.other queue.

24

It should also be noted here that there exists a compact “free BDD” [GM94]
representation for the reachable state set in our example. However using free
BDD’s would require the user to provide the correct O(n?) DAG that determines
the free BDD “type”. Using decompositions, the simple heuristic “control before
data” is sufficient.

) 2 1600]

o 400 3 1400}
5350 g1200.
g300r 2 < 1000}
3250t i
@ T 800
QD - o

200 = 600F
= -
8:(5)2 0—ewo dscomp ‘g 400)'
@ o 2007

s0f a A

— 0 2 4 & B8 10

— T 12 14 16
0 2 4 6 8 10 12 14 16 Number of Cells
Number of Celis
Fig. 3. Space used for decomposed repre-

Fig. 2. d - .
ig. 2. Space used to represent the tran sentation of the reachable states for queue

sition relation for queue example.

example.
2120000 .
g 8 8001
% 100000 £ 700}
el @ L
8 8000(% 5600 ¢——t decomp
5 1
§ 60000} igg a—-s OBDD
£ L
§ aoo0pf m——= OBDD 00t
o
[=4 -
g 20000 200[
a et 100

0o 2 4 6 8 10 12 14 16

Number of Cells 0 123456678 910111213141516
Number of Glusters

Fig. 4. Space used for OBDD represen-

tation of the reachable states for queue

example.

Pig. 5. Time used for computation of the
reachable states for queue example.

Finally, figure 5 shows the CPU time in seconds used to compute the reach-
able state set using both representations. Here, we find the CPU time increas-
ing rapidly in both cases (although the decomposed representation is more ef-
ficient as we increase the number of bits). In the decomposition case, it 1s un-
clear whether this is an exponential expansion or a fairly high order polynomial
(though the difference may be of no practical interest). The algorithms operating
on decompositions are not necessarily polynomial, even when measured relative
to the result. Therefore, it is possible that exponential time is actually being
used. On the other hand, one expects a factor n in the number of iterations
due to increasing diameter of the state space. In addition to this, each itera-
tion involves a conjunction, which uses n? OBDD operations, each of which is
proportional to the transition relation component size (O(logn)) and the state
set component size O(n). This would imply at least time proportional to O(n®),
which fits the available data. From a practical point of view, however, it appears
that any gains made in space in using the decomposed representation might be

25

offset by losses in time. The question of improving the time performance of the
algorithms (at least heuristically) needs to be addressed.

5 Conclusions

We have seen that a boolean representation conjunctively decomposed using
generalized cofactor provides a canonical form that exploits “conditional inde-
pendence” between variables. This property can provide a more compact repre-
sentation than OBDD’s alone, especially in the case when the correspondence
between state variables is not fixed, but varies as a function of control. Algo-
rithms for logical operations and projection on this form were described, making
the representation usable for symbolic model checking.

The most important practical problem that remains to be solved regarding
decompositions is the time required to apply O(n?) OBBD operations for each
operation on a decomposition (where n is the number of variables). The number
of variables could, for example, be reduced by grouping them into many-valued
variables, though this could make the representation exponentially larger. Also,
tight bounds on the complexity of the algorithms should be obtained.

Acknowledgements: This work benefited greatly from discussions with
Robert Kurshan of AT&T Bell Labs.

References

[BCL91] Jerry R. Burch, Edmund M. Clarke, and David E. Long. Symbolic model
checking with partitioned transition relations. In A. Halaas and P. B.
Denyer, editors, Proceedings of the IFIP International Conference on Very
Large Scale Integration, Edinburgh, Scotland, August 1991.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8), 1986.

[CBM89] Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Verification
of synchronous sequential machines based on symbolic execution. In Joseph
Sifakis, editor, Automatic Verification Methods for Finite State Systems, In-
ternational Workshop, Grenoble, France, volume 407 of Lecture Notes in
Computer Science. Springer-Verlag, June 1989.

[GM94] J. Gergov and C. Meinel. Efficient boolean manipulation with obdd’s can
be extended to fbdd’s. [FEE Transactions on Computers, 43(10):1197-209,
Oct. 1994,

[HD93] A.J. Huand D. L. Dill. Efficient verification with bdds using implicitly con-
joined invariants. In C. Courcoubetis, editor, Computer Aided Verification.
5th International Conference, CAV ’938, pages 3—14, Berlin, Germany, 1993.
Springer-Verlag.

[JABF92] J. Jain, J. A. Abraham, J. Bitner, and D. S. Fussell. Probabilistic verifica-
tion of boolean functions. Formal Methods in System Design, 1(1):61-115,
July 1992.

[TSL*90] H.J. Touati, H.Savoj, -B.Lin, R.K. Brayton, and A.Sangiovanni-
Vincentelli. Implicit state enumeration of finite state machines using BDD’s.
In ICCAD, pages 130-133, 1590.

Symbolic Model Checking Using Algebraic Geometry

George S. Avrunin

Department of Mathematics, University of Massachusetts, Amherst, MA 01003-4515
avrunin@math.umass.edu

Abstract. In this paper, I show that methods from computational algebraic ge-
ometry can be used to carry out symbolic model checking using an encoding of
Boolean sets as the common zeros of sets of polynomials. This approach could
serve as a useful supplement to symbolic model checking methods based on Or-
dered Binary Decision Diagrams and may provide important theoretical insights
by bringing the powerful mathematical machinery of algebraic geometry to bear
on the model checking problem.

1 Introduction

Symbolic model checking [8, 13] with Ordered Binary Decision Diagrams (OBDDs),
or variants of OBDDs, is a widely used and successful technique for verifying properties
of concurrent systems, both hardware and software. But there are many systems for
which the OBDDs are too large to make model checking feasible and, aside from a few
results like McMillan’s theorem on bounded width circuits [13] or Bryant’s theorem on
integer multiplication [5], there is little theoretical guidance to indicate precisely when
the OBDD methods are practical.

It therefore seems worthwhile to investigate alternative “symbolic” representations
of Boolean sets that could be used for model checking. Such representations, if they are
practical at all, would presumably allow efficient model checking of somewhat different
classes of systems than OBDDs, and thus supplement existing symbolic model check-
ing methods. Furthermore, an alternative representation might lead to new theoretical
insights into the practicality of symbelic model checking, thereby providing guidance
to system developers choosing methods for verifying properties of their systems. This is
especially true if there is already a substantial body of theory concerning the proposed
representation.

In this paper, I show how computational algebraic geometry can provide represen-
tations of Boolean sets suitable for symbolic mode! checking. The basic idea is that
any Boolean set can be regarded as the common zeros of a finite set of polynomials
with coefficients in the field of two elements. Such a set of polynomials then provides
a symbolic representation of the Boolean set. For example, the common zeros of the
set of polynomials {z; + Z3 + -+ + &p, 2122 } are exactly the points (ag, ..., an) for
which an even number of the a; are 1, and at least one of z; and x4 is zero (all the
arithmetic is done modulo 2). A Grobner basis is a canonical choice of such a set of
polynomials, and there exist algorithms for finding the Grobner basis corresponding to
a particular Boolean set and for cartying out, at the level of Grobner bases, the manip-
ulations of Boolean sets required for model checking. Thus, Grobner bases can be used
for symbolic model checking in essentially the same way that OBDDs are.

27

Algebraic geometry is the study of the geometric objects arising as the common
zeros of collections of polynomials. It is an old and rich area of mathematics, and one
in which there has been enormous activity and progress in the last few years. In par-
ticular, algebraic geometers have studied questions related to the action of groups of
symmetries and to the mappings that correspond to abstraction techniques, and con-
siderable attention has been given to computational issues. An approach to symbolic
model checking making use of methods from algebraic geometry therefore seems to
have considerable promise, both as a supplement to existing methods and as a way to
bring a large body of powerful mathematical machinery to bear on the model checking
problem.

In the next two sections, I sketch some of the necessary background in algebraic
geometry and Grobner basis methods. The fourth section briefly illustrates the ideas
with a small example, and the last section contains a discussion of some of the directions
for further investigation of this approach.

2 Some Algebraic Geometry

This section contains an extremely brief presentation of the algebraic geometry needed
in the sequel. Any standard text will provide the details and proofs omitted here; the
interested reader might consult, for example, the books by Cox, Little, and O’Shea [10]
and Hartshorne [12].

We start by setting up some machinery for describing sets of polynomials. Let k be a
field (for our applications, £ will usually be the field of two elements, the integers mod-

ulo 2), and let k[z1, . . . , 5] be the ring of polynomials in the variables z, . . . , &, with
coefficients in k, under the standard addition and multiplication of polynomials. That
is, a polynomial is a finite k-linear combination of monomials z7'z5* ...z, where

the «; are nonnegative integers, and multiplication of polynomials is defined by setting
e 32 . gon g | b = g PP | gentBn and extending linearly
to products of arbitrary polynommls Note that the multiplication is commutative and
that the element 1 = x93 . .. z0 is an identity element for multiplication.

The basic structure of polynomial rings (or any commutative rings) is given in terms
of subsets called ideals. In this setting, ideals are not subrings in general, but they play
a role in commutative ring theory analogous to that played by normal subgroups in the
theory of groups. An ideal is a nonempty subset of k[xy,. .., z,] that is closed under
addition and closed under multiplication by any element of the ring. If F = { f, | @ €
&/ } is a set of polynomials in k[z, . .., ,] indexed by the (not necessarily finite) set
&, the ideal generated by F is the set of sums of the form), ., hq fa, where the
he € Kk[z1,...,T,] and only finitely many of the h, are nonzero. We will write {F')
for the ideal generated by F. When F' = {f1,..., fs} is a finite set, we often write
(f1,..., fs) for {(F'), and we say that F" is a basis for the ideal (f1,.. ., fs). The Hilbert
Basis Theorem tells us that every ideal in the ring k[z1, ..., z,] is generated by some
finite set of polynomials.

‘We can think of the polynomials as k-valued functions on the vector space k" in the
usual way: we evaluate f(zy,...,Z,) at the point (ay,...,a,) by substituting a; for
1, ay for x4, and so on. We say that (a1, ...,a,) is azer of f if f(a1,...,a,) = 0.

28

Let F' be a (not necessarily finite) subset of k[z1, ..., z,]. The variety defined by F,
written V (F), is the set of points in k™ that are zeros of all the polynomials in F'. Thus
V(F)={(01,...,an) €k™ | f(a1,...,a,) =0forall f € F }.

As usual, if F' = {f1,..., fs} is a finite set, we sometimes write V(f1,..., f;)
rather than V(F). It is not hard to see that V(f1,..., fm) = V ({f1, ..., fm)), so we
can think of every variety as being the variety defined by some ideal.

If Vi = V(I1) and V, = V(I,) are the varieties defined by ideals I; and I, then
V1 ﬂVz =V ((Il,I2>) and V1 UV2 = V(Il 'Iz), where I1 -I2 = <f1f2 | f1 & I1, f2 €
L)X =({fi,...fryand I = {g1,...,95), then [, - I = (fig; | 1 <1 <71 <
j < s).

In general, not every subset of k™ is the variety of some ideal (the varieties are the
closed sets of a certain topology on k™), but each point (ay, . - ., a,,) is the variety of the
ideal {z1 — a1,T2 — ag, . - . , £, — Gy). Since the union of a finite collection of varieties
is a variety, any finite set of points is a variety. If k is finite, as will be the case in our
application, any subset of k™ is finite, and therefore is a variety.

For the rest of this section, assume that k is the field of two elements.

As just mentioned, we can regard any set of points in £™ as the variety of some
ideal. We can then use the ideal, or any basis for the ideal, as a way of encoding the set
of points, just as we might use an OBDD. For instance, k™ is the variety of the ideal
consisting of the constant polynomial 0, and the empty subset of k™ is the variety of the
constant polynomial 1. A somewhat more interesting example is the following.

Choose a positive integer r and let s = 27. Regard a point (a1,...,ars) € k™
as a list of s numbers between 0 and s — 1 by treating each block of r coordinates
Qrit1s Orit2; - - - Gr(i+1) aS the binary representation of a nonnegative integer, and let
V be the set of points corresponding to lists in which each number from 0 to s — 1 occurs
exactly once. To construct an ideal 7 such that V' = V(I), let f; ; be the polynomial
(Trit1+Trjp1 +1)(Triv2 +Trjp2 +1) -+ - (Tr(41) + Tr(j41) +1). The polynomial f; ;
is zero at a point (ay, .. ., ars) if and only if ar;4x # arj4x for some k, so if and only
if the ith and jth entries in the list corresponding to (a1, . . ., ar,) are different integers.
Then V = V(f;; | ¢ < j). Other examples are given in Section 4.

Note that there will be more than one ideal I defining a given variety. For instance,
the ideals {0} and (2% +z,, ..., 2 +) both define the variety k™ (since both 0 and 1
satisfy the equation z2 + = 0 when we are working modulo 2). In order to do symbolic
model checking, we need to be able to determine when two ideals represent the same
set of points. We first describe how to do this over a larger field. Let k be the algebraic
closure of k (this is the smallest extension of k in which every polynomial over & has a
root, as every polynomial with coefficients in R has a root in C). Since k[z;,...,zn] C
k[z1,...,2n], we can regard polynomials in k[z;,...,z,] as functions on k", and,
for a subset F' of k[z1,...,Z,], we define V(F) to be the points in k™ where all the
elements of F' are zero. For an ideal I, the radical of I, denoted by VT is the ideal
{f € kl[z1,...,z] | f° € I forsome positive integer s }. If I; and I, are ideals
of k[z1,...,x,), then V(I;) = V(I3) if and only if v/T; = /I;. (This is Hilbert’s
Nullstellensatz.) The Grobner basis methods described in the next section provide good
algorithms for determining when +/I; = /T2, so we can determine when two ideals
determine the same variety over the algebraic closure of k.

29

In general, this does not tell us anything about whether V(I;) = V(I5), but it does
settle the question for a certain class of ideals. Let Z = {2? +z; |i = 1,...,n}. As
noted above, every point in k™ is a zero of all the elements of Z, so, for any ideal f,
V() = VI) N V(Z) = V({I, Z)). This means that every set of points in k" is the
variety defined by some ideal containing the set Z. However, the only elements of k
satisfying 2 + = = 0 are 0 and 1, the elements of k, so V(Z) = k™ and V((I, Z)) =
V(I). Thus, if we restrict ourselves to ideals containing Z, we can still represent every
subset of k™ and we can determine when two ideals represent the same set of points.
As we will see in the next section, restricting our representations to ideals containing 2
has some other advantages, as well.

3 Grobner Bases

In this section, we sketch some of the theory of Grobner bases. Although this theory has
roots in the work of Macaulay as early as 1916, it really dates from Buchberger’s thesis
in 1965 [6]. There are now several good introductions to the subject; the reader seeking
more details might consult the book by Cox, Little, and O’Shea [10] mentioned earlier
or those by Becker and Weispfenning [4] and Adams and Loustaunau [1].

3.1 Motivation

To understand a little of the motivation for Grobner bases, consider the problem of
determining whether a given polynomial f belongs to an ideal {fi, .. ., fs). If we work
over a polynomial ring in one variable, the ideal is generated by.a single polynomial,
the greatest common divisor d of the set { f1,. .., fs}. There exist unique polynomials
g and r with the degree of r strictly smaller than the degree of d and f = gd + r, and
then f belongs to the ideal (d) if and only if the remainder r is 0. The polynomials d,
g, and r are computed by standard algorithms.

For polynomials in more than cne variable, the problem is more difficult. First, the
ideal {f1,..., fs) need not be generated by a single polynomial, so we must generalize
our division algorithm to compute a remainder of f on division by the set { f1,..., fs}.
This is relatively straightforward, but it turns out that the remainder obtained this way
is not uniquely determined. To get a unique remainder, which will be 0 if and only if
f € {f1,-.., fs), we need to use & special kind of generating set for the ideal, These
generating sets are called Grobner bases, and they provide the foundation for the algo-
rithmic solution of many problems involving polynomials and ideals.

3.2 Definitions and basic properties

To define Grobner bases, we need to specify an ordering on the set of monomials that
satisfies certain conditions. It is somewhat more convenient to state things in terms of
the n-tuples (o, . . ., &) rather than the monomials z{*, ... z2=, so let N* be the set
of n-tuples of nonnegative integers. There is an obvious isomorphism of semigroups
between the set of monomials under the muitiplication given in the previous section
and N* with component-wise addition.

30

Again, let k be an arbitrary field. A monomial or term order on k[zy,...,z,] is a
relation > on N (or equivalently on the set of monomials) satisfying the conditions
that > is a total order, > is a well-ordering, and @ > § implies a + v > 3 + for
all 4 € N™..The third condition is essentially a compatibility requirement between the
order and the multiplication of monomials. We want to use the order to distinguish
a leading, or highest, term in each polynomial. The third condition says that, if we
multiply a polynomial by a monomial, the leading term of the result will be the product
of the monomial and the leading term of the original polynomial.

Two commonly used monomial orders are the lexicographic order, in which o > 8
if and only if the leftmost nonzero entry in the difference o — is positive, and the
graded reverse lexicographic order, in which o > S if and only if 3, a; > 3", B; or
Y.; & = 3. B; and the right-most nonzero entry in a — J is negative. Note, however,
that each of these orders is defined only up to a permutation of the variables; there are
really n! versions of the lexicographic and graded reverse lexicographic orders. There
are results indicating that, for many applications, the graded reverse lexicographic order
is most efficient [3]. As we will see soon, some special orders, perhaps constructed from
the graded reverse lexicographic, are also required for certain operations on ideals that
are used in symbolic model checking.

We need some additional notation. For o = (ay,...,a,) € N*, we write % for
the monomial z7x3* ... x5 Let f = 3 a,z* be a polynomial in k[z;, ..., z,],
and let > be a monomial order. The degree of f, deg(f), is max{a € N* | aq #0}.
The leading coefficient of f, LC(f),is ageg(s). The leading monomial of f, LM(f), is
z48(f), and the leading term of f, LT(f), is LC(f) - LM(f) = Gaeg(f) T8,

Fix a monomial order. A finite subset G = {g1,...,9:} of an ideal I is a Grobner
basis for I (with respect to the given order) if and only if, for every f € I, LT(f) is
divisible by one of the LT(g;). It is easy to see that every nonzero ideal has a Grobner
basis, and that any Grobner basis for an ideal is also a basis for the ideal.

Suppose > is a fixed monomial order on k[z4,...,z,] and F = {f1,..., fs} is
an ordered s-tuple of polynomials. Then we can generalize the division algorithm for
polynomials in one variable to show that every f € k[zy,...,z,] can be written as a
sum of multiples of the f; and a polynomial r that is either 0 or a sum of monomials not
divisible by any of LT(f;), . .., LT(fs). We say that r is a remainder of f on division by
F'. The polynomial r depends on the way that the set F is indexed.

Buchberger gave an algorithm for constructing a Grobner basis for a given ideal.
The algorithm starts with a set of generators for the ideal. It then constructs an S$-
polynomial for a pair of elements of this set, and adds the remainder of the S-polynomial
on division by the generating set to the set. It continues in this fashion until all the re-
mainders are 0; at this point, the set of generators is a Grobner basis. Various improve-
ments in efficiency can be made by carefully choosing which S-polynomials to compute
at a particular stage [7].

If G is actually a Grébner basis for an ideal I and f € kz1,...,Zn], then the
remainder r of f on division by G is uniquely determined (i.e., does not depend on
the order in which the elements of the basis are listed), and f € I if and only if r = 0.
Buchberger’s Grébner basis algorithm thus yields an algorithm for determining whether
a polynomial belongs to a given ideal. As noted in the previous section, we can also use

31

Grobner bases to determine whether a polynomial is in the radical of a given ideal.

We say that a Grébner basis G is reduced if the leading coefficients of the elements
of G are all 1 and no monomial of an element of G lies in the ideal generated by the
leading terms of the other elements of G. The key result is that, for a fixed monomial
order, a nonzero ideal has a unique reduced Grobner basis. The algorithm for finding
a Grobner basis can easily be extended to output this reduced Grobner basis. Thus, we
have an algorithm for determining whether two ideals (fi,..., fs) and {h;,. .., h;) are

equal.

3.3 Projections

Suppose that a concurrent system can be described in terms of n Boolean state vari-
ables, and let F be the field of two elements. We then represent the possible states
of the system by the elements of the vector space F™. The transition relation of the
system can then be regarded in the usual fashion as a subset T of F2", where a point
(b1,...,ba,by,...,b;,) € T if and only if there is a transition from the state represented
by (b1,...,bn) to the one represented by (b}, ..., bl,). Suppose we have a set of points
C C F7" corresponding to a formula ¢. For symbolic model checking, we need to be
able to describe the points corresponding to, for instance, the formula EX ¢. These
are the points (b1,...,b,) € F™ such that there exists a point (4, ...,b,) € C with
(bi,...,bn,b1,...,b,) € T. In the framework of algebraic geometry, this amounts
to finding the projection of a subset of F2" onto the first n coordinates. We can use
Grobner bases, with suitable monomial orders, to accomplish this.

Let R be the polynomial ring F[z;, ..., s, 2], .. .,z,] in 2n variables. We regard
R as a ring of Boolean functions on F*, as usual. Let I = (fy,. .., f), and assume
that the set Z consisting of the polynomials of the form z? + z; and (z%)2 + z is con-
tained in { fi,..., fs}. (Recall that adding Z to the generating set of I does not change
V(I).) Let R; be the subring consisting of polynomials in the variables z, . . ., z,, and
let I; be the ideal I N R; of the ring R;. We can show that any (by,...,b,) € V(I})
extends to an element (b, ...,b,,0,...,b) € V(I). In particular, if we take I to be
an ideal with variety { (by,...,bn,B},...,0,) € T | (by,...,b,) € C'},then V(1) is
the projection of this set on the first n coordinates. It is this projection that we need for
model checking.

So the problem is to find I;. Let > be a monomial order satisfying the property
that any monomial involving one of the z; is greater than any monomial involving only
Ti,...,Tn,and let G = {g1,...,9,} be a Grébner basis of I with respect to ». If |
contains Z, it can be shown that G N R, is a Grobner basis for I;. So we can find a
Grobner basis for I; as long as we can produce a suitable monomial order, and we can
do that by, for example, modifying the graded reverse lexicographic order.

3.4 Complexity

It is natural to measure the size of a finite set F' of polynomials in terms of the number
of variables, the number of polynomials in F', the maximum degree of the polynomials,
and the size of their coefficients. Given F, we are interested in these measures for
a Grobner basis for (F), as well as for the intermediate sets constructed in finding

32

a Grobner basis. In the general case, all of these measures behave fairly badly. For
instance, examples are known where the construction of a Griobner basis for an ideal
generated by polynomials of degree less than or equal to d can involve polynomials of
degree 22 [13]. Over the field of two elements, however, all the coefficients are 0 or 1,
and when our ideal includes all the z? + z;, the only polynomials we have to consider
are those in which no variable appears with degree greater than 1. I am not aware of
specific complexity results for this case. Of course, just as with OBDDs, there are too
many Boolean sets for all of them to have small representations in terms of Grobner
bases, so the interesting question is really one of characterizing the Boolean sets that
do have such nice representations and understanding when the model checking process
involves only such sets.

It is worth noting that there has been work on dynamic modification of the monomial
order as the Grobner basis calculation proceeds [11].

4 An Example

In this section we show how the machinery described in the preceding sections can
be applied to verify a property of a small system. Consider the SMV code shown in
Figure 1 (the numbers on the left in the module prc are inserted for reference, and are
not part of the SMV program). This is the “mutex1” example distributed with SMV,
with the fairness declarations deleted for simplicity. This system implements a mutual
exclusion protocol.

We begin by describing the state variables. We can use one state variable for turn
and two state variables for each of 50 and s1 to describe the state of the system, so we
need 11 state variables for the transition relation (five for the current state, five for the
next state, and one to keep track of which process is currently running, as required by
the semantics of SMV). Figure 2 shows how we partition the variables. We encode the
enumerated variables s0 and s1 by setting the corresponding pair of bits to (0,0) for
noncritical,to (0,1) for trying, and to (1,0) for critical.

The next step is to find an ideal J such that V(.J) is the transition relation, T'. We
have to capture the assignments made by the processes pr0 and prl. Our approach is
to find polynomials whose zeros correspond to pairs of states in which the appropriate
assignments are made.

Consider first pr0. Line (1) tells us that, if the system is in a state where pr0 is
running (i.e., when zg = 0), and s0 is noncritical (i.e., when (zz2,%3) = (0,0)),
the value of s0 in the next state will be noncritical or trying (i.e., (z},23) =
(0,0) or (zh,z%) = (0,1)). So we need to find a set of polynomials whose common
zeros are the points (z1,...,2s,2},...,T5,Tg) Withzg = 0,22 = 0,23 = 0, 25 =
0, and =4 = 0 or 1. Since the condition on z5 holds at all points, we can use the
set { x5, T2, T3, Th }. For calculations, it seems somewhat more convenient to take the
single polynomial

fi = (xg + Dz + V)(z3 + 1) (x5 +1) + 1,

which has the same zeros.

33

MODULE main

VAR

s80: {noncritical, trying, critical}:;
sl: {noncritical, trying, criticall:
turn: boolean;

pr0: process prc(s0, sl, turm, 0);
prl: process prc{sl, s0, turn, 1);

ASSIGN
init(turn) := 0;

SPEC
EF({s0 = critical) & (sl = critical))

MODULE prc{state0, statel, turn, turn0)

ASSIGN .
init(statel) := noncritical;
next (state0) :=
case
(1) (state0d
(2) {stateD
(3) (state0
(4) (stated
{5) 1: state0;
esac;
next (turn) :=
case
(6) turn = turnd & state0 = critical: !turn;
(7) 1: turn;

noncritical) : {trying,noncritical};

trying) & (statel = noncritical): critical;

trying) & (statel = trying) & (turn = turn0): critical;
critical) : {critical,noncritical};

anouan

esac;
Fig. 1. SMV program for mutual exclusion protocol
T To T T4 T z} zh b xh x! T
Lily (P23 (2405, 1y P23y T4, L6,
turn s0 sl turn s0 sl running

l |1 |

Current State Next State

Fig. 2. State variables for transition relation

In a similar fashion, lines (2)—(4) yield polynomials

fr = (z6 +1)(z2 + L)z3(za + 1)(z5 + Va5 (23 + 1) + 1
3= (z6 + 1)(z2 + D)z3(zs + Das(zs + Dxop(zs +1) + 1
1= (z6 + Vza(zs + 1)(z5 + 1) + 1.
Line (5) must be treated a little differently. It asserts that, if pr0 is running and

none of the first four guards in the case statement is true, then next (s0) = s0. There
are two ways all the guards could fail: s0 = s1 = trying but turn = 1, and

34

s0 = trying while s1 = critical. We will represent each of these conditions
with a polynomial:

fsa = (g + 1) (2 + Vz3(zg + V)zsze (25 + Dz + 1
f5b = (.’l)e + 1)(2)2 + 1).’1)3.’1)4(.’1)5 + 1)(.’1)’2 + 1)13’3 +1.

We note that it would also be possible to represent the negation of the guards on lines
(1)~(4) directly, rather than explicitly listing the remaining cases. This approach is il-
lustrated in the treatment of line (7) below.

Lines (6) and (7) describe the possible values of next (turn) while pr0 is run-
ning. From line (6), we have

fo = (zg + 1)(z1 + Dza(zs +)z] + 1,

using the fact that, for pr0, turnd = 0.

Line (7) tells us that, while pr0 is running, turn does not change unless the guard
of line (6) is satisfied. We want a polynomial that is zero at exactly the points where
z¢ = 0, the guard of line (6) is false (so (z; + 1)z2(z3 + 1) = 0),and z; = z|. A
polynomial that is zero at exactly these points is

fr=(ze +1) (&1 + Daa(zs + 1) + 1) (zy + 2} +1) + L.

The variable s1 is not assigned while pr0 is running. The semantics of SMV then
imply that next (s1) = s1 if pr0 is running. We can express this condition with the
polynomial

fo=(zs+1)(zs+xy +1)(xs + 25 +1) + 1.

The points (z1,...,25,2;,...,%5,T¢) € T corresponding to pairs of states in
which pr0 is running in the current state are those where one of f ... f5p is zero,
one of fg or fr is zero, and fg is zero. Since a product of polynomials is zero if and
only if at least one of the factors is zero, these are the points where the three polynomi-
als f1 fafafafsafsp, fof7, and fg are all zero. In other words, the points in the transition
relation with g = 0 form the variety of the ideal Lo = (f1 faf3fafsafsb, fof1, fs)-

In a similar fashion, we construct an ideal I,,; whose variety is the set of points in
T withzg = 1. If we set I = Iyq-Ipy1 and J = {I, Z), where Z = {2z +24,...,22+
zs, ()% + 2, ..., (z5)? +xf,22 + 26}, then T = V(J).

The property we want to check is EF(s0 = critical Asl = critical).
Letp = (s0 = criticalAsl = critical). So we wantto find the least fixed
point of 7 = Ay.¢V EXy. Given a description of y as a variety, we need to express the
points corresponding to ¢ V EXy as the variety of some ideal. To do this, we need to
describe the points satisfying ¢ as a variety, and we need to compute the ideal defining
the variety EXy.

The points (1, ...,Zs5,},...,Z;, Te) for which ¢ holds are those corresponding
to system states in which both s0 and s1 are critical, i.e., those in which z3 =
z4 = land z3 = x5 = 0. These are the points in the variety of the ideal I; =
(z2(z3 + 1) + 1, z4(zs + 1) + 1),

35

To find the ideal corresponding to EXy, we first need to specify that the poly-
nomials defining y are zero in the next state. In our setting, this is accomplished by
applying a homomorphism of rings that replaces the x; by the corresponding z;. Let
R = Flz;,...,%5,2},...,75, 26| and let v: R — R be the (k-linear) ring homo-

morphism mapping each z; to z}, for i = 1,...,5, each z} to 0, and z¢ to zg. If
f € Ry = F[zy,...,x¢] is a polynomial in the z;, v(f) is the corresponding polyno-
mial in the variables z1, . . ., 2§, Ts.

Then if y corresponds to the variety V(h1,...,hs), the variety corresponding to
E Xy is the projection onto the first n coordinates of the variety of the ideal I, =
(T,v(h1),...,v(hs), Z). We find the ideal defining this variety using the methods dis-
cussed in Section 3.3: We construct a Grobner basis G for I, with respect to a suit-
able order, and take the elements of (7, that lie in the subring B;. If G; = R; NGy,
then the variety defined by (G1) - I, corresponds to the points satisfying the formula
¢ V EXy. In this fashion, we can find the least fixed point of Ay.¢ V EXy.

I used the program Macaulay {2] to carry out these calculations. Macaulay provides
facilities for defining rings, ideals, and homomorphisms, and for carrying out a variety
of Grobner basis calculations. Many of these calculations could have been done using
other computer algebra systems; Macaulay seemed to be the most convenient for these
experiments.

The Grobner basis found by Macaulay for the ideal I, » whose variety is the least
fixed point of Ay.¢ V EXy consists of the six polynomials % + 21, 3 + 1, T3, T4 + 1,
x5, and x2 + z¢. (Note that the first and last of these are zero at all points of F".) The
variety V(I,,) consists of the points (z;, . ..,Z5, %}, ..., T, T¢) where zy = 1,23 =0,
z4 = 1, and x5 = 0. These are the points where s0 and s1 are both critical; this
tells us that it is not possible to reach a state where both s0 and s1 are critical (ie.,
where ¢ holds) from a state where at least one is not critical. In particular, no state
where both 50 and s1 are critical is reachable from the initial state, since the initial
conditions specify that s0 and s1 are noncritical. We can verify this by express-
ing the initial conditions as the zeros of an ideal, say linie = (%2, 3,4, T5, Te), and
computing the ideal of the intersection of the varieties V(I,,) and V(I;53.). Macaulay
reports that the constant polynomial 1, which has no zeros, is a Grébner basis for this
ideal, and we see that the intersection is empty. We conclude that EF'¢ is false in the
initial state.

Alternatively, we could have found the set of reachable states by starting from i+,
and taken the intersection with this variety at each stage. (This corresponds to running
SMYV with the - £ flag.)

Macaulay runs as an interpreter that can be used interactively or can execute scripts.
A script to check the property EF(s0 = critical A sl = critical) took
about 10 seconds to execute on a PC with a 100 MHz Pentium and 16 MB of memory,
running Linux. Macaulay allocated 755 KB of memory in the course of this calcula-
tion. For comparison, on the same machine SMV took approximately 0.1 seconds to
check the same property, and allocated just over 917 KB. SMV, of course, was building
OBDDs from the code shown in Figure 1, while for Macaulay, I had manually trans-
lated this code into the polynomials described above.

36

5 Discussion

In this paper, I have shown how techniques from computational algebraic geometry can
be used for symbolic model checking. This approach may provide a useful supplement
to existing methods based on OBDDs, and may also provide important theoretical in-
sights by allowing the application of deep results in algebraic geometry to the model
checking problem. Additional research will be needed to determine whether these po-
tential advantages are borne out.

Macaulay, the program I used for the calculations described in the previous section,
was intended for use in 2 much more general setting. It supports, for instance, calcu-
lations over fields of characteristic up to about 32,000, rather than just characteristic
2. Its data structures and algorithms are therefore not optimized for the cases used in
symbolic model checking. Furthermore, it runs as an interpreter. For that reason, the
difference in execution time between Macaulay and SMV does not seem to carry much
significance for assessing the practicality of these methods. Although some further in-
vestigation of the practicality of symbolic model checking using the techniques from
algebraic geometry can probably be done using tools like Macaulay, more serious study
will likely require building a prototype tool designed specifically for that purpose. Ex-
amples like the one in the previous section suggest that it should be fairly easy to build
a tool that would work directly from specifications given in the SMV input language.

There are several directions in which the framework proposed here might be gener-
alized. For instance, in the example of Section 4, I worked with polynomials over the
field of two elements. This has some clear advantages and seems to be the most natu-
ral analog of the OBDD approach. Working over the field of order 2¥, however, might
allow much more efficient encoding of conditions involving &-bit blocks of state vari-
ables. Similarly, working over fields of characteristic greater than 2 would correspond
to some of the non-binary generalizations of OBDDs.

1t is difficult to predict exactly what theorems of algebraic geometry might be ap-
plicable to symbolic model checking, but some general directions can be sketched. For
instance, there is a rich collection of invariants of varieties and ideals, including such
things as notions of dimension and degree. Many of these invariants are likely to be re-
lated to the difficulty of carrying out symbolic model checking. Algebraic geometry also
provides good machinery for handling such things as the action of groups on varieties,
maps between varieties, and the properties of intersections of varieties. It might there-
fore provide new ways to understand and take advantage of symmetries of the system
being checked, abstraction to simpler systems, or the effects of constraints represent-
ing the interface between a subsystem and its environment. Results in these directions
might give information about, for instance, the kinds of Boolean sets arising in fixed
point calculations and thus even have implications for model checking using OBDDs.

Acknowledgments

This research was partially supported by the National Science Foundation under Grant
No. CCR-9407182. I am grateful to David Cox for helpful discussions about Grébner
bases, to Jay Corbett for clarifying many of the details of SMYV, for making a lightly

37

loaded SparcStation available for some of my experimentation and for helpful com-
ments on earlier drafts of this paper, and to Nicholas Schmitt for providing me with
several versions of his Grobner basis package, /deal, which I used in my initial explo-
ration of these ideas.

References

10.

11.

12,

13

. W. W. Adams and P. Loustaunau. A#n Introduction to Grébner Bases, volume 3 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 1994.

. D. Bayer and M. Stillman. Macaulay: A System for Computation in Algebraic Geometry
and Commutative Algebra. Source and object code available for Unix and Macintosh com-
puters. Contact the authors, or download from math.harvard.edu via anonymous ftp.,
1982-1994.

. D. Bayer and M. Stillman. A criterion for detecting m-regularity. Invent. Math., 87:1-11,
1987.

. 'T. Becker and V. Weispfenning. Gribner Bases, volume 141 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1993.

. R.E. Bryant. On the complexity of VLSI implementations and graph representations

of Boolean functions with application to integer multiplication. [EEE Trans. Comput.,

40(2):205-213, Feb. 1991.

B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes

nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, 1965.

. B. Buchberger. Grobner bases: An algorithmic method in polynomial ideal theory. In N. K.
Bose, editor, Multidimensional Systems Theory, pages 184-232. D. Reidel, 1985.

. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model checking: 10%°
states and beyond. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Com-
puter Science, pages 428~439, 1990.

. D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Undergraduate Texts in

Mathematics. Springer-Verlag, New York, 1992,

P. Gritzmann and B. Sturmfels. Minkowski addition of polytopes: Computational complex-

ity and applications to Grobner bases. SIAM Journal on Discrete Mathematics, 6(2):246~

269, 1993.

R. Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in Mathematics.

Springer-Verlag, New York, 1977.

E. Mayr and A. Meyer. The complexity of the word problem for commutative semigroups

and polynomial ideals. Adv. in Math., 1982.

. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston, 1993.

A Partition Refinement Algorithm for the
n-Calculus (Extended Abstract) *

Marco Pistore! and Davide Sangiorgi?

! Department of Computer Science, University of Pisa, Italy
2 INRIA - Sophia Antipolis, France.

1 Introduction

Bisimulation is widely used for defining behavioural equivalences on terms of
process description languages. It has been extensively studied in CCS, where
efficient algorithms and tools for bisimulation checking have been devised. A
prominent role among these algorithms is occupied by the partition refinement
algorithm [10, 6]. It works in two phases: In the first, the state spaces of the pro-
cesses to be checked (i.e., the set of their derivatives under arbitrary sequences of
actions) are separately generated; in the second, a partition refinement procedure
is applied to the union of the state spaces, which terminates when the equiv-
alence classes of bisimulation are found. Most important, the same algorithm
can be used to obtain a minimal realisation of a process P, i.e., a process which
has the minimum number of states and transitions among all those bisimilar
with P. In the case of CCS, algorithms for bisimilarity generally apply only to
finite-state processes, syntactically described by disallowing parallel composition
within recursive definitions.

In this paper, we study bisimulation checking in the n-calculus, a develop-
ment of CCS where channel names can be communicated. Name-passing in-
creases the expressiveness of the calculus, but it also dramatically affects the
theory — above all the definition-of bisimulation and its associated algorithms.
In the w-calculus, the syntactic counterpart of CCS finite state processes are
the finite control processes [3]. Due to the creation of new names, finite control
processes can exhibit an infinite-state behaviour.

Three definitions of bisimulation, called late [7}, early [7] and open [11], have
been proposed for the n-calculus, and vary in the way name instantiations are
handled. Here, we focus on open bisimulation, for three main reasons: First, by
contrast with the other two, open bisimulation is a full congruence; this can be
used, for instance, for compositional minimisations of processes. Secondly, the
average complexity of checking open bisimulation is expected to be substan-
tially lower than those of late and early bisimulations {11]. Thirdly, a partition
refinement algorithm for open bisimulation presents more difficulties, hence one
expects to extract algorithms for late and early bisimulations from it.

Open bisimulation. Differently from early and late bisimulations, where free
names of processes are viewed as constants (hence cannot be identified), in open

* Research supported by CNR project “Strumenti per la Verifica di Proprieta Critiche
di Sistemi Concorrenti e Distribuiti” and by CNET project “Modélisation de Sys-
témes Mobiles”.

39

bisimulation free names are viewed as free variables. However, permanent in-
equalities on names can be imposed by means of distinctions, i.e., irreflexive
and symmetric relations on names. Distinctions allow us, for instance, to create
constants by declaring certain names different from all other names; they are
also useful to handle name extrusions — see below. We shall write ~p to denote
open bisimilarity under distinction D.

We review some aspects of the symbolic characterisation of open bisimula-

tion [11]. Symbolic transitions are of the form P Y.8 p' where, intuitively, M
represents the least condition, in the form of a conjunction of equalities between
names, under which action a can occur. A condition M determines an equiva-
lence relation on names; chosen a representative for each equivalence class, M
also determines a name substitution o3 which maps names to their representa-
tives. We write @ for the “true” condition, that is the empty conjunction. Among
the possible forms of action ¢, there is the bound output @(b), which denotes the
emission at a of the private name b. Approximately, the clause of bisimilarity on
bound outputs says that if P ~p (J, and fn(P, @) is the set of free names in P
and @, then:

whenever P 2% P/ yith b not free in Q, there are N and Q' s.t.
Q N2 Q', M implies N, and (1)
P ~p Qoy, for D' % Doy U {8} x in(P, Q)

Derivative @' and distinction D) are updated according to the name equalities
imposed by condition M, and distinction {b} x fn(P, Q) is added to record the
creation of the new name b.

Main problems for a partition algorithm. In (1), three forms of dependen-
cies between P and @ affect the transitions and the derivatives to examine:

Dep.1: The name emitted by P cannot occur free in Q;

Dep.2: The condition M in the transition of P determines a substitution o
which is applied onto the derivative of Q;

Dep.3: There is a global distinction, which is updated using informations (the
free names) from both processes.

These dependencies prevent us from generating the state spaces of P and Q
separately from each other, as requested in the first phase of the partition re-
finement algorithm. Each dependency introduces a separate problem, which we
now discuss in more detail.

Dep.1 is imposed to ensure that the bound name chosen by P can also be
chosen by @, and is necessary because bisimilar processes may have different
sets of free names, like

PL¥ Pt c=efab).c(d).0 and P, %ab).e(d).0)

(a matching [c= €] means “if ¢ = ¢ then”). The choice of the bound name could
be made locally if active names [8), instead of free names, were used. A name z is
active for a process P if x does affect the behaviour of P, i.e., P and vz P are not

40

bisimilar (v_ is the restriction construct). Active names would eliminate Dep.1
because bisimilar processes have the same sets of active names. Unfortunately,
computing active names is as difficult as computing bisimilarity. For instance, =
is active in da(y). ([y =z]P + Q) iff P{¥/z} and Q{¥/z} are bisimilar.

Dep.2 arises because conditions M and N on the transitions from P and
@ may be logically non-equivalent. This situation happens, for instance, when

{c: e] , a(b) C(d) 0
is matched by transition P, 2.20) e(d). 0, for under the condition [c=¢] the

two derivatives are bisimilar (in this case, they are actually equal). However, this
transition of P; does not add anything interesting to its behaviour, since covered

comparing processes P; and P; in (2), where transition P;

by transition P; ¢.a) e(d). 0, which has a logically weaker condition. The first
transition can therefore be regarded as redundant. Indeed, if redundant transi-
tions were ignored in the bisimulation clauses, then Dep.2 could be removed.
But again, determining whether a transition is non-redundant is as difficult as
computing bisimilarity.

To avoid Dep.3, distinctions should be made local to processes, and should
be locally updated. But the update of the local distinction of a process P has
to depend on its free names, otherwise the update might not be sound. As a
consequence, since bisimilar processes may have different free names, one must
be able to compare processes with different local distinctions. This makes it hard
to obtain a trensitive bisimulation relation and to recover open bisimulation.

QOur approach. Computing bisimilarity, active names or non-redundant tran-
sitions is of equal difficulty, since, unfortunately, they all depend from each
other. Our algorithm will hence compute bisimilarity, active names and non-
redundat transitions at the same time. Since bisimulation is a maximal fixed-
point, whereas active names and non-redundant transitions are minimal fixed-
points, the algorithm approximates bisimulation from above, and active names
and non-redundant transitions from below. At the beginning, all processes are
assumed bisimilar, no name is assumed active and no transition is assumed non-
redundant. In each approximation step, the appropriate transitions and deriva-
tives of processes are selected according to the current estimation of active names
and non-redundant transitions, and the standard partition refinement algorithm
is applied. At the end, active names and non-redundant transitions are updated.
In this way, at each step the assumed set of bisimilar processes decreases, whereas
the assumed sets of active names and non-redundant transitions increase. This
procedure is repeated until a fixed-point is reached.

The update of the distinction which is local to a process P uses its free names.
The bisimulation relation computed by the algorithm, and defined on processes
with a local distinction, is not transitive; but it enjoys a weak form of transitivity
which is enough to prove a characterisation theorem w.r.t. open bisimulation and
to apply the partition refinement algorithm (in which transitivity is important).

Our algorithm can be used on finite-control processes to check open bisimu-
lation and to compute minimal realisations of processes.

Related work. The closest work to ours is [8], where a partition refinement

41

algorithm for early and late bisimulation is obtained which works for finite-
control processes without the matching operator. [8] has inspired our work, and
has provided us with useful insights. However, our technical development is quite
different, because none of the problems in Dep.1-3 arise in [8]. Dep.2 and Dep.3
do not arise because they are specific to-open bisimulation; Dep.1 does not pose
a serious obstacle because, in late and early bisimulations without matching,
active names of processes are trivial to compute: Roughly, a name « is active in
a process P if & appears as a free name in a label of a computation of P. Hence
active names can be computed by a standard transitive closure procedure.

The Mobility Workbench [12] is a tool for mechanically checking open bisimu-
lation on finite control processes. It adopts an on the fly [4] approach, as opposed
to the partitioning approach (in on-the-fly, the state spaces of processes com-
pared are created at the same time as the candidate bisimulation relation). A
disadvantage of on-the-fly is that it cannot be used to give the minimal realisa-
tion of a process. Moreover, due to the need of backtracking, in general on-the-fly
is less efficient than partitioning both in time and in space (especially in the case
of weak bisimulations). However, on-the-fly can be superior on processes which
exhibit a limited degree of non-determinism; and it may return an answer even
on non-finite-control processes, if not bisimilar.

In [3] decidability of early and late bisimilarity for finite control processes is
proved. In particular, it is shown that for every pair of finite control processes
only a finite number of names is sufficient for checking bisimilarity; once the
number of names if guessed, the state space of both agents can be built and
a partition refinement algorithm can be applied. However, this approach can
be expensive and, since the number of names can be guessed only for pairs of
processes, it does not provide us with minimal realisations. Open bisimulation,
and hence Dep.2 and Dep.3, are not considered in [3].

For lack of space, in this short version some technical definitions and all
proofs have been suppressed.

2 m-calculus

We briefly review the syntax of the n-calculus, and the definition of open bisim-
ulation. Letters a,b,...,z,y,... range over the infinite ordered set NV of names,
and K over the set of process identifiers. The class of processes is built from
the operators of inaction, prefixing, matching, parallel composition, restriction,
sum, and recursion; a prefix can be a silent prefix, an input, a free output, or a
bound output:

PQ:=0|caP|a=bP | P|Q | vaP | P+Q | K{a)
a:=71 | a(b) | @b | &b).
Each identifier K has an associated arity and a definition of the form K %' (a)P.

We give sum and parallel composition the lowest syntactic precedence among
the operators. In a(b). P, vb P, and @(b). P, all free occurrences of name b in

42

P are bound. Free names (fn), bound names (bn) and names (n) of processes
and prefixes, name substitutions, and alpha conversion are defined as expected.
The extruded names of an action ¢, written en{a), are its bound names if o is a
bound output, are the empty set otherwise. We use o to range over substitutions.
Application of a substitution o to a process P and to an action a are written
Po and ao, respectively (in ag, the bound names of a are not touched).

Conditions are finite conjunctions of matching, like [a =b][c=d]. We use M
and N to range over conditions, and n{M) for the names which appear in M.
We write M > N if M implies N, i.e., the equalities in M imply those in N;
M «b Nisashortcut for “M t> N and N > M”, whereas M 4> N is a shortcut
for “M > N but not N > M”. Notice that, since names are ordered, there are
canonical forms for conditions, which are unique up to <t>. Given a matching
M, we denote by o) the substitution which selects the minimal representative
out of each equivalence class on names induced by M, i.e., op(a) = min{b |
M la=b]}.

A distinction is a finite symmetric irreflexive relation on A/, which expresses
permanent inequalities on names, i.e., if (a,b) is in the distinction, then a must
be kept separate from b. We use D to range over distinctions and n{D) for the
names which are mentioned in D). A substitution o respects a distinction D if
(a,b) € D implies o(a) # o(b); in this case we write Do for the distinction
{(o(a),o(b)) | (a,b) € D}. Similarly, a matching M respects a distinction D if
o respects D. Sometimes, in the expressions defining distinctions we shall avoid
to give all symmetric pairs. If V is a set of names, then D - N is the distinction
{(a,b) € D}|a,b ¢ N} and DN N is the distinction {(a,b) € D |a,b€ N}.

In the symbolic transition system for open bisimulation [11], transitions have

M, .. .
the form P "~" P’ where M represents the minimal condition on names

required by P to perform that action. For lack of space, we omit the transition
rules, which can be found, for instance, in [11] or {12].

It will be convenient to use a transition system P ¥.8 P! in which M is in
canonical form and substitution ¢, has already been applied to action a and
derivative P’

p M2 pr M is the canonical form for N
P M——-—-—~>’ b P '0 M

Other notations. If S is a set, then p(S5) is the powerset of S. If R is a relation,
then we sometimes write A R k to mean (h,k) € R.

bn(a) Nfn(P) =0

Definition 1 (open bisimulation [11}). Open bisimulation is the largest set
{~p}p of symmetric process relations s.t. for all D and P ~p Q:

— whenever P 2225 P’ with bn(a) N (fn(Q) U n(D)) = @ and M respects D,
there are N, 8, and @’ such that @ v.g Q' and
e M N,az=00ouy,and
o P'ep Qop, for D' = Do U (en{a) x fu(P,Q)).

43

3 Making distinctions local to processes

The goal of this section is to make the indexing distinctions of open bisimulation
local to processes. A constrained process is a.pair (P, D), where P is a process
and D is a distinction with n(D) C fn(P). The requirement on names is used
to keep distinctions “small” and to reduce the number of free names (in the
algorithm of Section 6, it will allow us a better re-use of names). The set CP of
constrained processes is ranged over by A, B. Substitutions, free names, bound

names are extended to constrained processes as expected. If A Qef (P, D), then
va A abbreviates (va P,D — {a}). We call relations on constrained processes
CP-relations; they are ranged over by R.

We use DY, to denote the distinction Doy U (en(a) x fu(P)). Transitions
for constrained processes are defined from those for processes:

P 25 p' M respects D
(P,D) *$ (P', DY, nfa(P"))

It makes sense to compare only constrained processes whose distinctions are
compatible, that is, identical on common names.

Definition 2. Constrained processes (P, D} and (Q, E) are compatible, written
(P, D) {Q, E), if DNfa(Q) = Enfn(P).

A compatible CP-relation is a CP-relation whose pairs are compatible constrained
processes.

Theorem 3. Let ~ be the largest symmetric compatible CP-relation s.t. when-
ever (P, D) ~ (Q, E) and (P,D) Y23 (P!, D'), with bn(a) N fn(Q) = 0, there
are N, 3,Q' and E' such that (@, E) AL (Q',E') and

— Mp N,a=f0oum, and

— (P, D') ~ (@21, (DH, U EY) 0 n(Qonr))-

Then (P,D) ~ (Q,E) implies P ~pug Q and, vice versa, P ~p Q implies
(P,Dnfn(P)) ~(Q, D Nn(Q)).

The proof of Theorem 3 uses a few lemmas for manipulating distinctions, among
which the following strong-narrowing law for open bisimulation:

P ~p Q implies P ~g Q for E £ (D nfa(P)) U (D nf(Q)).

This law, which has a delicate proof, strengthens the standard narrowing law for

open bisimulation, where E ' pn m(P,Q).
A CP-relation R is weak transitive if Ay R Az, As R Az, and A4; §| A3 imply
A; R Ajz.

Proposition 4. Relation ~ is not transitive, but is weak transitive.

In the remainder of the paper, with some abuse of notation, we call open
bisimilarity the relation ~ on constrained processes defined in Theorem 3. When
clear from the context, we may call constrained processes simply processes.

44

4 Non-redundant transitions

The goal of this section is to remove the dependency called Dep.2 in the Intro-
duction from the characterisation of open bisimulation in the previous section.
We recall that this dependency is caused by “redundant” transitions. Roughly,

crs M,
a transition A —5 A’ is redundant for open bisimulation if there is another

transition A 225 A" which has a strictly weaker condition N and s.t., when M
holds, « is equal to 3 and A’ is bisimilar to A"”. Redundant transitions can be
defined for an arbitrary relation R in place of bisimilarity.

Definition 5. A transition (P, D) Mg (P’, D'} is redundant for a CP-relation
R if there is a transition (P, D) L (P", D"y such that:

- M 4> N, a = Boy, and
- (P\D")R (P”aM,D%a Nin(P"om)).

A transition (P, D} Y.g (P',D') is non-redundant for a CP-relation R, written
(P, D) Mg (P',D'} € nr(R), if it is not redundant for R.

Theorem 6. Relation ~ coincides with the largest symmetric compatible CP-
relation R s.t. if AR B then:

— whenever A 25 A’ € nr(R) and bn(a) Nn(B) = @, there is B’ such that
BYS pe nr(R) and A' R B’.

5 Active names and the iterative approach

We now will make the choice of bound names of matching transitions local to
processes (i.e., removing the dependency called Dep.l in the Introduction). A
local choice cannot be based on the free names because bisimilar processes may
have different sets of free names. In place of free names, we shall use the active
names, which are the same in bisimilar processes. The active names of a process
are the smallest subset of free names which affect its behaviour. For instance, a is
active in a(b). 0 and [a = b]be. 0, but it is not in vb (ba.0) and [a = blac. 0 + be. 0.
As for non-redundant transitions, it is convenient to define active names on a
generic CP-relation.

Definition 7. For a CP-relation R, the function ang : CP — p(N), mapping a
constrained process onto the set of its active names w.r.t. R, is the least fixed-
point of the monotone function ¥ : (CP — p(N)) — (CP — p(N)) defined
thus:

Y(f)(4) = U fn(M, o) U (f(4") — bn(a)).
(M, A'|A 25 Arent(R)}

If z € angr (A), then we say that name z is active w.r.t. R in process A; otherwise
we say that z is inactive w.r.t. R in A.

45

That is, ang is the least function which satisfies the condition: whenever
A M3 4" € nr(R), it holds that fu(M, @) U (anr (4’) — bn(a)) C ang (A).

Proposition 8. z € an..(A) iff A £ vz A.

In the normalised transitions below, the bound name in a transition of a
process A is imposed to be the first inactive name in A; since the first inactive
name may also occur free, in rule Norm2 its free occurrences are redenominated
to avoid accidental identifications.

Definition 9. The normalised transitions for a CP-relation R, which are of the

form A MR A', are defined from the two following inference rules, where
v ¥ min{N - ang(4)} and y & min{NV - fn(4)}:

M,a ,,
ormt A3 A__bn(a) € (o]
Ar—g A
M,ae . N _
torsg 254 Inlo)=u) o g fl) =l
A """—”R, A'{U/yy/v} a(’U) Ha=aly

The two inference rules Norm1~2 define an injective mapping from normalised
transitions to plain transitions, because each normalised transition is inferred

from a unique plain transition. Thus, if A Mg A’ is the image of A ﬁ‘_’_‘in A"
under the injection, we write 4 MoBp A" e nr(R) if A Mg ae nr(R).

Definition 10. Let R be a CP-relation. Function ¥ : p(CP x CP) — p(CP x
CP) is defined thus: (A4, B) € ¥ (S) if

- AR B;

— ang(A) = ang (B);

~ whenever A »M—’C:R A’ € nr(R), there is B’ such that B M_’i‘n B' € nr(R)
and A’ § B'; and the vice versa, with the role of A and B exchanged.

For each R, function ¥z is monotone, so it has a greatest fixed-point and we
can define a function @ : p(CP x CP) — p(CP x CP), which maps a relation R
onto the greatest-fixed-point of ¥ .

Functional ¢ appears suited to extracting a partition refinement algorithm
because derivatives and transitions of processes are computed locally. Notice that
in the definition of &, clause A{ B (which appears in the definition of efficient
open bisimulation) has been omitted because relation | is not transitive, as
witnessed by processes

Ao (@aa.0),0) BE©0) (e (@aab.0)(00)

where AYB and BYC, but AYC does not hold. If we added clause A4 B,
then function ¢ would not preserve transitivity, and hence we could not use &
to define a partition refinement algorithm.

46

Unfortunately, © is not monotone. Therefore, we do not know whether & has
a maximal fixed-point and, even if it existed, we could not use Tarsky’s theorem
to compute it. As a consequence, to obtain an algorithmic characterisation of
open bisimulation in terms of &, one has to provide a specific proof that the
iterated applications of @ on the universal relation CP x CP are convergent, and
that the limit contains open bisimulation. We define:

& Eep xcp
& % $(#~1) if i is an ordinal successor
& €N

j<i ® if ¢ is an ordinal limit.

Theorem 11. Let ~yy, 2 \im; . Then ~ coincides with ~alg N 4.
Corollary 12. P ~p Q if and only if (P, D N fn(P)} ~.e (@, D N n(Q)).

Each iteration of the algorithm in the next section precisely corresponds to
an application of function &.

6 The algorithm

The algorithm we propose for open bisimulation is based on the characterisation
in Corollary 12. The main steps are sketched in Table 1. A partition on processes
can be viewed as a relation in which all processes in the same class are related; in
this way, we can talk of non-redundant transitions, active names and normalised
transitions w.r.t. a partition. Some comments on the steps in the table:

1 Generate the saturated state graphs (Sp,Tp) and {Sq,Tg) for processes (P, DN
tn(P)) and (@, D N 1a(Q).
2 Initialize P to be the singleton partition on 5p U Sg (i.e., all processes in the same
class).
3 Repeat the following steps until partition P becomes stable:
3.1 Set NonRed to be the subset of transitions in Tp UTg which are non-redundant
for P.
3.2 Compute the active names w.r.t. P, for each process in Sp U So.
3.3 If necessary, refine the partition P so that processes in the same class have the
same set of active names.
3.4 Compute the normalised transitions for P generated by the transitions in
NonRed.
3.5 Apply the Paige and Tarjan refinement algorithm [10] on partition P using, as
transitions, the normalised ones computed in Step 3.4. Redefine P to be the
resulting partition.

4 Check if {P, D A fn(P)) and {Q, D N (Q)) are in the same class.

Table 1. Schema of the algorithm to check P ~p @

47

Step 1: The saturated state graph of a process Ag is the pair (S,T) where §
and T are, respectively, the minimal set of constrained processes and of
transitions between processes in S such that Ay € S and such that S and T

are closed under the following operations:
' M

Sat-trans if A € S and A =3 A’ with bn(a) C { min{N — fn(A)}}, then
AeSandA XS aer

Sat-nonred if (P, D) 223 (P, D) € Tand (P, D) 22 (P", D"} € T with
M > N and a = oy, then (P"op, DY, Nfn(P"ay)) € S;

Sat-bunch Let y £ min{A ~ fn(4)}; if 4 X2S 4’ € T with bn(a) = {y},
then A'{Yy Y} € S, for all v < y (where < is the strict order assumed
on N).

Sat-nonred and sat-bunch are necessary, respectively, for the run-time

computation of non-redundant transitions and for the targets of normalised

transitions. Note that sat-trans requires a single instantiation of bound

names of actions. In sat-bunch, v is strictly below min{A — fn(A4)}, since

the latter name, which is surely inactive for A4, has already been considered

in sat-trans.

Step 3: Each cycle corresponds to an application of function @ of Section 5.

Step 3.1: Following Definition 5, to compute the non-redundant transitions

quickly, for each transition (P, D) Mg (P',D’) we can keep a list of the

processes (P"aM,Dj‘,'{a N fn{P"cp)) such that {P, D) r.g (P",D") with
M > N and a = fBoy; then the given transition is non-redundant for P
if and only if none of the processes in the list is in the equivalence class of
(P',D').

Step 3.2: Following Definition 7, the active names can be efficiently computed
via a transitive-closure algorithm (the non-redundant transitions have al-
ready been computed in Step 3.1).

Step 3.4: The normalised transitions are generated applying inference rules
Normi and Norm2 (Definition 9) to each transition in NonRed. (The deriva-
tives of normalised transitions are in Sp U S, 50 no new process needs to
be added.)

The algorithm terminates if the saturated state spaces, produced from the input
processes in Step 1, are finite. This is the case for finite-control processes.?.

The algorithm can be used to produce the minimal realisation of a process
P w.r.t. a distinction D — for this case it suffices to generate only the saturated
state space of (P, DNfn(P)) in Step 1. If we take processes with normalised tran-
sitions only (normalised transitions for processes are defined as for constrained
processes — just replace A with P and A’ with P’ in Definition 9), then the
process returned by the algorithm (i.e., the one extracted from the final parti-
tion, where transitions are those computed in the last execution of Step 3.4) is

! Some garbage collection of restrictions is needed, i.e., if z € fn(P) then vz P should
be replaced by P.

48

minimal in the number of states, normalised transitions, and the number of free
names among all processes in the relation ~p with P.

7 Conclusions

We presented various characterisations of open bisimulation. From the last one,
we have extracted a partition refinement algorithm. It can be used on finite con-
trol processes for checking bisimilarity and for producing minimal realisations.
Complexity. Paige-Tarjan algorithm has a worst-case running time O(m logn),
on the number m of transitions and n of states; in our case, m and n are the num-
ber of transitions and of states obtained after initialisation (Step 1 in Table 1).
The Paige-Tarjan routine may be applied several times (Step 3 in Table 1), but
at most it runs n times, since at each iteration at least one split of the partition
is made. Hence, we get a worst case running time O(mnlogn).

However, the algorithm is exponential w.r.t. the syntactic length of the pro-

cesses. The exponentiality is caused by the expansion of the parallel component
of processes, as in CCS, and by value communication, as in data-dependent pro-
grams [5]. Surprisingly, the degree of exponentiation in the n-calculus is similar
to that of CCS {3, 8]. Against this exponential bounds, the possibility of min-
imising process representations, offered by the algorithm, becomes important:
As it happens in CCS, large-scale examples become tractable if process subcom-
ponents are first minimised.
Active names and non-redundant transitions. The algorithm presented
makes no attempts at uncovering active names and non-redundant transitions
in initialisation. This may cause a large addition of states in the saturation
procedure {operations sat-nonred and sat-bunch in Step 1) and a high number
of iterations of the Paige-Tarjan routine.

However, a quick analysis of the processes could often produce reasonable
estimates of active names and non-redundant transitions. For instance, all tran-
sitions with a true (i.e., empty) condition are non-redundant, and all free names
in their labels are active. We believe that this direction can lead to significant
improvements. ‘

In non-trivial processes, like those used in the specification and the implemen-
tation of the handover protocol in the GSM Public Land Mobile Network [9], all
free names are active, and all transitions are non-redundant. It would be useful
to find syntactic characterisations of classes of processes with this property. An
example is the fragment of language without parallel composition and match-
ing. One could then envisage a two-speed algorithm, the first speed (faster) to
be used when active names and non-redundant transitions can be quickly com-
puted in initialisation. (Indeed, the speeds could even be three, the intermediate
one to be used when active names are known but non-redundant transitions are
not.) Again, the applicability of the first speed can be enhanced by first min-
imising the representation of process subcomponents whose active names and
non-redundant transitions are hard to compute.

49

Extensions. The algorithm can be extended to the polyadic #-calculus (where
tuples of names are communicated). It can also be adapted to early and late
bisimulations, and to weak and branching bisimulations. In the case of early and
late bisimulations, the algorithm would become simpler, since Dep.2 and Dep.3
are absent, but it would be less efficient, due to the heavy use of names in the
input clause of these bisimulations 7, 11].

Implementations. We plan to produce an implementation of the algorithm
and to study its integration with the MWB and other tool sets like JACK {1] or
AUTO/GRAPH [2].

Minimisation. The algorithm performs minimisation of processes on the nor-
malised transition system. Roughly, normalised means that the bound name of
transitions is forced to be the first inactive in the source process.

It would be interesting to see whether there are minimal forms and minimi-
sation algorithms with more relaxed conditions on the choice of bound names.
The challenge is that the minimal forms must be canonical, i.e., syntactically
identical for bisimilar processes.

Acknowledgements. We are very grateful to Ugo Montanari, for several helpful con-
versations especially in the initial stages of development of this work. We also benefited
from comments by Amar Bouali, Robert de Simone and the anonymous referees.

References

1. A. Bouali, S. Gnesi and S. Larosa. The Integration Project for the JACK Environ-
ment. Bullettin of the EATCS 54, 1994.

2. G. Boudol, V. Roy, R. de Simone and D. Vergamini. Process algebra and Systems
of Communicating Processes. In Proc. Automatic Verification Methods for Finite
State Systems, LNCS 407, 1989.

3. M. Dam. On the decidability of process equivalences for the 7-calculus. SICS Re-
search Report RR:94-20, 1994.

4. J.-C. Fernandez and L. Mounier. “On-the-fly” verification of behavioural equiva-
lences and preorders. In Proc. CAV’91, LNCS 575. Springer Verlag, 1994.

5. B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class of non-
finite-state programs. Information and Computation, 107:272-302, 1993.

6. P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state. processes, and
three problems of equivalence. Information and Computation, 86:43-68, 1990.

7. R. Milner, J. Parrow and D. Walker. A calculus of mobile processes (parts I and
II). Information and Computation, 100:1-77, 1992,

8. U. Montanari and M. Pistore. Checking bisimilarity for finitary m-calculus. In Proc.
CONCUR’95, LNCS 962. Springer Verlag, 1995.

9. F. Orava and J. Parrow. An algebraic verification of a mobile network. Formal
Aspects of Computing, 4:497-543, 1992.

10. R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal
on Computing, 16(6):973-989, 1987.

11. D. Sangiorgi. A theory of bisimulation for m-calculus. In Proc. CONCUR’938, LNCS
715. Springer Verlag, 1993.

12. B. Victor and F. Moller. The Mobility Workbench — A tool for the m-calculus. In
Proc. CAV’94, LNCS 818. Springer Verlag, 1994.

Polynomial Time Algorithms for Testing Probabilistic
Bisimulation and Simulation

Christel Baier

Fakultdt fiir Mathematik & Informatik
Universitit Mannheim, 68131 Mannheim, Germany
baier@pil.informatik.uni-mannheim.de

Abstract. Various models and equivalence relations or preorders for
probabilistic processes are proposed in the literature. This paper deals
with a model based on labelled transition systems extended to the prob-
abalistic setting and gives an @(n*.m) algorithm for testing probabilistic
bisimulation and an O(n® - m?) algorithm for testing probabilistic simu-
lation where n is the number of states and m the number of transitions
in the underlying probabilistic transition systems.

1 Introduction

Transition systems have proved to be very useful for modelling concurrent pro-
cesses. A variety of widely accepted equivalence relations and preorders for such
systems support the use of transition systems for the design and verification of
concurrent systems. In this context, testing equivalences and preorders become
important and have been studied e.g. in [3, 4, 8, 11, 17]. For instance, (strong)
bisimulation can be decided in time O(m - logn) [22], weak bisimulation in time
O(n?) [3, 17] and strong and weak simulation in time O(n*-m) [4] where n is the
number of states and m the number of transitions of the underlying transition
system.

In recent years, many researchers have focussed on reasoning about proba-
bilistic distributed transition systems, see e.g. [15, 18, 23, 25, 28, 29, 30]. A lot of
work has been done to extend those models and methods which have been suc-
cessful for the non-probabilistic case to probabilistic systems. In the literature
a variety of models for probabilistic processes has been proposed, most of them
based on transition systems. Two kinds of models can be distinguished: on the
one hand, models that replace the concept of non-determinism by probabilistic
choice, e.g. [5, 13, 18, 26, 28], on the other hand, models which distinguish be-
tween non-deterministic and probabilistic choice, e.g. [6, 12, 16, 25, 27, 30]. As
pointed out in [27], the distinction between non-determinism and probabilistic
choice is essential for concurrent probabilistic systems since some states of a
concurrent system are inherently non-deterministic.

Several kinds of equivalences and preorders for probabilistic processes are
proposed: [5, 16, 30, 28] consider testing preorders for probabilistic processes.
Probabilistic bisimulation for processes whose behaviour are described by ”de-
terminsitic” probabilistic transition systems are introduced in [18}. [25] extends

51

probabilistic bisimulation to non-deterministic probabilistic transition systems
and defines a notion of probabilistic simulation which refines Milners notion of
a simulation for non-probabilistic transition systems [21]. [15] defines an alter-
native notion of a simulation which relates a process given by a probabilistic
transition system and a specification which is given by a ”generalized” proba-
bilistic transition system.

Various authors presented model-checking-algorithms for the verification of
probabilistic processes e.g. [1, 6, 13, 14, 19, 23, 24, 27]. But — as far as the
author knows - algorithms for testing probabilistic (bi-)simulation are missing
until now. In this paper we present algorithmns for testing probabilistic simulation
and bisimulation in the sense of [18, 25]. The main idea of testing simulation is
to reduce the question of whether a state s of a probabilistic transition system
simulates a state s’ to a maximum flow problem in a suitable network. Using
the O(n?) algorithm of Malhotra et al [20] to determine the maximum flow
we get an O(n® - m?) algorithm for testing probabilistic simulation where n is
the number of states and m the number of transitions. The idea for testing
bisimulation is similar to the non-probabilistic case [17, 22]: the algorithm for
testing probabilistic bisimulation is based on refinement steps which split a given
partition of states into a finer one. The resulting time complexity of our algorithm
is O(n? - m).

The remainder of the paper is organized as follows: Section 2 introduces
the notions of a probabilistic transition system, probabilistic bisimulation and
simulation. Section 3 presents the algorithm for testing probabilistic simulation,
section 4 the algorithm for deciding probabilistic bisimulation. Section 5 contains
some concluding remarks.

2 Probabilistic transition systems

In this section we present the notions of probabilistic transition systems, bisim-
ulation and simulation. Our model of probabilistic transition systems is closely
related to those of [16, 30], to the ”simple probabilistic automata” of [25] and
”concurrent Markov chains” considered e.g. in [6, 12, 27].

A distribution on a finite set § is a function g : S — [0,1] such that
Y ses #(s) = 1. We extend a distribution y to a function which assigns to
each subset U of S the probability u(U) = 3, ., #(s). In what follows, we
suppose Act to be a nonempty and finite set of actions. A probabilistic tran-
sition system is a pair & = (S, —+) where S is a finite set of states and — a
finite transition relation, i.e. = is a finite subset of § x Act X D(S) where D(S5)
denotes the set of distributions on S. We write s = p instead of (s,a,u) €—.
Informally, the outgoing transitions s = u represent the non-deterministic al-
ternatives in the state s. It is convenient to suppose that a scheduler resolves
the non-deterministic choices. A transition s = u asserts that in state s the
action a can be performed and with probability u(t) the state ¢ is reached af-
terwards, i.e. every transition represents a probabilistic choice. (Finite-state)
probabilistic processes can be described by a probabilistic transition system and

52

an initial state (or alternatively a distribution on the possible initial states). In
what follows a transition system means a probabilistic transition system. By a
non-probabilistic transition system we mean a transition system where for all
transitions s3u: there is a state ¢ with u(t) = 1. Following [18, 25] we define
(probabilistic) bisimulation and simulation:

Definition 1. Let (S,—) be a transition system. A bisimulation on S is an
equivalence relation R on S such that for all (s,s') € R: If s then there is a
transition s'—u’ with u(A) = p/(A) for all A € S/R. Here S/R denotes the set
of equivalence classes w.r.t. R. T'wo states s; and s are called bisimilar (denoted
by 81 ~ sg) iff there exists a bisimulation which contains (s, s2).

An alternative description of bisimulation is based on weight functions for dis-
tributions [15]:

Definition 2. Let S be a finite set, R C § x S and g, p’ € D(S). A weight
function for (u,p') wr.t. Ris afunctiond : S x S8 — [0,1] which satisfies:

L Foralls,s' € 8: 3 0o 0(s,8) = pls), X.es 8(s8) = w(s)
2. If 6(s,8") > O then (s,s') € R.

Let (S,—) be a transition system and R an equivalence relation on S. Then
R is a bisimulation if and only if for all (s,s’) € R: Whenever (s,s') € R and
sy then there exists a transition 8’34’ and a weight function for (u, ') w.r.t.
R. Intuitively, the weight function é shows how to split the probabilities u(s)
and p/'(s'), s, s' € S, so that the relation R is preserved: we ”combine” the
d(s, s')-part of s and ¢'. As in the non-probabilistic case, simulation is defined
as "uni-directional bisimulation”: in the above characterization of bisimulation
we drop the requirement that R is an equivalence relation.

Definition 3. Let (S,—) be a transition system. A simulation for (5, —) is a
subset R of § x S such that for all (s,s') € R: Whenever s = p then there
exists a transition s’ = p and a weight function ¢ for (u,p’) w.r.t. R. We say s
implements 8’ (denoted by s L ') iff there exists a simulation which contains

(s,8).

In the non-probabilistic case this notion of a simulation agrees with Milners
notion of a simulation [21]. This is because the only weight function for (u,u’)
where p, ¢’ are distributions with p(s) = p'(s') = 1 is §(u,u’) = 0 if (u,u’) #
(s,8") and 6(s,s’) = 1. Hence if (S, —) is a non-probabilistic transition system
and B C S x S then R is a simulation in the sense of Definition 3 if and only if
R is a simulation in the sense of Milner. It is clear that C is a preorder whose
kernel ~gm = = N 7! is coarser than bisimulation equivalence, i.e. s ~ s
implies 8 ~m ¢'. Asin the non-probabilistic case, ~im does not coincide with
bisimulation.

Example 4. Let (S, —) be the transition system where S = {so,...,85} and

53

o & B B Y a
So—piy S5t S2¥p, S3HP, S3rP, S4—p.

Here p(s1) = 1, u(s1) = p(s2) = p(ss) = 1/3 and p'(s1) = 1/4, p'(s3) = 17/24
and p'(s4) = 1/24. Then

s1 € 83 £ 53,5 E 8¢ £ s0 C s5.

The weight function 6 for (i, ') w.r.t. T is given by: 6(s1,s1) = 1/4, 8(s1,s3) =
6(81,54) = 1/24, (5(82,83) = (5(83g33) = 1/3 0

The result of Milner [21] that in every (image-)finite non-probabilistic transition
system bisimulation can be approximated by ”finitary bisimulation” carries over
to the probabilistic case. If (S, ~+) is a transition system then we define induc-
tively equivalence relations ~, on S: ~p = S x S and s ~,y; § if and only
if: Whenever s>y then there is a transition s'>u' with u(A) = u'(A) for all
A € §/ ~, and vice versa. Similarly, we define *finitary simulation”: s Ty s’ for
all states s, s’ and s Cn41 o iff whenever s = u then there exists a transition
s’ 3 u' and a weight function § for (u,y') w.r.t. C,,. As shown in [2]:

Lemma 5. Let (S,—) be transition systems and s, s' € S. Then

(a) s T s ifand only if s T, s’ for alln > 0.
(b) s ~ s ifand only if s ~, s for alln > 0.

3 Testing simulation

We present an O(n®-m?) algorithm for testing simulation where n is the number
of states and m the number of transitions in the underlying transition system.
The results of this section yield also an O(n® - m?) algorithm for testing bisim-
ulation. In section 4 we improve the costs and give an O(n? - m) algorithm
for testing bisimulation. Lemma 6 shows that for a (finite) transition systems
there is a natural number IV which is polynomial in the size of the underlying
transition system such that C = Cy. Qur algorithm successively computes the
relations Co, Ci,..., Cn. We show that the relation C;4; can be derived from
C; by solving maximum flow problems in suitable networks.

Lemma 6. Let (S,—) be a transition system, n the number of states in S and
N=n? Then ~ =~y and C = Cy.

Proof. We only show C = Cy. Wehave Lo 2 C; 2 ...ands C s'iffs C; s
for all j (Lemma 5). Since Co = S X S contains IV elements there exists j with
0<j<NandLCj;;=C;. Then C;=C; for all i > j and hence C = C; = Cn.
0

Lemma 6 tells us that in order to compute the simulation preorder C for finite
transition systems one has to compute the relation C,:. We do this by suc-
cessively computing the relations Z;, j = 0,1,...,N. In order to compute the

54

relation Cj;; (where C; is already computed) we need an algorithm which tests
whether or not a weight function for given distributions w.r.t. C; exists. We
present a polynomial time algorithm which tests whether a weight function for
distributions u, p’ w.r.t. a given relation R exists. The idea of the algorithm is
to reduce the problem of finding a weight function to a maximum flow problem
in networks. Algorithms to compute the maximum flow are given in [7, 10, 20].
For further details about maximum flow problems see e.g. [9].

A network is a tuple N = (N, E, L, T,c) where (IV, E) is a finite directed
graph — where NV denotes the set of nodes, E C N x N the set of edges — with two
specified nodes L (the source) and T (the sink) and a capacity ¢, i.e. a function
¢ which assigns to each edge (v,w) € E a non-negative number c(v,w). A flow
function f is a function which assigns to edge € a real number f(e) such that

1. For all edges e: 0 < f(e) < c(e)
2. Let in(v) be the set of incoming edges to node v and out(v) the set of
outgoing edges from node v. Then for each nodeve N\ {L, T}

S ey = Y fle
e€in{v) e€out{u)
The flow F(f) of f is given by
FH = 2 fo- 3 i
eCout{l) ecin(.L)

The maximum flow in A is the supremum over the flows F(f) where f is a flow
function in V.

Let S be a finite sets, R a subset of S x 5 and let p, ¢’ € D(S). Let &' = {¢t':
t € S} where t are pairwise distinct "new” states (i.e. t' ¢ §). We choose new
elements L and T not contained in SUS’, L # T. We associate with (g, u') the
following network Ay, y', R): The nodes are the elements of § and $’ and L
(the source) and T (the sink), ie. N = {L,T} U § U §. The edges are

E = {{st):(s,t)eR} U {(L,8) : seS}TU{({,T):tes)
The capacities c(e) € [0,1] are given by: ¢(1l,s) = u(s), c(t/,T) = p/(t) and
c(s,t’) = 1.

Lemma 7. The following are equivalent:
(i) There ezxists a weight function & for (p,p') w.r.t. R.
(it) The mazimum flow in N'{u,p',R) is 1.
Proof. (i) = (ii): For each flow function f in N{(y, u’, R):
F(f) =Y flLs) £ 3 eld,s) = 3 pls) = L
s€S - SES 3€8

Let § be a weight function for (p, 4') w.r.t. R. Then we define a flow function f
as follows: f(L,s) = p(s), f(t',T) = Y (1), f(s,t') = &(s,t). Then F(f) = 1.

55

Hence the maximum flow of A (y, ¢/, R) is 1.
(ii) = (i): Let f be a flow function with F(f) = 1. Since f(L,s) < c(L,s) =
#(s) and since

Yo f(Ls) = F(f) =1 =Y pls)

s€S s€S
we get f(L,s) = p(s) for all s € S. Similarly, we get f(¢',T) = g'(¢) for all
t€ S. Let 6(s,t) = f(s,t') for all (s,2) € R and 6(s,t) = 0if (s,t) ¢ R. Then

Y dst) = 3 f(s) = f(L,s) = u(s)

teS tES

and similarly Y .5 d(s,t) = p'(t). Hence § is a weight function for (u,u’)
wrt. RO

With Lemma 7 we get an algorithm which tests whether a weight function for
distributions p, p’ w.r.t. a relation R exists: We apply an algorithm for finding
the maximum flow F in N {(y, 4/, R). The maximum flow in A/ (u, ', R) can be
computed e.g. with the O(n?) algorithm of Malhotra et al [20] where n is the
cardinality of S.

Algorithm 1.

Input: a finite set S, distributions p, p’' € D(S) and R C §x S

Output: a weight function 6 for (u,p') w.r.t. R if there exists one, "No” oth-
erwise.

Method: Compute the mazimum flow F of the network N (u, 4, R) and a flow
function f with F(f) = F. If F < 1 then answer "No” else answer "Yes” and

return () \
_Jo 2if(s,t)e SxS\R
¥s,t) = { F(s,) ¢ if (s,8) € R.

Lemma 6 and Algorithm 1 yield an algorithm for testing simulation:

Algorithm 2. for testing probabilistic simulation
Input: a transition system (S,)
Output: the simulation preorder R = {(s,t)€S xS : s C t}
Method: Let N = n? where n is the number of states of S and let Ry = Sx 5.
Forj=1,...,N do:
begin R; := Rj_
For all (s,t) € R;_; do
begin For all transitions s = p do:
If there does not exist a transition t = p/
such that Algorithm I yields a weight function
for (u,p') w.r.t. Rj_; then R; := R;\ {(s,t)}.
end
end

Return R := Rp.

56

It is clear that B} = C; and hence R = Cy = C. The time complexity of
the algorithm is O(n® - m?) where m is the number of transitions and n the
number of states. Algorithm 2 can be implemented in space O(n? + m) because
the maximum flow problem (and hence Algorithm 1) can be solved in space
O(n + m) and the representation of the sets R; needs O(n?) space. Similar to
Algorithm 2, an O(n® - m?) algorithm for testing bisimulation can be given. In
the next section we improve the time complexity giving an O(n?.m) algorithm.

4 Testing bisimulation

Following the idea of [17] which gives an O(n - m) algorithm for testing (non-
probabilistic) bisimulation we present a method for deciding probabilistic bisim-
ulation that works with refinement steps of partitions on the states. Given a
transition system (S,—) we start with the trivial partition Xy = {S}. Then
we successively refine the partition X, by substituting B € X, by the set of
equivalence classes w.r.t. the relation s = s’ iff

1. Whenever s 3 u then there exists a transition s' & u/ with u(B) = p/(B)
for all B € X,.

2. Whenever s’ 5 4’ then there exists a transition s < g with u(B) = p/(B)
for all B € X,.

At most after n refinement steps the partition X} cannot be refined. Then X,
is the set of bisimulation equivalence classes.

Definition 8. A partition of a transition system (S, -+) is a set X consisting
of pairwise disjoint subsets B of § with Jgcx B = § and such that for all
B € X and s € B: the bisimulation equivalence class [s] of s is contained in B.

In what follows, we shortly write u(X) to denote the vector ((B))pex.If s € §
then we define X(s) = { (a,u(X)) : s S p }. Each partition X is associated
with an equivalence relation =x on §: s =x s iff X(s) = X(s'). Having a
partition X we split the elements of X into the equivalence classes w.r.t. =x:
We define

Jx)=|J B/=x.

BeX
Lemma9. Let (S,—) be a transition system and X a partition.

(a) S/ ~ is a partition with J(S/ ~) = S/ ~.
(b) J(X) is a partition.
(c) f T(X)=X then X = S/ ~.

Proof. (a) is clear. Let X be a partition of (§,—). It is clear that the sets
B € J(X) are pairwise disjoint and that the union of themis §. Each B € X can
be written as disjoint union of bisimulation equivalence classes. This is because

57

s € B implies [s] C B. Hence whenever y, ' are distributions with u(A) = u/(A)
for all A € S/ ~ then

uB) = > u(d) = Y w(A) = 4B

AEB/~ A€EB/~

for all B € X. Hence s ~ & implies s =x s'. Therefore: If C € J(B),
s € C then C is the equivalence class of s w.r.t. =x and hence contains [s].
We conclude that 7(X) is a partition of (S, —). If 7{X) = X then =x is a
bisimulation. Hence s =x &' implies s ~ s'. Therefore s =x s if s ~ &
and hence J(X) = S/ ~. O

Lemma 10. Let (S,—) be a transition system with n states and m transitions
and let X be a partition of (S,~). Then J(X) can be computed in time O(n-m)
and space O(n - m).

Proof. For fixed B € X and a € Act let Lp o be the set of all pairs (p, L) where
L is a nonempty subset of B and p = (p¢)cex a real vector such that s € L if
and only if there exists a transition s = y with u(X) = p. Let Lp be the set of
all pairs (o, L) where @ € Act and (p,L) € Lp for some p. Then s =x s if
and only if:

Whenever (a,L) € Lp then s € L iff s’ € L.

The idea of computing B/ =x is to calculate first the sets Lp o, @ € Act, and
then to derive the equivalence classes of B w.r.t. =x.

Computation of Lp,o. For each o € Act and B € X we construct a tree Tg o
by successively inserting nodes and edges. The edges of T o are labelled by
real numbers p € [0,1]. Each leaf v has depth [and is labelled by an element
(P(v), L(v)) € Lo

Let X = {By,...,Bi}. We start with T« to be a tree of depth 0, i.e. a tree
consisting of its root. Then for each transition s = u where s € B we traverse
the tree starting at the root. Reaching a node v of depth k we do:

— If k <1 and there is an outgoing edge from v leading to the node w labelled
by u(Bi+1) then we pass the edge v — w and continue to travel through
TB,« with node w.

— If £ < I and there is no outgoing edge from v labelled by p(Bg41) then we
insert a new node w and an edge from v to w labelled by u(By41). In the
case k 4+ 1 <! we continue to travel through Tg » with node w. f k+1=1
then w is a leaf and we define L{w) = {s} and p(w) = u(X).

— If v is a leaf of depth ! then we insert s into the set L(v).

It is easy to see that the leaves of Tg , represent the elements of £ B,a- Hence
Lp is the set of all pairs (o, L(v)} where v is a leaf in T q.

58

Complezity. First we observe that the tuples u(X) (where y ranges over all
distributions s.t. s~y is a transition) can be computed in O(n - m) time: For
each distribution y we set ag = 0 for all B € X. Then for all states s € 5:
If s € B then we replace ag by ap + u(s). Finally u(X) = (ag)Bex. The
representation of the tuples 4#(X) needs O(n - m) space.

The construction of T'p o needs O(mp q-l) steps where mpg o is the number of
transitions s = u, s € B. Since Y5 3 mpa = m and since the cardinality
{ of X is bounded by n we get: Ranging over all B € X and a € Act the
construction of all trees Tg o, B € X, a € Act, takes O(n - m) steps. The set of
paths from the root to a leaf in T o is bounded by mpg . Since [l is the depth
of the leaves T'g o has at most mp o -1 + 1 nodes. Hence, all trees T o together
have O(m-n) nodes and O(m) leaves. The representation of the sets L(v) needs
O(|B|) space (where v is a leaf of a tree Tg,q). Since |B| < n the representation
of all trees T'g o together needs O(n - m) space.

Computation of B/ =x. We construct a binary tree T'g by successively inserting
nodes and edges. Each leaf v has depth r and is labelled by a subset C(v) of B.
Let (ai, Li), i = 1,...,r, be an enumeration of the elements of Lp. (Note that
a; = aj, t # j is possible.) We start with a tree of depth 0, a tree consisting of
its root. For each s € B we traverse the tree in the following way: If we have
reached a node v of depth & — 1, & < r then:

— If v has a left son w and s € Ly, then we go to w.

— If v does not have a left son and s € Ly then we create a new left son w of
v and go to w. If k = r — 1 then we set C(w) = {s}.

— If v has a right son w and s & L; then we go to w.

— If v does not have a right son and s € L then we create a new right son w
of v and go to w. If k = r — 1 then we set C(w) = {s}.

If we have reached a node v of depth r then we insert s into the set C(v) of
states assoclated with v,

Then we have: If v is a leaf and vg,vy,...,v, = v the unique path from the
root vg to v then C(v) = LiNLjN...N LJ where L] = L; if v; is the left son
of vi_y and L} = B\ L; if v; is the right son of v;_i. Let p; = p(v) where v is
the leaf in T 4, with (ay, L;) = (@, L(v)). Then for all s € B: s € C(v) if and
only if X(s) = { (ai,ps) : Li = L} }. Hence, if 5, s’ € B then s =x s if and
only if 5, s' € C(v) for some leaf v in Tp. We conclude:

B/=x= {C(v) : visaleafinTp }

Complexity. The computation of Tg needs O(|B| - r) steps. It is clear that the
cardinality r of £p is bounded by m. Hence we have the time complexity O(|B|-
m) for the construction of Tp. Each leaf in Tp has depth r < m. Since the leaves
of Tg correspond to the equivalence classes w.r.t. =x Tg has at most | B| leaves.
Since T is binary it has at most {B] - r + 1 nodes. Hence, all trees T'g, B € X,
have O(n - m) nodes. Ranging over all v, the sets C(v) can be represented in
space O(n). Hence we get the time complexity O(n - m) for computing the trees
Tg, B € X and the space complexity O(n - m) for their representation. O

59

Algorithm 3. for testing probebilistic bisimulation

Input: a transition system (S, —)

Output: the set R = S/ ~ of bisimulation equivalence classes
Method: Let X := {S}.

Repeat

Y = X; X = J(X);
untilY = X;
Return R = X.

It is clear that the algorithm returns a partition R with 7(R) = R. By Lemma 9:
R is the set of bisimulation equivalence classes. If the loop is performed n times
then X consists of n one-element sets and hence J(X) = X. Hence the loop is
performed at most n times. By Lemma 10 the time complexity is O(n? - m), the
space complexity O(n - m).

Example 11. Let (S, —) be given by: S = {s;, 52, s,t,u} and
slfm, sgfm, sl—a)ul, szfmg, sfm, tfm

where p(u) = 1, p1(s1) = pi(s2) = pu(t) = pa(u) = 1/4 and pa(s1) = 1/2,
pa(t) = pa(u) = 1/4. Initially we deal with the partition {S} and compute
J({S}) with the help of Lemma 10: The trees Ts,o and Ts g consist of a single
edge labelled by 1. Their leaves vs o and vs,g are labelled by (1, {s1, s,s}) and
(1,{T}) respectively. This yields £s = {(a,{s1,52,5}),(8,{t})} and the tree

Ts

where C(v1) = {s1,52,s}, C(v2) = {t} and C(v3) = {u}. Hence J({S}) =
{B1, By, B3} where B; = C(v;). Next we compute J({By, Bs, B3}). Since B,
and Bj consist of a single element we only have to consider B;. The tree T, o

can be depict as follows:
A 0—ro—1—v2
0

<1
2
\—-}i-——b.—-%-—bvl

where L(v1) = {s1,s2} and L(vz) = {s1,5,,s}. This yields the tree Tp,:

s

U1 U2

where C(v1) = {51, 82}, C(v2) = {s}. We obtain the partition X which consists

of {s1,52}, {5}, {t} and {u}. The next step yields 7(X) = X and hence X =
S/ ~. O

60

5 Concluding remarks

We gave an algorithm for testing probabilistic bisimulation in time O(n? - m).
Compared with the non-probabilistic case where the best known algorithm for
deciding bisimilarity has the time complexity O(m - logn) [22] the cost of our
algorithm seem to be acceptable. It is an open problem whether the time com-
plexity of our algorithm can be improved in a similar way as the O(m - log n)
algorithm of {22] improves the O(n-m) algorithm of [17]. The algorithm which is
implemented in the Concurrency Workbench [4] tests non-probabilistic simula-
tion in time O(n*-m). It works similar to the bisimulation equivalence algorithm
of [17]. It is an open question whether our O(n® - m?) result can be improved
by a partioning technique. Our methods applied to ”deterministic” probabilis-
tic transition systems yield time complexity O(n") for deciding simulation and
time complexity O(n?) for deciding bisimulation. (In ”deterministic” transition
systems, for every state s and action a there is at most one outgoing transition
labelled by «. Hence, for fixed action set, the total number m of transitions is

In this paper we only considered strong (bi-)simulation which does not ab-
stract from internal actions. It would be interesting if the algorithms presented
here can be modified to check weak (bi-)simulation.

References

1. R. Alur, C. Courcoubetis, D. Dill: Verifying Automata Specifications of Probabilis-
tic Real-Time Systems, Proc. REX Workshop, Mook, The Netherlands, Real-Time:
Theory in Practice, J.W. de Bakker, C. Huizing, W.P. de Roever, C. Rozenberg
(eds.), Lecture Notes in Computer Science 600, pp 27-44, 1991.

2. C. Baier, M. Kwiatkowska: Domain Equations for Probabilistic Processes, submit-
ted for publication.

3. T. Bolognesi, S. Smolka: Fundamental Results for the Verification of Observational
Equivalence: a Survey, Protocol Specification, Testing and Verification, Elsevier
Science Publishers, IFIP, pp 165-179, 1987.

4. R. Cleaveland, J. Parrow, B. Steffen: A Semantics-Based Verification Tool for Fi-
nite State Systems, Protocol Specification, Testing and Verification IX, Elsevier
Science Publishers, IFIP, pp 287-302, 1990.

5. R. Cleaveland, S. Smolka, A. Zwarico: Testing Preorders for Probabilistic Pro-
cesses, Proc. ICALP 1992, Lecture Notes in Computer Science 623, Springer-
Verlag. pp 708-719, 1992.

6. C. Courcoubetis, M. Yannakakis: Verifying Temporal Properties of Finite-State
Probabilistic Programs, Proc. 29th Annual Symp. on Foundations of Computer
Science, pp 338-345, 1988.

7. E. Dinic: Algorithm for Solution of a Problem of Maximal Flow in a Network with
Power Estimation, Soviet. Math. Dokl., Vol. 11, pp 1277-1280, 1970.

8. R. Enders, T. Filkorn, D. Taubner: Generating BDDs fir Symbolic Model checking
in CCS, Distributed Computing, Vol. 6, pp 155-164, 1993.

9. S. Even: Graph Algorithms, Computer Science Press, 1979.

10. L. Ford, D. Fulkerson: Flows in Networks, Princeton University Press, 1962.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

61

J. Groote, F. Vaandrager: An Efficient Algorithm for Branching Bisimulation and
Stuttering Equivalence, Proc. 17th International Collogium Warwick, Automata,
Languages and Programming, Lecture Notes in Computer Science 443, pp 626-638,
1990.

H. Hansson: Time and Probability in Formal Design of Distributed Systems,
PhL.D.Thesis, Uppsala University, 1994.

H. Hansson, B. Jonsson: A Logic for Reasoning about Time and Probability, Formal
Aspects of Computing, Vol. 6, pp 512-535, 1994.

S. Hart, M. Sharir: Probabilistic temporal logic for finite and bounded models,
Proc. 16th ACM Symposium on Theory of Computing, pp 1-13, 1984.

B. Jonsson, K.G. Larsen: Specification and Refinement of Probabilistic Processes,
Proc. 6th IEEE Symp. on Logic in Computer Science, 1991.

B. Jonsson, W. Yi: Compositional Testing Preorders for Probabilistic Processes,
Proc. 10th IEEE Symp. on Logic in Computer Science, pp 431-443, 1995.

P. Kannelakis, S. Smolka: CCS Expressions, Finite State Processes and Three Prob-
lems of Equivalence, Proc. 2ud ACM Symposium on the Pronciples of Distributed
Computing, pp 228-240, 1983.

K. Larsen, A. Skou: Bisimulation through Probabilistic Testing, Information and
Computation, Vol. 94, pp 1-28, 1991.

D. Lehmann, S. Shelah: Reasoning with Time and Chance, Information and Con-
trol, Vol. 53, pp 165-198, 1982.

V. Malhotra, M. Pramodh Kumar, S. Maheshwari: An O(|V?]) Algorithm for Find-
ing Maximum Flows in Networks, Computer Science Program, Indian Institute of
Technology, Kanpur 208016, 1978.

R. Milner: Communication and Concurrency, Prentice Hall, 1989.

R. Paige, R. Tarjan: Three Partition Refinement Algorithms, SIAM Journal of
Computing, Vol. 16, No. &, pp 973-989, 1987.

A. Pnueli, L. Zuck: Verification of Multiprocess Probabilistic Protocols, Distributed
Computing, Vol. 1, No. 1, pp 53-72, 1986.

A. Pnueli, L. Zuck: Probabilistic Verification, Information and Computation, Vol.
103, pp 1-29, 1993.

R. Segala, N. Lynch: Probabilistic Simulations for Probabilistic Processes, Proc.
CONCUR 94, Theories of Coneurrency: Unification and Extension, Lecture Notes
in Computer Science 836, Springer-Verlag, pp 492-493, 1994,

R. van Glabbeek, S. Smolka, B. Steflen, C. Tofts: Reactive, Generative, and Strat-
ified Models for Probabilistic Processes, Proc. 5th IEEE Symposium on Logic in
Computer Science, pp 130-141, 1990, '

M. Vardi: Automatic Verification of Probabilistic Concurrent Finite-State Pro-
grams, Proc. 26th Symp. on Foundations of Computer Science, pp 327-338, 1985.
S. Yuen, R. Cleaveland, Z. Dayar, S. Smolka: Fully Abstract Characterizations of
Testing Preorders for Probabilistic Processes, Probabilistic Simulations for Prob-
abilistic Processes, Proc. CONCUR 94, Theories of Concurrency: Unification and
Extension, Lecture Notes in Computer Science 836, Springer-Verlag, pp 497-512,
1994.

W. Yi: Algebraic Reasoning for Real-Time Probabilistic Processes with Uncertain
Information, Formal Techniques in Real Time and Fault Tolerant Systems, Lecture
Notes in Computer Science 863, Springer-Verlag, pp 680-693, 1994.

W. Yi, K. Larsen: Testing Probabilistic and Nondeterminsitic Processes, Protocol,
Specification, Testing and Verification XII, Elsevier Science Publishers, IFIP, pp
47-61. 1992,

Pushdown Processes:
Games and Model Checking

Igor Walukiewicz
BRICS!?
Department of Computer Science
University of Aarhus
Ny Munkegade
DK-8000 Aarhus C, Denmark
e-mail: igw@mimuw.edu.pl

(Extended abstract)

Abstract

Games given by transition graphs of pushdown processes are consid-
ered. It is shown that if there is a winning strategy in such a game then
there is a winning strategy which is realized by a pushdown process. This
fact turns out to be connected with the model checking problem for push-
down automata and the propositional y-calculus. It is show that this
model checking problem is DEXPTIME—complete.

1 Introduction

Pushdown processes are, at least in this paper, just another name for pushdown
automata. The different name is used to underline the fact that we are mainly
interested in the graph of configurations of a pushdown process and not in the
language it recognises. This graph can be considered as a transition system.
In general such a transition system may not be regular, i.e., may not be an
unwinding of a finite transition system. Given a priority function mapping states
of the automaton to natural numbers, such a transition system defines a two
player parity game. In the game moves of the players alternate. In a move a
player picks a configuration reachable from the current one. The result of a
game is a finite or an infinite path. The path is finite if one of the players cannot
make a move; in this case the other player wins. If the path is infinite we find
the smallest priority such that a state of this priority appears infinitely often on
the path. Player I wins if this priority is even.

1Basic Research in Computer Science,Centre of the Danish National Research Foundation.

20n leave from: Institute of Informatics, Warsaw University,
Banacha 2, 02-097 Warsaw, POLAND

63

Pushdown processes are a generalisation of regular process which correspond
to finite automata or regular transition systems. It is stated in [6] that the extra
expressive power of pushdown processes may be of use for describing hierar-
chically structured systems, such as multi-level cashes, or wide area networks.
Considering pushdown games is interesting at least for two reasons. First, as
we will show here, there is a connection with model checking. The second rea-
son is the problem of synthesis of correct programs (see for example [11]). The
conditions of a game may be seen as a specification, and the two players as a
program and environment respectively. In this approach a winning strategy is
identified with a reactive program satisfying the specification. Hence it is impor-
tant to know whether a strategy can be implemented as, for example, a regular
or pushdown process,

Pushdown processes are a strict generalisation of processes from so called
basic process algebra BPA (see [5] for a short survey). The decidability of the
model checking for pushdown processes and the propositional p-calculus follows
from [14]. An elementary model checking procedure for the alternation free
fragment of the p-calculus was given in [3]. We are not aware of any such
elementary decision procedure for the whole p-calculus. BPA is a subclass of
process algebra (PA) [1]. For the other interesting subclass of PA, namely, basic
parallel processes, the model checking problem is undecidable [9]. The question
whether pushdown games have pushdown strategies was posed in [16].

The main results of this paper are the following.

1. We show that if there is a winning strategy in a pushdown game G then
there is a pushdown winning strategy in G.

2. We give a model checking ‘algorithmsfor pushdown processes and the whole
p-calculus which runs in time O(2°*" ™)} where m is the size of a pushdown
process, n the size of a formula and ¢ is some constant.

3. We show that there exists a formula o such that the model checking prob-
lem for pushdown processes and this particular formula « is DEXPTIME-
hard.

Let us mention that the restriction to parity games is not essential for the result 1
to hold. One can use standard methods of translating Muller, Rabin or Streett
conditions into parity conditions to obtain appropriate result for these kind of
conditions.

The plan of the paper is as follows. We start with a preliminary section where
we recall definitions of pushdown automata and the propositional u-calculus. In
the following section we present some facts about games with parity conditions.
Next we prove that if there is a winning strategy on a pushdown tree then there
is one realized by a pushdown automaton. In the last section we consider the
model checking problem. The proofs are omitted in this abstract.

Acknowledgement: 1 would like to thank Damian Niwinski for his helpful
comments.

64

2 Preliminaries

2.1 Pushdown processes

The set of finite sequences over ¥ will be denoted £* and the set of finite
nonempty sequences over - will be denoted ¥*. The empty sequence is de-
noted by e.

For a given finite set L, let Com(X,) = {pop} U {push(z) : z € L} be the
set of stack commands over X,.

A pushdown automaton (over one letter alphabet) is a tuple:

A= (Q,Es,QOEQ,-LE Y5, 6: 5, % Q"’p(com(zs) XQ)) (1)

where @} is a finite set of states and X, is a finite stack alphabet. State go is the
initial state of the automaton and L is the initial stack symbol. A configuration
of an automaton is a pair (s, q) with s € £} and ¢ € Q. The initial configuration
is (1, go). We assume that | can be neither put nor removed from the stack.
We will sometimes write (z,q) — (2/,¢') if (2/,¢) € 6(z,q). Let —»*, —* denote
respectively the transitive closure of — and the reflexive and transitive closure
of —. We will use ¢ to range over states and z to range over letters of the stack
alphabet.

Definition 1 (Pushdown tree) A pushdown automaton 4 as in (1) defines a
tree T4 C (EF x Q)T as follows:

the root of the tree is (L, go),

e for every node (so,qo),-- -, (i, i), if (8i,¢:)) — (s,q) then the node has a
s0n (30; qO)a veey (Sia qi), (5a Q)

We call (s;, ;) the label of the node (sg, go), - - -, (8i, %)

Remark: In our definition of a pushdown automaton we have assumed that
the automaton can put at most one symbol on the stack in one move. This is
done only for convenience of the presentation. The main results also hold for
the more general form of automata which can push many symbols on the stack
in one move. Of course we can simulate pushing more symbols on the stack by
extending the alphabet and the set of states but the simulating automaton will
be in general much bigger. (We are not interested in the language equivalence
but in isomorphism of induced pushdown trees.)

Remark: The assumption that automata do not have an input alphabet is
not essential as in the problems we will consider we will allow states to have
“properties” which can be used to simulate behaviour of an automaton with
input alphabet.

2.2 Propositional py-calculus

Let Prop = {p1,p2,...} be a set of propositional constants and let Var =
{X,Y,...} be a set of variables. Formulas of the g-calculus over these sets can

65

be defined by the following grammar:
F:=Prop | =Prop | Var | FVF|FAF|{()F|[]|F|pVar.F |vVar.F

Note that we allow negations only before propositional constants. As we will be
interested in closed formulas this is not a restriction. In the following, o, G, ...
will denote formulas.

Formulas are interpreted in transition systems of the form M = (S, R, p},
where: § is a nonempty set of states, R C S x § is a binary relation on S and
p: Prop — P(S) is a function assigning to each propositional constant a set of
states where this constant holds.

For a given model M and an assignment V : Var — P(S), the set of states
in which a formula ¢ is true, denoted || ¢ |[{\,4, is defined inductively as follows:

Iplv'=o®) N-ply'=S-0) [X[V=V(X)
lavBlI =l Ul s8Iyt lersl¥ =lelfnlsI
I Oally!={s: 35" .R(s,9) A8 €]l o |3}
I le 5" ={s: V5" .R(s,8') = &' € | a[I}"}
| X X) 7' =N{S" € 81l o IW]sr 5 S S}
lvX.a(X) ' =ULS' € 5: 8 Sl ¥le/x}

here V[§'/X] is the assignment such that, V[S'/X](X) = §' and V[S'/X|(Y) =
V(Y) for Y # X. We will write M,s,V E ¢ when s € || ¢ |3, We will write
M, s E ¢ if for every assignment V' we have M, s,V F ¢.

A model checking problem is to decide whether for a given model M, state s
and formula o without free variables, the relation M, s E a holds. Here we will
be interested in the case when M is a pushdown tree and s is the root of it.

3 Parity games and canonical strategies

In this section we recall the notion of parity games and give an explicit descrip-
tion of winning strategies in such games. It turns out that a strategy in such
a game induces an assignment of tuples of ordinals to nodes of the game. We
call these tuples of ordinals signatures. In this way we have means to compare
different strategies by comparing signatures they induce. It turns out that there
exists canonical, or the least possible, signature assignment.

Most of the material presented here comes from [17]. The notion of signature
was proposed by Streett and Emerson [15]. The proof of the existence of mem-
oryless strategies in parity games was given independently by Mostowski [13]
and by Emerson and Jutla [7]. Klarlund [10] proves a more general fact that a
player has a memoryless strategy in a game if the has a strategy and his winning
conditions are given as a Rabin condition.

66

Let G =(V =V; UV, E,Q:V — Ind) be a bipartite graph with vertices
labeled by priorities from Ind which is a finite subset of natural numbers. A
game from some vertex v; € Vi is played as follows: first player I chooses a
vertex va € Vi, s.t. E(v1,v9) then player II chooses a vertex v3 € Vj, s.t.
E(vq,v3) and so on ad infinitum unless one of the players cannot make a move.
If a player cannot make a move he looses. The result of an infinite play is an
infinite path wvy,vg,vs,... This path is winning for player 7 if in the sequence
Qv1), Q(v2), Q(vs), ... the smallest priority appearing infinitely often is even.
The play from vertices of Vi is defined similarly but this time player IT starts.

Strategy o for player I is a function assigning to every sequence of vertices 7
ending in a vertex from V; a vertex (%) € Vy; such that E(v, o(7)). A strategy
is called memoryless iff o(¥) = o(#) whenever ¥ and ¥ end in the same vertex.
A strategy is winning iff it guarantees a win for player I whenever he follows
the strategy. Similarly we define a strategy for player II.

Suppose we have a propositional constant I which holds in the vertices from
which player I is to move, i.e., in vertices from V;. Let us assume that the
range of is {1,...,n} and suppose that for every i € {1,...,n} we have the
propositional constant ¢ which holds in the vertices of priority 7. Consider the
formula:

or(Zy,.. ., Z)=(I= N\ (i=QZ)A(I)=> N (=[]Z)
i€{l,...,n} ie{l,...,n}
We will be interested in the set:
Wi = || pZ1vZs. . pZm1.vZpp1(Z1,. .., Zn) ||°

(1 is used to close variables with odd indices and v is used for even indices).

Definition 2 When applied to n-tuples of ordinals symbols =, <, < stand for
corresponding relations in the lexicographical ordering. For every i € {1,...,n}
we use =; to mean that both arguments are defined and when truncated to first
i positions the two vectors are equal; similarly for <; and <;.

Definition 3 (Signature) A signature is a n-tuple of ordinals. An assignment
S of signatures to nodes in some set § C 7" will be called consistent if for every
v € SNV} there is a son w € S such that:

S(w) <q(v) S(v) and it is strictly smaller if Q(v) is odd. (2)
similarly if v € § N Vy then for all w such that E(v, w) we have w € S and the
condition (2) holds.

Definition 4 (Canonical signatures) We extend the syntax of the formulas
by allowing constructions of the form y” Z.a(Z), where 7 is an ordinal and o(Z)
is a formula from the extended syntax. The semantics is defined as follows:

M M \
18°Za(Z) Iy =0 | o™ Z.a(Z) |y = | a(2) Hﬁ[m*Za(Z){H}“/Z]

1 Z.o(Z) |V =) | w$Z.0(Z) ||} (7 & limit ordinal)
plT

67

By Knaster-Tarski theorem || pZ.a(Z) |3 = U, Il v"Z.a(Z)][(\,4

We define a notion of the canonical signature, Sig(v), of a vertex v € 8y (we
will write Sig(v) if the game is not clear from the context). This is the smallest
in the lexicographical ordering sequence of ordinals (7y, ... ,7,) such that:

ve | or(Po,..., Pa) |I°
where:

Po=vZiuZiyy.. VZn.pi(Po,...,Pi_1,Z;y...,Zy) forieven
P,=y"Z;vZiy1.. .,l/Zw(pI(Pg, cers Pic1, 2. .., Zy) for i odd

As for an even i the ordinal 7; is not used, the definition implies that 7; = 0 for
every even i. We prefer to have this redundancy rather than to calculate right
indices each time.

Fact 5 Canonical signature assignment is the least consistent signature assign-
ment. That is, for every consistent signature assignment S, whenever for some
node v, S(v) is defined then Sig({v) is defined and Sig(v) < S(v).

Definition 6 (Canonical strategy) A canonical strategy is a strategy taking
for each node v € W; N Vi a son which has the smallest possible canonical
signature.

Remark: Despite the name, canonical strategies may not be uniquely deter-
mined because a node may have many sons with the same signature.

Fact 7 Suppose w is a node reached from v when player I uses a canonical
strategy and let p be the minimum of priorities of states appearing in the labels
between v and w (not including w). We have that Sig(w) <, Sig(v) and it is
strictly smaller if p is odd.

Theorem 8
The set Wi is the set of nodes from which player I has a winning strategy. A
canonical strategy is winning and memoryless.

4 Pushdown strategies in pushdown games

Let A be a pushdown automaton as in (1). For simplicity of the presentation
let us assume that the set Q of states of A is partitioned into two sets @ and
Q. We also assume that transitions from states in Q; lead only to states in
Q11 and vice versa. More formally we require that for every q, ¢, z, 2’': whenever
(push{z'),q’) or (pop,q’) is in §(z, q) then: g € Q; iff ¢’ € Q.

The automaton .A defines a pushdown tree T4 which we will take as a graph of
the game. To have a game we will also need a priority function. It is an important
point to decide which priority functions to allow. If we allowed arbitrary such

68

functions then the whole advantage of the fact that the graph is generated by
a pushdown automaton would be gone. It seems that a reasonable choice is
to allow only functions associated with states of the automaton. That is, we
start by giving a priority function 2 : @ — N and then for every vertex v of T
we consider the state ¢ appearing in the label of v and let Q(v) = Q(g). This
choice of the method of assigning priorities is motivated by the fact that we are
interested in the winning conditions definable in S18.

Next we should clarify what we mean by a pushdown strategy. We would like
to say that a pushdown strategy is a strategy realised by a pushdown automaton
in a sense that this automaton reads moves of player II and outputs moves of
player I. Such an automaton must have the property that while reading a
(possibly infinite) sequence of moves of player II it outputs a sequence of moves
of player I such that the path of T4 designated by these moves is winning for
player I. We will not formalise this notion of pushdown strategy here as it would
require several definitions for which we have no space. We will content ourselves
with a weaker definition given in the theorem below. Let us just remark that
the strategy automaton given in the proof can be used to construct a strategy
automaton as defined above.

Theorem 9

If there is @ winning strategy for player I in T 4 then there is a winning pushdown
strategy, i.e., there is a pushdown automaton B such that Ty is isomorphic to a
winning strategy in T 4.

Let us try to explain an idea of the construction of the pushdown strategy
for player I. In some sense one may consider a pushdown strategy as a strategy
operating with a stack of strategies for regular graphs. Whenever a new element
is pushed on a stack, player I is suspended and a new player I is started which
has only partial information about the history of the play up to this point.
Suppose we are in some position (s, g) and player I decides that the best move
for him would be to push 2’ on the stack and change the state to ¢’. At this
moment this player I is suspended and a new player [starts to play. He will play
until 2’ is taken out from the stack. The main question is what the new player
I should know about the current position of the play. Because the canonical
strategy is memoryless it would be enough for him to know only how the arena
of the game looks from his current position. In turn this is determined by the
label of the node, which is (s2’,¢’). Unfortunately we cannot afford to let the
player know so much because the size of the stack is potentially unbounded. On
the other hand the new payer I will play only until 2’ is popped and the stack
becomes s again. Hence the part of the tree where the new player [is playing
does not depend on s but only on the letter 2z’ on the top of the stack and the
current state ¢'. What depends on s is the rest of the play when the new player
is finished. Hence it should be enough for the new player [if the old player I
told him which states are safe. In other words what are the states such that if
the new player I finishes in one of them then the old player I is able to carry on
and win. This set of states should depend on the lowest priority of a state met

69

from the moment the old player [was suspended. So we will not have just one
set of states but a vector A = {AP},eq1,...,n} Of sets of states. Each AP is a set
of states in which the new player I can finish provided p is the smallest priority
of a state from the moment when the old player I was suspended. Apart from A
the new player should also know the current state ¢’ and the current symbol 2’
on the top of the stack. We will also use a variable 8 to store the lowest priority
of a state we came across. This amount of information is bounded so we have a
basis for construction of a pushdown automaton realizing the strategy.

Let us now start with the formal definitions. As in the previous section we
assume that {1,...,n} is the range of 2. We will use A to range over n element
vectors of sets of states and @ to range over {1,...,n}. We also use z to range
over stack symbols and g to range over states.

Definition 10 (Sub-game) For every A, z, 8, g we define the game G(f_f, z,0,q9)
as follows. The arena of the game is a subtree of T4 starting from a node with a
configuration (Lz,q). Every node labeled with a configuration (L, ¢’), for some
¢, is marked winning or loosing. We mark the node winning if ¢ € A™n®:),
where p is the lowest priority of a state appearing on the path to the node
(counting g but not ¢'). Otherwise we mark the node loosing. Whenever a play
reaches a marked node, player I wins if this node is marked winning otherwise
player IT is the winner. If a play is infinite, player I wins iff the obtained path
is winning (as defined at the beginning of Section 3).

Remark: In our definition of the game we did not have the concept of marking
but we allowed vertices with no sous, and had the rule that a player looses if he
cannot make a move. Hence we can simulate marking of vertices with cutting
the paths. We find the metaphor of markings more useful here.

Definition 11 (Signature, Hint) Suppose that player I has a winning strat-
egy in a game G(4, z,0,q). Define Sz'g(fi‘, z,8,q) to be the canonical signature
of the root of the game.

If ¢ € Qy then let v be a son of the root which has the smallest canonical
signature (if there is more than one such son then fix one arbitrary). If v is
labeled by (L,q’) then let Hint(A, z,6,q) = (pop,q’) otherwise v is labeled by
(Lz2',¢') and let Hint(4, 2,6, q) = (push(2'), ¢).

Definition 12 (Update function) Define Up(A4, 2, ¢, §) to be the sequence of
sets A1 = {Al}peq1,....n}, Where each A7 is the set of states ¢’ such that:

SZg(A: Z, mln(Q(q),p, 9); q/) Smin(ﬂ(q),p) SZg(A: 2, 07 q)

in case min(€2(q), p) is even and

SZg(A‘a Zy min(Q(q),p, 0)7 q/) <min(Q(q),p) SZg(A‘) Z, 07 q)

otherwise.

70

Definition 13 (Strategy automaton) Let
B= <Q7P(Q)n X Zs X {1: o '9n}’q0a (wv . -vwv —L,n)séﬁ>

Before defining the transition relation let us introduce an abbreviation. We
introduce new automata operation repmin(¢’) which means: if on the top of
the stack there is some triple Az0, replace it with Az8; where 6; = min(6, §').
We also introduce a semicolon operation, 50 65 (ffzﬂ, g,a) = (pop, ¢'); repmin(6’)
means that first Az6 is removed from the stack and the state is changed to ¢';
then, possibly, the third component of the triple currently at the top of the
stack is changed. Hence if we had a configuration (sA;z,6; Az6,q) then after

this operation we obtain the configuration (sA;z; min(6;, &’), d).
Let us now proceed with the definition of ép:

e Ifge QI then:

- 53(2&0, q) = {(pop, ¢'); repmin(min(8, V(q)))} if Hint(A4, z,q, 6) =
(pop, ¢).
— 65(A2,q) = {repmin(Qq)); push(A'2'n,q)} it A' = Up(4, 2,6,q)
and Hint(A,z,q,8) = (push(z'),q).
If g € @ then:

— (pop, ¢); repmin{min(d, Q(q))) € 53(}—1"29, g) if (pop, ¢’) € 6.4(z,q).
- Tepmz’n(ﬂ(q));push(ﬁ'z’n, q) € 63(/12:9,«1, a) if A = Up(A, 2,0,q)
and (push(?'),q') € 6.4(z,q).

Theorem 9 follows from the following lemmas:
Lemma 14 If player I can win in G(A', z,08,9) and
repmin({Qq)); push([flzln, q1) € ép ([fz@, q)

then Sz"g(ffl, 21,7, q1) <0(q) S’z‘g(A’, z,8, g) and it is strictly smaller if Q{g) is odd.

Lemma 15 Let (ssz(?, q) be a configuration reachable from the initial one.
Suppose (szA8,q) —* (szA¢,q') and szA is always in the stack during this
derivation. Let p be the minimum of the priorities of the states appearing in
the derivation (not counting the last one). We have: (i) ¢ = min(p, 8) and (ii)
Sig(A, 2,0, ¢') <p Sig(A, 2,0,q) and it is strictly smaller if p is odd.

Lemma 16 The strategy defined by the automaton F is winning.

Remark: The automaton B is exponentially larger than .A. One can show
that in general the strategy automaton must be exponentially larger, although
it is not clear that the exponent must be O(n|Q|) as it is in the case of B.
This situation is different from the situation for parity games on finite transition
systems where no memory is need.

71

5 Model checking for pushdown trees

Here we consider a problem of checking whether the root of a given pushdown
tree satisfies a given formula of the propositional u-calculus. First we reduce
this problem to the problem of finding a winning strategy in some pushdown
game. Next we use results from the previous section to show how one can solve
this later problem. Finally we show the lower bound on the complexity of the
model checking problem. ‘

The reduction of the model checking to establishing existence of a winning
strategy follows from a fairly standard arguments [8]. In that paper Emerson,
Jutla and Sistla show how to reduce the model checking problem over finite
transition systems to establishing existence of a winning strategy in a finite
game. In our case the argument is essentially the same but we must also observe
that in the resulting game the priority function 2 depends only on the states in
the current configuration.

Theorem 17

For a given pushdown automaton A and a p-calculus formula ¢ one can construct
a pushdown automaton C and a priority function €, such thai: T4 F ¢ iff there
s a winning strategy for player I in the game T with the priority function Q.
The size of C is linear in sizes of both A and .

5.1 Establishing existence of winning strategies

Let A be a pushdown automaton as in (1) and let Q : @ — {1,...,n} be an
indexing function. These define the game on T'4. Here we are concerned with
the problem: given A and §2 establish whether there exists a winning strategy
for player I in T4. We will reduce this problem to the problem of establishing
existence of a winning strategy in a game on some finite graph. Let 4 and { be
fixed for the rest of this subsection.

Before we begin let us try to give some intuitions bebhind the construction
of a finite game M 4. For every ff, 2,0,q and p € {1,...,n} we will have in
M 4 a node Check(ff,z, 8,p,9). There will be strategy for player I from this
node iff there is a strategy for player I in the game G(4, z,6,q) (see Defini-
tion 10); we will explain the role of p later. If pop(q’) move is possible from
(z,q) then for it to be a good choice for player I it should be the case that
q' € Am(D:0) If (push(z1),q1) is possible then the checking is more compli-
cated as we do not have a stack. We will use universal branching instead. We
will have a node Move((4, 2,8, q), (?, 21, ¢1)) with the intended meaning that the
next planed move is (push(z;),¢;) and that one has to guess A;. We will also
have nodes: Move(([f, z,8,q), (]1'1, 21,q1)) where A is already guessed and from
which it is necessary to check whether it was guessed correctly. We divide the
future play into two parts which we consider separately. We check what happens
until 2; is popped from the stack and simultaneously we check what happens
after this event. The first task is started from the node Push(Ai, z1,m,q1) the

72

other one from nodes Check(fi', z,min(6,p"”),p"”,q") where p” intuitively repre-
sents the lowest priority which was met while z; was on the stack and ¢” is a
state from A¥ .

Definition 18 (Game M 4) Let M 4 be a game on a finite graph defined as
follows. For every A, Ay, 2,21, 8, ¢,q1 and p € {1,...,n} we have nodes:

Check(A, z,6,p, q) Push(4, 2,0, q)
MO’UG((A, Z, 97 Q), (7a 21, ql)) MO’UG((A, Z, 01 Q)’ (A17 21, (I1))
Pop(q) Err(q)

Here ‘7’ is a special symbol. We have the following transitions between the
nodes:

Check(4, z,8,p,q) — Pop(¢') if (pop, ') € 6(z,9) and ¢’ € A™(X2).6)
Check(A, z,0,p,q) — Err(¢') if (pop,¢) € 6(z,q) and ¢ ¢ A™n(¥9).0)
Check(A, 2,8,p,q) — Move((4,2,8,q), (7, z1,q1)) if (push(z1),q1) € 6(z,q)

and exactly the same transitions from Push(ﬁ, z,8,q), moreover we have:

Move((éa Z, 6, Q)a (?_1"21’ ql)) - MO?J@((fE Zy Ha Q)a (Anl’ 21, ql))
MO’UB((A, 2, 07 q)a (A17 21, Q1)) - PUSh(-Ala 21, N, Q1)
Move((fi', z,0,q), ([fl, 21,q1)) — Checkz(g, z, min(6, p), p, ¢")
if p<Q(g) and ¢" € A}

The set V; of nodes where Player I makes a move consists of nodes:

Check(/—L z,8,p,q) and Push([f, z,8,9) forge @y
Move((4, z,0,q), (7, 21,q1)) for arbitrary ¢ € Q1 UQu

In the remaining nodes player I makes a move. Priority function 23 is defined
by:

Opr(Check(4, 2,0,p,q)) =p Qum(Push(4, 2,8,9)) = Qqg)
Qu(Move((4, 2,6,9), (7, 21,01))) = Qae(Move((4, 2,0,9), (A1, 21,q1))) = n + 1

Player I wins in the game M 4 if either: (i) after finitely many steps player
II cannot make a move or a node labeled Pop(q), for some g, is reached; or (ii)
the game is infinite and the infinite path P which is the result of the play is
winning for I. Otherwise player I is the winuner.

Theorem 19
Player I has a winning strategy in the game T 4 iff he has ¢ winning strategy in
the game M 4 from the node Check((®,...,8), L, n,n,qq).

Let us remark here that the theorem does not imply that there is a finite
strategy on a pushdown tree. In order to use the strategy in M 4 to play in T4
we need a stack.

73

Finally let us put Theorems 17 and 19 together and calculate the complexity
of the model checking algorithm. The size of the game M 4 is O(k2°™") where:
k is the size of the stack alphabet, m is the number of states of A, n is the
cardinality of the range of the priority function £, and ¢ is a constant. The task
of establishing existence of a winning strategy in M 4 is equivalent to checking
whether the specific p-calculus formula holds. Hence any model checking algo-
rithm will solve the problem. Using currently known algorithms we obtain that
the whole problem can be solved in time Q((k2¢™")?) (or O((k2°™»)1+7/2) if
using [12]). This is the estimation only for the problem of establishing existence
of a winning strategy. Putting it together with the reduction from the previous
subsection we obtain that for a given automaton with m states and k stack sym-

bols and a formula of size n; with alternation depth ny we have an algorithm
working in time O((k2¢™"1"2)"2),

5.2 The lower bound

Finally we show a deterministic exponential time lower bound on the model
checking problem for pushdown automata and (non alternating) p-calculus. It
follows from a quite standard reduction by simulating alternating linear space
bounded Turing machines. The simulating automaton is very similar to the one
described by Chandra, Kozen and Stockmeyer in [4]. Given an alternating linear
space bounded machine M and a word w we construct a pushdown automaton
which acts as follows. First it puts the initial configuration of M on the stack.
If the initial state is existential, player I chooses which possible move of M to
simulate, otherwise player II chooses the move. Simulating the move is done
by putting a new configuration by player I on the stack. Proceeding this way,
the game eventually arrives t¢ a point when a configuration with an accepting
state is pushed on the stack. At the same moment we have also all the preceding
configurations on the stack. In this position player IT is allowed to make a guess
about correctness of this sequence of configurations. He may try to show that
player I cheated and there are two subsequent configurations on the stack such
that one is not reachable from the other in the move of M which was chosen
at that point. Player I wins if player II is not able to do this. We have the
following;:

Fact 20 There exists a formula o (without alternations) such that the prob-

lem “given a pushdown automaton .4, is a satisfied in the root of T)4” is
DEXPTIME-hard.

Remark: This argument does not work for BPA processes. Indeed the complex-
ity result from [2] shows that the the model checking problem for the u-calculus
without alternations is polynomial when a formula is fixed.

Remark: We conjecture that model checking is exponential also in the second
parameter. That is, there exists a fixed pushdown process .4 such that the
problem: “given a formula «, is « satisfied in the root of T'y” is DEXPTIME-
hard.

74

References

[1] J. Bergstra and J. Klop. Process theory based on bisimulation semantics. volume
354 of LNCS, 1988.

[2] O. Burkart and B. Steffen. Model checking for context-free processes. In CONCUR
’92, volume 630 of LNCS, pages 123-137, 1992.

[3] O. Burkart and B. Steffen. Pushdown processes: Parallel composition and model
checking. In CONCUR ’94, volume 836 of LNCS, 1994.

[4] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114-133, 1981.

[5] 8. Christiensen and H. Huttel. Deciding issues for infinite-state processes — a
survey. Bulletin of EATCS, 51:156-166, October 1993,

[6] E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent
systems. In A Decade of Concurrency, volume 803 of LNCS, pages 124-175.
Springer-Verlag, 1993.

[7] E. A. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In
Proc. FOCS 91, 1991.

[8] E. A. Emerson, C. Jutla, and A. Sistla. On model-checking for fragments of
p~calculus. In CAV’93, volume 697 of LNCS, pages 385-396, 1993.

[9] J. Esparza and A. Kiebn. On the model checking problem for branching time logics
and basic parallel processes. In CAV 95, volume 939 of LNCS, pages 353-366,
1995.

[10] N. Klarund. Progress measures, immediate determinacy and a subset construction
for tree automata. In IEEE LICS, pages 382-393, 1992.

[11} H. Lescow. On polynomial-size programs winning finite-state games. In CAV 95,
volume 939 of LNCS, pages 239-252, 1995,

[12] D. E. Long, A. Browne, E. M. Clarke, 8. Jha, and W. R. Marrero. An improved
algorithm for the evaluation of fixpoint expressions. In CAV’94, volume 818 of
LNCS, pages 338-350, 1994.

[13] A. W. Mostowski. Games with forbidden positions. Technical Report 78, Univer-
sity of Gdansk, 1991.

[14] D. Muller and P. Schupp. The theory of ends, pushdown automats and second-
order logic. Theoretical Computer Science, 37:51-75, 1985.

[15] R. S. Street and E. A. Emerson. An automata theoretic procedure for the propo-
sitional mu-calculus. Information and Computation, 81:249-264, 1989.

[16] W. Thomas. On the synthesis of strategies in infinite games. In STACS 95,
volume 900 of LNCS, pages 1-13, 1995,

[17] 1. Walukiewicz. Monadic second order logic on tree-like structures. In STACS 96,
LINCS, pages 401414, 1996.

Module Checking

Orna Kupferman® and Moshe Y. Vardi?

! Bell Laboratories, 600 Mountain Avenue, Murray Hili, NJ 07974, U.S.A.
Email: ck@research.att.com
% Rice University, Department of Computer Science, P.O. Box 1892, Houston, TX 77251-1892, U.S.A.
Email: vardi@cs.rice.edy, URL:http://www.cs.rice.edu/“vardi

Abstract. Incomputer system design, we distinguish between closed and open systems. A closed
system is a system whose behavior is completely determined by the state of the system. An open
system is a system that interacts with its environment and whose behavior depends on this intes-
action. The ability of temporal logics t describe an ongoing interaction of a reactive program
with its environment makes them particularly appropriate for the specification of open systems.
Nevertheless, model-checking algorithms used for the verification of closed systems are not ap-
propriate for the verification of open systems. Correct model checking of open systems should
check the system with respect to arbitrary environments and should take into account uncertainty
regarding the environment. This is not the case with current model-checking algorithms and tools.
In this paper we introduce and examine the problem of model checking of open systems (module
checking, for short). We show that while module checking and mode] checking coincide for the
linear-time paradigm, module checking is much harder than model checking for the branching-
time paradigm. We prove that the problem of module checking is EXPTIME-complete for spec-
ifications in CTL and is 2EXPTIME-complete for specifications in CTL*. This bad news is also
carried over when we consider the program-complexity of module checking. As good news, we
show that for the commonly-used fragment of CTL (universal, possibly, and always possibly prop-
erties), current model-checking tools do work correctly, or can be easily adjusted to work correctly,
with respect to both closed and open systems,

1 Introduction

In computer system design, we distinguish between closed and open systems [HP85}. A closed sys-
tem is a system whose behavior is completely determined by the state of the system. An open system
is a system that interacts with its environment and whose behavior depends on this interaction. As an
example to closed and open systems, we can think of two drink-dispensing machines. One machine,
which is a closed system, repeatedly boils water, makes an internal nondeterministic choice, and serves
either coffee or tea. The second machine, which is an open system, repeatedly boils water, asks the
environment to choose between coffee and tea, and deterministically serves a drink according to the
external choice [Hoa85]. Both machines induce the same infinite tree of possible executions. Never-
theless, while the behavior of the first machine is determined by internal choices solely, the behavior
of the second machine is determined also by external choices, made by its environment. Formaily, in
a closed system, the environment can not modify any of the system variables. In contrast, in an open
system, the environment can modify some of the system variables.

Designing correct open systems is not an easy task. The design has to be correct with respect to
any environment, and often there is much uncertainty regarding the environment [FZ88). Therefore,
in the context of open systems, formal specification and verification of the design has great importance.
Traditional formalisms for specification of systems relate the initial state and the final state of a system
[Flo67, Hoa69]. In 1977, Pnueli suggested temporal logics as a suitable formalism for reasoning about
the correctness of nonterminating systems [Pnu77). The breakthrough that temporal logics brought to
the area of specification and verification arises from their ability to describe an ongoing interaction of

76

a reactive module with its environment [HP85]. This ability makes temporal logics particularly appro-
priate for the specification of open systems.

Two possible views regarding the nature of time induce two types of temporal logics {Lam80]. In
linear temporal logics, time is treated as if each moment in time has a unique possible future. Thus,
linear temporal logic formulas are interpreted over linear sequences and we regard them as describing
the interaction of the system with its environment along a single computation. In branching temporal
logics, each moment in time may split into various possible futures. Accordingly, the structures over
which branching temporal logic formulas are interpreted are infinite trees, and they describe the pos-
sible interactions of a system with its environment. In both paradigms, we can describe the design in
some formal model, specify its required behaviour with a temporal logic formula, and check formally
that the model satisfies the formula. Hence the name model checking for the verification methods de-
rived from this viewpoint.

‘We model finite-state closed systems by programs. We model finite-state open systems by reactive
programs (modules, for short). A module is simply a program with a partition of the states into two
sets. One set contains system states and corresponds to locations where the system makes a transition.
The second set contains envirenment states and corresponds to locations where the environment makes
a transition®. Consider the module M presented on the right. It has
three system states (boil, tea, and coffec), and it has one environ-
ment state (choose). It models the second drink-dispensing machine
described above. When M is in the system state boil, we know ex-
actly what its possible next states are. It can either stay in the state
boil or move to the state choose. In contrast, when M is in the envi-
ronment state choose, there is no certainty with respect to the envi-
ronment and we can not be sure that both tea and coffee are possible
next states. For example, it might be that for some users of the ma-
chine, coffee is not a desirable option. If we ignore the partition of
M’s states to system and environment states and regard it as a pro-
gram P, then it models the first drink-dispensing machine described
above.

To see the difference between the semantics of programs and modules, let us consider two ques-
tions. Is it always possible for the first machine to eventually serve tea? This is equivalent to ask-
ing whether P satisfies the CTL formula AGE F'tea, and the answer is yes. Is it always possible for
the second machine to eventually serve tea? Here, the answer is no. Indeed, if the environment al-
ways choose coffee, the second machine will never serve tea. Suppose now that we check with current
model-checking tools whether it is always possible for the second machine to eventually serve tea,
what will be the answer? Unfortunately, model-checking tools do not distinguish between closed and
open systems. They regard M as a program and answer yes.

As discussed in [MP92}, when the specification is given in linear temporal logic, there is indeed
no need to worry about uncertainty with respect to the environment; since all the possible interactions
of the system with its environment have to satisfy a linear temporal logic specification in order for M
to satisfy the specification, the program P and the module M satisfy exactly the same linear temporal
logic formulas. From the example above we leatn that when the specification is given in branching
temporal logic, we do need to take into account the uncertainty about the environment. There is a need
to define a different model-checking problem for open systems, and there is a need to adjust current
model-checking tools to handle open systems correctly.

3 A similar way for modelling open systems is suggested in [LT88, Lar89). There, Larsen and Thomsen use Modal
Transition Systems, where some of the transitions are admissible and some are necessary, in order to specify
processes loosely, allowing a refinement ordering between processes.

77

We now specify formally the problem of model checking of open systems (module checking, for
short). As with usual model checking, the problem has two inputs. A module M and a temporal logic
formula 1. For a module M, let Vs denote the unwinding of M into an infinite tree. We say that M
satisfies 1 iff 1) holds in all the trees obtained by pruning from Vs subtrees whose root is a successor
of an environment state. The intuition is that each such tree corresponds to a different (and possible)
environment. We want 1 to hold in every such tree since, of course, we want the open system to satisfy
its specification no matter how the environment behaves. For example, an environment for the second
drink-dispensing machine is an infinite line of thirsty people waiting for their drinks. Since each per-
son in the line can either like both coffee and tea, or like only coffee, or like only tea, there are many
different possible environments to consider. Each environment induces a different tree. For example,
an environment in which all the people in line do not like tea, induces a tree that has the left subtree of
all its choose nodes pruned. Similarly, environments in which the first person in line like both coffee
and tea induce trees in which the first choose node has two successors*.

‘We examine the complexity of the module-checking problem for linear and branching temporal log-
ics. Recall that for the linear paradigm, the problem of module checking coincides with the problem
of model checking. Hence, the known complexity results for LTL model checking remain valid. As
we have seen, for the branching paradigm these problems do not coincide. We show that the problem
of module checking is much harder. In fact, it is as hard as satisfiability. Thus, CTL module check-
ing is EXPTIME-complete and CTL* module checking is 2EXPTIME-complete, both worse than the
PSPACE complexity we have for LTL. Keeping in mind that CTL model checking can be done in fin-
ear time [CES86] and CTL* model checking can be done in polynomial space [EL85], this is really
bad news. We also show that for CTL and CTL*, the program complexity of module checking (i.e.,
the complexity of this problem in terms of the size of the module, assuming the formula is fixed), is
PTIME-complete, worse than the NLOGSFACE complexity we have for LTL. As the program com-
plexity of model checking for both CTL and CTL* is NLOGSPACE [BVW94], this is bad news too.

As a consolation for the branching-time paradigm, we show that from a practical point of view,
our news is not that bad. We show that in the absence of existential quantification, module checking
and model checking do coincide. Thus, ¥(CTL module checking can be done in linear time, and its
program complexity is NLOGSPACE. More consolation can be found in “possibly” and “always pos-
sibly” properties. These classes of properties are considered an advantage of the branching paradigm.
While being easily specified using the CTL formulas EF{ and AGEF¢, these properties can not be
specified in LTL [EH86]. We show that module checking of the formulas EFE and AGEFE can be
done in linear time (though the problems are PTIME-complete).

2 Preliminaries

The logic CTL* combines both branching-time and linear-time operators. Formulas of CTL* are de-
fined with respect to a set AP of atomic propositions. A path quantifier, either E (“for some path™) or
A (“for all paths™), can prefix a path formula composed of an arbitrary combination of the linear-time
operators F' (“eventually”), G (“always”), X (“next time"), and U (“until”).

The semantics of CTL* is defined with respect to a program P = (AP, W, R, wo, L), where AP
is the set of atomic propositions, W is a set of states, R C W x W is a transition relation that must
be total (i.e., for every w € W there exists w' € W such that R(w,w’)), wo is an initial state, and
L : W — 24P maps each state to a set of atomic propositions true in this state. A path of P is an
infinite sequence wyg,w;, ... of states such that for every ¢ > 0, we have R(w;, w;11). The notation

* Readers familiar with game theory can view module checking as solving an infinite game between the system
and the environment. A correct system is then one that has 2 winning strategy in this game.

78

P = ¢ indicates that the formula ¢ holds at state wg of the program P. A formal definition of the
relation [= can be found in [Eme90).

The logic CTL is a restricted subset of CTL* in which the temporal operators must be immediately
preceded by a path quantifier. Thus, for example, the CTL* formula ¢ = AGF(pAEX¢) isnota CTL
formula. Adding a path quantifier, say A, before the F' temporal operator in ¢ results in the formula
AGAF(p A EXgq), which is a CTL formula. The logics YCTL and YCTL*, known as the universal
fragments of CTL and CTL*, respectively, allow only universal quantification of path formulas. Thus,
all the occurrences of the path quantifier £ should be under an odd number of negations. The formula
i above is therefore not a VCTL* formula. Changing the path quantifier £ in ¢ to the path quantifier A
results in the formula AGF(p A AXq), which is a VCTL* formula. The logic LTL is a linear temporal
logic. Its syntax does not allow any path quantification. Formulas of LTL are interpreted over paths in a
program. The notation P {= 1 indicates that the LTL formula 1 holds in all the paths of the program P.

A closed system is a system whose behavior is completely determined by the state of the system.
We model a closed system by a program. An open system is a system that interacts with its environ-
ment and whose behavior depends on that interaction. We model an open system by a module M =
(AP, W, W,, R,wo, L), where AP, R, wy, and L are as in programs, W is a set of system states, W,
is a set of environment states, and we often use W to denote W, U W,

Foreachstatew € W, let succ(w) be the set of w’s R-successors; i.e., succ(w) = {w' : R(w,w')}.
Consider a system state w, and an environment state w.. Whenever a module is in the state w;, all the
states in succ(w,) are possible next states. In contrast, when the module is in state w., there is no cer-
tainty with respect to the environment transitions and not all the states in succ(w.) are possible next
states. The only thing guaranteed is that not all the environment transitions are impossible, since the
environment can never be blocked. For a state w € W, let step(w) denote the set of the possible sets
of w’s next successors during an execution. By the above, step(w,) = {succ(w,)} and step{w,) con-
tains all the nonempty subsets of succ{w,).

An infinite treeisaset T C N* suchthatifx - ¢ € T wherez € IN* and ¢ € IN, then also
z € T,andforall0 < ¢ < ¢,wehavethatz - ¢’ &€ T.In addition, ifz € T,thenz -0 € T.
The elements of T are called nodes, and the empty word e is the roor of T'. Given an alphabet X, a
Z-labeled tree is a pair {T, V) where T isatree and V' : T -~ X maps each node of T to a letter in
X. A module M can be unwound into an infinite tree (T, Vas) in a straightforward way. When we
examine a specification with respect to M, it should hold not only in (T, Vas) (which corresponds
to a very specific environment that does never restrict the set of its next states), but in all the trees
obtained by pruning from (T, Vs } subirees whose root is a successor of a node corresponding to an
environment state. Let ezec(M) denote the set of all these trees. Formally, (T, V) € exec(M) iff the
following holds:

- ¢ € T and V(e) = wp.
- Forall z € T with V(z) = w, there exists {wo,..., wn} € step(w) such that T N N+t =
{z-0,z-1,...,z-n}andforall 0 € ¢ < n we have V{x - ¢) = w,.

Intuitively, each tree in exec(M) corresponds to a different behaviour of the environment. Note that
a single environment state with more than one successor suffices to make exec(M) infinite. We will
sometimes view the trees in exec(M) as 247 -labeled trees, taking the label of anode z to be L{V (z)).
Which interpretation is intended will be clear from the context.

Given a module M and a CTL* formula ¢, we say that M satisfies ¢, denoted M |=.. 4, if all the
trees in ezec(M) satisfy 16. The problem of deciding whether M satisfies ¢ is called module checking®.
We use M k= % to indicate that when we regard M as a program (thus refer to all its states as system

5 A different problem where a specification is checked to be correct with respect to any environment is discussed
in {AS5SV94). There, all the states of the module are system states, and the forrpula should hold in all compo-
sitions that contain the module as a component.

79

states), then M satisfies 1. The problem of deciding whether M = 1 is the usnal model-checking
problem [CE81, QS81]. Let A — B denote that A implies B but B does not necessarily imply A. It
is easy to see that

Mo MEY o M, .

Indeed, M =, 1 requires all the trees in exec{ M) to satisfy 1. On the other hand, M |= 9 means that
the tree (T'ns, V) satisfies #. Finally, M &, — only tells us that there exists some tree in exec(M)
that satisfies 1.)

‘We can define module checking also with respect to linear-time specifications. We say that a module
M satisfies an LTL formula ¢ iff M =, Av.

3 Module Checking for Branching Temporal Logics

We have already seen that for branching temporal logics, the model checking problem and the module
checking problem do not coincide. In this section we study the complexity of CTL and CTL* mod-
ule checking. We show that not only the problems do not coincide but also their complexities do not
coincide, and in a very significant manner.

Theorem 1.

(1) The module-checking problem for CTL is EXPTIME-complete.
(2) The module-checking problem for CTL* is 2EXPTIME-complete.

Proof (sketch): We start with the upper bounds. Consider a CTL formula v and aset D C IN with a
maximal element k. Let Ap -, be a Biichi tree automaton that accepts exactly all the tree models of
) with branching degrees in D. By [VW86b], such Ap -, of size O(2%1¥!) exists.

Given a module M = (AP,W,,W.,, R, wq, L}, we define a Biichi tree automaton Ay that ac-
cepts the set of all trees in exec{M). Intuitively, Ay guesses which subtrees of (Tar, Vi) are pruned.
Formally, Ay = (247, D, W, 8, wo, W) where D and § are as follows.

- D =Uyew, {Isucc)} UUuew, {1, -, [succ(w)|}.
- Foreveryw € W, o € 247, and d € D, we have (w;, ..., wq) € 8(w,0,d) iff L(w) = o and
{wy,...,wq} € step(w).

Since the acceptance condition only requires Aps not to get stuck (note that & is partial), it is easy
to see that L(Ap) = exec{M). Since for every environment state w, the set step(w) considers all
possible subsets of succ(w), the size of A4 is exponential in max,,ew, {|succ(w)|}, thus exponential
in the size of M.

By the definition of satisfaction, we have that M k=, % iff all the trees in exec{M) satisfy ¢. In
other words, if no tree in exec(M) satisfies —np, This can be checked by testing £(Aps)NL(Ap -) for
emptiness. Equivalently, we have to test £(.Ap X Ap,-y) for emptiness. By [VW86b], the nonempti-
ness problem of Biichi tree automata can be solved in quadratic time, which gives us an algorithm of
time complexity 20(0MI+#1¥]) We can, however, do better. By [VW86a), the number of states in the
automaton Ap —y is 20(¥1} and is independent of k. Also, the automaton .4, has the same number
of states as M. The fact that the sizes of these automata are exponential in k¥ and M originates from
a special siructure where all subsets of a certain tuple in the transition relation are possible tuples too.
Therefore, the algorithm in [VW86b] can be implemented to test £(Ap X Ap -y) for emptiness in
time polynomial in | M| 21¥1.

The proof is similar for CTL*. Here, following [ES84, EJ88], we have that Ap -y is 2 Rabin tree
automaton with 252" states and 2/%! pairs. By [EJ88, PR89], and again, using the restricted structures

80

of the automata Ap - and Ay, checking the emptiness of L(Aum X Ap —4) can then be done in time
|M|OUD 4 92°0¥0

It remains to prove the lower bounds. To get an EXPTIME lower bound for CTL, we reduce CTL
satisfiability, proved to be EXPTIME-complete in [FL79], to CTL module checking. Given a CTL
formula %, we construct a module M and a CTL formula ¢ such that the size of M is quadratic in
the length of 9, the length of ¢ is linear in the length of v, and ¢ is satisfiable iff M {, —p.

Consider a CTL formula 1. For simplicity, let us first assume that 3 has a single atomic proposition
g. Let n be the number of existential quantifiers in ¢ plus 1. By the sufficient branching-degree prop-
erty of CTL, 1) is satisfiable iff there exists a {@, {q} }-labeled tree of branching degree n that satisfies 3
[Eme90]. Let P, be a clique with n states. By the above,) is satisfiable iff there exists a possibility to
label an unwinding of P,, such that the resulted {0, {¢} }-labeled tree satisfies 4. This simple idea, due
to [Kup95], is the key to our reduction. We define a module M,, such that each tree in ezec(M,) corre-
sponds to a {@, {g}}-labeling of (Tr, , Vp,). We then define ¢ such that there exists a tree satisfying ¢
in exec(M,,) iff there exists a {0, {¢} }-labeling of (T, , Vp,) that satisfies 1. It follows that 1) is satis-
fiable iff M }o, . Let[n] = {1,...,n}.[n} = {1,...,n'}andlet M, = (AP, W,,W,, R, w, L),
where,

AP = {ghost, g}.

- W, =[n].
- W= {n]’ U {heaven,hell }.
S R'= {(Gy) ¢ 0,3 € [} U {1 i € [nl)u

(In] x {heavenhell}) U {{heaven, heaven)} U
{(hellhell }}.

-w=1

~ Forall i € [n], we have L() = @ and L(¢')
{ghost}. Also, L(heaven) = {q} and L{hell)
9.

The reactive module M3

That is, the system states of M,, induce the clique P,. In addition, each system state has a ghost:
an environment state with two successors, one labeled with g and one not labeled with g. Intuitively,
the ability of the ghost i’ to take an environment transition to heaven in My, corresponds to the ability
of a node associated with the state ¢ in (T, Vp,) to be labeled with g. Thus, each tree in exec(M,)
indeed corresponds to a {@, {g}}-labeling of (T’r,, V,}. We now have to define such that when-
ever the formula 1 refers to g, the formula ¢ will refer to EX E X q. Indeed, since heaven is the only
state labeled with g, then a system state satisfies EX E X ¢ iff the transition of its ghost to heaven is en-
abled, In addition, path quantification in ¢ should be restricted to computations of P;,. That is, to paths
that never meet a ghost. To do this, we define a function f : CTL* formulas — CTL* formulas such
that f(£) restricts path quantification to paths that never visit a state labeled with ghost. We define f
inductively as follows.

~ flg=2q

- f(=§) = ~f ().

~ favé) = fl&) Vi)

~ f(EE) = E((G—ghost) A f(£)).
~ f(Ag) = A((Fghost) V £(£))-
- f(X&) =Xf(©).

- f(aU&) = f(E)Uf(&).

81

For example, f(EqU(AFp)) = E({G-ghost) A(qU (A((Fghost)V Fg)))). We can now define ¢
as f(y) with EX EX g replacing q. Note that we first apply f and only then do the replacement. When
1 is a CTL formula, the formula f(v) is not necessarily a CTL formula. Still, it has a restricted syntax:
its path formulas have either a single linear-time operator or two linear-time operators connected by a
Boolean operator. By [BG94], formulas of this syntax have a linear translation to CTL.

When 7 has more than one atomic proposition, the reduction is very similar. Then, for ¢ over
{a1,...,gm}, we have m heavens, one for each atomic proposition, and we associate with each sys-
tem state m ghosts, again, one for each atomic propositions. We can now replace a proposition g; in ¢
with EX EX g; in . The obtained module has n 4+ nm + m + 1 states and it has n? + 3nm + m + 1
transitions.

The proof is the same for CTL*. Here, we do a reduction from satisfiability of CTL*, proved to be
2EXPTIME-hard in [VS85]. 0

We note that the problem of CTL module checking is EXPTIME-complete (and the one for CTL* is
2EXPTIME-complete) even when we restrict ourselves to modules in which all states are environment
states. To see this, note we could have defined M, as the clique F,,, adding a transition from each
state to heaven. We could then force each node of a tree in ezec(M.,,) to have as children at least its n
successors in Py, (this can be enforced by the formula, having {n] as atomic propositions, and having
formulas like AG(1 — EX2 A EX3) conjuncted with the original formula), and replace g in 9 with
EXqin . The price of using only environment states is that now the length of ¢ is quadratic in the
length of 4.

Moreover, module checking for CTL is EXPTIME-complete even for modules of a fixed size. To
see this, note that the size of A, depends on the number of atomic propositions in ¢ and on the mini-
mum branching degree of models of 4. Proving that the satisfiability problem for CTL is EXPTIME-
hard, Fisher and Lander reduce acceptance of a word « by a linear-space alternating Turing machine
to satisfiability of a CTL formula ¥, [FL79]. A somewhat different reduction, which considers a fixed
Turing machine that accepts an EXPTIME-complete problem, results in 9, of length polynomial in
|z|, but with a fixed number of atomic propositions, which, if satisfiable, has models with branching
degree 2. Such ¥, induces, for all z, modules of a fixed size.

4 The Program Complexity of Module Checking

When analyzing the complexity of model checking, a distinction should be made between complexity
in the size of the input structure and complexity in the size of the input formula; it is the complexity in
size of the structure that is typically the computational bottleneck [LP85]. In this section we consider
the program complexity [VW86a)] of module checking; i.e., the complexity of this problem in terms of
the size of the input module, assuming the formula is fixed. It is known that the program complexity
of LTL, CTL, and CTL* model checking is NLOGSPACE [VW86a, BVW94]. This is very signifi-
cant since it implies that if the system to be checked is obtained as the product of the components of a
concurrent program (as is usually the case), the space required is polynomial in the size of these com-
ponents rather than of the order of the exponentially larger composition.

We have seen that for CTL and CTL*, module checking is much harder than model checking. We
now claim that when we consider program complexity, module checking is still harder.

Theorem 2. The program complexity of CTL and CTL* module checking is PTIME-complete.

Proof (sketch): Since the algorithms given in the proof of Theorem 1 are polynomial in the size of
the module, membership in PTIME is immediate.

‘We prove hardness in PTIME by reducing the Monotonic Circuit Value Problem (MCV), proved
to be PTIME-hard in [Gol77], to module checking of the CTL formula E Fp. In the MCV problem,

82

we are given a monotonic Boolean circuit a (i.e., a circuit constructed solely of AND gates and OR
gates), and a vector (21, ..., Z) of Boolean input values. The problem is to determine whether the
outputof ¢ on {z3,...,Tn) is 1. '

Let us denote a monotonic circuit by a tuple & = (Gv, Gz, Gin, gout, T'), where Gy is the set of
AND gates, G3 is the set of OR gates, G, is the set of input gates (identified as gy, ..., gn), Gour €
Gv U G3 U G,y is the output gate, and T C G x G denotes the acyclic dependencies in a, that is
{g,4") € T iff the output of gate ¢' is an input of gate g. ,

Given a monotonic circuit & = (G, Gz, Gin, our, T} and an input vector X = (z1,...,z,), we
construct a module M, x = ({0,1}, Gy, G3 U Gip, R, gout, L), where

~R=Tu{{g,9): 9 € Gin}-
~ For g € Gy UG3, we have L{g) = 1. For g; € G4y, we have L(g;) = z;.

Clearly, the size of M x is linear in the size of ar. Intuitively, each tree in exec(M, x) corresponds
to a decision of o as to how to satisfy its OR gates (we satisfy an OR gate by satisfying any nonempty
subset of its inputs). It is therefore easy to see that My« = EFQiff thereexistsno V € ezec{ M, x)
such that V' |= AG1, which holds iff the output of ¢ on « is 0. o

Recall that for a CTL formula), checking that a module M satisfies 3 reduces to testing emptiness
of the automaton A s x Ap . Checking nonemptiness of a Biichi tree automaton can be reduced to
calculating a p-calculus expression of alternation depth 2 [Rab69, VW86b]. As such, it can be imple-
mented, using symbolic methods, in tools that handle fixed-point calculations (e.g., SMV [BCM190,
McM93]).

5 Pragmatics

How bad is our news? In this section we show that from a pragmatic point of view, it is not thar bad. We
show that in the absence of existential quantification, module checking and model checking coincide,
and that in the case where there is only a limited use of existential quantification, module checking can
still be done in linear time.

5.1 Module Checking for Universal Temporal Logics

Lemma 3. For universal branching temporal logics, the module checking problem and the model check-
ing problem coincide.

Proof: Given a module M and a VCTL* formula ¢, we prove that M k=, ¢ iff M = ¢. Assume
first that M |=, %. Then, all trees in exec(M) satisfy 1. Thus, in particular, (Tas, Vi) satisfies ¢p and
M = v, Assume now that M = 4. The relation {{w, w) : w € W} is a simulation relation between
any tree in ezec{M) and M. Therefore, by [GL94], all trees in exec(M) satisfy 9, and M =, ¢. O

Theorem 4 now follows from the known complexity results for VCTL and VCTL* model checking
[CES86, SC85, BVW94].

Theorem 4.

(1) The module-checking problem for YCTL is in linear time,
(2) The module-checking problem for VCTL* is PSPACE-complete.
(3) The program complexity of module checking for VCTL and VCTL* is NLOGSPACE-complete.

It follows from the above theorem that the module-checking problem for LTL is PSPACE-complete
and its program complexity is NLOGSPACE-complete.

83

5.2 Module Checking of “Possibly” and “Always Possibly” Properties

We have seen that, for each fixed CTL formula 1, checking that a module M satisfies 1 can be checked
in time polynomial in the size of M. Sometimes, we can do even better. Some CTL formulas have a
special structure that enables us to module-check them in time linear in the size of M. In this section
we show that “possibly” and “always possibly” properties, by far the most popular properties specified
in CTL and not specifiable in VCTL, induce such formulas.

Consider the CTL formula E F'send. The formula states that it is possible for the system to eventu-
ally send a request. We call properties of this form possibly properties. Consider now the CTL formula
AGEFsend. The formula states that in ali computations, it is always possible for the system to even-
tually send a request. We call properties of this form always possibly properties. It is easy to see that
possibly and always possibly properties can not be specified in linear temporal logics, nor in universal
branching logics [EH86].

Theorem 5. Module checking of possibly and always possibly properties can be done in linecr run-
ning time.

Proof (sketch): We describe an efficient algorithm that module-checks these properties. For simplic-
ity, we assume that system and environmernt states are labeled with atomic propositions s and e, respec-
tively. Consider amodule M = (AP, W,, W., R, wo, L} and a propositional assertion £. By definition,
M =, EFE iff there exists no tree {T, V) € ezec(M) all of whose nodes satisfy —~¢. We say that a
state w € W is safe iff such a tree {T', V) can not have w as its root. We check that M =, EFE by
checking that wy is safe. In order to be safe, a state w should satisfy one of the following:

L wkeE,

2. w is a system state that has a safe successor, or
3. w is an environment state all of whose successors are safe.

Consider the monotone function f : 2% - 2V where f(y) = £V (s AEXy) V (e A AXy). It
can be shown that w is safe iff w is in the least fixed-point of f. Therefore, we have that w is safe iff
w b= py.&V (s N EXy)V (e A AXy). Hence,

ME,EF§E & M= uytV(shEXy)V (en AXy).

Now, M k=, AGEF iff there exists no tree (T, V) € ezec(M) such that {T', V) has a subtree
(T, V') all of whose nodes satisfy —¢. We can therefore check that M k=, AGEF¢ by checking that
all the reachable states in M are safe. Hence,

ME, AGEFES M Eveluy.v (sAEXy) V(e AAXy)AAXz.

So, we reduced module checking of possibly and always possibly properties to model checking of
an alternation-free p-calculus formula. As the latter can be done in linear running time [Cle93], we are
done.

m}

Again, as our algorithms involve at most two simple fixed-point computations, they can be easily im-
plemented symbolically.

‘What about the space complexity of checking these properties? Is there a nondeterministic algo-
rithm that can check always possibly properties in logarithmic space? As the formula we used proving
Theorem 2 is EF£, the answer for possibly properties is no. Unsurprisingly, this is also the answer for
the more complicated always possibly properties, as we claim in the theorem below.

Theorem 6. Module checking of possibly and always possibly properti‘es is PTIME-complete.

84

Proof (sketch): Membership in PTIME follows from Theorem 5. To prove hardness in PTIME, we
do the same reduction we did for CTL. For EF¢, we need no change. For AGE F¢ we do the following
change. Instead a self loop, each state associated with an input gate now has a transition to the initial
state gous. Let us call the resulted module M, . Itis easy to see that M, , k=, AGEFO iff there exists
no V € ezec(M],) such that V |= EF AG1, which holds iff the output of - on z is 0. o

6 Discussion

The discussion of the relative merits of linear versus branching temporal logics is almost as early as
these paradigms [L.am80]. We mainly refer here to the linear temporal logic LTL and the branching
temporal logic CTL. One of the beliefs dominating this discussion has been “while specifying is eas-
ier in LTL, model checking is easier for CTL”. Indeed, the restricted syntax of CTL limits its expres-
sive power and many important behaviors (e.g., strong fairness) can not be specified in CTL. On the
other hand, while model checking for CTL can be done in time O(|P| * |¢|) [CES86], it takes time
O(|P|*2'¥}) for LTL [LP85]. Since LTL model checking is PSPACE-complete [SC85}, the latter bound
probably cannot be improved. The attractive complexity of CTL model checking have compensated
for its lack of expressive power and branching-time model-checking tools that can handle systems with
more than 10120 states [Bro86, McM93, C(GL93] are incorporated into industrial development of new
designs [BBG*94].

If we examine the history of this discussion more closely, we found that things are not that simple.
On the one hand, the inability of LTL to quantify computations existentially is considered by many a
serious drawback. In addition, the introduction of fair-CTL [CES86} and of many other extensions to
CTL [Lon93, BBGt94, BG94), have made CTL a basis for specification languages that maintain the
efficiency of CTL model checking and yet overcome many of its expressiveness limitations. On the
other hand, the computational superiority of CTL is also not that clear. For example, comparing the
complexities of CTL and LTL model checking for concurrent programs, both are in PSPACE [VW86a,
BVW94]. As shown in [Var95, KV95], the advantage that CTL enjoys over LTL disappears also when
the complexity of modular verification is considered.

In this work we questioned the computational superiority of the branching-time paradigm further.
We showed that when reasoning about open systems, the complexity of CTL model checking is actually
higher than that of LTL. Our results are summarized in the table below. All the complexities in the table
denote tight bounds.

program program
complexity |complexity
model module of model of module
checking |checking |checking checking satisfiability
LTL |[PSPACE |PSPACE |NLOGSPACE[NLOGSPACE|PSPACE

[SC85] [VW386b] [SC85]
CTL linear-time|[EXPTIME |NLOGSPACE|PTIME EXPTIME
[CES86]) [BYW94] [FL79]
CTL* ||PSPACE [2EXPTIME|NLOGSPACEPTIME 2EXPTIME
[EL8S] [BYW94j [EJ88, V585]
VYCTL [llinear-time|linear-time |NLOGSPACENLOGSPACE|PSPACE
[CES86]) [BVW94] [KV95]
EF¢ linear-time/|linear-time {NLOGSPACE|PTIME NPTIME

AGEFE|jICES86] [BYW94] [GI79]

85

Acknowledgments. We are grateful to Martin Abadi and Pierre Wolper for fruitful discussions on the
verification of reactive systems.

References

[ASSSV94] A. Aziz, T.R. Shiple, V. Singhai, and A L. Sangiovanni-Vincentelli. Formula-dependent equiv-

{(BBG194]}

[BCM™90]

[BG94]

[Bro86]

[(BVW94]

[CE81]

[CESS6]

{CGL93]

[Cle93]

[EH86]

[EJ88]

[EL85]

[Eme90]

[ES84]

[FL79]

[Flo67]

[FZ88]

alence for compositional CTL mode} checking. In Proc. 6th Conf. on Computer Aided Verifica-
tion, volume 818 of Lecture Notes in Computer Science, pages 324-337, Stanford, CA, June 1994.
Springer-Verlag.

1. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Yoeli. Methodology and system for practi-
cal formal verification of reactive hardware. In Proc. 6th Workshop on Computer Aided Verification,
volume 818 of Lecture Notes in Computer Science, pages 182-193, Stanford, June 1994,

J.R. Burch, EM. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model checking:
10 states and beyond. In Proceedings of the 5th Symposium on Logic in Computer Science, pages
428--439, Philadelphia, June 1990.

0. Bernholtz and O. Grumberg. Buy one, get one free !!! In Proceedings of the First International
Conference on Temporal Logic, volume 827 of Lecture Notes in Artificial Intelligence, pages 210~
224, Bonn, July 1994. Springer-Verlag.

M.C. Browne. An improved algorithm for the automatic verification of finite state systems using
temporal logic. In Proceedings of the First Symposium on Logic in Computer Science, pages 260~
266, Cambridge, June 1986.

O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time model
checking. In D. L. Dill, editor, Computer Aided Verification, Proc. 6th Int. Conference, volume 818
of Lecture Notes in Computer Science, pages 142-155, Stanford, June 1994. Springer-Verlag, Berlin.
E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using branch-
ing time temporal logic. In Proc. Workshop on Logic of Programs, volume 131 of Lecture Notes in
Computer Science, pages 52-71. Springer-Verlag, 1981.

E.M. Clarke, E.A. Emerson, and A.F. Sistla. Automatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Transactions on Programming Languages and Systems,
8(2):244-263, January 1986.

E.M. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent systems. In
J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Decade of Concurrency — Reflections
and Perspectives (Proceedings of REX School), Lecture Notes in Computer Scierce, pages 124-175.
Springer-Verlag, 1993.

R. Cleaveland. A linear-time model-checking algorithm for the alternation-free modal u-calculus.
Formal Methods in System Design, 2:121-147, 1993,

E.A. Emerson and J.Y. Halpern. Sornetimes and not never revisited: On branching versus linear time.
Journal of the ACM, 33(1):151-178, 1986.

E.A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In Proceedings
of the 29th IEEE Symposium on Foundations of Computer Science, White Plains, October 1988,
E.A. Emerson and C.-L. Lei. Temporal model checking under generalized fairness constraints. In
Proc. 18th Hawaii International Conference on System Sciences, Hawaii, 198S.

E.A. Emerson. Temporal and modal logic. Handbook of theoretical computer science, pages 997-
1072, 1990.

E.A. Emerson and A. P. Sistla. Deciding branching time logic. In Proceedings of the 16th ACM
Symposium on Theory of Computing, Washington, April 1984.

M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs. J. of Computer and
Systems Sciences, 18:194-211, 1979,

R.W. Floyd. Assigning meaning to programs. In Proceedings Symposium on Applied Mathematics,
volume 19, 1967.

M.J. Fischer and L.D. Zuck. Reasoning about uncertainty in fault-tolerant distributed systems. In
M. Joseph, editor, Proc. Symp. on Formal Technigues in Real-Time and Fault-Tolerant Systems, pages
142-158. Springer-Verlag, 1988.

[GI79]
[GL94]
[Gol77]
[Hoa69]
[Hoa85]
[HP85]

[Kup95]

[KV95]

[Lam80]

[Lar89}

[Lon93]

[LP85]

[LT88]
{McM93]
[MP92]
[Pnu77]
[PR89] -

[Qsei]

[Rab69]
[SC85]
[Var95]
[Vs85)

[VW86a]

[VWg6b]

86

M. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
compléteness. W. Freeman and Co., San Francisco, 1979.

O. Grumberg and D.E. Long. Model checking and modular verification. ACM Trans. on Program-
ming Languages and Systems, 16(3):843-871, 1994,

L.M. Goldschlager. The monotone and planar circuit value problems are log space complete for p.

SIGACT News, 9(2):25-29, 1977.

C.AR. Hoare. An axiomatic basis of computer programming. Communications of the ACM,
12(10):576-583, 1969,

C.A.R. Hoare. Co icating Seq jal Processes. Prentice-Hall, 1985,

D. Harel and A. Pnueli. On the development of reactive systems. In K. Apt, editor, Logics and
Models of Concurrent Systems, volume F-13 of NATO Advanced Summer Institutes, pages 477-498.

Springer-Verlag, 1985.

O. Kupferman. Augmenting branching temporal logics with existential quantification over atomic
propositions. In Computer Aided Verification, Proc. 7th Int. Workshop, pages 325-338, Liege, July
1995.

0. Kupferman and M.Y. Vardi. On the complexity of branching modular model checking. In Proc.

6th Conferance on Concurrency Theory, pages 408-422, Philadelphia, August 1995.

L. Lamport. Sometimes is sometimes “not never” - on the temporal logic of programs. In Proceed-

ings of the 7th ACM Symposium on Principles of Programming Languages, pages 174-185, January
1980.

K.G. Larsen. Modal specifications. In Automatic Verification Methods for Finite State Systems, Proc.

Int. Workshop, Grenoble, volumme 407, pages 232246, Grenoble, June 1989. Lecture Notes in Com-

puter Science, Springer-Verlag.

DE. Long. Model checking, abstraction and camposztzanal verification. PhD thesis, Carnegie-

Mellon University, Pittsburgh, 1993,

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear
specification. In Proceedings of the Twelfth ACM Symposium on Principles of Programming Lan-
guages, pages 97-107, New Orleans, January 1985.

K.G. Larsen and G.B. Thomsen. A modal process logic. In Proceedings of the 3th Symposium on
Logic in Computer Science, Edinburgh, 1988.

K.L. McMillan. Symbolic model checking. Kluwer Academic Publishers, 1993,

Z. Manna and A. Pnueli.. Temporal specification and verification of reactive modules. 1992,

A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symposium on Foundation of Com-

puter Science, pages 46-57, 1977.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the Sixteenth
ACM Symposium on Principles of Programming Languages, Austin, Januery 1989,

1.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In Proc. 5th
Int’l Symp. on Programming, volume 137, pages 337--351. Springer-Verlag, Lecture Notes in Com-

puter Science, 1981.

M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction of the
AMS, 141:1-35, 1969.

A P. Sistlaand EM. Clarke. The complexity of propositional linear temporal logic. J. ACM, 32:733~
749, 1985.

M.Y. Vardi. On the complexity of modular model checking. In Proceedings of the 10th IEEE Sym-

posium on Logic in Computer Science, June 1995,

M.Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal logics of programs. In
Proc 17th ACM Symp. on Theory of Computing, pages 240251, 1585.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In
Proceedings of the First Symposium on Logic in Computer Science, pages 322-331, Cambridge, June
1986.

M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs. Journal of
Computer and System Science, 32(2):182-221, April 1986.

Automatic Verification of Parameterized
Synchronous Systems*

(Extended Abstract)

E. Allen Emerson and Kedar S. Namjoshi

Department of Computer Sciences,
The University of Texas at Austin, U.S.A.

Abstract. Systems with an arbitrary number of homogeneous processes
occur in many applications. The Parameterized Model Checking Problem
(PMCP) is to determine whether a temporal property is true of every size
instance of the system. We consider systems formed by a synchronous
parallel composition of a single control process with an arbitrary number
of homogeneous user processes, and show that the PMCP is decidable for
properties expressed in an indexed propositional temporal logic. While
the problem is in general PSPACE-complete, our initial experimental
results indicate that the method is usable in practice.

1 Introduction

Systems with an arbitrary number of homogeneous processes occur in many
contexts, especially in protocols for data communication, cache coherence, and
classical synchronization problems. Current verification work on such systems
has focussed mostly on verifying correctness for instances with a small number of
processes. This does not indicate whether larger size instances are error-free, and
so does not guarantee correctness in general. We are thus interested in methods
that verify correctness for arbitrary size instances. Even though sometimes there
is indeed a specific upper bound on the number of processes in a system, verifying
such large size instances is intractable because of state explosion.

The general problem, then, is the Parameterized Model Checking Problem
(PMCP): to determine whether a temporal property is true of every size instance
of the the system. This is known to be undecidable in general [AK 86, Su 88];
however, it is decidable algorithmically for restricted classes [GS 92, EN 95],
and there are methods with some degree of automation [Lu 84, ShG 89, KM 89,
WL 89, V 93, CGJ 95]. This previous work (with the exception of [KM 89]) was
oriented toward asynchronous systems.

We propose a fully automated approach to the PMCP for synchronous sys-
tems. We consider synchronous systems with a unique control process and an
arbitrary number of homogeneous user processes. Each system is thus parame-
terized by the number of user processes. The processes are specified by labeled
transition graphs, in which guards on each transition check the state of the con-
trol process as well as certain conditions on the global state. The correctness
properties are expressed in an indexed propositional branching temporal logic,
and are of the following types:

* This work was supported in part by NSF grant CCR 9415496 and SRC Contract
95-DP-388. The authors can be reached at emerson, kedar@cs.utexas.edu and at
http://www.cs.utexas.edu/users/{emerson, kedar}.

88

1. Over the control process : formulae of the form Ah and Eh, where h is a
linear-time formula with atomic propositions over control process states,

2. Over all user processes: A; Ah(7) , and A, Ehgi), where h(1) is a linear-time
formula with atomic propositions over control process states, and over user
process states indexed with 3.

3. Over every distinct pair of user processes : /\#j Ah(4,5), and /\i# Eh(i, j),

where h(4, §) is a linear-time formula with atomic propositions over control
process states, and over user process states indexed with either ¢ or j.

We show that the PMCP for the first type of formulae is decidable for this
class of systems, and is PSPACE-complete. This decidability result is based on
constructing an abstract graph in which every computation of every size instance
of the system 1s represented by some path in the graph. However, the abstract
graph may have “bad” paths that do not correspond to computations of any
size instance. The heart of the algorithm is a method for identifying good paths
1n the abstract graph. This algorithm can be implemented in space polynomial
in the size of the control and user processes. We show by a generic reduction
that the PMCP is PSPACE-hard. As a result of the symmetry inherent in the
system, the PMCP for the other types of formulae reduces to the PMCP for the
first type. We have implemented this algorithm in SMV [McM92] and used it to
check correctness of a bus arbitration protocol. Our initial experimental results
indicate that the algorithm should be useful in practice.

Section 2 defines the system model and the logic used for expressing cor-
rectness properties. Section 3 describes the abstract graph representation, and
Section 4 the algorithm for the PMCP for formulae of type (1). Section 5 shows
the reduction of the PMCP for formulae of types (2) and (3) to the PMCP for
formulae of type (1). Section 6 describes our 1implementation of the algorithm,
and the application to the bus protocol. Section 7 concludes the paper with a
discussion of related work.

2 The system model and logic

We refer to the collection of system instances formed by control process C and
copies of a generic user process U as a (C,U) family. The control and user
processes are specified as finite-state labeled transition graphs. We use the terms
“process” and “labeled transition graph” interchangeably. For a process P, let
Sp denote its set of states, Rp its transition relation, and ¢p its initial state?.

The system instance of size n is a synchronous parallel composition of C with
n copies of process U, and is denoted as C || U™ = C || U1 || Ug... || Un. U; is
the sth copy of U, which is obtained from U by uniformly subscripting the states
of U with 1 as shown in the example below 3:

3i, A; -~3i, A; K a

FIG la: The control process FIG 1b: The generic user process FIG lc: The ith user process

2 The results of this paper carry over for processes with a set of initial states.
% In this example, C has initial state K, and U has initial state I. Atomic propositions
are identified with state names.

89

Thus for all 4, j, U; and U; are isomorphic up to re-indexing. Transitions in
both C and U; are labeled with guards. Every guard is a boolean combination
of users conditions, which have the form (3 £(5)), where £(i) is a boolean
expression formed from atomic propositions over the states of C'; and over the
states of U;. 4

Gn denotes the global state transition graph of the instance of size n. A state
s of G, is written as an (n + 1)-tuple (¢, uy,...,v,), where ¢ is the local state
of C, and the (i + 1)’th component of the tuple is the local state of U; (for
i € [1..n]). The (i + 1;"5}1 component of s is denoted by s(7). The initial state of
Gn is (e, (4u)1, ..., (tw)n)- A transition (s,t) is in G, iff

1. A transition of C from s(0) to (0) is enabled in s, and
2. For all i € [1..n], a transition of U; from s() to #(z) is enabled in s.

where a transition in a process is said to be enabled in a global state iff the
corresponding guard is true when evaluated in that global state. We write s = g
iff guard g is true in the global state s. s = (3¢ £(4)) iff for some k € [1..n], E(k)
is true given the propositions that hold at s(0) (the control state), and s(k) (the
state of process Uy). Boolean operators are handled in the standard manner. For
a global state s, and state a € Sy, we let #a(s) = |{i|: € [1..n] A s(f) = a;}]
(i.e., #a(s) is the number of user processes with local state a of the generic user
process).

PL’lzL is the standard propositional linear témporal logic built up from atomic
propositions, boolean connectives, and temporal operators G (always), F (some-
time), X (next time), and U (unti]{ [Pn 77, MP 92]. CTL* is a branching tempo-
ral logic which extends PLTL by allowing the path quantifiers A (for all fullpaths)
and E (for some fullpath). Many interesting correctness properties of parame-
terized systems can be expressed in one of the following forms:

1. Over the control process : formulae of the form Ah and Eh, where h is a
linear-time formula with atomic propositions over control process states,

2. Over all user processes: A; Ah(7) , and A; EA(3), where k(%) is a linear-time
formula with atomic propositions over control process states, and over states
of U indexed with 1.

3. Over all distinct pairs of user processes : A;.. Ah(3, j), and Niz; ER(E, 5),

where h(i, j) is a linear-time formula with atomic propositions over control
process states, and over states of U indexed with either i or j.

The formal semantics of these logics is defined in the usual way [Em 90, BCG 89,
ES 95], and we write M, s |= f to mean that formula f is true in structure M
at state s.

3 The abstract model

For a given (C,U) family, we construct an abstract process .A which includes
all computations of every size instance of the family. Intuitively, a state (c, S)
of A represents any global state in which the control process is in state c, there
is at least one user process in every user state in .S, and no user process is in a

* There are two interesting special cases : (a) The guards in U; involve only propositions
over states of C'. The control process may then be viewed as controlling the execution
of the user processes. (b) The control process is a copy of the user process, and can be
written as Us. Then C || U™ is isomorphic to U™*?. Our method applies in general,
but often finds interesting application in these special cases.

90

state in Sy \S. Transitions from a state (c, S) represent transitions enabled from
global states that are represented by (c,S). Each such transition has a label
which represents moves of individual processes.

Formally, let A = 25U%Sv\{@} be the set of edge labels. A is defined by a
labeled transition graph, where

1. Sa = Sc x (257\{0}) is the set of states,
2. R4 C S4 x A xSy is the set of trans1t10ns
3. 14 = (tc, {tr}) is the initial state.

To make the correspondence between global states and abstract states precise,
we define families of abstraction functions {¢;}, {¢;}, where ¢,, : Sg, = S, and
Yy : Sg, x Sg, — A. For astate s € Sg_, qﬁn(s) = (s(0), {a|(31€[1 n]'s ()
a,)}), and for a pair (s,1), ¢n(s,t) = {(a b) ! Ji e [1. n] s(i) = a; AL(1) = b;}.
Then (¢, S) represents s € G, iff (¢, S) =

For a guard g, and state (¢, S) of A, we deﬁne (c,9) |- gas(c,ur,...,u) E
g, where S = {u...v} (for some ordering u . .. v of the elements of §) and |S| =
The following proposition relates |= and H-—

Proposition1. For any n, and any s € G,,, if (¢, 5) = ¢a(s), then for every
guard expression g, s |= ¢ zﬂ‘ (e, S)]] — . o

The set of transitions is defined as follows: A tuple ((c, S), X, (¢/,5")) € Ra
iff

1. @peDd €Ren(c,S)||~ p) (A transition from ¢ to ¢ is enabled for the
control process),

2. (Va,b (a,b) € X = a€SAbeESABgadbe RuAle,S)]|~ q). (For
every pair (a,b) in X, there is an enabled transition from a to b in the user
process).

3. X is total on S, and X~ is total on §', (Every state in S has a successor
‘in ', and every state in S’ has a predecessor in S).

Definition2, A pathin G, is a sequence of states such that adjacent states are
in the global transition relation of G,,. o

Definition3. A path in A is a sequence starting at a state, with alternating
states and transition labels such that for every s,5' € §4 and X € A, sXs'
occurs in the sequence only if (s, X, s') € Ra. 0

Define a family of functions {7} such that v, maps from paths in G, to paths
in A by (711(‘7) Jai = ‘i’n(%) and ("Yn()92@4-1 = Tpn(”n 0':-}-1) foralli € N.

Proposition4. For every path o in Gy, v, (o) is a path in A. O

It follows from Proposition 4 that if A satisfies a linear temporal formula over
all paths, then so does every size instance of the family. However, if the formula
is false for some path in 4, it does not follow that it 1s false for some instance,
as not every path in A arises from a corresponding path in some instance; those
that do are called “good”.

Definition5. A path pin A is good ff In Jo € G, v, (7) = p.]

Definition6. A path ¢’ in §; covers a path o in G; (i > j) iff yi(¢') = v;(o),
and for every k € N, a € U, #a(o}) > #a(ow). a

91

Lemma 7. (Covering Lemma) For n' > n, every path in G, has a covering path
n g,./.

Proof

Let o be a path in G,,. Define ¢’ in G,,+ by the following: o} (0) = 0%(0), and
for ¢ € [1..n], o} (i) = a;, where a is such that if i mod n # 0, then o (i mod n) =
@i modn, and and if i mod n = 0, then ok (n) = a,. v

1t follows that ¢,:(0},) = ¢n{ok), and that Fa(o}) > #a(ox) foralla € U.
To complete the proof, we need to show that ¥n: (0%, 0ky1) = ¥n(0k, Ok41)-
Since {0k, 0k+1) is a transition of G,,, there exist guards p,q1,...¢n, such that

7%(0) B 0441(0) is the transition of the control process, and oy (i) L opya(d) is
the transition of process U, for i € [1..n]. As ¢,.:(0}.) = ¢n(0%), from Proposition
1, transition ¢; is enabled for user processes with indices j = i (mod n) in ¢},.
The resulting state is o, ;. It follows that ©n:(0%, 0% 1) = ¥n{0k, 0k+1), and so
o' is a path of G, that covers ¢. 0o

Lemma8. Every finite path of A is good.

Proof

The proof is by induction on the number of states in the path. Suppose the
path is a single state s. Let s = (¢, 5), and. let n = |S|. Consider the state
7 = (¢, u1,...vp) in G,, where S = {u...v}. As ¢,(r) = s, the claim is true of
paths with one state. Suppose that it is true for all paths with at most m states,
for m > 1, and let p be a path with m + 1 states. Then, p = p' Xt, where if s
is the last state in g, then (s, X,?) € R4. By inductive hypothesis, for some n’,
there is a path ¢’ € G,/ such that v,/ (0’) = p’. Let v’ be the last state in o’.

For each a € U, let my = |{b | (a,b) € X}|. If for some a, m, > #a(r'), one
can construct a path covering ¢’ such that if u is the final state on that path,
then mq < #a(u). Repeating this construction for each user state a for which it
is necessary, we obtain, for some n, a path o in G,, such that o covers o', and
for every a, m, < #a(r), where r is the last state on 0.

As m, < #a(r) for each a, one can associate at least one index i € [1..n] with
each pair (a,b) in X. For every pair (a,b) in X, there is an enabled transition
from a to b in the user process. Thus, there is a state u € G,, generated by
performing the enabled transition from a; to b; in each process U; where index
7 is associated with the pair (a,?), and the enabled transition for the control
process. It is easy to verify that ¢,(u) = ¢, and hence, ou is a path in G, such
that v, (ocu) = p. 0

4 Verifying properties of the control process

The properties of the control process are of the form Ah or Eh, where A is
a linear-time temporal formula with atomic propositions over the states of C.
To model-check such a property, we follow the automata-theoretic approach of
[VW 86] : To determine if M,:3s = Eh, construct a Biichi automaton By, for h,
and check that the language of the product Biichi automaton of M and Bj is
non-empty (cf. [LP85]). The check for the property Ah is easily reduced to that
for the earlier case by noting that M,y = Ahiff M, p [E=h.

We say that formula Ah is universal iff it is true for every size instance of the
family. To determine if Ah is universal, we model check it over the abstract graph,
by constructing a Biichi automaton B for —h, and forming the product Biichi
automaton M of .4 and B. B accepts a computation o labeled with propositions

92

over states of C iff there is a run of B on & such that a “green” state of B is
entered infinitely often. An accepting path in M is one which starts in an initial
state, and along which a green state occurs infinitely often. For a path § in M,
let d4 be its projection on 4. A path in M is good iff its projection on A is a
good path in A.

Theorem 9. Formula Ah 1s not universal iff there is an accepting good path in

M.

Proof

Suppose § is an accepting good path in M. As é4 is good, for some n, there
is a path in G,, that matches d4 on the sequence of states of C, and is hence
accepted by B. Therefore, Ah is false in G,,, and hence 1s not universal.

In the other direction, if Ah is not universal, then for some n, there is a path
o in G, from the initial state that is accepted by B. From Lemma 4, v,(0) is a
path in A, which is good by construction. The sequence of states of C' in v, (o)
is the same as in o, hence there is a run of B on +,(o) that forms an accepting
good path in M. 4

4.1 Finding accepting good paths in M

From Theorem 9, to determine if Ah is not universal, we have to check if there
is an accepting good path in M. The following lemmas provide the basis for a
PSPACE algorithm to check universality.

For a cycle § in M, we say that § is good iff the infinite path 6 is good.

Lemma 10. There is an accepting good path in M iff there are finite paths «
and 3 in M, such that

1. o is a path from the initial state to a green state s, and
2. 3 is a good cycle starting at s. |

Intuitively, a cycle in M is good if, starting at some global state which maps to
a state in the cycle, there is no transition i1n that cycle that causes the count of
processes in a specific local state to be “drained” (1.e. decreased monotonically)
as the sequence of transitions along the cycle is executed repeatedly. For example,
a self-loop with the transition label {(a,b)} will decrease the count of processes
in state a with every execution of the transition, while one with transition label
{(a, b), (b, a)} may not. Notice that in the latter case, there is acyclea > b — a

in the transition label considered as a graph. This presence of cycles in the
transition labels is the intuition behind the characterization of good cycles of

Xy = {(4,C}, (4, D), (B, D)}
Ng Ny Na

(&, {I}) o= (I, 2). (1, B) (L, {4, B})| X2 ={(4,C0(B. D)} | (K, {c, D})

X3 = {(C, 4), (D, B)}
FIG 2 : A portion of the abstract graph for the example in FIG 1.

To determine if such cycles are present, we resolve a cycle in M into a
“threaded graph” (cf. [ES 95]) which shows explicitly which local user state in
an abstract state is driven into which other local user state in the next abstract
state. This information is obtained from the transition label. The threaded graph
is defined below:

93

Definition11. Threaded Graph

Let § be a finite path in M with m states. Let the ith state of § be called
s;, and the ith transition be called X;. For a state s = ({c,5),u) of M, let
Ustates(s) = S. Define H; to be the following graph :
V(Hs) = {(x,7) |1 € [1.m] Az € Ustates 53}
E(H;s) = (l‘,l),(y,l+1) IiE[l..m—l/\(l‘,y)EX,'
If § is a cycle, define G to be the graph where V(G;) = V(H;), and E(Gs) =
E(Hs)U {((z,m),(z,1)) | € Ustates(s;)}. Note that for a cycle 4, s1 = sm.
A graph is isolated 1iff its edge set 1s empty. For any directed graph G, let
mazscc(G) be the graph representing the decomposition of G into its maximal
strongly connected components (scc’s).
V(mazsce(G)) = éC | C'is a mamimal strongly connected component of G}
E(mazscc(G)) = {(C,D)|3s € C,t € D (s,t) € E(G)}
We refer to vertices of mazsce(G) as max-scc’s. It is a fact that mazscc(G
is acyclic for any graph G. For any max-scc D in mazscc(G), define max-scc
to be above D if there is a path in mazsce(G) from C to D. 0

The following figure shows the threaded graphs for the cycles Ny et Ny Ly 1
and N, ?—(3 N, X Nj in figure 2:

U L B) fan g s

e ———— e —
(B 222 B LB By (B3

FIG 3a : Threaded graph Gy for the first cycle FIG 3b: Threaded graph G for the second cycle

Lemma1l2. § is a good cycle in M iff mazscc(Gs) is isolated.

Proof Sketch

(LHS = RHS): Suppose that mazscc(Gs) is not isolated but 4 is good. Hence,
there are max-scc’s C and D such that some pair of vertices (z,1) in C and (y, j)
in D is connected in Gs. For any n, consider an infinite path ¢ in G,, such that
Yn(0) = 8%. We say that a process with index I € [1..n] and local state q; is in
component F' at the kth state in o iff (a, k) € F.

Let m be the number of states in §. Starting with the ith transition in
o, at every mth successive transition, at least one of the processes in C, say
one with index I, must change its local state from z; to g . Thus, the count
of processes in components above D decreases at each such step. As the max-
scc decomposition is acyclic, this number cannot increase. Thus, eventually, the
number of processes in components above D must become negative, which is
impossible as ¢ is infinite. Hence, ¢ is not good.

(RHS = LHS): Suppose that num:.scc(G(;gl 1s isolated. For each max-scc of
G5, construct a cycle in G that includes each edge in that component at least
once. For each a € U, let m, be the number of occurrences of the vertex (a, 1)
in the set of cycles. Let n = Zyepym,. We will construct a path ¢ in G, such
that v, (o) = 6%. The idea behind the construction is to allot a set of processes
for each constructed cycle, and to ensure that each transition of every process is
along the cycle that it is alloted to.

The inductive assumption is that at the ith step (i < m), a path ¢/ has been
constructed such that y,(¢’) is the prefix of §4 up to the ith state, and if s is

94

the last state of ¢/, then #a§s) is the number of occurrences of (a, ¢) in the set of
constructed cycles. Hence, after m steps, the last state s,, 1s a permutation of the
first state s;. Repeating the construction at most n times produces a path o with
last state identical to s1, and such that v, () = 6% . Thus, 7, (%) = (6%)* = 84,
and so 4 is a good cycle, o

For a finite path a with m states in A define @ to be the relation over
Su x Sy where (a,b) € @ iff there is a path from (a, 1) to (b, m) in H,. We say
that relation R is cyclic iff for every edge in the graph of R, there is there is a
cycle in the graph that includes that edge.

Lemma 13. For a cycle § in M, mazscc(Gs) is isolated iff § is cyclic.]

Theorem 14. Formula Ah is not universal iff there is a finite path in M from
an initial state to a green state and a cycle § from that state such that § is cyclic.

Proof Follows from Theorem 9 and Lemmas 12, 13. a

Let L be the maximum length of a guard in C' and U processes. Note that
L<|Cl+1U].

Theorem 15. There is a nondeterministic algorithm to decide if a temporal
property over computations of C is not universal which uses space O(|Sy|? +
log(|Sc||Ssl) + L). The algorithm uses space logarithmic in the size of M.
Proof '

By Theorem 14, a property Ah is not universal iff there is a finite path in M
to a green state and a following cycle & from that state such that 4 is cyclic. The
algorithm “guesses” a path to a green state, and a cycle é from it, recording only
the current state of M, and &’ for the prefix 6’ of § that has been examined. As
(a; X;5) =@o X, § can be computed incrementally.

Recording a state of M takes space (log(|S¢||Ss|) + |Sv|). Computing a suc-
cessor state can be done in space proportional to glog Ss| + log|Sc| + log|Su| + L)
(as this requires checking if (¢, S) || - p for guards p). Storing & takes space |Sy |2,
and checking if § is cyclic can be done within the same space bound. Thus, the
overall space usage is O(|Su|? + log(|Sc||Ss|) + L). i

Remark. There are two special cases where the algorithm can be optimized.
If the user processes are deterministic, every cycle § in M is good (as G5 must
be isolated). If the correctness property is a safety property, the algorithm need
check only finite accepting paths, which are good by Lemma 8. In both cases,
the check for good cycles can be eliminated, which is a substantial saving. O

A reduction from a generic PSPACE Turing Machine shows that checking if
AG=accept 1s not universal is PSPACE-hard.

Theorem 16. Deciding if a property over computations of C' is not universal is
PSPACE-complete.

Corollary 17. Deciding if a property over computations of C 1s universal is
PSPACE-complete.

The algorithm given above for determining if a property is not universal is non-

deterministic and uses polynomial space. So, using Saviich’s construction, there

is a deterministic algorithm with time complexity O(2¢(1Su*+eg(I15cliSs)+L)7)

for some k. We present a “natural” deterministic algorithm with the same worst
« . . 2 .

case time complexity in |Sy|. Let K = |Sp|x 215¢1", The algorithm follows from

this observation:

95

Proposition18. If p is a finite path in M from s to t of length greater than
K, then there is a path § from s tot in M of length at most K such that 5 = 4.

Proof

Define an equivalence relation on states s of p by s; = s; iff s; = s; and
XooXi...Xic1 = XooXy...Xj_1. Clearly there are at most K equivalence
classes. So if the length of p is greater than K, there must be distinct indices
i and j such that s; = s;. Assume that i < j. Then the path p’ formed by
appending the suffix from s; to the prefix up to s; is a path in M that is shorter
than the path p, and is such that o’ = 5. Repeating this construction a finite
number of times produces a path § with the desired properties. o

Theorem 19. There is a deterministic algorithm to determine if a property is
not uniwersal with exponential worst case time complezity in |Sy].

Proof Sketch

From Proposition 18, it suffices to look for cycles (in Theorem 14) of length
at most K. This can be done using an iterative squaring of the transition relation
of M, with overall time complexity exponential in |Sy]|. (!

5 Symmetry reduction

Let = be a permutation over the set {0...n} that fixes 0. For a state s =
{c,u1,...,vn) in Gy, the permuted state 7r() is defined by (7(s))(¢) = a; 1ff
s(m~1(i)) = az-1(s), for i € [0..n]. For example, the state (c,u;, vz, ws) under
the permutation = = {(1 — 2),(2 — 3),(3 — 1)} becomes (c,wy,uz,v3). As
$u(m(s)) = ¢n(s), from Proposition 1, the truth value of any guard is the same
in both s and (s) Hence there is complete symmetry among the user processes
in any size instance of a {C,U)} family, and the PMCP for formulae of type
(2) and (3) reduces that for formulae of type (1). The following lemmas are
based on those in [ES 93, CFJ 93] (cf. [ID 93 Let f(i) be a CTL* formula with
propositions over the states of and over t e states of U indexed with i, and
let f(i,7) be a CTL* formula with propositions over the states of C and over
the states of U indexed with either 7 or j.

Lemma20. Forn>1, Gn,ig, = A, f(3) tff Gn, g, F f(1).

Lemma21. Forn > 2, Gn,ig, = Niy; f(1,5) iff Gny g, F f(1,2).

Let C|U be the process where Sciy = Sc x Sy, and (c, u) pl—’-\)qf (¢, u") € Reyw

iffch € Rcandu3 v € Ry and p sunllarly q') is p () with every global
condition (3i £(i)) replaced w1th 5), where propositions labeled by
0 refer to the state of U in C|U

Theorem 22. A property of the form A; Ah(%) is universal for a (C,U) family
iff Ah(0) is universal for the control process in the family (C|U,U).

Theorem 23. A property of the form N, Ah(i,j) is universal for a (C,U)
family iff AR(0,0') is universal for the control process in the family ((C|U|U),U)

96

6 Applications

We have implemented this algorithm to verify a bus arbitration protocol based
on the SAE J1850 draft standard [SAE 92] for automobile applications. This
is a protocol where many microcontrollers can transmit symbols along a shared
single-wire bus in a car. As a consequence of this restriction, symbols are encoded
by the width of a pulse. Nodes on the bus may begin transmitting different
messages simultaneously; only the node with the highest priority message should
complete transmission after the arbitration process. Symbol 0 has priority over
symbol 1, and priority between messages over the alphabet {0, 1} is determined
lex1cograph1cally The microcontrollers are modeled as user processes, and the
bus as the control process. The property which we have verified, using the result
in Theorem 23, is that whenever two users begin simultaneous transmission of
symbols 0 and 1 respectively, the user transmitting 1 continues transmission
unless it loses arbitration. Hence, messages with lower priority cannot prevail
over higher priority messages.

We implemented the algorithm by generating SMV [McM92] code to describe
the abstract process transitions, given a description of the next-state relation of
the user and control processes. Since the correctness property is a safety property,
we were able to simplify the implementation as described following Theorem 15.
Each user process has about 50 states, while the control process together with
the automaton for the property has about 400 states. Verification took less than
a minute on a SPARC 5. We emphasize that this establishes correctness of the
bus protocol for an arbitrary number of attached microcontrollers.

Y Conclusions and Related Work

A variety of positive results on the PMCP have been obtained previously. All of
them, however, possess certain limitations, which is perhaps not surprising since
the PMCP is undecidable in general (cf. [AK 86],[Su 88]). Many of the methods
are only partially automated, requiring human ingenuity to construct, e.g., a
process invariant or closure process (cf. [CG 87], [BCG 89], [KM 89], [WL 89])
Some could be fully automated but do not appear to have a clearly defined
(f(lj&és of 1]))1~otocols on which they are guaranteed to succeed (cf. [ShG 89], [V 93],

J 95

Abstract graphs (for asynchronous systems) were considered in [ESr 90] for
synthesis, [V 93] for automatic but incomplete verification, and in [CG 87], where
they are called process closures. Interestingly, [CG 87] show (in our notatlon)

that if, for some k, C || U || A is appropriately bisimilar to C || U**! || A, then
it suffices to model check instances of size at most k to solve the PMCP. How-
ever, they do not show that such a cutoff k¥ always exists, and their method is not
guaranteed to be complete. Pong and Dubois [PD 95] propose a similar abstract
graph construction for verification of safety properties of cache coherence proto-
cols. They consider a synchronous model with broadcast actions. Although sound
for verification, their method appears to be incomplete. Lubachevsky [Lu 84]
makes an interesting early report of the use of an abstract graph similar to a
“region graph” for parameterized asynchronous programs using Fetch-and-Add
primitives; however, while it caters for (partial) automation, the completeness
of the method is not established and it is not clear that it can be made fully
automatic.

Our approach, in contrast, is a fully automated, sound and complete one (i.e.,
always generates a correct “yes” or “no” answer to the PMCP). Another such
approach appears in [GS 92]. They also consider systems with a single control

97

process and an arbitrary number of user processes, but with asynchronous CCS-
type interactions. Unfortunately, their algorithm has exponential space (double
exponential time) worst case complexity.

Our framework thus differs from [GS 92] in these significant respects: (a)
the parallel composition operator is synchronous; (b) we permit guards test-
ing “everywhere” conditions (i.e., of the form Vi £(z)); (c) it is more tractable
(PSPACE vs. EXPSPACE)®. Partial synchrony can also be handled in our frame-
work. These factors permit us to represent a wider range of concurrent systems.
For example, the bus protocol described in Section 6 relies on the ability to test
everywhere conditions, which are not permitted in [GS 92]. There is a notewor-
thy limitation in the modeling power of our present framework. Because of the
covering lemma (Lemma 7), an algorithm for mutual exclusion cannot be im-
plemented in our model (cf. [GS 92%’8 control process-free model), even with the
control process. We suspect it is possible to overcome this restriction, and are
working on it.

Finally, it is interesting to note that we can show that for fully asynchronous
computation (interleaving semantics), the PMCP for our model becomes un-
decidable. This is shown by a simple simulation of a two counter machine by
a (C,U) family. Essentially, the zero-test of a two counter machine can be ex-
pressed as an everywhere condition, and increments can be encoded because
precisely one process fires at each step in the computation.

Acknowledgements. We would like to thank Carl Pixley of Motorola for sug-
gesting the bus protocol example, and the referees for bringing [PD 95] to our
attention.

References

[AK 86] Apt, K., Kozen, D. Limits for automatic verification of finite-state concur-
rent systems. IPL 15, pp. 307-309.

[BCG 89] Browne, M. C., Clarke, E. M., Grumberg, O. Reasoning about Networks
with Many Identical Finite State Processes, Information and Computation,
vol. 81, no. 1, pp. 13-31, April 1989.

[CE 81] Clarke, E.:M., Emerson, E.A. Design and Synthesis of Synchronization
Skeletons using Branching Time Temporal Logic. Workshop on Logics of
Programs, Springer-Verlag LNCS 131.

[CES 86] Clarke, E.M., Emerson, E.A., and Sistla, A.P., Automatic Verification of
Finite-State Concurrent Systems using Temporal Logic, ACM Trans. Prog.
Lang. and Sys., vol. 8, no. 2, pp. 244-263, April 1986.

[CFJ 93] Clarke, EM,, Filkorn, T., Jha, S. Exploiting Symmetry in Temporal Logic
Model Checking, 5th CAV, Springer-Verlag LNCS 697.

[CG 87] Clarke, E.M., Grumberg, O. Avoiding the State Explosion Problem in Tem-
poral Logic Model Checking Algorithms, PODC 1987.

[CGJ 95] Clarke, E.M., Grumberg, O., Jha, S. Verifying Parameterized Networks
using Abstraction and Regular Languages. CONCUR 95.

[Em 90] Emerson, E.A., Temporal and Modal Logic, in Handbook of Theoretical
Computer Science, vol. B, (J. van Leeuwen, ed.), Elsevier/North-Holland,
1991.

® On the other hand, for their model of computation with all user processes but no
control process, there is a polynomial time algorithm [GS 92]. We believe that our
PSPACE-completeness result is not an insurmountable barrier to practical utility,
given BDD-based implementations, as suggested in section 6.

[EN 95]
[ES 93]
[ES 95]
[ESr 90]
[GS 92]
[HB 95]
[ID 93]
[KM 89]
[LSY 94]

[LP85)
[Lo 93]
[Lu 84]
[MP 92]
[McM92]
[Pn 77)
[PD 95]

[RS 85]

—

RS 93]

r—

SAE 92)
[ShG 89]

[Su 88]

[Va97?]

[VW 86]

[V 93]

[WL 89)

98

Emerson, E.A., Namjoshi, K.S. Reasoning about Rings. Proc. ACM Sym-
postum on Principles of Programming Languages, 1995.

Emerson, E.A., Sistla, A.P. Symmetry and Model Checking, 5th CAV,
Springer-Verlag LNCS 697.

Emerson, E.A., Sistla, A.P. Utilizing Symmetry when Model Checking un-
der Fairness Assumptions: An Automata-theoretic approach. CAV 1995,
Emerson, E.A., Srinivasan, J. A decidable temporal logic to reason about
many processes. PODC 1990.

German, S.M., Sistla, A.P. Reasoning about Systems with Many Processes.
J.ACM, Vol. 39, Number 3, July 1992.

Hojati, R., Brayton, R. Automatic Datapath Abstraction in Hardware Sys-
tems, CAV 1995.

Ip, C., Dill, D. Better verification through symmetry. Proc. 11th Intl. Symp.
on Computer Hardware Description Languages and their Applications.
Kurshan, R.P.,, McMillan, K. A Structural Induction Theorem for Pro-
cesses, PODC 1989.

Li, J., Suzuki, [., Yamashita, M. Fair Petri Nets and structural induction
for rings of processes. Theoretical Computer Science, vol. 135(2), 1994. pp.
337-404.

Litchtenstein, O., and Pnueli, A., Checking That Finite State Concurrent
Programs Satisfy Their Linear Specifications, POPL 85, pp. 97-107.

Long, D. Model Checking, Abstraction, and Compositional Verification.
Ph.D. Thesis, Carnegie-Mellon University, 1993.

Lubachevsky, B. An Approach to Automating the Verification of Compact
Parallel Coordination Programs 1. Acta Informatica 21, 1984,

Manna, Z., Pnueli, A. Temporal Logic of Reactive and Concurrent Systems:
Specification, Springer-Verlag, 1992.

McMillan, K., Symbolic Model Checking: An Approach to the State Ex-
plosion Problem, Ph.D. Thesis, Carnegie-Mellon University, 1992.

Pnueli, A. The Temporal Logic of Programs. FOCS 1977.

Pong, F., Dubois, M. A New Approach for the Verification of Cache Co-
herence Protocols. JEEE Transactions on Parallel and Distributed Systems,
August 1995.

Reif, J., Sistla, A. P. A multiprocess network logic with temporal and spatial
modalities. JCSS 30(1}), 1985.

Rho, J. K., Somenzi, F. Automatic Generation of Network Invariants for
the Verification of Iterative Sequential Systems. CAV 1993, LNCS 697.
SAE 11850 Class B data communication network interface. Society of Au-
tomotive Engineers, Inc., 1992.

Shtadler, Z., Grumberg, O. Network Grammars, Communication Be-
haviours and Automatic Verification. Springer-Verlag, LNCS 407.

Suzuki, 1. Proving properties of a ring of finite state machines. IPL 28, pp.
213-214.

Vardi, M. An Automata-theoretic Approach to Linear Temporal Logic,
Proceedings of Banff Higher Order Workshop on Logics for Concurrency,
F. Moller, ed., Springer-Verlag LNCS, to appear.

Vardi, M., Wolper, P. An Automata-theoretic Approach to Automatic Pro-
gram Verification, Proc. IEEE LICS, pp. 332-344, 1986.

Vernier, I. Specification and Verification of Parameterized Parallel Pro-
grams. Proc. 8th Intl. Symp. on Computer and Information Sciences, [s-
tanbul, Turkey, pp. 622-825.

Wolper, P., Lovinfosse, V. Verifying Properties of Large Sets of Processes
with Network Invariants. Springer-Verlag, LNCS 407,

HORNSAT, Model Checking, Verification and Games*
(Extended Abstract)

Sandeep K. Shukla! Harry B. Hunt III!
Daniel J. Rosenkrantz!

Department of Computer Science
University at Albany — State University of New York
Albany, NY 12222
Email: {sandeep,hunt,djr}@cs.albany.edu

Abstract. We develop a HORNSAT-based methodology for verification
of finite state systems. This general methodology leads naturally to al-
gorithms, that are local [25, 19], on the fly [28, 11, 13, 5] and incremental
[24]. It also leads naturally to diagnostic behavioral relation checking
[7] algorithms. Here we use it to develop model checking algorithms for
various fragments of modal mu-calculus. We also use our methodology
to develop a uniform game theoretic formulations of all the relations in
the linear time/branching time hierarchy of [27]. As a corollary, we ob-
tain natural sufficient conditions on a behavioral relation p, for p to be
polynomial time decidable for finite state transition systems.

1 Introduction

We consider a number of problems related to the verification of finite state sys-
tems which include model checking for various fragments of modal mu-calculus
[15] and checking behavioral relations [10] with diagnostic information. We out-
line a methodology for solving these problems, based upon efficient local reduc-
tions to satisfiability problems for simple variants of HORN formulas. We use
our methodology to develop local, on the fly and incremental algorithms and to
generate diagnostic information for these problems. Our algorithms are asymp-
totically as efficient as other specific algorithms in the literature for the problems
considered. The desirability of local, on the fly, and incrementel verification al-
gorithms and algorithms for generating diagnostic information has been widely
discussed [28, 5, 7,13, 17, 18,11, 10, 1, 24, 25, 8, 7]. However, previous algorithms
proposed in the literature have only some of these advantages and only apply
to some of the verification problems considered here. Our uniform methodology
combines all these advantages in the same solution. Another advantage of our
methodology is that efficient data structures and algorithms for the appropriate
satisfiability problems for HORN formulas already exist in the literature [12, 3].

Our methodology is based upon efficient local reductions of the problems con-
sidered to the minimal and maximal satisfiability problems, for weakly positive

* This research was supported by NSF Grants CCR-90-06396 and CCR-94-06611.

100

and weakly negative [21] Horn formulas. We call these satisfiability problems
minimal-HORNSAT and maximal-NHORNSAT respectively. In fact, restricted
forms of these Horn formulas are enough for some of the problems. In Sections
2-4, we outline our (N)HORNSAT-based algorithm for model checking, for the
alternation-free modal mu-calculus. We show that this algorithm is a simpli-
fication of the algorithms in [19, 1] involving solutions of systems of Boolean
equations. (Recall that [19] involves consistent and factual solutions of Boolean
equation systems and [1] involves maximal and minimal fixed points of Boolean
equation systems.)

In Section 5, we use our (N)HORNSAT-based methodology to define a class of
games, that includes the characteristic games for each of the behavioral relations
in the linear-time/branching-time hierarchy of [27]. As a corollary, we get natural
sufficient conditions, for a behavicral relation on finite state processes to be
polynomial time decidable.

In [22], we show in details, how our (N)HORNSAT-based methodology can
be used to develop efficient algorithms for diagnostic behavioral relation checking
and model checking for the modal mu-calculus.

The main advantages of our methodology may be summarized as follows.
First, it shows that the underlying combinatorics for a number of verification
problems and their proposed solutions is essentially very simple. Second, it turns
out that an efficient verifier can be based on an implementation whose core con-
sists of a solver for (N)HORNSAT which runs in linear time, which can run
on the fly for space efficiency, and can run incrementally (e.g., using simple
modifications of the incremental HORNSAT algorithms given in {3]). Third, the
fact that efficient solutions for HORNSAT and its variants already exist in the
literature [12, 3] and that many important verification problems are reducible
to those variants of HORNSAT makes the implementation of verification tools
easier. Moreover, 1t relieves the designer of the verifier from the obligation of
reinventing complex data structures which already exist in the literature on
HORNSAT. Many model checking algorithms in the literature involved invent-
ing complex new data structures, whereas existing efficient data structures for
solving variants of HORNSAT are sufficient to obtain the same efficiency. More-
over, this approach leads to modular design, because the efficient implementa-
tion of HORNSAT solver can be delegated to a different designer. In {16} a data
structure for a linear time algorithm for determining functional dependencies
in relational databases [4] was reused to obtain a model checking algorithm for
CTL. It is interesting to note that functional dependency is also reducible to
HORNSAT, and in [3, 2] the same kinds of data structures are used to solve
them in linear time. 2 In [1] the model checking problem for mu-calculus was
reduced to finding fixed points of system of Boolean equations; and complex
graph-based data structures were invented for efficiency. Qur results show that

2 However, (N)HORNSAT captures the essence of these problems more directly and
intuitively. Moreover, efficient data structures for solving (N)HORNSAT are eas-
ily implementable. Also, HORNSAT based methods are directly implementable in
DATALOG.

101

the full power of Boolean equations are not needed to solve these problems.
Fourth, we identified many easiness results in the area of model checking and
verification as a consequence of the corresponding easy instances of NHORN-
SAT. For example, after characterizing special cases of HORNSAT which have
NC algorithms, we could strengthen the results in [29] by characterizing cases
when the model checking problem is in NC.

2 Satisfiability Problem for (N)HORNSAT

We consider special instances of CNT satisfiability problems, namely HORNSAT,
where each clause contains at most one positive literal, and NHORNSAT, where
each clause contains at most one negative literal. We are interested in finding
maximal and minimal satisfying assignment (if one exists) respectively.

An instance of the problem is presented as a pair (X,C), where
X = {zy,29, ...,zn}, a finite set of propositional variables which take Boolean
values, and C = {C1,Cs,...,Cn}, a set of clauses with one of the restrictions
discussed above. Note that if an instance has a satisfying assignment, such an
assignment can be represented as an element of an n-dimensional Boolean lat-
tice {0,1}". If we consider 0 < 1, then with a component-wise extension of the
ordering, and a component-wise A and V as meet and join operation, we get a
complete lattice. For an instance of a satisfiability problem h, we denote the set
of all satisfying assignments as SAT(h) C {0,1}". An element ¢ € SAT(h) is
minimal, if no other y € SAT(h) is less than « in the ordering of {0, 1}”. Dually,
an element z € SAT(h) is marimal, if no other y € SAT(h) is greater than z
in the ordering of {0,1}". We call the problem of finding the maximal satisfying
assignment for an NHORNSAT instance as the maximal-NHORNSAT problem,
and the problem of finding the minimal satisfying assignment for a HORNSAT
instance as the minimal-HORNSAT problem.

A linear time algorithm for minimal-HORNSAT appears in {12]. Dually the
maximal-NHORNSAT is also solvable in linear time.

In some of our applications we have a special type of HORNSAT or NHORN-
SAT instances. Here we discuss that special type of NHORNSAT, called rooted
NHORNSAT. The corresponding cases and algorithms for HORNSAT are very
similar.

Definition1. Given a clause C} of the form r; => viEI z;, where 7 iIs an index
set possibly empty (note that the disjunction \/;.; z; = true when I = ¢.), we
call z; the head of clause C%, denoted as head(Cy) = z;, and Vier @i the tail
of Cg. Any variable z; appearing in tail{Cy), is called a disjunct in the tail.

Note that for a clause of the form Cy = %, head(Cy) = z; and tail(Cy) =
false. Similarly, for a clause of the form C; = zj, head(Cy) = true and
tail(Cy) = zj.

Definition2. An instance of a rooted NHORNSAT problem is of the form
(X,C, 1) where (X,C) is an NHORNSAT instance and the clauses in C are

102

ordered. Also. C1 = z; (a single positive literal clause), where 1 € X. Further-
more, for each clause Cy, if head(Cy) = z; then there must be a clause Ci(I < k)
preceding C, such that z; is a disjunct in ¢azl(Cy). Also for a single literal clause
Ck = zp (k. > 1), £, must also be a disjunct in tail(C;) for some I < k. and z,
cannot be the head of any clause.

The correctness of our (N)HORNSAT based methodology for model checking
can be demonstrated easily by showing the following. There is a local reduction
(see the proof sketch of Theorem 3 below) between the (N)HORNSAT based
methodology and the methodologies in [19, 1] based upon systems of simple
Boolean equations. The (NYHORNSAT based approach has the advantage that
efficient algorithms and data structures for (N)HORNSAT are already available
in the literature [12, 3]. The soundness and completeness of our methodology
follow easily from the following theorem and its extensions to the results in [1].

Theorem 3. The factuality problem and the consistency problem of system of
simple Boolean equations described in [19] and the class of minimal-HORNSAT
and mazimal-NHORNSAT problems we consider, are locally and efficiently in-
terreducible.

Proof sketch: 2 Given a system of simple Boolean equations, if we are interested
in factuality [19], we replace

an equation of the form z = true by a single literal clause ,

an equation of the form £ = false by a single negated literal clause T,
an equation of the form z = x1 A 23 by a clause ¢ <= 2, A g, and

an equation of the form z = 21 V 22 by two clauses z <= z1 and z < 3.

It is easy to prove that the variables which are assigned a value 1 in the mini-
mal satisfying assignment for this HORNSAT instance are the factual variables
of the original Boolean equational system. Since, we are considering minimal-
HORNSAT, the implications can replace the equalities. Given this, duality im-
plies that the consistency problem of [19] can be reduced efficiently and locally
to the maximal-NHORNSAT problem.

Similarly, the problems of finding the least and greatest fixed points of the
Boolean equations of [1] can be reduced to minimal-HORNSAT and maximal-
NHORNSAT respectively. Details are omitted due to lack of space.

3 On the Fly, Local and Incremental Model Checking

Local Model Checking : A local model checking algorithm does not explore
all the states of the finite state system, if not required. It tries to explore only a

3 Given a set E of Boolean equations over a set of Boolean variables in V, the factuality
problem is to find F' C V such that £ € F if and only if z is set to true in every
model of E. The consistency problem is to find C C V, such that ¢ € C if and only
if there exists a model of E in which z is set to true.

103

minimal set of states and determines whether certain properties are true in those
states in order to infer that a given property is true in a given state. The tableau
based methods in [18, 25, 6] are examples of such local algorithms for model
checking. Our (NYHORNSAT based method achieves this objectives naturally.
Given a fix point formula @, and a state s* of a finite transition system, suppose
we want to determine if s* satisfies @. We generate {(N)HORN formulas roughly
as follows: We use a Boolean variable Y, and create clauses such that s satisfies
¢ if and only if Y;# is true in the (maximal) minimal satisfying assignment of
the (N)HORNSAT instance.

On the Fly Model Checking : In [28, 11, 5, 16, 13] on the fly model check-
ing and behavioral relation checking have been emphasized. In an on the fly
algorithm the state space is constructed on demand, hence the verification takes
place together with the construction of the state space. In our (N)HORNSAT
based approach, on the fly algorithm is obtained naturally because of the existing
on the fly or online algorithms for (N)HORNSAT [3] and some minor improve-
ments on them. Qur reduction to (N)HORNSAT can be done in NLOGSPACE
and on the fly algorithm for HORNSAT works in O(q) amortized time, where
q is the size of each new clause generated. Sirce the size of the (N)HORNSAT
instance created is linear in the product of the size of the transition system and
the specification in the case of model checking, and product of the sizes of the
two transition systems in case of relational checking, we might use in the worst
case, linear space and linear time in those measures. For on the fly behavioral re-
lation checking this is an improvement over [13] which requires quadratic time in
these measures for behavioral relation checking. However, in most cases, counter
examples are found after constructing substantially less number of clauses.

Incremental Model Checking : In [24], an incremental algorithm for model
checking alternation free mu-calculus was developed. The basic idea was the
following. When transitions are added or deleted from the transition system, an
incremental algorithm exploits the information available from the previous runs
of the model checking algorithm. It carries out minimal computation so that
the model checking problem with respect to the changed transition system is
solved in time O(A), where A is a measure of changes in the transition system.
It has been pointed out [24] that in the worst case, this may not be possible.
However, in the best case and more importantly, in many pragmatic situations
the incremental computation could be linear in the size of the modification. Since
the online algorithm for HORNSAT [3] is incremental and since the modification
in the transition system will be reflected in the changes in the corresponding
(N)HORNSAT instance, we can now directly obtain incremental algorithms for
all the problems considered in this paper.

Note: The equational syntax of modal mu-calculus used in the subsequent sec-
tions is taken from [10]. Due to lack of space, the syntax and semantics could
not be discussed and the readers are referred to [10, 22].

104

4 Model Checking Fragments of Modal Mu-Calculus

Our methodology can be extended to apply to full Mu-Calculus {15, 6], by using
the model checking algorithm for the alternation-free fragment as a subroutine,
as in [9] with the same efficiency as in [9]. Here we, illustrate our methods through
its application to the unnested single fized point fragment (which is similar to
the Hennessy-Milner Logic with recursion [17, 18]) and to the alternation-free
mu-calculus, as discussed in [10].

Model Checking for Single Fix point Mu-Calculus to (N)HORNSAT
For each state s € § of the given finite state system 7 and each variable X; of
the equational specification, we associate a boolean variable YSX . Recall, in the
single fixpoint calculus, there is a single block of equations which is either a maz
block or a min block.

We consider the case when the block is a max block B = maz{E} where
E={X1=9®1,..,X,=9®,}. A dualization will hold for min blocks.

Here, the model checking problem is to determine if s* € || X;||;my,, for
a given transition system 7 = (8, Act, —), for an initial environment ¢, and
st e

The reduction proceeds as follows:

1. Create a variable Y:f‘ and put the variable Ys"f" in a queue.

2. For each variable of the form Y;*7 on the queue, such that X; appears in
the left-hand side of an equation € in B

(i) If é is X; = A where A is atomic, then create a clause Y;* if A is
true at s else create a clause Y/A. (This information is obtained from
the valuation map associated with the model.) Put the variable YA
in the quene if this variable was never on the queune before.

(i) If &is X; = X, vV X, then create the clause v - v vy
and put the variables Y,X" and YSX" into the queue, if these variables
were never on the queue before.)

(i) If éis X; = X, A X4, then create two clauses v — Y7 and
stj — Ygx" and put the variables YSX” and Y559 into the queue, if
they were never on the queue before.

(iv) If € is X; = (a}X,, then create a clause of the form v
Va'Ea(s)}/:’(p where a(s) = {s' | 35’ : s — s'}. When a(s) is empty,
the disjunction is equivalent to false. Put the variables Yj" on the
queue if they were never on the queue before.

{(v) I é is X; = [a]X,, then create clauses of the form v~ Y:,("
for each s’ € a(s) where a(s) = {s' [35’ : s = s'}. Put the variables
}’j,"" on the queue if they were never on the queue before. When a(s)

is empty, create the single literal clause Y;Xj.
3. If stj is in the queue and if X; does not appear on the left hand side in
B, then if s € e(X;), add & single literal clause Y7 else add the clause v,

105

This will produce an NHORNSAT instance, of the size linear in the product
of the size of the transition system and equational block B. We now state the
theorem stating the correctness of the reduction. The correctness of the model
checking algorithm obtained this way follows from the discussions in section 2.

Let s € S is a state in the given finite state transition system 7 = (S, Act, —).
Let X; be a variable in the equational block used in specifying a property using
the syntax of [10] and let the initial environment be e. Suppose the block speci-
fying the formula is a max block, B = maz{E} where £ = {X; = &1,..., Xn =
o,.1.

Theorem4. If h is the instance of NHORNSAT produced by the algorithm de-
scribed above from the given model checking problem (if s* € || X;||y.), then
h is satisfiable and in the mazimal satisfying assignment of h, Ys}f" =1, if and
only ifs* € ||Xi“||B||,'

The dual of the above theorem holds for min blocks. Which means that in the
minimal solution of the HORNSAT instance produced in that case, Ys).(‘ =1if
and only if s* € || Xl .. This gives us a linear time algorithm for the problem.

Alternation free mu calculus : Now we generalize the algorithm in the pre-
vious section, to obtain a (N)HORNSAT based algorithm for the model checking
of alternation free mu-calculus. A linear time algorithm for the same problem
was presented in [10]. Their algorithm needed to invent an efficient data struc-
ture to obtain the linear time algorithm. Our method brings out the fact that
the essential data structure necessary to obtain the linear time algorithm for
model checking is in fact the same as in [12] for the linear time algorithm for
HORNSAT/NHORNSAT

Given a Transition system 7 ,-a valuation map v, an initial environment e, a
blockset B, the model checking problem is to decide if s* € || X;||;5). , for a given
state s* in the transition system and a given variable X; appearing on the left
hand side of some equation in some block B; in B.

Briefly, the steps in the (N)HORNSAT based version of the algorithm for
model checking alternation free mu-calculus are as follows:

1. Create a variable Y:f‘ and put the variable Yf' in the queue associated
with the block B; where X, appears on the left hand side.

2. Expand the variables in the queue associated with each block, in the reverse
topological order, * with the following rules:

If the block is a max block then use the methods described in the previous
subsection and if the block is 2 min block use a dual approach. Keep the
NHORN or HORN clauses for each block separated. If new variable Yaxj is
generated and X; belongs to a different block B , put that variable in the
queue associated with block B.

* Given B, the block set, topologically sort the blocks in B with respect to the variable
dependency relation depicted in block graph. Let By, Bs, ..., Bm be the set of blocks
in the topologically sorted order.

106

If the a variable Y;Xj in the queue for a block B is already expanded then

remove it from the queue otherwise expand it.

3. Start solving the minimal-HORNSAT /maximal-NHORNSAT instances cot-

responding to each block in the topological order. Let hz be the HORNSAT/

NHORNSAT instance corresponding to block B. Suppose a variable Y,X’ was

assigned a value 1 in the solution of a hp (where X; appears on the left hand

side in B) then add a clause Y57 in the (N)HORNSAT instances correspond-

ing to the blocks which had to put this variable in the queue of the block B

{This information can be read off the block graph also). If Y. was assigned

a value 0 in the solution of a by (where X; appears on the left hand side in

B) then add a clause Y. in the (NYHORNSAT instances corresponding to

the blocks which put this variable in the queue of the block B. Then continue

solving the next block HORNSAT instance,
Suppose the block B corresponding to Xj, is a max block. (A Dual strategy holds for
the min blocks). The maximal-NHORNSAT instance for the block B is satisfiable and
YX =1, in the maximal satisfying assignment, if and only if s* € || Xi]| Bl -

Note that this algorithm produces a sequence of HORNSAT and NHORN-
SAT instances and it is local and it can be made into an On the fly algorithm by
noting that one can use the on the fly algorithm for each HORNSAT instance. We
state the theorem about the correctness and efficiency of the algorithm sketched
above with out proof.

Theorem 5. The algorithm for model checking alternation free mu-calculus ob-
tained by reducing the problem to a sequence of minimal- HORNSAT and mazimal-
NHORNSAT problems runs in time linear tn the product of the sizes of the iran-
sition system and the block sel specifying the property. Hence the HORNSAT
based algorithm is as efficient as the algorithm in [10].

We also have developed HORNSAT based methods to capture the tableau
based local model checking in [8] and [25]. Details will appear in a future version
of this paper.

5 Game for rooted (N)HORNSAT and Stirling Games

In [23] we show that many relational problems are also directly, locally, and
naturally reducible to rooted NHORNSAT. Hence, given a two-player game for
rooted NHORNSAT, we can easily associate games to all these relations as well.
However, our objective is to obtain a sufficient characterization of various process
algebraic behavioral relations, which helps us identifying whether a particular
relation p, between finite transition systems is polynomial time decidable. In
what follows, through a game theoretic formulation (similar to [26] where a
characteristic game for bisimulation was defined,) we fulfill this objective. Such
a natural sufficient characterization is really useful in identifying a polynomial
time decidable relation when the definitions of the relations are complicated. ”

® In [14], J. F. Groote who originally defined 2-nested simulation and k—nested simu-
lation conjectured that deciding these relations must be NP-hard. However, by cur

107

Game for rooted NHORNSAT: Game for an instance of a rooted NHORN-
SAT instance b = (X,C, z;) is a two player game Gj in which player I (the
spoiler) wants to show that the instance h is not satisfiable and Player II (the
duplicator) wants to show otherwise. The game proceeds in rounds. The spoiler
opens the game by choosing a clause C; such that head(C;) = z;. Duplicator
reciprocates by choosing z;; such that z;; is a disjunct in tail(C;). In subsequent
rounds, the spoiler chooses a clause Cy such that head(Cy) = z;; where z;; was
the duplicator’s choice in the previous round. The duplicator has to reciprocate
by choosing a disjunct in the tail of Cix. The game continues until one of the
player loses. The duplicator loses if it does not have such a disjunct to choose (i.e,
when the spoiler has chosen a clause of the form 7 in its last move), the spoiler
loses when the game continues for ever (which is not possible in a finite size
NHORNSAT instance) or when the spoiler chooses a clause chosen earlier. The
following theorem states that the game we defined above, is indeed characteristic
for rooted-NHORNSAT.

Theorem 6. Given an instance h = (X, C, z1) of the rooted NHORNSAT prob-
lem, the duplicator has a winning strategy ® in the corresponding game if and
only if h is satisfiable.

Stirling Class of Games: Now we describe a class of two player games called
the Stirling Class. In this class, player I (the duplicator or prover) and player 11
(the spotler or disprover) plays on two Finite transition systems. Each game in
the class has the following components:

Two Finite Transition systems 7y = 1 and 75 = 2; Two languages R; C
A* and Ry C A*; Two total relations ms C Ry X A* and my C Ry X A*;
A set of (winning positions) I’ C S; x S2; A set of starting positions
Y C T C S xSy Aset M C {1,2} which denotes the indices of
the coordinate of a position-that spoiler can play on. In each round
the duplicator plays on the other coordinate; and, A positive integer r
denoting the number of rounds allowed in the game. This is crucial for
some of the games.

The game starts in a position {s,t) € L. A play of the game is a finite or
infinite length sequence of the form {s§, s2), ..., (s}, s?), The spoiler wants to
show that there is a difference between the two transition systems (the kind of
difference it wants to show depends on the relation the game corresponds to).
The duplicator wants to show that such a distinction attempted by the spoiler
is not possible. A partial play in a game is a prefix of a play of the game. Let 7;
be a partial play (sg, s3), ..., (s}, s7). The next pair (s},,,s7,,) is determined by
the following move rule:

o The Spoﬂer picks a triple (i, z,u) such that i € M and z € Ri and s} ==, u
and u = 8j4;. (Note that =>; denotes an extended step in the transition
system T;).

characterization it is easy to see that they are polynomial time decidable. Moreover,
many other relations such as Z—nested relations[20] were shown to be polynomial
time decidable this way.

® For the definition of winning strategy, see next subsection

108

o Let the choice of the spoiler in the move be (i,z,u) and let i’ # i. Then

the Duplicator picks a pair (y,u') such that (z,y) € my and sj’ =%, v and

o' = s;-l_H.

Extending a partial play m; to m;4; by the above move rule is called a round
of the game. Hence a play can be thought of as a sequence of rounds.

The duplicator wins the game if either in the last position of the play, there
is no further allowable move by none (when M = {1,2}) or there is no further
allowable move by the spoiler(when |M| = 1), depending on the cardinality of the
set M. Duplicator also wins, if in the play a position is repeated. In both cases,
the spoiler has failed to expose a distinction between the transition systems. The
spoiler wins, if in the last position of the play is not a winning position which
means the spoiler has been able to force the duplicator to a non winning position
of the game or if in the last position, the spoiler has an allowable move but the
duplicator does not have a matching move. A strategy for a player is a set of
rules which tells him/her how to make a move depending on the partial play
and opponent’s move so far.

A strategy is a winning siraiegy for a player, if playing with that strategy,
that player wins against all possible strategies of the opponent.

Definition7. A game G in Stirling class is called a characteristic game for a
relation R between two finite state processes, if the following condition holds. Let
the game G be played on two transition systems T} and T and the duplicator
has a history free winning strategy if and only if 77 and T4 are related by the
relation R.

Here, we illustrate characteristic games for bisimulation, weak bisimulation, and
Failure equivalence. We assume in the following that all the games are being
playedon Ty = land Ty = 2.7
Characteristic Game for Bisimulation : Bsim — game is a game in Stirling
class with the following parameters: Ry = Ry = A, my,mp = ¢, I’ = S1 x 54,
Y ={{sy,s2)}, M ={1,2},r=[51 | +| Sa | +1L.
Characteristic Game For Weak Bisimulation: WeakBsim — game is a
game in Stirling class with the following parameters: Ry = Ry = 7" A", my(a) =
ar*, ma(a) = Tar™Va € A, I' = Sy x S, £ = {{s1,82)}, M = {1,2}, r =|
51 l * i S9 | +1.
Characteristic Game For Failure Equivalence: Failure —game is a game
in Stirling class with the following parameters: Ry = Ra = A*, my,ma = ¢,
I' = {{s,t) | s € S1,t € Sy A Failures(s) = Failures(t)}, & = {(s1,2}},
M=1{12},r=1

For each relation R, in the linear-time/branching time hierarchy, and its
characteristic game GR, the following theorem can be proved easily.

Theorem 8. Let Ty, Ts be two transition systems and let Gr be the instance of
the characteristic game for a relation R, such that the game s played on Ty and

" Note that ¢ denotes the identity relation.

109

T>. The duplicator has a winning strategy for this instance of the game Gpg if
and only if R holds between the given two transitions systems.

For a certain subclass of Stirling class, the problem whether the duplicator has
a winning strategy is directly reducible to rooted NHORNSAT problem. Hence, for
any behavioral relation, whose characteristic game is in this subclass, the problem
of checking that relation between two finite state tramsition systems is reducible to
the rooted NHORNSAT problem. This leads to a polynomial time algorithm for the
problem of checking that relation, provided one can create the instance of the game
from the instance of the relational problem in polynomial time. For all the games in
Stirling Class, given that the transition systems are represented as finite state systems,
the transformation to game instance is polynomial time, provided that the winning
positions can be decided in polynomial time. Hence, we get a sufficiency condition as to
under what condition a behavioral relation between finite state processes is polynomial
time decidable. -
A Subclass of Stirling Class We now briefly give a sufficient characterization as
to when a game in Stirling Class is reducible to an instance of rooted NHORNSAT in
polynomial time.
1. Ry and Rz are finite and explicitly enumerated. For example, in bisimulation game
Ry = R; = A, where A is the set of action symbols.
2. The representation of the set of winning positions is either by an explicit listing or
is a polynomial time decidable set.

Acknowledgements: We wish to thank Rajeev Alur, S. S. Ravi, and Moshe Vardi
for helpful discussions.

References

1. H. R. Andersen. Model checking and boolean graphs. Theoretical Computer Sci-
ence, 126(1):3-30, 1994,

2. G. Ausiello, A. D’Atri, and D. Sacca. Graph algorithms for functional dependency
manipulation. Journal of Association for Computing Machinery, 30(4):752-766,
Oct 1983.

3. G. Ausiello and G. F. Italiano. On-line algorithms for polynomially solvable satis-
fiability problems. Journal of Logic Programming, 10:69-90, 1991.

4. C. Beeri. On the membership preblem for functional and multivalued dependencies
in relational databases. ACM Transactions on Database Systemns, 5:241-259, 1980.

5. G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model checking for
ctl. In Proceedings of IEEE Symposium on Logic In Computer Science’ 95, 1995.

6. J. C. Bradfield. Verifying Temporal Properties of Systems. Birkhauser, 1992.

7. U. Celikkan and R. Cleaveland. Generating diagnostic information for behavioral
preorders. In Proceedings of Computer Aided Verification: 1992, Lecture Notes in
Computer Science 663, pages 370-383, 1992.

8. R. Cleaveland. Tableau-based model checking in the propositional mu-calculus.
Acta Informatica, 27:725-747, 1390.

9. R. Cleaveland, M. Klein, and B. Steffen. Faster model checking for modal mu-
calculus. In Proceedings of Computer Aided Verification: 1992, Lecture Notes in
Computer Science 663, pages 410-422, 1992.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

26.

27.

110

R. Cleaveland and B. Steffen. Computing behavioural relations, logically. In
ICALP, pages 127-138, 1991.

C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient
algorithms for the verification of temporal properties. Formal Methods in System
Design, 1:275-288, 1992.

W.F. Dowling and J.H. Gallier. Linear time algorithm for testing the satisfiability
of propositional horn formulae. Journal of Logic Programming, 3:267-284, 1984.
J. C. Fernandez and L. Mounier. On the fly verification of behavioral equivalences
and preorders. In The 3rd International Workshop on Computer Aided Verification
1991, Lecture Notes in Computer Science 575, pages 181-191, 1991.

J. F. Groote. Private communications. 1996.

D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-
ence, 27, 1983.

O. Kupferman, M. Y. Vardi, and P. Wolper. An auntomata-thecretic approach to
branching time model checking. Draft, 1995.

K. G. Larsen. Proof systems for hennessy milner logic with recursion. In CA4 P’88
Lecture Notes in Computer Science 299, 1988.

K. G. Larsen. Proof systems for satisfiability in hennessy-milner logic with recus-
sion. Theoretical Computer Science, 72:265-288, 1990.

K. G. Larsen. Efficient local correctness checking. In CAV 92, Lecture Notes in
Computer Science 663, pages 30-43, 1992.

X. Liu. Specification and decomposition in concurrency. Technical report, De-
partment of Mathematics and Computer Science, Aalborg University, Denmark,
1992,

Thomas J. Schaefer. The complexity of satisfiability problems. In Tenth Annual
Symposium on Theory of Computing, 1978.

S. K. Shukla, H. B. Hunt III, and D. J. Rosenkrantz. Hornsat, model checking, ver-
ification, and games. Research Report TR-95-8, Department of Computer Science,
SUNY Albany, 1995.

S. K. Shukla, D. J. Rosenkrantz, H. B. Hunt 111, and R. E. Stearns. A hornsat
based approach to the polynomial time decidability of simulation relations for
finite state processes. DIMACS workshop on Satisfiability Problem: Theory and
Practice, 1996.

O. Sokolsky and S. A. Smolka. Incremental model checking in the modal mu-
calculus. In Proceedings of CAV’94, 1994.

C. Stirling and D. Walker. Local model checking in the modal mu—calculus The-
oretical Computer Science, 89:161-177, 1991.

Colin Stirling. Modal and temporal logics for processes. In Notes for Summer
School in Logic Methods in Concurrency, pages Department of Computer Science,
Aarhus University, 1993.

R.J. van Glabbeek. The linear time - branching time spectrum. Technical Re-
port CS-R9029, Computer Science Department, CWI, Centre for Mathematics and
Computer Science, Netherlands, 1990.

. M. Vardi and P. Wolper. An antomata theoretic approach to automatic program

verification. In Proceedings of LICS 1986, pages 332-344, 1986.

. 5. Zhang, O. Sokolsky, and S. A. Smolka. On the parallel complexity of model

checking in the modal mu-calculus. In Proceedings of LICS 1994, 1994,

Verifying the SRT Division Algorithm Using
Theorem Proving Techniques

E. M. Clarke* 5. M. German** X. Zhao*

Abstract. We verify the correctness of an SRT division circuit similar
to the one in the Intel Pentium processor. The circuit and its correct-
ness conditions are formalized as a set of algebraic relations on the real
numbers. The main obstacle to applying theorem proving technigues for
hardware verification 1s the need for detailed user guidance of proofs. We
overcome the need for detailed proof guidance in this example by using a
powerful theorem prover called Analytica. Analytica uses symbolic alge-
bra techniques to carry out the proofs in this paper fully automatically.

1 Introduction

Proving the correctness of arithmetic operations has always been an important
problem. The importance of this problem has been recently underscored by the
highly-publicized division error in the Pentium processor [14]. Some people have
estimated that this error cost Intel almost 500 million dollars [1]. In this paper,
we verify a division circuit [16] that is similar to the one used in the Pentium.
The circuit uses a radix four SRT division algorithm that looks ahead to find the
next quotient digit in parallel with the generation of next partial remainder. An
8-bit ALU estimates the next remainder’s leading bits. A quotient digit look-
up table generates the next quotient digit depending on the leading bits of the
estimated remainder and the leading bits of the divisor.

In our approach to verification, we formalize the circuit and its correctness
conditions as a set of algebraic relations over the real numbers [9]. These alge-
braic relations correspond closely to the bit-level structure of the circuit, and
could have been generated mechanically from a hardware description. Most of
the hardware for the SRT algorithm can be described by linear inequalities. This
led us to experiments [9] in which we proved properties of the SRT hardware us-
ing the Maple symbolic algebra system and its Simplex algorithm package.

We now have a fully automatic approach, where the correctness of the cir-
cuit is proved using a powerful theorem prover called Analytica [6] that we have
developed. Analytica is the first theorem prover to use symbolic computation
techniques in a major way. It is written in the Mathematica programming lan-
guage and runs in the interactive environment provided by this system [18].

This research was sponsored in part by the National Science Foundation under Grant
No. CCR-9217549, by the Semiconductor Research Corporation under Contract No.
94-DJ-294, and by the Wright Laboratory, Aeronautical Systems Center, Air Force
Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA)
under Grant No. F33615-93-1-1330.

* School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

** IBM Watson Research Center, P.0. Box 218, Yorktown Heights, NY 10598, USA
Email: emc@cs.cmu.edu, german@watson.ibm.com, xshao@cs.cmu.edu

112

Compared to Analytica, most theorem provers require significant user interac-
tion. The main problem is the large amount of domain knowledge that is required
for even the simplest proofs. Our theorem prover, on the other hand, is able to
exploit the mathematical knowledge that is built into the symbolic computation
system and is highly automatic.

The work that is most closely related to ours is by Verkest et al[17], who
have verified a nonrestoring division algorithm and hardware implementation
using the Boyer Moore theorem prover [5]. The circuit they consider is much
simpler than the one we verify. The main difficulty in verifying our circuit is
in showing that the estimation circuit and the quotient lookup table give the
correct quotient digits. In contrast, their circuit computes the quotient in radix
2, and does not speed up the computation by estimating the partial remainders.
Another project by Leeser et al [11] verifies a radix 2 square root algorithm and
hardware implementation. This work is similar to [17] and does not involve the
design features that make fast division circuits difficult to verify. Although we
prove the correctness of a relatively complicated circuit, our use of symbolic
computation techniques allows us to carry out the proof automatically.

Due to space limitations, the paper in this volume of conference proceedings
is abridged. A more complete version is available on request from the authors.
The complete paper has several appendices. In one appendix, we develop the
specification of the SRT circuit in greater detail than we can here, and discuss
the convergence of the quotient calculation. Other appendices shows the input
to the theorem prover and part of the generated proof.

2 The SRT Division Algorithm and Circuit

2.1 Floating-Point Numbers and Floating Division

Under the IEEE arithmetic standard, a normalized floating point number has
the form sign - significand - 2°*P°"¢"* where sign is one bit representing =1, the
significand is a rational number in the range 1 < significand < £, and ezponent
is an integer. Certain values, such as 0, have special representations under the
standard. Hardware circuits for floating-point arithmetic are usually organized
into two parts: a normalization circuit and an arithmetic core, which performs
arithmetic operations on the significands of the normalized numbers. The circuit
that we consider in this paper is the core of a floating point division circuit. A
separate circuit handles the signs and exponents.

There are several ways to interpret the arithmetic operation performed by
the hardware of the core. One way is to consider it as an operation on scaled
integers. In this paper, we interpret signals in the division core as arbitrary real
numbers, and develop our proof using algebraic theory that holds for all the
reals, not just the values that can be represented in a certain number of bits.
One advantage of our approach is that our specification and correctness proof
are independent of the hardware word length; that is, we prove the correctness of
the SRT division circuit for all word lengths n > 8 bits, without having to induct
on word length. Note that this approach is sound but may not yield a proof

113

in all cases. It is possible, for example, to design a floating-point circuit whose
correctness depends on the fact that only a finite set of values is represented.

2.2 Long Division

The idea of the division algorithm is to compute a sequence of quotient dig-
its go,491,..-,%m-1, such that the significand of the quotient is the numeral
go-q1° - gm—1. In order to compute the quotient digits, the algorithm computes
a sequence of partial remainders p; according to the recurrence

po = Dividend,
pjy1 =1 (p; — q; - Divisor), for j =0,...,m— 1, (1)

where 7 is the radix of the representation of the quotient,

The running time of the division algorithm depends on the number of iter-
ations of (1) and the time needed for each iteration. The number of iterations
needed to compute the quotient to a given number of bits b of accuracy depends
on the radix r. If the quotient is represented in radix 2, b iterations will be
needed, because each iteration produces only one bit of the quotient.

In practice, radix 4 is often used in hardware division circuits because only
b/2 iterations are needed and the calculations on each iteration can be performed
quickly in hardware. Each iteration involves two multiplications and a subtrac-
tion, assuming ¢; is known. In radix r = 4, both of the multiplications can be
implemented by fast hardware that simply shifts one of the operands to the left.
For example, the multiplication by r can be computed by shifting two bits to
the left. Also, the multiplication by ¢; can be done by shifting when the value of
g; is 0, 1, or 2. In the case that g; = 3, there is a potential problem because mul-
tiplication by 3 cannot be done in this way. We will see, however, that the SRT
algorithm uses a representation of the quotient digits that avoids this problem.

The subtraction operation in (1) dominates the time needed for each itera-
tion. For double precision arguments, a 64 bit subtraction must be performed
on each cycle.

The basic idea of the SRT algorithm [2] is to arrange the computation so
that the quotient digit selection can be done in parallel with the long subtraction
operation. Referring to the basic recurrence (1), it is clear that the choice of g5
depends on the value of p;.

In order to carry out quotient selection concurrently with the computation
of p;, the SRT algorithm allows the choice of the quotient digit at each step to
be inezact. In simple long division, the quotient digit g; is chosen at each stage
so that 0 < g; < r—-1and 0 < p; — g; - Divisor < Divisor. At each step of
the computation, there is a unique choice of g; that will keep the next partial
remainder in the desired range.

The SRT algorithm computes an estimate of p; while the full subtraction is
in progress. The estimated value of p; is used to select a quotient digit, but the
estimate is not precise enough to guarantee that the exact quotient digit will

114

be selected. Intuitively, the algorithm selects a quotient digit that is either “just
right” or “too big” by 1.

If the quotient digit chosen at a given stage is “too big,” the value com-
puted for p; 11 will be negative. In order to make the computation converge, the
algorithm will choose a negative quotieni digit at the next iteration. Negative
quotient digits are written with an overbar, for example 2 has the value —2.
A number containing negative digits can be converted to one without negative
digits by subtracting the negative digits. As an example, in . 21T =. 203, the neg-
ative digit can be removed by the subtraction . 210—. 001. In an implementation
of the SRT algorithm, it is straightforward to provide hardware that performs
the conversion.

For radix 4 calculations, division can be defined using quotient digits 3, 2, I,
0, 1, 2, 3. Observe, however, that all radix 4 numbers can be represented using
only 2, 1, 0, 1, 2. For instance, .3 = 1.T. This observation allows hardware
implementations to avoid the problem of multiplying the divisor by three; see
the next section for details.

2.3 Structure and Operation of the Division Circuit

The division circuit has four full-width registers: The Divisor register holds
the value of the divisor, the Remainder register holds the value of the partial
remainder, and the registers QPOS and QNEG hold the value of the quotient.
The q register holds one digit of the quotient. The outputs of the q register
are qdigit (2 bits), for the absolute value of the quotient digit, and gsign (1
bit), for the sign. The DALU is a full width adder/subtracter, which is used to
compute the partial remainders. The GALU is an 8-bit wide adder/subtracter,
which computes an estimate of the partial remainder. QUO LOGIC is a block
of combinational logic. Given the leading bits of the divisor and the estimate of
the partial remainder from the GALU, QUO LOGIC outputs the next digit of
the quotient. At several places, the circuit shifts a signal by one or two bits to
the left in order to multiply it by two or four. This operation is shown in the
diagram as a box with the operation << 1 or << 2. Throughout the paper, we
use roman typeface for names of signals and tialics for the values of signals.

The division circuit operates in two phases: an initialization phase followed
by the main calculation phase. The initialization phase begins by setting the
Remainder register to hold the dividend, setting the Divisor register to hold
the divisor, and setting the QPOS and QNEG registers to zero. After these
initializations have been done, the initialization phase uses the GALU and the
quotient selection logic to compute the first quotient digit and store it in the g
register. This completes the initialization phase.

The calculation phase performs one cycle of the division circuit for each digit
of the quotient. At the beginning of the jth cycle, Remainder holds p;, Divisor
holds the divisor, and the q register holds ¢;. The DALU receives p; on its A
input. The other input to DALU is the signal md, which is controlled by the
MUX. The inputs of the MUX are the values 0, Divisor, and 2 - Divisor. Under
control of qdigit, the MUX sets the line md to gdigit - Divisor. The signal gsign

115

routl(8bits)
A
rin}(8bits) mdi(8bits) fin
|<<2 1]<<2 j
Remainder md
4 * routl d1(3bits) .
RSO NS— > MUX
QUO LOGIC VAVAN
1 L&
e Ssign(lbi) ?
qdlglt(Zblts)
d
J Divisor
QPOS QNEG

| |

A B
A-B

l Quotient

Fig. 1. The division circuit

controls whether DALU adds or subtracts its inputs: DALU performs subtraction
if gsign is +; otherwise it does an addition. The result is that DALU computes
the value p; — g; - Divisor and outputs this value on rout. The signal rout is
shifted two bits to the left and stored in the Remainder register for the next
cycle.

The GALU essentially computes the leading 8 bits of rout. The A (resp. B)
input to GALU receives the leading 8 bits of the A (resp. B) input to DALU, and
gsign switches GALU between addition and subtraction. The output of GALU
is routed through QUO LOGIC to select the next quotient digit.

The value of the quotient is computed using the registers QPOS and QNEG.
QPOS holds all of the positive quotient digits and QNEG holds all of the negative
digits. On each cycle, these registers are updated as follows: Both registers are
shifted two bits to the left. If the digit in the q register is positive, then the value
of qdigit (2 bits) is stored in the low order bits of QPOS and the two low-order
bits of QNEG are set to zero. If the digit is negative, then the value of qdigit (i.e

116

the absolute value of the digit) is stored in the low-order bits of QNEG and the
low-order bits of QPOS are set to zero. When all of the quotient digits have been
computed, the values of QPOS and QNEG are routed to an ALU to compute
QPOS—QNEG. The output of this ALU is the quotient. The reason for storing
the positive and negative digits in separate registers is to keep the cycle time
of the circuit short. Adding a full-width ALU on the inner cycle of the circuit
would slow it down.

gl (4 # routl -~ 7 bits)

gd 1 0 £ 0 14 0 1 01 01 01 90 1 01 01 01 0

ge 01 1 0 0 11 0 01 1 06 0 1 1 0 01 1 0 0 1
gt 1 110 0 0 0 1111 060 90 0 1 1 11 00 0
g6 0 0 0 1 1 4 12 1 12 141 ¢ 0 0 O 0 0 0 0 0 1 1 1
g7 4+ 1 1 1 31 1 1 3 1 41 4 0 0 0 0 0 0 0 0 0 0 0O
1.000 == == == == ~2-2-2 h-1-1 0 0 4 1 2 2 2 - == == == —
1.001 == == >~ == ~2-2-2 B-1-1 0 0 1 1 ¢ 2 2 2-= - - -
1.010 =~ -~ - -2-2-2-2-1-1 D 0 0 1 1 41 2 2 2 2 == == ==
1.011 - ---2-2-~2-2 B~-1-1 D 0 0 1 1 {1 2 2 2 2 == == ==
1,100 «~---2-2-2-2-1-1-1 0 0 0 E § 1 ¢ 2 2 2 2 -— -
1.100 -~ -2-2-2-2-2-1-1-1 0 0 ¢ 0 1 1 1 2 2 2 2 2 --
1.146 -2 -2-2-~2-~2 B-1-1-1 0 0 0 0 1 1 1 2 2 2 2 2 --
11414 -2-2-2-2-2-1-1-~1-1 0 0 0 0 & 1 & 1 2 2 2 2 2
(d1 -- 4 bits) A=-(2-g2*gl)
B=-(2 - g2)
C=1+g2
D=-(1-g2)
E = g2

Table 1. The quotient prediction table for the division circuit

The Quotient Selection Table The quotient selection logic for QUO LOGIC
is represented in tabular form in Table 1. QUO LOGIC receives two inputs:
an estimate of the partial remainder from GALU and the first four bits of the
divisor, and selects one of the digits 2, 1, 0, 1, 2. In the table, the GALU input
is g7 g6 g5 94 - g3 g2 g1; Note g is the most significant bit. The table does not list
the input values for the least significant bits g3 g1. The reason is that for most
values of the inputs, the quotient digit can be determined using only the five
leading bits of the GALU output. The bits g, g1 are needed only near boundaries
where the value of the quotient digit changes. The output in these cases is given
by the lettered formulas A, B, C, D, E.

For input combinations that cannot be reached on executions of the division
circuit, the table has no entry, indicated by ~-. It is important to verify both
that the computation stays within the marked area in the table, and that the
quotient selections in this part are correct.

117

3 Analytica

In this section, we describe a new approach to mechanical theorem proving that
involves combining an automatic theorem prover with a symbolic computation
system. The theorem prover, which we call Analytica, is able to exploit the
mathematical knowledge that is built into this symbolic computation system.
In addition, it can guarantee the correctness of certain steps that are made by
the symbolic computation system and, therefore, prevent common errors like
division by an expression that may be zero.

Analytica 1s written in the Mathematica programming language and runs
in the interactive environment provided by this system [18]. Since we wanted to
generate proofs that were similar to proofs constructed by humans, we have used
a variant of the sequent calculus in the inference phase of our theorem prover.
However, quantifiers are handled by skolemization instead of explicit quantifier
introduction and elimination rules. Although inequalities play a key role in all
of analysis, Mathematica is only able to handle very simple inequalities. We
have implemented the Sup-Inf method of Bledsoe [4] to handle linear inequality
systems. In addition, we have developed a technique that is able to handle a large
class of non-linear inequalities as well. This technique is more closely related to
the BOUNDER system developed at MIT [13] than to the traditional Sup-Inf
method.

Analytica consists of four different phases: skolemization, simplification, in-
ference, and rewriting. When a new formula is submitted to Analytica for proof,
it is first skolemized to a quantifier free form. Then, in the simplification phase,
a large number of rules are used to simplify the atomic formulas (i.e. equations
and inequalities) with respect to the current proof contezt. If the formula reduces
to true, the current branch of the inference tree terminates with success. If not,
the theorem prover matches the formula against the conclusions of the available
inference rules, and attempts to prove the formula by backwards chaining.

If Analytica is attempting to prove a goal and no inference rule is applicable,
then Analytica tries to use rewriting to convert the goal into another equivalent
form. If the formula can be rewritten, then the simplification, inference, and
rewriting phases are applied to the new formula. Backtracking will cause the
entire inference tree to be searched before the proof of the original goal formula
terminates with failure.

Analytica contains several methods for handling both linear and non-linear
inequalities. One method is based on computing upper and lower bounds for
expressions. There are three main ways tc obtain upper and lower bounds:

1. Obtain bounds from context information.
2. Obtain bounds from the monotonicity of some function.
3. Use some known bound on the value of a function.

The above technique is explained in more detail in the full paper. This tech-
nique can be shown to be complete for linear inequalities and can also be used
to prove many of the nonlinear inequalities that arise in practice. However, the

118

overhead required for non-linear inequalities makes the algorithm very ineffi-
cient for linear inequalities. Consequently, we have incorporated Bledsoe’s Sup-
Inf method [4, 15] into Analytica for handling linear inequalities. The Sup-Inf
method is treated as a special tactic in the inference phase and is applied before
the more complicated inequality reasoning tactic. The Sup-Inf method provides a
decision procedure for universally quantified formulas containing linear inequal-
ities.

4 Proof of the correctness of the SRT algorithm

4.1 Axioms for the circuit

First we need to find a way represent each component of the circuit by logic
expressions.

— rinl is the leading 8 bits of rin (2 bits before binary point and 6 bits after):
rind < rin < rind +27°
— md1 is the leading 8 bits of md (2 bits before binary point and 6 bits after):
mdl < md < mdl +27°
— d1 is the leading 4 bits of d {constant 1 before binary point and 3 bits after):
dl <d<di+278

Thus, it d1 can only have the 8 binary values 1.000, 1.001, 1.010, 1.011,
1.100,1.101,1.110 and 1. 111. This limitation on the range of d1 is expressed
by the following formula.

9 5 11 3 13 7 15
= = - = - = —Vdl = -Vdl = —Vdl =~ = —
dl =1vdl 8\/dl 4Vd1 8V 2V 8V 4Vd 3
— The MUX:
0 when gdigit =0
md =<{d when gdigit =1
2d when gqdigit = 2
— The GALU:
i = rind + mdl when gsign
TOULL =Y ping — mdf — 27% when —gsign
— The DALU:)
{ rin + md when gsign
rout = . ,
rin — md when —gsign
— The QPOS:

_14-QPOS when gsign
nect(QPOS) = {4- QPOS + q¢digit when —g¢sign

119

— The QNEG:

4. QNEG + ¢qdigit when gsign

neet(QNEG) = {4' QNEG when —gsign

— The Quotient:
Quotient = QPOS — QNEG

- The Remainder:
next(rin) = 4 - rout

~ The QUO LOGIC:
This is the hardest part in formalizing the circuit. To reduce the number of
cases in the proof, we have represented each row of the quotient prediction
table as a boundary value list {by, by, b3, by, bs, be}. For a given value of dI,
we choose bg to be the minimal positive value for (4 - rout!) that is not
covered by the table. For example, when dI = 1, this minimal value has
binary representation 0011.0. Consequently, bs = 3. Similarly, we choose
by, ba, b3, bs and bs to be the minimal values for (4- routl) that gives quotient
values —2,—1,0,1 and 2, respectively. When dI = 1, the minimal value for
(4 - routl) with quotient —2 has binary representation 1100.1. Therefore,
by = —T7/2. The boundary value list for each of the 8 possible values for df
are shown below:
{-7/2, —13/8,-1/2,1/2,3/2,3}, when dI = I;
{=7/2, —7/4, -1/2,1/2,7/4,7/2}, when dI =9/8;
{-4, -2, -3/4,1/2,2, 4}, when dI=5/4;
{-9/2, ~9/4, -3/4,1/2,2, 4}, when d1=11/8;
{— 9/2 -5/2, —1, 3/4,9/4,9/2}, when d1 = 3/2;
{-5 -5/2, -1, 1, 5/2,5}, when dI=13/8;
{-—11/2 -11/4,-1, 1, 5/2,5}, when dI=17/4
{-11/2,-3, -1, 1, 3, 11/2}, when d1 = 15/8;
From the definition of the boundary values, we know that the following holds:
1. when b; < 4-routl < by, g=-2;

2. when by < 4. routl <b3, ¢g=-1;

3. when b3 < 4-routl <by, ¢g=0

4. when by < 4-rout! <bs, ¢=1,

5. when bs < 4:routl <bs, ¢g=2;

6. when 4 - routl < by, out of table and we define ¢ = -3;
7. when 4 - routl > bg, out of table and we define g = 3;

Let {b1, b2, bs, ba, bs, b} represent the row in the quotient prediction table
that corresponds to di. The QUO LOGIC is given by:

nezt(gqsign) = (4 - rout! < b3)

when 4 - routl < by V4 routl > bg

when b1 < 4-rout! < by Vbs <4-routl < bg
when by <4 routl < b3 Vby<4-routl < by
when b3 < 4 - routl < by

next(qdigit) =

D =N W

120

4.2 Correctness of the circuit

Since the initialization phase of the circuit is simple, we will not discuss it here.
The correctness of the main caculation phase of the circuit depends on two in-
variants:

(1) next(Quotient - d + rout) = 4 - (Quotient - d + rout)
(2) -%2.-d<rout<?-d

The first invariant says that (Quotient - d + rout) remains constant with re-
spect to left shifting by 2 bits. Since the initial value of this expression is the
dividend and the computation takes 34 cycles, (Quotient - d + rout) equals the
dividend left shifted by 68 bits after the computation finishes. This is the ex-
pected bevavior of the division operation. The second invariant guanrantees that
the computation will never overflow. Detailed discussion of these invariants can
be found in the complete version of this paper; we give a brief version here.

We want to show that dividend = quotient - divisor + remainder, where
remainder converges to 0. Referring to the equations for rin and rout, observe
that the value placed in the Remainder register is effectively multiplied by r = 4
on each cycle of the circuit. Intuitively, after j cycles, the value of the actual
remainder is Remainder; - 477 = rout; - 4*~7. Similarly, the actual value of the
quotient is Quotient; - 4177

The circuit computes a correct result if two conditions hold. First, the equa-
tion Dividend = (Quotient; - d + rout;) - 417 must hold. The factor 4~/ rep-
resents the scaling of the quotient and remainder. Second, the value of the re-
mainder as represented by rout; - 4'~7 must converge to 0.

The above equation is proved by induction on j. For the base case, show
that the equation holds for j = 0 in the initial state of the circuit. For the
inductive case, we use the fact that the value of the dividend does not change.
Thus we can prove the inductive case by showing that Quotient; 1-d+routj 1 =
4 . (Quotient; - d + rout;) holds on all iterations of the circuit (invariant 1).

It remains to show that the scaled value of the partial remainder converges
to 0. Since d remains constant, it follows from invariant (2) that rout; - 417
converges to 0 by a factor of 1/4 on each cycle of the circuit.

Analytica is able to prove the following theorems:

— The loop invariant for Quotient - d + rout always holds.
nezt(Quotient - d + rout) = 4 - (Quotient - d + rout)
— The GALU gives the correct estimate for the rémainder.
routl < rout < routl + 275
— The remainder never falls outside of the defined part of the quotient table.
——z—-dgrout<§-d==$
next(qdigit) = 1V next(gdigit) = 2 V (next(qdigit) = 0 A "nest(gsign))

121

— The loop invariant for —-% - d < rout < % - d always holds.

y 2
——z—-dgrout<g-d:-w§-d§nezt(rout)<§-d
All theorems are proven by Analytica. The last theorem is the most interesting.
The exact statement of the theorem is given below. -

Prove[imp[and[dl <= d < d1 + 2°(-3),
or[d1l == 8/8, d1 == 9/8, d1 == 10/8, d1 == 11/8,
di == 12/8, d1 == 13/8, d1 == 14/8, d1 == 15/8],
routl <= rout < rout1+2~(-5),
-2/3 d <= rout < 2/3 d],
-2/8 d <= next[rout] < 2/3 dl];

Notice that there are some additional conjuncts in the hypothesis part. The first
two hypotheses are axioms about the values of d1. The third conjunct, relating
rout and routl, states that GALU gives a correct estimate for the remainder.
Analytica proves the theorem about the GALU separately, so we can assume it
as a hypothesis in this proof. The whole input required by Analytica and part
of the proof it generates are shown in the complete paper.

5 Conclusion

In this paper, we investigate a radix-4 SRT division algorithm similar to the one
used in the Intel Pentium processor. We have built a formal model for the circuit
and proven the correctness of the model using our theorem prover Analytica.

The main obstacle to wider use of theorem proving techniques for hardware
verification is the need for detailed user guidance when using most theorem
provers. Therefore, it is significant that Analytica is able to prove the correctness
of this circuit automatically.

In other research, we have developed a word level model checker [7] that can
verify arithmetic circuits. Although word level model checking works extremely
well for many circuits, there are still serious restrictions on the application of this
technique. For example, it can only handle circuits that maintain the exact value
of the data and would not be applicable for a circuit that involves rounding.

Theorem provers, on the other hand, can be applied to a wider range of
problems and are particularly useful for reasoning at a high level of abstraction
{(architectural level verification). For instance, in this paper, we used a theorem
prover to show that the division circuit is correct for all word lengths greater
than 8 bits. Finite-state methods such as model checking usually verify a circuit
only for a single word length. However, circuit verification by theorem proving
techniques usually requires sorne user interaction, while model checking is largely
automatic.

In the future, we intend to combine automatic theorem proving and model
checking. There has already been some work in this direction {10, 12]. This com-
bination of approaches should make it possible to handle much larger circuits

122

than is currently the case. In proving some property of a circuit, the specifica-
tion will be decomposed into sub-goals. Each sub-goal is verified using a decision
procedure or the model checker. Then the theorem prover is used to combine
the proofs of the sub-goals.

References

10.

11.

12,

13.

14,

15.

16.

17.

18.

APT Data Services. Pentium bug fiasco costs Intel dear. Computer Business
Review, January 3, 1995.

D. E. Atkins. Higher-radix division using estimates of the divisor and partial
remainders. IEEE Transactions on Computers, C-17(10):925~934, October 1968.
W. W. Bledsoe. The UT natural deduction prover. Technical Report ATP-17B,
Mathematical Dept., University of Texas at Austin, 1983,

W. W. Bledsoe, P. Bruell, and R. Shostak. A prover for general inequalities. Tech-
nical Report ATP-40A, Mathematical Dept., University of Texas at Austin, 1979.

. R. 8. Boyer and J. 5. Moore. A Computational Logic Handbook. Academic Press,

1988.

. E. M. Clarke and X. Zkao. Analytica: A theorem prover for Mathematica. The

Journal of Mathematica, 3(1), 1993.

. E. M. Clarke, M. Khaira and X. Zhao. Word Level Symbolic Model Checking —

Avoiding the Pentium FDIV Error. Design Automation Conference, June, 1996.

. J. H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem

Proving. Harper & Row, 1986.

. 8. M. German. Towards automatic verification of arithmetic hardware. Lecture

notes, March 1995,

J. Joyce and C. Seger. The HOL-Voss system: model-checking inside a general-
purpose theorem prover. In Proceedings of the Gth International Workshop on
Higher Order Logic Theorem Proving and its Applications, HUG '98, LNCS 780.
Springer Verlag, 1993,

J. O’Leary, M. Leeser, J. Hickey, and M. Aagaard. Non-restoring integer square
root: a case study in design by principled optimization. In Proceedings of the
Theorem Provers in Circuit Design ‘94, LNCS 901. Springer Verlag, 1995.

S. Rajan, N. Shankar, and M. K. Srivas. An integration of model checking with
automated proof checking. In Proceedings of the Seventh Workshop on Computer-
Aided Verification, 1995.

E. Sacks. Hierarchical inequality reasoning. Technical report, MIT Laboratory for
Computer Science, 1987.

H. P. Sharangpani and M. L. Barton. Statistical analysis of floating point flaw
in the Pentium processor(1994). Technical report, Intel Corporation, November
1994,

R. Shostak. On the sup-inf method for proving Presburger formulas. Journal of
the Association for Computing Machinery, 24:529-543, 1977,

G. 8. Taylor. Compatible hardware for division and square root. In Proceedings of
the the 5th IEEE Symposium on Computer Arithmetic, May 1981.

D. Verkest, L. Claesen, and H. De Man. A proof of the nonrestoring division al-
gorithm and its implementation on an ALU. Formal Methods in Sysiem Design,
4:5-31, January 1994.

8. Welfram. Mathematica: A System for Doing Mathematics by Computer. Wol-
fram Research Inc., 1988.

Modular Verification of SRT Division *

H. RueB, N. Shankar, and M.K. Srivas

Computer Science Laboratory, SRI International
Menlo Park, CA 94025
{ruess ,shankar, srivas}@csl .sri.com

Abstract. We describe a formal specification and verification in PVS
for the general theory of SRT division, and for the hardware design of a
specific implementation. The specification demonstrates how attributes
of the PV S language (in particular, predicate subtypes) allow the general
theory to be developed in & readable manner that is similar to textbook
presentations, while the PV table construct allows direct specification
of the implementation’s quotient look-up table. Verification of the deriva-
tions in the SRT theory and for the data path and look-up table of the
implementation are highly automated and performed for arbitrary, but
finite precision; in addition, the theory is verified for general radix, while
the implementation is specialized to radix 4. The effectiveness of the
automation derives from PVS’s tight integration of rewriting with deci-
sion procedures for equality, linear arithmetic over integers and rationals,
and propositional logic. This example demonstrates that the resources
of an expressive specification language and of a general-purpose theorem
prover are not inimical to highly automated verification in this domain,
and can contribute to clarity, generality, and reuse.

1 Introduction

The SRT division algorithm is one of the most popular methods for implementing
floating-point division and related operations in high-performance arithmetic
units. Even though the theory of SRT division has been extensively studied
[Atk68], the design of dividers still remains a serious challenge [OF94], and it
is easy to make mistakes in its implementation—as was illustrated by the much
publicized FDIV error in the Intel Pentium chip. As Pratt [Pra95] points in his
analysis, it is unlikely testing alone would have caught that error as it was due
to five wrong entries in the quotient look-up table in a region of the table that
was thought to be unreachable. Hence, formal verification can play an essential
role in the design and debugging of arithmetic circuits.

In this paper, we present a mechanized verification of a general SRT division
algorithm that can be used for performing floating-point divisions and an imple-
mentation of it based on the circuit given in [Tay81]. This circuit implements the
IEEE floating-point standard, and its kernel consists of a fixed-point iteration.

* Supported in part by ARPA under Arpa Order A721, By NASA under contract
NAS1-20334, and by NSF Grant No. CCR-930044. We gratefully acknowledge the
valuable guidance and help given by John Rushby, Sam Owre, Ed Clarke, and Steve
German.

124

The verification of this kernel was performed in the interactive theorem proving
system PVS [ORSvH95]. Since our goal was to perform the verification so that
as much of the initial set-up effort can be reused in the verification of other sim-
ilar circuits, we took a modular approach that separates concerns about general
facts of the SRT theory from a specific circuit implementation and a look-up ta-
ble. Furthermore, we develop clear interfaces between these parts, so that each
of the verifications can be done separately.

More precisely, the formalization and verification of the SRT divider proceeds
in two steps. First, we formalize textbook knowledge about SRT dividers at an
algorithmic level and verify its correctness. The formalization at this level does
not use a specific data path to compute the partial remainder nor a specific lock-
up table. It characterizes a set of semantic constraints a look-up table ought to
satisfy and a recurrence relation a partial remainder computation circuit ought to
preserve. In the second step, we specify a data path circuit (bit-vector signals over
time) to compute the partial remainder and define a specific look-up table, both
of which are based on the implementation given in [Tay81]. We then show that
the data path circuit and the look-up table meet the constraints characterized
in step one. Both steps of the verification are performed for arbitrary, but finite
precision, which appears as a parameter to the specification. The first step of
the verification is applicable to arbitrary radixes, while the second step assumes
a radix-4 implementation, since it uses a look-up table for radix-4.

2 Related Work

Claesen et al. [VCM94] and Leeser and O’Leary [LO95] have used theorem
provers to verify a non-restoring divider and a radix-2 subtractive square root
algorithm, respectively. The circuits verified in both of these efforts are not based
on the SRT method and hence do not contain the kinds of optimizations used
in SRT division. Recently, German and Clarke [Ger95, CG95] performed a ver-
ification of Taylor’s SRT divider circuit considered in this paper by manually
deriving a set of inequalities that the circuit imposes on the data path signals
and then showing, in the MAPLE symbolic algebraic system, that two main SRT
correctness invariants are preserved by the data path inequalities. This work pro-
vided the main impetus for our work. Clarke et al. [CGZ96] have independently
mechanized their verification in the ANALYTICA theorem prover. Our work not
only mechanizes all the steps in the verification of the SRT circuit, but also for-
malizes the general SRT theory correctness and develops a modular framework
which can be used to verify other similar circuits. While their specification in-
terprets signals in the circuit as arbitrary real numbers, we interpret signals as
parameterized finite, but arbitrary-length bit-vectors.

Methods based on ordered BDDs and symbolic model checking are not well-
suited for verifying multipliers and dividers since BDD graphs for such operations
grow exponentially with the word size [Bry94]. However, Bryant [Bry95] has
used BDDs to check the relation that one iteration of the SRT circuit must
preserve for the circuit to correctly divide. To do the verification, he needed to

125

construct a gate-level representation of a checker-circust (much larger than the
verified circuit) to describe the desired behavior of the verified circuit, which is
not the ideal level of specification.

While Bryant’s BMDs can be used to verify multipliers against their number-
theoretic specification [Bry94], they cannot be used for SRT verification, be-
cause they cannot efficiently check inequalities over bit-vectors. But Clarke and
Zhao [CZ95] have recently extended the symbolic model-checking algorithm
used in SMV to express and verify word-level properties on numbers. They use
an extension of BDDs called hybrid decision diagrams to represent integer func-
tions and check relations on them. The word-level model-checker can be used to
check if finite-sized arithmetic circuits satisfy desired number-theoretic proper-
ties. They have used the word-level model checker to verify Taylor’s SRT circuit
by checking if a state transition model of the circuit satisfied the main SRT
invariants. Both [CZ95) and [CGZ96] are only applicable for fixed-sized data
paths.

3 An Overview of PVS

The PVS system combines an expressive specification language with a produc-
tive, interactive proof checker that has a reasonable amount of theorem proving
capabilities, and has been used for reasoning in domains as diverse as micropro-
cessor verification, protocol verification, and algorithm and architectures con-
cerning fault-tolerance [ORSvH95]. The PVS specification language builds on
classical typed higher-order logic with the usual base types, function type con-
structor, dependent types, and abstract data types. A distinctive feature of PVS
are predicate subtypes {x:A | P(x)}. These subtypes consist of exactly those el-
ements a of type A satisfying predicate P(a). Predicate subtypes are used to
explicitly constrain the domain and ranges of operations in a specification and
to define partial functions. In general, type-checking with predicate subtypes is
undecidable, and the type-checker generates type correctness conditions (TCCs)
corresponding to predicate subtypes.

Proofs in PVS are presented in a sequent calculus. The atomic commands
of the PVS prover component include induction, quantifier instantiation, auto-
matic conditional rewriting, simplification using arithmetic and equality decision
procedures and type information, and propositional simplification using binary
decision diagrams. PVS has an LCF-like strategy language for combining infer-
ence steps into more complicated proof strategies.

4 SRT Division

SRT dividers [McS61, Rob58, Toc58] speed up nonrestoring division and are
widely used in high-speed floating point units. The quotient is represented in
radix-r form and one digit of it is calculated in each iteration. To obtain fast
algorithms, SRT division represents quotient digits using a redundant digit set

126

[—a,...,a] so that there can by multiple choices for the most significant quotient
digit for a given partial remainder and divisor. The redundancy can be used. to
correct small errors in one iteration in subsequent iterations. It also allows the
quotient digit to be computed in parallel with the partial remainder using an
approximation of the partial remainder. The common choices r = 4 and a = 2
lead to adequate and efficient circuits, since multiplication by 0, 1, and 2 is easy.

The presentation of fundamental concepts about SRT division covers the
basic recurrence, the conditions under which the computation converges to a
reasonable result, and the quotient selection criterion both in exact and ap-
proximate forms. These general arithmetic facts about SRT division are pre-
sented in terms of their PVS formalization and are parameterized with respect
to algorithm-specific details such as the radix and the set of quotient digits. In
Sections 5 and 6 we instantiate these arithmetic facts to verify the correctness
of a specific high-speed radix-4 SRT circuit on the bit-level. Note also, that we
restrict ourselves in this paper to the verification of fixed-point division kernels
of IEEE compliant floating-point division.

Subtractive Division Algorithms. Given two normalized fractions p and d of the
form 1.zz...zz,, the digit recurrence

P =p
Pi+1 = 7 * (p; — ¢; * d) with the constraint |p;1/d| <r*p
where p=r#*af(r—1)

computes the value of p/d by producing one quotient digit ¢; and a new par-
tial remainder p;y; in each iteration . The constraint on the partial remainder
is needed to guarantee convergence of the algorithm. The above characteris-
tics of subtractive division algorithms are formalized in m for arbitrary radices
r:upfrom[2] and sets of quotient digits subrange[-a,a] such that a:posnat
and r/2 <= a < r - 1.

L1]

p.new, p: VAR rational; q: VAR subrangel[-a, al; d: VAR posrat

recurrence?(p_new, p, ¢, d): bool = (p.new = xr * (p - q * a))
rho: rational = a / (r - 1)
p.over_d_bound?(d, p): bool = (~r * rho <= p / d & p / d <= r * rho)

Convergence. The function valq{i + 1, q) in|2|computes the radix-r fixed-
point value of the accumulated quotient digits g(0) .q(1) ...q(i), and Theorem
convergence states that q(0).q(1)...q(1) is an approximation to the infinite
precision fraction p(0) / d within an error bound.

127

L2
i, j, k: VAR nat; d: VAR posrat '
P : VAR sequence[raticnall; q: VAR sequence[subrange[-a, all

val(i, q): RECURSIVE rational =
IF i = 0 THEN 0 ELSE q{i - 1) * t/r"(i - 1) + val(i - 1, q) ENDIF
MEASURE i

lemmal: LEMMA
(FORALL j: recurrence?(p(j + 1}, p{(j), gq(j), d))
IMPLIES p(0) / d - val(i, q) = 1/r"i *= (p(i) / d)

convergence: THEOREM
((FORALL j: recurrence?(p{j + 1), p(j), q(j), 4)) AND
(FORALL k: p_over_d_bound?(d, p(k))))
IMPLIES LET residue = p{(C) / d - val(i + 1, q) IN
-1/r"i * rho <= residue & residue <= 1/r"i * rho

This theorem is an immediate consequence of the invariant lemmal and the given
bound on p(i + 1) / d, and lemmal is proven automatically in PVS with the
general-purpose induction strategy induct-and-simplify and some basic facts
from the library about rational numbers.

Quotient Selection. The hard part in each iteration is to determine a quo-
tient digit q(i) such that the next partial remainder p(i + 1) also satisfies
the boundary constraint p_over._d_bound?. By substituting the recurrence rela-
tion defining the new partial remainder into the bound contraint on the partial
remainder, one can obtain the condition legitimate? that characterizes a se-
lection interval of legitimate choices of quotient digits.

L3 |

q: VAR subrange[-a, al; d: VAR posrat; p: VAR rat
legitimate?(q, d, p): bool = g - xho <= p/d & p/d <= q + rho

lemma2: LEMMA recurrence?(p_new, p, q, d) IMPLIES
(p_over_d_bound?(d, p_new) IFF legitimate?(q, d, p))

Note that the boundaries of this interval depend on the divisor d, and Fig-
ure 1 graphically displays the region for legitimately selecting quotient digits ~2
through 2 for the choices r = 4 and a = 2 (thus rho = 2/3). The region for
legitimately selecting q = 1, for example, is bound by the dashed lines 5/3 * d
and 1/3 *.d.

For specific interpretations, say r = 4 and a = 2, the combination of de-
cision procedures with rewriting on known facts about real and rational num-
bers (grind :theories "real_props") discharges the proof obligation lemma2
in automatically. In the general case, however, where r and a are uninter-
preted, the proof of this fact involves solving non-linear inequalities, and the

128

S/3 ~ a
S/ = a
ars = a

2/3 +~ a

13 = a

—As3 e a

—2s3 = a

—ds3 A

-5s3 + a

-8s3 +a

Fig. 1. pd-plot forr = 4 and a = 2

PVS prover needs two interactions to guide the manipulation of these non-linear
inequalities.

Redundancy. Shaded regions in Figure 1 indicate pairs {(d, p) for which selec-
tion intervals for the quotient digit q overlap. This redundancy permits calculat-
ing q from truncated versions P:rational and D: posrat of the partial remainder
and divisor respectively.

[4]

D: VAR posrat; P: VAR rational

P_bound_by_D?(D, P): bool =
-eps - r * vho * (D + delta) < P & P < r * rho * (D + delta)

lemma3: LEMMA (P <= p & p < P+eps & D <= d & d < D + delta AND
p_over_d_bound?(d,p)) IMPLIES P_bound by D7(D, P)

Let delta, eps:posrat be two arbitrary positive rational numbers. Assuming
that P and D underestimate p and d, respectively, the constraint p-over_d_bound?
imposed by the algorithm on the partial remainder, imposes a corresponding
bound on P as a function of D. This constraint is defined and proved (by lemma3)
in . Note that if negative numbers are represented in 2-complement form,
which is what we assume in the circuit we verify later, truncation (after the
binary point) always produces a number less than the actual value.

Inspection of the pd-plot in Figure 1 reveals that the legitimacy of quotient
selection for the marked corners of the shaded rectangles suffices to show the
legitimacy of selecting this quotient digit for all (d, p) pairs in the rectangle.
Consequently, the constraint lookup.legitimate? in on lookup tables guar-
antees the legitimacy of quotient selection as shown in lemma4. The combination
of the PVS decision procedures with facts from the library about rational num-
bers proves lemma4 automatically when r and a are instantiated with specific

129

numeric values; otherwise manual guidance is needed to deal with non-linear
equalities and inequalities.

L5
lookup_legitimate?(q, D, (P: rational | P_bound_by_D?(D, P))): bool =
COND

= a -> (a - rho) * (D + delta) <= P,
0<q & q<a -> (q - rho) * (D + delta) <= P & (P + eps) <= (q+rho)+*D,
q=20 -> -rho * D <= P & (P + eps) <= rho * D,
-a<q & g<0 -> (q - rho) * D <= P & (P + eps) <= (q + rho) *(D+delta),
q=-a -> (P + eps) <= (-a + rho) * (D + delta)
ENDCOND

lemmad: LEMMA
(P<=p&p<P+eps ANDD <=d & d <D + delta AND
p-over_d_bound?(d, p) AND lookup_legitimate?(q, D, P))
IMPLIES legitimate?(q, d, p)

Quotient Prediction. A significant reduction of the overall cycle time is obtained
by computing the next partial remainder p(i + 1) and predicting a next quo-
tient digit q(i + 1) in parallel. In this case, the approximation P(i) used in
iteration , (under)estimates the next partial remainder p(i + 1). Note that
P(i) can be computed faster than p(i + 1), since most of the time taken to
compute p(i + 1) is a full-precision addition, and the computation of P(i) only
involves a limited-precision adder.

It is a simple matter of combining the results in |_?_|,, to prove the state-
ment invariant in @ for SRT dividers with quotient prediction where the non-
trivial part of the induction step involves the chain of implications

legitimate?(q(i), d, p(i))
= remainder bound?(d, p(i + 1))
= estimation bound?(D, P(i))
= lookup legitimate?(q(D, P(i)), D, P(i))
= legitimate?(q(i + 1), d, p(i + 1))

invariant: THEOREM
(p_over_d_bound?(d, p(0))) AND (legitimate?(q(0), d, p(0))) AND
(FORALL j: recurrence?(p(j + 1), p(j), q(j), d) AND
P(j) <= p(j+1) & p(j+1) < P{j)+eps & D <= d & d < D+delta AND
(P_bound_by_D?(D,P(j)) IMPLIES lookup_legitimate?(q(j+1),D,P(j))))
IMPLIES -
(p.over_d_bound?(d, p(i)) AND legitimate?(q(i), d, p(i)))

Altogether, to prove the correctness of a specific SRT divider circuit it suffices
to show that 1) the arithmetic interpretations of the computed sequences of par-
tial remainders and quotient digits satisfy the recurrence relation recurrence?,

130

< dAdigit T2

Fig. 2. The data path for the division circuit.

2) there are constants delta and eps such that the divisor and the partial re-
mainders are bound by under-estimators in the sense described above, and 3)
the quotient selection logic satisfies the lookup.-legitimate? predicate. When-
ever these conditions hold, theorem invariant in , and consequently theorem

convergence in , is applicable.

5 Modeling The Data Path

Now, the data path of an SRT division circuit withr = 4 and a = 2 as described
by Taylor [Tay81] is specified and proven to be correct by applying the general
SRT theory developed in Section 4.

The signals of the circuit in Figure 2 are declared as uninterpreted constants
of signals of bit-vectors of various fixed lengths, and the uninterpreted constant
N:posnat, where N > 8, determines the width of the data paths for the divisor
and the partial remainders; examples of signal declarations and their interpre-
tation functions are listed in .

L7

it

£pl1,N-1] .val(d(i))
fp2cl4, 3].val(P(i))

d: signal(bvec[N]]; d(i): rational
P: signallbvec[7] ; P(i): rational

The divisor signal d has a fixed-point interpretation with 1 leading and N-1 resid-
ual bits, and the estimation P of the next partial remainder has a 2-complement
fixed-point interpretation with 4 leading bits and 3 residual bits. Note also that
dverloading the name of the bit-vector signal with its arithmetic interpretation
mimics a specification style often found in textbooks about computer arithmetic.
The inputs to the quotient selection unit q are the three bit truncation of
the divisor d and the seven bit approximation P of the next partial remainder.

L8]
lookup((D: bvec(3]),
(P: bvec[7] | P_bound by D?(1+£p[0,3].val(D),fp2c[4,3].val(P))))
:{ q: subrange(-2, 2) | 7 ‘
lookup_legitimate?(q, 1 + £p[0,3].val(D), fp2cl4, 3].val(P)) }

131

Here, predicate subtypes serve as a specification of a set of quotient look-up
tables by means of domain and range constraints, and a specific implementation
of these constraints is proven correct in Section 6. The behavior of the circuit
is specified by equality and inequality (to capture the effect of truncation) con-
straints on the inputs and outputs of the dalu and galu components which are
omitted here for lack of space.

From these formalizations, the grind strategy proves the lemmas in @ about
Taylor’s division circuit in Figure 2.

L9]
taylor_lemmai: LEMMA recurrence?(p(t + 1), p(t), q(t), d(t))
taylor_lemma2: LEMMA galu(t) <= dalu(t) & dalu(t) < galu(t) + 2 *ulp(6)
taylor_ lemma3: LEMMA P(t) <= p{t + 1) & p(t + 1) < P(t) + 3/16

Together with the constraint on D with respect to d, this accomplishes Step 2
with delta = 1/8 and eps = 3/16 mentioned in Section 4. Now it is a simple
matter of instantiating the theorem invariant in @ and convergence in |2 |to
obtain the invariant results in [@ for this specific circuit.

[10]

taylor_invariant: LEMMA
p_over_d_bound?(d(0), p(i)) AND legitimate?(q(i), d(0), p(i))

taylor_convergence: THEOREM
LET residue = p(0) / d(0) - val(i + 1, q) IN
-2/ (3 ¥ 4°1) <= residue & residue <= 2 / (3 * 4°i)

6 The Look-Up Table.

The legitimacy constraint lookup legitimate? (see on quotient look-up
tables permits different implementations, and Taylor [Tay81] develops a par-
ticularly compact one. This table computes the next quotient digit from the
truncation D:bvec[3] of the divisor to the three leading bits and the estima-
tion P:bvec[7] of the next partial remainder. Bits 6 down to 2 of P are used
as a table index and the remaining bits are used in some cases to compute the
resulting value.

The formalization of the resulting table q(D, P) (shown in Appendix A)
uses the TABLE construct of the PVS specification language [ORS95]. This con-
struct was added to the PVS specification language in order to provide visually
appealing two-dimensional tabular specifications in the manner advocated by
Parnas and others [Par95]. It proved adequate to express the look-up table of
this SRT circuit in a concise and perspicuous way. In particular, blank entries
in the look-up table cause the type-checker to generate TCCs which ensure that
viable arguments D, P never point to such a blank entry. Furthermore, the table
construct requires that the look-up is functional and ensures this by generating
disjointness and coverage TCCs. From the fact

132

[11]
(FORALL (D, (P: bvec[7] | estimation_bound?(valD(D), valP(P)))):
lookup_legitimate?(q(D, P), valD(D), valP(P)))

one concludes that the given table q indeed satisfies the constraint given for
look-up tables in Section 5. A simple case split on the different values of D and
P followed by unfolding definitions, term rewriting, and calls to the decision
procedures proves the theorem in . The type correctness conditions generated
by the type-checker for the look-up table are proven with similar strategies.

In the course of proving the consistency of the look-up table, PVS has proven
helpful as a debugging tool and came up with precise counterezamples.? By
injecting, for example, a wrong value 0 at a certain position in the look-up table
and rerunning the proof above, the PVS prover returns an unsolved subgoal
that yields an immediate counterexample. Note that the 5 missing entries in the
look-up table of initial releases of the Pentium floating-point unit were also right
at the upper boundary of the legitimate selection region for q = 2 as depicted
in Figure 1 by the blank rectangles.

7 Summary and Conclusions

We have shown how PVS can be used to specify and prove correctness of a non-
trivial SRT division algorithm and its hardware implementation in a modular
way. This modular approach not only structures the specifications and the proof
in a nice way but also has the advantage that slight variations of this particular
circuit design and look-up table can be verified by just redoing one part of the
proof. Moreover, parts of the theory can be reused for verifying other similar
division, and perhaps even square-root, circuits.

This verification exercise demonstrates the value of efficient decision proce-
dures and the use of an expressive specification language in mechanized verifi-
cation. The concepts of predicate subtypes, overloading, and tables of the PVS
specification language proved to be very useful for expressing the high-level de-
signs of this arithmetic circuit in a concise and natural way. Such high-level
descriptions reduce the possibility of introducing errors in initial design specifi-
cation and can also serve as design documents. The tight integration of decision
procedures with rewriting strategies of PVS proved to be a useful workhorse,
since the circuit specific theorems and the correctness of the table implementa-
tion are proven in a fairly automatic way. In most proof obligations that involve
non-linear equalities, however, the PVS prover must be manually guided to con-
struct the proofs.

This case study also suggests some improvements to the implementation of
PVS. The correctness proof of the table implementation in Section 6 takes 3

% Even though the original design of Taylor’s look-up table in [Tay81] proved to be
correct, we still managed to accidentally inject errors in the initial PVS transcrip-
tions.

133

hours. This is unreasonably slow, since the proof basically involves small case
analysis followed by the evaluation of ground predicates. The incorporation of
an efficient notion of evaluation into the proving process could drastically reduce
the time for doing this and many other hardware-related proofs. In the future
we plan to extend this case study to the verification of related circuits and oper-
ations, such as square root, and investigate other concepts like IEEE compliant
rounding [Min95].

References

[Atk68] D.E. Atkins. Higher-radix Division Using Estimates of the Divisor and
Partial Remainders. IEEE Transactions on Computers, C-17(10):925-934,
October 1968.

[Bry94] R.E. Bryant. Verification of Arithmetic Functions with Binary Moment
Diagrams. Technical Report CMU-CS-94-160, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, 1994.

[Bry95] R.E. Bryant. Bit-Level Analysis of an SRT Divider Circuit. Technical Re-
port CMU-CS-95-140, School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213, April 1995.

[CG95] E.M. Clarke and S.M. German. Personal Communication, 1995.

[CGZ96] E.M. Clarke, S.M. German, and X. Zhao. Verifying the SRT Division Al-
gorithm using Theorem Proving Techniques. Submitted to CAV’96, 1996.

[CZ95) E.M. Clarke and X. Zhao. Word Level Symbolic Model Checking: A New
approach for Verifying Arithmetic Circuits. Technical Report CMU-CS-95-
161, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA 15213, April 1995.

[Ger95] S.M. German. Towards Automatic Verification of Arithmetic Hardware.
Lecture notes, March 1995.

[LO95] M. Leeser and J. O’Leary. Verification of a Subtractive Radix-2 Square
Root Algorithm and Implementation. In Proc. of ICCD’95, pages 526
531. IEEE Computer Society Press, 1995.

[McS61] O.L. McSorley. High-speed Arithmetic in Binary Computers. In Proc. of
IRE, pages 67-91, 1961.

[Min95] P.S. Miner. Defining the IEEE-854 floating-point standard in PVS. NASA
Technical Memorandum 110167, NASA Langley Research Center, Hamp-
ton, VA, June 1995,

[OF94] S.F. Oberman and M.J. Flynn. Design Issues in Floating-Point Division.
Technical Report CSL-TR-94-647, Dept. of Computer Science, Stanford
University, Stanford, CA 94305-2140, December 1994.

[ORS95] S. Owre, J. Rushby, and N. Shankar. Analyzing Tabular and State-
Transition Specification in PVS. Technical Report CSL-95-12, Computer
Science Laboratory, SRI International, Menlo Park CA 94025 USA, June
1995.

[ORSvH95] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal Verification
for Fault-Tolerant Architectures: Prolegomena to the Design of PVS. IEEE
Transactions on Software Engineering, 21(2):107-125, February 1995.

[Par95] D. L. Parnas. Using mathematical models in the inspection of critical
softwa re. In Michael G. Hinchey and Jonathan P. Bowen, editors, Ap-

134

plications of Formal Methods, International Series in Computer Science,
chapter 2, pages 17-31. Prentice Hall, 1995.

(Prag5] V. Pratt. Anatomy of the Pentium Bug. In P.D. Mosses, M. Nielsen, and
M.I. Schwartzbach, editors, TAPSOFT’95: Theory and Practice of Software
Development, number 915 in Lecture Notes in Computer Science, pages 97—
107. Springer Verlag, May 1995.

[Rob58] J.E. Robertson. A new Class of Digital Division Methods. In-IRE Trans.
on Electron. Computers, volume EC-7, pages 218-222, 1958.

[Tay81] G.S. Taylor. Compatible Hardware For Division and Square Root. In
Proceedings of the 5th Symposium on Computer Arithmetic, pages 127-
134. IEEE Computer Society Press, 1981.

[Toc58] K.D. Tochter. Techniques of Multiplication and Division for Automatic
Bin ary Computers. In Quart. J. Mech. Appl. Match, volume Part 3, pages
364-384, 1958.

[VCM94] D. Verkest, L. Claesen, and H. De Man. A Proof of the Nonrestoring Di-
vision Algorithm and its Implementation on an ALU. Formal Methods in
System Design, 3:5-31, January 1994.

A Implementation of the Lookup Table

q(D, (P | P_bound_by_D?(...,...))): subrange(-2,2) =

LET a= -(2-P(1)*P(0)), b= -(2-P(1)}, ¢= 1+P(1), d= ~{1-P(1)), e= P(1)

IN TABLE bv2pattern(P~(6,2), bv2pattern(D)

i[oool o0t} o10] 011} 100] 101t 110} 111]]

fimm o e e e 4
101010} | ! I | l ! {21
01001} I i | 1 29 21 2N
fo1000]] I | 21 21 21 21|
joo1111 | 21 21 21t 21 21 21|
foo110] b2 20 210 210 27 21 211
jooto1] 21 21 241 210 21 21 21 11l
jootoo] 21 2] 21 21| i 11 11 1]
looott] 21 eI 11 11 v] +i tI1i
foootof 1t} 11 11 11t} t] 11 tIl
fooootl 1| t} 11 £1 e} Of 01 0Ol
foogool o of ol ol of ol 01 O
l1i114) o of ol ol ol o1 01 oIl
ft1110 -t | -1} 4| 41 ol o} o1 O
f11104f -1 [-t} -t | ~2 -2 0 -2 } -1 | -1 |
111001 a2 { B} -2 | -4 § ~1 | -1 -1] -11l
j11011] -2 4 -2 -2} bl -t {~1]~1]-11}]
j11010l -2} -2 -2 -2] -21~-21 b | -1 1]
ft1001] -2 | =2 [-2 [-2t -2 | -2 | -2 | -2]|
111000] ! [-2] ~-2]-2{]-21-21-21|
10111} I I [=21 -21-21-21-21l
[10110| ! l [! P-21-21-211
1101011 | ! I | i I -2 1 -2 I
Y %

Mechanically Verifying a Family of Multiplier
Circuits *

Deepak Kapur M. Subramaniam

Computer Science Department
State University of New York
Albany, NY 12222
kapur@cs.albany.edu, subu@cs.albany.edu

Abstract. A methodology for mechanically verifying a family of pa-
rameterized multiplier circuits, including many well-known multiplier
circnits such as the linear array, the Wallace tree and the 7-3 multi-
plier is proposed. A top level specification for these multipliers is ob-
tained by abstracting the commonality in their behavior. The behavioral
correctness of any multiplier in the family can be mechanically verified
by a uniform proof strategy. Proofs of properties are done by rewriting
and induction using an automated theorem prover RRL (Rewrite Rule
Laboratory). The behavioral correctness of the circuits is established
with respect to addition and multiplication on numbers. The automated
proofs involve minimal user intervention in terms of intermediate lemmas
required. Generic hardware components are used to segregate the speci-
fication and the implementation aspects, enabling verification of circuits
in terms of behavioral constraints that can be realized in different ways.
The use of generic components aids reuse of proofs and helps modularize
the correctness proofs, allowing verification to go hand in hand with the
hardware design process in a hierarchical fashion.

1 Introduction

There has been a great deal of interest in verifying properties of hardware cir-
cuits at the input-output level. Many papers on this topic have appeared in
conference proceedings and journals{1Q], to cite a few [3, 5, 8, 11, 6, 17]. Dif-
ferent approaches have been proposed in the literature, notably among them
state-based approaches and the use of model checkers [5, 3], induction-based ap-
proaches adapted from software verification [8, 12] and finally approaches based
on modeling hardware circuits using higher-order logics [6, 11].

Despite this widespread interest, verification efforts involving multiplier cir-
cuits have been few in comparison[14, 4, 13]. The state based approaches and
model checking that employ binary decision diagrams (BDDs) or some variant
of these, do not perform well on multiplier circuits due to the associated state
explosion (see further discussion on this in the next section on related work). It is
possible to verify the correctness of multipliers using theorem provers and proof
checkers but such efforts have also been limited as they are ad hoc in nature and
require considerable user ingenuity.

* Partially supported by the National Science Foundation Grant no. CCR-93080186.

136

The focus of this paper is on the use of an automated theorem prover for me-
chanically verifying parameterized multiplier circuits. A methodology for spec-
ifying and verifying a family of parameterized multipliers circuits is described.
The behavioral correctness of many well-known multiplier circuits such as the
linear array, the Wallace tree and the 7-3 multipliers, with respect to addition
and multiplication over numbers, i1s mechanically verified using an automated
theorem prover RRL (Rewrite Rule Laboratory)[15].

We first develop a common top level equational specification for a family of
multiplier circuits by abstracting the commonality in behavior. A multiplier cir-
cult is abstracted in terms of two components: a component that computes the
partial sums, called the partial sum computation component and another that
adds these partial sums to compute the final product, called the pariial sum
addition component. We then describe a uniform approach for mechanically ver-
ifying the correctness of any multiplier in the family using RRL. It is shown
that the correctness of any multiplier circuit in the family can be mechanically
established from the behavioral correctness of the partial sum computation com-
ponent and that of the partial sum addition component. The correctness of these
components follow from the correctness of the adder circuits used in them.

The proposed approach is highly generic — not only abstracting over the
word size of multiplier circuits but also abstracting the common behavior of a
variety of different multiplier circuits. The proofs of correctness are obtained for
multiplier circuits of arbitrary word size. Secondly, seemingly different multiplier
circuits share a common specification and proof of correctness using the same
lemmas, with only a few different definitions for each multiplier circuit.

A major complaint against the use of theorem provers and proof checkers
for hardware verification has been the semi-automatic nature of these systems.
Verification efforts using these systems involve considerable user ingenuity. We
believe that a common top level ‘proof for a family of multiplier circuits with
well-characterized intermediate lemmas that are independent of the underlying
prover, is a step in addressing this issue. It is shown that the intermediate lem-
mas used in the proofs of correctness of multipliers reported here correspond
to formulas that specify the input-output behavior expressed in terms of num-
bers, of different components of the circuits. Such lemmas, we speculate, can be
generated systematically from the structure of the circuits,

In our specifications and proofs of various multiplier circuits, we abstract
the adders in terms of generic hardware components with associated behavioral
constraints. The correctness of the multiplier circuits is first established in terms
of such generic components. It is shown later how a particular adder can realize
a generic component by demonstrating that the adder satisfies the behavioral
constraints of the generic component. Such a view provides a clear separation be-
tween specification and implementation aspects. The use of generic components
aids reuse of proofs and modularize the correctness proofs, allowing verification
to go hand in hand with the design process in a hierarchical fashion. Such modu-
larization of proofs is crucial for any verification methodology to effectively scale
up to larger and more complex hardware circuits.

137

Let us briefly review main aspects of different multiplier circuits considered
in this paper. A linear array multiplier performs the multiplication of two n bit
numbers in linear time by computing the partial sums corresponding to the given
numbers and adding the partial sums together to obtain the required result. Ad-
dition of partial sums is done by considering one partial sum at a time. Wallace in
[20] introduced a multiplication scheme, which has popularly come to be known
as the Wallace tree multiplier, for multiplying two n bit numbers in logarithmic
time. Improved performance is achieved in the Wallace tree multiplier by con-
sidering three partial sums for addition together. The multiplication scheme due
to Wallace was generalized and improved upon by Dadda in [7] leading to a rich
family of multipliers called the Dadda muliipliers. In these multipliers, larger
than three partial sums are taken up for addition at a particular time. Consider-
ing larger number of partial sums does not improve the asymptotic complexity
but considerably reduces the number of stages required for multiplication result-
ing in reduced wiring delays. The 7-3 multiplier used in IBM RS/6000 is based
on this observation and has been attributed [9] as one of the important features
that contributes to its good performance.

Most of these multiplier circuits are based on the grade school principle
of multiplying any two given n bit numbers-computing the partial sums and
adding the partial sums to obtain the required result. This basic underlying
principle is often not evident in commonly found descriptions of these circuits.
The computation of partial sums is done in the same manner in these circuits,
and these circuits differ only in the number of partial sums that they consider for
addition at any particular time. A common top level specification for the family
of multiplier circuits based on this observation is developed in Section 3. In
section 4, the behavioral correctness of different multiplier circuits with respect
to addition and multiplication over numbers are presented. The use of generic
hardware components in specifying and verifying different multiplier circuits
using RRL is discussed in section 5.

2 Related Work

Among the various approaches employed for hardware verification, the state
based approaches based on symbolic manipulation of boolean functions using
binary decision diagrams BDDs [3] are perhaps the most popular for verifying
hardware circuits of fixed word size (non-parametric circuits). A circuit is spec-
ified using a boolean function that can be succinctly represented using a BDD.
Further BDDs provide a fast mechanism for comparing boolean functions. Even
for linear circuits, in which the output is a linear function of the inputs, this
approach has two major limitations: (i) it is unclear how circuits of arbitrary
word size can be verified, and (ii) verification is limited to showing that a circuit
implements a boolean function, and not a function on numbers.

It is well-known that for many important boolean functions, especially the
ones for multiplication, that grow exponentially with the word size, the state-
based approaches are less attractive for verification. Bryant and Chen recently
introduced a new data structure Multiplicative Binary Moment Diagram (BMD)
for modeling the functionality of circuits in terms of data at the word level [4].

138

Using this approach, a number of integer multiplier designs with word sizes up to
256 bits have been verified. However, such verifications are not fully automatic
as Bryant and Chen in [4] state:

....the overall circuit is divided into components, each having a word level spec-
ification. Verification involves proving 1) that each component implements its word
level specification and 2) that the composition of the word level component functions
matches the specification.....

The approach advocated in this paper using a theorem prover RRL for verify-
ing multiplier circuits is similar to the one suggested using BMDs. We decompose
a multiplier circuit into two components, and establish the number-theoretic
correctness of the individual components. The overall proof then follows by the
composition of these two components. The automated proofs obtained using our
theorem prover RRL do not entail any additional overheads. Due to the gen-
erality afforded by theorem provers like RRL, it was further possible to obtain
commen proof for a family of multiplier circuits of arbitrary sizes (parametric
circuits) which would be infeasible otherwise.

Approaches based on theorem provers and proof checkers have been widely
used to verify hardware circuits. Most of this effort has focussed on verification
of different forms of processors [11, 17, 8], different forms of ALUs [19, 8] or has
been used for the verification of adder circuits [19, 8, 16, 12]. In [14], a Braun
Multiplier is formally specified using the Boyer-Moore logic and some properties
about this specification are proven using Ngthm [1].

In [18], a framework for synthesizing a variety of hardware circuits including
the carry save and Wallace tree multipliers is proposed. Higer order metafunc-
tions with different circuit interconnection structures such as the carry save array
and the Wallace tree as inputs are manually transformed to realize multipli-
ers at the gate level. The correctness of the circuits is established by reasoning
about the behavior of these metafunctions and the associated transformations
using the automated theorem prover HOL. We are unaware of other mechanical
verification efforts where the correctness of multipliers such as the Wallace tree
multiplier or the 7-3 multiplier have been mechanically established with minimal
user guidance using a uniform framework such as curs.

3 Specifying a family of Multiplier Circuits

A common, top level equational specification for a family of multiplier circuits is
developed in this section. The Wallace tree multiplier is used as an example to
illustrate the methodology. The overall structure of the Wallace tree multiplier
can be described diagrammatically as in Fig. 1.

Given bit vectors = and y of equal length, a Wallace tree circuit first computes
a list of partial sums (P1,---, P8 in Fig. 1) using a function such as psum-all.
Each partial sum in the list is a bit vector that corresponds to a single bit of z
and is obtained by shifting y appropriately. The partial sums in the list are then
added together by adding in parallel three partial sums at a time. Addition of
any three partial sums is typically done using a carry save adder(CSA) that has
three bit vectors as its inputs and produces a pair of bit vectors as its output.

Xy vy
| Pum-an |
w -
§ 8
§‘ fas
? &
B
<—-

The outputs correspond to the bitwise sum and the bitwise carry of the inputs.?
The parallel addition of three bit vectors at a time is repeated on the outputs of
the carry save adder until we have only two bit vectors left. The final product is
obtained by using a ripple carry (RCA in Fig. 1.) or a carry lookahead adder.

Specifying Partial Sums Computation in RRL: A bit vector is modeled
in RRL as a list of bits (with 0 denoting bit zero and 1 denoting bit one) with
nl and cons. A list of bit vectors is modeled as a list of lists with Inl denoting
the empty list of lists and consl that adds a list to a list of lists.

Contrary to the usual convention, we assume that the bits increase in order
from left to right i.e., the bit vector 01 stands for 0 2% + 1 %2 = 2.

The partial sum, psum corresponding to a single bit x1 of x is the same as y
if x1 is 1; otherwise, it is the zero bit vector of the same length as y*:

psum(x1, y) := cond(xl = 0, mkzero(y), y),

where mkzero generates a zero bit vector of the same length as its input.

The list of partial sums corresponding to all the bits of x is computed by
applying the function psum pointwise to each bit of x and shifting y to the right
by appending a irazling zero.

psum-all(nl, y) := Inl
psum-all(cons(x1, x), y) := consl(psum(xi, y), psum-all(x, cons(0, y)))

Specifying Partial Sums Addition in RRL: In a Wallace tree circuit, each
level in the tree in Fig. 1. contains a list of bit vectors that have to be added to
produce the final result. The root contains the list of partial sums corresponding
to each bit of the bit vector x. The successive levels of the tree are repeatedly
constructed until there are less than three bit vectors at any given level(equations

2 Further details on the specification of the carry save adder are given in section 5.
 We follow the convention of typesetting RRL specifications and italicizing other
logical formulas.

140

1, 2 and 3 below). In the case of two bit vectors, addition using a ripple carry
adder, rca, is performed(equation 3 below).

The Wallace tree multiplier is specified by 3-mult below. The trace of a
computation of 3-mult on input vectors of a specific length corresponds to a
specific circuit.
3-mult (cons(x1, nl), y) := psum(x1i, y)
3-mult(cons{x1, cons(x2, n1)), y) :=

rca(0, pad(1, psum(x1, y)), psum(x2, cons{(0, y))}
3-mult(cons(x1, cons(x2, cons(x3, x)}), y) :=
3-repeat (psum~all (cons(x1, cons(x2, cons{x3, x))}, y)).

The function 3-repeat repeatedly takes 3 bit vectors and add them; it is specified:
3-repeat(1nl)

3-repeat(consl(x1,1nl))
3-repeat (consl(x1,consl(x2, 1nl)))

nl
x1
rca(0, pad(1, x1), x2) if
(len(pad(1, x1)) = len(x2))
3-repeat(consl(x1, consl{(x2, consl(x3, x)))) :=

3-repeat (3-once(consl(x1, consl(x2, consl(x3, x))))),

where len denotes the length of a list. The function pad(m, x) produces a bit
vector by appending m leading zeroes to the bit vector x. Bit vectors are typically
padded by leading zeroes in these specifications so that the input bit vectors to
the adders are of equal length. The last equation (equation 4) computes the bit
vectors at the successive level by the function 3-once.

The function 3~once is defined on a list of bit vectors. If the input list contains
less than three bit vectors(equations 1, 2 and 3 below), then the bit vectors in
the input list are carried over to the output list. Otherwise, the bit vectors in the
input list by considering bit vectors in groups of three and adding such groups
in parallel using a carry save adder, csa, (equation 4 below). The outputs of the
csa’s and the bit vectors in the input list that were not considered for addition
together, constitute the bit vectors of the output list.

3-once(lnl) 1nl
3~once(consl(x1, 1nl)) consl(x1l, 1nl)
3~once(consl(x1, consl(x2, 1nl)})) consl{x1, consl(x2, 1nl))
3-once{consl(x1, consl(x2, consl(x3, x)))) := consl{fst(z1), consl(snd(z1)
3-once(x))) if
(z1 = carrysave-adder{(pad(2, x1), pad{1, x2), x3)) and
(len{pad(2, x1)) = len(x3)) and (len(pad(1, x2)}) = len(x3))

u

se e
LI]

3.1 A common top level specification for muitipliers in RRL
Circuits that perform multiplication of two n bit numbers by first computing
the partial sums and then adding these partial sums constitute a rich family of
multipliers based on the number of partial sums that they consider for addition
at a particular time. Any multiplier of this family can be specified in RRL using
the same top level specification as that of the Wallace tree multiplier.

Consider a multiplier circuit defined by the function k-mult in which k (k > 1)
partial sums are added together at any time. The multiplier can be abstracted in
terms of two hardware components that are cascaded together. The first of these

141

components performs partial sum computation with two bit vectors as its inputs
and produces a list of bit vectors as its output. The second of these components
performs pariial sum addition with a list of bit vectors as its input and produces
a bit vector as its output.*

The partial sum computation component of the multiplier is specified by the
functions psum and psum-all. The partial sum addition component is specified in
terms of: k-repeat which adds ¥ partial sums repeatedly, and k~once for adding
partial sums at one level until there are fewer than k partial sums left.

The function k-once is defined in the same way as 3-once. The function
leaves the input list of bit vectors invariant if the list contains less than k {more
precisely, maximum of ¥ — 1 and 1) bit vectors. Otherwise, a suitable adder is
used to add the bit vectors in the list & at a time with the outputs of the adder
constituting the bit vectors to be added in the next round. The definitions of the
functions k-mult and k-repeat can be generalized from the definitions of 3-mult
and 3-repeat respectively in a similar fashion. 3

4 Establishing the correctness of multipliers in RRL

In this section we discuss how the behavioral correctness of multiplier circuits
can be automatically established using RRL. RRL is a theorem prover based
on rewriting techniques and induction. The main inference steps used in RRL
are (i) contextual simplification using rewrite rules, (ii) case analysis, (iii) de-
cision procedures for data types with free constructors, propositional calculus
and quantifier-free Presburger arithmetic for reasoning about numbers, and (iv)
proofs by well-founded induction. RRL implements many heuristics to select the
order of application of these inferences. For more details on RRZ the reader is
referred to [15].

Consider a multiplier specified by k-mult that performs multiplication of its
two input bit vectors z and y by considering k, k > 1, partial sums for addition at
a time. To establish the correctness of this circuit with respect to multiplication
over numbers, conversion functions from bit vectors and list of bit vectors to
numbers are needed. The function bton converts a bit vector to the number it
represents (recall that the first bit is the least significant bit).

bton(nl) := 0,
bton(cons(x1, x)) := cond(xl = 0, 2 * bton(x), 1 + (2 * bton(x)).

Given a list of bit vectors as input, the function btonlist below defines a linear
addition of numbers corresponding to each of the bit vectors.

btonlist(inl) := 0, btonlist(consl(x, y)) := bton(x) + btonlist(y).

* k itself can be treated as a parameter while adding the partial sums. Such a specifica-
tion and the correctness proof can be found in ftp.cs.albany. edu/pub/subu/Multipiers.
The specification uses generic adders (discussed in section 5). Instantiating such
adders requires discharging assumptions on lengthes of the lists of bit vectors in
terms of ¥ and would be discussed in the expanded version of this paper.

® The complete specifications of the linear array, the Wallace tree and the 7-3 multiplier
as done in RRL along with the RRL transcripts of their correctness proof are also
available by anonymous ftp.

142

The correctness of a multiplier k~mult is stated in RRL as:
Kmult-thm: bton(k-mult(x, y)) == bton(x) * bton(y) if (len(x) = len(y)).

The basic strategy employed for proving the above theorem is simple. It in-
volves characterizing the input-output behavior of the partial sum computation
component and the partial sum addition component of the multiplier with re-
spect to numbers, and then showing that cascading these two components leads
to the desired overall behavior. It is shown that i) multiplying the numbers cor-
responding to the input bit vectors of the partial sum computation component
is the same as number obtained by the linear addition of the list of partial sums
output by this component. i) And, the number corresponding to the bit vec-
tor output by the partial sum addition component is the same as the number
corresponding to the linear addition of the list of partial sums input.

The same strategy can be used to prove the correctness of the correctness of
any multiplier in the family of multipliers {(for any fixed k). Linear addition of
partial sums serves as a common denomination for any & and the addition of
partial sums together can always be reduced to linear addition.

Speculating the Intermediate Lemmas

Intermediate lemmas capturing the behavior of each of the component cir-
cuits are first established. For instance, lemma L1 below states that the ripple
carry adder correctly implements addition over numbers (needed for the final
stage).
L1: bton(rca(0, y, 20} == bton(y) + bton{z} if (len(y) = len(z)).

There is a similar lemma for carry-save adders (lemma L4 in section 5).
Lemma L2 captures the correciness of the behavior of the partial sum addition
component; it states the number corresponding to the output bit vector is pre-
cisely the one obtained by adding numbers corresponding to the list of input
bit vectors. Finally, L3 relates the number corresponding to the list of bit vec-
tors output by the partial sum computation component to the product of the
numbers corresponding to its two input bit vectors.

L2: bton(3-repeat(x)) == btonlist(x}.
L3: btonlist(psum-all(x, y}) == bton(x) * bton(y)

Fach of these lemmas can be verified completely automatically in RRL by the
cover set induction method [15] and the associated heuristics.

We believe that each of the above intermediate lernmas can be speculated
from the structure of the multiplier circuit. Lemmas relate the input-output
behavior of components of a multiplier circuit with respect to numbers. For each
component in the circuit, the number corresponding to its output bit vector
(or a list of vectors) is related to the numbers corresponding to its input bit
vectors. This important issue of generating intermediate lemmas from the circuit
structure needs further investigation; the approach based on generating lemmas
from the component behavior seems to be very promising.

For instance, the Wallace tree multiplier can be viewed as a linear compaosi-
tion of the ripple carry adder(rca), the partial sum addition (3-repeat), and the
partial surn computation (psum-all) components. The main theorem 3mult-~thm
can be expressed as:

143

bton(x) * bton(y) = bton(rca(0, 3-repeat(psum-all(x, y)))),

by identifying the list of bit vectors output by 3-repeat with the two input bis
vectors of rca. The number theoretic correctness of the circuit 3mult-thm can be
reduced to the number theoretic correctness of each of these components relating
their corresponding inputs and outputs. These correspond to the intermediate
lemmas L1-L3. Lemma small L4 can be speculated from the use of 3-once in the
iterative component 3-repeat.

Establishing the correctness of the Wallace tree multiplier in RRL:

Below, we briefly review the proof of Wallace tree multiplier as obtained in
RRL using the above-discussed strategy using lemmas L1, L2, L3, L4. Other
proofs are similar.®

The correctness of the Wallace tree multiplier is stated in ERL as:

3mult-thm: bton(3-mult(x, y}) == bton(x) * bton(y) if (len{x) = len(y)).

The above theorem was proved in RRL by induction. Induction scheme based
on the definition of the function 3-mult is automatically chosen by the heuristics
implemented in RRL without any user guidance. Here is the RRL transcript.

Let P{x): bton(3-mult(x, y)) == (bton(x) * bton(y)) if (len(x) = len(y))
Induction will be done on x in 3~mult(x, y), with the scheme:

[1] P(cons(xi, nl)) [2] P{cons(x1, cons(x2, nl)))
[3] P(cons(x1l, cons(x2, cons(x3, x))))

The subgoal corresponding to [1] is easily established by case analyses based
on the definition of psum, using the definitions of 3-mult and bton for simplifi-
cation. The case analyses is automatically recognized by RRL based on the
definition of psum given in terms of the ternary predicate cond.

The subgoal [2] follows from lemma L1 (ensuring that the ripple carry adder
correctly implements addition over numbers). The proof of the subgoal [3] is also
direct from lemmas L2, L3, thus completing the proof of 3mult-thmby induction.

The correctness of any other multiplier in the family of multipliers such as
the linear array or the 7-3 multiplier can be performed in RRL using the same
top level proof as that of the Wallace tree multiplier given above. For instance,
the correctness of a linear array multiplier is proved in RRL using three lemmas
which are exactly the same as L1 - 1.3 with the lemma L2 defined in terms of
functions 1-repeat instead of the function 3-repeat. The correctness proof of the
7-3 multiplier also follows from the lemmas L1 - L3 with the lemma L2 defined
in terms of the functions 7-repeat instead of 3-repeat.

5 The use of Generic Hardware Components

While proving the correctness of different multipliers , the specifications and
the associated correctness proofs of the adders are duplicated. Such duplication
can be avoided by noting that specifications of the input-output behavior of the
adders is sufficient to reason about different multipliers; other details of adders

® Detailed proof transcripts are available via anonymous ftp from ftp.cs.albany.edu:
pub/subu/Multipliers.

144

are irrelevant. So adder circuits are abstracted by generic hardware components
with behavioral constraints. The correctness proof of multipliers is first per-
formed in terms of these generic components. The generic components are then
realized by specific adders that satisfy the associated behavioral constraints.

To specify and reason over generic hardware components, RRL has been
extended along the lines of {2] to allow function instantiations and for handling
theories. The behavioral constraints associated with a generic component are
specified in RRL as equations(possibly conditional) using ? = to indicate that
the equation is a behavioral constraint. For instance, a carry save adder can be
specified in RRL in terms of the generic component g32-adder as:

bton(fst(g32-adder(x, y, z))) + bton(snd(g32-adder(x, y, 2z))) 7=
bton(x) + bton(y) + bton(z) if (len(x) = len(y) = len(z)).

The behavioral constraints introduced on these generic components are oriented
into rewrite rules by RRL and are subsequently available for simplification.

5.1 Realizing the generic components : Carry Save Adder

To complete correctness proofs of different multipliers, the generic components
used are realized by specific adders that satisfy the associated behavioral con-
straints. In this section we use the correctness proof of a carry save adder as an
example to realize the generic component g32-adder. The other generic compo-
nents used in the proofs of the multiplier circuits have been realized similarly
using RRL. For details refer to [12].

A carry save adder has three bit vectors of equal length as its inputs and
outputs two bit vectors corresponding to the bitwise parity and the bitwise sum
of its inputs. It is specified in RRI as:

csalx, y, z) := pairl(paritylst(x, y, 2), cons(0, majoritylst(x, y, 2)))
it (len(x) = len(y) and (len(y) = len(z)),

where pairl given two bit vectors constructs a pair of bit vectors. The func-
tion paritylst, computes the bitwise parity of its three inputs, and the function
majoritylst computes their bitwise majority. These functions can be easily de-
fined by invoking parity and majority functions on bits.

The correctness of the carry save adder can be stated as:

L4: bton(x) + bton(y) + bton(z) == bton(paritytlst(x, y, z}) + bton(cons(0,
majoritylst(x, y, z))) if (len{x) = len(y)) and (len(y) = len(z)).

The above formula is proved directly in RRL by induction using the scheme
based on the definition of paritylst.

The component g32-adder can be realized by the carrysave adder, csa in
RRL using the instantiafe directive with a set of function replacements such
as {(g32-adder csa),...). Based on these function replacements the behavioral
constraints are suitably instantiated by RRL and the instantiated formula is
treated as a proof obligation which must be discharged from the properties of
the realization.

145

6 Conclusion

A number of well-known multiplier circuits such as the linear array, the Wallace
tree and the 7-3 multiplier employed in JBM RS/6000 have been verified using
the automated theorem prover RRL. It has been shown that by abstracting the
commonality in behavior, a family of multiplier circuits can be specified using
a common top level specification. Such a specification was used to illustrate a
common top level correctness proof for the family of multiplier circuits. The basic
strategy employed in performing these correctness proofs is simple, and it leads
to concise proofs with a handful of meaningful lemmas that are independent of
the underlying prover. It should be possible to duplicate these proofs using other
provers which support capabilities similar to those implemented in RRL.

Circuit Comm. Defs| Comm. Lemm. {Spec. Defs|Spec. Lemnm.| Time
Linear Array 2 0 2.48
Wallace Tree 12 5 2 0 2.45
7-3 2 0 6.22

The intermediate lemmas used in these proofs correspond to the input-output
behavior of the various components of the multiplier circuit. Speculation of such
lemmas can be done by the user in a routine manner. The use of generic compo-
nents to segregate the specification and implementation aspects was advocated.
The use of such generic components lead to concise proofs and help reuse of
proofs. It was also demonstrated that generic components lead to modular proof
development in a hierarchical fashion analogous to the design process.

The specification and the correctness proofs of the Wallace tree multiplier
were attempted first in RRL and it took less than a week. This time is inclusive
of our attempts to familiarize ourselves with the multiplier itself. The subsequent
multipliers were formalized and their correctness proof was proved in a couple
of days. The statistics for the various correctness proofs obtained using RRL are
given in the table. RRL is implemented in Common Lisp and the timings are on
a Sun Sparc 5 station(64Mb memory). The proofs of the linear array and the
Wallace tree multiplier can be performed in RRL within 5 secs. The time required
for the 7-3 multiplier is larger due to extensive contextual rewriting required for
establishing the appropriateness of the lengthes of seven bit vectors. There are
no specific intermediate lemmas needed in the proofs. For each muitiplier circuit,
only two definitions specific to the circuit are needed.

The results of our initial experiments, in terms of adder circuits [12] and
multiplier circuits performed in RRL, are encouraging, and they lead us to be-
lieve that RARL is well-suited for reasoning about the properties of hardware
descriptions using recursive equations that can be oriented into rewrite rules.
Particularly, RRL can be used for verifying properties of parameterized circuits,
which cannot be handled by state based approaches, as well as for structuring
proofs of larger circuits in terms of proofs of their component circuits. Further,
circuit properties are verified in terms of the arithmetic functions they compute
in contrast to boolean functions. The major stumbling block in the use of the-
orem provers is perhaps the need for intermediate lemmas. As shown for adder

146

and multiplier circuits, these lemmas correspond to capturing the arithmetic
function of the component circuits; generation of such lemmas, we speculate,
can be automated.

References

1.

2.

10.

11.

12.

13.

14,

15.

16.

17.

18,

19.

20.

R.S. Boyer and J. Moore, A Computational Logic Handbook. New York: Academic
Press, 1988.

R.5. Boyer, J. Moore and M. Kaufmann *Functional Instantiation in Nqthm”, CLI
Inc. Tech. Report.

. Bryant R.E., “Graph-based Algorithms for boolean function manipulation”, JEEE

trans. on Computers, C-35(8), 1986.

. R. E. Bryant, and Y.-A, Chen, ®Verification of Arithmetic Functions with Bmary

Moment Diagrams”, Tech. Rep. CMU-C8-94-160, June 1994.

. J. R. Burch, E.M. Clarke, K. L. Mcmillan and D.L. Dill, “Sequential Circuit

Verification using symbolic model checking”, in proceedings of Twenty sevenih
ACM/IEEE Design Automation Conference, 1990.

. A.J. Camilleri, M.J.C. Gordon and T.F.Melham, “Hardware verification using

higher-order logic”?, HDL Descriptions to Guaranteed Correct Circuit Designs,
D. Borrione (editor) pp. 43-67, N.Holland, Amsterdam 1987.

. L. Dadda “Some Schemes for parallel multipliers,” in Computer Arithmetic Vol.],

E.E. Swartzlander Jr. {editor), IEEE Computer Society Press, 1990.

W.A. Hunt., “FM8501: A verified Microprocessor”, Ph.D thesis, UT Austin, 1985.
R.K.Montoye, E. Hokenek and S.L.Runyon, “Design of the IBM RISC System /6000
floating-point execution unit,” IBM Journal, Vol. 34, No. 1, 1990.

»Theorem Provers in circuit design” JFIP Transactions, V. Stavridou, T.F. Mel-
ham, R.T.Boute (eds.) N.Holland 1992.

J. Joyce, G. Birtwistle and M. Gordon, “Proving a computer correct in HOL”,
Tech. Report 100, Computer Lab. University of Cambridge 1986.

D. Kapur and M. Subramaniam, “Mechanical Verification of Adder Circuits Using
Powerlists,” CS.Tech. Report, Dept. of CS Suny Albany, November 1993.

R.P. Kurhshan, L. Lamport, “Verification of a Multiplier: 64 Bits and Beyond,”
Fifth Intl. Conf. on CAV, C. Courcoubetis (editor), LNCS 697, July 1993.

L. Pierre, “VHDL Description and Formal Verification of Systolic Multipliers,” in
Proc. of CHDL, D. Agnew and L. Claesen (eds.} N. Holland 1993.

D. Kapur, and H. Zhang, “An overview of Rewrite Rule Laboratory (RRL),” J. of
Computer and Mathematics with Applications, 29, 2, 1995, 91-114.

D. Cyrluk and S. Rajan and N. Shankar and M. K. Srivas, “Effective Theorem
Proving for Hardware Verification”, Proc. 2" conference on theorem provers in
circuit design, R. Kumar and T. Kropf {eds.}, Sept. 1994,

M. Srivas and M. Bickford, “Formal Verification of a pipelined microprocessor.”,
IEEF Software, Sept. 1990.

Shui-Kai Chin, “Verified Functions for Generating Signed-Binary Arithmetic Hard-
ware”, IEEE trans. on Computer Aided Design, Vol. 11, No. 12, Dec. 1992.

D. Verkest, L. Claesen, and H. De Man, “Correctness Proofs of Parameterized
Hardware Modules in the Cathedral-1I Synthesis Environment”, FDAC’90, Glas-
gow, Scotland, March 1990.

C.S. Wallace, “A Suggestion for a fast multiplier,” in IEEE Trans. Electron. Com-
put., EC-13:14-17, 1964.

Verifying Systems with Replicated
Components in Muryp *

C. Norris Ip and David L. Dill

Computer Systems Laboratory, Stanford University
Email: {ip,dill} @cs.stanford.edu

Abstract. We present an extension to the Murg verifier to verify systems with
replicated identical components. Verification is by explicit state enumerationin an
abstract state space where states do not record the exact numbers of components.
Through a new datatype, called RepetitivelD, the user can suggest the use of such
an abstraction to verify a system of fixed size. Mury automatically checks the
soundness of the abstract state graph, and automatically constructs the abstract
state graph using the system description.

Using a simple run time check, Mure can also determine if it can generalize the
verification result of a system with fixed size to systems of larger sizes, including
the system with infinite number of components.

1 Introduction

Finite-state systems such as cache coherence protocols, communication protocols or
hardware controllers are often designed to be scalable, so that a description gives a
family of different systems, each member of which has a different number of replicated
identical components. It is therefore desirable to be able to verify the entire family of
systems, independent of the exact number of replicated components.

The general problem of verifying systems with replicated components is known
to be undecidable [AK86, GS92]. A number of approaches has been proposed for
verifying particular classes of problems. Some of them use induction over the replicated
components and require an invariant process or a network invariant [KM0OS94, CG87,
CGJ95, WL89]. Coming up with a proper invariant is not easy, and automatic generation
of network invariants for certain classes of systems are restricted and expensive [RS93,
BSV94, SG87, GS92].

There are also approaches that do not use induction. Shibata et al. [SHT093] pre-
sented an algorithm to verify a simple telecommunication system with limited interac-
tion between the processes. However, the class of problems they can verify is severely
restricted. On the other hand, Graf [Gra94] has a more general method based on abstrac-
tions, which has been applied to a distributed cache memory, but it requires substantial
manual effort to complete the proof.

The work described here is closely related to the methods by Lubachevsky [Lub84],
Dijkstra [Dij85], and Pong et al. [PT395, PNAD95]. Lubachevsky verified a concurrent
program by collapsing all reachable states into a fixed number of “metastates”, in
which the number of processes is represented by N with an unspecified value. Dijkstra

* This research was supported by Semiconductor Research Corporation under contract 95-DJ-389
and by the Advanced Research Projects Agency through NASA grant NAG-2-891.

148

used regular expressions to represent classes of similar states. Pong et al. used a set
of repetition constructors to abstract away the exact number of components, for the
verification of cache coherence protocols.

In this exposition, we consider systems with a collection of components, including
fixed components and components that can be replicated from 1 to n times. Many of
these systems, such as cache coherence protocols and mutual exclusion algorithms,
can be proved correct without modelling the precise number of replicated components.
For example, suppose a multiprocessor has identical caches numbered 1 to 8, and that a
particular memory value is invalid in caches 1,2,3,5,6,7 and and writable in cache 4. The
abstract state may record that more than zero caches are invalid, exactly one is writable,
“forgetting” not only the number of processors in each state but also the ordering of
the processors. Formally, the abstract state includes a mapping from component states
to repetition constructors {0, 1, +}, representing zero, exactly one, or more than zero
(respectively) components in that component state. This abstraction is an approximation
of the original state graph, which can be used for verification of invariants and YCTL
model checking. The approximation is conservative: it never fails to report an error, but
may report an error when none exists.

This approach has been used for the verification of several applications, but most of
the existing work requires a lot of expertise from the user. For example, Pong and Dubois’
method requires the user to write an executable description of the abstract behavior. This
description is different from the concrete description used for specification or synthesis,
so their method requires more work, and raises the question of whether the concrete and
abstract descriptions are consistent.

To reduce the amount of user effort, we incorporate this abstraction into our veri-
fication system, Mury. We provide an extension to the existing high-level language in
which the user can easily specify a protocol in its concrete form. The extension is a new
datatype, called RepetitivelD, which can be used to represent the indices of the repli-
cated components. The Mury compiler can automatically detect whether the datatype
is used in a way that admits the use of repetition constructors in verification. If so, it
automatically verify the system using the abstract state space, instead of the concrete
state space. ,

Furthermore, we also extend previous work so that the abstraction can be used to
verify systems of fixed sizes, even when verification for unbounded sizes is infeasible,
resulting substantial reductions in the state explosion. Through a simple run-time check,
Mury can determine automatically if it can generalize the verification result to systems
of larger sizes.

A key problem in verifying in an abstract state space is how to generate the successors
of an abstract state. We solve this problem by selecting up to two concrete states
represented by an abstract state, and constructing the abstract successors from the
concrete successors of these concrete states. Heurstics for an efficient construction of
the abstract state space are also presented.

2 Modifications to Murg

2.1 The Mury Verification System

The basic Mury Verification System [DDHY92] consists of the Muryg compiler and the
Mur description language. The Mury description language is a high-level programming
language for the description of finite-state asynchronous concurrent systems. The Mury

149

compiler generates a C++ program for a Mury program, which exhaustively generates
the reachable states, checking for error conditions and deadlocks.

A Mury program consists of four parts: declarations, transition rules, start state
generation rules, and invariant descriptions. Examples of Mury programs are shown in
Figs. 1 and 2.

Type - userdefined type

pid: 1..numProcessor; - processor indices
mid: 1..numMemory; ~ memory modules-indices
address: 1.numAddress; — address space
value: 1..valueCount; ~ possible values in a memory word
Var — State variables
F: Array [pid] of —an array of records storing the status
Record ~ of each processor.
State: enum {Invalid, Shared, Master};
Value: value;
Outstanding _Request: Boolean;
End;
M: Array [mid] of MemoryState; — an array of memory modules.
Net: Multiset [NetSize] of Messages; —a multiset storing messages in the network.

Fig.1. An Example of state variable declarations in Mure

Ruleset n : pid Do ~ parameterized rules for each processor
Ruleset h : mid Do — parameterized rules for each memory module
Ruleset a : address Do — parameterized rules for each address in a memory module
Rule “Line Eviction”
P[n].Cache[h][a].State = Shared —if it is an shared copy
=
Begin
P{n].Cache[h][a].State := Invalid; —the cache line is invalidated
P[n].Cache[h][a]. Value := Undefined; — the data cannot be used
End;
Endruleset;
Endruleset;
Endruleset;

Fig.2. An Example of transition rules in Mury

A system state is specified by the values of the global variables. The rules are con-
ditiona] actions (guarded commands). As a Mury description executes, a rule is chosen
nondeterministically and executed, generating a new system state (since it assigns new
values to the variables). Although a rule may consist of arbitrarily complex operations, it
is executed atomically, without interference from other rules in the description. Hence,
the use of Mury leads to an asynchronous, interleaving model of concurrency in which
different parts of the system interact via shared variables.

The types of variables are mostly conventional finite datatypes found in high level
languages: arrays, records, integer subranges, Booleans and enumerations. Unlike con-
ventional languages, there is also a special “undefined” value for each datatype. There
are some non-traditional types as well, such as scalarsets [ID93a] and multisets. The
scalarset type is a finite set of values, similar to a subrange except that their use is

150

restricted so that members of the scalarset can be interchanged in any state without
affecting the future behavior. For example, in a multiprocessor, processors are symmet-
rical and we can model their indices as a scalarset. Multisets are also called “bags”, of
values of some other type. Multisets of messages are useful for modelling networks that
do not preserve message order. A multiset is essentially an array indexed by an anony-
mous scalarset type. A Choose construct can be used to nondeterministically select an
element from a multiset and bind a parameter to a reference to the selected element.

The rules contain control constructions, including sequences of statements, if and
for statements. A set of rules that vary over a parameter can be abbreviated using the
RuleSet construct, which has a parameter name, an index type, and a body containing
one or more rules which refer to the parameter as a variable. The start state descriptions
are special rules which initialize the state variables. The invariant descriptions are
Boolean predicates; a conjunction of a set of Boolean predicates over a parameter can
be abbreviated using the forall construct.

A Mury program implicitly represents a state graph, defined as a set of states @0, a set
of start states Q)9 C @, a special error state error € } which represents the occurrence
of a run-time error in the system being verified, and a next-state relation A C @ x Q.
A convenient representation for A is a set of transition functions t; - — Q. We
can define A in terms of ¢;: A(g, ¢’) if there is some transition function ¢; such that
g = ti(g). _

In the state graph represented by a Mury program, the set of states () is the set of
all legal assignments of values to the declared state variables plus a special state for
error. The rules define transition functions by reading and writing the state variables.
The error state is generated if there is a run-time error, such as referencing an undefined
value, or if the resulting state from a transition function violates an invariant. The
start states are generated by applying the transition functions of the start rules to the
assignment that gives an undefined value to every state variable. A ruleset generates a
set of transition functions, one for each parameter value of the ruleset index type. Nested
rulesets generate transition functions by substituting all combinations of parameters.

When verifying by explicit state enumerations, it is important that errors be reported
as quickly as possible, without unnecessarily generating states. This can be achieved
using “‘on-the-fly” (online) algorithms, in which states are checked for error as they are
generated. The basic algorithm for error and invariant checking is shown in Fig. 3.

SimpleAlgorithm() Examine(state 5)
Reached = Unexpanded= Qg If s = error Then Report Error
While Unexpanded # ¢ Do If & is notin Reached Then
Remove a state s from Unexpanded Put ¢ in Reached
For each successor s’ of s Do Put s in Unexpanded
Examine(s)

Fig. 3. A Simple On-the-fly Algorithm for Error and Invariant Checking

To describe a system of several components, such as a set of processes, the user
must define state variables for the component state, and define a set of rules for the
behavior of the component. The behavior of concurrent components is modelled by
forming the union of the state variables and rules of the individual components. One of
the components “takes a step”” when its rule is chosen and executed.

-Replicated identical components can be modelled in Mur¢ by defining a con-

151

stant for the number of components (say CompCount), and defining a subrange
CompID: 1 .. CompCount for the indices of components. The local states. of
the components are stored in an array indexed by CompID. The rules describing the
components are enclosed in a ruleset with a CompID parameter which represents the
component to which the rule belongs. Using this convention, Murs descriptions become
scalable, meaning that the number of replicated components can be changed simply by
modifying CompCount.

2.2 The RepetitiveID Type

We add a new datatype to Muryp, called RepetitivelD. The RepetitivelD is a re-
stricted subclass of a conventional subrange (in fact, it is a scalarset), which should
be used for the indices of replicated identical components, such as processors in a
multiprocessor. For example, we can change the subrange 1. .numProcessor to
RepetitiveID(numProcessor) to hintto the verifier to verify the system in the
smaller abstract state space. Mury automatically checks that certain restrictions are
satisfied so that the verification is sound. Since a member ¢ of the RepetitivelD type is
used as the name of a component in the description, it is natural to identify i and the
component, and refer to “componert i below.

A value of RepetitivelD type can be assigned to variables, tested for equality with
other values, used as an array index, or bound in a RuleSet or for loop. There are six
restrictions on the use of RepetitiveID. In spite of the restrictions, RepetitiveID can
be used to model a wide range of systems, including bus-based multiprocessor cache
coherence protocols [PD95], network-based cache coherence protocols with a central
or distributed directory [PNAD95, DDHY92, LLG190].

Intuitively, our goal is to isolate the parts of the state corresponding to the replicated
components into a single array indexed by the RepetitivelD type. If two components
i and j have identical component states, we would like the transition rule to produce
a successor state where i and j have identical component states, also. There is one
exception: we allow the rule to have one “special” component, whose component state
is treated differently from other component states, even if they are otherwise identical,
An example of where this is useful is mutual exclusion: many components may be in
identical states, waiting for a resource, but only one (the special one) will obtain it.

The first two restrictions make it possible to separate the component states from
other parts of the state.

1. The Murp program has at most one RepetitivelD type.

2. The elements of a symmetric array cannot contain another array with RepetitivelD
index type. A symmetric array is an array indexed by a scalarset or RepetitivelD
type, or a multiset.

We illustrate the subsequent definitions with an example. Consider a central-directory-
based cache coherence protocol whose state includes: an array of local processor control
states; a multiset of messages representing a communications network; a memory where
each memory line has an owner field pointing to a processor that has a writable copy
of the line, along with the data in the memory line. The messages in the network have
to and from fields, which can be processor indices or a value representing the memory
itself.

152

With these restrictions, the following definition characterizes the parts of the state
that “belong” to a replicated component.

Definition 1. The component state of the component i includes all the state variables
satisfying:

— for every array A indexed by the components, the element A[f). (In the example, the
local control state of processor i becomes part of the component state for i.)

— for every multiset M that is not assigned to a component state by the previous
case, the elements of M containing i and no other components. (In the example, the
messages between the memory and processor i become part of the component state

fori.)

In our example, the memory value (which does not contain a component index), the
owner field (which is not in a multiset), and messages from one processor to another
(which contain two component indices) are not included in any component states.

Definition 2. A component, i, is abstractable if it contains all instances of ¢ occuring in
the global state, and contains no other component indices.

In our example, a processor 7 would not be abstractable if the owner field had the
value ¢, or if there were a message between ¢ and another processor j.

In the rest of the paper, we regard the state as being apair (s, [r1, . .., rg]): [r1, . . ., T%)
is an array of component states indexed by the abstractable components, and s an
assignment to the rest of the state variables. The component states for components ¢ and
j are considered to be the same if the only difference between corresponding variables
is that variables in component ¢ have the value ¢ and variables in component j have the
value j.

There are four restrictions on the use of RepetitivelDs in Mury to ensure the sound-
ness of this verification method. Although we have made these as simple as we can,
some are still quite technical.

3. No “symmetry-breaking” operations [ID93a]. There are no literal constants in the
type; arithmetic operations are not allowed; comparisons such as < are not allowed.

4. Bindings of the RepetitivelD type in RuleSet constructs may not be nested.

5. Bindings of the RepetitivelD type in for statements and forall expressions may
not be nested. The variables written by each iteration of a for statement on the
RepetitiveID must be disjoint. In particular, a forall expression on the RepetitivelD
is not allowed in the body of a for statement on the RepetitivelD.

6. If a variable in the state has the RepetitivelD type, and its value is t for some
abstractable components, the variable may not be used to index an array with
RepetitivelD index type.

Intuitively, the symmetry restriction makes sure that the components can be reordered
arbitrarily without changing the behavior of the systems. The remaining restrictions
ensure that transition rules treat identical component states identically, except for at
most one special component.

153

3 Verification Using Repetition Constructors

3.1 Abstract States Using Repetition Constructors

Once we have isolated the abstractable components as in the previous section, it is
possible to abstract away from the exact numbers of each component state by using the
repetition constructors 0, 1, and +.

Definition 3 Abstract State. An abstract state is similar to a concrete state except that
the array of abstractable components is replaced with a mapping of each possible
component state to one of the repetition constructors 0, 1, or +.

Abstract states are written in the form (s, {¢{',...,¢;*}), where each ¢; is 1 or +
(when the constructor is 0, the component state is omitted).
A concrete state a = (s,[ry,...,r,]) is represented by an abstract state A =

(s,{q7', ..., ¢;*}) if the following conditions are satisfied:
~ e; = +if g; occursin [ry, .. ., r,] two or more times;
- e; = lore; = +if g; occurs in [ry, . . ., r,] exactly once;
- acomponent state does not appear in [qy, . . ., g;] if it does not appear in [ry, . .., r,].

The abstract states are partially ordered: (s, {q}", ..., q;*}) < (s,{q7", .., gz*}) if

and only if e; = + implies ¢ = +. In this case, (s, {g;",...,g;*}) is said to cover
(5,{¢7",...,q*}). The notation @ € A is used to indicate that A represents a. The set of
abstract states representing a particular concrete state has a unique minimum element
in this order; the abstracting function abs used in our verifier maps a concrete state to
its minimum abstract representative.

In many cases, it is useful to maintain in the abstract state the total number of
replicated components, while forgetting exactly how many components are in each
component state.

Definition 4 Restricted Abstract State. A restricted abstract state is an abstract state
paired with a number representing the total number of replicated components.

We write (s, ¢7", .. ., ¢;*)|n to represent the restricted abstract state with n compo-
nents.

3.2 The Basic On-The-Fly Algorithm

We can construct the abstract state graph for a Mury program with a RepetitivelD type
using an on-the-fly algorithm,

First of all, C++ code for the abstraction function abs is generated by the Mury
compiler. The start states of the abstract state graph are generated by using this function
to abstract the concrete start states.

Given an abstract state, the verifier needs to generate all its successors in the abstract
state graph. Because of the restrictions of the RepetitivelD, the verifier can always find
a small number of concrete states that can be used to find the successors to the abstract
state. The choice of concrete states depends on the abstract state, and on the nature of
the concrete transition functions.

154

Given (s, {¢7", ..., gt* }), and a transition ¢, there are three possible situations:

1. There is no special component for the transition ¢, or the special component is not
.abstractable, i.e., it belongs to s.

2. The special component has repetition constructor 1.

3. The special component has repetition constructor +.

For brevity, we discuss only the third, most difficult, case in detail. Suppose : is
the special component for ¢, and ¢ has component state ¢;. The restrictions of the
RepetitivelD allow a transition to have different effects on the special component and the
other components with the same component state. Therefore, we split our abstract state
into two concrete states (s, (g1, ..., ¢i—1, Gi, Gi+1, .-, 9%}) and (8, [q1, .-, @4, Qi -+, Q&) @S
shown in Fig. 4.

If the successor of (s, [q1, -+, Qim1, @, Qi 1y - Q)) 1S (ST, [P1y ooy Pic, Py Pi 1y ooy 7)),
we can convert it back to an abstract state by restoring the repetition constructors
(e1, . €in1, 1, €01, oy ei) to get (s, {r{", . r27 rl i L rp*). To make sure
itis an legal abstract state, we may havc to re-partition if the component with state » is no
longer abstractable, and to combine any identical component states r; and r;. Similarly
another abstract successor is generated from (s, [qi, ..., ¢i, ¢, ..., g&]) With repetition
constructors (eq, ..., 1, +, ..., e).

(s g, gy })

N

(Sa {qla vy ity Gy Qi 1, "'7’1’77'}) {3: {QI,-'-,qi, qi, -~~,Qn})
t t}
(8", {r1y ey Timt, 1y Tig 1y o, T }) (8" {riy 07y Tiy ey T })

l restoring constructors i

Efmm 1 St . ! e 1 e
(At :il Ty m’rl r e ’Tk) (" Ay :Tja-“»’"kk})
re-partition
and combining
abstract successor A abstract successor B

Fig. 4. Transition t With Special Component in State ¢; and Constructor +.

Because of the restrictions of the RepetitivelD, the abstract state graph generated
this way has the following property:

Property 1 Given two abstract states A and B, if there exists concrete state a € A and
b € B such that (a, b} is a transition in the original state graph, (A, B) is a transition
in the abstract state graph.

The abstract start states represent all concrete start states, and the abstracting function
abs maps error to error. Therefore, it can easily be proved by induction that for
every state reachable from a start state in the concrete state graph, there is an abstract

155

representative reachable from an abstract start state. This can be easily proved by
induction.

It follows from this result and [BBG193] that if the abstract state graph satisfies a
YCTL formula f, the concrete state graph also satisfies f. Because the abstract state
graph is an approximation, it may result in reports of non-existent errors and cannot be
used for verification of deadlock-freedom (there is no reachable state with only itself as
successor) or 3 CTL model checking.

The algorithm implemented in Mury uses the restricted abstract states. The Mury
program is required to specify the number of replicated components, n, and the Mury
verifier restricts all abstract states to size n. There are two situations when a restricted
abstract state represents no concrete states, and therefore, is discarded. One is when
it only represents concrete states with number of replicated components fewer than n,
such as in the case of the restricted abstract state (s, {g}, ¢}})|3. The other situation is
when it only represents concrete states with number of rephcated components more than
n, such as in the case of the restricted abstract state (s, {g;, ¢ })|1.

Furthermore, in some cases, the restricted abstract state represents the same set of
concrete states as a similar restricted abstract state with the 1 constructor only. Mury
automatically converts such states to a restricted abstract state with the 1 constructor
only. For example, the restricted abstract states (s, g1, ¢5])|2 and (s, [¢, ¢3])]2 is the
same as (s, [¢, ¢3])|>, and Mury automatically converts both of them to (s, [¢], g3])]2.

During the verification process, if the discarded abstract state only represents con-
crete states with fewer components than n, and no restricted abstract state is converted to
one with the 1 constructor only, the abstract state graph obtained is the same as that for
systems of larger sizes. We call this state graph the saturated state graph. The saturated
state graph represents the behavior of all systems with sizes n or larger. The verification
result is therefore valid for all systems of size n or larger.

With the restricted abstract state graph, the verifier won’t attempt to solve the problem
for arbitrary sizes if it is unsolvable or if the abstract state graph for arbitrary system
sizes is too large for us to verify.

3.3 The Efficient On-The-Fly Algorithm

The algorithm presented in the previous subsection is very inefficient, because it is
wasteful to have two comparable states in the table of previously examined states.
For example, (s,{g}, 45 }) is redundant in the set of previously examined states when
(s, {¢7, g7 }) is also in the set. A more efficient algorithm can be implemented as shown
in Fig. 5. Two heuristics are presented in this section to reduce the time for checking
whether a state is maximal in the set of previously generated states and to reduce the
number of non-maximal states generated.

Checking if a State is Maximal For every abstract state generated, we check whether
itis covered by a previously examined state, and remove any previously examined state
that is covered by it. Pong et al. use a linear search on all previously examined states to
do this.

If an abstract state p covers another abstract state p’, p and p’ can only differ in the
1 and + constructors on their component states. To store the abstract states, the hash
function does not distinguish between 1 and + constructors. The states hashing to the
same location are searched linearly to see if any cover or are covered by the current
state.

156

EfficientAbstractAlgorithm()
Reached = Unexpanded={ abs(q) | ¢ € Qo}
While Unexpanded # ¢ Do
Remove an abstract state s from Unexpanded
For each abstract successor s” of s Do
Examine(s’)

Examine(state s)
If s = error Then Report Error
If s is not in Reached and 3 is not covered by a state in Reached Then
Remove the states in Reached and Unexpandedthat are covered by s
Put s in Reached and Unexpanded

Fig. 5. The Efficient On-the-fly Algorithm Using the Abstract State Space

In practise, the lists are very short. In the industrial cache coherence protocol pre-
sented in Section 4, the maximum length is 6. When an abstract state is hashed into
a location with a list of constructor arrays, the average number of states compared is
fewer than 1.05. This method does not work well for the original scheme of Pong et al.,
because they have a fourth constructor, *, meaning “zero or more states”.

Reducing the Number of Non-Maximal States Although an abstract model has very
few states, many non-maximal states are temporarily stored and expanded. We have
found that for simple depth first search {DFS) and breadth first search (BFS), more than
75% of the time is spent searching non-maximal states.

Instead of using simple DFS or BFS, we use a best-first strategy, where “best” is
defined as the greatest number of + constructors. The abstract state that represents more
concrete states are expanded to find its successors first, because its successors are more
likely to be maximal states. For the industrial cache coherence protocol presented in
Section 4, we are able to reduce the number of non-maximal states examined from
106,528 (3 times more than the number of maximal states) down to 3,527 (fewer than
10% of the maximal states) in a 9-processor system. No extra memory is required to
store the non-maximal states, and the verification is more than three times faster.

Pong also has mentioned similar strategy in his thesis [Pon95], however, because of
his choice of repetition constructors, it does not help much in reducing the number of
non-maximal states.

4 Practical Results

The abstraction with the repetition constructors can be combined easily with the other
two reduction strategies implemented in Mure: symmetry reduction [ID93a, ID93b]
and reduction by reversible rules [1D96].

We present in this section the verification results for an industrial cache coherence
protocol (ICCP), using the Mury verification system. This protocol is a typical central-
directory-based cache coherence protocol, as described in [DDHY92]. Because of data
forwarding, some replicated components in some states are not abstracted by the repe-
tition constructors. However, since the extent of forwarding is limited, we are still able
to verify it for arbitrary system sizes, as shown in Table 1.

As we increase the size of the system, the size of the abstract state graph increases
accordingly until it becomes saturated. After the verification of a system of 14 processors,

157

Table 1. Results for the Verification of an Industrial Cache Coherence Protocol

of processors (ICCP) 3 4 5 6 7

size (unordered network) | 10,077,247,565 - - - - -
size (sym. only) 1,781} 11,814] 68,879/358,078 - - -
size (sym./rep.) 1,770] 11,206{ 57,790{257,692 - - -
size (sym./rev.) 434 1,760 6,021| 18,118(49,045/121,302 -
size (sym.Jrev./rep.) 427{ 1,590] 4,542{ 10,587|19,485| 28,927 35,515
time (unordered network) 5.1s 205s - - - — -
time (sym. only) 2.45 28s| 349s| 3,762s - = -
time (sym./rep.) 4.4s 49s| 497s| 4,555s - - -
time (sym./rev.) 218 13s 98s| 615s}3,283s|12,801s -
time (sym./rev./rep.) 3.3s 27s] 167s| 811s[3,265s] 7,593s{17,477s
of processors (ICCP) 10 i1 12 13 14 and up
size (sym./rev./rep.) 38,146| 38,485] 38,329| 38,269 38,269
time (sym./rev./rep.) 29,871s) 37,903s/43,352s] 48,410s| 49,9325

sym. : Symmetry Reduction
rev. : Reversible Rules Reduction
rep. : Repetition Constructor Reduction

Muryp was able to detect automatically that the abstract state graph is the same for systems
with 15 processor or more. The saturated model has 38,269 states and is valid for 14
processors or more. This phenomenon is very similar to the data saturation phenomenon
reported in [ID93a, ID93b].

Acknowledgement

We would like to thank Fong Pong for the discussion on the symbolic state model,
Ganesh Gopalakrishnan, Seungjoon Park, Ulrich Stern, and Han Yang for their valuable
feedback during the writing of this paper.

References

[AK86] Kirzysztof R. Apt and Dexter C. Kozen. Limits for automatic verification of finite-
state concurrent systems. Information Processing Letters, 22:307-309, 1986.

[BBG'93] A. Bouajjani, S. Bensalem, S. Graf, C. Loiseaux,andJ. Sifakis. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 1993.

[BSV94] F. Balarin and A.L. Sangiovanni-Vincentelli. On the automatic computation of net-
work invariants. 6th Int’l Conf. on Computer-Aided Verification, June 1994.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and application to logic
programs. Technical report, Ecole Polytechnique, Laboratoire d’Informatique, 1992.

[CG87} EM. Clarke and O. Grumberg. Avoiding the state explosion problem in temporal
logic model checking algorithms. Proceedings of the 6th Annual ACM Symp. on
Priniciple of Distributed Computing, 1987.

[CGJ95] EM. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks using
abstraction and regular languages. CONCUR’95, 1995.

[DDHY92] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol verifica-
tion as a hardware design aid. Int’l Conf on Computer Design: VLSI in Computers
and Processors, 1992.

[Dij85]
[GL93]
[Gra94]
[GS92]

[ID93a]

[ID93b}

[ID96]

158

E.J. Dijkstra. Invariance and nondeterminacy. In Mathematical Logic and Program-
ming Languages. Prentice-Hall, 1985. .

S. Graf and C. Loiseaux. A tool for symbolic program verification and abstraction.
Sth.Int’l Conf. on Computer-Aided Verification, April 1993,

Susanne Graf. Verification of a distributed cache memory by using abstractions. 6th
Int’l Conf. on Computer-Aided Verification, 1994.

S.M. German and A P. Sistla. Reasoning about systems with many processes. Journal
of Association for Computing Machinery, 39(3):675-735, 1992.

C. Norris Ip and David L. Dill. Better verification through symmetry. //th Int’l
Symp. on Computer Hardware Description Languages and Their Applications, 1993.
Extended version with complete proofs and semantic analysis to appear in Formal
Methods in System Design.

C. Norris Ip and David L. Dill. Efficient verification of symmetric concurrent sys-
tems. Int’l Conf. on Computer Design: VLSI in Computers and Processors, 1993.

C. Norris Ip and David L. Dill. State reduction using reversible rules. 33rd Design
Automation Conference, June 1996.

[KMOS94] Robert P. Kurshan, Michael Merritt, Ariel Orda, and Sonia R. Sachs. A structural

[LLG790]

[Lub84]
[PD93]

[PD95]

linearization principle for processes. Formal Methods in System Design, 5, 1994.
Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John
Hennessy. The directory-based cache coherence protocol for the dash multiprocessor.
17th Int’l Symp. on Computer Architecture, 1990.

Boris D. Lubachevsky. Anapproach to automating the verification of compact parallel
coordination programs 1. Acta Informatica, 21:125-169, 1984,

F. Pong and M. Dubois. Correctness of a directory-based cache coherence protocol:
Early experience. 5th Symp. on Parallel Distributed Processing, 1993.

F. Pong and M. Dubois. A new approach for the verification of cache coherence
protocols. IEEE Transactions on Parallel and Distributed Systems, 6(2), 1995.

[PNAD95] F. Pong, A. Nowatzyk, G. Aybay, and M. Dubois. Verifying distributed directory-

[Pon95]

{RS93]

[SG87]

[SHTO93]

[WL89]

based cache coherence protocols: S3.mp, a case study. EurPar’95.

Fong Pong. Symbolic State Model: A New Approach for the Verification of Cache
Coherence Protocols. PhD thesis, University of Southern California, 1995.
June-Kyung Rho and Fabio Somenzi. Automatic generation of network invariants for
the verification of iterative sequential systems. Sth Int’l Conf on Computer-Aided
Verification, June 1993.

AP. Sistla and S.M. German. Reasoning with many processes. Symp. on Logic in
Computer Science, 1987.

Kenji Shibata, Yutaka Hirakawa, Akira Takura, and Tadashi Ohta. Reachability
analysis for specified processes in a behavior description. IEICE Transaction on
Communication, E76-B(11), November 1993.

Pierre Wolper and Vinciane Lovinfosse. Verifying properties of large sets of processes
with network invariants. In Automatic Verification Methods for Finite State Systems,
volume 407 of LNCS, Springer-Verlag, 1989.

Verification of Arithmetic Circuits
by Comparing Two Similar Circuits

Masahiro Fujita
Fujitsu Laboratories of America, Inc.
3350 Scott Blvd., Bldg. #34, Santa Clara, CA95054
fujita@fla.fujitsu.com

Abstract. Recently there have been a lot of progress in technologies
for comparing two structurally similar large circuits [2, 14, 13]. Cir-
cuits having more than 10,000 gates, whose BDD cannot be built, have
been verified in several minutes. However, arithmetic circuit verifica-
tion with respect to specification is still a hard problem. As shown
in [16] some arithmetic circuits, such as multipliers, square function.
cube functions, etc., must satisfy some recurrence equations, such as
flz+1,y) = f(z,y) +y where f(z,9) = zy, and those equations can
be used for verification. In this paper, we use such recurrence equations
in order to drive Boolean comparison problems of structurally similar
circuits. That is, left hand sides and right hand sides of equations are
realized as separated circuits and then compared. Using the recurrence
equation properly, these circuits have many internal equivalent signals
and many implications among signals, by which Boolean comparison
programs, such as [2, 14, 13}, can work very effectively. Using the pro-
posed method, 16-bit multipliers, such as C6288 of ISCAS85 benchmark
circuits, are verified within 12 minutes.

1 Introduction

Formal verification techniques have been paid much attention recently. There
have been lots of works on formal hardware verification [11, 10], and among
them, Binary Decision Diagram (BDD) [3] based verification techniques, such as
[5, 8, 17, 6, 15], have given successful results for practical designs.

However, BDD may not work well for arithmetic circuits, such as multipliers.
Therefore, several extensions are made on BDD, such as, BMD [4], HDD ([7],
OKFDD [9], etc. Although originally word-level verification is necessary in order
to use BMD. by using the technique shown in [12] which compute BMD from
outputs to inputs instead of inputs to outputs, we can now use BMD directly
to verify arithmetic circuits, such as multipliers. However, if there are errors

160

(bugs) in the circuits, BMD can easily blow up and the verification program
may not terminate, since those circuits represent different logic functions from
multiplier which can have exponential sizes of BMD. Of course this depends on
each error but we actually observed this BMD explosion by randomly inserting
logical errors to the multiplier circuits and generating BMDs.

In this paper, we show another approach to attack the verification of arith-
metic circuits. Instead of directly generating BDD (or its extensions) from given
circuits, we create circuits based on the recurrence equations that must be satis-
fied by the circuits. This idea was originally proposed by Ochi [16]. For example
a recurrence equation for multipliers is:

flz+1,y) = f(z,y) +y where f(z,y) = zy and z, y are inputs

Any circuits which satisfy the above recurrence equation are multipliers!. He
used recurrence equations to verify arithmetic circuits by first generating BDD
from the circuits and then check if that BDD satisfy the required recurrence
equations. Clearly this method has a drawback that we have to build BDD for
the circuits first, which is often impossible for large arithmetic circuits.

On the other hand, recurrence equations, such as shown above (for multipli-
ers), may indicate a comparison problem of two circuits (or Boolean functions).
That is, checking recurrence equation means comparing the left hand side and
right hand side of the equation. So, basically we can use Boolean comparison
techniques for such equivalence checking.

Recently there have been much progress in technologies for Boolean com-
parison of similar circuits. Here “similar” means that we can find many logical
relationships, such as equivalences or implications, among the internal signals
in the two circuits to be compared. In a practical design environment, designers
want to check the equivalence of the two circuits which are very structurally
similar. For example, it is often the case to check the equivalence between unop-
timized circuits and manually optimized circuits. For such cases, there are lots
of relationships among the internal signals in the two circuits. By utilizing these
relationships, methods like {2, 14, 13] can verify much larger circuits than the
circuits which can be verified just by BDDs. 10,000 gates or larger circuits can
be verified within practical time.

Basically recurrence equations suggest two structurally similar circuits (left
hand side and right hand side). Here we propose a new verification method

! Circuits must also satisfy boundary conditions, such as, f{0,y) = 0, which can be
checked rather easily.

161

for arithmetic circuits based on recurrence equations. We first generate two cir-
cuits which correspond to left hand side and right hand side of the recurrence
equations. Then apply Boolean comparison program for similar circuits to those
circuits. Please note that we need only one circuit which should be verified. The
two circuits to be compared are generated from that circuit by adding appropri-
ate extra circuits, such as adders, incrementors, etc. Also note that we do not
need specification in Boolean functions. Specification is fully described in the
recurrence equations that we are using to generate two circuits.

By using case splitting appropriately, we can verify 16-bit multipliers, such
as C6288 of ISCAS benchmark circuits, in less than 12 minutes on Sparc20.
Moreover, different from the method in [12], the proposed method can finish
verification in similar time, even if the circuits are not correct as shown in section
3.

In the next section, we introduce our verification method. Then section 3 gives
preliminary results. Section 4 is our concluding remarks. Although we discuss
only about multipliers for simplicity, the proposed method can be applied many
arithmetic functions which have proper recurrence equations, such as, square
functions, cube functions, etc.

2 Verification algorithm

In this section we introduce our verification method. For simplicity, we use mul-
tipliers as examples all the time, although we can verify many other arithmetic
circuits which have proper recurrence equations, such as, square functions, cube
functions, etc. As long as there are proper recurrence equations, we can verify
any circuits, including random circuits (assuming such recurrence equations are
given)?.

The basic idea for multipliers is illustrated in Figure 1. Since multipliers
satisfy the following equation, two circuits which are derived from left hand side
and right hand side of the equation respectively must realize the same Boolean
function.

f(z+1,9) = f(z,y) +y where f(z,y) = zy and z, y are inputs

2 In some sense, we can consider the proposed method is a kind of self-checking meth-
ods proposed in [1]. What we are doing in this paper can be described in the following
way: by appropriatly using recurrence equations (self checking properties), we-are
reducing verification problems into Boolean comparison problem for similar circuits.
Of course, if the reduced Boolean comparison problems are too large, we can use
random simulation based checking just like in [1].

162

incrementor | |a f(x,y)

n-bit
adder

—l—n->22

(b) Circuit correponding to f(x,y)+y

Fig. 1. Circuit realization of the recurrence equation for multipliers

Please note that the two multipliers in Figure 1 are the same circuit which
we want to verify. We are assuming here that incrementor and adder are given
and they are guaranteed to be correct.

Please also note that the above equation together with boundary condition
for £ = 0 completely specify the function and that must be multiplier.

So, by comparing the two circuits shown in Figure 1, we can formally verify
multipliers®. But this is not an easy Boolean comparison problem. Clearly we
cannot build BDD for each circuit, if that is a large bit width multipliers, such
as C6288 of ISCAS85 benchmark circuits. Although large portion of the two
circuits are the same sub-circuits (multiplier), they are not similar circuits in
the sense that we cannot find many equivalent signals between the two circuits.
So, we cannot directly apply the Boolean comparison methods like {2, 14, 13].

However, if we consider only the case where the least significant bit of z, 2o is
0, then the incrementor becomes just an inverter as shown in Figure 24, Thus the
two circuits become like the ones shown in Figures 3. There are many equivalent

% In this paper, we assume that extra circuits, such as incrementor, adder, subtracter,
etc., are guaranteed to be correct. Or those should be verified first
% If zo = 0, then increment does not affect the values of z;, 2, ..., Tn-1.

163

signals between the two circuits, since most inputs are common and large portion
of the circuits are the same. In fact there are a lot of functional relationships

among internal signals of the two circuits.

X0 — . — a0
x] — p-blt a1
X2 .| incrementor - a2
® K)
® ®
® o
xn-1 —» ——-an-1
if x0=0
X0 >0 - a0
x1 > a1l
x2 > a2
o ®
® ®
® ®
xn-1 » an-1

Fig. 2. If the least significant bit is 0, incrementor becomes just an inverter

By this case splitting, we can verify multipliers when z; = 0. Then how
about the cases when zg = 1 ? We can proceed with the same idea: further case
splitting with x;, 22, For example, if 25 = 1 but £; = 0, then the incrementor
becomes just two inverters as shown in Figure 4. Again the two circuits generated
are similar as shown in Figure 5.

The next splitting case is g = 1,z; = 1,23 = 0 which needs three inverters
for zg,z;, and z2. This case splitting process can be continued until we reach
the case where zo = 1,2y = L,z =1,...,2p_ 2= 1,2,_; = 0.

What we are doing here is just check the equation:

flz+1,y) = f(z,y) +y where f(z,y) = zy and z, y are inputs

by case splitting the values of ;.

164

-
n-bit
incrementor

X

These two are
very similar

n-bit n
adder | z2

h |

Fig. 3. By assuming zo = 0, the circuits become very similar

x0 — . — a0
x1 —| N-it — a1
X2 —> incrementor a2
® ®
® ®
® ®
xn-1 — ——>an-1

if x0=1 and x1=0 l

x0 =§ »al
x1 > > al
x2 » a2
® ®
[] ®
® []
xn-1 + an-1

Fig.4. The case where zo =1 but z; =0

165

e ~
n-bit
incrementor

x
Ts
LA /
L \!I ¥
=3

y+
\
These two are
n very similar
X n
y b n-bit N
n » adder z2

Fig. 5. By assuming zo = 1,3 = 0, again the circuits become very similar

As we have more number of inverters, the two circuits become less similar.
However, as we have more number of inverters, we can fix the values of z; more.
That is, in the case of Figure 4, since this is the case where g = 1 and z; = 0,
we can fix the values of o and z;. So there are trade-offs in terms of difficulty
and the most difficult case happens when there are two inverters as shown in
Figure 4 according to our experiments for C6288 in the next section.

By using the above case splitting, we can keep the similarity of the two
circuits. These circuits should be rather easy circuits for the Boolean comparison
methods like [2, 14, 13]. In fact, as shown in the next section, we have found many
equivalent signals which drastically reduce the verification time or complexity of
the problem.

3 Preliminary experimental results

We did some preliminary experiments for multipliers. We plan to do more in-
tensive experiments using other types of circuits, such as, square functions.

Our program first generates net-lists for the two circuits in Figure 2, 4, and
others °® from the given multipliers. Then apply our Boolean comparison pro-
grams to them. '

® In the case of 16-bit multipliers, there are 16 cases in total. But some of them are
trivial, since most of z; are constants.

166

We verified C6288 of ISCAS85 benchmark circuits for its first 16 outputs,
since as shown in Figure 1, all values should be the same bit-width (16bit in this
case). The results are shown in Figure 6. We did two types of experiments. The
first one is to just verify C6288 circuit, which is a correct multiplier. It took only
less than 12 minutes in total to verify.

The program found 342 equivalent internal signals of the two circuits out of
360 internal signals for the case of Figure 2. So large portion of the two circuits
are equivalent and that is why verification can finish so quickly. The most time
consuming case is the one shown in Figure 4 which took 8 minutes to finish.
This is the case where the two circuits are similar but not so much and their
circuit sizes are still large (only small number of z; have fixed value). All the
other cases are less than one minute.

Multiplication CPU time
Circuit sec. on Sparc20
C6288 Original | Error

(first 16 outputs) (correct) | inserted

Case: x0=0 14.0
2.0-60.0 -
Case: x0=1,x1=0 | 4960 | depending
ase: xU=1 x1=) on errors
inserted

Less than
All other cases 60.0

Fig. 6. Results for 16-bit multipliers

Second experiment we did is to try to verify incorrect multipliers (verification
fails) by intentionally inserting errors into C6288 (changing function of a gate,

167

etc.?). Depending on changes, it took less than one minute (sometime in a couple
of seconds) to prove the circuit is not a multiplier. Depending errors, the cases
where verification fails are different, but mostly verification fails in multiple
cases. Again this is extremely fast. Please note that the method in [12] may not

work well for incorrect circuits.

4 Conclusions

We have shown a verification method for arithmetic circuits. We also demon-
strated that C6288 can be verified in less than 12 minutes. Even if the circuits
are not correct (there is a bug in the circuits), verification time remain similar or
less. Also, different from BMD or HDD based methods, we do not need another
BDD package, such as, BMD package. We can use existing BDD packages or
Boolean comparison programs to verify arithmetic circuits. We believe that the
proposed method has a significance in its applications.

Although in this paper we only discussed about combinational circuits, the
proposed techniques can be applied to sequential circuits by deriving appropriate
recurrence equations. Surely this is one of our future research topics.

Also, the proposed method can be considered to be a kind of self-checking
methods proposed in [1]. What we are doing here can be described in the follow-
ing way: by appropriately using recurrence equations (self checking properties),
we are reducing verification problems into Boolean comparison problem for simi-
lar circuits. Of course, if the reduced Boolean comparison problems are too large,
we can use random simulation based checking just like in [1]. We are planning
to explore this area and study on extensions of the proposed method.

References

1. M. Blum, M. Luby, and R. Rubinfeld. “self-testing/correctig with application to
numerical problems”. In Proc. of 22nd ACM Theory of Computing, pages 73-83,
1990.

2. D. Brand. “verification of large synthesized designs”. In Proc. of ICCAD, pages
534~537, Nov. 1993.

3. R.E. Bryant. “graph-based algorithms for boolean function manipulation”. IEEE
Trans. Computer, C-35(8):667-691, Aug. 1986.

(3
Even if we make many changes in the circuit, sitnations are the same. The two
circutts we generate according to Figure 1 are very similar.

10.

11.

12.

13.

14.

15.

16.

17.

168

. R.E. Bryant and Y.-A. Chen. “verification of arithmetic functions with binary

moment diagrams”. In Proc. of 82nd DAC, Jun. 1995.

. J.R. Burch, EM. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang. “symbolic

model chécking: 10%° states and beyond”. In Proc. of the Fifth Anual IEEE Sym-
posium on Logic in Computer Science, Jun. 1990.

. H. Cho, G. Hachtel, S-W. Jeong, B. Plessier, E. Schwarz, and F. Somenzi. “atpg

aspects of fsm verification”. In Proc. IEEE Int. Conf. on Computer-Aided Design
(ICCAD-90), pages 134-137, Nov. 1990.

. E.M. Clarke, M. Fujita, and Z. Zhao. “hybrid decision diagrams - overcoming the

limitations pf mtbdds and bmds”. In Proc. of ICCAD, pages 159163, Nov. 1995.

. O. Coudert and J.C. Madre. “a unified framework for the formal verification of se-

quential circuits”. In Proc. IEEE Int. Conf. on Computer-Aided Design (ICCAD-
90), pages 126-129, Nov. 1990.

R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. Perkowski. “efficient rep-
resentation and manipulation of switching functions based on ordered kronecker
functional decision diagrams”. In Proc. of 81st DAC, Jun. 1994.

M. Fujita. “rtl design verification by making use of datapath information”. In
Proc. of ICCD-92, pages 592-597, Qct. 1992.

A. Gupta. “formal hardware verification methods: a survey”. Formal Methods in
System Design, Vol. 1(2/3), Oct. 1992.

K. Hamaguchi, A. Morita, and 8. Yajima. “efficient construction of binary moment
diagrams for verifying arithmetic circuits”. In Proc. of ICCAD, pages 78-82, Nov.
1995.

J. Jain, R. Mukherjee, and M. Fujita. “advanced verification techniques based on
learning”. In Proc. of 32nd DAC, pages 420-426, Jun. 1995.

W. Kunz. “hannibal: An efficient tool for logic verification based on recursive
learning”. In Proc. of ICCAD, pages 538-543, Nov. 1993.

K.L. McMillan. “symbolic model checking: An approach to the state explosion
problem”. Technical Report CMU-CS-92-131, Carnegie Mellon University, May
1992.

H. Ochi and S. Yajima. “formal design verification of combinational circuits spec-
ified by recurrence equations”. In Proc. of SASIMI’95, pages 101-105, Aug. 1995.
H. Touati, H. Savoj, B. Lin, R.K. Brayton, and A. Sangiovanni-Vincentelli. “im-
plicit state enumeration of finite state machines using bdds”. In Proc. IEEE Int.
Conf. on Computer-Aided Design (ICCAD-90), pages 130-133, Nov. 1990.

Automated Deduction and Formal Methods*

John Rushby

Computer Science Laboratory, SRI International,
Menle Park, CA 94025, USA

Abstract. The automated deduction and model checking communities
have developed techniques that are impressively effective when applied
to suitable problems. However, these problems seldom coincide exactly
with those that arise in formal methods. Using small but realistic ex-
amples for illustration, I will argue that effective deductive support for
formal methods requires cooperation among different techniques and an
integrated approach to language, deduction, and supporting capabilities
such as simulation and the construction of invariants and abstractions.
Successful application of automated deduction to formal methods will
enrich both fields, providing new opportunities for research and use of
automated deduction, and making formal methods a truly useful and
practical tool.

1 Introduction

Formal methods are a natural application area for automated deduction—yet,
with few exceptions, tools for mainstream formal methods provide little more
than rudimentary support for deduction, and few theorem provers find appli-
cation in formal methods. Mode!l checking and related techniques are gaining
acceptance in important specialized areas, but have yet to penetrate the larger
field. This disconnect between formal methods and the very technologies that
could help increase its utility anc appeal is unfortunate, and deserves explana-
tion and remedy.

My opinion is that many techniques for automated deduction (and for sim-
plicity I include model checking under this heading) provide excellent solutions
to individual problems, but that formal methods require more integrated ap-
proaches to provide solutions that are effective across a broad range of problems.
In the following sections, I outline some prototypical applications of formal meth-
ods and suggest some of the capabilities required of automated deduction if it is
to achieve more widespread use in this area. I discuss these topics under three
headings: language, theories, and interaction in the sections that follow. Brief
conclusions are presented in Section 5.

* This work was supported by the Air Force Office of Scientific Research under contract
F49620-95-C0044 and by the National Science Foundation under contract CCR-
9509931. The applications described were undertaken for NASA Langley Research
Center under contracts NAS1-18969 and NAS1-20334 and for ARPA through NASA
Ames Research Center under contract NASA-NAG-2-891.

170

2 Language

By formal methods I mean the use of techniques derived from mathematical
logic for the specification and analysis of computational systems. There are two
elements here: specification, by which I mean a descriptive activity in which
logical notation is valued for its contributions to both the intellectual process
of design and the communication of designs, and analysis, by which I mean
systematic and repeatable methods for deducing properties of specifications and
of the designs that they represent. Automated deduction has obvious relevance
in the mechanization of analysis, but formal methods practitioners attach great
importance to specification and are unwilling to compromise on the convenience
of expression provided by a full specification language. To achieve acceptance,
it therefore seems necessary that automated deduction should be harnessed to
rather rich notations.

To suggest some of the capabilities desired, I outline a typical “requirements
specification” for a function in the Space Shuttle’s control system called “Jet-
Select” [6]. This function is responsible for selecting which of the Shuttle’s Reac-
tion Control System (RCS) jets {or thrusters) should be fired in order to accom-
plish a given translational or rotational acceleration. I will concentrate on the
“Vernier/Alt” component for rotation, which can operate in one of two modes:
in Vernier mode, only the small “vernier” jets are considered for selection; in
Alt (alternative) mode, only the larger “primary” jets are considered. The basic
Jet-Select calculations are the same whether in Vernier or Alt mode, except that
the six vernier jets are treated singly, while the 38 primary jets are treated in
groups. (The primary jets are arranged in 14 groups, each consisting of two,
three, or four jets located adjacent to each other and firing in the same direc-
tion; only 11 of the 14 groups are useful for rotational maneuvers.) In Vernier
mode, Jet-Select chooses up to three individual vernier jets to fire, whereas in
Alt mode it selects up to three groups of primary jets, and then selects exactly
one jet from each of the chosen groups. (The jets within each group are ranked in
a priority order and it is the available jet of highest priority that is fired when its
group is selected in Alt mode.) Various vernier jets and groups of primary jets
are excluded from consideration in certain submodes (e.g., jets whose plumes
extend into the area above the cargo bay are excluded in “low +2z” mode) and
individual jets may be marked “unavailable” due to failure or by crew selection.

The selection of vernier jets or primary groups is performed by an algorithm
known as “max dot-product” {this particular exercise in formalization was un-
dertaken in preparation for introduction of a new algorithm called “min angle”).
For each vernier jet and primary group, a table records the rotational velocity
vector imparted by firing that jet {(or a member of that group) for a standard
period. (Actually, there are several tables, parameterized by whether there is a
payload attached to the Shuttle’s robotic arm, and where the arm is positioned.)
The algorithm proceeds by first selecting the vernier jet or primary group whose
acceleration has the largest scalar (dot) product with the rotational acceleration
vector actually desired; the second and third jets (if required) are similarly se-
lected as those with the second and third largest scalar products, provided the

171

dot-product of the second exceeds some fraction £; of the first, and that of the
third exceeds some fraction 5 of the second.

The major goal here is to use formal methods to specify the desired function-
ality as clearly as possible. The role of automated deduction in this example is to
contribute to validation of the specification by examining putative “challenge”
theorems such as “a failed jet will never be selected.”)

A good specification for this component of Jet-Select should make clear that
the max dot-product algorithm is essentially the same in both Vernier and Alt
modes, except that in the former it operates over individual vernier jets, while
in the latter it operates over groups of primary jets. This argues for a specifi-
cation notation that provides parameterized theories so that specification of the
same algorithm can be instantiated over these different domains. Although not
exemplified by Jet-Select, many applications of formal methods also require pa-
rameterized representations for standard computer science data structures such
as lists, trees, and arrays.

Next, we can observe that the output of Jet-Select is most naturally consid-
ered as a set of jets, and the groups of primary jets are also naturally considered
as sets. Thus, our specification notation should incorporate a representation for
sets. Most practitioners of formal methods prefer their specification notation to
be strongly typed, and this particular application seems to call for subtyping:
surely the vernier and primary jets are naturally considered as subtypes of the
type of all jets. But then the output of the algorithm will be either a set of
vernier jets or a set of primary groups (the latter is then converted to a set of
primary jets), whereas the output of Jet-Select as a whole must be a set of jets.
Hence, our specification notation must somehow extend the subtyping relation
between (for example) vernier jets and all jets to a compatible subtyping relation
between the sets of such jets.

There are (at least) two ways to specify that the (intermediate) result of
Jet-Select should be the set of vernier jets or primary groups satisfying the max
dot-product criterion. One way would simply axiomatize the desired property,
the other would attempt to represent the algorithm suggested by the informal de-
scription (i.e., the iterative selection of the three best jets or groups from among
those available). The latter approach might require the specification language to
incorporate a treatment of imperative programs. It would also require a way to
identify the jet or group in a given set that has the maximum dot-product. For
generality, we might like to provide a library axiom defining the maximum of a
set to be its largest member with respect to some given ordering. This is most
directly accomplished by quantification, but we must ensure that the ordering
relation has the appropriate algebraic properties and must take proper care of
the case where the set is empty, or risk unsoundness. A specification language
should help ensure that these obligations are not overlooked.?

% For example, the PVS declaration
maz(s:setof[TH: {t: Tt € sAV(z:T):iz€sD(t>eVe=1)}

generates a proof obligation (to show that the type assigned to the value of maz
is inhabited) that can be discharged only if the set s is nonempty and > is a well-
ordering.

172

Most theorem provers support raw logics that lack the notational conve-
niences mentioned above. In my experience, it quite hopeless to persuade users
of formal methods (let alone those who are not yet users) to adopt such impover-
ished notations. To observe that it is perfectly feasible to provide a specification
for Jet-Select in quite primitive logics (e.g., those without quantification) misses
the point—this simply is not what users of formal methods want to do.

Left to their own devices, users of formal methods develop or adopt notations
such as B, VDM, RAISE, or Z. These make few concessions to the needs of
efficient automated deduction and the tools that have been developed for them
provide little more than interactive proof checking unsupported by significant
automation (e.g., [8, 10]). I have argued elsewhere [14] that choices made in the
designs of these languages (e.g., in the case of Z, set theory with partial functions,
and no notion of definition) are inimical to automated deduction, and that really
efficient deductive support is therefore unlikely to be forthcoming for them.

One of the challenges to those who would provide automated deduction for
formal methods is therefore to contribute to the design of specification languages
that combine the felicity of expression desired for formal methods with the pos-
sibility of powerfully automated support. Rather than being a limitation on
specification language design, I believe that closer integration of language and
automated deduction can have a liberating effect—because it makes it possible
to contemplate design choices that require theorem proving in typechecking. We
have exploited this opportunity to some extent in PVS [12] (where subtyping, for
example, can generate proof obligations) but many further opportunities remain.

It is not necessary that the logic supported by a theorem prover should be a
full specification language, but there must be some translation from the latter to
the former. Furthermore, the translation must be maintained during interaction
with the prover: it is unlikely to be acceptable if proof of a conjecture expressed
in the specification language must be conducted in terms of its translation into
the primitives of the underlying logic.

3 Theories

Automated deduction must not only support the rich linguistic capabilities de-
sired in formal methods, but must also provide very effective automation for
theories that are commonly encountered.

For illustration, I will use a verification of the Interactive Convergence Algo-
rithm for Byzantine fault-tolerant clock synchronization [9] that Friedrich von
Henke and I performed some years ago [15]. The goal is to keep the clocks of
distributed processors approximately synchronized, given that good clocks have
some bounded drift rate, good processors can read the clocks of other good pro-
cessors with some small error, and faulty processors and clocks are unconstrained
(in particular, they can present conflicting information to different good proces-
sors). The clock of processor p is represented by an uninterpreted function (T

173

from “clock time” to “real time” (both interpreted as real numbers).? Clocks
are adjusted every R clock time units (this duration is called a “frame” and the
start time of the i’th frame is denoted R("), during a “synchronization period”
of duration S clock time units occurring at the end of the frame (the start of
the i’th synchronization period is denoted S()). The adjustment to clock p for

period 7 is C,(,i) clock time units and the adjusted clock for that period is denoted
&’ (T), where o (T) = (T + C3”). .
In the i’th synchronizing period, each processor p obtains an estimate A;(;,),

of the skew between its clock and that of processor g. A parameter € bounds the
error in this estimate as follows.

Assumption A2. If conditions the clock synchronization conditions (defined
below) hold for the i’th period, and processors p and q are nonfaulty through
period i, then .

afl<s
and . .)

(T + A - (1) < ¢
for some time T' in SO,
The algorithm is defined as follows.
Algorithm ICA. For all processors p:
C,(,H” = C}(j) + Ax(j)’

where

C’I(,O) 1s arbitrary,

3 (1N = 5
Ag')z(;)}:AS,),, and
=1

AW =if |AP)] < A then AY) else 0
and A is a clock time quantity thai is a parameter to the algorithm.

The goal is to achieve the following clock synchronization conditions, pro-
vided that at most m processors (out of n) are faulty through period i, for real
time constant J and clock time constant X' that are parameters to the algorithm.

Bounded skew: If p and q are nonfaulty through period i, then
[e(T) — I (T)| < &
for all T in R1).
Mion language with the ability to distinguish clock time and real time as

different “dimensions” of the same type provides valuable additional error checking
in these constructions.

174

Bounded adjustment: If processor p is nonfaulty through period i, then
|ciH) — o] < 2.

These conditions can be achieved, provided several assumptions (concerning,
for example, the drift rate p of good clocks) are satisfied, together with several
constraints on the parameters to the algorithm, such as the following.

2mAa npR + npX

Constraint C6. § > 2(e + pS) + +
n—-m nN-m n-—m

+pA

The proof depends on several lemmas, of which the following are among the
most important.

Lemma 4. If the clock synchronization conditions hold for i, processors p,q,
and r are nonfaulty through period i + 1, and T € S, then

leNT) + AY) — (c(T) + AD)| < 2(e + pS) + pA.

Lemma 5. If the bounded skew clock synchronization condition holds for i, pro-
cessors p and q are nonfaulty through period i+ 1, and T € S, then

() + AW — [¢(T) + AW))| < 6 +24.

The items of interest here are the theories involved: we have arithmetic ex-
pressions and relations involving both real and natural numbers, and both inter-
preted and uninterpreted function symbols. The ubiquity and complexity of the
arithmetic used here are such that it would be intolerable to attempt verification
of this algorithm without efficient deductive support for arithmetic. A library
of lemmas and rewrite rules will not be adequate to the task: decision proce-
dures are needed. The question then is: decision procedures for which theories?
The importance of integer arithmetic is such that some tools for formal meth-
ods include decision procedures for Presburger arithmetic—that is the quantified
theory of integer linear arithmetic. Since we have real numbers as well, a decision
procedure for real closed fields might also seem appropriate. The problem with
these choices is that we also have uninterpreted function symbols, which takes
us outside these decidable theories. Inspection of various formulas appearing in
the presentation of the algorithm shows that only Assumption A2 involves a
nested quantifier (for 7"), everything else is (implicitly) universally quantified
at the outermost level. We can conclude that the quantifier reasoning here is
likely to be easy, and we may therefore be prepared to deal with it outside the
arithmetic decision procedures (either heuristically, or with user guidance). This
will allow us to restrict the arithmetic decision procedures to just the ground
case—where the combination of linear arithmetic with uninterpreted function
symbols is decidable [4]. :

My experience with formal methods applications is that this tradeoff in favor
of deciding ground theories is always worthwhile, since it allows the different deci-
sion procedures to be combined. Some theories, such as arithmetic, equality with

175

uninterpreted function symbols, and arrays* are so ubiquitous that decision pro-
cedures for their ground cases are essential for all productive work. Decision pro-
cedures for additional theories may be highly advantageous for particular classes
of applications. For example, our experience with processor verification [17] has
shown that the (large) library of rewrite rules used for the theory of bitvectors is
the main impediment to effective automation, and we conjecture that a decision
procedure for bitvectors would have a dramatic benefit. The development of new
decision procedures for theories arising in formal methods is a valuable topic for
research.

Important requirements for such decision procedures are the following.

~ They must work cooperatively to decide the combination of their theories.
— They must deal gracefully with terms outside the decided theory. For ex-
ample, the theory decided by the SUP-INF [16] and similar procedures is
ground linear arithmetic, but several of the formulas used in clock synchro-
nization contain nonlinear terms {and division). Although the full nonlinear
case cannot be decided, it is important to deal with special properties (e.g.,
commutativity, and “a minus times a minus is a plus”) without losing those
properties that follow simply by treating nonlinear multiplication as unin-
terpreted. A similarly effective extension to division is also required. (Notice
also that some treatment for the partiality of division by zero is needed; this
may require coordination between the specification language and its deduc-
tive support—in PVS, for example, division by zero is excluded through type
rules that generate proof obligations to show the divisor is nonzero.)

Their behavior must be predictable. One of the strengths of decision proce-
dures over heuristics is that the user should not have to puzzle over whether
the failure to prove a conjecture is due to its falsehood, or an inadequate
heuristic. This benefit is lost if the decided theory is not clearly characterized.
And although performance is hard to guarantee given the super-exponential
complexity of most decision procedures, “black holes” (where a small and
apparently simple problem takes an inordinate amount of time) are to be
avoided. Because they will form the inner loop of larger procedures, even lin-
ear speedups in the performance of decision procedures can have a dramatic
impact on overall efficiency; more needs to be known about the relative prac-
tical performance of various decision procedures for the same problem, which
anecdotal evidence indicates can differ by an order of magnitude or more [4].
Conjectures in formal methods applications often give rise to very large for-
mulas, so it is crucial that decision procedures should be implemented in
ways that scale reasonably well (using, for example, structure-sharing tech-
niques similar to those in BDDs®).

* That is (in PVS notation) f[(z) := y](z) = if z = z then y else f(z). This is also

known as function updating or overriding.

® It goes without saying that propositional reasoning must be implemented very ef-

ficiently. Ordered binary decision diagrams (OBDDs) are the natural choice, but
the Davis-Putnam procedure and the patented algorithm of Stalmarck [18] may be
superior in some applications.

176

— Expressions that cannot be decided should be simplified. Especially in an
interactive environment, it is important that the information presented to
the user should be as brief and as simple as possible. But it should also be
familiar—that is to say, expressions should retain, to the extent possible, the
form they were originally given by the user, and should not be arbitrarily
normalized. Simplification should merely eliminate redundancy, so that, for
example, (a + 1) — 1, if true then @ else b, and if B then a else a all be-
come a; it should generally refrain from transformations such as that from
z X (a+b) to z xa+z x b. One of the great advantages of decision procedures
over heuristics is that they are sensitive only to the content and not to the
form of expressions, so that syntactic representations can be chosen for the
convenience of the user rather than the prover.

With standard theories handled by ground decision procedures, the next
candidate for automation is quantifier reasoning. Traditional methods for first-
order reasoning, such as resolution, do not extend well to the presence of de-
cided ground theories, and therefore find little application in formal methods.
(Also, formal methods often use higher-order quantification.) Fortunately, as
noted above, there is generally little nesting or. alternation of quantifiers in these
applications, so that a combination of specialized and heuristic methods work
quite well for the majority of cases (difficult cases then require user guidance).
Specialized methods include those for conditional rewriting in the presence of
decided theories—the close integration of rewriting with linear arithmetic is the
source for much of the effectiveness of Boyer and Moore’s provers [3], and simi-
lar capabilities are required in any system intended to support formal methods.
Matching techniques similar to those used in rewriting can also provide heuris-
tic instantiation for general formulas. However, my experience with PVS is that
while its conditional rewriter is almost completely effective (i.e., it rarely fails
to find a match if one exists), its heuristic instantiation of lemmas and general
quantifier reasoning fails (usually by finding an unproductive match) more of-
ten than I would like. More effective methods for quantifier reasoning in these
contexts (and for restricted instances of the higher-order case) would be a good
topic for research.

Inspection of the formulas for clock synchronization shown earlier suggests
that, in addition to arithmetic, propositional, and quantifier reasoning, we will
also need induction. Proof that the algorithm maintains the clock synchroniza-
tion conditions is accomplished using simple induction on the frame index i.
Several results on finite summations are also used (a key step in the proof is to
split the summation in the definition of Ag’) into m terms constrained by Lemma
5, and n — m constrained by Lemma 4), and these require bounded induction
(i.e., induction over a subrange of the natural numbers) on the recursive function
that is used to define summation. Given the need for induction, it might seem
that powerful automation for inductive proofs, as provided in several systems,
would be beneficial. Unfortunately, these methods have generally been devel-
oped for rather restricted (e.g., equational or unquantified) logics, and not for
the richer context found here. In the absence of suitable automation, the user

177

may be expected to indicate when induction should be used, and to identify the
induction variable or expression (PVS, for example, requires this). It is then rela-
tively straightforward to automate selection and instantiation of the appropriate
induction scheme; simple tactics can finish the proof of straightforward lemmas
(e.g., those needed here for properties of summations), while more explicit user
guidance is be needed in more complex cases (e.g., the main induction here).
Many formal methods applications require only a couple of inductions and these
simple methods are adequate in these cases. Nonetheless, more automated meth-
ods (including those for generalization) would be welcome, and the development
of suitable techniques is a good research topic.

3.1 Model Checking

Compared to theorem proving methods, model checking and related techniques
(such as state exploration and language inclusion) are becoming rather widely
used in formal methods. However, I believe that these techniques currently tend
to be used standalone in application domains (such as hardware and protocols)
to which they are particularly well-suited, rather than being incorporated into
traditional formal methods, or integrated with theorem proving.

For my next example, I describe an experiment undertaken by my colleagues
Klaus Havelund and Shankar [7], who applied a combination of finite state explo-
ration, theorem proving, and model checking approaches to a simple protocol.
Many larger and more significant problems than this have been examined by
finite state enumeration and model checking techniques; what is interesting in
this exercise is that it points towards an integration of these techniques with
theorem proving, and also highlights some of the areas where further research is
needed.

Havelund and Shankar began by reducing the protocol to finite state (by
manually assigning explicit small integers as the upper bound on the size of
certain data structures) and checking certain safety properties with the Mur¢
explicit state exploration system [5]. They next verified these properties for the
full protocol by theorem proving in PVS using a traditional invariance argument,
but found in the process that the desired invariant had to be strengthened by
the addition of many additional conjuncts. These were discovered incrementally
during the proof attempt; each new proposed conjunct was checked with Murg,
added to the invariant, and the evolving proof attempted once more. The whole
process was iterated until a sufficiently strong invariant was developed; this
eventually comprised 57 conjuncts. Seeking a better approach, they developed
a finite-state abstraction of the original protocol, verified (by theorem proving)
that it was indeed an abstraction, and then verified properties of the abstraction
by model checking.

First, notice that the initial “reduction” to finite state in preparation for
examination with Mur¢ was a manual and ad-hoc process. This seems typical of
finite-state analyses: the original problem is transformed by hand into a form that
is acceptable to the available tool. The transformation is usually an aggressive
simplification that is adequate for refutation but not for verification-—meaning

178

that bugs found in the transformed description are likely to correspond to bugs in
the original, but the failure to detect bugs in the former cannot be interpreted. as
verification of the latter. In the case of the protocol studied in these experiments,
the maximum number of messages in a file was arbitrarily set to three: bugs that
are manifest only with larger file sizes will not be found by this method.

Next, the direct verification of the full protocol was extremely tedious, as the
desired safety property had to be strengthened iteratively until it became an in-
variant. This process took many weeks, which is clearly unacceptable for general
practice. Methods for the systematic—and preferably automated—development
of invariants therefore constitute a very worthwhile research topic. Of course,
one of the advantages of model checking is that it is largely automatic and does
not require the development of such invariants. However, when model checking
is used for verification rather than refutation, it is necessary to prove that the
finite-state description is a true abstraction of the original specification, and this
abstraction proof may itself require invariants. Havelund and Shankar in fact
reused 45 of the 57 invariants developed for their protocol in their abstraction
proof, so the overall saving in effort was not great in this case. This experi-
ence highlights another very fruitful area for research: systematic and automated
methods for developing finite-state abstractions. Good results are already known
for some special cases [2] and I speculate that integration of these methods with
model checking will eventually provide an efficient way to verify properties of
infinite-state systems.

There were interesting differences between the “reduced” finite-state descrip-
tion checked with Mur¢ and the “abstracted” version that was model cheécked.
In the reduced Mur¢ description, a file could comprise 1, 2, or 3 messages; in
the abstracted description, the size of the untransmitted portion of the file is
chosen from the uninterpreted enumeration NONE, ONE, and MANY. The relation
between these different approaches—fixing the size vs. introducing abstraction
(and additional nondeterminism)—is worthy of investigation.

Although these experiments indicate several areas where additional research
is needed, they also demonstrate some promising directions. First, use of Murg
to check the plausibility of proposed new invariants is representative of a useful
general technique: testing conjectures using some lightweight technique before
undertaking a full proof. In formal methods applications, many conjectures are
false when first proposed and it is best to discover these falsehoods as early and
as cheaply as possible, reserving the investment, in a full proof until some confi-
dence has been developed that it is likely to be successful. Lightweight methods
generally apply to specific, or reduced, cases of the full specification, and auto-
mated assistance for creating these reduced cases a useful addition to any sup-
port environment for formal methods. Apart from finite state enumeration, other
lightweight techniques include direct evaluation (for executable specifications),
and interactive simulation (for specifications that are not directly executable).
The latter methods are usually based on specialized and optimized techniques for
automated deduction (e.g., rewriting and enumeration over finite quantifiers).

179

Second, the combination of theorem proving and model checking in the last
of the exercises reported above is representative of a promising direction for
integrating powerful, but narrow, techniyues into a larger system. For example,
model checking in PVS is accomplished using an external decision procedure for
Park’s p-calculus. This is extended to a decision procedure for y-calculus on the
hereditarily finite fragment of PVS's type system® by encoding their values in
propositional variables. The branching time temporal logic CTL is then defined
in PVS and its model checking preblem is cast as a decision problem in g-
calculus. This allows CTL model checking to be smoothly integrated as a proof
procedure in PVS. A benefit of this integration is that model checking is available
for any conjecture that has the appropriate semantic attributes, independently
of its linguistic representation. For example, a tabular specification construct
was recently added to PVS; this was then used to formalize a requirements
methodology known as SCR, and model checking was then immediately available
for SCR specifications [11].

Interesting challenges for the future are to integrate other highly efficient but
narrow procedures into a general purpose framework. Examples include model
checking methods for hybrid systems and binary moment diagrams.

4 Interaction with the User

I believe that formal methods can deliver most value when applied to problems
where traditional methods are inadequate. All the evidence points two princi-
pal sources of failure in complex systems: inadequate understanding of potential
interactions, and the intrinsically hard parts of a design. Examples of the for-
mer often arise in requirements specification, where it is particularly difficult
to anticipate all the interactions among the components of a system and be-
tween a system and its environment, particularly when operating in the pres-
ence of faults. In the case of Jet-Select, for example, our formalization revealed
that certain interactions between error reporting and optimization allowed the
possibility of firing a failed jet [6]. Examples of the latter often concern algo-
rithms for concurrent, real time, or fault-tolerant behavior {e.g., cache-coherence
or clock-synchronization)—where, again, it is difficult to anticipate all possible
interactions—or highly optimized calculations whose correctness rests on a long
or complex argument (e.g., SRT division and other efficient floating point algo-
rithms).

A consequence of this observation is that automated deduction in support of
formal methods will often be applied to very hard problems. It is, in my view,
quite unrealistic to expect that such difficult problems can be solved automati-
cally. The issue, then, is how should the user guide and interact with the process
of automated deduction? This raises a dual issue: what information and services
can automated deduction provide to the user that will assist in the analysis of
very difficult problems?

8 That is, types built recursively from the Booleans, enumerations, explicit finite sub-
ranges of the integers, and records, tuples, predicates, and functions of these.

180

All interaction between the user and tools for automated deduction can be
considered an iteration of the following basic steps. What differs from tool to
tool is the relative effort devoted to each step, and the rate of iteration.

1. Decide the procedure to be used at the next step. This can range from
coarse decisions of overall strategy {“I'll use SMV”) to fine issues of tactics
(“instantiate the third variable of formula 3 with the following expression™).

2. Transform the current representation of the problem into one that is appro-
priate for the procedure chosen in the previous step. This may be a major
undertaking with pencil and paper (e.g., to reduce an infinite-state protocol
specification to a finite-state description in the language of SMV), or it may
involve mechanized transformations (including recursive application of this
whole activity).

3. Set appropriate switches and dials to tune the selected procedure (e.g.,
choose a variable ordering for BDDs, a weighting strategy for resolution,
or an ordering and orientation of lemmas for Nqgthm).

4. Invoke the chosen procedure, contemplate the result returned, and iterate
the whole process (sometimes, iterate locally over step 3).

My opinion is that the ability to direct this activity in an efficient and pro-
ductive manner is largely determined by the predictability of the consequences
selected by steps 1 and 3, the quality of information returned in step 4, and
the efficiency and repeatability of step 2. The user should be able to select a
procedure in step 1 on the basis of a description of what it does, not how it
works. Deterministic proof procedures (e.g., elementary transformations such as
a case split, or quantifier instantiation) and decision procedures are attractive
from this point of view, whereas heuristic procedures are not. By the same to-
ken, the switches and dials of step 3 should be minimized, since they generally
concern how a proof procedure works, rather than the substance of the conjec-
ture under examination. Few users whose interest is formal methods are willing
to learn enough about the workings of a proof procedure that they can master
many choices here.

The information returned in step 4 should include the result of applying the
proof procedure if it was successful (e.g., “proved,” or a list of transformed or
new subgoals), and an explanation if it was unsuccessful. Decision procedures
and model checkers have a special value in the latter case, because they can often
return a counterexample that pinpoints the source of difficulty. The ability to
return useful information from failure is particularly important in applications
of automated deduction to formal methods because it is to be expected that
many conjectures will be false—indeed, the efficient discovery and correction of
errors is one of the primary reasons for undertaking formal analysis. For this
reason, techniques for automated deduction used in formal methods should not
be biased towards successful outcomes—for example, they should not be set
up to terminate quickly on success at the expense of taking inordinate time to
discover failure.

The whole process of formal analysis will be repeated several times as errors
are discovered and the design or its specification are adjusted. But the process

181

is not over once we successfully get to “proved” for the first time. Mechaniza-
tion allows formal methods to be used to explore and refine designs—just as
computational fluid dynamics is used to refine aerofoils. Our verification of clock
synchronization, for example, has been modified many times: to improve the
proof, to eliminate assumptions, to change the specification so that it connects
better with the formalization of another part of the overall fault tolerant archi-
tecture, to tighten the bound on synchronization achieved, and to change from
a Byzantine fault model to a more complex “hybrid” model [13].

The fact that formal analysis will be repeated many times as a specification
is first debugged and then refined has consequences for automated deduction.
First, it makes it essential, in my view, that step 2 of the interaction loop de-
scribed above be automated: as the design and its specification evolve, we should
recalculate the “reduced” form required for a particular proof procedure, rather
than tinker with the existing one. In particular, for reliability as well as efficiency,
I believe that reductions and abstractions from infinite-state to finite-state mod-
els should be formalized and mechanized, rather than left as an ad-hoc manual
process. Second, the “script” of a proof needs to be recorded in manner that
is reasonably robust to small changes in the specification. This argues against
conducting and recording proofs in low-level and highly specific terms (e.g., “in-
stantiate formula 3 with x!1” where z!1 is the name of a Skolem constant), since
the details may change with the specification. It will be more robust to indicate
a procedure (e.g., “use unification te find an instantiation”), or to invoke truly
automated deduction (e.g., “finish off the proof using resolution”). Finally, it is
important to record dependencies among proofs and specifications, so that the
user can speedily answer questions such as “what assumptions does this proof
depend on?” and “what proofs may be affected if I change this lemma?”

5 Conclusion: The Need for Integration

The field of automated deduction has developed many powerful techniques that
could be applied to formal methods. However, the special character of formal
methods applications means that some techniques may need to be adapted to the
needs of those applications, (e.g., to return more useful information on failure)
and that priorities may be different than in other areas (e.g., decision proce-
dures become more important and first order methods such as resolution may
become less s0). More importantly, most techniques in automated deduction,
and also those related to model checking, tend to be rather brittle “point so-
lutions” that are effective against specific classes of problems, whereas formal
methods requires an integrated capability that is effective across a wide range
of applications. The research challenge in this area is therefore broadly that of
integration: different techniques must work together, different theories must be
decided in combination, thecrem proving and model checking must cooperate,
and the needs and capabilities of efficient automated deduction must influence,
and be influenced by, the design of expressive specification languages. Success in
this endeavor will enrich both fields, providing a new and exciting application for

182

automated deduction, and making formal methods a truly useful and practical
tool for the analysis of interesting real systems.

Acknowledgments

My opinions have formed through many stimulating discussions with my col-
leagues Judy Crow, David Cyrluk, Klaus Havelund, Friedrich von Henke, Patrick
Lincoln, Sam Owre, N. Shankar, and M.K. Srivas, and by experiences using PVS
(primarily built by Sam Owre and Shankar) and its predecessors.

References

Papers by SRI authors can generally be retrieved from http://www.csl.sri.
com/fm.html.

(1] R. Alur and T.A. Henzinger, editors. Computer-Aided Verification, CAV ’96,
Lecture Notes in Computer Science, New Brunswick, NJ, July 1996. Springer-
Verlag.

[2] S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful techniques for the automatic
generation of invariants. In Alur and Henzinger [1].

[3] R. S.Boyer and J S. Moore. Integrating decision procedures into heuristic theorem
provers: A case study with linear arithmetic. In Machine Intelligence, volume 11.
Oxford University Press, 1986.

(4] David Cyrluk, Patrick Lincoln, and N, Shankar. On Shostak’s decision procedure
for combinations of theories. In International Conference on Automated Deduction
{CADE)96, Lecture Notes in Computer Science, New Brunswick, NJ, July 1996.
Springer-Verlag.

[5] D.L. Dill, AJ. Hu, C.H. Yang, A. Drexler, R. Melton, S. Park, C.N. Ip, and
U. Stern. The Murphi verification system. In Alur and Henzinger [1].

[6] David Hamilton, Rick Covington, and John Kelly. Experiences in applying formal
methods to the analysis of software and system requirements. In WIFT ’95:
Workshop on Industrial-Strength Formal Specification Techniques, pages 30-43,
Boca Raton, FL, 1995. IEEE Computer Society.

[7] Klaus Havelund and N. Shankar. Experiments in theorem proving and model
checking for protocol verification. In Formal Methods Europe FME ’96, number
1051 in Lecture Notes in Computer Science, pages 662-681, Oxford, UK, March
1996. Springer-Verlag.

18] C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A formal Devel-
opment Support System. Springer-Verlag, London, UK, 1991.

[9] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of
faults. Journal of the ACM, 32(1):52-78, January 1985.

[10] Mogens Nielsen, Klaus Havelund, Kim Ritter Wagner, and Chris George. The
RAISE language, method and tools. Formal Aspects of Computing, 1(1):85-114,
January—March 1989.

[11] Sam Owre, John Rushby, and Natarajan Shankar. Analyzing tabular and state-
transition specifications in PVS. Technical Report SRI-CSL-95-12, Computer Sci-
ence Laboratory, SRI International, Menlo Park, CA, July 1995. Available, with
specification files, from http://www.csl.sri.com/csl~-95~12 . html.

[12]

[13]

(14]

(18]
[16]

17]

(18]

183

Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107-125, February 1995.
John Rushby. A formally verified algorithm for clock synchronization under a
hybrid fault model. In Thirteenth ACM Symposium on Principles of Distributed
Computing, pages 304-313, Los Angeles, CA, August 1994. Association for Com-
puting Machinery.

John Rushby. Mechanizing formal methods: Opportunities and challenges In
Jonathan P. Bowen and Michael G. Hinchey, editors, ZUM '95: The Z Formal
Specification Notation; 9th International Conference of Z Users, volume 967 of
Lecture Notes in Computer Science, pages 105-113, Limerick, Ireland, September
1995. Springer-Verlag.

John Rushby and Friedrich von Henke. Formal verification of algorithms for critical
systems. IEEE Transactions on Software Engineering, 19(1):13-23, January 1993.
Robert E. Shostak. On the SUP-INF method for proving Presburger formulas.
Journal of the ACM, 24(4):529-543, October 1977.

Mandayam K. Srivas and Steven P. Miller. Formal verification of the AAMP5
microprocessor. In Michael G. Hinchey and Jonathan P. Bowen, editors, Applica-
tions of Formal Methods, Prentice Hall International Series in Computer Science,
chapter 7, pages 125-180. Prentice Hall, Hemel Hempstead, UK, 1995.

Gunnar M. N. Stalmarck. System for determining propositional logic theorems by
applying values and rules to triplets that are generated from Boolean formulae.
United States Patent 5,276,897, January 4 1994.

A Platform for Combining Deductive with
Algorithmic Verification*

Amir Pnuelit Elad Shahar!

Abstract. We describe a computer-aided verification system which combines
deductive with algorithmic (model-checking) verification methods. The system,
called TLv (for temporal verification system), is constructed as an additional
layer superimposed on top of the cMU SMV system, and can verify finite-state
systems relative to linear temporal logic {LTL) as well as CTL specifications. The
systems to be verified can be either hardware circuits written in the sMv design
language or finite-state reactive programs written in a simple programming
language (sPL).

The paper presents a common computational model which can support these
two types of applications and a high-level interactive language TLV-BaAsIC, in
which temporal verification rules, proofs, and complex assertions can be writ-
ten. We illustrate the efficiency and generality gained by combining deductive
with algorithmic techniques on several examples, culminating in verification of
fragments of the Futurebus+ system. In the -analysis of the Futurebus+ sys-
tem, we even managed to detect a bug that was not discovered in a previous
model-checking analysis of this system.

1 Introduction

As part of the general program for combining deductive with algorithmic meth-
ods for the verification of reactive systems (see [Man94] for a declaration of
this manifest, and [RSS95) for an important contribution in this direction), we
constructed a computer-aided verification system, called TLv (a Temporal Logic
Verifier), for experimenting with some of these ideas.

Compared to algorithmic verification (model checking), deductive verifica-
tion is handicapped by the requirement of user interaction, which necessitates a
good understanding of the program and a certain degree of creative ability and
high skills. Therefore, any proposal for replacing or even combining algorith-
mic methods with deductive methods must be accompanied by analysis of the
expected gains from such a combination.

The main conceived advantages of combining deduction with model checking
are:

1. Generality : In the finite-state world (which is the main concern of the
work reported here), deductive verification can provide a uniform proof which
establishes the correctness of a system of N processes for any N > 0 in a single

* This research was supported in part by a basic research grant from the Israeli
Academy of Sciences, and by the. European Community ESPRIT Basic Research
Action Project 6021 (REACT).

! Department of Computer Science, Weizmann Institute, Rehovot, Israel, e-mail:
amir@visdom.weizmann.ac.il

185

proof. In comparison, model checking can only examine the systems for particular
values of N.
2. Efficiency of Deduction: Most of the model-checking algorithms are
based on computation of the closure of the transition relation, which is ap-
plied either to the initial state or to some target states. This is an iterative
process that may take a large number of steps to converge. In comparison, in
the deductive verification of the same property, we only have to check the two
implications

@—p and pAp — ¢,
where © is an assertion characterizing the initial condition and p is the transition
relation. It stands to reason that checking these implications takes less time and
requires smaller BDDs than the iterative computation of the closure.
3. Constrained model checking : A possible way of combining deduction
with model checking is to use deduction to establish the invariance of an assertion
. Then, we can carry out regular model checking but use ¢ to restrict the range
of considered states. This amounts to model checking with the transition relation
® A p instead of the original p.

The (TLV) system described here has been constructed on top of the cMU smv
system, which supports verification of CcTL specifications of finite-state systems
([BCM*92], [McM93]). TLv uses the BDD library and the sMv input language
parser from sMv. The model checking algorithms were replaced by a layer which
conststs of a high-level interactive language, to which we refer as TLv-Basic.
The main data structure of TLV-BASIC is a quantifier-free assertion, obeying the
smv syntax for state-formulas, and represented internally by a BDD.

The TLv-Basic language is used for three purposes:

e Temporal verification rules, such as the basic invariance rule BINV and the
single-step response rule RESP, as well as algorithms for model-checking in-
variance and response properties, are written as TLV-Basic procedures.

e For each particular system to be verified, the user usually prepares a proof
script file which contains definitions of the assertions used in the property
to be verified.

s The interactive dialog with the user is carried out in a restricted subset of
TLV-Basic.

The main running example and one of the motivating drives for our system
is the Futurebus+ system considered in [CGH*93]. That paper presented an
sMv model for the Futurebus+ system and established several properties of
the model, using the model-checking techniques of sMv. We considered it an
interesting challenge to see whether the same properties can be verified using
deductive techniques, and compare the efficiency and effectiveness of the two
methods.

At its current state of implementation, the TLV system cannot yet consider
variable-size systems where the system size is not fixed at analysis time. There-
fore, we cannot yet demonstrate uniform proofs of such parameterized systems,
and all the examples presented in this paper relate to specific values of the size
parameter. To compensate for this temporary deficiency, we developed methods

186

by which the deductive proof of a parametric system can be parameterized itself,
so that running a deduction for different values of the size parameter n only re-
quires modifying a line in the proof script file from “n = 20" to, say, “n = 40.” In
particular, we developed a special format by which one can specify an arbitrary
configuration of Futurebus+ and generate automatically the proof appropriate
for this configuration. Details about these instantiation mechanisms are given
in [PS96].

Many approaches to the deductive verification of reactive systems and hard-
ware circuits were proposed over the years, accompanied by systems supporting
their automation. Examples of applications for hardware verification are the
methods described in [Gor86] and [ORSS94]. An effective system for the de-
ductive verification of linear temporal logic properties of reactive programs is
reported in [MAB*94].

There have been also several approaches which combine deductive and al-
gorithmic verification methods. The work in [JS93] combines the HOL theorem
prover with the Voss system. Another combination of methodologies is reported
in [KL93], where TLP, the proof checker for TLA, the temporal logic of actions,
is combined with the cospaN verifier. Perhaps closest to our work is [RSS95]
which embeds symbolic model-checking into the Pvs high-order prover.

The unique feature of our approach is that it is built as the minimal exten-
sion of an existing symbolic model checking system (sMv) needed in order to
handle parametric systems. The specification language and associated deductive
verification approach are based on linear temporal logic [MP95]. At present, the
only deductive machinery we employ is provided by the BDD capabilities of the
underlying $Mv system.

The rest of the paper is organized as follows. In Section 2 we present the
underlying computational model and its relation to the FTs model of [MP95].
In Section 3, we describe the languages that can serve as inputs to the TLV sys-
tem. These include the TLv-BAsIC language in which verification rules, model-
checking procedures, and proof scripts are written; the sMv input languages used
to specify systems; and the sPL language used to describe simple reactive pro-
grams [MP95]. In Section 4, we present some of the verification rules supported
by the system. Section 5 presents several simple examples of deductive and com-
bined verification, comparing their efficiency with standard model-checking ver-
ification of the same properties. In Section 6, we present our main case study,
the Futurebus+ verification, and identify the bug that has escaped previous
model-checking analysis.

2 The Computational Model

As an underlying computational model, we adopt the notion of an always-enabled
fair transition system (ETS). The ETS model can be viewed as a variant of the fair
transition system (FTs) model, introduced in [MP91] for the specification and
verification of reactive systems. An ETS consists of the following components:

e V — A finite set of state variables. We define a state to be an interpretation
of V. The set of all states is denoted by X

187

© — Initial condition.
o T — A finite set of transitions. Each transition 7 € 7 is a function
527 —
mapping a state s to 7(s) C Z, a non-empty set of 7-successors of s.
o J C T — A justice (weak fairness) set of transitions.
o C = {(n,p1),--,(Tk, %)} — A compassion (strong fairness) set of pairs
(ri,9:), t=1,...,k, each consisting of a transition 7; and an assertion ¢;.

The requirement that every state has a non-empty set of successors implies that
every transition is enabled on every state.
A model is an infinite sequence of states. Given an ETS @, we define a com-
putation of @ to be a model
o :80,81,82,...,
satisfying the following requirements:
o Initiation: s is an initial state (i.e it satisfies ©).
e Consecution: For each pair of consecutive states s;,s;41 in o, there exists a
transition 7 in 7 such that s;4; € 7(s;). That is, s;1 is a 7-successor of s;.
o Justice: Every transition 7 € J is taken infinitely many times.
o Compassion: For every (7, ;) € C, if ¢; holds at infinitely many positions
in ¢ then 7; is taken at ;-positions infinitely many times.

The main differences between the FTS and ETs models are the ETS requirement
that transitions be always enabled, and the implications this requirement has on
the requirements of justice and compassion.

The reason for this difference is that the natural sMv representation of tran-
sition relations, in particular those which result from spL programs, is such that
the transition can always be taken. Under the circumstances in which the cor-
responding FTs transition would be disabled, the ETS transition is still enabled
but has no effect on the system variables, i.e., it changes the value of no system
variable.

An FTS @ is called a leisurely fair transition system (LFTS), if the idling
transition 7, is contained in the justice set of @. Thus, every computation of an
LFTS contains infinitely many idling steps, i.e. steps which preserve the values of
all system variables. Obviously, every FTs @ has a corresponding LFTS ¥, such
that @ and ¥ are equivalent up to stuttering.

The following claim shows that no expressive power is lost in moving from
the FTs model into the ETs model.

Claim 1 A set of models S is the set of computations of an ETs @ iff it is the
set of computations of some LFTS V.

In [PS96], we provide a proof of this claim.

3 The Languages of TLV

3.1 The sMv Input Language

Systems to be verified by TLv are described using the sMv input language
[McM93], which has been slightly extended to allow for the richer set of fairness

188

requirements associated with the ETS model. In Fig. 1, we present file sem. smv,
which contains the sMv description of a mutual exclusion algorithm MUX-SEM,
which implements mutual exclusion by semaphores. Note that, standardly in our
MODULE main
VAR
y : boolean; -- the semaphore variable. It is assigned by both processes.
proc[1] : process user(y); -- The two processes have interleaved execution.
proc[2] : process user(y);
E3SIGN
init(y) = 1;
MODULE user(y)
VAR
loc : {0,1,2,3,4);
ASSIGN
init(loc) := 0;
next(loc) :
case
loc in {0,3} 1 loc+1;
loc =1 : {1,2};
loc=2&y=1:3;
4 -
c

il

loc =
1: 1o
esac;
next(y) := -- changes to the semaphore variable.
case
loc = 2 & next(loc) = 3 : 0; -- turned off when moving from 1_2 to 1_3
loc = 4 & next(loc) = 0 : 1; —- turned on vher moving from 1_4 to 1_0
iy
esac;
JUSTICE
procli], procl2];
COMPASSION
{(procii],procl1].loc = 2 & y > 0), (procl2],proc[2].loc =2 & y > 0)
Fig. 1. File mux-sem.smv: an sMV description of Algorithm MUX-SEM for n = 2 pro-
cesses.

applications, we do not use the FAIR or SPEC declarations but introduce instead
JUSTICE or COMPASSION declarations, wherever necessary.

Such an sMv specification is input into the TLv system which creates inter-
nally the ETs corresponding to the specification. In general, there will be one
ETS transition for each process. Thus, in the mux-sem.smv example, the system
will generate an ETs with two transitions, one corresponding to each process.
The justice requirement requests that each of the two processes will be activated
infinitely many times in every computation of this ETs.

3.2 The srL Input Language

While direct coding of hardware circuits in the sMv input language is a practice
to which experienced users of the sMv system have resigned themselves, we
can offer a higher description level for applications to reactive programming. To

189

represent reactive programs, we adopted the simple programming language (SPL)
introduced in [MP91]. We refer the reader to [MP91] or [MP95] for details of
this language. In Fig. 2, we present an spL program for the MUX-SEM algorithm.

Here, we consider the instance n = 2 of this generic program. On reading the
spPL file with the additional definition n := 2, the system translates it first into
the SMV representation, presented in Fig. 1.

in n:integer wheren >0
local y : integer where y =1

4 : loop forever do
n £, : noncritical
Cll:: || &2:request y
i=1 £3 : critical
£y : release y

Fig. 2. Program MUx-sEM (mutual exclusion by semaphores - general case).

3.3 TLV-Basic

The TLv-Basic language is easy to learn and simple to program with. It is
used to program rules, model-checking algorithms, and compute assertions. The
main (and only) data structure is a function with boolean arguments and inte-
ger range. As such, it can represent integers, booleans (a function with range
{0, 1}, and assertions, which are represented as boolean functions. The underly-
ing implementation is a BDD, which is manipulated using the sMv BDD library.
Expressions in the language are constructed out of integer constants and vari-
ables to which we apply integer operations, integer comparisons, and all the
boolean and quantifying operators available in the sMv language.

There are no variable declarations. Like Basic, variables are created dy-
namically, whenever they are assigned values, or mentioned as parameters of a
procedure. In addition, all the variables defined in an sMv input file which is
loaded into the system can be referenced within TLv-BASIiC expressions.

Following are some of the statements available in TLV-Basic:

e Let var := erp — Assign the value of expression ezp to variable var.

e Proc proc-name (pary,...,par,); S End — Define a procedure proc-name
with parameters par,,..., par, and body S.

e While (ezp) S End — Repeatedly execute statement S until ezp is 0.

o If (ezp) Sy [else Sz] End — If ezp evaluates to a non-zero value, exe-

cute statement S). Otherwise, execute statement S;.
e Load "file-name" — Load file file-name into the system. The loaded file can
be a rules file or a proof script file.
e Run proc-name par,,...,par, — Invoke procedure proc-name with the given
actual parameters.
The last two statements are the main commands that are used in interactive
mode.
In Fig. 3 we present a TLv-Basic proof script which computes the assertion

180

n i-1
mux: /\ /\ =(proc[i].loc = 3 & procj].loc = 3).
i=lj=1
forn = 10. This assertion specifies mutual exclusion for program MuUX-SEM.
When we consider the same program for a different number of processes, say 11,

Let n := 10;
Proc prepare;
Let mux := TRUE;
Let i := n;
While (1)
Let j :=1 - 1;
While (j)
Let mux := mux & !{proclil.loc = 3 & proc[jl.loc = 3);
Let j := j - 1;
End -- end loop on j
Let i :=1i - {1;
End -~ end loop on i
End -~ end procedure

Run prepare
Fig. 3. File mux-sem.pf: Proof script for program MUX-SEM for n = 10.

it is only necessary to change the first statement in this file to Let n := 11.

4 Verification Rules

The TLV system comes equipped with a set of deductive verification rules as well
as various model-checking algorithms. As previously explained, these rules are
implemented using the TLv-Basic language. This means that a sophisticated
user can easily modify any of the existing rules, as well as write new ones.

In Fig. 4, we present the two verification rules that have been used for veri-
fying the examples presented in this paper.

B1:@—p Al:pAd=0—gqg
B2:p-Ap—p VreT A2:(pA~q) = FreTIV (p, — 6> 6§
Op AG EF g
Rule BINV Rule AGEF

Fig.4. Verification rules.

5 Simple Verification Examples

In this section we illustrate the use of the TLv system for the verification of
sevéral simple examples taken from [MP95].

191

Program MUX-SEM

In Fig. 2, we presented the general MUX-SEM program parameterized by n. Fig. 1
illustrated its sSMv translation for the case n = 2. The main safety property of
this program can be specified by the invariance of assertion mux presented above.

Direct application of rule BINV failed (and produced a counter-example). Ac-
cording to the terminology of [MP95], this means that assertion mux is invariant
but not inductive, i.e., it does not carry sufficient information to rule out inacces-
sible states. The standard remedy is to sirengthen assertion mux by additional
invariants, which will exclude such states.

Indeed, our next step in the verification process, was to formulate the auxil-
iary invariant assertion

k13
phi: 'y <-> /\ - {proc(i].loc in {3,4})
i=1
Application of rule BINV to the conjunction mux & phi succeeded which estab-
lished the invariance of both mux and phi over program MUX~SEM.

This experimentation was carried out for the low value of n = 2. However,
once the strategy was established we prepared a proof script for computing the
conjunction mux & phi and can now run the verification for various values of n,
changing only the value of the parameter between successive runs.

To compare the time and space complexity of conventional model checking
and the deductive approach, we plot in Fig. b the time and space complexity of
verifying the invariance of assertion mux by the two approaches for increasing
number of processes in program MUX-SEM. The line labeled sMVv represents the
conventional model-checking approach, while the line labeled TLv represents the
deductive approach.

time space
100} tv — A | v —]
0 Smy - g 80000 I sy v
8 % '
(o] c
® S0 ’ T 40000 | P
” ° .
a .
o _l_..___,l‘ R o «'l". . T“_J
20 40 60 80 20 40 60 80
processes processes

Fig.5. Comparison of sMv and TLV for MUX-SEM

Program RES-sv

As the next example, we considered program REs-sV, presented in Fig. 6. Program
RES-sV consists of an alloator process A and customer processes C[i], i =
1,...,n. The allocator provides a centralized control which is exptected to guar-
antee mutual exclusion between the customers. We refer readers to [MP95] for

192

in n :integer where n > 0
local g, 7 : array [1..n] of boolean where g=F, r = F

Flocal t: integer where ¢ = 17 4o : loop forever do1
mg : loop forever do 41 : noncritical
my : if rft] then n Lol =T
Az ma: g[t] =T I C[= £3 : await g[i]
[mg : await -r[t]] i=1 44 : critical
my : g[t] :=F & :rfi]:=F
L Lms i ti=1tPnl i L | €6 : await —gfi] |

Fig. 6. Program RES-sV (resource allocator).
details of this algorithm and its verification. Here we set to ourselves the more
modest goal of verifying mutual exclusion between customers C[1] and C[2] in a
system of n > 2 customers.

This property can be specified as the invariance of the assertion

mux: —(al_L4[1] A ai_£4]2)]),
where, for any i and j, at_¢;[j] stands for C[j].10c = i.

As in the previous case, assertion mux is an invariant of the program but is
not inductive. To complete the proof, we used six strengthening assertions for
i € {1,2}. The first two assertions of this set are:

e1[t] s at-mza At =i & gfi]
(,02[1] . ai_fgv_s > T[Z}

Using these strengthening invariants, assertion mux has been proven an in-
variant of program RES-SV.

In Fig. 7, we plot the time and space complexity of verifying the invariance
of assertion mux over program RES-SV as a function of the number of processes.
Again, the conventional model checking and deductive approaches are compared.

time space
15 T 1 1 l:_] T | '..L'
ty — m v —
'§ 10 | SMV F £ 200000 | SMV e i
8 2 '
o o
w 5 F . T 100000
0 1 PR
20 40 60 80 20 40 60 80
processes processes

Fig. 7. Comparison of sMV and TLV for RES-sV

Constrained Model Checking

In addition to the purely deductive approach, we also implemented and tested a
mixed {or combined) approach, in which we use deductively derived invariants to

193

restrict the range of the transition function in computing the backwards closure,
usually employed in model checking for invariance properties.

We considered again program RES-SV but used the deductive approach to
verify only the two first invariants in the list: ¢1[i] and @;[i]. These are very
simple invariants, which can be discovered automatically by various heuristics
(as explained in [MP95]). At this point we ceased using deductive methods,
and invoked a special model-checking procedure cMCINV, written in TLV-BASIC,
with a constraint parameter, which is the conjunction of ¢;[i] and ¢;[i]. This
procedure performs regular backwards closure computation, but eliminates all
states which do not satisfy the given constraint.

In Fig. 8, we present plots of time and space complexity which compare
regular model checking with constrained model checking for program RES-sV.
The line representing constrained model checking is labeled by cMc¢, as compared
to regular model checking which is labeled by Mc. Both were performed by
appropriate TLV-BASIC procedures.

time space
100 _Crnqg -——— " 400000 Fceme ——
0]
° g 300000 |
o
8 50 | | § 200000 |
< 100000 |
0 Loasm I : .
10 20 30 40 10 20 30 40
processes processes

Fig. 8. Comparison of Model Checking and Constrained Model Checking for RES-SV

6 Verification of the Futurebus+

The IEEE Futurebus+ protocol specification is a technology-independent proto-
col for single-bus and multiple-bus multiprocessor systems. Part of this standard
is the cache coherence protocol designed to work in a hierarchically structured
multiple-bus system. Coherence is maintained by having the caches observe all
bus transactions. Coherence across buses is maintained using bus bridges. A bus
bridge is a memory agent/cache agent pair, each of them on a different bus,
which can communicate. The memory agent represents the memory on its bus.
The cache agent represents all the remote caches, caches on the bus of the cor-
responding memory agent, which may need to get access to the cache line via
the bus bridge.

The protocol defines various transactions which let caches on a bus obtain
readable and writable copies of cache lines. A cache line is a series of consecutive
memory locations that is treated as a unit for coherence purposes.

We refer the reader to [CGH*93] for additional explanations and details
about the sMv coding of the Futurebus+.

194

6.1 Specifying and verifying Cache Coherence

The following specifications are the ones which were proved in [CGH193]. We
repeated their verification, using deductive methods. There are four classes of
safety properties and one for liveness.

The first class of safety properties is used to check that no device ever observes
an illegal combination of bus signals or an unexpected transaction. Thus, we have
the following formulas for every device d:

AG ~d.bus-error AG —d.error

If these formulas are true then we say that the model is error free.

The ezclusive write property states that if a cache has an exclusive modi-
fied copy of some cache line, then no other cache has a copy of that line. The
specification includes the formula

AG (pl.writable — —p2.readable).

for each pair of caches pl and p2. pl.writable is true when pl is in the
exclusive-modified state. Similarly, p2.readable is true when p2 is not in the
invalid state.

The consistency property requires that if two caches have copies of a cache
line, then they agree on the data in that line:’

AG (pl.readable A p2.readable — pl.data = p2.data)

The memory consistency property is similar to the consistency property.
It specifies that any cache line that has a readable copy must agree with the
memory device on the data.

AG (pl.readable A =m.memory-line-modi fied — pl.data = m.data)

There is only one class of liveness specifications. It is used to check that it is
always possible for a cache to get read and write accesses to a line. In a sense,
it says that the model does not get stuck.

AG EF p.readable AG EF p.uwritable

All these properties were verified for small configurations, using deductive meth-
ods. We refer the reader to [PS96] for details of the inductive assertions that were
used.

6.2 A Bug was Found

During our verification process, we came across a bug which seems to have
escaped the attention of the previous verifiers of this design. In all probability,
this is due to the fact that they have not considered the particular configuration
in which this particular bug was lurking. We managed to prove the specifications
for this configuration after fixing this bug.

The bug is manifested under the following circumstances. Consider a bus
with a memory agent and three processors. We start from a reachable state
where all processors have a shared copy of the cache line and the memory agent
is in the remote-shared-unmodified~invalid state which indicates that the
current bus has shared copies on it but the memory agent itself does not have
a copy. Suppose that process pl wants an exclusive copy of the cache line. It
issues an invalidate transaction on the bus, which tells all other caches to release

195

their copies of the cache line. However, the other two processors, p2 and p3,
choose to split the request so they continue to hold a shared copy but they
each owe a response. Eventually, p2 responds and enters an invalid state. The
memory agent observes this and enters the remote-exclusive-modified state.
This means that the memory agent thinks that pl already has an exclusive-
modified copy but, in fact, pl and p3 still hold shared copies. When p3 issues a
response the memory agent sets on the error flag since, if only one process has
a copy of the cache line, no other process should owe a response indicating a
release of its hold on a shared copy.

References

[BCM*92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang. Sym-
bolic model checking: 10%° states and beyond. Information and Computa-
tion, 98(2):142-170, 1992.

[CGH*93] E.M Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L. McMillan,
and L.A. Ness. Verification of the Futurebus+ cache coherence protocol.
In L. Claesen, editor, Proc. of the 11th Int. Symp. on Computer Hardware
Description Languages and their Applications. North-Holland, April 1993.

[Gor86] M. Gordon. Why higher-order logic is a good formalism for specifying and
verifying hardware. In Formal Aspects of VLSI Design, pages 153-177.
Elsevier Science Publishers (North Holland), 1986.

[1S93] J.J Joyce and C.-J.H. Seger. Linking BDD-based symbolic evaluation to
interactive theorem proving. In Proc. of the 30th Design Automation Conf..
ACM, 1993.

[KL93] R. Kurshan and L. Lamport. Verification of a multiplier: 64 bits and be-
yond. In C. Courcoubetis, editor, Proc. of 5th CAV, volume 697 of Lect.
Notes in Comp. Sci., pages 166-179. Springer-Verlag, 1993.

[MAB*94] Z. Manna, A. Anuchitanukul, N. Bjgrner, A. Browne, E. Chang, M. Colén,
L. De Alfaro, H. Devarajan, H. Sipma, and T. Uribe. STeP: The Stanford
Temporal Prover. Technical Report STAN-CS-TR-94-1518, Dept. of Comp.
Sci., Stanford University, Stanford, California, 1994.

[Man94] Z. Manna. Beyond model checking. In D. L. Dill, editor, Proc. of 6th CAV,
volume 818 of Lect. Notes in Comp. Sci., pages 220-221. Springer-Verlag,
1994. Invited talk.

[McM93] K.L McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Boston, 1993.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, New York, 1991.

{MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

[ORSS94] S. Owre, J.M. Rushby, N. Shankar, and M.K. Srivas. A tutorial on using
PVS for hardware verification. In R. Kumar and T. Kropf, editors, Proc. of
the 2nd Conf. on Theorem Provers in Circuit Design, pages 167-188. FZI
Publication, Universitdt Karlsruhe, 1994. Preiminary Version.

[PS96] A. Pnueli and E. Shahar. The TLV system and its applications. Technical
report, The Weizmann Institute, 1996.

[RSS95] S. Rajan, N. Shankar, and M.K. Srivas. An integration of model checking
with automated proof checking. In P. Wolper, editor, Proc. of 7th CAYV,
volume 939 of LNCS, pages 84-97. Springer-Verlag, 1995.

Verifying Invariants Using Theorem Proving

Susanne Graf and Hassen Saidi

Verimag *
{graf,saidi}€¢imag.fr

Abstract. Our goal is to use a theorem prover in order to verify in-
variance properties of distributed systems in a “model checking like”
manner. A system S is described by a set of sequential components, each
one given by a transition relation and a predicate Init defining the set
of initial states. In order to verify that P is an invariant of 5, we try
to compute, in a model checking like manner, the weakest predicate P’
stronger than P and weaker than Init which is an inductive invariant,
that is, whenever P’ is true in some state, then P’ remains true after
the execution of any possible transition. The fact that P is an invariant
can be expressed by a set of predicates (having no more gquantifiers than
P) on the set of program variables, one for every possible transition of
the system. In order to prove these predicates, we use either automatic
or assisted theorem proving depending on their nature.

We show in this paper how this can be done in an efficient way using the
Prototype Verification System PVS. A tool implementing this verifica-
tion method is presented.

1 Introduction

Using a theorem prover to do model checking is not a new idea?. Theorem
proving has been used successfully for the verification of temporal logic formulas
on programs, specially systems like [BM88], [OSR93a}?, [GM93] and [CCF*95)].

In most of these approaches, it is mainly emphasized how to define the syntax
of a specification formalism and its semantics (in terms of sets of computations)
as well as the satisfaction of temporal logic formulas on computations. Then, a
system S satisfies a property f if every computation of S satisfies f. In general,
not much is told about how fo verify the obtained formulas.

[RSS95] explains how model checking (for finite state systems) is implemented
in PVS as a tactic (which consists in transforming the model checking problem
into a decidable u-calculus formula and to run a decision procedure on this for-
mula). In [RSS95], [DF95] and [HS96] model checking is used to prove abstract

descriptions of systems, while “ordinary” theorem proving is used to show the

* Verimag is a joint laboratory of CNRS, Institut National Polytechnique de Grenoble,
Université J. Fourier and Verilog SA associated with IMAG.

2 See [RSS95), where a set of combination attempts are mentioned.

% see [CLN*95] for many examples of the use of PVS.

197

correctness of this abstract description with respect to a more concrete (in gen-
eral infinite state) description. In (Hun93] it is proposed to verify the correctness
of each component using model checking, and then to deduce the correctness of
the composed system by means of compositional rules embedded as inference
rules in a theorem prover. [BGMW94] describes an integration of the PVS the-
orem prover in an environment for the verification of hardware specification. Tt
is used for discharging verification conditions expressing the fact that a specifi-
cation simulates another.

1.1 Owur approach

Our intention is not to verify arbitrary temporal logic formulas, but particular
formula schematas corresponding to useful property classes. In order to prove
that a system S satisfies a property expressed by a temporal formula f, we
do not use its semantics, but a proof rule generating a set of first order logic
formulas (without temporal modalities and without new quantifiers) such that
their validity is sufficient to prove that S satisfies f. Here, we mention only safety
properties expressible by formulas of the form “OP” (invariants) or “C{P =
Py W P,)”, where P, P, Ps are predicates®.

For example, in order to prove that P is an invariant of § (S & OP) —
where S is defined by a set T of transitions and a predicate Init defining the
set of initial states — it is necessary and sufficient to find a predicate P’ weaker
than Init and stronger than P which is an inductive invariant, that is P’ is
preserved by any computational step of S, i.e P’ = pre[r}(P’)® is valid for each
transition 7 of T'. Model checking consists in computing iteratively the weakest
predicate satisfying the implication @ = pre[T}(Q) starting with Qo = P and
taking Qi+1 = @; A pre[T](Q;) that is by strengthening the proposed solution
at each step. This method can be completely automatized under the condition
that the above predicates are decidable. However, in the case of infinite state
systems convergence is not guaranteed, and in real life systems with this very
simple tactic, convergence is too slow, anyway. Convergence can be accelerated
by replacing the predicate transformers pre(r] by some (lower) approximation
or by using structural invariants (see Section 4.3) extracted from the program
obtained by constant propagation, variable domain information, etc. Theorem
proving (or an appropriate decision procedure) is used for establishing Q; =
(41 that is for verifying that a fixed point has been reached.

1.2 Related work

Tools like STeP [MAB*94], TPVS [BLUP94] and CAVEAT [GR95] use this tech-
nique. In CAVEAT systematic strengthening of invariants is not foreseen. STeP

* in [MP95] many such schemata and corresponding verification rules are presented
for which we will implement strategies in the future

® The state predicate pre[r](P) defines the smallest set of states that via the transition
7 have only successors satisfying P.

198

provides a lot of automatization and implements most of the rules presented in
[MP95].

In [HS96], a new strengthening method has been proposed, in order to avoid

the fast growth of the formulas due to the systematic strengthening: suppose
that @; is not inductive for some transition 7, that is, the proof of the goal
Qi = pre[r](Q;) does not reduce to true but to some formula R. Then, instead
of checking in the next step the formula Q;4+1 = Q; A pre[7](Q;), it is proposed
to check R (which is often simpler) for invariance. However, this method does
not accelerate convergence.
This paper is organized as follows: in Section 2, we recall some general ideas
concerning theorem proving and give a small overview on PVS. In Section 3, it
is explained how to define our method completely within PVS and also, why we
have abandoned this approach. Finally, in Section 4, we give a short presentation
of our tool which acts like an interface with PVS. In Section 5, we demonstrate
our method and tool on two examples: a finite state program implementing a
mutual exclusion algorithm, and an infinite state program implementing a simple
buffer using lists as data type.

2 The theorem proving paradigm

Theorem proving is the paradigm of developing and verifying mechanically math-
ematical proofs. The specification languages used (higher order logic) allow to
define usual mathematical objects such as sets, functions, propositions and even
proofs®, and can be generally understood as a mixture of predicate calculus,
recursive definitions 4 la ML and inductively defined types. These languages
are strong enough to model systems and express properties on them. Theorem
provers provide an interactive environment for developing mathematical proofs
using a set of tactics (elementary 'proof steps) and tacticals (combination of tac-
tics). Possible tactics are implementations of either a deduction rule, rewriting
rule, induction scheme or a decision procedure.

PVvs

PVS is an environment for writing specifications and developing proofs. It con-
sists of a specification language integrated with a powerful and highly interactive
theorem prover. PVS uses higher order logic as a specification language, the type
system of PVS includes uninterpreted types, sub-typing and recursively defined
data-types. Four “sorts” characterize this language: Theory, Type, Expression
(term), Formula (proposition). Any PVS specification is structured into param-
eterized theories. A Theory is a set of Type, variable, constant, function and
Formula declarations. The PVS theorem prover implements a set of powerful
tactics with a mechanism for composing them into proof tacticals. The tactics
available are combinations of deduction rules and decision procedures. Some of

€ See [CCF*95] for this purpose.

199

these tactics such as assert and éddsimp invoke efficient decision procedures for
arithmetic and boolean expressions. PVS has emacs as user interface.

3 Specification and verification within PVS

One of the drawbacks when using theorem provers is the tedious encoding of
semantics and writing of specifications. In Coq [CCF*95], grammar extension is
allowed which makes specifications easier to write and to read.

In PVS, this technique can be generalized to allow user-defined specification
syntax {e.g. [Sa195]). The defined specification syntax can be a combination
of the PVS specification syntax and user specification syntax since it can be
constructed using non-terminals of the PVS grammar.

To prove that a predicate is an invariant of a system is usually done by
embedding the semantics of transition systems and the notion of invariance of a
property in the specification language of a theorem prover. In PVS, this can be
done by means of the following definitions:

Program [State : TYPE] : THEORY
BEGIN '
Action : TYPE = [guard:bool, assignments:State]
System : TYPE = [vars:State, acts:list[Action], init:bool]

is-inductive? (S:System, P:Pred[State]) : bool =
(init(S) => P(vars(8))} AND
(P({vars(S)) => WPC~-System{acts(S),P))

WPC-System(L:list[Action], P:Pred[State]) : RECURSIVE =

"CASES L of

null - : TRUE

cons(act,rest): WPC~Action(act,S) AND WPC_System(rest,P)
END CASES

WPC-Action(act:Action, P:Pred[State]) : bool =
guard(act) => P(assignments(act))
END Program

The PVS theory named Program is parameterized by the type State defining
the tuple type of the state vector, that means, its i** component defines the
type of the i*® state variable. System is given as list of actions, where Action
1s defined as a record type with two fields, a guard and an assignment. guard is
the condition under which the given action is activated. assignments is a tuple
of type State representing the new value of the state vector after the execution
of the given action. The predicate is-inductive? taking as arguments a system
S and a predicate P, yields the result true if P is an inductive invariant of -S.

In order to show that P is an invariant of S, we have to prove the following
obligation:

200

prove—-invariant : OBLIGATION
EXISTS (P’:PRED[State]):
(FORALL (t: State) : (P?(t) => P(t)) AND is-inductive?(S,P’))

This proof obligation does not tell us how to find a satisfactory predicate P’.
This is the reason why we use the iterative computation described in Section 1.1
which replaces the above (second order) obligation by an (infinite) suite of first
order obligations such that the proof of any obligation of this suites validates
the initial obligation. ‘

But we found that such an embedding of the semantics of transition systems
directly in PVS is still not satisfactory for the verification of large systems.
Writing programs is tedious, proofs are very slow since much time is lost in
expanding the definitions of is-inductive?, WPC-System and WPC-Action. We
also found that we cannot perform static analysis on programs written in this
way.

Therefore, we prefered to describe programs in a more natural way and not
to translate them into a PVS theory, but just to generate automatically proof
obligations equivalent to is-inductive?(S,P?) and to submit them to the PVS
proof checker.

4 A verification tool

Figure 1 shows the architecture of our tool for computer-aided verification. We
first present how systems are described in this tool and how the verification pro-
cess works. We also show how both specification and verification are connected
with the PVS system.

4.1 A specification formalism

In our tool, systems are discribed in a formalism close to Dijkstra’s language of
guarded commands. In fact, a system is defined as a set of components where
each component is given by a set of transitions defining conditional data trans-
formations, where program variables are of any data type definable in PVS and
allowed value expressions are any expressions definable in PVS. The grammar
defining this specification formalism is the following”:

system = id_system [PARAMETER id] : SYSTEM
BEGIN
{ pvs.declarations)
BEGIN
{ sys_components)
END
INITIALLY : { pvs_boolean_formula)
END id_system

T This grammar is presented using the conventions of [OSR93b]

201

Pl ... |iPn
Invariant

L PVS Type-checker J

——]

Invariants

generation ve PVS
: Generation

and Proof-checker
updating Result +
VG i
* true / V¢ non Strategies

Invariants ‘:ifi provable]

Database
_)

ok/ not ok / help me

Fig. 1. Tool architecture

sys_components = { program) | { program) |1{ sys_components)
program = (action }* | { named_program)
named_program = id_program : PROGRAM
BEGIN -
(pvs_declarations)
BEGIN
{ action)t
END
END id_program
action = (pvs_boolean_formula) ---> (assignment)*
assignment = id := (pvs_expression)

where all declarations are global, but the variables declared within a component
of the form named_program are only used locally.

This grammar uses some non-terminals of the grammar of the PVS spec-
ification language®. This allows to type check easily all PVS declarations and
expressions by invoking the PVS parser and type checker. There are additional
type correctness conditions for actions which have the form of invariants. For
example, an action of the form

guard —---> x:= x-1,

® The non-terminals of the form (pvs_---)

202

where x is declared as natural number, is type correct if guard = x > 0 is a
valid formula; but it is sufficient that guard => x > 0 is an invariant of the whole
system under consideration.

4.2 A proof methodology

We implemented some of the verification rules presented in [MP95] such as the
Inv rule and the Waiting rule corresponding respectively to the proof of prop-
erties of the form OP and O(P = PW P»), where P, P; and P, are predicates.
Verification conditions are extracted automatically from the considered specifi-
cation S and the property we want to verify by a proof obligation or verification
condition (VC) generator. The VCs generated for the Inv rule are respectively
Init = Q; and {Q; = pre[r](Q;) | v € T} where Init is the predicate defining
the set of initial states, T" the set of transitions of S and @Q; defined as in Sec-
tion 1.1. We start with ¢ = 0 and increase it until a provable set of verification
conditions is obtained or Init => @; is not provable anymore (a counter example
for this obligation proves that P is not an invariant of 5).

The VC generator generates only VCs which are not “trivially true”. For
example, if an action 7 does not affect the variables occurring in @, then the
VC “@Q; => pre[r](Q;)” is not generated. If Q; is of the form “(pc = i) = Q”,
where pe a control variable and ¢ a possible value, it is only necessary to prove
that @Q; is preserved by every action leading to control point 7. In fact, it is often
the case that predicates of the form pre[r](Q;) are of the form (pc = ¢) = Q.
Also, the auxiliary invariants (see Section 4.3) are of this form.

The generated obligations are submitted to the PVS proof checker, which
tries to prove their validity by means of a set of tacticals we have defined. First
an efficient but incomplete tactical for first order predicates is used. It combines
rewriting with boolean simplification using Bdds® and an arithmetic decision
procedure: after rewriting all definitions, the Bdd procedure breaks formulasinto
elementary ones, where other decision procedures such as arithmetic ones can be
applied. If the proof fails, another tactical combining automatic induction and
decision procedures is applied. If the proof fails again, a set of non-reducible goals
is returned and one iteration step is performed. The user can always suspend
this process and try to prove the unproved obligation in an interactive manner
using the PVS proof checker.

4.3 Use of auxiliary invariants

It is in general essential to use already proved invariants or systematically gen-
erated structural invariants obtained by static analysis ((MAB*94], [BBM95],
[MP95] and [BLS96)). Let Z stand for the conjunction of all these invariants. In
order to prove that P is inductive, it is sufficient to prove

I AP=pre[r)(P) ()

® A Bdd simplifier is available in PVS as a tactic.

203

instead of P = pre[r](P). As 7 is usually a huge formula, we have to use it in an
efficient way, that is only its “relevant conjuncts”. Invariants of the particular
form (pc = i) = @, providing information about values of variable at some
control point ¢, are only relevant for (*¥) when 7 starts at control point i. In
[Gri96], a more refined strategy is defined which selects in a formula of the form
hiAhy--Ah, = ¢, formulas h; which are relevant for establishing the validity
of c.

4.4 An efficient implementation

The implementation language of PVS is Lisp. Theories, expressions and formulas
are defined as Lisp classes. In our tool, programs are also defined as Lisp classes.
Type checking a program creates a class containing the corresponding declara-
tions and actions. A current list of type checked programs is maintained. Static
analysis described in Section 4.3 is performed using the internal representation
of programs. The fact that our internal structures are very close to the internal
PVS representation, allows to use many PVS features.

5 Examples

We present two examples. The first one, which is finite state, is a mutual exclu-
sion algorithm studied in [Sif79].

mutex : SYSTEM

BEGIN

ina, inb, PAB : VAR bool

pl, p2 : VAR nat

BEGIN
pil=1 --=» pl :=2 ; ina := true (ti1)
p1=2 AND inb ---> pl =3 3 (t12)
p1=3 AND NOT(PAB) ---» pl :=4 ; ina := false (t13)
pl=4 AND PAB --==> pl :=2 ; ina := true (t14)
pi=3 AND PAB --=> pl =2 ; (£15)
p1=2 AND NOT(inb) -—=> pl:=5 ; (£16)
pl=5 ---> pl :=6 ; ina := false (t17)
pl=6 -==> pl :=1 ; PAB := false (t18)

i

p2=1 --=> p2 :=2 ; inb := true (t21)
pP2=2 AND ina --=> p2 =3 ;3 (t22)
p2=3 AND PAB ~-=-> p2 := 4 ; inb := false (t23)
p2=4 AND NOT(PAB) --=» p2 :=2 ; inb := true (t24)
p2=3 AND NOT(PAB) --=> p2 =2 ; (t25)
p2=2 AND NOT(ina) -==> p2 :=5 ; (t26)
p2=5 ---> p2 :=6 ; inb := false (t27)
p2=6 --=> p2 :=1 ; PAB := true (t28)

END

INITIALLY : pl=1 AND p2=1
END mutex

204

We want to verify that the predicate
P={(pl=2)=((p2=2)= (ina Vind))

expressing the impossibility that both processes may enter the critical section
(pi =5) at the same moment, is an invariant for this program!®. Since Qo = P
is not inductive for the transitions t15 leading to pl = 2 and t25 leading to
p2 = 2, the predicate Q1 = P A pre[t15](P) A pre[t25](P) is calculated:

Q1=(pl=2=(p2=2= (ina V inb)))
A(pl =3APAB = (p2 =2 = (ina V inb)))
A(p2=3A-PAB = (pl =2 = (ina V inbd)))

Q1 = pre[r](Q1) is a valid formula for all transitions 7 leading to pi = 2 or
pt = 3 and the proof of this fact succeeds using our tactical. In this example,
iteration is not necessary when using the following structural invariant obtained
by an extension of the method described in [BLS96]:

I'= (pl =3=ina)A (p2 =3 = inb)

The proof of Qo A I = pre[r](Qo) succeeds also for the transitions 7 = t15 and
7 = t26. This example was treated automatically by our tool.

The second example, which is infinite state, describes a simple buffer with two
actions “input” and “output”.

simple_buffer : SYSTEM
BEGIN
elem : TYPE
outp, e, x, Yy : var elem
IMPORTING Buffer[elem]
B : var Buffer[elem]

BEGIN

TRUE ~--> B := cons(e,B)

NOT(null?(B)} ~---> outp := first(B) ; B := tail(B)
END

INITIALLY : B = null
END simple_buffer

The variable e represents the input of the the buffer. The imported PVS theory
Buffer that contains the definition of buffers and some basic functions operating
on them, is defined as follows:

Buffer [elem:TYPE] : THEDRY
BEGIN
IMPORTING listlelem]

10 Using the predicate =(pl = 5) A (P2 = 5) to express the mutual exclusion property,
leads to exactly one more iteration step

205

Buffer : TYPE = list[elem]

isin(B1:Buffer, el:elem) : RECURSIVE bool =
CASES B1 OF
null : FALSE,
cons(e2,B2) : IF (el=e2) THEN TRUE ELSE isin(B2,el) ENDIF
ENDCASES

first(B: (cons?)) : RECURSIVE elem =
IF null?(cdr(B)) THEN car(B) ELSE first(cdr(B)) ENDIF

tail(B:(cons?)) : RECURSIVE Buffer =
IF null?(cdr(B)) THEN null ELSE cons(car(B),tail(cdr(B))) ENDIF

isbefore(x,y:elem, Bl:Buffer} : RECURSIVE bool =
CASES B1 OF
null : FALSE,
cons(el,B2) :
IF null1?7(B2) THEN (ei=x) ELSE
IF (el=x) THEN NOT(igin(B2,y)) OR isbefore(x,y,B2)
ELSE isbefore(x,y,B2)
ENDIF
ENDIF
ENDCASES

Buffer-lemma : OBLIGATION
FORALL (B: Buffer, x: elem, y: elem):
NOT(null7(B)) AND NOT(isin(B,y)) => NOT(isin(tail(B),y))

END Buffer
We want to verify that

BOX (NOT(null?(B)) AND (x=car(B)) AND NOT(isin(B,y))
=>

isbefore(x,y,B) WEAK-UNTIL (outp=x))

is an invariant. It expresses the fact that elements leave the buffer in the same
order they have entered it, that is, the FIFO property. The following VCs are
generated by our tool using the Waiting rule:

VC-1 : OBLIGATION
isbefore(x,y,f)
=>
isbefore(x,y,cons(e,f}) OR (outp=x)

VC-2 : OBLIGATION
isbefore(x,y,f) AND NOT(null?(f))
=>
isbefore(x,y,tail(£f)) OR (first(f)=x)

206

VC-3 : OBLIGATION
NOT(null?(f)) AND (x=car(f)) AND
NOT(isin(f,y)) AND HNOT(x=y)
=
isbefore(x,y,f) OR {(outp=x)

The obligations V¥C-1 and VC~3 are proved automatically in one single step proof
using our tactical. VC~2 is proved automatically with the same tactical using
Buffer-lemma, which expresses a trivial property of buffers. That means the
property can be verified without iteration.

6 Conclusions and future work

In this paper, we have presented a method and a tool allowing to do model
checking using a theorem prover. Qur approach takes advantage of the automa-
tizability of algorithmic model checking and of the power of axiomatic methods
which allows to deal with infinite state programs. It is clearly only a partial
method as the fixed point may never be reached by the algorithmic method.
Sometimes, the user will be able to guess a solution (which often can be checked
easily).

In this paper we have hardly mentioned compositionality; however, for ex-
ample for the verification of the mutual exclusion program (consisting of the
parallel composition of two components) no product is built; also the method
deriving structural invariants [BLS96] is compositional. In the future, more com-
positionality will by added by means of well-known rules.

Another interesting direction is the use of abstraction in the manner proposed
for example in [Gra94]. The present framework is appropriate for this approach
as in the above mentioned paper, the most difficult part was to argue that the
considered abstract operations are in fact abstractions of the concrete operations.
Here, all the necessary proofs can be done with PVS. Similar proposals have been
made in [DF95] or in [HS96].

References

[BGMW94] H. Barringer, G. Gough, B. Monahan, and A. Wiliams. The ELLA Verifi-
cation Environment: A Tutorial Introduction. Technical Report UMCS CS-
94-12-2. University of Manchester.

[BLS96] S. Bensalem, Y. Lakhnech, H. Saidi. Powerful Techniques for the Automatic
Generation of Invariants. In this volume.

[BBM95] N. Bjgrner, A. Browne and Z. Manna. Automatic Generation of Invariants
and Intermediate Assertions. In U. Montanari, editor, First International
Conference on Principles and Practice of Constraint Programming, LNCS,
Cassis, September 1995,

[BLUP94] A. Blinchevsky, B. Liberman, I. Usvyatsky, A. Pnueli. TPVS: Documen-
tation and Progress Report. Weizmann Institute Of Science, Department of
Applied Mathematics and Computer Science, 1994,

[BMsS]

207

R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Academic
Press, 1988.

[CCF*95] C. Cornes, J. Courant, J. C. Fillistre, G. Huet, P. Manoury, C. Paulin-

Mohring , C. Mufioz, C. Murthy, C. Parent, A. Saibi, and B. Werner.
The Coq Proof Assistant Reference Manual. Version 5.10. Technical Report,
I.N.R.I.LA, February 1995.

[CLN%95] D. Cyrluk, P. Lincoln, P. Narendran, S. Owre, S. Ragan, J. Rushby, N.

[DF95]

[GM93]

[Gra94]

[GR95]

[Grigs]
[HS96]

[Hun93]

Shankar, J. U. Skekkebxk, M. Srivas, and F. von Henke. Seven Papers on
Mechanized Formal Verification. Technical Report SRI-CSL-95-3, Computer
Science Laboratory, SRI International, 1995.

J. Dingel and Th. Filkorn. Model checking for infinite state systems using
data abstraction, assumption-commitment style reasoning and theorem prov-
tng. Computer-Aided Verification, CAV’95, LNCS 939, Liége, June 1995.
M. J. C. Gordon and T. F. Melham. Introduction to HOL. Cambridge Uni-
versity Press, 1993.

S. Graf. Characterization of a sequentially consistent memory and verifica-
tion of a cache memory by abstraction, CAV’94. To appear in Journal of
Distributed Computing.

E. P. Gribomont and D. Rossetto, CAVEAT: technique and tool for Com-
puter Aided VErification And Transformation. Computer-Aided Verification,
CAV’95, LNCS 939, Liége, June 1995.

E. P. Gribomont. Preprocessing for invariant validation. AMAST’96.

K. Havelund, and N. Shankar. Ezperiments In Theorem Proving and Model
Checking for Protocol Verification. Proceedings of Formal Methods Europe.
1996.

H. Hungar. Combining Model checking and Theorem proving to Verify Par-
allel Processes. Computer-Aided Verification, CAV’93, LNCS 697, Elounda,
June 1993.

[MAB*94] Z, Manna and al. STeP: The Stanford Temporal Prover. Department of

[MP91]
[MP95]

[OSR93a]

[OSR93b]

[RSS95]

[Rus95]

[Sai95]

[Sif79]

Computer Science, Stanford University, 1994.

Z. Manna and A. Pnueli., The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, New York, 1991.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

S. Owre, N. Shankar, and J. M. Rushby. A Tutorial on Specification and
Verification Using PVS. Computer Science Laboratory, SRI International,
February 1993.

S. Owre, N. Shankar, and J. M. Rushby. The PVS Specification Language.
Computer Science Laboratory, SRI International, February 1993.

S. Rajan, N. Shankar, and M. K. Srivas. An integration of model checking
with automated proof checking. Computer-Aided Verification, CAV’95, LNCS
939, Liége, June 1995.

J. M. Rushby. Model Checking and Other Ways of Automating Formal Meth-
ods. Position paper for panel on Model Checking for Concurrent Programs
Software Quality Week, San Francisco, May/June 1995.

H. Saidi. Syntaz extentions in PVS, some suggestions. Unpublished notes.
September 1995.

J. Sifakis. Le Contrdle des Systémes Asynchrones: Concepts, Propriétés,
Analyse Statique. Phd Thesis. INPG, Grenoble, 1979.

Deductive Model Checking*

Henny B. Sipma, Tomas E. Uribe, Zohar Manna

Computer Science Department
Stanford University
Stanford, CA. 94305
sipmaluribe|manna®Cs.Stanford.EDU

Abstract. We present an extension of classical tableau-based model
checking procedures to the case of infinite-state systems, using deductive
methods in an incremental construction of the behavior graph. Logical
formulas are used to represent infinite sets of states in an abstraction of
this graph, which is repeatedly refined in the search for a counterexample
computation, ruling out large portions of the graph before they are ex-
panded to the state-level. This can lead to large savings, even in the case
of finite-state systems. Only local conditions need to be checked at each
step, and previously proven properties can be used to further constrain
the search. Although the resulting method is not always automatic, it
provides a flexible and general framework that can be used to integrate
a diverse number of other verification tools.

1 Introduction

We present a model checking procedure for verifying temporal logic properties of
general infinite-state systems. It extends the classical tableau-based model check-
ing procedure for verifying linear-time temporal logic specifications of reactive
systems described by fair transition systems. To verify that a system S satisfies a
specification ¢, the classical procedure checks whether the (S, —¢) behavior graph
admits any counterexample computations. This behavior graph is the product of
the state transition graph for § and the temporal tableau for -, which makes
the procedure essentially applicable to finite-state systems only.

Our procedure starts with the temporal tableau for —+ and repeatedly refines
and transforms this graph until a counterexample computation is found or it is
demonstrated that such a computation cannot exist. Even for finite-state systems,
this can lead to significant savings, since portions of the product graph can be
eliminated long before they are fully expanded to the state level. For instance,
in the verification of accessibility for the Peterson mutual-exclusion algorithm,
expansion to 12 nodes suffices to demonstrate that no counterexample exists,
whereas the full behavior graph contains 76 nodes.

* This research was supported in part by the National Science Foundation under grant
CCR-92-23226, the Advanced Research Projects Agency under NASA grant NAG2-
892, the United States Air Force Office of Scientific Research under grant F49620-
93-1-0139, the Department of the Army under grant DAAH04-95-1-0317, and a gift
from Intel Corporation.

209

For infinite-state systems, the procedure will terminate in many cases. In Sec-
tion § we illustrate the procedure by model checking an accessibility property for
the Bakery algorithm. Expansion to 16 nodes suffices to verify this property over
this infinite-state system. Even when the procedure does not terminate, partial
results can still be valuable, giving a representation of all potential counter-
example computations that can be used for further verification or testing.

We present our procedure in the framework of [14], where deductive methods
are used to verify linear-time temporal logic specifications for reactive systems
described by fair transition systems. However, the main ideas can be easily ad-
apted to other temporal logics and system specification languages as well.

Related work

Model Checking: Most approaches to temporal logic model checking [10, 16]
have used explicit state enumeration, or specialized data structures to represent
the transition relation and compute fixpoints over it, as in BDD-based “symbolic”
model checking [8, 15). While automatic, and particularly successful for hardware
systems, these approaches require that the system, or a suitable abstraction of it,
conform to the particular data structure used. Most often, the system must be
finite-state. Furthermore, even in the finite-state case these techniques are limited
by the size of the specialized representation, which is still ultimately limited by
the number of reachable states.

The “on-the-fly model checking” for CTL* presented in [1] constructs only a
portion of the state-space as required by the given formula, but is still restricted
to finite-state systems. Our procedure is similarly “need-driven,” but expands
the state-space in a “top-down” manner as well, moving from an abstract rep-
resentation to a more detailed one as necessary.

A method for generating an abstract representation of a possibly infinite
state-space is presented in [4], using partitioning operations similar to the ones
we describe below. However, in [4] this is done independently of any particular
formula to be verified. Finally, the local model checking algorithm for real-time
systems in [18] can be seen as a specialized variant of our procedure; it too refines
a finite representation of an infinite product graph, consecutively splitting nodes
to satisfy constraints arising from the formula and system being checked.

Deductive Methods: A complete deductive system for temporal verification of
branching-time properties is presented in [11], while [5] presents a proof system
for the modal mu-calculus. Manna and Pnueli [14] present a deductive frame-
work for the verification of fair transition systems based on verification rules,
which reduce temporal properties of systems to first-order premises. Verification
diagrams [13, 6] provide a graphical representation of the verification conditions
needed to establish a particular temporal formula.

All of these methods apply to infinite-state systems and enjoy relative com-
pleteness, but can require substantial user guidance to succeed. These methods
yield a direct proof of the system-validity of a property, but do not produce
counterexample computations when the property fails.

210

Like standard model checking, our procedure does not require user-provided
auxiliary formulas, and allows the construction of counterexamples; the process
is guided by the search for such computations. Like deductive methods, it only
needs to check local conditions, and allows the verification of infinite-state sys-
tems through the use of powerful representations to describe sets of states (e.g.
first-order formulas). We also accommodate the use of previously established
invariants and simple temporal properties.

The procedure presented in [3] for automatically establishing temporal safety
properties is based on an assertion graph similar to the S-refined tableau we
use, and can also produce counterexamples. Qur approach 1s a dual one: instead
of checking that all computations satisfy the temporal tableau of the formula ¢
being proved, we check that no computations satisfy the tableau for —.

2 Preliminaries

Fair Transition Systems: The computational model, following {14], is a fair
transition system (FTS). An FTS S is a triple {V,0,T), where V is a set of
variables, © is the initial condition, and 7T is a finite set of transitions. A finite
set of system variables V C V determines the possible states of the system. The
state-space, X, 1s the set of all possible valuations of the system variables.

We use a first-order? assertion language A to describe @ and the transitions
in 7. @ is an assertion over the system variables V. A transition 7 is described
by a transition relation p,(x,x'), an assertion over the set of system variables
% and a set of primed variables x’ indicating their values at the next state. 7
includes an idling transition, Idle, whose transition relation is x = x’.

A run is an infinite sequence of states sg, s1, ... such that s satisfies €, and
for each 7 > 0, there is some transition 7 € 7 such that p,(s;, si+1) evaluates
to true. We then say that 7 is taken at s;, and that state s;y; is a T-successor
of 5. A transition is enabled if it can be taken at a given state. Such states are
characterized with the formula

enabled(T) © 3%’ o, (%, x') .

As usual, we define the strongest postcondition post(r,) and the weakest pre-
condition pre(r,) of a formula ¢ relative to a transition 7 as follows:

post(r,) 3. (pr (%0, %) A p(x0))
pre(r,¢) E ¥x'. (pr(x,¥') + p(x'))
We also use the notation {¢} 7 {¥} = (0(x) A o, (x, %)) = ().

Fairness: The transitions in 7 can be optionally marked as just or compas-
sionate. A just (or weakly fair) transition cannot be continually enabled without

2 Although it can be augmented with features such as interpreted symbols and con-
straints, or specialized to the finite-state case, e.g. using BDDs.

211

ever being taken; a compassionate (or strongly fair) transition cannot be enabled
infinitely often but taken only firitely many times. A computation is a run that
satisfies these fairness requirements.

Linear-time Temporal Logic: As specification language we use linear-time
temporal logic (LTL) over the assertion language A, where no temporal operator
is allowed to appear within the scope of a quantifier. We use the usual future and
past temporal operators, such as [], &, O, ¥, W (future) and 5, &, 5, B, S
(past). A formula with no temporal operators is called a state-formula or an
assertion. For details on LTL and tableau constructions, we refer the reader
to [14], and define only the basic concepts we need. _

The Formula Tableau: Given an LTL formula ¢, we can construct its tableau
&, a finite graph that describes all of its models [14]. Briefly, each node in the
tableau is identified with an atom, which is a set of state- and temporal formulas
expected to hold whenever a model resides at this node. Two nodes A; and A,
are connected with a directed edge {A;, A5) if the formulas in Ay can hold at a
state following one that satisfies the formulas in A;.

An atom is called initial if its formulas can hold at the initial state of a model.
¢ is satisfiable only if there is a strongly connected subgraph (SCS) in @, that
is reachable from an initial atom. Furthermore, if a given model satisfies, e.g.,
<> p at some point, it must in fact satisfy p at this or another point later on. A
fulfilling SCS is one where all such eventualities are satisfied.

Propositionl. ¢ is satisfiable iff there is a fulfilling, reachable SCS in &,,.

3 Deductive Model Checking

The classical approach to model checking [10, 16] verifies a property ¢ by con-
structing the product graph between the system’s reachable-state graph and the
temporal tableau for —¢. Any infinite path through the product graph that sat-
isfies the fairness constraints on the transitions and is fulfilling with respect to
its tableau atoms is a counterexample to .

The explicit construction of the state-graph restricts the method to finite-state
systems. The procedure we present works in a top-down fashion, starting with
a general skeleton of the product graph and refining it until a counterexample is
found, or the impossibility of such a counterexample is demonstrated.

Definition2 (S-refined tableau). Given an FTS S and a temporal property
@, an S-refined tableau is a directed graph G whose nodes are labeled with pairs
(A, f), where A is an atom for the iemporal tableau for —¢ and f is a state-
formula, and whose edges are labeled with subsets of 7. For nodes M, N, we
write 7 € (M, N) if transition 7 is in the label of the edge from M to N, or
simply say that 7 labels (M, N). A subset of the nodes in G is marked as initial.

The S-refined tableau can be viewed as a finite abstraction of the product grapn.
The state-formula f in a node (A4, f) describes a superset of the states reachable

212

at that node; similarly, the transitions labeling an edge ((4i, f1), (As, f2)) are a
superset'of those that can be taken from an fi-state to reach an fo-state. We will
see that any path through an S-refined tableau corresponds to a path through
the corresponding temporal tableau. That is, for any path (Ag, fo), (41, f1),.-.
through G, the underlying path Ay, Ay, ... will be a path in @,

3.1 The DMC Procedure

We begin with the tableau graph @.,, from which we construct an inmitial &-
refined tableau Gy as follows:

1. Replace each node label A by (A, f4), where f4 is the conjunction of the
state-formulas in 4. ‘

2. For each node N = (A, f) such that A is initial in the tableau &.,, add a
new node Ny = (A, f A @), which has no incoming edges, and whose outgoing
edges go to exactly the same nodes as those of N. A self-loop (N, N) becomes
an edge (N, N) in the new graph. These new nodes are the initial nodes in
the S-refined tableau.

3. Label each edge in Gy with the entire set of transitions 7.

Figure 2 in Section 5 presents an example of an initial S-refined tableau.

The main data structure maintained by the procedure is an S-refined tablean
graph G; and a list of strongly connected subgraphs of this graph. We present the
deductive model checking (DMC) procedure as a set of transformations on this
pair. Initially, the SCS list contains all the mazimal strongly connected subgraphs
(MSCS’s) of Gg. Deductive model checking proceeds by repeatedly applying one
of transformations 1-11 described below. The process stops if we find a reachable,
fulfilling and adequate SCS (see Section 3.3) or obtain an empty SCS list.

Basic Transformations:

— 1 (remove label). If an edge ((A1, f1), (A, fa)) is labeled with a transition
7 and f1(x)A fa(x') A pr (x, x') is unsatisfiable, remove 7 from the edge label.

~ 2 (empty edge). If an edge is labeled with the empty set, remove the edge.

— 3 (unsatisfiable node). If f is unsatisfiable for a node (4, f), or if a node
has no successors, remove the node.

— 4 (unreachable node). Remove a node unreachable from an initial node.

— 5 (unfulfilling SCS). If an SCS is not fulfilling, remove it from the SCS
list. (An SCS is fulfilling if its underlying tableau SCS is fulfilling.)

— 6 (SCS split). If an SCS becomes disconnected (because a node or an edge
is removed from the graph), replace it by its constituent MSCS’s.

These basic transformations should be applied whenever possible.

Node Splitting: In the following, we will have the opportunity to replace a node
N by new nodes Ni and Ny. Any incoming edge (M, N) is replaced by edges
(M, N1) and (M, N3) with the same label, for M # N. Similarly, any outgoing
edge (N, M) is replaced by edges (N1, M) and (N9, M) with the same label as the
original edge. If a self-loop (N, N} was present, we add edges (N1, N1), (No, N3),

213

(N1, N3) and (N3, Ny), all with the same label as (N, N). If an initial node is
split, the two new nodes are also labeled as initial. If the split node was part of
an SCS in the SCS list, this SCS is updated accordingly.

Basic Refinement Transformations:

— 7 (postcondition split). Consider an edge from node Ni to Ny, (N1, No) =
((A1, f1), (A2, f2)), whose label includes transition 7. If fo A —post(r, f1) is
satisfiable (that is, f2 does not imply post(7, f1)), then replace (As, f2) by
the two nodes

N2 = (A, fa A post(r, f1))
N2, = (Aq, fa A —post(r, f1))

Note that we can immediately apply the remove label transformation to the
edge between N; and N3 5, removing transition 7 from its label.
Nodes N; and Ns need not be distinct. If N; = N, then we split the node
into two new nodes as above, only now the self-loop for N, » as well as the
edge from Ny ; to Ny 5 do not contain the transition 7.

— 8 (precondition split). Consider an edge (N1, Na) = ((41, f1), (42, f2)),
labeled with transition 7. If f; A —(enabled(r) A pre(T, f2)) is satisfiable, then
replace (A;, f1) by the two nodes

Ny 1 = (A1, f1 A enabled (1) A pre(r, f2))
Ny = (A1, fi A —(enabled (1) A pre(T, f2)))

Here, transition T can be removed from the (N 3, No) edge.

The conditions for applying these transformations can be weakened if the re-
quired satisfiability checks are too expensive (see Section 4). Variants of these
transformations, such as n-ary splits according to possible control locations, are
convenient in practice. In general, arbitrary conditions can be used to split nodes.
However, our refinement transformations account for the structure of the system
and property being checked, and can be automated as well.

3.2 Fairness Transformations

Together, transformations 1-8 are sufficient for the analysis of transition systems
with no fairness requirements. If an adequate SCS is found (see Section 3.3),
a counterexample is produced. If the set of SCS’s (all of which are actually
MSCS’s, in this case) becomes empty, then we know there is no counterexample
computation. However, to account for just and compassionate transitions we need
the following extra transformations:

— 9 (enabled split). Consider a just or compassionate transition T and an
SCS containing a node N = (A, f) such that f A —enabled(r) is satisfiable.
Then replace N by the two nodes

N1 = (A, f A enabled(T))
Ny = (A, f A —enabled(T))

214

Definition3. A transition 7 is fully enabled at a node (A4, f) if f — enabled(r)
is valid; 7 is fully disabled at a node (A4, f) if f — (—enabled(r)) is valid. A .
transition is taken on an SCS S if it is included in an edge-label in §. An SCS
S is just (resp. compassionate) if every just (resp. compassionate) transition is
either taken in S or not fully enabled at some node (resp. all nodes) in S.

That is, an SCS S is unjust (resp. uncompassionate) if some just (resp. com-
passionate) transition is never taken in S and fully enabled at all nodes (resp.
some node) in S.

We now present the last two transformations, which, like the basic ones,
should be applied whenever possible:

— 10 (uncompassionate SC8). If an SCS S is not compassionate, then let
T1,...,Tn be all the compassionate transitions that are not taken in S. Re-
place S by all the MSCS’s of the subgraph resulting by removing all the nodes
in S where one of these transitions is fully enabled.

— 11 (unjust SCS). If an SCS is not just, remove it from the SCS list.

Note that these transformations do not change the underlying graph G, but
only the SCS’s under consideration. (However, unjust or unfulfilling SCS can be
fully removed from the graph if they have no outgoing edges.)

3.3 Reachability and Termination

The process of transforming the S-refined tableau can continue until there are no
SCS’s under consideration, in which case the original property ¢ is guaranteed
to hold for the system &S.

Finding a counterexample computation in the case that ¢ fails, however, re-
quires some additional work. Whereas the above transformations remove SCS’s
from consideration that are known to be unreachable because they are discon-
nected from an initial node, no provisions ensure that a node is indeed reachable
in an actual computation, or that a computation can in fact reside indefinitely
within an SCS.

To identify portions of the product graph known to be reachable, we do some
additional book-keeping;:

— (executable transition). Given an edge ((A1, f1), (A2, f2)) labeled with
transition 7, mark 7 as ezecutable if the following formula is valid:

(fi = enabled(r)) A ({1} 7{f2}) -

That is, 7 is labeled as executable if it can be taken at all states satisfying f; and
always reaches a state that satisfies fa. For example, the idling transition can be
marked as executable on all self-loops.

Definition4 (fully just and compassionate). A transition is fully taken at
an SCS if it is marked as executable for an edge in the SCS. An SCS S is fully
just (resp. fully compassionate) if every just (resp. compassionate) transition is
either fully taken in § or fully disabled at some node (vesp. all nodes) in S.

215

Definition5 (adequate SCS). An SCS S is adeguate if after removing all
edges not marked with executable transitions we obtain a subgraph S’ where:

1..5" is still strongly connected;

2. 5 is fully just and fully compassionate;

3. there is a path of executable transitions from a satisfiable initial node to a
node in 5';

4. the state-formulas in S’ and the path that leads to S’ are satisfiable.

An adequate SCS guarantees the existence of a computation of & that satisfies
~¢ (but the reverse does not hold).

Using Previously Proven Properties: Known invariants can be used to
strengthen all {or only some) of the assertions in the S-refined tableau; if [Jp is
a known invariant for a state-formula p, then we can replace any node (4, f) by
the node (4, f A p).

Similarly, simple temporal properties of the system can be used to rule out
paths in the tableau. For example, if we know that [(p = <> ¢) is S-valid, then
we can require that any candidate SCS featuring a state-formula which implies
p also contain a state-formula compatible with ¢.3

4 Analysis

The soundness of the procedure is based on the fact that each transformation
preserves the set of computations through the S-refined tableau. Since this is
equal to the ¢ computations of & for the initial graph Go, the procedure reports
success only if there are no such computations. On the other hand, a computation
that is obtained by reaching and then residing in an adequate SCS must indeed
be a model of =y and a computation of S, and thus a counterexample.

The tableau @, can be exponential in the size of ; however, properties to be
model checked are usually simple, so the tableau is small when compared with
the system’s state-space (even for finite-state systems). Incremental and particle
tableau constructions [14] reduce the expense of building &,,.*

Proposition6. For a finite-state system S, the ezhaustive application of trans-
formations 1-11 terminates, deciding the S-validity of ¢.

If the system S is finite-state, we can use a finite-state assertion language A.
Note that the satisfiability tests required at the splitting steps are now decidable,
and there will only be a finite number of distinct nodes. Since every transform-
ation reduces the size of the graphs under consideration or replaces a node with
more specific ones (that is, nodes covering strictly fewer states), the process must
terminate. If the SCS list is empty, the original property ¢ is S-valid; otherwise,
any remaining SCS must be adequate, and thus provide a counterexample.

¢ could always be conjoined with all other known temporal properties of 8, but at
the risk of further increasing the size of the temporal tableau.
* If necessary, this construction can be interleaved with the state-space.refinement.

216

The node formulas may well be encoded using binary decision diagrams
(BDDs) {7] or, in general, any finite-domain constraint language. The efficient
tests for implication between BDDs can be used to maintain encapsulation con-
ventions. Hybrid representations (including first-order constructs) can be used if
the BDD size becomes problematic.

In the general case of infinite-state systems, the model checking problem is

undecidable. However, we point to several features of our approach:
o The test for satisfiability used in the splitting rules need not be complete; we
can change the condition “if X is satisfiable then...” to be “if X is not known
to be unsatisfiable then...” without compromising soundness. Thus, the available
theorem-proving and simplification techniques are not required to give a definite
answer at any given time. When the validity of a formula is hard to decide,
additional splits can make subsequent satisfiability questions easier.

This lazy evaluation of satisfiability makes specialized constraint languages

such as those used in Constraint Logic Programming [12] well-suited to the task.
Reactive programs based on such constraint languages, such as concurrent con-
straint programs [17], may be specially amenable to such a verification frame-
work. We expect constraint-solving and propagation techniques, as in [3], to play
a central role in the deductive model checking ‘of large systems.
¢ Even when the model checking effort is not completed, the resulting S-refined
tableau can be used to restrict the search for a counterexample, since all such
computations must follow the S-refined tableau. Backward propagation (possibly
approximated) [3] can be used to find sets of initial states that can generate a
counterexample computation. A similar approach is used in [9] to generate test
cases for processor designs.
e The DMC procedure can benefit from user guidance in two forms: first, the
choice of refinement transformation to perform next determines how the staie-
space is explored. Second, the process can be speeded up considerably by refine-
ment steps based on auxiliary formulas provided by the user.

Inductive and well-foundedness arguments can also be used: for example, if a
transition decreases a well-founded relation that is known to hold across an SCS,
then we can remove it from all the edges in the SCS {(but still account for it for
reachability). Adding support for well-founded relations and ranking functions
similar to those used in Verification Diagrams [13, 6] could make the method
relatively complete and further the combination of theorem-proving and model
checking we propose.

5 Example

We illustrate deductive model checking by proving accessibility for the BAKERY
program, an infinite-state program implementing a mutual exclusion protocol,
shown in Figure 1. Each of the statements in the program corresponds to a trans-
ition, denoted by its label; thus, 7 = {Idle, £y..£4, mg..ms}. All transitions are
just, except for mg and £y, which have no fairness requirements. Accessibility can
be expressed in LTL by the formula ¢ : [0(£; — < £3), i.e., always if control is

217

at £; it will eventually reach £3. The following describes the output of our DMC
implementation based on the STeP system [2]. The splits are chosen by the user,
but the underlying simplification and pruning are performed automatically.

lo:
21:
Zz:
£a:
£y

loop forever do

local yi,y: : integer where y1 =y, =0

noncritical mo
yr:=y2+1 I ™my
await (y2 =0V y < y2) my
critical ms
y1:=0 M4

loop forever do

: noncritical

D yi=y1 -+

: await (y1 =0V < y1)
: critical

oy =0

Fig. 1. Program BAKERY

The initial S-refined tableau for —¢ : (€ A [—43), based on its particle
tableau, is shown in the left of Figure 2. Nodes 3 and 4 correspond to the initial
nodes in the - tableau. Node 1 results from adding the initial condition to
node 4; the initial node from node 3 is pruned since ¢; A @ is unsatisfiable. The
SCS {4} is not fulfilling, but {2} is. We now perform a precondition split on edge
(2,2) and transition £, replacing node 2 by nodes 6 and 5. An £4-precondition
split on (6, 5) yields nodes 8 and 7. At this point, nodes 5 and 7 are unreachable
from the initial state and can be removed. The only candidate SCS is {8}.

]
& Idle, mo..my, £y .'

Idle, mjp..my,
1(9:)[0/\mo/\y1=0/\y2=0 3.0 :0 ! |
- b e 8: 41V, ’
T | - :
T [IO L D -
Lo
4: true £y
5:8 (= T:4y
| 4 €, myg..m
T T — Prec. ¢4 o
P a oo o 5 e e A
: T : Prec. £ : Idle, mo..mq,& !
2: 4l
| lq(6 ~ly At

hl’~ <>(l1 A D _'ls)

Dldle, mo..my

D Idle,‘mo..mg,&
t
\

1

Fig. 2. Initial S-refined tableau and first 2 refinement steps

218

An £;-postcondition split for (8, 8) yields nodes 9 and 10 in Figure 3. The only
fulfilling SCS is {10}, since {9} is unjust for £;. An enabled split for node 10 and
transition £; produces nodes 11 and 12. The SCS {11} is unjust for £;. Node 12
is now strengthened with the invariant (y» # 0} — (mg V ms V my). (Such
invariants are generated automatically by STeP based on the program text.) An
mg-precondition split on (12, 12) produces nodes 13 and 14. SCS {13} is unjust
for ma. Finally, an my-precondition split on {14, 13) results in 15 and 16. Now,
SCS {16} is unjust for m4, while {15} is unjust for m,. Since there are no
candidate SCS left, we have established that ¢ is S-valid.

3:4, Idle,mo..mq Idleme.mg + - - = - = = ~ = - - - - - oL oLl -
i

], \ / Idle, mg..my
9:4 i !12:82A-1(y1_<_y2Vy2=0) ’

& jl/ R B N
J U my, My Idle,mg..m4
i [p——— e

i
| 10: £, ' Enabled & 11: A (11 S0 Vy=0)
! t
bmmmm s m e e o - Prec. ms
r--=""=-=="=="-="-==&==—-=m®===- == i
15: 2 Ama A—(th Sy Vy =0) ! Idle |
—~ . BN VAN l
1dle 2 13 IEC. M2 M Ammy A A(y S g2 V iy = 0) :
ms Idle ' A i
U /U VU)
my ms3
16:£2Am4/\—1(y1§y2Vy2=0) \)
4 \\—/Id[e 13:-1(y15y2Vy2 =0)/\£2 Ams

11 Qfdle, mg..mq \%dle

Fig. 3. Final 3 refinement steps to model check BAKERY

Note that when model checking progress properties it may be profitable to
concentrate on splitting and eliminating candidate SCS’s, as done in this example.
However, in general it may be necessary to show that certain parts of the state-
space are unreachable through forward propagation from the initial nodes or
backward propagation from the unreachable ones. We model checked mutual
exclusion for BAKERY ([J—(¢3 A m3)) using 3 splits (including a user-provided
one) and automatically generated invariants.

We also model checked accessibility for the infinite-state 3-process version
of BAKERY, expanding to 27 nodes. This included one user-provided case split
according to the priority between processes (4 cases), together with 5 trivial
location splits and one enabled split.

219

Acknowledgements: We thank Nikolaj Bjgrner, Anca Browne and Arjun Kapur
for their comments.

References

1.

10.

11.
12.

13.

14.
15.
16.

17.
18.

BHAT, G., CLEAVELAND, R., AND GRUMBERG, O. Efficient on-the-fly model check-
ing for CTL*. In Proc. 10th IEEE Symp. Logic in Comp. Sci. (1995), pp. 388-397.
BJ@RNER, N., BROWNE, A., CHANG, E., CoLON, M., KAPUR, A., MANNA, Z.,
SipMaA, H., aND URIBE, T. STeP: Deductive-algorithmic verification of reactive
and real-time systems. In Proc. 8% Intl. Conference on Computer Aided Verifica-
tion (July 1996), Springer-Verlag.

. BIGRNER, N., BROWNE, A., AND MANNA, Z. Automatic generation of invariants

and intermediate assertions. In 1% Intl. Conf. on Principles and Practice of Con-
straint Programming (Sept. 1995), vol. 976 of LNCS, Springer-Verlag, pp. 589-623.

. BouaJjiani, A., FERNANDEZ, J.-C., AND HALBWACHS, N. Minimal model gen-

eration. In Proc. 2™ Intl. Conference on Computer Aided Verification (1990),
vol. 531 of LNCS, pp. 197-203.

. BRADFIELD, J. C. Verifying Temporal Properties of Systems. Birkhauser, 1992.
. BROWNE, A., MANNA, Z., AND SiPMA, H. Generalized verification diagrams.

In 15th Conference on the Foundations of Software Technology and Theoretical
Computer Science (Dec. 1995), vol. 1026 of LNCS, pp. 484-498.

. BRYANT, R. Graph-based algorithms for Boolean function manipulation. JEEFE

Transactions on Computers C-35, 8 {Aug. 1986), 677-691.

. BUrcH, J., CLARKE, E., McMiLLAN, K.; DiLL, D., AND HwWANG, L. Symbolic

model checking: 10%° states and beyond. In Proc. 5th IEEE Symyp. Logic in Comp.
Sci. (1990), IEEE Computer Society Press, pp. 428-439.

. CHANDRA, A., IYENGAR, V., JAWALEKAR, R., MULLEN, M., NAIR, 1., AND

ROSEN, B. Architectural verification of processors using symbolic instruction
graphs. In International Conference on Computer Design: VLSI in Computers
and Processors (1994), IEEE Press, pp. 454—459.

CLARKE, E., AND EMERSON, E. Design and synthesis of synchronization skelet-
ons using branching time temporal logic. In Proc. IBM Workshop on Logics of
Programs (1981), vol. 131 of LNCS, Springer-Verlag, pp. 52-71.

Fix, L., AND GRUMBERG, 0. Verification of temporal properties. J. Logic and
Computation 6, 3 (1996), 343-362.

JAFFAR, J., AND LASSEZ, J.-L. Constraint logic programming. In Proc 14th ACM
Symp. Prmc of Prog. Lang. {Jan. 1987), pp. 111-119.

MANNA, Z., AND PNUELL, A. Temporal verification diagrams. In Proc. Int. Symp.
on Theoretical Aspects of Computer Software (1994), vol. 789 of LNCS, Springer-
Verlag, pp. 726-765.

MANNA, Z., AND PNUELL, A. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

McMiLLAN, K. L. Symbolic Model Checking. Kluwer Academic Pub., 1993.
QUEILLE, J., AND SIFAKIS, J. Specification and verification of concurrent systems
in CESAR. In Intl. Symposium on Programming (1982), M. Dezani-Ciancaglini
and U. Montanari, Eds., vol. 137 of LNCS, Springer-Verlag, pp. 337-351.
SARASWAT, V. A. Concurrent Constraint Programming. MIT Press, 1993.
SOKOLSKY, O. V., AND SMOLKA, S. A. Local model checking for real-time sys-
tems. In Proc. 7" Intl. Conference on Computer Aided Verification (1995),
vol. 939 of LNCS, pp. 211-224.

Automated Verification by Induction with
Associative-Commutative Operators

Narjes Berregeb? Adel Bouhoula$* Michaél Rusinowitch?

¥ INRIA Lorraine & CRIN
Campus Scientifique, 615, rue du Jardin Botanique - B.P. 101
54602 Villers-les-Nancy Cedex, France
E-mail:{berregeb, bouhoula, rusi}@loria.fr

} Computer Science Laboratory, SRI International
333 Ravenswood Avenue, Menlo Park, California 94025, USA
: E-mail: bouhoula@csl.sri.com

Abstract. Theories with associative and commutative (AC) operators,
such as arithmetic, process algebras, boclean algebras, sets, ... are ubig-
uitous in software and hardware verification. These AC operators are
difficult to handle by automatic deduction since they generate complex
proofs. In this paper, we present new techniques for combining induction
and AC reasoning, in a rewrite-based theorem prover. The resulting sys-
tem has proved to be quite successful for verification tasks. Thanks to
its careful rewriting strategy, it needs less interaction on typical verifica-
tion problems than well known tools like NQTHM, LP or PVS . We also
believe that our approach can easily be integrated as an efficient tactic
in other proof systems.

1 Introduction

Powerful tools based on model checking have been developed for the verification
of finite-state systems [6]. Their extensions to some classes of infinite-state sys-
tems has only produced moderate success. Therefore deductive methods offer a
promising complementary approach especially for verifying parameterized com-
ponents or systems involving infinite data-types. Besides, when a program or a
circuit is not correct, more high-level information about how to correct it can
be derived with deductive methods.

Effective verification with deductive techniques requires efficient primitive
inference procedures in order to free the user from tedious low-level proof con-
struction details. Rewriting is now widely recognized as an important technique
for efficiency and is part of many systems. In this framework, the induction
prover SPIKE ! [3, 2], has been developed. It relies on implicit induction whose
principle is to simulate induction by term rewriting. Given a theory presented
by conditional equations, the prover instanciates some particular variables of
a conjecture to be proved, called induction variables, by terms from a fest set

! Spike is available by ftp from ftp.loria.fr in /pub/loria/protheo /softwares/Spike

221

which is a finite description of the model, then simplifies them by axioms, other
conjectures or induction hypotheses. Every iteration generates new subgoals that
are processed in the same way as the initial conjectures.

However, many theories of interest include AC operators, which are hard to
handle since they cause divergence or generate complex proofs. To overcome this
problem, we propose to have the AC axioms built in the inference mechanism of
SPIKE. The advantage of our approach over other implicit induction technigques
[5, 9], is that it does not use AC unification (which is doubly exponential) during
the proof process, but only AC matching.

In this paper, we propose methods for automatically selecting the induction
variables of a conjecture to be proved, and for constructing test sets in the case
of an AC conditional theory. We present our proof procedure as an inference
system based on new simplification techniques. This inference system is correct,
refutationally complete (when the procedure stops with failure we can ensure
that the given conjecture is wrong) under some reasonable restrictions on the
initial AC conditional theory. These results have been implemented in the system
SPIKE-AC, and computer experiments have shown the gain we obtain when
handling AC operators by these techniques. In particular, the procedure has
allowed us to prove directly theorems (for example, the correctness of a ripple
carry adder) that require more interaction with other systems.

Overview on an example

To illustrate our approach, let us describe the correctness proof of a simple
digital circuit. We consider a ripple carry adder (see figure 1), whose inputs
are two bit-vectors A = (Ao, 41,...,An—1) and B = (By, B1,...,Bn_1), and
a carry Cy. This circuit performs addition of A and B and the result is a bit
vector S = (So,S1,...,Sn—1), and a carry Cy,. This problem is easily specified
with conditional rules, and the specification obtained reflects clearly the circuit
description. The circuit function computing the sum of two bit-vectors A and B
given a carry Cy, is add(A, B, Cy). We define a mapping function bvtonat which
transforms a bit vector into an integer. The constructor bitv(z,y) builds a new
bit-vector by concatening z as the least significant bit of the vector y, and the
constant Bim is the empty vector. The correctness theorem states that when
given two bit-vectors of the same size as inputs, the resulting output is, up to
conversion, the arithmetic sum of the inputs. The conjecture to be proved is:

size(z1) = size(z2) => bvtonat(add(z1, z3, False)) = bvtonat(z1) + bvionat(zs)

Using our techniques described in section 5, the test set computed for the spec-
ification is: {Btm;bitv(T'rue, z,); bitv(False, z1);0; s(z1); True; False}, where:
Btm, bitv(T'rue, z1) and bitv(False,z1) are of type vect, 0 and s(z1) are of type
nat, True and False are of type bool. The next step consists in applying an
induction on the induction variables (see section 4). Here, the variables z; and
zo are replaced by elements of the test set (whose variables are renamed), and
the instances obtained are simplified. We thus obtain 9 subgoals to be proved.

222

Ay By Ay By c Ay Bpq
cD 1 1
—
1
]
¥
i
Cy Ca C,
S, $4 S

Fig. 1. Ripple carry adder

The simplification strategy may use axioms, other conjectures (even when they
are not proved) and inductive hypotheses, provided they are smaller (w.r.t a well
founded ordering on clauses). For example, the subgoal:

size(bitv(True, x;)) = size(bitv(False, z5)) =
s(bvtonat(add(z1, x4, False)) + bvtonat(add(zy, zo, False))) =
butonat(bitv(True, 1)) + bvionat(bitv(False, z3))

is simplified using the axioms to:

size(z1) = size(zs) =
butonat(add(z, x9, False)) + bvtonat(add(z1, 2, False)) =
butonat(zy) + bvtonat(x1) + butonat(zs) + bvionat(zs).

This simplification is not possible if we simply use the commutativity and asso-
clativity of + as lemmas, since then it would not be possible to derive a clause
which is smaller than the starting one.

After simplifying and deleting the tautologies, only one subgoal remains to be
proved:

size(z1) = size(zs) =
butonat(add(z1, 22, True)) + bvtonat(add(zy, 22, True)) =
s(s(bvtonat(z,) + buvtonat(z) + bvtonat(zs) + bvtonat(zs))).

This is the case for the addition of 2 bit-vectors when the carry is set to True.
An induction on z; and £3 must be applied. We obtain 9 subgoals to prove, and
after simplification, 2 conjectures remain. The first one is:

size(xy) = size(xs) =
butonat(add(zy, z2, False)) + bvtonat(add(x,, 2, False)) +
bvtonat(add(zi1, x2, False)) + butonat(add(z1, 22, False)) =
butonat(z,) + butonat(z,) + bvtonat(zy) + bvtonat(z,) + bvtonat(z,) +
butonat(zs) + bvtonat(za) + butonat(zs)

223

It is reduced to a trivial identity using inductive contertual rewriting (see section
6) with the induction hypothesis:

size(zy) = size(z2) = butonat(edd(z1, x4, False)) = butonat(x:) + butonat(z)

The other remaining conjecture is simplified in the same way. Hence, all the
subgoals are proved, and the initial goal is valid. The proof is completely auto-
matic. Besides, it is easy to understand and very close to a mathematical proof.
Note also that it does not use any specialized tactic nor any heuristic. The same
conjecture has been proved with the NQTHM system [14], but then requires a
non trivial generalisation of the input theorem. A proof was also done with PVS
[7], but it uses a high-level user-defined proof strategy.

2 Basic concepts and notations

We assume that the reader is familiar with the basic concepts of term algebra,
term rewriting, equational reasoning and mathematical logic. A many sorted
signature ¢ is a pair (8, F) where S is a set of sorts and F = F U Fsc, where
F and Fuc denote sets of function symbols. For short, a many sorted signature
o will simply be denoted by F. The variadic term algebra is a generalisation of
the term algebra, where AC functions symbols have a non fixed arity [12]. It
allows us to express associative and commutative axioms by means of flattening.
The variadic term algebra TV {(F, Fac, X) over the signature F and the set of
variables X is defined as the smallest set TV containing X such that:

—if fe Fyarity(f) =n >0, and &y,...,t, € TV then f(t1,...,1,) € TV.
— if f € Fac,n>2,and ty,...,t, €TV then f(tl,...,tn) €TV

In the following, + will denote an AC symbol. Flattening a term consists of
rewriting it to normal form w.r.t. the set of flatteningrules: f(z1,..., f(y1,---,Yr)
21,00y 2n) = f(®1, . Yl Yry ey 21, ..., 2n) for all f € Fac. We denote
by flat(t), the term obtained by flattening ¢. A term s is flattened if s = flat(s).
We assume that we have a partition of F in two subsets, the first one, C, con-
tains the constructor symbols and the second, D, is the set of defined symbols. We
denote by Var(t), the set of all variables appearing in {. A term is linear if all its
variables occur only once in it. If Var(t) is empty then ¢ is a ground term. The -
set of all ground terms is T'(F). A substitution assigns terms of appropriate sorts
to variables. Let ¢ be a term, and 5 be a substitution, ¢z is the flattened term ob-
tained by applying 7 to ¢. The domain of 7 is defined by: Dom(n) = {z | zn # =}.
If 7 applies every variable to a ground term, then 7 is a ground substitution. We
denote by = the syntactic equivalence between objects. The smallest congruence
generated by the equations f(f(x,y), 2) = f(z, f(y,2)) and f(z,y) = f(y,z) for
all f € Fac is denoted by =4¢. Positions in a term are defined in the same
way than in [12]. The replacement of a term s by ¢ at a position p is denoted
by s[p « t]. We assume that the term obtained is flattened. The term ¢/p is the
subterm of t at position p. The notation t[s}, means that the term ¢ contains a

224

subterm s at position p. We also denote by ¢(p) the symbol of ¢ at position p. For
example, if t = a+b+c, then t/{2,3} = b+¢,t({2,3}) = +,%/3 = c. A position u
in a term ¢ such that t{(u) = ¢ and = € X, is a linear variable position if z occurs
only once in t, otherwise, u is a non linear variable position. A position u is a
strict position of a term ¢ if t(u) € X, and u = € or v = v’.i (€ N). The depth
of a term ¢ is defined as follows: depth(t) = 0 if ¢ is a constant or a variable,
otherwise, depth(f(t1,...,tn)) = 1+ maz(depth(t;)). The strict depth of a term
t, denoted by sdepth(t), is the maximum of length of function positions in ¢.

A term s matches a term ¢ if there exists a substitution o such that t =4¢ so;
the term t is called an AC instance of s. A term £ is AC unifiable with a term s,
if there exists a substitution o such that to =4¢ so.

An ordering > is AC compatible if s =4¢c s, s = t and t =4¢ t' implies
s’ > t'. In the following, we suppose that > is a transitive irreflexive relation on
the set of terms, that is noetherian, monotonic (s > ¢t implies w{slu > w{t]u),
stable (s > ¢ implies so > to), AC compatible and satisfy the subterm property
(F(-+-,t,--+) = t). The multiset extension of > will be denoted by >>.

A conditional equation a formula of the following form: a; = b1 A-- A a, =
by, = | = r. It will be written a; = by A ---Aa, = b, = [= » and called
a conditional rule if {lo} > {ro,a10,b10, -, ano, byo} for each substitution o
and every variable of the conditional equation occurs in {. The term [is the
left-hand side of the rule. A rewrite rule ¢ = [— 7 is left-linear if [is linear. A
set of conditional rules is called a rewrite system. A constructor is free if it is not
the root of a left-hand side of a rule. We denote by lhss(R), the set of subterms
of all left-hand sides of R. The number of elements of a set T is card(T). A
rewrite system R is left-linear if every rule in R is left-linear. We say that R
is flattened if all its left-hand sides are flattened. Let f be an AC symbol, we
denote by by the maximal arity of f in the left-hand sides of R. The depth (resp.
strict depth) of a rewrite system R, denoted by depth(R) (resp. sdepth(R)), is
the maximum of the depths (resp. strict depth) of its flattened left-hand sides.
We define D(R) as depth(R) — 1 if sdepth(R) < depth(R) and R is left-linear,
otherwise depth(R).

Let ¢ be a flattened term, we write t — g #’ if there exists a conditional rule
AP, a@; = b; = — r in R, a position p and a substitution & such that:

— t/p=ac lo, ¥ =ac t[p « ro].
— forall i € [1---n] there exists ¢;, ¢} such that aijc =% ci, bio =% ¢ and
Ci =AC Cﬁ.
where the reflexive-transitive closure of — is denoted by —*. In this case we say
that the term t is reducible, otherwise, it is irreducible. From now on, we assume
that there exists at least one irreducible ground term of each sort. We say that
two terms s and t are joinable, if s =% v, t =% v/ and v =4¢ v'. A term £ is
inductively reducible iff all its ground instances are reducible. A symbol f € F
is completely defined if all ground terms with root f are reducible. We say that
R is sufficiently complete if all symbols in D are completely defined.
A clause C is an expression of the form: —{sy = #;) V ~(sg =t3) V --- V —(8n
=1,) V (sf =t}) vV --- V (s, =1,). We naturally extend the notion of flat-

225

tening, substitution, positions to clauses. Let H be a set of conditional equations
and Fac¢ a set of AC symbols. The clause C is a logical consequence of H if
C is valid in any model of H U {f(f(z,y),2) = f(z, f(y,2)), f(z,y) = f(y,z)
forall f € Fac}. This will be denoted by H |= C. We say that C is induc-
tively valid in H and denote it by H =4 C, if for any ground substitution o,
(for all i H = s;o = t;0) implies (there exists j such that H = s;o = tio).
The rewrite system R is ground convergent if the terms u and v are _]omab]e
whenever u,v € T(F) and R |= u = v. In this paper, we suppose that all clauses
and terms are flattened, and we denote by R a flattened rewrite system.

3 Induction schemes

To prove a conjecture by induction, the prover computes automatically an in-
duction scheme, which consists of a set of variables on which induction is applied
and a set of terms covering the possibly infinite set of irreducible ground terms.

Definition 3.1 Given a term t, a set V C Var(t) and a set of terms T, a
(V, T)-substitution is a substitution of domain V, such that for all z € V, zo is
an element of T whose variables have been given new names.

Definition 3.2 An induction scheme I for a term t is a couple (V,T), with
V CVar(t) and T C T(F, Fac, X), such that: for every ground irreducible term
s, there exists a term t in T and a ground substitution o such that to =4¢ s.

These induction schemes allow us to prove theorems by induction, by reasoning
on the domain of irreducible terms rather than on the whole set of terms. How-
ever, they cannot be used to refute false conjectures. In the following, we refine
induction schemes so that to be able, not only to prove conjectures, but also to
refute the false ones.

Definition 3.3 A term t is strongly irreducible if none of its subterms is an
instance of a left-hand side of a rule in R.

Definition 3.4 A strong induction scheme I for a termt is an induction scheme
(V,T), where V is called the set of induction variables, and T is called the test
set, such that: for each term t and T-substitution o, if to is strongly irreducible,
then there exists a ground substitution T such that tr is srreducible.

An T-substitution is called test substitution.

The next definition provides us with a criteria to reject false conjectures. Then,
we show that strong induction schemes are fundamental for this purpose (see
theorem 3.1)

Definition 3.5 A clause ~(s1 = t1) V- V(s =tm) V(g1 = d1)V -V (gp =
d,) is provably inconsistent with respect to R if there exists a test substztutzon o
such that:

1. Vi€[l---m]: sjoc =t;0 is an inductive theorem w.r.t. R.

226

2.Vje[l---n]:gj0 £ac djo, and the mazimal elements of {g;o, djo} w.r.t.~
are strongly irreducible.

The next result shows that, a provably inconsistent clause cannot be inductively
valid w.r.t. R. This is proved by building a well-chosen ground instance of the
clause which gives us a counterexample.

Theorem 3.1 Suppose R is a ground convergent rewriting system. If a clause
C is provably inconsistent, then C is not inductively valid w.r.t R.

In the following sections, we propose methods for automatically computing each
component of a strong induction scheme, that are, the induction variables and
the test set.

4 Selecting induction variables

To prove a conjecture by induction, the prover selects automatically the induc-
tion variables of the conjecture where induction must be applied, then, instanci-
ates them with terms of the test set. It is clear that the less induction variables
we have, the more efficient the induction procedure will be.

To determine induction variables, the prover computes first the induction
positions of the functions. These positions enable to decide whether a variable
position of a term t is an induction variable or not. The induction positions
computation is done only once and before the proof process. It is independent
from the conjectures to be proved since it is based only on the given conditional
theory.

Definition 4.1 Let ¢ be @ term such that t(e) = f and f € F. A position i € N
is an inductive position of [int if i is either a strict position in i, or a non
linear variable position. We define pos_ind(f,t) as the set of inductive positions
of f int and pos_ind(f) = Uyeipss(r) POS-ind(f,1).

The idea is that a variable in a term ¢ will be selected as an induction vari-
able if it occurs below an inductive position. Hence, instantiating these vari-
ables may trigger a rewriting step. A problem happens with an AC symbol
f, since the inductive positions of f can be permuted. For example, let R =
{e+0+0—0, z+14+1— 0}, with Fac = {+} and F = {0,1}. We have
pos_ind(+) = {2, 3}. Considering only y and z as induction variables, the proof
of the conjecture z + ¥ + z = 0 fails. However, it is an inductive theorem since
all its ground instances are logical consequences of R.

This leads us to take all variables occuring under an AC symbol, as induction
variables, so that to ensure the refutational completeness of our procedure, that
is, whenever the proof of a clause finitely fails, we can ensure that it is not
an inductive consequence of R. However, in order to make the proof process
efficient, we have identified some cases where the number of induction variables
to consider can be reduced while preserving refutational completeness.

227

For this purpose, for each f € Fac, we define the number nb_pos_ind(f) =
Maz;einss(r)card(pos-ind(f,t)). We denote by var-nd(t) the set of induction
variables of t. The procedure computing induction variables is given in figure 2.
We assume that the three predicates Py, Ps, P3 are defined as follows:

Py(f,R) & f is completely defined and nb_pos_ind(f) =1

Py(f,R) & f is completely defined and nb_pos_ind(f) > 1

Ps(f, R) & R is left-linear and for each f(t1,...,t,;) € lhss(R) there does not
exist two non variable terms t;,?; which are AC unifiable

input: ¢t output: var_ind(t) init: Vind =0
if t is a variable
then Vind := {t}
else for each position u in t such that t{u) = f and f € F do:
Vind := Vind U {z | z appears at position u.1, and i € pos.ind(f)}
endfor
for each f € Fac in t do:
case 1: Py(f, R) and there is a variable z which is an argument of each
occurrence of f in t: Vind := Vind U {z}
endcase 1
case 2: P(f, R):
for each position u in ¢ such that t(u) = f do:
let X, = {z € X | z appears at a position u.i(t € N)}
if (XuNVind = {z}) and (Jy € X.)
then Vind := Vind U {y}
else if (X, NVind = 0) and (X« = {z})
then Vind := Vind U {z}
else if (X. N Vind = 0) and ({z,y} C X.)
then Vind := Vind U {z,y}

endif
endif
endif
endcase 2

case 3: P3(f, R) and there is a variable z which is an argument of each
occurrence of f in & Vind := Vind U {z}
endcase 3
case 4: otherwise:
for each position u such that t(u) = f do:
let Xu = {z € X' | z appears at a position u.i(1 € N)}
Vind :=VindU X,
endfor
endcase 4
endfor
endif
return(Vind)

Fig. 2. Induction variables computation

228

Example 4.1 Consider the following rewriting system R, with Fac = {+, *}.

z+0—z z+s(y) > s(z+y)
R={zx0-0 zxs(y) o z+zry
exp(z,0) = s(0) exp(z,s(n)) = z x exp(z,n)

We have: nb_pos_ind(+) = 1, nb_pos_ind(x) = 1, pos_ind(exp) = 2. A test set
for R is {0, s(z)}. The conjecture to prove is (z+y—+z)*w = cxw+y*sw+z*w.
If we take x,y, z, w as induction variables, we would obtain 16 lemmas to prove.
Now, since + and * are completely defined AC operators, nb_pos_ind(+) = 1
and nb_pos_ind(x) = 1, we can choose {z,w} or {y,w} or {z,w} as induction
variables. Thus, we obtain only 4 lemmas to prove.

5 Computing test sets

The computation of test sets according to definition 3.4 relies on the induc-
tive reducibility property [9], which is unfortunately undecidable in AC theories
[10]. However we can use a semi-decision procedure that has proved to be quite
useful for practical applications [11]. For thé more restricted case where the
rewrite system is left-linear and sufficiently complete, and the relations between
constructors are equational we propose algorithms basically extending the equa-~
tional case [9, 5] (see theorem 5.1). For the case where the rewrite system is not
left linear but it is sufficiently complete over free constructors there is an easy
algorithm to produce test-sets (see theorem 5.2).

We denote by extension(t) the term obtained by replacing each subterm of
t of the form f(t1,...,ts,+1) by f(t1,...,t5,41,%), where f € F4c and z is a
new variable. Given a set of terms T', extension(T) = | J,¢p extension(t).

Theorem 5.1 Let R be a left-linear conditional rewriting system. Let T = {t | ¢
is a term of depth < D(R) such that all variables occur at depth D(R), and each
AC operator has a number of arguments < by + 1}. Let T' = {t € T | t is not
inductively reducible }. Then extension(T") is a test set for R.

Example 5.1 Let F = {0,1,s}, Fac = {+} and

0+z—z,
R=<¢ 1+ s(z) > s(s(z)),
s(1) — s(s(0))
We have: D(R) = 1. By applying theorem 5.1, we obtain: T' = {0, 1, s(z), =+
Y, ¢ +y+ z}, extension(T") = {0, 1, s(z), e +y, c+y+z, c+y+2z+t},
which can be simplified by deleting the subsumed terms and give the test sel:
{0, 1, 5(z), = +y}.

A sort s € S is said infinitary if there exists an infinite set of ground irre-
ducible terms of sort §. The next theorem provides a method for constructing
test sets for non left-linear rewriting system with free constructors.

229

Theorem 5.2 Let R be a conditional rewriting system. Suppose that R is suffi-
ciently complete over free constructors. Then, the set T' of all constructors terms
of depth < D(R) such that all variables are infinitary and occur at a depth D(R),
is a test set for R.

6 Inference system

Our inference system rules (see figure 3) is based on a set of transition rules
applied to (E, H), where E is the set of conjectures to prove and H is the set
of induction hypotheses. The initial set of conditional rules R is oriented with a
well founded and AC compatible ordering.

The inference system is constituted of two rules: generation and simplifica-
tion. An I-derivation is a sequence of states: (Eo,8) by (E1, Hi) Fr ... (En, Hn)
Fr We say that an I-derivation is fair if the set of persistent clauses (U; N;>;
E;) is empty. An I-derivation fails when it is not possible to extend it by one
more step and there remains conjectures to prove. We denote by <. a noethe-
rian ordering on clauses, stable modulo AC, that extends <. In the following,
W denotes a set of conditional equations which can be induction hypotheses or
conjectures not yet proved. Let us now present briefly the rewriting techniques
used by the prover. Inductive contextual rewriting is a generalization of both
inductive rewriting [3] and contextual rewriting [15].

Definition 6.1 (Inductive contextual rewriting) Given a clause C, we wri-
te:

C= A=>Av—pcws> C'= A= Alu +to]
if there emists = I' => s=t € RUW and a position u in A such that:

— Afu=jc so

-C' < C

— if§ €W then do <. C
— RUWe |=,'ndA:>F0'

where W= = {@ | & € W and & <. C}.

Example 6.1 Let Fac = {+} and C = (odd(1 + 1) = True V equal(1,1) =
FalseVeven(1+41) = True). Suppose that we have an induction hypothesis: H =
(equal(z,y) = FalseV even(z + y) = True). The inductive contextual rewriting
of C by H gives: C' = (odd(1+1) = TrueVequal(l,1) = FalseVTrue = True).

Inductive case rewriting provides us with a possibility to perform a case-based
reasoning; it simplifies a conjecture with an axiom, a conjecture or an inductive
hypothesis, provided it is smaller than the initial conjecture and the disjunction
of all conditions is inductively valid.

Definition 6.2 (Inductive case rewriting) Let G be the set {< Clu « do],
Po >| there ezists R = P = g —'d in RUW, and a position u in'C such that
Clu=uac go, and if R € W, then R <. C }. If R f=ina (V<cr psea P), then
Inductive_case_rewriting(C,W) = {P = C’ |< C’, P >€ G}.

230

Generation: (EU {C},H) t1 (EUE',HU{C})
if B =, simplify(Co, H U E U{C}), o ranging over test substitutions of C]

Simplification: (EU{C},H) +; (EUE' H)
if ' = simplify(C, H U E)

Fig. 3. Inference system I

Definition 6.3 (simplify) The procedure simplify is defined in the following
way:

simplify(C, W) =
if C s a tautology or subsumed by a clause of RIUW
then @
else if C ——pews O
then {C'}

else Inductive_case_rewriting(C,W)

The correctness of the inference system [is expressed by the following the-
orem:

Theorem 6.1 (Correctness) Let (Ey,8) by (Ev, Hi) Fr ... be a fair I-derivat-
ton. If it does not fail then R [=inq Fo.

Now, consider boolean specifications. To be more specific, we assume there
exists a sort bool with two free constructors {true, false}. Every rule in R is
of type: AL, pi = pi = s — t where for all ¢ in [1---n], p; € {true, false}.
Conjectures will be boolean clauses, 1.e. clauses whose negative literals are of type
—(p = p') where p’ € {true, false}. If for all rules of form p; => f(t1,...,t,) = 7
whose left hand sides are identical up to a renaming y;, we have R =ind ViPifti,
then f is weakly complete w.r.t R. We say that R is weakly complete if any
function in F is weakly complete [1]. We can show that refutational completeness
is also preserved in the AC case.

Theorem 6.2 (Refutational completeness) Let R be a weakly complete and
ground convergent rewrite system. Let Eq be a set of boolean clauses. Then
R Wing Eo iff all fair derivations issued from (Ey,) fail.

7 Conclusion
We have presented a new induction procedure for the associative and commuta-

tive theories. An advantage of this approach is that inference steps are performed
in a homogeneous well-defined framework. Another important point is that our

231

procedure does not need AC unification like completion methods, but only AC
matching. Qur inference system is based on two rules: the generation rule which
performs induction, and the simplification rule which simplifies conjectures by
elaborated rewriting techniques. This system is correct and refutationally com-
plete for boolean ground convergent rewrite systems under reasonabie restric-
tions. In experiments, refutational completeness is particularly useful for debug-
ging specifications. These results have been integrated in the prover SPIKE-AC,
and interesting examples such as circuits verification have demonstrated the ad-
vantages of the approach.

References

1.

2.

10.
11.

12.

13.

14.

15.

A. Bouhoula. Using induction and rewriting to verify and complete parameterized
specifications. Theoretical Computer Science, 170, December 1996.

A. Bouhoula, E. Kounalis, M. Rusinowitch. Automated mathematical induction.
Journal of Logic and Computation, 5(5):631-668, 1995.

. A. Bouhoula, M. Rusinowitch. Implicit induction in conditional theories. Journal

of Automated Reasoning, 14(2):189-235, 1995.

. R. S. Boyer, J. S. Moore. A Computational Logic Handbook. 1988.
. R. Biindgen, W. Kiichlin. Computing ground reducibility and inductively com-

plete positions. In N. Dershowitz, editor, Rewriting Technigues and Applications,
LNCS 355, pages 59-75, 1989.

. J.R. Burch, E. M. Clarke, K.L. McMillan, D.L. Dill. Symbolic Model Checking:

10%° states and beyond. 5th Annual IEEE Symposium on Logic in Computer
Science, pages 428-439, 1990.

D. Cyrluk, S. Rajan, N. Shankar, M. K. Srivas. Effective Theorem Proving for
Hardware Verification. In K. Ramayya and K. Thomas, editors, Theorem Provers
in Circuit Design LNCS 901, pages 203-222, 1994.

. 8. J. Garland, John V. Guttag. An overview of LP, the Larch Prover. In

N. Dershowitz, editor, Rewriting Techniques and Applications, LNCS 355, pages
137-151, 1989.

. J.-P. Jouannaud, E. Kounalis. Automatic proofs by induction in theories without

constructors. Information and Computation, 82:1-33, 1989.

D. Kapur, P. Narendran, D. J. Rosenkrantz, H. Zhang. Sufficient completeness,
ground-reducibility and their complexity. Acta Informatica, 28:311-350, 1991.

E. Kounalis M. Rusinowitch. Reasoning with conditional axioms. Annals of Math-
ematics and Artificial Intelligence, (15):125-149, 1995.

C. Marché. Réécriture modulo une théorie présentée par un systéme convergent et
décidabilité du probléme du mot dans certaines classes de théories équationnelles.
Th. univ., Université de Paris-Sud (France), 1993.

S. Owre, J.M. Rushby, N. Shankar. A prototype verification system. In D. Kapur,
editor, International Conference on Automated Deduction, LNAI 607, pages 748—
752, 1992.

L. Pierre. An automatic generalisation method for the inductive proof of repli-
cated and parallel architetures. In K. Ramayya and K. Thomas, editors, Theorem
Provers in Circuit Design, LNCS 901, pages 72-91, 1994.

H Zhang. Contextual rewriting in automated reasoning. Fundamenta Informati-
cae, (24):107-123, 1995.

Analysis of Timed Systems Based on
Time-Abstracting Bisimulations

S. Tripakis* and S. Yovine*

VERIMAG, France

Abstract. We adapt a generic minimal model generation algorithm to
compute the coarsest finite model of the underlying infinite transition
system of a timed automaton. This model is minimal modulo a time-
abstracting bisimulation. Our algorithm uses a refinement method that
avoids set complementation, and is considerably more efficient than pre-
vious ones. We use the constructed minimal model for verification pur-
poses by defining abstraction criteria that allow to further reduce the
model and to compare it to a specification.

1 Introduction

Behavioral equivalences based on bisimulation relations have proven useful for
verifying the correctness of concurrent systems. They allow comparing an im-
plementation to a usually more abstract specification both represented as la-
beled transition systems. This approach also allows reducing the size of the
system by identifying equivalent states which is crucial to avoid the explosion of
the state-space. Since the introduction of strong bisimulation in [Mil80], many
equivalences have been defined. Moreover, practice followed theory and several
algorithms and tools have been developed.

Despite this fact, behavioral equivalences have not been thoroughly studied
in the framework of timed systems. In particular, there is a lack of tools based on
this approach. The transition system modeling the behavior of a timed system
comprises two kinds of transitions, namely timeless actions representing the
discrete evolutions of the system, and time lapses corresponding to the passage
of time. Due to density of time, there are infinitely many time transitions. A
finite model can be obtained by defining an appropriate equivalence relation
inducing a finite number of equivalence classes. Examples of such relations are
the region-graph equivalence [AD94] and the te-bisimulation [LY93]. The main
idea behind these relations is that they abstract away from the exact amount of
time elapsed and they are therefore refer to as time-abstracting equivalences.

An important problem consists in constructing the quotient of a labeled
transition system w.r.t. an equivalence relation. Many generic algorithms exist
to solve this problem, e.g. [BFH¥92, LY92]. For timed systems represented by
timed automata [AD94], these algorithms have been adapted for computing the

* E-mail: {Stavros.Tripakis,Sergio.Yovine}@imag.fr. Tel: 433 76 90 96 30. Fax: +33
76 41 36 20. Miniparc-Zirst, Rue Lavoisier, 38330 Montbonnot St. Martin.

233

minimal region graph in [ACD192b, ACD*92a]. Based on the results reported
in [ACD%92a] it comes out that straightforward implementations of those algo-
rithms result in poor performances. In fact, one main obstacle towards efficiency
is the cost of computing set complementation.

In this paper, we adapt the generic minimal model generation algorithm
of [BFH*92] in order to avoid set complementation, in the spirit of [YL93]. Ex-
perimental results carried out on several benchmarks show that this algorithm
is more efficient than the ones implemented in [ACD%92a]. Furthermore, we use
the constructed minimal model for verification purposes by defining an appro-
priate abstraction criterion that allows using the tool ALDEBARAN [FGM*92]
for further reducing the transition system or comparing it to a specification.

2 Background

2.1 Bisimulations, models, and minimal models

A model (or LTS) is a triple (@, Q% —). @ is a set of states, @° C @ is the
set of initial states, and —C @ x L x) is a set of labeled transitions, for some
label set L. We write ¢ — ¢’ instead of (g,1,¢') €. Arelation r CQ x Qisa
bisimulation iff : V(q1,92) €7, Vi€ L, :

(1) Vg, € Qst. g1 = ¢;, 3g} s.t. g2 = ¢} and (g}, ¢}) € r, and

(2) Veb € Q@ s.t. g — ¢, 3¢, st. q1 = ¢} and (¢}, q2) € 7.

From now on, ~ denotes the greatest bisimulation. Two models G1, G2, G;
(@i, Q%,—),i = 1,2, are bisimilar, denoted G; ~ G»,ifVq; € Q?,¢2 € @3, @1
q2.

Let G = (Q,Q° —). A partition IT of @ is a set of disjoint classes B C Q,
the union of which yields @. The quotient of G w.r.t. IT is (II,7,—), where
r={Bell|BNQ°+0},and B = C iff pre;(B, C) # 0, where pre;(B,C) =
{geB|3¢ €C.q> ¢} Wewrite B— Cif3l € L. B C. We define
Sucesy(B) = Uy Sucesip(B) where Sucesiy(B) = {C € I | B % C} is the set
of successors of B by I, and Preds,(B) = |J;c; Predsi;(B) where Predsy;(B) =
{C € IT | C 5 B} is the set of predecessors of B by .

B is stable w.r.t. C if VI € L. prei(B,C) € {B,0}. B is stable w.r.t. IT if it
is stable w.r.t. all classes C € II. IT is stable if all its classes are stable w.r.t.
II. Let Il be the partition induced by =. Clearly, [T is stable. The minimal
model of G modulo bisimulation, is the quotient of G w.r.t. [Ty, denoted G.
Notice that ¥/ € L, B,C € IIx, B = C iff pre;(B,C) = B.

g

2.2 A general minimal model generation algorithm

We recall here the generic algorithm developed in [BFHY92] (referred to as
MMGA) for computing the reachable part of the minimal model G.

234

I:=1Iy; a:={Bell |BNQ*£0}; o:=0;

while (3B €a\ o) do { (0)
Cp := Split(B,) ; (1)
it (Cp = {B}) then {)

c:=0U{B}; a:=alSucesh(B); 3)
} else { (4)

a:=a\{B}; H:=(T\{B})UCp; ¢:=0\ Preds,(B); (5)

if BNQ"# 0 then «:=aU{CeCh,|CNQ°#0};
I denc}ate}s the current partition, o the set of accessible classes (i.e., containing
at least one accessible state), and ¢ C « the set of stable accessible classes.
Split(B, IT) refines the class B by choosing a class C w.r.t. which B is potentially
unstable, then computing By = pre(B,C), By = BN pre(B,C). If indeed
B; #0,i=1,2, B is effectively split (4), and its predecessors become unstable
(5). Otherwise (2), B is both accessible (i.e., it contains a reachable state, say
q) and stable, meaning that each one of its successors C has a state ¢’ such that
q — q'. Thus, C contains at least one reachable state, and can be inserted to «
(3). Termination depends on whether ~ induces a finite partition of the initial
model.

2.3 Avoiding complementation

In the context of timed systems set complementation is very costly and should
be avoided. This can be done following the idea presented in [YL93]. Let us
first illustrate it with an example. Assume that B € « is found stable, so that
one of its successors, ', becomes accessible, and is split into Cy, Cq, Cs, thus
B is no longer stable. Now, instead of splitting B w.r.t. only one of the C;’s,
which would yield {pre;(B,C;), B N pre;(B,Cy)}, B can be split directly into
By, By, Bs, where B; = pre;(B, C;) (possibly, some B;’s are empty). Now, let

Refly(B) € {B' | 3C € Succsly(B). B' = prei(B,C) A B' # ().

Assuming that whenever Refi(B) ¢ {0, {B}}, the classes in Ref};(B) satisfy :
(1) coverness: |J Refi(B) = B, and
(2) disjointness: VB’, B" € Refh(B), if B' # B" then B’ B" =,

the function Split can be redefined as follows:

u [Refly(B)if 3le L. Refy(B) ¢ {0, {B}}
Split(B, 1) = {{B}H(otherwise "

which does not require using set complementation.

3 Timed systems

3.1 Timed automata

Let 2 = {&1,...,z,} be a finite set of clocks. All clocks advance at the same
rate. A valuation is an n-tuple v € R} . v(x;) is the value of clock z; in v, and

235

v+t, t € Ry stands for the valuation v/, such that Yz € 2. v'(z) = v(z) + ¢,
and v[X := 0], X C £ is the valuation v”, such that v"/(z) = 0if z € X,
v"(z) = v(z) otherwise. A clock constraint v is a conjunction of atoms of the
form z#c, wherez € 2, c€ Z, # € {<,<,=,>,>}.

A timed automaton is a quadruple (S, so, E, I, £2). S is a finite set of control
states, so € S being the initial one. E is a finite set of arcs, where an arc
(s,a,s’,9,X) from s to &', is annotated with a label a € L, a clock constraint 1,
and a set of clocks X C {2 to reset. I is a function associating with each control
state 5 an invariant. The semantics of a TA is a LTS G = (@, Q% —), where:
Q={(s,v)|s€SvelL}; Q"= {{s0,v) |vEI,};and ~C @x(EUR4)xQ
is defined by the following rules : :

v,(v+t)el,, teRy

(s,v)—f»(s,v-%t)
e=(s,a,s,0,X)EE, veyp, v =0[X:=0]
{s,v) > {s',0")

For ¢ = (s, v}, ¢[X := 0] denotes (s, v[X := 0]), and ¢ + ¢ stands for (s,v +).

1. (time passage)

2. (action)

3.2 Tai-bisimulation

Given G = (Q, Q°, —) we define G4 = (Q,Q°, =14i) by abstracting away the
exact amount of time elapsed in a time transition. This is done by replacing all
labels ¢ € RY by the label ¢ ¢ (E UTR™) as follows:

e I t 7
q—=q q—q
9= 9= ¢

The tai-bisimulation,? denoted =4, is the greatest bisimulation defined on Gy,
that is, G mq; G' iff Gygi & Gr/taz".

It can be easily shown that =%, is coarser than the region graph equiva-
lence [AD94] which induces a finite partition. Thus, we can state the following.

Proposition1. The partition induced by the tai-bisimulation is finite.

4 Minimization with respect to the tai-bisimulation

The set of valuations Z satisfying a clock constraint is a simple convex polyhe-
dron, called a convez zome. A (non-convez) zone is a union of convex zones. The
class of zones is closed under complementation and set difference, whereas the
class of convex zones is not. We write (s, Z), for the class {(s,v) | v € Z}, and
say that (s, Z) is convex if Z is a convex zone. A partition II is convex iff all
its classes are convex. Finally, we say that [I satisfies the enabledness condition
iff for each class (s,Z) € II and each arc ¢ = (s,a,¢',%,X) € E, it holds:
Z Ny € {Z,0}. From now on, we only consider initial partitions respecting
convexity and enabledness.

2 The name comes from time-abstracting, action-immediate.

236
4.1 Refinement

There are two types of preconditions, corresponding to time and action transi-
tions of the timed model. For ¢ € E we define:

precis, 2,46, 2p 2 {20V ES 00)

Proposition2. 1. ¢ € pre.(B,C) iff g€ BA3g' € C.q =i ¢
2. If B,C are convez, then pre.(B,C) is also convez.

The time precondition is nonempty only for pairs of classes having the same
control-state component, since the latter does not change with time transitions:

pre.({(s, Z), (s, Z")) def

(s,{veZ|TeRe.(v+1)€Z AVO<t <t. (v+t)eZUZ'})

Proposition3. 1. Ifq € pre.(B,C), then g € BA(3¢' € C, ¢ =144i ¢')-
2. If B, C are convez, then pre.(B, () is also convez.

Note that the inverse of case 1 above does not hold, contrary to proposition 2. For
example, if B = (s,{z < 1}), C = (s,{z > 2}), then (5,2 = 0) =4 (5, = 3},
but pre.(B,C) = 0. Indeed, pre.(B, C) is nonempty only if B can lead to C' by
letting time pass while the system continuously stays in BUC during the passage
from B to C. Nevertheless, no information is lost regarding time stability in the
sense of tai-bisimulation, as the following lemma shows. {See also section 4.2 for
more.)

Lemmad. Let B, C be two classes of a partition IT such that ¢ =14; ¢' for some
q € B, ¢ € C. Then, there ezist classes B = Do, D1, ..., Dy, = C in II such that

g € prec(Do, pre(Dy, -prec(Dm-1, Dm)..).

In the previous example, we have Dy = B, Dy = C, and Dy = {s,{1 < & < 2}).

The definition of Sueesi;(B) for | € E is identical to the one given in sec-
tion 2.1. Care must be taken in the case | = ¢, where we remove the (trivial)
time successor of every class, that is, the class itself. The definition of Reft(B),
for I € E U {¢}, is identical to the one given in section 2.3.

It remains to prove that coverness and disjointness are preserved during the
refinement of B. This is true if the partition is complete, i.e.,Vs € S, I, = true.
In section 4.3 we discuss the alternatives in the case this condition does not hold.

Proposition5. Let [T be a complete partition, and B € II. Also let RefL(B)
be the set {B1,...,Bm}. Then, Vi # j. B;NB; =8, and |JB; = B.

237

4.2 The minimal model

In this section we make explicit the relation between Gy,,,, the quotient graph
W.r.t. Xqi, and Gpmin, the actual model computed by the MMGA adapted as
above. Although not identical to Gmin, Gx,,, can be easily computed from the
former by a simple saturation of its e-transitions.

Formally, let Gryy; = (Treass Tress =tai), and Gmin = (I, 7,=>). Let =
be the reflexive, transitive closure of =.

Proposition6. IT = IIx,,,, ™ = 7x,,;, and for all B,C € II, (1) B =, C iff
B=C,and (2) B=,,; Ciff BS"C.

In other words, the partitions of the two graphs are identical, as well as their
action transitions, while =;,; is the reflexive, transitive closure of =.

4.3 Correctness in the presence of strict control-state invariants

If I, C IR then the timed model does not contain states (s,v) such that v €
IR\ Z;. In this case coverness is not ensured, as shows the example of figure 1(a),
where B U C) is the invariant, I = {B,C\}, and Succsy;(B) is {C1}. Then,
Ref§;(B) = {Bi1}, which does not cover B. There are several ways to solve this
problem:

A ' A :
* P | P 1
i 1
—_— e —_— == 1 ===
i 2 | ! B2 A1 !
] A | I i
B :Cl 4 :Cl B :Cl : P2 /4 :Cl : P2
1 Bl i I 1 Bl ' 1
- P | P i P
> o 3 2= =
Split(B, {B,C1}) = {B1} Split(B, {B, C1, P\, P,}) = {B1, B2}
By = pre.(B,C1) By = pre.(B,C1)
B, =B\ B; B, = pre.(B, P1)
(a) (b)

Fig. 1. Incomplete refinement {a) ; Adding pseudo-classes to a partial partition (b)

1. A class (s, Z) is called a border one, if v € Z,t € Ry. (v+1t) € T, and
Vi’ <t, (v+t) € (ZUI). In figure 1(a), B is a border class, while B;
is not. Assume that a border class B is refined w.r.t. {Cy,...,Cp}, which
yields {Bi, ..., B;} (I < m, since some B; may be empty). Let B’ = B\{J B;,

238

which is not- convex in general. If B # @, we take an arbitrary (but mini-
mal in number) partition of B’ into convex classes {Bj, ..., B}, and define
Split(B, II) = {By, ..., By, By, ..., B} This solution makes complementation
inevitable. What is more, the number of times where complementation will
be employed cannot be determined a priori. Indeed, it is always the case
that after splitting a border class, at least one of its subclasses is border.
The latter may in turn become accessible, be split, and so on.

2. A second solution is to start with a complete initial partition respecting
the invariants: V(s,Z) € IIy. Zn 1, € {Z,0}. A class (s,Z) is called a
pseudo-class if Z N I, = 0, otherwise it is normal. Pseudo-classes are never
split (it suffices to make sure that they are never inserted into the set a of
accessible classes). Normal classes can be split w.r.t. pseudo-classes. If all
successors of a normal class B are pseudo-classes, then B need not be split.
Figure 1(b) shows how the situation of figure 1(a) changes after applying this
solution. Py, P, are pseudo-classes, and we now have Sucesyy(B) = {C1, P1},
and Ref§(B) = {Bi, Bo}, which covers B. On the other hand, C does not
have to be split, since Sucesi;(C) = {P1, P2}, that is, all its successors are
pseudo-classes.

5 Applications

We have implemented the algorithm and applied it to generate the minimal
models for a number of case studies. Further, we have used the tool ALDE-
BARAN to compare the constructed minimal models against labeled transition
systems modeling untimed requirements. The main idea consists in considering
e-transitions to be 7-transitions, that is, non-observable or silent ones. Other
labels can also be hidden (i.e. replaced by 7) according to the property o be
verified. The resulting transition system is then reduced or compared to another
model. In particular, we have used the r*a-bisimulation equivalence, denoted
Rireq, as well as the r*a-simulation preorder [FM91]3.

Due to space limitations, here we illustrate this methodology in detail for
only one application, namely the Philips audio control protocol [BPV94]. Ex-
perimental results obtained for other well-known examples {e.g. CSMA-CD and
FDDI [DOTY95] and Tick-Tock [DOY94] communication protocols) are shown
in table 1. The T A column presents the size of the input TA. The M column
displays the size of the minimal model, while Ct,; is the total number of classes
created (including classes which were finally found non-accessible). The “split-
tings” column presents the total number of Split operations, the effective time
ones (¢ subcolumn) and the effective action ones (e subcolumn). N is the number
of processes, stations, etc, depending on the protocol. We have used a Sparc 10
with 128 Mbytes of main memory.

 Recall that a simulation preorder is a relation satisfying only (1), in the definition
of bisimulation given in section 2.

239

Example |[N| TA M Ciot splittings time
states|arcs(states| trans total € e|(secs)

CSMA-CD| 2 9| 21 26 52 62(112} 18] 15| 04
3 26| 90} 340 1,055{ -559| 1,264] 1507 173| 3.8

4 72| 312]3,828|16,066| 4,855|13,592{1,070(1,797| 90.9

FDDI 3 19 25| 525 933| 1,873j 3,202 377| 637 8.5

4 25| 33|1,606| 2,859| 7,760{10,980{1,341|2,264] 57.4

5 31] 41(4,621| 8,801;26,900(32,385(3,87816,755] 315

Tick-Tock | 1 24| 64 78| 121 202| 223 31} 15 1
2 721240| 585! 976] 1,663| 1,658 243| 163| 8.7

Table 1. Minimization results of various examples

5.1 Philips audio-control protocol

The protocol deals with the transmission of a bit stream through a wire, using a
Manchester encoding. The receiver can only detect low-to-high voltage changes,
which imposes that a bit stream either has an odd length or ends with two 0-bits
(all streams start by “1”). Also, the protocol permits a small drift in the clock
rates of the sender and the receiver. This is modeled in [DY95] using multirate
TA, a subclass of hybrid automata which can be transformed into TA [OSY94].
Here, we follow directly the TA model obtained after the transformation, us-
ing the automata Sender, Receiver, and Stream(the last one models correct bit
streams), which are omitted here (see [DY95] for a full description).

model TA M Ciot| splittings time

states|arcs(states|trans. total] | ej(secs)
TA; 146} 351 50 61| 815; 289114| 36| 0.9
TA; t 283| 40211,557|1,326|445|151| 2.3
TA; 77| 207 51 62| 674 300(126} 39 1
TA2 t 62 86| 672| 312|126| 39| 1.1

Table 2. Philips protocol : minimization results

The main correctness property we want to prove is that the stream received
is identical to the one sent. In fact, this can be done only if we make sure that
the sender does not start transmitting (action IN) a new stream before the last
one has been completely received (action OUT), that is, no two consecutive
IN actions take place without on intermediate OUT. In order to ensure this
property, we have two options :

240
Heady Add,

N Head1 Addl
C ouT

S
oUT Addg

Head1 Addm

Fig.2. Good

1. Either to compose the system with the following automaton (called In-
Out) which prevents the above bad behaviors : Ol_——;—LUT—’O . Let T A,

be Sender||Receiver||Stream||InOut.

2. Or to modify Sender by adding a clock which controls the delay between the
end of a transmission and the beginning of the next one. This delay should
be greater than the time elapsed between the last bit sent by the sender and
the action OUT of the receiver. Let T' A3 be Sender’||Receiver||Stream.

For each T A; 7 = 1,2, we obtain two minimal models, one for a correct case
(where the maximum drift is o) and one for an erroneous case (max. drift:).
Table 2 shows performance results. (The erroneous cases are marked with 1.)

Then, we model the correctness requirement by the LTS Good, shown in
figure 2 %. Let M; be the minimal model of T'4; for 1 = 1, 2. As expected, in the
correct case, we find that M; C,+, Good. This does not hold in the erroneous
case, and as a diagnostic, we find sequences where the receiver terminates before
the sender does.

However, Good I+, M;, since Good also models bit streams that not satisfy
the requirement imposed by Stream. In order to explain this further, consider
the LTS depicted in figure 3 obtained by reducing the correct M; w.r.t. the
7*a-bisimulation 3. This is almost the automaton modeling correct bit streams,
except that it contains an additional state 5, grouping all states of the timed
model where the sender has sent a “0”, but still has bits to transmit. Therefore,
the receiver does not have time to perform QUT, since it will first see the next
bit transmission taking place. Although trivial, this example shows that often
the actual behavior of the system is not exactly the one expected.

* Head; (Add;) means that bit i is sent (resp. received).
® The reduction of the correct M gives exactly the same LTS.

Heady Heads

Fig. 3. Minimization with respect to =+,

6 Related work

6.1 The ta-bisimulation

In [LY93] another time-abstracting bisimulation has been studied. Given G =
(@, Q% —), we define Giz = (@, Q°, =14), as follows:

9—q" =q =4
40 ¢ 4= d

The ta-bisimulation, denoted =z, is the greatest bisimulation defined on G,
that is, G & G' iff G = G- ,

G1q i1s more abstract than Gy, in the sense that =;4; C =4,4. Since greater
abstractions yield weaker bisimulations [FM91], a4; is stronger than =4. In
fact, we shall prove a stronger property. Let Gq = (IIn,,;, Tr,0i; =d), Where

B, Cif3D.B 5,@ D =14 C}, and let &4 denote the greatest bisimulation
on Gg°b.

Proposition7. G = G' iff Grai =a Gy

This result, combined with the one of proposition 6, shows how the ta-minimal
model can be computed in two steps: first, one computes the model Gyy;,, using
our adapted algorithm, next, Gp;n is further minimized w.r.t. 4.

6.2 Other algorithms

In [ACD*92a] the generic minimization algorithms of [BFH*92] and [LY92], re-
ferred to as MAI and MAII respectively, have been adapted for timed systems.
Table 3 shows the results obtained with our algorithm and compares its run-
ning times (x) to the ones reported in [ACD*92a] for two well known examples,
namely the Train-Gate Controller (TGC) and the Fischer’s Mutual Exclusion
protocol (FMX). The authors of [ACD*92a] used a DEC-5100 with 40 Mbytes

® This is essentially the delay-bisimulation[FM91].

242

of main memory. It should be mentioned that our algorithm also required much
less memory that the others. L denotes nontermination due to memory shortage,
and “—” is used for cases that do not appear in [ACD+92a.

Let us note that the idea of avoiding set complementation has been suggested
in [YL93]. However, thé algorithm presented there is an adaptation of [LY92],
whereas our algorithm is based on the [BFH*92] one.

Example|N TA M Crot splittings time (secs)

states| arcs|states| trans total € el *IMAIMAII

TGC 24| 69 25 501 125 113 30 17| 0.2 6 12
_'I:— 62 138] 159 201 36 271 0.5 57| 155

FMX (2 24 34 22 26 34 34 2 0 0 1 2
27| 47| 85| 63| 118 7| 13| 0| 3 6

3 1191 213 77 108| 182 133 15 0 0 8] 146

137] 402] 1,117} 708| 1,379} 157| 172 1.5} 893 L

4 54811,164| 252 420 872 493 76 0] 2.1} 496 1L

7] 1,437/17,902[7,850|16,144]1,931|2,022140.4] L[| L

'5_7 3 402|5.850] 807| 1,500(3,887| 1,785 325 0|63 —| —

5t 1 —| —

Table 3. TGC and FMX: minimization results and comparison.

7 Conclusions

We have implemented the algorithm on top of the tool KRoNos [DY95] and have
performed experiments with different options. As a result, we have found that
among the strategies described in section 4.3 concerning the invariant conditions,
the pseudo-classes solution gave in general the worst performances. One the
other hand, it turned out that giving priority to splitting w.r.t. timed instead of
untimed transitions does not make an important difference. Qur implementation
includes these options, as well as other ones, that allow, for instance, to specify
a set of initial states and/or an initial partition. Experimental results obtained
on several case studies are presented in table 1. Based on these results, we claim
that using a refinement technique which avoids costly complementations leads
to considerable gains in efficiency (both in running times and memory usage)
that make minimization possible for larger systems.

We have used the tool ALDEBARAN to further reduce the model generated
by our algorithm and compare it to a requirement modeled as an untimed tran-
sition system. The requirement does not specify quantitative timing constraints,
however its verification strongly depends on the timing conditions embedded in
the timed automaton which are indeed preserved by the tai-bisimulation. As we

243

have found out by the examples, the real behavior of a system is often more com-
plex than expected. Discovering unexpected behaviors helps to gain insight of a
system, often revealing intrinsic design problems, and at the same time offering
diagnostic traces which are valuable for debugging.

Tt is worth noting that model checking of TCTL formulas on the minimal
model is possible, in the manner of [ACD*92b]. We intend to exploit this possi-
bility as part of our future work. We are also currently studying in more depth
the combinations of time-abstracting bisimulations with untimed bisimulation
and simulation equivalences and preorders.

References

[ACD*92a] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. An
implementation of three algorithms for timing verification based on au-
tomata emptiness. In Proc. IEEE RTS55°92, 1992.

[ACD*92b] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. Mini-
mization of timed transition systems. In Proc. CONCUR 1992. LNCS 630,
1992.

[AD94] R. Alur and D.L. Dill. A theory of tinted automata. Theoretical Computer
Science, 126:183-235, 1994,

[BFH*92] A. Bouajjani, J.C. Fernandez, N. Halbwachs, P. Raymond, and C. Ratel.
Minimal state graph generation. Science of Computer Programming,
18:247-269, 1992.

[BPV94] D. Bosscher, I. Polak and F. Vaandrager. Verification of an audio control
protocol. In Proc. FTRTFT’94, LNCS 863, 1994.

[DOTY95] C. Daws, A. Olivero, S. Tripakis and S. Yovine. The tool KRONOS. Work-
shop on Hybrid Systems and Autonomous Control, DIMACS, 1995. To
appear in LNCS.

[DOY94] C. Daws, A. Olivero and 8. Yovine. Verifying ET-LOTOS programs with
KRONOS. In Proc. FORTE94, 1994.

[DY95] C. Daws and S. Yovine. Two examples of verification of multirate timed
automata with KRONOS. In Proc. IEEE RTS55795, 1995.

[FGM*92] J.CL Fernandez, H.Garavel, L. Mounier, A. Rasse, C. Rodriguez, and
J. Sifakis. A tool box for the verification of LOTOS programs. In 14th
Int. Conf. on Software Engineering, 1992.

[FM91] J.C. Fernandez and L. Mounier. On the fly verification of behavioural
equivalences and preorders. In Proc. CAV’91, LNCS 757, 1991.

[LY92] D. Lee and M. Yannakakis. On-line minimization of transition systems. In
Proc. ACM Symposium on Theory of Computing, 1992.

[LY93] K. G. Larsen and W. Yi. Timed abstracted bisimulation: implicit specifi-
cation and decidability. In Proc. MFPS’93, 1993.

[Mil8o] R. Milner. A Calculus of Communicating Systems, LNCS 92, 1980.

[OSY94] A. Olivero, J. Sifakis, and $. Yovine. Using abstractions for the verification
of linear hybrid systems. In CAV’94, LNCS 818, 1994.

[YL93] M. Yannakakis and D. Lee. An efficient algorithm for minimizing real-time
transition systems. In CAV’93, LNCS 697, 1993.

Verification of an Audio Protocol
with Bus Collision Using UPPAAL*

Johan Bengtsson® W.0.David Griffioen®* Kare J. Kristoffersen*
Kim G. Larsen' Fredrik Larsson? Paul Pettersson® Wang Yi?

! BRICS*, Aalborg University, Denmark. E-mail: {jelling, kgl}@iesd.auc.dk
? Department of Computer Systems, Uppsala University, Sweden.
E-mail: {johanb,fredrikl,paupet,yi}@docs.uu.se
3 CWI, Amsterdam, The Netherlands. E-mail: griffioe@cwi.nl
* Computing Science Institute, University of Nijmegen, The Netherlands.

Abstract. In this paper we apply the tool UrPaaL! to an automatic
analysis of a version of the Philips Audio Control Protocol with two
senders and bus collision handling. This case study is significantly larger
than the real-time/hybrid systems previously analysed by automatic
tools. During the case study the tool UPPAAL was extended with a new
feature, committed locations, allowing efficient modelling of broadcast
communication.

1 Introduction

During the last few years a number of tools for automatic verification of hybrid
and real-time systems have emerged [DY95, HHWT95, BLL*95, HRP94]. These
tools have by now reached a state, where they are mature enough for application
on realistic case—studies; a claim we hope to substantiate in this paper.

We present an application of our tool UPPAAL to an automatic analysis of a
version of the Philips Audio Control Protocol with two senders and the con-
sequently caused problem of bus collision. The case study is comprehensive
compared with previous verification efforts of real-time and hybrid systems,
e.g. the node-space is 10°® times larger than the case with only one sender
[BPV94, HWT95, DY95, LPY95]. Also, the number of clocks, variables and
channels has increased considerably. The bus collision version studied in this
paper has previously been verified in [Gri94] without tool support.

UPPAAL is a tool for automatic verification of safety and bounded liveness
properties of networks of timed automata and certain hybrid automata. UPPAAL

* This work has been supported by the European Communities (under CONCUR2
and REACT), NUTEK (Swedish Board for Technical Development) TFR (Swedish
Technical Research Council) and Netherlands Organization for Scientific Research
(NWO) under contract SION 612-316-125.

! Basic Research in Computer Science, Centre of the Danish National Research
Foundation.

! The current version of UPPAAL is available on the World Wide Web via the UrpaaL
home page http://wwv.docs.uu.se/docs/rtmv/uppaal.

245

contains a number of features including a graphical interface and automatic
generation of diagnostic traces, and applies a combination of on-the-fly state-
space examination together with efficient constraint solving techniques [YPD94,
BLL*95]. '

In modelling the Audio Protocol with bus collision it turned out to be conve-
nient in certain situations to apply broadcast communication. An extension of
UPPAAL with so-called committed locations allows broadcasts to be modelled as
atomic sequences of two-process synchronizations, and yields in addition perfor-
mance improvements.

The verification of Philips Audio Protocol with Bus Collision was carried out
using the extended version of UPPAAL installed on a SGI ONYX machine. As
results we have verified the correctness of the protocol for an error tolerance
of 5% on the timing, demonstrated that correctness fails if the error tolerance
is increased to 6%, and analysed an incorrect version of the protocol which is
actually implemented by Philips.

2 The Committed UPPAAL model

The basis of the UPPAAL model for real-time systems is networks of timed au-
tomata [AD90] with data variables [YPD94]. However, to meet requirements
arising from various case studies, the UPPAAL model has been extended with
various new features such as urgent transitions [BLL*95] etc. The present case
study indicates that we need to further extend the UPPAAL model with com-
mitted locations to model behaviours such as atomic broadcasting in real-time
systems. Our experiences with UPPAAL show that the notion of committed lo-
cations introduced in UPPAAL is not only useful in modelling but also yields
significant improvements in performance.

We assume that a real-time system consists of a fixed number of sequential
processes communicating with each other via channels. We further assume that
each communication synchronizes two processes as in CCS. Broadcasting com-
munication can be implemented in such systems by repeatedly sending the same
message to all the receivers. To ensure atomicity of such ’broadcast’ sequences,
we mark the intermediate locations of the sender as so—called committed loca-
tions which are to be left immediately.

An Example. To introduce the notion of committed locations in timed au-
tomata, consider the scenaric shown in Figure 1: A sender S is to broadcast a
message m to two receivers R; and Ry. As this requires synchronization between
three processes this can not directly be expressed in UPPAAL where synchroniza-
tion, as in CCS, is between two processes based on complementarity of actions.
However, as an initial attempt we may model the broadcast as a sequence of
two two-process synchronizations, where first S synchronizes with R; on m; and
then with Rz on my. However, this is not an accurate modelling as the intended
atomicity of the broadcast is not preserved (i.e. other processes may interfere
during the "broadcast’ sequence). To ensure atomicity, we mark the intermediate
location Sy of the sender S as a so-called committed location (indicated by the

246

] R1 R2

R11

ml?

R12

Fig. 1. Broadcasting Communication and Committed Locations.

c:-prefix). The atomicity of the action sequence m;!ms! is now achieved by insist-
ing that a committed location must be left immediately! This behaviour is quite
similar to what has been called “urgent transitions” [HHWT95, DY95, BLL*95]
which insists that the next transition taken must be an action (and not a delay).
The precise semantics of committed locations will be formalized in the transition
rules for networks of timed automata with data variables in the following.

Preliminaries. We assume a finite set of clock variables C ranged over by z, y, 2
and a finite set of data variables V ranged over by 1, j, k. We use G(C, V') to stand
for the set of formulas ranged over by g, generated by the following syntax:
g = a| gAg, where a is a constraint of the form: € ~n or¢ ~n for z € C,
i € V, ~€ {<,>,=} and n being a natural number. We shall call elements of
G(C,V) guards. To manipulate clock and data variables, we use reset-set of the
form: W := € which is a set of assignment-operations in the form w := e where w
is a clock or data variable and ¢ is an expression. A reset-set is a proper reset-set
when the variables are assinged a value at most once, we use R to denote the set
of all proper reset-sets. A reset-operation on a clock variable should be in the
form z :== n where n is a natural number and a reset-operation on an integer
variable should be in the form: i := ¢ ¢+ ¢' where ¢, ¢’ are integer constants. We
assume that processes synchronize with each other via channels. Let A be a set
of channel names with a subset U of urgent channels on which processes should
synchronize whenever possible. We use A = {a?|a € A} U {al|a € A} U {7} to
denote the set of actions that processes can perform to synchronize with each
other, where is a distinct symbol representing internal actions. We use name(a)
to denote the channel name of a, defined by name(a?) = name(a!) = a.

The Upraar Model with Committed Locations. An auntomaton A over
actions 4, clock variables C and data variables V is a tuple (N, Iy, E, N¢) where
N is a finite set of locations (control-locations) with a subset No € N being the
set of committed locations, Iy is the initial location, and £ C N x G(C,V) x A x
R x N corresponds to the set of edges. To model urgency, we require that the
guard of an edge with an urgent action should always be tt, i.e. if name(a) &€ U
and {I,g,a,7,0') € E then g = t.

247

In the case, (I, g,a,r,1') € E we shall write, I 225 I which represents a transi-
tion from the location [to the location I' with guard g (also called the enabling
condition of the edge), action a to be performed and a set of reset-operations r
to update the variables. Also, we shall write €(I) whenever [€ Ng.

To model networks of processes, we introduce a CCS-like parallel composition
operator for automata. Assume that A;...A,, are automata. We use Z to denote
their parallel composition. The intuitive meaning of 4 is similar to the CCS
parallel composition of A;...A, with all actions being restricted, that is, A =
(A1]-..]An)\A. Thus only synchronization between the components 4, is p0551ble
We shall call A a network of automata. We simply view A as a vector and use
A; to denote its ith component.

Informally, a process modelled by an automaton starts at location lg with all
its variables initialized to 0. The values of the clocks increase synchronously with
time at location [. At any time, the process can change location by following an
edge I 225 I' provided the current values of the variables satisfy the enabling
condition g. With this transition, the variables are updated by r.

A variable assignment 1s a mapping which maps clock variables C to the non-
negative reals and data variables V to integers. For a variable assignment v and a
delay d, v&®d denotes the variable assignment such that (v ®d)(z) = v(z) +d for
any clock variable z and (v®d)(¢) = v(2) for any integer variable i. This definition
of @ reflects that all clocks operate with the same speed and that data variables
are time-insensitive. For a reset-operation r (a set of assignment-operations), we
use r(v) to denote the variable assignment v’ with v'(w) = val(e,v) whenever
w:=e € r and v'(w') = v(w') otherwise, where val(e,v) denotes the value of e
in v. Given a guard g € G(C, V) and a variable assignment v, g(v) is a boolean
value describing whether g is satisfied by v or not.

A control vector [of a network A is a vector of locations where [; is a location
of A;. We shall write I[I}/1;] to denote the vector where the ith element I; of I is
replaced by ;.

A state of a network A is a configuration (I, v) where [is a control vector of A
and v is a variable assignment. The initial state of 4 is (Zo,vo) where 1 is the
initial control vector whose elements are the initial locations of A;’s and Vg 18
the initial variable assignment that maps all variables to 0.

To model progress properties, we use the following notion of maximal delay:

0 if C(1)

MD l = a,r
() {max{d | 12251 and g(v @ d)} otherwise

So if I is a committed location, there will be no delay at I. We extend the notion

of maximal delay to networks of automata such that synchronization on urgent

channels happens immediately:

MD(l,v) = { 0 30 € Uyi# gl €1: 1 ™5 &1, 25
min{MD(l,v) | l € I} otherwise

The semantics of a network of automata A is given in terms of a transition

248

system with the set of states being the set of configurations and the transition
relation defined as follows:

— {1, v)~(I[I!/1;],7:(v)) if there exist l; € 1,g;,7; such that I; ‘225 I;, gi(v),
and for all k if C(l;) then &k = :.

- (I,U)M(I[lg/li,l;-/lj],(1‘,- U 7;)(v)) if there exist 1;,; € I,g;,9;,0,7; and T
such that § # j,1; 24 1}, 1; 250
EifC(ly) thenk=ior k= j.

— ({I,v)~{l,v @ d) if d < MD(],v)

, gi{v), g; (v}, r; U7r; € R and for all

Thus, if a state (], v) contains a committed location no delays can take place.
Moreover, any component with committed location must participate in the next
(action-) transition.

3 The Committed UpPAaAL Implementation

In the following, we present the notion of committed locations in terms of
the UrPPAAL model and its implementation in UPPAAL. In the current version
[BLL*95], UPPAAL is able to check for invariance properties, YO8, and reacha-
bility properties, 3¢, with respect to constraints, 5, on the admissible locations
of the various components and the values of the clock and data variables.

The model-checking is performed using backwards reachability analysis to-
gether with an efficient constraint-solving technique. Also, UPPAAL adopts on-
the-fly generation of the state space in order to avoid explicit construction of
the product automaton and the immediately caused memory problems.

The model-checking is based on a partitioning of the (otherwise infinite) state-
space into finitely many symbolic states of the form [I,U], where U is a simple
constraint system (i.e. a conjunction of atomic clock and data constraints 2). The
backwards reachability algorithm checks if a symbolic state [I7, Uy] is reachable
from the initial state [70, Us], where Uy expresses that all clocks and data variables
are initialized to 0.

The algorithm essentially performs a backwards, breadth-first search of the
symbolic states. The search is guided and pruned by two buffers: Wait, holding
the symbolic states waiting to be explored and Passed holding the symbolic states
under exploration and already explored. Initially Passed is empty and Wait holds
the single symbolic state {17, Us]. The algorithm then repeats the following:

1. Pick a state [m, U’] from the Wait buffer.

2. Check if 7 = Iy and Uy C U’. If this is the case, return the answer yes.

3. f m =% and U’ C U", for some [@,U"] in the Passed buffer, drop [, U’]
and go to step 1. Otherwise save [77, U'] in the Passed buffer.

4. Find all symbolic states [6, Z] that lead to [, U'] in one step and store them
in the Wait buffer.

5. If the Wait buffer is not empty go to step 1, otherwise return the answer no.

2 Simple constraint systems are also know under the term zone.

249

We will not treat the algorithm in more detail here, but refer the reader to
to [YPD94, BL96).

Despite its on-the-fly examination of the symbolic state space the above algo-
rithm is bound to run into space problems for sufficiently large systems witnessed
by an explosion in the size of the Passed buffer, which is used to record the states
already visited in order to enable pruning of redundant examinations (in 3) and
eventually ensure termination. The key question is how to limit the growth of
this buffer? When using committed locations to ensure atomicity of finite transi-
tion sequences of one component {as in modelling broadcast) it obviously suffices
to save the symbolic state at the beginning of the sequence. Hence, our proposed
solution is simply not to save symbolic states in the Passed buffer which involves
committed locations. We therefore modify step 3 of the algorithm in the following
way:

3. a. If committed(T) go directly to step 4.
b. If m =nand U’ C U", for some [, U"] in the Passed buffer, drop [, U’
and go to step 1.
c. If neither of the above steps are applicable, save [, U’] in the Passed
buffer.

4 The Audio Control Protocol with Bus Collision

In this section an informal introduction to the audio protocol with bus collision
is given. The audio control protocol is a bus protocol, all messages are received
by all components on the bus. If a component receives a message not addressed
to it, the message is just ignored. Philips allows up to 10 components.

Messages are transmitted using Manchester encoding. Time is divided into
bit-slots of equal length, a bit “1” is transmitted by an up-going edge halfway
a bit-slot, a bit “0” by a down-going edge halfway a bit-slot. If the same bit is
transmitted twice in a row the voltage changes at the end of the first bit-slot.
Note that only a single wire is used to connect the components, no extra clock
wire is needed. This is one of the properties that makes it a nice (read cheap)
protocol.

The protocol has to cope with some problems: (a) The sender and the receiver
must agree on the beginning of the first bit-slot, (b) the length of the message is
not known in advance by the receiver, (c) the down-going edges are not detected
by the receiver. To resolve these problems the following is required: Messages
must start with a bit “1” and messages must end with a down-going edge. This
ensures that the voltage on the wire is low between messages. Furthermore the
senders must respect a ’radio silence’ between the end of a message and the
beginning of the next one. This radio silence marks the end of a message and
the receiver knows that the next up-going edge is the first edge of a new message.
It is (almost) possible to decode a Manchester encoded message by only looking
to the up-going messages (problem c) only the last zero bit of a message can not
be detected (consider messages “10” and “1”). To resolve this it is required that
all messages are of odd length.

250

It is possible that two or more components start transmitting at the same
time. The behavior of the electric circuit is such that the voltage on the wire
will be high as long as one of the senders pulls it high. In other words: The
wire implements the or-function. This makes it possible for a sender to notice
that someone else is also transmitting. If the wire is high while it is transmitting
a low, a sender can detect a bus collision. This collision detection happens at
certain points in time. Just before each up-going tramsition, and at one and
three quarters of a bit-slot after a down going edge (if it is still transmitting a
low). When a sender detects a collision it will stop transmitting and will try to
retransmit its message later,

If two messages are transmitted at the same time and one is a prefix of the
other, the receiver will not notice the prefix message. To ensure collision detection
it 1s not allowed that a message is a prefix of an other message in transit. In the
Philips environment this restriction is met by embedding the source address in
each message (and assigning each component a unique source address).

In Figure 2 an example is depicted. Two senders start transmitting at exactly
the same time. Because two lines on top of each other is hard to distinguish from
one line, they are shifted slightly. The thick sender starts transmitting “11...”
and the other “101...". At the end of the first bit-slot the thick sender does a
down, to prepare for the next up-going edge. But one quarter after this down
it detects a collision and stops transmitting. The thin sender did not notice the
other and continues transmitting. Note that the receiver will decode the message

of the thin sender correctly.

3 |

!

Fig. 2. an example

The protocol has to cope with one more thing: timing uncertainty. Because
perfect clocks do not exist in the physical world and because the protocol is
implemented on a processor that also has to execute a number of other time
critical tasks, a quite large timing uncertainty is allowed. A bit-slot is 888 mi-
croseconds, so the ideal time between two edges is 888 or 444 microseconds. On
the generation of edges a timing uncertainty of £5% is allowed. That is: between
844 and 932 for one bit-slot and between 422 and 466 for half a bit-slot. The
collision detection just before an up-going edge and the actual generation of this
up-going edge must be at most 20 microseconds. The timing uncertainty on the
collision detection on one and three quarters after the generation of a down-going
edge is 22 microseconds. Alsoc the receiver has a timing uncertainty of £5%.
And, to complete the timing information, the distance between the end of one

251

Message

WN
WN

U
] {(Volt,w)

AINc, expectl, expectl, Cacoll, (as)

{od, Bed, 1b, bs)

Bheadl
Bempty

Fig. 3. Philips Audio-Control Protocol with Bus Collision.

message and the beginning of the next must be at least 8000 microseconds (8
milliseconds).

5 A Formal Model of the Protocol

To analyze the behavior of the protocol we model the system as a network of
six timed automata. The network consists of two parts: a core part and a testing
environment. The core part models the components of the protocol to be imple-
mented: two senders, a wire and a receiver. The testing environment, consisting
of a message generator and an output checker, is used to model assumptions
about the environment of the protocol and for testing the behavior of the core
part. Figure 3 shows a flow-graph of the network where nodes represent timed
automata and edges represent synchronization channels or shared variables (en-
closed within parenthesis).

The general idea of the specification is as follows. The automaton Message
generates messages for both senders, and also informs the Check automaton on
the bits it generated for SenderA. The senders transmit the messages via the wire
to the receiver. The receiver communicates the bits it decoded to the checker.
Thus the Check automaton is able to compare the bits generated by Message
and the bits received by Receiver. If this matches the protocol is correct.

The senders A and B are, modulo renaming (all A’s in identifiers to B’s),
exactly the same. Because of this symmetry, it is enough to check that the
messages transmitted by sender A are received correctly. We will proceed with
a short description of each automaton. The definition of these uses a number of
constants that are declared in Figure 4.

The Senders. SenderA is depicted in Figure 5. It takes input actions Ahead0?,
Ahead1? and Aempty?. The output actions UP! and DOWN! will be the Manch-
ester encoding of the message. The clock Ax is used to measure the time between

252

UP! and DOWN! actions. The idea behind the specification (taken from [DY95])
is that the sender changes location each half of a bit-slot. The locations HS
(wire is high in second half of bit-slot) and HF (high in first half of bit-slot)
refer to this idea. Extra locations are needed because of the collision detection.

The clock Ad is used to measure the time elapsed between the detection just be-
fore UP! action and the corresponding UP! action. Furthermore the time elapsed
since the last DOWN! action is measured. The system is in the locations ar_Qfirst
and ar_Qlast when the next thing to do is the collision test at one or three quar-
ters of a bit-slot. When Volt is greater than zero, at that moment, the sender
detects a collision, stops transmitting and returns to the idle location. The clock
w is used to ensure the 'radio silence’ between messages. This variable is checked
on the transition from idle to ar_first_up.

The Wire. This small automaton keeps track of the voltage on the wire and
generates VUP! actions when appropriate, that is when a UP? action is received
when the voltage is low.

The Receiver. Receiver (Figure 6) decodes the bit sequence using the up-going
(modeled as VUP?) changes of the wire. Decoded bits are signaled to the environ-
ment using output actions Add0!, Add1! and OUT! (OUT! is used for signaling
the end of a decoded message). The decoding algorithm of the receiver is a direct
translation of the algorithm in the Philips documentation of the protocol. In the
automaton each VUP? transition is followed by a iransition modeling the decod-
ing. This decoding happens ’at once’ therefore these intermediate locations are
modeled as committed locations. The automaton has two important locations,
L1 and LO. When the last received bit is a bit “1” the receiver is in location L1,
after receiving a bit “0” it will be in location LO. The error location is entered
when a VUP? is received much to early. In the complete specification the error
location is not reachable, see Section 6. The receiver keeps track of the parity of
the received message using the integer variable odd. When the last received bit
is a bit “1” and the message is even, a bit “0” is added to make the complete
message of odd length.

The Message Generator. The message generator generates messages of odd
length for both sender A and B. Furthermore, the messages generated for sender A,
are communicated to the checker. When a collision is detected by sender A this
is communicated to the message generator via Acoll?. The message generator will
communicate this on his turn to the checker via CAcolll. Generating messages
of odd length is quite simple. The only problem is that it is not allowed that
a message for one sender is a prefix of the message for the other sender. To be
more precise: If only one sender is transmitting there is no prefix restriction.
Only when the two senders start transmitting at the same time, it is not allowed
that one sender transmits a prefix of the message transmitted by the other. As
mentioned before the reason for this restriction is that the prefix message is not
received by the receiver and it is possible that the senders do not notice the
collision. In other words: The prefix message can be lost.

The Checker. This automaton keeps track of the bits ’in transit’, that is the

253

bits that are generated by the message generator but not yet decoded by the
receiver. Whenever a bit is decoded or the end of the message is detected not
conform the generated message the checker enters an error location. Furthermore
when sender A detects a collision the checker returns to its initial location.

6 Verification in UPPAAL

In this section we verify correctness of the protocol described in previous sections.
Recall, that the system is modelled as a network of the six timed automata:
Message SenderA, SenderB, Wire, Receiver and Check, and that properties are
specified as logical formulas.

The Correctness Criteria. The correct behaviour of the protocol is ensured
whenever the control of the automaton Check is in location a or start. If an
incorrect behaviour is detected the Check-automaton enters the error-location,
consequently property (1) requires that the Check-automaton is always in loca-
tion start or a:

VO (Check.start vV Check.a) (1)

For the property to be satisfied it is required that the bit sequence received by
the Receiver matches the bit sequence sent by SenderA. Furthermore, it is also
required that the entire bit sequence is received by Receiver (and communicated
to the Check-automaton). This is ensured since the error-location of the Check-
automaton is reachable if the end of a bit sequence is signalled by Receiver (i.e.
OUT!) when unmatched bits exists in the Check-automaton.

If the Receiver-automaton observes changes of the wire too early in location
L1 or LO control is changed to location error. It is imaginable that error recovery
can be implemented from this location. However, if the other components of the
protocol conform to the specification this location should not be reachable, thus
property (2) requires that the error-location in Receiver is never reachable.

Y- Receiver.error (2)

Incorrectness. Unfortunately the protocol described in this paper is not the
protocol that Philips has implemented. The original sender checked less often
for bus collisions. The ’just before the up going edge’ collision detection was
only performed before the first up. (In our modelling this corresponds to modi-
fying SenderA and SenderB in the following way: delete the outgoing transitions
of location ar_Qlast_ok and use the outgoing transitions of location ar_up._ok in-
stead.) This version is incorrect. In general the problem is that if both senders
are transmitting and one is slow and the other fast, the distance can cumulate
to a high value and this can confuse the receiver. UPPAAL generated a counter
example trace.

Although this problem was known by Philips is it interesting to see how pow-
erful the diagnostic traces can be. It enables us not only to find mistakes in the
model of a protocol, but also to find design mistakes in real life protocols.

254

The Verification Results. UpPaAL successfully verifies the correctness prop-
erties (1) and (2) for an error tolerance of 5% on the timing. Recall that SenderA
and SenderB are, modulo renaming, exactly the same, implying that the verified
properties for SenderA also applies to the symmetric case for SenderB. Prop-
erty (1) was verified in 7.5 hrs using 527.4 MB of memory, property (2) in 1.32
hrs using 227.9 MB of memory.

The analysis of the incorrect version of the protocol with less collision detection
(discussed above) uses UPPAAL’s ability to generate diagnostic traces whenever
a certain property is not satisfied by the system. The trace, consisting of 46
transitions, was generated in 13.0 min using 290.4 MB of memory. Also, attempts
to verify Property (1) for the full protocol with an error tolerance of 6% on
the timing failed. The scenario is similar to the one found by Bosscher et al.
in [BPV94] for the one sender protocol.

The properties (above) were verified using the verification algorithm for han-
dling committed locations, described in Section 3, implemented in a new proto-
type version of UPPAAL, installed on a SGI ONYX.

7 Conclusion

In this paper it is shown to be possible to verify properties of a realistic case
study using UPPAAL. The tool is able to verify the correctness properties of
the Philips Audio Protocol, that is: the receiver only receives messages that are
transmitted. Furthermore the ability of UPPAAL to generate diagnostic traces
proved very useful. When writing formal specifications (some) humans tend to
make mistakes. These mistakes are much easier to locate using a tool that can
generate scenarios. This in contrast with using a tool that only provides Yes/No
answers to queries.

We proposed the use of committed locations in UPPAAL specifications. Using
these provides a significant efficiéncy improvement. Furthermore the memory
consumption decreases when using committed locations.

Even more important than the efficiency improvement is that committed loca-
tlons sometimes allow a more natural specification. If a system does a broadcast
or multi-way synchronization, this can be modelled much nicer using committed
locations. Without committed locations it is not possible in UPPAAL to prohibit
other components to perform actions during the broadcast. With committed
locations these multi communications can be modelled as a single atomic action.

Another option to model broadcast synchronization is to use another synchro-
nization mechanism than handshake as used in UPPAAL. We prefer the use of
committed locations because it is easier to embed in the model and easier to im-
plement. We also think that committed locations and handshake synchronization
provide a flexible and expressive model for specifying protocols.

References

[AD90] R. Alur and D. Dill. Automata for Modelling Real-Time Systems. In Proc.
of ICALP’90, LNCS 443, 1990.

[BL96]

[BLL'*95]

[BPV94]

[DY95]

[Gri94]

255

Johan Bengtsson and Fredrik Larsson. UppAAL a Tool for Automatic Ver-
ification of Real-time Systems. Master’s thesis, Uppsala University, 1996.

Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. UprpaAL— a Tool Suite for Automatic Verification of Real-
Time Systems. In Proc. of the 4th DIMACS Workshop on Verification and
Control of Hybrid Systems, 1995. To appear in LNCS, 1996.

D.J.B. Bosscher, I. Polak, and F.W. Vaandrager. Verification of an Audio-
Control Protocol. In Proc. of FTRTFT’94, LNCS 863, pages 170-192,
1994.

C. Daws and S. Yovine. Two examples of verification of multirate timed
automata with KronOs. In Proc. of the 16th IEEE Real-Time Systems
Symposium, pages 66-75, December 1995.

W.0.D. Griffioen. Analysis of an Audio Control Protocol with Bus Col-
lision. Master’s thesis, University of Amsterdam, Programming Research
Group, 1994.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTECH: The

[HRP94]

[HWT95]

[LPY95]

[YPD94]

Next Generation. In Proc. of the 16th IEEE Real-Time Systems Sympo-
sium, pages 56-65, December 1995.

N. Halbwachs, P. Raymond, and Y.-E. Proy. Verification of linear hybrid
systems by means of convex approximations. In Static Analysis Symposium,
LNCS 864, pages 223-237, 1994.

Pei-Hsin Ho and Howard Wong-Toi. Automated Analysis of an Audio
Control Protocol. In Proc. of CAV’95, LNCS 939, 1995.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnostic Model-Checking
for Real-Time Systems. In Proc. of the 4th DIMACS Workshop on Verifi-
cation and Control of Hybrid Systems, 1995. To appear in LNCS, 1996.
Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification of
Real-Time Communicating Systems By Constraint-Solving. In Proc. of the
7th International Conference on Formal Description Techniques, 1994.

q

d

g

2220

200

220

80000

0.05

h tant d i
The consoa::es ?.:ﬂ;el: :?eaﬂ:)rix;\lxj:s The constants in the automata| |The constants continued
592 n?icro o W w 80000 Q2max|2%q*(1+t)|4662
1 %* %k
Detection ’just before’ the D . d 200 Q3min S*q*(l-t) 6327
UP: 20 micro sec Almin |q-g 2000 Q3max|3*q*(1-+1){6993
'Around’ 25% and 75% of Alm.ax q+g 2440 Q5min [5%q*(1-t) {10545
- |the bitslot: 22 micro sec A2min |3*q-g 6440 Q5max|5*q*(1+1)|11655
The radio silence: 8 milli A2max |3*g+g 6880 QT7min [T*q*(1-t) |14763
o : Q2 2%q 4440 Q7max|7*q*(1+t)|16317
. . 2minD|2*q*(1-t)-d|4018 Q9min (9%q*(1-t) {18981
The t tainty: | | 320 a
5%e 1Ing unCertanty: | Qomin |o*q*(1-t) |4218 Q9max|9*q*(1+t)|20979

Flg 4. Declaration of Constants.

256

senderA
cready
Q=
DOWN !
Ax>=Q2min
ar_first_up_ ok pxke=02max
Aneanis hat_up. ok
Anext:=1
Ax:=0
Ax>=02minD
%x;:quax
Ad <= D =gami Epari i
s Bpogani 32 Jpsganin
Volt3=1 Ax<=p2
Adollt]
9 ar_Qlast_ok o
Bd <= D
Volt>=1
Acoll!
Ax== Ahead0?
pom. ar_Qlast AasEgsO
O ve (Veis
do_down
Aheadl?
Anexti=1
Ad:=
Ad>=Aimin
Ad<=Almax
Volt==0

Ad>=A2min, AdﬁAZmax

Volt>=1, Acoll! ar_Qfirst_ok

Rd>=Almin, Ad<=Almax
Volt>=1, Acoll!

Aempty?

Fig. 5. The SenderA Automaton.

receiver
VUR?
odd:=0
idle .
w>=ggm1n
Addl! w<=0Q5max
@ odd:=-odd+1 vup?
ouT!

w>=09min, w<=Q9max
it e W

min, w<=Q9max

w>=05min
w<=Q7max

Adao!
vup? |

w>=Q5min
w<=0Tmax
VUP?

w>=Q7min, w<=Q7max
Addgl 2

Fig. 6. The Receiver Automaton.

Selective Quantitative Analysis and Interval Model
Checking: Verifying Different Facets of a System*

Sérgioc Campos' and Orna Grumberg?

! Camegie Mellon University School of Computer Science, Pittsburgh, PA 15213, USA.
2 The Technion Department of Computer Science, Haifa 32000, Israel.

Abstract. In this work we propose a verification methodology consisting of se-
lective quantitative timing analysis and interval model checking. Our methods can
aid not only in determining if a system works correctly, but also in understand-
ing how well the system works. The selective quantitative algorithms compute
minimum and maximum delays over a selected subset of system executions. A
linear-time temporal logic (ITL) formula is used to select either infinite paths or
finite intervals over which the computation is performed. We show how tableaux
for LTL formulas can be used for selecting either paths or intervals and also for
model checking formulas interpreted over paths or intervals.

To demonstrate the usefulness of our methods we have verified a complex and
realistic distributed real-time system: Our tool has been able to analyze the system
and to compute the response time of the various components. Moreover, we have
been able to identify inefficiencies that caused the response time to increase
significantly (about 50%). After changing the design we not only verified that the
response time was lower, but were also able to determine the causes for the poor
performance of the original model using interval model checking.

1 Introduction

This work presents a verification methodology that can provide both quantitative and
qualitative analysis of systems. The analysis can aid not only in determining system
correctness, but also in understanding how well the system works. The method consists
of selective quantitative timing analysis and interval model checking and is based on
two concepts: quantitative timing analysis, and tableaux for linear-time temporal logic.

In [8] we have shown how quantitative symbolic algorithms can be used to analyze
the behavior of a system. Our method computes minimum and maximum delays between
the occurrence of two events, as well as the number of times a specified condition
occurs in such an interval. The timing correctness of a system can be evaluated by
this method. Reaction time to important events can be computed as well as analyzing
how the system behaves during the interval between event and response. In general,
performance parameters can be analyzed using this technique.

* This research was sponsored in part by the National Science Foundation under grant no.
CCR-8722633, by the Semiconductor Research Corporation under contract 92-DJ-294, and
by The Defense Advanced Research Projects Agency, Information Science and Technology
Office, under the title “Research on Parallel Computing”, ARPA Order No. 7330, issued by
DARPA/CMO under Contract MDA972-90-C-0035.

258

Typically, the quantitative analysis investigates all intervals between a set of initial
states start and a set of final states final. In many cases, however, it is desirable to restrict
the consideration to only execution paths that satisfy a certain condition. This can help in
understanding how the system reacts to different conditions. For example, one common
technique for achieving good performance is to optimize a design for the most common
cases, while maintaining correctness for the uncommon ones. The designer can optimize
response time by restricting system behavior to the most frequent cases. Correctness
can then be checked by removing the restrictions.

In this work we use a formula of the linear-time temporal logic LTL to specify a set
of paths selected to be verified. Quantitative analysis is then applied only to those paths
along which the formula holds. We also extend the technique for cases in which a more
precise analysis is needed, by requiring that the selecting formula be true exactly on the
investigated interval and not just anywhere on the path.

To strengthen our verification methodology, we combine selective quantitative anal-
ysis with model checking. Traditionally, LTL model checking procedures [11, 19, 27]
accept a structure that models the system, a set of initial states, and an LTL formula. The
procedures determine whether the formula holds on all infinite paths of the structure
starting on some initial state. In this work we extend the construction of [11] also for
interval model checking, that is, checking a formula with respect to finite intervals.

Main Characteristics: Both interval model checking and selective quantitative
analysis can be used to extract information related to specific “parts” of a system without
changing the model. Similar information sometimes can be obtained by restricting the
model to disable uninteresting behaviors, or by marking the interesting ones using
observer modules. However, these techniques frequently modify system behavior, and
consequently properties are checked on a model different than the original one, possibly
hiding important errors, or introducing false ones.

Moreover, the fact that properties are verified over finite intervals, allows very
different types of properties to be expressed. It is possible to check for “traditional”
properties such as safety and liveness, but also to investigate system behavior in more
detail. In the real-world not all possible execution sequences are equally interesting.
Nor are all possible time intervals within a path. Understanding how the system reacts
in different situations allows for a detailed analysis that can aid not only in determining
if the system works, but also in understanding how wel! the system works.

Related Methods: There are several other approaches to the verification of timed
systems. For example, dense time is modeled by [1, 2, 17, 23, 28]. Those methods
model time very accurately. However, the state space of dense time models is infinite,
and these tools rely on the construction of a finite quotient structure called region graph.
This construction is extremely expensive, limiting the size of problems that can be
handled. Dense time models seem to be better suited for smaller problems in which time
accuracy must be very high. On the other hand, models such as the one proposed are
well suited to model large complex systems in which the accuracy can be easily handled
by choosing an appropriate time quantum, as can be seen by the example in this paper.

Discrete time is used by other tools such as [16, 29]. These tools, however, do not
allow the quantitative analysis of systems as the proposed method. In [14] quantitative

259

analysis is implemented, but with a more limited scope. Dense time models allowing
restricted quantitative analysis can be found in {17, 28].

Linear-time temporal logics interpreted over both infinite paths and finite intervals
have been introduced in [20, 21]. However, they use tableau only for satisfiability and
do not handle either quantitative analysis or interval model checking. Interval logics are
also used in [25], but in a theorem proving context.

More important when comparing these methods, however, is the fact that these tools
do not allow a selective verification of properties as the proposed method. They provide
no natural way in which a subset of behaviors can be analyzed in isolation, not allowing
as rich an analysis as the proposed method. The closest method to our selection of paths
or intervals is the use of fairness constraints in model checking [13, 15, 22]. However,
there a fairly restricted types of properties were used for selection, while we can handle
any LTL formula. Moreover, only infinite paths can be selected in these works.

A Distributed Real-Time System: To demonstrate the usefulness of our method,
we have applied it to a distributed real-time system of realistic complexity, derived from
the example described in [26]. Real-time systems are used in many critical applications
such as aircraft control or medical monitoring systems. Because of the consequences of
failures in such systems, determining their correctness is a vital task.

Several features of this example make it an interesting target for our techniques. It
is a system of realistic complexity, its components are existing systems and protocols
executing a mixture of multimedia, traditional real-time and non-real time tasks. Also,
the distributed nature of the system makes the interaction among its various components
much richer. This also makes its analysis more difficult.

Our tools have been able to analyze the system and verify that the deadlines are
met by the design. Moreover, we have been able to identify inefficiencies that caused
the response time to increase significantly (about 50%). After changing the design we
not only verified that the response time was lower, but were also able to determine the
causes for the poor performance of the original model using interval model checking.

2 A tableau for LTL

Our specification language is a linear-time temporal logic called LTL [24]. The logic is
used for two different purposes. One is to specify a property of the system that needs to
be verified. The other is to specify a set of selected paths that will be verified. In both
cases we use a tableau [19, 27, 11] for the formula.

We first give the syntax of LTL. Given a set of atomic propositions AP, LTL is
defined inductively as follows. Every atomic proposition is an LTL formula. If f and ¢
are LTL formulas then —f, f V g, X f and f U g are also LTL formulas.

The semantics of LTL is defined with respect to a labeled state transition graph
called Kripke Structure. A Kripke structure M = (S, R, L) has a finite set of states S,
a transition relation B C S x S, and a labeling function L : S — P(AP), associating
with each state the set of atomic propositions true in that state.

An infinite sequence so, s1, ... of states in S is a path in the structure M from a
state s iff s = so and for every j > 0, (s;,s;4+1) € R. A finite sequence [so, . . ., 5]

260

is an interval in a structure M from a state s iff s = sp and for every 0 < j < n,
(55,85+1) € R. An interval may be a prefix of either a finite or an infinite path. Thus,
sp Iay or may not have successors in M. The size of interval o = [so, . . ., s,], denoted
|o],is n. o7 is defined iff 0 < § < n and it denotes the suffix of o, starting at 55.

For a formula f, a path , and an interval o, M, 7 [=pq, f means that f holds
along path 7 in the Kripke structure M. M, ¢ |=;n¢ f means that f holds along interval
o in M. Given a set of initial states Sy, we say that M, Sp =paen f iff for every path =
from every state in So, M, 7 =pasn f. Given two sets of states start and final, we say
that M, [start, final] =, f iff for every interval o from some state in start to some
state in final, M, o [=in: f. In this work whenever we refer to a path (an interval) that
satisfies a formula, satisfaction is with respect t0 [=path (F=ing). The relation |=pazp is
the standard satisfaction relation for LTL (see, for example, {11]). The relation k=;,;
is identical to f=pqn for atomic propositions and boolean connectives. For temporal
operators it is defined by (M is omitted if clear from the context):

4ok Xy < lo|>0ando! i g1 .
5.0kt g1 Ugpne Fk0<Ek<nAc* i 2 AVI0 < j <k = o Eine g1]]-

When writing LTL formulas, we use the abbreviations F f = true U fand G f =
-~ F —f. Note that, in the definition of [sg, . ..s,]I= f we do not consider successors
of s, (whether exist or not). This definition is meant to capture the notion of an
interval satisfying a formula independently of its suffix (satisfaction is always defined
independently of the prefix).

Let f be an LTL formula. We construct a Kripke structure T'(f), called the tableau
for f, that contains all paths and intervals satisfying f. To identify paths in the tableau
that satisfy f we will use fairness constraints. A fairness constraint for a structure M
can be an arbitrary set of states in A/, usually described by a formula of the logic. A
path in M is said to be fair with respect to a set of fairness constraints if each constraint
holds infinitely often along the path.

Let APy be the set of atomic propositionsin f. T(f) = (57, Rr, Lr) has AP; as
its set of atomic propositions. The set of tableau states is Sy = P (el(f)), where el(f)
is the set of elementary formulas defined by:

~el(p) = {p}ifp € AP; ~el(g VvV h) = el(g) Uel(h)
—el(~g) = el(g) —el(g Uh) = {X(g U h)} Uel(g) Uel(h)
-el(Xg) = {X g} Uel(g)

Let sat{f) be the set of states in the tableau that should satisfy f. It is defined by:

-sat(g) = {s|g€slg€el(f) -sai(~g)={s|s ¢ sat(g)}
- sat(g V h) = sat(g) U sat(h)
- sat(g U h) = sat(h) U (sat(g) N sat(X(g U h)))

The transition relation Ry is Rr(s,s') = AxXgea(s) (s € sat(X g) © & € sat(yg)).
Finally, the labeling function, L1 (s) = s N AP and the set of fairness constraints for
f. Fair(f) = {sat(~(g U k) V R} | g U h occurs in f}.

The constructed tableau 7'(f) includes every path and every interval which satisfies
f. The following theorem characterizes those paths and intervals.

261

Theorem 2.1 For every path m in T(f), if 7 starts from a state s € sat(f) and 7 is
fair for Fair(f) then T(f), © Fpasa f. Moreover, For every interval o = [to, . .., t,]
inT(f), ifto € sat(f) andt, € P{AP;) thenT(f), 0 =int f.

In the algorithms presented later we will use the product P = (Sp, Rp, Lp) of
T(f) = (Sr, Rr, L7) with the verified structure M = (Spr, Rar, Lar). We restrict the
atomic propositions of f, APy to be a subset of AP:

- Sp = {(S,t) | s € Sy,t €Sy and LM(S) ﬂAPf = LT(t)}.
- Rp((s,t),(s',t")) iff Rpr(s,s') and Rp(t,t').
- LP((S,t)) = LT(S).

3 CTL Model Checking

CTL [4, 12] is a branching-time temporal logic that is similar to LTL except that each
temporal operator is preceded by a path quantifier — either E standing for “there exists
a path” or A standing for “for all paths”. CTL is interpreted over a state in a Kripke
structure. The path quantifiers are interpreted over the infinite paths starting at that state.

CTL model checking is the problem of finding the set of states in a Kripke structure
where a given CTL formula is true. One approach for solving this problem is symbolic
model checking using a representation called binary decision diagram (BDD) [5] for
the transition relation of the structure. This representation is often very concise. We
use the SMV model checking system [22] that takes a CTL formula f, and the BDD
that represents the transition relation. SMV computes exactly those states of the system
that satisfy the formula f. SMV can also handle model checking of a CTL formula
with respect to a structure with fairness constraints. The path quantifiers in the CTL
formula are then restricted to fair paths. The CTL model checking under given fairness
constraints can also be performed using BDDs.

4 Quantitative Timing Analysis

Several methods have been proposed to verify timed systems, as has been discussed in
the introduction. Typically, verifiers assume that timing constraints are given explicitly
in some notation like temporal logic and determine if the system satisfies the constraint.
In [8] we have described how to verify timing properties using algorithms that explicitly
compute timing information as opposed to simply checking a formula. This section
briefly describes that approach, which is later used in this work.

A Kripke structure is the model of the system in our method. Currently the system
is specified in the SMV language [22]. The structure is represented symbolically using
BDDs. It is then traversed using algorithms based on symbolic model checking tech-
niques [6]. All computations are performed on states reachable from a predefined set of
initial states. We also assume that the transition relation is total.

We consider first the algorithm that computes the minimum delay -between two
given events (figure 1). Let start and final be two nonempty sets of states, often given as
formulas in the logic. The minimum algorithm returns the length of (i.e. number of edges

262

in) a shortest interval from a state in start to a state in final. If no such interval exists, the
algorithm returns infinity. The function T'(S) gives the set of states that are successors of
some state in S. The function 7', the state sets 7 and ’, and the operations of intersection
and'union can all be easily implemented using BDDs [6, 22]. The minimum algorithm
is relatively straightforward. Intuitively, the loop in the algorithm computes the set of
states that are reachable from start. If at any point, we encounter a state satisfying final,
we return the number of steps taken to reach that state.

proc minimum (start, final) proc maximum (start, final, not_final)
i=0; if (start N (final U no final) = 0)
R =start; then return oo,
R'=T(RYUR, i =0,
while (R’ £ R A RN final = 0) do R =TRUE;
i=1i+1; R' =not final;
R=R'; while (R’ # R A R’ N start # §) do
R =T(RYUR, =i+ 1;
if (R N final # 0) R=R;
then return i; R' = T7YR'Y N not final;
else return oo; if(R=R)
then return oc;

else refurn i;
Fig. 1. Minimum and Maximum Delay Algorithms

The second algorithm returns the length of a longest interval from a state in start
to a state in final. If there exists an infinite path beginning in a state in szart that never
reaches a state in final, the algorithm returns infinity. The function 7-'(S) gives the set
of states that are predecessors of some state in S. not_final represents the states that do
not satisfy final (except in the interval selective case, see below).

The initial conditional is only used when computing properties over intervals. As
will be seen later, in this case not_final correspond to states not in final, but which
eventually lead to final. Therefore, if no starting state is in final, or leads to final, the
algorithm returns infinity.

Informally, the algorithm computes at stage 7 the set R’ of all states at the beginning
of an interval of size ¢, all contained in not_final, The algorithm stops in one of two
cases. Either R’ does not contain states from start at stage i. Since it contained states
from start at stage ¢ — 1, the size of the longest interval in not_final from a state in start
is 7 — 1. Since the transition relation is total, this interval has a continuation to a state
outside not.final, i.e. to a state in firal. Thus, there is an interval of length ¢ from start
to final and the algorithm returns 4. In the other case, a fixpoint is reached meaning that
there is an infinite path within not_final from a state in start. The algorithm in this case
returns infinity. Both minimum and maximum algorithms are proven correct in [8].

5 The Proposed Method

5.1 Selective Quantitative Analysis — Over Paths

Given two sets of states start and final in M and an LTL formula f, we compute the
lengths of a shortest interval and a longest interval from a state in start to a state in

263

final along paths from start that satisfy f. The formula f is interpreted over infinite
paths and is used to select the paths over which the computation is performed. The
minimum and maximum algorithms with path selection are:

1. Construct the tableau for f, T'(f).

2. Construct the product P of T(f) and M.

3. Use the model checking system: SMV on P to identify the set of states fair in P,
where a state (s,t) € Sp (s € M, t € T(f)) is in fair iff ¢ is the beginning of a
path which is fair with respect to Fair(f).

4. Construct P’, the restriction of P to the state set fair. P’ = (Sp, Rp, L'p) is defined
by: Sp = fair, Rp = Rp N (Sp x Sp) and for every s € fair, L'p(s) = Lp(s).

5. Apply minimum(st, fn) and maximum(st, fn,not_fn) to P’, with st = (start x
sat(f)) N fair, fn = (final x S7) N fair, and not.fn = fair — fn.

The algorithms work correctly because P contains all paths of M that are also paths
of T(f) (proof in the full paper). P’ is restricted to the fair paths of 7'(f). Thus, every
pathin P’ from (start x sat(f))N S’ satisfies f. Consequently, applying the algorithms
to P’ from (start x sat(f)) N Sp to (final x Sp) N S, over states in fair gives the
desired results.

As mentioned before, in order to work corréctly, the algorithm maximum must
work on a structure with a total transition relation. The transition relation of P is not
necessarily total. However, the transition relation of P’ is total since every state in fair
is the beginning of some infinite (fair) path.

We have applied the method in the analysis of the PCI Local Bus [10], where it has
been used to limit the number of transaction aborts being considered.

5.2 Selective Quantitative Analysis — Over Intervals

Given two sets of states start and final and an LTL formula f, we compute the lengths
of a shortest and a longest intervals from a state in start to a state in final such that f
holds along the interval. Here the formula f is interpreted over intervals and we consider
only the intervals between start and final that satisfy f. We will use a special formula
prop to identify the set of tableau states that contain only atomic propositions.

prop = {s € Sp|s € P(AP;)}.

The formula prop is a set of states in 7'(f). We extend prop to prop,, which is the
corresponding set of states in P. The formula final,, is the similar extension of final:
- prop, = {(s,t) € Sp | s € Spm,1 € prop}

~ final, = {(s,t) € Sp | s € final,t € S}

We will also use a CTL formula C to identify the set of states over which the maximum
algorithm is computed.

C = = final, A E[~final, U (prop, A EF final,)].

States in C lead to states that are endpoints of intervals satisfying f (states-in prop,, see
theorem 2.1), and then lead to states in final, . The requirement that final, does not
hold until prop, is needed because an interval ending in final, without going through
propp does not satisfy f.

264

The minimum and maximum algorithms with interval selection are:

1. Construct the tableau for f, T'(f).

2. .Construct the product P of T'(f) and M.

3. Use the model checking system SMV on P to identify the set of states that satisfy
the CTL formula C.

4. Let st = (start x sat(f)) N Sp andlet fn = (final x prop) N Sp. The algorithms
minimum(st, fn) and maximum(st, fn,C) when applied to P will return the length
of the shortest and longest intervals, respectively, between start and final that
satisfy f.

The correctness of the algorithm relies on the fact that P contains all intervals that are
both in T'(f) and M. Moreover, intervals of T'(f) from sat(f) to prop satisfy f. Thus,
the algorithms compute shortest and longest lengths over intervals from start to final
that satisfy f. The proof can be found in the full paper.

When the maximum algorithm is computed over the set not.final of states not in
final, it is necessary to require that the transition relation of the structure is total in
order to guarantee that the computed intervals terminate at a state in final. Here the
maximum algorithm is computed over the set of states satisfying the formula C. This
guarantees that the computed intervals terminate at final without the need to require that
the transition relation is total.

5.3 Interval Model Checking

Given a structure M and two set of states start and final, we say that an interval
o = [s0,. .., 8,] from a state in start to a state in final is pureiff forall 0 <¢ < n, s;
is neither in start norin final. ~

Given a structure M, two sets of states start and final, and an LTL formula f, the
interval model checking is the problem of checking whether the formula f, interpreted
over intervals, is true of all pure inteivals between start and final in M.

Interval model checking is useful in verifying periodic behavior of a system. A
typical example is a behavior occurs in a transaction on a bus. If we want to verify that
a certain sequence of events, described by an LTL formula f, occurs in a transaction
we can define start to be the event that starts the transaction and final to be the event
that terminates the transaction. Interval model checking will verify that f holds on all
intervals between start and final. v

Let M, start, final, and f be as above. The algorithm given below determines the
interval model checking problem using the algorithm minimum of figure 1.

1. Construct the tableau for —f, T'(— f).

2. Compute the product P of T'(~f} and M.

3. Apply the algorithm minimum(st, fn) to P with st = (start x sat(-=f)) NSp and
fn = (final x prop) N Sp.

4. If the minimum is oo then there is no pure interval from start to final that satisfies
~f. Thus, every such interval satisfies f. If minimum returns some value k, then the
interval found by minimum can serve as a counterexample to the checked property.

265

6 A Distributed Real-Time System

In this section we analyze a distributed real-time system using the techniques presented
in this paper. This is a complex and realistic application, its components are existing
systems and protocols that are actually used in many real situations. The example
consists of three main components, a FDDI network, a multiprocessor connected to this
network and one of the processors in the multiprocessor, the control processor [26].

Sensors Audio Video
FDDI network

|
\J

network Tracking

interface processor

($ Futurebus ’
¥
Sensor Control
processor processor

Fig. 2. System Architecture

The FDDI network is a 100Mb/s local/metropolitan area network that uses a token
ring topology [3]. There are several stations connected to the network in the system,
They generate multimedia and sensor data sent to the control processor, as well as
additional traffic inside the network. The traffic in the network has been modeled as
proposed in [26]. At every 16 time units the stations utilize the network as follows:
video station, 6 units; audio station, 1 unit; and remainder network traffic, § units.

In the multiprocessor, four active processors are connected through a Future-
bus+ [18]. The first is the network interface, it receives data from the network and
sends it to the control processor. The network interface uses the bus for 7ms at each
time. A sensor processor reads data from sensors every 40ms. It buffers this data and
sends it once every four readings to the tracking processor. The tracking processor pro-
cesses this data and sends it to the control processor. Both sensor and tracking data use
the bus for 3ms each. The deadline for sensor data to be processed is 785ms. Access
to the bus is granted using priority scheduling. Priorities are assigned according to the
rule: processors with shorter periods have higher priority.

In the control processor there are several periodic tasks. The timing requirements
for these tasks can be seen in figure 3. Priority scheduling is also used in the control
processor, using the same priority assignment rule. Two tasks in the control processor
have special functions, 73 processes sensor data, and 75 processes multimedia data.

Each of the components of the system (FDDI, network and control processor) has
been implemented separately. No data is actually exchanged between the components in
the model. Data has been abstracted out of the model, because data dependencies would

266

Process T 72| T T4l T
Period 100150 [160 | 300] 100
Exec.time| 5| 78] 30| 10 3

Fig. 3. Timing requirements for tasks in the countrol processor (times in ms)

significantly increase the size of the model and the complexity of verification. However,
while simplifying verification, abstractions can also introduce invalid execution se-
quences. The constraints imposed by data dependencies significantly reduce the number
of reachable execution sequences. In an abstract model such dependencies do not exist.
We have used selective quantitative analysis to ensure that only execution sequences
that are valid (and all such sequences) have been considered during verification.

Using this model we have checked the deadline between a sensor reading in
the sensor processor and the processing of this data by 73 in the control processor.
This deadline 1s 785ms. Ideally, we would like to compute these time bounds using
MIN{MAX} [sensor-observation, t3.finish].However, sinceinourmodel
there is no synchronization between tasks, this would consider intervals in which 3
finishes executing just after sensor, without going through track. To identify the
valid intervals in the model, we must consider only intervals that satisfy the constraint:

F(sensor.finish & F(track.start & F(track.finish & F t3.start)))

This formula guarantees that the correct ordering of events is maintained during verifi-
cation. We have computed the time between sensor observation and 73 processing to be
in the interval [197, 563], well within the deadline. However, by looking into the design
we noticed a potential source for inefficiencies in the Futurebus. Using standard model
checking techniques we then printed a counterexample for the longest response time. It
confirmed our speculations.

In this system both sensor and tracking processors access the bus periodically,
sending data every 160ms. In the counterexample, however, data required two periods
of 160ms to reach the control processor. It was sent by the sensor processor to the
tracking processor, but this processor would only send it to the control processor in
the next period. Further investigation of the model showed that this was caused by the
priority order in which processors accessed the bus. The tracking processor had a higher
priority than the sensor processor. This means that when the sensor processor sends data
to the tracking processor, it had already used the bus for this period, and would only
request access again in 160ms. We modified the design by changing the priorities, and
the response time became [37, 403], an improvement of almost 50%.

We have been also able to compare the performance of both designs using interval
model checking. We have analyzed the behavior of the system between the time the
sensor produces data until the time the tracking processor processes it. Bus utilization
is inefficient in this interval if the bus is idle or a lower priority process is executing.

Using interval model checking we have been able to check the LTL formula
G ! {bus.idle | bus.granted = lower.priority) ontheintervals between
sensor finishing sending data and tracking sending its data to the control processor. The
original design showed the existence of priority inversion, as expected. In the modified
design, on the other hand, the formula above is true in all intervals under considera-
tion. Notice that the formula is clearly false outside these intervals. This shows that the
modified design is optimal with respect to the prioritized utilization of the bus.

267

The modified design has a better response time, and is clearly preferred in this
application. But in other applications this might not be true. There might be cases,
for example, in which the tracking processor sends data to the sensor processor. In
those cases the modified design is worse than the original one. This again shows how
selective quantitative analysis and interval model checking can be used to analyze the
different facets of a system. The designer can choose to optimize the behavior of a
critical application, even if at the expense of a less critical one.

7 Conclusion

In this paper we have described a method that can produce both quantitative and qual-
itative information about the behavior of a system. Quantitative analysis and model
checking can be performed on state-transition graphs representing the system to be ver-
ified. Moreover, the user can specify a subset of execution sequences satisfying a given
property using an LTL formula, and verification is performed only on those paths (or in-
tervals) that satisfy that property. The results produced can be used not only to determine
the correctness of the system, but also to analyze (and optimize) its performance.

We have used this method to analyze a real-time distributed system. This example
shows how the proposed method can assist in understanding the behavior of complex
systems. We have been able not only to check properties of the whole system, but also to
analyze specific execution sequences of interest. This allowed us to uncover subtleties
about the application that might have been very difficult to discover otherwise. We
believe that this method can be of great use in analyzing and understanding other
complex systems, as it has been in analyzing this one.

Acknowledgment

The authors would like to thank Edmund Clarke for the original idea of combining LTL
model checking and quantitative analysis.

References

1. R. Alur, C. Courcourbetis, and D. Dill. Model-checking for real-time systems. In Sympo-
sium on Logic in Computer Science, pages 414—425, 1990.

2. R. AlurandD. Dill. Automata for modeling real-time systems. In Lecture Notes in Computer
Science, 17th ICALP. Springer-Verlag, 1990.

3. ANSI Std. FDDI Token Ring Media Access Control, $3t95/83-16 edition, 1986.

4. M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. Acta Infor-
matica, 20:207-226, 1983. '

5. R. E.Bryant. Graph-based algorithms for boolean function manipulation. [EEE Transactions
on Computers,C-35(8), 1986.

6. I. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model
checking: 107 states and beyond. In Symposium on Logic in Computer Science, 1990. -

7. S. Campos, E. Clarke, W. Marrero, and M. Minea. Verus: a tool for quantitative analysis
of finite-state real-time systems. In ACM Workshop on Languages Compilers and Tools for
Real-Time Systems, 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

268

. S. Campos, E. Clarke, W. Marrero, M. Minea, and H. Hiraishi. Computing quantitative

characteristics of finite-state real-time systems. In Real-Time Systems Symposium, 1994,

. S. V. Campos, E. M. Clarke, W. Marrero, and M. Minea. Timing analysis of industrial real-

time systems. In Workshop on Industrial-strength Formal specification Techniques, 1995.
S.Campos, E. Clarke, W. Marrero, and M. Minea. Verifying the performance of the pci local
bus using symbolic techniques. In International Conference on Computer Design, 1995.

E. Clarke, O. Grumberg, and H. Hamaguchi. Another look at Itl model checking. In D. Dill,
editor, proceedings of the Sixth Conference on Computer-Aided Verification, Lecture Notes
in Computer Science 818, pages 415-427. Springer-Verlag, 1994.

E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching
time temporal logic. In Logic of Programs: Workshop, Yorktown Heights, NY, May 1981.
Springer-Verlag, 1981. Lecture Notes in Computer Science, volume 131.

E. M. Clarke, E. A. Emerson, and A, P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244--263, 1986.

P. C. Clements, C. L. Heitmeyer, B. G. Labaw, and A. T. Rose. MT: a toolset for specifying
and analyzing real-time systems. In JEEE Real-Time Systems Symposium, 1993.

E.A. Emerson and Chin Laung Lei. Modalities for model checking: Branching time strikes
back. Twelfth Symposium on Principles of Programming Languages, January 1985.

A. N. Fredette and R. Cleaveland. RTSL: a language for real-time schedulability analysis.
In IEEE Real-Time Systems Symposium, 1993,

T. A. Henzinger, P. H. Ho, and H. Wong-Toi. HyTech: the next generation. In IEEE Real-
Time Systems Symposium, 1995.

TEEE Standard Board and American National Standards Institute. Standard Backplane Bus
Specificationfor Multiprocessor Architectures: Futurebus+, ansi/ieee std 896.1 edition, 1990.
0. Lichtenstein and A, Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. In Proc. 1 2" Conference on Principle of Programming languages, 1985,
O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Proc. Conf. Logics of
Programs, Lecture Notes in Computer Science 193, pages 196-218. Springer-Verlag, 1985,
Z. Manna and A. Pnueli. The anchored version of the temporal framework. In Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency, Lecture Notes in
Computer Science 354, pages 201-284. Springer-Verlag, 1989.

K. L. McMillan. Symbolic model checking — an approach to the state explosion problem.
PhD thesis, SCS, Camegie Mellon University, 1992.

X. Nicollin, J. Sifakis, and S. Yovine. From atp to timed graphs and hybrid systems. In
Lecture Notes in Computer Science, Real-Time: Theory in Practice. Springer-Verlag, 1992,
A. Pnueli. The temporal semantics of concurrent programs. In Proceedings of the eighteenth
conference on Foundation of Computer Science, 1977.

Y. Ramakrishna, P. Melliar-Smith, L. Moser, L. Dillon, and G. Kutty. Really visual temporal
reasoning. In IEEE Real-Time Systems Symposium, 1993,

L. Sha, R. Rajkumar, and S. Sathaye. Generalized rate-monotonic scheduling theory: a
framework for déveloping real-time systems. In Proceedings of the IEEE, Jan 1994.

M. Vardi and P. Wolper. An automata-theoretic approach to agtomatic program verification.
In Proceedings of the First Symposium on Logic in Computer Science, 1986.

F. Wang. Timing behavior analysis for real-time systems. In Proceedings of the Tenth
Symposium on Logic in Computer Science, 1995.

J. Yang, A. Mok, and F. Wang. Symbolic modelchecking for event-driven real-time systems.
In IEEE Real-Time Systems Symposium, 1993.

Verifying Continuous Time Markov Chains

Adnan Aziz Kumud Sanwal Vigyan Singhal Robert Brayton
ECE Bell Labs CBL EECS
UT Austin AT&T Cadence UC Berkeley

Abstract. We present a logical formalism for expressing properties of
continuous time Markov chains. The semantics for such properties arise
as a natural extension of previous work on discrete time Markov chains
to continuous time. The major result is that the verification problem
is decidable; this is shown using results in algebraic and transcendental
number theory.

Introduction

Recent work on formal verification has addressed systems with stochastic dy-
namics. Certain models for discrete time Markov chains have been investigated
in [6, 3]. However, a large class of stochastic systems operate in continuous time.
In a generalized decision and control framework, continuous time Markov chains
form a useful extension [9]. In this paper we propose a logic for specifying prop-
erties of such systems, and describe a decision procedure for the model checking
problem. Our result differs from past work in this area [2] in that quantitative
bounds on the probability of events can be expressed in the logic.

1 Continuous Markov Chains

We will consider models of the form M = (S, A, A,), where S = {s1,52,...,5,}
is a finite set of states, A is the transition rate matriz, A is a finite set of outputs,
and @ : S — A is the output function. A path through M is a map from IR*to S

(here IR+ denotes the set of non-negative reals); SIR+ is the set of all paths.
The transition rate matrix A is an [S| x | S | matrix. The off diagonal
entries are non-negative rationals; the diagonal element aj;; is constrained to be
—(Xigs 24)-
At state s;, the probability of making a transition to state s; (where k # j) in
time dt is given by a; dt. This is the basis for formulating a stochastic differential
equation for the evolution of the probability distribution whose solution is

D(t) = e’“ . Dg

Here Dy is a column vector of dimension | S|, with the constraint that Y_,[Do]; = 1.
Technically, with any state s in M we associate a natural probability space

Py = (U*,C%, p*), where the set of all paths starting at s is the universe U,

and the Borel sigma field on U? gives the associated space of events C?, i.e.

270

the class of subsets of U® to which probabilities can be assigned. The transition
rate matrix 4 yields the probability measure p* : €* — [0,1]; by the measure
extension theorem [10], p* is well defined. Given a set 8 of functions from IRtto
A, we will abuse notation and refer to the probability of 3 when we mean the
probability of the set of all state sequences starting at s which map under & to
elements in G.

We will not dwell on the technicalities of measure theory; all the sets of paths
defined later in this paper will be readily seen to be events, i.e. elements of C°.

Fig.1. A continuous time Markov chain: § = {s¢, 31, 92, 93 }; only edges with positive
weights are shown.

2 CSL syntax and semantics

Let M = (S, A, A, 0) be a continuous Markov chain. In this section, we develop
formal syntax and semantics for CSL (Continuous Stochastic Logic). This logic
is inspired by the logic CTL [4], and its extensions to discrete time stochastic
systems (pCTL [6]), and continuous time non-stochastic systems (tCTL [1]).

There are two types of formulae in CSL: state formulae (which are true or
false in a specific state), and path formulae (which are true or false along a
specific path). A state formula is given by the following syntax:

l.aforac A

2. If f1 and f, are state formula, then so are = f1, fi V fo

3. If g is a path formula, then Pry(g) is a state formula. (cis a rational between
0 and 1 expressed as the ratio of two binary coded integers).

Path formulas are formulas of the form

= filla, 50f2Uag bs] - - - fn, Where fi, fo, ... fn are state formulas,and a3, b1, .. .,
@n-1,bn-1 are non-negative rationals expressed as the ratio of two binary
coded integers.

CSL is the set of state formulae that are generated by the above rules.

Let f be a state formula, and g be a path formula. We now define the satis-
faction relation (l=pr) using induction on the length of the formula. For a state
formula f we use [f],, to denote the set of states satisfying f.

271

f is of the form a: s |=pr f iff 8(s) = a.

f is of the form (=f1): s s fiff s pr f.

fis of the form (f1 V fa): s Em fiff s Eapr f1oor s = fo.

f is of the form Pry.(g): s =y fiff p*({r € sR* | mEmg}) > e

. g is a path formula of the form f1Ua, 5,1f2Ulaz 6] - " foi 7 =ar g iff there ex-
istty,...,t,—1 such that (VZ) [(a,- <t < b,) A (Vt/ € [ti_l,t)) (F(-t) € ﬂfz}]M)]
(where ¢_; is defined to be 0 for convenience).

G =

Ezample 1. The formula ¢ = Pry0.03(alo.0,4.018) 1s a state formula for the ex-
ample in figure 1. It formally expresses that with probability greater that 0.03,
the system will remain in a state where the output is a before making a transition
before 4.0 seconds have elapsed to a state where the output is b.

The probability of the set of paths starting at sq on which the output is «
before becoming & before time #; is given by the following integral:

t1 pti—m
/ [et T (4 1) - (13 13 4 7)) -y
0 0

Setting ¢; equal to 4.0, and taking the rates r; = 1.0,7 = 2.0,73 = 3.0, and r4 =
3.0, this simplifies to (1/45) — (e~ 12/18) 4 (e~2°/30). Observe that e~12/18 >
€~%°/30; hence the probability is bounded above by (1/45) which is less than
0.03, and so ¢ is false at sq.

3 CSL model checking

The CSL model checking problem is as follows: given a continuous Markov chain
M, a state s in the chain, and a CSL formula f, does s =3¢ f7 In this section
we establish that the model checking problem for CSL is decidable.

Theorem 1. CSL model checking is decidable.

Proof. The non-trivial step in model checking is to model check formula of the
form Pry.(g). In order to do this we need to be able to effectively reason about

the measure of the set {r € sR* | m(0) = so A 7 |=Epr g} under poo.

First, we review some elementary algebra. An algebraic compler number is
any complex number which is the root of a polynomial with rational coefficients.
Properties of the algebraic numbers are derived in [8]; of particular interest to
us is the fact that they constitute a field, and that the real and imaginary parts
of an algebraic number are also algebraic.

We will denote the set of complex numbers which are of the form Ej n;e’i
where the 7; and §; are algebraic by E 4. This set is a ring, and is referred to as
the transcendental extension of A by e [8].

Tarksi [11] proved that the theory of the field of complex numbers (i.e. the
theory of the structure <@, +, x, 0, 1>) was decidable; an effective (in the recur-
sion theoretic sense) procedure for converting formulas to a logically equivalent
quantifier free form was given. Consequences of this result include.the existence

272

of effective procedures for determining the number of distinct roots of a polyno-
mial, and testing the equality of algebraic numbers defined by formulas.

We now demonstrate how to measure the set of paths which start at a desig-
nated state and satisfy a specified path formula. Consider a path formula of the
form ¥oUa, 6,1%1 U ag ba]¥2 - - -

First, consider the case where the time intervals [a;,b1], [ag, bo], ... are non
overlapping.

We define the following matrices.

— a transition matrix Qi ; obtained from A, that treats [¢;]};, as an absorbing
set of states. This is obtained by using
g(d, k) = Aji if J € [y,
=0 if je[uly

this enables us to model the transitions where the Markov chain remains in

[ilas-
— a transition matrix (;—1,; obtained from A, thai treats [¥s_1]3, N [¥il3, as
an absorbing set of states. For this we use

q(4, k) = Ajp if § € [hilp U Ivi-1ly
=0 if je [ls N1l

this allows us to model the transitions from [#;-1],, to [%i],,-
— An indicator matrix I; for [1;],,, such that

L k)=11if j=ke [W;’]]M
=0 otherwise

Hence, the probability of a formula of the form

fr = %oUla, 5791 Utaz %2+ Ula, 621¥n 1)
is given by
pi(f1) =ms - Poolar) - fo - Pop(br—a1) - Iy - Priag —b1) -
- Piabo—as) - I Pacynlbpn—an) - In - 1 (2)

where P, ,(t),t > 0 is the one step transition matrix for time ¢ corresponding
to the rate matrix Qi m, 7, is the starting probability distribution, which in our
case has unity for state s and zeros otherwise, and 1 is the column vector whose
elements are all 1. For a finite state Markov chain with a transition rate matrix
Q, this matrix is given by

P(t) = ¥

Note that Q is composed of rational entries, and the arguments of P;—1;
are rationals (since a;,b; are rational). This observation leads to the following
lemma:

273

Lemma2. Each element of the P, (t) matrices may be expressed as) . n;eli
where 7; and d; are algebraic complex numbers.

Proof. Any square matrix B can always be expressed in Jordan canonical form [7],
i.e. in the form C - J - C~1. Here J is an upper block diagonal matrix as shown
below:

Ji 0 - 0
0J20---90
0 - -Jg---0
0 Jn

The diagonal entries of each J; are the eigenvalues of B, and the remaining
entries of J; are unity, as shown below:

M 10..0
00X 1..0
0 - 0 X

The size of J; is equal to the multiplicity of A;. Since the eigenvalues are the
solutions of the characteristic equation of B and the entries of B are rationals, the
eigenvalues are, by definition, algebraic complex numbers. Similarly, the entries
of C,C~! are also algebraic complex numbers.

The matrix e is equal to C - e’* - C~! and e’¢ is of the following form:

eit g ... 0
0 ezt 0 ... 0
0 -.-el3t...
0 'eJnt

The sub-matrix e’ is of the form

eMtteMit (LZert) L. (tmeet) (my)!
0 Mt geME L (gmimledt) fimy — 1)1
At

By inspection, the elements of ¢”i* are members of E 4. Since E4 is a ring,
it is closed under products and sums. Hence the lemma follows. It also follows
that u°(f1) is a member of E4 i.e. equal to an expression of the form 37, nxe’*
where the 7k, 0 are algebraic. =

274

Consider again the expression for p*(f1) = 37, mke®*. The &x’s are algebraic;
since are effective procedures for checking the equality of algebraic numbers,
#*(f1) can be effectively simplified to an expression of the form ¥, ng/e’s
where the 5;/’s are non zero, and the di/’s are distinct.

In order to decide if u°(f1) > ¢, we exploit a celebrated theorem of transcen-
dental number theory [8].

Theorem 3 {Lindemann-Weirstrass:). Let ci,...c, be pairwise distinct al-
gebraic numbers belonging to ©. Then there erists no equation a1 + -+ +
aner = 0 in which aq,...,a, are algebraic numbers and are not all zero.
Historical note:This result implies the transcendence of = (take n = 2, ¢; =
2,¢9 = im); it was the first proof of the non-algebraic nature of 7. For a highly
readable account of the development of this theorem, refer to [5].

Suppose the expression } ., €’ is degenerate, i.e. it consists of a single
term of the form 7y. Then the expression denotes an algebraic number, and it
can be effectively checked if it 1s greater than c.

If it is not degenerate, invoking the Lindemann-Weirstrass theorem and
noting that ¢ is rational, we see that u®(fi) can not be equal to ¢ and so
| w*(fi) —c |> 0.

Decidability of model checking follows from the following lemma.

Lemma 4. Given a transcendental real r of the form ZJ. n;e%i where the n; and
d; are algebraic complex numbers, and the §;’s are pairwise distinct, there is an
effective procedure to test if » > ¢ for rational c.

Proof. Suppose a sequence of algebraic numbers 57, 93, ... such that |r — S| <
2~k can be effectively constructed. Let |» — ¢| = a > 0. By the triangle inequal-
ity, |r ~¢| < |7 —Re(Sk)| +|Re(Sk) —¢|. Hence |r — Re(Sk) | + |Re(Sk) — c|
is bounded away from 0 by a. Since r is real, |» — Re(Sk)| < |r— (Sk)| < 275,
and |r — Re(Sk) + |Re(Sg) — ¢ | is bounded away from 0 by a, for sufficiently
large k, it must be that |Re(Sg) — ¢ | > 27%. The sign of of Re(Sk) — ¢ is the
sign of r — ¢.

In order to construct the sequence Si,Ss,..., we use the fact that ¢* can
be approximated with an error of less than ¢ (when ¢ < 1) by taking the first
[(3-12|? /e)]+1 terms of the Maclaurin expansion for ¢*. This can be extended
to obtain an upper bound on the number of terms to sum for an expression of
the form }; n; e%i (which being the finite sum of algebraic numbers is algebraic)
in order to achieve an error of less than €. w

Now consider the case where the successive intervals where the transitions
are desired ([a;,], ¢ = 1,2,... are allowed to overlap. Since a formula is finite,
we can have a finite number of overlapping intervals. A key observation is that
the finite number of overlaps allows us to partition the time in a finite number
of non-overlapping intervals and write the probability of the specification (set of
acceptable paths) as a sum of the probabilities of disjoint events. This enables
us to write u*(f1) as the sum of exponentials of algebraic complex numbers,

275

weighted by algebraic coefficients. To illustrate this, consider the formula

Ja = YoUa; 5,1%1Uja, b2

where 0 < a1 < a2 < by < ba. In this case, we may realize f; as one of four
disjoint cases and hence we can write

1 (f2) = 1#° (YoUlay a2)¥1Ulag,0:1%2) + 1 (Y0 Ujay ,a21%1 U, 551 ¥2)
+1° (YoUaz 5.1%1 V61 ba1%2) + 1° (Y0U s 5,0%1 Ulas 01%2) (3)

The first three terms are equivalent to the case with non-overlapping inter-
vals. The last term involves having both the [o]y, — [¥1]y and [¥1]y —
[%2],, transitions in the same interval [az, b1] in the correct order. This may be
evaluated by integrating the probabilities over the time of the first transition.

by
B (%0Ulag ,6,1%1ULag,0%2) = FsPu,o(@)Iof Poo(t — a2)loQo,111 P12(by — t) I2dt
az
It is clear that since the integrand involved algebraic terms and and exponentials
in algebraic complex numbers and £, the definite integral with rational limits can
be written in the form of a sum of exponentials of algebraic numbers with alge-
braic coefficients. Hence, this term is in E 4. The other three terms in equation 3
correspond to forms equivalent to the non-overlapping intervals case, and hence
already satisfy the decidability criteria. m

4 Conclusions and Future Work

We have defined a logic for specifying properties of finite state continuous time
Markov chains. The model checking problem for this logic was shown to be de-
cidable through a combination of results in algebraic and transcendental number
theory. In practise we believe that a model checker can be built using conven-
tional numerical methods for computing probabilities of events in continuous
Markov chains.

In the future, we intend to study synthesis of specifications in the logic. We
are planning to use some of the techniques used in this paper to derive decid-

ability results for analyzing dynamical systems which evolve using exponential
laws.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model Checking for Real-Time Systems.
In Proc. IEEE Symposium on Logic in Computer Science, pages 414-425, 1990.

2. R. Alur, C. Courcoubetis, and D. Dill. Model Checking for Probabilistic Real Time
Systems. In Proc. of the Colioguium on Automata, Languages, and Programming,
pages 115-126, 1991.

3.

&

© o~

10.
. A. Tarski. A Decision Procedure for Elementary Algebra and Geometry. University

276

C. Courcoubetis and M. Yannakakis. Verifying Temporal Properties of Finite State
Probabilistic Programs. In Proc. IEEE Symposium on the Foundations of Com-
puter Science, pages 338-345, 1988.

."'E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Formal

Models and Semantics, volume B of Handbook of Theoretical Computer Science,
pages 996-1072. Elsevier Science, 1990.

J. H. Ewing. Numbers. Springer-Verlag, 1991.

H. Hansson and B. Jonsson. A Logic for Reasoning about Time and Reliability.
Formal Aspects of Computing, 6:512-535, 1994.

T. Kaliath. Linear Systems. Prentice-Hall, 1980.

I. Niven. Irrational Numbers. John-Wiley, 1956.

S. Ross. Stochastic Processes. Wiley, 1983.

H. L. Royden. Real Analysis. Macmillan Publishing, 1989.

of California Press, 1951.

Verifying Safety Properties of Differential Equations

Mark R. Greenstreet, mrg@cs.ubc.ca
Department of Computer Science
University of British Columbia
Vancouver, BC V6T 174
Canada

Abstract

This paper presents an approach to verifying that a circuit as described by a
continuous, differential equation model is a correct implementation of a discrete
specification. The abstraction from continuous trajectories to discrete traces is
based on topological features of the continuous model rather than quantizing
the continuous phase space. An practical verification method based on numerical
integration is presented. The method is demonstrated by the verification that a
toggle circuit satisfies a discrete specification.

1 Introduction

Most research in hardware verification has been based on discrete models for
circuit behavior [Gup92]. In many high performance designs, discrete models
are inadequate. Details of transition times, slew rates, capacitive coupling, etc.
can be crucial for the correct operation of such designs. Accurate models for
these phenomena are typically expressed as systems of non-linear differential
equations. Thus, it becomes important to verify that a circuit modeled by non-
linear differential equations is a valid implementation of a discrete specification.

This paper presents an approach to this problem based on methods from
dynamical systems theory. Safety properties of the continuous model are verified
by demonstrating the existence of suitable invariant manifolds in the continuous
phase space. Interface specifications are expressed as constraints on the relation-
ship between signals and their time derivatives, and continuous trajectories are
mapped to discrete traces rather than attempting to discretize the continuous
phase space to define discrete states. This topological approach to describing
behavior is described in section 3.

Section 5 describes the verification method. The continuous system is veri-
fied by computing a conservative bound on the reachable region of the system
throughout a continuous integration. The reachable region is represented by its
projection onto planes defined by pairs of the continuous variables. This approach
allows standard computational geometry algorithms to be used to maintain the
data structure for the reachable region, and it avoids the exponential complexity
of explicitly representing a high-dimensional object. A numerical integrator is

278

used to determine the evolution of the reachable region. This approach is demon-
strated by verifying that a toggle circuit implements its discrete specification.
The circuit is described in section 4, and section 6 presents its verification.

Recently, there has been a large interest in the verification of continuous sys-
tems. Much of this is based on linear automata models [OSY94] which cannot
be applied directly to the non-linear models of VLSI circuits. Henzinger and
Ho [HH95] showed how these methods could be applied to non-linear systems
by constructing asymptotically equivalent linear descriptions. The approach pre-
sented here differs from theirs in that the verification is performed directly on
the system on non-linear differential equations. This facilitates using ideas from
dynamical systems theory both for the specification and the verification of the
design. Kurshan and McMillan [KM91] presented the verification of an arbiter
circuit using a circuit model similar to the one used this paper. They partitioned
the phase space into fixed boxes and computed a next-state relation between
these boxes by integrating the non-linear circuit model for fixed time steps. This
leads to an interaction of the time step size and the box size that is avoided by
the methods presented here.

2 A Discrete Toggle

In this paper, discrete behaviors are described using finite state automata. A
finite state automaton is described by a quadruple (1,0, A, Qy), where [is a
set of binary valued inputs and O is a set of of binary valued outputs. The state
space, S, is 2790, For s € S, v(s) denotes the value of input or output v in
state s. The set of initial states is given by Qo, with Q¢ € 5, and A is the state
transition relation with A4 C S x §. A trace is a sequence of states; sp, s1,.. .,
such that sg € Q¢ and Vi. (i > 0) = (s;, 5i41) € A. The state transition relation
is partitioned into circuit actions and environment actions. A circuit action only
changes the values of outputs and an environment action only changes the values
of inputs. More formally,

V(s1,82) € A. (Vv € Lv(s1) = v(s2)) V (Vv € O.v(s1) = v(s2))

A simple toggle element has a clock input ¢ and two outputs a and b. the
singleton initial state set {(F, F, ')}, where F denotes the logical value false and
state triples are written (@, a,b). The state transition relation is

{((FaFaF); (T’FzF))v ((T,F,F), (T,T,F)), ((T,T,F), (F,T,F)),
((F,T, F)r (F: T,T)), ((F’Ta T)7 (TyTa T)): ((T:T:T)z (T, F’T)):
(T,F,T), (F,F,TY), (F,F,T), (F,F,F)) }

Figure 1 depicts the state space and state transition relation of this toggle
embedded in a binary 3-cube. The salient features of this circuit description
include:

Environment assumption: The clock input @ only changes in states where no
circuit actions are enabled.

279

(F.T.F)‘—‘“"“’ ﬂ*’.T.T)-
#"
y

Fig. 1. A Discrete Toggle Element

Toggling: The period of the cycle of states for the toggle is twice the period of
the clock input.

Compositional elements: The a output makes exactly one low-to-high and one
high-to-low transition during each cycle of states. Likewise for the b output.
This allows, for example, a counter to be constructed by connecting the out-
put of one toggle element to the input of another as long as the environment
assumption can be shown to be satisfied.

Continuous behaviors can be described using ordinary differential equations
(ODEs). By analogy with a finite state automaton, we describe ODEs with a
tuple, (Z,Pz,0,6,Q0). T is a set of real-valued inputs, and Pz is a condition
that must be satisfied by the inputs. For example, we assume that inputs are
a continuous, bounded functions of time; additional conditions for inputs are
described in section 3. O is a set or real-valued outputs. If the model has d;
inputs and d, outputs, then the state space is R® where d = d; + d,. The
derivative function, § : R* — R%, gives the time derivative of each output as a
function of the current state. The initial point is any point in Q¢ where Qo C R?.
We assume that is Lipschitz, and that the inputs are continuous functions of
time. These conditions guarantee that the outputs are uniquely defined for any
inputs and initial state. We call a tuple, (Z,Pz, 0,4, Qp) a continuous model.

A continuous model defines a set of trajectories. A trajectory, 7 is a differ-
entiable function from time to R* where

n(0) € Qo
A Pz(n)

A L00) = 82 (), O(m)

Given a continuous model {2 and a finite state automaton F, an abstraction
function maps trajectories of §2 to traces of F. We say that §2 is an implemen-
tation of F with abstraction function A iff for every trajectory n of £2, A(n) is a
valid trace of F. Note that abstractions map continuous trajectories to discrete

280

traces rather than states to states. In this approach, discrete behaviors can be
understood as topological properties of families of trajectories which allows con-
cepts from dynamical systems theory to be applied to the problem of verifying
that a continuous model of a circuit satisfies a discrete specification.

3 (Continuous Realizations of Discrete Behaviors

B

A "typical" trajectory A "ricochet” trajectory

Fig. 2. Brockett’s Annulus

Figure 2 depicts an annulus proposed by Brockett [Bro89] that provides a
topological basis for mapping continuous trajectories to discrete behaviors. When
a variable is in region 1, its value is constrained but its derivative may be either
positive or negative. When the variable leaves region 1, it must enter region
2. Because the derivative of the variable is positive in this region, it makes a
monotonic transition leading to region 3. Regions 3 and 4 are analogous to re-
gions 1 and 2 corresponding to logically high and monotonically falling signals
respectively. Because transitions through regions 2 and 4 are monotonic, traver-
sals of these regions are distinct events. This provides a topological basis for
discrete behaviors. Furthermore, the horizontal radii of the annulus define the
maximum and minimum high and low levels of the signal (i.e. Voy, Von, Vai, and
Vip, in figure 2). The maximum and minimum rise time for the signal correspond
to trajectories along the upper-inner and upper-outer boundaries of the annulus
respectively. Likewise, the lower-inner and lower-outer boundaries of the annulus
specify the maximum and minimum fall times.

If the annulus is given by two ellipses, then the trajectories corresponding to
the inner and outer boundaries of the annulus are sine waves, and it is tempting
to think of these as giving upper and lower bounds for the period of the signal.
This is not the case. First, note that a signal may remain in regions 1 or 3
arbitrarily long. This is essential when verifying the toggle where we must show
that the output satisfies the constraints assumed of the input, even though the
period of the output is twice that of the input. Furthermore, the signal is not
required to spend any time in regions 1 and 3. The minimum period signal
corresponds to a “ricochet” trajectory as depicted by the solid curve in the right
most plot of figure 2. The period of this signal can be much less than that of the

281

sine wave corresponding to the outer boundary of the annulus (the dashed curve).
It is desirable to independently specify constraints on signal levels, transition
times, and period. We achieve this by imposing minimum times that a signal
must remain in regions 1 and 3. This construction allows a large class of input
signals to be described in a simple and natural manner.

To verify safety properties of a continuous model, we establish the existence
of an invariant manifold in R%. We then show that all trajectories starting from
points in the initial region are contained in this manifold, and that all trajectories
in this manifold satisfy the specification. This technique is the continuous analog
of using discrete invariants to verify properties of state transition systems [LS84].

For the toggle element, all trajectories in the invariant manifold should have
a period twice that of the clock signal. This notion can be formalized using a
Poincaré section [PC89]. Let ¢ be the continuous signal corresponding to @, and
let ¢ be some constant with V5, < ¢ < Vi;. Consider the intersection of the
manifold with the ¢ = ¢ hyperplane. These intersections form a Poincaré map.
This intersection must consist of four disjoint regions (two for rising ¢ crossing
¢, and two falling crossings) and all trajectories must visit these four regions in
the same order. Continuous trajectories can be mapped to discrete sequences of
the discrete toggle described in section 2 by mapping regions of the manifold to
states of the discrete toggle. The toggle element is compositional if it there is
an output variable such that for all trajectories in the manifold, the value and
derivative of this variable satisfy the constraints of the input ring. It must also
be shown that this output satisfies the minimum high and low time constraints.

4 A toggle circuit

z
4
i

@ Stable state
of toggle element

—4 18 (b-q 6 10 /777~ Transient state
XX ¥ z YR of togele element
¢=q[10 10| ¢—{[10
X Yy b44
———| 6 cb—-{ 18 18
Schematic State Transition Diagram

Fig. 3. Yuan and Svensson’s Toggle

Figure 3 shows a toggle circuit that was originally published by Yuan and

282

Svensson [YS89]. The operation of this circuit can be understood by using a
simple switch model starting from a state where the ¢ input is low. In this case,
y will eventually become high, z is floating, and x is the logical negation of =.
If we assume that the value stored on node z is a well-defined logical value,
then the circuit has two possible states when ¢ is low: (x,y,2) = (L, H, H),
and (x,y,2) = (H,H,L). Starting from these two states, we can derive the
corresponding stable successor states for when ¢ is high. If the circuit is allowed
to reach a stable state before each transition of the ¢ input, then it implements
a toggle as illustrated by the state transition diagram shown on the right half of
figure 3.

The analysis presented in this paper is based on a simple circuit model using
a standard, first-order transistor model [GD85] with three regions of operation:
cut-off, saturation, and “linear.” Capacitors are of fixed value, and all capaci-
tances are to ground. Using basic circuit analysis techniques, we obtain a system
of non-linear differential equations that is our continuous model for the circuit.
A more detailed description of this model is given in [GC94].

5 Verification

Let {2 be a continuous model. Properties of {2 can be verified by finding a man-
ifold that contains all trajectories of £2. This can be done by starting with the
initial region of the model and integrating the system of differential equations
to compute a bounding region at each step. In the present work, variations in
the input signal and initial state are considered, but the model parameters are
fixed. Because the non-linear equations that arise from circuit models cannot be
integrated analytically, this integration is performed numerically. Thus, this ver-
ification requires an assumption of the validity of the numerical integrator. The
verification described in this papér uses a fourth-order Runge-Kutta integrator
adapted from [PF*88].

The Brockett annulus provides a convenient way to perform this integration.
When the input signal ¢ is in the first or third region of figure 2, either the
N-channel or the P-channel transistors controlled by ¢ are in cut-off. For typical
CMOS circuits including the toggle this ensures that each node is either floating
in which case the time derivative of its voltage is zero, or that it there is a
conducting path to either Vdd or ground, but not both. In this case the voltage
of the node asymptotically approaches the corresponding power supply value.
Given a bounding region for trajectories upon entry to the first or third region
of the annulus, we integrate for the minimum low or high time respectively and
then determine the bounding box for the reachable region. For nodes that are
asymptotically approaching a power supply value, the box is expanded to include
that value. The expanded box is used as the starting region for the next phase
of integration. When ¢ is in the second or fourth region, its value is changing
monotonically. This allows the integration to be performed with respect to ¢
which reduces the dimension of the phase space by one and reflects the natural
dependence of the circuit on its input.

283

At each integration step, the reachable region is implicitly represented by a
set of two types of constraints: simple and polygonal. Simple constraints give
upper and lower bounds for the value of a single variable. Polygonal constraints
give bounds on the values of pairs of variables: the polygon is a projection of the
reachable region onto the plane corresponding to the two variables. In the cur-
rent implementation, polygonal constraints are represented by simple, rectilinear
polygons without convexity restrictions. Each polygon corresponds to a prism in
the complete phase space, and the reachable region is represented by the intersec-
tion of these prisms clipped by the simple constraints. This approach avoids the
exponential growth in complexity that would occur if the reachable region were
explicitly constructed and it allows efficient algorithms from two-dimensional
computational geometry to be utilized. The representation is conservative; ac-
cordingly, our verification method is sound but not complete.

At each integration step, a conservative estimate of the bounding region is
computed. For each face of the reachable region, a maximum outward translation
is determined. This translation is an upper bound on the outward normal com-
ponent of any trajectory starting from some point on the face. Since the entire
face is translated outward by this amount, this bounds all trajectories starting
from that face. By performing this computation for each face, a conservative
estimate is obtained for the bounding region at the end of the integration step.

Focusing on the non-degenerate cases!, each face of the reachable region
corresponds to a bound of a simple constraint or an edge from a polygonal
constraint. If the constraint corresponds to a polygon edge, it gives an exact
value for one variable and a bounding interval for the other. If the constraint is
an upper or lower bound of a simple constraint, it gives a value for that variable.
Given these explicit constraints, bounds on other variables can be derived from
the polygonal constraints. In this way, we compute bounding intervals for each
variable for each face. From this, maximum and minimum values are computed
for the outward component of the derivative vector for points on the face. For
models arising from CMOS circuit models, this requires calculating upper and
lower bounds for the drain current of each transistor, and the monotonicity of the
transistor model simplifies this calculation. Because a fourth-order integration
algorithm is used, four of these derivative calculations are performed at each
step, and an error estimate is calculated to adjust the step size.

There are several details that must be considered. First, as the integration
is performed, some polygon edges will grow. To avoid excessively conservative
estimates of the reachable region, edges are split into smaller edges when they
exceed a pre-specified length. Conversely, when adjacent edges become suffi-
ciently short, they are conservatively merged into a single edge for efficiency. If
two polygonal constraints involve the same variable, then they each have edges
corresponding to the maximum and minimum values of this variable. When one
of these extremal edges is split, then it may be possible to compute a tighter
bound for its outward derivative than for the corresponding edge of the other

! Zero-length polygon edges and ceincident constraints can occur as a consequence of
constraint splitting described shortly.

284

polygon. In this case, the unsplit edge may acquire an infeasible value at the
end of an integration step. When this occurs, the algorithm solves the system
of constrains and moves the infeasible edge to its maximally outward feasible
position.

In addition to the change of variables to integrate with respect to ¢, it is
sometimes convenient to perform additional changes of the variable of integra-
tion. Once it is shown that some variable, u, changes monotonically with respect
to ¢, then u can be used as the variable of integration. This can provide tighter
estimates of the reachable region, but it requires a relation to bound ¢ given u.
This relation can be represented by another polygon, and the polygon manipu-
lation routines for the integrator can be used to perform this change of variables
as well.

6 Verifying the Toggle Circuit

The toggle element of section 4 can be verified by chosing an initial region and
integrating that region through two periods of the clock input as described in
section 5. An invariant manifold is identified by showing that the reachable re-
gion at the end of this integration is contained in the initial region. By computing
the intersection of this manifold with the ¢ = 2.5volts hyperplane, it is shown
that the manifold has a period that is twice that of ¢ as required. We use z
as the output of the toggle, and by computing bounds on z and dz/dt at each
integration step, we show that z satisfies the same ring constraints as the input.
Detalls of this process are described in the remainder of this section.

The specification for the ¢ input is an annulus whose inner-boundary corre-
sponds to a 100 MHz., 4.5 volt peak-to-peak sine wave centered at 2.5 volts. The
outer boundary corresponds to a 700 MHz. 5.5 volt peak-to-peak sine wave also
centered at 2.5 volts. The large difference between these frequencies demonstrates
the robustness of the toggle to variations in the input signal. The minimum high
and low times for ¢ are each 1 nano-second. This yields a minimum period of ¢
of ~ 2.87 nano-seconds which corresponds to a maximum frequency of 348 MHz.

The circuit model is simplified by assuming that the capacitances at nodes
zz, yy, and zz are negligible, and a four-terminal device model is used for pairs
of transistors of the same type in series. A 160 femtofarad load is added to the
z node to simulate the effect of driving the ¢ input of another toggle element.
“Typical” values for the MOSIS 2z n-well CMOS process were used for the
analysis. All transistors have a 2u gate length and shape factors are shown in
figure 3. Diffusion and gate capacitances are included in the model; for simplicity,
interconnect capacitance is ignored.

The initial region is given by the constraints: ¢ = 0.25; -0.1 < z < 0.1;
49 < y < 5.1; and 4.8 < z < 5.1. The integration starts with ¢ entering the
second region of Brockett’s annulus. The integration is performed in four phases:
(1) ¢ rising and high, (2) ¢ falling and low, (3) ¢ rising and high, (4) ¢ falling
and low. Each phase is started with a new bounding box, and at the end of each
phase, we verify that the reachable region is contained in the initial bounding box

285

Fig. 4. Reachable region for z and dz/dt

for the next phase. This allows the four phases to be verified separately. After
integration for two periods of ¢, the reachable region satisfies the constraints:
¢ =0.25;-1.57%10713 < 2 < 1.61%10713;4.99 < y < 5.00; and 4.83 < z < 5.05.
This demonstrates the existence of an invariant manifold as required.

In most of the phases, only a single variable has any large change in its
value, and it is sufficient to approximate the reachable region by a bounding
box. However, in the phase where ¢ and z make low-to-high transitions, z and
y also make high-to-low transitions (see figure 3). The correct operation of the
toggle requires that y complete its transition before z goes too far low. In this
phase, coupling of each pair of variables with polygonal constraints was required
along with an additional change of variable of integration from ¢ to .

At each step of the integration, bounds on z and dz/dt are computed. These
are shown in figure 4 with the annulus used to specify the input. It can be seen
that z satisfies the specification for an input to the toggle. Furthermore, the
integration shows that the minimum low-time for z is at least 2.74 nanoseconds
and the minimum high time is at least 2.16 nanoseconds. Thus, z satisfies the
requirements for an input signal to the toggle.

286

The current implementation of the verification algorithm is only for proof of
concept and no effort has been for optimization. The run-time is dominated by
the time for integration when z makes its low-to-high transition. When regions
are estimated using polygons with a 0.25 volt nominal edge length, this step
takes about forty minutes on a 50 MHz SPARC 10. When the nominal edge
length is increased to 0.5 volts, the verification can be performed in just over
five minutes. Further work will be required to optimize the implementation and
characterize its performance on a larger set of examples.

7 Conclusions

This paper has presented a method for verifying that a circuit modeled by a
system of non-linear differential equations satisfies a discrete specification. The
approach is based on topological properties of the continuous model. Verification
of the continuous model is performed by numerical integration to determine a
manifold containing all feasible trajectories. Properties of the trajectories can
be derived from the manifold by using methods from dynamical systems theory
such as Poincaré sections.

The method has been applied to a toggle element. It was shown that the
toggle operates correctly for a large class of input signals, and that its output
satisfies the constraints required of its input. This means that these toggle ele-
ments can be connected in a chain to form a verified ripple counter. Although
the toggle is a relatively simple circuit, its complexity is comparable to that of
many cells in a typical standard-cell library. A potential application of these
methods would be to verify that such a library has been properly designed and
characterized.

Acknowledgements

1 would like to express my appreciation to Peter Cahcon, Nick Pippenger, and
Jim Varah for helpful suggestions throughout this work. Further thanks to the
anonymous referees whose comments have contributed to the clarity of this pa-

per.

References

[Bro89] R.W. Brockett. Smooth dynamical systems which realize arithmetical and
logical operations. In Hendrik Nijmeijer and Johannes M. Schumacher, edi-
tors, Three Decades of Mathematical Systems Theory: A Collection of Surveys
at the Occasion of the 50th Birthday of J. C. Willems, volume 135 of Lec-
ture Notes in Control and Information Sciences, pages 19-30. Springer-Verlag,
1989.

[GC94] Mark R. Greenstreet and Peter Cahoon. How fast will the flip flop? In Pro-
ceedings of the 1994 International Symposium on Advanced Research in Asyn-
chronous Circusts and Systems, pages 77-86, Salt Lake City, November 1994.
IEEE Computer Saciety Press.

287

[GD85] Lance A. Glasser and Daniel W. Dobberpuhl. The Design and Analysis of
VLSI Circuits. Addison-Wesley, 1985.

[Gup92] Aarti Gupta. Formal hardware verification methods: A survey. Formal Meth-
ods in System Design, 1{2/3):151-258, October 1992.

[HH95] Thomas A. Henzinger and Pei-Hsin Ho. Algorithmic analysis of nonlinear
hybrid systems. In Proceedings of CAV 95, pages 225-238, 1995.

[KM91] R.P. Kurshan and K.L. McMillan. Analysis of digital circuits through sym-
bolic reduction. IEEE Transactions on Computer-Aided Design, 10(11):1356—
1371, November 1991.

[LS84] Leslie Lamport and Fred B. Schneider. The ‘Hoare logic’ of CSP, and all that.
ACM Transactions on Programming Languages, 6(2), April 1984.

[O8Y94] A. Olivero, J. Sifakis, and S. Yovine. Using abstractions for the verification of
linear hybrid systems. In David L. Dill, editor, Proceedings of 1994 Workshop
on Computer Aided Verification, volume 818 of Lecture Notes in Computer
Science, pages 81-94. Springer-Verlag, June 1994.

[PC89] Thomas S. Parker and Leon O. Chua. Prectical Numerical Algorithms for
Chaotic Systems. Springer-Verlag, New York, 1989.

[PF*88] William H. Press, Brian P. Flannery, et al. Numerical Recipes in C: The art
of numerical computing. Cambridge University Press, 1988.

[YS89] Jiren Yuan and Christer Svensson. High-speed CMOS circuit technique. JEEE
Journal of Solid-State Circuits, 24(1):62-70, February 1989.

Temporal Verification by Diagram
Transformations*

Luca de Alfaro and Zohar Manna

Computer Science Department
Stanford University
Stanford, CA 94305, USA

Abstract. This paper presents a methodology for the verification of
temporal properties of systems based on the gradual construction and
algorithmic checking of fairness diagrams. Fairness diagrams correspond
to abstractions of the system and its progress properties, and have a
simple graphical representation.

In the proposed methodology, a proof of a temporal property consists of
a chain of diagram transformations, starting from a diagram representing
the original system and ending with & diagram that either corresponds
directly to the specification, or that can be shown to satisfy it by purely
algorithmic methods. Each diagram transformation captures a natural
step of the gradual process of system analysis and proof discovery. The
structure of fairness diagrams simplifies reasoning about progress proper-
ties, and the graphical representation provided by the diagrams enables
the user to direct the construction of the proof. The resulting method-
ology is complete for proving specifications written in first-order linear-
time temporal logic, provided no temporal operator appears in the scope
of a quantifier.

1 Introduction

This paper presents a methodology for the verification of temporal properties
of fair transition systems based on the gradual construction and algorithmic
checking of fairness diagrams. Fairness diagrams represent abstractions of the
system, and provide a graphical formalism for the study of its temporal prop-
erties. Fairness diagrams are graphs whose vertices are labeled by first-order
assertions and whose edges are labeled by first-order transition relations. Their
progress properties are represented by fairness constraints, which generalize the
classical concepts of fairness [8].

In the proposed methodology, a proof of a temporal specification consists of a
chain of diagram transformations, starting with a fairness diagram representing
the original system and ending with a fairness diagram that either corresponds

* This research was supported in part by the National Science Foundation under grant
CCR-92-23226, the Advanced Research Projects Agency under NASA grant NAG2-
892, the United States Air Force Office of Scientific Research under grant F49620-
93-1-0139, and the Department of the Army under grant DA AH04-95-1-0317.

289

directly to the specification, or that can be shown to satisfy it by purely al-
gorithmic methods. Since the transformations preserve containment of system
behaviors, the existence of this chain of transformations implies that the set of
behaviors of the original system is a subset of the set of behaviors that satisfy
the specification.

Fairness diagram transformations are intended to capture the step-by-step
nature of the process of system analysis and proof construction. We introduce
two types of transformations. The first type relies on the construction of sim-
ulation relations between diagrams, and provides a flexible way to analyze the
safety properties of the system. The second type relies on the proof of new
progress properties of a fairness diagram. Once proved, these properties can be
represented as fairness constraints and added to the diagram. The form of the
fairness constraints has been chosen to make it possible to use simple but com-
plete rules to reason about progress properties. The resulting methodology is
complete for proving specifications written in first-order linear-time temporal
logic, provided no temporal operator appears in the scope of a quantifier.

Related work. Methods based on stepwise system transformations for the study
of branching-time temporal properties of finite-state systems have been proposed
in [3], and the use of simulation relations to study the temporal behavior of fair
transition systems has been discussed in {4]. A related approach to the proof of
temporal properties of systems is based on the use of verification diagrams [10, 1].
Like fairness diagrams, verification diagrams are graphs labeled with first-order
assertions, and enable the proof of general temporal properties. Unlike fairness
diagrams, verification diagrams represent a completed proof, and trade the ad-
vantage of gradual proof construction for conciseness of proof representation.

2 Fairness Diagrams

A fairness diagram (diagram, for short) A = (V, X, V,p, 7,0, F) consists of the
following components:

[y

. A set V of typed variables, called state variables.

2. A state space X: each state s € X is a type-consistent value assignment of
all the variables in V. For z € V, we denote by s(z) the value of z at state s.

3. A set V of vertices.

4. A mapping p : V = 2% that labels each vertex v € V with a subset
p(v) € X. The set p(v) represents the possible states of the system when the
diagram is at vertex v, and is specified by a first-order formula p(v) over V,
such that p(v) = {s € X' | s = p(v)}.

5. A mapping 7: V2 25%%_that labels each edge (u,v) € V2 with a relation
7(u,v) € X2. The relation is specified by a formula 7(u, v) over V, V', such
that 7(u,v) = {(s,s) | (s,¢') k= T(u,v)}, where (s,s’) interprets z € V as
s(z) and z' € V' as s'(z).

6. An initial region ©. Regions are defined below.

7. A fairness set F, defined below.

290

Locations and runs. A location of a diagram is a pair (v,s) : v € V,s € p(v)
composed of a vertex and of a corresponding state. We denote by loc(4) =
{(v,s) | v € V,s € p(v)} the set of all the locations of a diagram A. A location
represents an instantaneous configuration of the diagram, similarly to a state of
an FTS. A run of a diagram is an infinite sequence of locations (vg, so), (v1,%1),
(vg, $2), ..., such that so € @(vp), and (s;, Si41) € 7(vs,viq1) for all ¢ > 0.

Regions. A region @ is a set of locations. We denote by @(v) the set of states
{s € Z'| (v,8) € ¥} that are part of $ at vertex v. A region & is represented
by the set of formulas {5(@)},@/, where for each v € V the formula $(v) over
V defines the set $(v). We say that & is an integral region if #(v) is equal to
either @ or p(v) for every v € V. We can specify an integral region ¢ by the set
of vertices {v € V | (v) # 0}.

Modes. A mode X : V2 = 2%*% labels each edge (u,v) € V? with a transition
relation A(u,v) C 7{u,v). For u,v € V, A(u,v) is represented by a formula
X(u, v) over V, V'. A mode represents a subset of the possible transitions between
locations of the diagram. An integral mode is a mode A such that A(w,v) is either
@ or r(u,v), for all u,v € V. We can specify an integral mode A by listing the
set of edges {(u,v) | A(u,v) # 0}.

Fairness constraints. A fairness constraint (constraint, for short) is a triple (J, C,
G), where J, C are regions s.t. C C J and G is a mode. Constraints are used to
specify the fairness properties of the diagram, and the fairness set F is a set of
constraints.

A diagram must satisfy the consecution condition, which states that if a
transition is taken from a location, it will lead to another location: formally, for
all u,v € V and for all s,¢t € ¥,

s € p(u) A (s,t) € T(u,v) — t € pv).

In the following, we denote by ¢' the formula obtained from a first-order logic
formula ¢ by replacing each free z € V with ' € V'. With this convention, the
consecution condition holds iff the logical implication p{u) A 7(u,v) — p'(v) is
valid for all u,v € V.

The computations of a diagram are defined in terms of its accepting runs.

Definition 1. A run o : (vg, 80}, {¥1,%1), (v2,83),... of a dilagram A is an ac-
cepting run if the following condition holds.

For each constraint (J,C,G) € F, if there is n > 0 such that (v;,s;) € J

for all i > n and {v;,8;) € C for infinitely many ¢ > 0, then there are

infinitely many j > 0 s.t. (s5,8541) € G{vj,vj41).
If o : (o, $0), (1, 81), (v2,82), ... is an accepting run of A, the sequence of states
S0,81,82,... is a computation of A. We denote by Runs(A), L£(A) the sets of
accepting runs and computations of A, respectively. ®

291

According to the above definition, the informal reading of a constraint (J,C, G)
is that every accepting run that stays in J forever and visits C infinitely often
must follow a transition in G infinitely often. The chosen names J, C and G re-
flect the notions of Justice set, Compassion set and Gratify action that describe
fairness of transition systems in [8].

A fair transition system (FTS), defined as in [9], can be represented by a
diagram having only one vertex.

Construction 2 (from FTS to diagram). Let S = (V,X2,9,7,7,C) be an
FTS, where V is the set of state variables, X' is the state space, 8§ C X' is
the initial condition, 7 = {v1,...,¥m} is the set of transitions, and J C T,
C C T are the just and compassionate transitions, respectively. The FTS can be
represented by a diagram fd(S) = (V, X,V, p,7,0,F), where ¥V, X are as in the
FTS, V = {vw}, p(vg) = X, O(vp) = 0, and 7 and F are defined as follows.

1. T(vg,v0) = {(s,8) | s€ ZYuUlUL {(s,8) € Z% |t € 7(s)}.
2. For 1 <1 < m, let E;(v) = Dom (v;), Gi(vo) = {(s,t) € £? | t € 1(s)}. If
v € J (resp. v; € C) we add (E;, E;, G;) (resp. (loc(A), E;,G;)) to F. B

We assume that an FTS S includes among its transitions the idling transition,
that does not change the state. Given an FTS S, we will indicate with £(S) the
computations admitted by S. Comparing the definitions of FTSs and diagrams,
we have the following theorem.

Theorem 3. For an FTS S, £(S) = L(fd(S)).

3 Fairness Diagram Transformations

The temporal behavior of a diagram is studied by means of diagram transfor-
mations. These transformations preserve containment of behaviors, and they
are reminiscent of the preorders of [3]. If a diagram A can be transformed into a
diagram B by using one of the transformations, we write A = B. Since the trans-
formations preserve containment of behaviors, A = B implies £(A4) C L(B). We
will denote by = the reflexive transitive closure of =.

3.1 Simulation Transformations

Simulation transformations transform a diagram into a new one, such that the
second diagram is capable of simulating the first one. These transformations
modify the set of vertices of a diagram, rearranging the grouping of states in the
vertices, and are used to study the safety properties of the diagram.

A simulation relation between two diagrams A; and A is a function V; — 2%2
from the vertices of A; to those of As, which induces a simulation relation that
maps each location (u, s) of 4; into the subset Usen(u)(v; s) of locations of As.
The following rule determines whether there is a simulation relation between
two. diagrams.

292

©: t=2Ax=0 =9z
A, x £ ’ A, ©: 1=2Ax=0 =1 K=xe+1 A 2'<10

1>=J0N O<t’<d
Fig. 1. Fairness diagram A; and Az, related by the simulation relation arising from

plur) = {vi,va}, p(uo) = {v2,vs}, p(us) = {vs,vs}. Variables not mentioned in the
transition relations are left unchanged.

Ruled (simulation). Let 4; = (V, X, V1, 01,711,601, F1), 42 = (V, X, Va, p2, 72,
6y, F3) be two diagrams sharing the same variables and state space. We say that
Ay simulates Ay, written A; < Aj, if there is a mapping u : Vi + 22 such that
the following logical assertions are valid.

1. For all u € Vi, O (u) = Vveu(u) O, (v).
2. Forallu,v' € Vy andv € p(u), (p1(u)AP2(v)AT (u,u')) — Voeu) T2(0, V).
3. For each (Jy, Cs,Go) € Fy there is (J1,C1,G1) € Fy such that the following
conditions are satisfied, for all w € V; and v € p{u):
(a) (Jo(v) Api(w)) = Ji(u), and (Ca(v) A 1 (w)) = Ci(w);
(b) for all u' €' VA, (B1(u) A B2(v) A G1(w,4')) = Vygpiur Gav,0). B

Theorem 5. If A;, Ay are two diagrams s.t. Ay = Ag, then L(A;) C L£(A42).

Proof. Conditions 1 and 2 insure that for each run oy of A; there is a related
runt o9 of Ay. Condition 3 insures additionally that if oy is accepting, there is a
related o9 of A, which is also accepting. The result then follows from the fact
that the simulation relation is an identity with respect to the state space X. &

Transformation 6 (simulation transformation). Given two diagrams A,
A, if A; < Ay we can transform A, into A,. B

Example 7. Consider the diagrams A; and A; of Figure 1. With A; are asso-
ciated the fairness constraints
OV = ({ur,uz, us}, {wn}, {(wr,w1)}), 8V = ({ur, ua, us), {us}, {(us, us)}),
Cigl) = ({u2}a {u2}’ {(UQ,UI), (U'?’ U3)}),
represented with the convention for integral regions and modes. With A, are
associated the constraints

C? = ({vr,v2,v8}, fvi}, {1, w), (01, u0)}),

P = ({vr,v2,vs}, {us}, {(vs, vs), (v, v0)}),

P = ({va}, {wa}, {(wa, m1), (v, v)}).
Since the function p of Figure 1 satisfies the conditions of Rule 4, 4; can be
transformed into As using a simulation transformation. &

293

The proof of A; < A, using Rule 4 fails if there is a constraint (Jz,Cs,G2) €
F» for which there is no constraint (J;,C1,G;) € Fy that satisfies conditions
(3a) and (3b). In this case, to construct the simulation relation we must first add
a suitable constraint to A;. This can be done using fairness transformations.

3.2 Fairness Transformations

Fairness transformations analyze the structure of a diagram to derive new con-
straints that can be added to the set F without restricting the set of accepting
runs of the diagram. These constraints are said to be compatible, and they rep-
resent, progress properties of the diagram.

Definition 8. Given a diagram 4 = (V, X,V,p,7,0,F) and a constraint (J, C,
G),let A'=(V,XZ,V,p, 7,0, FU{(J,C,G)}) be the diagram obtained from A by
adding (J,C,G) to the set F. We say that the constraint (J, C,G) is compatible
with A if Runs(A) = Runs(A’). 1

Transformation 9 (fairness transformation). If diagram A’ is obtained from
diagram A by adding a compatible constraint, we can transform A into A’. &

To prove that a constraint is compatible with a diagram, we present veri-
fication rules. These rules are related to the rules for response and reactivity
properties presented in {7]. The structure of the constraints enables two sim-
plifications. First, separate rules for response and reactivity properties are not
needed, since constraints can represent both types of properties. Second, it is
possible to decompose the rules of [7] into simpler ones while retaining com-
pleteness. »

We present three rules for proving the compatibility of constraints. The
first rule shows the compatibility of a constraint independently from other con-
straints. The second rule uses one or two constraints in F to show that a third
one is compatible, and can be thought as a rule to concatenate constraints. The
third rule can be used to show that the union of constraints in F is compatible.
Before presenting the rules, we introduce the notion of ranking functions.

Definition 10. A well-founded domain is a set D together with an order rela-
tion >, such that there is no infinite descending chain dy > d; > d3 > ... of
elements of D. A ranking function § : loc(A) w D for a diagram A is a func-
tion mapping pairs (v, s) € loc(A4) into elements of a well-founded domain D. A
ranking function ¢ is represented by the family of terms {g(u)}uev on V, where

o~

term d(u) denotes a function p(u) = D. &

Rule 11 (single constraint). A constraint (J,C,G) is compatible with the
given diagram if there is a ranking function & such that the assertions

J(u) A 7(u, v) = Gy, v) VvV o(u) > 8 (v) v -J'(v)
Clu) A7(u,v) = Glu,v) Vw) > 8'(v) VT (v)
are valid for all u,v € V. R

294

Justification. Assume that the conditions of the rule are satisfied and assume,
towards the contradiction, that there is an accepting run o that beyond position
k > 0 stays forever in J and visits C infinitely often, without taking any transi-
tion in G. Beyond &, the value of § along ¢ will not increase, and will decrease
each time o is in C. Since C is visited infinitely often, this contradicts the fact
that the domain of é is well-founded. ®

Rule 12 (concatenation of constraints). A constraint (J,C,G) is compat-
ible with the given diagram if there is a constraint (Jp,Co,Go) € F with
J(u) = Jo(u) for all u € V and a ranking function § such that the following
logical assertions are valid.

1. Forallu,w € V,
Ju)AT(u,v) = Gu,v) VT) V) > 8@
Jw) AGo(u,v) = Gu,v) V=T @) Vo) > &) .

2. Either C(u) — Co(u) for all u € V, or there is (J1,C1,G;) € F such that
for all u,v € V, J(u) = [J1(v) V Co(u)], C(u) = [Ci(u) v Co(u)], and

Jw)AG (u,v) — Gu,v)vCiw)v-T (@) . N

Justification. Assume that the conditions of the rule are satisfied and assume,
towards the contradiction, that beyond a certain position & > 0 an accepting
run o stays forever in J and visits C infinitely often without taking transitions
in G. From the first condition of the rule, beyond position k the value of ¢ will
not increase, and it will decrease whenever a transition in Gy is taken. Thus,
if we can prove that infinitely many transitions in Gy are taken we reach the
desired contradiction.

If C C Cy, this follows from J C Jg and (Jy,Co,Go) € F. U C € Cy, the
region C' — Cq is non-empty, and ‘there are two cases. If o visits infinitely often
Cy, the result follows as before. If o beyond position j > 0 visits infinitely often
C — Cy without entering Cy, then o after 7 will be confined to J; and will visit
C, infinitely often, and the result follows from {Jy,Cy,G1) € F and from the
condition on Gy in the rule. &

Rule 13 (union of constraints). Given n constraints (J;,C1,G1), ..., (Jn, Cn,
G,) € F and a region Jy, the constraint {J, C,G) defined by

J:JOUOJ,E C:OGE Yu,v € V1 G(u,v) UG u,v)

i=1 =1 gz=l

is compatible with the given diagram if there is a ranking function 4 such that
the following assertions are valid, for 1 <i < n:

T AR,) AT = Gu,v) Vi) > ¥ @)
Ti(w) A7(u,v) A=Jl(v) — G(u,v) Vo(u) > 8 (v) v -J(v)
Jo(u) AT(u,v) — G(u,v) V3(u) > &)V -7 (v) . |

295

Justification. Assume that the conditions of the rule are satisfied and, towards
the contradiction, that beyond a certain position & > 0 an accepting run o stays
forever in J visiting C infinitely often without taking transitions in G. As beyond
k the value of § never increases, and decreases every time o leaves a region J;,
1 < i < n, o can leave only finitely many times every J;. Since C; C J; for all
1 <4 < n and o visits infinitely often |J]_, C;, there must be m € [1..n] s.t.
eventually o is confined to J,,, and visits C,, infinitely often. The contradiction
then follows from the fact that (J.,,Cp,Gn) € F. R

From the justifications of the rules, we have the following theorem.

Theorem 14 (soundness). If ihe conditions of each of the rules 11, 12 or 13
are satisfied, the constraint (J,C,G) is compatible with the diagram under con-
sideration.

Example 15. Consider diagram Ay of Example 7. Using Rule 13, it is possible
to add to it the compatible constraint

P = ({v1,v2,v3}, {v1,93}, {(v1,01), (v1,v4), (vs,3), (v3,v4)})
resulting from the union of Cl(2) and 02(2). By Rule 12, with C’f) for (Jo,Co,Go)

o~

C’§2) for (J1,C1,G1), and ranking function :5\'(111) = 3(1)2) = 6(vz) = 10 — x,

o~

d(va) = 0, it is possible to add the constraint

0552) = ({Ul,vz,vs}, {Uhvz,'va},{(Ul,v4),(vs,v4)})'
Let A} be the diagram obtained by adding C’f) and C’éz) to As. Intuitively, C’éz)
represent the temporal progress property ¢(z > 10), satisfied by Ay. B

3.3 Completeness and Complexity Results

The transformations introduced in the previous sections are complete for proving
the compatibility of fairness constraints, as the following theorem states.

Theorem 16 (completeness for constraints). Given a diagram A and a con-
straint (J,C, G), if (J,C,G) is compatible there is a sequence of transformations
A = B, where the diagram B is obtained from A by adding (J,C,G) to F.

The proof of this theorem is rather lengthy, and follows the general line of
the completeness proof for reactivity and response rules presented in [7]. The
complete proof is given in [2]. To state the completeness theorem for transition
systems we need an additional definition.

Definition17. A diagram A = (V,X,V,p, 7,0, F) is state-deterministic if for
all u,v,w €V with v #w it is O(v) NO(w) =0 and 7(u,v) N7(u,w) =0. N

Theorem 18 (completeness for transition systems). Let A = fd(S) for an
FTS S, and B be a state-deterministic diagram. If £(S) C L(B), there is a chain
of transformations A = B.

The proof of this theorem relies on Theorem 16 for the fairness part, and
follows otherwise from the existence of chains of simulation relations between
diagrams derived from FTSs and deterministic diagrams.

296

Complezity of transformations. To establish a simulation transformation A4; =
A3 using Rule 4, the number of logical formulas to be considered is O(|V4|2-|Va)),
where Vi, V; are the set of vertices of 4,, Ay respectively.

To add & constraint to a diagram A, the number of logical formulas to be
considered is O(]V'|*) using Rules 11, 12, and O(n|V|?) using Rule 13, where n
is the number of constraints whose union is taken. These bounds, however, refer
to the worst-case complexity. If these transformations are used to do a local
analysis of a diagram that involves only few vertices, the number of non-trivial
logical formulas to be proved does not necessarily increase when the size of the
diagram increases.

4 Proving Linear Temporal Logic Properties

Let TLs be the class of temporal formulas obtained by combining first-order
logic formulas using propositional connectives, the future temporal operators O
(next), O (always), ¢ (eventually), I/ (until), and of the corresponding past
ones S, B, ¢ and & [8]. Note that in a formula ¢ € T L, no temporal operator
occurs in the scope of a quantifier.

Given an FTS S and ¢ € TL,, in this section we present two methods
for proving that all computations of S satisfy ¢, written S |= ¢. According to
the first method, we construct from ¢ a deterministic Streett automaton My, we
translate it into a diagram fd(M;), and we show that fd(S) = fd(My). According
to the second method, we construct a nondeterministic Streett automaton N_4
representing —¢ and we show that fd(S) = B, where B is a diagram s.t. £(B)N
L(N-4) = 0 can be shown using algorithmic methods. The Streett automata
used in the above methods are a first-order version of the classical ones [11].

Definition 19 (Streett automaton). A (first-order) Streett automaton A con-
sists of the components {(V, 2, (V,), p, @, A), where V, X, p are as in a diagram;
(V, E) is a directed graph with set of vertices V and set of edges EC V%, Q C V
is the set of initial vertices, and A, called the acceptance list, is a set of pairs
(P,R): PRCV.

A run o of A is an infinite sequence of locations (vo, so), (v1, 81}, (v, S2), - - -
such that vo € Q and 3; € p(v;), (vs,viy1) € E for all ¢ > 0. Run o is an
accepting run of A if the following condition holds:

For each pair (P,R) € A, either v; € R for infinitely many © € N, or

there is k € IN such that v; € P for alli > k.

The set of accepting runs (resp. computations) of a Streett automaton A is
denoted by Runs(A) (resp. L(A)). ®

Given a Streett automaton M, we can construct a fairness diagram fd(M)
such that L(fd(M)) = L(M).

Construction 20 (from Streett Automaton to diagram). Given a Streett
automaton M = (V, X, (V,E),p,Q@,A) we can construct a fairness diagram
fd(M) = (V,X,V, p,7,0,F) as follows.

297

1. Forallu,v € V, 7(u,v) = p(u) x p(v) if (u,v) € E, and 7(u,v) = 0 otherwise.

2. @={(u,s) Jue QAsepu)}

3. F consists of all constraints (J,C,G) such that there is (P,R) € A for
‘which J'= C = {(u,s) | u € V- PA's € p(u)}, and for all u,v € V,
G(u,v) = 7(u,v) if v € R, and G(u,v) = @ otherwise. &

4.1 The Transformation Method

For a temporal logic formula ¢ € TLs, let £(¢) be the set of computations
that satisfy ¢. Let My be a deterministic Streett automaton such that L(My) =
L(¢). This automaton can be constructed from ¢ with the methods explained
in [6, 11, 12]. We can thus formulate the first proof strategy.

Proof Strategy 1. To prove S |= ¢ for FTS S and a formula ¢ € T'L,, construct
a chain of transformations fd(S) = fd(M,).

Theorem 21. Proof Strategy 1 is sound and complete for proving S = ¢ for an
FTS S and ¢ € TL;.

Proof. The soundness result follows from £(S) = L(fd(S)) C L(fd(My)) = L(¢).
Since My is deterministic, fd(My) is state-deterministic, and the completeness
result follows from Theorem 18. R

The drawback of Strategy 1 is that, in the worst case, the number of vertices
of My is doubly exponential in the size |¢| of the specification ¢.

4.2 The Product Method

Given a temporal formula ¢ € T'L,, it is possible to construct a nondeterministic
Streett automaton N-g4 s.t. L(N-4) = L(—¢). The automaton N_, has number
of vertices that is singly exponential in |@|. To prove £(S) C L(¢) for an FTS
S, it suffices to construct a chain of transformations fd(S) = B ending with a
diagram B s.t. £L(B) N L(fd(N-4)) = @ can be shown with algorithmic methods.
The emptiness problem of £(A) N £(B) for diagrams A, B is undecidable: in the
following, we give a computable sufficient condition for £(A) N L(B) = 0.

Let F'L be the first-order logic language with interpreted function and pred-
icate symbols in which the assertions labeling the diagrams and the first-order
part of the temporal specifications are written. Assume that we have a proof pro-
cedure - for F'L that always terminates, and that is able to prove a subset of the
valid sentences that includes all substitution instances of propositional tautolo-
gies. Given ¢ € FL, if I terminates with a proof of ¢ we write - ¢; otherwise we
write I/ ¢. To obtain a sufficient condition for the emptiness of the intersection
of diagram languages, we construct the graph product of the diagrams.

Construction 22 (graph product of diagrams). Given two diagrams A4, =
V, 2, V1,01,11,01,F1), As = (V, Z,Va, pa, T2, @z, Fs) their graph product A; @
Az = ((V,E),Vin, G) consists of a graph (V, E), of a subset Vi, C V of initial
vertices, and of a set G of triples of the form (P,Q,R): P,Q C V,R C V2. These
components are defined in terms of the components of A; and A, as follows.

298

V =A{(v1,v2) € Vi x Va | ¥/ ~(p(v1) A B(ve))}-

Vin = {(v1,v2) € V| ¥ ~(O1(v1) A Bs(v2))}.

= {((Ul,uz) (v1,v2)) € V2 [W =(F1 (u1,v1) AR (ua,v2)) }

or ¢ = 1,2, to each constraint (J,C,G) € F; corresponds the triple
(s(J,1), (C i), (G i)), where & and 7 are defined by:

5(P,1) = {(u1,uz) € V| F(B(u;) + pi(ui))}

TF(A’,L) = {((’U;l,'llq), (Ul,UQ) € E l "/”’X(uiavi)} ,
for all regions ¢ and modes A of A;. The set G is then
G = {(s(1,1),5(C,0),n(G,0)) | 1<i<2A(J,C,G) € F:}. m

Theorem 23. Given two diagrams A, B, let A® B = ((V,E),Vin,G). 4 suffi-
cient condition for L(A)NL(B) = 0 is that for each strongly connected component
U CV of (V,E) reachable from V,, there is (P,@,R) € G s.t. U C P, UNQ # @,
and (u,v) € R for all u,v € U.

Proof Strategy 2. To prove S k= ¢ for an FTS S and a formula ¢ € T Ly, construct

a chain of transformations fd(S) = B to a diagram B s.t. L(B)NL(fd(N-y)) = 0
can be proved using the condition of Theorenr 23. #

-
S

Example 24. If ¢ : &{z > 10), the Streett automaton N-, will consist of only
one vertex, labeled with z < 10. Using Thecrem 23, it is easy to check that the
graph product of N_4 and diagram A, of Example 15 has empty language. W

Theorem 25. Proof Strategy 2 is sound and complete for proving S = ¢ for an
FTS S and ¢ € TL..

Proof. The soundness part is a consequence of the previous definitions. Let
fd(My) be the deterministic diagram corresponding to ¢, as in the previous strat-

egy. If S |= ¢, there is a chain of transformations fd(S) = fd(My), and from the
construction of fd(My) it can be seen that the graph product fd(My) ® fd(N-¢)
satisfies the condition for emptiness of Theorem 23. &

Note that we still need a complete deductive system for the interpreted first-
order language FL to perform the diagram transformations, in order to retain
the completeness results expressed by Theorems 16, 18 and 25.

From the above proof, we see that there is a final diagram B for strategy 2
with number of vertices at most doubly exponential in |$|. In fact, if the state
space X of the F'TS if finite, it is possible to show that there is a diagram B with
number of vertices bound by | Z}, so that the number of vertices of B ® fd(N-¢)
is at most singly exponential in |¢|, similarly to the case of finite-state model
checking.

For systems with an infinite number of reachable states, the worst-case com-
plexity of strategy 2 is not better than the one of Proof Strategy 1. However, in
most cases an FTS § will satisfy a specification ¢ by exhibiting a set of com-
putations £(S) significantly smaller than £(¢). Thus, the diagram B of Proof
Strategy 2 in general is smaller than fd(My), so that Proof Strategy 2 is often
more convenient than Proof Strategy 1.

299

5 Conclusions

Fairness diagrams provide a methodology for the proof of temporal specifications
of systems. They can also be used as a graphical specification language. Since
both vertices and edges are labeled with first-order assertions, fairness diagrams
have the advantage over traditional temporal logic (and similarly to TLA [5]) of
providing a simpler representation for specifications that involve conditions on
both system states and actions.

While we have given completeness results on the existence of chains of trans-
formations, we have not discussed how to obtain guidance for their construction.
When the specification has a simple temporal form, the graphical representation
of the diagrams often captures enough intuition about the system to guide the
construction of the chain of transformations. We intend to address the question
of guidance and heuristics for chain constructions in future work.

Acknowledgements. We would like to thank Anca Browne, Henny Sipma and
Tomas Uribe for helpful comments and suggestions.

References

1. LA. Browne, Z. Manna, and H.B. Sipma. Generalized verification diagrams. In
Found. of Software Technology and Theoretical Comp. Sci., volume 1026 of Lect.
Notes in Comp. Sci., pages 484-498. Springer-Verlag, 1995.

2. L. de Alfaro and Z. Manna. Temporal verification by diagram transformations.
Technical report, Stanford University, 1996.

3. O. Grumberg and D.E. Long. Model checking and modular verification. ACM
Trans. Prog. Lang. Sys., 16(3):843-871, May 1994.

4. Y. Kesten, Z. Manna, and A. Pnueli. Temporal verification of simulation and re-
finement. In Proc. of the REX Workshop ”A Decade of Concurrency”, volume 803
of Lect. Notes in Comp. Sci., pages 273-346. Springer-Verlag, 1994.

5. L. Lamport. The temporal logic of actions. ACM Trans. Prog. Lang. Sys.,
16(3):872-923, May 1994.

6. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specifications. In Proc. 12th ACM Symp. Princ. of Prog. Lang.,
pages 97-107, 1985.

7. Z. Manna and A. Pnueli. Completing the temporal picture. Theor. Comp. Sci.,
83(1):97-130, 1991.

8. Z. Mannaand A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

9. Z. Manna and A. Pnueli. Models for reactivity. Acta Informatica, 30:609-678,
1993.

10. Z. Manna and A. Pnueli. Temporal verification diagrams. In TACS 94, Lect. Notes
in Comp. Sci. Springer-Verlag, 1994.

11. S. Safra. On the complexity of w-automata. In Proc. 29th IEEE Symp. Found. of
Comp. Sci., 1988.

12. S. Safra and M.Y. Vardi. On w-automata and temporal logic. In Proc. 21th ACM
Symp. Theory of Comp., pages 127-137, 1989.

Protocol Verification by Aggregation of
Distributed Transactions *

Seungjoon Park and David L. Dill

Computer Systems Laboratory
Stanford University
park @turnip.stanford.edu dill@cs.stanford.edu

Abstract. We present a new approach for using a theorem-prover to verify the
correctness of protocols and distributed algorithms. The method compares a state
graph of the implementation with a specification which is a state graph repre-
senting the desired abstract behavior. The steps in the specification correspond to
atomic transactions, which are not atomic in the implementation.

The method relies on an aggregation function, which is a type of an abstraction
function that aggregates the steps of each transaction in the implementation into
a single atomic transaction in the specification, The key idea in defining the
aggregation function is that it must complete atomic transactions which have
committed but are not finished.

We illustrate the method on a simple but nontrivial example. We have successfully
used it for other examples, including the cache coherence protocol for the Stanford
FLASH multiprocessor.

1 Introduction

Protocols for distributed systems often simulate atomic transactions in environments
where atomic implementations are impossible. We believe that this observation can
be exploited to make formal verification of protocols and distributed algorithms using
a theorem-prover much easier than it would otherwise be. Indeed, we have used the
techniques described below to verify safety properties of two significant examples: the
cache coherence protocol for the FLASH multiprocessor (currently being designed at
Stanford), and for a majority consensus algorithm for multiple copy databases:

The method proves that an implementation state graph is consistent with a speci-
fication state graph that captures the abstract behavior of the protocol, in which each
transaction appears to be atomic. The method involves constructing an abstraction func-
tion which maps the distributed steps of each transaction to the atomic transaction in
the specification. We call this aggregation, because the abstraction function reassembles
the distributed transactions into atomic transactions.

This method addresses the primary difficulty with using theorem proving for ver-
ification of real systems, which is the amount of human effort required to complete
a proof, by making it easier to create appropriate abstraction functions. Although our

* This research was supported by the Advanced Research Projects Agency through NASA grant
NAG-2-891.

301

work is based on using the PVS theorem-prover from SRI International [ORSvH95],
the method is useful with other theorem-provers, or manual proofs.

Although finite-state methods (e.g. [McM93, DDHY92]) can solve many of the
same problemnis with even less effort, they are basically limited to finite-state protocols.
Finite-state methods have been applied to non-finite-state systems in various ways,
but these techniques typically require substantial pencil-and-paper reasoning to justify.
Theorem-provers make sure that such manual reasoning is indeed correct, in addition to
making available the full power of formal mathematics for proof, so they can routinely
deal with problems that cannot yet be solved by any finite-state methods.

For our method to be applicable, the description must have an identifiable set
of transactions. Each transaction must have a unique commit point, at which a state
change first becomes visible to the specification. The most important idea in the method
is that the aggregation function can be defined by completing transactions that have
committed but not yet completed. In general, the steps to complete separate transactions
are independent, which simplifies the definition of this function. In our experience, this
guideline greatly simplifies the definition of an appropriate aggregation function.

The same idea of aggregating transactions can be applied to reverse-engineer a
specification where none exists, because the specification with atomic transactions is
usually consistent with the intuition of the system designer.

If the extracted specification is not considered as a complete specification, or is
not obviously correct, it can instead be regarded as a model of the protocol having an
enormously reduced number of states. The amount of reduction is much more than other
reduction methods used in model checking, such as partial order reduction, mainly be-
cause the reduced system is based on the only state variables relevant to the specification,
without variables such as local states and communications buffers.

The method described here has been successfully applied to the verification of
several protocols for distributed systems including the FLASH cache coherence proto-
col [KOH194, Hei93]. The FLASH cache coherence protocol, consisting of more than
a hundred different kinds of implemént steps, can be reduced to a specification with six
kinds of atomic transactions [PD96]. It is then simple to prove interesting properties of
the (much smaller) specification, such as the consistency of data at the user level.

Related work

The idea of using abstraction functions to relate implementation and specification
state graphs is very widely used, especially when manual or automatic theorem-
proving is used [Lyn88, 1L.S84] (indeed, whole volumes have been written on the
subject [dBdRR9Q]). The idea has also been used with finite-state techniques [Kur94,
DHWT91].

Ladkin, et al. [LLOR96] have used a refinement mapping [AL91] to verify a simple
caching algorithm. Their refinement mapping hides some implementation variables,
which may have the effect of aggregating steps if the specification-visible variables do
not change. Our aggregation functions generalize on this idea by merging steps even
when specification-visible variables change more than once.

A more limited notion of aggregation is found in [Lam82, Lam83], where a state
function undoes or completes an unfinished process. The method only aggregates se-

302

quential steps within a local process, while our method aggregates steps across dis-
tributed components. The idea of an aggregated transaction has been used to prove a
protocol for data base systems [PKP91], where aggregation is obtained in a local process
by showing the commutativity of actions from simple syntactic analysis.

‘Cohen used an idea similar to aggregation to prove global progress properties by
combining progress properties of local processes [Coh93]. The idea of how to construct
our aggregation function was inspired by a method of Burch and Dill for defining
abstraction functions when verifying microprocessors [BD94].

In the next section, the basic verification procedure is presented. To illustrate it,
we use a distributed list protocol which is a fragment of a distributed cache coherence
protocol. In section 3, the protocol is described and we explain how to construct an
aggregation function and prove that it has the necessary properties.

2 The verification method

The verification method begins with a description in higher-order logic of the state
graph of the implementation of a distributed computation, and a logical description of
the state graph of the specification.. The implementation description contains a set of
state variables, which are partitioned into specification variables and implementation
variables. The set & of states of the implementation is the set of assignments of
values to state variables. The description of the implementation also includes a logical
formula defining the relation between a state and its possible successors. The relation is
represented by a set of functions, F : 2979, each of which maps a given implementation
state to its next state. The implementation is nondeterministic if this set has more than
one function.

The description of the specification state graph is similar. A specification state is an
assignment of values to the specification variables of the implementation (implementa-
tion variables do not appear in the specification). Also, every state in the specification
has a transition to itself. We call these idle transitions. The idle transitions are necessary
for following implementation steps that do not change specification variables. We adopt
the convention that components of the specification are primed, so the set of states of
the specification is (', the set of functions is F’, etc.

The verification method is based on the usual notion of an abstraction function. The
function, which we call abs, maps implementation states to specification states and must
satisfy a commutativity property

VeeQ YN eF 3N €F :abs(N(g)) = N'(abs(g)). (1)

The most interesting part of the method is how the aggregation idea is used to define
this function.

The method relies on the notion that there is a set of transactions which the computa-
tion is supposed to implement, which are atomic at the specification level (meaning that
a transaction occurs during a single state transition in the specification), but non-atomic
at the implementation level. Indeed, the transactions in the implementation may involve
many steps that are executed in several different components of the implementation.
Formally, the transactions in the specification are the specification transition functions.

303

The method requires that each transaction in the implementation have an identifiable
commit point. Intuitively, when tracing through the steps of a transaction, the commit
point is the implementation step that first causes a change in the specification variables.
Implementation states that occur before the transaction or during the transaction but
before the commit point are called pre-commit states for that transaction. The transaction
is complete when the last specification variable change occurs as part of the transaction.
The states after the commit point but before the completion of the transaction are called
post-commit states for the transaction. A state where every committed transaction has
completed is called a clean state.

Formally, all of the above concepts can be derived once the pre-commit states are
known for each transaction. The post-commit states for the transaction are the states
that are not pre-commit; the commit point for an transaction is the transition from a
pre-commit state to a post-commit state for that transaction; and the completion point
is the transition from a post-commit state to a pre-commit state. A state is clean if it is
a pre-commit state for every transaction.

An aggregation function consists of two parts: a completion function which changes
the state as though the transaction had completed, and a projection which hides the
implementation variables, leaving only the specification variables.

Once a purported aggregation function has been defined, the user must prove that it
meets the commutativity requirement {1). The proof consists of a sequence of standard
steps, many of which are or could be automated?. The initial Vgand VN can be eliminated
automatically by Skolemization, which is substituting a new symbolic constant for g
throughout (when we Skolemize in this presentation, we will not change the name of
the quantified variable). This yields a subgoal of the form

(N € F)=3IN' € F : abs(N(g)) = N'(abs(q))- (2)

The set of implementation steps & will often be defined with a logical formula of
the general form3dp : N = N(p) VN = Na(p) V..., where p is a tuple of parameters
(perhaps ranging over an unknown number of components), and each N; is a different
kind of implementation step. Since the Jp is in the antecedent of an implication, it can
be Skolemized automatically, and the resulting disjunction can be proved by proving a
collection of subgoals

(N = Nj(p)) = 3N € 7' : abs(N(q)) = N'(abs(q)). (3)

The existential quantifier 3N’ can be eliminated by the user by manually substituting
the definition of the appropriate function for N’. Given j and p, the user must supply
proper instantiation j* and p’ such that the resulting subgoals

abs(N;(p)(9)) = Nj:(p')(abs(q)) (4)

are provable.
The number of subgoals is equal to the number of transition functions in the imple-
mentation. In most cases, the required specification step N/, (p’) is the idle step; indeed,

2 We base this comment on our use of the PVS theorem prover, but we believe the same basic
method would be used with others.

304

the only non-idle step is that corresponds to the commit step in the implementation. We
have no global strategy for proving these theorems, although most are very simple.

The above discussion omits an important point, which is that not all states are
worthy of consideration. Theorem (1) will generally not hold for some absurd states
that cannot actually occur during a computation. Hence, it is usually necessary to provide
an invariant predicate, which characterizes a superset of all the reachable states. If the
invariant is nv, Theorem (1) can then be weakened to

VeeQ YNeF AN €F :Inv(g) = abs(N(q)) = N'(abs(q)). (5)

In other words, abs only needs to commute when ¢ satisfies the Inv.

Use of an invariant incurs some additional proof obligations. First, we must prove
that the initial states of the protocol satisfy Inv, and second, that the implementation
transition functions all preserve Inv,

3 The Distributed List Protocol

We illustrate the concepts of the previous section-on a small but somewhat nontrivial
example, which we call the “distributed list protocol.” The protocol is an abstraction of
part of a multiprocessor cache coherence protocol, which maintains a singly-linked list
of processors which share a cache line.

The finite-state techniques we have applied do not scale especially well for this
protocol. We have tried explicit state methods (specifically our Mury verifier) with
techniques such as symmetry reduction, reversible rule reduction [ID96], and special
verification methods for parameterized families of protocols, as well as BDD-based
techniques. None of these methods has allowed us to verify systems with more than
about 5 list cells, because we do nothave a good way of compressing or abstracting states
containing linked lists. However, using the method described here, we have verified the
protocol for arbitrary or even infinite numbers of list cells.

3.1 The transactions of the protocol

The protocol maintains a circular, singly-linked list of list cell processes, called cells.
There is a special process called the head cell which is always in the list. Cells not in the
list may request to be added to the list, and cells in the list may request to be removed.
The cells communicate by sending messages over a network that is reliable, but does
not preserve the sending order of messages.

Every message used in the protocol has a field src that contains the index of the
sending cell, and a field dst that contains the address of the cell to which it was sent.
Additional fields, old and new, are used in some message types to hold the indices of
other cells.

Every cell has state variables for its control state, state, and the index of the next cell
in the list next. When a cell is not in the list, its next variable contains the index of the cell
itself. The next variable of each cell is a specification variable, because the list structure
is important for the correctness of the protocol. The variable state is an implementation

305

variable. There are also variables associated with the cells to hold messages that are in
transmission.

A cell, other than the head cell, can perform two types of transactions: add and
delete. There is an add; transaction and a delete; transaction for each cell 7 in the
protocol (i.e., if there are n cells, there are 2n transactions, not 2 transactions). In the
following, let ¢ be the index of the cell initiating the transaction.

An add transaction can occur when cell 7 is not in the list, and when the state of cell
1 is normal. The cell 7 will be added at the head of the list. The transaction consists of
three steps:

1. Cell 7 sends an add message to the head cell; cell ¢ changes its state to w_head
(“wait for head message”).

2. The head cell sends a head message containing the next value of the head cell to
cell . Then the head cell stores ¢ in its next variable.

3. When cell ¢ receives the head message, it stores the value in the message into its
next variable. Cell ¢ then changes its state back to normal.

The specification state variables consist of the collection of next pointers of the cells.
The add transaction in the specification inserts cell ¢ at the front of the list, updating the
next variables of the head cell and cell ¢ in a single atomic step.

The commit step for the add; transaction occurs in step 2, which is the first point
where a specification variable is modified (next of the head cell). Step 1 only modifies
implementation variables state and network, so it begins and ends in pre-commit states
for add;. The state between step 2 and 3 is a post-commit state. Step 3 completes the
transaction; it is the point where a specification variable changes for the last time in the
transaction, Hence, the state following step 3 is again a pre-commit state for add;.

The delete; transaction can occur when a cell’s next points to a cell other than ¢
(meaning ¢ is in the list) and its state is normal. The problem with deleting in a distributed
singly-linked list is that there is no easy way for cell ¢ to determine its predecessor in
the list, which is unfortunate since next of the predecessor must be changed to point to
the next of cell <.

The solution to this problem is to have another message pred which circulates
around the list at all times®. When cell i receives the pred message, it can determine
its predecessor by examining the src field of the message. So, the steps of the delete;
transaction are: '

1. Cell i changes its state to w_pred (“wait for pred message”).

2. When cell i receives a pred message, it sends a chnext message (“change next”) to
the source of the pred message which is usually the predecessor of 7 in the list. The
chnext message has i in its old field and the next of cell i in its new field. Cell ¢
changes state to w_delack (“wait for delete-acknowledgment™).

3. When a cell j receives the chnext message there are several possible cases. The
subtleties of these rules handle difficult scenarios, such as the predecessor deleting
itself and then being in the midst of adding itself again between cell #’s receipt of
the pred message and the receipt of the chnext message.

? There is another version of distributed list protocol, in which pred message is generated only
when necessary.

306

(a) If the state of cell j is not normal or w_pred, the chnext message remains in the
network (progress occurs when some other message arrives at cell 7).

(b) Otherwise, if the old field of the message matches the next variable of cell j,
the cell changes its next to be the new of the chnext message (next of 7).

Then cell j sends’'a delack message to cell 7 (src of the chnext message). Cell j
then sends a pred message to its next cell.

(c) Otherwise, cell j forwards the chnext message to its next cell. In this case, the
cell receiving the chnext message is the head cell and one or more new cells were
inserted at the head of the list while cell ¢ was being deleted, so the predecessor
of cell ¢ is now somewhere further down the list. The true predecessor will
eventually receive the chnext, causing the case (b) to occur.

4. When cell 7 receives a delack, it changes its next variable to ¢, and changes state to
normal.

The commit step of the delete; transaction is in case (b) of step 3 above. Step 3
may be repeated several times because of case (c) before a commit occurs, so a state
immediately following step 3(c) is a pre-commit state. Step 4 completes the transaction.

The specification handles the delete transaction atomicaily by removing cell ¢ from
the list in the obvious way: it sets the next of the predecessor of ¢ to the next of i, then
sets next of i to 1.

The pred message circulates around the list constantly except when it temporarily
disappears during processing of a chnext during a delete transaction, so each cell has
rules for propagating it. However, processing a pred message never affects a specification
variable, so there are no transactions associated with it. It is necessary to reason about
the processing of pred messages during the proof of invariants (discussed below), and
also for liveness properties (which are not discussed here).

The above description of the protocol traces through individual transactions. It is
easier to make sure that a description is complete if the behavior is described for each
component, not each transaction (and, indeed, the.above description is not complete).
Table 1 gives the rules of cell behavior in psendo-code on per-cell basis.

3.2 The aggregation function

Here, we define the aggregation function abs for the distributed list example. The key
question is how to complete all committed transactions in the current state, especially
since the number of cells, and hence the number of committed transactions, is unknown.
The general strategy, which has worked for our larger examples as well, is to define a
per-component completion function, which is then generalized to a completion function
for all of the cells in the system. This is possible because the post-commit steps of
different nodes are generally independent.

It is quite simple to complete a committed transaction for a particular cell. If a head
message destined for cell 7 exists, an add; transaction must be completed by simulating
the effect of cell 7 processing the head message it receives at the end of the transaction.
This processing changes next to point to the value new field in the message. Changes to
implementation variables, such as removing messages from the network, can be omitted
from the completion function, as they do not affect the corresponding specification state.

307

| Step | Condition | Action |
Initiate Add ||i#headptr A next[s}=1 Send add(src=1) to headptr
A state[z]=normal state[s] := w_head
Processadd ||add sent to headptr Send head(new=next[headptr}} to add.src
next(headptr] := add.src
Process head ||head sentto 1 next[:] := head.new
state[z] ;= normal
Initiate Delete |l:7headptr A nextf:]#s state[s] := w_pred
A state[z]=normal
Process pred ||predsentto if state[¢]=normal:

Send pred(src=i) to next[z]
if state[s]=w_pred:
state[:] ;= w_delack,
Send chnext{old=i, new=next[])

to pred.src

Process chnext||chnext sent to ¢ Send chnext to next[:]

A chnext.old#next[7]

A state[i)€ {normal,w_pred}
Process chnext||chnext sent to 1 next[z] := chnext.new

A chnext.old=next[i] Send delack to chnext.old

A state[i]€ {normal,w_pred} [Send pred(src=1) to chnext.new
Process delack||delack sent to 1 next[i] := 1, state[¢] := normal

Table 1. Formal Description of Distributed List Protocol: The action of a step is executed if
its condition holds. Each process consumes the message that triggers it. A message consists of
a record with fields src, new, old. When a message is created, we use m{f=a’} to denote that
message m has value o’ for its record field f: We use m.f to refer to the value of field fin message
m. State variables for cells are kept in arrays, state and next.

All of this computation is done solely in cell ¢, without the involvement or interference
of other cells. If there is a delack message for cell i, a delete; transaction must be
completed by setting next to i. Otherwise, the completion function does nothing.

It is easy to generalize the completion function for one cell to a completion function
for all of the cells because the completions do not interact. The global implementation
state is an array of cell state records, indexed by the cell indices. Let cc(g[i]) be a
completion function for cell 7, which modifies the state variables for 7 in the record g[i],
and returns a new record of the state variables as modified by the completion of the
transaction.

If cc(g[4]) completes committed transactions on cell i, the completion function for
all cellsis Ag.Ai.cc(g[¢]). When this function is supplied a state g, it returns Ai.cc(g[i]),*
which is an array of the completed cell states, i.e., the desired clean global state. The
aggregation function is simply the completion function, followed by a projection which
eliminates all implementation variables.

* The notation may be a bit confusing. Ai.cc(g[i]) is a function, which when applied to a particular
value of 1, say do, returns cc(g[40]), which is the completed state for cell 4. This is effectively
the same as indexing into an array of completed cell states.

308

3.3 Extracting specification

Reverse engineering of a specification can be illustrated on the distributed list protocol
(indeed, we had to do this). Given only an implementation description, the first step is
to identify the specification variables. In the distributed list protocol, we decided that
they were the next variables for the cells. The next step is to trace through a transaction,
concatenating the implementation steps, simplifying by substituting values forward
through intermediate assignments, and then eliminating statements that only change
implementation variables.

For an add; transaction in the protocol, the sequence of steps is “initiate add,”
“process add,” and “process head.” The result obtained by the procedure is

Atomic_Add(i): if ¢ # headptr A next[¢] = ¢ then
next[z] := next[headptr]; next[headptr] := 1.

Similarly, delete; transaction corresponds to the sequence of steps, “initiate delete,”
“process pred,” “process chnext,” and “process delack.” The atomic transaction obtained
by aggregation is

Atomic_Delete(c, 1): if i # headptr A next[i] # 1 A next[c] = ¢ then
next[c] ;= next[¢]; next[z] :=1.

With the two atomic transactions and idle steps in the specification, we instantiate
the subgoals (4) for each implementation steps. The propet instantiation for the proof is
shown in table 2.

[Implementation step at node i| Specification transactions |

Initiate Add £

Process add Atomic_Add(add.src)
Process head e

Initiate Delete €

Process pred €

Process chnext (Forward) €

Process chnext (Commit) Atomic Delete(i, chnext.old)
Process delack €

Table 2. Corresponding specification steps for impleméntation steps in the distributed list protocol

3.4 The invariant

The proofs of the subgoals (4) corresponding to each row in table 2 are simple. PVS can
handle them almost automatically. Among the eight subgoals, four have been proved
automatically for any state ¢. However, the rest of the subgoals need some assertions on
the state in the system to satisfy the commutativity property. The invariant consisting of
several assertions that we need to prove the subgoals is listed below.

309

e The head cell is always normai.

o If a cell is in normal or w_pred state, there is no add message from the cell, delack
message to the cell, or chnext message with old field equal to the cell.

o If there is an add message from or head message to a cell 7, then the next of the cell
is1.

¢ In a chnext message, the next of the cell contained in the old field of the message
must be the same as the new field of the message.

e There is at most one message in the network for each transaction currently in
progress, and there must be no more than one pred message in the network.

The only manual step occurs when proving subgoals of the form (Vj : Inv(j)) =
Q(i), where 7 is a cell index, which requires eliminating the V;j by substituting 7 for j to
obtain Inv(i) = Q(4), which can be handled automatically.

Part of the reason that the proof is simple is that we have chosen to represent the
network in a non-obvious way. We observe that there is at most one message pertaining
to any particular transaction at any time. So the network can be represented with one
variable per cell (sometimes associated with the source, sometimes with the destination),
plus a single variable for the pred message. Hence, instead of proving that there is only
one message of a certain type in the network for cell ¢ at any time, we register an
error whenever a message in a variable for the network is about to be overwritten, and
verify that no error occurs. The description can read a message by accessing the variable
instead of choosing one and removing it from a set of messages, which is a bit more
difficult to deal with in PVS. It is possible to use similar tricks in the other examples we
have done, including the large FLASH protocol.

4 Concluding Remarks

Although, aggregation as described can be applied to many protocols, we have only
tried a few. It may need to be generalized (and many generalizations are conceivable).
We have not considered the important problem of proving liveness properties here.
We do not expect that it will prove to be particularly difficult, however.
From this and many other efforts, it has become clear that finding invariants the
most time consuming part of many verification problems. More computer assistance is
needed, especially for large problems.

Acknowledgments

We would like to thank Sam Owre and Natarajan Shankar at SRI International for their
help with PVS system.

310

References

[AL91] Martin Abadi and Leslie Lamport. The existence of refinement mappings. Theoreti-
cal Computer Science, 82:253-284, 1991,

[BD94] Jerry Burch and David Dill. Automatic verification of pipelined microprocessor
control. In Computer Aided Verification, 6th International Conference, CAV’94,
pages 6880, June 1994.

[Coh93] Emest Cohen. Modular progress proofs of asynchronous programs. PhD thesis,

University of Texas at Austin, 1993.

[dBdRR90] J. de Bakker, W. de Roever, and G. Rozenberg, editors. Stepwise Refinement of

Distributed Systems. Models, Formalisms, Correciness.: LNCS 430. Springer-Verlag,
1990.

[DDHY92] D. Dill, A. Drexler, A. Hu, and C. Yang. Protocol verification as a hardware design

aid. In International Conference on Computer Design: VLSI in Computers. IEEE
Computer Society, 1992.

[DHWTS1] D. Dill, A. Hu, and H. Wong-Toi. Checking for language inclusion using simulation

[Hei93]
[ID96]

[KOH*94]

[Kur94)
[Lam82]
[Lam83]
{LLOR96]
[LS&4]
[Lyn88]}

[McM93}

relation. In Computer Aided Verification, 3rd International Workshop, pages 255—
265, July 1991.

Mark Heinrich. The FLASH Protocol. Internal document, Stanford University
FLASH Group, 1993. .

C. Norris Ip and David Dill. State reduction using reversible rules. In Proceedings
of 33rd Design Automation Conference, June 1996,

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and
J. Hennessy. The Stanford FLASH multiprocessor. In Proc. 21st International
Symposium on Computer Architecture, pages 302-313, April 1994.

Robert Kurshan. Computer-Aided Verification of Coordinating Processes: The
Auwtomata-Theoretic Approach. Princeton, 1994,

Leslie Lamport. An assertional correctness proof of a distributed algorithm. Science
of Computer Programming, 2:175-206, 1982,

Leslie Lamport. Specifying concurrent program modules. ACM Transactions on
Programming Language and Systems, 5(2):190-222, April 1983.

P. Ladkin, L. Lamport, B. Olivier, and D. Roegel. Lazy caching: An assertional
view. Distributed Computing, 1996. To appear.

S. Lam and A. Shankar. Protocol verification via projection. IEEE Transactions on
Software Engineering, 10(4):325-342, July 1984,

N. Lynch. I/O automata: A model for discrete event systems. 'In 22nd Annual
Conference on Information Science and Systems, March 1988. Princeton University.
Ken McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
Boston.

[ORSvH93] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for faulit-

[PD96]

[PKP91]

tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering, 21(2):107~-125, February 1995.

Seungjoon Park and David Dill. Verification of FLASH cache coherence protocol
by aggregation of distributed transactions. In Proc. 8th ACM Symposium on Parallel
Algorithms and Architectures, June 1996,

D. Peled, S. Katz, and A. Panueli. Specifying and proving serializability in temporal
logic. In Proc. 6th Annual IEEE Symposium on Logic in Computer Science, pages
232-244, July 1991.

Atomicity Refinement and Trace Reduction Theorems

E. Pascal Gribomont
Institut Montefiore, Université de Liege, Sart-Tilman B 28, B-4000 Liége (Belgium)
gribomondmontefiore.ulg.ac.be

Abstract. Assertional methods tend to be useable for abstract, coarse-grained
versions of concurrent algorithms, but quickly become intractable for more real-
istic, finer-grained implementations. Various trace-reduction methods have been
proposed to transfer properties of coarse-grained versions to finer-grained versions.
We show that a more direct approach, involving the explicit construction of an
(inductive) invariant for the finer-grained version, is theoretically more powerful,
and also more appropriate for computer-aided verification.

1 Introduction

Recents improvements in methods and tools for testing the validity of proposi-
tional and predicate logic formulas have revived the interest in assertional methods
for concurrent system verification. Indeed, at least as far as safety properties are
concerned, Hoare’s logic and Dijkstra’s predicate transformer calculus reduce the
correctness problem for programs to the validity problem for logical formulas.

However, as soon as loops occur in programs, creativity is needed to discover
appropriate invariants. This task is reasonably feasible for coarse-grained, abstract
concurrent systems, but often becomes intractable for fine-grained, reasonably effi-
cient implementations.

A standard technique is to deal first with a coarse-grained version of the system
to be verified, and then to attempt (in a more or less formal way) to adapt the
conclusion to a finer-grained implementation of the system. This is called atomicity
refinement. In this paper, we compare two frequently used techniques for atomicity
refinement, from both theoretical and practical point of view.

The problem solved by these techniques is as follows. Some concurrent system
has been proved correct with respect to some safety property. Some statement is
replaced by an equivalent sequence of more elementary statements. Due to possible
interference between processes, this atomicity refinement is not always correct. How
can such a refinement be validated (or disproved)? Let us consider a two-process
system S, where the (cyclic) concurrent processes are

~ Loop(51;82) and Loop(Ty;T2)
There is some initial condition A and some safety property J, validated with some
invariant I. Otherwise stated, there is an assertion I such that A = I, I = J,
and, for each state o satisfying 7, if any of the transitions Si, S2, T; and T> can be
executed from state o, then the resulting state p also satisfies 7. As a consequence,
any S-computation whose initial state satisfies A reaches only states satisfying J.

Now we replace a transition, say T3, by an equivalent sequence, say T’; T" (tran-
sition T5 can lead from state o to state o9 if and only if sequence T; T can lead
from o) to ¢3). The question is, is the new system S’ still correct w.r.t. the safety
property J ?

There is clearly no problem with primary S’-computations, such that any execu-
tion of T” is immediately followed by an execution of T”, without interference from

312

Sy or S;. Let us call B the assertion which holds in all states but those “between”
some execution of 7’ and the corresponding execution of T". It is clear that J still
holds in relevant states (those satisfying B), that is, that B = J remains true
throughout the computation.

Now, let us consider the general case where some execution(s) of S; and 5,
take(s) place between an execution of T and an execution of T", for instance

S1; 11,7, 852, T, T 81; T3 823 S, T . .
It is not always the case that B = J remains true throughout the computation.

The irace reduction method guarantees that B = J remains a safety property,
provided that T’ is a right-mover, i.e., the following holds: if (T”; S;) can lead from
some state o to some state p, then {51;7") can also lead from ¢ to p, and the same
with Sy replaced by S,. (Instead of requiring 7" to be a right-mover, we can require
T" to be a left-mover.) This method is of easy application and has led to successful
non-trivial designs; it is especially useful to convert centralized concurrent systems
into distributed ones. The drawback is that the method is not complete; some
correct atomicity refinements cannot be validated that way.

The invariant adeptation method consists in finding some invariant I’ of 8
which reduces to [in every relevant state. This method is complete in the fol-
lowing sense: if J is a safety property of S that remains true in all relevant states
of 8', then adequate invariants I and I’ exist. The knowledge of I is a big help for
the construction of the adapted invariant I’, but this construction often turns to be
a complicated task nevertheless.

A usual policy for validating atomicity refinements is therefore to try the trace
reduction method first, and, only in case of failure, to try the invariant adaptation
method. The purpose of this paper is to show that success cases for the reduction
method always are elementary cases for the invariant adaptation method, whereas
some elementary cases for the invariant adaptation method are still failure cases
for the reduction method. As a result, it might be better to use only the invariant
adaptation method, especially for computer-aided design/verification.

The paper goes on as follows. An abstract framework for atomicity refinement is
introduced in Section 2, where the trace reduction method is presented as a special
case of the invariant adaptation method. Both methods are compared in a more
general way in Section 3, where success cases for the trace reduction method are
proved to correspond to cases of easy invariant adaptation. Section 4 shows that a
failure case for the reduction method can turn to be an easy case for the invariant
adaptation method. Section 5 is a conclusion and mentions related works.

2 Theorems about atomicity refinement

We introduce an abstract framework for atomicity refinement and show that, from
the theoretical point of view, the trace reduction method is a particular case of the
invariant adaptation method. More specifically, we recall the main theorem about
trace reduction and give a theorem connecting the invariant of a system before and
after the atomicity refinement. The former appears as a mere corollary of the latter.

313

2.1 Relational notation

Let R and S be binary relations on a non-empty set I', and let y € 'and AC I.
The following notation is used in the sequel.

1r =4 {(7,7):7v€T}, (identical relation),
R;S =aes {(7,8): 3p[(7,p) € R A (p,6) € S]}, (sequential composition),
RO =4ef 1p, Rl =def (Rn;’R), R* =g Un>0 R™, (iteration, closure),
TR =aes {6:(7,6) € R}, AR =¢er Upen PR, “(set of successors, postset) .

Comments. A binary relation on I is simply a subset of I" X I". The notation YRé usually
stands for (v,8) € R. The sequential composition R;S is also noted S o R. Note that
ARS == A(R;S). An element <y is an R-predecessor of § if § is an R-successor of 7, that
is, if (,6) € R.

2.2 Abstract transition systems

An ebstract transition system [18, 28] is a couple Ats = (I, {R;,...,R,}) where
I' is a non-empty state space and where {R;,...,R,} is a finite non-empty set of
actions, i.e., binary relations on I". A state is an element v € I'. A predicate is a
subset AC I

Comment. Predicates are usually represented as assertions, so we will write v = A
(“v satisfies A”, “A is true at 7”) instead of v € A. Similarly, we write ~A, AAB and AVB
instead of I'\A, AN B and AU B, respectively. An assertion C is valid if the corresponding
set is I'; we write |= C instead of (Vy € I') (y |= C); the inclusion A C B therefore becomes
k= (A = B). Last, the successor set AR and the reachability set AR* are modelled by
the assertions sp[A4;R] (“strongest postcondition”) and sin[A; R] (“strongest invariant”)
respectively.

An (Ats, A)-traced computation, or simply a traced computation, is a sequence
C= (707T17717T27' cosTmy Ymy - - ')y

where 7o = A and, for all 7 > 0, 7; is an Ats-action (a member of {Ri,...,R,})

such that ~;_;7;7i. The underlying sequence of states C, is a computation, and the

sequence of actions C, is a trace. Assertion A is the initial condition.

Comments. The union of a set of actions is an action, so the abstract transition system

(I;{R1,...,Ra}) can be replaced by (I, {R}), where R =4y U:, Ri, without changing

the set of computations; a sequence C, = (v,) is a computation if y; is an R-successor

of vi—1, for all ¢ > 0. A computation can be finite if it reaches a state without successor.

An Ats-invariant, or simply an inveriant, is a predicate I such that every
successor of every state satisfying I also satisfies I; this is denoted {I} R{I}, or
{I} Ats {I}, or = (sp[I;R] = I). An (Ats, A)-safety property, or simply a safety
property, is a predicate J such that, for every computation C; = (y0,m1,...), if
Yo k= A4, then v, = J for all n.!

! In our framework, the connection between Hoare’s logic and Dijkstra’s calculus is simple :
expressions {A}S{B}, = (sp[4;8] = B) and |= (4 = wlip[S;B]) are equivalent. A
useful property of sp {and wip) is monotonicity. If Ry € Rz and |= (A1 = A3), then
= (splA1; R1] = splAs; Rs)). Similarly, if |= (42 = 41), R2 € Ry and |= (B, = Bs),
then {Al}Rl{Bl} implies {Az}Rz{Bz}

314

If = (A = I) and if I is an invariant, then I is necessarily a safety property, but
it should be emphasized that the converse is not true: safety properties usually
are not invariants. For instance, if Ats is a correct mutual exclusion algorithm,
the assertion J which expresses mutual exclusion is a safety property but is not an
invariant. :

Comment. With the restrictive definition given above, a computation C can be checked
for some safety property by considering only isolated states, and a safety” property is
simply (modelled by) a subset of I'. Safety properties can be defined in a more general
way [1] and modelled by subsets of I'"* (I'* denotes the set of finite sequences of states).
However, it is always possible, at least theoretically, to include all the preceding states in
any state of the computation, so the restriction is not essential: any information about
a computation prefix (7o,...,7n) can be retrieved from the state .. In practice, special
auxiliary variables, called history variebles, are used for that purpose.

The following classical result (an early reference is [9]) asserts the completeness
of the invariant method and states the connection between invariants and safety
properties.

Theorem. The system (I, {R}) satisfies the safety property J for the initial condi-
tion A if and only if an invariant I exists such that k= [(4A = I) A (I = J)).

Sketch of proof. The strongest possible choice for I is sin[A4; R}, i.e., the set of states
that can be accessed from A (in finitely many computation steps). This predicate
represents the set of R*-successors of all states satisfying 4; it is an invariant, so J
is a safety property if and only if |= (sin[4; R] = J). O
Comment. Invariant are inductive safety properties, which can be proved by an induction
argument. The standard technique for proving a {non-inductive) safety property is to con-
struct a stronger, inductive one (i.e., an invariant). A similar situation frequently occurs in
number theory. If some property P(n) of natural numbers cannot be proved by induction,
it is sometimes possible to discover a stronger property }(n) that can be proved by induc-
tion. Invariants are also named stable properiies, e.g. in [6], where the word “invariant”
refers to a stable property satisfied in some specified set of initial states.

2.3 Atomicity refinement: the abstract framework

Let A, B be predicates on I', and let Old = (I',{S,R}), New = ([,{81,52,R})
be two abstract transition systems. Condition A is the initial condition, and B is
the refinement condition. States satisfying B are called relevant states; those not
satisfying B are transient states. We assume the following conditions:

. E(A4=B)

. Sj-successors of relevant states are transient states;
. relevant states have no Ss-successor;

. Sp-successors of transient states are relevant states;
. transient states have no S;-successor;

R-successors of relevant states are relevant states;

. R-successors of transient states are transient states;
. § = &;; 8, (sequential consistency).

e R« O I N e

315

These conditions® guarantee that, in any New-trace, actions S) and S, appear
strictly in turn, and that S; appears first. Predicate A is the initial condition of
both Old and New (only computations whose initial state satisfies A are of inter-
est). Predicate B is the refinement condition, which is true in relevant states and

false in transient states. Let C = (v9,71,71,72+- - - sTms Ym,---) be a New-traced
computation (so r; € {S1,82, R}, for all 7). A state ~yx is relevant if $; and Sz occur
equally many times in the trace prefix P = (ry,...,rx); otherwise, v; is transient

(and &; occurs one more time than S; in P).

Comments. We assume the existence of an atomicity refinement condition B. The simplest
and most frequent case of atomicity refinement is the replacement of a transition (%o, S, #1)
by (£o, S1,m) and {(m, Sa, 1), where 51;S; is “sequentially equivalent” to S and where m
is a new label. The natural choice for the refinement condition is B =4,y —at m (the
control does not lie at control point m, between S; and S2). However, we also require that
0Old and New share the same state space I', and therefore the same assertion language.
To ensure this, we assume that the new location predicate at m already existed in the
old assertion language, even if no state satisfying it could be reached. Any assertion J
about Old, in particular the initial condition and the invariant, will be (maybe implicitly)
rewritten as J A —at m.

A New-trace is primary if every occurrence of S is immediately followed by an
occurrence of S;. For most practical purposes, primary New-traces can be assimi-
lated to Old-traces. The idea underlying trace reduction theorems is that, provided
some hypotheses are satisfied, every New-trace has an equivalent New-primary
trace, so New itself is equivalent to Old. The problem is, the stronger the equiv-
alence notion, the stronger the required hypotheses. As a result, several trace re-
duction theorems have been proposed, with more or less restrictive hypotheses and
equivalence notions.

2.4 Theorems

The trace reduction method allows to assert that some properties of Old-computa-
tions are preserved in New-computations. Even with restricting to safety properties,
one cannot hope that all of them are preserved. For instance, with the notation
of § 2.3, the refinement condition B is an (Old,A)-safety property (and also an
Old-invariant) but cannot be a {New,A)-safety property since B is false in any
transient state. However, if some hypothesis is satisfied, any Old-safety property J
gives rise to the New-safety property B = J. Otherwise stated, safety properties
are preserved in relevant states, but nothing is known about transient states. Such
a result is useful when J is trivially true in transient states, i.e., when =B = J
is valid. This is a very frequent case; for instance, 2-process mutual exclusion and
partial correctness are expressed by assertions that trivially hold in transient states,
since critical states and final states (if any) always are relevant states.

The preservation theorem for safety property is an old result, originating from
the ideas of 18] and [26]. The first formal presentation is probably [12]; [19] and [23]
contain more results about atomicity refinement and the trace reduction method.

2 Conditions 2 to 8 can be expressed as {B}&:1{~B}, {B} S2{false}, {~B}S;{B},
{~B} 81 {false}, {B}R{B}, {~B}R{-B}, and sp|X;S] = sp[sp[X;S51};S;] for
all X, respectively. Two useful corollaries are {true}S1 {~B} and {true}S.{B}.

318

A definition is introduced first :
Definition. A relation R; right-commutes with a relation R, (and relation Ry
left-commutes with relation R;) if R;;R; C Ry Ry.

Theorem 1. If Old, New, A and B are as introduced in § 2.3, if J is a predicate
on I' and if S; right-commutes with R, then B = J is a (New, A)-safety property
if and only if J is an (Old, A)-safety property.

Proof of theorem 1. The “only if” part is trivial. A direct proof of the “if” part
is given in [12] and [23]; it is also a corollary of theorem 2 given below. o

Comment. Theorem 1 has a dual version, where requirement S; right-commutes with R
is replaced by Sz left-commutes with R.

In order to compare the trace reduction technique and the invariant adaptation

technique, we specify the connection between Old-invariants and New-invariants,
when the reduction hypothesis holds.
Theorem 2. If Old, New and B are as introduced in § 2.3, if I is a predicate on I
such that = (I = B), and if §;; R € R;S; (that is, S right-commutes with R),
then predicate I V sp[I;S;] is a New-invariant if and only if I is an Old-invariant.
Proof of theorem 2. Let & be the predicate I V sp{I;S1]. We first assume that &
is a New-invariant, and observe that & A B is 1. (Indeed, formula & A B re-
duces to (I V sp[I;&]) A B, ie., to (I AB) V (sp[l;81] A B), and the second
disjunct is identically false.) From {#} R {&} and {B}R {B}, we therefore deduce
{I} R{I};from {®} S {®}, {®} S2 {$} and {true} S» {B} we deduce {6} S1; s {F}
and {B} &1;S: {B}, and then {I} S;;S; {I}, therefore {I} S {I}. As {I} R {I} and
{I} S {1} both hold, I is an Old-invariant.

We now assume that I is an Old-invariant. In order to prove that & is a New-
invariant, we check separately the triples {6} & {#}, {$} 52 {€} and {$} R {&}.

1. From the triples {I} S {sp{l; 511} and {sp[I;S:]} 81 {false}, we deduce
{I v splI; 511} S1 {splI; S1] V faise}

2. {B} Sz {false} and {sp[[; 1]} S; {I} lead to {B V sp[I; 5]} S {I V false}

3. Since sp is monotonic, we get from the reduction hypothesis S;;R C R; 81
splI; (S1; R)] = splI; (R; 81, ie., {sp[l;&]} R {sp[sp[; R]; S1]}
We have also {I} R {I}, hence {IV splI; 1]} RA{I v splspll; R]; S:1]}

In every case the precondition is weaker than & and the postcondition is stronger,
so the three required triples follow by monotenicity. (For the third postcondition,
observe that sp[l; R] = I, hence sp[sp[I; R}; S1] = splI; S1}.)

Comment. Let ¥ be the strongest New-invariant which is implied by 7, that is, the predi-
cate sin[]; (RU51 US2)). A state <y satisfies ¥ if and only if there exists a New-computation
{(yn 1 n=0,1,...) such that v |=] and 7 = - for some k > 0. As & is a New-invariant
implied by I, we have |= (¥ => &); besides, k= ($ = W) also holds, since any state v
satisfying & can be chosen as an initial state of computation (if v }= I} or reached in a
single step (if v |= sp{/;S81)). This gives an interesting operational interpretation to the
reduction hypothesis: every reachable transient state can be reached from some relevant
state in exactly one step.

Comment. Here is the dual version of theorem 2. If Old, New and B are as introduced
above, if I is a predicate on I" such that |= (I = B), and if Sz left-commutes with R,

317

then predicate I V wlip[S»; I] is a New-invariant if and only if I is an Old-invariant. The
operator wlp (weakest liberal precondition) is defined as follows: v | wip[R;J] if and
only if every R-successor of v satisfies J. Although the computation of wip[Ss; I} can
be easier than the computation of sp[I; S}, we prefer to use the latter, which leads
to a stronger New-invariant; as a program invariant is a formal description of its
behaviour, the stronger is usually the better.

We can now show that, when the reduction hypothesis holds, the connection be-
tween the safety properties of Old and New is a mere consequence of the connection
between the invariants of Old and New.

Proposition. The “if” part of theorem 1 is a corollary of theorem 2.2

Proof. If J is an (Old, A)-safety property, then, due to the completeness of the
invariant method, there exists an Old-invariant [such that = (4 = [) and = (I =
(B A J)).* If S, right-commutes with R then (theorem 2), & =45 (I V sp[I;S1))
is a New-invariant. Besides, it is easy to check® = (I = &), = (A = &), and
E= (= (B = J)); as a result B = J is a logical consequence of an (initially true)
invariant, and therefore a (New, 4)-safety property. O
Comment. The fact |= (® = (B = J)) will be useful later.

3 Trace reduction technique vs. invariant adaptation

In paragraph 2.4, the invariant adaptation method has been used to justify the
trace reduction method. In this section, we would like to show that the invariant
adaptation method can replace the trace reduction method. We will first show that,
when an atomicity refinement can be validated by the trace reduction method, it
can as easily be validated by the invariant adaptation method. Afterwards, we show
that validation by invariant adaptation may happen to be tractable even when the
reduction hypothesis is not satisfied.

3.1 The easy case of atomicity refinement

The data of the atomicity refinement problem are I', S, S;, Sz, R, Old, New, A
and B, satisfying the 8 conditions stated in paragraph 2.3. Furthermore, we suppose
that J is an (Old, A)-safety property, validated by an Old-invariant . The question
is to determine whether B = J is a (New, A)-safety property.

If we use the trace reduction technique, we have to verify that the reduction
hypothesis S1;R C R;S; holds. Theorem 2 asserts that a byproduct of this verifi-
cation is the fact that & =g4¢s (I V sp[l;S1]) is a New-invariant. This fact alone is
sufficient to validate the refinement (last comment of § 2.3). So, instead of checking
whether the reduction hypothesis holds, we can check whether & is a New-invariant.
In fact, we can do a bit less, as indicated by the next theorem.

Theorem 3. The assertion & is a New-invariant if and only if the assertion sp[l;Si]
is R-invariant, i.e., if the triple {sp{l;$1]} R {sp|I; S1]} holds.

3 Recall that the “only if” part of theorem 1 is trivial.

* Recall that B characterizes relevant states, and therefore is a safety property of Old;
transient states appear only in New-computations, '

% Just consider separately the cases where B is true and where B is false; indeed, ¢ can
also be written as (B = I) A (=B = sp[[;S1]).

318

Proof. Let us recall first that the assertion & reduces to I when B holds (relevant
states) and to sp|l; S;] when —B holds (transient states). As a result, ¢ is a New-
invariant if and only if the following triples hold :
1L{IYR{I}, 2. {I}S:1{sp[I; 51}, 3. {splI;1]}S2{1}, 4. {splI; S1]}R{sp[I; S1]} .
Triple 2 is a tautology and triples 1 and 3 express that I is an Old-invariant, so
with this hypothesis triple 4 holds if and only & is a New-invariant. a
Comment. Validity of triple 4 is a weaker condition than the reduction hypothesis (theo-
rem 2); furthermore, its verification can be easier. Indeed, the reduction hypothesis holds
if and only if the implication

splP; (S1;R)] = splP; (R;S1)]
holds for each assertion P, whereas triple 4 can be rewritten in

sp{l; (S;;R)] = spll; &1,

i.e., an implication that must be true only for one specific assertion.
The conclusion is, when the trace reduction technique applies, the invariant adap-
tation technique also applies, with no more verification work.

3.2 The general case of atomicity refinement

The trace reduction technique might fail to validate a correct atomicity refinement,
since this technique takes all states into account, even unreachable ones. (A notion
of contezt has been introduced in [2] to deal with this problem.)

However, the invariant method might be useful even when theorem 2 does not
apply. To investigate this, we have the following general theorem, which can be
seen as a completeness theorem for atomicity refinement. It states that an atomicity
refinement is correct if and only if some formula is an invariant.

Theorem 4. If Old, New and B are as introduced above, and if [is an Old-
invariant such that k= (I = B), then B = [is a (New, I)-safety property if and
only if formula $* =4e (I V sp[l;{S1;R*)]) is a New-invariant.
Comment. Even when B => [is a (New, I)-safety property, it is usually not inductive; it
is therefore not a New-invariant, but only the logical consequence of some New-invariant.
Comment. If $1; R C R;S1, then formula &* reduces to & =g4¢ (I V sp[I; 1]}
Proof of theorem 4. If B = [is a (New, I)-safety property, then any reachable
relevant state satisfies . Let 4 be a reachable transient state; there exist n > 0 and
a traced computation prefix

C =dgef (70,51, 7Ry %Ry, Ry Yai1)
such that v k= I and Ya+1 = 7. As a result, v k= sp[l;(81; R™)] and therefore
v |z ¢*. Any reachable state satisfies #* and, clearly, any state satisfying &* is
reachable; so &* is the set of reachable states, and therefore an invariant.
Conversely, if #* is an invariant, it is also the set of reachable states, so all relevant
reachable states satisfy $* A B, that reduces to . t
Theorem 4 can be the basis of a complete technique for validating atomicity refine-
ments, but the problem is, computing sp[/; (S1;R*)] is not easy in general.

We can now outline a more general comparison between trace reductxon and
invariant adaptation. Some notation is introduced first.

Tn =des spll;{S1;R™)],
Un =der Vicn Ti-
U* =qef ViZOT

319

The sequence (Uy,) is monotonic (U, = U,4, holds for all n). An atomicity refine-
ment is correct (theorem 4) if and only if I vV U* is a New-invariant. A (correct)
refinement is stationary if U* reduces to U, for some n. The preceding theorems
imply that the trace reduction method works only if Uy = U*; even then, the no-
tion of context introduced in [2] may be needed. The invariant-based technique is
¢omplete but, in practice, the computation of U* is likely to be intractable, except
when U* reduces to U, for a small value of n. Three cases are of special interest :

1. U* reduces to Uy and the trace reduction method does work.

2. U* reduces to Uy and the trace reduction method does not work {except when
contexts are used).

3. U is weaker (i.e., greater) than Uy, and U* reduces to Uy; the trace reduction
method does not work, but the invariant method remains tractable.

Case 2 is briefly illustrated in paragraph 4, where an example of case 3 is also men-
tioned.

3.3 Computer-aided verification

CAVEAT [16] is a tool for invariant validation. It also supports atomicity refinement,
in so far only sp-calculus is used to produce invariant candidates Uy and U,. The
practical bottleneck is that atomicity refinement induces quick size growing of the
invariant, and therefore of the verification conditions. The general form of these
conditions in CAVEAT is (h; ...h,) = ¢, and the validation module becomes very
slow when n is big. A possible solution is to rank the hypotheses h,, ..., h, according
to their relevance to the conclusion e. Typically, very few hypotheses are really
relevant, and even an elementary ranking program can speed up the validation
process. Preliminary results are reported in [17].

4 Applications

When some requirements are satisfied, it is possible to solve (approximately) a
fixpoint system of equations (e.g., on the domain of real numbers) like

z = f(z,y)
{y = g(z,9))

in a concurrent way, using two processes X and Y and two boolean variables h.
and h,, initialized to true [5, 11]. The processes are:

Process X Process Y
while (he V hy) do while (hz V hy) do
if.’l)ﬁf(.’l?,y) ifyﬁg(x,y) (2)
then h, := false then h, := false
else z := f(z,y); else y := g(z,y);
(hzyhy) = (true, true) (hzyhy) = (true, true)

The system terminates when both h, and h, are false; we would like that, on
termination, both conditions e; =gef (z ~ f(z,¥)) and ey =45 (y =~ g(z,y)) are
satisfied.

320

In the coarser-grained version, there are only two transitions (and a single lo-
cation for each process, say Xy and Y; respectively). The transitions executed by
process X are

(Xo, (he VRy) A ey — hg = false, Xo),
(Xo, (hz Vhy) A mez — (z,hg,hy) = (f(z,y), true, true) , Xq).

Comment. The relevant effect of the statement z := f(z,v) is to assign unknown boolean
values to both conditions e, and e,.

An appropriate invariant of this coarse-grained version is (hs Vez) A (hy V ey).
This formula is true initially (since h, and h, are both true) and respected by all
transitions (h, and hy become false only when e, and e, are true, respectively,
and every time z or y is touched, both variables h, and h, become true again). On
termination, the invariant reduces to e; A ey,

As a first atomicity refinement, we split the “else” part of process X, i.e., we

replace
(X0, (ha Vhy) A mex — (z,hs, hy) == (f(z,y), true, true) , Xo).
by
(XC" (h‘z Vhy) A T T T I= f(mwy)v Xl)a
(X1, (heyhy) := (true, true), Xo).

It is not possible to apply the reduction principle, since z := f(z,y); ¥ = g(z,7)
and y := g(z,y); = := f(z,y) may lead to distinct states; similarly, (he,h,) =
(true, true), in process X, and hy := false (in process ¥) do not commute either.
Nevertheless, the refinement is correct. To see this, we compute the first terms of
the sequence (77,) introduced in paragraph 3.2. ‘

The data are:

Ip:at Xo ANat¥y A (he Ver) A (hyVey)
81 : (Xﬂv (hw Vhy) A €y T I= f(xsy)v Xl)’
R:R:URy, where :
Re =aer (Yo, (ha Vhy) A ey — hy = false, Yp),
Ry =ger (Yo, (ha V hy) A mey — (y,he,hy) = (g9(z,y), true, true), Ys).

For n = 0, the disjunctive term T}, =g sp[I;(S1; R™)] reduces to Ty = sp[lp; Si],
ie.
at Xy ANatYs A hy.
For n = 1, the disjunctive term sp[ly; (S1; R™)] reduces to 71 = sp[lo; (51; R)], and
further to sp(sp{lo; S1); Re] V splspllo; S1]; Ry, that is
at X1 A at Yy A hy A [(ey A-hy) V Ry,
which further results in
at Xy A at ¥y A he A (ey V hy).
As T is stronger then Ty, there is no need to compute further terms; \/ T', reduces
to Tp. An acceptable invariant is now Iy =4, (fp V Tp), which can be simplified
into
[(haVer) AN{hyVey) V(at Xy A hs).
This is an instance of case 2, since U* reduces to Uy
Symmetrically, if the “else” part of of process Y is split, then the invariant is
adapted into

321

[(he Vez) A (hy Ve,V (at X1 A hs) V (at Yy A By).

A generalized version of algorithm (2) exists, which involves n processes and
allows the distributed solution of n-equation systems. However, the validation of
atomicity refinements becomes more complicated, and involves several instances of
case 3 (see [14] for details).

Comment. It should be emphasized that, for specific concurrent systems, easier validity
proofs can be found for atomicity refinements. This paper is concerned only with the
systematic techniques, applying to a broad class of concurrent systems.

5 Conclusion and related work

Two widely used methods for the validation of atomicity refinements have been
compared. It is known for a long time that the invariant adaptation method is com-
plete whereas the trace reduction method is not, but also assumed that, in some
cases, the trace reduction method is easier to use. This assumption turns to be false
and, as far as safety properties are concerned, the invariant-based method has defi-
nite advantages. Especially, many refinements encountered in classical examples are
correct but outside the scope of the trace reduction techniques. Note, however, that
the trace reduction method might still be useful to prove properties like termination
and freeness of individual starvation; besides, other reduction methods (relying not
only on traces) have been proposed.

The trace reduction technique has been successfully used especially in the area
of (deterministic) parallel programming {2, 4]. The invariant adaptation technique
is used e.g. in [10, 20]; a systematic presentation is [15]. Incremental construction
of invariants, using approximation sequences like (U,), originates from [8, 7, 29].
Systematic approaches are [21] and [14].

Our main goal in this paper was to validate the decision made in CAVEAT, where
the trace reduction method is not implemented (we plan to rely on invariant adap-
tation only). The program notation used in CAVEAT and in this paper is classical
and allows for a convenient version of the reduction theorem and related results.
From the theoretical point of view, however, these problems are better investigated
at a more abstract, purely semantical level. An adequate framework for doing this
is Lamport’s TLA (Temporal Logic of Actions). In this formalism, both statements
and assertions are represented as logical formulas; this leads to elegant and general
formulations of results which, like the reduction theorem and other refinement theo-
rems, involve more than one version of a program [22]. (TLA is also appropriate for
more practical problems, especially in program specification; see [22, 25] for more
details.) As pointed out by reviewers, the construction of the invariant of the refined
version of a concurrent system in terms of the invariant of the reduced version can
also be achieved in TLA, at a purely semantic level, as reported in an unpublished
working paper [24]. The form given in the present paper (theorem 2) relies only
on the elementary predicate transformer sp, and not on the higher-level predicate
transformers win and sin used in [24], which cannot be implemented easily as such.

Acknowledgment. It is a pleasure to thank Yih-Kuen Tsay for improving the
demonstration of theorem 2, and for a careful and critical reading of the manuscript.

322

References

1

2.

10.
11.
12.
13.
14.
15.
16.

17.
18.
19.
20.

21.
22.
23.
24.
25.
26.
27.
28.

29.

. B. Alpern and F. Schneider, Recognizing safety and liveness, Distributed Computing

2 (1987) 117-126.

R.-J. Back, A Method for Refining Atomicity in Parallel Algorithms, Lect. Notes in

Comput. Sci. 366 (1989) 199-216.

. R.-J. Back and R. Kurki-Suonio, Decentralization of Process Nets with Centralized
Control, Distributed Computing 3 (1989) 73-87.

. R.-J. Back and R. Sere, Stepwise Refinement of Parallel Algorithms, Sci. Comput.
Programming 13 (1990} 133-180.

. E. Best, A Note on the Proof of a Concurrent Program, Inform. Processing lett. 9,
pp- 103-104, 1979

. K.M. Chandy and J. Misra, Parallel Program Design : A Foundation (Addison-Wesley,

Reading, MA, 1988).

. E.M. Clarke, Synthesis of Resource Invariants for Concurrent Programs, ACM Trans.

Programming Languages Syst. 2 (1980) 338-358.

. P. Cousot and R. Cousot, Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints, Proc. 4th ACM
Symp. on Principles of Progr. Languages (1977) 238-252.

J.W. De Bakker and L.G.L.T. Meertens, On the Completeness of the Inductive As-
sertion Method, JI. of Computer and Syst. Sci. (1975) 323-357.

E.W. Dijkstra and al., On-the-Fly Garbage Collection: An Exercise in Cooperation,
Comm. ACM 21 (1978) 966-975: .

E.W. Dijkstra, Finding the Correctness Proof of a Concurrent Program, Lect. Notes
in Comput. Sci. 69 (1979) 24-34.

T.W. Doeppner, Parallel Program Correctness Through Refinement, Proc. {th ACM
Symp. on Principles of Progr. Languages (1977) 155-169,

E.P. Gribomont, Synthesis of parallel programs invariants, Lect. Notes in Comput.
Sei. 186 (1985) 325-338.

E.P. Gribomont, Stepwise refinement and concurrency : the finite-state case, Sci. Com-
put. Programming 14 (1990) 185-228.

E.P. Gribomont, Concurrency without toil ; a systematic method for parallel program
design, Sei. Comput. Programming 21 (1993) 1-56.

E.P. Gribomont and D. Rossetto, CAVEAT : technique and tool for Computer Aided
VErification And Transformation, Lect. Notes in Comp. Sci. 939 (1995) 70-83.

E.P. Gribomont, Préprocessing for invariant validation, submitted to AMAST 96.
R.M. Keller, Formal Verification of Parallel Programs, €. ACM 19 (1976) 371-384.
Y.S. Kwong, On reduction of asynchronous systems, Th. Comp. Sci. 15 (1977) 25-50.
L. Lamport, An Assertional Correctness Proof of a Distributed Algorithm, Sci. Com-
put. Programming 2 (1983) 175-206.

L. Lamport, win and sin: Predicate Transformers for Concurrency, ACM Trans. Pro-
gramming Languages Sysi. 12 (1990) 396-428.

L. Lamport, The Temporal Logic of Actions, DEC SRC Report 79, 1989.

L. Lamport and F.B. Schneider, Pretending Atomicity, DEC SRC Report 44, 1989.
L. Lamport and F.B. Schneider, The Reduction Theorem, unpublished TLA note,
available on http://www.research.digital.com/SRC/t1a/notes himl, 1992,

L. Lamport and al., Introduction, papers and notes about TLA, available on
http://www.research.digital.com/SRC/tla/ .

R.J. Lipton, Reduction: A method of proving properties of parallel programs, Comm.
ACM 18 (1975) T17-721.

G.L. Peterson, Myths about the mutual exclusion problem, Information Proc. Leit.
12 (1981) 115-116.

J. Sifakis, A unified approach for studying the properties of transition systems, The-
oret. Comput. Sci. 18 (1982) 227-259.

A. van Lamsweerde and M. Sintzoff, Formal derivation of strongly correct concurrent
- programs, Acta Inform. 12 (1979) 1-31.

Powerful Techniques for the Automatic
Generation of Invariants

Saddek Bensalem'*, Yassine Lakhnech? **, and Hassen Saidi 1***

! VERIMAG, Miniparc-Zirst, Rue Lavoisier 38330 Montbonnot St-Martin, France.
% Institut fiir Informatik und Praktische Mathematik Christian- Albrechts-Universitit
zu Kiel, Preulerstr. 1-9, D-24105 Kiel, Germany.

Abstract. When proving invariance properties of programs one is faced
with two problems. The first problem is related to the necessity of prov-
ing tautologies of the considered assertion language, whereas the second
manifests in the need of finding sufficiently strong invariants. This paper
focuses on the second problem and describes techniques for the automatic
generation of invariants. The first set of these techniques is applicable on
sequential transition systems and allows to derive so-called local invari-
ants, i.e. predicates which are invariant at some control location. The sec-
ond is applicable on networks of transition systems and allows to combine
local invariants of the sequential components to obtain local invariants
of the global systems. Furthermore, a refined strengthening technique is
presented that allows to avoid the problem of size-increase of the consid-
ered predicates which is the main drawback of the usual strengthening
technique. The proposed techniques are illustrated by examples.

1 Introduction

Model checking [17, 4, 13, 20] is by now a well-known method for proving prop-
erties of reactive programs. The main reason for its success is that it works fully
automatically, i.e. without any intervention of the user. The price to pay for this
feature is that it can only be applied on finite-state, or restricted classes of infinite
state, programs.

On the other hand, there exist deductive methods to prove safety properties
of reactive programs. These methods are based on a proof rule which can be
formulated as follows. To prove that some given predicate P is an invariant of a
given program S, i.e. that every reachable state of S satisfies P, it is necessary
and sufficient to find a predicate @ with the following properties: 1.) Q is stronger
than P, 2.) Q is preserved by every transition of S, i.e. for every states s and ¢,
if s satisfies @ and s’ is reachable from s by a transition, then also s’ satisfies
@, and 3.) Q is satisfied by every initial state of S. The predicate Q is called
auziliary predicate.

* Bensalem@imag.fr, Currently visiting the Computer Science Laboratory, SRI
International
** yl@informatik.uni-kiel.de
** Saidi@imag.fr

324

Although, this rule is sound and (relatively) complete, it provides only a
partial answer to the verification problem of safety properties. For it leaves open
(i) how to find the auxiliary predicate @ and (ii) how to prove that @ is preserved
by every transition of S and satisfied by the initial states. Problem (ii) is related
to the problem of proving tautologies of the underlying assertion language.

In this work, we describe techniques for automatically generating auxiliary
predicates. We present the following strategies:

— Generalized reaffirmed invariance: This applies to transitions for which the
value of the guard and of the expressions occurring on the right hand side
of its assignment are not changed by the transition itself, i.e. they have the
same value before and after the transition. This is more general than the one
called reaffirmed invariants in [15, 14].

— Propagation of invarianis: This technique allows to propagate an assertion
that holds whenever control is at some fixed control location to other control
locations. We consider two instances of this technique. The most general one
allows to propagate even in the presence of loops. Again our technique is
applicable in cases not covered by the propagation techniques presented in
e.g. [15, 14]. .

— Refined sirengthening: One of the most used techniques for strengthening
invariants is by calculating the weakest (liberal) precondition [6] w.r.t. the
considered invariant and taking it as a conjunct. A drawback of this method
1s that it increases the complexity of the considered predicate, and hence, after
few steps its application leads in many cases to unmanageable predicates. We
present a refined version of this method that allows to attenuate the blow up
caused by applying this useful strengihening method.

— Combining Invariants: This method allows to combine invariants developed
separately for the components of a given network Si || - - - || Sp of transition
systems to an invariant of the global system.

All predicates that can be generated by these strategies are proved to be invari-
ant by construction. The use of these techniques for various mutual exclusion
algorithms shows that they are promising. For instance, in case of the Bakery
algorithm [12, 15], which is an infinite-state program, we generate an invariant
that is sufficiently strong to prove the required property.

It is also important to note that these techniques are local in the sense that, in
order to apply them, they do not require the full transition system to satisfy some
restrictions, but rather subsets of control locations and variables are required to
satisfy some condition.

The problem of automatically construcéing invariants from program descrip-
tion has been intensively investigated in the seventieth leading to results reported
in e.g. [11, 9, 3, 7]2. Here, we present results which are to our knowledge new or
extensions of existing ones. Other interesting recent results are reported in [2].

These techniques represent an important component of a tool which is be-
ing developed to support the computer-aided verification of safety properties of

8 This list of references is far from being exhaustive. See [15] for other references.

325

reactive programs. Here, we give a brief description of this tool (See [10] for a
detailed discussion). It consists of the following components:

— Front-end: The front-end takes as input a description of a transition sys-
tem written as a program in a simple programming language and a predicate
to be proved as invariant of the described transition system. Then, it pro-
duces a PVS-theory [16] that mainly contains the verification conditions to
be proved. The front-end analyses also the program and generates a file con-
taining information needed tc decide, for each control location, whether some
invariant generation procedure can be applied.

—~ Automatic Invariant Generation: This is a module that contains pro-
cedures implementing several invariant generation techniques. In this paper,
we present some of these techniques.

— Proof Manager: The user can try to prove that P is an invariant fully
automatically. In this case, the system tries to prove that P is inductive, that
is, P is preserved by each transition of the program. In case of success, this
is reported to the user. Otherwise, the system tries to prove the invariance of
P using predicates which are obtained by calling some invariant generating
procedures. These predicates are guaranteed to be invariant by construction.
In case the system is unable to prove the invariance of P, it may either do
some strengthening or enter the interactive modus and requires the user’s
guidance. This choice is made by the user.

— PVS is the theorem prover developed at SRI [16]. It is used during the
automatic- as well as interactive proof procedure to discharge the verification
conditions.

2 Transition Systems and Invariance Properties

We assume an underlying assertion language A that includes first-order predicate
logic and interpreted symbols for expressing the standard operations and relations
over some concrete domains. We assume to have the set of integers among these
domains. Assertions (we also say predicates) in A are interpreted in states that
assign values to the variables of A. Let L denote the set of states. Given a state
s and a predicate P, we use the notation s |= P to denote that s satisfies P, and
use [P] to denote the set of states that satisfy P. Henceforth, we identify P and
its characteristic set [P]. '

Definition1. A transition system is a structure S = (X, pc : DC, T, Init}, where

— X is a finite set {1 : Dq,...,z, : Dy} of typed data variables. Each variable
x; ranges over data domain D;. We assume that the variables in X form a
subset of those in .A.

— pc is a control variable (or program instruction counter). It ranges over the
finite domain DC. We assume that pc & X.

— T'is a finite set of transitions. A transition ¢ is characterized by a quadruple
(pc = d,9(Y), 2’ = e(U),pc’ = d')*, where Y,Z,U C X. The variables in

* Z’ can be empty; this is the case when no variable is affected

326

Z are called the variables affected by transition ¢, and we denote by sour(t)
(resp. tan(t)) the value d (resp. d'). These definitions are easily generalized to
sets of transitions. Given a transition ¢ = (pc = d, ¢(Y), Z' = e(U), pc’ = '),
and states s and ¢, s is called ¢t-successor of s, denoted by s —; s, if the
following conditions are satisfied: 1.) s satisfies the enabledness condition
pc=dAg(Y) of transition t and 2.) s’ satisfies s'(z) = ei(s(U)), for each
2 € Z, s'(x) = s(z), for each = withz ¢ Z, and s'(pc) = d'.

— Init is of the form I(X) A pc = do. The conjunct I(X) specifies the initial
condition on data variables, whereas pc = dg specifies the initial value of the
control variable. We call I the initial predicate of S and dy its initial control
location. '

A transition system generates a set of sequences of states. Since we are only
interested in invariance properties, we only consider finite sequences. A finite
sequence o = sg,- -, 8, Of states is called compuiation of S, if sg satisfies Init
and, for every ¢ € {0,...,n — 1}, there exists a transition ¢ in T" with s; —¢ 5;41.

To define the semantics of the parallel construct, we define the product of two
transition systems. Let S; = (X;, pe; : DCy, T3, Init;), for ¢ = 1,2, be transition
systems. The product of S; and S, denoted S; &) 52, is a transition system
{X,pe: DC, T, Init), where

— X = X; U Xy is the set of program variables.

— pe ranges over DC = DCY x DCs.

— A transition (pc = (dy,d3), 9(Y), Z' = e(U), pc = (d}, ds)) is in T iff either
e (pc1 =dy,g(Y),Z' =e(U),pc) =d}) €Ty and dy = dy or
o (pcg =ds,g(Y),Z' = e(U),pch =dy) € T and d} = d;.

—Init=L AL Apec= (dl,O: dzyo), where Init; = I; Ape; = di,o, fori=1,2.

Then, the set of computations of Sy || Sz is defined to be that of Sy @) Ss.

Invariance Properties We consider a class of properties, named invarience prop-
erties (cf. [15]). Intuitively, a property P is an invariant of a transition system S,
if in each state of the systern S this property holds. In other words, each state
that is reached during a computation of S satisfies P.

DefinitionZ2. A state s is called reachable (accessible) in the transition system
S, if there exists a computation sp, - - -, s, of S such that s, = s. We denote the
set of reachable states by Reach{S). A predicate P is called invariance property
of S (or invariant of S) iff Reach(S) C [P]. For d € DC, we say that P is an
invariant of S at d, if PV —(pc = d) is an invariant of S.

Next, we briefly recall the basic idea for proving invariance properties of pro-
grams. This idea underlies many proof rules formulated in different settings
(e.g. [8, 1, 15]). To do so, we recall the definition of some predicate transformers.

Definition3. Given p C X x X, the predicate transformers pre[p|, pre(p], and
post[p] are defined by pre[p](P) = {s € £ |35’ € P-(s,5) € p}, pre[p](P) =
—pre[p](—P), and post[p](P) = {s' € £' | s € P - (s,5') € p}

327

Thus, pre[p](P) is the set of predecessors of P by p, post[p](P) is the set of succes-
sors of P, and pre[p](P) is the set of states which either do not have successors by
p or all their successors are in P. Note that the pre[p] and post[p] are the weakest
liberal precondition and strongest posicondition predicate transformers [6].

The main principle used in the literature for proving that a predicate P is an
invariant of a system S, consists on finding an auziliary predicate () such that 1.)
Q is stronger than P, 2.) every initial siale satisfies @, and 3.) Q is inductive,
i.e. for all transitions t € T, we have [Q] C pre[—(Q), or equivalently, post[—,
Q) C [Q1.

This proof rule is unsatisfactory because it does not tell us how to find the
auxiliary predicate Q). Finding @} is often the hard part in the proof of invariance
properties.

In the next section, we present a set of techniques that, given a transition
system S and a predicate P, automatically generate an auxiliary predicate that
is by construction an invariant. In some cases, the generated predicate is strong
enough to prove that P is an invariant.

3 Automatic Generation of Auxiliary Predicates

In this section we present some of the strategies for deriving auxiliary predi-
cates we implemented in our tool. We concentrate on strategies which are to our
knowledge new or extensions of strategies presented in other works (e.g. [9, 11,
15, 14, 2}). The auxiliary predicates derived using our strategies are proved to be
invariant by construction.

Generalized Reaffirmed Invariance without Cycles We begin with a strategy that
can be applied to a control location d to derive an invariant under the assumption
that all transitions that lead to d satisfy some restrictions we define below. This
is a generalization of the reaffirmed invariance strategy presented in [15, 14].

Let § = (X, pc : DC, T, IApc = dy) be given. For @ C DC, let L(a) denote the
set of transitions ¢ with {an(¢) € «. Thus, L(a) is the set of transitions changing
the value of the control variable to a value in a. We write L(d) instead of L({d}).

Consider a transition t = (pc = di, ¢(Y), Z' = e(U),pc’ = d), withZNU = §.
Then, for every states s and &', if s —; s’, then s'(Z) = e(s'(U)) and s'(U) =
s(U). This suggests to take the predicate Z = e as invariant at d.

To formulate the general case, given a transition ¢ as above, we denote by
aff(t) the predicate Z = e(U) and by gu(t), the guard g(Y). Let, for d € DC,
Asss(d) =\ (gu(t)Aaff(t)),ifd # do;and IV \ (gu(t) A affit)), if d = do,

‘ teL(d) teL(d)
where I is the initial predicate of § and dj its initial control location.

Lemmad4. Let S be a given transition system with Init = I A pc = dy and
let D C DC be such that for each d € D and transition (pc = dy,9(Y),Z' =
e(U),pc’ = d) in L(d) we have ZN (Y UU) = §. Then, for each d € D, the
predicate Asss(d) is an invariant of S at d.

We can actually formulate a strategy that generalizes the one above by relaxing
the condition ZN (Y UU) = . Let Ass’5(d) be defined as in Figure 1. Then, for
each d € DC, Ass's(d) is an invariant of S at d. Henceforth, let aff-indep denote

328

[V (gu(t)Aaf(t)) ;ifd#doand ZN(YUU)=8
t€L(d)
IV '\ (gut)Aaff(t));ifd=doand ZN(YUTU) =0
. tel(d)
V ef(¥) sifd#do, ZNU =0and ZNY #6
teL(d)
Asss(d)y =< IV '\ aff(t) sifd=do, ZNU=0¢and ZNY #40
tEL(d)
V gu(?) iifds#do, ZNY =B and ZNU #£40
teL(d)
Iv 'V gu?) sifd=do, Z2NY =Pand ZNU £ 6
teL(d)
| true ; otherwise

Fig. 1. Definition of 4ss’(d)

the function that for a given transition system S returns as result the predicate
Naep pe = d = Ass's(d).

Generalized Reaffirmed Invariance with Cycles Consider the situation described
in Figure 2. Then, function aff-indep yields the predicate £ = 2V y = 1 as
invariant at d. It is easy to see, however, that the stronger predicate z = 2 is also
invariant at d. We develop a technique that extends the previous one and covers
situations similar to that of Figure 2.

RGO O=Y

Fig. 2. Generalized Reaffirmed Invariance

A path from d to d' in S is a sequence dy,t1, -, tp—1,dy With n > 2, d; = d,
and d, = d. We say that a path dy,t1, -, tn_1,d, from d to d' goes through d”,
if d; = d”, for some i € {1,---,n}.

Definition5. Given a transition system S, a control location d of S, and a set
o of control locations of S with d € «. We say that « is guarded by d, if the
following conditions are satisfied:

— The initial control location of S is not in « or it is d.
— For every transition t € L(a) \ {d}, sour(t) € .
— Each path from d to d' € a goes only through control locations in a.

Let Tr(S, a,d) denote the set L{a)\ {t |t € L(d), sour(t) & a}.

Ezample 1. Consider the system S given in Figure 3, where dg is the initial con-
trol location. Then, oy = {dy, ds, ds, ds,d5} and ag = {d1, ds, d5} are guarded by
di, while ag = {d;, ds, d4,d5} and a4 = {dy, da, d3} are not because the second re-
spectively third condition are violated. We have Tr(S, oy, d1) = {t1,%2, 3,14, 15,16}
and TT(S, ag, dl) = {t4,t5,t5}.

Definition6. Given a transition system S and d € DC. We say that d is safe
with respect to a set V of variables and a set « of control locations, if o is guarded
by d and for every t € TS, @, d), ¢ does not affect any variable in V.

Then we have the following lemma.

Lemma 7. Consider a iransition system S, a conirol location d, a sel a of conirol
locations, and a set V of variables such that d is safe w.r.t. V and «. Let S’ denote
the transition system obtained from S by removing the transitions in Tr(S, o, d).
For every predicate Q with free variables V, if Q is an invariant of S’ at d, then
Q s an invariant of S at every d' € a.

The lemma above suggests a procedure to derive an invariant aff-cyc(S) from the
description of the transition system S: For each d € DC', determine a maximal set
« of control locations for which d is safe with respect to the variables affected by
transitions in {t | ¢t € L(d), sour(t) & a}; in case d is the initial control location,
we have to check also w.r.t. the free variables of I. If this is the case, record
Ass',(d), where S’ is as above, as an invariant of S at d’ for each d' € ¢,
otherwise, record Ass’s(d) as an invariant of S at d.

Remark. 1. A possible variant of the algorithm aff-cyc concerns the case where
the initial control location is considered. Instead of requiring that d is safe
w.r.t. the free variables of I, we hide those which could be affected by some
transition in Tr{S, e, d) by existential quantification.

2. Clearly, determining the maximal set a which is guarded by d and then check-
ing whether d is safe w.r.t. this set and the variables affected by transitions
in {t |t € L(d), sour(t) ¢ o} does not always allow to derive the strongest
possible predicate. One can, however, have a procedure which depends on
some given set V of variables and which computes the maximal set « such
that d is safe w.r.t. V and a.

3. Until now we considered a single transition system S and aff-cyc has been
formulated for this case. When n transition systems Sj || - - - || S, in parallel
are considered, we have to strengthen the notion of d being safe w.r.t. a set V'
of variables and a set « of control locations; and require that all variables in V'
are only written by the system S; to which d belongs. Henceforth, whenever
we refer to aff-cyc when a parallel program is considered, we mean the
algorithm obtained by strengthening this notion and taking into account the
variation suggested in 1.

Next, we present a technique that allows to propagate predicates that have been

proved to be invariant at some control points of the system, i.e. for some value
of pc. We first start with the basic idea.

Propagation without cycles Given a transition system S, a predicate Q with V
as free variables and a transition ¢ of S, we say that transition ¢ does not affect
Q,if ZN'V = @, where Z are the variables affected by ¢.

330

Consider a transition system S and a control location d € DC which is not
the initial one. Let {di,---,dn} = sour(L(d)) and assume that, for each i €
{1,---,n},Qi(Vi)is an invariant of S at d;. If foreach t € L(d)and i € {1,---,n},
with sour(t) = d;, ¢ does not affect Vj, then \/I_, @(Vi) is an invariant at d.
For the case where d is the initial control location, \/i_; @(Vi) V I, where I is
the initial predicate, is an invariant at d. The correctness of this observation is
guaranteed by the following lemma.

Lemma 8. Consider a transition system S and a predicate P that is an tnvariant
of S. Let d € DC be a control location of S with L(d) = {t1,-+-,tm} end d; =
sour(t;). Let also Q1,---,Qm be predicates such that P A pc = d; implies Q;,
withi=1,---,m. If d is not the initial control location of S, then the predicate
PA(l=d= VL post[—:])(@:)) is an invariant of S, otherwise PA(Il=d =
(Viz, post[—:.J(Q:) VI)) is an invariant of S.

Note that in case that transition ¢ does not affect @, we have post|—}(Q) = @,
and therefore, the correctness of our technique is implied by the lemma above
and the fact that if P’ is an invariant of § and P’ implies (', then ¢ 1s also an
invariant of 5.

The implementation of this technique 1s a function, denoted propg, that takes
as input a transition system S and a predicate P of the form Ay pope=d =
Qa(V?"). Then, computes for each control location d, the set of varables affected
by any transition in L(d). Let V4 denote the intersection of this set with V. As
result, this function yields, for each conirol location d, as a local invariant at d
the predicate Qd(V’) ATV, Qd/ (Vi) .

IE[
Propagation with cycles Con51der now the situation described in Figure 4. An
application of the simple propagation technique does not allow to strengthen the
predicate /\;11 pc = d; = z = i. For, we would add as a conjunct the predicate
pc = d = true V \/[., ¢ = ¢, which is equivalent to true. Yet, it is clear that
Vie, & = i is an invariant at d. We develop the next technique which captures
similar situations.

Fig. 4. Propagation with cycles

Consider a control location d and a set a of control locations which is guarded
by d. Let {dy,---,dm} = sour(L(d)) \ a. Then, if for each i = 1,---,m, Qi(Vi)
is an invariant of S at d; and if d is safe w.r.t. U:’:ﬂ V; and «, we can conclude
by Lemma 7 and Lemma 8 that \/[_; Q:(V;) is an invariant at each d’ € o.

Mizing generalized reaffirmed invariance end propagation Until now we consid-
ered propagation and reaffirmed invariance separately. Whereas propagation as-
sumes a given invariant P and propagates local invariants from control locations

331

to others, reaffirmed invariance does not assume such a predicate. We now present
a technique that combines propagation and reaffirmed invariance.

Consider a transition system S and an invariant P of S. Let d be a control
location of S such that {t,- - tm} = L(d) and d; = sour(t;), for i = 1,---, m.
Suppose that for each i = 1,---,m, P A pc = d; implies Q;(V;). If, for each
transition #; and each j with d; = sour(t;), Qi(Vi) implies e(U;) = C; and
Z; N V; = 0, where Z;' = e(U;) is aff(t;) and C is a list of constants, then we
can conclude that \/:’_‘__1 (Qi(Vi) AZ; = C;) is invariant at d. Correctness of this
observation is again a consequence of Lemma 8 and Lemma 8.

Refined Strengthening Suppose we are given a proposed invariant P for transition
system S with transitions 7'. Suppose also that the proof of P = pre[—](P)
fails for t1,--,tm. The method of strengthening invariants (e.g. [15]) proposes
to try as mext invariant Py = P A AL, pre[—4,](P). Thus, one has to try to
prove for each transition ¢ the implication P A Q@ = prée[—(P A Q), where
Q = A%, pre[—])(P). The main drawback of this method is that, in general,
each strengthening step increases the size of the considered invariant which in
some cases leads to unreadable predicates.

We propose a variant of this method that is theoretically equivalent, i.e. it
leads to logically equivalent verification conditions, but which allows to reduce
the number of applications of pré and to save redoing proofs.

Suppose that the attempt of proving Vt € T' - (P = pre[—](P)) fails for the
transitions ¢, - - -, im, and that one gets subgoals Q1, -, Qm, which are logically
equivalent to P = pre[—,](P),i = 1,- - -, m. We propose to take in the next step
the predicate P{ = PA /\z —1 @i instead of P;. The next lemma implies soundness
of our method but also proves that if P is inductive, then also Pj.

Lemma9. Let Py = PAALL, pre[—:,)(P), Q; be equivalent to P = pre[—,](P),
and let Pl = PA N, Qi. Then, Py and P{ are equivalent.

It is worth to note that soundness of our method does not depend on the fact
that Q; is equivalent to P = pre[—,[(P) but it suffices, if it is stronger.

To see that our method indeed avoids the blow-up of the considered pred-
icates which is due to the repeated application of the predicate transformer
pre, let us look at the predicates to be considered at step 7 when each of the
strengthening and refined strengthening methods are applied in turn. In case
of the strengthenlng method, one has to consider at step ¢ the predicate P; =
Py Apre(Po) A ---pre’(P;—1) and to prove P; = pre(P;). In case of the refined
strengthening method, however, one has to consider the predicate Q; which is
obtained as a subgoal in step %, and then, to prove Qg A --- A Q; = pre(Q;).
Thus, in the refined strengthening method, at each step pré has to be applied
only once. Another advantage of this method is that Q; is usually of the form
pc = d = @ which can be explained by the fact that Q; is the predicate that is
obtained when the proof of QoA ---A Qi1 = pre(Q;—1) for some fixed transition
with pe = d as part of the enabling condition has been attempted. Now, when a
predicate @ of the form pe = d = @' is considered in order to prove that Q is
preserved by all transitions, it suffices to consider only those in L(d).

332

Combining Invariants Consider a network S = Sy || --- || Sp of transition sys-
tems. Given a predicate P, in order to prove that P is an invariant of S, one can
calculate the product S;) - - - &) S, and then prove that P is an invariant of the
resulting sequential transition system. This method is, however, not applicable
for large transition systems because of the big size of the obtained system. In-
deed, the resulting transition system mainly codes all possible interleaving of the
transition steps in the network S. In this section, we present techniques we use to
prove invariance properties of networks without calculating the product. These
techniques have been successfully applied to many mutual exclusion algorithms,
e.g. the Bakery mutual exclusion algorithm [12, 15] in three different versions and
Szymanski’s mutual exclusion algorithm [18, 19] both parameterized and for two
processes.

Definition10. Given a transition system S, a predicate P is called history-
independent assertion at d € DC, if post[t](true) C [P] holds for each t € L(d),
and moreover, if d is the initial control location of &, then Init implies P.

An history-independent assertion at d is true whenever computation reaches d
independently on how this happens, in particular it does not dependent on the
state in which the transition is taken. :

Consider transition systems S5y and Sy with S; = (X;, pe; : DC;, T;, I; Ape; =
d; o), for i = 1,2. Moreover, consider predicates @;, for ¢ = 1,2, and (dy,d2) €
DC; x DCy. Assume we know that @; is an history-independent assertion at d;.
Then, we can conclude that @; V Q3 is an invariant of Sy || Sz at (dy,d2). This
leads to the following heuristic formulated in the next lemma.

Lemma 11. Let S; = (Xi, pe; : DC;, Ti, I; Ape; = d; o), fori = 1,2, be transition
systems and let Q; be predicates. Then, for each (d1,d3) € DCy x DCy such that
Q: is an history-independent assertion of S; at d;, for i = 1,2, the predicate
Q1 V Qg is an invariant of Sy || S2 at {dy, d3).

If the predicates @; and > constraint only variables which are affected only
in Sy, respectively, Sp, then we can even conclude that the stronger predicate
Q1 A @2 1s an invariant at (dq,d3).

The implementation of both observations above is realized by a single function
comp which takes as arguments the transition systems S; and S; as well as
two predicates P; and P, for S5 and Ss, respectively, which are of the form

A pc =d; = P(d;), i = 1,2. The result of the application of this function
d; EDC;
is a predicate of the form A pc=d = Q(d), where DC = DC) x DC3 and for
deDC

d = (dy,ds), Q(d) is defined in Figure 3.

Remark. It is worth to note that each invariant ¢ obtained by applying the
function aff-indep is history-independent.

In a concrete implementation, the predicate obtained by an application of the
function comp, can be encoded by adding to each local invariant P;(d;) at d; two
bits. The first one encodes whether P;(d;) is history-independent and the second
whether it refers to a variable affected in S; with j # <.

333

Py(d1) V Po(dz) ;if for i = 1,2, P;is an history-independent assertion atd:
and one of the predicates P; or P refers to a variable
affected in S, respectively Si

Q(d) = Pi(di) A Py(d2) ; if for i = 1,2, Piis an history-independent assertion at d;
and predicate P; respec. P, does not refer to any variable
affected in S, respec. S;
true ; otherwise

Fig. 5. Definition of comp

The next lemma shows how given d; € DC; and a predicate @ that is history-
independent at d}, we can deduce a predicate Q' which is also history-independent
at d; and which does not refer to variables affected in S; with j # i.

Lemmal2. Let S; and Sy be transition systems and let dy € DC; (resp. dy €
DC) be a control location of Sy (resp. S2). If Q is a history-independent assertion
at d and Y are the variables occurring in Q which are affected in Sy (resp, Si),
then Y - Q is a history-independent assertion at d.

Clearly, the predicate 3Y : D -) does not refer to variables affected in S;. Let
abst be a function that takes as arguments two transition systems S; and S; and
a predicate P for S;, and returns a predicate @ for S; such that @ is obtained
from P by applying the observation above.

Next we present the tactic we apply to synthesize an invariant from a given
network S; || S2. This is presented by an algorithm written in pseudo-code and
which uses the heuristics presented above.

Input: S; || Sz

Output: An invariant
1. P;:= aff-indep(S:); for 1 = 1,2
2. P:= comp(51 , 52, P, Pz)
3. Q1 := abst(S1, 52, P1), @z := abst(Sz, 51, P»)
4. Qi := Q; Apropg(5;,Q;), fori=1,2
5. return PA Q1 A Q-

4 Example

The example we consider is the Bakery mutual exclusion algorithm [12, 15]. Two
processes are competing to enter their respective critical sections represented by
location 4. Thus, the invariant we are going to prove is given by the predicate
INV = =(pey =4 Apey =4).

It can easily be checked that this invariant is not inductive. Moreover, cal-
culating the set of reachable states using the post operator does not terminate
(no fix-point can be reached in a finite number of steps). Calculating the weak-
est invariance property that is contained in INV does terminate after 8 steps
(cf. [14]). We can automatically generate by our techniques an invariant that is
inductive and that allows to prove that INV is indeed an invariant.

334

Transition system S
pc1 =1-—>pci =2
per=2-—yi =y2+1,pc; =3
pe1 =3A(y2 =0V <y2) — pey =4
pcr =4 —pcy =5
“per=5— gy =0,pci =1 pea=5—yy =0,pcz =1
Init ={y1 = y2 =0 Apcy = pea = 1)

Transition system S,

pez=1— pcy =2

por=2— gy =y1+1,pcz =3

pe2 =3A{y =0Vyr <y1)—pch =4
pea =4 —pcy =5

Applying generalized reaffirmed invariance without cycles for S; (resp. S) yields
the predicate P; (resp. Py) with:
P=(per=1=2yp =0V =0Ap=0)A (paa=3=m =y +1)A

(per =4= 12 =0Vy < y2)
Pz:(p62=1=>y2 =0Vuy =0Ay2=0) A (p62 =3==>yg=y1+1)/\

(pe2=4=y1=0Vy2 <)

Combining the predicates P; and P» according to function comp results in a

predicate equivalent to

P=(pc=(L,1)=yp=0Vy=0)A(pc=(1,3)=>n =0V =y +1)A
(pe=(1,4) =y =0Vy <y) A(pc(3,1) = y1 =2 + 1 Vyz = 0) A
(pe=@3)=n=R+1Ve=u+1)A(pc=(34)=>pn =0V <pn)A
(pe=(4,1) = yp=0vVy <wp) Alpc=(4,3)=>p =0Vy <mn)

In the sequel, we write pey = dy A peg = dy for pe = (dy, d2).

Next, we apply the abstraction function abst on P; and P to obtain:
Qr=(per=1=y1=0) A (per=3= 91 > 1)
ng(ng=1=>y2=0) /\(p02‘—‘“~3=>y221)

Then, we apply our propagation technique without cycles. It can easily be
checked that we can propagate from control location 1 to 2, from 3 to 4, and
from 4 to 5, which yields the following predicates:

Qi=pa=1Vper=2=y =0)A(pey =3Vper =4Vper=5=y > 1)
Qy=(pe2=1Vpea=1=4=0) A (pea=3Vpea=4Vpea=5=> 132> 1)

Then, we can show PA Q| AQYAINV = pre[—|(INV), for each transition

t of 5y H Ss.

5 Discussion and Future Work

This paper provides a set of techniques for the automatic generation of auxiliary
predicates to prove invariants of programs. The use of these heuristics for the ver-
ification of various mutual exclusion algorithms shows that they are promising.
They have been applied to different versions of the Bakery, Dekker, Peterson, and
Szymanski algorithms (see [15] for a recent presentation of many of these algo-
rithms and for references). Concerning Szymanski’s mutual exclusion algorithm,
we verified the parameterized as well as the unparameterized case. We intend to
combine our techniques with others as abstract interpretation [5] to discover re-
lationships between program variables that can be used to derive invariants and
to investigate heuristics and strategies for the decomposition of large programs.
Acknowledgements We thank J. Sifakis who continuously encouraged and sup-
ported this work. Many interesting discussions with S. Graf and A. Pnueli helped
clarifying and fixing our ideas. We also thank the anonymous referees for jude-
cious comments.

335

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

K.R. Apt. Ten years of Hoare’s logic : a survey, part I. ACM Trans. on Prog. Lang.

and Sys., 3(2):431-483, 1981.

N. Bjgner, A. Browne, and Z. Manna. Automatic generation of invariants and in-
termediate assertions. In U. Montanari, editor, Ist Int. Conf. on Prmczples and
Practice of Constraint Programming, 1995.

M. Caplain. Finding invariant assertions for proving programs. In Proc. Int. Conf.
on Reliable Software, Los Angeles, CA, 1975.

E.M. Clarke, E.A. Emerson, and E. Sistla. Automatic verification of finite state
concurrent systems using temporal logic specifications: A practical approach. In
POPL’88. ACM, 1983.

. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In 4th ACM
symp. of Prog. Lang., pages 238-252. ACM Press, 1977.

. E. W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation.

Comm. ACM, 18(8):453-457, 1975.

. B. Elspas. The semiautomatic generation of inductive assertions for proving pro-

gram correctness. Research report, SRI, Menlo Park, CA, 1974.

. R. W. Floyd. Assigning meanings to programs. In In. Proc. Symp. on Appl. Math.

19, pages 19-32. American Mathematical Society, 1967.

. S. M. German and B. Wegbreit. A synthesizer of inductive assertions. JEEE Trans.

On Software Engineering, 1:68-75, March 1975.

S. Graf and H. Saidi. Verifying invariants using theorem proving. In In this volume,
1996.

S. Katz and Z. Manna. A heuristic approach to program verification. In Proc. $rd
Int. Joint Conf. on Artificial Intelligence, Stanford,CA, 1976.

L. Lamport. A new solution of Dijkstra’s concurrent programming problem.
Comm. ACM, 17(8):453—455, 1974.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs sat-
isfy their linear specification. In.POPL, pages 97-107, 1985.

Z. Manna, A. Anuchitanukul, N. Bjgner, A. Browne, E. Chang, M. Colon, L. De
Alfaro, H. Devarajan, H. Sipma, and T. Uribe. STeP : The Stanford Temporal
Prover. Technical report, Stanford Univ., Stanford, CA, 1995.

Z. Manna and A. Pnuek. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, 1995.

S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering, 1995.

J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. 5th Int. Sym. on Programming, volume 137 of Lecture Notes in
Computer Science, pages 337-351. Springer-Verlag, 1982.

B. K. Szymanski. A simple solution to Lamport’s concurrent programming problem
verification. In Proc. Intern. Conf. on Supercomputing Sys., pages 621-626, 1988.

B. K. Szymanski and J. M. Vidal. Automatic verfication of a class of symmetric
parallel programs. In Proc. 18th IFIP World Computer Congress, 1994.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In LICS’86. IEEE, 1986.

Saving Space by Fully Exploiting Invisible
Transitions

Hillel Miller* and Shmuel Katzg**

Department of Computer Scilence
The Technion
Haifa, Israel
hillelm katz@cs.technion.ac.il

Abstract. Checking that a given finite state program satisfies a linear
temporal logic property suffers from a severe space and time explosion.
One way to cope with this is to reduce the state graph used for model
checking. We present an algorithm for constructing a state graph that is
a projection of the program’s state graph. The algorithm maintains the
transitions and states that affect the truth of the property to be checked.
The algorithm works in conjunction with a-partial order reduction algo-
rithm. We show a substantial reduction in memory over current partial
order reduction methods, both in the precomputation stage, and in the
result presented to a model checker, with a price of a single additional
traversal of the graph obtained with partial order reduction. As part of
our space-saving methods, we present a new way to exploit Holzmann’s
Bit Hash Table, which assists us in solving the revisiting problem.

1 Introduction

In order to reduce the space needed for model checking of linear temporal logic
properties, several pre-processing techniques have been suggested to construct
smaller graphs such that a property to be checked is true of the original state
graph iff it is true of the reduced graph.

In particular, partial order methods such as [GW91],[Val90], and [Pel94] ex-
ploit the fact that certain operations are independent of other operations, and
that not all interleavings of independent operations need to be explicitly exam-
ined. Here, we exploit the fact that the specification ~the property to be proven—
is independent of certain operations to obtain a further reduction. Invisible op-
erations are those that do not affect the truth of any of the atomic propositions
of the specification, while visible operations do affect them. A node is considered
visible if some edge corresponding to a visible operation enters it, and invisible
otherwise. We also exploit the fact that an operation can be invisible or visible,
depending on the state from which it is executed. In this paper, a program’s
projected visible state space relative to a specification is constructed through a

* Presently with Motorola Semiconductors-Israel, Herzlia, Israel
** Supported by the Technion V.P.R. Fund-Promotion of Sponsored Research

337

DFS traversal, and the invisible states are eliminated. Thus we present to the
model checker a much smaller structure that represents the program.

The construction of the visible state space requires a linear traversal of a
state graph that is somewhat reduced from the original, but can still be large
in some cases. This is still worthwhile because a standard temporal logic model
checker requires space and time complexity which 1s the multiplication of the size
of the state space by a term exponential in the length of the formula. Thus for a
formula of length 20, the time and memory complexity for the model checker are
multiplied by 10%. We are therefore motivated to reduce the state graph given
to the model checker.

Moreover, we will show that the reduced structure can be produced with a
low space overhead. During any such pre-processing, and also during a traversal
of the state-space for purposes of reachability analysis and deadlock detection,
the question arises of whether to record for future reference that a particular
state was already visited. Not indicating that a state was visited saves space,
but may be costly in time: if the state is later reached again along another path,
its descendants must be recomputed unnecessarily. We can define the revisiting
degree of a state as the number of incoming edges not including those that close
loops. (Those that close loops are on the stack used for a depth-first traversal,
and thus are easily identified with no additional space needed). The question is
whether a state should be identifiable as having already been visited even after
backtracking from that state, in the DFS traversal. For graphs with many states
having a large revisiting degree, the time can increase exponentially if states
are reexpanded each time they are reached. Identifying such states avoids this
problem, but can lead to memory overflow. This trade-off can be called the state
revisiting problem.

In [GHP92], the state revisiting problem is considered, for reachability anal-
ysis, in the context of a partial order reduction method. Their conclusion is that
in that context, the state revisiting problem can be ignored, states should not be
saved after visiting, and that the price to be paid in recomputation is tolerable
(3 to 4 times a single traversal, for their examples). In general model checking,
however, the number of recomputations can be unacceptably large.

It is clear that partial order reductions as in [GHP92] lessen the state revis-
iting problem because one cause of reaching the same state by different paths
is that independent operations are executed in a different order. Nevertheless,
recomputation is still sometimes necessary both because such methods only elim-
inate some of the redundancy of various orderings of independent operations, and
because sometimes the same state is reached through truly different sequences
of operations. Partial order methods consider operations dependent and/or in-
fluencing the specification, if they might have such an influence. Here we check
more carefully whether an occurrence of an operation actually affects atomic
clauses in the specification, as in [KP92], and thus can have greater savings.

Another approach to the state revisiting problem was proposed in [Hol88] by
using a hash table where the keys are the states themselves, to indicate whether
a state has already been visited, without saving the full states. The difficulty

338

with this approach is that there may be a hash conflict, and then a state can
map to a hash entry indicating that it has been visited, even if it has not been,
and thus some parts of the graph may never be explored. Here we both achieve
a gieater reduction in the graph to be used for model checking, and overcome
the state revisiting problem while exploring all of the state space, at a cost of a
single additional traversal of the graph obtained by the partial order expansion,
beyond the one needed by the partial order method itself.

In order to overcome the state recomputation problem, a preliminary DFS
traversal is used to compute the revisiting degree of each state, so that it is clear,
on the second traversal, when a state should be retained, and when it can be
eliminated. Thus, we can manage a caching method that does not randomly free
memory. During this preliminary traversal, a hashing method similar to that in
[Hol88] can be used. A significant difference is that when conflicts do occur in
the hash table, the worst effect will be some additional recomputation, but the
entire graph will ultimately be examined.

In the following section some preliminary definitions are given, the visible
state graph is defined and theorems with its properties are given. In Section
3 the basic traversal algorithm to eliminate invisible states is first described,
then related to a partial order methed, and finally combined with a preliminary
traversal to determine revisiting degrees. In Section 4 we summarize the memory
and time complexity both of the pre-computation, and of the graph presented
to the model checker, and present some simulation results.

In Figures 1 to 3, an example program, and several of its state-space graphs
are shown. The specification is of mutual exclusion and of liveness. Y; and Y-
represent flags that are true when processes /) and P, respectively are in crucial
sections. The assertion is that ¥; and Y3 are never both true at the same time,
and that if one flag is true, the other will eventually become true. The program is
represented as a labeled set of guarded commands, for each of the two processes.
Each process has its own program counter (denoted PC;), to control the internal
flow of the process. A command is enabled if its guard is true and if the program
counter of the process containing it is equal to the command’s number. Figure
2 shows the full state-space graph, while the graph without the grey nodes and
the dotted lines is the reduced graph after the partial order method of [Pel94] is
applied. In Figure 3 the graph is shown in an intermediate stage, after some of
the invisible states have been removed, with the candidates for elimination in the
rest of the algorithm indicated in gray. The graph without the grey nodes, and
with edges connected to their successors is the fully reduced graph relative to
the given specification. Note that the original graph has 30 states, the one after
partial order reduction has 26, and the graph that fully exploits the elimination
of invisible states has only 14. The stages in this reduction will be explained
later in the paper.

In this toy example, the specification includes both of the program variables;
and only operations involving the control counters are invisible. When the pro-
gram is more realistic, and the property to be proven only involves part of the
variables, much greater savings can be expected, as is shown in the simulations

summarized in Section 4.

339

This paper demonstrates that a careful combination of a partial order reduc-
tion method with an algorithm to eliminate states not relevant for the specifi-
cation, along with a hashing technique to save only relevant information about
which states have already been considered, can yield a result that makes previ-
ously infeasible problems treatable.

— Global State Representation = (PCy, PC:, Y1,Y2)
~ Initial State = (0,0, F,)
— Specification Checked = O0-((Y1 =T)A (Y2 =T)),8((V1 =T) = ¢(Y2 =T))

PROCESS 1 PROCESS 2

PC1 PC2

0: PCy:=1 {al} 0: PCy:=1 {bl}

1: PCy:=2; Yo:=T {a2} 1: PCy:=2; Y1:=T {b2}

2: (1=T) = PCy:=3; Y1.=F {a3} 2: (V2=T) = PC::=3;Y;:=F {b3}
3: PCy:=0 {a4} 3: PCy:=0 {b4}

Fig. 1. Example of a program P.

2 Preliminaries

A finite state program P is a triple < T, Q, I > where T is a finite set of oper-
ations, () is a finite set of states, and I € Q is the initial state. The enabling
condition en, C @ of an operation a € T is the set of states from which a can
be executed. Each operation o € T is a partial transformation a : Q — Q which
needs to be defined at least for each g € en, . For simplicity we assume that for
each g € () there exists an operation o € T such that ¢ € en,,.

An interleaving sequence of a program is an infinite sequence of operations
v = agoq ... that generates the sequence of states (= gog195 ... from Q such
that (1) go =1, (2) for each 0 <4, ¢; € eny, and gi41 = o4(gs).

A nexttime-free LTL formula (denoted LTL-X) is composed of atomic propo-
sitions from a set AP, boolean operators (A, -, V) and the usual temporal modals
O (always’), O (eventually’) and U ("Until’) but not the modal O (*next’).

Definition1. A state graph, Gp = (5,5, E), for a program P is a directed,
rooted graph, such that :

1. S is a finite set of nodes, § € S is the graph’s root and E is a finite set of
edges (we denote an edge from node s to node ¢ as s — t).
2. The graph is total, i.e. from every node there is an exiting edge.

340

3. There is an injective homomorphism st : § —) that maps nodes to program
states such that: st(§) = I and if s — ¢ € E then there exists an operation
o such that st(s) € eny and st(t) = a(st(s)).

4. The graph is maximal, i.e, for each state s in a sequence of states generated
from some sequence of operations from P, and for each operation « enabled
at s such that a(s) =t, we have that st=1(s) — st~1(t) € E.

We will identify a state and a node with this mapping.

Definition2. M = (Gp,V) is a model for a program P and a specification ¢
iff Gp is a state graph of P and V is a function V : § — 24F (where AP are
the atomic propositions of) such that for all nodes s € S, V(s) = {a |a € AP
and a is true in state st(s)}.

Fig.2. P’s full and partial ordered state graph.

Definition3. Let M(Gp(3, S, E), V) be a model of a program P and specifica-
tion ¢, s — ' € E is a visible edge iff V(s) # V(s'). A node 1 is a visible node
iff 1) ¢ = § (i.e. the initial node) or, 2) there is a visible edge entering .

Fig. 3. An intermediate stage in the reduction algorithm.

The visible state graph Gy is the state graph of an abstraction of a program
P. lIts set of nodes is exactly the visible nodes of the state graph Gp (denoted
VIS(Gp)). Its edges satisfy the following two properties:

P1 For any 2 nodes s, s’ € VIS(Gp), there is a sub-path ss; ...s,s" of
path of Gp such that V(s) = V(s;) =...= V(s,) and V(s) £ V(s') i
there is subpath stits...1,,s" of a path of Gy such that V(s) = V(t1)
... =V(tm) and V(s) # V(s')

=~

P2 For any node s € VIS(Gp), there is a suffix ssyss... of a path of
Gp such that V(s) = V(s1) = V(s2) = . .. iff there is a suffix st,¢5... of
a path of Gy such that V(s) = V(1) = V(t2) =....

These properties guarantee that paths in the two graphs have the same prop-
erties when repetitions of the relevant truth values are ignored, i.e., they are
stuttering equivalent [LAM83] (denoted by m ~ 7').

Theorem 4. Let Gp and Gy be the state graph and a visible state graph respec-
tively of a program P. For each path = in Gp there ezxists a path =’ in Gy such
that m ~ 7’ . For each path w in Gy there ezxists a path 7 in Gp such that m ~ #'.

342

The proof is done by building a linear stuttering equivalent relation based on
properties P1 and P2, and using the fact that LTL-X is insensitive to stuttering.

3 Visible state graph generation

In this section we first show the basic algorithm (Figure 4) which generates
the visible state graph. In the algorithm we do not keep an indicator whether
invisible nodes have been visited (after backtracking from it). Therefore the time
may increase exponentially for graphs that have many invisible nodes with high
revisiting degrees. Later we show how to solve this problem.

In the algorithm we abstract from implementation details. We create a visible
state graph G, which is represented by a set of nodes S and a set of edges E.
We operate on the sets with the standard set operations (U,N,\) and operands
(€,C). The search path is kept on a stack. In intermediate stages, S will con-
tain both the visible nodes already examined and all nodes on the stack. The
algorithm uses the following functions and indicators:

— s € 8 - Either s is a visible node already examined or is on the search stack.
— 5 -8 € E - An edge from node s to visible node s’ was created.

— en(s) - The set of operations enabled at state st(s).

— a(s) - The node obtained after executing an operation « on state st(s).

— visible(s) - The node s is visible {only for nodes in S).

RCL(s — s') - The edge s — & must be reconnected when backtracking
from ¢,

— open(s) - Node s is on the search stack.

The algorithm is based on a standard DFS traversal, implemented in a re-
cursive procedure: At each node s we calculate its set of successors. We then
recursively examine all successors that are not indicated as having already been
examined (remember we sometimes reexamine a node more than once). The
reduction comes when backtracking from a successor s’ of the node s. If s’ is
invisible we replace each edge exiting s’ with an edge that exits s and that enters
the same target. We then remove the set of edges exiting s’, which is followed by
the removal of the invisible node ¢’ (lines 10 - 16). In lines 13-14 before removing
an edge that is marked RCL (see explanation below) and exiting s’ we mark the
respective replacing edge that exits s as RCL. In line 11 if s’ has a self loop
we give s a gelf loop. This maintains diverging sequences. Note that even if the
state later proves to be visible when approached along a different path, and is
therefore reintroduced, the edges we remove are invisible. When s’ is visible we
add the edge s — s’ to E (line 18).

If a successor s’ of s is in S then this indicates that either s’ is visible and has
been examined or s’ is open (i.e. 5’ closes a loop), thus we add the edge s — s’
to E. If 5 closes a loop and s — #' is invisible (i.e V(s) = V(s')) we mark that
edge RCL, standing for reconnect later. In the DFS traversal when we arrive at
an invisible open node s’ from s, there may be successors of s’ that have not yet
beén examined. We therefore do not know all the visible successors of s” and we

cannot know which are s’s successors (that go through s’ in the original graph)
in the visible graph. Hence, we indicate (i.e. RCL(s — s’) := TRUE in line 24)
that we still have to update the set of edges exiting s. Finally when we backtrack
from s’, the sub-tree from s’ has been examined. Thus we know which are s'’s
visible successors. We then replace the set of edges which enter s’ and that are
marked RCL (lines 25-28) by edges that enter s’s visible successors. Note that
any edge entering s’ that is marked RCL when we backtrack from s’ is from a
visible node or a self loop from s’ (because an edge marked RCL closed a loop,
the node it came from has already been backtracked from, and was removed if

343

it was invisible).

QO ~J O Ut W N

W W N DN B B DO DN BN BN B b b e e e e et ek ek e (O
=0 W 00 IS Ut W kO 000U R WN D

procedure expand(s)
open(s) := TRUE
foreach o € en(s) do
s':=afs)
if not (s’ € S) then
visible(s'):=FALSE
S:=5uU{s'}
expand(s’)
if (not visible(s’)) and (V(s) = V(s’)) then
foreach u such that (s’ - u) € F
if ' =uthen u:=3s
E:=Fu{s— u}
if RCL(s’ — u)and(s’ # u) then
RCL(s — u) := TRUE ;RCL(s’ — u) := FALSE ;
E:=F\{s"— u}
5= S\ {S'}
else
E:=FEu{s—s'}
visible(s’) := TRUE
else
if V(s) # V(s') then visible(s') := TRUE
E:=Fu{s—3s'}
if open(s’) and (V(s) = V(s")) then
RCL(s — s') := TRUE
foreach u such that RCL(u — s)
foreach v such that (s - v) € F
E:=FU{u-— v}
if RCL(s — v) then RCL(u — ») := TRUE
RCL(u — s) := FALSE
open(s) := FALSE

end

Fig. 4. Algorithm for generating the visible state graph.

344

We demonstrate the backtracking in Figure 2 where nodes are represented
by a 4-tuple of values (PC1,PC2,Y1,Y2). In Figure 2 the algorithm first starts
backtracking when it does a step from (2,1,F F) and arrives a second time at
node (2,2, T,F) (on the lower right). This node is visible because it has a vis-
ible operation (b2) entering it (e.g., the truth value of the atomic proposition
“Y1=T” is changed). Therefore it is not deleted when backtracking from it. On
the other hand, node (2,1,F,F) has only an invisible operation (bl) entering it
(because only the program counter, irrelevant to the specification, is changed).
Therefore it is deleted when backtracking. Its successors are now added to the
successor set of its predecessor (state (2,0,F,F)). Next, node (2,0,F,F) is also
deleted because it is an invisible node. Its successor (i.e. node (2,2,T,F)) will
now become a successor of the visible node (2,3,F,F). The result of the above
can be seen in Figure 3.

The use of RCL can be seen in Figure 3 where invisible node (1,1,F,F) (the
second from the top center) has an edge marked RCL entering it. When back-
tracking from node (1,1,F,F), before removing it we reconnect node (3,1,F F) to
the nodes (2,1,F,T), and (1,2,T,F).

To show the algorithm correct we must prove that properties P1 and P2
hold with respect to the full state graph and the graph constructed (i.e, it is a
visible state graph). This is done by induction on the set of backéracking steps
executed by the algorithm. For each step of the induction we look at: (1) the
(intermediate) full state graph obtained from the edges backtracked from, (2)
the (intermediate) graph obtained from edges in the set E (see algorithm). We
then show that an intermediate version of P1 and P2 hold for these two graphs.
When the algorithm terminates, the “full” version of P1 and P2 hold.

We can combine our algorithm with any algorithm for partial order reduction,
e.g., Al from [Pel94]. In that algorithm we execute a DFS traversal of a program’s
state space. At each state only a subset of the enabled transitions (called the
ample set) are expanded. This is due to the fact that expanding all enabled
transitions will lead to a graph with more than one interleaving per partial
order. The only change to our algorithm is that instead of expanding all the
enabled operations from a particular state s, we expand only those operations
that belong to the ample set of state s. Therefore, we replace line 3 in Figure 4
with: foreach o € ample(s) do. Other algorithms differ in the way that a
subset of enabled transitions are selected, but can be used in the same way.

To solve the revisiting problem, we present an algorithm that pre—processes
the state space. The algorithm calculates the revisiting degree of each state. This
information is passed on to the algorithm that generates the visible state graph,
which then can more selectively delete states. The preliminary DFS algorithm
traverses the state space in a partial order manner, which is the exact same order
used in the later reduction algorithm (both are deterministic).

We use a Hash Table [Hol88] (called the revisited hash table), as a revisiting
degree counter for each node. The hash table is accessed with a hash function
whose argument is a state. When visiting a node in the DFS traversal, we check if
its revisiting degree is zero. If this is the case we set its revisiting degree counter

345

to 1, and then we recursively calculate the revisiting degree of all its successors
(from the ample set of the underlying partial order traversal). Otherwise, we
increase the counter of the node by 1, and backtrack from that node. Note that
all this only relates to revisits that do not close a loop, for reasons explained
already in the Introduction.

Here we use Holzmann’s hash table to assist us in calculating the revisiting
degree of each node. This is a novelty in itself: until now the use of this technique
was problematic, because of the small probability of a hash collision when model
checking (resulting in not checking part of the state space). Here in the worst
case, a hash collision will cause us to calculate an incorrect revisiting degree,
resulting in additional state recomputation in the latter DFS.

Now, in the latter DFS that generates the visible state graph, when back-
tracking from a state, we check if the node will be revisited (according to the
revisited hash table). If an invisible node will not be revisited we remove it and
all its pointers to its successors from internal memory, otherwise we maintain it
and pointers to its successors in memory. (If we were in error because of hash
conflicts, we might have to regenerate the node and its pointers later on, when
we reach that state along another path.} If a visible node will not be revisited we
remove it from the internal memory and store-it on external memory, otherwise
we maintain it in memory. The pointers of a visible node to its successors are
always stored in external memory, because they are not needed for later revisits
in the traversal. When we revisit such a node we decrement its counter in the
revisited hash table.

When we run out of memory, we can do a form of garbage collection: For
each node s in memory (stored in a balanced tree) we check if s’s counter is zero.
If this is the case, we delete that state from the internal memory, and store it
on the external memory (if it is visible). Note that some nodes may have the
same entry in the revisited hash table. This means that they can only be deleted
together (i.e. when they all will not be revisited anymore). Thus we must execute
a garbage collection to dispose of these kinds of nodes. This is a better caching
method for memory management because states are not deleted randomly.

Note that this method of an initial traversal of the state space can be applied
to all current state space generation algorithms. For example [Pel94] presented
an on-line model checker, by traversing the product of the state space and spec-
ification graphs. We also can initially traverse the product and calculate the
revisiting degree of all nodes, saving space as shown in the following section.

4 Memory and Time Complexity

For analysis of memory and time complexity we distinguish between two stages:
1) The memory and time complexity of the algorithm that constructs the vis-
ible state graph (denoted VSG), and 2) The memory and time complexity of
the algorithm for the model checking. In both cases the analysis is relative to
the complexity of the algorithms that construct and model check the graph ob-
tained by applying a partial order method (denoted POG). When we refer to

346

memory complexity, our intention is internal memory. We assume that we have
an unrestricted amount of external memory (used for the caching method). For
the model checking itself, the savings is in checking a smaller model. Standard
model checking of linear time temporal logic specifications has time and space
complexity O(|VSG| - 2!¢!), whereas previously we had the same formula over
the original state graph or the POG.

As for the preprocessing stage to compute the revisiting degree and then
generate the visible state graph, the time complexity is the same as for existing
methods for partial order reductions, namely O(pe-log(ps))}, where pe is the num-
ber of edges in the partial order graph that would be produced by that method
alone, and ps is the number of nodes in that graph. As explained previously, our
algorithm makes one additional traversal.

The partial order method we considered uses O(m - ps + log{m) - pe) space
in its original form, where m is the space needed for a single state.

For our algorithm, the memory complexity of the first DFS is O(m - ss + ps)
(where ss is the size of the stack). The data structures used are the search stack
and the revisited hash table (using O(ps) for the size of the hash table). The
memory complexity for the subsequent reduction traversal is also O(m - ss -+ ps).
Here the data structures used are the search stack, the revisited hash table and
the intermediate stages of the visible state graph construction. We use a caching
method, therefore we bound by a constant the memory needed for the full states
retained in intermediate stages. Our simulations show that the number of states
needed at any one time is actually small, and the cache will not cause extraneous
recomputation. The simulation was constructed using the high level language
ICON. We implemented the algorithms that calculate the revisiting degree of a
program’s state graph and that generate the visible state graph. The ample set
for the partial order method is calculated according to [HP94].

In one test, we simulated a leader election protocol in a unidirectional ring
from [DKR82] and several alternative specification formulas. The algorithm uses
a local variable maz; in each process to show its version of the maximal value.

We executed our algorithm on the state space of the protocol for 5 processes
for § different specification formulas. In Figure 6, we compare for each formula
the original size of the state graph (first states, and then edges), the state graph
that was obtained only with the partial method, and the state graph that was
obtained with our method (which includes the partial order method). The last
column of the table presents the number of full nodes that were in memory at
any time, in addition to the hash table.

The fifth formula was especially complex, namely: ${((mazy = 5)A-((maz; =
5)V...(mawzs = 5))) U (((maz, = 5) A (mazy = 5)) A=({mazz = 5) V (maxy =
5) V {(mazs = 5))) U ...((max; = §) A (mazy = 5) A (maxs = 5) A (maxy =
5) A (mazs = 5)))), i.e., the processes obtain the correct maximum in the fixed
order 1,2,3,4,5. This formula’s tableau state graph has on the order of 1000
states. In the model checking stage, multiplying this by the program’s partial
order state graph will result in a quarter of a million states, while multiplying
this by the visible state graph will result in about 5,000 states. This formula is
not satisfied by the protocol, because the order is actually random.

347

FORMULA|[ORIG-S|ORIG-E{POG-S|POG-E|VSG-S|VSG-E|FULL
11099 68717 7030 |21548 |75 163 222
11099 68717 203 352 10 19 61
11099 68717 |630 1373 |42 98 81
11099 |68717 723 1329 |56 137 97
11099 168717 [263 351 5 9 57

T W D

Fig. 5. Simulation results for leader election protocol.

In the table, for formula I our algorithm has reduced a state space of 11,099
states and 68,717 transitions to a state space of 75 states and 163 transitions,
where the partial order method succeeded in reducing by less than one order of
magnitude relative to the original. In addition to the hash table, only 222 full
nodes were needed at any one time in the generation of the reduced graph. The
reader can observe that the rest of the results are similarly impressive.

References

[DKR82] D. Dolev, M. Klawe and M.Rodeh. An O(nlogn) unidirectional distributed
algorithm for extrema finding in a circle. Journal of Algorithms, volume 3,
pages 245-260, 1992.

[GHP92] P. Godefroid, G.J Holzman and D. Pirottin. State space caching revisited. In
Proc. 4th International Conference on Computer Aided Verification, LNCS
697, pages 178-191, Canada, June 1992.

[GW91] P.Godefroid and P.Wolper. A partial order approach to model checking. In
Proc. 6th Symposium on Logic in Computer Science, pages 406-415, Amster-
dam, July 91.

[Hol88] G.J.Holzmann. An improved protocol peachability analysis technique.
Software-Practice and Experience, Vol 18(2), pages 137~161,February 1988.

[HP94] G.J. Holzmann and D. Peled. An improvement in formal verification. In Pro-
ceedings FORTE 1994 Conference, Switzerland, October 1994.

[KP92] S. Katz and D. Peled. Conditional independence using collapses. Theoretical
Computer Science, volume 101, pages 337-359, 1992.

[LAMS83] L. Lamport, What good is temporal logic? in: Proc. IFIP 9th World
Congress, Paris, France (1983) 657—668.

[Pel94] D. Peled. Combining partial order reductions with on-the-fly model checking.
In Proc. 6th International Conference on Computer Aided Verification, LNCS
818, pages 377-390, California, USA, June 1994.

[Val90] ~ A. Valmari. A stubborn attack on state explosion. Formal methods in System
Design 1, pages 297-322, 1992.

[VW86] M. Vardi and P.Wolper. An automata-theoretic approach to automatic pro-
gram verification. In Proc. 1st Symposium on Logic in Computer Science,
pages 322-331, Cambridge, June 1986.

Using On-The-Fly Verification Techniques
for the Generation of Test Suites *

Jean-Claude Fernandez' Claude Jard? Thierry Jéron? and César Viho?

! Vérimag, Miniparc Zirst, rue Lavoisier, F-38330 Montbonnot Saint-Martin, France.
Jean-Claude.Fernandez@imag.fr
? TRISA/Pampa, Campus de Beaulieu, F-35042 Rennes, France.
(Claude.Jard, Thierry.Jeron, César.Viho)@irisa.fr

Abstract. In this paper we attempt to demonstrate that on-the-fly tech-
niques, developed in the context of verification, can help in deriving test
suites. Test purposes are used in practice to select test cases accord-
ing to some properties of the specification. We define a consistency pre-
order linking test purposes and specifications. We give a set of rules to
check this consistency and to derive a complete test case with preamble,
postamble, verdicts and timers. The algorithm, which implements the
construction rules, is based on a depth first traversal of a synchronous
product between the test purpose and the specification. We shortly relate
our experience on an industrial protocol with TGV, a first prototype of
the algorithm implemented as a component of the CADP toolbox.

1 Introduction

It is widely recognized that testing is an essential component of the full life-
cycle of communicating systems. However, the process of generating test suites
is complicated, error-prone and expensive. The intrinsic difficulty comes from
the black-box nature of the implementation: its behaviour is only observable
and controlable at the interfaces. In that context, a formal framework is a pre-
requisite for giving precise and consistent meanings of test verdicts. The usual
theoretical approach [Bri88] is to consider a formal specification of the intended
behaviour of the Implementation Under Test (IUT). It permits to define the no-
tion of conformance relation linking an implementation to the specification and
the notion of verdict associated to the application of a test case (set of interaction
sequences) to an implementation, w.r.t. the conformance relation. The problem
is to automatically generate correct test cases from a formal specification of
the IUT. A correct test case, applied to an IUT, will declare “fail” only imple-
mentations which do not conform to the specification (soundness property). We
also require that an implementation which does not conform to the specification
might be detected by repeating the application of a test case, under a fairness
assumption on the implementation (property of exhaustivity).

* This work has been partially supported by an industrial contract with Verilog in a
study for the french DGA (Direction Générale pour ’Armement)

349

During the last decade, testing theory and algorithms for the generation of
tests have been developed from Labelled Transition System specifications (LTS).
Test generation involves sub-problems of traversal, comparison or reduction of
LTS, already addressed by verification. Consequently, we think, among others
[CGPTY5], that time is ripe for linking test and verification. The experience of
practitioners tells them that it is not reasonable to try to validate all possible
behaviours of their protocol. It is why they use informal test purposes. Basi-
cally, we traverse in a depth-first manner, the synchronous preduct of the IUT
specification and of the test purpose. During the traversal, we check their mu-
tual consistency. If so, an acyclic test graph is generated and decorated with
verdicts and timers. The algorithm is an original extension of the on-the-fly ver-
ification kernel we developed a few years ago [JJ89, JJ91, FM91, FMJJ92]. It
provides a complete treatment of the problem of test cases, including pream-
bles and postambles, verdicts and timers management. It is now well known
that depth-first traversals are the heart of some good verification algorithms,
for behavioural comparison and reduction [FM91], as well as for model-checking
[JJ89, CVWY90, JJ91]. We show that it is also true for test generation, which
constitutes a good example of transfer from verification to testing.

The test generator, based on verification téchnology, has been prototyped in
the context of an industrial consortium, linking Vérilog, Cap-Sesa, Cnet, Inria
and the French Army. An experiment was performed on a real ISDN protocol
specification. The results were very encouraging, confirming the interest of us-
ing this kind of algorithmic, which is now mature enough to be transfered in
the industrial world, to deal with real formal specifications. Our approach is
compatible with symbolic (or structural) ones like TVEDA [Pha94b] which may
compute test purposes using reachability analysis.

The presentation is organized as follows. We start by defining the different
models used for describing test purposes, test cases, the specification and the
IUT. We define a consistency preorder between test purposes and specifications,
and a test conformance relation linking implementations to specifications. We
give the formal rules allowing the construction of a test case from a test purpose
and a specification. We give some results concerning soundness and exhaustivity
of our generated test cases. Finally, we give the main results gained during an
experiment on an ISDN protocol.

2 Models

In this section we first describe the models used for the description of the different
objects involved in the generation of test cases. They are used to define the
notion of consistency relating a test purpose with a specification and the notion
of conformance relating an implementation with a specification. These models
are then used to define formal rules for the construction of test cases.

350

2.1 Input-Outputs labelled transition systems

The models used are all based on Input-Output Labelled Transition Systems
(IOLTS) in which input and output actions are differentiated because of the
asymmetrical nature of the testing activity.

We consider a finite alphabet of actions A, partitioned into two sets: input
actions Ay and output actions Ag. We shall let «, f range over A, i,¢ range
over Ay and o, 0’ range over Ap. We consider finite IOLTS M=(Q™, A, T™, ¢}%.,)
where Q" is the set of states, ¢\, is the initial state, 7™ C @ x A x Q™ is the
transition relation.

We adopt the following notations and conventions: Let ¢ € A*, p,q € Q™.
We write p =y ¢ iff (p,a,q) € T™ and write p == ¢ iff Jay, 09 -0, € 4,
o, Pn EQ¥. 0 =10y .n and po =p,p; —Fa Pits Withi<n, pp=g.
A(g) = {e | 3¢’ and ¢ =y ¢’} is the set of immediate actions after ¢, Z(q) =
A(g) N Az is the set of inputs after ¢, and O(g) = A(g) N Ao is the set of
outputs after q. Succqa{q) = {¢' | ¢ = ¢'} is the set of states reachable from
g by means of a transition labelled by a. We write —~(p —ErM) if there is no
transition starting from p and labelled by o, =(p Sy) = (Succq(p) = 0). We
note p after 0 = {q € @V | p ==\ ¢} the set of states reachable from p by the
sequence of transitions ¢ and traces(p) = {o € A*|p after o # @} the set of
sequences starting from p and reaching a state in ™. In the sequel, we will not
distinguish between a transition system and its initial state.

An TOLTS satisfies the controlability condition if and only if for each state,
if an output is enabled, then there is exactly one outgoing transition. More
formally, if |X| denotes the cardinality of the set X, ¥p.|O(p)| = 0V (|0(p)| =
LA O(p) = A(p)).

An IOLTS is deterministic if and only if Vp, Vo . |p after o] < 1.

We consider four kinds of IOLTS: the specification, the implementation, the
test purpose behaviour and the test cases which meanings are described below.

2.2 Specification and implementation

An IUT is placed in a test environment in which the tester can only interact with
inputs and outputs. Thus the tester has an external view of the implementation.
In contrast, a specification generally models the internal view of the system, 1.e.
the behaviour of the system with its internal actions, without considering the
way it interacts with the environment. But this interaction should be taken into
account in the test generation. As an example, if the implementation commu-
nicates asynchronously with its environment through several points of control
and observation (PCOs), two subsequent and causally ordered outputs may be
observed by the environment as two concurrent inputs if they occur on two dif~
ferent PCOs. In the following, we will consider the environmental point of view:
outpute are conirolable actions initiated by the environment (which may be the
tester) and sent to the IUT whereas inputs are observable actions, initiated by
the TUT and received by the environment.

351

While testing an IUT, we check for the conformance of the ITUT in its envi-
ronment with the specification in the same environment. Thus we first have to
transform the specification into its external view. Internal actions which are not
observable by the environment have to be hidden and replaced by a 7 transition.
Inputs are replaced by outputs and vice versa, taking care of concurrency which
may be produced by asynchronous interaction. This is called the mirror image
operation. After that, we have to apply a 7-reduction which suppresses 7 transi-
tions. The transition system of the resulting specification is then an IOLTS. This
has been implemented on-the-fly in our prototype but, due to space limitations,
we will not give more details of how this can be done effectively. Deadlocks are
often supposed to be observable by a tester. In practice the tester uses timers to
achieve this (see 3.2) and we have to suppose that a timeout occurs if and only if
the implementation is deadlocked. This is why timeouts are considered as inputs
of the tester. If the specification is allowed to deadlock in a particular state, this
is modelled by a special transition ¢ considered as an input of the environment
initiated by the system. This treatment of deadlocks is quite similar with what
is done in [Tre95, Pha94a]. Finally, the last operation is determinization.

The resulting specification is a deterministic IOLTS S = (Q% A,T%,¢5,.)
with A = AfUAp and 6 € Ay a distinguished ‘input. Without loss of generality,
we will suppose that S starts with outputs of the environment i.e. A(¢3;,) C Ao.
In the following, specification will always correspond to the external view S
of the specification. Though the implementation is not necessarily a transition
system (it may be a physical system), as in all testing theories, we have to
reason formally about it and model its behaviour. As it is only considered by
its interactions with the enviromment, it is also modelled as an IOLTS [=
QA" T", ¢l;.), with A' = A} U A, Ay C AJ.

2.3 Test Purpose

A test purpose defines a property on some particular interactions between the
IUT and the tester. It consists in two parts : a behavioural part and a constraint
part. The constraint part gives some property on the state of the implementation.
It can be seen as computable by the environment and will be modelled by an
input for the tester. Thus it is integrated in the behavioural part.

Definition 2.1 (Test Purpose behaviour) A test purpose behaviour is a deter-
manistic acyclic JOLTS TP = (Q"%, A, T™,¢l%) satisfying the controlability
condition and with a set of distinguished states AcceptC Q™F with no successor.

2.4 Test Cases

A test case is a set of sequences of actions describing all the interactions occuring
between an IUT and a tester which wants to verify that an implementation
conforms with the specification according to a test purpose. In an industrial
context, test cases are often described using the Tree and Tabular Conibined
Notation (TTCN [ISO92]). Some transitions are decorated with verdicts with

352

the following informal meaning :

(PASS): means that the test purpose is satisfied by the current sequence. But
a sequence leading to the initial state (Postamble) must be applied in order to
carty on another test case. It is a temporary verdict as the application of the
postamble may produce Fail verdicts.

PASS: this is a definitive verdict meaning that the initial state has been reached
after a (PASS) verdict. The sequence between (PASS) and PASS is a Postamble.
FAIL: means non-conformance of the IUT.

INCONCLUSIVE: this verdict is used in practice when a reception is allowed in
the specification but cannot lead to a (PASS) or leads to a behaviour that is not
considered in the test case because testing cannot be exhaustive in practice.

Definition 2.2 (Test Case) A test case is a deterministic acyclic IOLTS TC =
(Q™°, A, T™, ¢7%.) satisfying the controlability condition. A test suite is a set of
test cases.

2.5 Consistency and test conformance relation

In this section, we define what we mean by consistency of a test purpose w.r.t
a specification and which conformance relation linking the implementation with
its specification is considered.

A test purpose TP is said to be consistent w.r.t a specification S, denoted
by ¢f% < ¢S, if the two following conditions are satisfied: the set of behaviours
described by the test purpose is included (see the definition below) in the set
of behaviours of the specification, and from each state of S corresponding to an
Accept state of TP, there is a path in S to ¢;,.

Definition 2.3 (Consistency preorder). A relation R C Q™ x J® is a consis-
tency relation if and only if R C F(R) where,

F(R) = {(p™",p%) | , N
(Yo, Yg™ - p™° S ¢™F == 3¢%,¢5, 30 € (A\ {a})* - p° D ¢ S ¢°A
(@"%,¢*) ER A (P™7,¢5) ER) A
P € Accept = Jdor e 4* - p° =, Tit }

arr < @y if and only if there is a relation R C F(R), containing (a5, 45

If the test purpose and the specification are consistent, we can derive sound
test cases. A test case is sound if it gives a negative verdict only if the imple-
mentation is not correct w.r.t. the specification.

We consider a conformance relation quite similar to those in [Tre95, Pha94a).
Informally, the conformance relation states that outputs of the environment
which are not accepted by the specification may be accepted by the implemen-
tation but inputs produced by the implementation must be also produced by the
specification.

Definition 2.4 (Test conformance relation) Let S and I be two IOLTS describ-
ing the exiernal view of ¢ specification and an implementaiion,

I'ioconf S if and only if Vo € traces(S),I(I after o) C Z(S after o)

353

3 Construction rules

The essence of the on-the-fly method is to traverse a kind of synchronous product
between two graphs, one for the specification and the other for the property to
be checked. We first define this synchronous product. Then we give the rules for
the test case construction, including decoration with verdicts and timers. Finally
we give some properties of the generated test cases.

3.1 Synchronous product

A transition is firable in the product if either it is firable in the two components
or it 1s firable only in the specification.

Definition 3.1 (synchronous product) We define the product
P=(Q% AT" (¢, ac:), with QF C Q™ x Q° where Q° and T™ are the
smallest sets obtained by application of the following rules:
— [synct1l (¢, gihit) € QF,
pTP’pS) c QP pTP _a_)TP qTP ps 'E’s qs
(¢*P,¢5) € QP (p™®, p3) e (g™, ¢5)
(P 0°) €QF (T o) 75 S5 g (977, p°) € Accept x {g}
(»T®, qs) €qQr (pTP,pS) Zp (p™P, qs)

— [Sync2] (

— [Sync3]

3.2 The test case construction

The algorithm is based on a depth first traversal of the synchronous product, def-
inition 3.1. Two mains actions are performed : the consistency relation between
the test purpose and the specification is checked while a direct acyclic graph
DAG is synthesized, definition 3.2. More precisely, a stack stores the states of
the current execution sequence. The algorithm proceeds as follows, starting from
the initial state, (g5, ¢%;.)- Let (p™, pS) be the current state, i.e. the top of the
stack, and (p”®, p%) =5 (¢7,¢°) a transition not yet analyzed. If ¢™" is an ac-
cepting state, then a postamble is computed by searching a shortest path from
q° to ¢5;,; else if (¢™, ¢%) belongs to the DAG then the transition is added to
the DAG; otherwise, if (¢7, ¢%) does not belong to the stack nor to the visited
states, then the state (p™, p®) is pushed on the stack. When all the transitions
starting from the state (p™®, p°) are analyzed, then (p™, p®) is popped in the set
of visited states. The operator Comb is used in order to ensure the controlability
condition. The algorithm terminates when the stack is empty and succeeds if
(gikit> €inie) belongs to the preamble and if Accept x {¢5;,} is a subset of the vis-
ited states. The algorithm requires a time complexity linear with respect to the
size of the transition relation of the synchronous product and a space complexity
linear with respect to its state space.

Definition 3.2 We define DAGs syntactically as n :: 0 [1la;n|n+n
We also define a predicate - for v =1,2,3. ' (p™,p°) : n means “he
node associated with (p™,p®) is n and belongs to the preamble, test case body

354

and postamble if v is respectively 1, 2 or 3”. We use Node((p™,p®)) to denote
the node currently associated to (p™, p®). Initially Node((p™®,p%)) = 0. An oper-
ator Comb is used to accumulate the nodes in order to ensure the controlability

condition: . .
a;nifa € Ao, m= Xa;;n; and Vi, 0 € Az

Comb(m, a;n) 1= { mifm=a';n" and o’ € Ao

m + a;n otherwise
Preamble

ve{l,2} F(gnt.¢%):n (g, P°) =e (g, O°)
Test Case Body F (g5, P°) : Comb(Node((gf,, %)), o5 n)
F2(q™" ¢%) :n g™ #ain (e, P°) = (677, 0°)
-2 (qT’-’t,ps) : Comb(Node((q;‘i’t,ps)),a;n)

iy
F2 g% i P #F g (07, 85) e (677, 0°)
F2 (pT®, pS) : Comb(Node({p™, p%)), o; 1)
’_3 (qTijS) - pTF e Accept qTP € Accept (PTP,PS) &P (qTP’qS)
2 (p™®, p®) : Comb(Node((p™™, p%)), o; n)

Postamble
R ™ gmi) 11 (P77 € hecept)

i~3 (pTP’qS) ‘n (pTP,pS) f_)P (pTPiqS) pTP € Accept
2 (#7%, p) : Comb(Node((p™, p%)), a; n)

The test case verdicts We define the partial function verdict which assigns
verdicts to some transitions in the DAG which construction is defined above.
This function is defined by means of the rules below.

We complete the definition of the predicate F° for v = 4,5. +* (p™®,p%) : 1
means that “the node associated with (p™,p®) is 1 and is the ending state of a
transition labelled by an Inconclusive. We need a new state Fail_State in the
synchronous product and the axiom F° Fail_State : 1.

In the sequel, u, v range over 1,2,3,4, 5.

Pass : assigned to a transition in the DAG if the ending state is in the Postamble and
the specification is in state gf;;

F (™, p%)in v e (2,3} PP gl (077 8%) Se (677, ah)
verdict(n, o, 1) = Pass

(Pass) : assigned to a transition linking a state of the Test Case Body to a state in
the Postamble.

|__2 (pTP,PS) T m F_s (qTP,QS) ‘n (pTP’pS) &p (qTP) qS)
verdict(m, o, n) = (Pass)

Inconclusive : add a new transition with verdict Inconclusive from a state in the
DAG which allows an input reaching a state not in the DAG
FC T p%) in B (e wv €{1,2,3) (07F,p%) S (¢™,0°) i€ A
F* (¢, ¢5): 1 (n,i,1) € DAG verdict(n,i, 1} = Inconclusive

355

Fail :in each state of the DAG, an input of the implementation which is not allowed in
the specification should produce a Fail verdict. A new transition with verdict Fail
is .(virtually) added. In practice this corresponds to an Otherwise Fasl in TTCN.

FY (P, 0%) :n v e {1,2,3} ((1€AL-((p"", 0% —i>p)) ori € AL\ A5)
F® Fail State:1 (n,i,1) € DAG verdict(n,i,1) = Fail

Timers Timers are useful in practice in order to insure against implementation
deadlocks. The management of timers is made on the DAG generated by the
test generation rules 3.2. As timers depend on inputs, we associate a timer #; to
each input ¢ labelling a transition in the test case. Three operations on a timer
are available: Start(t;) which initializes the timer and must be done as soon as
input 7 is expected, Cancel(t;) which is done when ¢ is received or when, due to a
choice, i is no more expected, and Timeout(?;) which represents the observation
of a deadlock when waiting for 1.

Let (p™F,p°%) S (¢™%,¢°) be a transition of the synchronous product and
t : (n,a,m) the corresponding transition in the DAG. Let Ind((p®",p%)) be
the independency relation which represents the concurrency. The independency
relation is a binary symmetrical relation defined on the inputs of a state: two
inputs are independant if they may be received in any order. We denote by
Running(n) the set of timers that have been started in the sequences leading to
n and have not yet been cancelled, Cl and St are sets of timers that have to be
respectively cancelled or started after action «. Finally, discard(t) means that ¢
is discarded from the DAG. The following rules specify the timers management:

Init As specifications, test cases start with an output, thus if r is the root of the DAG,
Running(r) =0
Cancel and Start
t:(n,a,m) € DAG Running(n) = R
t': (n,a; Cancel(Cl); Start{St), m) € DAG Running(m) = (R\ Cl) U St
discard(t)

where Cl= {tili € Z((¢™",p")) A (a,i) € Ind((p™", %))}

St={t:li € Z((#"",p°)} \ (R\ C))

i.e. all timers corresponding to inputs not concurrent with & must be cancelled and
a timer must be started for each input available in m if it is not already running
in n, except if it has just been cancelled.

Timeouts We suppose that § € A;. By the construction and verdict rules, in each
node of the DAG, there is a transition labelled § and its verdict may be (PASS) if
& is in the test purpose, Inconclusive if it is in the specification or Fail otherwise.
If an input ¢ (7 may be 6) is possible in a state of the synchronous product, a
transition labelled by Timeout(t) is added. The verdict assigned to this timeout
must be the same as the verdict assigned to 6.

t:(n,i,m) € DAG i€ A;r verdict(t) # Fail t :(n,6,1) € DAG
" : (n, Timeout(t;), 1) € DAG verdict(#") = verdict(t')

Discard é For each transition t: (n, §,1) € DAG, apply discard(t)

356

Another depth first search is performed on the DAG to generate the timers
operations. Unlike the DAG construction, which works by synthesis (just around
the pop operation) the operations on timers are generated before the exploration
of the state successors (around the push operation). The running set associated
with each state is initialized to empty set at the initial state. It is inherited from
a state to its successor. During this step, on one hand, each transition of the
DAG is decorated with cancel and start operations on timers, on the other
hand some transitions labelled by timeout are added, following the previous
rules.

3.3 Results

Proposition 3.1 Let P be the synchronous product between S and TP (defi-
nition 3.1) and T(TP,S) be the DAG synthesized by applying the rules of def-
indtion 3.1. If (qf%, qs) is the root of the dag, then ¢T5 < ¢S else the test
purpose and the specification are not consistent.

Let OT(S) = {TP € IOLTS | ¢7%, < g5} be the set of test purposes which
are consistent with respect to the specification S. Let T'S(S) = {T(TP,S) |
TP € OT(S)} i.e. the set of test cases (test suite) that can be constructed for a
specification S. For 7 € T'S(S), we denote Maxiraces(T) = {¢ | A(T after ¢) =
0} the set of maximal traces of 7. For ¢ = ¢’.a € Maz.Traces(7T), and for an
implementation I, we define verdict(o,) = verdict(7 after o', a, 1). Notice
that 7 is deterministic, thus 7 after ¢’ is unique. We have the two following
results:

Proposition 3.2 (Soundness) Assuming that timeouts are produced if and only
if the implementation is deadlocked, for every implementation I, if the applica-
tion of a test case T € TS(S) produces a Fail verdict then I does not conform
with S':

(3T € TS(S), 30 € Max Traces(T),verdict(c,I) = Fail) = —(I ioconfS).

This second proposition is not exactly the converse. Implementations can be non
deterministic. Thus the application of the same sequence of actions of the tester
may produce different verdicts. Thus, like other authors [Pha94a], we assume a
bounded fairness hypothesis on implementations. This informally means that a
bounded number of executions of a non deterministic implementation will show
all its behaviours. For n € IN, we define verdict*(n, o, I) to be Fail if one of the
n applications of ¢ on I produces a Fail verdict, Pass otherwise.

Proposition 3.3 (Ezhaustivity) For every implementation I, if I does not con-
form with S, there exists a test case T € T'S(S) which can produce a Fail verdict:
—(I ioconf S) = (I7 € TS(S),30 € Max Traces(T),3n € IN,verdict*(n,o,1) =
Fail).

357

4 Experimentation

The algorithms and transformations described in previous sections have been
developed in the CADP toolbox [FGM192] as a software component named
TGYV (for Test Generation using Verification techniques). In order to prove the
feasibility of the approach, we have applied TGV to an industrial protocol, the
DREX protocol.

41 TGV

As we were primary interested by demonstrating the feasibility of our approach
before a real implementation, all algorithms are not yet combined into a unique
on the fly algorithm. We have used the Geode simulator [ALHH93] from Ver-
ilog as an SDL [CCI88] front-end which produces state graphs representing the
behaviour of a specification, constrained by the test purpose constraints.

Thus the inputs of TGV are a state graph produced by Geode (from a SDL
specification of the protocol) and an automaton formalizing the behavioural
part of a test purpose. The output is the behaviour description and constraints
definitions of a test case in the standard TTCN format [ISO92].

Different steps bring out this output. The first step takes as input the state
graph produced by Geode and transforms it into a graph representing the observ-
able behaviour of the protocol specification in the testing environment (ezternal
view graph). Several transformations are performed in this step: abstraction of
unobservable internal actions, determinization, mirror image which transforms
inputs into outputs and vice versa and construction of diamonds modelling con-
currency introduced by the asynchronous interaction between the tester and the
IUT. The next step is the kernel of TGV. The output is the DAG which con-
tains all informations needed in TTCN test cases. The last step takes as input
the DAG. The algorithm extracts from the transition labels the message pa-
rameters and produces the constraint part in TTCN GR format. The remaining
graph is unfolded into a tree describing the behavioural part of the test case in
TTCN GR format. Finally the constraint and behavioural parts of the test case
are translated into the graphical format TTCN GR.

4.2 Experiment with the DREX protocol

TGV has been used during an industrial contract for the Direction Générale pour
l’Armement. The protocol used for the experiment was a military protocol called
the DREX protocol which allows the access to the transit network Socrate of the
French Army, defined in the framework of Integrated Service Military Network.
This protocol has been chosen for three main reasons: firstly, we wanted to prove
the feasibility of automatic test generation methods on realistic specifications;
secondly, an SDL specification of a similar protocol was already available, and
finally, hand written test suites had already been produced. This last point is
important as hand written test cases have served as a basis for comparison with
automatically generated test suites.

358

The SDL specification models the behaviour of the DREX protocol on the
network, communicating asynchronously with two users by two PCOs. The size
of the SDL specification was about 2000 lines. 54 test purposes have been con-
sidéred and 54 corresponding test cases have been generated. The time needed
for the generation of a test case has to be separated into two parts: the time
needed for the graph generation with Geode which took between 3.5s and 400s
and the test case generation with TGV which took between 1s and 2s.

We have compared automatic test suites generated by TGV with hand writ-
ten test suites in a qualitative way. Even though TGV is just a prototype, all
hand written test suites or similar ones have been generated. The differences
that were observed were principally due to the fact that TGV treats system-
atically concurrency and timers. For examiple, in some hand written test cases,
concurrency between events were forgotten and risked an incorrect verdict. Some
differences were also due to the formal interpretation of test purposes. More de-
tails and other quantitative results of this study can be read in [FIJV96].

5 Conclusion

In this paper, we have shown how on-the-fly verification techniques could be used
in the generation of test suites. Starting from an already known conformance re-
lation and from the experiment gained with the analysis of hand written test
cases, we have formally defined the rules allowing a construction of complete test
cases, with preambles, postambles, verdicts and timers. These rules allowed us
to prove that generated test cases are sound {correct implementations are not
rejected) and exhaustive (if we assume a fairness hypothesis on implementations
under test, incorrect implementation can be detected) with respect to the con-
formance relation. A depth first search algorithm implementing these rules has
been described. A first version of this algorithm has been implemented in a pro-
totype named TGV which produces TTCN test suites from SDL specifications.
TGV has been experimented on an industrial protocol, proving the efficiency
and maturity of the algorithm.

The next step in this study will be the developrent of a new prototype which
will incorporate the algorithm described in this paper in a unique on-the-fly
algorithm and its integration in & complete validation tool. Another continuation
of the work is to deal with concurrent testing and links with interoperability
testing.

References

[ALHH93] B. Algayres, Y. Lejeune, F. Hugonnet, and F. Hantz. The AVALON
project : A VALidatiON Environment For SDL/MSC Descriptions. In
6th SDL Forum, Darmstadt, 1993.

[Briss] E. Brinksma. A theory for the derivation of tests. In S. Aggarval and
K. Sabnani, editors, Protocol Specification, Testing and Verification VIII,
IFIP, pages 63~74. Elsevier Science Publishers, B.V., North-Holland, 1988.

[CCIs8]

[CGPT95]

359

CCITT /SGx/WP3-1, Specification and Description Language, SDL.
CCITT Recommendation Z.100, 1988.

M. Clatin, R. Groz, M. Phalippou, and R. Thummel. Two approaches link-
ing a test generation tool with verification techniques. In A. Cavalli and
S. Budkowski, editors, 8th Int. Workshop on Protocols Test Systems, Evry,
France, pages 159-174, September 1995.

[CVWY90] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory effi-

[FGM*92]

[FIIV96]

[FM91]

[FMJ192]

[1S092]

[1789]

(1791

[Pha94a]

[Pha94b)

[Tre95)

cient algorithms for the verification of temporal properties. In E.M. Clarke
and R.P. Kurshan, editors, Computer Aided Verification, 2nd International
Workshop, CAV’90, New Brunswick, NJ, USA. Springer Verlag, LNCS 531,
1990.

J.-C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and
J. Sifakis. A Tool Box for the Verification of Lotos Programs. In 14th
International Conference on Software Engineering, Melbourne, Australia,
May 1992.

J.-C. Fernandez, C. Jard, T. Jéron, and G. Viho. An experiment in auto-
matic generation of test suites for protocoles with verification technology.
under revision for SCP, 1996.

J.-C. Fernandez and L. Mounier. On the fly verification of behavioral
equivalences and preorders. In K.G. Larsen and A. Skou, editors, Com-
puter Aided Verification, 3rd International Workshop, CAV’91, Aalborg,
Denmark, pages 181-190. Springer Verlag, LNCS 575, June 1991.

J.-C. Fernandez, L. Mounier, C. Jard, and T. Jéron. On-the-fly verification
of finite transition systems. Formal Methods in System Design, 1:251-273,
1992. Kluwer Academic Publishers.

OSI-Open Systems Interconnection, Information Technology - Open Sys-
tems Interconnection Conformance Testing Methodology and Framework
- Part 1 : General Concept - part 2 : Abstract Test Suite Specification -
part 3 : The Tree and Tabular Combined Notation (TTCN). International
Standard ISO/IEC 9646-1/2/3, 1992.

C. Jard and T. Jéron. On-line model-checking for finite linear temporal
logic specifications. In J. Sifakis, editor, Automatic Verification Methods
for Finite State Systems, International Workshop, Grenoble, France, pages
275-285. Springer—Verlag, LNCS 407, June 1989.

C. Jard and T. Jéron. Bounded memory algorithms for verification on the
fly. In K.G. Larsen and A. Skou, editors, Computer Aided Verification,
3rd International Workshop, CAV’91, Aalborg, Denmark, pages 192-202.
Springer Verlag, LNCS 575, June 1991.

M. Phalippou. Relations d’implantations et Hypothéses de Test sur des
automates & entrées et sorties. Theése de doctorat, Université de Bordeaux,
France, 1994.

M. Phalippou. Test sequence using Estelle or SDL structure information.
In FORTE’94, Berne, October 1994.

J. Tretmans. Testing Labelled Transition Systems with Inputs and Out-
puts. In A. Cavalli and 5. Budkowski, editors, 8th Int. Workshop on Pro-
tocols Test Systems, Evry, France, pages 461-476, September 1995.

Automatic Translation of Natural Language
System Specifications into Temporal Logic

Rani Nelken' and Nissim Francez?
! Tel-Aviv University, Tel-Aviv 69978, Israel
% Computer Science Department, The Technion, Haifa 32000, Israel

Abstract. This paper presents a method for automatically translating
natural language specifications into temporal logic. Using this method,
users may express complex specifications in relatively free natural lan-
guage, allowing multi-sentence specifications, the use of pronouns instead
of repeating the description of previously mentioned objects and com-
plex temporal relations. These specifications are translated into tempo-
ral logic, while ensuring the correctness of the translation. This approach
overcomes a well-known obstacle of applying model-checking industrially.
In contrast to prior attempts, the translation is linguistically based on
a modern formalism for discourse representation. An implementation of
this translation method is presented in one of the modern computational
linguistics systems.

1 Introduction

Temporal logic based verification using model-checking has proved to be a use-
ful and effective method for verifying finite-state concurrent systems. A recog-
nized problem in industrially applying this verification technique is making the
specification formalism more intuitive and easy to use. In practice, designers of
computerized systems either lack sufficient training in formal methods, or find
the specification formalism un-intuitive and inconvenient. Thus, the formulation
of specifications often becomes a two stage process:

1. Specifications are written in natural language (NL).

2. These specifications are manually translated into temporal logic (TL). This
is done according to the intuitive understanding of the translator, who has
to contend with the imprecision and ambiguity of NL and with the subtle
interpretation of TL formulae.

The frequent occurrence of imprecision in this translation is discussed in
[4], who propose an automatic translation tool, based on a direct mapping be-
tween TL formulae and NL constructs. This method allows designers to express
specifications in NL, but severely restricts the source language according to the
structure of TL. Thus, the full power attainable by computational linguistic
methods is not attained. It is not clear whether their system is grounded on any
sound linguistic theory.

361

In [5], the translation of NL specifications of logic programs into Prolog is
discussed. Input specifications in ‘controlled’” NL are automatically translated
into Prolog clauses through an intermediary representation in a linguistic theory
called Discourse Representation Theory (DRT) [8]. These clauses serve as a Pro-
log knowledge base, which may be executed and queried, and also paraphrased
back in NL.

In this paper, we describe a novel translation method, which also uses DRT
as an intermediate representation level. We largely enhance the NL constructs
which may be translated, abstracting away from the target TL, and allowing
the use of much freer, more natural language. Instead of isolated formula-like
sentences as in [4], we deal with sequences of inter-connected specifications,
which we term specification discourses (SDs). Our method allows a treatment of
complex NL constructs such as:

— NP anaphora - the use of pronouns instead of repeating a full description of
an object.

— Complex temporal expressions;, which are crucial for TL verification. Ex-
pressing such properties is one of the major difficulties, which hinders de-
signers from using TL directly. This is a major advancement over the treat-
ment of temporal expressions in [5], who use the temporal capabilities of
DRT in a very limited way. They distinguish between events and states and
relate them with the utterance time, but do not explore temporal relations
between events or states in discourse.

We further introduce a correctness criterion for the (second stage of the)
translation, and formally prove that the translation method fulfills this criterion.
Such a criterion and proof were lacking.

An implementation of this method, in the form of an interactive program is
described. It accepts SDs, parses them, constructing a representation in DRT,
called a Discourse Representation Structure (DRS), and then translates the DRS
into a TL formula. The generated formulae can subsequently serve as input to
a model-checker.

1.1 A Running Example

To illustrate the translation method, consider an allocator A that allocates a
single resource to m different customer processes Cy, Cy, ..., Cp3. The commu-
nication between each C; and A 1s done by a pair of shared boolean variables 7;
(request) and g; (grant). Following are statements of properties, that a designer
may wish to formally specify and verify about the operation of this system.
Each specification is given in both NL and our target temporal logic, ACTL*®
[6], a subset of Computational Tree Logic (CTL) [2]. These specifications will
illustrate the problems encountered in NL translation as described in Sec. 1.2.

® This example is based on one in [14].

* The target formalism of [4] is called ACTL too. Nevertheless, it is a different
formalism.

® We allow the use of the following additional operators:

362

(1) a. One cycle After r; is activated, g; should be asserted. r; is deactivated one to
six cycles later. Afterwards, it should be deasserted. (Response to requests)
AG [rise(r;) — AX [¢;&ABF; ¢ (fall(ri)&A [-fall(g:)U fall(g;)D]]

b. If r; is active and g; is asserted one cycle later, then eventually »; will be
inactive. (Conformance with the protocol)
AG [ri — AX (g; — AF -1;)]

¢. Whenever r; and g; are inactive, they remain inactive, until r; is activated
and g; remains inactive. {(Conformance with the protocol)
AG [-ri&—g; — A [-ri&—g;U (rise(r;)&—g;)]]

d. Once r; is activated, if g; is asserted, then g; will be activated before it is
asserted again. (1-Bounded overtaking)
AG [rise(r;) — AG [g; — A [-rise(g;)U rise(g:)]]]

1.2 Problems in the Analysis of NL Specifications

Following are characteristics of SDs, which should be taken into account when
translating NL. They stem from NL in general, the specific structure of SDs and
the gap between the source and target languages.

Ambiguity and imprecision are exhibited by $Ds and must be resolved in
the translation into TL.

Example: in sentence (1c) it is unclear which two clauses are conjoined by
the conjunction ‘and’. The second conjunct is ‘g; remains inactive’, but the
first is either: ‘r; is activated’ or ‘they remain inactive until r; is activated’.

Inter-sentential links The natural way of expressing specifications involves
multi-sentence discourses. These are not just lists of isolated sentences but
rather coherent objects.

Example: the second sentence of example (1a) is crucially dependent on its
predecessor, i.e. the phrase ‘one to six cycles later’ can be interpreted only
by reference to the first sentence.

The temporal structure of specifications Specifications exhibit a unique
temporal structure, causing SDs to often be expressed in a generic present
or future tense:

— Disconneclion from the present: SDs are often expressed in a timeless
language.
Example: Even though the tense of the verbs in sentence (1b) is simple
present, it does not refer to the present moment per se (e.g. the time of
writing the sentence).

— rise(p) and fall(p) for p € AP, where AP is the set of atomic propositions - to
represent a change from —p to p and vice versa.

- AX, [= AX (AX (..(AX f)))

~ ABF., f = AX; Ef VAX (fV.. . AX (f Vv AX f)))

®(f~3)

363

— Quantification over evenis: Specifications are usually concerned with re-
curring events in the course of a system’s operation. Consequently, SDs
contain either explicit or implicit quantification over events and time
periods. :

Example: Sentence (1b) is understood as referring to each time r; is
active.

Non determinism Our target formalism is ACTL, a branching-time TL. In

practice, designers tend to specify the behavior of systems in linear-time
terms. When translating SDs into a branching-time TL, this linearity has to
be introduced into the formalism. A simpler solution to this problem would
be choosing a linear time TL, e.g. LTL, as our target formalism. The choice
of ACTL in this paper is motivated by its widespread and successful use
(e.g. [15, 1]).

Example: the meaning of sentence (1d) is clear in a linear-time model.
However, it may have several branching-time TL interpretations, e.g. assume
a branching structure at the root of which r; is asserted, but where g; 1s
asserted along only one path from the root. Along which paths should g; be
activated 7

We solve these problems through the use of DRT, presented in Sec. 2, and a

restriction on the generated formulae, explained in Sec. 4.2.

2

Discourse Representation Theory

DRT [8, 9, 10] is a linguistic theory of the semantic content of general NL, which
studies discourses. It combines a static logical view of meaning with a dynamic
cognitive view. DRSs are defined as formulae of a formal language £ consisting

of:
1.

2.
3.

an infinite set R of typed markers: x y z for signals, s, s1, s, ... s, for states.
€,€1,€2,...e, for events and i, j for integers.
for each n € IN an infinite set P of n-place predicates. V = |, P"

identity

Definition1. 1. A DRS K = (Ug,Cong), where Ug C R is finite and Cong

2.

is a finite set of DRS-conditions.
Let K,K;, K, be DRSs, r;,rs,...7, € R and P € P*. A DRS-condition
may be one of: ry = ry, P(ry,re,...,7),~K, K1 = Ko, KiVEKyV .. VK,

DRSs are interpreted as partial models. A DRS is verified by a model® M,

iff it may be embedded in it as follows:

Definition2. A model for £ is M = (Upr,EV, N, Predys) where:

1.

Unr is a non-empty set.

® In Sec. 4.2, we make some changes in the following definition of a model.

364

2. £V is an event structure (see [10]).
3. IN is the set of natural numbers.
4. Predy maps each n-place predicate of £ onto an n-place relation over Uys.

Definition3. Let K be a DRS, v a DRS-condition, and lei f be an embedding
from some subset of V into M, i.e. f: R’ — Upr, where B C R.

1. f verifies the DRS K in M (M =y K) iff f verifies each v € Cong in M.
2. f verifies the condition v in M (M =) iff

(a) v is of the form ry = vy, r1,72 € Dom(f) and f(r1) = f(rz).

(b) v is of the form P(r1,7q,...,75),

71,72, .. .7y € Dom(f) and (f(r1), f(r2),..., f(rs)) € Predy(P)

(¢) 7 is of the form =K' and there is no embedding g : R — Ups, which
extends f, s.t. Dom(g) = Dom(f) UUgks and M =, K’

(d) v is of the form K; = K, and for every embedding ¢ s.t. Dom(g) =
Dom(f)UUg, and M [=, K, there is an extension h of g s.t. Dom(h) =
Dom{g) UUg, and M &=p K>,

(e) v is of the foorm K1 VK2 V...VK, and forsome: 1 <i<n M | K;.

DRSs are constructed from NL discourses by the DRS-construction algorithm
(Fig. 1), which processes sentences one by one, incrementally updating a DRS
according to a set of DRS-construction rules’. The algorithm models the way in
which a human listener processes a discourse, understanding sentences one at a
time. DRT provides an analysis of the ‘glue’ that holds a discourse together, most
prominently, it is able to resolve the meaning of anaphoric pronouns in discourse.
Full DRT also provides a thorough analysis of temporal relations within discourse
[7, 17, 10, 16]. While this analysis is not described in this paper, it is illustrated
through the DRS-construction for example (1a).

Input: Specification Discourse D = (S1,52,...,5n)
ContextDRS « EmptyDRS
1—0
repeat
DRS; « parse(S;)
ContextDRS «— UpdateContext{(ContextDRS,DRS;)
1e—1+1
untili =n
Output: ContextDRS

Fig.1. DRS-construction algorithm

7 These rules, i.e. the details of UpdateContext are given in [10] and are not presented
here for lack of space.

365

3 DRS-Construction for NL Specifications

We illustrate the construction of DRSs for SDs through the stepwise construction
of a DRS for example (1a), repeated here as (2).

(2) a. One cycle after r; is activated, g; should be asserted.
b. r; is deactivated one to six cycles later.
c. Afterwards, it should be deasserted.

DRSs are depicted using a graphical box-notation. The top of the box cor-
responds to the universe of the DRS, and the rest to the DRS-conditions. The
DRS-construction algorithm constructs the DRS® shown in Fig. 2.

TY

ri(z) gi(y)

S1i8262je3e4z
value(s, 1)
after'(es, s1,1)

s1:| asserted(y)

e1 between(y, 1, 6)

after’(s2,€2,7)
e1] activated(z) = 83 = &1

K ez:] deactivated(r;) 1

2=y
firstafter(es, es)

e4:l deasserted(z)]

K>

Kmain

Fig. 2. Example DRS

a. Processing sentence (2a) introduces the discourse markers z,y into Uk,
the first two DRS-conditions naming z and y r; and g; and the implica-
tion condition K; = K3, excluding the part of Ky following the condition:
81} The embedding conditions of an implication K1 = K, determine
that it induces universal quantification over the discourse referents of Uk,
and existential over those of Ug,, giving an interpretation that for each
event ej, in which z is activated, there is a state s;, in which y is asserted,

® For reference purposes DRSs are labeled. The labeling is part of the meta-language
used to discuss DRSs.

366

which follows the occurrence of e¢; by one time cycle. The introduction of the
implication condition 1s due to the implicit quantification inherent in (2a).

b. Parsing sentence (2b) produces a new DRS. This DRS is combined with
the DRS for the previous sentence, adding into K5 the discourse markers
s2,e2,§ and the DRS-conditions between(...), after'(sz,es,5), ea =7
When combining the DRSs, the ‘ancnymous’ eventuality marker s is iden-
sified with sy, thus determining that ‘later’ here means ‘after the assertion
of g; .

c. Parsing sentence (2c) generates an additional DRS, which is combined with
the compound DRS of sentences (2a) and (2b) to form the completed DRS
of Fig. 2. The treatment of ‘afterwards’ is identical to that of ‘later’. This
sentence also contains the pronoun ‘it’, which causes the introduction of the
marker z, which is later identified with y by a similar technique.

We introduce a set of restrictions on the structure of DRSs generated for
SDs, not described here for lack of space. A DRS thus restricted is called a
Specification DRS (SPDRS), and the set of SPDRSs, SPDRT. These restrictions
are a result of the subset of NL accepted by the translation method and the
DRS-construction rules.

4 Translating DRSs into ACTL

4.1 The Translation Method

We sketch the translation procedure trans : SPDRT = ACTL. We illustrate
its operation on the DRS of Fig. 2:

Translating K.in: K1 = K2 generates a formula starting in AG . This re-
flects the universal quantification on the elements of Uk, conferred by the
embedding®.

Translating K1 = K3: The temporal relation'® after’(e1, s1,4) generates an
operator AX; . Let fg, be the translation of the remaining conditions of
K;. The translation is AG [rise(r;) — AX (g:&fx,)}, where rise(r;) is the
translation of the event e;, and g; that of the state s;. :

Translating the remaining conditions of K3: The translation is driven by
the after’ and first_afier conditions. The translation of the first_after
generates the formula fp = fall(ri)&A [—fall(g;)U fall(g;)]. The transla-
tion of the first one generates the formula g, &ABF; ¢ (fall(r;)& f2).

The resulting translation is therefore the following, which is equivalent to

(la):
AG [rise(r;) — AX (g:&ABF ¢ (fall(r;)& fall(r:) A [~ fali(g:)U fall(gi)]))]

9 In general, the main DRS may contain several implications, in which ¢ase its trans-
lation is the conjunction of such formulae.
10 Different temporal relations generate different operators.

367

4.2 Correctness

The translation method consists of two major transitions: from NI to DRT, and
from DRT to TL. We define and prove a correctness criterion only for the sec-
ond stage of the translation. No correctness criterion can be defined for the first
stage of the translation. Given a NL SD and DRS, such a criterion would deter-
mine whether the DRS correctly represents the meaning of the NL specification.
This criterion would require an alternative formal interpretation of the NL SD,
the validity of which should alsoc be somehow defined and proved. Therefore, we
cannot hope for a mathematical correctness criterion for the DRS-construction
algorithm. We can only check whether the constructed DRSs conform to our
linguistic knowledge about the meaning of the NL. SDs they are meant to rep-
resent. Thus, we benefit from the wealth of linguistic research dedicated for the
purpose of providing a semantic analysis of NL.

Kripke Structure Induced DRT Models In order to ensure the correctness
of the translation from DRT to TL, we link the models used for the interpretation
of both theories. Through this linking, we solve the dichotomy between the linear-
time interpretation of SDs and DRSs, and the branching-time interpretation of
ACTL formulae.

Definition4. Given a path m = s, 51, ... in a Kripke structure P, a single path
structure P(7) is a tuple (Sy, s}, Rz, L) such that

~ Sz = {s,s1,...} is an infinite set of (pairwise distinct) states.
= Ra = {(s},si41)li 2 0}
= Vi2 0 La(sy) = L(si)

We expand the definition of satisfaction of CTL* formulae (defined only for
structures having a finite set of states) to also include satisfaction of formulae
by single path structures.

Definition5. For any Kripke structure P, its induced DRT model Mp is con-
structed as follows:

- For each p € AP,a binary signal of Mp

— For each each path 7 € IIp, the set of paths of P, a DRT path-model M, as
follows: for each state of P(w), a state of M., and for each pair of consecutive
states, an event.

Verification for DRT path models is as in Definition 3. We define Mp EK
iff each of the induced path-models M, = K.

Based on this construction, we present the following correctness criterion:

Definition6. An ACTL formula f is a correct translation of a DRS K iff for
every Kripke structure P and its induced DRT model Mp: Mp EK<PkEf

368

Theorem 7 shows that the translation method conforms to this correctness
criterion. The proof of this theorem is based on the reduction of correctness to
single paths.

Theorem T. Let K be an SPDRS, and f = trans(K). f is a correct translation
of K into ACTL.

Reduction of Correctness to Single Paths In [6] three linearity properties
for branching time temporal logics are defined: strong linearity, sub-linearity and
equi-linearity. We take advantage of the strongest of these properties, strong-
linearity, by restricting the formulae generated by the translation to the subset
of strong-linear formulae.

Definition8. [6] A formula f € ACTL is strong-linear, iff there is an w-regular
language Ly, such that for every Kripke structure P, P |= f <= L(P) C £;

Lemma9. If K is an SPDRS, then trans(K) is a strong-linear ACTL formula.

Lemma 10 asserts that for a strong-linear.formulae f, the satisfaction of f
by a Kripke structure P depends only on the satisfaction of f by each individual
path of P, regardless of the way they are interleaved.

Lemma10. If f € ACTL is strong-linear, then for every Kripke structure P,
Nrellp,P(r)Efl<=>PEf

Strong-linearity allows us to reduce the correctness of the translation of an
SPDRS by a Kripke structure to its correctness relative to single path structures,
as in the following lemma illustrated by Fig. 3.

Lemmail. Let f be a strong-linear ACTL formula and K an SPDRS. If for
every Kripke structure P and its induced DRT model Mp: V& € IIp[M, =
K <= P(n) |= f] where My is the path model associated with the single path
structure P(w), then f is a correct translation of K.

MpEK — P
! !
Ve e IpM, EK — VrelpP(n) =9

Vo € Ip[Mr = K <> P(x) & &)

Fig. 3. Reduction of the correctness to correctness for paths

369

5 The Implementation

The translation method described above has been implemented as an interactive
program SpecTran 1.0, which receives as input SDs, parses them, constructs
DRSs and generates an ACTL formula from the DRS. The parser is written
using the LexGram system [11, 12], which is based on a synthesis of ideas from
Lambek Categorial Grammar [13] and Head Driven Phrase structure Grammar
(HPSG) [18]. LexGram is written in a unification-based grammar formalism,
CUF [3], and in Prolog.

In [11] a German grammar is implemented. The system parses sentences,
constructing syntactic tree representations and semantic representations in the
form of DRSs for them. In SpecTran the German grammar was replaced by
an English one. The syntax part of this grammar was written by Esther Konig.
SpecTran, parses input SDs sentence after sentence, processing each new sen-
tence and updating a single DRS. In cases of ambiguity, the parser produces all
the alternative parses of a sentence and their related DRSs.

SpecTran consults the user with respect to the resolution of the meaning
of pronouns (e.g. ‘it’, ‘they’), allowing a choice between a set of appropriate
alternatives. A similar consultation is done with respect to the resolution of the
meaning of words such as ‘later’.

The completed DRS after the parsing of the full discourse, is passed in the
form of a CUF data structure into the DRT to TL translation module. This
module, written in CUF as well, implements the translation procedure described
above. It accepts SPDRSs and translates them into strong-linear ACTL formu-
lae.

6 Conclusion

In this paper, we have presented a translation method from NL specifications
into TL, for the purpose of verification. Through the use of computational lin-
guistic methods, we allow the expression of complex specifications in NL. While
completely unrestricted NL is beyond the reach of current technology, and is ar-
guably an undesirable medium for expressing specifications, we allow the use of
relatively convenient language within certain restrictions. It is still necessary for
designers to write specifications in precise and concrete language, but some toler-
ance is allowed in the use of flexible syntactic structure, multi-sentence discourse,
pronominal anaphora and complex inner-sentential and inter-sentential tempo-
ral relations. By drawing on current linguistic research in the analysis of NL
discourses, we enhance the applicability of an NL interface to a model-checker.
It is our belief that the use of such an interface may facilitate the verification
process in industrial practice, without harming the correctness of the verifica-
tion. By introducing and proving a correctness criterion for the (second stage)
of the translation and drawing on linguistic research for the first part of the
translation, we are able to guarantee that the transformation from NL into TL
does not introduce errors. Such a guarantee is lacking for the manual translation

370

process often exercised in practice, and from previous attempts of automatic
translation.

Acknowledgments

The work of the second author was partially supported by a grant from the Israehi
ministry of science “Programming languages induced computational linguistics”, and
by the fund for the promotion of research in the Technion. We also wish to thank the
following people: Uwe Reyle, Esther Kénig, Orna Grumberg, Ilan Beer and Shoham
Ben-David.

References

1.

10.

11.

E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and
L. A, Ness. Verification of the futurebus+ cache coherence protocol. In L. Claesen,
editor, Proceedings of the Fleventh International Symposium on Computer Hard-
ware Description Langugages and their Applications, North Holland, 1993.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Expressibility results for linear time
and branching time logic. ACM transactions on Programming Languages and Sys-
tems, 8(2):244-263, 1986.

J. Dorre and M. Dorna. Cuf - a formalism for linguistic knowledge representation.
In J. Dérre, editor, Computational Aspects of Constraint - Based Linguistic De-
scription, volume 1. ILLC/Department of Philosophy, University of Amsterdam,
Amsterdam, 1993. DYANA 2 deliverable R.1.2.A.

A. Fantechi, S. Gnesi, G. Ristori, M. Carenini, M. Vanocchi, and P. Moreschini.
Assisting requirement formalization by means of natural language translation. For-
mal Methods in System Design, 4:243-263, 1994.

. N. E. Fuchs and R. Schwitter. Specifying logic programs in controlled natural

language. In Proceedings of the Workshop on Computational Logic for Natural
Language Processing. A Joint COMPULOGNET/ELSNET/EAGLES Workshop,
Edinburgh, 1995.

. 0. Grumberg and R.P. Kurshan. How linear can branching-time be? In D. M.

Gabbay and H. J. Ohlbach, editors, First International Conference on Temporal
Logic (ICTL’94). Lecture Notes in Artificial Intelligence 827, pages 180-194, Bonn,
Germany, 1994. Springer-Verlag.

. E. W. Hinrichs. Temporale anaphora im englischen. Unpublished Statexamen

Thesis. University of Tuebingen., 1981.

. H.Kamp. A theory of truth and semantic representation. In T. Janssen

J. Groenendijk and M. Stokhof, editors, Formal Methods in the Study of Language,
pages 277-322. Mathematical Center, Amsterdam, 1981.

. H. Kamp and U. Reyle. A calculus for first order discourse representation struc-

tures. Bericht Nr.16-1991 Arbeitspapier des Sonderforschungsbereich 340, Institut
fiir Maschinelle Sprachverarbeitung, Universitit Stuttgart, 1991.

H. Kamp and U. Reyle. From Discourse to Logic, volume 42 of Studies in Linguis-
tics and Philosophy. Kluwer Academic Publishers, 1993.

E. Konig. A study in grammar design. Arbeitspapier 54 des Sonderforschungs-
bereich 340. Institut fir Maschinelle Sprachverarbeitung, Universitit Stuttgart,
1594,

12

13.
4.
15.

16.

17.

18.

371

. E. Konig. Lexgram - a practical categorial grammar formalism. In Proceedings of
the Workshop on Computational Logic for Natural Language Processing. A Joint
COMPULOGNET/ELSNET/EAGLES Workshop, Edinburgh, Scotland, 1995.

J. Lambek. The mathematics of sentence structure. American mathematical
monthly, 65:154-170, 1958.

Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems.
Springer - Verlag, 1991.

K. L. Mcmillan. Symbolic Model Checking: An Approach to the State Ezplosion
Problem. PhD thesis, Carnegie Mellon University, 1992.

R. Nelken and N. Francez. Splitting the reference time:temporal anaphora and
quantification. In Proceedings of the EACL ’95 - The secventh meeting of the Eu-
ropean Chapter of the Association for Computational Linguistics, Dublin, Ireland,
1995. Also available as Technical Report LCL-94-10 of the Laboratory for Com-
putational Linguistics, The Technion IIT.

B. Partee. Nominal and temporal anaphora. Linguistics and Philosophy, 7:243~
286, 1984.

C. Pollard and I. A. Sag. Head Driven Phrase Structure Grammar. University of
Chicago Press, Chicago, 1994.

Verification of Fair Transition Systems

Orna Kupferman® and Moshe Y. Vardi?

* Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.
Email: ok@research.att.com
2 Rice University, Department of Computer Science, P.O. Box 1892, Houston, TX 77251-1892, U.S.A.
Email; vardi@cs.rice.edu, URL: http://www.cs.rice.edu/~vardi

Abstract. In program verification, we check that an implementation meets its specification. Both
the specification and the implementation describe the possible behaviors of the program, though at
different levels of abstraction. We distinguish between two approaches to implementation of spec-
ifications. The first approach is trace-based implementation, where we require every computation
of the implementation to correlate to some computation of the specification. The second approach
is tree-based implementation, Where we require every computation tree embodied in the implemen-
tation to correlate to some computation tree embodied in the specification. The two approaches to
implementation are strongly related to the linear-time versus branching-time dichotomy in temporal
logic.

In this work we examine the trace-based and the tree-based approaches from a complexity-theoretic
point of view. We consider and compare the complexity of verification of fair transition systems,
modeling both the implementation and the specification, in the two approaches. We consider un-
conditional, weak, and strong faimess. For the trace-based approach, the corresponding problem is
language containment, For the tree-based approach, the corresponding problem is fair simulation.
We show that while both problems are PSPACE-complete, their complexities in terms of the size of
the implementation do not coincide and the trace-based approach is more efficient. As the implemen-
tation is normally much bigger than the specification, we see this as an advantage of the trace-based
approach. Qur results are at variance with the known results for the case of transition systems with
no fairness, where the tree-based approach is more efficient.

1 Introduction

In program verification, we check that an implementation meets its specification. Both the specification
and the impiementation describe the possible behaviors of the program, but the implementation is more
concrete than the specification, or, equivalently, the specification is more abstract than the implementa-
tion (cf. [AL.91]). This basic notion of verification suggests a top-down method for design development.
Starting with a highly abstract specification, we can construct a sequence of “behavior descriptions™.
Each description refers to its predecessor as a specification, so it is less abstract than its predecessor. The
last description contains no abstractions, and constitutes the implementation. Hence the name hierarchi-
cal refinement for this methodology (cf. [LS84, LT87, Kur94]).

We distinguish between two approaches to implementation of specifications. The first approach is
trace-based implementation, where we require every computation of the implementation to correlate to
some computation of the specification. The second approach is tree-based implementation, where we re-
quire every computation iree embodied in the implementation to correlate to some computation tree em-
bodied in the specification. The exact notion of correct implementation then depends on how we interpret
correlation. We can, for example, interpret correlation as identity. Then, correct trace-based implementa-
tion is one in which every computation is also a computation of the specification, and correct tree-based
implementation is one in which every embodied computation tree is also embodied in the specification.
Numerous interpretations of correlation are suggested and studied in the literature [Hen85, Mil89, AL91].
Here, we consider a very simple definition of correlation and interpret it as equivalence with respect to
the variables joint to the implementation and the specification, as the implementation is typically defined
over a wider set of variables, reflecting the fact that it is more concrete than the specification.

The tree-based approach is stronger in the following sense. If Z is a correct tree-based implementa-
tion of the specification S, then is also a correct trace-based implementation of S. As shown by Milner

373

[Mi180], the opposite direction is not true. The two approaches to implementation are strongly related
to the linear-time versus branching-time dichotomy in temporal logic [Pnu85]. The temporal-logic anal-
ogy to the strength of the tree-based approach is the expressiveness superiority of YCTL*, the universal
fragment of CTL*, over LTL [CD88]. Indeed, while a correct trace-based implementation is guaranteed
to satisfy all the LTL formulas satisfied in the specification, a correct tree-based implementation is guar-
anteed to satisfy all the VCTL* formulas satisfied in the specification [GL94].

In this work we examine the traced-based and the tree-based approaches from a complexity-theoretic
point of view. More precisely, we consider and compare the complexity of the problem of determining
whether 7 is a correct trace-based implementation of S, and the problem of determining whether Z is
a correct tree-based implementation of &. The different levels of abstraction in the implementation and
the specification are reflected in their sizes. The implementation is typically much larger than the speci-
fication and it is its size that is the computational bottleneck. Therefore, of particular interest to us is the
implementation complexity of these problems; i.e., their complexity in terms of Z, assuming S is fixed.

We model specifications and implementations by transition systems [Kel76]. The systems are de-
fined over the sets APy and APs of atomic propositions used in the implementation and specification,
respectively. Thus, the alphabets of the systems are 27 and 2475 Recall that usually the implementa-
tion has more variables than the specification. Hence, AP; D APs. We therefore interpret correlation as
equivalence with respect to A Ps. In other words, associating computations and computation trees of the
implementation with these of the specification, we first projet them on A Ps. Within this framework, cor-
rect trace-based implementation corresponds to trace containment and correct tree-based implementation
corresponds to simulation [Mil71). Since simulation can be checked in polynomial time [Mil80, BGS92],
whereas the trace containment problem is PSPACE-complete [MS72] 3, it seems that the tree-based ap-
proach is more efficient than the trace-based approach. This is reminiscent of the computational advan-
tage of branching-time model checking over linear-time model checking [CES86, LP85, QS81, VW86].

Once, however, we want our implementations and specifications to describe behaviors that satisfy
both liveness and safety properties, transition systems are too weak. Then, we need the framework of
Jair transition systems. We consider unconditional, weak, and strong fairness (also known as impartial-
ity, justice, and compassion, respectively) [LPS81, Eme90, MP92]. Within this framework, correct trace-
based implementation corresponds to Janguage containment and correct tree-based implementation cor-
responds to fair simulation [BBLS92, ASB*94, GL94]. Hence, it is the complexity of these problems
that should be examined when we compare the trace-based and the tree-based approaches.

We present a uniform method and a simple algorithm for solving the language-containment problem
for all the three types of fairness conditions. Unlike [CDK93], we consider the case where both the speci-
fication and the implementation are nondeterministic, as is appropriate in a hierarchical refinement frame-
work. We prove that the problem is PSPACE-complete for all the three types. For the case the implemen-
tation uses the unconditional or weak fairness conditions, our nondeterministic algorithm requires space
logarithmic in the size of the implementation (regardless the type of fairness condition used in the spec-
ification). For the case the implementation uses the strong fairness condition, we suggest an alternative
algorithm that runs in time polynomial in the size of the implementation. We show that these algorithms
are optimal; thus the implementation complexity of language containment is NLOGSPACE-complete
for implementations that use the unconditional or weak fairness conditions and is PTIME-complete for
implementations that use the strong fairness condition. To prove the latter, we show that the nonempti-
ness problem for fair transition systems with a strong fairness condition is PTIME-hard, which is most
likely harder than the NLOGSPACE bounds known for the unconditional and weak fairness conditions
[VW94].

We also present a uniform method and a simple algorithm for solving the fair-simulation problem
for all the three types of fainess conditions. Our algorithm uses the language-containment algorithm
as a subroutine. We prove that the problem is PSPACE-complete for all the three types. Like Milner's
algorithm for checking simulation {Mil90], cur algorithm can be implemented as a calculation of a fixed-
point expression, significantly improving its practicality. The running time of our algorithm is polynomial
in the size of the implementation. We show that this is optimal; thus, the implementation complexity of

3 The reduction in [MS72] considers containment of languages defined by regular expressions and can be extended
to consider trace containment,

374

fair simulation is PTIME-complete for all types of fairness conditions. Proving the latter we prove that
the implementation complexity of simulation (without fairness conditions) is PTIME-complete too.

Our results show that when we model the specification and the implementation by fair transition sys-
tems, the advantage of the tree-based approach disappears. Furthermore, when we consider the imple-
mentation complexity, then chiecking implementations that use unconditional or weak fairness conditions
is easier in the trace-based approach.

2 Preliminaries

2.1 Fair Transition Systems

A fair transition system (transition system, for short) S = (£, W, R, W;, L, a) consists of an alpha-
bet X, a set W of states, a total transition relation R € W x W (i.e., for every w € W there exists
w' € W such that R(w, w')), a set W of initial states, a labeling function L : W — X, and a fairness
condition ce. We will define three types of fairness conditions shortly. A computation of S is a sequence
T = wo, W, Ws, ... of states such that for every ¢ > 0 we have R{w;,w;+1). In order to determine
whether a computation is fair, we refer to the set Inf(m) of states that 7 visits infinitely often. Formally,

Inf(m) = {w € W : for infinitely many ¢ > 0, we have w; = w}.

The way we refer to Inf (7} depends in the fairness condition of S. Several types of fairness conditions
are studied in the literature. We consider here three:

- Unconditional fairness (or impartiality), where & C W, and = is fair iff Inf(n) Na # @.

— Weak fairness (or justice), where o 2% x 2W, and 7 is fair iff for every pair {L, R) € o, we have
that Inf(r) N (W \ L) = @ implies Inf(x) N R # D.

— Strong fairness (or fairness), where @ € 2% x 2%, and 7 is fair iff for every pair (L, R) € a, we
have that Inf(n) N L # @ implies If(rYN R # 0.

1t is easy to see is that fair transition systems are essentially a notational variant of automata on infinite
words [Tho90]. Thus, we will be able to use freely results from the theory of such automata. In particu-
lar, the unconditional and the strong fairness conditions correspond to the Biichi and Streert acceptance
conditions.

For a state w, a w-computation is a computation wy, wy, W, ... with wg = w. We use £{S*} to
denote the st of all words g - 01 - -+ € £ for which there exists a fair w-computation wg, wy, . .. in
S with L(w;) = o; forall § > 0. The language £(S) of S is then defined as |J ¢y, £(S*)- Thus, each
transition system defines a subset of L. We say that a transition system S is empty iff £(S) = §;i.e.,
S has no fair computation. We sometimes say that § accepts w, meaning that w € £(S).

The size of a transition system and its fairness condition, determine the complexiry of solving ques-
tions about it. We define classes of transition systems according to these two characteristics. We write
i, W, and S to denote the unconditional, weak, and strong fairness conditions, respectively. We measure
the size of a transition system by its number of states (the number of edges is at most quadratic in the
number of states) and, in the case of weak and strong fairness, also by the number of pairs in its fairness
condition. For example, an unconditionally fair transition system with 7 states is denoted U (n). We also
use a line over the transition system to denote the complementary transition system (one that accepts the
complementary language). For example, the transition system complementing a strongly fair transition
system with n states and m pairs is denoted S(n, m).

2.2 The Language-Containment and the Fair-Simulation Problems

In this section we formalize correct trace-based and tree-based implementations in terms of language
containment and fair simulation between an implementation 7 and a specification §. Recall that 7 and &
are given as fair transition systems over the alphabets 24 and 2475 respectively, with APy D APs.
For technical convenience, we assume that AP; = APs; thus, the implementation and the specification
are defined over the same alphabet. By taking, for each o € 2472, the letter o N AP instead the letter
@, all our algorithms and results are valid also for the case APy D AFPs.

375

Given two transition systems S and S’ over the same alphabet, the language containment problem
of S and S’ is to determine whether £(S} C L£(S’). That is, whether every word accepted by S is also
accepted by S’. While language containment refers to each word in £(S) independently, fair simulation
refers also to the branching structure of the transition system.

Let S and S’ be two transition systems over the same alphabet and let H C W x W' be a relation
over their states. It is convenient to extend H to relate also infinite computations of S and S’. For two
computations 7 = wg, Wy, ...in S,and 7’ = wp, w,...in S’, we say that H (r, 7') holds iff H (w;,w})
holds for all i > 0. For a pair {w,w') € W x W', we say that {w, w') is good in H iff for every fair
w-computation 7 in S, there exists a fair w’-computation =’ in S’, such that H (7, 7").

Let w and w’ be states in W and W', respectively. A relation H C W x W' is a simulation relation
from (S, w) to {S’, w') iff the following conditions hold:

1) H(w,w').
(2) Forall t and ' with H(t,t'), we have L(t) = L(t').
(3) For all t and ¢’ with H(t,t'), the pair (¢,¢') is good in H.

A simulation relation H is a simulation from S to S’ iff for every w € Wy, there exists w’ € W} such
that H (w, w'). If there exists a simulation from S to S’, we say that S simulates S' and we write S < S'.
Intuitively, it means that the transition system .5’ has more behaviors than the transition system S. In fact,
every computation tree embodied in S is embodied in S’. The fair-simulation problem is, given S and
S’, to determine whether S < S'.

It is easy to see that fair simulation implies language containment. That is, if S < S’ then £(S) C
L(S'). The opposite, however, is not true. In the figure below we present two transition systems S and
S’ such that the language of both transition systems is (¢ +b)“. As such, £{S) C £(S"), but still, S does
not simulate S’. Indeed, no initial state of S’ can be paired, by any H, to the initial state labeled a of S.

S: s
OO0 © O

3 The Complexity of the Language-Containment Problem

Theorem 1. The language-containmentprobiem L(S) C L(S") for S € {U,W,S}and ' € {U,W, S}
is PSPACE-complete.

Proof: As there are three possible types for the transition system S and three possible types for the
transition system S’, we have nine containment problems to solve in order to prove a PSPACE upper
bound. We solve them all using the same method:

(1) Translate the transition system S to an unconditionally fair transition system Sy.
(2) Construct an unconditionally fair transition system S, that complements the transition system S’.
(3) Check L(Sy) N L(S};) for nonemptiness.

This is how we perform step (1) for the three possible types of S.

1. U(n) — U(n).
2. W(n,m) — U(nm) [easy, and will be proven in the full version].
3. 8(n,m) — U(n2°0™)) [not hard, and will be proven in the full version].

376

This is how we perform step (2) for the three possible types of S'.

L. U(n) — U(20(n o8 ™)) [Saf88).
2. W(n,m) — U(nm) — U(20(mlos(nm)) [3af8g].
3. §(n, m) — U(20(vmleg(nm))) [Saf9)].

For all the three types of S, S, going to Sy involves an at most exponential blow up. Similarly, for all
the three types of S, going to SU involves an at most exponential blow up. Thus, the size of the product
of Sy and SU is exponential in the sizes of S and S’ [Cho74] and checking it for nonemptiness can be
done in space polynomial in their sizes [VW94].

Hardness in PSPACE follows from the known PSPACE lower bound for the case where both S and
S’ are unconditionally fair [Wol82]. Since U(r) ~ W(n, 1) and U(n) — S(n, 1), we can not do better
with weak or strong fairness.]

Recall that our main concern is the complexity in terms of the (much larger) implementation. We now
turn to consider the implementation complexity of language containment.

Theorem 2. The implementation complexity of checking £{S) C L(S')for S € {U,W} and §" €
{U,W, 8} is NLOGSPACE-complete.

Proof: In the case where § € {I/, W}, the translation of S to Sy involves only a pelynomial blow
up. Thus, in this case, fixing the size of S’, the nondeterministic algorithm described in the proof of
Theorem 1 requires space logarithmic in the size of S. Singe we can solve the nonemptiness problem
of a transition system by checking its containment in a fixed-size empty transition system, hardness in
NLOGSPACE follows from the NLOGSPACE lower bound for the nonemptiness problem of uncondi-
tionally fair transition systems [VW94], a

So, for the case where the implementation does not use the strong faimess condition, our language-
containment algorithm requires space that is only logarithmic in the size of the implementation. Clearly,
this is not the case when the implementation does use the strong fairness condition. Then, our algorithm
requires space that is polynomial in the size of the implementation and time that is exponential in the size
of the implementation. We can, however, do better.

Theorem 3. The implementation complexity of checking £L(S) C L{S'}for S € {8} and §' € {U,W, S}
is in PTIME.

Proof: We are going to use the following known results.

1. For Sy € S(ny,m) and Sz € U(nz), there exists § € S{(nyny, m + 1) such that £(S) = £(5;) N
L(8,) easy, and will be proven in the full version].

2. The nonemptiness problem for strongly fair transition systems can be solved in polynomial time
{EL85].

Given § and S’, we construct, as in the proof of Theorem 1, the unconditionally fair transition system
SU Unlike the algorithm there, we do not translate the transition system S to an unconditionally fair
system. Rather, we check the nonemptiness of £{S) n L',(SU) By 1 and 2 above, this can be done in
time polynomial in the size of 5. 0

Note that the algorithm presented in the proof of Theorem 3 uses time and space exponential in the
size of the specification, in contrast to the algorithm in the proof of Theorem 1 that uses space polynomial
in the size of the specification. Nevertheless, as S’ is usually much smaller than S, the algorithm in the
proof of Theorem 3 may work better in practice. Can we do better and get the NLOGSPACE complexity
we have for implementations that use the unconditional or weak fairness conditions? As we now show,
the answer to this question is negative. To see this, we first need the following theorem.

Theorem4. The nonemptiness problem for strongly fair transition systems is PTIME-hard.

377

Proof: We do areduction from Propositional Anti-Horn Satisfiability (PAHS). Propositional Anti-Horn
clauses are obtained from Propositional Horn clauses by replacing each proposition p with —p. Thus, a
propositional anti-Horn clause is either of the form p — ¢; V- - - V ¢,, (an empty disjunction is equivalent
to false) or of the form q; V : - - V g,.. As Propositional-Horn Satisfiability is PTIME-complete {Pla84],
then clearly, so is PAHS.

Given an instance I of PAHS we construct the transition system S; = (W, W,W x W, {wo}, L, o},
where W is the set of all the propositions in 7, the initial state wg is an arbitrary state in W, L(w) = w
forw € W, and « is the strong fairness condition defined as follows.

— Foraclausep — ¢y V...V gy inJ, we have ({p}, {01, " ¢qn}) ina.
~ Foraclauseqy V...V gn in I, wehave (W, {q1, -, ¢qn}} in .

We can view each computation of S; as an assignment to the propositions in I. A proposition is as-
signed true iff the computation visits it infinitely often. The definition of « thus guarantees that I is
satisfiable iff S; is nonempty.]

So, unlike unconditionally or weakly fair transition systems, for which the nonemptiness problem is
NLOGSPACE-complete, testing strongly fair transition systems for nonemptiness is PTIME-complete.
Theorems 3 and 4 imply the following theorem.

Theorem 5. The implementation complexity of checking L(S) C L£(S’) for S € {S}and S’ € {U, W, S5}
is PTIME-complete.

4 The Complexity of the Fair-Simulation Problem

4.1 Upper Bound
Theorem6. The fair-simulationproblemS < 8’ for S € {U,W,S}and S’ € {U, W, S} isin PSPACE.

Proof (sketch): Given S = (Z,W,R,W;,L,a) and 8’ = (£, W', R, W/, L', o'), we show how
to check in polynomial space that a candidate relation H is a simulation from S to $’. The claim then
follows, since we can enumerate using polynomial space all candidate relations. First, we check, easily,
that for every w € Wy there exists w’ € W, such that H(w, w'). We then check, also easily, that for all
{(w,w') € H, wehave L(w) = L(w’). Itis Jeft to check that for all (w, w') € H, the pair {(w, w’} is good
in H. To do this, we define, for every (w,w') € H, two transition systems. The alphabet of both systems
is W. The first transition system, A,,, accepts all the fair w-computations in S. The second transition
system, Uy, accepts all the sequences 7 in W* for which there exists a fair w’-computation 7’ in §'
such that H(mr, 7'). Clearly, the pair (w,w'} is good in H iff L(4,) C L(U.).

We define A,, and U, as follows. The system A,, does nothing but tracing the w-computations of
S, accepting these that satisfy S’s acceptance condition. Formally, A, = (W, W, R, {w}, L", a), where
for all w € W, we have L" (w) = w.

The transition system U,,» has members of H as its set of states. Thus, each state has two elements.
The second element of each state in U, is a state in W’ and it induces, according to R’, the transitions.
The first element in each state of U, is a state in W and it induces the labeling. This combination guar-
antees that a computation 7"/ € H“ whose W'-elements form the computation 7' € W' and whose
states are labeled with m € W, satisfies H(mr, n’). Formally, Uy, = (W, H,R", W', L", "), where
Wy = (W x {w'}) N H, for every {t,¥') € H, we have L"({t,t')) = t, the fairness condition o
is adjusted to the new state space (ie., each set L C W’ in o is replaced by the set (W x L) N H
in @), and the transition relation R" is also adjusted to the new state space (i.e., R"{{t,t'}, (g, ¢')) iff
R'(¢',¢)). Note that R” is not necessarily total. For that, we restrict U, to states that have at least one
R"-successor. Clearly, this does not effect the language of U,

According to Theorem 1, checking that £(A,,) C L£(U,) can be done in space polynomial in the
sizes of A, and Uy, thus polynomial in § and S’. [m}

‘We note that our algorithm can be easily adjusted to check S and S’ for fair bisimulation.

378

4.2 Lower Bound

For a transition system S = (X, W, R, W;, L, o), we say that S is universal iff £(S) = X*. The uni-
versality probiem is to determine whether a given transition system is universal. Meyer and Stockmeyer
proved that the problem of determining whether the language of an automaton over finite words is £* is
PSPACE-complete [MS72]. We give here the details of the proof, easily adjusted to infinite words,

Theorem 7. The universality problem is PSPACE-hard.

Proof (sketch): We do a reduction from polynomial-space Turing machines. Given a Turing machine
T of space complexity s(n), we construct a transition system Sy of size linear in T and s(n) such that
St is universal iff T does not accept the empty tape. We assume, without loss of generality, that once T’
reaches a final state it loops there forever. The system St accepts a word w iff w is not an encoding of
a legal computation of T over the empty tape or if w is an encoding of a legal yet rejecting computation
of T over the empty tape. Thus, St rejects a word w iff it encodes a legal and accepting computation of
T over the empty tape. Hence, St is universal iff T’ does not accept the empty tape.

Below we give the details of the construction of S7. Let T = (I, Q, —, g, F), where I" is the alpha-
bet, @ is the set of states, = C QxI'x@xI"x {L, R} is the transition relation (we use (g, a) — (¢’, b, 4)
to indicate that when T is in state ¢ and it reads the input @ in the current tape cell, it moves to state ¢',
writes b in the current tape cell, and its reading head moves one cell to the left/right, according to A),
go is the initial state, and F' € @Q is the set of accepting states. We encode a configuration of 7" by a
word #7172 - - . (@, %) - - - Ys(ny#- That is, a configuration starts and ends with #, all its other letters are
in I', except for one letter in @ x I". The meaning of such a configuration is that the j's cell in T, for
1 £ j < s{(n), is labeled ~;, the reading head points on cell ¢, and T is in state q. For example, the
initial configuration of T is #(qo, b)b. .. b#t where b stands for an empty cell. We can now encode a
computation of T" by a sequence of configurations (with only one # between two configurations).

Let £ = {#JUlru(@x=TI)andlet oy ... oumyfo] ... c';(n) # be two successive configurations of
T For each triple {(6;_1, 04, 0i41) With 1 < i < s(n), we know, by the transition relation of T, what o’
should be. Let nezt({oi—1, 01, 0i+1)) denote our expectation for o;. For example, next({yi—1, ¥, Yi+1})
is 7;, and next({{g, Yi-1), ¥, Yi+1)) is ¥, in the case (g,vi-1) — {g’,7/_1, L), and is (¢’,¥:), in the
case (q,%i~1) = (¢', -1, R). In addition, since we want the letter # to repeat exactly every s(n) + 1
letters, we define nezt((04(n), #,01)) as #. Consistency with next now gives us a necessary condi-
tion for a word to encode a legal computation. In addition, the computation should start with the initial
configuration.

In order to check consistency with nezt, St can use its nondeterminism and guess when there is
a violation of next. Thus, St guesses {0:_;,0:,0:+1) € L, guesses a position in the word, checks
whether the three letters to be read starting this position are 0;—1,0;, and 0,3, and checks whether
next((@i-1,0:,0:+1)) is not the letter to come s(n) -+ 1 letters later. Once St sees such a violation,
it goes to an accepting sink. In order to check that the first configuration is the initial configuration, 5S¢
simply compares the first s(n)+ 2 letters with #(go, b)b . . . b#. Finally, checking whether a legal compu-
tation is accepting is also easy; the computation has to reach an accepting configuration (one with g € F).

8]

We would like to do a similar reduction in order to prove that the fair-simulation problem is PSPACE-
hard. For every alphabet I, let Sy be the transition system (£, X, ¥ x X, X, Ly, o), where Lg(0) = o
and o is such that all the computations of S are fair. That is, Sg is a universal transition system in which
each state is associated with a letter ¢ € X' and L{S%) = o - £*. For example, S, 4} is the transition
system S in Figure 2.2. It is easy to see that a transition system S over I is universal iff £L(Sxz) € £(S).
It is not true, however, that S is universal iff Sy < S. For example, the transition system S’ in Figure 2.2
is universal yet Sy, 33 £ S'. Our reduction overcomes this difficulty by defining St in such a way that
if St is universal, then for each of its states w, we have L(S¥) = L{w) - Z*. For such St, we do have
that St is universal iff Sy < Sp. Indeed, a relation that maps a state ¢ of Sy to all the states of St that
are labeled with o is a fair simulation.

379

Theorem8. The fair-simulation problem S < S’ for S € {U,W,S} and S’ € {U,W,S} is PSPACE-
hard.

Proof (sketch): As in the previous proof, we do a reduction from polynomial space Turing machines.
Given the Turing machine T, let T' be as follows. Whenever T reaches an accepting configuration, 7'
cleans the tape and starts from the beginning (i.e., empty tape and initial state at the left end of the tape).
Thus, T accepts the empty tape iff 7 has an infinite computation, in which case it visits the initial con-
figuration infinitely often. We now define a transition system St with the following behavior. Reading
a word w, the transition system St checks for a violation of the transition relation of T in w (by guess-
ing a violation of nezt). If it sees a violation, it goes to an accepting sink. If it does not see a violation,
it continues to trace the computation of 7" forever. We define the fairness condition of St such that it
accepts w iff it reaches the accepting sink or it never sees the initial configuration in w. This acceptance
condition can be specified by a pair (g, b} of states where g is simply the accepting sink and b is a state
that St passes in whenever it traces the initial configuration in w (note that since the initial configuration
starts with # and has no other # in it, it is very easy to being traced). A computation of St is fair with
respect to (g, b} iff it eventually visits g and never visits b. This fairness condition can be easily translated
to unconditional, weak, and strong fairness; e.g., by making g an accepting sink and b a rejecting sink.
It follows that Sz does not accept a word w iff w has a finite prefix, not violating nezxt, followed by an
infinite computation of T” that passes in the initial configuration of T'. Therefore, St is universal iff T'
does not accept the empty tape.

We, however, want more than universality test. We want to define Sy in such a way that if it is indeed
universal, then for each of its states w, we have £{S}) = L{w) - £*. Let St = (£, W, R, Wy, L, a).
We define the transition system S7. by adding to St transitions from all states to all the initial states,
ie, Sy = (L, W,RU(W x Wp), Wy, o). We claim that the extension of St to S} preserves “non-
universality”. That s, if S7 is universal, then so is S7. Note that this is not the case for arbitrary transition
systems. In St, however, if a word 2 is not-accepted, then w is of the form yz where y is a prefix not
violating nezt and z is an infinite computation of T”. As such, all the suffixes of w are of that special
form! Therefore, if w is not accepted by S, all its suffixes are also not accepted by St. Hence, w is not
accepted by Sf. too.

We claim that S is universal iff for each state w of Sf., we have £(S) = L(w)- £*. The direction
from right to left follows from the fact that the extension of St to S7. preserves non-universality and the
fact that for every o € Z, there exists wg € Wy with L(wg) = 0. The second direction follows from
the fact that each state w in S7. has a transition to Wy,

We now have that Sy < Sy, iff S is universal, thus Sg < S} iff T does not accept the empty tape.
Since the fairness conditions of both Sz and S7 can be specified in terms of either unconditional, weak,
or strong fairness, we are done.

]

Theorems 6 and 8 together imply the following.

Theorem 10. Theimplementation complexity of checking S < S'for S € {U,W,S}and§' € {Uw,s}
complete.

4.3 The Implementation Complexity of the Fair-Simulation Problem

So, fair simulation has the same complexity as language containment. In Theorem 10 below we show
that when we consider the implementation complexity of fair simulation, the picture is different. Here,
checking implementations that use the unconditional or weak fairness conditions is not easier than check-
ing implementations that use the strong fairness condition. Hence, fair simulation is harder than language
containment and the trace-based approach is more efficient.

Theorem 10. The implementation complexity of checking S < S’ for S € {U,W,S}and S’ € {U, W, S8}
is PTIME-complete.

380

Proof: We start with the upper bound. Consider the algorithm presented in the proof of Theorem 6.
It checks whether a candidate relation H is a simulation. Once we fix S’, then, by Theorems 2 and 5,
the complexity of checking each pair in the candidate relation is NLOGSPACE for S € {i{, W} and
is PTIME for S € {S}. Once we fix S, the number of pairs in each candidate relation is polynomial
in the size of S. Thus, fixing S, the problem of checking a candidate relation H is in PTIME. Instead
of guessing a relation H and checking it, we do a fixed-point computation as follows (cf. [Mil90]). Let
Hy = {{w,w') : w € W,w' € W, and L{w) = L{w'}}. Thus, Hy is the maximal relation that satisfies
condition (1) of fair simulation. Consider the monotonic function f : 2W*W' — oWxW' here

JHY=Hn{{w,w'): (w,w')is goodin H}.

Thus, f(H) contains all the pairs in H that are good with respect to the relation H. Let H be the greatest
fixed-point of f when restricted to pairs in Hp. That is, H = vz.Ho N f(2). It can be shown that § < &'
iff for every w € Wy, we have ({w} x W§) N H # 8. Since W x W’ is finite, we can calculate
H iteratively, starting with Hj, until we reach a fixed-point. Now, as f is monotonic, we have to iterate
it at most polynomially many times. Hence, out of the 2 IWxW| candidate relations for simulation, we
actually check at most |W x W'| relations. Recall that if S’ is fixed, the problem of checking a candidate
relation is in PTIME. Also, if §' is fixed, we have only linearly many candidate relations to check. Hence,
the problem is in PTIME.

We prove hardness in PTIME by reducing the NAND Circuit Value Problem (NANDCV), proved
to be PTIME-complete in [Gol77, GHR95], to the problem of determining whether a transition system
S simulates a fixed transition system S”. In the NANDCYV problem, we are given a Boolean circuit o
constructed solely of NAND gates of fanout 2, and a vector {2, . .., %.) of Boolean input values. The
problem is to determine whether the output of & on (z1,...,Z,} is 1. The idea of the reduction is as
follows. We define a fixed transition system S’ that embodies all the NAND circuits o and input vectors
x for which the value of a on x is 1. Then, given a circuit & and an input vector x, we translate them to
a transition system S such that $ < S’ iff the value of c on x is 1.

The transition system S’ has 12 states. Eight states correspond to internal gates. Each of these states
is an entry in the Truth Table of the operator NAND, attributed with a direction, either L or R. Thus, the
“internal states” of §" are (001L), (011L}, (101L}), (110L}, (001R), (011 R}, (101R), and (110R). Four
more states correspond to the input gates of the circuit. Each of these states is a Boolean value, attributed
with a direction. Thus, the “input states” are (0L}, {11}, (OR}, and (1R}. The intuition is that an internal
state (I, 7, val, d) corresponds to a NAND gate that has the value ! in its left input, has the value r in its
right input, and whose output val can be only a d-input of other gates. Similarly, an input state (val, d}
corresponds to an input gate with output val that can only be a d input of other gates.

Accordingly, the transitions from an internal state (I, r,val, d) correspond to the possible ways of
having/ and r as right and left inputs, respectively. Thus, we have transitions from this state to all (internal
or input) states with either val = ! and d = L or val = r and d = R. For example, the internal state
{100L) has transitions to the states (001.L}, (011L}, (101L}, (110R), {1L}, and (OR}. It has transitions
from all states (I, r, val, d) with { = 0. In addition, the input states have self loops.

‘We label an internal state by either L or R according to its direction element. We label an input state
by both its value and direction. We define the initial states of S’ to be these with val = 1, and we impose
no fairness condition. Clearly, the size of §' is fixed.

Now, S is simply « with attributions of directions. That is, we duplicate all gates and inputs of o so
that the output of each gate is either always a left input of other gates, in which case we label it with L,
or always a right input of other gates, in which case we label it with R. In addition, we add self loops to
the input gates and label them with their values.

1t is not hard to prove that for a simulation relation H from S to $' and for every pair (s, {,r, val, d))
or {s, {val, d)) in H, the output of the gate s on the vector x is val. Hence, the output of & on x is 1 iff
S simulates S'. o

‘We note that our lower bound is different from the PTIME-hardness established for the bisimulation
problem in [BGS92]). We consider simulation between two systems, one of them is fixed. Balcazar et
al. consider bisimulation between the states of a single system, whose size is not fixed.

381

5 Discussion

We have examined the trace-based and the tree-based approaches to implementation from a complexity-
theoretic point of view. Our results show that when we model the specification and the implementation
by fair transition systems, the complexity of checking the correctness of a trace-based implementation
coincides with that of checking the correctness a tree-based implementation. Furthermore, when we con-
sider the implementation complexity, then checking implementations that use the unconditional or weak
fairness condition is easier in the trace-based approach.

It is interesting to compare our results with the known complexities of LTL and YCTL* model check-
ing. Trace-based implementations are part of the linear-time paradigm and correspond to LTL meodel
checking. Tree-based implementations are part of the branching-time paradigm and correspond to YCTL*
model checking. All the four problems are PSPACE-complete [SC85, EL85). The model-checking algo-
rithm of YCTL* uses as a subroutine the model-checking algorithm of LTL [EL85]. In a similar manner,
our fair-simulation algorithm uses as a subroutine the language-containment algorithm. So, the imple-
mentation dichotomy and the temporal-logic dichotomy have a lot in common. When we turn to consider
the program complexity of model checking, which is the analogue to our implementation complexity, this
is no longer true. The program complexity of model checking for both LTL and VCTL* is NLOGSPACE-
complete [VW86, BVW94]. In contrast, we saw here that implementation is easier in the trace-based
approach.

References

{AL91] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical Computer Science,
82(2):253-284, 1991.

[ASB*94] A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A L. Sangiovanni-Vincentelli. Equivalences for fair
kripke structures. In Proc. 21st Int. Colloguium on Awtomata, Languages and Programming, Jerusalem,
Israel, July 1994.

[BBLS92] S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Property preserving simulations. In Proc. 4th
Workshop on Computer Aided Verification, volume 663 of Lecture Notes in Computer Science, Montreal,
June 1992. Springer-Verlag.

[BGS92] J. Balcazar, J. Gabarro, and M. Santha. Deciding bisimilarity is P-complete. Formal Aspects of Com-
puting, 4(6):638-648, 1992.

[BVW94] O. Bembholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time model
checking. In D. L. Dill, editor, Computer Aided Verification, Proc. 6th Int. Conference, volume 818 of
Lecture Notes in Computer Science, pages 142-155, Stanford, June 1994. Springer- Verlag, Berlin.

{CD88] EM. Clarke and 1. A. Draghicescu. Expressibility results for linear-time and branching-time logics. In
Proc. Workshop on Linear Time, Branching Time, and Partial Order in Logics and Models for Concur-
rency, pages 428-437. Lecture Notes in Computer Science, Springer- Verlag, 1988.

[CDK93] E. M. Clarke, I. A. Draghicescu, and R. P. Kurshan. A unified approach for showing language contain-
ment and equivalence between various types of w-automata. Information Processing Letters 46, pages
301-308, (1993). '

[CES86] EM. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent sys-
tems using temporal logic specifications. ACM Transactions on Programming Languages and Systems,
8(2):244~263, January 1986.

[Cho74] Y. Choueka. Theories of automata on w-tapes: A simplified approach. Journal of Computer and System
Sciences, 8:117-141, 1974,

[EL85] E.A.Emerson and C.-L. Lei. Temporal model checking under generalized fairness constraints. In Proc.
18th Hawaii International Conference on System Sciences, Hawaii, 1985.

[Eme90] E.A.Emerson. Temporal and modal logic. Handbook of theoretical computer science, pages 997-1072,
1990.

[GHR95] R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits of parallel computation. Oxford University Press,
1995.

[GL94] O. Grumberg and D.E. Long. Model checking and modular verification. ACM Trans. on Programming
Languages and Systems, 16(3):843-871, 1994,

[Gol77] L.M. Goldschlager. The monotone and planar circuit value problems are log space complete for p.
SIGACT News, 9(2):25-29, 1977.

[Hens5]
[Kel76]
[Kur94]
[LP85]

[LPS81]

[LS84]
[LT87]
[Mil71]
[MiI80]

[Mil89]
[MilS0]

[MP92]

[MS72]

[Pla84]

{Pru85]

[Qs81]

[Saf88]
[Saf92}
[SC85]
[Tho90}
[VW86]
[VW94]

[Wol82]

382

M. Hennessy. Algebraic theory of Processes. MIT Press, Cambridge, 1985.

RM. Keller. Formal verification of parallel programs. Comm ACM, 19:371-384, 1976.

R.P. Kurshan. Computer-Aided Verification of Coordinating Processesl. Princeton Univ. Press, 1994,
O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear specifi-
cation. In Proceedings of the Twelfth ACM Symposium on Principles of Progr ing Languages, pages
97-107, New Orleans, January 1985.

D. Lehman, A. Pnueli, and J. Stavi. Impartiality, justice, and fairness - the ethic of concurrent termina-
tion. In Proc. 8th Colloq. on Automata, Programming, and Languages (ICALP), volume 115 of Lecture
Notes in Computer Science, pages 264-277. Springer-Verlag, July 1981.

S5.S.Lam and A.U. Shankar. Protocol verification via projection. [EEE Trans. on Software Engineering,
10:325-342, 1984.

N. A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In Proc. 6th
ACM Symp. on Principles of Distributed Computing, pages 137-151, 1987.

R. Milner. An algebraic definition of simulation between programs. In Proceedings of the 2nd Interna-
tional Joint Conference on Artificial Intelligence, pages 481-489, September 1971,

R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer Science.
Springer Verlag, Berlin, 1980.

R. Milner. Communication and Concurrecny. Prentice-Hall, Englewood Clifs, 1989.

R. Milner. Operational and algebraic semantics of concurrent processes. Handbook of theoretical com-
puter science, pages 1201-1242, 1990.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer-Verlag, Berlin, January 1992.

AR. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions with squaring re-
quires exponential time. In Proc. 13th IEEE Symp. on Switching and Automata Theory, pages 125-129,
1972.

D.A. Plaisted. Complete problems in the first-order predicate claculus. J. on Computer and System Sci-
ences, 29(1):8-35, 1984.

A. Pnueli. Linear and branching structures in the semantics and logics of reactive systems. In Proc. 12th
Int. Colloquium on A ta, Languages and Programming, pages 15~32. Lecture Notes in Computer
Science, Springer-Verlag, 1985.

J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In Proc. Sth
Int’l Symp. on Programming, volume 137, pages 337-351. Springer-Verlag, Lecture Notes in Computer
Science, 1981.

S. Safra. On the complexity of omega-automata. In Proceedings of the 29th IEEE Symposium on Foun-
dations of Computer Science, White Plains, October 1988,

S. Safra. Exponential determinization for w-automata with strong-fairness acceptance condition. In Pro-
ceedings of the 24th ACM Symposium on Theory of Computing, Victoria, May 1992.

A P, Sistlaand E.M. Clarke. The complexity of propositional linear temporal logic. J. ACM, 32:733-749,
1985.

W. Thomas. Automata on infinite objects. Handbook aof theoretical computer science, pages 165-191,
1990.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Pro-
ceedings of the First Symposium on Logic in Computer Science, pages 322-331, Cambridge, June 1986.

M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation
113(1):1-37, November 19%4.
P. Wolper. Synthesis of C icating Processes from Temporal Logic Specifications. PhD thesis, Stan-

ford University, 1982.

Tools and Case Studies

The State of SPIN

Gerard J. Holzmann and Doron Peled

Bell Laboratories
700 Mountain Avenue
Murray Hill, NJ 07974
{gerard, doren}@research.bell-labs.com

Abstract. The number of installations of the SPIN model checking tool
is steadily increasing. There are well over two thousand installations
today, divided roughly evenly over academic and industrial sites. The
tool itself also continues to evolve; it has more than doubled in size, and
hopefully at least equally so in functionality, since it was first distributed
in early 1991. The tool runs on most standard workstations, and starting
with version 2.8 also on standard PCs.

In this overview, we summarize the design principles of the tool, and
review its current state.

1 Background

SPIN is a general state-based model-checking tool designed for the efficient ver-
ification of logically distributed process systems. Processes in SPIN are always
asynchronous. Synchronization, where desired, must be specified explicitly.

The native specification language of SPIN is called PROMELA. PROMELA is
a non-deterministic guarded command language, in the tradition of [3] and [5]
with a small influence from the langnage C [11]. The langnage was designed to
encourage abstraction. The purpose of model checking in SPIN is to perform
design vertfication well before the coding stage of a design is reached. A basic
notion in the language is that of ezecutability: every PROMELA statement can
enforce synchronization constraints through the rules of executability. Whenever
a statement is unexecutable, for instance, it blocks the execution of the corre-
sponding process, unless alternative executions for that process were specified.
The most recent version of the language supports data structures, interrupts, and
arich variety of both synchronous and asynchronous message passing primitives.

The semantics of a PROMELA model are based on the interleaving model of
execution, where concurrently executed atomic operations from different pro-
cesses are considered to be executable in any arbitrary time-order. The model is
appropriate for modeling distributed software. For synchronous hardware a dif-
ferent semantics interpretation is usually chosen, e.g. [12]. Most model checkers
today have adopted those alternative semantics. These systems can still simu-
late interleaving semantics at the language level, but the price to pay for this in
efficiency can be substantial. The optimizations builtin to SPIN fully exploit the
asynchronous process model.

386

1.1 State-based model-checking

SPIN’s verification procedure is based on the reachability analysis of a model, us-
ing an optimized depth-firsi-search graph traversal method. A number of special-
purpose algorithms are used to avoid a purely exhaustive search procedure (e.g.,
partial order reduction, state compression, and sequential bitstate hashing). We
summarize some of the newer algorithms in the sequel.

1.2 Correctness properties

SPIN can verify both safety and liveness properties on-the-fly. By default, SpIN
will check a set of basic properties such as absence of deadlock and unreachable
code. It will also check that any user-defined process assertions or tnvariants
cannot be violated, and that the system can only terminate in user-defined valid
end-states.

The specification language includes two types of labels that can be used to
define two complementary types of liveness properties: acceptance and progress.
In the syntax of Linear Temporal Logic (LTL) [15], an acceptance property cor-
responds to formulae of the type O<Op, where p is a user-defined accepting state.
The violation of a progress property corresponds to formulae of the type OO-p
with p a user-defined progress state.

Correctness requirements can also be expressed directly in LTL syntax. For
example, the formula O{request — Ogranted) asserts that at any point in the
execution, if a request was made, it is eventually granted. SPIN versions 2.7 and
later include a translation algorithm that converts LTL formulae like these into
PrOMELA never-claims. Never-claims formalize the potential violations of a cor-
rectness requirement, i.e., behavior that should never happen. More specifically,
a never-claim can be used to represent a Biichi automaton (an automaton over
infinite words), and it is this capability that is exploited by the LTL translator.

Although the expressive power of LTL is smaller than that of never-claims [17},
the use of LTL can be simpler and more direct.

2 Basic Algorithms

2.1 Automata Intersection

SPIN uses finite automata based model-checking. Each process of the checked
mode] is translated into a finite automaton. The checked property, representing
the wviolations of correctness properties, is translated into a property automaton
(i.e., the never-claim).

S