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Preface 

This volume contains the proceedings of the Eighth International Conference on 
Computer Aided Verification (CAV '96), organized July 31-August 3, 1996, in 
New Brunswick, New Jersey. The annual CAV series is dedicated to the advance- 
ment of the theory and practice of computer-assisted formal analysis methods for 
software and hardware systems. The conference covers the spectrum from the- 
oretical results to concrete applications, with an emphasis on verification tools 
and the algorithms and techniques that are needed for their implementation. 
This year's call-for-papers invited submissions in two separate categories: regular 
research contributions, and short descriptions of tools and case studies. Of the 93 
submissions in the first category, 32 were selected for presentation at the confer- 
ence. From an enthusiastic response to the second category, 20 submissions were 
chosen. 

The conference will include four invited lectures, and a morning session with in- 
vited talks by representatives from industry. Invited lectures will be given by 
Michael Rabin (Harvard University, USA, and Hebrew University, Israel) on 
Randomization and Protocol Verification, by John Rushby (SRI International, 
USA) on Automated Deduction and Formal Methods, and by Bill Roscoe (Oxford 
University, UK) on Refinement-based Model Checking. Amir Pnueli (Weizmann 
Institute, Israel) will give an after-banquet speech on The Potential and Sensi- 
ble Scopes of Formal Methods. The industrial session will include invited talks 
by Justin Harlow and Peter Verhofstadt (Semiconductor Research Corporation, 
USA) on Formal Methods in the IC Industry: Trends and Directions, by Patrick 
Scaglia (Cadence Berkeley Labs, USA) on From Wired Homes to Automated 
Highways: A Perspective on Vemfication in the 21st Century, by Wolfram Bfittner 
(Siemens Corporate Research and Development, Germany) on Formal Verifica- 
tion at Siemens: Achievements, Problems, Trends, by Gary De Palma (Lucent 
Technologies, USA) on User Experiences with FormalCheck, by Carl Pixley (Mo- 
torola, USA) on Formal and Informal Functional Verification in a Commercial 
Environment, and by Shoham Ben-David (IBM Haifa Research Lab, Israel) on 
Model Checking at Work. 

The program of CAV '96 was selected by a program committee consisting of 
R. Alur (co-chair, Bell Labs, USA), R.K. Brayton (University of California at 
Berkeley, USA), K. Cer~ns (University of Latvia, Latvia), D.L. Dill (Stanford 
University, USA), E.A. Emerson (The University of Texas at Austin, USA), O. 
Grumberg (The Technion, Israel), T.A. Henzinger (co-chair, University of Califor- 
nia at Berkeley, USA), K.G. Larsen (Aalborg University, Denmark), D.E. Long 
(Bell Labs, USA), K.L. McMillan (Cadence Berkeley Labs, USA), A.K. Mok 
(The University of Texas at Austin, USA), D. Peled (Bell Labs, USA), A. Pnueli 
(Weizmann Institute, Israel), C.-J.H. Seger (Intel Development Labs, USA), J. 
Sifakis (VERIMAG, France), S.A. Smolka (SUNY at Stony Brook, USA), M.K. 
Srivas (SRI International, USA), W. Thomas (Universit~it Kiel, Germany)~ F. 
Vaandrager (Nijmegen University', The Netherlands), M.Y. Vardi (Rice Univer- 
sity, USA), and P. Wolper (Universitd de Liege, Belgium). 
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The following researchers helped in the evaluation of the submissions, and we are 
grateful for their efforts: L. Aceto, J. Andersen, E. Asarin, P. Attie, F. BMarin, C. 
Barrett, T. Basten, I. Beer, H. Ben-Abdallah, S. Ben-David, S. Berezin, K. Bern- 
steih, B. Bloom, B. Boigelot, D. Bosscher, A. Bouajjani, R. Bryant, N. Buhrke, 
S.-T. Cheng, C.-T. Chou, D. Clarke, D. Cyrluk, D. Dams, S. Dawson, Z. Dayar, S. 
Edwards, C. Eisner, K. Engelhardt, J. Esparza, A. Felty, J.-C. Fernandez, T. Per- 
nando, M. Fisher, W. Fokkink, N. Francez, H. Garavel, T. Gelsema, R. Gerth, 
D. Giest, P. Godefroid, S. Graf, D. Griffioen, E. Gukovski, P. Habermehl, N. 
Halbwachs, W. Hesselink, R. Ho, R. Hojati, G. Holzmann, A. Hu, H. Huttel, A. 
!ngolfsdottir, C.N. Ip, A. Isles, S.P. Iyer, B. Jacobs, H.E. Jensen, M. Kaltenbach, 
S. Katz, A. Kerbrat, J. Kleist, S. Krishnan, K. Kristoffersen, K. Kuehnle, Y. 
Kukimoto, Y. Lakhnech, A. Landver, K. Laster, D. Lee, H. Lescow, A. Levin, X. 
Liu, S. Ma, O. Maler, F~ Maraninchi, E. Mikk, H. Miller, F. Moller, L. Mounier, 
M. Mukund, K. Namjoshi, V. Natarajan, D. Niwinski, S. Park, C. Petersohn, 
A. Philippou, I. Polak, A. Ponse, C. Puchol, S. RQamani, Y.S. Ramakrishna, 
R. Ramanujam, R. Ranjan, P. Raymond, A. Rensink, J. Romijn, H. RueB, J. 
Sanghavi, I. Schiering, R. Segala, S. Seibert, N. Shankar, T. Shiple, V. Singhal, 
A. Skou, O. Sokolsky, J. Springintveld, R. Staerk, M. Staskauskas, F. Stomp, K. 
Stroetmann, R. Sumners, K. Sunesen, G. Swamy, S. Tasiran, P.S. Thiagarajan, 
R. Trailer, J. Tretmans, S. Tripakis, S. Ur, A. van Deursen, M. van Hulst, B. 
Victor, T. Villa, J. Voege, T. Vos, I. Walukiewicz, P. Weidmann, H. Wupper, 
C.H. Yang, M. Yannakakis, and S. Yovine. 

The CAV steering committee consists of the conference founders Ed Clarke 
(Carnegie Mellon University, USA), Bob Kurshan (Bell Labs, USA), Amir Pnueli 
(Weizmann Institute, Israel), and Joseph Sifakis (VERIMAG, France). We thank 
them and Pierre Wolper (Universit@ de Liege, Belgium), the conference chair of 
CAV '95, for valuable advice on the organization of the conference. 

This year, CAV will be part of the Federated Logic Conference (FLoC '96), and 
organized jointly with the 13th International Conference on Automated Deduc- 
tion (CADE), the l l th  Annual IEEE Symposium on Logic in Computer Science 
(LICS), and the 7th International Conference on Rewriting Techniques and Ap- 
plications (RTA). FLoC '96 will be hosted by the Center for Discrete Mathematics 
and Computer Science (DIMACS), an NSF Science and Technology Center lo-- 
cated at Rutgers University, as part of a Special Year on Logic and Algorithms. 
The FLoC steering committee consists of Stephen Mahaney (Ratters Univer- 
sity, USA) and Moshe Vardi (chair, Rice University, USA). The FLoC organizing 
committee consists of Rajeev Alur (Bell Labs, USA), Leo Bachmair (SUNY at 
Stony Brook, USA), Amy Felty (Bell Labs, USA), Doug Howe (Bell Labs, USA), 
and Jon Riecke (chair, Bell Labs, USA). We gratefully acknowledge the help 
of Priscilla Rasmussen from ARCS, who is responsible for registration and site 
arrangements. 

FLoC '96 receives financial support from DIMACS, and also from AT&T Re- 
search, IBM Almaden Research, the IEEE Computer Society, Lucent Technolo- 
gies Bell Labs, and the Max-Planck Institute. Student registratiomat CAV '96 is 
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subsidized due to financial support from Cadence Berkeley Labs, Lucent Tech- 
nologies, and Siemens Corporate Research and Development. We thank all spon- 
sors for their generosity. 

Murray Hill, New Jersey 
Berkeley, California 

May 1996 

Rajeev Alur 
Tom Henzinger 
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Symbolic Verification of Communication Protocols 

with Infinite State Spaces Using QDDs 

(Extended Abstract) 

Bernard Boigetot* 
Universit~ de Liege 
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4000 Libge Sart-Tilman, Belgium 

Emaih boigelot@montefiore.ulg.ac.be 

Patrice Godefroid 
Lucent Technologies - Bell Laboratories 

1000 E. \u Road 
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Email: god@bell-labs.corn 

A b s t r a c t  

~re study the verification of properties of communication protocols modeled by a finite set 
of finite-state machines that communicate by exchanging messages via unbounded FIFO queues. 
It is well-known that most interesting verification problems, such as deadlock detection, are 
undecidable for this class of systems. However, in practice, these verification problems may very 
well turn out to be decidable for a subclass containing most "real" protocols. 

Motivated by this optimistic (and, we claim, realistic) observation, we present an algorithm 
that may construct a finite and exact representation of the state space of a communication 
protocol, even if this state space is infinite. Our algorithm performs a loop.first search in the state 
space of the protocol being analyzed. A loop-first search is a search technique that attempts to 
explore first the results of successive executions of loops in the protocol description (code). A new 
data structure named Queue-con~ent Decision Diagram (QDD) is introduced for representing 
(possibly infinite) sets of queue-contents. Operations for manipulating QDDs during a loop-first 
search are presented. 

A loop-first search using QDDs has been implemented, and experiments on several com- 
munication protocols with infinite state spaces have been performed. For these examples, our 
tool completed its search, and produced a finite symbolic representation for these infinite state 
spaces. 

1 I n t r o d u c t i o n  

State-space exploration is one of the  most  successful s trategies for analyzing and verifying properties of 

finite-state concurrent  reactive systems.  It proceeds by exploring a global s ta te  graph representing 
the  combined behavior of all concurrent components  in the  system.  This  is done by recursively 

exploring all successor s ta tes  of all s tates  encountered dur ing  the  exploration, s tar t ing from a given 

initial s tate,  by executing all enabled t ransi t ions  in each state.  The  s ta te  graph tha t  is explored is 

called the  state space of the system. Many different types of  properties of a sys tem can be checked by 

exploring its s ta te  space: deadlocks, dead code, violations of user-specified assertions, etc. Moreover, 

the  range of properties tha t  s tate-space explorat ion techniques can verify has been substant ial ly 

broadened during the  last decade thanks  to the  development  of model-checking methods  for various 
temporal  logics (e.g., ICES86, LP85, QS81, V~V86]). 

* "Aspirant" (Research Assistant) for the National Fund for Scientific Research (Belgium). The work of this author 
was done in part while visiting Bell Laboratories. 



Verification by state-space exploration has been studied by many researchers (cf. [Liu89, Rud87]). 
The simplicity of the strategy lends itself to easy, and thus efficient, implementations. Moreover, 
verification by state-space exploration is fully automatic: no intervention of the designer is required. 
The main limit of state-space exploration verification techniques is the often excessive size of the 
state space. Obviously, this state-explosion problem is even more critical when the state space being 
explored is infinite. 

In contrast with the last observation, we show in this paper that  verification by state-space explo- 
ration is also possible for systems with infinite state spaces. Specifically, we consider communication 
protocols modeled by a finite set of finite-state machines that  communicate by exchanging messages 
via unbounded FIFO queues. We present a state-space exploration Mgorithm that  may construct 
a finite and exact representation of the state space of such a communication protocol, even if this 
state space is infinite. From this symbolic representation, it  is then straightforward to verify many 
properties of the protocol, such as the absence of deadlocks, whether or not the number of messages 
stored in a queue is bounded, and the teachability of local and global states. 

Of course, given an arbitrary protocol, our algorithm may not terminate its search. Indeed, it 
is well-known that  unbounded queues can be used to simulate the tape of a Turing machine, and 
hence that  most interesting verification problems are undecidable for this class of systems [BZ83]. 
However, in practice, these verification problems may very well turn out to be decidable for a 
subclass containing most "real" protocols. To support this claim, properties of several communication 
protocols with infinite state spaces have been verified successfully with the algorithm introduced in 
this paper. 

In the next section, we formally define communication protocols. Our algorithm performs a loop- 
first search in the state space of the protoco~ being analyzed. A loop-first search is a search technique 
that  at tempts to explore first the results of successive executions of loops in the protocol description 
(code). This search technique is presented in Section 3. A new data structure, the Queue-content 
Decision Diagram (QDD), is introduced in Section 4 for representing (possibly infinite) sets of queue- 
contents. Operations for manipulating QDDs during a loop-first search are presented in Section 5. 
A loop-first search using QDDs has been implemented, and experiments on several communication 
protocols with infinite state spemes are reported in Section 6. This paper ends with a comparison 
between our contributions and related work. 

2 Communicat ing  Finite-State  Mach ines  

Consider a protocol modeled by a finite set ~4 of finite-state machines that  communicate with each 
other by sending and receiving messages via a finite set Q of unbounded FIFO queues, modeling 
communication channels. Let Mi denote the set of messages that  can be stored i n queue ql, 1 < i < 
IQI. For notational convenience, let us assume that  the sets 11~ are pairwise disjoint. Let Ci denote 
the finite set of states of machine . ~ i ,  1 _< i < 12~]. 

Formally, a protocol P is a tuple (C, co ,A ,Q,M,T)  where C = C1 x . . .  x CI:~[ is a finite set 
of control states, co E C is an initial control state, A is a finite set of actions, Q is a finite set of 
unbounded FIFO queues, ~" = U l ~ M i  is a finite set of messages, and T is a finite set of transitions, 
each of which is a triple of the form (cl, op, c2) where cl and c2 are control states, and op is a label 
of one of the forms qi!w, where qi E Q and w E M~*, q~?w, where q~ E Q and w E M~*, or a, where 

a E A .  

A transition of the form (cl, qi!w, c~) represents a change of the control state from cl to c2 while 
appending the messages composing w to the end of queue ql. A transition of the form (cl, qi?w, c2) 
represents a change of the control state from cl to c2 while removing the messages composing w Srom 
the head of queue qi. 

A global state of a protocol is composed of a control state and a queue-content. A queue-content 
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Figure 1: Alternating-Bit Protocol 

associates with each queue qi a sequence of messages from Mi. Formally, a global state 7, or simply 
a state, of a protocol is an element of the set C1 x . . -  x CI~  [ x M~ x . . .  x M]*QI. A global state 
7 = (c(1), c(2) . . . .  , c(IAd I), w(1), w(2) . . . . .  w(]Q[)) assigns to each finite-state machine A~i a "local" 
(control) state c(i) �9 Ci, and associates with each queue qj a sequence of messages w(j )  �9 .~[~ 
which represents the content of qj in the global state 7. The initial global state of the system is 
70 = (c0(1), c0(2) , . . . ,  c0(]-h~l), e , . . . ,  ~), i.e., we assume that  all queues are initially empty. 

A global transition relation --~ is a set of triples (7, a, 7~), where 7 and 3, ~ are global states, and 
a �9 A U {r) .  Let 7 ~* 7' denote (% a, 7') �9 "~. Relation ~ is defined as follows: 

* if (cl, qi!w, co) �9 T,  then (cl (1), cl (2) . . . . .  cx (I.AA ]), w'(1), w'(2) . . . .  , w'(IQ I)) Z~ 
(c2(1), c2(2) . . . .  , c2(].hdl) , w"(1), w " ( 2 ) , . . . ,  w"(IQD ) where w"(i) = w'( i )w and w"( j )  = w' ( j ) ,  
j # i (the control state changes from cl to c2 and w is appended to the end of queue q~); 

�9 if (ca, qi?w, c2) �9 T, then (cl (1), cl ( 2 ) , . . . ,  cx([Ad]), w'(1), w'(2) . . . .  , w'(]Q[)) Z~ 
(c2(1), c2(2) , . . . ,  c2([A4]), w"(1), w " ( 2 ) , . . . ,  w"([q])) Where w'(i) = ww"( i )  and w"( j )  = w' ( j ) ,  
j # i (the control state changes from el to c2 and w is removed from the head of queue qi); 

�9 if (cl ,a,  c2) �9 T, then (c1(1),c1(2) . . . . .  cl ( I .Ml) ,w ' (1) ,w ' (2) , . . .  ,w'(lQI)) -~ 
(c2(1) ,c2(2) , . . . ,c2([A4D,w"(1) ,w"(2) , . . . ,w"(]Q[))  with w"(i)  = w'(i), for all i < i < IQ] 
(the control state changes from ca to c2 while the action a is performed). 

A global state 7 ~ is said to be reachable from another global state 7 if there exists a sequence of 
global transitions (Ti-a,ai ,Ti) ,  1 < i < n, such that  7 = 70 2h 7a "" "7~-1 ~ 7~ = 7 ~. The global 
state space of a system is the (possibly infinite) set of all states that  are reachable from the initial 
global state 7o. 

E x a m p l e  1 As an example of communication protocol, consider the well-known Alternating-Bit 
Protocol [BSW69]. This protocol can be modeled by two finite-state machines Sender and Receiver 
that  communicate via two unbounded FIFO queues StoR (used to transmit messages from the Sender 
to the Receiver) and RtoS  (used to transmit  acknowledgments from the Receiver to the Sender). 

Precisely, the Alternating-Bit Protocol is modeled by the protocol (C, co, A, Q, M, T) where C = 
CSenaer X CR~e,i . . . .  where Cse ,d~  = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10}  and CR~c~i~ = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ) ;  
co = (1, 1); A = {Snd,  Rcv, t imeout);  Q = {S toR,  RtoS};  M = MStoR U MinoS, where MStoR = 
{ msgO, m s g l  ) and Minos = { ackO, ack l } ; and T contains the transitions ((si , r l ) ,  op, ( s2 , r 2 ) ) where 



either r l  = r2 and (sl,op, s2) is a transition in the Sender machine of Figure 1, or 81 = s2 and 
(r l ,  op, r2) is a transition in the Receiver machine of Figure 1. The action Snd models a request to 
the Sender, coming from a higher-level application, to transmit data  to the Receiver side. The actual 
data  that  are transmitted are not modeled, only message numbers msgO and msgl are t ransmit ted 
over the queues. Similarly, the action Rcv models the transmission of data  received by the Receiver 
to a higher-level application. The actions labeled by $imeout model the expiration of timeouts. I 

3 Loop-First Search 

All state-space exploration techniques are based on a common principle: they spread the reachability 
information along the transitions of the system to be analyzed. The exploration process starts  with 
the initial global state of the system~ and tries at every step to enlarge its current set of reachable 
states by propagating these states through transitions. The process terminates when a stable set is 
reached, 

In order to use the above state-space exploration paracligm for verifying properties of systems 
with infinite state spaces, two basic problems need to be solved: one needs a representation for 
infinite sets of states, as well as a search technique that  can explore an infinite number of states in 
a finite amount of time. 

In the context of the verification of communication protocols as defined in the previous section, 
our solution to the first problem is to represent the control part  explicitly and the queue-contents 
"symbolically". Specifically, we will use special data  structures for representing (possibly infinite) 
sets of queue-contents associated with reachable control states. 

To solve the second problem, we will use these data  structures for simultaneously exploring 
(possibly infinite) sets of global states rather than individual global states. This may make it possible 
to reach a stable representation of the set of reachable global states, even if this set is infinite. 
In order to simultaneously generate sets of reachable states from a single reachable state,  me,a- 
transitions [BW94] can be used. Given a loop that  appears in the protocol description and a control 
state c in that loop, a meta-transition is a transition that  generates all global states tha t  can be 
reached after repeated executions of the body of the loop. By definition, all these global states have 
the same control state c. 

The classical enumerative state-space exploration algorithm can then be rewritten in such a way 
that  it works with sets of global states, i.e., pairs of the form (control state, da ta  structure/~ rather 
than with individual states. Initially, the search starts  from an initial global state. At each step 
during the search, whenever meta-transitions axe executable, they are explored first, which is a 
heuristic aimed at generating many reachable states as quickly as possible. This is why we call such 
a search a loop-first search. The search terminates if the representation of the set of reachable states 
stabilizes. This hapl~ens when, for every control state,  every new deducible queue-content is included 
in the current set of queue-contents associated with that  control state. At this moment,  the final 
set of pairs (control state, data structure I represents exactly the state space of the protocol being 
analyzed. 

In order to apply the verification method described above, we need to define a data  structure 
for representing (possibly infinite) sets of queue-contents, and algorithms for manipulating these 
da ta  structures. Specifically, whenever a transition or a meta-transition is executed from a pair 
(control state, data  structure / during a loop-first search, the new pair (control state, data  structure) 
obtained after the execution of this (meta-)transition has to be determined. Therefore, from any 
given such data structure, one needs to be able to compute a new data structure representing the 
effect of sending messages to a queue (qi!w) and receiving messages from a queue (qi?w), as well as 
the result of executing frequent types of meta-transitions, such as repeatedly sending messages on a 
queue ((q~!w)*), repeatedly receiving messages from a queue ((q~?w)*), and repeatedly receiving the 



sequence of messages wl from a queue qi followed by sending another sequence of messages w2 on 
another queue qj, i ~ j ,  ((qi?wl; qflw2)').  Finally, basic operations on sets are also needed, such as 
checking if a set of queue-contents is included in another set, and computing the union of two sets 
of queue-contents. 

4 Queue-content Decision Diagrams 

Queue-content Decision Diagrams (QDDs) are data structures that  satis~" all the constraints listed 
in the previous section. A QDD is a special type of finite-state automaton on finite words. A finite- 
state automaton on finite words is a tuple A = (~], S, A , s o , F ) ,  where Z is an alphabet (finite set of 
symbols), S is a finite set of states, A C S x (~ u {E}) x S is a transition relation (e denotes the 
empty word)~ s0 E S is the initial state, and F _C S is a set of accepting states. A transition (s, a, F)  
is said to be labeled by a. A finite sequence (word) w = ala2 . . .  an of symbols in ~ is accepted by the 
automaton A if there exists a sequence of states a -- so . . .  sn such that  Vl < i < n : (si-1,  ai, si) E ,h, 
and sn E F.  The set of words accepted by A is called the language accepted by A,  and is denoted by 
L(A).  Let us define the projection W[M~ of a word w on a set Mi as the subsequence of w obtained 
by removing all symbols in w that  are not in Mi. An automaton is said to be deterministic if it 
does not contain any transition labeled by the empty word, and if for each state, all the outgoing 
transitions are labeled by different symbols. 

Precisely, QDDs are defined as follows. 

Def in i t ion  2 A QDD A for a protocol P is a deterministic finite-state automaton (M, S, A so, F )  
on finite words such that  

Vw e L(A)  : w = ~V]MIIIM 2 . . . ~ [ M . .  

A QDD is associated with each control state reached during a loop-first search, and represents a 
set of possible queue-contents for this control state. Each word w accepted by a QDD defines one 
queue-content W[M~ for each queue qi in the protocol. 

By Definition 2, a total order < is implicitly defined on the set Q of all queues qi in the protocol 
such that,  for all QDDs for this protocol, transitions labeled by messages in Mi always appear before 
transitions labeled by messages in Mj if i < j .  Therefore, for all QDDs for a protocol, a given 
queue-content can only be represented by one unique word. In other words, Definition 2 implicitly 
defines a "canonical" representation for each possible queue-content. Note that  this does not imply 
that  QDDs are canonical representations for sets of queue-contents. 

5 Operations on QDDs 

Standard algorithms O n finite-state automata  on finite words can be used for checking if the language 
accepted by a QDD is included in the language accepted by another QDD, for computing the union 
of QDDs, etc. (e.g., see [LPS1]). In what follows, A1 U A2 will denote an automaton that  accepts 
the language L(A1) u L(A2), while DETERMINIZE(A) will denote a deterministic automaton that  
accepts the language L(A).  We wilt write "Add (s, w, s') to A" to mean that  transitions (si-1,  ai, si)~ 
1 < i < n, such that  w --- a la  2 . . .an ,  so = S, Sn = S I, and si, 1 _< i < n, are new (fresh) states, are 
added to A. 

We now describe how to perform the other basic operations on QDDs listed in Section 3. 

Let A be the QDD associated with a given control s tate  c. Let L(A)  denote the language accepted 
by A, and let Lop(A) denote the language that  has to be associated with the control s tate  e J reached 



SEND(queue.id i, word w, QDD (M, S, A, so, F))  { 

For all states s E S such that 

3~'  e (u~=lMj)" : ~0 ~ s, 

do the following operations: 

�9 Add a new state s' to S; 
�9 ]?or all transitions t = ( e ,m , s " )  ~ A such that  m e M j , j  > i: 

Replace t by ( s ~ , m, s" ) ; 
�9 For all transitions t = (s"~m,s) E A such that  m E M j , j  > i: 

Replace t by (s", m, s% 
�9 Add (s ,w,s  r) to A; 

�9 If s E F,  add s' to F,  and remove s from F;  

Return DETERMINIZE((M, S, A, so, F)).  

) 

RECEIVE(queue-id i, word w, QDD (M, S, A, so, F)) { 

For all states s E S such that 

~ '  e (u~:~M~)" : .so g s~ 

do the following operations: 

�9 Add a new state s t to S; 
�9 For all transitions t -- (s ,m,s")  e A such that  m E Mj~j ~ i: 

Replace t by (s t, m, s"); 
�9 For all transitions t = (s" ,m,s)  E A such that  m E M j , j  _> i: 

Replace t by (s", m, s'); 
�9 For all states s" E S such that  s' ~ s":  

Add a transition (s, e, s") to A; 
�9 If s E F ,  m:ld s ~ to F,  and remove s from F;  

Return DETERMINIZE((M, S~ A, so, F)) .  

} 

Figure  2: qi!w and  qi?w 

after the  execution of a t ransi t ion (c, op, c') f rom the  control  s ta te  c~ wi th  op E (qi!w, qi?w}. \Ve 

have the  following: 

| Lq,!u.(A) = {w ' t3w ~ E L ( A ) :  w~'iMi -~ WPlMiW A~/j r i :  w"iM J = WtlMj} , 

* nq,?w(A) = (w"13w' E n ( A ) :  W'IM ~ = WV~"IM , AVj  r i : W'IM ~ = W'[M~}. 

Algor i thms for comput ing  a QDD A ~ tha t  accepts  all possible queue-contents  obtained after the 

execution of a t ransi t ion of the  form q~!w or qi?w on a Q D D  A = ( l ~ , S , A , s o , F )  are given in 

Figure  2. The correctness of these a lgor i thms is es tabl ished by the  following two theorems.  

T h e o r e m  3 Let A be a QDD, let A' denote the automaton returned by SEND(i,  w, A),  and let 
L(A' )  denote the language accepted by A'.  Then A'  is a QDD such that L(A ' )  -- Lq,~u.(A). 

P r o o f  Proofs  are omit ted here due to space l imitat ions.  See the  full paper .  I 

T h e o r e m  4 Let A be a QDD, let A s denote the automaton returned by RECEIVE( i ,  w, A),  and let 
L(A ' )  denote the language accepted by A ~. Then A'  is a QDD such that L(A ' )  = Lq~?u.(A). 



SEND-STAR(queue-id i, word w, QDD (M, S, A, *0, F)) { 

For all states s �9 S such that  

do the following operations: 

�9 Add two new states s ~ and s" to S; 
�9 For all transitions t -- (s,rn, s ~'') �9 A such that  rn E M j , j  > i: 

Replace t by (s", rn, sin); 
�9 For all transitions t = (s% m, s) �9 A such that  m �9 M j , j  > i: 

Replace t by (s'"~ m, s ' ) ;  
�9 Add (s ,e ,s ' ) ,  (s',~,s") and (8',w,8') to ~;  
�9 I f s � 9  a d d s " t o F ;  

Return DETERMINIZE((M, S, A, so, F)). 

} 

RECEIVE-STAR(queue.id i, word w, QDD (M, S, z~, so, F))  { 

For all states s �9 S such that 

8 0 =:~ 81 

do the following operations: 

�9 Add a new state s p to S; 
�9 For all transitions t = (8, m,s")  E A such that m �9 M j , j  > i: 

(8 , m , s  ) Replace t by 
�9 For all transitions t = (s",rn, 8) E A such that rn �9 M j , j  > i: 

Replace t by (8", m, s~); 

�9 For all states s" �9 S such that  3w' �9 {w}* : s ~ ~ 8": 
Add a transition (s, s, 8") to A; 

�9 I f s � 9  a d d s  ~ t o F ;  

Return DETERMINIZE( ( M, S, A,  80, F)). 

} 

Figure 3: (qi!w)* and (qi?w)* 

P r o o f  See the  full paper.  �9 

We now consider the  meta- t rans i t ions  discussed in Section 3. The operation (qi!w)* denotes 

the  union of all possible queue-contents obtained after sending k sequences of messages w E M/* to 

the  queue ql of the  sys tem,  for all k > 0. The  operation (qi?w)* denotes the  union of all possible 

queue-contents obtained after receiving k sequences of messages  w E Mi* from the queue qi of the  

system,  for all k >_ 0. The  operation (qi?wl; qj!w~)* denotes the  union of all possible queue-contents 

obtained after receiving k sequences of messages  wl ~ .~I~* from the queue ql and sending k sequences 

of messages w2 E -~f~ to the  queue qj, for all k > 0, and for i ~ j .  

Let A be the QDD associated with a given control s ta te  c. Let L(A)  denote the  language accepted 

by A, and let Lop(A) denote the  language tha t  has  to be associated with the  control s tate e reached 
after the execution of a meta- t rans i t ion  (c, op, c) with op E {(qi!w)*, (qi?w)*, (q~?wa; qj!w2)*). We 
have the  following: 

| L(q,!~,).(g) ---- {w"13w' e L(A), k >_ 0 i w " l . ,  = w ' l . ,  wk ^ Vj  r i : W"lMi = w:lMj }, 

* L(q,?,~). (A) = {w"lSw'  e L(A) ,  k > O: w'lM , = w~w"lM, A Vj  r i :  w " l .  , = w'iM j }, 



RECEIVE-SEND-STAR(queue_id i, word wl, queue.id j ,  word w~, QDD (M~ S, &, so, F)) { 

Let n be the greatest integer such that  

3sl . . . .  s~+l ~ S : Sl ~ s2 ~ . .-  ~ s .+ l ,  

with Vl < k < l _ n + l  : sk :~ s~; 

Let A0 denote the QDD (M, S, &, so, F)~ 

For all k, 1 < k _ n + 1, compute Ak -- SEND(j, w2, RECEIVE(/, w~, A~-~)); 

If L(A,+~) = 0: 

�9 Return DETERMINIZE(O~=0Ak); 

If L(A.+~) # $: 

�9 Let p =  1; 
�9 While L(A~+I) # L(RECEIVE(i, w~, A,+I)): 

p : - p + l ;  
�9 For all k, 2 _ k <_ p, compute A,+~ = SEND(j, w2, RECEIVE(i, wl, A.+k-1)); 
�9 Compute A,+p+~ =SEND-STAR(j,w~, DETERMINIZE(U~+~+IAk)); 
�9 Return DETERMINIZE(U~__+~ +lAk). 

} 

Figure 4: (qi?wl; qj!w2)* 

t !  �9 L(q,?w,;q~!~2).(A) = {w"]Sw' e L(A) ,k  > 0 : W~lM, = w~w'lM , A w  IMj = W'lMr ^VI  r 
{ i , j )  : w " l . ,  = w'lM,}. 

Algorithms for comput ing  a QDD A' t ha t  accepts all possible queue-contents  obtained after 

the  execution of a meta- t rans i t ion  of the  form (qi!w)*, (qi?w)*, or (qfiwl;qj!w2)* on a QDD A = 

(M, S, A, s0, F )  are given in Figures 3 and 4. The  correctness of these algori thms is established by 
the  following theorems. 

T h e o r e m  5 Let A be a QDD, let A' denote the automaton returned by SEND-STAR(i, w, A), and 
let L(A') denote the language accepted by X .  Then A' is a QDD such that L(A') = L(q~!~).(A). 

P r o o f  See the full paper. �9 

T h e o r e m  6 Let A be a QDD, let A' denote the automaton retuT~ed by RECEIVE-STAR(i,  w, A), 
and let L(A') denote the language accepted by A'. Then A' is a QDD such that L(A') = L(~,?w). (A). 

P r o o f  See the full paper. �9 

L e m m a  7 Let n and A,+I be as defined in the algorithm RECEIVE-SEND-STAR(i, wl, j, w2, A), 
with i # j .  If the language accepted by An+l is not empty, then there exists p such that 0 < p < 
(n + 1)!, and L(An+I) = L(RECEIVE(i,w~,An+I)).  

P r o o f  See the full paper. �9 

T h e o r e m  8 Let A be a QDD, let A' denote the automaton returned by RECEIVE-SEND-STAR(i, 
wl, j ,  w2, A), , with i # j ,  and let L(A') denote the language accepted by A'. Then A' is a QDD 
such that L (X)  = L(q,?,ol:q~!~). (A). 

P r o o f  See the full paper.  �9 

It is worth noticing tha t ,  as a corollary of the  last  theorem, the  language L(q~?~;qj!,~2).(A ) is 
regular. 



6 Experimental  Results  

Consider again the Alternating-Bit protocol of Example 1. Meta-transitions are added to the proto- 
col description for loops that match either (qi!w)*, (qi?w)*, or (qi?wl;qj!w2)*. Precisely, the meta- 
transitions (3, (RtoS?ackl; StoR!msgO)*, 3), (3, (StoR!msgO)*, 3), (8, (RtoS?ackO; StoR!rnsgl)*, 8), 
(8, (StoR!msgl)*,8) are added to the set of transitions of the Sender, while the meta-transitions 
(1, (StoR?msgl; RtoS!ackl)*, 1) and (5, (StoR?m~gO; ]~toS!ackO)', 5) are added to the set of transi- 
tions of the Receiver. 

~Are have implemented (in C) a "QDD-package" containing an implementation of the algorithms 
for manipulating QDDs described in the previous section, and we have combined it with a loop-first 
search. Starting with the control state (1,1) and the QDD (M, {so}, {), so, {so)), which corresponds 
to the queue-content e for both queues StoR and RtoS, the execution of the loop-first search for the 
Alternating-Bit protocol terminates after 5.9 seconds of computation on a SPARC10 workstation. 
The number of (meta-)transitions executed is 331. The largest QDD constructed during the search 
contains 21 states; and 52 control states are reachable from the initial state. 

Many properties can be checked on the symbolic representation of the state space of the protocol 
obtained at the end of the search. For  instance, it is then straightforward to prove that the protocol 
does not contain any deadlocks, that there are reachable control states where the number of messages 
in a queue is unbounded, that messages are always delivered in the correct order, etc. 

Our tool has also been tested on several variants of the Alternating-Bit protocol, where the tran- 
sitions labeled by "timeout" are removed from the protocol description, where the Sender/Receiver 
have various number of control states, etc. An interesting variant is the case where queues may lose 
messages (to model unreliable transmission media). In order to handle this case, it is sufficient to 
define one additional algorithm SEND-LOSSY(i, w, A), that merely returns A u SEND(i, w, A). We 
also performed experiments on several simple sliding-window protocols [Tan89], with various window 
sizes. For all these examples with infinite state spaces (more than 20 in total), our tool was able 
to successfully terminate its search within a few minutes of computation. This shows that, at least 
for this particular though important c]a~s of examples, our verification method is very useful and 
robust. 

7 Comparison with Other Work and Conclusions 

Although most verification problems are undecidable for arbitrary protocols modeled by communicat- 
ing finite-state machines, decision procedures have been obtained for the verification of specific prop- 
erties for limited sub-classes [KM69, RY86, GGLR87, CF87, Fin88, Jergl, SZ91, A J93, A J94, CFP96]. 
These sub-classes do not cover, e.g., the Alternating-Bit Protocol and the properties discussed in the 
previous section, which were easily verified using a loop-first search and QDDs. 

Clearly, a necessary, but not sufficient, condition for the termination of our algorithm is that, 
for all reachable control states of the protocol, the language of queue-contents associated with that 
control state can be represented by a QDD. The class of protocols characterized by the above nec- 
essary condition is equivalent to the class of protocols for which, for each reachable control state 
of the protocol, the set of possible queue-contents can be described by a recognizable expression 
(i.e., a finite union of cartesian products of regular expressions). Indeed, it can be shown that any 
recognizable language can be represented by a QDD, and that any set of queue-contents represented 
by a QDD is a recognizable language. 

In [Pac87], it is pointed out that several verification problems are decidable for the above class of 
protocols. However, no method is given for constructing a recogniz&ble expression representing all 
possible queue-contents for each control state of the protocol. Actually, from [CFP96], it is easy to 
show that an algorithm for constructing such recognizable expressions, for any protocol in the class 
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defined above, cannot exist. In contrast, our contribution is to provide a practical algorithm which 
is able to compute such a representation for protocols in the above class, although not for all of them 
- this is impossible anyway. 

In this paper, we have presented algorithms on QDDs for computing the effect of executing three 
frequent types of meta-transitions. These algorithms were sufficient for analyzing the protocols 
considered in the previous section. However, it is possible to design algorithms on QDDs for other 
types of meta-transitions as welh Interesting future work is to characterize precisely the set of meta- 
transitions that  preserve recognizability and to provide a generic algorithm for computing the effect 
of the execution of any meta-transition in this class. These topics will be addressed in a forthcoming 
paper. 

In [PPgl], a verification method based on data-flow analysis is used to generate "flow equations" 
from the description of a set of communicating finite-state ma~:hines. By computing approximations 
of solutions for these equations, it is possible to show that  the original system is free of certain types 
of errors. In contrast, our algorithm is able to produce an exact representation of the state space 
of the protocol being analyzed. This enables us not only to prove the absence of errors, but also 
to detect errors and to exhibit to the user sequences of transitions that lead to errors. Note that, 
obviously, approximations could also be used in our framework, e.g., for simplifying QDDs when 
they become too complex, or when the search does not seem to stop. For the examples we have 
considered so far, no approximations were necessary. 

The idea of representing states partly explicitly (control part) and partly symbolically (data part) 
already appeared in [ACD93] for the verification of real-time systems, where dense-time domains are 
represented by polyhedra. This idea also appeared in [BW94], where the values of integer variables 
are represented by periodic vector sets. These symbolic representations are quite different from 
QDDs. 

For digital hardware verification [BCM+90], the most commonly used symbolic representation is 
certainly the Binary Decision Diagram (BDD) [Bry92], which represents a boolean function (with 
a finite domain) as a directed acyclic graph. In [GL96], it is shown how QDDs can be combined 
with BDDs to improve the efficiency of classical BDD-based symbolic model-checking methods for 
verifying properties of communication protocols with large finite state spaces. 
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Abstract .  A canonical boolean representation is proposed, which de- 
composes a function into the conjunction of a sequence of components, 
based on a fixed variable order. The components can be represented 
in OBDD form. Algorithms for boolean operations and quantification 
are presented allowing the representation to be used for symbolic model 
checking. The decomposed form has a number of useful properties that 
OBDD's lack. For example, the size of conjunction of two independent 
functions is the sum of the sizes of the functions. The representation also 
factors out dependent variab]es, in the sense that a variable that is de- 
termined by the previous variables in the variable order appears in only 
one component of the decomposition. An example of verifying equiva- 
lence of sequential circuits is used to show the potential advantage of the 
decomposed representation over OBDD's. 

1 Introduct ion 

Symbolic model checking, and related finite-state verification techniques use 
heuristically compact boolean representations, such as ordered binary decision 
diagrams (OBDD's),  to implicitly represent sets and relations (notably the tran- 
sition relation of a model, and its set of reachable states). The implicit represen- 
tat ion may be compact even thought the number of states or transitions is very 
large, thus allowing systems with very large state spaces to be verified automat-  
ically. However, in many cases the OBDD representation is not compact. To a 
first approximation, the OBDD representing a set of states can be thought of as 
a finite state automaton that  reads the values of the state variables in some fixed 
order, and finally accepts or rejects the given valuation. Figuratively speaking, 
this automaton must "remember" some amount  of information about the vari- 
ables seen so far, in order to decide whether the remaining variable assignments 
are consistent with those already seen. Hence, to obtain a compact representa- 
tion, the variable order must be such that  the mutual  information across any cut 
through the order is small. This implies that  state variables that  strongly corre- 
late each other must be nearby in the variable order. Often, however, this is not 
possible. For example, in a protocol, a state variable representing the contents of 
a message buffer is likely to be correlated with both the state of the sender and 
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the state of the receiver. Since all pairs of senders and receivers cannot generally 
be made close in the variable order, there is no suitable place for the variable 
representing the message buffer. 

In other cases, the relationships between variables are not fixed, but vary 
according to some global control information. For example, suppose we wish 
to verify that  two hardware implementations of a bounded FIFO queue are 
equivalent (see figure 1). This can be done by building a single model in which 
the two implementations run in parallel, and verifying that  the outputs always 
agree. Let one implementation be a "shift register", in which the most recent 
item is always stored in location 0, and all items shift over when a new item is 
inserted. Let the other implementation be a "ring buffer", where a "head pointer" 
points to the oldest item, and the items themselves remain fixed. Given the state 
of the head pointer, there is a one-to-one correspondence between locations in 
the two implementations. However, since the head pointer is not fixed, we cannot 
fix an OBDD variable order that  will put related state variables together. 

shift register ring buffer 

lilllll  Ml l l l l l  
t ? t 

tail tail head 
(out) (out) (in) 

Fig. 1. Two implementations of FIFO queue. 

This paper introduces a canonical boolean representation that  may be com- 
pact in such cases, where OBDD's are not. The intuition behind this represen- 
tation is that  many state variables, such as the message buffers in a protocol, or 
the data items in the ring buffer, have a property of "conditional independence". 
That  is, once a core set of state variables is fixed, the remaining variables are 
not mutually correlated. For example, once we the contents of the shift register 
and the head pointer are fixed, the contents of the ring buffer are determined, 
and hence uncorrelated. Similarly, the contents of the message buffers in a pro- 
tocol may provide no mutual information, once the states of the communicating 
processes are fixed. The representation introduced here decomposes the repre- 
sentation of a boolean function into the conjunction of sequence of components. 
Each component, which may" be represented as an OBDD, fixes the possible 
values of just one state variable, given a feasible assignment to the previous 
variables. The variable order used for this decomposition may be distinct from 
the OBDD variable order. The decomposed form has the property that  con- 
ditionally independent variables are "factored out" into separate components, 
thus eliminating the need to find a suitable place for these variables in a global 
OBDD variable order. Among other things, this implies that  the conjunction of 
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functions with independent support is additive (not true for OBDD's), as is the 
conjunction of components in the transition relation of a state machine. 

There are a number of examples of conjunctive forms in the literature, tIu 
and Dill use a technique of checking conjunctive properties where fixed points are 
computed in parallel, and each conjunct is used to simplify the other conjuncts 
at each iteration [HD93]. This can yield a more compact representation than 
an explicit conjunction, but the original decomposition of the problem must be 
provided by the user. Also, the representation is not canonical, as it is here. Burch 
and Long use implicitly conjoined transition relations, but do not decompose 
the representation of the set of reached states, as we do here [BCL91]. Their 
representation is also not canonical. Jain also describes a canonical disjunctive 
representation [JABF92], which has a conjunctive dual. It is not directly related 
to the current method, however, as is it obtained by dividing the truth table 
into ad hoc regions and using one OBDD for each region. 

This paper is organized as follows: Section 2 defines the decomposed repre- 
sentation, and proves some useful theorems about the size of the representation 
for certain classes of functions. Section 3 introduces algorithms for conjunction, 
disjunction and existential quantification (projection) on the decomposed form. 
Section 4 discusses model checking using the above algorithms~ and provides 
performance results for verifying the equivalence of the two FIFO queue im- 
plementations mentioned above. We find that as the depth of the queues is 
increased, the size of the decomposed representation for the reachable states 
increases quadradically, while the OBDD representation increases exponentially. 

In this paper, most of the proofs have been omitted due to space limitations. 

2 Conjunctive decompositions 

Let f be a boolean function of independent boolean variables V = (v l , . . . ,  vn). 
We will use the notation f ( 0  where 0 < i < n, to stand for the projection of f 
onto (v l , . . . ,  vl). That is, 

f(0 : ~(vi+l, . . . ,vn).  f 

In addition, we will use the notation fig, where f and g are two boolean func- 
tions, denote the "generalized cofactor" of f relative to g. This function, which 
can be read as "f  given g', agrees with f whenever g is true [CBM89, TSL+90]. 
Those values where g is false are mapped to the "nearest" point where g is true, 
according to a distance measure on truth assignments. Thus, if two functions 
agree wherever g holds, then their cofactors relative to g are equal: 

/ A g = / ' A g  iff f fg=f tg  

We will use the projection and cofactor operations to decompose a boolean 
function f into a vector of boolean functions ( f l , . . . ,  fn), where 

fi = f(i)if(i-1) 



]6 

Intuitively, the component fi  determines the set of possible values of variable vi, 
given a feasible evaluation of the variables ( v l , . . . ,  v~_l). We will show that  the 
function f is equal to the conjunction of the components fi: 

r$ 

f=A  
i = 1  

2.1 G e n e r a l i z e d  c o f a c t o r  

If f and g are two boolean functions of boolean variables ( v l , . . . ,  vi-1), then f ig 
is a boolean function whose value is obtained for a given t ruth assignment x by 
finding the "nearest" t ruth assignment to x that  satisfies g, and evaluating f at 
this point. For this purpose, the distance between two t ruth assignments x and 
y is determined by treating their boolean difference (exclusive-or) as a binary 
number. To be more precise, 

D e f i n i t i o n l .  Let A be the set of t ruth assignments V --+ {0, 1), and let W = 
(w l , . . . ,  wn) be a permutation of V. For any x, y E A, let 

v) = �9 

Notice that  we have an arbitrary choice of the order W on the variables that  
defines the distance between t ruth assignments. Also note for future reference 
that  we have weighted the variables so that  wl is the most significant, and w~ 
is the least significant. 

D e f i n i t i o n 2 .  Let B be the boolean algebra 2 A. For any x E A, and g E B, 
where g r 0, let x -+ 9 be the unique y E g minimizing d(x, y). 

Tha t  is, x ---* g is the nearest point to x that  satisfies g. Note that  z -+ g is 
uniquely defined for g r 0, because the boolean difference between x and any 
other t ruth assignment is a unique number. This lets us define the generalized 
cofactor as follows: 

D e f i n i t i o n 3 .  For any f ,  9 E B, and any x E A: 

- if g # 0, then (f]g)(z) - f ( x  ~ g), 
- else fig = O. 

As an example, suppose that  W -= (vl,v2,v3), that  f = v3, g = (~vl)  A 
(v2 V v3), and that  we want to evaluate flY at the t ruth assignment x = (1, 0, 0). 
The truth assignments satisfying g are (0, 0, 1), (0, 1, 0) and (0, 1, 1), of which 
the nearest to x is y = (0, 0, 1), yielding a distance of d(x, y) = 5. The value of 
(flg)(x) is thus f(y) = 1. 

We note that  generalized cofactor, as defined above, is exactly the "constrain" 
operator on OBDD's [CBM89] in the special case when the OBDD variable order 
is W. In the sequel, however, we will not assume that this is the case. 
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2.2 P r o p e r t i e s  of  genera l ized  cofactor  

We will rely on a variety of properties of the generalized cofactor operation 
in defining the conjunctive decomposition and in constructing algorithms on 
decompositions. One very important property of f ig is that it agrees with f 
everywhere that g is true. Another is that, if two function f and fr agree wherever 
g is true, then f ig = f 'lg. That is, f ig is independent of the value of f anywhere 
that g is false. Letting juxtaposition denote conjunction, and I associate to the 
left, we also have: 

T h e o r e m 4 .  1. fg  = f 'g  iff f ig = f ' lg.  
2. (:Ig)g = fg 
3. if g r O, then glg = l 

4./lalg = fig 
We also note that generalized cofactor distributes oyer pointwise operators: 

T h e o r e m 5 .  For any operator., such that ( f  . g)(z) = f ( z ) .  g(z): 

( : ' g ) l h  = ( f lh) ' (glh)  

The following theorem is key to the algorithms on conjunctive decomposi- 
tions, since it allows us, in certain cases, to cofactor relative to a conjunction of 
functions without explicitly forming the conjunction: 

T h e o r e m 6 .  For any f , g , h  E B, if g = glh, then fl(gh) = f[hlg. 

The name "generalized cofactor" derives from the following property [TSL+90]: 

T h e o r e m  7 Touat i ,  e t  al.. For any f E B and vi E V, 

- f[vi = f[~,=1 

- f l ~  = f l y , = 0  

We say that a function f depends on vi when f[v~=o ~ f]v~=l. The support 
of a function is the set of variables on which it depends. Two functions are said 
to be independent when their supports are disjoint. When two functions are 
independent, then cofactoring one by the other has no effect: 

T h e o r e m S .  I f  f and g have independent support, then fig = f .  

An immediate corollary of this result and theorem 6 is that cofactoring with 
respect to two independent functions can be done in either order, without af- 
fecting the result: 

Coro l l a ry9 .  I f  g and h have independent support, then f[(gh) = flg[h = flh[g. 

In addition, wecan show that projection distributes over cofactor in the much 
the same way it distributes over conjunction: 

C o r o l l a r y l 0 .  I f  g is independent of vi, then 3vi.(flg) = (3vi.f)lg. 
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2.3 Definition of decomposition 

We are now ready to define our canonical conjunctive decomposition of a boolean 
function: 

Def in i t ion l l .  For all f E B, for all 1 < i < n, let f~ = f( i) l f( i-1) 

We will refer to the functions ( f l , . . . ,  f~) as the components of f (relative to 
V and W). We now show that  a function is equal to the conjunction of its 
components: 

n Theorem 12. f = Ai=lfi  

Proof. We take as our inductive hypothesis that f(J) J = Ai=ifi ,  for all 1 
j < n. For the case where f is identical to false, this clearly holds, since all the 
components f~ are also false. Otherwise, in the base case we have f l  = f(1)if(0) = 
f(1)[ 1 = f(1). For the inductive step we have: 

A~=lf~ = (A~=~f~)A f j  (1) 

_ f(~-z) A (f(J)lf  (j-~)) (2) 

= A f(5) (3) 
= (4) 

Note equation 3 is a case of theorem 4, part 2. That  is, f( j) lf(J-1) agrees with 
f(J) where f( j-1)  is true. 

Theorem 12 implies that  the vector ( f l , . . . ,  f~) is a canonical representation 
of f ,  given a fixed V and W. That  is, each function has exactly one decomposi- 
tion, and no two functions have the same decomposition. 

There are a number of useful facts about this representation, independent of 
the component representation and of the choice of permutation W, that  defines 
the generalized cofactor operation. For example, if a function f ~: 0 does not 
depend on some variable vi, then the corresponding component fi is identical to 
true. That  is, if f is independent ofvi,  then f(0 = f(i-1). Hence f~ = f(i)]f(0 = 
1, by theorem 4. More generally, we can show that  the the ith component of f 
constrains only variable vi. That  is: 

T h e o r e m  13. I f  f ~ O, then 3v~.fi = 1. 

2.4 Decompositions and disjointness 

If two functions f and g have disjoint support, then the components of their con- 
junction can be obtained by simply taking the conjunction of the corresponding 
components of f and 9, regardless of V or W. Since disjointness implies that  
every component must be identically true in either f or g or both, it follows that  
the size of the conjunction is less than or equal to the sum of the sizes of f and 
g. 

Theorem14. I f  f and g have independent support, then 

- (fg)i  = fi  when f depends on vi, and 
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- (.fg)i = gi when g depends on vi, and 
- otherwise ( fg ) i  = 1. 

From the above, it follows immediately that  the size of f g  is bounded by" 
the sum of the sizes of f and g. This result is independent of the underlying 
representation of the components. 

C o r o l l a r y l h .  I f  f and g have independent support, then 

It is worth noting that  the OBDD representation [Bry86] has this property 
only in case the OBDD variable order separates the supports of f and g. 

2.5 Decomposi t ions  and dependent  variables 

We now consider the special case where the permutation W is the identity (that 
is, the order of the components f~ is the same as the order that determines the 
distance measure for generalized cofactor). In this case, if a given variable vi is 
functionally determined by its predecessors vl . . .  vi-1 in the variable order, then 
we can show that  variable vl appears only in component fi. 

Definit ion 16. Given a function f ,  a variable vi is funct ional ly  determined by 
a set of variables S _C V when any two truth assignments agreeing on S must 
also agree on vi. If this condition holds, we write f : S -+ vl. 

T h e o r e m  17. I f W  = ( v l , . . . , v n )  and f :  (v l , . . . , v i -1 )  --* vi, then f j  depends 
on vi only i f  j = i. 

The fact that  the decomposed representation is capable of factoring out de- 
pendent variables is useful for verifying certain kinds of sequential circuits, as 
we will observe. It is also a heuristic argument for using W = V in practice. 

2.6 Decomposi t ions  and conditional independence 

The following result generalizes the previous results on independent functions 
and dependent variables. We will say two variables are conditionally independent, 
relative to a function f ,  when fixing the value of the preceding variables in the 
order makes the choice of values of the two variables independent. For example, 
suppose the function f is (a ~ 5)(a ~ c). If we fix the value of a, then our 
choices for b and c become independent. Assuming that  the variable order W 
is (a, b, c), it follows that  b and c are conditionally independent. From this we 
can infer that  b occurs only in component f2, while c occurs only component f3. 
That  is, conditionally independent variables factor out in the decomposition. In 
general, we have the following result: 

Theorem 18. Let f , g  E B ,  such that f ( i )  = g(i), and f and g have disjoint 
support over vi+l �9 �9 �9 Vn. Then 

- ( f g ) j  = f j  when f depends on vj ,  and 
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- ( fg) j  = gj when g depends on vj, and 
- otherwise ( fg) j  = 1. 

Once again, the conjunction of f and g requires additive space. Note that 
the result for disjoint functions (theorem 14) is the special case where i = 0, 
while the fact that dependent variables factor out (theorem 17) is the special 
case where v~ is independent of later variables because its value is fixed. 

3 Algorithms 

To use our decomposed form as a representation for symbolic model checking, we 
need algorithms for computing boolean combinations and for existential quan- 
tification (projection) over boolean variables. 

3.1 Logical conjunction 

We begin with the algorithm for conjunction. It should be noted at the outset 
that in general it is not the case that ( fg) i  = figi (though this is true for the case 
when f and g are independent). In general, it may be the case that, though f(i)  
and g(i) are both true for a given assignment to ( v~ , . . . ,  vi), the assignments to 
the remaining variables that make them true may be  different, and hence ( fg) i  
may be false. Thus ( fg) i  may be stronger than f igi .  

To avoid this problem, we first compute appropriate approximations ki to 
( fg) i  for all i. These terms are computed by conjoining the terms f igi in de- 
scending sequence, projecting out vi at each stage. This "early quantification" 
step is justified by the fact that the remaining terms in the descending sequence 
do not depend on vi, and prevents computing an explicit conjunction of all the 
terms, which would defeat the purpose of a decomposed representation. 

Next, we must "normalize" the representation by cofactoring each approxi- 
mation to ki by ( fg)( i -1) .  Since we have no direct representation of the latter, 
we obtain the desired effect by cofactoring each ki by the preceding components 
( fg ) t  . . .  ( fg ) i -1  in sequence. This result derives from the following lemma: 

L e m m a  19. For any funct ions x and h, 

Proof. 

�9 = A (5)  

= (6 )  

= (7 )  

which by induction gives us the lemma. Equation 6 is a case of theorem 6, while 
equations 5 and 7 are by theorem 12. 
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We will state the conjunction algorithm formally in terms of a theorem: 

T h e o r e m 2 0 .  Let h = f g  and let 

= A g n  (8) 

ki-1 = f i - l g i -13V i . k i  (9) 

Then 

hi =: k i l h l l h21 . . . I h i_ l  (IO) 

A conjunction operation on the decomposed representation involves O(n)  
conjunction operations on the underlying representation, O(n)  one-variable pro- 
jection operations, and O(n 2) cofactor operations. The latter is unfortunate, but 
seems to be necessary in order to avoid explicit construction of the terms ( fg)( i) .  

3.2 Logical  d i s junc t ion  

We now consider computing logical disjunction of two functions represented 
by their components. First, we should note that in general ( f  V g)i # f~ V gi. 
Consider, for example, Computing h = f V g ,  where f = 5D~d... and g = abed . . . .  
The components of these functions are, respectively, f l  = ~t, f2 = b, etc., and 
gl = a, g2 = b, etc. Thus, the disjunction of fi and gi is 1, for every i, which is 
clearly wrong. The problem here is that because we are forming a disjunction, 
hi is "defined" over a potentially larger domain than fi and gi. To correct this 
problem, we would like to broaden the domains of fi and gi before taking the 
disjunction. That is, we would like to compute: 

L( = f(~) Ih(~-l) 

However, we would like to do this without explicitly computing f ( i )  g(i) and 
h (i-1). This leads us to the following algorithm: 

T h e o r e m  21. Let h = f V g and 

= f l  gl = gl 

Then hi - f[ V g~. 

3.3 P r o j e c t i o n  

The approach to existential quantification over boolean variables is very similar 
to the disjunction algorithm. The algorithm is as follows: 

T h e o r e m 2 2 .  Let h = S S . f ,  where S C V, and 

f~ = fl  (11) 

f~+1 = fi+l (f[ Ihi) (12) 

Then hi = 3S . f [ .  
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The above algorithm is effective in practice for projecting out small numbers 
of variables. However, if we consider the limiting case, where S --- V, we see that 
h = 1, and therefore f~n = f ,  which clearly defeats the purpose of the decompo- 
sition. For projecting out a large number of variables, an effective strategy is to 
successively project out small groups of variables, in descending order. In this 
way, each step tends to simplify the problem for the next step. 

3.4 Imp lemen t ing  the  a lgor i thms with OBDD~s 

Ordered binary decision diagrams (OBDD's) are a particularly effective repre- 
sentation for the components of a function because of the efficient algorithms 
for conjunction and disjunction [Bry86] and for generalized cofactor [CBM89]. 
The OBDD representation for a function is determined by a permutation U = 
( u l , . . . ,  un) on the boolean variables. In the special case where U -- W, there 
is a quadratic-time algorithm for generalized cofactor on OBDD's. In the case 
U = V = W, we can also show that the size of the decomposed representation 
of f is never larger than n times the size of the direct OBDD representation of 

f: 
Theorem23 .  I f U  = Y = W,  then IfilOBDD <_ [f]OBDD 

4 S y m b o l i c  m o d e l  c h e c k i n g  a n d  d e c o m p o s i t i o n s  

In symbolic model checking, we use a boolean formula to represent the transi- 
tion relation of a model, and we use fixed point iterations to evaluate formulas 
in certain modal logics relative to this model. The most important operation 
in these iterations is computing the image of some set of states, relative to the 
transition relation. The transition relation is represented by using a set of vari- 

t ables v l , . . . ,  vn to represent the "pre-state", and a corresponding set v~, . . . ,  v,~ 
to represent the "post-state". A boolean formula over these variables character- 
izes the set of transitions. In other words, a set of states is represented thus: 
S = $V.xs, while a transition relation is represented thus: R = )t(V, Vt).XR. 
The forward image of S w.r.t. R is 

Image(R, S) = ^ n(Y, V')) 

while the reverse image is 

Image(R -1, S) = )~V.3V'.(S(V') A R(V, V')) 

Evaluating images thus requires conjunction, projection and variable substitu- 
tion. The fixed point computations required to compute, for example, the set of 
states reachable from set S, also use the disjunction operation. Negation is not 
strictly needed, since all formulas can be put in positive normal form, in which 
negation applies only to literals. 

Thus, we have all of the operations necessary to do symbolic model checking 
based on the component representation of functions. It is necessary only to 
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choose appropriate orders V, W and U. We note that transition relations are 
often of the form XR = An=IC~(v~, vz , . . . ,  v,~). That is, each post-state variable 
is typically constrained relative to the pre-state variables, but the post-state 
variables are independent given a valuation ofthe prestate variables. In addition~ 
for each i, 3v~.Ci - 1. That is, the transition relation does not constrain the pre- 
state variables in any way. If this is the case, then there is a distinct advantage 

�9 . ~ ~ 1  I to using the order V = (vl,. v,~, 1, . . . ,vn).  In this case, by theorem 18, the 
component in the decomposition corresponding to v~ is exactly Ri, while all the 
components corresponding to vi are equal to 1. That is, the conjunction of the 
transition relation parts is formed essentially for free. This makes it unnecessary 
to the "conjunctive partitioning" technique to avoid an explosion in the size of 
the transition relation [BCL91]. 

4.1 Example  

One of the advantages of the decomposed representation is the fact that con- 
ditionally independent variables are "factored out". As an example of this phe- 
nomenon, we consider verifying the equivalence of the two FIFO queue imple- 
mentations of figure 1. The basic technique is to compute the reachable states of 
the two running in parallel [CBM89]. As mentioned previously, there is no fixed 
correspondence between locations in the two queues. However, once we fix the 
shift register contents and the ring buffer "head pointer", the ring buffer data 
elements become independent (since they are either uninitialized, or determined 
by the corresponding shift register element)�9 This suggests that in the variable 
order V control should precede shift register data, which in turn should precede 
ring buffer data (or the roles of the two implementations could be reversed)�9 In 
this case, when representing the set of reachable states, each component corre- 
sponding to a ring buffer data bit is a linear-size OBDD, which in essence reads 
the value of the head pointer, tt~en compares the ring buffer bit to the corre- 
sponding shift register bit. As a result, the overall size of the representation is 
quadratic in the number of data bits. 

On the other hand, since there is no fixed correspondence between the data 
bits, there is no interleaving of the bits that will yield a small OBDD for the 
reachable state set. This is illustrated in the graphs of figures 2-4. In these 
graphs, the ordinal axis is the number of data bits in each queue (the queues are 
one bit wide, however essentially the same results apply to wider queues)�9 In the 
first graph, we see the size of the decomposed representation of the transition 
relation. This is the same as the size of the conjunctively partitioned transition 
relation, for reasons mentioned above. The second figure shows the size of the 
decomposed representation for the largest state set obtained in the reachable 
states iteration (which happens to be last iteration in all cases). This is well fit 
to a quadratic curve, as expected. The third figure shows the size of the OBDD 
representation of the reachable states�9 Note that the scale here is two orders 
of magnitude larger than the previous graph�9 This graph shows the expected 
exponential explosion, since the OBDD representation must in essence record 
the  entire contents of one queue in order to compare it to the.other queue. 
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It should also be noted here that  there exists a compact "free BDD" [GM94] 
representation for the reachable state set in our example. However using free 
BDD's would require the user to provide the correct O(n 2) DAG that  determines 
the free BDD "type". Using decompositions, the simple heuristic "control before 
data" is sufficient. 
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Fig. 2. Space used to represent the tran- 
sition relation for queue example. 
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Fig. 5. Time used for computation of the 
reachable states for queue example. 

Finally, figure 5 shows the CPU time in seconds used to compute the reach- 
able state set using both representations. Here, we find the CPU time increas- 
ing rapidly in both cases (although the decomposed representation is more ef- 
ficient as we increase the number of bits). In the decomposition case, it is un- 
clear whether this is an exponential expansion or a fairly high order polynomial 
(though the difference may be of no practical interest). The algorithms operating 
on decompositions are not necessarily polynomial, even when measured relative 
to the result. Therefore, it is possible that  exponential time is actually being 
used. On the other hand, one expects a factor n in the number of iterations 
due to increasing diameter of the state space. In addition to this, each itera- 
tion involves a conjunction, which uses n 2 OBDD operations, each of which is 
proportional to the transition relation component size (O(log n)) and the state 
set component size O(n). This would imply at least time proportional to O(nS), 
which fits the available data. From a practical point of view, however, it appears 
that  any gains made in space in using the decomposed representation might be 
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offset by losses in time. The question of improving the time performance of the 
algorithms (at least heuristically) needs to be addressed. 

5 Conclusions 

We have seen that a boolean representation conjunctively decomposed using 
generalized cofactor provides a canonical form that exploits "conditional inde- 
pendence" between variables. This property can provide a more compact repre- 
sentation than OBDD's alone, especiMly in the case when the correspondence 
between state variables is not fixed, but varies as a function of control. Algo- 
rithms for logical operations and projection on this form were described, making 
the representation usable for symbolic model checking. 

The most important practical problem that remains to be solved regarding 
decompositions is the time required to apply O(n 2) OBBD operations for each 
operation on a decomposition (where n is the number of variables). The number 
of variables could, for example, be reduced by grouping them into many-valued 
variables, though this could make the representation exponentially larger. Also, 
tight bounds on the complexity of the algorithms should be obtained. 
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Abstract. In this paper, I show that methods from computational algebraic ge- 
ometry can be used to carry out symbolic model checking using an encoding of 
Boolean sets as the common zeros of sets of polynomials. This approach could 
serve as a useful supplement to symbolic model checking methods based on Or- 
dered Binary Decision Diagrams and may provide important theoretical insights 
by bringing the powerful mathematical machinery of algebraic geometry to bear 
on the model checking problem. 

1 Introduction 

Symbolic model checking [8, 13] with Ordered Binary Decision Diagrams (OBDDs), 
or variants of OBDDs, is a widely used and successful technique for verifying properties 
of concurrent systems, both hardware and software. But there are many systems for 
which the OBDDs are too large to make model checking feasible and, aside from a few 
results like McMillan's theorem on bounded width circuits [13] or Bryant's theorem on 
integer multiplication [5], there is little theoretical guidance to indicate precisely when 
the OBDD methods are practical. 

It therefore seems worthwhile to investigate alternative "symbolic" representations 
of Boolean sets that could be used for model checking. Such representations, if they are 
practical at all, would presumably allow efficient model checking of somewhat different 
classes of systems than OBDDs, and thus supplement existing symbolic model check- 
ing methods. Furthermore, an alternative representation might lead to new theoretical 
insights into the practicality of symbolic model checking, thereby providing guidance 
to system developers choosing methods for verifying properties of their systems. This is 
especially true if there is already a substantial body of theory concerning the proposed 
representation. 

In this paper, I show how computational algebraic geometry can provide represen- 
tations of Boolean sets suitable for symbolic model checking. The basic idea is that 
any Boolean set can be regarded as the common zeros of a finite set of polynomials 
with coefficients in the field of two elements. Such a set of polynomials then provides 
a symbolic representation of the Boolean set, For example, the common zeros of the 
set of polynomials {xl + x2 + . . .  + Xn, XlX2} are exactly the points ( a l , . . . ,  an) for 
which an even number of the a~ are 1, and at least one of Xl and x2 is zero (all the 
arithmetic is done modulo 2). A Gri~bner basis is a canonical choice of such a set of 
polynomials, and there exist algorithms for finding the Grtbner basis corresponding to 
a particular Boolean set and for carrying out, at the level of Grtbner bases, the manip- 
ulations of Boolean sets required for model checking. Thus, Gr6bner bases can be used 
for symbolic model checking in essentially the same way that OBDDs are. 



27 

Algebraic geometry is the study of the geometric objects arising as the common 
zeros of collections of polynomials. It is an old and rich area of mathematics, and one 
in which there has been enormous activity and progress in the last few years. In par- 
ticular, algebraic geometers have studied questions related to the action of groups of 
symmetries and to the mappings that correspond to abstraction techniques, and con- 
siderable attention has been given to computational issues�9 An approach to symbolic 
model checking making use of methods from algebraic geometry therefore seems to 
have considerable promise, both as a supplement to existing methods and as a way to 
bring a large body of powerful mathematical machinery to bear on the model checking 
problem�9 

In the next two sections, I sketch some of the necessary background in algebraic 
geometry and Grtibner basis methods. The fourth section briefly illustrates the ideas 
with a small example, and the last section contains a discussion of some of the directions 
for further investigation of this approach. 

2 Some Algebraic Geometry 

This section contains an extremely brief presentation of the algebraic geometry needed 
in the sequel. Any standard text will provide the details and proofs omitted here; the 
interested reader might consult, for example, the books by Cox, Little, and O'Shea [10] 
and Hartshorne [12]. 

We start by setting up some machinery for describing sets of polynomials. Let k be a 
field (for our applications, k will usually be the field of two elements, the integers mod- 
ulo 2), and let k [ x l , . . . ,  Xn] be the ring of polynomials in the variables x l , . . . ,  Xn with 
coefficients in k, under the standard addition and multiplication of polynomials. That 

�9 a ,  where is, a polynomial is a finite k-linear combination of monomials z~ 1 z~ 2 .. x n , 
the ai  are nonnegative integers, and multiplication of polynomials is defined by setting 

aX Or2 o~n /31 /32 ~n al-{-131 ~ 2 + ~ 2  O~n'q-/3n X 1 X 2 . . . X  n �9 x a x 2 . . . x  n : x 1 x 2 . . . x  n and extending linearly 
to products of arbitrary polynomials. Note that the multiplication is commutative and 
that the element I = x l x  2 ~  0 . . .  xnO is an identity element for multiplication. 

The basic structure of polynomial rings (or any commutative rings) is given in terms 
of subsets called ideals. In this setting, ideals are not subrings in general, but they play 
a role in commutative ring theory analogous to that played by normal subgroups in the 
theory of groups. An ideal is a nonempty subset of k [ x l , . . . ,  Xn] that is closed under 
addition and closed under multiplication by any element of the ring. If F = { fa  I a E 
~r } is a set of polynomials in k [ x l , . . . ,  Xn] indexed by the (not necessarily finite) set 
~r the ideal generated by F is the set of sums of the form Y]ae~ hafa, where the 
ha E k [ x l , . . . ,  xn] and only finitely many of the h ,  are nonzero. We will write (F) 
for the ideal generated by F. When F = { f l , . . .  , fs} is a finite set, we often write 
( f l , .  �9 �9 f s ) fo r  (F), and we say that F is a basis for the ideal ( f l , .  �9 �9 re). The Hilbert 
Basis Theorem tells us that every ideal in the ring k[Xl , . . . ,  x,~] is generated by some 
finite set of polynomials. 

We can think of the polynomials as k-valued functions on the vector space k n irt the 
usual way: we evaluate f ( x l , . . . ,  xn) at the point ( a l , . . . ,  an) by substituting al for 
zl ;  a2 for x2, and so on. We say that ( a l , . . . ,  an) is a zero o f f  if f ( a l , . . . ,  an) = O. 
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Let F be a (not necessarily finite) subset of k [ x i , . . . ,  Xn]. The variety defined by F,  
written V(F ) ,  is the set of points in k n that are zeros of all the polynomials in F.  Thus 
V ( F )  = { ( a l , . . . , a n )  E k n I f ( a l , . . . , a n )  = 0 for all f E F } .  

As usual, if F = { f i , . . . ,  fs} is a finite set, we sometimes write V ( f i , . . . ,  f s )  
rather than V(F ) .  It is not hard to see that V ( f i , . . . ,  fro) = V ( ( f l , . . . ,  f,~)), so we 
can think of every variety as being the variety defined by some ideal. 

If Vi = V( I i )  and V2 = V(I2) are the varieties defined by ideals I i  and/2,  then 
V1 f3V2 = V ((I1,12)) and V1UV2 = V(/1 .I2), where i l  .Is = ( f i r s  [ f i  E I1, fs E 
/2). I f l i  = ( f l , . . . f r )  and I2 = (g i , . . . , g s ) ,  then/1 �9 12 = (f igj  ] 1 < i < r, 1 < 
j < s ) .  

In general, not every subset of k n is the variety of some ideal (the varieties are the 
closed sets of a certain topology on k'~), but each point (a l , .  �9 an) is the variety of the 
ideal (xl - al ,  xs - as, �9 �9 xn - an). Since the union of a finite collection of varieties 
is a variety, any finite set of points is a variety. If k is finite, as will be the case in our 
application, any subset of k n is finite, and therefore is a variety. 

For the rest of this section, assume that k is the field of two elements. 
As just mentioned, we can regard any set of points in k n as the variety of some 

ideal. We can then use the ideal, or any basis for the ideal, as a way of encoding the set 
of points, just as we might use an OBDD. For instance, k r~ is the variety of the ideal 
consisting of the constant polynomial 0, and the empty subset of k n is the variety of the 
constant polynomial 1. A somewhat more interesting example is the following. 

Choose a positive integer r and let s = 2 r. Regard a point ( a i , . . . ,  ars) E k rs 
as a list of s numbers between 0 and s - 1 by treating each block of r coordinates 
ari+l ~ ari+2~. . . ,  ar(i+l) as the binary representation of a nonnegative integer, and let 
V be the set of points corresponding to lists in which each number from 0 to s -  1 occurs 
exactly once. To construct an ideal I such that V = V(I ) ,  let fi,j be the polynomial 
(Xri+l + Xrj+l + 1) (xri+2 + xrj+2 + 1) . - .  (xr(i+l) + xr(j+l) + 1). The polynomial fi,j 
is zero at a point (a i , .  �9 �9 a~ )  if and only if a~i+k # a~j+~ for some k, so if and only 
if the ith and j th  entries in the list corresponding to ( a l , . . . ,  ars) are different integers. 
Then V = V(  f4J [ i < j) .  Other examples are given in Section 4. 

Note that there will be more than one ideal I defining a given variety. For instance, 
the ideals {0} and (x~ + x l , .  �9 �9 z 2 + xn) both define the variety k '~ (since both 0 and 1 
satisfy the equation x s + x  = 0 when we are working modulo 2). In order to do symbolic 
model checking, we need to be able to determine when two ideals represent the same 
set of points. We first describe how to do this over a larger field. Let k be the algebraic 
closure of k (this is the smallest extension of k in which every polynomial over k has a 
root, as every polynomial with coefficients in R has a root in C). Since k [ x l , . . . ,  x,~] C. 
k [ x i , . . . ,  xn], we can regard polynomials in k [ x i , . . . ,  xnl as functions on ~n, and, 
for a subset F of k [ x i , . . . ,  xn], we define V ( F )  to be the points in k'~ where all the 
elements of F are zero. For an ideal I, the radical o f  I, denoted by v ~  is the ideal 
{ f E k[Xl , . . . ,xr~] l f s E I forsomeposi t ive in tegers} .  If I1 and I2 are ideals 
of k [ X l , . . . ,  Xn], then V(I1)  = V(I2) if and only if v /~  - = v/~'2. (This is Hilbert's 
Nullstellensatz.) The Grfbner basis methods described in the next section provide good 
algorithms for determining when v/Ii'l = Vt~, so we can determine when two ideals 
determine the same variety over the algebraic closure of k. 
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In general, this does not tell us anything about whether V(I1) = V(I2),  but it does 
settle the question for a certain class of ideals. Let Z = { x~ + xi [ i = 1 , . . . ,  n }. As 
noted above, every point in k ~ is a zero of all the elements of Z, so, for any ideal I,  
V ( I )  = V( I )  fq V(Z)  = V( ( I ,  Z}). This means that every set of points in k n is the 
variety defined by some ideal containing the set Z. However, the only elements of 
satisfying x 2 + x = 0 are 0 and 1, the elements of k, so V (Z)  = k n and V( ( I ,  Z)) = 
V( I ) .  Thus, if we restrict ourselves to ideals containing Z, we can still represent every 
subset of k r~ and we can determine when two ideals represent the same set of points. 
As we will see in the next section, restricting our representations to ideals containing Z 
has some other advantages, as well. 

3 Griibner Bases 

In this section, we sketch some of the theory of Grtbner bases. Although this theory has 
roots in the work of Macaulay as early as 1916, it really dates from Buchberger's thesis 
in 1965 [6]. There are now several good introductions to the subject; the reader seeking 
more details might consult the book by Cox, Little, and O'Shea [10] mentioned earlier 
or those by Becker and Weispfenning [4] and Adams and Loustaunau [1]. 

3.1 Motivation 

To understand a little of the motivation for Gr6bner bases, consider the problem of 
determining whether a given polynomial f belongs to an ideal ( f l ,  �9 �9 �9 fs). If we work 
over a polynomial ring in one variable, the ideal is generated by a single polynomial, 
the greatest common divisor d of the set { f l , . . . ,  .is}. There exist unique polynomials 
q and r with the degree of r strictly smaller than the degree of d and f = qd + r, and 
then f belongs to the ideal {d) if and only if the remainder r is 0. The polynomials d, 
q, and r are computed by standard algorithms. 

For polynomials in more than one variable, the problem is more difficult. First, the 
ideal ( f l , . . . ,  fs) need not be generated by a single polynomial, so we must generalize 
our division algorithm to compute a remainder of f on division by the set {f l ,  �9 �9 fs) .  
This is relatively straightforward, but it turns out that the remainder obtained this way 
is not uniquely determined. To get a unique remainder, which will be 0 if and only if 
f E { f l , . . . ,  fs), we need to use a special kind of generating set for the ideal. These 
generating sets are called Grtbner bases, and they provide the foundation for the algo- 
rithmic solution of many problems involving polynomials and ideals. 

3.2 Definitions and basic properties 

To define Gr6bner bases, we need to specify an ordering on the set of monomials that 
satisfies certain conditions. It is somewhat more convenient to state things in terms of 
the n-tuples ( a l , .  �9 an)  rather than the monomials x~l , . . .  XnC,~, so let N n be the set 
of n-tuples of nonnegative integers. There is an obvious isomorphism of semigroups 
between the set of monomials under the multiplication given in the previous section 
and N n with component-wise addition. 
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Again, let k be an arbitrary field. A monomial or term order on k [ x t , . . . ,  xn] is a 
relation ~ on N n (or equivalently on the set of monomials) satisfying the conditions 
that ~- is a total order, ~- is a well-ordering, and a ~- fl implies a + 7 ~- fl + 7 for 
all ~ E N n . The  third condition is essentially a compatibility requirement between the 
order and the multiplication of monomials. We want to use the order to distinguish 
a leading, or highest, term in each polynomial. The third condition say s that, if we 
multiply a polynomial by a monomial, the leading term of the result will be the product 
of the monomial and the leading term of the original polynomial. 

Two commonly used monomial orders are the lexicographic order, in which a ~ fl 
if and only if the leftmost nonzero entry in the difference ~ - fl is positive, and the 
graded reverse lexicographic order, in which a ~- fl if and only if ~ i  ai > ~ i  f~i or 
~ i  ai = ~ i  fli and the right-most nonzero entry in a - ~ is negative. Note, however, 
that each of these orders is defined only up to a permutation of the variables; there are 
really n! versions of the lexicographic and graded reverse lexicographic orders. There 
are results indicating that, for many applications, the graded reverse lexicographic order 
is most efficient [3]. As we will see soon, some special orders, perhaps constructed from 
the graded reverse lexicographic, are also required for certain operations on ideals that 
are used in symbolic model checking. 

We need some additional notation. For t~ = ( a l , . . .  ,a,~) E N n, we write x ~ for 
the monomial x 1 ~1 x2 ~2 . . .  x n ~ .  Let f = ~ a~x ~ be a polynomial in k[xl , .  . . ,  x~], 
and let ~- be a monomial order. The degree of f ,  deg(f) ,  is max(  a E N n [ aa ~ 0 ). 
The leading coefficient of f ,  LC(f),is adeg(l). The leading monomial of f ,  LM(f), is 
x deg(f), and the leading term of f ,  LT(f), is Lc(f) .  LM(/) = ad~g(f)xdeg(S). 

Fix a monomial order. A finite subset G = {g l , . . . ,  gt} of an ideal I is a Gr5bner 
basis for I (with respect to the given order) if and only if, for every f E I,  LT(f) is 
divisible by one of the LT(gi). It is easy to see that every nonzero ideal has a Grtbner 
basis, and that any Grtbner basis for an ideal is also a basis for the ideal. 

Suppose ~- is a fixed monomial order on k[x l , . . .  ,xn] and F = { f l , . . . ,  fs} is 
an ordered s-tuple of polynomials. Then we can generalize the division algorithm for 
polynomials in one variable to show that every f E k[Xl , . . . ,  Xn] can be written as a 
sum of multiples of the f~ and a polynomial r that is either 0 or a sum of monomials not 
divisible by any of LT( f l ) , . . . ,  LT(fs). We say that r is a remainder of f on division by 
F.  The polynomial r depends on the way that the set F is indexed. 

Buchberger gave an algorithm for constructing a Grtbner basis for a given ideal. 
The algorithm starts with a set of generators for the ideal. It then constructs an S- 
polynomial for a pair of elements of this set, and adds the remainder of the S-polynomial 
on division by the generating set to the set. It continues in this fashion until all the re- 
mainders are 0; at this point, the set of generators is a Grtbner basis. Various improve- 
ments in efficiency can be made by carefully choosing which S-polynomials to compute 
at a particular stage [7]. 

If G is actually a Grtbner basis for an ideal I and f E k [ x l , . . . ,  xn], then the 
remainder r of f on division by G is uniquely determined (i.e., does not depend on 
the order in which the elements of the basis are listed), and f E I if and only if r = O. 
Buchberger's GrSbner basis algorithm thus yields an algorithm for determining whether 
a polynomial belongs to a given ideal. As noted in the previous section, we can also use 
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Gr6bner bases to determine whether a polynomial is in the radical of a given ideal. 
We say that a Gr6bner basis G is reduced if the leading coefficients of the elements 

of G are all 1 and no monomial of an dement of G lies in the ideal generated by the 
leading terms of the other elements of G. The key result is that, for a fixed monomial 
order, a nonzero ideal has a unique reduced Gr6bner basis. The algorithm for finding 
a GrSbner basis can easily be extended to output this reduced Gr6bner basis. Thus, we 
have an algorithm for determining whether two ideals ( f l , .  �9 �9 fs) and (h i , . .  �9 h~) are 
equal. 

3.3 Projections 

Suppose that a concurrent system can be described in terms of n Boolean state vari- 
ables, and let F be the field of two elements. We then represent the possible states 
of the system by the elements of the vector space F n. The transition relation of the 
system can then be regarded in the usual fashion as a subset T of F zn, where a point 
(bl, � 9  bn, b ' l , . . . ,  b'n) E T if and only if there is a transition from the state represented 
by (b l , . . . ,  bn) to the one represented by (b~, . . . ,  b ') .  Suppose we have a set of points 
C C_ F n corresponding to a formula r For symbolic model checking, we need to be 
able to describe the points corresponding to, for.instance, the formula E X r  These 
are the points ( b l , . . . ,  bn) E F '~ such that there exists a point (b~, . . . ,  b'~) E C with 
( b l , . . , b n , b '  t �9 1 , " ' ,  bn) E T.  In the framework of algebraic geometry, this amounts 
to finding the projection of a subset of F 2n onto the first n coordinates. We can use 
GrSbner bases, with suitable monomial orders, to accomplish this. 

Let R be the polynomial ring F i x 1 , . . . ,  xn, X ' l , . . . ,  x~n] in 2n variables. We regard 
R as a ring of Boolean functions on F 2n, as usual. Let I = ( f l , . . . ,  fs), and assume 

2 + xi and (x~) 2 + x~ is con- that the set Z consisting of the polynomials of the form x i 
tained in {f l ,  �9 �9 �9 fs}.  (Recall that adding Z to the generating set of I does not change 
V(I ) . )  Let R1 be the subring consisting of polynomials in the variables x l , . . . ,  xn and 
let /1 be the ideal I M R1 of the ring R1. We can show that any ( h i , . . . ,  bn) E V(I1) 
extends to an element (b l , . . . ,  bn., b~, . . . ,  b~n) E V(I ) .  In particular, if we take I to be 
an ideal with variety { ( b l , . . . ,  b,~, b l , . . .  , Un) E T I ( b l , ' ' - ,  b~n) E C ), then V ( / I )  is 
the projection of this set on the first n coordinates. It is this projection that we need for 
model checking. 

So the problem is to find/1.  Let ~ be a monomial order satisfying the property 
is greater than any monomial involving only that any monomial involving one of the x i 

x l , . . . ,  xn, and let G = { g l , . . . ,  gs) be a GrObner basis of I with respect to ~-. If  I 
contains Z, it can be shown that G M R1 is a GrSbner basis for 11. So we can find a 
Gr6bner basis for/1 as long as we can produce a suitable monomial order, and we can 
do that by, for example, modifying: the graded reverse lexicographic order. 

3.4 Complexity 

It is natural to measure the size of a finite set F of polynomials in terms of the number 
of variables, the number of polynomials in F,  the maximum degree of the polynomials, 
and the size of their coefficients. Given F,  we are interested in these measures for 
a GrObner basis for (F),  as welt as for the intermediate sets constructed in finding 
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a Gr6bner basis. In the general case, all of these measures behave fairly badly. For 
instance, examples are known where the construction of a Grrbner basis for an ideal 
generated by polynomials of degree less than or equal to d can involve polynomials of 
degree 22d [13]. Over the field of two elements, however, all the coefficients are 0 or 1, 
and when our ideal includes all the x~ 2 + xi, the only polynomials we have to consider 
are those in which no variable appears with degree greater than 1. I am not aware of 
specific complexity results for this case. Of course, just as with OBDDs, there are too 
many Boolean sets for all of them to have small representations in terms of Grrbner 
bases, so the interesting question is really one of characterizing the Boolean sets that 
do have such nice representations and understanding when the model checking process 
involves only such sets. 

It is worth noting that there has been work on dynamic modification of the monomial 
order as the Grrbner basis calculation proceeds [11]. 

4 An Example 

In this section we show how the machinery described in the preceding sections can 
be applied to verify a property of a small system. Consider the SMV code shown in 
Figure 1 (the numbers on the left in the module p r c  are inserted for reference, and are 
not part of the SMV program). This is the "mutexl" example distributed with SMV, 
with the fairness declarations deleted for simplicity. This system implements a mutual 
exclusion protocol. 

We begin by describing the state variables. We can use one state variable for t u r n  
and two state variables for each of s 0 and s 1 to describe the state of the system, so we 
need 11 state variables for the transition relation (five for the current state, five for the 
next state, and one to keep track of which process is currently running, as required by 
the semantics of SMV). Figure 2 shows how we partition the variables. We encode the 
enumerated variables s 0 and s 1 by-setting the corresponding pair of bits to (0, 0) for 
noncritical, to (0, I) for trying, and to (I, O) for critical. 

The next step is to find an ideal J such that V ( J )  is the transition relation, T. We 
have to capture the assignments made by the processes prO and p r l .  Our approach is 
to find polynomials whose zeros correspond to pairs of states in which the appropriate 
assignments are made. 

Consider first prO. Line (1) tells us that, if the system is in a state where p r o  is 
running (i.e., when xe = 0), and sO is n o n c r i t i c a l  (Le., when (Z2,~73) --~ (0,0)) ,  

I I the value of sO in the next state will be n o n c r i t i c a l  or t r y i n g  (i.e., (x2, x3) = 
;x' x'  ~ = (0, 1)). So we need to find a set of polynomials whose common (0,0) or ~ 2, 3J 

zeros are the points ( X l , . . . , x s , x ~ , . . . , x ~ , x r )  with x6 = 0, x2 = 0, xa = 0, x~ = 
0, and x J' = 0 or 1. Since the condition on x~ holds at all points, we can use the 

3 

set { xs, x2, xs, x~ }. For calculations, it seems somewhat more convenient to take the 
single polynomial 

fl=(x~+1)(x2+1)(xz+1)(x~+l)+1, 

which has the same zeros. 
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MODULE main 

VAR 

sO: {noncritical, trying, critical}; 

s'l: {noncritical, trying, critical); 
turn: boolean; 

prO: process prc(s0, sl, turn, 0); 

prl: process prc(sl, sO, turn, I); 

ASSIGN 
init(turn) := 0; 

SPEC 

EF((s0 = critical) & (sl = critical)) 

MODULE prc(state0, state1, turn, turn0) 

ASSIGN 
init(state0} := noncritical; 

next(state0) := 

case 
(1) (state0 = noncritical) : {trying,noncritical}; 

(2) {state0 = trying) & (state1 = noncritical): critical; 

(3) (state0 = trying) & (statel = trying) & (turn = turn0): critical; 

(4) (state0 = critical) : {critical,noncritical}; 

(5) i: state0; 

esac; 

next(turn) := 

case 

(6) turn = turn0 & state0 = critical: [turn; 
(7} 1: turn; 

esac; 

Fig. 1. SMV program for mutual exclusion protocol 

turn s 0 s i turn s 0 s 1 

I I I 
Current State Next State 

Fig. 2. State variables for transition relation 

running 

In a similar fashion, lines (2)-(4) yield polynomials 

f2 = (zo + 1)(x2 + 1)Xa(X4 + 1)(x5 + 1)x~(x~ + 1) + 1 
/ / 

Ya = (z0 + 1)(x2 + 1)xs(z, + 1)x5(I/~l + 1 ) z z ( z  a + 1) + 1 

f4 = (x0 + 1)x2(xa + 1)(x~ + 1) + 1. 

Line (5) must be treated a little differently. It asserts that, if  p r o  is running and 
none of  the first four guards in the case statement is true, then n e x t  ( s 0 ) = s 0. There 
are two ways all the guards could fail: sO = s l  = t r y i n g  but t u r n  = 1, and 
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sO = t r y i n g  while s l  = c r i t i c a l .  We willrepresenteach of these conditions 
with apolynomial: 

= (x6 +l)(x2 + i)x3(x4 +l)xsxi(x  +l)x~ +I 
fSb = (x6 + l)(x2 + l)x3x4(x5 +l)x  +I. 

We note that it would also be possible to represent the negation of the guards on lines 
(1)-(4) directly, rather than explicitly listing the remaining cases. This approach is il- 
lustrated in the treatment of line (7) below. 

Lines (6) and (7) describe the possible values of n e x t  ( t u r n )  while prO is run- 
ning. From line (6), we have 

f r =  (x~ + 1)(xl + 1)x2(x3 + 1)x~ + i, 

using the fact that, for prO, t u r n 0  = 0. 
Line (7) tells us that, while p r o  is running, t u r n  does not change unless the guard 

of line (6) is satisfied. We want a polynomial that is zero at exactly the points where 
x6 = 0, the guard of line (6) is false (so (Xl + 1)x2(x3 + 1) = 0), and Xl = x~. A 
polynomial that is zero at exactly these points is 

f7 = (x8 + I) ((xi + l)x2(x3 + I) + I) (xi + x~ + I) + i. 

The variable s 1 is not assigned while prO is running. The semantics of SMV then 
imply that n e x t  ( s i ) = s 1 if p r o  is running. We can express this condition with the 
polynomial 

/8 = (x6 + i)(z4 + z~ + 1)(x5 + 4 + 1) + 1. 

? The points (Xl , . . . ,  x5, x l , . . . ,  x~, x6) 6 T corresponding to pairs of states in 
which p r o  is running in the current state are those where one of f l  . . .  fSb is zero, 
one of f6 or f7 is zero, and fs is zero. Since a product of polynomials is zero if and 
only if at least one of the factors is zero, these are the points where the three polynomi- 
als flf2f3f4fs,,fSb, f~fT, and fs are all zero. In other words, the points in the transition 
relation with x6 = 0 form the variety of the ideal/pro = (flf2f3f4fSaf5b, frf7, fS). 

In a similar fashion, we construct an ideal Iprl whose variety is the set of points in 
T with x6 = 1. If we set I = / p r o  "Iprl and J = (I, Z>, where Z = {Xl 2 + x l , . . . ,  x g + 
xs, (x~) 2 + X~l,..., (x~) 2 + x~,x 2 + xr}, then T = V(J ) .  

The property we want to check is EF(sO = critical A sl = critical). 
Let r = (sO = critical A sl = critical). So we want to find the least fixed 
point of 7" = Ay.r V EXy.  Given a description of y as a variety, we need to express the 
points corresponding to r V E X y  as the variety of some ideal. To do this, we need to 
describe thepoints satisfying r as a variety, and we need to compute the ideal defining 
the variety EXy .  

The points (x l , .  �9 �9 xs, x ~ , . . . ,  x~, xr) for which r holds are those corresponding 
to system states in which both sO and s l  are c r i t i c a l ,  i.e., those in which x2 = 
x4 = 1 and xa = x5 = 0. These are the points in the variety of the ideal Ir = 
<x2(x3 + 1) + 1,x4(x5 + 1) + 1>. 
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To find the ideal corresponding to E X  v, we first need to specify that the poly- 
nomials defining y are zero in the next state. In our setting, this is accomplished by 
applying a homomorphism of rings that replaces the xi by the corresponding x~..Let 
FI -- F[Xl, ,xs,x' l , . . .  ,xls,xt] and let v: R --+ R be the (k-linear) ring homo, 
morphism mapping each xi to x~, for i = 1 , . . . , 5 ,  each x~ to 0, and x6 to x, .  If 
f 6 R1 = F[xl , . . . ,  x~] is a polynomial in the xi, v(f) is the corresponding polyno- 
mial in the variables x~ , . . . ,  x~, x~. 

Then if y corresponds to the variety V ( h l , . . . ,  hs), the variety corresponding to 
E X y  is the projection onto the ~'st n coordinates of the variety of the ideal I v, = 
(T, u(hl) , . . . ,  u(hs), Z). We find the ideal defining this variety using the methods dis- 
cussed in Section 3.3: We construct a GrSbner basis Gy, for I~, with respect to a suit- 
able order, and take the elements of G v, that lie in the subring R1. If G1 = R1 N Gv,, 
then the variety defined by (G1) �9 Ir corresponds to the points satisfying the formula 
r V EXy.  In this fashion, we can find the least fixed point of )~y.r V EXy.  

I used the program Macaulay [2] to carry out these calculations. Macaulay provides 
facilities for defining rings, ideals, and homomorphisms, and for carrying out a variety" 
of Grtbner basis calculations. Many of these calculations could have been done using 
other computer algebra systems; Macaulay seemed to be the most convenient for these 
experiments. 

The GrSbner basis found by Macaulay for the ideal Iv whose variety is the least 
fixed point of Ay.r V EXy  consists of the six polynomials x~ + Xl, x2 + 1, xs, xa + 1, 
xs, and x62 + xt.  (Note that the first and last of these are zero at all points of F n.) The 
variety V(I~) consists of the points (xl , .  �9 xs, x~ , . . . ,  x~, xt)  where x2 = 1, x3 = 0, 
x4 = 1, and x5 = 0. These are the points where sO and s l  are both c r i t i c a l ;  this 
tells us that it is not possible to reach a state where both s 0 and s 1 are c r •  t •  (i.e., 
where r holds) from a state where at least one is not c r i t i c a l .  In particular, no state 
where both s 0 and s 1 are c r i  t • c a  3_ is reachable from the initial state, since the initial 
conditions specify that s 0 and s 1 are n o n c r i t i c a l .  We can verify this by express- 
ing the initial conditions as the zeros of an ideal, say I in i t  = <x2, x3, xa, xs, xt),  and 
computing the ideal of the intersection of the varieties V (I~) and V (Iir~i t). Macaulay 
reports that the constant polynomial 1, which has no zeros, is a GrSbner basis for this 
ideal, and we see that the intersection is empty. We conclude that EFr is false in the 
initial state. 

Alternatively, we could have found the set of reachable states by starting from I ini t ,  
and taken the intersection with this variety at each stage. (This corresponds to running 
SMV with the - f flag.) 

Macaulay runs as an interpreter that can be used interactively or can execute scripts. 
A script to check the property EF(s0 = critical A sl = critical) took 

about 10 seconds to execute on a PC with a i00 MHz Pentium and 16 MB of memory, 

running Linux. Macaulay allocated 755 KB of memory in the course of this calcula- 
tion. For comparison, on the same machine SMV took approximately 0.1 seconds to 
check the same property, and allocated just over 917 KB. SMV, of course, was building 
OBDDs from the code shown in Figure 1, while for Macaulay, I had manually trans- 
lated this code into the polynomials described above. 
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5 Discussion 

In this paper, I have shown how techniques from computational algebraic geometry can 
be used for symbolic model checking. This approach may provide a useful supplement 
to existing methods based on OBDDs, and may also provide important theoretical in- 
sights by allowing the application of deep results in algebraic geometry to the model 
checking problem. Additional research will be needed to determine whether these po- 
tential advantages are borne out. 

Macaulay, the program I used for the calculations described in the previous section, 
was intended for use in a much more general setting. It supports, for instance, calcu- 
lations over fields of characteristic up to about 32,000, rather than just characteristic 
2. Its data structures and algorithms are therefore not optimized for the cases used in 
symbolic model checking. Furthermore, it runs as an interpreter. For that reason, the 
difference in execution time between Macaulay and SMV does not seem to carry much 
significance for assessing the practicality of these methods. Although some further in- 
vestigation of the practicality of symbolic model checking using the techniques from 
algebraic geometry can probably be done using tools like Macaulay, more serious study 
will likely require building a prototype tool designed specifically for that purpose. Ex- 
amples like the one in the previous section suggest that it should be fairly easy to build 
a tool that would work directly from specifications given in the SMV input language. 

There are several directions in which the framework proposed here might be gener- 
alized. For instance, in the example of Section 4, I worked with polynomials over the 
field of two elements. This has some clear advantages and seems to be the most natu- 
ral analog of the OBDD approach. Working over the field of order 2 k, however, might 
allow much more efficient encoding of conditions involving k-bit blocks of state vari- 
ables. Similarly, working over fields of characteristic greater than 2 would correspond 
to some of the non-binary generalizations of OBDDs. 

It is difficult to predict exactly what theorems of algebraic geometry might be ap- 
plicable to symbolic model checking, but some general directions can be sketched. For 
instance, there is a rich collection of invariants of varieties and ideals, including such 
things as notions of dimension and degree. Many of these invariants are likely to be re- 
lated to the difficulty of carrying out symbolic model checking. Algebraic geometry also 
provides good machinery for handling such things as the action of groups on varieties, 
maps between varieties, and the properties of intersections of varieties. It might there- 
fore provide new ways to understand and take advantage of symmetries of the system 
being checked, abstraction to simpler systems, or the effects of constraints represent- 
ing the interface between a subsystem and its environment. Results in these directions 
might give information about, for instance, the kinds of Boolean sets arising in fixed 
point calculations and thus even have implications for model checking using OBDDs. 
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1 Introduction 

Bisimulation is widely used for defining behavioural equivalences on terms of 
process description languages. It has been extensively studied in CCS, where 
efficient algorithms and tools for bisimulation checking have been devised. A 
prominent role among these algorithms is occupied by the partition refinement 
algorithm [10, 6]. It works in two phases: In the first, the state spaces of the pro- 
cesses to be checked (i.e., the set of their derivatives under arbitrary sequences of 
actions) are separately generated; in the second, a partition refinement procedure 
is applied to the union of the state spaces, which terminates when the equiv- 
alence classes of bisimulation are found. Most important, the same algorithm 
can be used to obtain a minima~ realisation of a process P,  i.e., a process which 
has the minimum number of states and transitions among all those bisimilar 
with P. In the case of CCS, algorithms for bisimiIarity generally apply only to 
finite-state processes, syntactically described by disallowing parallel composition 
within recursive definitions. 

In this paper, we study bisimulation checking in the r-calculus, a develop- 
ment of CCS where channel names can be communicated. Name-passing in- 
creases the expressiveness of the calculus, but it also dramatically affects the 
theory - -  above all the definition, of bisimulation and its associated algorithms. 
In the v-calculus, the syntactic counterpart of CCS finite state processes are 
the finite control processes [3]. Due to the creation of new names, finite control 
processes can exhibit an infinite-state behaviour. 

Three definitions of bisimulation, called late [7], early [7] and open [11], have 
been proposed for the ~r-calculus, and vary in the way name instantiations are 
handled. Here, we focus on open bisimulation, for three main reasons: First, by 
contrast with the other two, open bisimulation is a full congruence; this can be 
used, for instance, for compositional minimisations of processes. Secondly, the 
average complexity of checking open bisimulation is expected to be substan- 
tially lower than those of late and early bisimulations Ill]. Thirdly, a partition 
refinement algorithm for open bisimulation presents more difficulties, hence one 
expects to extract algorithms for late and early bisimulations from it. 
O p e n  bis imulat ion.  Differently from early and late bisimulations, where free 
names of processes are viewed as constants (hence cannot be identified), in open 

* Research supported by CNR project "Strumenti per la Verifica di Proprieth Critiche 
di Sistemi Concorrenti e Distribuiti" and by CNET project "Mod~lisation de Sys- 
t~mes Mobiles". 
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bisimulation free names are viewed as free variables. However, permanent in- 
equalities on names can be imposed by means of distinctions, i.e., irreflexive 
and symmetric relations on names. Distinctions allow us, for instance, to create 
constants by declaring certain names different from all other names; they are 
also useful to handle name extrusions ~ see below. We shall write "~D to denote 
open bisimilarity under distinction D. 

We review some aspects of the symbolic characterisation of open bisimula- 

tion [11]. Symbolic transitions are of the form P ~ P '  where, intuitively, M 
represents the least condition, in the form of a conjunction of equalities between 
names, undhr which action ~ caz~ occur. A condition M determines an equiva- 
lence relation on names~ chosen a representative for each equivalence class, M 
also determines a name substitution O'M which maps names to their representa- 
tives. We write 0 for the "true" condition, that is the empty conjunction. Among 
the possible forms of action ~, there is the bound output "5(b), which denotes the 
emission at a of the private name b. Approximately, the clause of bisimilarity on 
bound outputs says that if P ~D Q, and fn(P, Q) is the set of free names in P 
and Q, then: 

whenever P M ,~(b! p,  with b not free in Q, there are N and Q' s.t. 

Q N ,Z(b~ Q,, M implies N, and (1) 
I D I  clef P' " o '  QaM,  for = DaMU {b}xfn (P ,Q)  

Derivative Q' and distinction D are updated according to the name equalities 
imposed by condition M, and distinction {b} x fn(P, Q) is added to record the 
creation of the new name b. 
Ma in  p r o b l e m s  for a par t i t ion  algori thm. In (1), three forms of dependen- 
cies between P and Q affect the transitions and the derivatives to examine: 

D e p . l '  The name emitted by P cannot occur free in Q; 
Dep.2:  The condition M in the transition of P determines a substitution 0 M 

which is applied onto the derivative of Q; 
Dep.3:  There is a global distinction, which is updated using informations (the 

free names) from both processes. 

These dependencies prevent us fi'om generating the state spaces of P and Q 
separately from each other, as requested in the first phase of the partition re- 
finement algorithm. Each dependency introduces a separate problem, which we 
now discuss in more detail. 

Dep.1 is imposed to ensure that the bound name chosen by P can also be 
chosen by Q, and is necessary because bisimilar processes may have different 
sets of free names, like 

P1 clef P2 + [c = e]~(b), c(d). 0 and P2 ~ f  "5(b). e(d). 0 (2) 

(a matching [c = e] means "if c = e then"). The choice of the bound name could 
be made locally if active names [8]~ instead of free names, were used. A name x is 
active for a process P ifx does affect the behaviour of P,  i.e., P and ~,xP are not 
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bisimilar (v_ is the restriction construct). Active names would eliminate Dep.1 
because bisimilar processes have the same sets of active names. Unfortunately, 
computing active names is as difficult as computing bisimilarity. For instance, x 
is active in a(y). ([y = z]P + Q) iff P{y/x} and Q{y/x} are bisimilar. 

Dep.2 arises because conditions M and N on the transitions from P and 
Q may be logically non-equivalent. This situation happens, for instance, when 

comparing processes P~ and P2 in (2), where transition P1 [r c(d).O 

is matched by transition P2 0,~(b) e(d). 0, for under the condition [c= e] the 
two derivatives are bisimilar (in this case, they are actually equal). However, this 
transition of P1 does not add anything interesting to its behaviour, since covered 

by transition P1 ~ e(d). O, which has a logically weaker condition. The first 
transition can therefore be regarded as redundant. Indeed, if redundant transi- 
tions were ignored in the bisimulation clauses, then Dep.2 could be removed. 
But again, determining whether a transition is non-redundant is as difficult as 
computing bisimilarity. 

To avoid Dep.3, distinctions should be made local to processes, and should 
be locally updated. But the update of the local distinction of a process P has 
to depend on its free names, otherwise the update might not be sound. As a 
consequence, since bisimilar processes may have different free names, one must 
be able to compare processes with different local distinctions. This makes it hard 
to obtain a transitive bisimulation relation and to recover open bisimulation. 

Our approach.  Computing bisimilarity, active names or non-redundant tran- 
sitions is of equal difficulty, since, unfortunately, they all depend from each 
other. Our algorithm will hence compute bisimilarity, active names and non- 
redundat transitions at the same time. Since bisimulation is a maximal fixed- 
point, whereas active names and non-redundant transitions are minimal fixed- 
points, the algorithm approximates bisimulation from above, and active names 
mud non-redundant transitions from below. At the beginning, all processes are 
assumed bisimilar, no name is assumed active and no transition is assumed non- 
redundant. In each approximation step, the appropriate transitions and deriva- 
tives of processes are selected according to the current estimation of active names 
and non-redundant transitions, and the standard partition refinement algorithm 
is applied. At the end, active names and non-redundant transitions are updated. 
In this way, at each step the assumed set of bisimilar processes decreases, whereas 
the assumed sets of active names and non-redundant transitions increase. This 
procedure is repeated until a fixed-point is reached. 

The update of the distinction which is local to a process P uses its free names. 
The bisimulation relation computed by the algorithm, and defined on processes 
with a local distinction, is not transitive; but it enjoys a weak form of transitivity 
which is enough to prove a characterisation theorem w.r.t, open bisimulation and 
to apply the partition refinement algorithm (in which transitivity is important). 

Our algorithm can be used on finite-control processes to check open bisimu- 
lation and to compute minimal realisations of processes. 
Re la t ed  work. The closest work to ours is [81, where a partition refinement 
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algorithm for early and late bisimulation is obtained which works for finite- 
control processes without the matching operator. [8] has inspired our work, and 
has provided us with useful insights. However, our technical development is quite 
different, beCause none of the problems in Dep.l-3 arise in [8]. Dep.2 and Dep.3 
do not arise because they are specific to open bisimulation; Dep.1 does not pose 
a serious obstacle because, in late and early bisimulations without matching, 
active names of processes are trivial to compute: Roughly, a name x is active in 
a process P if x appears as a free ha,me in a label of a computation of P. Hence 
active names can be computed by a standard transitive closure procedure. 

The Mobility Workbench [12] is a tool for mechanically checking open bisimu- 
lation on finite control processes. It adopts an on the fly [4] approach, as opposed 
to the partitioning approach (in on-the-fly, the state spaces of processes com- 
pared are created at the same time as the candidate bisimulation relation). A 
disadvantage of on-the-fly is that it cannot be used to give the minimal realisa- 
tion of a process. Moreover, due to the need of backtracking, in general on-the-fly 
is less efficient than partitioning both in time and in space (especially in the case 
of weak bisimulations). However, on-the-fly can be superior on processes which 
exhibit a limited degree of non-determinism; and it may return an answer even 
on non-finite-control processes, if not bisimilar. 

In [3] decidability of early and late bisimilarity for finite control processes is 
proved. In particular, it is shown that for every pair of finite control processes 
only a finite number of names is sufficient for checking bisimilarity; once the 
number of names if guessed, the state space of both agents can be built and 
a partition refinement algorithm can be applied. However, this approach can 
be expensive and, since the number of names can be guessed only for pairs of 
processes, it does not provide us with minimal realisations. Open bisimulation, 
and hence Dep.2 and Dep.3, are not considered in [3]. 

For lack of space, in this short version some technical definitions and all 
proofs have been suppressed. 

2 r e - c a l c u l u s  

We briefly review the syntax of the ~r-calculus, and the definition of open bisim- 
ulation~ Letters a, b , . . . ,  x, y , . . .  range over the infinite ordered set Af of names, 
and K over the set of process identifiers. The class of processes is built from 
the operators of inaction, prefixing, matching, parallel composition, restriction, 
sum, and recursion; a prefix can be a silent prefix, an input, a free output, or a 
bound output: 

P,Q:=O [ a .P I [a=b]P I P [ Q  [ y a P  I P +  Q ] g{5) 
: = r  

Each identifier K has an associated arity and a definition of the form K de~ (a)P. 
We give sum and parallel composition the lowest syntactic precedence among 
the operators. In a(b). P, L,b P, and ~(b). P, all free occurrences of name b in 
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P are bound. Free names (fn), bound names (bn) and names (n) of processes 
and prefixes, name substitutions, and alpha conversion are defined as expected. 
The extruded names of an action ~, written en(a), are its bound names if a is a 
bound output, are the empty set otherwise. We use a to range over substitutions. 
Application of a substitution a to a process P and to an action a are written 
P a  and an,  respectively (in an,  the bound names of a are not touched). 

Conditions are finite conjunctions of matching, like [a - b][c = c~. We use M 
and N to range over conditions, and n(M) for the names which appear in M. 
We write M E> N if M implies N, i.e., the equalities in M imply those in N; 
M <~> N is a shortcut for "M t> N and N t> M ' ,  whereas M ~d[> N is a shortcut 
for "M ~> N but not N t> M". Notice that, since names are ordered, there are 
canonical forms for conditions, which are unique up to <~>. Given a matching 
M, we denote by aM the substitution which selects the minimal representative 
out of each equivalence class on names induced by M, i.e., aM (a) = min{b I 
i ~> la=b]}, 

A distinction is a finite symmetric irreflexive relation on Af, which expresses 
permanent inequalities on names, i.e., if (a, b) is in the distinction, then a must 
be kept separate from b. We use D to range over distinctions and n(D) for the 
names which are mentioned in D. A substitution a respects a distinction D if 
(a,b) E D implies a(a) # a(b); in this case we write Da for the distinction 
{(a(a),a(b)) t (a ,b)  E D}. Similarly, a matching M respects a distinction D if 
aM respects D. Sometimes, in the expressions defining distinctions we shall avoid 
to give all symmetric pairs. If N is a set of names, then D - N is the distinction 
{(a, b) E D I a, b ~ N} and D n N is the distinction {(a, b) E D ] a, b E N}. 

In the symbolic transition system for open bisimulation [11], transitions have 

the form P M~, p,, where M represents the minimal condition on names 
required by P to perform that action. For lack of space, we omit the transition 
rules, which can be found, for instance, in [11] or [12]. 

It will be convenient to use a transition system P -M--'2 p,  in which M is in 
canonical form and substitution aM has already been applied to action a and 
derivative P': 

P ~ a  P '  M is the canonical form for N 
M , rvo" M 

P ~ Pin M 
bn(a) N fn(P) = 0 

Othe r  nota t ions .  If S is a set, then p(S) is the powerset of S. If 7~ is a relation, 
then we sometimes write h ~ k to mean (h, k) E T~. 

Defini t ion 1 (open bis imulat ion [11]). Open bisimulation is the largest set 
{"~D}D of symmetric process relations s.t. for all D and P "D Q: 

- whenever P ~ P' ,  with bn(a) N (fn(Q) u n ( D ) ) =  0 and M respects D, 

there are N,/~, and Q' such that Q ~ Q' and 
* M ~> N, a = ~aM,  and 
* P '  ~D' Q'aM, for D' def = DaM U (en(a) x fn(P, Q)). 
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3 M a k i n g  d i s t i n c t i o n s  l o c a l  t o  p r o c e s s e s  

The goal of this section is to make the indexing distinctions of open bisimulation 
local to processes. A constrained process is a pair (P, D), where P is a process 
and D is a distinction with n(D) C__ fn(P). The requirement on names is used 
to keep distinctions "small" and to reduce the number of free names (in the 
algorithm of Section 6, it will allow us a better re-use of names). The set C~ of 
constrained processes is ranged over by A, B. Substitutions, free names, bound 

names are extended to constrained processes as expected. If A d=ef (p, D), then 
ua A abbreviates (va P, D - (a}). We call relations on constrained processes 
CP-relations; they are ranged over by ~ .  

We use D M to denote the distinction DaM U (en(a) x fn(P)). Transitions P~o~ 
for constrained processes are defined from those for processes: 

P ~ P~ M respects D 

(P,D) ~ 'P' D M , e,,~ n fn(P')) 

It makes sense to compare only constrained processes whose distinctions are 
compatible, that is, identical on common names. 

Def ini t ion 2. Constrained processes (P, D) and (Q, E) are compatible, written 
(P, D) ~(Q, E>, if D n fn(Q) = E n fn(P). 

A compatible CP-relation is a CT)-relation whose pairs are compatible constrained 
processes. 

T h e o r e m 3 .  Let ,,~ be the largest symmetric compatible CP-relation s.t. when- 

ever (P,D) ,,~ (Q, E) and (P, D> M,~ (p,, D'), with bn(a) n fn(Q) = 0, there 

are N,/3, Q' and E' such that (Q, E) ~-~ (Q', E') and 

- M l> N,  c~ = ~aM, and 
M - (P', D') ~. (Q'aM, (DpM. U EQ,~) N fn(Q'aM)). 

Then (P, D) ... (Q, E) implies P ~DuE Q and, vice versa, P . .~  Q implies 
(P, n n fn(P)) ~ (Q, D N fn(Q)). 

The proof of Theorem 3 uses a few lemmas for manipulating distinctions, among 
which the following strong-narrowing law for open bisimulation: 

P ~D Q implies P ~E Q for E ~f  (D n fn(P)) u (D n fn(Q)). 

This law, which has a delicate proof, strengthens the standard narrowing law for 
open bisimulation, where E d__e~ D n fn(P, Q). 

A CP-relation T~ is weak transitive if A1 7~ A2, A2 7~ As, and A1 #As  imply 
A1 T~ As. 

P r o p o s i t i o n  4. Relation ~ is not transitive, but is weak transitive. 

In the remainder of the paper, with some abuse of notation, we call open 
bisimilarity the relation -~ on constrained processes defined in Theorem 3. When 
clear from the context, we may call constrained processes simply processes. 
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4 N o n - r e d u n d a n t  t r a n s i t i o n s  

The goal of this section is to remove the dependency called Dep.2 in the Intro- 
duction from the characterisation of open bisimulation in the previous section. 
We recall that this dependency is caused by "redundant" transitions. Roughly, 

a transition A ~ A I is redundant for open bisimulation if there is another 

transition A ~ A" which has a strictly weaker condition N and s.t., when M 
holds, a is equal to ~ and A ~ is bisimilar to A' .  Redundant transitions can be 
defined for an arbitrary relation 7~ in place of bisimilarity. 

Defini t ion 5. A transition (P, D) M, ~ (p,, Dt } is redundant for a CP,relation 

T~ if there is a transition (P, D} ~ {P", D ' )  such that: 

- M ;~t> N, a =/3aM, and 
- (P',  D')  7~ (P"aM,  DMp,~ n fn(P"aM)). 

A transition (P, D} ~ (P~, D ~) is non-redundant for a CP-relation ~ ,  written 

(P, D) ~ (P', D'} e nr(7~), if it is not redundant for T~. 

T h e o r e m  6. Relation ,,~ coincides with the largest symmetric compatible g7 ) -  
relation ~ s.t. if A ~ B then: 

- whenever A ~ A t e nr(T~) and bn(c~) Cl fn(B) = (3, there is B ~ such that 

B M,~ B 'enr(7~)  a n d A ' ~ B  ~. 

5 A c t i v e  n a m e s  a n d  t h e  i t e r a t i v e  a p p r o a c h  

We now will make the choice of bound names of matching transitions local to 
processes (i.e., removing the dependency called Dep.1 in the Introduction). A 
local choice cannot be based on the free names because bisimilar processes may 
have different sets of free names. In place of free names, we shall use the active 
names, which are the same in bisimilar processes. The active names of a process 
are the smallest subset of free names which affect its behaviour. For instance, a is 
active in a(b). 0 and [a = b]'bc. O, but it is not in vb (ba. 0) and [a = b]~c. 0 +-bc. O. 
As for non-redundant transitions, it is convenient to define active names on a 
generic gP-relation. 

Defini t ion 7. For a C;O-relation 7Z, the function ann : gP  --* p(Af), mapping a 
constrained process onto the set of its active names w.r.t. T~, is the least fixed- 
point of the monotone function ~ : (gT) --, p(Af)) ~ (CP --. p(A/')) defined 
thus: 

r  = U fn(M,a) U ( f ( A ' )  - b n ( a ) ) .  

{M,a,A'IA ~ m'enr(n)} 

If x e ann(A), then we say that name x is active w.r.t. T~ in process A; otherwise 
we say that x is inactive w.r.t. T~ in A. 
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That is, ann is the least function which satisfies the condition: whenever 

A M,? A' E nr(T~), it holds that fn(M,a)  U (anr~(A') - bn(a)) C ann(A). 

P r o p o s i t i o n  8. x E an~ (A) iff A r ~,x A. 

In the normalised transitions below, the bound name in a transition of a 
process A is imposed to be the first inactive name in A; since the first inactive 
name may also occur free, in rule Norm2 its free occurrences are redenominated 
to avoid accidental identifications. 

D e f i n i t i o n  9. The normalised transitions for a CP-relation Tii which are of the 
M 

form A : ' ~  A', are defined from the two following inference rules, where 
def def 

v = min{Af - ann(A)} and y - min{Af - fn(A)}: 

Norml A M,~ A' b n ( c ~  
M ,~ A' A~ ) n  

A M,~ A' b n ( a ) = { y }  y C v  where def[a(v) i f a = a ( y )  Norm2 
A ~-:~vr A'{vtyYtv} /3 = ~ ~(v) i f~ ~(y) 

The two inference rules Norml-2 define an injective mapping from normalised 
transitions to plain transitions, because each normalised transition is inferred 

from a unique plain transition. Thus, if A M, ~ A' is the image of A M, ~rr A" 
M,/~ A" M, ~ A' under the injection, we write A ~---+T~ E nr(7~) if A E nr(T~). 

Defini t ion 10. Let 7~ be a CP-relation. Function ~Pn : p(CP x CP) ~ fo(CP x 
CT') is defined thus: (A, B) E ~n(,S) if 

- ATCB; 
- anTe(A) = an~(B); 

- whenever A M '~T~ A' E nr(Tr there is B' such that B M,~yr B' E nr(Tr 
and A' S B'; and the vice versa, with the role of A and B exchanged. 

For each TO, function ~Tr is monotone, so it has a greatest fixed-point and we 
can define a function r : p(CP x CP) ~ ~(C7:' x CP), which maps a relation/r 
onto the greatest-fixed-point of ~Pn. 

Functional ~ appears suited to extracting a partition refinement algorithm 
because derivatives and transitions of processes are computed locally. Notice that 
in the definition of ~, clause A ~ B (which appears in the definition of efficient 
open bisimulation) has been omitted because relation ~ is not transitive, as 
witnessed by processes 

A de f (/2X (~a. ~b. 0), 0) B de f C0 ' 0) C clef (VX (Sa. ~b. 0), (a, b)) 

where A ~ B  and B ~ C, but A ~ C does not hold. If we added clause A ~B,  
then function ~ would not preserve transitivity, and hence we could not use ~5 
to define a partition refinement algorithm. 
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Unfortunately, �9 is not monotone. Therefore, we do not know whether ~ has 
a maximal  fixed-point and, even if it existed, we could not use Tarsky 's  theorem 
to compute  it. As a consequence, to obtain an algorithmic characterisation of 
open bisimulation in terms of ~, one has to provide a specific proof tha t  the 
i terated applications of �9 on the universal relation CP x C7~ are convergent, and 
tha t  the limit contains open bisimulation. We define: 

~0 clef C~ x C~ 

~i ~ f  ~ ( ~ - t )  if i is an ordinal successor 

~ d=~f ~j<~ r if i is an ordinal limit. 

clef ~i. 
T h e o r e m  11. Let ~'~lg = lim~ Then .,~ coincides with ~alg N ~. 

C o r o l l a r y  12. P ~'~D Q if and only if (P, D a fn(P))  ~ g  (Q, D N fn(Q)).  

Each i teration of the algorithm in the next section precisely corresponds to 
an applicat ion of function ~. 

6 T h e  a l g o r i t h m  

The  algori thm we propose for open bisimulation is based on the characterisation 
in Corollary 12. The main steps are sketched in Table 1. A part i t ion on processes 
can be viewed as a relation in which all processes in the same class are related; in 
this way, we can talk of non-redundant  transitions, active names and normalised 
transit ions w.r.t, a partition. Some comments  on the steps in the table: 

1 Generate the saturated state graphs (Sp,Tp) and (So,To) for processes (P, D A 
fn(P)) and (Q, O N fn(Q)). 

2 Initialize 7 ~ to be the singleton partition on Sp U SQ (i.e, all processes in the same 
class). 

3 Repeat the following steps until partition P becomes stable: 
3.1 Set NonRed to be the subset of transitions in Tp UTo which are non-redundant 

for 7.  
3.2 Compute the active names w.r.t. 7 ~, for each process in Sp U SO. 
3.3 If necessary, refine the partition 7 ~ so that processes in the same class have the 

same set of active names. 
3.4 Compute the normMised transitions for P generated by the transitions in 

Nont~ed. 
3.5 Apply the Paige and Tarjan refinement algorithm [10] on partition P using, as 

transitions, the normalised ones computed in Step 3.4. Redefine ~ to be the 
resulting partition. 

4 Check if (P, D N fn(P)) and (Q, D N fn(Q)) are in the same class. 

Table  1. Schema of the algorithm to check P "~v Q 
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S tep  1: The saturated state graph of a process A0 is the pair (S, T) where S 
and T are, respectively, the minimal set of constrained processes and of 
transitions between processes in S such that A0 E S and such that S and T 
are closed under the following operations'. 

Sa t - t r ans  if A e S and A ~ A' with bn(a) _C { min{A/" - fn(A)}}, then 

A ' E S a n d A  M.~ A ' E T ;  

S a t - n o n r e d  if (P, D) ~ (P',  D') e T and (P, D) g,3 (p,r, D") e T with 
M t> N and a = 3aM, then (P"aM,D~, a N fn(P"aM)) e S; 

S a t - b u n c h  Let y ~r  min{A; - fn(A)}; if A M !~ A' e T with bn(a) = {y), 
then A'{v/yy/v} e S, for all v < y (where < is the strict order assumed 
o n  ]r 

S a t - n o n r e d  and sa t -bunch  are necessary, respectively, for the run-time 
computation of non-redundant transitions and for the targets of normalised 
transitions. Note that sa t - t rans  requires a single instantiation of bound 
names of actions. In sa t -bunch,  v is strictly below min{A]" - fn(A)}, since 
the latter name, which is surely inactive for A, has already been considered 
in sa t - t rans .  

S tep  3: Each cycle corresponds ~o an application of function ~ of Section 5. 
S tep  3.1: Following Definition 5, to compute the non-redundant transitions 

quickly, for each transition (P, D) -M---'2 (p',  D') we can keep a list of the 

processes (P"aM, D~a N fn(P''crM)) such that (P, D) ~ (P", D") with 
M ~> N and a = fl6rM; then the given transition is non-redundant for 
if and only if none of the processes in the list is in the equivalence class of 
(P',D'). 

Step  3.2: Following Definition 7, the active names can be efficiently computed 
via a transitive-closure algorithm (the non-redundant transi.tions have al- 
ready been computed in Step 3.1). 

S t ep  3.4: The normalised transitions are generated applying inference rules 
Norml and Norm2 (Definition 9) to each transition in NonRed. (The deriva- 
tives of normalised transitions are in Sp U SQ, so no new process needs to 
be added.) 

The algorithm terminates if the saturated state spaces, produced from the input 
processes in Step 1, are finite. This is the case for finite-control processes. 1. 

The algorithm can be used to produce the minimal realisation of a process 
P w.r.t, a distinction D - -  for this case it suffices to generate only the saturated 
state space of (P, D Nfn(P)) in Step 1. If we take processes with normalised tran- 
sitions only (normalised transitions for processes are defined as for constrained 
processes - -  just replace A with P and A ~ with P '  in Definition 9), then the 
process returned by the algorithm (i.e., the one extracted from the final parti- 
tion, where transitions are those computed in the last execution of Step 3.4) is 

1 Some garbage collection of restrictions is needed, i.e., if x ~ fn(P) then ~,x P should 
be replaced by P. 
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minimal in the number of states, normaiised transitions, and the number of free 
names among all processes in the relation "~D with P. 

7 Conclus ions  

We presented various characterisations of open bisimulation. From the last one, 
we have extracted a partition refinement algorithm. It can be used on finite con- 
trol processes for checking bisimilarity and for producing minimal realisations. 
Complexi ty .  Paige-Tarjan algorithm has a worst-case running time O(m log n), 
on the number m of transitions and n of states; in our case, m and n are the num- 
ber of transitions and of states obtained after initialisation (Step 1 in Table 1). 
The Paige-Tarjan routine may be applied several times (Step 3 in Table 1), but 
at most it runs n times, since at each iteration at least one split of the partition 
is made. Hence, we get a worst case running time O(mn log n). 

However, the algorithm is exponential w.r.t, the syntactic length of the pro- 
cesses. The exponentiality is caused by the expansion of the parallel component 
of processes, as in CCS, and by value communication, as in data-dependent pro- 
grams [5]. Surprisingly, the degree of exponentiation in the x-calculus is similar 
to that of CCS [3, 8]. Against this exponential bounds, the possibility of min- 
imising process representations, offered by the algorithm, becomes important: 
As it happens in CCS, large-scale examples become tractable if process subcom- 
ponents are first minimised. 
Act ive  names  and n o n - r e d u n d a n t  t ransi t ions .  The algorithm presented 
makes no attempts at uncovering active names and non-redundant transitions 
in initialisation. This may cause a large addition of states in the saturation 
procedure (operations sat-nonred and sat-bunch in Step 1) and a high number 
of iterations of the Paige-Tarjan routine. 

However, a quick analysis of the processes could often produce reasonable 
estimates of active names and non-redundant transitions. For instance, all tran- 
sitions with a true (i.e., empty) condition are non-redundant, and all free names 
in their labels are active. We believe that this direction can lead to significant 
improvements. 

In non-trivial processes, like those used in the specification and the implemen- 
tation of the handover protocol in the GSM Public Land Mobile Network [9], all 
free names are active, and all transitions are non-redundant. It would be useful 
to find syntactic characterisations of classes of processes with this property. An 
example is the fragment of language without parallel composition and match- 
ing. One could then envisage a two-speed algorithm, the first speed (faster) to 
be used when active names and non-redundant transitions can be quickly com- 
puted in initialisation. (Indeed, the speeds could even be three, the intermediate 
one to be used when active names axe known but non-redundant transitions are 
not.) Again, the applicability of the first speed can be enhanced by first min- 
imising the representation of process subcomponents whose active names and 
non-redundant transitions are hard to compute. 
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Extens ions .  The algorithm can be extended to the polyadic 7r-calculus (where 
tuples of names are communicated). It can also be adapted to early and late 
bisimulations, and to weak and branching bisimulations. In the case of early and 
late bisimulations, the algorithm would become simpler, since Dep.2 and Dep.3 
are absent, but  it would be less efficient, due to the heavy use of names in the 
input clause of these bisimulations [7, 11]. 
I m p l e m e n t a t i o n s .  We plan to produce an implementation of the algorithm 
arid to s tudy its integration with the MWB and other tool sets like JACK [1] or 
A U T O / G R A P H  [2]. 
M i n i m i s a t i o n .  The algorithm performs minimisation of processes on the nor- 
malised transition system. Roughly, normalised means tha t  the bound name of 
transitions is forced to be the first inactive in the source process. 

It  would be interesting to see whether there are minimal forms and minimi- 
sation algorithms with more relaxed conditions on the choice of bound names. 
The challenge is tha t  the minimal forms must be canonical, i.e., syntactically 
identical for bisimilar processes. 
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Abst rac t .  Various models a~d equivalence relations or preorders for 
probabilistic processes are proposed in the literature. This paper deals 
with a model based on labelled transition systems extended to the prob- 
abalistic setting and gives an O(n 2. m) algorithm for testing probabilistie 
bisimulation and an 50(n 5 �9 m 2) algorithm for testing probabilistic simu- 
lation where n is the number of states and m the number of transitions 
in the underlying probabilistic transition systems. 

1 Introduction 

Transition systems have proved to be very useful for modelling concurrent pro- 
cesses. A variety of widely accepted equivalence relations and preorders for such 
systems support  the use of transition systems for the design and verification of 
concurrent systems. In this context, testing equivalences and preorders become 
important  and have been studied e.g. in [3, 4, 8, 11, 17]. For instance, (strong) 
bisimulation can be decided in time O(m. log n) [22], weak bisimulation in time 
(_9(n a) [3, 17] and strong and weak simulation in time O(n 4. m) [4] where n is the 
number of states and m the mlmber of transitions of the underlying transition 
system. 

In recent years, many researchers have focussed on reasoning about  proba- 
bilistic distributed transition systems, see e.g. I15, 18, 23, 25, 28, 29, 30]. A lot of 
work has been done to extend those models and methods which have been suc- 
cessful for the non-probabilistic case to probabilistic systems. In the literature 
a variety of models for probabilistic processes has been proposed, most of them 
based on transition systems. Two kinds of models can be distinguished: on the 
one hand, models that  replace the concept of non-determinism by probabilistic 
choice, e.g. [5, 13, 18, 26, 28], on the other hand, models which distinguish be- 
tween non-deterministic and probabilistic choice, e.g. [6, 12, 16, 25, 27, 30]. As 
pointed out in [27], the distinction between non-determinism and probabilistic 
choice is essential for concurrent probabilistic systems since some states of a 
concurrent system are inherently non-deterministic. 

Several kinds of equivalences and preorders for probabilistic processes a re  
proposed: [5, 16, 30, 28] consider testing preorders for probabilistic processes. 
Probabilistic bisimulation for processes whose behaviour are described by "de- 
terminsitic" probabilistic transition systems are introduced in [18}. [25] extends 
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probabilistic bisimulation to non-deterministic probabilistic transition systems 
and defines a" notion of probabilistic simulation which refines Milners notion of 
a simulation for non-probabilistic transition systems [21]. [15] defines an alter- 
native notion of a simulation which relates a process given by a probabilistic 
transition system and a specification which is given by a "generalized" proba- 
bilistic transition system. 

Various authors presented model-checking-algorithms for the verification of 
probabilistic processes e.g. [1, 6~ 13, 14, 19, 23, 24, 27]. But - as far as the 
author knows - algorithms for testing probabilistic (bi-)simulation are missing 
until now. In this paper we present algorithms for testing probabilistic simulation 
and bisimulation in the sense of [18, 25]. The main idea of testing simulation is 
to reduce the question of whether a state s of a probabilistic transition system 
simulates a state s ~ to a maximum flow problem in a suitable network. Using 
the O(n ~) algorithm of Malhotra et al [20] to determine the maximum flow 
we get an CO(n ~ �9 m 2) algorithm :for testing probabilistic simulation where n is 
the number of states and m the number of transitions. The idea for testing 
bisimulation is similar to the non-probabilistic case [17, 22]: the algorithm for 
testing probabilistic bisimulation is based on refinement steps which split a given 
partition of states into a finer one. The resulting time complexity of our algorithm 
is O(n 2 . m). 

The remainder of the paper is organized as follows: Section 2 introduces 
the notions of a probabilistic transition system, probabilistie bisimulation and 
simulation. Section 3 presents the algorithm for testing probabilistic simulation, 
section 4 the algorithm for deciding probabilistic bisimulation. Section 5 contains 
some concluding remarks. 

2 P r o b a b i l i s t i c  t r a n s i t i o n  s y s t e m s  

In this section we present the notions of probabilistic transition systems, bisim- 
ulation and simulation. Our model of probabilistic transition systems is closely 
related to those of [16, 30], to the "simple probabilistie automata" of [25] and 
"concurrent Markov chains" considered e.g. in [6, 12, 27]. 

A distribution on a finite set S is a function # : S --+ [0, 1] such that  
~ e s  It(s) = 1. We extend a distribution It to a function which assigns to 
each subset U of S the probability #(U) - ~ s e V  It(s) �9 In what follows, we 
suppose Act to be a nonempty and finite set of actions. A probabilistic tran- 
sition system is a pair ~q = (S,--+) where S is a finite set of states and --+ a 
finite transition relation, i.e. ~ is a finite subset of 5 • Act •  where 7)(S) 
denotes the set of distributions on S. We write s --~ It instead of (s, % It) E-+. 
Informally,. the outgoing transitions s -~ # represent the non-deterministic al- 
ternatives in the state s. It is convenient to suppose that  a scheduler resolves 
the non-deterministic choices. A transition s --4 It asserts that  in state s the 
action c~ can be performed and with probability p(t) the state t is reached'af- 
terwards, i.e. every transition represents a probabilistic choice. (Finite-state) 
probabilistic processes can be described by a probabilistic transition system and 
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an initial state (or alternatively a distribution on the possible initial states). In 
what follows a transition system means a probabilistic transition system. By a 
non-probabilistic transition system we mean a transition system where for all 
traflsitions s-%#: there is a state t with #(t) -- 1. Following [18, 25] we define 
(probabilistic) bisimulation and simulation: 

De f in i t i on  1. Let (S,--+) be a transition system. A bisimulation on S is an 
equivalence relation R on S such that  for all (s, s ~) E R: If s-%p then there is a 

transition s'-~p' with #(A) = p'(d) for all A e SIR. Here SIR denotes the set 
of equivalence classes w.r . t .R.  Two states sl and s2 are called bisimilar (denoted 
by sl ~ s2) iff there exists a bisimulation which contains (sl, s2). 

An alternative description of bisimulation is based on weight functions for dis- 
tributions [15]: 

De f in i t i on  2. Let S be a finite set, R C S • S and p, p1 E 7)(S). A weight 
function for (#, p')  w.r.t. R is a function 5 : S • S ~ [0,1] which satisfies: 

1. For all s, s' e S: E~ '~s  5(s,s') = p(s), 
2. If 5(s, s') > 0 then (s, s') e R. 

= , ' ( s ' )  

Let (S,--+) be a transition system and R an equivalence relation on S. Then 
R is a bisimulation if and only if for all (s, s') E R: Whenever (s, s') E R and 
s-%p then there exists a transition s'-%#' and a weight function for (#, #~) w.r.t. 
R. Intuitively, the weight function ~ shows how to split the probabilities #(s) 
and p'(s ' ) ,  s, s ~ E S, so that  the relation R is preserved: we "combine" the 
5(s, s~)-part of s and s'. As in the non-probabilistic case, simulation is defined 
as "uni-directional bisimulation': in the above characterization of bisimulation 
we drop the requirement that  .R is an equivalence relation. 

De f in i t i on  3. Let (S, --+)be a transition system. A simulation for (S, --~) is a 
subset R of S • S such that  for all (s, s') E R: Whenever s -% p then there 
exists a transition s ~ -% #t and a weight function ~ for (p, tt I) w.r . t .R.  We say s 
implements s p (denoted by s __. s ~) iff there exists a simulation which contains 
(8, s'). 

In the non-probabilistic case this notion of a simulation agrees with Milners 
notion of a simulation [21]. This is because the only weight function for (#,# ')  
where #, p' are distributions with #(s) = tt'(s') -- 1 is 5(u,u')  -- 0 if (u,u ' )  r 
(s, s') and 5(s, s') = 1. Hence if (S,-~) is a non-probabilistic transition system 
and R C S x S then R is a simulation in the sense of Definition 3 if and only if 
R is a simulation in the sense of Milner. It is clear that  E is a preorder whose 
kernel Nsim = U N ___-1 is coarser than bisimulation equivalence, i.e. s ,,~ s ~ 
implies s "%ira s'. As in the non-probabilistic case, "~{m does not coincide with 
bisimulation. 

E x a m p l e  4. Let (S, -+) be the transition system where S -- (So , . . . ,  ss} and 
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so-+p, s5--4 p 

Here  p(81) --. 1, ]2(81) : ~/(82) : ~(s3)  --" 1 /3  a n d  ~ ' (S l )  -" 1/4,  ~ ' ( s3)  --~ 17/24  
and p'(s4) = 1/24. Then 

sl E s2 E s3, sl E s4 E so E s~. 

The weight function 5 for (#,# ')  w.r.t. E is given by: 5(sl, sl)  = 1/4, i~(81,83) ---- 
 (sl, = 1 / 2 4 ,  = = 1 / 3 .  [ ]  

The result of Milner [21] that  in every (image-)finite non-probabilistic transition 
system bisimulation can be approximated by "finitary bisimulation" carries over 
to the probabilistic case. If (S, -r is a transition system then we define induc- 
tively equivalence relations "~n on S: ~0 = S x S and s "~.+1 s' if and only 
if: Whenever s ~ p  then there is a transition s ' ~ p '  with p(A)  = # ' (A)  for all 
A E S / , . , ,  and vice versa. Similarly~ we define "finitary simulation": s E0 s' for 
all states s, s' and s E,~+I s ~ iff whenever s 2+ # then there exists a transition 
s ~ -~ #' and a weight function 5 for (p ,# ' )  w.r.t. En. As shown in [2]: 

L e m m a  5. Let (S,--+) be transition systems and s, s' E S. Then 

(a) s E s' if and only if  s E ,  s' for all n > O. 
(b) s ~ s' if and only if  s ,.~, s' for all n > O. 

3 T e s t i n g  s i m u l a t i o n  

We present an O(n 5. m 2) algorithm for testing simulation where n is the number 
of states and m the number of transitions in the underlying transition system. 
The results of this section yield also an O(n 5 �9 rn 2) algorithm for testing bisim- 
ulation. In section 4 we improve the costs and give an O(n 2 �9 m) algorithm 
for testing bisimulation. Lemma 6 shows that  for a (finite) transition systems 
there is a natural number N which is polynomial in the size of the underlying 
transition system such that  ~ = EN. Our algorithm successively computes the 
relations E0, E l , . . . ,  EN0 W'e show that  the relation E j + I  can  be derived from 
Ej  by solving maximum flow problems in suitable networks. 

L e m m a  6. Let (S,-~) be a transition system, n the number of states in S and 
N - -  n 2. Then ~., = "~N and E = EN. 

Proof. We only show E = EN. We have ___0 __D E1 __D . . .  and s E s' iff s _Ej s ~ 
for all j (Lemma 5). Since E0 = S x S contains N elements there exists j with 
0 _< j _< N and E j + I = E j .  Then E j = E i  for all i ~ j and hence E = Ej  = EN- 
[] 

Lemma 6 tells us that  in order to compute the simulation preorder _ for finite 
transition systems one has to compute the relation E,,2. VCe do this by suc- 
cessively computing the relations Ej,  j = 0, 1 , . . . ,  N. In order to compute the 
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relation _ j + l  (where ___j is already computed) we need an algorithm which tests 
whether or not a weight function for given distributions w.r.t. E j exists. We 
present a polynomial time algorithm which tests whether a weight function for 
distributions #, p~ w.r.t, a given relation R exists. The idea of the algorithm is 
to reduce the problem of finding a weight function to a maximum flow problem 
in networks. Algorithms to compute the maximum flow are given in [7, 10, 20]. 
For further details about  maximum flow problems see e.g. [9]. 

A network is a tuple A: = (N, E, L, T, c) where (N, E) is a finite directed 
graph - where N denotes the set of nodes, E C_ N • N the set of edges - with two 
specified nodes .k (the source) and T (the sink) and a capacity c, i.e. a function 
c which assigns to each edge (v, w) e E a non-negative number c(v, w). A flow 
function f is a function which assigns to edge e a real number f(e) such that 

1. For all edges e: 0 < f(e) <_ c(e) 
2. Let in(v) be the set of incoming edges to node v and out(v) the set of 

outgoing edges from node v. Then for each node v E N \ {J_, T}: 

f(e) = ~ :(e) 

The flow 5r(f) of f is given by 

:-( :)  = :(e). 
eEou~(-L) eEin(.l.) 

The maximum flow in A: is the supremum over the flows Yr(f) where f is a flow 
function in Af. 
Let S be a finite sets, R a subset of S x S and let #, pr E D(S). Let S ~ = {t j : 
t e S} where t' are pairwise distinct "new" states (i.e. t' q~ S). We choose new 
elements .l_ and T not contained in S U S  ~, • r T. We associate with (#,#~) the 
following network H ( # ,  pt, R): The nodes are the elements of S and S ~ and • 
(the source) and T (the sink), i.e. N = {1,  T} U S U S'. The edges are 

= { ( ~ , t ' ) : ( , , t ) e ~ }  v { ( l , ~ )  : ~ e s }  u { ( t ' ,T )  : teS}. 
The capacities c(e) E [0, 11 are given by: c(J_, s) = p(s), c(t', T)  - it'(t) and 
c ( 8 , t ' )  = i. 

L e m m a  7. The following are equivalent: 

(i) There exists a weight function 6 for (#,#P) w.r.L R. 
5i) The maximum flow in Y(p,  #', R) is I .  

Proof. (i) = (ii): For each flow function f in A:(p,p',R): 

s( f )  = ~ f ( l ,~)  <_ ~ ~(• = ~ .(8) : ~. 
sES s6S sES 

Let 5 be a weight function for (#,#~) w.r . t .R.  Then we define a flow function f 
as follows: f(_L,s) = #(8), f ( g , T )  = #'(t) ,  f(s , t ' )  = 6(s,t). T h e n ~ ' ( f )  = 1. 
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Hence the maximum flow of X(# ,  #', R) is 1. 
(ii) ~ (i): Let f be a flow function with Y( I )  = 1. Since f(d_, s) < c(_l_, s) = 
p(s) and since 

:(• = 7(:) = : = ~ .(s) 
sES sES 

we get f(d_, s) = #(s) for all s E S. Similarly, we get f (g ,  T) = pP(t) for all 
t E S. Let (f(s, t) = f (s ,  t') for all (s, t) e R and (f(s,t) = 0 if (s~ t) ~ R. Then 

~. ,~(s,t) = E :(s ,t ')  = 1(•  s) = . ( s )  
~ES ~ES 

and similarly E s e s  ~(s,t) = #:(t). Hence 5 is a weight function for (/~,it') 
w.r.t. R, [] 

With Lemma 7 we get an algorithm which tests whether a weight function for 
distributions p, #~ w.r.t, a relation R exists: We apply an algorithm for finding 
the maximum flow F in A/'(#,#', R). The maximum flow in Af(p,p', R) can be 
computed e.g. with the O(n a) algorithm of Malhotra et al [20] where n is the 
cardinality of S. 

A l g o r i t h m  1. 
I n p u t :  a finite set S, distributions It, #' E 79(S) and R C S x S 
O u t p u t :  a weight function 5 for (p,p~) w.r.t. R if there exists one, "No" oth- 
erwise. 
M e t h o d :  Compute the maximum flow F of the network X(p ,  Its, R) and a flow 
function f with J:(f) = F. If F < 1 then answer "No" else answer "Yes" and 
return 

6(s,t) = ~ 0 : if (s,t) E S x S \ R  
/Cs, e ) :  i / ( s ,  t) ~ R. t 

Lemma 6 and Algorithm 1 yield an algorithm for testing simulation: 

A l g o r i t h m  2. for testing probabilistic simulation 
I n p u t :  a transition system (S,--~) 
O u t p u t :  the simulationpreorderR = {(s,t) E S x S  : s _E t } 
M e t h o d :  Let N = n 2 where n i8 the number of states ors  and let Ro = S x  S. 

For j = 1 , . . . , N  do: 
begin Rj := R j - i  

For all (s, t) E R j - :  do 
begin For all transitions s .2~ p do: 

If there does not exist a transition t --~ #~ 
such that Algorithm 1 yields a weight function 
for (p,p ')  w.r.t. Rj_:  then Rj := Rj \ {(s,t)}. 

end 
end 
Return R := RN. 
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It is clear that  Rj = _Uj and hence R = _UN = _.G. The time complexity of 
the algorithm is O(n 5 . m 2) where m is the number of transitions and n the 
number of states. Algorithm 2 can be implemented in space O(n 2 + m) because 
the maximum flow problem (and hence Algorithm 1) can be solved in space 
O(n + m) and the representation of the sets Rj needs O(n 2) space. Similar to 
Algorithm 2, an O(n 5 �9 m 2) algorithm for testing bisimulation can be given. In 
the next section we improve the time complexity giving an O(n 2 �9 m) algorithm. 

4 T e s t i n g  b i s i m u l a t i o n  

Following the idea of [17] which gives an O(n .  m) algorithm for testing (non- 
probabilistic) bisimulation we present a method for deciding probabilistic bisim- 
ulation that  works with refinement steps of partitions on the states. Given a 
transition system (S,--4) we start  with the trivial partition Xo = {S}. Then 
we successively refine the partition Xk by substituting B E X~ by the set of 
equivalence classes w.r.t, the relation s - s p iff 

1. Whenever s 2~ # then there exists a transition s' 24 #' with #(B) = #'(B) 
for all B E Xk. 

2. Whenever s' 4.% #~ then there exists a transition s 24 # with if(B) = #P(B) 
for all B E Xk. 

At most after n refinement steps the partition Xk cannot be refined. Then Xk 
is the set of bisimulation equivalence classes. 

Def in i t i on  8. A partition of a transition system (S,-4) is a set X consisting 
of palrwise disjoint subsets B of S with UBex B = S and such that  for all 
B E X and s E B: the bisimulation equivalence class [s] of s is contained in B. 

In what follows, we shortly write p(X)  to denote the vector (p(B))Bex. If s e S 
then we define X(s) = { (a,p(X))  : s ~ p }. Each partition X is associated 
with an equivalence relation - x  on S: s --x s' iff X(s) = X(s'). Having a 
partit ion X we split the elements of X into the equivalence classes w.r.t. ~ x :  
We define 

j ( x )  = U 
BEX 

L e m m a  9. Let ( S,-+ ) be a transition system and X a partition. 

(a) S / ,~  is a partition with (f(S/,'~) = S~ ,',. 
(b) J ( X )  is a partition. 
(c) , . r (x)  = x then X = S~ ~. 

Proof. (a) is clear. Let X be a partition of (S,--4). I t  is clear that  the sets 
B E J ( X )  are palrwise disjoint and that  the union of them is S. Each B E X can 
be written as disjoint union of bisimulation equivalence classes. This is because 
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s �9 B implies [s] C_ B. Hence whenever #, # '  are distributions with p(A) = #'(A) 
for all A �9 S/ ,,~ then 

p (B)  = E p ( A ) =  E # ' ( A ) =  p'(B) 
AeB/~,, AEB/~, 

for all B �9 X.  Hence s ~ s' implies s - x  s'. Therefore: If  C E J ( B ) ,  
s �9 C then C is the equivalence class of s w.r.t. - - x  and hence contains [s]. 
We conclude tha t  J ( X )  is a part i t ion of (S,--~). I f  i f ( X )  = X then - x  is a 
bisimulation. Hence s - x  d implies s ,,, s ~. Therefore s - x  s ~ iff s ,,~ s ~ 
and hence J ( X )  = S/,',,. [] 

L e m m a  10. Let (S,--+) be a transition system with n states and m transitions 
and let X be a partition of (,5', --~). Then if(X) can be computed in time O(n. rn) 
and space O(n. m). 

Proo I. For fixed B �9 X and a �9 Act let / :B,~ be the set of all pairs (p, L) where 
L is a nonempty  subset of B and p = (Pc)cex a real vector such tha t  s �9 L if 

and only if there exists a transit ion s ~ p with p(X) = p. Let s  be  the set of 
all pairs (a, L) where a �9 Act and (p, L) � 9  for some p. Then s - - x  s '  if 
and only if: 

Whenever (a,  L) �9 s then s �9 L iff s ~ �9 L. 

The  idea of computing B~ =-x is to calculate first the sets s a �9 Act, and 
then to derive the equivalence classes of B w.r.t. - x .  

Computation of s For each o~ E Act and B E X we construct  a tree TB,~ 
by successively inserting nodes and edges. The edges of TB,~ are labelled by 
real numbers  p E [0, 1]. Each leaf v has depth 1 and is labelled by an element 
(p(v),  L(v)) �9 s 
Let X = {B1, . . .  ,Bl}.  We s tar t  with TB,~ to be a tree of depth  0, i.e. a tree 

consisting of its root.  Then for each transit ion s ~ p where s �9 B we traverse 
the tree s tar t ing at  the root.  Reaching a node v of depth k we do: 

- If  k < l and there is an outgoing edge from v leading to the node w labelled 
by #(Bk+l) then we pass the edge v --4 w and continue to travel through 
TB,~ with node w. 

- I f  k < I mad there is no outgoing edge from v labelled by #(B~+I) then we 
insert a new node w and an edge from v to w labelled by #(Bk+l). In the 
case k + 1 < l we continue to travel through TB,~ with node w. If  k + 1 ---- l 
then w is a leaf and we define L(w) = {s} and p(w)  = #(X). 

- If  v is a leaf of depth  1 then we insert s into the set L(v). 

I t  is easy to see that  the leaves of TB,a represent the elements of ~B,a. Hence 
/:B is the set of all pairs (a, L(v)) where v is a leaf in TB,~. 



58 

Complexity. First we observe tha t  the tuples p(X) (where # ranges over all 

distributions s.t. s -~# is a transition) can be computed  in (.9(n �9 m) time: For 
each distribution # we set aB = 0 for all B E X.  Then for all s tates s E S: 
If  s E B then we replace aB by aB + p(s). Finally p(X) = (aB)sex. The 
representat ion of the tuples p(X) needs O ( n .  m) space. 

The  construction of TB,~ needs (9(mB,~.l) steps where rnB,~ is the number  of 

transitions s -~ p, s E B. Since ~ B  ~ mB,~ = m and since the cardinality 
l of X is bounded by n we get: Ranging over all B E X and a E Act the 
construction of all trees TB,~, B E X,  a E Act, takes O(n. m) steps. The  set of 
pa ths  f rom the root to a leaf in TB,~ is bounded by mB,~. Since I is the depth  
of the leaves TB,~ has at most  mB,c~" l ~- 1 nodes. Hence~ all trees TB,~ together 
have (.9(m. n) nodes and (9(m) leaves. The representation of the sets L(v) needs 
(9(IB]) space (where v is a leaf of a tree TB,~). Since IBI < n the representat ion 
of all trees TB,~ together needs O(n. m) space. 

Computation of B~ - x .  We construct a binary tree TB by successively inserting 
nodes and edges. Each leaf v has depth r and is labelled by a subset C(v) of B. 
Let ( a i ,L i ) ,  i = 1 , . . .  , r ,  be an enumerat ion of the elements of s  (Note that  
a l  = c~j~ i ~ j is possible.) We star t  with a tree of depth 0~ a tree consisting of 
its root. For each s E B we traverse the tree in the following way: If  we have 
reached a node v of depth k - L k <: r then: 

- If  v has a left son w and s E L k  then we go to w. 
- If  v does not have a left son and s E La then we create a new left son w of 

v and go to w. If k = r -  1 then we set C(w) = {s}. 
- If  v has a right son w and s ~ Lk then we go to w. 
- If  v does not have a right son and s ~ Lk then we create a new right son w 

of v and go to w. If  k = r - 1 then we set C(w) = {s}. 

If we have reached a node v of depth r then we  insert s into the set C(v) of 

s ta tes  associated with v. 
Then  we have: If v is a leaf and vo,vl~~ ~v~ = v the unique pa th  from the 

root v0 to v then C(v) = L~ N L~ M... N Ltr where L~ --- L; if v~ is the left son 
of vi-1 and L~ = B \ L~ if v~ is the right son of vi-1. Let pi = p(v)  where v is 
the leaf in TB,~, with (a~, Li) = (a, L(v)). Then for all s e B: s E C(v) if and 
only i f X ( s )  = { ( a ~ , p i )  : L, = L~ }. Hence, i f s ,  s ~ e B t h e n s  ~ x  s ' i f a n d  
only if s, s I e C(v) for some leaf v in TB. We conclude: 

B / = x  = { : v is a leaf in TB } 

Complexity. The computat ion of TB needs O(IB ] �9 r) steps. I t  is clear tha t  the 
cardinality r of s  is bounded by m. Hence we have the t ime complexity (_0(IB I �9 
m) for the construction of TB. Each leaf in TB has depth r < m. Since the leaves 
of TB correspond to the equivalence classes wx.t .  ~x  TB has at most  I B] leaves. 
Since TB is binary it has at most IB]- r + 1 nodes. Henc% all trees TB, B E X ,  
have (.9(n �9 m) nodes. Ranging over all v, the sets C(v) can be represented in 
space (.0(n). Hence we get the t ime complexity O(n .  m) for computing the trees 
TB, B E X and the space complexity O ( n .  m) for their representation. [] 
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A l g o r i t h m  3. for testing probabilistic bisimulation 
I n p u t :  a transition system ( S,--+ ) 
O u t p u t :  the set R = S/  ~ of bisimulation equivalence classes 
M e t h o d :  Let X := {S}. 

Repeat 
Y := X; X := J ( X ) ;  

until Y = X;  
Return R := X.  

It is clear that  the algorithm returns a partition T/with ,7(R) = R. By Lemma 9: 
R is the set of bisimulation equivalence classes. If the loop is performed n times 
then X consists of n one-element sets and hence J ( X )  = X. Hence the loop is 
performed at most n times. By Lemma 10 the time complexity is CO(n 2. m), the 
space complexity (.9(n �9 m). 

E x a m p l e  11. Let (S, -4) be given by: S = {sl, s2, s, t, u} and 

Or CI t3l t:~ O~ 

Sl"- )p ,  S2--~p, Sl - -~pl  ~ S2---~p2 , S--~p, t fl 

where #(u) -- 1, tO(s1) --: Hi(s2) -- pl(t) - - ' t t l (u)  -- 1/4 and #2(sl)  --= 1/2, 
p2(t) = #2(u) = 1/4. Initially we deal with the partition {S} and compute  
J ( { S } )  with the help of Lemma 10: The trees Ts,. and Ts,~ consist of a single 
edge labelled by 1. Their leaves vs, .  and vs,z are labelled by (1, {sl, s2, s}) and 
(1, {T}) respectively. This yields s  = {(or, {sl,  s2, s}), (fl, {t})} and the tree 
Ts 

where C(vl) = {sl, s2,s}, C(v2) = {t} and C(v3) = {u}. Hence J ( { S } )  = 
{B!,B2,B3} where Bi = C(v~). Next we compute J({BI,B2,B3}). Since B2 
and B3 consist of a single element we only have to consider B1. The tree TB~,~ 
can be depict as follows: 

0~.~__ 0 :z. 1---*-v2 

where L(vl) = (sl, s2} and L(vz) = {sl, s2, s}. This yields the tree TB~: 

where C(vl) = {sl, s2}, C(v2) = {s}. We obtain the partition X which consists 
of {s~,s2}, {s}, {t} and {u}. The next step yields J ( X )  = X and hence X = 
S/ , . . .  r-1 
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5 Concluding remarks 

We gave an algorithm for testing probabilistic bisimulation in time O(n 2 �9 m). 
Compared With the non-probabilistic case where the best known algorithm for 
deciding bisimilarity has the time complexity O(m. log n) [22] the cost of our 
algorithm seem to be acceptable. It is an open problem whether the t ime com- 
plexity of our algorithm can be improved in a similar way as the O(m �9 log n) 
algorithm of [22] improves the O(n. m) algorithm of [17]. The algorithm which is 
implemented in the Concurrency Workbench [4] tests non-probabilistic simula- 
tion in time O(n 4. m). It works similar to the bisimulation equivalence algorithm 
of [17]. It is an open question whether our O(n 5. m 2) result can be improved 
by a partioning technique. Our methods applied to "deterministic" probabilis- 
tic transition systems yield time complexity O(n 7) for deciding simulation and 
time complexity O(n 3) for deciding bisimulation. (In "deterministic" transition 
systems, for every state s and action a there is at most one outgoing transition 
labelled by a. Hence, for fixed action set, the total  number m of transitions is 

In this paper  we only considered strong (bi-)simulation which does not ab- 
stract  from internM actions. It would be interesting if the algorithms presented 
here can be modified to check weak (bi-)simulation. 
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A b s t r a c t  

Games given by transition graphs of pnshdown processes are consid- 
ered. It is shown that if there is a winning strategy in such a game then 
there is a winning strategy which is realized by a pushdown process. This 
fact turns out to be connected with the model checking problem for push- 
down automata and the propositional /t-calculus. It is show that this 
model checking problem is DEXPTIME-complete. 

1 Introduct ion  

Pushdown processes are, at least in this paper, just another name for pushdown 
automata.  The different name is used to underline the fact that  we are mainly 
interested in the graph of configurations of a pushdown process and not in the 
language it recognises. This graph can be considered as a transition system. 
In general such a transition system may not be regular, i.e., may not be an 
unwinding of a finite transition system. Given a priority function mapping states 
of the automaton to natural numbers, such a transition system defines a two 
player parity game. In the game moves of the players alternate. In a move a 
player picks a configuration reachable from the current one. The result of a 
game is a finite or an infinite path. The path is finite if one of the players cannot 
make a move; in this case the other player wins. If the path is infinite we find 
the smallest priority such that  a state of this priority appears infinitely often on 
the path. Player I wins if this priority is even. 

1Basic Research in Computer Science,Centre of the Danish National Research Foundation. 
2On leave from: Institute of Informatics, Warsaw University~ 
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Pushdown processes are a generalisation of regular process which correspond 
to finite automata or regular transition systems. It is stated in [6] that  the extra 
expressive power of pushdown processes may be of use for describing hierar- 
chically structured systems, such as multi-level cashes, or wide area networks. 
Considering pnshdown games is interesting at least for two reasons. First, as 
we will show here, there is a connection with model checking. The second rea- 
son is the problem of synthesis of correct programs (see for example [11]). The 
conditions of a game may be seen as a specification, and the two players as a 
program and environment respectively. In this approach a winning strategy is 
identified with a reactive program satisfying the specification. Hence it is impor- 
tant  to know whether a strategy can be implemented as, for example, a regular 
or pnshdown process. 

Pnshdown processes are a strict generalisation of processes from so called 
basic process algebra BPA (see [5] for a short survey). The decidability of the 
model checking for pushdown processes and the propositional #-calculus follows 
from [14]. An elementary model checking procedure for the alternation free 
fragment of the #-calculus was given in [3]. We are not aware of any such 
elementary decision procedure for the whole #-calculus. BPA is a subclass of 
process algebra (PA) [1]. For the other interesting subclass of PA, namely, basic 
parallel processes, the model checking problem is undeeidable [9]. The question 
whether pushdown games have pushdown strategies was posed in [16]. 

The main results of this paper are the following. 

1. We show that  if there is a winning strategy in a pushdown game G then 
there is a pushdown winning strategy in G. 

2. We give a model checking algorithm for pushdown processes and the whole 
#-calculus which runs in time 0(2  ~'~am) where m is the size of a pnshdown 
process, n the size of a formula and c is some constant. 

3. We show that  there exists a formula c~ such that  the model checking prob- 
lem for pushdown processes and this particular formula c~ is DEXPTIME- 
hard. 

Let us mention that  the restriction to parity games is not essential for the result 1 
to hold. One can use standard methods of translating Muller, Rabin or Streett 
conditions into parity conditions to obtain appropriate result for these kind of 
conditions. 

The plan of the paper is as follows. We start with a preliminary section where 
we recall definitions of pushdown automata  and the propositional #-calculus. In 
the following section we present some facts about games with parity conditions. 
Next we prove that  if there is a winning strategy on a pushdown tree then there 
is one realized by a pushdown automaton. In the last section we consider the 
model checking problem. The proofs are omitted in this abstract. 

A c k n o w l e d g e m e n t :  I would like to thank Damian Niwinski for his helpful 
comments. 
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2 Pre l iminaries  

2.1  P u s h d o w n  p r o c e s s e s  

The set of finite sequences over Z will be denoted E* and the set of finite 
nonempty sequences over E will be denoted Z +. The empty sequence is de- 
noted by e. 

For a given finite set E~, let C o m ( ~ )  = (pop} U {push(z):  z e ~ , }  be the 
set of stack commands over Zs. 

A pushdown automaton (over one letter alphabet) is a tuple: 

A = ( Q , E ~ , q o e Q , _ I _ e ~ , 5 : E ~ • 2 1 5  (1) 

where Q is a finite set of states and Es is a finite stack alphabet. State qo is the 
initial state of the automaton and • is the initial stack symbol. A configuration 
of an automaton is a pair (s, q) with s E E + and q E Q. The  initial configuration 
is (_l_, q0). We assume that  _l_ can be neither put  nor removed from the stack. 
We will sometimes write (z, q) -~ (z', q') if (z', q') E 5(z, q). Let --*+, -+* denote 
respectively the transitive closure of ~ and the reflexive and transitive closure 
of -*. We will use q to range over states and z to range over letters of the stack 
alphabet. 

D e f i n i t i o n  1 ( P u s h d o w n  t r e e )  A pnshdown automaton .4 as in (1) defines a 
tree TA C_ (E + • Q)+ as follows: 

�9 the root of the tree is (_k~ q0), 

�9 for every node (so, q0) , - . . ,  (si, qi), if (si, qi) --~ (s, q) then the node has a 
son (so, q0), �9 �9 (si, qi), (s, q). 

We call (si, qi) the label of the node (so, q0), �9 . . ,  (si, qi)- 

R e m a r k :  In our definition of a pnshdown automaton we have assumed that  
the automaton can put  at most one symbol on the stack in one move. This is 
done oniy for convenience of the presentation. The main results also hold for 
the more general form of au tomata  which can push many symbols on the stack 
in one move. Of course we can simulate pushing more symbols on the stack by 
extending the alphabet and the set of states but  the simulating automaton will 
be in general much bigger. (We are not interested in the language equivalence 
but in isomorphism of induced pushdown trees.) 
R e m a r k :  The assumption that  automata  do not have an input alphabet is 
not essential as in the problems we will consider we will allow states to have 
"properties" which can be used to simulate behaviour of an automaton with 
input alphabet. 

2.2 Propositional p - c a l c u l u s  

Let Prop -= (P l ,P2 , . . - }  be a set of propositional constants and let Var -= 
{X, Y , . . .  } be a set of variables. Formulas of the #-calculus over these sets can 



65 

be defined by the following grammar: 

F : =  Prop I ~Propl liar ] F V F I  F A F ]  (>FI[]FI~Var.F lyVar.F 

Note that  we allow negations only before propositional constants. As we will be 
interested in closed formulas tiffs is not a restriction. In the following, a, f l , . . .  
will denote formulas. 

Formulas are interpreted in transition systems of the form M = (S, R, p}, 
where: S is a nonempty set of states, R C S • S is a binary relation on S and 
p : Prop --~ P(S) is a function assigning to each propositional constant a set of 
states where this constant holds. 

For a given model M and an assignment V : Vat ~ P(S),  the set of states 

in which a formula ~ is true, denoted ]] T II~, is defined inductively as follows: 

il p I15 = p(p) 11 -~p IJ$ = s - p(p) II x li$ = v(x) 

II<>a I1~ ={~ : 3sqR(s,s')As' e II ~ I1~} 

II []~ II~ = {~: Vs'.R(~, s') ~ ~' e II ~ II~} 
A4 II ~x.~(x) I1~ =N{S' c s:  I1 ~ IIv[s,/x] c s '} 

.M 
II ~,x.~(x) I1~ --U{S' c s :  s '  c II ~ llv[s,/x]} 

here V[S'/X] is the assignment such that,  V[S'/X] (X) = S I and V[S'/X] (Y) = 
V(Y)  for Y r X. We will write A4, s, V ~ ~ when s e [ I  ~ II~. We will write 
A/t, s ~ ~ if for every assignment V we have A4, s, V ~ ~. 

A model checking problem is to decide whether for a given model A4, state s 
and formula a without free variables, the relation M, s ~ a holds. Here we will 
be interested in the case when M is a pushdown tree and s is the root of it. 

3 P a r i t y  g a m e s  a n d  c a n o n i c a l  s t r a t e g i e s  

In this section we recall the notion of parity games and give an explicit descrip- 
tion of winning strategies in such games. It turns out tha t  a strategy in such 
a game induces an assignment of tuples of ordinals to nodes of the game. We 
call these tuples of ordinals signatures. In this way we have means to compare 
different strategies by comparing signatures they induce. It turns out that  there 
exists canonical, or the least possible, signature assignment. 

Most of the material presented here comes from [17]. The notion of signature 
was proposed by Streett  and Emerson [15]. The proof of the existence of mem- 
oryless strategies in parity games was given independently by Mostowski [13] 
and by Emerson and Jut la  [7]. Klarlund [10] proves a more general fact that  a 
player has a memoryless strategy in a game if the has a strategy and his winning 
conditions are given as a Rabin condition. 
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Let G -- (V = V1 u VIr ,E,~  : V --* Ind) be a biparti te graph with vertices 
labeled by priorities from Ind which is a finite subset of natural numbers. A 
game from some vertex vl E Vr is played as follows: first player I chooses a 
vertex v2 E Vu, s.t. E(vl,v2) then player / /  chooses a vertex v3 E VI, s.t. 
E(v2, v3) and so on ad infinitum unless one of the players cannot make a move. 
If a player cannot make a move he looses. The result of an infinite play is an 
infinite path  vl, v2, v3 , . . .  This path  is winning for player I if in the sequence 
~(vl) ,  ~(v2), f~(v3),. . ,  the smallest priority appearing infinitely often is even. 
The play from vertices of Vxi is defined similarly but  this time player H starts. 

Strategy a for player I is a function assigning to every sequence of vertices g 
ending in a vertex from V t a  vertex a(9') E VH such that  E(v, a(~)). A strategy 
is called memoryless iff a(~7) = a( f f )  whenever g and • end in the same vertex. 
A strategy is winning iff it guarantees a win for player I whenever he follows 
the strategy. Similarly we define a strategy for player H~ 

Suppose we have a propositional constant I which holds in the vertices from 
which player I is to move, i.e., in vertices from Vx. Let us assume that  the 
range of ~ is {1 , . . . ,  n} and suppose that  for every i E { 1 , . . . ,  n} we have the 
propositional constant i which holds in the vertices of priority i. Consider the 
formula: 

~,(z~, . . . ,z , )=(~ A (~()z~))A(~(~)~ A (i~{]z~)) 
i e { l , . . , n }  i e { l  ..... n}  

We will be interested in the set: 

w~ = II u z ~ . v z 2 . . .  ~ z ,~_~ .~ , z , ,~dz~ , . . . ,  zn) II G 

(# is used to close variables with odd indices and ~ is used for even indices). 

D e f i n i t i o n  2 When applied to n-tuples of ordinals symbols =, <, < stand for 
corresponding relations in the lexicographical ordering. For every i E {1 , . . . ,  n} 
we use =i  to mean that  both arguments are defined and when truncated to first 
i positions the two vectors are equal; similarly for <i and <i. 

D e f i n i t i o n  3 ( S i g n a t u r e )  A signature is a n-tuple of ordinals. An assignment 
S of signatures to nodes in some set S _ T will be called consistent if for every 
v E S M Is} there is a son w E S such that:  

S(w) <.a(v) 8(v) and it is strictly smaller if ~(v) is odd. (2) 

similarly if v E S V1 VH then for all w such that  E(v~ w) we have w E S and the 
condition (2) holds. 

D e f i n i t i o n  4 ( C a n o n i c a l  s i g n a t u r e s )  We extend the syntax of the formulas 
by allowing constructions of the form #rZ.a(Z),  where T is an ordinal and a(Z) 
is a formula from the extended syntax. The semantics is defined as follows: 

~ -  2 r  
II .~ II~ = ~ II ~+ t  z.o~(z) II~ II ~(z) IIvil,~z.~(z)l,~/zl 

II t ,~z . . (z)  II$ = [J II . ~ z . . ( z )  II$ (T a limit ordinal) 
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By Knaster-Tarski theorem II Ilv : t)T II 
We define a notion of the canonical signature, Sig(v), of a vertex v E Si (we 

will write Siga(v ) if the game is not clear from the context). This is the smallest 
in the lexicographical ordering sequence of ordinals (T1, . . . ,  ~-n) such that: 

ii II G 

where: 

Pi ---z, Z i . #Z i+ l . . .  ~,Zn6ox(Po,..., Pi-1, Z i , . . . ,  Zn) for i even 

Pi = ~ r i  Z i . 1 2 Z i + l  . . . ~Zn .~ I (Po , . - . ,  Pi-1, Zi, . . ., Zn) for i odd 

As for an even i the ordinal ~-i is not used, the definition implies that  ~'i = 0 for 
every even i. We prefer to have this redundancy rather than to calculate right 
indices each time. 

Fac t  5 Canonical signature assignment is the least consistent signature assign- 
ment. Tha t  is, for every consistent signature assignment 8, whenever for some 
node v, S(v) is defined then Sig(v) is defined and Sig(v) <_ $(v). 

D e f i n i t i o n  6 ( C a n o n i c a l  s t r a t e g y )  A canonical strategy is a strategy taking 
for each node v C lax N V1 a son which has the smallest possible canonical 
signature. 

R e m a r k :  Despite the name, canonical strategies may not be uniquely deter- 
mined because a node may have many sons with the same signature. 

Fac t  7 Suppose w is a node reached from v when player I uses a canonical 
strategy and let p be the minimum of priorities of states appearing in the labels 
between v and w (not including w). We have that  Sig(w) <p Sig(v) and it is 
strictly smaller if p is odd. 

T h e o r e m  8 
The set ] / ~ I  is the set of nodes from which player I has a winning strategy. A 
canonical strategy is winning and memoryless. 

4 P u s h d o w n  s t r a t e g i e s  in p u s h d o w n  g a m e s  

Let `4 be a pushdown automaton as in (1). For simplicity of the presentation 
let us assume that  the set Q of states of ,4 is parti t ioned into two sets Q1 and 
QII. We also assume that  transitions from states in QI lead only to states in 
QH and vice versa. More formally we require tha t  for every q, qt, z, z': whenever 
(push(z'), q') or (pop, a t) is in 6(z, q) then: q E QI if[ q' e QII. 

The automaton ,4 defines a pushdown tree TA which we will take as a graph of 
the game. To have a game we will also need a priority function. It  is an important  
point to decide which priority functions to allow. If we allowed arbitrary such 
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functions then the whole advantage of the fact that  the graph is generated by 
a pushdown automaton would be gone. It seems that  a reasonable choice is 
to allow only functions associated with states of the automaton. That  is, we 
start by giving a priority function ~t : Q --, N and then for every vertex v of T 
we consider the state q appearing in the label of v and let f~(v) = f~(q). This 
choice of the method of assigning priorities is motivated by the fact that  we are 
interested in the winning conditions definable in SIS. 

Next we should clarify what we mean by a pushdown strategy. We would like 
to say that  a pushdown strategy is a strategy realised by a pushdown automaton 
in a sense tha t  this automaton reads moves of player H and outputs moves of 
player I .  Such an automaton must have the property that  while reading a 
(possibly infinite) sequence of moves of player H it outputs a sequence of moves 
of player I such that  the path of T,4 designated by these moves is winning for 
player I .  We will not formalise this notion of pushdown strategy here as it would 
require several definitions for which we have no space. We will content ourselves 
with a weaker definition given in the theorem below. Let us just remark tha t  
the strategy automaton given in the proof can be used to construct a strategy 
automaton as defined above. 

T h e o r e m  9 
If there is a winning strategy for player I in TA then there is a winning pushdown 
strategy, i.e., there is a pushdown automaton B such that Ts is isomorphic to a 
winning strategy in TA. 

Let us t ry  to explain an idea of the construction of the pushdown strategy 
for player I .  In some sense one may consider a pushdown strategy as a strategy 
operating with a stack of strategies for regular graphs. Whenever a new element 
is pushed on a stack, player I is suspended and a new player I is started which 
has only partial information about the history of the play up to this point. 
Suppose we are in some position (s, q) and player I decides that  the best move 
for him would be to push z ~ on the stack and change the state to qq At this 
moment this player I is suspended and a new player I starts to play. He will play 
until z t is taken out from the stack. The main question is what the new player 
I should know about the current position of the play. Because the canonical 
strategy is memoryless it would be enough for him to know only how the arena 
of the game looks from his current position. In turn this is determined by the 
label of the node, which is (sz ~, q~). Unfortunately we cannot afford to let the 
player know so much because the size of the stack is potentially unbounded. On 
the other hand the new payer I will play only until z ~ is popped and the stack 
becomes s again. Hence the part of the tree where the new player I is playing 
does not depend on s but  only on the letter z r on the top of the stack and the 
current state qq What  depends on s is the rest of the play when the new player 
is finished. Hence it should be enough for the new player I if the old player I 
told him which states are safe. In other words what are the s ta tes  such that  if 
the new player I finishes in one of them then the old player I is able to carry on 
and win. This set of states should depend on the lowest priority of a state met 
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from the moment the old player [ was suspended. So we will not have just one 
set of states but  a vector A = {AP}pe{1,...,nt of sets of states. Each A p is a set 
of states in which the new player I can finish provided p is the smallest priority 
of a state from the moment  when the old player I was suspended. Apart  from 
the new player should also know the current state q' and the current symbol z' 
on the top of the stack. We will also use a variable 0 to store the lowest priority 
of a state we came across. This amount  of information is bounded so we have a 
basis for construction of a pushdown automaton realizing the strategy. 

Let us now start  with the formal definitions. As in the previous section we 
assume that  {1 , . . . ,  n} is the range of ~. We will use A to range over n element 
vectors of sets of states and 0 to range over {1 , . . . ,  n}. We also use z to range 
over stack symbols and q to range over states. 

D e f i n i t i o n  10 ( S u b - g a m e )  For every A, z, 8, q we define the game G(.4, z, 8, q) 
as follows. The arena of the game is a subtree of T.4 starting from a node with a 
configuration (•  q). Every node labeled with a configuration (~, q'), for some 
q', is marked winning or loosing. We mark the node winning if q' E A min(p'~), 
where p is the lowest priority of a state appearing on the path  to the node 
(counting q but  not q'). Otherwise we mark the node loosing. Whenever a play 
reaches a marked node, player I wins if this node is marked winning otherwise 
player H is the wiimer. If a play is infinite, player I wins iff the obtained path 
is winning (as defined at the beginning of Section 3). 

R e m a r k :  In our definition of the game we did not have the concept of marking 
but  we allowed vertices with no sons, and had the rule tha t  a player looses if he 
cannot make a move. Hence we can simulate marking of vertices with cutting 
the paths. We find the metaphor  of markings more useful here. 

D e f i n i t i o n  11 (S igna tu re~  H i n t )  Suppose that  player I has a winning strat- 
egy in a game G(-4, z, 8, q). Define Sig(A, z, 8, q) to be the canonical signature 
of the root of the game. 

If q 6 Q1 then let v be a son of the root which has the smallest canonical 
signature (if there is more than one such son then fix one arbitrary).  If v is 

labeled by (• q') then let Hint(~, z, 8, q) = (pop, q') otherwise v is labeled by 
(_kzz', q') and let Hint(A, z, 8, q) = (push(z'), q'). 

D e f i n i t i o n  12 ( U p d a t e  f u n c t i o n )  Define Up(A, z, q, 8) to be the sequence of 
sets A1 P = {A1}pe{1 ..... n}, where each A~ is the set of states q' such that: 

Sig(.4, z, min(~(q),p,  8), q') ~min(12(q),p) Sig( A, z, 8, q) 

in case min(~(q),  p) is even and 

Sig(_~, z, min(gt(q), p, O), q') <min(12(q),p) Sig( 2~, z, 8, q) 

otherwise. 
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D e f i n i t i o n  13 ( S t r a t e g y  a u t o m a t o n )  Let 

13 = (Q,p(Q)~ x E~ x {1 , . . . ,n} ,qo , ($ , . . . ,O ,X ,n) ,5~}  

Before defining the transition relation let us introduce an abbreviation. We 
introduce new automata operation repmin(O') which means: if on the top of 
the stack there is some triple AzO, replace it with AzOi where Ol --' rain(0, 0'). 
We also introduce a semicolon operation, so 6s(AzO, q, a) = (pop, q'); repmin(O') 
means that  first Az0 is removed from the stack and the state is changed to q~i 
then, possibly, the third component of the triple currently at the top of the 
stack is changed. Hence if we had a configuration (sAizlOi.~zO, q) then after 
this operation we obtain the configuration (8~lZl min(0i, 0'), q'). 

Let us now proceed with the definition of 5B: 

�9 If q E Q1 then: 

- 5,(AzO, q) = {(pop, q~); repmin(min(O, 12(q)))} if Hint(A, z, q, O) = 
(pop, q'). 

- 5t3(AzO, q) = {repmin(~(q)); push(A'z'n, q~)} if 2 = Up(A, z, O, q) 
and Itint ( A, z, q, O) = (push (z~), q ). 

* If q E QII then: 

- (pop, q'); repmin(min(e, ~(q))) E 5u(~ze, q) if (pop, q') ~ 5x(z, q). 
- repmin(n(q));push(~'z'n,q') ~ 5B(~ze, q,a)if  ~'  = Up(~,z,O,q) 

and (push(z'), q') E 5A(z, q). 

Theorem 9 follows from the following lemmas: 

L e m m a  14 If player I can win in G(A, z, 0, q) and 

repmin(~(q) ); push( Ai zl n, qi) E 5,(  AzO, q) 

then Sig(Ai, zl, n, qi} <_o(q) Sig(A, z, O, q) and it is strictly smaller if ~(q) is odd. 

L e m m a  15 Let (szAO, q) be a configuration reachable from the initial one. 
Suppose (sz~O, q) -++ (szAO I, ql) and s z ~  is always in the stack during this 
derivation. Let p be the minimum of the priorities of the states appearing in 
the derivation (not counting tile last one). We have: (i) 8' = rain(p, 0) and (ii) 
Sig(A, z, O', q') <p Sig(_4, z, 0~ q) and it is strictly smaller if p is odd. 

L e m m a  16 The strategy defined by the automaton B is winning. 

R e m a r k :  The automaton B is exponentially larger than .4. One can show 
that  in general the strategy automaton must be exponentially larger, although 
it is not clear that  the exponent must be (9(nlQi) as it is in the case of B. 
This situation is different from the situation for parity games on finite transition 
systems where no memory is need. 
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5 Model checking for pushdown trees 

Here we consider a problem of checking whether the root of a given pushdown 
tree satisfies a given formula of the propositional/z-calculus. First we reduce 
this problem to the problem of finding a winning strategy in some pushdown 
game. Next we use results from the previous section to show how one can solve 
this' later problem. Finally we show the lower bound on the complexity of the 
model checking problem. 

The reduction of the model checking to establishing existence of a winning 
strategy follows from a fairly standard arguments [8]. In that paper Emerson, 
Jutla and Sistla show how to reduce the model checking problem over finite 
transition systems to establishing existence of a winning strategy in a finite 
game. In our case the argument is essentially the same but we must also observe 
that in the resulting game the priority function ~ depends only on the states in 
the current configuration. 

Theorem 17 
For a given pushdown automaton A and a #-calculus formula ~ one can construct 
a pushdown automaton C and a priority function ~, such that: Tat ~ ~ iff there 
is a winning strategy for player I in the game Tc with the priority function ~. 
The size of C is linear in sizes of both A and ~. 

5.1 Establishing existence of winning strategies 

Let `4 be a pushdown automaton as in (1) and let ~ : Q ~ {1, . . . ,  n} be an 
indexing function. These define the game on TA. Here we are concerned with 
the problem: given ,4 and ~ establish whether there exists a winning strategy 
for player I in Tat. We will reduce this problem to the problem of establishing 
existence of a winning strategy in a game on some finite graph. Let ,4 and ~t be 
fixed for the rest of this subsection. 

Before we begin let us try to give some intuitions behind the construction 
of a finite game Mat. For every A, z, 8, q and p C {1, . . . ,  n} we will have in 
.A/IA a node Check(.4, z, ~,p, q). There will be strategy for player I from this 
node iff there is a strategy for player I in the game G(A, z, 0, q) (see Defini- 
tion 10); we will explain the role of p later. If pop(q p) move is possible from 
(z, q) then for it to be a good choice for player I it should be the case that 
q~ C A min(~(q)'O). If (push(z1), ql) is possible then the checking is more compli- 
cated as we do not have a stack. We will use universal branching instead. We 
will have a node Move((A, z, 8, q), (?, zl, ql)) with the intended meaning that the 
next planed move is (push(z1), ql) and that one has to guess -41. We will also 
have nodes. Move((.4, z, 8, q), (AI~ zl, ql)) where A1 is already guessed and from 
which it is necessary to check whether it was guessed correctly. We divide the 
future play into two parts which we consider separately. We check what happens 
until zl is popped from the stack and simultaneously we check what happens 
after this event. The first task is started from the node Push(.~l, zl, n, ql) the 
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other one from nodes Check(A, z, min(O,p"), p", q") where p" intuitively repre- 
sents the lowest priority which was met while zl was on the stack and q" is a 
state from A~". 

D e f i n i t i o n  18 ( G a m e  3dA) Let Aria be a game on a finite graph defined as 
follows. For every 5,  51, z, zl, 0, q, ql and p E {1 , . . . ,  n} we have nodes: 

Check(5, z, O, p, q) 
Move((A, z, O, q), (?, zl, ql)) 
Pop(q) 

Here ~?' 
nodes: 

Check( A ~, z, O, p, q) --* Pop(q ~) 
Cheek(5, z, O, p, q) q' ) 

Push(A, z, O, q) 
Move( (A, z, O, q), (A1, z1, ql)) 
Err(q) 

is a special symbol. We have the following transitions between the 

if (pop, q~) e 5(z, q) and q~ E A min(a(q)'e) 
if (pop, q') C 5(z, q) and q' r Amin(a(q) 'e) 

Check(A, z, O,p, q) -~ Move((.4, z, 0, q), (?, zl, ql)) if (push(z1), ql) e ~(z, q) 

and exactly the same transitions from Push(5, z, O, q), moreover we have: 

Move((A, z, O, q), (?, zl, ql)) ~ Move((A, z, O, q), (A'I, zl, ql)) 
Move((.4, z, O, q), ( A1, zl, ql ) ) ~ Push(A1, zz, n, ql ) 
Move ((5, z, O, q), (51, zl, ql) ) --+ Check(A, z, rain(0, p), p, q") 

if p _< f~(q) and q" e A~ 

The set Vx of nodes where Player I makes a move consists of nodes: 

Check(A,z,O,p,q) and Push(A,z ,# ,q)  fbr q e Qx 
Move( (.4~ z, O, q), (?, z.1, ql)) for arbitrary q E QI u QII 

In the remaining nodes player H makes a move. Priority function ftM is defined 
by: 

f~M(Check(~ ~, z, ~, p, q)) = p f~M(Push(A'~ z, O, q)) = ft(q) 

aM(MOve((5,  z, O, q), (?, zl, ql))) = aM(Move((5 ,  z, O, q), (51, zl,  ql))) = n + 1 

Player I wins in the game .MA if either: (i) after finitely many steps player 
H cannot make a move or a node labeled Pop(q), for some q, is reached; or (ii) 
the game is infinite and the infinite path ~o which is the result of the play is 
winning for I. Otherwise player H is the wiimer. 

T h e o r e m  19 
Player I has a winning strategy in the game Tat iff he has a winning strategy in 
the game JM A from the node Check( (O, . . . , ~), _l_, n, n, qo). 

Let us remark here that the theorem does not imply that  there is a finite 
strategy on a pnshdown tree. In order to use the strategy in 3/i~t to play in TA 
we need a stack. 
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Finally let us put Theorems 17 and 19 together and calculate the complexity 
of the model checking algorithm. The size of the game AJA is O(k2 cmn) where: 
k is the size of the stack alphabet, m is the number of states of .4, n is the 
cardinality of the range of the priority function ~, and c is a constant. The task 
of establishing existence of a winning strategy in A~IA is equivalent to checking 
whether the specific #-calculus formula holds. Hence any model checking algo- 
rithm will solve the problem. Using currently known algorithms we obtain that 
the whole problem can be solved in time O((k2cmn) n) (or O((k2cmn) l+n/2) if 
using [12]). This is the estimation only for the problem of establishing existence 
of a winning strategy. Putting it together with the reduction from the previous 
subsection we obtain that for a given automaton with m states and k stack sym- 
bols and a formula of size nl with alternation depth n2 we have an algorithm 
working in time O((k2cmnln2)n2). 

5.2 The  lower bound 

Finally we show a deterministic exponential time lower bound on the model 
checking problem for pushdown automata and (non alternating) #-calculus. It 
follows from a quite standard reduction by simulating alternating linear space 
bounded Turing machines. The simulating automaton is very similar to the one 
described by Chandra, Kozen and Stockmeyer in [4]. Given an alternating linear 
space bounded machine M and a word w we construct a pushdown automaton 
which acts as follows. First it puts the initial configuration of M on the stack. 
If the initial state is existential, player I chooses which possible move of M to 
simulate, otherwise player H chooses the move. Simulating the move is done 
by putting a new configuration by player I on the stack. Proceeding this way, 
the game eventually arrives to a point when a configuration with an accepting 
state is pushed on the stack. At the same moment we have also all the preceding 
configurations on the stack. In this position player H is allowed to make a guess 
about correctness of this sequence of configurations. He may try to show that 
player I cheated and there are two subsequent configurations on the stack such 
that one is not reachable from the other in the move of M which was chosen 
at that point. Player I wins if player H is not able to do this. We have the 
following: 

Fact 20 There exists a formula ~ (without alternations) such that the prob- 
lem "given a pushdown automaton ,4, is a satisfied in the root of TA" is 
DEXPTIME-hard. 

Remark :  This argument does not work for BPA processes. Indeed the complex- 
ity result from [2] shows that the the model checking problem for the #-calculus 
without alternations is polynomial when a formula is fixed. 
Remark :  We conjecture that model checking is exponential also in the second 
parameter. That is, there exists a fixed pushdown process A such that the 
problem: "given a formula a, is a satisfied in the root of TA" is DEXPTIME- 
hard. 
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Abstract. In computer system design, we distinguish between closed and open systems. A closed 
system is a system whose behavior is completely determined by the state of the system. An open 
system is a system that interacts with its environment and whose behavior depends on this inter- 
action. The ability of temporal logics to describe an ongoing interaction of a reactive program 
with its environment makes them particularly appropriate for the specification of open systems. 
Nevertheless, model-checking algorithms used for the verification of closed systems are not ap- 
propriate for the verification of open systems. Correct model checking of open systems should 
check the system with respect to arbitrary environments and should take into account uncertainty 
regarding the environment. This is not the case with current model-checking algorithms and tools. 
In this paper we introduce and examine the problem of model checking of open systems (module 
checking, for short). We show that while module checking and model checking coincide for the 
linear-time paradigm, module checking is much harder than model checking for the branching- 
time paradigm. We prove that the problem of module checking is EXPTIME-complete for spec- 
ifications in CTL and is 2EXPTIME-complete for specifications in CTL*. This bad news is also 
carried over when we consider the program-complexity of module checking. As good news, we 
show that for the commonly.used fragment of CTL (universal, possibly, and always possibly prop- 
erties), current model-checking tools do work correctly, or can be easily adjusted to work correctly, 
with respect to both dosed and open systems. 

1 Introduction 

In computer system design, we distinguish between closed and open systems [HP85]. A closed sys- 
tem is a system whose behavior is completely determined by the state of the system. An open system 
is a system that interacts with its environment and whose behavior depends on this interaction. As an 
example to closed and open systems, we can think of two drink-dispensing machines. One machine, 
which is a closed system, repeatedly boils water, makes an internal nondeterministic choice, and serves 
either coffee or tea. The second machine, which is an open system, repeatedly boils water, asks the 
environment to choose between coffee and tea, and deterministically serves a drink according to the 
external choice [Hoa85]. Both machines induce the same infinite tree of possible executions. Never- 
theless, while the behavior of the first machine is determined by internal choices solely, the behavior 
of the second machine is determined also by external choices, made by its environment. Formally, in 
a closed system, the environment can not modify any of the system variables. In contrast, in an open 
system, the environment can modify some of the system variables. 

Designing correct open systems is not an easy task. The design has to be correct with respect to 
any environment, and often there is much uncertainty regarding the environment [FZ88]. Therefore, 
in the context of open systems, formal specification and verification of the design has great importance. 
Traditional formalisms for specification of systems relate the initial state and the final state of a system 
[Flo67, Hoa69]. In 1977, Pnneli suggested temporal logics as a suitable formalism for reasoning about 
the correctness of nonterrainating systems [Pnu77]. The breakthrough that temporal logics brought to 
the area of specification and verification arises from their ability to describe an ongoing interaction of 
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a reactive module with its environment [HP85]. This ability makes temporal logics particularly appro- 
priate for the specification of open systems. 

Two possible views regarding the nature of time induce two types of temporal logics [Lam80]. In 
linear temporal logics, time is treated as if each moment in time has a unique possible future. Thus, 
linear temporal logic formulas are interpreted over linear sequences and we regard them as describing 
the interaction of the system with its environment along a single computation. In branching temporal 
logics, each moment in time may split into various possible futures. Accordingly, the structures over 
which branching temporal logic formulas are interpreted are infinite trees, and they describe the pos- 
sible interactions of a system with its environment. In both paradigms, we can describe the design in 
some formal model, specify its required behaviour with a temporal logic formula, and check formally 
that the model satisfies the formula. Hence the name model checking for the verification methods de- 
rived from this viewpoint. 

We model finite-state closed systems by programs. We model finite-state open systems by reactive 
programs (modules, for short). A module is simply a program with a partition of the states into two 
sets. One set contains system states and corresponds to locations where the system makes a transition. 
The second set contains environment states and corresponds to locations where the environment makes 
a transition s. Consider the module M presented on the right. It has 

three system states (boi/, tea, and coffee), and it has one environ- 
ment state (choose). It models the second drink-dispensing machine 
described above. When M is in the system state boil, we know ex- 
actly what its possible next states are. It can either stay in the state 
boil or move to the state choose. In contrast, when M is in the envi- 
ronment state choose, there is no certainty with respect to the envi- 
ronment and we can not be sure that both tea and coffee are possible 
next states. For example, it might be that for some users of the ma- 
chine, coffee is not a desirable option. If we ignore the partition of 
M's  states to system and environment states and regard it as a pro- 
gram P,  then it models the first drink-dispensing machine described 
above. 

To see the difference between the semantics of programs and modules, let us consider two ques- 
tions. Is it always possible for the first machine to eventually serve tea? This is equivalent to ask- 
ing whether P satisfies the CTL formula AGEFtea,  and the answer is yes. Is it always possible for 
the second machine to eventually serve tea? Here, the answer is no. Indeed, if the environment al- 
ways choose coffee, the second machine will never serve tea. Suppose now that we check with current 
model-checking tools whether it is always possible for the second machine to eventually serve tea, 
what will be the answer? Unfortunately, model-checking tools do not distinguish between closed and 
open systems. They regard M as a program and answer yes. 

As discussed in IMP92], when the specification is given in linear temporal logic, there is indeed 
no need to worry about uncertainty with respect to the environment; since all the possible interactions 
of the system with its environment have to satisfy a linear temporal logic specification in order for M 
to satisfy the specification, the program P and the module M satisfy exactly the same linear temporal 
logic formulas. From the example above we learn that when the specification is given in branching 
temporal logic, we do need to take into account the uncertainty about the environment. There is a need 
to define a different model-checking problem for open systems, and there is a need to adjust current 
model-checking tools to handle open systems correctly. 

3 A similar way for modelling open systems is suggested in [LT88, Lar89]. There, Larsen and Thomsen use Modal 
Transition Systems, where some of the transitions are admissible and some are necessary, in order to specify 
processes loosely, allowing a refinement ordering between processes. 
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We now specify formally the problem of model checking of open systems (module checking, for 
short). As with usual model checking, the problem has two inputs. A module M and a temporal logic 
formula r For a module M, let VM denote the unwinding of M into an infinite tree. We say that M 
satisfies ~b iff r holds in all the trees obtained by pruning from VM subtrees whose root is a successor 
of an environment state. The intuition is that each such tree corresponds to a different (and possible) 
environment. We want r hold in every such tree since, of course, we want the open system to satisfy 
its specification no matter how the environment behaves. For example, an environment for the second 
drink-dispensing machine is an infinite line of thirsty people waiting for their drinks. Since each per- 
son in the line can either like both coffee and tea, or like only coffee, or like only tea, there are many 
different possible environments to consider. Each environment induces a different tree. For example, 
an environment in which all the people in line do not like tea, induces a tree that has the left subtree of 
all its choose nodes pruned. Similarly, environments in which the first person in line like both coffee 
and tea induce trees in which the first choose node has two successors 4. 

We examine the complexity of the module-checking problem for linear and branching temporal log- 
ics. Recall that for the linear paradigm, the problem of module checking coincides with the problem 
of model checking. Hence, the known complexity results for LTL model checking remain valid. As 
we have seen, for the branching paradigm flaese problems do not coincide. We show that the problem 
of module checking is much harder. In fact, it is as hard as satisfiability. Thus, CTL module check- 
ing is EXPTIME-complete and CTL* module checking is 2EXPTIME-complete, both worse than the 
PSPACE complexity we have for LTL. Keeping in mind that CTL model checking can be done in lin- 
ear time ICES86] and CTL* model checking can be done in polynomial space I-EL85], this is really 
bad news. We also show that for CTL and CTL*, the program complexity of module checking (i.e., 
the complexity of this problem in terms of the size of the module, assuming the formula is fixed), is 
PTIME-complete, worse than the NLOGSPACE complexity we have for LTL. As the program com- 
plexity of model checking for both CTL and CTL* is NLOGSPACE [BVW94], this is bad news too. 

As a consolation for the branching-time paradigm, we show that from a practical point of view, 
our news is not that bad. We show that in the absence of existential quantification, module checking 
and model checking do coincide. Thus, VCT~ module checking can be done in linear time, and its 
program complexity is NLOGSPACE. More consolation can be found in "possibly" and "always pos- 
sibly" properties. These classes of properties are considered an advantage of the branching paradigm. 
While being easily specified using the CTL formulas EF~ and AGEF~, these properties can not be 
specified in LTL [EH86]. We show that module checking of the formulas EF~ and AGEF~ can be 
done in linear time (though the problems a~'e PTIME-complete). 

2 Preliminaries 

The logic CTL* combines both branching-time and linear-time operators. Formulas of CTL* are de- 
fined with respect to a set AP of atomic propositions. Apath quantifier, either E ("for some path") or 
A ("for all paths"), can prefix a path formula composed of an arbitrary combination of the linear-time 
operators F ("eventually"), G ("always"), X ("next time"), and U ("until"). 

The semantics of CTL* is defined with respect to aprogram P = (AP, IV, R, wo, L), where A P  
is the set of atomic propositions, W is a set of states, R C W x W is a transition relation that must 
be total (i.e., for every w E W there exists w ~ E W such that R(w, wl)), wo is an initial state, and 
L : W ~ 2 AP maps each state to a set of atomic propositions true in this state. A path of P is an 
infinite sequence wo, w l , . . ,  of states such that for every i > 0, we have R(wi, w~+l). The notation 

4 Readers familiar with game theory can view module checking as solving an infinite game between the system 
and the environment. A correct system is then one that has a winning strategy in this game. 
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P ~ ~p indicates that the formula ~o holds at state Wo of the program P.  A formal definition of the 
relation ~ can be found in [Eme90]. 

The logic CTL is a restricted subset of CTL* in which the temporal operators must be immediately 
preceded by a path quantifier. Thus, for example, the CTL* formula ~p = AGF(pA EXq)  is not a CTL 
formula. Adding a path quantifier, say A~ before the F temporal operator in ~o results in the formula 
AGAF(p A EXq),  which is a CTL formula. The logics VCTL and VCTL*, known as the universal 
fragments of CTL and CTL*, respectively, allow only universal quantification of path formulas. Thus, 
all the occurrences of the path quantifier E should be under an odd number of negations. The formula 

above is therefore not a VCTL* formula. Changing the path quantifier E in ~o to the path quantifier A 
results in the formula AGF(p A AXq), which is a VCTL* formula. The logic LTL is a linear temporal 
logic. Its syntax does not allow any path quantification. Formulas of UFL are interpreted over paths in a 
program. The notation P ~ ~b indicates that the LTL formula ~ holds in all the paths of the program P.  

A closed system is a system whose behavior is completely determined by the state of the system. 
We model a closed system by a program. An open system is a system that interacts with its environ- 
ment and whose behavior depends on that interaction. We model an open system by a module M = 
(AP, W~, We, R, wo, L), where AP, R, wo, and L are as in programs, W~ is a set of system states, We 
is a set of environment states, and we often use W to denote W, tJ We. 

For each state w E W, let succ(w) be the set of w's R-successors; i.e., succ(w) = { w' : R(w, w') }. 
Consider a system state w8 and an environment state we. Whenever a module is in the state ws, all the 
states in succ(ws) are possible next states. In contrast, when the module is in state we, there is no cer- 
tainty with respect to the environment t~'ansitions and not all the states in succ(w,) are possible next 
states. The only thing guaranteed is that not all the environment transitions are impossible, since the 
environment can never be blocked. For a state w E W, let step(w) denote the set of the possible sets 
of w's next successors during an execution. By the above, step(ws) = {suec(w~) } and step(w~) cor~- 
tains all the nonempty subsets of succ(w~)o 

An infinite tree is a set T C lq* such that if x �9 c E T where or E Iq* and c E hi, then also 
z E T, and for all 0 < c ~ < c, we have that a~ �9 c' E T. In addition, if x E T, then z �9 0 E T. 
The elements of T are called nodes, and the empty word ~ is the root of T. Given an alphabet 27, a 
S-labeled tree is a pair {T, V) where T is a tree and V : T ~ S maps each node of T to a letter in 
27. A module M can be unwound into an infinite tree (TM~ VM) in a straightforward way. When we 
examine a specification with respect to M,  it should hold not only in (TM, VM) (which corresponds 
to a very specific environment that does never restrict the set of its next states), but in all the trees 
obtained by pruning from (TM, VM} subtrees whose root is a successor of a node corresponding to an 
environment state. Let exec(M) denote the set of "all these trees. Formally, (T~ V) E exec(M) iff the 
following holds: 

- ~ C T and V(E) = too. 
- For all z E T with V(x) = w, there exists {wo . . . . .  w,~} E step(w) such that T n hiIml+t = 

{x .  O, x .  1 , . . . ,  x .  n} and for all 0 < c < n we have V(x .  c) = we. 

Intuitively, each tree in exec(M) corresponds to a different behaviour of the environment. Note that 
a single environment state with more than one successor suffices to make ezec(M) infinite. We will 
sometimes view the trees in ezec(M) as 2AP-labeled trees, taking the label of a node z to be L(V (z)). 
Which interpretation is intended will be clear from the context. 

Given a module M and a CTL* formula ~b, we say that M satisfies ~b, denoted M ~ ,  ~b, if all the 
trees in e~ec(M) satisfy ~b. The problem of deciding whether M satisfies ~b is called module checking 5. 
We use M ~ ~b to indicate that when we regard M as a program (thus refer to all its states as system 

5 A different problem where a specification is checked to be correct with respect to any environment is discussed 
~n [ASSSV94]. There, all the states of the module are system states, and the formula should hold in all compo- 
sitions that contain the module as a component. 
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states), then M satisfies r The problem of deciding whether M ~ r is the usual model-checking 
problem [CE81, QS81]. Let A ~ B denote that A implies B but B does not necessarily imply A. It 
is easy to see that 

M ~ , r 1 6 2  

Indeed, M ~r  r requires all the trees in exec(M) to satisfy r On the other hand, M ~ r means that 
the tree (TM, VM) satisfies r Finally, M ~:r -~r only tells us that there exists some tree in exec(M) 
that satisfies r 

We can define module checking also with respect to linear-time specifications. We say that a module 
M satisfies an LTL formula r iff M ~ Ar 

3 M o d u l e  C h e c k i n g  for  B r a n c h i n g  Tempora l  Logics 

We have already seen that for branching temporal logics, the model checking problem and the module 
checking problem do not coincide. In this section we study the complexity of CTL and CTL* mod- 
ule checking. We show that not only the problems do not coincide but also their complexities do not 
coincide, and in a very significant manner. 

Theorem 1. 

(1) The module-checking problem for CTL is EXPTlME-complete. 
(2) The module-checking problem for CTL* is 2EXPTIME-complete. 

Proof (sketch): We start with the upper bounds. Consider a CTL formula r and a set 79 C lq with a 
maximal element k. Let .Aw,.r be a Bfichi tree automaton that accepts exactly all the tree models of 
-~r with branching degrees in 73. By [VW86b], such Av, ,r  of size 0(2 k'lr exists. 

Given a module M = (AP, W,, W,, R, wo, L), we define a Biiehi tree automaton .AM that ac- 
cepts the set of all trees in exec(M). Intuitively, .AM guesses which subtrees of (TM, VM) are pruned. 
Formally, .AM = (2 AP, 7), W, ~, wo, W) where D and 6 are as follows. 

- v = U ~ w .  {Is~ ,~(w) l}  u U ~ w . { l  . . . .  , I,~,~:(w)l}. 
- For every w E W,a E 2A~',and d E D, wehave(wl,...,wa) E 6(w,a,d) iffL(w) = aand 

{wl , . . . ,  wd} E step(w). 

Since the acceptance condition only requires AM not to get stuck (note that 6 is partial), it is easy 
to see that E(AM) = exec(M). Since for every environment state w, the set step(w) considers all 
possible subsets ofsucc(w), the size of.Am is exponential in max~ew ̀ {Isucc(w)l), thus exponential 
in the size of M. 

By the definition of satisfaction, we have that M ~r  r iff all the trees in exec(M) satisfy r In 
other words, if no tree in exec(M) satisfies ~r This can be checked by testing E (.AM) NE (Av,~)  for 
emptiness. Equivalently, we have to test Z:(AM x AV,~r for emptiness. By [VW86b], the nonempti- 
ness problem of Biiehi tree automata can be solved in quadratic time, which gives us an algorithm of 
time complexity 2 ~162 We can, however, do better. By [VW86a], the number of states in the 
automaton A~9,,r is 2 ~162 and is independent of k. Also, the automaton .AM has the same number 
of states as M. The fact that the sizes of these automata are exponential in k and M originates from 
a special structure where all subsets of a certain tuple in the transition relation are possible tuples too. 
Therefore, the algorithm in [VW86b] can be implemented to test s • Av,~r for emptiness in 
time polynomial in IM[ * 21,~1. 

The proof is similar for CTL*. Here, following [ES84, EJ88], we have that Av, . r  is a Rabin tree 

automaton with 2 k'2f'bl states and 21~1 pairs. By [EJ88, PR89], and again, using the restricted structures 
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of the automata..47),.r and AM, checking the emptiness of s x .A~9,.r can then be done in time 
JMl~ 22 ~ " 

It remains to prove the lower bounds. To get an EXPTIME lower bound for CTL, we reduce CTL 
satisfiability, proved to be EXPTIME-complete in [FL79], to CTL module checking. Given a CTL 
formula ~b, we construct a module M and a CTL formula ~p such that the size of M is quadratic in 
the length of r the length of ~o is linear in the length of ~b, and r is satisfiable iff M ~ -~p. 

Consider a CTL formula r For simplicity, let us first assume that ~ has a single atomic proposition 
q. Let n be the number of existential quantifiers in r plus 1. By the sufficient branching-degree prop- 
erty of CTL, r is satisfiable iffthere exists a {0, {q} }-labeled tree of branching degree n that satisfies r 
[Eme90]. Let P,~ be a clique with n states. By the above, r is satisfiable iff there exists a possibility to 
label an unwinding of P,~ such that the resulted {0, {q} }-labeled tree satisfies ~b. This simple idea, due 
to [Kup95], is the key to our reduction. We define a module M,~ such that each tree in exee(M,~) corre- 
sponds to a {0, {q} }-labeling of (Tp,~, Vp, ). We then define ~o such that there exists a tree satisfying ~p 
in exec(M,,) iffthere exists a {0, {q} }.-labeling of (Tp,, Vp. ) that satisfies r It follows that r is satis- 
fiable i f fM ~ .  "~r Let In] = {1 , . . . ,  n}, In]' = {1', . . . .  n '},  and let M ,  - (AP, W,, We, R, w, L), 
where, 

- A P  = {ghost ,  q } .  

- W ,  = [,~]. 

- We = [n]' U {heaven, heU }. 
- R = {( i , j )  : i , j  ~ [n]} U { ( i , i ' ) :  i E [n]}t2 

(In}' • {heaven, hell}) U { {heaven, heaven) } U 
{(hell, hell)}. 

- w = l .  
- For all i E In}, we have L(i) = 0 and L(i') = 

{ghost}. Also, L(heaven) = {q} and L(hell ) = 
0. 

The reactive module M 

That is, the system states of Mn induce the clique Pn. In addition, each system state has a ghost: 
an environment state with two successors, one labeled with q and one not labeled with q. Intuitively, 
the ability of the ghost r to take an environment transition to heaven in .?v/n, corresponds to the ability 
of a node associated with the state i in (Tp., Vp.) to be labeled with q. Thus, each tree in exec(M~) 
indeed corresponds to a {0, {q}}-labeling of (Tp., Vp. ~. We now have to define (p such that when- 
ever the formula r refers to q, the formula ~ will refer to EXEXq .  Indeed, since heaven is the only 
state labeled with q, then a system state satisfies E X E X q  iffthe transition of its ghost to heaven is en- 
able& In addition, path quantification in tp should be restricted to computations of Pn. That is, to paths 
that never meet a ghost. To do this, we define a function f : CTL* formulas ---+ CTL* formulas such 
that f(~) restricts path quantification to paths that never visit a state labeled with 9host. We define f 
inductively as follows. 

- f ( q )  = q .  

- f ( - ~ ) = - d ( ~ ) .  

- f ( ~ l  v ~ )  = : ( ~ x )  v f ( ~ 2 ) .  

- f (E~)  = E((G-~ghost) A/(~)) .  

- f (A~)  = A((Fghost) V f(~)). 

- f ( X ~ )  --- X f ( ~ ) .  

- f(~IU~2) = f(~l)Uf(~2).  



81 

For example, f ( EqU ( AFp) ) = E( ( G-~ghost) A ( qU ( A( ( F ghost) v Fq) ) ) ). We can now define 
as f ( r  with E X E X q  replacing q. Note that we first apply f and only then do the replacement. When 
~p is a CTL formula, the formula f ( r  is not necessarily a CTL formula. Still, it has a restricted syntax: 
its path formulas have either a single linear-time operator or two linear-time operators connected by a 
Boolean operator. By [BG94], formulas of this syntax have a linear translation to CTL. 

When r has more than one atomic proposition, the reduction is very similar. Then, for r over 
{ q l , . . . ,  q,,~ }, we have rn heavens, one for each atomic proposition, and we associate with each sys- 
tem state m ghosts, again, one for each atomic propositions. We can now replace a proposition qi in 
with E X E X q i  in ~. The obtained module has n + nm + rn + 1 states and it has n 2 + 3nm + m + 1 
transitions. 

The proof is the same for CTL*. Here, we do a reduction from satisfiability of CTL*, proved to be 
2EXPTIME-hard in [VS85]. O 

We note that the problem of CTL module checking is EXPTIME-complete (and the one for CTL* is 
2EXPTIME-complete) even when we res~Sct ourselves to modules in which all states are environment 
states. To see this, note we could have defined M,~ as the clique Pn, adding a transition from each 
state to heaven. We could then force each node of a tree in exec(M,~) to have as children at least its n 
successors in P,~ (this can be enforced by the formula, having In] as atomic propositions, and having 
formulas like AG(1 ~ E X 2  A EX3)  conjuncted with the original formula), and replace q in ~b with 
E X q  in ~. The price of using only environment states is that now the length of ~o is quadratic in the 
length of ap. 

Moreover, module checking for CTL is EXPTIME-complete even for modules of a fixed size. To 
see this, note that the size of M,~ depends on the number of atomic propositions in ~b and on the mini- 
mum branching degree of models of ~b. Proving that the satisfiability problem for CTL is EXPTIME- 
hard, Fisher and Lander reduce acceptance of a word x by a linear-space alternating Turing machine 
to satisfiability of a CTL formula ~b~ [FL79]. A somewhat different reduction, which considers a fixed 
Turing machine that accepts an EXPTIME-complete problem, results in ~p~ of length polynomial in 
Ix], but with a fixed number of atomic propositions, which, if satisfiable, has models with branching 
degree 2. Such ~bx induces, for all x, modules of a fixed size. 

4 T h e  P r o g r a m  C o m p l e x i t y  o f  M o d u l e  C h e c k i n g  

When analyzing the complexity of model checking, a distinction should be made between complexity 
in the size of the input structure and complexity in the size of the input formula; it is the complexity in 
size of the structure that is typically the computational bottleneck [LP85]. In this section we consider 
the program complexity [VW86a] of module checking; i.e., the complexity of this problem in terms of 
the size of the input module, assuming the formula is fixed. It is known that the program complexity 
of LTL, CTL, and CTL* model checking is NLOGSPACE [VW86a, BVW94]. This is very signifi- 
cant since it implies that if the system to be checked is obtained as the product of the components of a 
concurrent program (as is usually the case), the space required is polynomial in the size of these com- 
ponents rather than of the order of the exponentially larger composition. 

We have seen that for CTL and CTL*, module checking is much harder than model checking. We 
now claim that when we consider program complexity, module checking is still harder. 

Theorem 2. The program complexity of CTL and CTL* module checking is PTIME-complete. 

Proof (sketch): Since the algorithms given in the proof of Theorem 1 are polynomial in the size of 
the module, membership in PTIME is immediate. 

We prove hardness in PTIME by reducing the Monotonic Circuit Value Problem (MCV), proved 
to be PTIME-hard in [Go177], to module checking of the CTL formula EFp. In the MCV problem, 
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we are given a monotonic Boolean circuit ~ (i.e., a circuit constructed solely of AND gates and OR 
gates), and a vector (zl . . . .  , z,~) of Boolean input values. The problem is to determine whether the 
output of a on ( z l , . . .  ,x,~) is 1. 

Let us denote a monotonic circuit by a tuple ~ = IGv, G3, Gin, go~t, T), where Gv is the set of 
AND gates, G3 is the set of OR gates, Gin is the set of input gates (identified as g l , . . . ,  g,~), go~t E 
Gv u G3 u Gin is the output gate, and T C G x G denotes the acyclic dependencies in t~, that is 
(g, g') E T i f f  the output of gate g' is an input of gate g. 

Given a monotonic circuit a = (Gv, G~, Gi,, go~t, T) and an input vector x = ( z l , . . . ,  z,~), we 
construct a module M~,x = / { 0 ,  l}, Gv, G3 u Gi,,, R, go~, L), where 

- R = T u  {<g,g): g ~ G~}. 
- For g ~ Gv U G3, we have L(g) = 1. For g~ E Gi,~, we have L(g~) = xi. 

Clearly, the size of M,,x is linear in the size of a. Intuitively, each tree in exec(M,,,x) corresponds 
to a decision of a as to how to satisfy its OR gates (we satisfy an OR gate by satisfying any nonempty 
subset of its inputs). It is therefore easy to see that M~,x ~ EFO iff there exists no V E exec(Ma,x) 
such that V ~ AG1, which holds iff the output of a on x is 0. 0 

Recall that for a CTL formula ~b, checking that a module M satisfies ~b reduces to testing emptiness 
of the automaton AM x A~,,r Checking nonemptiness of a Btichi tree automaton can be reduced to 
calculating a/~-calculus expression of alternation depth 2 [Rab69, VW86b]. As such, it can be imple- 
mented, using symbolic methods, in tools that handle fixed-point calculations (e.g., SMV [BCqV[+90, 
McM93]). 

5 P r a g m a t i c s  

How bad is our news? In this section we show that from a pragmatic point of view, it is not that bad. We 
show that in the absence of existential quantification, module checking and model checking coincide, 
and that in the case where there is only a limited use of'existential quantification, module checking can 
still be done in linear time. 

5.1 Module Checking for Universal Temporal Logi~ 

Lemma 3. For universal branching temporal logics, the module checking problem and the model check- 
ing problem coincide. 

Proof: Given a module M and a VCTL* formula ~p, we prove that M ~ ap iff M ~ 0. Assume 
first that M ~ 0. Then, all trees in ezec(M) satisfy 0. Thus, in particular, (TM, VM) satisfies ~b and 
M ~ ~b, Assume now that M ~ ~b. The relation {(w, w> : w r W} is a simulation relation between 
any tree in exec(M) and M. Therefore, by [GL94], all trees in ezec(M) satisfy ~b, and M ~ 0. ~3 

Theorem 4 now follows from the known complexity results tbr VCTL and VCTL* model checking 
[CES86, SC85, BVW94]. 

Theorem 4. 

(1) 7~e module-checking problem for V CTL is in tinear time. 
(2) The module-checking problem for VCTL* is PSPA CE-complete. 
(3) The program complexity of module checking for VCTL and VCTL* is NLOGSPACE-complete. 

It follows from the above theorem that the module-checking problem for LTL is PSPACE-complete 
and its program complexity is NLOGSPACE.,eomp]ete. 
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5.2 Module Checking of "Possibly" and "Always Possibly" Properties 

We have seen that, for each fixed CTL formula ~b, checking that a module M satisfies r can be checked 
in time polynomial in the size of M. Sometimes, we can do even better. Some CTL formulas have a 
special structure that enables us to module-check them in time linear in the size of M. In this section 
we show that "possibly" and "always possibly" properties, by far the most popular properties specified 
in CTL and not specifiable in VCTL, induce such formulas. 

Consider the CTL formula EFsend. The formula states that it is possible for the system to eventu- 
ally send a request. We call properties of this form possibly properties. Consider now the CTL formula 
AGEFsend. The formula states that in all computations, it is always possible for the system to even- 
tually send a request. We call properties of this form always possibly properties. It is easy to see that 
possibly and always possibly properties can not be specified in linear temporal logics, nor in universal 
branching logics [EH86]. 

Theorem 5. Module checking of possibly and always possibly properties can be done in linear run- 
ning time. 

Proof(sketch):  We describe an efficient algorithm that module-checks these properties. For simplic- 
ity, we assume that system and environment states are labeled with atomic propositions s and e, respec- 
tively. Consider a module M = (AP, Ws, W~, R, w0, L) and a propositional assertion ~. By definition, 
M ~ EF~ iff there exists no tree iT, V) E ezec(M) all of whose nodes satisfy -~.  We say that a 
state w E W is safe iff such a tree (T, V) can not have w .as its root. We check that M ~ EF(  by 
checking that w0 is safe. In order to be safe, a state w should satisfy one of the following: 

2. w is a system state that has a safe successor, or 
3. w is an environment state all of whose successors are safe. 

Consider the monotone function f : 2 W ~ 2 W where f(y) = ~ V (s A EXy) V (e A AXy). It 
can be shown that w is safe iff w is in the least fixed-point of f .  Therefore, we have that w is safe iff 
w ~ py.~ V (s A EXy)  V (e A AXy). Hence, 

M ~ EF~ r M ~ py.~ v (s A EXy)  V (e A AXy). 

Now, M ~ AGEF~ iff there exists no tree (T, V) E exec(M) such that (T, V) has a subtree 
(T', V') all of whose nodes satisfy ~ .  We can therefore check that M ~ AGEF~ by checking that 
all the reachable states in M are safe. Hence, 

M ~ AGEF~ r M ~ ~,z.~y.~ V (s A EXy)  v (e A AXy)] A AXz.  

So, we reduced module checking of possibly and always possibly properties to model checking of 
an alternation-free #-calculus formula. As the latter can be done in linear running time [Cle93], we are 
done. 

[] 

Again, as our algorithms involve at most two simple fixed-point computations, they can be easily im- 
plemented symbolically. 

What about the space complexity of checking these properties? Is there a nondeterministic algo- 
rithm that can check always possibly properties in logarithmic space? As the formula we used proving 
Theorem 2 is EFt ,  the answer for possibly properties is no. Unsurprisingly, this is also the answer for 
the more complicated always possibly properties, as we claim in the theorem below. 

Theorem 6. Module checking of possibly and always possibly properties is PTIME-complete. 
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Proof (sketch): Membership in PTIME follows from Theorem 5. To prove hardness in PTIME, we 
do the same reduction we did for CTU For E F t ,  we need no change. For AGEF~ we do the following 
change. Instead a self loop, each state associated with an input gate now has a transition to the initial 
state go,,t. Let us call the resulted module M~,x. It is easy tO see that M~,x ~ AGEFO iff there exists 
no V E exec(M~,x) such that V ~ EFAG1, which holds iff the output of ct on x is 0. [] 

6 Discussion 

The discussion of the relative merits of linear versus branching temporal logics is almost as early as 
these paradigms [Lam80]. We mainly refer here to the linear temporal logic LTL and the branching 
temporal logic CTL. One of the beliefs dominating this discussion has been "while specifying is eas- 
ier in LTL, model checking is easier for CTL". Indeed, the restricted syntax of CTL limits its expres- 
sive power and many important behaviors (e.g., strong fairness) can not be specified in CTL. On the 
other hand, while model checking for CTL can be done in time O(IPI * ]~Pl) ICES86], it takes time 
O([PI*2 tr for LTL [LP85]. Since LTL model checking is PSPACE-complete [SC85], the latter bound 
probably cannot be improved. The attractive complexity of CTL model checking have compensated 
for its lack of expressive power and branching-time model-checking tools that can handle systems with 
more than 1012~ states [Bro86, McM93, CGL93] are incorporated into industrial development of new 
designs [BBG+94]. 

If we examine the history of this discussion more closely, we found that things are not that simple. 
On the one hand, the inability of LTL to quantify computations existentially is considered by many a 
serious drawback. In addition, the introduction of fair-CTL ICES86] and of many other extensions to 
CTL [Lon93, BBG+94, BG94], have made CTL a basis for specification languages that maintain the 
efficiency of CTL model checking and yet overcome many of its expressiveness limitations. On Uhe 
other hand, the computational superiority of CTL is also not that clear. For example, comparing the 
complexities of CTL and LTL model checking for concurrent programs, both are in PSPACE [VW86a, 
BVW94]. As shown in [Var95, KV95], the advantage that CTL enjoys over LTL disappears also when 
the complexity of modular verification is considered. 

In this work we questioned the computational superiority of the branching-time paradigm further. 
We showed that when reasoning about open systems, the complexity of CTL model checking is actually 
higher than that of LTL. Our results are summarized in the table below. All the complexities in the table 
denote tight bounds. 

program 
I ]complexity 

model module Iof model 
, ]lchecking Ichecking, ,, Ichecking 

LTL' PSPACE PSPACE 
[sc85] 

CTL linear-time EXPTIME 
[CES86] [BVW94] 

~ *  PSPACE '"" 2EXPTIME ! 
[EL85] 

VCTL linear-time inear-time 
[CES86] 

EF~ linear-time linear-time NLOGSPACE 
AGEF~ [CES86] [BVW94] 

program 
complexity 
of module 
checking satisfiability 

NLOGSPACE NL(X3SPACE PSPACE 
[VW86b] SC85] 
NLOGSPACE PTIME .... EXPTIME 

FL79] 
NLOGSPACE PRIME ' 2EXPTIME ' 
[BVW941 [EJ88, VS85] 
NIA3GSPACE NLOGSPACE PSPACE 
[BVW94] KV95] . 

PTIME NPTIME 
[G J79] 
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(Extended Abstract) 
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A b s t r a c t .  Systems with an arbitrary number of homogeneous processes 
occur in many applications. The Parameterized Model Checking Problem 
(PMCP) is to determine whether a temporal property is true of every size 
instance of the system. We consider systems formed by a synchronous 
parallel composition of a single control process with an arbitrary number 
of homogeneous user processes, and show that the PMCP is decidable for 
properties expressed in an indexed propositional temporal logic. While 
the problem is in general PSPACE-complete, our initial experimental 
results indicate that the method is usable in practice. 

1 I n t r o d u c t i o n  

Systems with an arbitrary number of homogeneous processes occur in many 
contexts, especially in protocols for data  communication, cache coherence, and 
classical synchronization problems. Current verification work on such systems 
has focussed mostly on verifying correctness for instances with a small number  of 
processes. This does not indicate whether larger size instances are error-free, and 
so does not guarantee correctness in general. We are thus interested in methods 
that  verify correctness for arbitrary size instances. Even though sometimes there 
is indeed a specific upper bound on the number of processes in a system, verifying 
such large size instances is intractable because of state explosion. 

The general problem, then, is the Parameterized Model Checking Problem 
(PMCP): to determine whether a temporal  property is true of every size instance 
of the the system. This is known to be undecidable in general [AK 86, Su 88]; 
however, it is decidable algorithmically for restricted classes [GS 92, EN 95], 
and there are methods with some degree of automation [Lu 84, ShG 89, KM 89, 
WL 89, V 93, CGJ 95]. This previous work (with the exception of [KM 89]) was 
oriented toward asynchronous systems. 

We propose a fully automated approach to the PMCP for synchronous sys- 
tems. We consider synchronous systems with a unique control process and an 
arbitrary number of homogeneous user processes. Each system is thus parame- 
terized by the number of user processes. The processes are specified by labeled 
transition graphs, in which guards on each transition check the state of the con- 
trol process as well as certain conditions on the global state. The correctness 
properties are expressed in an indexed propositionM branching temporal  logic, 
and are of the following types: 
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1. Over the control process : formulae of the form Ah and Eh, where h is a 
linear4ime formula with atomic propositions over control process states, 

2. Over all user processes: Ai Ah(i) , and Ai Eh(i), where h(i) is a linear-time 
formula with atomic propositions over control process states, and over user 
process states indexed with i. 

3. Over every distinct pair of user processes : Ai#j Ah(i,j), and A ~ j  Fh(i,j), 
where h(i, j) is a linear-time formula with atomic propositions over control 
process states, and over user process states indexed with either i or j. 

We show that the PMCP for the first type of formulae is decidable for this 
class of systems, and is PSPACE-complete. This decidability result is based on 
constructing an abstract graph in which every computation of every size instance 
of the system is represented by some path in the graph. However, the abstract 
graph may have "bad" paths that do not correspond to computations of any 
size instance. The heart of the algorithm is a method for identifying good paths 
in the abstract graph. This algorithm can be implemented in space polynomial 
in the size of the control and user processes. We show by a generic reduction 
that the PMCP is PSPACE-hard. As a result of the symmetry inherent in the 
system, the PMCP for the other types of formulae reduces to the PMCP for the 
first type. We have implemented this algorithm in SMV [McM92] and used it to 
check correctness of a bus arbitration protocol. Our initial experimental results 
indicate that the algorithm should be useful in practice. 

Section 2 defines the system model and the logic used for expressing cor- 
rectness properties. Section 3 describes the abstract graph representation, and 
Section 4 the algorithm for the PMCP for formulae of type (1). Section 5 shows 
the reduction of the PMCP for formulae of types (2) and (3) to the PMCP for 
formulae of type (1). Section 6 describes our implementation of the algorithm, 
and the application to the bus protocol. Section 7 concludes the paper with a 
discussion of related work. 

2 T h e  s y s t e m  m o d e l  a n d  l o g i c  

We refer to the collection of system instances formed by control process C and 
copies of a generic user process U as a (C, U) family. The control and user 
processes are specified as finite-state labeled transition graphs. We use the terms 
"process" and "labeled transition graph" interchangeably. For a process P, let 
Sp denote its set of states, Rp its transition relation, and ~p its initial state 2. 

The system instance of size n is a synchronous parallel composition of C with 
n copies of process U, and is denoted as C NUn -- C [l U1 [I U2...  II U,~. Ui is 
the ith copy of U, which is obtained from U by uniformly subscripting the states 
of U with i as shown in the example below a. 

Ai 

F I G  1~: T h e  c o n t r o l  p r o c e s s  F I G  l b :  T h e  g e n e r i c  u s e r  p r o c e s s  F I G  l c :  T h e  i t h  u s e r  p r o c e s s  

2 The results of this paper carry over for processes with a set of initial States. 
3 In this example, C has initial state K, and U has initiM state I. Atomic propositions 

are identified with state names. 
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Thus for all i,j, Ui and Uj are isomorphic up to re-indexing. Transitions in 
both C and Ui are labeled with guards. Every guard is a boolean combination 
of users conditions, which have the form (3i g(i)),  where g(i)  is a boolean 
expression formed from atomic propositions over the states of C, and over the 
states of Ui. 4 

G~ denotes the global state transition graph of the instance of size n. A state 
s of G. is written as an (n + 1)-tuple (c, u l , . . . ,  v,~), where c is the local state 
of C, and the (i + 1) 'th component of the tuple is the local state of U~ (for 
i E [1..n]). The (i + 1)'th component of s is denoted by s(i)�9 The initial state of 
~n is ( tc ,  (Lu)I,.  �9 (tv)n)- A transition (s, t) is in ~,~ iff 

1. A transition of C from s(0) to t(0) is enabled in s, and 
2. For all i E [1..n], a transition of Ui from s(i) to t(i) is enabled in s. 

where a transition in a process is said to be enabled in a global state iff the 
corresponding guard is true when. evaluated in that  global state. We write s ~ g 
iffguard g is true in the global state s. s ~ (3i g(i))  ifffor some k E [1..n], g(k) 
is true given the propositions that  hold at s(0) (the control state), and s(k) (the 
state of process Uk). Boolean operators are handled in the standard manner.  'For 
a global state s, and state a E Su, we let ~r = I{i]i E [1..n] A s(i) = ai}l 
(i.e., ~a(s) is the number of user processes with local state a of the generic user 
process). 

PLTL is the standard propositional linear temporal  logic built up from atomic 
propositions, boolean connectives, and temporal  operators G (always), F (some- 
time), X (next time), and IJ (until) [Pn 77, MP 92]. CTL* is a branching tempo- 
ral logic which extends PLTL by allowing the path quantifiers A (for all fullpaths) 
and E (for some fullpath). Many interesting correctness properties of parame- 
terized systems can be expressed in one of the following forms: 

1. Over the control process : formulae of the form Ah and Eh, where h is a 
linear-time formula with atomic propositions over control process states, 

2. Over all user processes' A. Ah(i) , and Ai Eh(i), where h(i) is a linear-time 
formula with atomic proposJ.tlons over control process states, and over states 
of U indexed with i. 

3. Over all distinct pairs of user processes : Ai#j  Ah(i,j), and AiCj Eh(i, j ) ,  
where h(i, j) is a linear-time formula with atomic propositions over control 
process states, and over states of U indexed with either i or j .  

The formal semantics of these logics is defined in the usual way [Em 90, BCG 89, 
ES 95], and we write M, s ~ f to mean that  formula f is true in structure M 
at state s. 

3 T h e  a b s t r a c t  m o d e l  

For a given (C, U) family, we construct an abstract process A which includes 
all computations of every size instance of the family. Intuitively, a state (c, S) 
of.A represents any global state in which the control process is in state c, there 
is at least one user process in every user state in S, and no user process is in a 

4 There are two interesting special cases : (a) The guards in U~ involve only propositions 
over states of C. The control process may then be viewed as controlling the execution 
of the user processes. (b) The control process is a copy of the user process, and can be 
written as U0. Then C ][ U '~ is isomorphic to U ~+1 . Our method applies in general, 
but often finds interesting application in these special cases�9 
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state in S u \ S .  Transitions from a state (c, S) represent transitions enabled from 
global states that are represented by (e S). Each such transition has a label 
which represents moves of individual processes. 

Formally, let A = 2SuxS~\{O} be the set of edge labels. A is defined by a 
labeled transition graph, where 

1. S.a = Sc  • (2sv\{~}) is the set of states, 
2. R.a C_ S~t • A • S~t is the set of transitions, 
3. ~A = (~c, {~v}) is the initial state. 

To make the correspondence between global states and abstract states precise, 
we define families of abstraction functions {r {r where r : Sa:  -+ Set, and 
r : S~, • S~, -+ d. For a state s E S ~ ,  r  = (s(0), {a [ (3i E [1..n] s(i) = 
ai)}), and for a pair (s , t) ,  en ( s , t )  = {(a,b) t 3 i  e [1..n] s(i) = ai A t(i) = bi}. 
Then (c, S) represents s E Gn iff (c, S) = Ca(s). 

For a guard g, and state (e, S) of.A, we define (c, S ) [ 1 -  g as (c, u l , . . . ,  vk) 
g, where S = { u . . .  v} (for some ordering u . . . v  of the elements of S) and [SI = k. 
The following proposition relates ~ and []-  : 

P r o p o s i t i o n l .  For any n and any s E 6~, /f (e,S) = en(s)~ then for every 
guard expression g, s ~ g if)" (c, S) I - g. [] 

The set of transitions is defined as follows: A tuple ((c, S), X ,  (c', S')) E R.a 
iff 

1. (3p c 2+ c' E R c  A (c, S) l I - p) (A transition from c to d is enabled for the 
control process)! 

2. (Va,b (a,b) G X :~ a E S Ab E S' A (3q a ~ b  E n u  A ( c , S ) [ ] -  q)). (For 
every pair (a, b) in X, there is an enabled transition from a to b in the user 
process). 

3. X is total on S, and X -1 is total on S ~, (Every state in S has a successor 
in SI, and every state in S t has a predecessor in S). 

D e f i n i t i o n 2 .  A path in ~ is a sequence of states such that adjacent states are 
in the global transition relation of ~ .  [] 

D e f i n i t i o n 3 .  A path in A is a sequence starting at a state, with alternating 
states and transition labels such that for every s, s p E S~ and X E A, s X s  ~ 
occurs in the sequence only if (s, X, s j) E R.~. [] 

Define a family of functions {7i} such that % maps from paths in G, to paths 
in A by (Tn (~r))2~ = r and (7,~ (~r))2~+t = r  ~'~+1) for all i E N, 

P r o p o s l t i o n 4 .  For every path a" in ~n, 7n(Cr) is a path in ,4. [] 

it  follows from Proposition 4 that if A satisfies a linear temporal formula over 
all paths, then so does every size instance of the family. However, if the formula 
is false for some path in A, it does not follow that it is false for some instance, 
as not every path in .4 arises from a corresponding path in some instance; those 
that do are called "good". 

D e f i n i t i o n 5 .  A path p in ,4 is goodiff 3n 3(r E ~n %(~r) = p. I3 

D e f i n i t i o n 6 .  A path # in Gi covers a path a in Gj (i >_ j)  iff % ( # )  = 7j(r  
and for every k ~ N, a E U, ~a(~r~) >_ ~:a(crk). [] 
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L e m m a  7. (Covering Lemma) For n j > n, every path in Gn has a covering path 
in 6n,. 

P r o o f  
Let a be a path in G,. Define ~r' in ~ , ,  by the following: e~(O) = c~k(O), and 

for i G [1..nq, ~ ( i )  = al, where a is such that  if i rood n • O, then cr~(i rood n) = 
ai,nodn, and and if i modn = 0, then ak(n) = an. 

It follows that  r = r and that  #a(~r~) _> #a(crk) for all a E U. 
To complete the proof, we need to show that  Ca' ~ ' 
Since (r ~rk+l) is a transition of ~n, there exist guards p, q l , . . . qn ,  such that  

~k (0) -~+ ~k+l (0) is the transition of the control process, and Ck (i) -~ ~rk+l (i) is 
the transition of process Ui, for i E [1..n]. As r (a~) - r (~rk), from Proposition 
1, transition qi is enabled for user processes with indices j = i (rood n) in ~r~. 
The resulting state is ~r~+ 1. It follows that  r ~ + 1 )  = r r and so 
c~' is a path of ~ ,  that  covers or. [] 

L e m m a  8. Every finite path of .A is good. 

P r o o f  
The proof is by induction on the number of states in the path. Suppose the 

path is a single state s. Let s = (c,S), and. let n = IS[. Consider the state 
r = (C, Ul , . . . v~)  in 6,~, where S = { u . . . v } .  As r = s, the claim is true of 
paths with one state. Suppose that  it is true for all paths with at most m states, 
for m >_ 1, and let p be a path with m + 1 states. Then, p = p'Xt, where if s 
is the last state in p', then (s, X, t) E R.4. By inductive hypothesis, for some n',  
there is a path ~' E G~, such that  %,(or ~) = pJ. Let r ~ be the last state in ~r'. 

For each a E U, let m~ = I{b I (a, b) e X)I .  If for some a, m~ > # a ( r ' ) ,  one 
can construct a path covering ~r' such that  if u is the final state on that  path, 
then m~ < r Repeating this construction for each user state a for which it 
is necessary, we obtain, for some n, a path cr in 6~ such that  c~ covers or', and 
for every a, ma < # a ( r ) ,  where r is the last state on ~r. 

As m~ < # a ( r )  for each a, one can associate at least one index i ~ [1..n] with 
each pair ~ ,  b) in Z .  For  every pair (a, b) in X,  there is an enabled transition 
from a to b in the user process. Thus, there is a state u G ~n generated by 
performing the enabled transition from ai to bi in each process Ui where index 
i is associated with the pair (a, b), and the enabled transition for the control 
process. It is easy to verify that  r (u) = t, and hence, cru is a path in ~,~ such 
that  % (cru) = p. [] 

4 V e r i f y i n g  p r o p e r t i e s  o f  t h e  c o n t r o l  p r o c e s s  

The properties of the control process are of the form Ah or Eh, where h is 
a linear-time temporal  formula with atomic propositions over the states of C. 
To model-check such a property, we follow the automata-theoret ic  approach of 
[VW 86] : To determine if M, t M ~ [:h, construct a Biichi automaton Bh for h, 
and check that  the language of the product Biichi automaton of M and Bh is 
non-empty (ef. [LP85]). The check for the property Ah is easily reduced to that  
for the earlier case by noting that  M, tM ~ Ah iff M, tM ~== [=~h. 

We say that  formula Ah is universal iff it is true for every size instance of the 
family. To determine ifAh is universal, we model check it over the abstract graph, 
by construct ing a Biichi automaton B for -~h, and forming the product  Biichi 
automaton M of.A and B. B accepts a computat ion c~ labeled with propositions 
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over states of C iff there is a run of B on c~ such that  a "green" state of B is 
entered infinitely often. An accepting path in .hd is one which starts in an initial 
state, and along which a green state occurs infinitely often. For a path  5 in A4, 
let 5~ be its projection on ,4. A path in A.~ is good iff its projection on A is a 
good path in .4. 

T h e o r e m  9. Formula Ah is not universal iff there is an accepting good path in 
A4. 

P r o o f  
Suppose 5 is an accepting good path in ~4. As ~A is good, for some n, there 

is a path in G~ that matches 5~ on the sequence of states of C, and is hence 
accepted by B. Therefore, Ah is false in G~, and hence is not universal. 

In the other direction, if Ah is not universal, then for some n, there is a path 
c~ in G~ from the initial state that  is accepted by B. From Lemma 4, 7n (cr) is a 
path in A, which is good by construction. The sequence of states of C in 7~(cr) 
is the same a s in  ~, hence there is a run of B on 7,~(c ~) that  forms an accepting 
good path in .M. [] 

4.1 Finding accepting good paths in  A4 

From Theorem 9, to determine if Ah is not universal, we have to check if there 
is an accepting good path in .~d. The following lemmas provide the basis for a 
PSPACE algorithm to check universality. 

For a cycle 5 in A/f, we say that  5 is good iff the infinite path 5 ~ is good. 

L e m m a  10. There is an accepting good path in A/f iff there are finite paths 
and ~ in J~, such that 

1. ~ is a path from the initial state to a green state s, and 
2. j3 is a good cycle starting at s. [] 

Intuitively, a cycle in A/[ is good if, starting at some global state which maps to 
a state in the cycle, there is no transition in that  cycle that  causes the count of 
processes in a specific local state to be "drained" (i.e. decreased monotonically) 
as the sequence of transitions along the cycle is executed repeatedly. For example, 
a self-loop with the transition label {(a, b)} will decrease the count of processes 
in state a with every execution of the transition, while one with transition label 

(a, b), (b, a)} may not. Notice that  in the latter case, there is a cycle a --+ b -+ a 
n the transition label considered as a graph. This presence of cycles in the 

transition labels is the intuition behind the characterization of good cycles of 
A4. 

x~ = { (A ,C) ,  (A,D) ,  ( B , D ) }  

(K, { I } )  0 ( ( /  A) (I  B) (K, {C, D}) 

F I G  2 : A p o r t i o n  of t h e  a b s t r a c t  graph for t h e  e x a m p l e  in F I G  I. 

To determine if such cycles are present, we resolve a cycle in 2~4 into a 
"threaded graph" (cf. [ES 95]) which shows explicitly which local user state in 
an abstract state is driven into which other local user state in the next abstract 
state. This information is obtained from the transition label. The  threaded graph 
is defined below: 
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D e f i n i t i o n l l .  T h r e a d e d  G r a p h  

Let 5 be a finite path in A4 with m states. Let the ith state of 5 be called 
si, and the ith transition be called Xi. For a state s = ((c, S), u) of ~4, let 
Ustates(s) = S. Define H5 to be the following graph : 

V(H~) = {(x,i) l i e [1..mlA x e Ustates(si)) 
E(H~) : {((z, i), (y, i + 1)) I i e [1..m - 1] A (x, y) 6 X{} . 
I f5 is a cycle, define G~ to be the graph where V ( ~ )  : V(H~), and E(g~) : 

E(H~) U {((x, m), (x, 1)) I x ~ Ustates(s~ )]. Note that  for a cycle 5, sl : sin. 
A graph is isolated iff its edge set is empty. For any directed graph G, let 

maxscc(G) be the graph representing, the decomposition of G into its maximal 
strongly connected components (sccs). 

V ( maxscc( G) ) = { C I C is a maximal strongly connected component of G} 
 (maxsce(V)) = {(C, D) I C, t (s, t! E(a)}  
We refer to vertices of maxscc(G) as max-scc s. It is a fact that  maxscc(G) 

is acyclic for any graph G. For any max-scc D in maxscc(G), define max-scc C 
to be above D if there is a path in maxscc(G) from C to D. 

The following figure shows the threaded graphs for the cycles N~ ~ N2 ~ N~ 

and N~ ~ N~ ~ N~ in figure 2: 

F I G  3a : Threaded  graph G5 for the  firs'~ cycle F I G  3b : Threaded  graph G5 for ~he second cycle 

L e m m a 1 2 .  5 is a good cycle in AJ iff maxsce(G~) is isolated. 

P r o o f  S ke t c h  
(LHS ~ RHS): Suppose that  maxscc(G~) is not isolated but 5 is good. Hence, 

there are max-scc's C and D such that  some pair of vertices (x, i) in C and (y, j )  
in D is connected in G~. For any n, consider an infinite path g in ~ .  such that  
%(e~) = 5~. We say that  a process with index l E [1..n] and local state al is in 
component F at the kth state in cr iff (a, k) E F.  

Let m be the number of states in 5. Starting with the ith transition in 
c~, at every mth successive transition, at least one of the processes m C, say 
one with index l, must change its local state from xl to yz. Thus, the count 
of processes in components above D decreases at each such step. As the max- 
scc decomposition is acyclic, this number cannot increase. Thus, eventually, the 
number of processes in components above D must become negative, which is 
impossible as cr is infinite. Hence, 5 is not good. 

(RHS ~ LHS): Suppose that  maxscc(G~) is isolated. For each max-scc of 
G$, construct a cycle in G~ that  includes each edge in that  component at least 
once. For each a E U, let m~ be the number of occurrences of the vertex (a, 1) 
in the set of cycles. Let n = Z~eum a. We will construct a path ~ in ~ such 
that 7n (c~) = 5"~. The idea behind the construction is to allot a set of processes 
for each constructed cycle, and to ensure that  each transition of every process is 
along the cycle that  it is alloted to. 

The inductive assumption is that  at the ith step (i < m), a path ~ has been 
constructed such that  ~(~r ~) is the prefix of 5.~ up to the ith state, and if s is 
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the last state of ~r', then #a( s )  is the number of occurrences of (a, i) in the set of 
constructed cycles. Hence, after m steps, the last state sm is a permutation of the 
first state sl. Repeating the construction at most n times produces a path or with 
last.state identical to sl, and such that  7~(ct) = cir. Thus, 7,~ (~r ~) = ($.~)~ = ~f.~, 
and so ~ is a good cycle. [] 

For a finite path a with m states in .A define ~ to be the relation over 
Su • Sv  where (a, b) E ~ iff there is a path from (a, 1) to (b, m) in g~ .  We say 
that  relation R is cyclic iff for every edge in the graph of R, there is there is a 
cycle in the graph that  includes that  edge. 

L e m m a  13. For a cycle ~ in Jv~ maxscc( G~ ) is isolated iff ~ is cyclic. [] 

T h e o r e m  14. Formula Ah is not universal iff there is a .finite path in Pet from 
an initial state to a green state and a cycle ~ from that state such that ~ is cyclic. 

P r o o f  Follows from Theorem 9 and Lemmas 12, 13. [] 
Let L be the maximum length of a guard in C and U processes. Note that  

L < ICl + IuI  

T h e o r e m 1 5 .  There is a nondeterministic algorithm to decide if a temporal 
property over computations of C is not universal which uses space O([Su[ 2 -b 
Iog(IScllS•[) + n). The algorithm uses space logarithmic in the size of A~. 
P r o o f  

By Theorem 14, a property Ah is not universal iff there is a finite path in .M 
to a green state and a following cycle ~ from that  state such that  ~ is cyclic. The 
algorithm "guesses" a path to a green state, and a cycle ~ from it, recording only 
the current state of M ,  and ~ for the prefix ~ of ~ that  has been examined. As 
(a; X; s) = ~ o X, ~ can be computed incrementally. 

Recording a state of.A~ takes space (log( Sc  |Sn D + t Su1) �9 Computing a suc- 
cessor state can be done in space proportional to (log[S~[ § log]Sol + log[Sv[ q- L) 
(as this requires checking if (c, S) [[ .- p for guards p). Storing 5 --7 takes space |Su 12, 
and checking if ~ is cyclic can be done within the same space bound. Thus, the 
overall space usage is O(ISuI 2 q- tpg([ScllSB[) -~- L). [] 

R e m a r k .  There are two special cases where the algorithm can be optimized. 
If the user processes are deterministic, every cycle ~ in ~4 is good (as G~ must 
be isolated). If the correctness property is a safety property, the algorithm need 
check only finite accepting paths, which are good by Lemma 8. In both cases, 
the check for good cycles can be eliminated, which is a substantial saving. [] 

A reduction from a generic PSPACE T~ring Machine shows that  checking if 
AG-,accept is not universal is PSPACE-hard. 

T h e o r e m  16. Deciding if a property over computations of C is not universal is 
PSPA CE- complete. 

C o r o l l a r y  17. Deciding if a property over computations of C is universal is 
PSPA CE-complete. 

The algorithm given above for determining if a property is not universal is non- 
deterministic and uses polynomial space. So, using Savitch's construction, there 
is a deterministic algorithm with time complexity 0 (2  k(lsvl2+z~ 
for some k. We present a "natural" deterministic algorithm with the same worst 
case time complexity in [Su[. Let K = IS~t  x 2 lsu]~ . The algorithm follows from 
this observation: 
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P r o p o s i t i o n  l8 .  I f  p is a finite path in Je[ from s to t of length greater than 
K,  then there is a path ~ from s to t in Ad of length at most K such that -~ = 5. 

P r o o f  
Define an equivalence relation on states s of p by si -- sj iff sl = sj and 

Xo o X1.  . .X i -1  = Xo o XI  . . . X j -1 .  Clearly there are at most K equivalence 
classes. So if the length of p is greater than K,  there must be distinct indices 
i and j such that  si =- sj. Assume that  i < j .  Then the path p~ formed by 
appending the suffix from sj to the prefix up to si is a path in 34 that  is shorter 
than the path p, and is such that  p~ = ~. Repeating this construction a finite 
number of times produces a path 5 with the desired properties. [] 

T h e o r e m  19. There is a deterministic algorithm to determine if a property is 
not universal with exponential worst case time complexity in [Su]. 

P r o o f  Ske t ch  
From Proposition 18, it suffices to look for cycles (in Theorem 14) of length 

at most K. This can be done using an iterative squaring of the transition relation 
of 34, with overall time complexity exponential in IScr]. [] 

5 Symmetry  reduction 

Let zr be a permutation over the set { 0 . . . n }  that  fixes 0. For a state s = 
(c, u l , . . . ,  vn) in ~n, the permuted state 7r(s) is defined by (7r(s))(i) = ai iff 
s(zr-l(i)) = ar-l(i) ,  for i E [0..n]. For example, the state (c, ul,v2, wa) under 
the permutation r -- {.(1 --~ 2).(, 2 --4 3)(, 3 --4 1)} becomes (c, wl, u2, v3). As 
r = r from Propos~tlon 1, the truth value of any guard is the same 
in both s and ~r(s). Hence there is complete symmetry among the user processes 
in any size instance of a (C, U) family, and the PMCP for formulae of type 
(2) and (3) reduces that  for formulae of type (1). The following lemmas are 
based on those in [ES 93, CFJ 93] (cf. [ID 93]) Let f ( i)  be a CTL* formula with 
propositions over the states of C and over the states of U indexed with i, and 
let f ( i ,  j) be a CTL* formula  with propositions over the states of C and over 
the states of U indexed with either i or j .  

Lemma20. Forn >_ 1, G~,~v~ ~ Ai f(i) iffG~,~ ~ f(1). 

L e m m a 2 1 .  For n >_ 2, G~,LU~ ~ Ai#j  f ( i , j )  iff 6,~,to~ ~ f(1,2) .  

Let CIU be the process where Sciu = Sc x Su, and (c, u)P~q' (c', u') E Rc lu  

iff c 4 c' E R c  and u 4 u' E Ru,  and p' (similarly q') is p (q) with every global 
condition (3i $(i)) replaced with g(O) V (3i g(i)), where propositions labeled by 
0 refer to the state of U in CIU. 

T h e o r e m  22. A property of the form Ai Ah(i) is universal for a (C, U) family 
iff Ah(0) is universal for the control process in the family (CIU, U). 

T h e o r e m  23. A property of the form Ai#j  Ah(i, j) is universal for a (C, U) 
family iff Ah(O, 0') is universal for the control process in the family ((CIUIU), U) 
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6 A p p l i c a t i o n s  

We have implemented this algorithm to verify a bus arbitration protocol based 
on the SAE J1850 draft standard [SAE 92] .for automobile applications. This 
is a protocol where many microcontrollers can transmit symbols along a shared 
single-wire bus in a car. As a consequence of this restriction, symbols are encoded 
by the width of a pulse. Nodes on the bus may begin transmitting different 
messages simultaneously; only the node with the highest priority message should 
complete transmission after the arbitration process. Symbol 0 has priority over 
symbol 1, and priority between messages over the alphabet {0, 1} is determined 
lexicographically. The microcontrollers are modeled as user processes, and the 
bus as the control process. The property which we have verified, using the result 
in Theorem 23, is that whenever two users begin simultaneous transmission of 
symbols 0 and 1 respectively, the user transmitting 1 continues transmission 
unless it loses arbitration. Hence, messages with lower priority cannot prevail 
over higher priority messages. 

We implemented the algorithm by generating SMV [McM92] code to describe 
the abstract process transitions, given a description of the next-state relation of 
the user and control processes. Since the correctness property is a safety property, 
we were able to simplify the implementation as described following Theorem 15. 
Each user process has about 50 states, while the control process together with 
the automaton for the property has about 400 states. Verification took less than 
a minute on a SPARC 5. We emphasize that this establishes correctness of the 
bus protocol for an arbitrary number of attached microcontrollers. 

7 C o n c l u s i o n s  a n d  R e l a t e d  W o r k  

A variety of positive results on the PMCP have been obtained previously. All of 
them, however, possess certain limitations, which is perhaps not surprising since 
the PMCP is undecidable in general (cf. IAK 86],[Su 88]). Many of the methods 
are only partially automated, requiring human ingenuity to construct, e.g., a 
process invariant or closure process (cf. [CG 87], [BCG 89], [KM 89], [WL 89]). 
Some could be fully automated "but do not appear to have a clearly defined 
class of protocols on which they are guaranteed to succeed (cf. [ShG 89], [V 93], 
[CGJ 95]). 

Abstract graphs (for asynchronous systems) were considered in [ESr 90] for 
synthesis, [V 93] for automatic but incomplete verification, and in [CG 87], where 
they are called process closures. Interestingly, [CG 87] show (in our notation) 

k k-~l that if, for some k, C II U II ,4 is appropriately bisimilar to C II U II .4, then 
it suffices to model check instances of size at most k to solve the PMCP. How- 
ever, they do not show that such a cutoff k always exists, and their method is not 
guaranteed to be complete. Pong and Dubois [PD 95] propose a similar abstract 
graph construction for verification of safety properties of cache coherence proto- 
cols. They consider a synchronous model with broadcast actions. Although sound 
for verification, their method appears to be incomplete. Lubachevsky [Lu 84] 
makes an interesting early report of the use of an abstract graph similar to a 
"region graph" for parameterized asynchronous programs using Fetch-and-Add 
primitives; however, while it caters for (partial) automation, the completeness 
of the method is not established and it is not clear that it can be made fully 
automatic. 

Our approach, in contrast, is a fully automated, sound and complete one (i.e.~ 
always generates a correct "yes" or "no" answer to the PMCP). Another such 
approach appears in [GS 92]. They also consider systems with a single control 
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process and an arbitrary number of user processes, but with asynchronous CCS- 
type interactions. Unfortunately, their algorithm has exponential space (double 
exponential time) worst case complexity. 

Our framework thus differs from [GS 92] in these significant respects: (a) 
the parallel composition operator is synchronous; (b) we permit guards test- 
ing "everywhere" conditions (i.e., of the form V/g(/)); (c) it is more tractable 
(PSPACE vs. EXPSPACE) 5 . Partial synchrony can also be handled in our frame- 
work. These factors permit us to represent a wider range of concurrent systems. 
For example, the bus protocol described in Section 6 relies on the ability to test 
everywhere conditions, which are not permitted in [GS 92]. There is a notewor- 
thy limitation in the modeling power of our present framework. Because of the 
covering lemma (Lemma 7), an algorithm for mutual  exclusion cannot be im- 
plemented in our model (cf. [GS 92]'s control process-free model), even with the 
control process. We suspect it is possible to overcome this restriction, and are 
working on it. 

Finally, it is interesting to note that  we can show that  for fully asynchronous 
computation (interleaving semantics), the PMCP for our model becomes un- 
decidable. This is shown by a simple simulation of a two counter machine by 
a (C, U) family. Essentially, the zero-test of a two counter machine can be ex- 
pressed as an everywhere condition, and increments can be encoded because 
precisely one process fires at each step in the computation. 

A c k n o w l e d g e m e n t s .  We would like to thank Carl Pixley of Motorola for sug- 
gesting the bus protocol example, and the referees for bringing [PD 95] to our 
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Abstract .  We develop a HORNSAT-based methodology for verification 
of finite state systems. This general methodology leads naturally to al- 
gorithms, that are local [25, 19], on the fly [28, 11, 13, 5] and incremental 
[24]. It also leads naturally to diagnostic behavioral relation checking 
[7] algorithms. Here we use it to develop model checking algorithms for 
various fragments of modal mu-calculus. We also use our methodology 
to develop a uniform game theoretic formulations of all the relations in 
the linear time/branching time hierarchy of [27]. As a corollary, we ob- 
tain natural sufficient conditions on a behavioral relation p, for p to be 
polynomial time decidable for finite state transition systems. 

1 Introduction 

We consider a number of problems related to the verification of finite state sys- 
tems which include model checking for variou s fragments of modal mu-calculus 
[15] and checking behavioral relations [10] with diagnostic information. We out- 
line a methodology for solving these problems, based upon efficient local reduc- 
tions to satisfiability problems for simple variants of HORN formulas. We use 
our methodology to develop local, on the fly and incremental algorithms and to 
generate diagnostic information for these problems. Our algorithms are asymp- 
totically as efficient as other specific algorithms in the literature for the problems 
considered. The desirability of local, on the fly, and incremental verification al- 
gorithms and algorithms for generating diagnostic information has been widely 
discussed [28, 5, 7, 13, 17, 18, 11, 10, 1, 24, 25, 8, 7]. However, previous algorithms 
proposed in the literature have only some of these advantages and only apply 
to some of the verification problems considered here. Our uniform methodology 
combines all these advantages in the same solution. Another advantage of our 
methodology is that  efficient data  structures and algorithms for the appropriate 
satisfiability problems for HORN formulas already exist in the literature [12, 3]. 

Our methodology is based upon efficient local reductions of the problems con- 
sidered to the minimal and maximal satisfiability problems, for weakly positive 

* This research was supported by NSF Grants CCR-90-06396 and CCR-94-06611. 
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and weakly negative [21] Horn formulas. We call these satisfiability problems 
minimal-HORNSAT and maximal-NHORNSAT respectively. In fact, restricted 
forms of these Horn formulas are enough for some of the problems. In Sections 
2-4, we outline our (N)HORNSAT-based algorithm for model checking, for the 
alternation-free modal mu-calculus. We show that this algorithm is a simpli- 
fication of the algorithms in [19, 1] involving solutions of systems of Boolean 
equations. (Recall that [19] involves consistent and factual solutions of Boolean 
equation systems and [1] involves maximal and minimal fixed points of Boolean 
equation systems.) 

In Section 5, we use our (N)HORNSAT-based methodology to define a class of 
games, that includes the characteristic games for each of the behavioral relations 
in the linear-time/branching-time hierarchy of [27]. As a corollary, we get natural 
sufficient conditions, for a behavioral relation on finite state processes to be 
polynomial time decidable. 

In [22], we show in details, how our (N)HORNSAT-based methodology can 
be used to develop efficient algorithms for diagnostic behavioral relation checking 
and model checking for the modal mu-calculus. 

The" main advantages of our methodology may be summarized as follows. 
First, it shows that the underlying combinatbrics for a number of verification 
problems and their proposed solutions is essentially very simple. Second, it turns 
out that an efficient verifier can be based on an implementation whose core con- 
sists of a solver for (N)HORNSAT which runs in linear time, which can run 
on the fly for space efficiency, and can run incremeutally (e.g., using simple 
modifications of the incremental BORNSAT algorithms given in [3]). Third, the 
fact that efficient solutions for HORNSAT and its variants already exist in the 
literature [12, 3] and tha t  many important verification problems are reducible 
to those variants of BORNSAT makes the implementation of verification tools 
easier. Moreover, it relieves the designer of the verifier from the obligation of 
reinventing complex data structures which already exist in the literature on 
BORNSAT. Many model checking algorithms in the literature involved invent- 
ing complex new data structures~ whereas existing efficient data structures for 
solving variants of HORNSAT are sufficient to obtain the same efficiency. More- 
over, this approach leads to modular design, because the efficient implementa- 
tion of HORNSAT solver can be delegated to a different designer. In [16] a data 
structure for a linear time algorithm for determining functional dependencies 
in relational databases [4] was reused to obtain a model checking algorithm for 
CTL. It is interesting to note that functional dependency is also reducible to 
BORNSAT, and in [3, 2] the same kinds of data structures are used to solve 
them in linear time. 2 In [!] the model checking problem for mu-calculus was 
reduced to finding fixed points of system of Boolean equations; and complex 
graph-based data structures were invented for efficiency. Our results show that 

2 However, (N)HORNSAT captures the essence of these problems more directly and 
intuitively. Moreover, efficient data structures for solving (N)HORNSAT are eas- 
ily implementable. Also, HORNSAT based methods are directly implementable in 
DATALOG. 



101 

the full power of Boolean equations are not needed to solve these problems. 
Fourth, we identified many easiness results in the area of model checking and 
verification as a consequence of the corresponding easy instances of NHORN- 
SAT. For example, after characterizing special cases of HORNSAT which have 
NC algorithms, we could strengthen the results in [29] by characterizing cases 
when the model checking problem is in NC. 

2 Satisfiability Problem for ( N ) H O R N S A T  

We consider special instances of CNF satisfiability problems, namely HORNSAT, 
where each clause contains at most one positive literal, and NHORNSAT, where 
each clause contains at most one negative literal. We are interested in finding 
maximal and minimal satisfying assignment (if one exists) respectively. 

An instance of the problem is presented as a pair (X,C) ,  where 
X = {xi, x2, ..., xn}, a finite set of propositional variables which take Boolean 
values, and C = {C1, Co., ..., C,~}, a set of clauses with one of the restrictions 
discussed above. Note that  if an instance has a satisfying assignment, such an 
assignment can be represented as an element "of an n-dimensional Boolean lat- 
tice {0, 1} '~. If we consider 0 < 1, then with a component-wise extension of the 
ordering, and a component-wise A and V as meet and join operation, we get a 
complete lattice. For an instance of a satisfiability problem h, we denote the set 
of all satisfying assignments as SAT(h)  C_ {0, 1}% An element x E SAT(h)  is 
minimal, if no other y E SAT(h)  is less than x in the ordering of {0, 1} n. Dually, 
an element x E SAT(h )  is maximal, if no other y E SAT(h)  is greater than x 
in the ordering of {0, 1} n. We call the problem of finding the maximal satisfying 
assignment for an NHORNSAT instance as the maximal-NHORNSAT problem, 
and the problem of finding the minimal satisfying assignment for a HORNS.AT 
instance as the minimal-HORNSAT problem. 

A linear t ime algorithm for minimal-HORNSAT appears in [12]. Dually the 
maximal-NHORNSAT is also solvable in linear time. 

In some of our applications we have a special type of HORNSAT or NHORN- 
SAT instances. Here we discuss that  special type of NHORNSAT, called rooted 
NHORNSAT.  The corresponding cases and algorithms for HORNSAT are very 
similar. 

D e f i n i t i o n  1. Given a clause C~ of the form xj ::~ ViEI Xi, where I is an index 
set possibly empty (note that  the disjunction Vie1 xi = true when I = r we 
call xj the h e a d  of clause C~, denoted as head(C~) = xj ,  and ~/ist xi the ta i l  
of Ck. Any variable xi appearing in tail(Ck), is called a disjunct in the tail. 

Note that  for a clause of the form Ck = x--f, head(Ck) = xj and taiI(Ck) = 
false.  Similarly, for a clause of the form Ck = xj,  head(C~) = true and 
tail(Ck) = xj .  

D e f i n i t i o n 2 .  An instance of a rooted N t t O R N S A T  problem is of the form 
(X, C, xl) where (X, C) is an NHORNSAT instance and the clauses in C are 
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ordered. Also. C1 = xl  (a single positive literal clause), where xl E X. Further- 
more, for each clause Ck, ifhead(Ck) = ~ej then there must be a clause Ct(l < k) 
preceding Ck, such that  xj is a disjunct in tail(Cl). Also for a single literal clause 
Ck -- xp (k  > 1), xp must also be a disjunct in tail(Q) for some l < k. and xp 
cannot be the head of any clause. 

The correctness of our (N)HORNSAT based methodology for model checking 
can be demonstrated easily by showing the following. There is a local reduction 
(see the proof  sketch of Theorem 3 below) between the (N)HORNSAT based 
methodology and the methodologies in [19, 1] based upon systems of simple 
Boolean equations. The (N)HORNSAT based approach has the advantage that  
efficient algorithms and data  structures for (N)HORNSAT are already available 
in the l i terature [12, 3]. The soundness and completeness of our methodology 
follow easily from the following theorem and its extensions to the results in [1]. 

T h e o r e m  3. The factuality problem and *he consistency problem of system of 
simple Boolean equations described in [19] and the class of minimal-HORNSAT 
and maximal-NHORNSAT problems we consider, are locally and efficiently in- 
terreducible. 

P r o o f  ske t ch :  a Given a system of simple Boolean equations, if we are interested 
in factuali ty [19], we replace 

an equation of the form z = true by a single literal clause x, 
an equation of the form x = false by a single negated literal clause g, 
an equation of the form x = xt Ax2 by a clause ~ *= xl Ax2, and 
an equation of the form x = xl V x2 by two clauses x r xl and x ~ x2. 

It is easy to prove that  the variables which are assigned a value 1 in the mini- 
mal satisfying assignment for this HORNSAT instance are the factual variables 
of the original Boolean equational system. Since, we are considering minimal- 
HORNSAT, the implications can replace the equalities. Given this, duality im- 
plies that  the consistency problem of [19] can be reduced eff• and locally 
to the maximal-NHORNSAT problem. 

Similarly, the problems of finding the least and greatest fixed points of the 
Boolean equations of [1] can be reduced to minimal-t tORNSAT and maximal- 
NHORNSAT respectively. Details are omitted due to lack of space. 

3 On the Fly, Local and Incremental Model Checking 

Local Model  C h e c k i n g  : A local model checking algorithm does not explore 
all the states of the finite state system, if not required. It tries to explore only a 

3 Given a set E of Boolean equations over a set of Boolean variables in V, the factuality 
problem is to find F C_ V such that z E F if and only if x is set to true in every 
model of E. The consistency problem is to find C C_ V, such that z E C if and only 
if there exists a model of E in which x is set to true. 



103 

minimal set of states and determines whether certain properties are true in those 
states in order to infer that a given property is true in a given state. The tableau 
based methods in [18, 25, 6] are examples of such local algorithms for model 
checking. Our (N)HORNSAT based method achieves this objectives naturally. 
Given a fix point formula ~, and a state s* of a finite transition system, suppose 
we want to determine if s* satisfies r We generate (N)HORN formulas roughly 
as follows: We use a Boolean variable Yf, and create clauses such that s satisfies 
r if and only if Y~r is true in the (maximal) minimal satisfying assignment of 
the (N)HORNSAT instance. 

On the  F ly  Mode l  Checking : In [28, 11, 5, 16, 13] on the fly model check- 
ing and behavioral relation checking have been emphasized. In an on the fly 
algorithm the state space is constructed on demand, hence the verification takes 
place together with the construction of the state space. In our (N)HORNSAT 
based approach, on the fly algorithm is obtained naturally because of the existing 
on the fly or online algorithms for (N)HORNSAT [3] and some minor improve- 
ments on them. Our reduction to (N)HORNSAT can be done in NLOGSPACE 
and on the fly algorithm for HORNSAT works in O(q) amortized time, where 
q is the size of each new clause generated. Sirice the size of the (N)HORNSAT 
instance created is linear in the product of the size of the transition system and 
the specification in the case of model checking, and product of the sizes of the 
two transition systems in case of relational checking, we might use in the worst 
case, linear space and linear time in those measures. For on the fly behavioral re- 
lation checking this is an improvement over [13] which requires quadratic time in 
these measures for behavioral relation checking. However, in most cases, counter 
examples are found after constructing substantially less number of clauses. 

I n c r e m e n t a l  Model  Checking : In [24], an incremental algorithm for model 
checking alternation free mu-calculus was developed. The basic idea was the 
following. When transitions are added or deleted from the transition system, an 
incremental algorithm exploits the information available from the previous runs 
of the model checking algorithm. It carries out minimal computation so that 
the model checking problem with respect to the changed transition system is 
solved in time O(A), where A is a measure of changes in the transition system. 
It has been pointed out [24] that in the worst case, this may not be possible. 
However, in the best case and more importantly, in many pragmatic situations 
the incremental computation could be linear in the size of the modification. Since 
the online algorithm for HORNSAT [3] is incremental and since the modification 
in the transition system will be reflected in tile changes in the corresponding 
(N)HORNSAT instance, we can now directly obtain incremental algorithms for 
all the problems considered in this paper. 

Note:  The equational syntax of modal mu-calculus used in the subsequent sec- 
tions is taken from [10]. Due to lack of space, the syntax and semantics could 
not be discussed and the readers are referred to [10, 22]. 
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4 Model  Checking Fragments of Modal Mu-Calculus 

Our. m e t h o d o l o g y  can be extended to apply to full Mu-Calculus  [15, 6], by using 
the model  checking a lgor i thm for the al ternation-free f ragment  as a subroutine,  
as in [9] wi th  the same efficiency as in [9]. Here we, i l lustrate our me thods  th rough  
its appl ica t ion to the unnested single fixed point f ragment  (which is similar to 
the Hennessy-Milner  Logic with recursion [17, 18]) and to the al ternation-free 
mu-calculus,  as discussed in [10]. 

M o d e l  C h e c k i n g  f o r  S i n g l e  F i x  p o i n t  M u - C a l c u l u s  t o  ( N ) H O R N S A T  
For each s ta te  s E S of  the given finite s tate  sys tem q" and each variable X i  of 
the equat iona l  specification, we associate a boolean variable y x , .  Recall, in the 
single f ixpoint  calculus,  there is a single block of  equat ions which is either a max 
block or a rnin block. 

We consider the case when the block is a max  block B = m a x { E }  where 
E = {X1 = r  ..., X• = ~,~}. A dual izat ion will hold for rain blocks. 

Here, the mode l  checking problem is to determine if s* e IIXilllisilo, for 
a given t rans i t ion  sys tem T = (S, Act ,--*i ,  for an initial envi ronment  e, and 
s* E S .  

The  reduct ion  proceeds as follows: 

1. Create a variable yx~ and put the variable y x~ in a queue. 

2. For each variable of the form y x j  on the queue, such that X~ appears in 
the left-hand side of an equation ~ in B 

(i) If 6 is Xj - A where A is atomic, then create a clause ~A if A is 
true at s else create a clause ~A. (This information is obtained from 
the valuation map associated with the model.) Put the variable y A 
in the queue if this variable was  never on the queue before. 
(ii) If ~ is Xj = Xp v Xq, then create the clause 1~ xi - -  y xp v 1r xq 

and put the variables yXp and yxq  into the queue, if these variables 
were never on the queue before. 
(iii) If ~ is G = x ,  f X~, then create two clauses ~x'j  - yXp and 
y x j  --, y x ,  and put the variables y X~ and IG xq into the queue, if 
they were never on the queue before. 
(iv) If ~ is X i = (a)Xp, then create a clause of the form yXi  
V d e a ( , ) Y S  ~ where a(s) = {s']  Bs':  s & s'}. When a(s) is empty, 

the disjunction is equivalent to false. Put the variables y xp on the 
queue if they were never on the queue before. 
(v) If a is Xj  = [a]X m then create clauses of the form Ys xi - -  y Xp 

for each s' E a(s) where a(s) = {s' I Bs ' :  s -5 ~ s'}. Put the variables 
],:x'p on the queue if they were never on the queue before. When a(s) 

is empty, create the single literal clause ],~x'j. 

3. If Ys xi is in the queue and if Xj  does not appear on the left hand side in 

B, then if s E e(Xj) ,  add a single literal clause Y~ xi else add the clause yX; .  
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This will produce an NHORNSAT instance, of the size linear in the product  
of the size of the transit ion system and equational block B. We now state  the 
theorem sta t ing the correctness of the reduction. The correctness of the model 
checking a lgor i thm obtained this way fol lowsfrom the discussions in section 2. 

Let s E $ is a s ta te  in the given finite state transit ion system T = (S, Act, --+). 
Let Xi be a variable in the equational block used in specifying a proper ty  using 
the syntax  of [10] and let the initial environment be e. Suppose the block speci- 
fying the formula  is a max  block, B = max{E} where E = { X i  = ~31, ..., Xn = 

T h e o r e m 4 .  I f  h is the instance of NHORNSAT produced by the algorithm de- 
scribed above from the given model checking problem (if s* E I[Xi[[IIBll,), then 
h is satisfiable and in the maximal satisfying assignment of h, y xi = 1, if and 

o ly e IIX lltiBll=. 

The dual of  the above theorem holds for min blocks. Which means tha t  in the 
minimal  solution of the HORNSAT iristance produced in tha t  case, Yfl~ = 1 if 
and only if s* E [[Xi[[IIBII~ This gives us a linear t ime algori thm for the problem. 

A l t e r n a t i o n  f r e e  m u  c a l c u l u s  : Now we generalize the algori thm in the pre- 
vious section, to obtain a (N)HORNSAT based algori thm for the model checking 
of al ternat ion free mu-calculus. A linear t ime algori thm for the same problem 
was presented in [10]. Their  algorithm needed to invent an efficient da ta  struc- 
ture to obta in  the linear t ime algorithm. Our method brings out the fact that  
the essential da ta  structure necessary to obtain the linear t ime algori thm for 
model checking is in fact the same as in [12] for the linear t ime algori thm for 
H O R N S A T / N H O R N S A T  

Given a Transi t ion system T, .a valuation map  v, an initial environment  e, a 
blockset B, the model checking problem is to decide if s* E lIxillllBll~, for a given 
s tate  s* in the transit ion system and a given variable Xi appearing on the left 
hand side of  some equation in some block Bl in B. 

Briefly, the steps in the (N)HORNSAT based version of the algori thm for 
model checking al ternation free mu-calculus are as follows: 

1. Create a variable Ys xl and put the variable y Xl in the queue associated 
with the block Bl where Xi appears on the left hand side. 
2. Expand the variables in the queue assodated with each block, in the reverse 
topological order, 4 with the following rules: 
If the block is a max block then use the methods described in the previous 
subsection and if the block is a min block use a dual approach. Keep the 
NHORN or HORN clauses for each block separated. If new variable Y x1 is 
generated and Xj belongs to a different block B , put that variable in the 
queue associated with block B. 

4 Given B, the block set, topologically sort the blocks in B with respect to the variable 
dependency relation depicted in block graph. Let B1, B2, ..., Bm be the set of blocks 
in the topologically sorted order. 
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If the a variable ~ xi in the queue for a block B is already expanded then 
remove it from the queue otherwise expand it. 
3. Start solving the minimal-HORNSAT/maximal-NHORNSAT instances cor- 
responding to each block in the topological order. Let hB be the HORNSAT/ 
NHORNSAT instance corresponding to block B. Suppose a variable Yff~ was 
assigned a value 1 in the solution of a hB (where Xj appears on the left hand 
side in B) then add a clause yXj in the (N)HORNSAT instances correspond- 
ing to the blocks which had to put this variable in the queue of the block B 
(This information can be read off the block graph also). If Yff~ was assigned 
a value 0 in the solution of a hB (where Xj appears on the left hand side in 

w ~  

B) then add a clause ],~xj in the (N)HORNSAT instances corresponding to 
the blocks which put this variable in the queue of the block B. Then continue 
solving the next block HORNSAT instance. 

Suppose the block B corresponding to Xi, is a max block. (A Dual strategy holds for 
the rain blocks). The maximal-NHORNSAT instance for the block B is satisfiable and 
y~x~ = 1, in the maxima] satisfying assignment, if and only if s* e I[X~llliBll,. 

Note that  this algorithm produces a sequence of HORNSAT and NHORN- 
SAT instances and it is local and it can be made into an On the fly algorithm by 
noting that  one can use the on the fly algorithm for each HORNSAT instance. We 
state the theorem about the correctness and efficiency of the algorithm sketched 
above with out proof. 

T h e o r e m  5. The algorithm for model checking alternation free ran-calculus ob- 
tained by reducing the problem to a sequence of minimal-HORNSAT and maximal- 
NHORNSAT problems runs in time linear in the product of the sizes of the tran- 
sition system and the block set specifying the property. Hence the HORNSAT 
based algorithm is as efficient as the algorithm in [10]. 

We also have developed HORNSAT based methods to capture the tableau 
based local model checking in [8] and [25 I. Details will appear in a future version 
of this paper. 

5 G a m e  f o r  r o o t e d  ( N ) H O R N S A T  a n d  S t i r l i n g  G a m e s  

In [23] we show that many relational problems are also directly, locally, and 
natural ly reducible to rooted NHORNSAT. Hence, given a two-player game for 
rooted NHORNSAT, we can easily associate games to all these relations as well. 
However, our objective is to obtain a sufficient characterization of various process 
algebraic behavioral relations, which helps us identifying whether a particular 
relation p, between finite transition systems is polynomial time decidable. In 
what follows, through a game theoretic formulation (similar to [26] where a 
characteristic game [or bisimulation was defined,) we fulfill this objective. Such 
a natural  sufficient characterization is really useful in identifying a polynomial 
t ime decidable relation when the definitions of the relations are complicated. '~ 

5 In [14], J. F. Groote who originally defined 2-nested simulation a.nd k-nested simu- 
lation conjectured that deciding these relations must be NP-hard. However, by our 
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G a m e  for  rooted N H O R N S A T :  Game for an instance of a rooted NHORN- 
SAT instance h = (X, C, xl) is a two player game Gh in which player I (the 
spoiler) wants to show that  the instance h is not satisfiable and Player II (the 
duplicator) wants to show otherwise. The game proceeds in rounds. The spoiler 
opens the game by choosing a clause C~ such that  head(Ci) = Xl. Duplicator 
reciprocates by choosing xij such that  xij is a disjunct in tail(Ci). In subsequent 
rounds, the spoiler chooses a clause Ck such that head(Ck) = xij where xij was 
the duplicator's choice in the previous round. The duplicator has to reciprocate 
by choosing a disjunct in the tail of Ck. The game continues until one of the 
player loses. The duplicator loses if it does not have such a disjunct to choose (i.e, 
when the spoiler has chosen a clause of the form ~7 in its last move), the spoiler 
loses when the game continues for ever (which is not possible in a finite size 
NHORNSAT instance) or when the spoiler chooses a clause chosen earlier. The 
following theorem states that  the game we defined above, is indeed characteristic 
for rooted-NHORNSAT. 

T h e o r e m 6 .  Given an instance h = (X, C, Xl) of the rooted NHORNSAT prob- 
lem, the duplicator has a winning strategy 6 in the corresponding game if and 
only if h is satisfiable. 

St i r l ing  Class  o f  G a m e s :  Now we describe a class of two player games called 
the Stirling Class. In this class, player I (the duplicator or prover) and player II 
(the spoiler or disprover) plays on two Finite transition systems. Each game in 
the class has the following components: 

Two Finite Transition systems T1 = 1 and T2 = 2; Two languages R1 C_ 
A* and R2 __A*; Two total relations rn2 _C R1 • A* and m2 C R2 • A*; 
A set of (winning positions) F C S1 • $2; A set of starting positions 

C F C_ St x $2; A set M C {1,2} which denotes the indices of 
the coordinate of a posi t ion4hat  spoiler can play on. In each round 
the duplicator plays on the other coordinate; and, A positive integer r 
denoting the number of rounds allowed in the game. This is crucial for 
some of the games. 

The game starts in a position (s,t  I E s A play of the game is a finite or 
infinite length sequence of the form (s~, s~), ..., (s~, s/2), .... The spoiler wants to 
show that there is a difference between the two transition systems (the kind of 
difference it wants to show depends on the relation the game corresponds to). 
The duplicator wants' to show that  such a distinction attempted by the spoiler 
is not possible. A partial play in a game is a prefix of a play of the game. Let 7rj 
be a partial play (s~, s2), ..., (s), s~). The next pair 1 2 (sj+l, sj+l) is determined by 
the following move rule: 

i : : : ~  i U. The Spoiler picks a triple (i,x,u} such that i E M and x E R/and s i 
(Note that ==~i denotes an extended step in the transition and u = sj+l. 

system T/). 

characterization it is easy to see tha.~; they are polynomial time decidable. Moreover, 
many other relations such as ~-nes ted  relations[20] were shown to be polynomial 
time decidable this way. 

6 For the definition of winning strategy, see next subsection 
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�9 Let the choice of the spoiler in the move be (i ,x,u) and let i j r i. Then 
i I 

the Duplicator picks a pair (y, u ') such that (x, y) E me and sj ==~,, u' and 
i I 

U I ~ S j . . k l .  

Extending a partial play ,xj to ~rj+l by the above move rule is called a round 
of the game. Hence a play can be thought of as a sequence of rounds. 

The duplicator wins the game if either in the last position of the play, there 
is no further allowable move by none (when M = {1, 2} ) or there is no further 
allowable move by the spoiler(when [M I = 1), depending on the cardinality of the 
set M. Duplicator also wins~ if in the play a position is repeated. In both cases, 
the spoiler has failed to expose a distinction between the transition systems. The 
spoiler wins, if in the last position of the play is not a winning position which 
means the spoiler has been able to force the duplicator to a non winning position 
of the game or if in the last position, the spoiler has an allowable move but the 
duplicator does not have a matching move. A strategy for a player is a set of 
rules which tells h im/her  how to make a move depending on the partial play 
and opponent 's  move so far. 

A strategy is a winning strategy for a player, if playing with that  strategy, 
that  player wins against all possible strategies of the opponent.  

D e f i n i t i o n T .  A game G in Stirling class is called a characteristic game for a 
relation R between two finite state processes, if the following condition holds. Let 
the game G be played on two transition systems T1 and T~ and the duplicator 
has a history free winning strategy if and only if T1 and T2 are related by the 
relation R. 

Here, we illustrate characteristic games for bisimula~ion, weak bisimulation, and 
Failure equivalence. We assume in the following that  all the games are being 
played on/"1 = 1 and T2 = 2.7 
C h a r a c t e r i s t i c  G a m e  fo r  B i s i m u l a t i o n  : B s i m -  game is a game in Stirling 
class with the following parameters: R1 = /~2 = A, ml ,  m2 = t, P = $1 • $2, 
S = {(sl ,s2)},  M = {1,2),  r =[ 5:1 [* IS2 ]+1 .  
C h a r a c t e r i s t i c  G a m e  Fo r  W e a k  B i s i m u l a t i o n :  W e a k B s i m -  game is a 
game in Stifling class with the following parameters: R1 = R2 = r*A~'*, ml(a) = 
v*ar*,m2(a) = r*ar*Va E A, r = $I • So., Z = {(sl,s2}}, M = {1,2}, r =1 

l* Is2 l+1. 
C h a r a c t e r i s t i c  G a m e  For  Fa i l u r e  E q u i v a l e n c e :  Fai lu re -  game is a game 
in Stifling class with the following parameters: /~1 = R2 = A*, ml ,m2  = ~, 
r = {(s,t)  I s E S~,t e S2 AFailur~s(s) = Fad:lures(t)}, Z = {r 
M = { 1 , 2 } , r  = 1. 

For each relation R, in the l inear-t ime/branching t ime hierarchy, and its 
characteristic game GR, the following theorem can be proved easily. 

T h e o r e m  8. Let T1, T2 be two transition systems and let GR be the instance of 
the characteristic game for a relation R, such that the game is played on TI and 

z Note that ~ denotes the identity relation. 
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T~.. The duplicator has a winning strategy for this instance of the game GR if 
and only if R holds between the given two transitions systems. 

For a certain subclass of Stirhng class, the problem whether the duplicator has 
a winning strategy is directly reducible to rooted NHORNSAT problem. Hence, for 
any behavioral relation, whose characteristic game is in this subclass, the problem 
of checking that relation between two finite state transition systems is reducible to 
the rooted NHORNSAT problem. This leads to a polynomial time algorithm for the 
problem of checking that relation, provided one can create the instance of the game 
from the instance of the relational problem in polynomial time. For all the games in 
Stirhng Class, given that the transition systems are represented as finite state systems, 
the transformation to game instance is polynomial time, provided that the winning 
positions can be decided in polynomial time. Hence, we get a sufficiency condition as to 
under what condition a behavioral relation between finite state processes is polynomial 
time decidable. 
A Subc las s  o f  S t i r l i ng  Class  We now briefly give a sufficient characterization as 
to when a game in Stirhng Class is reducible to an instance of rooted NHORNSA.T in 
polynomial time. 
I. R1 and R2 are finite and exphcitly enumerated. For example, in bisimulation game 
R1 = R2 = A, where A is the set of action symbols. 
2. The representation of the set of winning positions is either by an explicit listing or 
is a polynomial time decidable set. 

A c k n o w l e d g e m e n t s :  We wish to thank Rajeev Alur, S. S. Ravi, and Moshe Vardi 
for helpful discussions. 
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Verifying the SRT Division Algorithm Using 
Theorem Proving Techniques 

E. M. Clarke* S.M. German** X. Zhao* 

Abstract. We verify the correctness of an SRT division circuit similar 
to the one in the Intcl Pentium processor. The circuit and its correct- 

ness conditions are formalized as a set of algebraic relations on the real 
numbers. The main obstacle to applying theorem proving techniques for 
hardware verification is the need for detailed user guidance of proofs. We 
overcome the need for detailed proof guidance in this example by using a 
powerful theorem prover called Analytica. Analytica uses symbolic alge- 
bra techniques to carry out the proofs in this paper fully automatically. 

1 Introduct ion 

Proving the correctness of arithmetic operations has always been an important 
problem. The importance of this problem has been recently underscored by the 
highly-publicized division error in the Pentium processor [14]. Some people have 
estimated that  this error cost Intel almost 500 million dollars [t]. In this paper, 
we verify a division circuit [16] that  is similar to t he  one used in the Pentium. 
The circuit uses a radix four SRT division algorithm that looks ahead to find the 
next quotient digit in parallel with the generation of next partial remainder. An 
8-bit ALU estimates the next remainder's leading bits. A quotient digit look- 
up table generates the next quotient digit depending on the leading bits of the 
estimated remainder and the leading bits of the divisor. 

In our approach to verification, we formalize the circuit and its correctness 
conditions as a set of algebraic relations over the real numbers [9]. These alge- 
braic relations correspond closely to the bit-level structure of the circuit, and 
could have been generated mechanically from a hardware description. Most of 
the hardware for the SRT algorithm can be described by linear inequalities. This 
led us to experiments [9] in which we proved properties of the SRT hardware us- 
ing the Maple symbolic algebra system and its Simplex algorithm package. 

We now have a fully automatic approach, where the correctness of the cir- 
cuit is proved using a powerful theorem prover called Analytica [6] that  we have 
developed. Analytica is the first theorem prover to use symbolic computation 
techniques in a major way. It is written in the Mathematica programming lan- 
guage and runs in the interactive environment provided by this system [18]. 
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Compared to Analytica, most theorem provers require significant user interac- 
tion. The main problem is the large amount of domain knowledge that is required 
for even the simplest proofs. Our theorem prover, on the other hand, is able to 
exploit the mathematical knowledge that is built into the symbolic computation 
system and is highly automatic. 

The work that is most closely related to ours is by Verkest et al [17], who 
have verified a nonrestoring division algorithm and hardware implementation 
using the Boyer Moore theorem prover [5]. The circuit they consider is much 
simpler than the one we verify. The main difficulty in verifying our circuit is 
in showing that the estimation circuit and the quotient lookup table give the 
correct quotient digits. In contrast, their circuit computes the quotient in radix 
2, and does not speed up the computation by estimating the partial remainders. 
Another project by Leeser et al [11] verifies a radix 2 square root algorithm and 
hardware implementation. This work is similar to [17] and does not involve the 
design features that make fast division circuits difficult to verify. Although we 
prove the correctness of a relatively complicated circuit, our use of symbolic 
computation techniques allows us to carry out the proof automatically. 

Due to space limitations, the paper in this volume of conference proceedings 
is abridged. A more complete version is available on request from the authors. 
The complete paper has several appendices. In one appendix, we develop the 
specification of the SRT circuit in greater detail than we can here, and discuss 
the convergence of the quotient calculation. Other appendices shows the input 
to the theorem prover and part of the generated proof. 

2 T h e  S R T  D i v i s i o n  A l g o r i t h m  a n d  C i r c u i t  

2.1 F loa t lng-Poin t  Numbers  and  Floa t ing  Division 

Under the IEEE arithmetic standard, a normalized floating point number has 
the form sign. significand. 2 ~zpo~ent, where sign is one bit representing 4-1, the 
significand is a rational number in the range 1 < significand < 2, and ezponen~ 
is an integer. Certain values, such as 0, have special representations under the 
standard. Hardware circuits for floating-point arithmetic are usually organized 
into two parts: a normalization circuit and an arithmetic core, which performs 
arithmetic operations on the significands of the normalized numbers. The circuit 
that we consider in this paper is the core of a floating point division circuit. A 
separate circuit handles the signs and exponents. 

There are several ways to interpret the arithmetic operation performed by 
the hardware of the core. One way is to consider it as an operation on scaled 
integers. In this paper, we interpret signals in the division core as arbitrary real 
numbers, and develop our proof using algebraic theory that holds for all the 
reals, not just the values that can be represented in a certain number of bits. 
One advantage of our approach is that our specification and correctness proof 
are independent of the hardware word length; that is, we prove the correctness of 
the SRT division circuit for all word lengths n > 8 bits, without having to induct 
on word length. Note that this approach is sound but may not yield a proof 
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in all cases. It is possible, for example, to design a floating-point circuit whose 
correctness depends on the fact that only a finite set of values is represented. 

2.2 Long Division 

The idea of the division algorithm is to compute a sequence of quotient dig- 
its q0, ql, . . . ,qrn-1, such that the significand of the quotient is the numeral 
qo. q l " " q m - 1 .  In order to compute the quotient digits, the algorithm computes 
a sequence of p a r t i a l  r e m a i n d e r s  p~ according to the recurrence 

Po = D i v i d e n d ,  

p j + l  = r . ( p j  - qj  �9 D i v i s o r ) ,  for j = 0 , . . . ,  m - 1, (1) 

where r is the radix of the representation of the quotient. 
The running time of the division algorithm depends on the number of iter- 

ations of (1) and the time needed for each iteration. The number of iterations 
needed to compute the quotient to a given number of bits b of accuracy depends 
on the radix r. If the quotient is represented in radix 2, b iterations will be 
needed, because each iteration produces only one bit of the quotient. 

In practice, radix 4 is often used in hardware division circuits because only 
b / 2  iterations are needed and the calculations on each iteration can be performed 
quickly in hardware. Each iteration involves two multiplications and a subtrac- 
tion, assuming qj is known. In radix r - 4, both of the multiplications can be 
implemented by fast hardware that simply shifts one of the operands to the left. 
For example, the multiplication by r can be computed by shifting two bits to 
the left. Also, the multiplication by qj can be clone by shifting when the value of 
qj is 0, 1, or 2. In the case that qy = 3, there is a potential problem because mul- 
tiplication by 3 cannot be done in this way. We will see, however, that the SRT 
algorithm uses a representation of the quotient digits that avoids this problem. 

The subtraction operation in (1) dominates the time needed for each itera- 
tion. For double precision arguments, a 64 bit subtraction must be performed 
on each cycle. 

The basic idea of the SRT algorithm [2] is to arrange the computation so 
that the quotient digit selection can be done in parallel with the long subtraction 
operation. Referring to the basic recurrence (1), it is clear that the choice of qj 
depends on the value of pj. 

In order to carry out quotient selection concurrently with the computation 
of pj, the SRT algorithm allows the choice of the quotient digit at each step to 
be inemgct. In simple long division, the quotient digit qy is chosen at each stage 
so that 0 _< qj _< r - 1 and 0 <. p j  - qj �9 D i v i s o r  < D i v i s o r .  At each step of 
the computation, there is a unique choice of qy that will keep the next partial 
remainder in the desired range. 

The SRT algorithm computes an estimate of pj while the full sUbtraction is 
in progress. The estimated value of pj is used to select a quotient digit, but the 
estimate is not precise enough to guarantee that the exact quotient digit will 
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be selected. Intuitively, the algorithm selects a quotient digit that is either "just 
right" or "too big" by 1. 

If the quotient digit chosen at a given stage is ~'too big," the value com- 
put'ed for pj§ will be negative. In order to make the computation converge, the 
algorithm will choose a ne#a~ive q~totien~ d@i~ at the next iteration. Negative 
quotient digits are written with an overbar, for example ~ has the value -2 .  
A number containing negative digits can be converted to one without negative 
digits by subtracting the negative digits. As an example, in. 21Y =. 203, the neg- 
ative digit can be removed by the subtraction. 210-. 001. In an implementation 
of the SRT algorithm, it is straightforward to provide hardware that performs 
the conversion. 

For radix 4 calculations, division can be defined using quotient digits 3, 2, 1, 
0, 1, 2, 3. Observe, however, that all radix 4 numbers can be represented using 
only 2, 1, 0, 1 ,  2. For instance, . 3 = 1.1. This observation allows hardware 
implementations to avoid the problem of multiplying the divisor by three; see 
the next section for details. 

2.3 Structure  and Operat ion  of  the  Div i s ion  Circuit  

The division circuit has four full-width registers: The Divisor register holds 
the value of the divisor, the Remainder register holds the value of the partial 
remainder, and the registers QPOS and QNEG hold the value of the quotient. 
The q register holds one digit of the quotient. The outputs of the q register 
are qdigit (2 bits), for the absolute value of the quotient digit, and qsign (1 
bit), for the sign. The DALU is a full width adder/subtracter, which is used to 
compute the partial remainders. The GALU is an 8-bit wide adder/subtracter, 
which computes an estimate of the partial remainder. QUO LOGIC is a block 
of combinational logic. Given the leading bits of the divisor and the estimate of 
the partial remainder from the GALU, QUO LOGIC outputs the next digit of 
the quotient. At several places, the circuit shifts a signal by one or two bits to 
the left in order to multiply it by two or four. This operation is shown in the 
diagram as a box with the operation <<  1 or <<  2. Throughout the paper, we 
use roman typeface for names of signals and i~alics for the values of signals. 

The division circuit operates in two phases: an initialization phase followed 
by the main calculation phase. The initialization phase begins by setting the 
Remainder register to hold the dividend, setting the Divisor register to hold 
the divisor, and setting the QPOS and QNEG registers to zero. After these 
initializations have been done, the initialization phase uses the GALU and the 
quotient selection logic to compute the first quotient digit and store it in the q 
register. This completes the initialization phase. 

The calculation phase performs one cycle of the division circuit for each digit 
of the quotient. At the beginning of the j th cycle, Remainder holds pj, Divisor 
holds the divisor, and the q register holds qj. The DALU receives pj on its A 
input. The other input to DALU is the signal rod, which is controlled by the 
MUX. The inputs of the MUX are the values 0, Divisor, and 2 �9 Divisor. Under 
control of qdigit, the MUX sets the line md to qd@it. Divisor. The signal qsign 
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Fig. 1. The division circuit 

controls whether DALU adds or subtracts its inputs: DALU performs subtraction 
if qsign is +; otherwise it does an addition. The result is that DALU computes 
the value p j  - q j  �9 D i v i s o r  and outputs this value on rout. The  signal rout is 
shifted two bits to the left and stored in the Remainder register for the next 
cycle. 

The GALU essentially computes the leading 8 bits of rout. The A (resp. B) 
input to GALU receives the leading 8 bits of the A (resp. B) input to DALU, and 
qsign switches GALU between addition and subtraction. The output of GALU 
is routed through QUO LOGIC to select the next quotient digit. 

The value of the quotient is computed using the registers QPOS and QNEG. 
QPOS holds all of the positive quotient digits and QNEG holds all of the negative 
digits. On each cycle, these registers are updated as follows: Both registers are 
shifted two bits to the left. If the digit in the q register is positive, then the vglue 
of qdigit (2 bits) is stored in the low order bits of QPOS and the two low-order 
bits of QNEG are set to zero. If the digit is negative, then the value of qdigit (i.e 
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the absolute value of the digit) is stored in the low-order bits of QNEG and the 
low-order bits of QPOS are set to zero. When all of the quotient digits have been 
computed, the values of QPOS and QNEG are routed to an ALU to compute 
QPOS- QNEG. The output of this ALU is the quotient. The reason for storing 
the positive and negative digits in separate registers is to keep the cycle time 
of the circuit short. Adding a full-width ALU on the inner cycle of the circuit 
would slow it down. 

(4 * routl -- 7 bits) gl  
g2 
g3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

~ , . . . . . . . . . . . . . . . . . . . .  

g4 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 
g5 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 
g6 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 
g7 i I i I i i i I I 1 1 0 0 0 0 0 0 0 0 0 0 0 

1 .000  . . . . . . . . .  2 -2  - 2  A -1  -1  0 0 1 1 2 2 2 . . . . . . . . . .  

1 .001  . . . . . . . . .  2 -2  - 2  B -1  -1  0 0 1 1 C  2 2 2 . . . . . . . .  

1 .010  . . . . . . .  2 -2  -2  - 2  -1  - 1 D  0 0 1 1 1 2 2 2 2 . . . . . .  

1 .011  . . . . .  2 - 2  -2  -2  B -1  - 1 D  0 0 1 1 1 2 2 2 2 . . . . . .  

1 .100  . . . . .  2 - 2  -2  - 2  -1  -1  -1  0 0 0 E 1 1 C 2 2 2 2 . . . .  

1 . 1 0 1 - - - 2 - 2 - 2 - 2 - 2 - 1 - 1 - 1 0 0 0 0 1 1 1 2 2 2 2 2 - -  

1 .110  - 2  - 2  - 2  -2  - 2  B -1  -1  -1  0 0 0 0 1 1 1 2 2 2 2 2 - -  

1 .111  - 2  -2  -2  -2  - 2  -1  -1  -1  -1  0 0 0 0 1 i 1 1 2 2 2 2 2 

(dl -- 4 bits) A = -(2 - g2 �9 gl) 

s = -(2 - g 2 )  

C = 1 + g 2  
D = - ( 1  - g 2 )  

E = g 2  

Table  1. The quotient prediction table for the division circuit 

T h e  Q u o t i e n t  Se lec t ion  Table  The quotient selection logic for QUO LOGIC 
is represented in tabular form in Table 1. QUO LOGIC receives two inputs: 
an estimate of the partial remainder from GALU and the first four bits of the 
divisor, and selects one of the digits 2, 1, 0, 1, 2. In the table, the GALU input 
is g7 g6 g5 g4 �9 ga g2 gl; note gr is the most significant bit. The table does not list 
the input values for the least significant bits g2 gl. The reason is that  for most 
values of the inputs, the quotient digit can be determined using only the five 
leading bits of the GALU output. The bits g2 gl are needed only near boundaries 
where the value of the quotient digit changes. The output in these cases is given 
by the lettered formulas A, B, C, D, E. 

For input combinations that  cannot be reached on executions of the division 
circuit, the table has no entry, indicated by - - .  It is important to verify both 
that  the computation stays within the marked area in the table, and that  the 
quotient selections in this part are correct. 
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3 Analytica 

In this section, we describe a new approach to mechanical theorem proving that 
involves combining an automatic theorem prover with a symbolic computation 
system. The theorem prover, which we call Analy~iea, is able to exploit the 
mathematical knowledge that is built into this symbolic computation system. 
In addition, it can guarantee the correctness of certain steps that are made by 
the symbolic computation system and, therefore, prevent common errors like 
division by an expression that may be zero. 

Ancdy~iea is written in the Mathematica programming language and runs 
in the interactive environment provided by this system [18]. Since we wanted to 
generate proofs that were similar t~o proofs constructed by humans, we have used 
a variant of the sequent calculus in the inference phase of our theorem prover. 
However, quantifiers are handled by skolemization instead of explicit quantifier 
introduction and elimination rules. Although inequalities play a key role in all 
of analysis, Mathematica is only able to handle very simple inequalities. We 
have implemented the Sup-Inf method of Bledsoe [4] to handle linear inequality 
systems. In addition, we have developed a technique that is able to handle a large 
class of non-linear inequalities as well. This technique is more closely related to 
the BOUNDER system developed at MIT [13] than to the traditional Sup-Inf 
method. 

Analytica consists of four different phases: skolemization, simplification, in- 
ference, and rewriting. When a new formula is submitted to Analytica for proof, 
it is first skolemized to a quantifier free form. Then, in the simplification phase, 
a large number of rules are used to simplify the atomic formulas (i.e. equations 
and inequalities) with respect to the current proof eor~ez~. If the formula reduces 
to true, the current branch of the inference tree terminates with success. If not, 
the theorem prover matches the formula against the conclusions of the available 
inference rules, and attempts to prove the formula by backwards chaining. 

If Analytica is attempting to prove a goal and no inference rule is applicable, 
then Analytica tries to use rewriting to convert the goal into another equivalent 
form. If the formula can be rewritten, then the simplification, inference, and 
rewriting phases are applied to the new formula. Backtracking will cause the 
entire inference tree to be searched before the proof of the original goal formula 
terminates with failure. 

Analytica contains several methods for handling both linear and non-linear 
inequalities. One method is based on computing upper and lower bounds for 
expressions. There are three main ways to obtain upper and lower bounds: 

1. Obtain bounds from context information. 
2. Obtain bounds from the monotonicity of some function. 
3. Use some known bound on the value of a function. 

The above technique is explained in more detail in the full paper. This tech- 
nique can be shown to be comp]ete for linear inequalities and can also be used 
to prove many of the nonlinear inequalities that arise in practice. However, the 
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overhead required for non-linear inequalities makes the algorithm very ineffi- 
cient for linear inequalities. Consequently, we have incorporated Bledsoe's Sup- 
Inf method [4, 15] into Analytica for handling linear inequalities. The Sup-Inf 
method is treated as a special tactic in the inference phase and is applied before 
the more complicated inequality reasoning tactic. The Sup-Inf method provides a 
decision procedure for universally quantified formulas containing linear inequal- 
ities. 

4 Proof  of the  correctness  of the  SRT algorithm 

4.1 Axioms for the  circuit  

First we need to find a way represent each component of the circuit by logic 
expressions. 

- tin1 is the leading 8 bits of rin (2 bits before binary point and 6 bits after): 

tin1 < t in < tin1 + 2 -6 

- rod1 is the leading 8 bits of md (2 bits before binary point and 6 bits after): 

mdl  < md < mdl  + 2 -8 

- dl is the leading 4 bits of d (constant 1 before binary point and 3 bits after): 

gl < d < dl + 2 -3 

Thus~ it dl can only have the 8 binary values 1. 000, 1. 001, 1. 010, 1. 011, 
1. 100, 1. 101, 1. 110 and 1. 111. This limitation on the range of dl is expressed 
by the following formula. 

dt  = l V d l  = w \/ d l  = -~ v d 1 =  - -  V d l  = ~ V d l  = V dI = V dI  = 

- The MUX: 

i 
0 when qdigir = 0 

m d =  d when qdigit, = 1 
2d when qdigit = 2 

- The GALU: 

- The DALU: 

- The QPOS: 

I rinI + mdl  when qsign 
rou~l = vinl - rod1 - 2 -6 when-~qsign 

vin + md when qsign 
rout = t i n -  md when ~qs@n 

( q P o s  when qsign 
nezt( QPOS) = l ~ ;"  

QPOS § qdigit when ~qsign 
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- The QNEG: 

= ~ 4o QNEG + qdigit 
nezt( QNEG) ( 4, QNEG 

- The Quotient: 

- The Remainder: 

Quotient = Q P O S -  Q N E G  

nez~(rin) = 4. rout 

when qsign 
when -~ qsign 

q = -2;  
q = -1;  
q = 0 ;  
q = l ;  
q = 2 ;  

out of table and we define q = -3;  
out of table and we define q = 3; 

Let {bl, b2, b3, b4, bh, bs} represent the row in the quotient prediction table 
that corresponds to dl. The QUO LOGIC is given by: 

 e t(qsign) --  (4 

nezt( qdigit) = { 

�9 rout1 < b3) 

3 when 4. rout1 < bl V 4. rout1 > be 
2 when 51 ~ 4. rout1 < b2 Vbs < 4. rout1 < b6 
1 when b~ < 4. rout1 < b3 V b4 ~ 4. rout1 < b5 
0 when b3 < 4. rout1 < b4 

dl = 15/8; 
know that the following holds: 

1. when bt < 4. rout1 < b2, 
2. when b2 < 4. rout1 < b3, 
3. when b3 < 4. rout1 < b4, 
4. when b4 < 4. rout1 < bh, 
5~ when bs < 4. rout1 < b6, 
6. when 4. rout1 < bl, 
7. when 4. rout1 > b6, 

are shown below: 
{-7/2 ,  -13/8,  -1 /2 ,  1/2, 3/2, 3}, when dl = 1; 
{-7/2 ,  -7 /4 ,  -1 /2 ,  i/2, 7/4, 7/2}, when dl = 9/8; 
{-4,  -2 ,  -3 /4 ,  1/2, 2, 4}, when dl = 5/4; 
{--9/2, -9 /4 ,  -3 /4 ,  1/2, 2, 4}, when dl = 1t/8; 
{-9/2 ,  -5 /2 ,  -1 ,  3/4, 9/4, 9/2}, when dl = 3/2; 
{-5,  -5 /2 ,  -1 ,  1, 5/2, 5}, when dl = 13/8; 
{ - 1 1 / 2 , - 1 1 / 4 , - 1 ,  1, 5/2, 5}, when dl = 7/4; 
{ - 1 1 / 2 , - 3 ,  -1 ,  1, 3~ l l /2} ,when 
From the definition of the boundary values, we 

- The QUO LOGIC: 
This is the hardest part in formalizing the circuit. To reduce the number of 
cases in the proof, we have represented each row of the quotient prediction 
table as a boundary value list {hi, b2, b3, b4, bs, bs}. For a given value of dl, 
we choose b6 to be the minimal positive value for (4- routl) that is not 
covered by the table. For example, when dl = 1, this minimal value has 
binary representation 0011.0. Consequently, b6 = 3. Similarly, we choose 
hi, b2, b3, b4 and bs to be the minimal values for (4. rout1 ) that gives quotient 
values -2,  -1 ,  0, 1 and 2, respectively. When dl = 1, the minimal value for 
(4. rout1) with quotient - 2  has binary representation 1100.1. Therefore, 
bl = -7 /2 .  The boundary value list for each of the 8 possible values for dl 
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4.2 C o r r e c t n e s s  o f  the circuit 

Since the initialization phase of the circuit is simple, we will not discuss it here. 
The correctness of the main caculation phase of the circuit depends on two in- 
variants: 

(1) nez t (Quo t i en t ,  d + rout) = 4.  (Quot ien t .  d + rout) 
2 . d < r o u t  < 2 . d ( 2 )  _ 

The first invariant says that (Quotien~ �9 d + rout) remains constant with re- 
spect to left shifting by 2 bits. Since the initial value of this expression is the 
dividend and the computation takes 34 cycles, (Quotient �9 d + rout) equals the 
dividend left shifted by 68 bits after the computation finishes. This is the ex- 
pected bevavior of the division operation. The second invariant guanrantees that  
the computation will never overflow. Detailed discussion of these invariants can 
be found in the complete version of this paper; we give a brief version here. 

We want to show that  div idend = quotient  �9 divisor + remainder ,  where 
r ema inder  converges to 0. Referring to the equations for tin and rout, observe 
that  the value placed in the Remainder register is effectively multiplied by r = 4 
on each cycle of the circuit. Intuitively, after j cycles, the value of the actual 
remainder is Remainder j  �9 4-J  = routj  �9 41-j .  Similarly, the actual value of the 
quotient is Quot ient j  �9 41- j .  

The circuit computes a correct result if two conditions hold. First, the equa- 
tion Div idend  = ( Q u o t i e n t j .  d + r o u t j ) .  41-j must hold. The factor 41-j rep- 
resents the scaling of the quotient and remainder. Second, the value of the re- 
mainder as represented by routj  �9 41-j must converge to 0. 

The above equation is proved by induction on j .  For the base case, show 
that  the equation holds for j = 0 in the initial state of the circuit. For the 
inductive case, we use the fact that the value of the dividend does not change. 
Thus we can prove the inductive case by showing that  Q u o t i e n t j + l . d + r o u t j + x  = 
4 .  (Quot ien t j  �9 d + rout j )  holds on all iterations of the circuit (invariant 1). 

It remains to show that  the scaled value of the partial remainder converges 
to 0. Since d remains constant, it follows from invariant (2) that rout j  �9 41- j  
converges to 0 by a factor of 1/4 on each cycle of the circuit. 

Analytica is able to prove the following theorems: 

- The loop invariant for Quotient �9 d + rout always holds. 

nezt(  Quotient . d + rout) = 4 .  (Quot ien t .  d + rout) 

- The GALU gives the correct estimate for the remainder. 

rouU < rout < rout1 + 2 -~ 

- The remainder never falls outside of the defined part  of the quotient table. 

2 2 
- - . d  < rout < . d  

3 - -3 
next(  qdigit) = 1 V nezt(  qdigit) = 2 V (ne~t( qdigit) = 0 A -~nezt( qsign) ) 
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- The loop invariant for - ~ .  d < rout < ~ .  d always holds. 

2 2 2 
2 . d < rou~ < . d ~ . d < nez~(rou~) < -~ d 

- - - 5  - - 

All theorems are proven by Analytica. The last theorem is the most interesting. 
The exact statement of the theorem is given below. 

Prove  [imp [and[d l  <= d < dl  + 2 ~ ( - 3 ) ,  
o r [ d l  == 8 /8 ,  dl == 9 /8 ,  d l  == 10/8,  d l  == 11/8,  

d l  == 12/8,  dl  == 13/8 ,  dl  == 14/8 ,  dl  == 1 5 / 8 ] ,  
r o u t l  <= r o u t  < r o u t l + 2 " ( - 5 ) ,  
- 2 / 3  d <= r o u t  < 2/3 all, 

- 2 / 3  d <= nex t  [ r ou t ]  < 2 /3  r i l l ;  

Notice that  there are some additional conjuncts in the hypothesis part.  The first 
two hypotheses are axioms about the values of dl .  The third conjunct, relating 
rout and rout l ,  states that  GALU gives a correct estimate for the remainder. 
Analytica proves the theorem about the GALU separately, so we can assume it 
as a hypothesis in this proof. The whole input required by Analytica and part 
of the proof it generates are shown in the complete paper. 

5 C o n c l u s i o n  

In this paper, we investigate a radix-4 SRT division algorithm similar to the one 
used in the Intel Pentium processor. We have built a formal model for the circuit 
and proven the correctness of the model using our theorem prover Analytica. 

The main obstacle to wider use of theorem proving techniques for hardware 
verification is the need for detailed user guidance when using most theorem 
provers. Therefore, it is significant that Analytica is able to prove the correctness 
of this circuit automatically. 

In other research, we have developed a word level model checker [7] that  can 
verify ari thmetic circuits. Although word level model checking works extremely 
well for many circuits, there are still serious restrictions on the application of this 
technique. For example, it can only handle circuits that  maintain the exact value 
of the data  and would not be applicable for a circuit that  involves rounding. 

Theorem provers, on the other hand, can be applied to a wider range of 
problems and are particularly useful for reasoning at a high level of abstraction 
(architectural level verification). For instance, in this paper, we used a theorem 
prover to show that  the division circuit is correct for all word lengths greater 
than 8 bits. Finite-state methods such as model checking usually verify a circuit 
only for a single word length. However, circuit verification by theorem proving 
techniques usually requires some user interaction, while model checking is largely 
automatic.  

In the future, we intend to combine automatic theorem proving and model 
checking. There has already been some work in this direction [10, 12]. This com- 
bination of approaches should make it possible to handle much larger circuits 
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than is currently the case. In proving some property of a circuit, the specifica- 
tion will be decomposed into sub-goals. Each sub-goal is verified using a decision 
procedure or the model checker. Then the theorem prover is used to combine 
t h e  proofs of the sub-goals. 
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Abst rac t .  We describe a ~brmal specification and verification in PVS 
for the general theory of SI~T division, and for the hardware design of a 
specific implementation. The specification demonstrates how attributes 
of the PVS language (in particular, predicate subtypes) allow the general 
theory to be developed in a readable manner that is similar to textbook 
presentations, while the PVS table  construct allows direct specification 
of the implementation's quotient look-up table. Verification of the deriva- 
tions in the SRT theory and for the data path and look-up table of the 
implementation are highly automated and performed for arbitrary, but 
finite precision; in addition, the theory is verified for general radix, while 
the implementation is specialized to radix 4. The effectiveness of the 
automation derives from PVS's tight integration of rewriting with deci- 
sion procedures for equality, linear arithmetic over integers and rationals, 
and propositional logic. This example demonstrates that the resources 
of an expressive specification language and of a general-purpose theorem 
prover are not inimical to highly automated verification in this domain, 
and can contribute to clarity, generality, and reuse. 

1 I n t r o d u c t i o n  

The SRT division algorithm is one of the most popular methods for implementing 
floating-point division and related operations in high-performance arithmetic 
units. Even though the theory of SRT division has been extensively studied 
[Atk68], the design of dividers still remains a serious challenge [0F94], and it 
is easy to make mistakes in its implementat ion--as was illustrated by the much 
publicized FDIV error in the Intel Pentium chip. As Pra t t  [Pra95] points in his 
analysis, it is unlikely testing alone would have caught that  error as it was due 
to five wrong entries in the quotient look-up table in a region of the table that  
was thought to be unreachable~ Hence, formal verification can play an essential 
role in the design and debugging of arithmetic circuits. 

In this paper, we present a mechanized verification of a general SRT division 
algorithm that  can be used for performing floating-point divisions and an imple- 
mentation 9f it based on the circuit given in [Tay81]. This circuit implements the 
IEEE floating-point standard, and its kernel consists of a fixed-point iteration. 

* Supported in part by ARPA under Arpa Order A721, by NASA under contract 
NAS1-20334, and by NSF Grant No. CCR-930044. We gratefully acknowledgethe 
valuable guidance and help given by John Rushby, Sam Owre, Ed Clarke, and Steve 
German. 
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The verification of this kernel was performed in the interactive theorem proving 
system PVS [ORSvH95]. Since our goal was to perform the verification so that 
as much of the initial set-up effort can be reused in the verification of other sim- 
ilar" circuits, we took a modular approach that separates concerns about general 
facts of the SRT theory from a specific circuit implementation and a look-up ta- 
ble. Furthermore, we develop clear interfaces between these parts, so that each 
of the verifications can be done separately. 

More precisely, the formalization and verification of the SRT divider proceeds 
in two steps. First, we formalize textbook knowledge about SRT dividers at an 
algorithmic level and verify its correctness. The formalization at this level does 
not use a specific data path to compute the partial remainder nor a specific look- 
up table. It characterizes a set of semantic constraints a look-up table ought to 
satisfy and a recurrence relation a partial remainder computation circuit ought to 
preserve. In the second step, we specify a data path circuit (bit-vector signals over 
time) to compute the partial remainder and define a specific look-up table, both 
of which are based on the implementation given in [TayS1]. We then show that 
the data path circuit and the look-up table meet the constraints characterized 
in step one. Both steps of the verification are performed for arbitrary, but finite 
precision, which appears as a parameter to the specification. The first step of 
the verification is applicable to arbitrary radixes, while the second step assumes 
a radix-4 implementation, since it uses a look-up table for radix-4. 

2 R e l a t e d  W o r k  

Claesen et al. [VCM94] and Leeser and O'Leary [LO95] have used theorem 
provers to verify a non-restoring divider and a radix-2 subtractive square root 
algorithm , respectively. The circuits verified in both of these efforts are not based 
on the SRT method and hence do not contain the kinds of optimizations used 
in SRT division. Recently, German and Clarke [Ger95, CG95] performed a ver- 
ification of Taylor's SRT divider circuit considered in this paper by manually 
deriving a set of inequalities that the circuit imposes on the data path signals 
and then showing, in the MAPLE symbolic algebraic system, that two main SRT 
correctness invariants are preserved by the data path inequalities. This work pro- 
vided the main impetus for our work. Clarke et al. [CGZ96] have independently 
mechanized their verification in the ANALYTICA theorem prover. Our work not 
only mechanizes all the steps in the verification of the SRT circuit, but also for- 
malizes the general SRT theory correctness and develops a modular framework 
which can be used to verify other similar circuits. While their specification in- 
terprets signals in the circuit as arbitrary real numbers, we interpret signals as 
parameterized finite, but arbitrary-length bit-vectors. 

Methods based on ordered BDDs and symbolic model checking are not well- 
suited for verifying multipliers and dividers since BDD graphs for such operations 
grow exponentially with the word size [Bry94]. However, Bryant [Bry95] has 
used BDDs to check the relation that one iteration of the SRT circuit must 
preserve for the circuit to correctly divide. To do the verification, he needed to 
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construct a gate-level representation of a checker-circuit (much larger than the 
verified circuit) to describe the desired behavior of the verified circuit, which is 
not the ideal level of specification. 

While Bryant's BMDs can be used to verify multipliers against their number- 
theoretic specification [Bry94], they cannot be used for SRT verification, be- 
cause they cannot efficiently check inequalities over bit-vectors. But Clarke and 
Zhao [CZ95] have recently extended the symbolic model-checking algorithm 
used in SMV to express and verify word-level properties on numbers. They use 
an extension of BDDs called hybrid decision diagrams to represent integer func- 
tions and check relations on them. The word-level model-checker can be used to 
check if finite-sized arithmetic circuits satisfy desired number-theoretic proper- 
ties. They have used the word-level model checker to verify Taylor's SRT circuit 
by checking if a state transition model of the circuit satisfied the main SRT 
invariants. Both [CZ95] and [CGZ96] are only applicable for fixed-sized data 
paths. 

3 A n  O v e r v i e w  o f  P V S  

The PVS system combines an expressive specification language with a produc- 
tive, interactive proof checker that has a reasonable amount of theorem proving 
capabilities, and has been used for reasoning in domains as diverse as micropro- 
cessor verification, protocol verification, and algorithm and architectures con- 
cerning fanlt-tolerance [ORSvH95]. The PVS specification language builds on 
classical typed higher-order logic with the usual base types, function type con- 
structor, dependent types, and abstract data types. A distinctive feature of PVS 
are predicate subtypes {x : A I P (x) }. These subtypes consist of exactly those el- 
ements a of type t satisfying predicate P(a).  Predicate subtypes are used to 
explicitly constrain the domain and ranges of operations in a specification and 
to define partial functions. In general, type-checking with predicate subtypes is 
undecidable, and the type-checker generates type correctness conditions (TCCs) 
corresponding to predicate subtypes. 

Proofs in PVS are presented in a sequent calculus. The atomic commands 
of the PVS prover component include induction, quantifier instantiation, auto- 
matic conditional rewriting, simplification using arithmetic and equality decision 
procedures and type information, and propositional simplification using binary 
decision diagrams. PVS has an LCF-like strategy language for combining infer- 
ence steps into more complicated proof strategies. 

4 S R T  D i v i s i o n  

SRT dividers [McS61, Rob58, Toc58] speed up nonrestoring division and are 
widely used in high-speed floating point units. The quotient is represented in 
radix-r form and one digit of it is calculated in each iteration. To obtain fast 
algorithms, SRT division represents quotient digits using a redundant digit set 
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[ - a , . . . ,  a] so that  there can by multiple choices for the most significant quotient 
digit for a given partial remainder and divisor. The redundancy can be used to 
correct small errors in one iteration in subsequent iterations. It also allows the 
quotient digit to be computed in parallel with the partial remainder using an 
approximation of the partial remainder. The common choices r = 4 and a = 2 
lead to adequate and efficient circuits, since multiplication by 0, 1, and 2 is easy. 

The presentation of fundamental concepts about SRT division covers the 
basic recurrence, the conditions under which the computation converges to a 
reasonable result, and the quotient selection criterion both in exact and ap- 
proximate forms. These general arithmetic facts about SRT division are pre- 
sented in terms of their PVS  formalization and are parameterized with respect 
to algorithm-specific details such as the radix and the set of quotient digits. In 
Sections 5 and 6 we instantiate these arithmetic facts to verify the correctness 
of a specific high-speed radix-4 SRT circuit on the bit-level. Note also, that  we 
restrict ourselves in this paper to the verification of fixed-point division kernels 
of IEEE compliant floating-point division. 

Subtraet ive Divis ion Algori thms.  Given two normalized fractions p and d of the 
form 1 . x x . . .  xx2 ,  the digit recurrence 

PO = P 
Pi+~ = r * (p~ -- qi * d) with the constraint [pi+x/d[ <_ r * p 

where p = r * a / ( r  - 1) 

computes the value of p / d  by producing one quotient digit qi and a new par- 
tial remainder Pi+l in each iteration i. The constraint on the partial remainder 
is needed to guarantee convergence of the algorithm. The above characteris- 
tics of subtractive division algorithms are formalized in 1~ for arbi t rary radices 
r : upfrom [2] and sets of quotient digits subrange I - a ,  a] such that  a: posna t  
a n d r / 2  <= a < r - 1. 

p_new, p: VAR ra t iona l ;  q: VAR $ubranga[-a, a]; d: VAR posrat 

recurreace?(p_new, p, q, d): bool = (p. ae~ = r * (p - q * d)) 

rho: rational = a / (r - I) 

p over_d_bound?(d, p): bool = (-r * rho <= p / d ~ p / d <= r * rho) 

Convergence. The function v a l q ( i  + ! ,  q) in ~ computes the radix-r  fixed- 
point value of the accumulated quotient digits q (0 ) .  q (1) . .. q ( i ) ,  and Theorem 
convergence  states that  q ( 0 ) .  q ( 1 ) . . ,  q ( i )  is an approximation to the infinite 
precision fraction p(0)  / d within an error bound. 
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i, j, k: VAR nat; d: VAR posrat 

p : VAR sequence[rational]; q: VAR sequence[subrange[-a, a]] 

val(i, q): RECURSIVE rational = 
IF i = 0 THEN 0 ELSE q(i - i) * 1/r'(i - 1) + val(i - I, q) ENDIF 

MEASURE i 

lemmal: LEMMA 

(FORALL j: recurrence?(p(j + I), p(j), q(j), d)) 

IMPLIES p(O) / d - val(i, q) = 1/r'i * (p(i) / d) 

c o n v e r g e n c e :  THEOREM 
((FORALL j :  recurrence?(p( j  + 1), p ( j ) .  q ( j ) ,  d)) AND 

(FORALL k: p_over_d bound?(d, p(k) ) ) )  
IMPLIES LET residue = p(0) / d - val(i + i, q) IN 

-I/r'i * rho <= residue & residue <= 1/r'i * rho 

This theorem is an immediate consequence of the invariant lemmal and the given 
bound on p ( i  + 1) / d, and lemmal is proven automatically in P V S  with the 
general-purpose induction strategy i n d u c t - a n d - s i m p l i f y  and some basic facts 
from the library about rational numbers. 

Quotient Selection. The hard part  in each iteration is to determine a quo- 
tient digit q ( i )  such that  the next partial remainder p ( i  + 1) also satisfies 
the boundary constraint p_over_d_bound?. By substituting the recurrence rela- 
tion defining the new partial remainder into the bound contraint on the partial 
remainder, one can obtain the condition l e g i t i m a t e ?  that  characterizes a se- 
lection interval of legitimate choices of quotient digits. 

LAZ 
q: VAR subrange[-a, a]; d: VAR posrat; p: VAR rat 

legitimate?(q, d, p): bool = q - rho <= p/d & p/d <= q + rho 

lemma2: LEMMA recurrence?(p new, p, q, d) IMPLIES 

(p_over_d_bound?(d, p_new) IFF legitimate?(q, d, p)) 

Note that  the boundaries of this interval depend on the divisor d, and Fig- 
ure 1 graphically displays the region for legitimately selecting quotient digits -2 
through 2 for the choices r = 4 and a = 2 (thus rho = 2/3).  The region for 
legitimately selecting q = t,  for example, is bound by the dashed lines 5 /3  * d 
and 1/3 * d .  

For specific interpretations, say r = 4 and a = 2, the combination of de- 
cision procedures with rewriting on known facts ab o u t  real and rational num- 
bers ( g r i n d  : t h e o r i e s  " r e a l _ p r o p s " )  discharges the proof obligation lemma2 
in [ ]  automatically. In the general case, however, where r and a are uninter- 
preted, the proof of this fact involves solving non-linear inequalities, and the 
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Fig. 1. pd-plot for r = 4 and a = 2 
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PVS prover needs two interactions to guide the manipulation of these non-linear 
inequalities. 

Redundancy. Shaded regions in Figure 1 indicate pairs (d, p) for which selec- 
tion intervals for the quotient digit q overlap. This redundancy permits calculat- 
ing q from truncated versions P : r a t i o n a l  and D :posra t  of the partial remainder 
and divisor respectively. 

LA_ 
D: VAR posrat; P: VAR rational 

P_bound_by_D?(D, P): bool = 
-eps - r * rho * (D + delta) < P ~ P < r * rho * (D + delta) 

lemma3: LEMMA (P <= p & p < P+eps ~ D <= d & d < D + de l ta  AND 

p_over_d_bound?(d,p)) IMPLIES P_bound_by_D?(D, P) 

Let d e l t a ,  eps  : p o s r a t  be two arbitrary positive rational numbers. Assuming 
that P and D underestimate p and d, respectively, the constraint p_over_d_bound? 
imposed by the algorithm on the partial remainder, imposes a corresponding 
bound on P as a function of D. This constraint is defined and proved (by lemma3) 
in [~]. Note that if negative numbers are represented in 2-complement form, 
which is what we assume in the circuit we verify later, truncation (after the 
binary point) always produces a number less than the actual value. 

Inspection of the pd-plot in Figure I reveals that the legitimacy of quotient 
selection for the marked corners of the shaded rectangles suffices to show the 
legitimacy of selecting this quotient digit for all (d, 2-~ pairs in the rectangle. 
Consequently, the constraint lookup_legit  imate? in 5~ on lookup tables guar- 
antees the legitimacy of quotient selection as shown in lemma4. The combination 
of the PVS decision procedures with facts from the library about rational num- 
bers proves 1emma4 automatically when r and a are instantiated with specific 
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numeric values; otherwise manual  guidance is needed to deal with non-linear 
equalities and inequalities. 

lookup_legitimate?(q, D, (P: rational I P_bound_by_D?(D, P))): boo 
COND 
q = a -> (a - rho) * (D + delta) <= P, I 
O<q & q<a -> (q - rho) * (D + delta) <= P & (P + eps) <= (q+rho)*D, 
q = 0 -> -rho * D <= P & (P + eps) <= rho * D, 

-a<q & q<O -> (q - rho) * D <= P & (P + eps) <= (q + rho) *(D+delta), 
q = -a -> (P + eps) <= (-a + rho) * (D + delta) 

ENDCOND 

lemma4: LEMMA 

(P <= p &. p < P + eps AND D <= d & d < D + delta AND 

p_over_d_bound?(d, p) AND lookup_legitimate?(q, D, P)) 
IMPLIES legitimate?(q, d, p) 

Quotient Prediction. A significant reduction of the overall cycle time is obtained 
by computing the next partial remainder p ( i  + 1) and predicting a next quo- 
tient digit q ( i  + 1) in parallel. In this case, the approximation P( i )  used in 
iteration i, (under)estimates the next partial remainder p ( i  + 1). Note that 
P(i)  can be computed faster than p ( i  + 1), since most of the time taken to 
compute p (• + 1) is a full-precision addition, and the computation of P (• only 
involves a limited-precision adder. 

It is a simple matter of combining the results in [~],[~,[5] to prove the state- 
ment i n v a r i a n t  in [ ]  for SET dividers with quotient prediction where the non- 
trivial part of the induction step involves the chain of implications 

legitimate?(q(i), d, p(i)) 

~remainder_bound?(d, p(i + i)) 

estimation_bound? (D, P (i)) 

lookup_legitimate?(q(D, P(i)), D, P(i)) 

legitimate?(q(i + i), d, p(i + I)) 

1 6 
invar ian t :  THEOREM 

(p_over_d_bound?(d, p(O))) AND ( legi t imate?(q(O) ,  d, p(O))) AND 
(FORALL j: recurrence?(p(j + 1), p ( j ) ,  q ( j ) ,  d) AND 

P(j)  <= p( j+ l )  ~ p ( j+ l )  < P(j)+eps & D <= d & d < D+delta AND 
(P_bound_by_D?(D,P(j)) IMPLIES lookup_ leg i t ima te? (q ( j+ l ) ,D ,P( j ) ) ) )  

IMPLIES 

(p_over_d_bound?(d, p(i)) AND legitimate?(q(i), d, p(i))) 

Altogether, to prove the correctness of a specific SET divider circuit it suffices 
to show that 1) the arithmetic interpretations of the computed sequences of par- 
tim remainders and quotient digits satisfy the recurrence relation recurrence?,  
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Fig. 2. The data path for the division circuit. 

2) there are constants d e l t a  and eps such that the divisor and the partial re- 
mainders are bound by under-estimators in the sense described above, and 3) 
the quotient selection logic satisfies the l o o k u p _ l ~ i t i m a t e ?  predicate. When- 
ever these conditions hold, theorem inva r i an t  in bLg_J, and consequently theorem 
convergence in [~, is applicable: 

5 M o d e l i n g  T h e  D a t a  P a t h  

Now, the data path of an SRT division circuit with r = 4 and a = 2 as described 
by Taylor [Tay81] is specified and proven to be correct by applying the general 
SRT theory developed in Section 4. 

The signals of the circuit in Figure 2 are declared as uninterpreted constants 
of signals of bit-vectors of various fixed lengths, and the uninterpreted constant 
N :posnat,  where N > 8, determines the width of the data paths for the divisor 
and the partial remainders; examples of signal declarations and their interpre- 
tation functions are listed in [~]. 

17 I~i signa1[bvec[N]]; a(i): 
signal [bvec [7] ; P(i) 

rational = fp[1,N-l] .val(d(i)) 
rational fp2c [4, 33 .va!(P(i)) 

The divisor signal d has a fixed-point interpretation with 1 leading and N-1 resid- 
ual bits, and the estimation P of the next partial remainder has a 2-complement 
fixed-point interpretation with 4 leading bits and 3 residual bits. Note also that 
overloading the name of the bit-vector signal with its arithmetic interpretation 
mimics a specification style often found in textbooks about computer arithmetic. 

The inputs to the quotient selection unit q are the three bit truncation of 
the divisor d and the seven bit approximation P of the next partial remainder. 

L8 
lookup((D: bvec[3]) ,  

(P: bvec[7] I P_bound_by_DT(l+fp[O,3].val(D),fp2c[4,3].va!(P)))) 
:{ q: subrange(-2, 2) I 

lookup_legitimate?(q, i + fp[O,3].val(D)~ fp2c[4, 3].val(P)) } 
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Here, predicate subtypes serve as a specification of a set of quotient look-up 
tables by means of domain and range constraints, and a specific implementation 
of these constraints is proven correct in Section 6. The behavior of the circuit 
is specified by equality and inequality (to capture the effect of truncation) con: 
straints on the inputs and outputs of the dalu and galu components which are 
omitted here for lack of space. 

From these formalizations, the gr ind  strategy proves the lemmas in ~ ]  about 
Taylor's division circuit in Figure 2. 

It aylor_lemmal: LEMMA recurrence?(p(t + i), p(t), q(t), d(t)) 
Itaylor_lemma2: LEMMA galu(t) <= dalu(t) ~ dalu(t) < galu(t) + 2 *ulp(6) 
taylor_lemma3: LEMMA P(t) <= p(t + i) ~ p(t + 1) < P(t) + 3/16 

Together with the constraint on D with respect to d, this accomplishes Step 2 
with d e l t a  = 1/8 and eps = 3.,116 mentioned in Section 4. Now it is a simple 
matter of instantiating the theorem •  in [ ]  and convergence in [~  to 

obtain the invariant results in ~ for this specific circuit. 

I10 
taylor_invariant : LEMMA 
p_over_d_bound?(d(O), p(i)) AND legitimate?(q(i), d(O), p(i)) 

taylor_convergence: THEOREM 
LET residue = p(O) / d(O) - val(i + 1, q) IN 

2 / (3  * 4"i) <= residue ~ residue <= 2 / (3  * 4"i) 

6 The Look-Up Table. 

The legitimacy constraint lookup_legitimate? (see [ ~  on quotient look-up 
tables permits different implementations, and Taylor [Tay81] develops a par- 
ticularly compact one. This table computes the next quotient digit from the 
truncation D:bvec [3] of the divisor to the three leading bits and the estima- 
tion P:bvec [7] of the next partial remainder. Bits 6 down to 2 of P are used 
as a table index and the remaining bits are used in some cases to compute the 
resulting value. 

The formalization of the resulting table q(D, P) (shown in Appendix A) 
uses the TABLE construct of the PVS specification language [0RS95]. This con- 
struct was added to the PVS specification language in order to provide visually 
appealing two-dimensional tabular specifications in the manner advocated by 
Parnas and others [Par95]. It proved adequate to express the look-up table of 
this SRT circuit in a concise arid perspicuous way. In particular, blank entries 
in the look-up table cause the type-checker to generate TCCs which ensure that 
viable arguments D, P never point to such a blank entry. Furthermore, the table 
construct requires that the look-up is functional and ensures this by generating 
disjointness and coverage TCCs. From the fact 
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(FORALL (D, (P: bvec[7] I estimation_bound?(valD(D), valP(P)))): 
lookup_legitimate?(q(D, P), valD(D), valP(P))) 

I 11 

one concludes that the given table q indeed satisfies the constraint given for 
look-up tables in Section 5. A simple case split on the different values of D and 
P followed by unfolding definitions, term rewriting, and calls to the decision 
procedures proves the theorem in [ ~ .  The type correctness conditions generated 
by the type-checker for the look-up table are proven with similar strategies. 

In the course of proving the consistency of the look-up table, PVS has proven 
helpful as a debugging tool and came up with precise counterexamples. 2 By 
injecting, for example, a wrong value 0 at a certain position in the look-up table 
and rerunning the proof above, the PVS prover returns an unsolved subgoal 
that yields an immediate counterexample. Note that the 5 missing entries in the 
look-up table of initial releases of the Pentium floating-point unit were also right 
at the upper boundary of the legitimate selection region for q = 2 as depicted 
in Figure 1 by the blank rectangles. 

7 Summary and Conclusions 

We have shown how PVS can be used to specify and prove correctness of a non- 
trivial SRT division algorithm and its hardware implementation in a modular 
way. This modular approach not only structures the specifications and the proof 
in a nice way but also has the advantage that slight variations of this particular 
circuit design and look-up table can be verified by just redoing one part of the 
proof. Moreover, parts of the theory can be reused for verifying other similar 
division, and perhaps even square-root, circuits. 

This verification exercise demonstrates the value of efficient decision proce- 
dures and the use of an expressive specification language in mechanized verifi- 
cation. The concepts of predicate subtypes, overloading, and tables of the PVS 
specification language proved to be very useful for expressing the high-level de- 
signs of this arithmetic circuit in a concise and natural way. Such high-level 
descriptions reduce the possibility of introducing errors in initial design specifi- 
cation and can also serve as design documents. The tight integration of decision 
procedures with rewriting strategies of PVS proved to be a useful workhorse, 
since the circuit specific theorems and the correctness of the table implementa- 
tion are proven in a fairly automatic: way. In most proof obligations that involve 
non-linear equalities, however, the PVS prover must be manually guided to con- 
struct the proofs. 

This case study also suggests some improvements to the implementation of 
PVS. The correctness proof of the table implementation in Section 6 takes 3 

2 Even though the original design of Taylor's look-up table in [Tay81] proved to be 
correct, we still managed to accidentally inject errors in the initial PVS transcrip- 
tions. 
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hours. This is unreasonably slow, since the proof basically involves small case 
analysis followed by the evaluation of ground predicates. The incorporation of 
an efficient notion of evaluation into the proving process could drastically reduce 
the t ime for doing this and many other hardware-related proofs. In the future 
we plan to extend this case study to the verification of related circuits and oper- 
ations, such as square root, and investigate other concepts like IEEE compliant 
rounding [Min95]. 
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A Implementation of the Lookup Table 

q(D, (P I P_bound_by_D?( . . . . . . .  ) ) ) :  sub range ( -2 ,2 )  = 
LET a= - ( 2 - P ( 1 ) * P ( 0 ) ) ,  b= - ( 2 - P ( 1 ) ) ,  c= 1+P(1), d= - ( 1 - P ( 1 ) ) ,  e= P(1) 
IN TABLE b v 2 p a t t e r n ( P ' ( 6 , 2 ) ,  bv2pat te rn(D)  

1[ 0001 0011 0101 0111 tOOl 101~ 1101 111]] 
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Abst rac t .  A methodology for mechanically verifying a family of pa- 
rameterized multiplier drcuits~ including many well-known multiplier 
circuits such as the linear array, the Wallace tree and the 7-3 multi- 
plier is proposed. A top level specification for these multipliers is ob- 
tained by abstracting the commonality in their behavior. The behavioral 
correctness of any multiplier in the family can be mechanically verified 
by a uniform proof strategy. Proofs of properties axe done by rewriting 
and induction using an automated theorem prover RRL (Rewrite Rule 
Laboratory). The behavioral correctness of the circuits is established 
with respect to addition and multiplication on numbers. The automated 
proofs involve minimal user bltervention in terms of intermediate lemmas 
required. Generic hardware components axe used to segregate the speci- 
fication and the implementation aspects, enabling verification of circuits 
in terms of behavioral constraints that can be realized in different ways. 
The use of generic components aids reuse of proofs and helps modulaxize 
the correctness proofs, allowing verification to go hand in hand with the 
hardware design process in a hierarchical fashion. 

1 I n t r o d u c t i o n  

There has been a great deal of interest in verifying properties of hardware cir- 
cuits at the input-output level. Many papers on this topic have appeared in 
conference proceedings and journals[10], to cite a few [3, 5, 8, 11, 6, 17]. Dif- 
ferent approaches have been proposed in the literature, notably among them 
state-based approaches and the use of model checkers [5, 3], induction-based ap- 
proaches adapted from software verification [8, 12] and finally approaches based 
on modeling hardware circuits using higher-order logics [6, 11]. 

Despite this widespread interest, verification efforts involving multiplier cir- 
cuits have been few in comparison[14, 4, 13]. The state based approaches and 
model checking that  employ binary decision diagrams (BDDs) or some variant 
of these, do not perform well on multiplier circuits due to the associated state 
explosion (see further discussion on this in the next section on related work). It is 
possible to verify the correctness of multipliers using theorem provers and proof 
checkers but such efforts have also been limited as they are ad hoc in nature .and 
require considerable user ingenuity~ 

* Partially supported by the National Science Foundation Grant no. CCR-9308016. 
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The focus of this paper is on the use of an automated theorem prover for me- 
chanically verifying parameterized multiplier circuits. A methodology for spec- 
ifying and verifying a family of parameterized multipliers circuits is described. 
The" behavioral correctness of many well-known multiplier circuits such as the 
linear array, the Wallace tree and the 7-3 multipliers, with respect to addition 
and multiplication over numbers, is mechanically verified using an automated 
theorem prover RRL (Rewrite Rule Laboratory)[15]. 

We first develop a common top level equational specification for a family of 
multiplier circuits by abstracting the commonality in behavior. A multiplier cir- 
cuit is abstracted in terms of two components: a component that computes the 
partial sums, called the partial sum computation component and another that 
adds these partial sums to compute the final product, called the partial sum 
addition component. We then describe a uniform approach for mechanically ver- 
ifying the correctness of any multiplier in the family using RRL. It is shown 
that the correctness of any multiplier circuit in the family can be mechanically 
established from the behavioral correctness of the partial sum computation com- 
ponent and that of the partial sum addition component. The correctness of these 
components follow from the correctness of the adder circuits used in them. 

The proposed approach is highly generic - not only abstracting over the 
word size of multiplier circuits but also abstracting the common behavior of a 
variety of different multiplier circuits. The proofs of correctness are obtained for 
multiplier circuits of arbitrary word size. Secondly, seemingly different multiplier 
circuits share a common specification and proof of correctness using the same 
lemmas, with only a few different definitions for each multiplier circuit. 

A major complaint against the use of theorem provers and proof checkers 
for hardware verification has been the semi-automatic nature of these systems. 
Verification efforts using these systems involve considerable user ingenuity. We 
believe that a common top level'proof for a family of multiplier circuits with 
well-characterized intermediate lemmas that are independent of the underlying 
prover, is a step in addressing this issue. It is shown that the intermediate lem- 
mas used in the proofs of correctness of multipliers reported here correspond 
to formulas that specify the input-output behavior expressed in terms of num- 
bers, of different components of the circuits. Such lemmas, we speculate, can be 
generated systematically from the structure of the circuits. 

In our specifications and proofs of various multiplier circuits, we abstract 
the adders in terms of generic hardware components with associated behavioral 
constraints. The correctness of the multiplier circuits is first established in terms 
of such generic components. It is shown later how a particular adder can realize 
a generic component by demonstrating that the adder satisfies the behavioral 
constraints of the generic component. Such a view provides a clear separation be- 
tween specification and implementation aspects. The use of generic components 
aids reuse of proofs and modularize the correctness proofs, allowing verification 
to go hand in hand with the design process in a hierarchical fashion. Such modu- 
larization of proofs is crucial for any verification methodology to effectively scale 
up to larger and more complex hardware circuits. 
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Let us briefly review main aspects of different multiplier circuits considered 
in this paper. A linear array multiplier performs the multiplication of two n bit 
numbers in linear time by computing the partial sums corresponding to the given 
numbers and adding the partial sums together to obtain the required result. Ad- 
dition of partial sums is done by considering one partial sum at a time. Wallace in 
[20] introduced a multiplication scheme, which has popularly come to be known 
as the Wallace tree multiplier, for multiplying two n bit numbers in logarithmic 
time. Improved performance is achieved in the Wallace tree multiplier by con- 
sidering three partial sums for addition together. The multiplication scheme due 
to Wallace was generalized and improved upon by Dadda in [7] leading to a rich 
family of multipliers called the Dadda multipliers: In these multipliers, larger 
than three partial sums are taken up for addition at a particular time. Consider- 
ing larger number of partial sums does not improve the asymptotic complexity 
but considerably reduces the number of stages required for multiplication result- 
ing in reduced wiring delays. The 7-3 multiplier used in IBM RS/6000 is based 
on this observation and has been attributed [9] as one of the important features 
that contributes to its good performance. 

Most of these multiplier circuits are based on the grade school principle 
of multiplying any two given n bit numbers-computing the partial sums and 
adding the partial sums to obtain the required result. This basic underlying 
principle is often not evident in commonly found descriptions of these circuits. 
The computation of partial sums is done in the same manner in these circuits, 
and these circuits differ only in the number of partial sums that they consider for 
addition at any particular time. A common top level specification for the family 
of multiplier circuits based on this observation is developed in Section 3. In 
section 4, the behavioral correctness of different multiplier circuits with respect 
to addition and multiplication over numbers are presented. The use of generic 
hardware components in specifying and verifying different multiplier circuits 
using RRL is discussed in section 5. 

2 Related  Work 
Among the various approaches employed for hardware verification, the state 
based approaches based on symbolic manipulation of boolean functions using 
binary decision diagrams BDDs [3] are perhaps the most popular for verifying 
hardware circuits of fixed word size (non-parametric circuits). A circuit is spec- 
ified using a boolean function theft can be succinctly represented using a BDD. 
Further BDDs provide a fast mechanism for comparing boolean functions. Even 
for linear circuits, in which the output is a linear function of the inputs, this 
approach has two major limitations: (i) it is unclear how circuits of arbitrary 
word size can be verified, and (ii) verification is limited to showing that a circuit 
implements a boolean function, and not a function on numbers. 

It is well-known that for many important boolean functions, especially the 
ones for multiplication, that grow exponentially with the word size, the state- 
based approaches are less attractive for verification. Bryant and Chen recently 
introduced a new data structure Multiplicative Binary Moment Diagram (BMD) 
for modeling the functionality of circuits in terms of data at the word level [4]. 
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Using this approach, a number of integer multiplier designs with word sizes up to 
256 bits have been verified. However, such verifications are not fully automatic 
as Bryant and Chen in [4] state: 

.... the overall circuit is divided into components, each having a word level spec- 
ification. Verification involves proving 1) that each component implements its word 
level specification and 2) that the composition of the word level component functions 
matches the specification ..... 

The approach advocated in this paper using a theorem prover RRL for verify- 
ing multiplier circuits is similar to the one suggested using BMDs. We decompose 
a multiplier circuit into two components, and establish the number-theoretic 
correctness of the individual components. The overall proof then follows by the 
composition of these two components. The automated proofs obtained using our 
theorem prover RRL do not entail any additional overheads. Due to the gen- 
erality afforded by theorem provers like RRL, it was further possible to obtain 
common proof for a family of multiplier circuits of arbitrary sizes (parametric 
circuits) which would be infeasible otherwise. 

Approaches based on theorem provers and proof checkers have been widely 
used to verify hardware circuits. Most of this effort has focussed on verification 
of different forms of processors [11, 17, 8], different forms of ALUs [19, 8] or has 
been used for the verification of adder circuits [19, 8, 16, 12]. In [14], a Braun 
Multiplier is formally specified using the Boyer-Moore logic and some properties 
about this specification are proven using Nqthm [1]. 

In [18], a framework for synthesizing a variety of hardware circuits including 
the carry save and Wallace tree multipliers is proposed. Higer order metafunc- 
tions with different circuit interconnection structures such as the carry save array 
and the Wallace tree as inputs are manua l l y  transformed to realize multipli- 
ers at the gate level. The correctness of the circuits is established by reasoning 
about the behavior of these metafunctions and the associated transformations 
using the automated theorem prover Hog. We are unaware of other mechanical 
verification efforts where the correctness of multipliers such as the Wallace tree 
multiplier or the 7-3 multiplier have been mechanically established with minimal 
user guidance using a uniform framework such as ours. 

3 Specifying a family of Multiplier Circuits 

A common, top level equational specification for a family of multiplier circuits is 
developed in this section. The Wallace tree multiplier is used as an example to 
illustrate the methodology. The overall structure of the Wallace tree multiplier 
can be described diagrammatically as in Fig. 1. 

Given bit vectors z and y of equal length, a Wallace tree circuit first computes 
a list of partial sums (P1 , . . - ,  P8 in Fig. 1) using a function such as psum-atL 
Each partial sum in the list is a bit vector that corresponds to a single bit of x 
and is obtMned by shifting y appropriately. The partial Sums in the list are then 
added together by adding in parailel three partial sums at a time: Addition of 
any three partial sums is typically done using a carry save adder(CSA) that has 
three bit vectors as its inputs and produces a pair of bit vectors as its output. 
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The outputs  correspond to the bitwise sum and the bitwise carry of the inputs. 2 
The  parallel addition of three bit vectors at a t ime is repeated on the outputs  of 
the carry save adder until we have only two bit vectors left. The  final product is 
obtained by using a ripple carry (t~CA in Fig. 1.) or a carry lookahead adder. 

S p e c i f y i n g  P a r t i a l  S u m s  C o m p u t a t i o n  in  R R L :  A bit vector is modeled 
in R R L  as a list of bits (with 0 denoting bit zero and 1 denoting bit one) with 
ni and cons. A list of bit vectors is modeled as a list of lists with lnl denoting 
the empty  list of lists and consl that  adds a list to a list of lists. 

Contrary  to the usual convention, we assume that  the bits increase in order 
from left to right i.e., the bit vector 01 stands for 0 * 20 + 1 * 21 = 2. 

The partial  sum, psum corresponding to a single bit xl  of x is the same as y 
if xl is 1; otherwise, it is the zero bit vector of the same length as y3: 

psum(xl, y) := cond(xl = 0, mkzero(y),  y ) ,  

where mkzero generates a zero bit vector of the same length as its input. 
The  list of partial  sums corresponding to all the bits of x is computed by 

applying the function psum pointwise to each bit of x and shifting y to the right 
by appending a ~railing zero. 

psum-all(nl, y) := Inl 

psum-all(cons(xl, x), y) :s consl(psum(xl, y), psum-all(x, cons(O, y))) 

S p e c i f y i n g  P a r t i a l  S u m s  A d d i t i o n  in  R R L :  In a Wallace tree circuit, each 
level in the tree in Fig. 1. contains a list of bit vectors tha t  have to be added to 
produce the final result. The  root contains the list of partial  sums corresponding 
to each bit of  the bit vector x. The successive levels of the tree are repeatedly 
constructed until there are less than three bit vectors at any given level(equations 

2 Further details on the specification of the carry save adder are given in section 5. 
3 We follow the convention of typesetting RRL specifications and italicizing other 

logical formulas. 
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1, 2 and 3 below). In the case of two bit vectors, addition using a ripple carry 
adder, rca,  is performed(equation 3 below). 

The Wallace tree multiplier is specified by 3-mull below. The trace of a 
computation of 3-rmlt on input vectors of a specific length corresponds to a 
specific circuit. 

3-mult(cons(xl, n l ) ,  y) := psum(xl, y) 
3-mult(cons(xl, cons(x2, n l ) ) ,  y) := 

rca(0, pad(l, psum(xl, y)), psum(x2, cons(0, y))) 
3-mult(cons(xl, cons(x2, cons(x3, x))), y) := 

3-repeat(psum-all(cons(xl, cons(x2, cons(x3, x))), y)). 

The function 3-repeat repeatedly takes 3 bit vectors and add them; it is specified: 

3-repeat (Inl) := nl 
3-repeat (consl(xl ,Inl) ) : = xl 
3-repeat(consl(xl,consl(x2, lnl))) := rca(0, pad(l, xl), x2) if 

(len(pad(l, xl)) = len(x2)) 
3-repeat(consl(xl, consl(x2, consl(x3, x)))) := 

3-repeat (3-once (cortsl (xl, consl (x2, consl (x3, x) ) ) ) ), 

where fen denotes the length of a list. The function pad(m, x) produces a hit 
vector by appending m leading zeroes to the bit vector x. Bit vectors are typically 
padded by lending zeroes in these specifications so that the input bit vectors to 
the adders are of equal length. The last equation (equation 4) computes the bit 
vectors at the successive level by the function 3-once. 

The function 3-once is defined on a list of bit vectors. If the input list contains 
less than three bit vectors(equations 1, 2 and 3 below), then the bit vectors in 
the input list are carried over to the output list. Otherwise, the bit vectors in the 
input list by considering bit vectors in groups of three and adding such groups 
in parallel using a carry save adder, csa, (equation 4 below). The outputs of the 
csa's and the bit vectors in the input list that were not considered for addition 
together, constitute the bit vectors of the output list. 

3-once (Inl) := Inl 
3-once(consl(xl, inl)) := consl(xl, inl) 
3-once(consl(xl, consl(x2, Inl))) :~, consl(xl, consl(x2, Inl)) 
3-once(consl(xl, consl(x2, consl(x3, x)))) :z consl(fst(zi), consl(snd(zl) 

3-once(x)) ) if 
(zl = carrysave-adder(pad(2, xl), pad(1~ x2), x3)) and 
(len(pad(2, xl)) " len(x3)) and (fen(pad(l, x2)) = len(x3)) 

3.1 A common top level specification for  multipliers in RRL 
Circuits that perform multiplication of two n bit numbers by first computing 
the partial sums and then adding these partial sums constitute a rich family of 
multipliers based on the number of partial sums that they consider for addition 
at a particular time. Any multiplier of this family can be specified in RRL using 
the same top level specification as that of the Wallace tree multiplier. 

Consider a multiplier circuit defined by the function k-mull; in which k (k > i) 
partial sums are added together at any time. The multiplier can be abstracted in 
terms of two hardware components that are cascaded together. The first of these 
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components performs partial sum computation with two bit vectors as its inputs 
and produces a list of bit vectors as its output. The second of these components 
performs partial sum addition with a list of bit vectors as its input and produces 
a bft vector as its output. 4 

The partial sum computation component of the multiplier is specified by the 
functions psum and psum-all. The partial sum addition component is specified in 
terms of: k-repeat which adds k partial sums repeatedly, and k-once  for adding 
partial sums at one level until there are fewer than k partial sums left. 

The function k-once is defined in the same way as 3-once. The function 
leaves the input list of bit vectors invariant if the list contains less than k (more 
precisely, maximum of k - 1 and 1) bit vectors. Otherwise, a suitable adder is 
used to add the bit vectors in the list k at a time with the outputs of the adder 
constituting the bit vectors to be added in the next round. The definitions of the 
functions k-,*ult and k-repeat can be generalized from the definitions of 3-mult 
and  3 - r e p e a t  respectively in a similar fashion, s 

4 Establishing the correctness of multipliers in RRL 
In this section we discuss how the behavioral correctness of multip]ier circuits 
can be automatically established using RRL. RR[, is a theorem prover based 
on rewriting techniques and induction. The main inference steps used in RRL 
are (i) contextual simplification using rewrite rules, (ii) case analysis, (iii) de- 
cision procedures for data types with free constructors, propositional calculus 
and quantifier-free Presburger arithmetic for reasoning about numbers, and (iv) 
proofs by well-founded induction. RRL implements many heuristics to select the 
order of application of these inferences. For more details on RRL the reader is 
referred to [15]. 

Consider a multiplier specified by k-mult that performs multiplication of its 
two input bit vectors ~ and y by considering k, k >__ 1, partial sums for addition at 
a time. To establish the correctneSss of this circuit with respect to multiplication 
over numbers, conversion functions from bit vectors and list of bit vectors to 
numbers are needed. The function bton converts a bit vector to the number it 
represents (recall that the first bit is the least, significant bit,). 

b t o n ( n l )  := O, 
b t o n ( c o n s ( x l ,  x ) )  :ffi c o n d ( x l  ffi 0~ 2 * b t o n ( x ) ,  1 + (2 * b t o n ( x ) ) .  

Given a list of bit vectors as input~ the function b ton l i s t  below defines a linear 
addition of numbers corresponding to each of the bit vectors. 

btonlist(Inl) := O, btonlist(consl(x, y)) := bton(x) + btonlist(y). 

4 k itself can be t reated as a parameter  while adding the partial  sums. Such a specifica- 
tion and the correctness proof can be found in flp.cs.albany.edu/ptLb/subu/Multipiers. 
The specification uses generic adders (discussed in section 5). Instantiating such 
adders requires discharging assumptions on lengthes of the lists of bit vectors in 
terms of k and would be discussed in ~he expanded version of this paper.  

s The complete specifications of the linear array, the Wallace tree and the 7-3 multiplier 
as done in RRL along with the /~ti!L ~ranscripts of their correctness proof are also 
available by anonymous ftp. 
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The correctness of a multiplier k-,,ult is stated in R R L  as: 

Kmult-thm: bton(k-mult(x, y)) == bton(x) * bton(y) i f  (len(x) = len(y)) .  

The basic strategy employed for proving the above theorem is simple. It in- 
volves characterizing the input-output behavior of the partial sum computation 
component and the partial sum addition component of the multiplier with re- 
spect to numbers, and then showing that cascading these two components leads 
to the desired overall behavior. It is shown that i) multiplying the numbers cor- 
responding to the input bit vectors of the partial sum computation component 
is the same as number obtained by the linear addition of the list of partial sums 
output by this component, ii) And, the number corresponding to the bit vec- 
tor output by the partial sum addition component is the same as the number 
corresponding to the linear addition of the list of partial sums input. 

The same strategy can be used to prove the correctness of the correctness of 
any multiplier in the family of multipliers (for any fixed k). Linear addition of 
partial sums serves as a common denomination for any k and th# addition of k 
partial sums together can always be reduced to linear addition. 

Sp ecu l a t i ng  t he  I n t e r m e d i a t e  Lemmas  
Intermediate lemmas capturing the behavior of each of the component cir- 

cuits are first established. For instance, lemma L1 below states that the ripple 
carry adder correctly implements addition over numbers (needed for the final 
stage). 
LI: bton(rca(O, y, z)) == btoa(y) + bton(z) if (fen(y) = len(z)). 

There is a similar lemma for carry-save adders (lemma L4 in section 5). 
Lemma L2 captures the correctness of the behavior of the partial sum addition 
component; it states the number corresponding to the output bit vector is pre- 
cisely the one obtained by adding numbers corresponding to the list of input 
bit vectors. Finally, L3 relates the number corresponding to the list of bit vec- 
tors output by the partial sum computation component to the product of the 
numbers corresponding to its two input bit vectors. 

L2: b'ton(3-repeat(x)) == btonlist(x). 

L3: btonl is t(psum-al l(x,  y)) == bton(x) * bton(y) 

Each of these lemmas can be verified completely automatically in R R L  by the 
cover set induction method [15] and the associated heuristics. 

%Ve believe that each of the above intermediate lemmas can be speculated 
from the structure of the multiplier circuit. Lemmas relate the input-output 
behavior of components of a multiplier circuit with respect to numbers. For each 
component in the circuit, the number corresponding to its output bit vector 
(or a list of vectors) is related to the numbers corresponding to its input bit 
vectors. This important issue of generating intermediate lemmas from the circuit 
structure needs further investigation; the approach based on generating lemmas 
from the component behavior seems to be very promising. 

For instance, the Wallace tree multiplier can be viewed as a linear composi- 
tion of the ripple carry adder(rca), the partial sum addition (3-repeat), and the 
partial sum computation (psum-all) components. The main theorem 3muir-thin 
can be expressed as: 
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bton(x) * bton(y) = bton(rca(O, 3-repeat(psum-al l (x ,  y ) ) ) ) ,  

by identifying the list of bit vectors output by 3-repeat with the two input bit 
vectors of rca. The number theoretic correctness of the circuit 3muir-tim can be 
reduced to the number theoretic correctness of each of these components relating 
their corresponding inputs and outputs. These correspond to the intermediate 
lemmas L1-L3. Lemma small L4 can be speculated from the use of 3-once in the 
iterative component 3-repeat. 

Es tab l i sh ing  t h e  c o r r e c t n e s s  of  the  Wal lace  t r ee  mul t ip l i e r  in R R L :  

Below, we briefly review the proof of Wallace tree multiplier as obtained in 
Rt~L using the above-discussed strategy using �91 L1, L2, L3, L4. Other 
proofs are similar. 6 

The correctness of the Wallace tree multiplier is stated in RRL as: 

3muir-tim: bton(3-mult(x, y)) == bton(x) * bton(y) i f  (len(x) -- len(y)) .  

The above theorem was proved in RRL by induction. Induction scheme based 
on the definition of the function 3-mult is automatically chosen by the heuristics 
implemented in RRL without any user guidance. Here is the RRL transcript. 

Let P(x): bton(3-mult(x, y)) == (bton(x) * bton(y)) i f  (len(x) = len(y))  
Induction r i l l  be done on x in 3-mllt(x, y),  with the scheme: 
[1] P(cons(xl, nl))  [2] P(cons(xl, cons(x2, n l ) ) )  
[3] P(cons(xl, cons(x2, cons(x3~ x))))  

The subgoal corresponding to Ell is easily established by case analyses based 
on the definition of psum, using the definitions of 3-mult and bton for simplifi- 
cation. The case analyses is automatically recognized by RRL based on the 
definition of psum given in terms of the ternary predicate cond. 

The subgoal [23 follows from ]emma L1 (ensuring that the ripple carry adder 
correctly implements addition over numbers). The proof of the subgoat [3] is also 
direct from lemmas L2, L3, thus completing the proof of 3mult-tlm by induction. 

The correctness of any other multiplier in the family of multipliers such as 
the linear array or the 7-3 multiplier can be performed in RRL using the same 
top level proof as that of the Wallace tree multiplier given above. For instance, 
the correctness of a linear array multiplier is proved in RRI, using three lemrnas 
which are exactly the same as L~ - L3 with the lemma L2 defined in terms of 
functions 1-repeat instead of the function 3-repeat. The correctness proof of the 
7-3 multiplier also follows from the lemmas L1 - L3 with the lemma L2 defined 
in terms of the functions 7-repeat instead of 3-repeat. 

5 The  use of Gener ic  Hardware  C o m p o n e n t s  

While proving the correctness of different multipliers , the specifications and 
the associated correctness proofs of the adders are duplicated. Such duplication 
can be avoided by noting that specifications of the input-output behavior of the 
adders is sufficient to reason aboul~ different multipliers; other details of adders 

6 Detailed pr-'----oof transcripts are available via anonymous ftp from flp.cs.albany.edu: 
pub/subu/Multipliers. 
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are irrelevant, So adder circuits are abstracted by generic hardware components 
with behavioral constraints. The correctness proof of multipliers is first per- 
formed in terms of these generic components. The generic components are then 
realized by specific adders that satisfy the associated behavioral constraints. 

To specify and reason over generic hardware components, RRL has been 
extended along the lines of [2] to allow function instantiations and for handling 
theories. The behavioral constraints associated with a generic component are 
specified in RRL as equations(possibly conditional) using ? - to indicate that 
the equation is a behavioral constraint. For instance, a carry save adder can be 
specified in RRL in terms of the generic component g32-adder as: 

bton(fst(g32-adder(x, y, z))) + bton(snd(g32-adder(x, y, z))) ?= 
bton(x) + bton(y) + bton(z) if (len(x) ~ len(y) = len(z)). 

The behavioral constrMnts introduced on these generic components are oriented 
into rewrite rules by RRL and are subsequently available for simplification. 

5.1 Real iz ing  the  gener ic  c o m p o n e n t s  : C a r r y  Save A d d e r  

To complete correctness proofs of different multipliers, the generic components 
used are realized by specific adders that satisfy the associated behavioral con- 
straints. In this section we use the correctness proof of a carry save adder as an 
example to realize the generic component g32-adder. The other generic compo- 
nents used in the proofs of the multiplier circuits have been realized similarly 
using RRL. For details refer to [12]. 

A carry save adder has three bit vectors of equal length as its inputs and 
outputs two bit vectors corresponding to the bitwise parity and the bitwise sum 
of its inputs. It is specified in RRL as: 

csa(x, y, z) := pairl(paritylst(x, y, z), cons(O, majoritylst(x, y, z))) 
if (fen(x) = len(y) and (len(y) = fen(z)), 

where pa i r l  given two bit vectors constructs a pair of bit vectors. The func- 
tion pa r i ty l s t ,  computes the bitwise parity of its three inputs, and the function 
major i ty ls t  computes their bitwise majority. These functions can be easily de- 
fined by invoking parity and majority functions on bits. 

The correctness of the carry save adder can be stated as: 

L4: bton(x) + bton(y) + bton(z) =ffi bton(paritytlst(x, y, z)) + bton(cons(O~ 

majori%ylst(x, y, z))) if (fen(x) = len(y)) and (len(y) = fen(z)). 

The above formula is proved directly in RRL by induction using the scheme 
based on the definition of par i ty l s t .  

The component g32-adder can be realized by the carrysave adder, csa in 
RRL using the instantiate directive with a set of function replacements such 
as ((632-adder csa) . . . .  ). Based on these function replacements the behavioral 
constraints are suitably instantiated by RRL and the instantiated formula is 
treated as a proof obligation which must be discharged from the properties of 
the realization. 
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6 Conc lus ion  
A number of well-known multiplier circuits such as the linear array, the Wallace 
tree and the 7-3 multiplier employed in IBM RS/6000 have been verified using 
the automated theorem prover/~/~L. It has been shown that by abstracting the 
commonality in behavior, a family of multiplier circuits can be specified using 
a common top level specification. Such a specification was used to illustrate a 
common top level correctness proof for the family of multiplier circuits. The basic 
strategy employed in performing these correctness proofs is simple, and it leads 
to concise proofs with a handful of meaningful lemmas that are independent of 
the underlying prover. It should be possible to duplicate these proofs using other 
provers which support capabilities similar to those implemented in RRL. 

Circuit Comm. Defs Comm. Lemm. Spec. De]s Spec. Lernm. Time 
Linear Array 2 0 2.48 
Wallace Tree 12 5 2 0 2.45 
7-3 12 0 6.22 

The intermediate lemmas used in these proofs correspond to the input-output 
behavior of the various components of the multiplier circuit. Speculation of such 
lemmas can be done by the user in a routine manner. The use of generic compo- 
nents to segregate the specification and implementation aspects was advocated. 
The use of such generic components lead to concise proofs and help reuse of 
proofs. It was Mso demonstrated that generic components lead to modular proof 
development in a hierarchical fashion analogous to the design process. 

The specification and the correctness proofs of the Wallace tree multiplier 
were attempted first in RRL and it took less than a week. This time is inclusive 
of our attempts to familiarize ourselves with the multiplier itself. The subsequent 
multipliers were formalized and their correctness proof was proved in a couple 
of days. The statistics for the various correctness proofs obtained using RRL are 
given in the table. RRL is implemented in Common Lisp and the timings are on 
a Sun Spare 5 station(64Mb memory). The proofs of the linear array and the 
Wallace tree multiplier can be performed in//RL within 5 sees. The time required 
for the 7-3 multiplier is larger due to extensive contextual rewriting required for 
establishing the appropriateness of the lengthes of seven bit vectors. There are 
no specific intermediate lemmas needed in the proofs. For each multiplier circuit, 
only two definitions specific to the circuit are needed. 

The results of our initial experiments, in terms of adder circuits [12] and 
multiplier circuits performed in RRL, are encouraging, and they lead us to be- 
lieve that RRI, is well-suited for reasoning about the properties of hardware 
descriptions using recursive equations that can be oriented into rewrite rules. 
Particularly, RRI, can be used for verifying properties of parameterized circuits, 
which cannot be handled by state based approaches, as well as for structuring 
proofs of larger circuits in terms of proofs of their component circuits. Further, 
circuit properties are verified in terms of the arithmetic functions they compute 
in contrast to boolean functions. The major stumbling block in the use of the- 
orem provers is perhaps the need for intermediate lemmas. As shown for adder 
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and multiplier circuits, these lemmas correspond to capturing the ari thmetic 
function of the component circuits; generation of such lemmas, we speculate, 
can be automated.  
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Abstract. We present an extension to the Mur~ verifier to verify systems with 
replicated identical components. Verification is by explicit state enumeration in an 
abstract state space where states do not record the exact numbers of components. 
Through a new datatype, called RepetitivelD, the user can suggest the use of such 
an abstraction to verify a system of fixed size. Mur~ automatically checks the 
soundness of the abstract state graph, and automatically constructs the abstract 
state graph using the system description. 
Using a simple run time check, Mur~ can also determine if it can generalize the 
verification result of a system with fixed size to systems of larger sizes, including 
the system with infinite number of components. 

1 Introduction 

Finite-state systems such as cache coherence protocols, communication protocols or 
hardware controllers are often designed to be scalable, so that a description gives a 
family of different systems, each member of which has a different number of replicated 
identical components. It is therefore desirable to be able to verify the entire family of 
systems, independent of the exact number of replicated components. 

The general problem of verifying systems with replicated components is known 
to be undecidable [AK86, GS92]. A number of approaches has been proposed for 
verifying particular classes of problems. Some of them use induction over the replicated 
components and require an invariant process or a network invariant [KMOS94, CG87, 
CGJ95, WL89]. Coming up with a proper invariant is not easy, and automatic generation 
of network invariants for certain classes of systems are restricted and expensive [RS93, 
BSV94, SG87, GS92]. 

There are also approaches that do not use induction. Shibata et al. [SHTO93] pre- 
sented an algorithm to verify a simple telecommunication system with limited interac- 
tion between the processes. However, the class of problems they can verify is severely 
restricted. On the other hand, Graf [Gra94] has a more general method based on abstrac- 
tions, which has been applied to a distributed cache memory, but it requires substantial 
manual effort to complete the proof. 

The work described here is closely related to the methods by Lubachevsky [Lub84], 
Dijkstra [Dij85], and Pong et al. [PD95, PNAD95]. Lubachevsky verified a concurrent 
program by collapsing all reachable states into a fixed number of "metastates", in 
which the number of processes is represented by N with an unspecified value. Dijk.stra 

* This research was supported by Semiconductor Research Corporation under contract 95-DJ-389 
and by the Advanced Research Projects Agency through NASA grant NAG-2-891. 
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used regular expressions to represent classes of similar states. Pong et al. used a set 
of repetition constructors to abstract away the exact number of components, for the 
verification of cache coherence protocols. 

tn this exposition, we consider systems with a collection of components, including 
fixed components and components that can be replicated from 1 to n times. Many of 
these systems, such as cache coherence protocols and mutual exclusion algorithms, 
can be proved correct without modelling the precise number of replicated components. 
For example, suppose a multiprocessor has identical caches numbered 1 to 8, and that a 
particular memory value is invalid in caches 1,2,3,5,6,7 and and writable in cache 4. The 
abstract state may record that more than zero caches are invalid, exactly one is writable, 
"forgetting" not only the number of processors in each state but also the ordering of 
the processors. Formally, the abstract state includes a mapping from component states 
to repetition constructors {0, 1, +}, representing zero, exactly one, or more than zero 
(respectively) components in that component state. This abstraction is an approximation 
of the original state graph, which can be used for verification of invariants and VCTL 
model checking. The approximation is conservative: it never fails to report an error, but 
may report an error when none exists. 

This approach has been used for the verification of several applications, but most of 
the existing work requires a lot of expertise from the user. For example, Pong and Dubois' 
method requires the user to write an executable description of the abstract behavior. This 
description is different from the concrete description used for specification or synthesis, 
so their method requires more work, and raises the question of whether the concrete and 
abstract descriptions are consistent. 

To reduce the amount of user effort, we incorporate this abstraction into our veri- 
fication system, Murk. We provide an extension to the existing high-level language in 
which the user can easily specify a protocol in its concrete form. The extension is a new 
datatype, called RepetitivelD, which can be used to represent the indices of the repli- 
cated components. The Mur~ compiler can automatically detect whether the datatype 
is used in a way that admits the use of repetition constructors in verification. If so, it 
automatically verify the system using the abstract state space, instead of the concrete 
state space. 

Furthermore, we also extend previous work so that the abstraction can be used to 
verify systems of fixed sizes, even when verification for unbounded sizes is infeasible, 
resulting substantial reductions in the state explosion. Through a simple run-time check, 
Mur~ can determine automatically if it can generalize the verification result to systems 
of larger sizes. 

A key problem in verifying in an abstract state space is how to generate the successors 
of an abstract state. We solve this problem by selecting up to two concrete states 
represented by an abstract state, and constructing the abstract successors from the 
concrete successors of these concrete states. Heurstics for an efficient construction of 
the abstract state space are also presented. 

2 Modifications to Mur~ 

2.1 The Mur~o Verification System 

The basic Mur~ Verification System [DDHY92] consists of the Mur~ compiler and the 
Mur~ description language. The Mur~ description language is a high-level programming 
language for the description of finite-state asynchronous concurrent systems. The Mur~o 
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compiler generates a C++ program for a Mur~ program, which exhaustively generates 
the reachable states, checking for error conditions and deadlocks. 

A Mur~o program consists of four parts: declarations, transition rules, start state 
generation rules, and invariant descriptions. Examples of Mur~ programs are shown in 
Figs. 1 and 2.  

Type - user defined type 
p i d :  l..numProcessor; 
mid: 1 ..numMemory; 
address: 1 ..numAddress; 
value: 1 ..valueCount; 

Var-" - state variables 

P: A r r a y  [pid] of 
Record 

M; 

Net: 

- processor indices 
- m e m o r y  modules-indices 

- a d d r e s s  space 
- p o s s i b l e  v a l u e s  in a m e m o r y  w o r d  

- an array of  records storing the status 

- of  each processor. 
State: enum { Invalid, Shared, Master); 
Value: value; 
Outstanding.Request: Boolean; 

End; 
Array [mid] of MemoryState; - an array o f  m e m o r y  modu le s .  

Multiset [ NetSize ] of Messages; - a multiset storing m e s s a g e s  in the network. 

Fig. 1. An Example of state variable declarations in Mur~ 

Ruleset n : pid Do 
Ruleset h : mid Do 
Ruleset a : address Do 

Rule "Line Eviction" 
P[n].Cache[h] [a].State = Shared 

Begin 
P[n].Cache[h][a].State := Invalid; 
P[n].Cache[h][a].Value := Undefined; 

End; 
Endruleset; 
Endruleset; 
Endruleset; 

- p a r a m e t e r i z e d  rules  f o r  each processor 

- p a r a m e t e r i z e d  rules  f o r  ea ch  m e m o r y  m o d u l e  

- p a r a m e t e r i z e d  rules for  each address in a m e m o r y  m o d u l e  

- i f  it is an shared copy 

- t h e  cache l ine is invalidated 

- the data cannot be u s e d  

Fig. 2. An Example of transition roles in Mur~ 

A system state is specified by the values of the global variables. The rules are con- 
ditional actions (guarded commands)~ As a Mur~ description executes, a rule is chosen 
nondeterrninistically and executed, generating a new system state (since it assigns new 
values to the variables). Although a rule may consist of arbitrarily complex operations, it 
is executed atomically, without interference from other rules in the description. Hence, 
the use of Mur~ leads to an asynchronous, interleaving model of concurrency in which 
different parts of the system interact via shared variables. 

The types of variables are mostly conventional finite datatypes found in high level 
languages: arrays, records, integer subranges, Booleans and enumerations. Unlike con- 
ventional languages, there is also a special "undefined" value for each datatype. There 
are some non-traditional types as well, such as scalarsets [ID93a] and multisets. The 
scalarset type is a finite set of values, similar to a subrange except that their use is 



150 

restricted so that members of the scalarset can be interchanged in any state without 
affecting the ftiture behavior. For example, in a multiprocessor, processors are symmet- 
rical and we can model their indices as a scalarset. Multisets are also called "bags", of 
values of some other type. Multisets of messages are useful for modelling networks that 
do not preserve message order. A multiset is essentially an array indexed by an anony- 
mous scalarset type. A Choose construct can be used to nondeterministically select an 
element from a multiset and bind a parameter to a reference to the selected element. 

The rules contain control constructions, including sequences of statements, if and 
for statements. A set of rules that vary over a parameter can be abbreviated using the 
RuleSet construct, which has a parameter name, an index type, and a body containing 
one or more rules which refer to the parameter as a variable. The start state descriptions 
are special rules which initialize the state variables. The invariant descriptions are 
Boolean predicates; a conjunction of a set of Boolean predicates over a parameter can 
be abbreviated using the forall construct. 

A Mur~ program implicitly represents a state graph, defined as a set of states Q, a set 
of start states Q0 c_ Q, a special error state error  E Q which represents the occurrence 
of a run-time error in the system being verified, and a next-state relation A C_ Q x Q. 
A convenient representation for A is a set of transition functions ti : Q --+ Q. We 
can define ~ in terms of ti: A(q,  q~) if there is some transition function ti such that 
q' = t~(q). 

In the state graph represented by a Mur~ program, the set of states Q is the set of 
all legal assignments of values to the declared state variables plus a special state for 
error. The rules define transition functions by reading and writing the state variables. 
The error state is generated if there is a run-time error, such as referencing an undefined 
value, or if the resulting state from a transition function violates an invariant. The 
start states are generated by applying the transition functions of the start rules to the 
assignment that gives an undefined value to every state variable. A ruleset generates a 
set of transition functions, one for each parameter value of the ruleset index type. Nested 
rulesets generate transition functions by substituting all combinations of parameters. 

When verifying by explicit state enumerations, it is important that errors be reported 
as quickly as possible, without unnecessarily generating states. This can be achieved 
using "on-the-fly" (online) algorithms, in which states are checked for error as they are 
generated. The basic algorithm for error and invariant checking is shown in Fig. 3. 

SimpleAlgorithm0 
Reached= Unexpanded = Qo 
While Unexpanded ~ ~ Do 

Remove a state ~ from Unexpanded 
For each successor 8 ~ of s Do 

Examine(s t ) 

Examine(state s) 
If s = e r r o r  Then Report Error 
If s is notin ReachedThen 

Put s in Reached 
Put s in Unexpanded 

Fig. 3. A Simple On-the-fly Algorithm for Error and Invariant Checking 

To describe a system of several components, such as a set of processes, the user 
must define state variables for the component state, and define a set of rules for the 
behavior of the component. The behavior of concurrent components is modelled by 
forming the union of the state variables and rules of the individual components. One of 
the components "takes a step" when its rule is chosen and executed. 

Replicated identical components can be modelled in Mur~ by defining a con- 
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stant for the number of components (say CompCount) ,  and defining a subrange 
CompZD: ! . .  CompCoung for the indices of components. The local states of 
the components are stored in an m-ray indexed by CompZD. The rules describing the 
components are enclosed in a ruleset with a CorapZD parameter which represents the 
component to which the rule belongs. Using this convention, Mur~ descriptions become 
scalable, meaning that the number of replicated components can be changed simply by 
modifying CompCount .  

2.2 The RepetitiveID Type 

We add a new datatype to Mury, called RepetitivelD. The RepetitiveID is a re- 
stricted subclass of a conventional subrange (in fact, it is a scalarset), which should 
be used for the indices of replicated identical components, such as processors in a 
multiprocessor. For example, we can change the subrange Z . .  n u r n P r o c e a s o r  to 
RepetitiveiD (numProcessor) to hint to the verifier to verify the system in the 
smaller abstract state space. Mur~ automatically checks that certain restrictions are 
satisfied so that the verification is sound. Since a member i of the RepetitiveID type is 
used as the name of a component in the description, it is natural to identify i and the 
component, and refer to "component i" below. 

A value of RepetitiveID type can be assigned to variables, tested for equality with 
other values, used as an array index, or bound in a RuleSet or for loop. There are six 
restrictions on the use of RepetitivelD. In spite of the restrictions, RepetitivelD can 
be used to model a wide range of systems, including bus-based muhiprocessor cache 
coherence protocols [PD95], network-based cache coherence protocols with a central 
or distributed directory [PNAD95, DDHY92, LLG + 90]. 

Intuitively, our goal is to isolate the parts of the state corresponding to the replicated 
components into a single array indexed by the RepetitivelD type. If  two components 
i and j have identical component states, we would like the transition rule to produce 
a successor state where i and j have identical component states, also. There is one 
exception: we allow the rule to have one "special" component, whose component state 
is treated differently from other component states, even if they are otherwise identical. 
An example of where this is useful is mutual exclusion: many components may be in 
identical states, waiting for a resource, but only one (the special one) will obtain it. 

The first two restrictions make it possible to separate the component states from 
other parts of the state. 

. 

2. 
The Mur~ program has at most one RepetitivelD type. 
The elements of  a symmetric array cannot contain another array with RepetitivelD 
indeJc type. A symmetric array is an array indexed by a scalarset or RepetitivelD 
type, or a multiset. 

We illustrate the subsequent definitions with an example. Consider a central-directory- 
based cache coherence protocol whose state includes: an array of local processor control 
states; a multiset of messages representing a communications network; a memory where 
each memory line has an owner field pointing to a processor that has a writable copy 
of the line, along with the data in the memory line. The messages in the network have 
to and from fields, which can be processor indices or a value representing the memory 
itself. 
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With these restrictions, the following definition characterizes the parts of the state 
that "belong" to a replicated component. 

Definition 1. The component state of the component i includes all the state variables 
satisfying: 

- for  every array A indexed by the components, the element A[i]. (In the example, the 
local control state of  processor i becomes part o f  the component state for  i.) 

- for  every multiset M that is not assigned to a component state by the previous 
case, the elements of  M containing i and no other components. (In the example, the 
messages between the memory and processor i become part of  the component state 
for i.) 

In our example, the memory value(which does not contain a component index), the 
owner field (which is not in a multiset), and messages from one processor to another 
(which contain two component indices) are not included in any component states. 

Definition 2. A component, i, is abstractahle if it contains all instances of  i occuring in 
the global state, and contains no other component indices. 

In our example, a processor i would not be abstractable if the owner field had the 
value i, or if there were a message between i and another processor j .  

In the rest of the paper, we regard the state as being a pair (s, [rl, �9  rk]): [ r~ , . . . ,  rk] 
is an array of component states indexed by the abstractable components, and s an 
assignment to the rest of the state variables. The component states for components i and 
j are considered to be the same if the only difference between corresponding variables 
is that variables in component i have the value i and variables in component j have the 
value j. 

There are four restrictions on the use of  RepetitiveIDs in Murp to ensure the sound- 
ness of this verification method. Although we have made these as simple as we can, 
some are still quite technical. 

3. No "symmetry-breaking" operations [ID93a]. There are no literal constants in the 
type; arithmetic operations are not allowed; comparisons such as < are not allowed. 

4. Bindings of  the RepetitivelD type in RuleSet constructs may not be nested. 
5. Bindings of  the RepetitivelD type in for statements and forall expressions may 

not be nested. The variables written by each iteration of  a for statement on the 
RepetitivelD must be disjoint. In particular, a thrall expression on the RepetitivelD 
is not allowed in the body of a for statement on the RepetitiveID. 

6. I f  a variable in the state has the RepetitivelD type, and its value is i for  some 
abstractable components, the variable may not be used to index an array with 
RepetitivelD index type. 

Intuitively, the symmetry restriction makes sure that the components can be reordered 
arbitrarily without changing the behavior of the systems. The remaining restrictions 
ensure that transition rules treat identical component states identically, except for at 
most one special componeflt. 
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3 Verification Using Repetition Constructors 

3.1 Abstract States Using Repetition Constructors 

Once we have isolated the abstractable components as in the previous section, it is 
possible to abstract away from the enact numbers of  each component state by using the 
repetition constructors 0, 1, and +. 

Definition 3 Abstract State. An abstract state is similar to a concrete state except that 
the array o f  abstractable components is replaced with a mapping o f  each possible 
component state to one o f  the repetition constructors O, 1, or +. 

Abstract states are written in the form (s, {q~l , . . . ,  q~}) ,  where each ei is 1 or + 
(when the constructor is 0, the component state is omitted). 

A concrete state a = (s , [ r t ,  .. . ,rz]) is represented by an abstract state A = 
..., q~ }) if the following conditions are satisfied: 

- el = + ifqi  occurs in [rl, . . . ,  ~~ two or more times; 
- el = 1 o re i  = + i fqi  occurs in I t 1 , . . . , r~ ]  exactly once; 
- a component state does not appear in [ql, � 9  q~] if it does not appear in [ r l , . . . ,  rz]. 

The abstract states are partially ordered: (s, {q~l, ~k }) < ( s ,  % _ . . . ,  } )  i f  
i t 

/ and only if ei = + implies e i = +.  In this case, (s, {q~ ..., % , qk }) is said to cover 
(s, {q~ , . . . ,  q~}) .  The notation a C A is used to indicate that A represents a. The set of  
abstract states representing a particular concrete state has a unique minimum dement  
in this order; the abstracting function abs used in our verifier maps a concrete state to 
its minimum abstract representative. 

In many cases, it is useful to maintain in the abstract state the total number of  
replicated components, while forgetting exactly how many components are in each 
component state. 

Definition 4 Restricted Abstract State. A restricted abstract state/s an abstract state 
paired with a number representing the total number o f  replicated components. 

We write (s, el ql , �9 �9 q~k)]~ to represent the restricted abstract state with n compo- 
nents. 

3.2 The Basic On-The-Fly Algorithm 

We can construct the abstract state graph for a Mur~ program with a RepetitivelD type 
using an on-the-fly algorithm, 

First o f  all, C++ code for the abstraction function abs is generated by the Mur~ 
compiler. The start states of  the abstract state graph are generated by using this function 
to abstract the concrete start states. 

Given an abstract state, the verifier needs to generate all its successors in the abstract 
state graph. Because of  the restrictions of  the RepetitivelD, the verifier can always find 
a small number of  concrete states that can be used to find the successors to the abstract 
state. The choice o f  concrete states depends on the abstract state, and on  the nature of  
the concrete transition functions. 
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Given (s, {q~l,..., ~k qk }), and a transition t, there are three possible situations: 

1. There is no special component for the transition t, or the special component  is not 
.abstractable, i.e., it belongs to s. 

2. The special component has repetition constructor 1. 
3. The special component has repetition constructor +. 

For brevity, we discuss only the third, most difficult, case in detail. Suppose i is 
the special component  for t, and i has component state qi. The restrictions of  the 
RepetitiveID allow a transition to have different effects on the special component and the 
other components with the same component state. Therefore, we split our abstract state 
into two concrete states (s, [q 1,.. . ,  qi.-h qi, qi+:l,..., qk]) and (s, [q l, ..., qi, qi, ..., q~]), as 
shown in Fig. 4. 

I f  the successor of (s ,  [ql, ..., q i - b  qi, qi+t, ..., qk]) is (s t, [rl, ..., r i -1 ,  r, ri+l, ..., r~:]), 
we can convert it back to an abstract state by restoring the repetition constructors 
( e l ,  e l - l ,  1, e i + l  I . . . ,  ek) to get (s; {r~',  ..., ~i-, 1 ~i+1 ~k ..., ~ ri_ 1 , r , ri+ 1 , . . . ,  r k }). To make sure 
it is an legal abstract state, we may have to re-partition if the component  with state r is no 
longer abstractable, and to combine any identical component states rl and r j .  Similarly 
another abstract successor is generated from (s, [ql, ..., qi, qi, ..., qk]) with repetition 
constructors (el,  ..., 1, + ,  ..., e~). 

a n  (s, Iq~'  . . . , q~ , . . . ,qo  }) 

/ 
(s, {q,, ..., q~_l, q~, q~+,, ..., q,,)) 

(s ' ,  {~1, ..., ~ , - , ,  ~, ~;+~, ..., ~ } )  

-.... 
( , ,  {q~, ..., q;, q~, ..., q .} )  

I restoring constructors 1 

( s t , { r ~  ~, e,_~ 1 e~+j "ek ' " '  Ti--X ' f '  ~i-l'l ' ' ~ "Tk  }) ( J ,  {TI1 . . . .  , ? . l , r  i-}- . . . .  ,T kek }) 
re-partition 
and combining '1 

abstract successor A abstract successor B 

Fig. 4. Transition t With Special Component in State qi and Constructor +. 

Because of  the restrictions of  the RepetitiveID, the abstract state graph generated 
this way has the following property: 

P r o p e r t y  1 Given two abstract states A and B,  i f  there exists concrete state a C A and 
b E B such that (a, b) is a transition in the original state graph, (A ,  B )  is a transition 
in the abstract  state graph. 

The abstract start states represent all concrete start states, and the abstracting function 
abs  maps e r ro r  to er ror .  Therefore, it can easily be proved by induction that for 
every state reachable from a start state in the concrete state graph, there is an abstract 
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representative reachable from an abstract start state. This can be easily proved by 
induction. 

It follows from this result and [BBG+93] that if the abstract state graph satisfies a 
VCTL formula f ,  the concrete state graph also satisfies f .  Because the abstract state 
graph is an approximation, it may result in reports of non-existent errors and cannot be 
used for verification of deadlock-freedom (there is no reachable state with only itself as 
successor) or 3 CTL model checking. 

The algorithm implemented in Mur~ uses the restricted abstract states. The Mur~ 
program is required to specify the number of replicated components, n, and the Mur~ 
verifier restricts all abstract states to size n. There are two situations when a restricted 
abstract state represents no concrete states, and therefore, is discarded. One is when 
it only represents concrete states with number of replicated components fewer than n, 
such as in the case of the restricted abstract state (s, {q~, ql})[3. The other situation is 
when it only represents concrete states with number of replicated components more than 
n, such as in the case of the restricted abstract state (s, { q+, q+ })11. 

Furthermore, in some cases, the restricted abstract state represents the same set of 
concrete states as a similar restricted abstract state with the 1 constructor only. Mur~ 
automatically converts such states to a restricted abstract state with the 1 constructor 
only. For example, the restricted abstract states (s, ~ + [ql, q2 1)[2 and (8, + 1 [ql , q2])12 is the 
same as (s, [q~, 1 2, q2])l and Mur~ automatically converts both of them to (s, 1 [ql' q2])]2" 

During the verification process, if the discarded abstract state only represents con- 
crete states with fewer components than n, and no restricted abstract state is converted to 
one with the 1 constructor only, the abstract state graph obtained is the same as that for 
systems of larger sizes. We call this state graph the saturated state graph. The saturated 
state graph represents the behavior of all systems with sizes n or larger. The verification 
result is therefore valid for all systems of size n or larger. 

With the restricted abstract state graph, the verifier won't  attempt to solve the problem 
for arbitrary sizes if it is unsolvable or if the abstract state graph for arbitrary system 
sizes is too large for us to verify. 

3.3 The Efficient On-The-Fly Algorithm 

The algorithm presented in the previous subsection is very inefficient, because it is 
wasteful to have two comparable states in the table of previously examined states. 
For example, (s, 1 + {ql, q2 }) is redundant in the set of previously examined states when 
(s, {q+, q+ }) is also in the set. a more efficient algorithm can be implemented as shown 
in Fig. 5. Two heuristics are presented in this section to reduce the time for checking 
whether a state is maximal in the set of previously generated states and to reduce the 
number of non-maximal states generated. 

Checking if a State is Maximal  For every abstract state generated, we check whether 
it is covered by a previously examined state, and remove any previously examined state 
that is covered by it. Pong et al. use a linear search on all previously examined states to 
do this. 

If  an abstract state p covers another abstract state p/, p and p '  can only differ in the 
1 and + constructors on their component states. To store the abstract states, the hash 
function does not distinguish between 1 and + constructors. The states hashing to the 
same location are searched linearly to see if any cover or are covered by the current 
state. 
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EfficientAbstractAlgorithm0 
Reached= Unexpanded= { abs (q )  ! q E Q0 } 
While Unexpanded r q~ Do 

Remove an abstract state s from Unexpanded 
For each abstract successor s J of  s Do 

Examine(s J) 

Examine(state s) 
I f  s = e r ro r  Then Report Error 
I f  ~ is not in Reached and s is not covered by a state in ReachedThen 

Remove the states in Reached and Unexpandedthat are covered by 8 
Put s in Reachedand Unexpanded 

Fig. 5. The Efficient On-the-fly Algorithm Using the Abstract State Space 

In practise, the lists are very short. In the industrial cache coherence protocol pre- 
sented in Section 4, the maximum length is 6. When an abstract state is hashed into 
a location with a list of constructor arrays, the average number of states compared is 
fewer than 1.05. This method does not work well for the original scheme of Pong et al., 
because they have a fourth constructor, *, meaning "zero or more states". 

Reducing the Number of Non-Maximal States Although an abstract model has very 
few states, many non-maximal states are temporarily stored and expanded. We have 
found that for simple depth first search (DFS) and breadth first search (BFS), more than 
75% of the time is spent searching non-maximal states. 

Instead of using simple DFS or BFS, we use a best-first strategy, where "best" is 
defined as the greatest number of + constructors. The abstract state that represents more 
concrete states are expanded to find its successors first, because its successors are more 
likely to be maximal states. For the industrial cache coherence protocol presented in 
Section 4, we are able to reduce the number of non-maximal states examined from 
106,528 (3 times more than the number of maximal states) down to 3,527 (fewer than 
10% of the maximal states) in a 9-tirocessor system. No extra memory is required to 
store the non-maximal states, and the verification is more than three times faster. 

Pong also has mentioned similar strategy in his thesis [Pon95], however~ because of 
his choice of repetition constructors, it does not help much in reducing the number of 
non-maximal states. 

4 Practical Results 

The abstraction with the repetition constructors can be combined easily with the other 
two reduction strategies implemented in Murk: symmetry reduction [ID93a, ID93b] 
and reduction by reversible rules [ID96]. 

We present in this section the verification results for an industrial cache coherence 
protocol (ICCP), using the Mur~ verification system. This protocol is a typical central- 
directory-based cache coherence protocol, as described in [DDHY92]. Because of data 
forwarding, some replicated components in some states are not abstracted by the repe- 
tition constructors. However, since the extent of forwarding is limited, we are still able 
to verify it for arbitrary system sizes, as shown in Table 1. 

As we increase the size of the system, the size of the abstract state graph increases 
accordingly until it becomes saturated. After the verification of a system of 14 processors, 
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Table 1. Results for the Verification of an Industrial Cache Coherence Protocol 

# of processors (ICCP) E 4] 5 6 7 8 9 
size (unordered network) [1 247,565 - 
size (sym. only) | I1,814 68,879 358,078 - 
size (sym./rep.) | 11,206 57,790 257,692 - 
size(sym./rev.) | 1,760 6,021 18,118 49,045 121,302 
size (sym./rev./rep.) | 1,590 4,542 10,587 19,485 28,927 35,515 
time (unorderednetwork)[ 205s - - - 
time (sym. only) | 28s 349s 3,762s - - - 
time (sym./rep.) | 49s 497s 4,555s - - - 
time(sym./rev.) | 13s 98s 615: 3,283s 12,801s - 
time (sym./rev./rep.) [~ 27s 167s 81Is 3,265s 7,593s 17,477s 
# of processors (ICCP) ~ I1[ 121 131 1 ~  
size (sym./rev.trep.) ~ 3 8 , 4 8 5 [  38,3.29[ 38,269[ 38,269[[ 
time (sym./rev./rep.) ~7,903.s143,3:~2s[ 48,410s[ 49,932s[[ 

syrn. : Symmetry Reduction 
rev. : Reversible Rules Reduction 
rep. : Repetition Constructor Reduction 

M u r ~  was able to detect automatical ly  that the abstract state graph is the same for systems 
with 15 processor or more. The saturated model  has 38,269 states and is valid for 14 
processors or more. This  p h e n o m e n o n  is very s imilar  to the data saturat ion p h e n o m e n o n  
reported in [ID93a, ID93b].  
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Abs t rac t .  Recently there have been a lot of progress in technologies 

for comparing two structurally similar large circuits [2, 14, 13]. Cir- 

cuits having more than 10,000 gates, whose BDD cannot be built, have 

been verified in several minutes. However, arithmetic circuit verifica- 

tion with respect to specification is still a hard problem. As shown 

in [16] some arithmetic circuits, such as multipliers, square function. 

cube functions, etc., must ~atisfy some recurrence equations, such as 

f ( x  + 1, y) = f ( x ,  y) -~- y w, here f ( x ,  y) = xy, and those equations can 

be used for verification. In this paper, we use such recurrence equations 
in order to drive Boolean comparison problems of structurally similar 

circuits. That is, left hand sides and right hand sides of equations are 

realized as separated circuits and then compared. Using the recurrence 

equation properly, these circuits have many internal equivalent signals 
and many implications among signMs, by which Boolean comparison 

programs, such as [2, 14, 13]~ can work very effectively. Using the pro- 

posed method, 16-bit multipliers, such as C6288 of ISCAS85 benchmark 

circuits, are verified within 12 minutes. 

1 I n t r o d u c t i o n  

Formal verification techniques have been paid much attention recently. There  

have been lots of works on formal hardware verification [11, 10], and among 

them, Binary Decision Diagram (BDD) [3] based verification techniques, such as 

[5, 8, 17, 6, 15], have given successful results for practical designs. 

However, BDD may not work well for arithmetic circuits, such as multipliers. 

Therefore, Several extensions are made on BDD, such as, BMD [4], HDD [7], 

OKFDD [9], etc. Although originally word-level verification is necessary in order 

to use BMD. by using the technique shown in [12] which compute BMD from 

outputs  to inputs instead of inputs to outputs,  we can now use BMD directly 

to verify arithmetic circuits, such as multipliers. However, if there are errors 
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(bugs) in the circuits, BMD can easily blow up and the verification program 

may not terminate, since those circuits represent different logic functions from 

multiplier which can have exponential sizes of BMD. Of course this depends on 

each error but we actually observed this BMD explosion by randomly inserting 

logical errors to the multiplier circuits and generating BMDs. 

In this paper, we show another approach to attack the verification of arith- 

metic circuits. Instead of directly generating BDD (or its extensions) from given 

circuits, we create circuits based on the recurrence equations that must be satis- 

fied by the circuits. This idea was originally proposed by Ochi [16]. For example 

a recurrence equation for multipliers is: 

f ( z  + l ly) = f ( x , y )  + y where f ( x , y )  = z y  and z, y are inputs  

Any circuits which satisfy the above recurrence equation are multipliers 1. He 

used recurrence equations to verify arithmetic circuits by first generating BDD 

from the circuits and then check if that BDD satisfy the required recurrence 

equations. Clearly this method has a drawback that we have to build BDD for 

the circuits first, which is often impossible for large arithmetic circuits. 

On the other hand, recurrence equations, such as shown above (for multipli- 

ers), may indicate a comparison problem of two circuits (or Boolean functions). 

That is, checking recurrence equation means comparing the left hand side and 

right hand side of the equation. So, basically we can use Boolean comparison 

techniques for such equivalence checking. 

Recently there have been much progress in technologies for Boolean com- 

parison of similar circuits. Here '~ means that we can find many logical 

relationships, such as equivalences or implications, among the internal signals 

in the two circuits to be compared. In a practical design environment, designers 

want to check the equivalence of the two circuits which are very structurally 

similar. For example, it is often the case to check the equivalence between unop- 

timized circuits and manually optimized circuits. For such cases, there are lots 

of relationships among the internal signals in the two circuits. By utilizing these 

relationships, methods like [2, 14, 13] can verify much larger circuits than the 

circuits which can be verified just by BDDs. 10,000 gates or larger circuits can 

be verified within practical time. 

Basically recurrence equations suggest two structurally similar circuits (left 

hand side and right hand side). Here we propose a new verification method 

1 Circuits must also satisfy boundary conditions, such as, f(O, y) = O, which can be 
checked rather easily. 
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for arithmetic circuits based on recurrence equations. We first generate two cir- 

cuits which correspond to left hand side and right hand side of the recurrence 

equations. Then apply Boolean comparison program for similar circuits to those 

circuits. Please note that  we need only one circuit which should be verified. The 

two circuits to be compared are generated from that  circuit by adding appropri- 

ate extra circuits, such as adders, incrementors, etc. Also note that  we do not 

need specification in Boolean functions. Specification is fully described in the 

recurrence equations that  we are using to generate two circuits. 

By using case splitting appropriately, we can verify 16-bit multipliers, such 

as C6288 of ISCAS benchmark circuits, in less than 12 minutes on Sparc20. 

Moreover, different from the method in [12], the proposed method can finish 

verification in Similar time, even if the circuits are not correct as shown in section 

3. 

In the next section, we introduce our verification method. Then section 3 gives 

preliminary results. Section 4 is our concluding remarks. Although we discuss 

only about multipliers for simplicity, the proposed method can be applied many 

arithmetic functions which have proper recurrence equations, such as, square 

functions, cube functions, etc. 

2 Verification algorithm 

In this section we introduce our verification method. For simplicity, we use mul- 

tipliers as examples all the time, although we can verify many other arithmetic 

circuits which have proper recurrence equations, such as, square functions, cube 

functions, etc. As long as there are proper recurrence equations, we can verify 

any circuits, including random circuits (assuming such recurrence equations are 

given) ~. 

The basic idea for multipliers is illustrated in Figure 1. Since multipliers 

satisfy the following equation, two circuits which are derived from left hand side 

and right hand side of the equation respectively must realize the same Boolean 

function. 

f ( x  + 1, y) = f ( x ,  y) + y where f ( x ,  y) = xy and x, y are inputs 

In some sense, we can consider the proposed method is a kind of self-checking meth- 
ods proposed in [1]. What we are doing in this paper can be described in the following 
way: by appropriatly using recurrence equations (self checking properties), we are 
reducing verification problems into Boolean comparison problem for similar circuits. 
Of course, if the reduced Boolean comparison problems are too large, we can use 
random simulation based checking just like in [1]. 
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(b) Circuit correponding to f(x,y)+y 

Fig. 1. Circuit realization of the recurzence equation for multipliers 

Please note that  the two multipliers in Figure 1 are the same circuit which 

we want to verify. We are assuming here that  incrementor and adder are given 

and they are guaranteed to be correct. 

Please also note that  the above equation together with boundary condition 

for z = 0 completely specify the function and that  must be multiplier. 

So, by comparing the two circuits shown in Figure 1, we can formally verify 

multipliers 3. But this is not an easy Boolean comparison problem. Clearly we 

cannot build BDD for each circuit, if that  is a large bit width multipliers, such 

as C6288 of ISCAS85 benchmark circuits. Although large portion of the two 

circuits are the same sub-circuits (multiplier), they are not similar circuits in 

the sense that  we cannot find many equivalent signals between the two circuits. 

So, we cannot directly apply the Boolean comparison methods like [2, 14, 13]. 

However, if we consider only the case where the least significant bit of x, z0 is 

0, then the incrementor becomes just an inverter as shown in Figure 24. Thus the 

two circuits become like the ones shown in Figures 3. There are many equivalent 

3 In this paper, we assume that extra circuits, such as incrementor, adder, subtracter, 

etc., are guaranteed to be correct. Or those should be verified first 

4 If x0 ---- 0, then increment does not affect the values of x1, x2, ..., xn-z. 
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signals between the  two circuits,  since mos t  inputs are c o m m o n  and large por t ion  

of  the circuits are the same.  In fact there are a lot of  funct ional  relat ionships 

among  internal  signals of  the two circuits. 

xO 

x l  
x2  

xn-1 

x O ~  

x l  
x 2 ~  

xn-1 

n-bi t  
i n c r e m e n t o r  

I 

if xO=q~ 

-- aO 

-- a l  
-- a2 

--an-1 

�9 a0 
�9 a l  
, a2 

�9 an-1 

Fig.  2. If the least significant bit is 0, incrementor becomes just an inverter 

By this case spl i t t ing,  we can verify multipliers when z0 = 0. T h e n  how 

about  the cases when z0 = 1 ? We can proceed with the same idea: fur ther  case 

spli t t ing with x l ,  x2, .... For example,  if z0 = 1 but  z l  = 0, then the incrementor  

becomes jus t  two inverters  as shown in Figure 4. Again the two circuits genera ted  

are similar as shown in Figure  5. 

The  next  spl i t t ing case is x0 = 1, z l  = 1, z2 = 0 which needs three inverters 

for z0, x l ,  and x2. Th i s  case spli t t ing process can be continued until  we reach 

the case where z0 = 1, z l  = 1, x2 = 1, ..., x , _ 2  = 1, zn -1  = O. 

W h a t  we are doing here is jus t  check the equation: 

f ( x  --t- 1, y) = f ( x ,  y)  q- y w h e r e  f ( x ,  y) -- x y  and x, y are ,inputs 

by case spli t t ing the values of  xi. 
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F i g .  4.  T h e  case where  xo = 1 b u t  xl = 0 



165 

X 

n-bit 1 incrementor 
=-'1 

~ a  f(x,y) 

y in L 
!1 
L-~zl 

I ,  
( f(x,y) ~ These two are 

n~iiiiiiifi~bit!!i!i!!iiiiii .......... very similar 

Y ::::i''":"""":"'::_'::: -i-" adder I ' - z2 

Fig. 5. By assuming zo = 1, xl = 0, again the circuits become very similar 

As we have more number  of inverters, the two circuits become less similar. 

However, as we have more number  of inverters, we can fix the values of  zi more. 

T h a t  is, in the case of Figure 4, since this is the case where z0 = 1 and z l  = 0, 

we can fix the values of x0 and z l .  So there are trade-offs in terms of difficulty 

and the most  difficult case happens when there are two inverters as shown in 

Figure 4 according to our experiments  for C6288 in the next section. 

By using the above case splitting, we can keep the similarity of  the two 

circuits. These circuits should be rather  easy circuits for the Boolean comparison 

methods like [2, 14, 13]. In fact, as shown in the next section, we have found many  

equivalent signals which drastically reduce the verification time or complexity of 

the problem. 

3 P r e l i m i n a r y  e x p e r i m e n t a l  r e s u l t s  

We did some preliminary experiments  for multipliers. We plan to do more in- 

tensive experiments using other types of circuits, such as, square functions. 

Our program first generates net-lists for the two circuits in Figure 2, 4, and 

others s from the given multipliers. Then apply our Boolean comparison pro- 

grams to them. 

s In the case of 16-bit multipliers, there are 16 cases in total. But some of them are 
trivial, since most of xi are constants. 
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We verified C6288 of ISCAS85 benchmark circuits for its first 16 outputs, 

since as shown in Figure 1, all values should be the same bit-width (16bit in this 

case). The results are shown in Figure 6. We did two types of experiments. The 

first one is to just  verify C6288 circuit, which is a correct multiplier. It took only 

less than 12 minutes in total to verify. 

The program found 342 equivalent internal signals of the two circuits out of 

360 internal signals for the case of Figure 2. So large portion of the two circuits 

are equivalent and that  is why verification can finish so quickly. The most time 

Consuming case is the one shown in Figure 4 which took 8 minutes to finish. 

This is the case where the two circuits are similar but not so much and their 

circuit sizes are still large (only small number of xi have fixed value). All the 

other cases are less than one minute. 

Multiplication 
Circuit 

C6288 
(first 16 outputs) 

Case: x0=0 

Case: xO=l, xl=O 

All other cases 

CPU time 
sec. on Sparc20 

Original 
(correct) 

14.0 

496.0 

Less than 
60.0 

Error  
inserted 

2.0-60.0 
depending 
o n  e r r o r s  

inserted 

Fig. 6. Results for 16-bit mukipfiers 

Second experiment we did is to try to verify incorrect multipliers (verification 

fails) by intentionally inserting errors into C6288 (changing function of a gate, 
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etc.6). Depending on changes, it took less than one minute (sometime in a couple 

of seconds) to prove the circuit is not a multiplier. Depending errors, the cases 

where verification fails are different, but mostly verification fails in multiple 

cases. Again this is extremely fast. Please note that  the method in [12] may not 

work well for incorrect circuits. 

4 C o n c l u s i o n s  

We have shown a verification method for arithmetic circuits. We also demon- 

strated that  C6288 can be verified in less than 12 minutes. Even if the circuits 

are not correct (there is a bug in the circuits), verification time remain similar or 

less. Also, different from BMD or HDD based methods, we do not need another 

BDD package, such as, BMD package. We can use existing BDD packages or 

Boolean comparison programs to verify arithmetic circuits. We believe that  the 

proposed method has a significance in its applications. 

Although in this paper we only discussed about combinational circuits, the 

proposed techniques can be applied to sequential circuits by deriving appropriate 

recurrence equations. Surely this is one of our future research topics. 

Also, the proposed method can be considered to be a kind of self-checking 

methods proposed in [1]. What  we are doing here can be described in the follow- 

ing way: by appropriately using recurrence equations (self checking properties), 

we are reducing verification problems into Boolean comparison problem for simi- 

lar circuits. Of course, if the reduced Boolean comparison problems are too large, 

we can use random simulation based checking just like in [1]. We are planning 

to explore this area and study on extensions of the proposed method. 
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A b s t r a c t .  The automated deduction and model checking communities 
have developed techniques that are impressively effective when applied 
to suitable problems. However, these problems seldom coincide exactly 
with those that arise in formal methods. Using small but realistic ex- 
amples for illustration, I will argue that effective deductive support for 
formal methods requires cooperation among different techniques and an 
integrated approach to language, deduction, and supporting capabilities 
such as simulation and the construction of invariants and abstractions. 
Successful application of automated deduction to formal methods will 
enrich both fields, providing new opportunities for research and use of 
automated deduction, and making formal methods a truly useful and 
practical tool. 

1 I n t r o d u c t i o n  

Formal methods are a natural  application area for automated deduct ion--yet ,  
with few exceptions, tools for mainstream formal methods provide little more 
than rudimentary support  for deduction, and few theorem provers find appli- 
cation in formal methods. Mode1 checking and related techniques are gaining 
acceptance in important  specialized areas, but  have yet to penetrate the larger 
field. This disconnect between formal methods and the very technologies that  
could help increase its utility and appeal is unfortunate,  and deserves explana- 
tion and remedy. 

My opinion is tha t  many techniques for automated deduction (and for sim- 
plicity I include model checking under this heading) provide excellent solutions 
to individual problems, but  that  formal methods require more integrated ap- 
proaches to provide solutions that  are effective across a broad range of problems. 
In the following sections, I outline some prototypical applications of formal meth- 
ods and suggest some of the capabilities required of automated deduction if it is 
to achieve more widespread use in this area. I discuss these topics under three 
headings: language, theories, and interaction in the sections that  follow. Brief 
conclusions are presented in Section 5. 

* This work was supported by the Air Force Office of Scientific Research under contract 
F49620-95-C0044 and by the National Science Foundation under contract CCR- 
9509931. The applications described were undertaken for NASA Langley Research 
Center under contracts NAS1-18969 and NAS1-20334 and for ARPA through NASA 
Ames Research Center under contract NASA-NAG-2-891. 
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2 L a n g u a g e  

By formal methods I mean the use of techniques derived from mathematical 
logic for the specification and analysis of computational systems. There are two 
elements here: specification, by which I mean a descriptive activity in which 
logical notation is valued for its contributions to both the intellectual process 
of design and the communication of designs, and analysis, by which I mean 
systematic and repeatable methods for deducing properties of specifications and 
of the designs that they represent. Automated deduction has obvious relevance 
in the mechanization of analysis, but formal methods practitioners attach great 
importance to specification and are unwilling to compromise on the convenience 
of expression provided by a full specification language. To achieve acceptance, 
it therefore seems necessary that automated deduction should be harnessed to 
rather rich notations. 

To suggest some of the capabilities desired, I outline a typical "requirements 
specification" for a function in the Space Shuttle's control system called "Jet- 
Select" [6]. This function is responsible for selecting which of the Shuttle's Reac- 
tion Control System (RCS) jets (or thrusters) should be fired in order to accom- 
plish a given translational or rotational acceleration. I will concentrate on the 
"Vernier/Alt" component for rotation, which can operate in one of two modes: 
in Vernier mode, only the small "vernier" jets are considered for selection; in 
Alt (alternative) mode, only the larger "primary" jets are considered. The basic 
Jet-Select calculations are the same whether in Vernier or Alt mode, except that 
the six vernier jets are treated singly, while the 38 primary jets are treated in 
groups. (The primary jets are arranged in 14 groups, each consisting of two, 
three, or four jets located adjacent to each other and firing in the same direc- 
tion; only 11 of the 14 groups are useful for rotational maneuvers.) In Vernier 
mode, Jet-Select chooses up to three individual vernier jets to fire, whereas in 
Alt mode it selects up to three groups of primary jets, and then selects exactly 
one jet from each of the chosen groups. (The jets within each group are ranked in 
a priority order and it is the available jet of highest priority that is fired when its 
group is selected in Alt mode.) Various vernier jets and groups of primary jets 
are excluded from consideration in certain submodes (e.g., jets whose plumes 
extend into the area above the cargo bay are excluded in "low +z" mode) and 
individual jets may be marked "unavailable" due to failure or by crew selection. 

The selection of vernier jets or primary groups is performed by an algorithm 
known as "max dot-product" (this particular exercise in formalization was un- 
dertaken in preparation for introduction of a new algorithm called "min angle"). 
For each vernier jet and primary group, a table records the rotational velocity 
vector imparted by firing that jet (or a member of that group) for a standard 
period. (Actually, there are several tables, parameterized by whether there is a 
payload attached to the Shuttle's robotic arm, and where the arm is positioned.) 
The algorithm proceeds by first selecting the vernier jet or primary group whose 
acceleration has the largest scalar (dot) product with the rotationalacceleration 
vector actually desired; the second and third jets (if required) are similarly se- 
lected as those with the second and third largest scalar products, provided the 
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dot-product of the second exceeds some fraction tl of the first, and that of the 
third exceeds some fraction t2 of the second. 

The major goal here is to use formal methods to specify the desired function- 
ality as clearly as possible. The role of automated deduction in this example is to 
contribute to validation of the specification by examining putative "challenge" 
theorems such as "a failed jet will never be selected." 

A good specification for this component of Jet-Select should make clear that 
the max dot-product algorithm is essentially the same in both Vernier and Alt 
modes, except that in the former it operates over individual vernier jets, while 
in the latter it operates over groups of primary jets. This argues for a specifi- 
cation notation that provides parameterized theories so that specification of the 
same algorithm can be instantiated over these different domains. Although not 
exemplified by Jet-Select, many applications of formal methods also require pa- 
rameterized representations for standard computer science data structures such 
as lists, trees, and arrays. 

Next, we can observe that the output of Jet-Select is most naturally consid- 
ered as a set of jets, and the groups of primary jets are also naturally considered 
as sets. Thus, our specification notation should incorporate a representation for 
sets. Most practitioners of formal methods prefer their specification notation to 
be strongly typed, and this particular application seems to call for subtyping: 
surely the vernier and primary jets are naturally considered as subtypes of the 
type of all jets. But then the output of the algorithm will be either a set of 
vernier jets or a set of primary groups (the latter is then converted to a set of 
primary jets), whereas the output of Jet-Select as a whole must be a set of jets. 
Hence, our specification notation must somehow extend the subtyping relation 
between (for example) vernier jets and all jets to a compatible subtyping relation 
between the sets of such jets. 

There are (at least) two ways to specify that the (intermediate) result of 
Jet-Select should be the set of vernier jets or primary groups satisfying the max 
dot-product criterion. One way would simply axiomatize the desired property, 
the other would attempt to represent the algorithm suggested by the informal de- 
scription (i.e., the iterative selection of the three best jets or groups from among 
those available). The latter approach might require the specification language to 
incorporate a treatment of imperative programs. It would also require a way to 
identify the jet or group in a given set that has the maximum dot-product. For 
generality, we might like to provide a library axiom defining the maximum of a 
set to be its largest member with respect to some given ordering. This is most 
directly accomplished by quantification, but we must ensure that the ordering 
relation has the appropriate algebraic properties and must take proper care of 
the case where the set is empty, or risk unsoundness. A specification language 
should help ensure that these obligations are not overlooked. 2 

2 For example, the PVS declaration 

max(s : setof[TD: {~: Tl t e  s AV(x: T): x E s D (t > x Vx = t)} 

generates a proof obligation (to show that the type assigned to the value of max 
is inhabited) that can be discharged only if the set 8 is nonempty and > is a well- 
ordering. 
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Most theorem provers support raw logics that lack the notational conve- 
niences mentioned above. In my experience, it quite hopeless to persuade users 
of formal methods (let alone those who are not yet users) to adopt such impover- 
ished notations. To observe that it is perfectly feasible to provide a specification 
for Jet-Select in quite primitive logics (e.g., those without quantification) misses 
the point--this simply is not what users of formal methods want to do. 

Left to their own devices, users of formal methods develop or adopt notations 
such as B, VDM, RAISE, or Z. These make few concessions to the needs of 
efficient automated deduction and the tools that have been developed for them 
provide little more than interactive proof checking unsupported by significant 
automation (e.g., [8, 10]). I have argued elsewhere [14] that choices made in the 
designs of these languages (e.g., in the case of Z, set theory with partial functions, 
and no notion of definition) are inimical to automated deduction, and that really 
efficient deductive support is therefore unlikely to be forthcoming for them. 

One of the challenges to those who would provide automated deduction for 
formal methods is therefore to contribute to the design of specification languages 
that combine the felicity of expression desired for formal methods with the pos- 
sibility of powerfully automated support. Rather than being a limitation on 
specification language design, I believe that closer integration of language and 
automated deduction can have a liberating effect--because it makes it possible 
to contemplate design choices that require theorem proving in typechecking. We 
have exploited this opportunity to some extent in PVS [12] (where subtyping, for 
example, can generate proof obligations) but many further opportunities remain. 

It is not necessary that the logic supported by a theorem prover should be a 
full specification language, but there must be some translation from the latter to 
the former. Furthermore, the translation must be maintained during interaction 
with the prover: it is unlikely to be acceptable if proof of a conjecture expressed 
in the specification language must be conducted in terms of its translation into 
the primitives of the underlying logic. 

3 T h e o r i e s  

Automated deduction must not only support the rich linguistic capabilities de- 
sired in formal methods, but must also provide very effective automation for 
theories that are commonly encountered. 

For illustration, I will use a verification of the Interactive Convergence Algo- 
rithm for Byzantine fault-tolerant clock synchronization [9] that Friedrich von 
Henke and I performed some years ago [15]. The goal is to keep the clocks of 
distributed processors approximately synchronized, given that good clocks have 
some bounded drift rate, good processors can read the clocks of other good pro- 
cessors with some small error, and faulty processors and clocks are unconstrained 
(in particular, they can present conflicting information to different good proces- 
sors). The clock of processor p is represented by an uninterpreted function cp'(T) 
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from "clock time" to "real time" (both interpreted as real numbers), s Clocks 
are adjusted every R clock time units (this duration is called a "frame" and the 
start  time of the i ' th  frame is denoted R(i)), during a "synchronization period" 
of duration S clock time units occurring at the end of the frame (the start  of 
the i ' th synchronization period is denoted S(i)). The adjustment to clock p for 

period i is C (~) clock time units and the adjusted clock for that  period is denoted 

c (i) (T) ,  where c (~) (T) = ap(T + Cp(i)). 

In the i ' th  synchronizing period, each processor p obtains an estimate a(i) ,..aq p 

of the skew between its clock and that  of processor q. A parameter c bounds the 
error in this estimate as follows. 

A s s u m p t i o n  A2. I f  conditions the clock synchronization conditions (defined 
below) hold for the i 'th period, and processors p and q are nonfaulty through 
period i, then 

IA (~) < S q p  - -  

and 
Ic(')(T' + A(~)~qp, -c~')(T')l <e  

for some time T '  in S (i) . 

The algorithm is defined as follows. 

Algorithm I C A .  For all processors p: 

where 

Cp( + 1) = + zl(p , 

C (~ is arbitrary, 

V" A(') 
=1 r p '  a n d  

/~(i) = i f  IA(i)pl < A t h e n  A(') else 0 

and A is a clock time quantity that is a parameter to the algorithm. 

The goal is to achieve the following clock synchronization conditions, pro- 
vided that  at most m processors (out of n) are faulty through period i, for real 
time constant 6 and clock time constant Z that  are parameters to the algorithm. 

Bounded skew: I] p and q are nonfaulty through period i, then 

ic(i)<T) - c(')(T)l < 5 

for all T in R (i) . 

a A specification language with the ability to distinguish clock time and real time as 
different "dimensions" of the same type provides valuable additional error checking 
in these constructions. 
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Bounded adjustment: If processor p is nonfaulty through period i, then 

c; )l < x .  

These conditions can be achieved, provided several assumptions (concerning, 
for example, the drift rate p of good clocks) are satisfied, together with several 
constraints on the parameters to the algorithm, such as the following. 

Cons t ra in t  C6. 5 __ 2(e + pS) + 2mA npR n p ~  - - + - -  - + - - + p A  
n - - m  n - - m  n - - m  

The proof depends on several lemmas, of which the following are among the 
most important. 

L e m m a  4. If  the clock synchronization conditions hold for i, processors p, q, 
and r are nonJaulty through period i + 1, and T E S (~), then 

b(r + + zi(r < + pS) + pa .  

L e m m a  5. If the bounded skew clock synchronization condition holds/or i, pro- 
cessors p and q are nonfaulty through period i'+ 1, and T E S (i) , then 

The items of interest here are the theories involved: we have arithmetic ex- 
pressions and relations involving both real and natural numbers, and both inter- 
preted and uninterpreted function symbols. The ubiquity and complexity of the 
arithmetic used here are such that it would be intolerable to attempt verification 
of this algorithm without efficient deductive support for arithmetic. A library 
of lemmas and rewrite rules will not be adequate to the task: decision proce- 
dures are needed. The question then is: decision procedures for which theories? 
The importance of integer arithmetic is such that some tools for formal meth- 
ods include decision procedures for Presburger arithmetic--that is the quantified 
theory of integer linear arithmetic. Since we have real numbers as well, a decision 
procedure for real closed fields might also seem appropriate. The problem with 
these choices is that we also have uninterpreted function symbols, which takes 
us outside these decidable theories. Inspection of various formulas appearing in 
the presentation of the algorithm shows that only Assumption A2 involves a 
nested quantifier (for Tr), everything else is (implicitly) universally quantified 
at the outermost level. We can conclude that the quantifier reasoning here is 
likely to be easy, and we may therefore be prepared to deal with it outside the 
arithmetic decision procedures (either heuristically, or with user guidance). This 
will allow us to restrict the arithmetic decision procedures to just the ground 
case--where the combination of linear arithmetic with uninterpreted function 
symbols is decidable [4]. 

My experience with formal methods applications is that this tradeoff in favor 
of deciding ground theories is always worthwhile, since it allows the different deci- 
sion procedures to be combined. Some theories, such as arithmetic, equality with 
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uninterpreted function symbols, and arrays 4 are so ubiquitous that decision pro- 
cedures for their ground cases are essential for all productive work. Decision pro- 
cedures for additional theories may be highly advantageous for particular classes 
of applications. For example, our experience with processor verification [17] has 
shown that the (large) library of rewrite rules used for the theory of bitvectors is 
the main impediment to effective automation, and we conjecture that a decision 
procedure for bitvectors would have a dramatic benefit. The development of new 
decision procedures for theories arising in formal methods is a valuable topic for 
research. 

Important requirements for such decision procedures are the following. 

- They must work cooperatively to decide the combination of their theories. 
- They must deal gracefully with terms outside the decided theory. For ex- 

ample, the theory decided by the S U P - I N F  [16] and similar procedures is 
ground linear arithmetic, but several of the formulas used in clock synchro- 
nization contain nonlinear terms (and division). Although the full nonlinear 
case cannot be decided, it is important to deal with special properties (e.g., 
commutativity, and "a minus times a minus is a plus") without losing those 
properties that follow simply by treating nonlinear multiplication as unin- 
terpreted. A similarly effective extension to division is also required. (Notice 
also that some treatment for the partiality of  division by zero is needed; this 
may require coordination between the specification language and its deduc- 
tive support--in PVS, for example, division by zero is excluded through type 
rules that generate proof obligations to show the divisor is nonzero.) 

- Their behavior must be predictable. One of the strengths of decision proce- 
dures over heuristics is that the user should not have to puzzle over whether 
the failure to prove a conjecture is due to its falsehood, or an inadequate 
heuristic. This benefit is lost if the decided theory is not clearly characterized. 
And although performance is .hard to guarantee given the super-exponential 
complexity of most decision procedures, "black holes" (where a small and 
apparently simple problem takes an inordinate amount of time) are to be 
avoided. Because they will form the inner loop of larger procedures, even lin- 
ear speedups in the performance of decision procedures can have a dramatic 
impact on overall efficiency; more needs to be known about the relative prac- 
tical performance of various decision procedures for the same problem, which 
anecdotal evidence indicates c~im differ by an order of magnitude or more [4]. 
Conjectures in formal methods applications often give rise to very large for- 
mulas, so it is crucial that decision procedures should be implemented in 
ways that scale reasonably well (using., for example, structure-sharing tech- 
niques similar to those in BDDsh). 

4 That is (in PVS notation) f[(x) := y](z) = if z -- x then y else ](z). This is also 
known as function updating or overriding. 

5 It goes without saying that propositional reasoning must be implemented very ef- 
ficiently. Ordered binary decision dhagrams (OBDDs) are the natural choice, but 
the Davis-Putnam procedure and the patented algorithm of Sts [18] may be 
superior in some applications. 
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- Expressions that cannot be decided should be simplified. Especially in an 
interactive environment, it is important that the information presented to 
the user should be as brief and as simple as possible. But it should also be 
familiar--that is to say, expressions should retain, to the extent possible, the 
form they were originally given by the user, and should not be arbitrarily 
normalized. Simplification should merely eliminate redundancy, so that, for 
example, (a + 1) - 1, if  t~ae t hen  a else b, and if B t h e n  a else a all be- 
come a; it should generally refrain from transformations such as that from 
x x (a+b) to x x a + x  x b. One of the great advantages of decision procedures 
over heuristics is that they are sensitive only to the content and not to the 
form of expressions, so that syntactic representations can be chosen for the 
convenience of the user rather than the prover. 

With standard theories handled by ground decision procedures, the next 
candidate for automation is quantifier reasoning. Traditional methods for first- 
order reasoning, such as resolution, do not extend well to the presence of de- 
cided ground theories, and therefore find little application in formal methods. 
(Also, formal methods often use higher-order quantification.) Fortunately, as 
noted above, there is generally little nesting or. alternation of quantifiers in these 
applications, so that a combination of specialized and heuristic methods work 
quite well for the majority of cases (difficult cases then require user guidance). 
Specialized methods include those for conditional rewriting in the presence of 
decided theories--the close integration of rewriting with linear arithmetic is the 
source for much of the effectiveness of Boyer and Moore's provers [3], and simi- 
lar capabilities are required in any system intended to support formal methods. 
Matching techniques similar to those used in rewriting can also provide heuris- 
tic instantiation for general formulas. However, my experience with PVS is that 
while its conditional rewriter is almost completely effective (i.e., it rarely fails 
to find a match if one exists), its heuristic instantiation of lemmas and general 
quantifier reasoning fails (usually by finding an unproductive match) more of- 
ten than I would like. More effective methods for quantifier reasoning in these 
contexts (and for restricted instances of the higher-order case) would be a good 
topic for research. 

Inspection of the formulas for clock synchronization shown earlier suggests 
that, in addition to arithmetic, propositional, and quantifier reasoning, we will 
also need induction. Proof that the algorithm maintains the clock synchroniza- 
tion conditions is accomplished using simple induction on the frame index i. 
Several results on finite summations are also used (a key step in the proof is to 

split the summation in the definition of A~ ~) into m terms constrained by Lemma 
5, and n - m constrained by Lemma 4), and these require bounded induction 
(i.e., induction over a subrange of the natural numbers) on the recursive function 
that is used to define summation. Given the need for induction, it might seem 
that powerful automation for inductive proofs, as provided in several systems, 
would be beneficial. Unfortunately, these methods have generally been devel- 
oped for rather restricted (e.g., equational or unquantified) logics, and not for 
the richer context found here. In the absence of suitable automation, the user 
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may be expected to indicate when induction should be used, and to identify the 
induction variable or expression (PVS, for example, requires this). It is then rela- 
tively straightforward to automate selection and instantiation of the appropriate 
induction scheme; simple tactics can finish the proof of straightforward lemmas 
(e.g., those needed here for properties of summations), while more explicit user 
guidance is be needed in more complex cases (e.g., the main induction here). 
Many formal methods applications require only a couple of inductions and these 
simple methods are adequate in these cases. Nonetheless, more automated meth- 
ods (including those for generalization) would be welcome, and the development 
of suitable techniques is a good research topic. 

3.1 Model Checking 

Compared to theorem proving methods, model checking and related techniques 
(such as state exploration and language inclusion) are becoming rather widely 
used in formal methods. However, I believe that these techniques currently tend 
to be used standalone in application domains (such as hardware and protocols) 
to which they are particularly well-suited, rather than being incorporated into 
traditional formal methods, or integrated with theorem proving. 

For my next example, I describe an experiment undertaken by my colleagues 
Klans Havelund and Shankar [7], who applied a combination of finite state explo- 
ration, theorem proving, and model checking approaches to a simple protocol. 
Many larger and more significant problems than this have been examined by 
finite state enumeration and model checking techniques; what is interesting in 
this exercise is that it points towards an integration of these techniques with 
theorem proving, and also highlights some of the areas where further research is 
needed. 

Havelund and Shankar began by reducing the protocol to finite state (by 
manually assigning explicit small integers as the upper bound on the size of 
certain data structures) and checking certain safety properties with the Murr 
explicit state exploration system [5]. They next verified these properties for the 
full protocol by theorem proving in PVS using a traditional invariance argument, 
but found in the process that the desired invariant had to be strengthened by 
the addition of many additional conjuncts. These were discovered incrementally 
during the proof attempt; each new proposed conjunct was checked with Murr 
added to the invariant, and the evolving proof attempted once more. The whole 
process was iterated until a sufficiently strong invariant was developed; this 
eventually comprised 57 conjuncts. Seeking a better approach, they developed 
a finite-state abstraction of the original protocol, verified (by theorem proving) 
that it was indeed an abstraction~ and then verified properties of the abstraction 
by model checking. 

First, notice that the initial "reduction" to finite state in preparation for 
examination with Murr was a manual and ad-hoc process. This seems typical of 
finite-state analyses: the original problem is transformed by hand into a form that 
is acceptable to the available tool. The transformation is usually an aggressive 
simplification that is adequate for refutation but not for verification--meaning 
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that bugs found in the transformed description are likely to correspond to bugs in 
the original, but the failure to detect bugs in the former cannot be interpreted as 
verification of the latter. In the case of the protocol studied in these experiments, 
themaximum number of messages in a file was arbitrarily set to three: bugs that 
are manifest only with larger file sizes will not be found by this method. 

Next, the direct verification of the full protocol was extremely tedious, as the 
desired safety property had to be strengthened iteratively until it became an in- 
variant. This process took many weeks, which is clearly unacceptable for general 
practice. Methods for the systematic--and preferably automated--development 
of invariants therefore constitute a very worthwhile research topic. Of course, 
one of the advantages of model checking is that it is largely automatic and does 
not require the development of such invariants. However, when model checking 
is used for verification rather than refutation, it is necessary to prove that the 
finite-state description is a true abstraction of the original specification, and this 
abstraction proof may itself require invariants. Havelund and Shankar in fact 
reused 45 of the 57 invariants developed for their protocol in their abstraction 
proof, so the overall saving in effort was not great in this case. This experi- 
ence highlights another very fruitful area for research: systematic and automated 
methods for developing finite-state abstractions. Good results are already known 
for some special cases [2] and I speculate that integration of these methods with 
model checking will eventually provide an efficient way to verify properties of 
infinite-state systems. 

There were interesting differences between the "reduced" finite-state descrip- 
tion checked with Murr and the "abstracted" version that was model checked. 
In the reduced Murr description, a file could comprise 1, 2, or 3 messages; in 
the abstracted description, the size of the untransmitted portion of the file is 
chosen from the uninterpreted enumeration NONE, ONE, and MANY. The relation 
between these different approaches--fixing the size vs. introducing abstraction 
(and additional nondeterminism)--is worthy of investigation. 

Although these experiments indicate several areas where additional research 
is needed, they also demonstrate some promising directions. First, use of Murr 
to check the plausibility of proposed new invariants is representative of a useful 
general technique: testing conjectures using some lightweight technique before 
undertaking a full proof. In formal methods applications, many conjectures are 
false when first proposed and it is best to discover these falsehoods as early and 
as cheaply as possible, reserving the investment in a full proof until some confi- 
dence has been developed that it is likely to be successful. Lightweight methods 
generally apply to specific, or reduced, cases of the full specification, and auto- 
mated assistance for creating these reduced cases a useful addition to any sup- 
port environment for formal methods. Apart from finite state enumeration, other 
lightweight techniques include direct evaluation (for executable specifications), 
and interactive simulation (for specifications that are not directly executable). 
The latter methods are usually based on specialized and optimized techniques for 
automated deduction (e.g., rewriting and enumeration over finite quantifiers). 
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Second, the combination of theorem proving and model checking in the last 
of the exercises reported above is representative of a promising direction for 
integrating powerful, but narrow, technilues into a larger system. For example, 
model checking in PVS is accomplished using an external decision procedure for 
Park's p-calculus. This is extended to a decision procedure for p-calculus on the 
hereditarily finite fragment of PVS~s type system 6 by encoding their values in 
propositional variables. The branching time temporal logic CTL is then defined 
in PVS and its model checking problem is cast as a decision problem in p- 
calculus. This allows CTL model checking to be smoothly integrated as a proof 
procedure in PVS. A benefit of this integration is that model checking is available 
for any conjecture that has the appropriate semantic attributes, independently 
of its linguistic representation. For example, a tabular specification construct 
was recently added to PVS; this was then used to formalize a requirements 
methodology known as SCR, and model checking was then immediately available 
for SCR specifications [11]. 

Interesting challenges for the future are to integrate other highly efficient but 
narrow procedures into a general purpose framework. Examples include model 
checking methods for hybrid systems and binary moment diagrams. 

4 Interaction with  the U s e r  

I believe that formal methods can deliver most value when applied to problems 
where traditional methods are inadequate. All the evidence points two princi- 
pal sources of failure in complex systems: inadequate understanding of potential 
interactions, and the intrinsically hard parts of a design. Examples of the for- 
mer often arise in requirements specification, where it is particularly difficult 
to anticipate all the interactions among the components of a system and be- 
tween a system and its environment, particularly when operating in the pres- 
ence of faults. In the Case of Jet-Select, for example, our formalization revealed 
that certain interactions between error reporting and optimization allowed the 
possibility of firing a failed jet [6]. Examples of the latter often concern algo- 
rithms for concurrent, real time, or fault-tolerant behavior (e.g., cache-coherence 
or clock-synchronization)--where, again, it is difficult to anticipate all possible 
interactions--or highly optimized calculations whose correctness rests on a long 
or complex argument (e.g., SRT division and other efficient floating point algo- 
rithms). 

A consequence of this observation is that automated deduction in support of 
formal methods will often be applied to very hard problems. It is, in my view, 
quite unrealistic to expect that such difficult problems can be solved automati- 
cally. The issue, then, is how should the user guide and interact with the process 
of automated deduction? This raises a dual issue: what information and services 
can automated deduction provide to the user that will assist in the analysis of 
very difficult problems? 

That is, types built recursively from the Booleans, enumerations, explicit finite sub- 
ranges of the integers, and records, tuples, predicates, and functions of these. 
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All interaction between the user and tools for automated deduction can be 
considered an iteration of the following basic steps. What differs from tool to 
tool is the relative effort devoted to each step, and the rate of iteration. 

1. Decide the procedure to be used at the next step. This can range from 
coarse decisions of overall strategy ("I'll use SMV") to fine issues of tactics 
("instantiate the third variable of formula 3 with the following expression" ). 

2. Transform the current representation of the problem into one that is appro- 
priate for the procedure chosen in the previous step. This may be a major 
undertaking with pencil and paper (e.g.i to reduce an infinite-state protocol 
specification to a finite-state description in the language of SMV), or it may 
involve mechanized transformations (including recursive application of this 
whole activity). 

3. Set appropriate switches and dials to tune the selected procedure (e.g., 
choose a variable ordering for BDDs, a weighting strategy for resolution, 
or an ordering and orientation of lemmas for Nqthm). 

4. Invoke the chosen procedure, contemplate the result returned, and iterate 
the whole process (sometimes, iterate locally over step 3). 

My opinion is that the ability to direct this activity in an efficient and pro- 
ductive manner is largely determined by the predictability of the consequences 
selected by steps 1 and 3, the quality of information returned in step 4, and 
the efficiency and repeatability of step 2. The user should be able to select a 
procedure in step 1 on the basis of a description of what it does, not how it 
works. Deterministic proof procedures (e.g., elementary transformations such as 
a case split, or quantifier instantiation) and decision procedures are attractive 
from this point of view, whereas heuristic procedures are not. By the same to- 
ken, the switches and dials of step 3 should be minimized, since they generally 
concern how a proof procedure works, rather than the substance of the conjec- 
ture under examination. Few users whose interest is formal methods are willing 
to learn enough about the workings of a proof procedure that they can master 
many choices here. 

The information returned in step 4 should include the result of applying the 
proof procedure if it was successful (e.g., "proved," or a list of transformed or 
new subgoals), and an explanation if it was unsuccessful. Decision procedures 
and model checkers have a special value in the latter case, because they can often 
return a counterexample that pinpoints the source of difficulty. The ability to 
return useful information from failure is particularly important in applications 
of automated deduction to formal methods because it is to be expected that 
many conjectures will be false--indeed, the efficient discovery and correction of 
errors is one of the primary reasons for undertaking formal analysis. For this 
reason, techniques for automated deduction used in formal methods should not 
be biased towards successful outcomes--for example, they should not be set 
up to terminate quickly on success at the expense of taking inordinate time to 
discover failure. 

The whole process of formal analysis will be repeated several times as errors 
are discovered and the design or its specification are adjusted. But the process 
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is not over once we successfully get to "proved" for the first time. Mechaniza- 
tion allows formal methods to be used to explore and refine designs--just as 
computational fluid dynamics is used to refine aerofoils. Our verification of clock 
synchronization, for example, has been modified many times: to improve the 
proof, to eliminate assumptions, to change the specification so that it connects 
better with the formalization of another part of the overall fault tolerant archi- 
tecture, to tighten the bound on synchronization achieved, and to change from 
a Byzantine fault model to a more complex "hybrid" model [13]. 

The fact that formal analysis will be repeated many times as a specification 
is first debugged and then refined has consequences for automated deduction. 
First, it makes it essential, in my view, that step 2 of the interaction loop de- 
scribed above be automated: as the design and its specification evolve, we should 
recalculate the "reduced" form required for a particular proof procedure, rather 
than tinker with the existing one. In particular, for reliability as well as efficiency, 
I believe that reductions and abstractions from infinite-state to finite-state mod- 
els should be formalized and mechanized, rather than left as an ad-hoc manual 
process. Second, the "script" of a proof needs to be recorded in manner that 
is reasonably robust to small changes in the specification. This argues against 
conducting and recording proofs in low-level and highly specific terms (e.g., "in- 
stantiate formula 3 with x! 1" where x! 1 is the name of a Skolem constant), since 
the details may change with the specification. It will be more robust to indicate 
a procedure (e.g., "use unification to find an instantiation"), or to invoke truly 
automated deduction (e.g., "finish off the proof using resolution"). Finally, it is 
important to record dependencies among proofs and specifications, so that the 
user can speedily answer questions such as "what assumptions does this proof 
depend on?" and "what proofs may be affected if I change this lemma?" 

5 C o n c l u s i o n :  T h e  N e e d .  f o r  I n t e g r a t i o n  

The field of automated deduction has developed many powerful techniques that 
could be applied to formal methods. However, the special character of formal 
methods applications means that some techniques may need to be adapted to the 
needs of those applications, (e.g., to return more useful information on failure) 
and that priorities may be different than in other areas (e.g., decision proce- 
dures become more important and first order methods such as resolution may 
become less so). More importantly, most techniques in automated deduction, 
and also those related to model checking, tend to be rather brittle "point so- 
lutions" that are effective against specific classes of problems, whereas formal 
methods requires an integrated capability that is effective across a wide range 
of applications. The research challenge in this area is therefore broadly that of 
integration: different techniques must work together, different theories must be 
decided in combination, theorem proving and model checking must cooperate, 
and the needs and capabilities of efficient automated deduction must influence, 
and be influenced by, the design of expressive specification languages. Success in 
this endeavor will enrich both fields, providing a new and exciting application for 
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automated deduction, and making formal methods a truly useful and practical 
tool for the analysis of interesting real systems. 
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A Platform for Combining Deductive with 
Algorithmic Verification* 

Amir Pnueli? Blad Shahar ? 

Abs t rac t .  We describe a computer-aided verification system which combines 
deductive with algorithmic (model-checking) verification methods. The system, 
called TLV (for temporal verification system), is constructed as an additional 
layer superimposed on top of the CMU SMV system, and can verify finite-state 
systems relative to linear temporal logic (LTL) as well as CTL specifications. The 
systems to be verified can be either hardware circuits written in the SMV design 
language or finite-state reactive programs written in a simple programming 
language (SPL). 
The paper presents a common computational model which can support these 
two types of applications and a high-level interactive language TLV-BASIr in 
which temporal verification rules, proofs, and complex assertions can be writ- 
ten. We illustrate the efficiency and generality gained by combining deductive 
with algorithmic techniques on several examples, culminating in verification of 
fragments of the Futurebusq- system. In the.analysis of the Futurebus+ sys- 
tem, we even managed to detect a bug that was not discovered in a previous 
model-checking analysis of this system. 

1 I n t r o d u c t i o n  

As part  of the general program for combining deductive with algorithmic meth- 
ods for the verification of reactive systems (see [Man94] for a declaration of 
this manifest, and [RSS95] for an important  contribution in this direction), we 
constructed a computer-aided verification system, called TLV (a  Temporal Logic 
Verifier), for experimenting with some of these ideas. 

Compared to algorithmic verification (model checking), deductive verifica- 
tion is handicapped by the requirement of user interaction, which necessitates a 
good understanding of the program and a certain degree of creative ability and 
high skills. Therefore, any proposal for replacing or even combining algorith- 
mic methods with deductive methods must be accompanied by analysis of the 
expected gains from such a combination. 

The main conceived advantages of combining deduction with model checking 
are: 

1. G e n e r a l i t y  : In the finite-state world (which is the main concern of the 
work reported here), deductive verification can provide a uniform proof which 
establishes the correctness of a system of N processes for any N > 0 in a single 

* This research was supported in part by a basic research grant from the Israeli 
Academy of Sciences, and by the. European Community ESPRIT Basic Research 
Action Project 6021 (REACT). 

t Department of Computer Science, Weizmann Institute, Rehovot, Israel, e-mail: 
amir@wisdom, weizmann, ac. il 
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proof. In comparison, model checking can only examine the systems for particular 
values of N. 
2. Efficiency of  D e d u c t i o n :  Most of the model-checking algorithms are 
based on computation of the closure of the transition relation, which is ap- 
plied either to the initial state or to some target states. This is an iterative 
process that may take a large number of steps to converge. In comparison, in 
the deductive verification of the same property, we only have to check the two 
implications 

O --~ p and p A p -~ p', 
where ~ is an assertion characterizing the initial condition and p is the transition 
relation. It stands to reason that checking these implications takes less time and 
requires smaller BDDS than the iterative computation of the closure. 
3. C o n s t r a i n e d  m o d e l  checking : A possible way of combining deduction 
with model checking is to use deduction to establish the invariance of an assertion 
~. Then, we can carry out regular model checking but use ~ to restrict the range 
of considered states. This amounts to model checking with the transition relation 

A p instead of the original p. 

The (TLV) system described here has been constructed on top of the CMU SMV 
system, which supports verification of CTL specifications of finite-state systems 
([BCM+92], [McM93]). TLV uses the BDD library and the SMV input language 
parser from SMV. The model checking algorithms were replaced by a layer which 
consists of a high-level interactive language, to which we refer as TLv-BAsIC. 
The main data structure of TLV-BASIC is a quantifier-free assertion, obeying the 
SMV syntax for state-formulas~ and represented internally by a BDD. 

The TLV-BASIC language is used for three purposes: 

�9 Temporal verification rules, such as the basic invariance rule BINV and the 
single-step response rule RESP, as well as algorithms for model-checking in- 
variance and response properties, are written as TLV-BASIC procedures. 

�9 For each particular system to be verified, the user usually prepares a proof 
script file which contains definitions of the assertions used in the property 
to be verified. 

�9 The interactive dialog with the user is carried out in a restricted subset of 
TLV-BAsIC. 

The main running example and one of the motivating drives for our system 
is the Futurebus+ system considered in [CGH+93]. That paper presented an 
SMV model for the Futurebus+ system and established several properties of 
the model, using the model-checking techniques of SMV. We considered it an 
interesting challenge to see whether the same properties can be verified using 
deductive techniques, and compare the efficiency and effectiveness of the two 
methods. 

At its current state of implementation, the TLV system cannot yet consider 
variable-size systems where the system size is not fixed at analysis time. There- 
fore, we cannot yet demonstrate uniform proofs of such parameterized systems, 
and all the examples presented in this paper relate to specific values of the size 
parameter. To compensate for this temporary deficiency, we developed methods 
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by which the deductive proof of a parametric system can be parameterized itself, 
so that running a deduction for different values of the size parameter n only re- 
quires modifying a line in the proof script file from "n = 20" to, say, "n = 40." In 
particular, we developed a special format by which one can specify an arbitrary 
configuration of Futurebus+ and generate automatically the proof appropriate 
for this configuration. Details about these instantiation mechanisms are given 
in [PS96]. 

Many approaches to the deductive verification of reactive systems and hard- 
ware circuits were proposed over the years, accompanied by systems supporting 
their automation. Examples of applications for hardware verification are the 
methods described in [Gor86] and [ORSS94]. An effective system for the de- 
ductive verification of linear temporal logic properties of reactive programs is 
reported in [MAB+94]. 

There have been also several approaches which combine deductive and al- 
gorithmic verification methods. The work in [JS93] combines the HOL theorem 
prover with the Voss system. Another combination of methodologies is reported 
in [KL93]~ where TLP, the proof checker for TLA, the temporal logic of actions, 
is combined with the COSPAN verifier. Perhaps closest to our work is [RSS95] 
which embeds symbolic model-checking into the Pvs high-order prover. 

The unique feature of our approach is that it is built as the minimal exten-. 
sion of an existing symbolic model checking system (SMV) needed in order to 
handle parametric systems. The specification language and associated deductive 
verification approach are based on linear temporal logic IMP95]. At present, the 
only deductive machinery we employ is provided by the BDD capabilities of the 
underlying SMV system. 

The rest of the paper is organized as follows. In Section 2 we present the 
underlying computational model and its relation to the FTS model of IMP95]. 
In Section 3, we describe the languages that can serve as inputs to the TIN sys- 
tem. These include the TLV-BAsIC language in which verification rules, model- 
checking procedures, and proof scripts are written; the SMV input languages used 
to specify systems; and the SPL language used to describe simple reactive pro- 
grams [MP95]. In Section 4, we present some of the verification rules supported 
by the system. Section 5 presents several simple examples of deductive and com- 
bined verification, comparing their efficiency with standard model-checking ver- 
ification of the same properties. In Section 6, we present our main case study, 
the Futurebus+ verification, and identify the bug that has escaped previous 
model-checking analysis. 

2 T h e  C o m p u t a t i o n a l  M o d e l  

As an underlying computational model, we adopt the notion of an always-enabled 
fair transition system (ETS). The ETS model can be viewed as a variant of the fair 
transition system (FTS) model, introduced in [MP91] for the specification and 
verification of reactive systems. An ETS consists of the following components: 

V - -  A finite set of state variables. We define a state to be an interpretation 
of Y. The set of all states is denoted by Z. 
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�9 O - -  Initial condition. 
�9 T - -  A finite set of transitions. Each 'transition r E 7" is a function 

mapping a state s to r(s) C_ s a non-empty set of r-successors of s. 
�9 f f  C T ~ A justice (weak fairness) set of transitions. 
�9 C = { ( r t , ~ 1 ) , . . . , ( r ~ , ~ o k ) } -  A compassion (strong fairness)set of pairs 

(r~, toi), i = 1 , . . . ,  k, each consisting of a transition ri and an assertion ~i. 

The requirement that  every state has a non-empty set of successors implies that  
every transition is enabled on every state. 

A model is an infinite sequence of states. Given an ETS ~, we define a com. 
putation of 6~ to be a model 

r : 8 0 , 8 t , 8 2 , .  "'~ 

satisfying the following requirements: 
�9 Initiation: so is an initial state (i.e it satisfies ~9). 
�9 Consecution: For each pair of consecutive states si, si+l in ~, there exists a 

transition r in q- such that  si+l E r(sl).  That  is, si+l is a r-successor of si. 
�9 Justice: Every transition r E ff  is taken infinitely many times. 

Compassion: For every (r~, ~ai) E C, if ~i holds at infinitely many positions 
in cr then ri is taken at ~o~-positions infinitely many times. 

The main differences between the FTS and ETS models are the ETS requirement 
tha t  transitions be always enabled, and the implications this requirement has on 
the requirements of justice and compassion. 

The reason for this difference is that  the natural SMV representation of tran- 
sition relations, in particular those which result from SPL programs, is such that  
the transition can always be taken. Under the circumstances in which the cor- 
responding FTS transition would be disabled, the ETS transition is still enabled 
but has no effect on the system variables, i.e., it changes the value of no system 
variable. 

An FTS ~ is called a leisurely fair transition system (LFTS), if the idling 
transition r~ is contained in the justice set o f r  Thus, every computation of an 
LFTS contains infinitely many idling steps, i.e. steps which preserve the values of 
all system variables. Obviously, every FTS ~ has a corresponding LFTS k -~', such 
that  �9 and gr are equivalent up to stuttering. 

The following claim shows that  no expressive power is lost in moving from 
the FTS model into the ETS model. 

C l a i m  1 A set of models S is the set of computations of an ETS ~ i f f  it iS the 
set of computations of some LFTS ~.g'. 

In [PS96], we provide a proof of this claim. 

3 T h e  L a n g u a g e s  o f  TLV 

3.1 T h e  SMV I n p u t  L a n g u a g e  

Systems to be verified by TLV are described using the SMV input language 
[McM93], which has been slightly extended to allow for the richer set of fairness 
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requirements associated with the ETS model. In Fig. 1, we present file sem.smv, 
which contains the SMV description of a mutual exclusion algorithm MUX-SEM, 
which implements mutual  exclusion by semaphores. Note that ,  standardly in our 

MODULE main 

VAR 

y : boolean; -- the semaphore variable. It is assigned by both processes. 

proc[l] : process user(y); -- The two processes have interleaved execution. 
proc[2] : process user(y) ; 

ASSIGN 

init(y) := I; 

MODULE user (y) 

VAR 

l o c  : { 0 , 1 , 2 , 3 , 4 } ;  

ASSIGN 

init(loc) := O; 

next (loc) := 

case 

l o c  i n  { 0 , 3 }  : l o c + l ;  

l o c  = 1 : { 1 , 2 } ;  

l o c  = 2 k y = 1 : 3;  

l o c  = 4 : O; 

i : l o c ;  

esac; 

next(y) :=  -- changes t o  t h e  semaphore variable. 

case 

loc = 2 k next(loc) = 3 : O; -- turned off when moving from i_2 to I_3 

loc = 4 k next(loc) = 0 : i; -- turned on ~hen moving from 1_4 to 1_0 

1 : y ;  

esac; 

JUSTICE 

proc [1] , proc [2] ; 

COMPASSION 

(proc[1],proc[l].loc = 2 k y > 0), (proc[2],proc[2].loc = 2 k y > O) 

F i g .  1.  File m u x - s e m ,  stay: a n  SMV d e s c r i p t i o n  o f  A l g o r i t h m  MUX-SEM for  n = 2 p ro -  

CeSSeS. 

applications, we do not use the FAIR or SPEC declarations but introduce instead 
JUSTICE or COMPASSION declarations, wherever necessary. 

Such an SMV specification is input into the TLV system which creates inter- 
nally the ETS corresponding to the specification. In general, there will be one 
ETS transition for each process. Thus, in the max-sere, stay example, the system 
will generate an ETS with two transitions, one corresponding to each process. 
The justice requirement requests that each of the two processes will be activated 
infinitely many  times in every computation of this ETS. 

3 .2  T h e  SPL I n p u t  L a n g u a g e  

While direct coding of hardware circuits in the SMV input language is a practice 
to which experienced users of the SMV system have resigned themselves, we 
can offer a higher description level for applications to reactive programming. To 
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represent reactive programs, we adopted the s imple  p rogramming  language (SPL) 
introduced in [MP91]. We refer the reader to [MP91] or [MP95] for details of 
this language. In Fig. 2, we present an SPL program for the MUX-SEM algorithm. 

Here, we consider the instance n = 2 of this generic program. On reading the 
sPL file with the additional definition n := 2, the system translates it first into 
the SMV representation, presented in Fig. 1. 

in n : integer where n > 0 
local y : integer where y = 1 

rt0 : loop forever do'] 
i] | [ii: noncritical" [ 

C[i] :: I | t2 :  request y / 
,=1 | |s critical / 

L Lt4 : r e l e a s e  y J 

Fig. 2. Program MUX-SEM (mutual exclusion by semaphores - general case). 

3 .3  TLV-BASIC 

The TLV-BASIC language is easy to learn and simple to program with. It is 
used to program rules, model-checking algorithms, and compute assertions. The 
main (and only) data  structure is a function with boolean arguments and inte- 
ger range. As such, it can represent integers, booleans (a function with range 
{0, 1}, and assertions, which are represented as boolean functions. The underly- 
ing implementation is a BDD, which is manipulated using the SMV BDD library. 
Expressions in the language are constructed out of integer constants and vari- 
ables to which we apply integer operations, integer comparisons, and all the 
boolean and quantifying operators available in the SMV language. 

There are no variable declarations. Like BASIC, variables are created dy- 
namically, whenever they are assigned values, or mentioned as parameters of a 
procedure. In addition, all the variables defined in an SMV input file which is 
loaded into the system can be referenced within TLV-BASIC expressions. 

Following are some of the statements available in TLV-BASIC: 

�9 Let  var  := exp - -  Assign the value of expression exp to variable va t .  

�9 Proc p r o c - n a m e  (par  1 . . . .  , p a r n ) ;  S End - -  Define a procedure p r o c - n a m e  

with parameters p a r l , . .  :, par,,  and body S. 
�9 While ( e x p )  S E n d - -  Repeatedly execute statement S until exp is 0. 

If (ezp) S 1 / else S2I End--If exp evaluates 
f 

to anon-zero value, exe-  

c u t e  statement $1. Otherwise, execute statement $2. 
�9 Load " f i l e -name"  - -  Load file f i l e -name into the system. The loaded file can 

be a rules file or a proof script file. 
�9 Run  p r o c - n a m e  par1,  . . . ,  par,~ - -  Invoke procedure proc -name  with the given 

actual parameters. 

The last two statements are the main commands that  are used in interactive 
mode. 

In Fig. 3 we present a TLV-BAsIc proof script which computes the assertion 
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n i - - 1  

mux: A A ~(proc[i].loc = 3 & proc[j].loc = 3). 
i=l  j = l  

for n = 10. This assertion specifies mutual  exclusion for program MUX-SEM. 
When we consider the same program for a different number of processes, say 11, 

Let n := I0; 

Proc prepare ; 

Let mux : = TRUE ; 

Let i := n; 

While (i) 

Let j := i - i; 

While (j) 
Let mux := mux ~ !(proc[i].loc = 3 ~. proc[j].loc = 3); 

Let j := j - 1; 
End -- end loop o n  j 

Let i := i - i; 

End -- end loop on i 

End -- end procedure 

Run prepare 

Fig. 3. File mux-sem.pf: Proof script for program MUX-SEM for n = 10. 

it is only necessary to change the first statement in this file to Let n := 11. 

4 V e r i f i c a t i o n  R u l e s  

The TLV system comes equipped with a set of deductive verification rules as well 
as various model-checking algorithms. As previously explained, these rules are 
implemented using the TLV-BASIC language. This means that a sophisticated 
user can easily modify any  of the existing rules, as well as write new ones. 

In Fig. 4, we present the two verification rules that have been used for veri- 
fying the examples presented in this paper. 

B1 :O-'-~p 
B 2 : p r A p " ~ p ~  V r 6 T  

A1 : ~ A ~ = 0 - - * q  
A2 : (~^  -~q) ~ 3r e 7"3V'(p. ~ ~ ~- 6') 

[ ]  p AG EF q 

Rule BINV Rule AGEF 

Fig. 4. Verification rules. 

5 S i m p l e  V e r i f i c a t i o n  E x a m p l e s  

In this section we illustrate the use of the TLV system for the verification of 
several simple examples taken from [MP95]. 
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P r o g r a m  MUX-SEM 

In Fig. 2, we presented the general MUX-SEM program parameterized by n. Fig. 1 
illustrated its SMV translation for the case n = 2. The main safety property of 
this program can be specified by the invariance of assertion mux presented above. 

Direct application of rule BINV failed (and produced a counter-example). Ac- 
cording to the terminology of [MP95], this means that assertion mux is invariant 
but not inductive, i.e., it does not carry sufficient information to rule out inacces- 
sible states. The standard remedy is to strengthen assertion mux by additional 
invariants, which will exclude such states. 

Indeed, our next step in the verification process, was to formulate the auxil- 
iary invariant assertion 

phi: y < - > A -,(p,:oc[i].loc {3,4}) 
{----1 

Application of rule BINV to the conjunction mux �9 phi succeeded which estab- 
lished the invariance of both nmx and phi over program MUX-SEM. 

This experimentation was carried out for the low value of n = 2. However, 
once the strategy was established we prepared a proof script for computing the 
conjunction mux ~ phi and can now run the verification for various values of n, 
changing only the value of the parameter between successive runs. 

To compare the time and space complexity of conventional model checking 
and the deductive approach, we plot in Fig. 5 the time and space complexity of 
verifying the invariance of assertion max by the two approaches for increasing 
number of processes in program MUX-SEM. The line labeled SMV represents the 
conventional model-checking approach, while the line labeled TLV represents the 
deductive approach. 
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Fig. 5. Comparison of SMV and TLV for MUX-SEM 

P r o g r a m  REs-sv 

As the next example, we considered program RES-SV, presented in Fig. 6. Program 
P:Es-sv consists of an alloator process A and customer processes C[i], ~ = 
1, . . . ,  n. The allocator provides a centralized control which is exptected to guar- 
antee mutual exclusion between the customers. We refer readers to IMP95] for 
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in  n : i n t e g e r  w h e r e  n > 0 
loca l  g, r : a r r a y  [1..n] o f  b o o l e a n  w h e r e  g = F, r = F 

A::  

" local  t : i n t e g e r  w h e r e  t = 1 
m0 : l o o p  f o r e v e r  do  

[ ma : i f  r[t] t h e n  

r ' - 2 :  := 1 
/m.~: await ,It] / 
L~, :g[t]:=F J 

ms : t := t @n 1 

,, i 
i= l  

C[i] : :  

"go : l oop  f o r e v e r  do" 

I 
gl : noncritical] 
6:,[ i]:=w / 
la : awa i t  g[0 / 
& : c r i t i ca l  ] 
i s  : r[ i ]  : =  p / 
& : awa i t  -~g[,] j 

Fig .  6. Program ~ s - s v  (resource allocator). 

detai ls  of  this  a lgor i thm and its verification. Here we set to  ourselves the  more  
m odes t  goal of  verifying m u t u a l  exclusion between customers  C[1] and C[2] in a 
sys t em of  n > 2 customers .  

This  p r o p e r t y  can be specified as the invariance of  the assertion 

raux: ~(at_~4[1]  A atJ4[2]), 
where, for any  i and j ,  at_ti[j] s tands  for C [ j ]  . l o c  = s 

As in the  previous  case, assert ion mux is an invar iant  of  the p r o g r a m  but  is 
not  induct ive.  To comple te  the  proof,  we used six s t rengthening assert ions for 
i E {1, 2}. T h e  first two assert ions of  this set are: 

~1[i]  : ~ t _ m 3 , 4  A t  = i ~ g[i] 
~ [ i ]  : at_e3..s +-+ r[i] 

Using these s t reng then ing  invariants ,  assert ion mux has been proven an in- 
var ian t  of  p r o g r a m  a E s - s v .  

In Fig. 7, we plot  the  t ime  and space complex i ty  of  verifying the  invar iance 
of assert ion mux over p r o g r a m  RES-SV as a funct ion of the number  of  processes. 
Again,  the  convent ional  mode l  checking and deduct ive approaches  are compared .  

15 

t :  
0 
0 

5 

time 

tlv ~ / '  
s m v  ........ : 

d 

/ 

. . . o  

[ ~ml'"': : L  : :  

20 40 60 80 
processes 

200000 
" 0  
0 r 

-7, 100oo0 
,.Q 

space 

20 40 60 80 
processes 

Fig. 7. Comparison of SMV and TLV for RES-SV 

C o n s t r a i n e d  M o d e l  C h e c k i n g  

In addi t ion  to the  purely  deduct ive  approach,  we also implemented  and tested a 
mixed  (or combined)  approach,  in which we use deduct ively derived invar iants  to 



193 

restrict the range of the transition function in computing the backwards closure, 
usually employed in model checking for invariance properties. 

We considered again program rtEs-sv but used the deductive approach to 
verify only the two first invariants in the list: ~1[i] and !a2[i]. These are very 
simple invariants, which can be discovered automatically by various heuristics 
(as explained in [MP95]). At this point we ceased using deductive methods, 
and invoked a special model-checking procedure CMCINV, written in TLV-BASIC, 
with a constraint parameter, which is the conjunction of tal[i] and ~a2[i]. This 
procedure performs regular backwards closure computation, but eliminates all 
states which do not satisfy the given constraint. 

In Fig. 8, we present plots of time and space complexity which compare 
regular model checking with constrained model checking for program Rws-sv. 
The line representing constrained model checking is labeled by CMC, as compared 
to regular model checking which is labeled by MC. Both were performed by 
appropriate TLV-BASIC procedures. 
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Fig. 8. Comparison of Model Checking and Constrained Model Checking for RES-SV 

6 Verification of the  F u t u r e b u s +  

The IEEE Futurebus+ protocol specification is a technology-independent proto- 
col for single-bus and multiple-bus multiprocessor systems. Part of this standard 
is the cache coherence protocol designed to work in a hierarchically structured 
multiple-bus system. Coherence is maintained by having the caches observe all 
bus transactions. Coherence across buses is maintained using bus bridges. A bus 
bridge is a memory agent/cache agent pair, each of them on a different bus, 
which can communicate. The memory agent represents the memory on its bus. 
The cache agent represents all the remote caches, caches on the bus of the cor- 
responding memory agent, which may need to get access to the cache line via 
the bus bridge. 

The protocol defines various transactions which let caches on a bus obtain 
readable and writable copies of cache lines. A cache line is a series of consecutive 
memory locations that is treated as a unit for coherence purposes. 

We refer the reader to [CGH+93] for additional explanations and details 
about the SMV coding of the Futurebus+. 
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6.1  S p e c i f y i n g  a n d  v e r i f y i n g  C a c h e  C o h e r e n c e  

The following specifications are the ones which were proved in [CGH+93]. We 
repeated their verification, using deductive methods. There are four classes of 
safety properties and one for liveness. 

The first class of safety properties is used to check that  no device ever observes 
an illegal combination of bus signals or an unexpected transaction. Thus, we have 
the following formulas for every device d: 

A G  "~d.bus-err or A G  -~d.err or 

If these formulas are true then we say that  the model is error free. 
The exclusive write property states that  if a cache has an exclusive modi- 

fied copy of some cache line, then no other cache has a copy of that  line. The 
specification includes the formula 

A G  (pl.writable --+ "~p2.readable). 

for each pair of caches pl and p2. pl.writable is true when pl is in the 
exclusive-modified state. Similarly, p2.readable is true when p2 is not in the 
invalid state. 

The consistency property requires that  if two caches have copies of a cache 
line, then they agree on the da ta  in that  line:" 

A G  (pl.readable A p2.readable --* pl.data = p2.data) 

The memory consistency property is similar to the consistency property. 
It specifies that  any cache line that  has a readable copy must agree with the 
memory device on the data. 

A G  (pl.readable A -~m.memory-line-modi f ied  -~ pl.data = re.data) 

There is only one class of liveness specifications. It is used to check that  it is 
always possible for a cache to get read and write accesses to a line. In a sense, 
it says that  the model does not get stuck. 

A G  EF  p.readable A G  E F  p.writable 

All these properties were verified for small configurations, using deductive meth- 
ods. We refer the reader to [PS96] for details of the inductive assertions that  were 
used. 

6.2  A B u g  w a s  F o u n d  

During our verification process, we came across a bug which seems to have 
escaped the attention of the previous verifiers of this design. In all probability, 
this is due to the fact that they have not considered the particular configuration 
in which this particular bug was lurking. We managed to prove the specifications 
for this configuration after fixing this bug. 

The bug is manifested under the following circumstances. Consider a bus 
with a memory agent and three processors. We start from a reachable state 
where all processors have a shared copy of the cache line and the memory agent 
is in the r e r a o t e - s h a x e d - t m m o d i f i e d - i n v a l i d  state which indicates that  the 
current bus has shared copies on it but the memory agent itself does not have 
a copy. Suppose that  process pl  wants an exclusive copy of the cache line. It 
issues an invalidate transaction on the bus, which tells all other caches to release 
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their copies of the cache line. However, the other two processors, p2 and p3, 
choose to split the request so they continue to hold a shared Copy but  they 
each owe a response. Eventually, p2 responds and enters an invalid state. The 
memory agent observes this and enters the r e r a o t e - e x c l u s i v e - r a o d i f i e d  state. 
This means tha t  the memory  agent thinks that  pl  already has an exclusive- 
modified copy but, in fact, p l  and p3 still hold shared copies. When p3 issues a 
response the memory  agent sets on the error flag since, if only one process has 
a copy of the cache line, no other process should owe a response indicating a 
release of its hold on a shared copy. 
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Abs t r ac t .  Our goal is to use a theorem prover in order to verify in- 
variance properties of distributed systems in a "model checking like" 
manner. A system S is described by a set of sequential components, each 
one given by a transition relation and a predicate Ini~ defining the set 
of initial states. In order to verify that P is an invariant of S, we try 
to compute, in a model checking like manner, the weakest predicate pr 
stronger than P and weaker than Init which is an inductive invariant, 
that is, whenever P '  is true in some state, then P '  remains true after 
the execution of any possible transition. The fact that P is an invariant 
can be expressed by a set of predicates (having no more quantifiers than 
P) on the set of program variables, one for every possible transition of 
the system. In order to prove these predicates, we use either automatic 
or assisted theorem proving depending on their nature. 
We show in this paper how this can be done in an efficient way using the 
Prototype Verification System PVS. A tool implementing this verifica- 
tion method is presented. 

1 Introduct ion 

Using a theorem prover to do model checking is not a new idea 2. Theorem 
proving has been used successfully for the verification of temporal  logic formulas 
on programs,  specially systems like [BM88], [OSRgaa] a, [GM93] and [CCF+95]. 

In most  of these approaches, it is mainly emphasized how to define the syntax 
of a specification formalism and its semantics (in terms of sets of computations) 
as well as the satisfaction of temporal  logic formulas on computations.  Then, a 
system S satisfies a property f if every computat ion of S satisfies f .  In general, 
not much is told about  how to verify the obtained formulas. 

[RSS95] explains how model checking (for finite state systems) is implemented 
in PVS as a tactic (which consists in transforming the model checking problem 
into a decidable #-calculus formula and to run a decision procedure on this for- 
mula).  In [RSS95], [DF95] and [ttS96] model checking is used to prove abstract  
descriptions of systems, while "ordinary" theorem proving is used to show the 

* Verimag is a joint laboratory of CNRS, Institut National Polytechnique de Grenoble, 
Universit~ J. Fourier and Verilog SA associated with IMAG. 

2 See [RSS95], where a set of combination attempts are mentioned. 
see [CLN+95] for many examples of the use of PVS. 
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correctness of this abstract description with respect to a more concrete (in gen- 
eral infinite state) description. In [Hun93] it is proposed to verify the correctness 
of each component using model checking, and then to deduce the correctness of 
the composed system by means of compositional rules embedded as inference 
rules in a theorem prover. [BGMW94] describes an integration of the PVS the- 
orem prover in an environment for the verification of hardware specification. It 
is used for discharging verification conditions expressing the fact that a specifi- 
cation simulates another. 

1.1 Our  approach  

Our intention is not to verify arbitrary temporal logic formulas, but particular 
formula schematas corresponding to useful property classes. In order to prove 
that a system S satisfies a property expressed by a temporal formula f ,  we 
do not use its semantics, but a proof rule generating a set of first order logic 
formulas (without temporal modalities and without new quantifiers) such that 
their validity is sufficient to prove that S satisfies f .  Here, we mention only safety 
properties expressible by formulas of the form "[]P" (invariants) or "O(P =r 
P1 kV P2)", where P, P1, P~ are predicates 4. 

For example, in order to prove that P is an invariant of S (S ~ rnp) __ 
where S is defined by a set T of transitions and a predicate Init defining the 
set of initial states - -  it is necessary and sufficient to find a predicate pI weaker 
than Init and stronger than P which is an inductive invariant, that is P~ is 
preserved by any computational step of S, i.e P '  ::~ ~'F~[~'](P') ~ is valid for each 
transition r of T. Model checking consists in computing iteratively the weakest 
predicate satisfying the implication Q ~ p~[T](Q) starting with Q0 - P and 
taking Qi+l = Q~ A ffr-~[T](Qi) that is by strengthening the proposed solution 
at each step. This method can be completely automatized under the condition 
that the above predicates are decidable. However, in the case of infinite state 
systems convergence is not guaranteed, and in real life systems with this very 
simple tactic, convergence is too slow, anyway. Convergence can be accelerated 
by replacing the predicate transformers ~r-~[r] by some (lower) approximation 
or by using structural invariants (see Section 4.3) extracted from the program 
obtained by constant propagation, variable domain information, etc. Theorem 
proving (or an appropriate decision procedure) is used for establishing Q~ =r 
Qi+l that is for verifying that a fixed point has been reached. 

1.2 Re la t ed  work 

Tools like STeP [MAB+94], TPVS [BLUP94] and CAVEAT [GR95] use this tech- 
nique. In CAVEAT systematic strengthening of invariants is not foreseen. STeP 

4 in [MP95] many such schemata and corresponding verification rules are presented 
for which we will implement strategies in the future 

5 The state predicate p~[r](P) defines the smallest set of states that via the transition 
r have only successors satisfying P. 
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provides a lot of automatization and implements most of the rules presented in 
[MP95]. 

In [ttS96], a new strengthening method has been proposed, in order to avoid 
the'fast growth of the formulas due to the systematic strengthening: suppose 
that Qi is not inductive for some transition r, that is, the proof of the goal 
Qi ~ ~F~[r](Qi) does not reduce to true but to some formula R. Then, instead 
of checking in the next step the formula Qi+l = Qi A "P~[r](Qi), it is proposed 
to check R (which is often simpler) for invariance. However, this method does 
not accelerate convergence. 
This paper is organized as follows: in Section 2, we recall some general ideas 
concerning theorem proving and give a small overview on PVS. In Section 3, it 
is explained how to define our method completely within PVS and also, why we 
have abandoned this approach. Finally, in Section 4, we give a short presentation 
of our tool which acts like an interface with PVS. In Section 5, we demonstrate 
our method and tool on two examples: a finite state program implementing a 
mutual exclusion algorithm, and an infinite state program implementing a simple 
buffer using lists as data type. 

2 T h e  t h e o r e m  p r o v i n g  p a r a d i g m  

Theorem proving is the paradigm of developing and verifying mechanically math- 
ematical proofs. The specification languages used (higher order logic) allow to 
define usual mathematical objects such as sets, functions, propositions and even 
proofs 6, and can be generally understood as a mixture of predicate calculus, 
recursive definitions ~ la ML and inductively defined types. These languages 
are strong enough to model systems and express properties on them. Theorem 
provers provide an interactive environment for developing mathematical proofs 
using a set of tactics (elementary'proof steps) and tacticals (combination of tac- 
tics). Possible tactics are implementations of either a deduction rule, rewriting 
rule, induction scheme or a decision procedure. 

P V S  

PVS is an environment for writing specifications and developing proofs. It con- 
sists of a specification language integrated with a powerful and highly interactive 
theorem prover. PVS uses higher order logic as a specification language, the type 
system of PVS includes uninterpreted types, sub-typing and recursively defined 
data-types. Four "sorts" characterize this language: Theory, Type, Expression 
(term), Formula (proposition). Any PVS specification is structured into param- 
eterized theories. A Theory is a set of Type, variable, constant, function and 
Formula declarations. The PVS theorem prover implements a set of powerful 
tactics with a mechanism for composing them into proof tacticMs. The tactics 
available are combinations of deduction rules and decision procedures. Some of 

e See [CCF+95] for this purpose. 
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these tactics such as assert and bddsimp invoke efficient decision procedures for 
arithmetic and boolean expressions. PVS has emaes as user interface. 

3 Specification and verification within PVS 

One of the drawbacks when using theorem provers is the tedious encoding of 
semantics and writing of specifications. In Coq [CCF+95], grammar extension is 
allowed which makes specifications easier to write and to read. 

In PVS, this technique can be generalized to allow user-defined specification 
syntax (e.g. [Sgi95]). The defined specification syntax can be a combination 
of the PVS specification syntax and user specification syntax since it can be 
constructed using non-terminals of the PVS grammar. 

To prove that a predicate is an invariant of a system is usually done by 
embedding the semantics of transition systems and the notion of invariance of a 
property in the specification language of a theorem prover. In PVS, this can be 
done by means of the following definitions: 

Program [State : TYPE] : THEORY 

BEGIN 

Action : TYPE = [guard:bool, assignments:State] 

System : TYPE = [vats:State, acts:list[Action], init:bool] 

is-inductive? (S:System, P:Pred[State]) : bool = 

(init(S) => P(vars(S))) AND 
(P(vars(S)) => WPC-System(acts(S),P)) 

WPC-System(L:list[Action], P:Pred[State]) : RECURSIVE = 

-CASES L of 

null : TRUE 

cons(act,rest): WPC-Action(act,S) AND WPC_System(rest,P) 

END CASES 

WPC-Action(act:Action, P:Pred[State]) 

guard(act) => P(assignments(act)) 

END Program 

: bool = 

The PVS theory named Program is parameterized by the type S t a t e  defining 
the tuple type of the state vector, that means, its i th component defines the 
type of the i *h state variable. System is given as list of actions, where Act ion 
is defined as a record type with two fields, a guard and an assignment, guard is 
the condition under which the given action is activated, ass ignments  is a tuple 
of type S t a t o  representing the new value of the state vector after the execution 
of the given action. The predicate i s - i n d u c t i v e ?  taking as arguments a system 
S and a predicate P,  yields the result t r u e  if P is an inductive invariant of.S. 

In order to show that  P is an invariant of S, we have to prove the following 
obligation: 



200 

prove-invariaat : OBLIGATION 
EXISTS (P':PRF~[State]): 
(FORALL (t: State) : (P'(t) => P(t)) AND is-inductive?(S,P')) 

This proof obligation does not tell us how to find a satisfactory predicate P ' .  
This is the reason why we use the iterative computation described in Section 1.1 
which replaces the above (second order) obligation by an (infinite) suite of first 
order obligations such that  the proof of any obligation of this suites validates 
the initial obligation. 

But we found that such an embedding of the semantics of transition systems 
directly in PVS is still not satisfkctory for the verification of large systems. 
Writing programs is tedious, proofs are very slow since much time is lost in 
expanding the definitions of is-inductive?, WPC-System and WPC-Action. We 
also found that  we cannot perform static analysis on programs written in this 
way. 

Therefore, we prefered to describe programs in a more natural way and not 
to translate them into a PVS theory, but just to generate automatically proof 
obligations equivalent to i s - i n d u c t i v e ?  (S, P ' ) and to submit them to the PVS 
proof checker. 

4 A ver i f icat ion tool  

Figure 1 shows the architecture of our tool for computer-aided verification. We 
first present how systems are described in this tool and how the verification pro- 
cess works. We also show how both specification and verification are connected 
with the PVS system. 

4.1 A spec i f i ca t ion  f o r m a l i s m  

In our tool, systems are discribed in a formalism close to Dijkstra's language of 
guarded commands. In fact, a system is defined as a set of components where 
each component is given by a set of transitions defining conditional data trans- 
formations, where program variables are of any data type definable in PVS and 
allowed value expressions are any expressions definable in PVS. The grammar 
defining this specification formalism is the followingT: 

system ~ id_system [ PAEAMETEK id ] : SYSTEM 
BEGIN 

( pvs_declarations ) 
BEGIN 

( sys_eomponents } 
END 

INITIALLY : ( pvs_boolean_formula 
END id_system 

7 This grammar is presented using the conventions of [OSR93b] 
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sys_components ~ ( program ) ] ( program ) I1( sys_components 
program ~ ( action )+ I ( named_program ) 
named_program ~ id_program : PROGRAM 

BEGIN �9 
( pvs_declarations ) 
BEGIN 
( action )+ 
END 

END id_program 
action =* ( pvs_booteanJormula ) ---> ( assignment )+ 
assignment ~ id := (pvs_expression) 

where all declarations are global, but the variables declared within a component 
of the form named_program are only used locally. 

This grammar uses some non-terminals of the grammar of the PVS spec- 
ification language s. This allows to type check easily all PVS declarations and 
expressions by invoking the PVS parser and type checker. There are additional 
type correctness conditions for actions which have the form of invariants. For 
example, an action of the form 

guard ---> x:= x-l, 
s The non-terminals of the form ( pvs_... } 
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where x is declared as natural number, is type correct if guard ~ x > 0 is a 
valid formulai but it is sufficient that guard ~ x > 0 is an invariant of the whole 
system under consideration. 

4.2 A p r o o f  m e t h o d o l o g y  

We implemented some of the verification rules presented in IMP95] such as the 
Inv rule and the Wait ing rule corresponding respectively to the proof of prop- 
erties of the form [3p and [](P ~ P1W P~), where P, P1 and P2 are predicates. 
Verification conditions are extracted automatically from the considered specifi- 
cation S and the property we want to verify by a proof obligation or verification 
condition (VC) generator. The VCs generated for the Inv rule are respectively 
Ini t  ~ Qi and {Qi =:~ V-e[v](Qi) I r E T} where Init  is the predicate defining 
the set of initial states, T the set of transitions of S and Qi defined as in Sec- 
tion 1.1. We start with i = 0 and increase it until a provable set of verification 
conditions is obtained or Init  ~ Qi is not provable anymore (a counter example 
for this obligation proves that  P is not an invariant of S). 

The VC generator generates only VCs which are not "trivially true". For 
example, if an action r does not affect the variables occurring in Qi, then the 
VC "Qi ~ ~F-e[r](Qi)" is not generated. If Qi is of the form "(pc = i) ~ Q", 
where pc a control variable and i a possible value, it is only necessary to prove 
that  Qi is preserved by every action leading to control point i. In fact, it is often 
the case that  predicates of the form ~'g~[r](Qi) are of the form (pc = i) ~ Q. 
Also, the auxiliary invariants (see Section 4.3) are of this form. 

The generated obligations are submitted to the PVS proof checker, which 
tries to prove their validity by means of a set of tacticals we have defined. First 
an efficient but incomplete tactical for first order predicates is used. It combines 
rewriting with boolean simplification using Bdds 9 and an arithmetic decision 
procedure: after rewriting all definitions, the Bdd procedure breaks formulas into 
elementary ones, where other decision procedures such as arithmetic ones can be 
applied. If the proof fails, another tactical combining automatic induction and 
decision procedures is applie& If the proof fails again, a set of non-reducible goals 
is returned and one iteration step is performed. The user can always suspend 
this process and try to prove the unproved obligation in an interactive manner 
using the PVS proof checker. 

4.3 Use o f  a u x i l i a r y  i nva r i an t s  

It is in general essential to use already proved invariants or systematically gen- 
erated structural invariants obtained by static analysis ([MAB+94], [BBM95], 
[MP95] and [BLS96]). Let Z stand for the conjunction of all these invariants. In 
order to prove that  P is inductive, it is sufficient to prove 

z A P (*) 

9 A Bdd simplifier is available in PVS as a tactic. 
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instead of P ==~ ~-~[r](P). As E is usually a huge formula, we have to use it in an 
efficient way, that  is only its "relevant conjuncts". Invariants of the particular 
form (pc = i) =:~ Q, providing information about values of variable at some 
control point i, are only relevant for (*) when v starts at control point i. In 
[Gri96], a more refined Strategy is defined which selects in a formula of the form 
hi A hi �9 .. A h,~ ::~ c, formulas h~ which are relevant for establishing' the validity 
of c. 

4.4 A n  eff icient  i m p l e m e n t a t i o n  

The implementation language of PVS is Lisp. Theories, expressions and formulas 
are defined as Lisp classes. In our tool, programs are also defined as Lisp classes. 
Type checking a program creates a class containing the corresponding declara- 
tions and actions. A current list of type checked programs is maintained. Static 
analysis described in Section 4.3 is performed using the internal representation 
of programs. The fact that  our internal structures are very close to the internal 
PVS representation, allows to use many PVS features. 

5 E x a m p l e s  

We present two examples. The first one, which is finite state, is a mutual exclu- 
sion algorithm studied in [SifTS. 

mutex : SYSTEM 

BEGIN 

ina, inb, PAB : VAR bool 

: VAR nat pl, p2 

BEGIN 

pl=l 

pi=2 AND inb 

pl=3 AND NOT(PAB) 

pl=4 AND PAB 
pl=3 AND PAB 

pl=2 AND NOT(inb) 

p1=5 

p1=6 

II 
p2=1 

p2=2 AND ina 

p2=3 AND PAB 

p2=4 AND NOT(PAB) 

p2=3 AND NOT(PAB) 

p2=2 AND NOT(ina) 

p2=5 

p2=6 
END 

INITIALLY : p1=1 AND p2=1 

END mutex 

--->. p1 := 2 ; ina := true (tll) 

---> p1 := 3 ; (Z12) 

---> p1 := 4 ; ina := false (t13) 

---> pl := 2 ; ina := true (t14) 

---> pl := 2 ; (t15) 

---> p l  := 5 ; ( t 1 6 )  
- - - >  p1 := 6 ; i n a  := f a l s e  ( t 1 7 )  
- - - >  p1 := 1 ; PAB := f a l s e  ( t 1 8 )  

---> p2 := 2 ; inb := true (t21) 

---> p2 := 3 ; (t22) 

---> p2 := 4 ; inb := false (t23) 

---> p2 := 2 ; inb := true (t24) 

---> p2 := 2 ; ( t 2 5 )  
---> p2 :-- 5 ; (t26) 

---> p2 := 6 ; inb := false (t27) 

---> p2 := I ; PAB := true (t28) 
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We want to verify that  the predicate 

P = (pl = 2) ::~ ((p2 = 2) ::> (ina V inb)) 

expressing the impossibility that  both processes may enter the critical section 
(pi =5) at the same moment ,  is an invariant for this program 1~ Since Q0 = P 
is not inductive for the transitions t15  leading to p l  = 2 and t25  leading to 
p2 = 2, the predicate Q1 = P A ~'~[t15](P) A ~ [ t 2 5 ] ( P )  is calculated: 

Q1 = (pl  = 2 ~ (p2--- 2 ~ (ina Vinb))) 
A (pl = 3 A P A B  ~ (p2 = 2 ~ (ina Vinb))) 
A (p2 = 3 A ~ P A B  ~ (pl  = 2 ==~ (ina V inb))) 

Q1 =~ p-~[r](Q1) is a valid formula  for all transitions r leading to pi = 2 or 
pi = 3 and the proof  of this fact succeeds using our tactical. In this example, 
i teration is not necessary when using the following structural invariant obtained 
by an extension of the method described in [BLS96]: 

:r = (pl  = 3 ina)  A ( ;2  = 3 inb) 

The proof  of Q0 A I =* p-~[r](Q0) succeeds also for the transitions r = t l 5  and 
r = 1;25. This example was treated automatical ly by our tool. 

The second example, which is infinite state, describes a simple buffer with two 
actions "input" and "output" .  

simple_buffer : SYSTEM 

BEGIN 

elem : TYPE 

outp, e, x, y : var elem 

IMPORTING Buffer [elem] 

B : var Buffer[elem] 

BEGIN 

TRUE ---> B := cons(e,B) 

NOT(nulI?(B)) ---> outp := first(B) ; B := tail(B) 

END 

INITIALLY : B = null 

END simple_buffer 

The variable e represents the input of the the buffer. The imported PVS theory 
B u f f e r  tha t  contains the definition of buffers and some basic functions operating 
on them,  is defined as follows: 

Buffer [elem:TYPE] : THEORY 
BEGIN 

IMPORTING list [elem] 

10 Using the predicate -~(pl = 5) A (P2 = 5) to express the mutual exclusion property, 
leads to exactly one more iteration step 
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Buffer : TYPE = lisZ[elem] 

isin(Bl:Buffer, el:elem) : RECURSIVE bool = 

CASES B1 OF 
null: FALSE, 

cons(e2,B2) : IF (el=e2) THEN TRUE ELSE isin(B2,el) ENDIF 

ENDCASES 

first(B:(cons?)) : RECURSIVE elem = 

IF null?(cdr(B)) THEN car(B) ELSE first(cdr(B)) ENDIF 

tail(B:(cons?)) : RECURSIVE Buffer = 

IF null?(cdr(B)) THEN null ELSE cons(car(B),tail(cdr(B))) ENDIF 

isbefore(x,y:elem, Bl:Buffer) : RECURSIVE bool = 

CASES B1 OF 

null : FALSE, 

cons(el,B2) : 

IF null?(B2) THEN (el=x) ELSE 

IF (el=x) THEN NOT(isin(B2,y)) 0R isbefore(x,y,B2) 

ELSE isbefore(x,y,B2) 

ENDIF 
ENDIF 

ENDCASES 

Buffer-lemma : OBLIGATION 

FORALL (B: Buffer, x: elem, y: elem): 

NOT(nulI?(B)) AND NOT(isin(B,y)) => NOT(isin(tail(B),y)) 

END Buffer 

We want to verify that  

BOX (NOT(null?(B)) AND (x=car(B)) AND NOT(isin(B,y)) 
=> 

i sbefore (x ,y ,B)  WEAK-UNTIL (outp=x) ) 

is an invariant. It expresses the fact that elements leave the buffer in the same 
order they have entered it, that  is, the FIFO property. The following VCs are 
generated by our tool using the Wait ing rule: 

VC-I : OBLIGATION 

isbefore(x,y,f) 
=> 

isbefore(x,y,cons(e,f)) OR (outp=x) 

VC-2 : OBLIGATION 

isbefore(x,y,f) AND NOT(null?(f)) 
=> 

isbefore(x,y,tail(f)) OR (first(f)=x) 



206 

VC-3 : OBLIGATION 

NOT(null?(f)) AND (x=car(f)) 
NOT(isin(f,y)) AND NOT(x=y) 

=> 

isbefore(x,y,f) 0R (outp=x) 

AHD 

The obligations VC-1 and VC-3 are proved automatically in one single step proof 
using our tactical, gC-2 is proved automatically with the same tactical using 
BuIfer-lemma, which expresses a trivial property of buffers. That  means the 
property can be verified without iteration. 

6 Conclusions and future work 

In this paper, we have presented a method and a tool allowing to do model 
checking using a theorem prover. Our approach takes advantage of the automa- 
tizability of algorithmic model checking and of the power of axiomatic methods 
which allows to deal with infinite state programs. It is clearly only a partial 
method as the fixed point may never be reached by the algorithmic method. 
Sometimes, the user will be able to guess a solution (which often can be checked 
easily). 

In this paper we have hardly mentioned compositionality; however, for ex- 
ample for the verification of the mutual exclusion program (consisting of the 
parallel composition of two components) no product is built; also the method 
deriving structural invariants [BLS96] is compositional. In the future, more com- 
positionality will by added by means of well-known rules. 

Another interesting direction is the use of abstraction in the manner proposed 
for example in [Gra94]. The present framework is appropriate for this approach 
as in the above mentioned paper, the most difficult part was to argue that  the 
considered abstract operations are in fact abstractions of the concrete operations. 
Here, all the necessary proofs can be done with PVS. Similar proposals have been 
made in [Dr95] or in [HS96]. 
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Abstract .  We present an extension of classical tableau-based model 
checking procedures to the case of infirfite-state systems, using deductive 
methods in an incremental construction of the behavior graph. Logical 
formulas are used to represent infinite sets of states in an abstraction of 
this graph, which is repeatedly refined in the search for a counterexample 
computation, ruling out large portions of the graph before they are ex- 
panded to the state-level. This can lead to large savings, even in the case 
of finite-state systems. Only local conditions need to be checked at each 
step, and previously proven properties can be used to further constrain 
the search. Although the resulting method is not always automatic, it 
provides a flexible and general framework that can be used to integrate 
a diverse number of other verification tools. 

1 Introduction 

We present a model checking procedure for verifying temporal logic properties of 
general infinite-state systems. It extends the classical tableau-based model check- 
ing procedure for verifying linear-time temporal logic specifications of reactive 
systems described by fair transition systems, To verify that a system S satisfies a 
specification T, the classical procedure checks whether the (S, -~) behavior graph 
admits any counterexample computations. This behavior graph is the product of 
the state transition graph for S and the temporal tableau for -~9~, which makes 
the procedure essentially applicable to finite-state systems only. 

Our procedure starts with the temporal tableau for - ~  and repeatedly refines 
and transforms this graph until a counterexample computation is found or it is 
demonstrated that such a computation cannot exist. Even for finite-state systems, 
this can lead to significant savings, since portions of the product graph can be 
eliminated long befbre they are fully expanded to the state level. For instance, 
in the verification of accessibility f6r the Peterson mutual-exclusion algorithm, 
expansion to 12 nodes suffices to demonstrate that no counterexample exists, 
whereas the full behavior graph contains 76 nodes. 

* This research was supported in part by the National Science Foundation under grant 
CCR-92-23226, the Advanced Research Projects Agency under NASA grant NAG2- 
892, the United States Air Force Office of Scientific Research under grant F49620- 
93-1-0139, the Department of the Army under grant DAAH04-95-1-0317, and a gift 
from Intel Corporation. 
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For infinite-state systems, the procedure will terminate in many cases. In Sec- 
tion 5 we illustrate the procedure by model checking an accessibility property for 
the Bakery algorithm. Expansion to 16 nodes suffices to verify this property over 
this infinite-state system. Even when the procedure does not terminate, partial 
results can still be valuable, giving a representation of all potential counter- 
example computations that can be used for further verification or testing. 

We present our procedure in the framework of [14], where deductive methods 
are used to verify linear-time temporal logic specifications for reactive systems 
described by fair transition systems. However, the main ideas can be easily ad- 
apted to other temporal logics and system specification languages as well. 

R e l a t e d  work  

Mode l  Checking: Most approaches to temporal logic model checking [10, 16] 
have used explicit state enumeration, or specialized data structures to represent 
the transition relation and compute fixpoints over it, as in BDD-based "symbolic" 
model checking [8, 15]. While automatic, and particularly successful for hardware 
systems, these approaches require that the syst.em, or a suitable abstraction of it, 
conform to the particular data structure used. Most often, the system must be 
finite-state. Furthermore, even in the finite-state case these techniques are limited 
by the size of the specialized representation, which is still ultimately limited by 
the number of reachable states. 

The "on-the-fly model checking" for CTL* presented in [1] constructs only a 
portion of the state-space as required by the given formula, but is still restricted 
to finite-state systems. Our procedure is similarly "need-driven," but expands 
the state-space in a "top-down" manner as well, moving from an abstract rep- 
resentation to a more detailed one as necessary. 

A method for generating an abstract representation of a possibly infinite 
state-space is presented in [4], using partitioning operations similar to the ones 
we describe below. However, in [4] this is done independently of any particular 
formula to be verified. Finally, the local model checking algorithm for real-time 
systems in [18] can be seen as a specialized variant of our procedure; it too refines 
a finite representation of an infinite product graph, consecutively splitting nodes 
to satisfy constraints arising from the formula and system being checked. 

D e d u c t i v e  Methods :  A complete deductive system for temporal verification of 
branching-time properties is presented in [11], while [5] presents a proof system 
for the modal mu-calculus. Manna and Pnueli [14] present a deductive frame: 
work for the verification of fair transition systems based on verification rules, 
which reduce temporal properties of systems to first-order premises. Verification 
diagrams [13, 6] provide a graphical representation of the verification conditions 
needed to establish a particular temporal formula. 

All of these methods apply to infinite-state systems and enjoy relative com- 
pleteness, but can require substantial user guidance to succeed. These metlzods 
yield a direct proof of the system-validity of a property, but do not produce 
counterexample computations when the property fails. 
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Like standard model checking, our procedure does not require user-provided 
auxiliary formulas, and allows the construction of counterexamples; the process 
is guided by the search for such computations. Like deductive methods, it only 
needs to check local conditions, and allows the verification of infinite-state sys~ 
tems through the use of powerful representations to describe sets of states (e.g. 
first-order formulas). We also accommodate the use of previously established 
invariants and simple temporal properties. 

The procedure presented in [3] for automatically establishing temporal safety 
properties is based on an assertion graph similar to the S-refined tableau we 
use, and can also produce counterexamples. Our approach is a dual one: instead 
of checking that all computations satisfy the temporal tableau of the formula 
being proved, we Check that no computations satisfy the tableau for - ~ .  

2 P r e l i m i n a r i e s  

Fa i r  T r a n s i t i o n  Sys t ems :  The computational model, following [14], is a fair 
transition system (FTS). An FTS S is a triple ( ] ; ,O ,T ! ,  where 1; is a set of 
variables, O is the initial condition, and T is a finite set of transitions. A finite 
set of system variables V C V determines the possible states of the system. The 
state-space, Z, is the set of all possible valuations of the system variables. 

We use a first-order 2 assertion language A to describe O and the transitions 
in T.  O is an assertion over the system variables V. A transition r is described 
by a transition relation pr(x,x~), an assertion over the set of system variables 
x and a set of primed variables x I indicating their values at the next state. 7- 
includes an idling transition, Idle, whose transition relation is x = x ~. 

A run is an infinite sequence of states so, s l , . . ,  such that so satisfies O, and 
for each i > 0, there is some transition v E T such that pr(Si, s~+l) evaluates 
to true. We then say that r is taken at si, and that state si+l is a r-successor 
of s. A transition is enabled if it can be taken at a given state. Such states are 
characterized with the formula 

enabled(r) aof 3x'.Zr (x, x') 

As usual, we define the strongest postcondition post(v, ~) and the weakest pre- 
condition pre(v, ~) of a formula. ~ relative to a transition v as follows: 

post(r, dd  x0. (pT(x0, x) A 
vre( ,  )d~ w' .  (p, (x, 

We also use the notation {9} r {r de2 (~(X) A pv(X,X')) -'+ r 

Fai rness :  The transitions in 7- can be optionally marked as just or compas- 
sionate. A just  (or weakly fair) transition cannot be continually enabled without 

Although it can be augmented with features such as interpreted symbols axed con- 
straints, or specialized to the finite-state case, e.g. using BDDs. 
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ever being taken; a compassionate (or strongly fair) transition cannot be enabled 
infinitely often but taken only finitely many times. A computation is a run that 
satisfies these fairness requirements. 

L inear - t ime  Tempora l  Logic: As specification language we use linear-time 
temporal logic (LTL) over the assertion language .4, where no temporal operator 
is allowed to appear within the scope of a quantifier. We use the usual future and 
past temporal operators, such as [[], <~, O,  N, W (future) and [3, ~ ,  (~, B, S 
(past). A formula with no temporal operators is called a state-formula or an 
assertion. For details on LTL and tableau constructions, we refer the reader 
to [14], and define only the basic concepts we need. 

The  Formula  Tableau: Given an LTL formula ~, we can construct its tableau 
r a finite graph that describes all of its models [14]. Briefly, each node in the 
tableau is identified with an atom, which is a set of state- and temporal formulas 
expected to hold whenever a model resides at this node. Two nodes Az and A2 
are connected with a directed edge (A1, A2) if the formulas in A2 can hold at a 
state following one that satisfies the formulas in At. 

An atom is called initial if its formulas can hold at the initial state of a model. 
is satisfiable only if there is a strongly connected subgraph (SCS) in r that 

is reachable from an initial atom. Furthermore, if a given model satisfies, e.g., 
~>p at some point, it must in fact satisfy p at this or another point later on. A 
fulfilling SCS is one where all such eventualities are satisfied. 

P ropos i t ion  1. ~ is satisfiable iff there is a fulfilling, reachable 2CS in r 

3 D e d u c t i v e  M o d e l  C h e c k i n g  

The classical approach to model checking [10, 16] verifies a property ~ by con- 
structing the product graph between the system's reachable-state graph and the 
temporal tableau for --~. Any infinite path through the product graph that sat- 
isfies the fairness constraints on the transitions and is fulfilling with respect to 
its tableau atoms is a counterexample to ~. 

The explicit construction of the state-graph restricts the method to finite-state 
systems. The procedure we present works in a top-down fashion, starting with 
a general skeleton of the product graph and refining it until a counterexample is 
found, or the impossibility of such a counterexample is demonstrated. 

Def in i t ion2 (S-refined tableau).  Given an FTS S and a temporal property 
9, an S-refined tableau is a directed graph G whose nodes are labeled with pairs 
(A, f), where A is an atom for the temporal tableau for - ~  and f is a state- 
formula, and whose edges are labeled with subsets of T. For nodes M, N, we 
write r 6 (M, N) if transition v is in the label of the edge from M to N, or 
simply say that r labels (M, N). A subset of the nodes in ~ is marked as initial. 

The S-refined tableau can be viewed as a finite abstraction of the product grapla. 
The state-formula f in a node (A, f)  describes a superset of the states reachable 
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at that node; similarly, the transitions labeling an edge ((A1, f l ) ,  (A2, f2)> are a 
superset'of those that can be taken from an fl-state to reach an f2-state. We will 
see that any path through an S-refined tableau corresponds to a path through 
the'corresponding temporal tableau. That is, for any path (A0, f0), (A1, f~ ) , . . .  
through G, the underlying path A0, A1,. . .  will be a path in ~-~.  

3.1 The  D M C  P r o c e d u r e  

We begin with the tableau graph ~ ,  from which we construct an initial S- 
refined tableau G0 as follows: 

1. Replace each node label A by (A, fA), where fA is the conjunction of the 
state-formulas in A. 

2. For each node N = (A, f)  such that A is initial in the tableau ~ .~ ,  add a 
new node No = (A, f A ~), which has no incoming edges, and whose outgoing 
edges go to exactly the same nodes as those of N. A self-loop {N, N) becomes 
an edge (No, N / in the new graph. These new nodes are the initial nodes in 
the S-refined tableau. 

3. Label each edge in Go with the entire set of transitions 7-. 

Figure 2 in Section 5 presents an example of an initiM S-refined tableau. 
The main data structure maintained by the procedure is an S-refined tableau 

graph Gi and a list of strongly connected subgraphs of this graph. We present the 
deductive model checking (DMC) procedure as a set of transformations on this 
pair. Initially, the SCS list contains all the maximal strongly connected subgraphs 
(MSCS's) of C0. Deductive model checking proceeds by repeatedly applying one 
of transformations 1-11 described below. The process stops if we find a reachable, 
fulfilling and adequate SCS (see Section 3.3) or obtain an empty SCS list. 

B a s i c  T r a n s f o r m a t i o n s :  

- 1 ( remove  label) .  If an edge ((A1, f l ) ,  (A2, f2)> is labeled with a transition 
v and fl  (x) A f2 (x') APr (x, x') is unsatisfiable, remove r from the edge label. 

- 2 ( e m p t y  edge) .  If an edge is labeled with the empty set, remove the edge. 
- 3 (unsat lsf iable node) .  If f is unsatisfiable for a node (A, f) ,  or if a node 

has no successors, remove the node. 
- 4 (unreachable  node) .  Remove a node unreachable from an initial node. 
- 5 (unfulfilling SCS).  If an SCS is not fulfilling, remove it from the SCS 

list. (An SCS is fulfilling if its underlying tableau SCS is fulfilling.) 
- 6 (SCS split) .  If an SCS becomes disconnected (because a node or an edge 

is removed from the graph), replace it by its constituent MSCS's. 

These basic transformations should be applied whenever possible. 

N o d e  Splitting: In the following, we will have the opportunity to replace a node 
N by new nodes N1 and N2. Any incoming edge (M, N> is replaced by edges 
(M, N1} and (M, N2) with the same label, for M r N. Similarly, any outgoing 
edge (N, M) is replaced by edges (Yl, M> and (N2, M} with the same label as the 
original edge. If a self-loop (N, N} was present, we add edges (g l ,  N1), (N2, N2}, 
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(N1, N2) and (N2, N1), all with the same label as (N, N).  If an initial node is 
split, the two new nodes are also labeled as initial. If the split node was part of 
an SCS in the SCS list, this SCS is updated accordingly. 

B a s i c  R e f i n e m e n t  T r a n s f o r m a t i o n s :  

- 7 ( p o s t c o n d i t l o n  spl i t ) .  Consider an edge from node N1 to N2, (N1, N2) = 
((A1, f l ) ,  (A2, f2)) ,  whose label includes transition r. I f / 2  A -,post(r, f l)  is 
satisfiable (that is, f2 does not imply post(r, fl)), then replace (A2, ]'2) by 
the two nodes 

N2,1 = (A2, f2 A post(r, f l  ) ) 
N2,2 = (A2, f2 A -~post(r, fl)) 

Note that we can immediately apply the r e m o v e  l abe l  transformation to the 
edge between N1 and N2,2, removing transition r from its label. 
Nodes N1 and N2 need not be distinct. If N1 = N2 then we split the node 
into two new nodes as above, only now the self-loop for N2,2 as well as the 
edge from N2,1 to N2,2 do not contain the transition r. 

- 8 ( p r e c o n d i t i o n  spl i t ) .  Consider an edge (N1, N2) = ((A1, f l ) ,  (A2, f2)), 
labeled with transition r. If f l  A -,( enabled( r) ^ pre(r, f2)) is satisfiable, then 
replace (A1, f l )  by the two nodes 

N~,~ = (A~, f l  A enabled(r) A p,'e(r,/~) ) 
N1,2 ~-- (A1, f l  A m(enabled(r) A prg(r, f2))) �9 

Here, transition r can be removed from the (N1,2, N2) edge. 

The conditions for applying these transformations can be weakened if the re- 
quired satisfiability checks are too expensive (see Section 4). Variants of these 
transformations, such as n-ary splits according to possible control locations, are 
convenient in practice. In general, .arbitrary conditions can be used to split nodes. 
However, our refinement transformations account for the structure of the system 
and property being checked, and can be automated as well. 

3 . 2  F a i r n e s s  T r a n s f o r m a t i o n s  

Together, transformations 1-8 are sufficient for the analysis of transition systems 
with no fairness requirements. If an adequate SCS is found (see Section 3.3), 
a counterexample is produced. If the set of SCS's (all of which are actually 
MSCS's, in this case) becomes empty, then we know there is no counterexample 
computation. However, to account for just  and compassionate transitions we need 
the following extra transformations: 

- 9 ( e n a b l e d  sp l i t ) .  Consider a just  or compassionate transition r and an 
SCS containing a node N = (A, f )  such that f A -,enabled(r) is satisfiable. 
Then replace N by the two nodes 

N1 = (A, f A enabled(v)) 
N2 = (A, f A -~enabled(r)) . 
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D e f i n i t i o n 3 .  A transition 7- is fully enabled at a node (A, f)  if f -+ enabled(7.) 
is valid; 7. is fully disabled at a node (A, f)  if f --+ (-,enabled(7.)) is valid. A 
transition is taken on an SCS S if it is included in an edge-label in S. An SCS 
S is just (resp. compassionate) if every just (resp. compassionate) transition is 
either taken in S or not fully enabled at some node (resp. all nodes) in S. 

That is, an SCS S is unjust (resp. uncompassionate) if some just (resp. com- 
passionate) transition is never taken in S and fully enabled at all nodes (resp. 
some node) in S. 

We now present the last two transformations, which, like the basic ones, 
should be applied whenever possible: 

- 10 ( u n c o m p a s s i o n a t e  SCS).  If an SCS S is not compassionate, then let 
7.1,..., 7.,~ be all the compassionate transitions that are not taken in S. Re- 
place S by all the MSCS's of the subgraph resulting by removing all the nodes 
in S where one of these transitions is fully enabled. 

- 11 ( u n j u s t  SCS) .  If an SCS is not just, remove it from the SCS list. 

Note that these transformations do not change the underlying graph G, but 
only the SCS's under consideration. (However,. unjust or unfulfilling SCS can be 
fully removed from the graph if they have no outgoing edges.) 

3.3 R e a c h a b i l i t y  a n d  T e r m i n a t i o n  

The process of transforming the S-refined tableau can continue until there are no 
SCS's under consideration, in which case the original property ~ is guaranteed 
to hold for the system S. 

Finding a counterexample computation in the case that ~ fails, however, re- 
quires some additional work. Whereas the above transformations remove SCS's 
from consideration that are known to be unreachable because they are discon- 
nected from an initial node, no provisions ensure that a node is indeed reachable 
in an actual computation, or that a computation can in fact reside indefinitely 
within an SCS. 

To identify portions of the product graph known to be reachable, We do some 
additional book-keeping: 

- ( e x e c u t a b l e  t r a n s i t i o n ) .  Given an edge ((A1, f l ) ,  (A2, f2)) labeled with 
transition 7., mark 7- as executable if the following formula is valid: 

(fl ~ enabled(7.)) A ({A} 7. {f2}) 

That is, 7- is labeled as executable if it can be taken at all states satisfying f l  and 
always reaches a state that satisfies f2. For example, the idling transition can be 
marked as executable on all self-loops. 

D e f i n i t i o n 4  ( fu l ly  j u s t  a n d  c o m p a s s i o n a t e ) .  A transition is fully taken at 
an SCS if it is marked as executable for an edge in the SCS. An SCS S is fully 
just (resp. fully compassionate) if every just (resp. compassionate) transition is 
either fully taken in S or fully disabled at some node (resp. all nodes) in S. 
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Defin i t ion5  (adequate  SCS). An SCS S is adequate if after removing all 
edges not marked with executable transitions we obtain a subgraph S t where: 

1..S ~ is still strongly connected; 
2. S I is fully just and fully compassionate; 
3. there is a path of executable transitions from a satisfiable initial node to a 

node in S~; 
4. the state-formulas in S I and the path that leads to S ~ are satisfiable. 

An adequate SCS guarantees the existence of a computation of S that satisfies 
~ (but the reverse does not hold). 

Using Prev ious ly  P roven  Proper t ies :  Known invariants can be used to 
strengthen all (or only some) of the assertions in the S-refined tableau; if [:]p is 
a known invariant for a state-formula p, then we can replace any node (A, f)  by 
the node (A, f A p). 

Similarly, simple temporal properties of the system can be used to rule out 
paths in the tableau. For example, if we know that E](p "-+ ~ q) is S-valid, then 
we can require that any candidate SCS featuring a state-formula which implies 
p also contain a state-formula compatible with q.3 

4 Analysis 

The soundness of the procedure is based on the fact that each transformation 
preserves the set of computations through the S-refined tableau. Since this is 
equal to the - ~  computations of S for the initial graph C0, the procedure reports 
success only if there are no such computations. On the other hand, a computation 
that is obtained by reaching and then residing in an adequate SCS must indeed 
be a model of - ~  and a computation of S, and thus a counterexample. 

The tableau ~ can be exponential in the size of 9; however, properties to be 
model checked are usually simple, so the tableau is small when compared with 
the system's state-space (even for finite-state systems). Incremental and particle 
tableau constructions [14] reduce the expense of building ~ . 4  

Propos i t ion6 .  For a finite-state system S, the exhaustive application of trans- 
formations 1-11 terminates, deciding the S-validity of ~o. 

If the system S is finite-state, we can use a finite-state assertion language .A. 
Note that the satisfiability tests required at the splitting steps are now decidable, 
and there will only be a finite number of distinct nodes. Since every transform- 
ation reduces the size of the graphs under consideration or replaces a node with 
more specific ones (that is, nodes covering strictly fewer states), the process must 
terminate. If the SCS list is empLy, the original property ~o is S-valid; otherwise, 
any remaining SCS must be adequate, and thus provide a counterexample. 

3 . ~  could always be conjoined with all other known temporal properties of S, but at 
the risk of further increasing the size of the temporal tableau. 

4 If necessary, this construction can be interleaved with the state-space,refinement. 
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The node formulas may well be encoded using binary decision diagrams 
(BDDs) [7] or, in general, any finite-domain constraint language. The efficient 
tests for implication between BDDs can be used to maintain encapsulation con- 
ventions. Hybrid representations (including first-order constructs) can be used if 
the BDD size becomes problematic. 

In the general case of infinite-state systems, the model checking problem is 
undecidable. However, we point to several features of our approach: 
�9 The test for satisfiability used in the splitting rules need not be complete; we 
can change the condition "if X is satisfiable then..." to be "if X is not known 
to be unsatisfiable then..." without compromising soundness. Thus, the available 
theorem-proving and simplification techniques are not required to give a definite 
answer at any given time. When the validity of a formula is hard to decide, 
additional splits can make subsequent satisfiability questions easier. 

This lazy evaluation of satisfiability makes specialized constraint languages 
such as those used in Constraint Logic Programming [12] well-suited to the task. 
Reactive programs based on such constraint languages, such as concurrent con- 
straint programs [17], may be specially amenable to such a verification frame- 
work. We expect constraint-solving and propagation techniques, as in [3], to play 
a central role in the deductive model checking "of large systems. 
| Even when the model checking effort is not completed, the resulting S-refined 
tableau can be used to restrict the search for a counterexample, since all such 
computations must follow the S-refined tableau. Backward propagation (possibly 
approximated) [3] can be used to find sets of initial states that can generate a 
counterexample computation. A similar approach is used in [9] to generate test 
cases for processor designs. 
�9 The DMC procedure can benefit from user guidance in two forms: first, the 
choice of refinement transformation to perform next determines how the state- 
space is explored. Second, the process can be speeded up considerably by refine- 
ment steps based on auxiliary formulas provided by the user. 

Inductive and well-foundedness arguments can also be used: for example, if a 
transition decreases a well-founded relation that is known to hold across an SCS, 
then we can remove it from all the edges in the SCS (but still account for it for 
reachability). Adding support for well-founded relations and ranking functions 
similar to those used in Verification Diagrams [13, 6] could make the method 
relatively complete and further the combination of theorem-proving and model 
checking we propose. 

5 E x a m p l e  

We illustrate deductive model checking by proving accessibility for the BAKERY 

program, an infinite-state program implementing a mutual exclusion protocol, 
shown in Figure 1. Each of the statements in the program corresponds to a trans- 
ition, denoted by its label; thus, T = {Idle,~o..Q, m0..m4}. All transitionsare 
just, except for m0 and t0, which have no fairness requirements. Accessibility can 
be expressed in LTL by the formula ~ : [[](el -4 <~ s i.e., always if control is 
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at ~1 it will eventually reach ~3. The following describes the output of our DMC 
implementation based on the STeP system [2]. The splits are chosen by the user, 
but the underlying simplification and pruning are performed automatically. 

local 

I 
loop forever do 

[C0: noncri t ical  1 
[C1: y l : = y 2 + l  
|i2: await  ( y 2 = 0 V y l  <y~) 
|C3: critical 
LC4: m := 0 

Yl, Y2 : integer where  yl = y2 -- 0 

~loop forever do 
[ Ira0: noncri t ical  1 
| |m1: Y 2 : = y l + I  

II / Ira:: await (Yl -= 0 V Y2 < y,) 
| |m3: critical 
L Lm4: Y2 := 0 

Fig. 1. Program BAKERY 

The initial S-refined tableau for -~o : ~ (~1 A [ ] -~3) ,  based on its p a r t i c l e  

t a b l e a u ,  is shown in the left of Figure 2. Nodes 3 and 4 correspond to the initial 
nodes in the ~o  tableau. Node 1 results from adding the initial condition to 
node 4; the initial node from node 3 is pruned since ~1 A O is unsatisfiable. The 
SCS {4} is not fulfilling, but {2} is. We now perform a precondition split on edge 
(2, 2> and transition t0, replacing node 2 by nodes 6 and 5. An g4-precondition 
split on (6, 5) yields nodes 8 and 7. At this point, nodes 5 and 7 are unreachable 
from the initial state and can be removed. The only candidate SCS is {8}. 

1(O :)C0 A m0 A t/1 = 0A Y2 = 0 -~ 

, t_ T_ 2 ~ . ~ _  Prec. C0 
.: 2=-c  
[-- . . . . . . . . . . .  .J 

- ~ :  O ( c ,  ^ []-~c3) 

P . . . . . . . . . . .  7 
Id" l ~ Idle, m o . . m 4 , g l  , Le__..._~ mlo,. m4 ~ ~1 ~ 

C ~ I )  i I 3 : 1  ~ - ~  8 : C I V ~ 2  , ~  

'~ 3 ." l l  [ • Idle, m o . . m 4  
~ Prec. C4 

"7 
~ Idle, mo. .rn4 , C1 

6 : ~C0 A ~C3 L~-~Idle,imo..m4,C, 

Fig. 2. Initial S-refined tableau and first 2 refinement steps 
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An s split for (8, 8) yields nodes 9 and 10 in Figure 3. The only 
fulfilling SCS is {10}, since {9} is unjust for ~1. An enabled split for node 10 and 
transition s produces nodes 11 and 12. The SCS {11} is unjust for ~2. Node 12 
is flow strengthened with the invariant (Y2 r 0) -+ (m2 V rn3 V m4). (Such 
invariants are generated automatically by STeP based on the program text.) An 
mz-precondition split on (12, 12) produces nodes 13 and 14. SCS {13} is unjust 
for m3. Finally, an m2-preeondition split on (14, 13 / results in 15 and 16. Now, 
SCS {16} is unjust for m4, while {15} is unjust for m2. Since there are no 
candidate SCS left, we have established that ~ is S-valid. 

[ - - ~ - - ~  I d l e ,  m o . . m 4  I d l e ,  m o . . m 4  r - - - . . . . . . . . .  - - - r  - - - - -  

L . . . . . . . . .  __ . . . . . .  ~ Prec. ms 
r -  . . . . . . . . . . . . . . . . . . . . . . .  - ]  

I d l e  I 13 [ ) , . ~ l l l l l l '  14:s ra, A--ra3A--(yl <_ y ; V y 2 = 0 )  1 

I d l e ,  m o . . r n , ~  ~ - ~ I d l e  

Fig. 3. Final 3 refinement steps to model check BAKEP~Y 

Note that when model checking progress properties it may be profitable to 
concentrate on splitting and eliminating candidate SCS's, as done in this example. 
However, in general it may be necessary to show that certain parts of the state- 
space are unreachable through forward propagation from the initial nodes or 
backward propagation from the unreachable ones. We model checked mutual 
exclusion for BAKERY ([[] ~(~3 A m3)) using 3 splits (including a user-provided 
one) and automatically generated invariants. 

We also model checked accessibility for the infinite-state 3-process version 
of BAKERY, expanding to 27 nodes. This included one user-provided case split 
according to the priority between processes (4 cases), together with 5 trivial 
location splits and one enabled split. 
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A b s t r a c t .  Theories with associative and commutative (AC) operators, 
such as arithmetic, process algebras, boolean algebras, sets . . . .  are ubiq- 
nitous in software and hardware verification. These AC operators are 
difficult to handle by automatic deduction since they generate complex 
proofs. In this paper, we present new techniques for combining induction 
and AC reasoning, in a rewrite-based theorem prover. The resulting sys- 
tem has proved to be quite successful for verification tasks. Thanks to 
its careful rewriting strategy, it needs less interaction on typical verifica- 
tion problems than well known tools like NQTHM, LP or PVS. We also 
believe that our approach can easily be integrated as an efficient tactic 
in other proof systems. 

1 Introduction 

Powerful tools based on model checking have been developed for the verification 
of finite-state systems [6]. Their extensions to some classes of infinite-state sys- 
tems has only produced moderate success. Therefore deductive methods offer a 
promising complementary approach especially for verifying parameterized com- 
ponents or systems involving infinite data-types. Besides, when a program or a 
circuit is not correct, more high-level information about how to correct it can 
be derived with deductive methods. 

Effective verification with deductive techniques requires efficient primitive 
inference procedures in order to free the user from tedious low-level proof con- 
struction details. Rewriting is now widely recognized as an important  technique 
for efficiency and is part of many systems. In this framework, the induction 
prover SPIKE 1 [3, 2], has been developed. It relies on implicit induction whose 
principle is to simulate induction by term rewriting. Given a theory presented 
by conditional equations, the prover instanciates some particular variables of 
a conjecture to be proved, called induction variables, by terms from a test set 

1 Spike is available by ftp from ftp.loria.fr in/pub/loria/protheo/softwares/Spike 
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which is a finite description of the model, then simplifies them by axioms, other 
conjectures or induction hypotheses. Every iteration generates new subgoals that 
are processed in the same way as the initial conjectures. 

However, many theories of interest include AC operators, which are hard to 
handle since they cause divergence or generate complex proofs. To overcome this 
problem, we propose to have the AC axioms built in the inference mechanism of 
SPIKE. The advantage of our approach over other implicit induction techniques 
[5, 9], is that it does not use AC unification (which is doubly exponential) during 
the proof process, but only AC matching. 

In this paper, we propose methods for automatically selecting the induction 
variables of a conjecture to be proved, and for constructing test sets in the case 
of an AC conditional theory. We present our proof procedure as an inference 
system based on new simplification techniques. This inference system is correct, 
refutationally complete (when the procedure stops with failure we can ensure 
that the given conjecture is wrong) under some reasonable restrictions on the 
initial AC conditional theory. These results have been implemented in the system 
SPIKE-AC, and computer experiments have shown the gain we obtain when 
handling AC operators by these techniques. In particular, the procedure has 
allowed us to prove directly theorems (for example, the correctness of a ripple 
carry adder) that require more interaction with other systems. 

Overview on an example  

To illustrate our approach, let us describe the correctness proof of a simple 
digital circuit. We consider a ripple carry adder (see figure 1), whose inputs 
are two bit-vectors A = (A0, A1, . . . ,  A,~-I) and B = (B0, B1, . . . ,  Bn-1), and 
a carry Co. This circuit performs addition of A and B and the result is a bit 
vector S = (So, $1 , . . . ,  Sn-1), and a carry C~. This problem is easily specified 
with conditional rules, and the specification obtained reflects clearly the circuit 
description. The circuit function computing the sum of two bit-vectors A and B 
given a carry Co, is add(A, B, Co). We define a mapping function bvtonat which 
transforms a bit vector into an integer. The constructor bitv(x,y) builds a new 
bit-vector by concatening x as the least significant bit of the vector y, and the 
constant Btm is the empty vector. The correctness theorem states that when 
given two bit-vectors of the same size as inputs, the resulting output is, up to 
conversion, the arithmetic sum of the inputs. The conjecture to be proved is: 

size(xl ) = size(x2) ~ bvtonat(add(xl, x2, False)) = bvtonat(xl ) + bvtonat(x2) 

Using our techniques described in section 5, the test set computed for the spec- 
ification is: {Btm; bitv(True, xl); bitv(False, xl); 0; s(xl); True; False}, where: 
Btm, bitv(True, xl) and bitv(False, xl) are of type vect, 0 and s(xl) are of type 
nat, True and False are of type bool. The next step consists in applying an 
induction on the induction variables (see section 4). Here, the variables Xl and 
x2 are replaced by elements of the test set (whose variables are renamed), and 
the instances obtained are simplified. We thus obtain 9 subgoals to be proved. 
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C 1 
A1 B1 An-1 Bn. 1 

Fig.  1. Ripple carry adder 

The simplification strategy may use axioms, other conjectures (even when they 
are not proved) and inductive hypotheses~ provided they are smaller (w.r.t a well 
founded ordering on clauses). For example, the subgoal: 

s(bvtonat(add(xl, z2, False)) + bvtonat(add(zl, x~, False))) = 
bvtonat(bitv(True, Xl ) ) + bvtonat(bitv( False, x~) ) 

is simplified using the axioms to: 

bvtonat(add(xl, x2, False)) + bvtonat(add(xl, z2, False)) = 
bvtonat(zl) + bvtonat(xl) + bvtonat(z2) + bvtonat(z2). 

This simplification is not possible, if we simply use the commutativity and asso- 
ciativity of + as lemmas, since then it would not be possible to derive a clause 
which is smaller than the starting one. 
After simplifying and deleting the tautologies, only one subgoal remains to be 
proved: 

bvtonat(add(xl, x2~ True)) + bvtonat(add(xt, ~2, True)) = 
s(s(bvtonat(zl ) + bvtonat(xl) § bvtonat(x2) + bvtonat(x2) ) ). 

This is the case for the addition of 2 bit-vectors when the carry is set to True. 
An induction on xl and x~ must be applied. We obtain 9 subgoals to prove, and 
after simplification, 2 conjectures remain. The first one is: 

8ize(~l)  = 8ize(~2) 
bvtonat(add(~l, z2, False)) + bvtonat(add(xl, x2, False)) + 
bvtonat(add(zl, x2, False)) + bvtonat(add(zl, x2, False)) = 

bvtonat(xl) + bvtonat(xl) + bvtonat(xl) + bvtonat(xl) + bvtonat(m2) + 
bvtonat(x2) § bvtonat(x~) + bvtonat(z2) 
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It is reduced to a trivial identity using inductive contextual rewriting (see section 
6) with the induction hypothesis: 

size(xl) = size(x2) ~ bvtonat(add(xl, x2, False)) = bvtonat(xl) + bvtonat(x2) 

The other remaining conjecture is simplified in the same way. Hence, all the 
subgoals are proved, and the initial goal is valid. The proof is completely auto- 
matic. Besides, it is easy to understand and very close to a mathematical  proof. 
Note also that  it does not use any specialized tactic nor any heuristic. The same 
conjecture has been proved with the NQTHM system [14], but then requires a 
non trivial generalisation of the input theorem. A proof was also done with PVS 
[7], but it uses a high-level user-defined proof strategy. 

2 Basic concepts and notations 

We assume that  the reader is familiar with the basic concepts of term algebra, 
term rewriting, equational reasoning and mathematical  logic. A many sorted 
signature ~r is a pair ($,~v) where S is a set of sorts and ~" = F U FAC, where 
F and FAC denote sets of function symbols. For short, a many sorted signature 
cr will simply be denoted by •. The variadic term algebra is a generalisation of 
the term algebra, where AC functions symbols have a non fixed arity [12]. It 
allows us to express associative and commutative axioms by means of flattening. 
The variadic term algebra TV(F, FAG, X) over the signature :T and the set of 
variables X is defined as the smallest set TV containing X such that: 

- if f E F, arity(f) = n >_ O, and t l , . . . , t n  E TV  then f( t l , . . . , t ,~) e TV. 
- i f f  E FAC, n > 2, and t l , . .  o,t~ E TV then f ( t l , . . . , t~ )  E TV  

In the following, + will denote an AC symbol. Flattening a term consists of 
rewriting it to normal form w.r.t, the set of flattening rules: f ( x l , . . . ,  f ( y l , . . . ,  Yr) 
,Zl , . . . ,zn)  "-+ f (X l , . . . , y l , . . . , y r , . . . , Z l , . . . , Zn )  for all f E FAC. We denote 
by flat(t), the term obtained by flattening t. A term s is flattened if s = flat(s). 
We assume that we have a partit ion of :T in two subsets, the first one, C, con- 
tains the constructor symbols and the second, D, is the set of defined symbols. We 
denote by Vat(t), the set of all variables appearing in t. A term is linear if all its 
variables occur only once in it. If Var(t) is empty then t is a groun d term. The 
set of all ground terms is T(5C). A substitution assigns terms of appropriate sorts 
to variables. Let t b e  a term, and ~ be a substitution, t~ is the flattened term ob- 
tained by applying ~ to t. The domain of~ is defined by: Dom(~) = {x I x~ r z}. 
If y applies every variable to a ground term, then r/is a ground substitution. We 
denote by ~_ the syntactic equivalence between objects. The smallest congruence 
generated by the equations f(f(.% y), z) = f(z ,  f(y, z)) and f(x,  y) = f(y, x) for 
all f E FAC is denoted by =AC. Positions in a term are defined in the same 
way than in [12]. The replacement of a term s by t at a position p is denoted 
by s[p +- t]. We assume that  the term obtained is flattened. The term t /p is the 
subterm of t at position p. The notation t[s]p means that  the term t contains a 
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subterm s at position p. We also denote by t(p) the symbol  of t at position p. For 
example, i f t  = a+b+c, then t /{2,  3} = b+c, t({2, 3}) = +,  t /3  = c. A position u 
in a te rm t such tha t  t(u) = x and x E X, is a linear variable position i f x  occurs 
only once in t, otherwise, u is a non linear variable position. A position u is a 
strict position of a term t if t(u) ~ X,  and u = E or u = u ' . i  (i E N). The depth 
of a te rm t is defined as follows: depth(t) = 0 if t is a constant or a variable, 
otherwise, depth(f  ( t l , . . . ,  t~)) = 1 + maz(depth(ti)) .  The strict depth of a te rm 
t, denoted by sdepth(t), is the m ax i m um  of length Of function positions in t. 

A te rm s matches a te rm t if there exists a substitution ~r such tha t  t =AC scr; 
the te rm t is called an A C  instance of s. A te rm t is AC unifiable with a te rm s, 
if there exists a substi tution ~r such that  t~r =AC sa. 

An ordering ~- is AC compatible if # =AC s, s ~- t and t =AC t ~ implies 
# ~- t ~. In the following, we suppose tha t  ~- is a transitive irreflexive relation on 
the set of terms, tha t  is noetherian, monotonic (s ~ t implies w[s]~ ~ w[t],~), 
stable (s ~ t implies scr ~- ta) ,  AC compatible  and satisfy the subterm property 
( f ( . . . ,  t , . . . )  ~ t). The multiset extension of ~- will be denoted by >>. 

A conditional equation a formula of the following form: at  = bl A .- .  A an = 
bn ==~ I = r. I t  will be written al = bl A . . .  A an = bn :~ l -4 r and called 
a conditional rule if {lo'} >> {r~r, al~r, blur, ..o , a,~o', b,~a} for each substi tution 
and every variable of the conditional equation occurs in l. The te rm I is the 
left-hand side of the rule. A rewrite rule e ~ 1 -4 r is left-linear if 1 is linear. A 
set of conditional rules is called a rewrite system. A constructor is free if it is not 
the root of a left-hand side of a rule. We denote by lhss(R), the set of subterms 
of all left-hand sides of R. The number  of elements of a set T is card(T). A 
rewrite system R is left-linear if every rule in R is left-linear. We say tha t  R 
is flattened if all its left-hand sides are flattened. Let f be an AC symbol,  we 
denote by b / t h e  maxima]  arity of f in the left-hand sides of R. The depth (resp. 
strict depth) of a rewrite system R, denoted by depth(R) (resp. sdepth(R)), is 
the m a x i m u m  of the depths (reslh. strict depth) of its flattened left-hand sides. 
We define D(R) as depth(R) - 1 if sdepth(R) < depth(R) and R is left-linear, 
otherwise depth(R). 

Let t be a flattened term, we write t -4R t ~ if there exists a conditional rule 
A n  1 ai = bi ~ I --+ r in R, a position p and a substi tution ~r such that:  

- t / p  = a c  l~, t' = a c  t[p ~ r~]. 
* * ~' a n d  - for  all i E [1 . - .n]  there exists c{,c~ such that  aio" --+n ci, b ~  -'+n ci 

ei ~-AC C~. 

where the reflexive-transitive closure of -4 is denoted by -4*. In this case we say 
that  the te rm t is reducible, otherwise, it is irreducible. From now on, we assume 
that  there exists at least one irreducible ground te rm of each sort. We say tha t  
two terms s and t are joinable, if s -+~ v, t --+~ v ~ and v =AC v'. A te rm t is 
inductively reducible iff all its ground instances are reducible. A symbol  f E 3 v 
is completely defined if all ground terms with root f are reducible. We say that  
R is sufficiently complete if all symbols in D are completely defined. 

A clause C is an expression of the form: -~(sl = i t )  V -1(82 : t2) V "~ V -1(8 n 
= tn) V (s~ = t~) V "'" V (#m = t~m) �9 We natural ly extend the notion of flat- 
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tening, substitution, positions to clauses. Let H be a set of conditional equations 
and FAc a set of AC symbols. The clause C is a logical consequence of H if 
C is valid in any model of H U { f ( f ( z ,  y), z) = f ( x ,  ](y, z)), ](x,  y) = f (y ,  x) 
for "all f E F A t } .  This will be denoted by H ~ C. We say that  C is induc- 
tively valid in H and denote it by H ~ i , d  C, if for any ground substitution ~, 
( for  all i H ~ s icr= ti~) implies (there exists j such that H ~ s'jcr = t~r). 
The rewrite system R is ground convergent if the terms u and v are joinable 
whenever u, v E T(F)  and R ~ u = v. In this paper, we suppose that  all clauses 
and terms are flattened, and we denote by R a flattened rewrite system. 

3 I n d u c t i o n  s c h e m e s  

To prove a conjecture by induction, the prover computes automatically an in- 
duction scheme, which consists of a set of variables on which induction is applied 
and a set of terms covering the possibly infinite set of irreducible ground terms. 

D e f i n i t i o n  3.1 Given a term t, a set V C Vat( t )  and a set of terms T, a 
(V, T)-substitution is a substitution of domain V, such that for all x E V, xcr is 
an element o f T  whose variables have been given new names. 

D e f i n i t i o n  3.2 An induction scheme Z for a term t is a couple (V,T),  with 
V C Vat( t )  and T C T(F, FAc, X) ,  such that: for every ground irreducible term 
s, there exists a term t in T and a ground substitution tr such that tg  =AC s. 

These induction schemes allow us to prove theorems by induction, by reasoning 
on the domain of irreducible terms rather than on the whole set of terms. How- 
ever, they cannot be used to refute false conjectures. In the following, we refine 
induction schemes so that  to be able, not only to prove conjectures, but  also to 
refute the false ones. 

D e f i n i t i o n  3.3 A term t is strongly irreducible if  none of its subterms is an 
instance of a left-hand side of a rule in R. 

Definit ion 3.4 A strong induction scheme I for a term t is an induction scheme 
(V, T),  where V is called the set of induction variables, and T is called the test 
set, such that: for each term t and I-substitution or, i f  tot is strongly irreducible, 
then there exists a ground substitution r such that t r  is irreducible. 
An I-substitution is called test substitution. 

The next definition provides us with a criteria to reject false conjectures. Then, 
we show that  strong induction schemes are fundamental  for this purpose (see 
theorem 3.1) 

Definit ion 3.5 A clause "~(sl = Q) V . .  "V-~(Sm = tin) V (gl = dl) V - . . V  (gn = 
d. )  is provably inconsistent with respect to R if  there exists a test substitution 
such that: 

I. Vi E [1 . . .m]  : sin = ti~ is an inductive theorem w.r.t. R. 
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2. Vj E [ 1 . - : n ] :  gja # A c  dja, and the maximal elements of {gjcr, dja} w.r.t.~- 
are strongly irreducible. 

The next result shows that  a provably inconsistent clause cannot be inductively 
valid w . r . t .R .  This is proved by building a well-chosen ground instance of the 
clause which gives us a counterexample. 

T h e o r e m  3.1 Suppose R is a ground convergent rewriting system. I f  a clause 
C is provably inconsistent, then C is not inductively valid w.r.t it. 

In the following sections, we propose methods for automatically computing each 
component of a strong induction scheme, that  are, the induction variables and 
the test set. 

4 S e l e c t i n g  i n d u c t i o n  v a r i a b l e s  

To prove a conjecture by induction, the prover selects automatically the induc- 
tion variables of the conjecture where induction must be applied, then, instanci- 
ates them with terms of the test Set. It is clear that  the less induction variables 
we have, the more efficient the induction procedure will be. 

To determine induction variables, the prover computes first the induction 
positions of the functions. These positions enable to decide whether a variable 
position of a term t is an induction variable or not. The induction positions 
computation is done only once and before the proof process. It is independent 
from the conjectures to be proved since it is based only on the given conditional 
theory. 

D e f i n i t i o n  4.1 Let t be a term such that t(e) = f and f E Jr. A position i E L~ 
is an inductive position of f in t if i is either a strict position in t, or a non 
linear variable position. We define pos_ind(f, t) as the set of inductive positions 
of f in t and pos_ind(f)  = (Jt~th~s(n)pos_ind(f, t). 

The idea is that  a variable in a term t will be selected as an induction vari- 
able if it occurs below an inductive position. Hence, instantiating these vari- 
ables may trigger a rewriting step. A problem happens with an AC symbol 
f ,  since the inductive positions of f can be permuted. For example, let R = 
{ x + 0 + 0 - +  0 ,  x + l + l  - + 0 } , w i t h  FAC = {+} and F = {0,1}. We have 
pos_ind(+) = {2, 3}. Considering only y and z as induction variables, the proof 
of the conjecture x + y + z = 0 fails. However, it is an inductive theorem since 
all its ground instances are logical consequences of R. 

This leads us to take all variables occuring under an AC symbol, as induction 
variables, so that  to ensure the refutational completeness of our procedure, that  
is, whenever the proof of a clause finitely fails, we can ensure that it is not 
an inductive consequence of R. However, in order to make the proof process 
efficient, we have identified some cases where the number of induction variables 
to consider can be reduced while preserving refntational completeness. 
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For this purpose,  for each f E FAC, we define the number  nb_pos_ind(f) = 
maxtelh,8(R)card(pos-ind(f,t)). We denote  by var_ind(t) the set of  induct ion 
variables of  t. The  procedure compu t ing  induct ion variables is given in figure 2. 
W e ' a s s u m e  tha t  the three predicates P1, P~, P3 are defined as follows: 

P1 (f ,  R) r162 f is complete ly  defined and nb_pos_ind(f) = 1 
P~ (f ,  R) r f is complete ly  defined and nb_pos_ind(f) > 1 
P3(f, R) r R is left-linear and for each f ( t l , . . . ,  t , )  E lhss(R) there does not  

exist two non variable terms ti, tj  which are AC unifiable 

i n p u t :  t o u t p u t :  var_ind(t) init: Vind := O 
if  t is a variable 
t h e n  Vind :=  {t} 
else for  each  position u in t such that t(u) = f and f E F do:  

Vind := Vind U {x I x appears at position u.i, and i E pos_ind(f)} 
e n d f o r  
for  each f E FAC in t do:  

case 1: Pl(f,  R) and there is a variable x which is an argument of each 
occurrence of f in t: Vind := Vind U {x} 

endcase  1 
case 2: P2(f, R): 

for  each  position u in t such that t(u) = f do:  
let Xu = {x E ,t' ] x appears at a position u.i(i E N)} 
ir (x~ n vind = {x}) ana (3~ ~ x~)  
t h e n  Vind := Vind U {y} 
else if  (X~ N Yind = 0) and (X~ = {x}) 

t h e n  Vind := Vind O {x} 
else i f  (X~ M Vind = 0) and ({x, y} C X~) 

t h e n  Vind := Vind U {x, y} 
e n d | f  

e n d i f  
e n d i f  

endcase  2 
case 3: P3(f, R) and there is a variable x which is an argument of each 

occurrence of f in ~: Vind := Vind U {x} 
endcase  3 
case 4: otherwise: 

fo r  each position u such that t(u) = f do: 
let X~ = {x E X I x appears at a position u.i(i E l~I)} 
Vind :=  Vind U X~ 

e n d f o r  
endcase  4 

e n d f o r  
e n d i f  
return(V ind) 

Fig .  2. Induc t ion  variables c ompu ta t i on  
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E x a m p l e  4.1 Consider the following rewriting system R, with FAC = {+, *}. 

R =  
x + 0 - + x  
x * 0 - + 0  
exp(z, 0) -~ s(0) 

x + s(y) - ,  s(x + y) 
x * s ( y )  -+ x + x * y  
exp(z, s(n)) -~ z ,  exp(z, n) 

We have: nb_pos_ind(+) = 1, nb_pos_ind(*) = 1, pos_ind(exp) -= 2. A test set 
forR is {0, s(x)}. The conjecture toprove is ( x + y + z ) , w  = x , w + y , ~ + z , ~ .  
If  we take x, y, z, w as induction variables, we would obtain 16 lemmas to prove. 
Now, since + and * are completely defined A C  operators, nb_pos_ind(+) = 1 
and nb_pos_ind(,) = 1, we can choose {x, w} or {y, w} or {z, w} as induction 
variables. Thus, we obtain only ~ lemmas to prove. 

5 C o m p u t i n g  t e s t  s e t s  

The computation of test sets according to definition 3.4 relies on the induc- 
tive reducibility property [9], which is unfortunately undecidable in AC theories 
[10]. However we can use a semi-decision procedure that  has proved to be quite 
useful for practical applications [11]. For the more restricted case where the 
rewrite system is left-linear and sufficiently complete, and the relations between 
constructors are equational we propose algorithms basically extending the equa- 
tional case [9, 5] (see theorem 5.1). For the case where the rewrite system is not 
left linear but it is sufficiently complete over free constructors there is an easy 
algorithm to produce test-sets (see theorem 5.2). 

We denote by extension(t) the term obtained by replacing each subterm of 
t of the form f ( t l , . . . , t b f + l )  by f ( t l , . . . , t b , + l , x ) ,  where f E FAc and x is a 
new variable. Given a set of terms T, extension(T) -= UteT extension(t).  

T h e o r e m  5.1 Let R be a left-linear conditional rewriting system. Let T -= {t ! t 
is a term of depth ~ D(R) such that all variables occur at depth D(R),  and each 
A C  operator has a number of arguments ~_ b! + 1}. Let T j =- {t E T I t is not 
inductively reducible }. Then extension(T')  is a test set for R. 

E x a m p l e  5.1 Let F = {0, 1, s}, FAG ---- {+} and 

O + x - + x ,  
R = 1 + s(x) -+ s(s(x)),  

s(1) --+ s(s(O)) 

We have: D(R) -= 1. By applying theorem 5.1, we obtain: T' = {0, 1, s(x), x +  
y, x + y + z}, extension(T')  -= {0, 1, s(x), x + y, x + y + z, x + y + z + t}, 
which can be simplified by deleting the subsumed terms and give the test set: 
{0, 1, s(x), x + y}. 

A sort s E S is said infinitary if there exists an infinite set of ground irre- 
ducible terms of sort S. The next theorem provides a method for constructing 
test sets for non left-linear rewriting system with free constructors. 
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T h e o r e m  5.2 Let R be a conditional rewriting system. Suppose that R is suffi- 
ciently complete over free constructors. Then, the set T of all constructors terms 
of depth <_ D(R) such that all variables are infinitary and occur at a depth D(R),  
is a test set for R. 

6 I n f e r e n c e  s y s t e m  

Our inference system rules (see figure 3) is based on a set of transition rules 
applied to (E, H), where E is the set of conjectures to prove and H is the set 
of induction hypotheses. The initial set of conditional rules R is oriented with a 
well founded and AC compatible ordering. 

The inference system is constituted of two rules: generation and simplifica- 
tion. An I-derivation is a sequence of states: (E0, 0) }-I (El, H1) t-I . . .  (En, Hn) 
t-I .... We say that an I-derivation is fair if the set of persistent clauses (Ui nj>_i 
Ej) is empty. An I-derivation fails when it is not possible to extend it by one 
more step and there remains conjectures to prove. We denote by -4e a noethe- 
rian ordering on clauses, stable modulo AC, that extends -~. In the following, 
W denotes a set of conditional equations which can be induction hypotheses or 
conjectures not yet proved. Let us now present briefly the rewriting techniques 
used by the prover. Inductive contextual rewriting is a generalization of both 
inductive rewriting [3] and contextual rewriting [15]. 

Def in i t ion  6.1 ( Induc t ive  con t ex tua l  rewr i t ing)  Given a clause C, we wri- 
te: 

C - -  A ~ A ~ - + R < w >  C' = A ~ A[u e- t~] 

if  there exists 5 = F ~ s = t E R U W and a position u in A such that: 

- A / u  =AC S Z  

- C I -~c C 

- if  S E W  t h e n S ~ - ~ c C  
- R O W  "~c ~ i n a A ~ F ~  

where W "~ = {4  ] q~ E W and ~ -~c C) .  

Ex ample  6.1 Let FAC = {+} and C =_ (odd(1 + 1) = True V equal(l, 1) = 
FalseVeven( l  + l) = True).  Suppose that we have aninduction hypothesis: H - 
(equal(x, y) = False V even(x + y) = True).  The inductive contextual rewriting 
of C by H gives: C' - ( odd( l + l ) = True V equal (1, 1) = F alse V True = True).  

Inductive case rewriting provides us with a possibility to perform a case-based 
reasoning; it simplifies a conjecture with an axiom, a conjecture or an inductive 
hypothesis, provided it is smaller than the initial conjecture and the disjunction 
of all conditions is inductively valid. 

Def in i t ion  6.2 ( Induc t ive  case rewr i t ing)  Let G be the set {< C[u +-- d~], 
P~ >I there exists T~ - P ~ g -+ d in R U W,  and a position u in C such that 
C / u  =AC g~r, and if7r E W,  then Ti "~c C }. I f  R ~ina (V<c,,p>EG P), then 
Inductive_case_rewriting(C,W) = {P ::~ C' I< C', P >E G}. 
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Genera t ion :  (E U {C}, H) t-~ (E U E', H U {C}) 

if E' = Ua simplify(Ca, H u E U {C}), q ranging over test substitutions of C 

Simplification: (E U {C}, H) t-, (E U E', H) 

if E' = simplify(C, H U E) 

Fig. 3. Inference system I 

Def ini t ion 6.3 (s implify)  The procedure simplify is defined in the following 
way: 

s i m p l i f y ( C ,  w )  = 
if  C is a tautology or subsumed by a clause of R U W 
t h e n  0 
else if  C ~-+n<w> C s 

t hen  {C'} 
else Inductive_ease_rewriting (C,W) 

The correctness of the inference system I is expressed by the following the- 
orem: 

T h e o r e m  6.1 (Cor rec tness )  Let (Eo, 0) ~-I (El, gl)  ~-I .. . be a fair I-derivat- 
ion. If it does not fail then R ~i~d Eo. 

Now, consider boolean specifications. To be more specific, we assume there 
exists a sort bool with two free constructors {true, false}. Every rule in R is 
of type: A~= 1 pi = p~ ~ s --+ t where for all i in [1. . .hi ,  p~ E {true, false}. 
Conjectures will be boolean clauses, i.e. clauses whose negative literals are of type 
~(p = p') where p '  C { t r u e ,  f a l s e } .  If for all rules of form p~ ~ f ( t l ,  . . . , t , )  --+ ri  

whose left hand sides are identical up to a renaming #i, we have R ~ind ViPittl, 
then f is weakly complete w.r.t R. We say that R is weakly complete if any 
function in Jr is weakly complete [1]. We can show that refutational completeness 
is also preserved in the AC case. 

T h e o r e m  6.2 (Re fu t a t i ona l  comple teness  ) Let Tl be a weakly complete and 
ground convergent rewrite system. Let Eo be a set of boolean clauses. Then 
R ~:ina Eo iff all fair derivations issued from (Eo, 0) fail. 

7 Conclusion 

We have presented a new induction procedure for the associative and commuta- 
tive theories. An advantage of this approach is that inference steps are performed 
in a homogeneous well-defined framework. Another important point is that our 
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procedure does not need AC unification like completion methods, but only AC 
matching. Our inference system is based on two rules: the generation rule which 
performs induction, and the simplification rule which simplifies conjectures by 
elaborated rewriting techniques. This system is correct and refutationally com- 
plete for boolean ground convergent rewrite systems under reasonable restric- 
tions. In experiments, refutational completeness is particularly useful for debug- 
ging specifications. These results have been integrated in the prover SPIKE-AC, 
and interesting examples such as circuits verification have demonstrated the ad- 
vantages of the approach. 
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Analysis of Timed Systems Based on 
Time-Abstracting Bisimulations 

S. Tripakis" and S. Yovine ~ 

VERIMAG, France 

Abst rac t .  We adapt a generic minimal model generation algorithm to 
compute the coarsest finite model of the underlying infinite transition 
system of a timed automaton. This model is minimal modulo a time- 
abstracting bisimulation. Our algorithm uses �9 refinement method that 
avoids set complementation, and is considerably more efficient than pre- 
vious ones. We use the constructed minimal model for verification pur- 
poses by defining abstraction criteria that allow to further reduce the 
model and to compare it to a specification. 

1 I n t r o d u c t i o n  

Behavioral equivalences based on bisimulation relations have proven useful for 
verifying the correctness of concurrent systems. They allow comparing an im- 
plementation to a usually more abstract specification both represented as la- 
beled transition systems. This approach also allows reducing the size of the 
system by identifying equivalent states which is crucial to avoid the explosion of 
the state-space. Since the introduction of strong bisimulation in [Mil80], many 
equivalences have been defined. Moreover, practice followed theory and several 
algorithms and tools have been developed. 

Despite this fact, behavioral equivalences have not been thoroughly studied 
in the framework of t imed systems. In particular, there is a lack of tools based on 
this approach. The transition system modeling the behavior of a timed system 
comprises two kinds of transitions, namely timeless actions representing the 
discrete evolutions of the system, and time lapses corresponding to the passage 
of time. Due to density of time, there are infinitely many time transitions. A 
finite model can be obtained by defining an appropriate equivalence relation 
inducing a finite number of equivalence classes. Examples of such relations are 
the region-graph equivalence lAD94] and the ta-bisimulation [LY93]. The main 
idea behind these relations is that they abstract away from the exact amount of 
time elapsed and they are therefore refer to as time-abstracting equivalences. 

An important  problem consists in constructing the quotient of a labeled 
transition system w.r.t, an equivalence relation. Many generic algorithms exist 
to solve this problem, e.g. [BFH+92, LY92]. For timed systems represented by 
timed automata  lAD94], these algorithms have been adapted for computing the 

* E-mail: {Stavros.Tripakis,Sergio.Yovine}@imag.fr. Tel: +33 76 90 96 30. Fax: +33 
76 41 36 20. Miniparc-Zirst, Rue Lavoisier, 38330 Montbonnot St. Martin. 



233 

minimal region graph in [ACD+92b, ACD+92a]. Based on the results reported 
in [ACD+92a] it comes out that straightforward implementations of those algo- 
rithms result in poor performances. In fact, one main obstacle towards efficiency 
is the cost of computing set complementation. 

In this paper, we adapt the generic minimal model generation algorithm 
of [BFH+92] in order to avoid set complementation, in the spirit of [YL93]. Ex- 
perimental results carried out on several benchmarks show that this algorithm 
is more efficient than the ones implemented in [ACD+92a]. Furthermore, we use 
the constructed minimal model for verification purposes by defining an appro- 
priate abstraction criterion that allows using the tool ALDEBAR.AN [FGM+92] 
for further reducing the transition system or comparing it to a specification. 

2 Background 

2.1 Bis imula t ions ,  models ,  and min imal  models  

A model (or LTS) is a triple (Q, Q0,...+). Q is a set of states, Q0 c Q is the 
set of initial states, and --*C Q • L • Q is a set of labeled transitions, for some 
label set L. We write q ~ q~ instead of (q, l, q') E---~. A relation r C_ Q • Q is a 
bisimulation iff : V(ql, q2) E r, V1 E L, 

(1) Vq~ E Q s . t .  ql ~ q ~ ,  3q~ s.t. q2 Z.~q~ and (q], q~) E r, and 

(2) Vq~EQs. t .  q2 ~q~ ,  3ql s.t. q l -Lq l  and(ql,q2) Er .  
From now on, ~ denotes the greatest bisimulation. Two models G1, G2, Gi = 
(Qi, QO,--+i), i = 1, 2, are bisimilar, denoted G1 ~ G2, ifVql E QO, q2 E QO, ql 
q2. 

Let G = (Q, QO, __+). A partition H of Q is a set of disjoint classes B C_ Q, 
the union of which yields Q. The quotient of G w.r.t. / /  is (11, ~r,--+), where 

~r = {B E 11 I B NQ ~ # 0}, and B ~ C iffpret(B,C) # 0, where prel(B,C) = 
{q E B [ 3q' E C. q ~ q'}. We write B --+ C if 31 E L. B ~ C. We define 

Succs~(B) = U~eL Succs~(B) where Succs~(B) = {C E 11 I B ~ C} is the set 
of successors of B by l, and Preds~ (B) = UleL PredJn (B) where Preds~ (B) = 
{C E 11 I C ~ B} is the set of predecessors of B by 1. 

B is stable w.r.t. C if Vl E L. prez(B, C) E {B, 0}. B is stable w.r.t. H if it 
is stable w.r.t, all classes C E 11. / / i s  stable if all its classes are stable w.r.t. 
H. Let 11z be the partition induced by ~. Clearly, H= is stable. The minimal 
model of G modulo bisimulation, is the quotient of G w.r.t. 11•, denoted G~,. 
Notice that Vt E L,B,C E II~, B ~ C iff pre1(B,C) = B. 

2.2 A genera l  min imal  mode l  genera t ion  a lgor i thm 

We recall here the generic algorithm developed in [BFH+92] (referred to as 
MMGA) for computing the reachable part of the minimal model G~,. 
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/ - / : = / / 0  ; a : = { B E H o t B n Q ~  a : = O ;  

Cs  := Split(B, II) ; 
~A ( c .  = { B } )  t h e n  { 

: =  ~ U { B }  ; ~ : =  ~ ,J S~ccsb(B) ; 
} e l s e  { 

(0) 
(1) 
(2) 
(3) 
(4) 

: = a \ { B } ;  H : = ( / / \ { B } ) U C B  ; ~ : = c r \  Preds~(B);(5) 
i.f_~ B M Q~ r O then  a : = a U { C E C B ,  ICAQOTs 

}} 
H denotes the current partition, a the set of accessible classes (i.e., containing 
at least one accessible state), and ~ C a the set of stable accessible classes. 
Split(B, H) refines the class B by choosing a class C w.r.t, which B is potentially 
unstable, then computing B~ = pre~(B, C), B2 = B M pret(B, C). If indeed 
Bi 7~ O, i = 1,2, B is effectively split (4), and its predecessors become unstable 
(5). Otherwise (2), B is both accessible (i.e., it contains a reachable state, say 
q) and stable, meaning that each one of its successors C has a state q' such that  
q ~ qq Thus, C contains at least one reachable state, and can be inserted to a 
(3). Termination depends on whether ~ induces a finite partition of the initial 
model. 

2.3 A v o i d i n g  e o m p l e m e n t a t i o n  

In the context of timed systems set complementation is very costly and should 
be avoided. This can be done following the idea presented in [YL93]. Let us 
first illustrate it with an example. Assume that B E a is found stable, so that  
one of its successors, C, becomes accessible, and is split into C1, C2,C3, thus 
B is no longer stable. Now, instead of splitting B w.r.t, only one of the Ci's, 
which would yield {prez(B, C~), B N prez(B, C;)}, B can be split directly into 

B"~ empty). Now, let B1, B2, B3, where Bi = prei(B, Ci) (possibly, some , o are 

nayS(B) d~ {8' I 3C e Suecs~(B). B' = p~e,(B, C) A Z' # 0}. 
Assuming that  whenever Refb(B) ~ {~, {B}}, the classes in Ref~(B) satisfy: 

(1) coverness: UReI~(B) = B, and 
(2) disjointness: VB', B" E Ref~(B), if B' r B" then B' M B" = 0, 

the function Split can be redefined as follows: 

f Refb(B ) i f  5t e L. Refb(B ) ~ {0, {B}} Split(B, H) 
{B} otherwise 

which does not require using set complementation. 

3 T i m e d  s y s t e m s  

3.1 T i m e d  a u t o m a t a  

Let Y2 - {xl, ..., x~} be a finite set of clocks. All clocks advance at the same 
raie. A valuation is an n-tuple v E ]R~_. v(xi) is the value of clock zi in v, and 
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v + t, t E IR+ stands for the valuation v', such that  Vx E/2.  v'(x) = v(x) + t, 
and v[X := 0], X _C /2 is the valuation v ' ,  such that  v ' (x)  = 0 i f z  E X, 
v ' ( z )  = v(x) otherwise. A clock constraini r is a conjunction of atoms of the 
form x # c ,  where x E/2, c E Z, @ E { < , < , = , > , > } .  

A limed automaton is a quadruple (S, so, E, I,/2). S is a finite set of control 
states, so E S being the initial one. E is a finite set of arcs, where an arc 
(s, a, #,  r X) from s to #,  is annotated with a label a E L, a clock constraint r 
and a set of clocks X C_/2 to reset. I is a function associating with each control 
state s an invariant. The semantics of a TA is a LTS G = (Q, Q0,.__~), where: 
Q = {(s,v) Is E S,v E Is} ;Q0 = {(s0,v) Iv E/so} ;and---~C_ Q•215 
is defined by the following rules : 

1. (time passage) v! (v -4-t) E Is , t E IR+ 
(s, vt :+ (s, v + 

2. (action) e = (s, a, s', r X) E E ,  v E r  v ' = v [ X : = 0 ]  
(s, , )  -u (s', r 

For q = (s, v), q[X := 0] denotes (s, v[2d := 0]), and q + t stands for (s, v + t). 

3.2 Tai-bisimulation 

Given G = (Q, Q0, ___+) we define Gtai = (Q, Q0, ==~tai) by abstracting away the 
exact amount of time elapsed in a time transition. This is done by replacing all 
labels t E lR + by the label c ~ (E U lR +) as follows: 

q _~ q/ q _4 ql 

q : ~ i  q' q :~ai q' 

The tai-bisimulation, 2 denoted ~t~i, is the greatest bisimulation defined o n  Gtai, 
that  is, G ~ i  G' iff G~ai ~ G~i .  

It can be easily shown that ~t~ is coarser than the region graph equiva- 
lence [AD94] which induces a finite partition. Thus, we can state the following. 

P r o p o s i t i o n  1. The partition induced by the tai-bisimulation is finite. 

4 Minimizat ion  with  respect  to the  tai -bis imulat ion 

The set of valuations Z satisfying a clock constraint is a simple convex polyhe- 
dron, called a convex zone. A (non-convex) zone is a union of convex zones. The 
class of zones is closed under complementation and set difference, whereas the 
class of convex zones is not. We write (s, Z), for the class {(s, v) i v E Z}, and 
say that  (s, Z / is convex if Z is a convex zone. A partition H is convex iff all 
its classes are convex. Finally, we say that  ]I  satisfies the enabledness condition 
i f f for  each class (s,Z) E / /  and each arc e = (s, a, #, r X) E E, it holds: 
Z r3 r E {Z, $}. From now on, we only consider initial partitions respecting 
convexity and enabledness. 

2 The name comes from time-abstracting, action-immediate. 
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4.1 R e f i n e m e n t  

There are two types of preconditions, corresponding to time and action transi- 
tions of the timed model. For e E E we define: 

P r o p o s i t i o n 2 .  1. qEpre~(B,C)  ifJqE BABq'  EC.q:~,~iq ~. 
2. If  B, C are convex, then pre~(B, C) is also convex. 

The time precondition is nonempty only for pairs of classes having the same 
control-state component, since the latter does not change with time transitions: 

def z) ,  <s, z ' ) )  : 
<s,{veZlStem+.(v+t)ez' AVO<,' 

P r o p o s i t i o n 3 .  1. If q E pre~(B, C), then q E B / \  (2q' E C, q ~tai q'). 
2. I f  B, C are convex, then pre~(B,C) is also convex. 

Note that  the inverse of case 1 above does not hold, contrary to proposition 2. For 
example, if B = (s ,{x < 1}), C = (s,{x > 2}}, then {s,x = 0} ~ , a i  (s ,x = 3}, 
but pree(B, C) = 0. Indeed, pree(B, C) is nonempty only if B can lead to C by 
letting t ime pass while the system continuously stays in BUC during the passage 
from B to C. Nevertheless, no information is lost regarding time stability in the 
sense of tai-bisimulation, as the following lemma shows. (See also section 4.2 for 
more.) 

L e m m a 4 .  Let B, C be two classes of a partition 17 such that q ~tai q' for some 
q E B, q~ E C. Then, there exist classes B = Do, D1, ...,D,~ = C in H such that 
q E pre~(Do,pre~(D1, ...prep(Din-i, Din)...)). 

In the previous example, we have Do = B, D2 = C, and D1 = (s, {1 < x < 2}). 
The definition of Suees~(B) for l E E is identical to the one given in sec- 

tion 2.1. Care must be taken in the case l = e, where we remove the (trivial) 
t ime successor of every class, that  is, the class itself. The definition of Rely(B),  
for l E E U {e}, is identical to the one given in section 2.3. 

It remains to prove that  coverness and disjointness are preserved during the 
refinement of B. This is true if the partit ion is complete, i.e., Vs E S, I, = true. 
In section 4.3 we discuss the alternatives in the case this condition does not hold. 

P r o p o s i t i o n 5 .  Let H be a complete partition, and B E H. Also let Rely(B)  
be the set { B1, ...,Bin}. Then, Vi # j. Bi N Bj = 0, and U Bi = B. 
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4.2 T h e  m i n i m a l  m o d e l  

In this section we make explicit the relation between G=~,,  the quotient graph 
w.r~t. ~ta~, and Grm~, the actual model computed by the MMGA adapted as 
above. Although not identical to Gmi~, G=,~, can be easily computed from the 
former by a simple saturation of its c-transitions. 

Formally, let G=,., = (H~,o,, ~ o , ,  ::~tai), and Grain = (//, zr, =~). Let =~* 
be the reflexive, transitive closure of ~ .  

P r o p o s i t i o n 6 .  H = 1I~,~,, ~ = ~,o~, and for all B, C E ]7, (1) B ~*ai C iff 
B ~ C, and (2) B ~t~i C iff B ~* C. 

In other words, the partitions of the two graphs are identical, as well as their 
action transitions, while :~tai is the reflexive, transitive closure of A~. 

4.3 C o r r e c t n e s s  in t h e  p r e sence  o f  strict control -s tate  i n v a r i a n t s  

If Is C lR+ then the timed model does not contain states (s, v / such that  v E 
IR+ \ Is .  In this case coverness is not ensured, as shows the example of figure l(a), 
where B U C1 is the invariant, ]7 = {B, Cl}, and Succs~(B) is {el}.  Then, 
Ref~i(B ) -- {B1}, which does not cover B. There are several ways to solve this 
problem: 

t 

Split(B, {B, Ca}) -- {B1} 
Ba = pre~(B, Ca) 
B~ = B \ Ba 

B Ca 
P~ 

! I 

P2 

Split(B, {B, C1, P1, P2}) = {Ba, B2} 
Ba = pre~ (B, Ca) 
B2 = pre~ (B, P1) 

(~) (b) 

Fig. 1. Incomplete refinement (a) ; Adding pseudo-classes to a partial partition (b) 

1. A class (s,Z) is called a border one, if 3v E Z , t  E IR+. (v + t) E 7~, and 
v,' _< t, (v + t') ~ ( z  w ~ ) .  In figure l(a), B is a border class, while B1 
is not. Assume that  a border class B is refined w.r.t. {C1, ..., Cm}, which 
yields {B1, ..., Bt} (l _< m, since some Bi may be empty). Let B' = B \ U Bi, 
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which is n o t  convex in general. If B' ~ O, we take an arbitrary (but mini- 
mal in number) partition of B' into convex classes {B[ .... , B~}, and define 
Split (B, H) = {B1, ..., Bh B[, ..., BE}. This solution makes complementation 
inevitable. What  is more, the number of times where complementation will 
be employed cannot be determined a priori. Indeed, it is always the case 
that  after splitting a border class, at least one of its subclasses is border. 
The latter may in turn become accessible, be split, and so on. 

2. A second solution is to start with a complete initial partition respecting 
the invariants: V(s,Z} E H0. Z N Is E {Z, 0}. A class {s,Z) is called a 
pseudo-class if Z N I, = 0, otherwise it is normal. Pseudo-classes are never 
split (it suffices to make sure that they are never inserted into the set a of 
accessible classes). Normal classes can be split w.r.t, pseudo-classes. If all 
successors of a normal class B are pseudo-classes, then B need not be split. 
Figure l(b) shows how the situation of figure l(a) changes after applying this 
solution. P1, P2 are pseudo-classes, and we now have Succs}i(B ) = {Ci, P1}, 
and Ref~z(B ) = {B1, B2}, which covers B. On the other hand, C does not 
have to be split, since Succs~(C) = {P1, P2}, that  is, all its successors are 
pseudo-classes. 

5 A p p l i c a t i o n s  

We have implemented the algorithm and applied it to generate the minimal 
models for a number of case studies. Further, we have used the tool ALDE- 
BARAN to compare the constructed minimal models against labeled transition 
systems modeling untimed requirements. The main idea consists in considering 
c-transitions to be r-transitions, that is, non-observable or silent ones. Other 
labels can also be hidden (i.e. replaced by r) according to the property to be 
verified. The resulting transition system is then reduced or compared to another 
model. In particular, we have used the r*a-bisimulation equivalence, denoted 
~ . a ,  as well as the r 'a-simulat ion preorder [FM91] a. 

Due to space limitations, here we illustrate this methodology in detail for 
only one application, namely the Philips audio control protocol [BPV94]. Ex- 
perimental results obtained for other well-known examples (e.g. CSMA-CD and 
FDDI [DOTY95] and Tick-Tock [DOY94] communication protocols) are shown 
in table 1. The TA column presents the size of the input TA. The M column 
displays the size of the minimal model, while Ctot is the total number of classes 
created (including classes which were finally found non-accessible). The "split- 
tings" column presents the total number of Split operations, the effective time 
ones (e subcolumn) and the effective action ones (e subcolumn). N is the number 
of processes, stations, ere, depending on the protocol. We have used a Spare 10 
with 128 Mbytes of main memory. 

s Recall that a simulation preorder is a relation satisfying only (1), in the definition 
of bisimulation given in section 2. 
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Example N 

CSMA-CD 2 
3 
4 

FDDI 3 
4 
5 

Tick-Tock 1 
2 

TA M Ctot  splittings time 
states arcs states I trans total e e (secs) 

9 21 26 52 62 112 18 15 0.4 
26 90 340 1,055 559 1,264 150 173 3.8 
72 312 3,828 16,066 4,855 13,592 1,070 1,797 90.9 
19 25 525 933 1,873 3,202 377 637 8.5 
25 33 1,606 2,859 7,76010,980 1,341 2,264 57.4 
31 41 4,621 8,801 26,900 32,385 3,878 6,755 315 
24 64 78 121 202 223 31 15 1 
72 240 585 976 1,663 1,658 243 163 8.7 

Table  1. Minimization results of various examples 

5.1 P h i l i p s  a u d i o - c o n t r o l  p r o t o c o l  

The protocol deals with the transmission of a bit s t ream through a wire, using a 
Manchester encoding. The receiver can only detect low-to-high voltage changes, 
which imposes that  a bit s t ream either has an odd length or ends with two 0-bits 
(all s t reams start  by "1"). Also, the protocol permits a small drift in the clock 
rates of the sender and the receiver. This is modeled in [DY95] using muliirate 
TA, a subclass of hybrid au toma ta  which can be transformed into TA [OSY94]. 
Here, we follow directly the TA model obtained after the transformation,  us- 
ing the au toma ta  Sender, Receiver, and Stream(the last one models correct bit 
s treams),  which are omit ted here (see [DY95] for a full description). 

model TA M Cto~ splittings time 
states arcs states trans, total e e (secs) 

TA1 146 351 50 61 815 289 114 36 0.91 
TA1 t 283 402 1,557 1,326 445 151 2.3 
TA2 77 207 51 62i 674 300126 39 1 
TA2 t 62 86 672 312 126 39 1.1[ 

Table  2. Philips protocol '. minimization results 

The main correctness property we want to prove is that  the s t ream received 
is identical to the one sent. In fact, this can be done only if we make sure that  
the sender does not start  t ransmit t ing (action IN) a new s t ream before the last 
one has been completely received (action OUT), that  is, no two consecutive 
IN actions take place without on intermediate OUT. In order to ensure this 
property, we have two options : 
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Head1 Add1 

Head1 Add d .... 

OUT ~ ~ " '  

Head1Addol 

Heado 

Addo 

0 UT Addo 

Fig. 2. Good 

1. Either to compose the system with the following automaton (called In- 
Out) which prevents the above bad behaviors: ~ .  Let TA1 
be Sender H Receiver HStream[llnOut. 

2. Or to modify Sender by adding a clock which controls the delay between the 
end of a transmission and the beginning of the next one. This delay should 
be greater than the time elapsed between the last bit sent by the sender and 
the action OUT of the receiver. Let TA2 be Sender'ilReceiverllStream. 

For each TA~, i = 1, 2, we obtain two minimal models, one for a correct case 
(where the maximum drift is 2A6) and one for an erroneous case (max. drift: 1~)" 
Table 2 shows performance results. (The erroneous cases are marked with ~.) 

Then, we model the correctness requirement by the LTS Good, shown in 
figure 2 4. Let Mi be the minimal model of TAi for i = 1, 2. As expected, in the 
correct case, we find that  Mi E r*a Good. This does not hold in the erroneous 
case, and as a diagnostic, we find sequences where the receiver terminates before 
the sender does. 

However, Good ~:r*a Mi, since Good also models bit streams that not satisfy 
the requirement imposed by Stream. In order to explain this further, consider 
the LTS depicted in figure 3 obtained by reducing the correct M1 w.r.t, the 
r*a-bisimulation 5. This is almost the automaton modeling correct bit streams, 
except that  it contains an additional state 5, grouping all states of the timed 
model where the sender has sent a "0", but still has bits to transmit. Therefore, 
the receiver does not have time to perform OUT, since it will first see the next 
bit transmission taking place. Although trivial, this example shows that often 
the actual behavior of the system is not exactly the one expected. 

4 Headi (Addi) means that bit i is sent (resp. received). 
The reduction of the correct M2 gives exactly the same LTS. 
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Heado 

Heado , ~  

Head1 
Heado 

Fig. 3. Minimization with respect to ~r~ 

6 Related  work 

6.1 T h e  t a - b l s i m u l a t i o n  

In [LY93] another time-abstracting bisimulation has been studied. Given G = 
(Q, Q0, ~ ) ,  we define Gta = (Q, QO, =~ta), as follows: 

q ~ qt, .2+ q, q .L, q' 

q =~t~ q' q :~t~ q' 

The ta-bisimulation, denoted ~t~, is the greatest bisimulation defined on Gta, 
that  is, G ~ta G' iff Gta ,.~ G~. 

Gt~ is more abstract than Gt~i, in the sense that ~t~i  C_ =~t~- Since greater 
abstractions yield weaker bisimulations [FM91], ~t~i is stronger than "~ta. In 
fact, we shall prove a stronger property. Let Gd = (II=,o~,rr~.,,.,~d}, where 

B ~ d  C iff 3D.B ~tai D ~tai C}, and let ~d denote the greatest bisimulation 
on Gd 6 

P r o p o s i t i o n 7 .  G ~t~ G' iff Gt~i ~d G~i. 

This result, combined with the one of proposition 6, shows how the ta-minimal 
model can be computed in two steps: first, one computes the model Gmln using 
our adapted algorithm, next, Gmi,~ is further minimized w.r.t..-~d. 

6.2 Other algorithms 

In [ACD+92a] the generic minimization algorithms of [BFH+92] and [LY92], re- 
ferred to as MAI and MAII respectively, have been adapted for timed systems. 
Table 3 shows the results obtained with our algorithm and compares its run- 
ning times (,)  to the ones reported in [ACD+92a] for two well known examples, 
namely the Train-Gate Controller (TGC) and the Fischer's Mutual Exclusion 
protocol (FMX). The authors of [ACD+92a] used a DEC-5100 with 40 Mbytes 

s This is essentially the delay-bisimulation[FM91]. 
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of main memory. It should be mentioned that our algorithm also required much 
less memory that  the others. _L denotes nontermination due to memory shortage, 
and " - - "  is used for cases that  do not appear in [ACD+92a]. 

Let us note that  the idea of avoiding set complementation has been suggested 
in [YL93]. However, the algorithm presented there is an adaptation of [LY92], 
whereas our algorithm is based on the [BFH+92] one. 

M 

24 69 25 50 125 
62 138 159 

FMX ~_~ 241 344722 8526 6334 

_~ 119 213 77 108 182 
402 1,117 708 

~_~ 548 1,164 252 420 872 
4,437 17,902 7,850 

spfittings time (secs) 
total e e] * MAIMAII] 

113 30 171 0.2 6 12 
201 36 27] 0.5 571 155 I 

34 2 0 0 1 2 
118 7 13 0! 3 6 
133 15 0 0 8 146] 

1,379 157 172 1.5[ 893 1 ! 
493 76 0 2.1 496] _l_ 

16,144 1,931 2,02240.4] .L .L 
1,785 325 0 16.3r --.  __L 

3 _ i  - -  --I 

Table 3. TGC and FMX: minimization results and comparison. 

7 Conclusions 

We have implemented the algorithm on top of the tool KaONOS [DY95] and have 
performed experiments with different options. As a result, we have found that 
among the strategies described in section 4.3 concerning the invariant conditions, 
the pseudo-classes solution gave in general the worst performances. One the 
other hand, it turned out that  giving priority to splitting w.r.t, timed instead of 
untimed transitions does not make an important difference. Our implementation 
includes these options, as well as other ones, that allow, for instance, to specify 
a set of initial states and/or an initial partition. Experimental results obtained 
on several case studies are presented in table 1. Based on these results, we claim 
that  using a refinement technique which avoids costly complementations leads 
to considerable gains in efficiency (both in running times and memory usage) 
that  make minimization possible for larger systems. 

We have used the tool ALDEBARAN to further reduce the model generated 
by our algorithm and compare it to a requirement modeled as an untimed tran- 
sition system. The requirement does not specify quantitative timing constraints, 
however its verification strongly depends on the timing conditions embedded in 
the  timed automaton which are indeed preserved by the tai-bisimulation. As we 
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have found out by the examples, the real behavior of a system is often more com- 
plex than exl~ected. Discovering unexpected behaviors helps to gain insight Of a 
system, often revealing intrinsic design problems, and at the same t ime offering 
diagnostic traces which are valuable for debugging. 

I t  is worth noting that  model checking of T C T L  formulas on the minimal  
model is possible, in the manner  of [ACD+92b]. We intend to exploit this possi- 
bility as part  of our future work. We are also currently studying in more depth 
the combinations of t ime-abstract ing bisimulations with untimed bisimulation 
and simulation equivalences and preorders. 
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Abs t rac t .  In this paper we apply the tool UPPAAL 1 to an automatic 
analysis of a version of the Philips Audio Control Protocol with two 
senders and bus collision handling. This case study is significantly larger 
than the real-time/hybrid systems previously analysed by automatic 
tools. During the case study the tool UPPAAL was extended with a new 
feature, committed 1oca$ions, allowing efficient modelling of broadcast 
communication. 

1 I n t r o d u c t i o n  

During the last few years a number of tools for automatic verification of hybrid 
and real-time systems have emerged [DY95, HHWT95, BLL+95, HRP94]. These 
tools have by now reached a state, where they are mature enough for application 
on reMistic case-studies; a claim we hope to substantiate in this paper. 

We present an application of our tool UPPAAL tO an automatic anMysis of a 
version of the Philips Audio Control Protocol with two senders and the con- 
sequently caused problem of bus collision. The case study is comprehensive 
compared with previous verification efforts of re~l-time and hybrid systems, 
e.g. the node-space is 10 3 times larger than the case with only one sender 
[BPV94, HWT95,  DY95, LPY95]. Also, the number of clocks, variables and 
channels has increased considerably. The bus collision version studied in this 
paper has previously been verified in [Gri94] without too] support.  

UPPAAL is a tool for automatic verification of safety and bounded liveness 
properties of networks of timed automata  and certain hybrid automata.  UPPAAL 

This work has been supported by the European Communities (under CONCUR2 
and REACT), NUTEK (Swedish Board for Technical Development) TFR (Swedish 
Technical Research Council) and Netherlands Organization for Scientific Research 
(NWO) under contract SION 612-316-125. 
Basic Research in Computer Science, Centre of the Danish National Research 
Foundation. 

i The current version of UPPAAL is available on the World Wide Web via the UPPAAL 

home page http ://www. does. uu. se/docs/rtmv/uppaal. 
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contains a number  of features including a graphical interface and au tomat ic  
generation of diagnostic traces, and applies a combination of on-the-fly state- 
space examinat ion together with efficient constraint solving techniques [YPD94, 
BLL+95]. 

In modelling the Audio Protocol  with bus collision it turned out to be conve- 
nient in certain situations to apply broadcast  communication.  An extension of 
UPPAAL with so-called committed locations allows broadcasts  to be modelled as 
atomic sequences of two-process synchronizations, and yields in addition perfor- 
mance improvements.  

The verification of Philips Audio Protocol  with Bus Collision was carried out 
using the extended version of UPPAAL installed on a SGI ONYX machine. As 
results we have verified the correctness of the protocol for an error tolerance 
of 5% on the timing, demonstrated that  correctness fails if the er ror  tolerance 
is increased to 6%, and analysed an incorrect version of the protocol which is 
actually implemented by Philips. 

2 T h e  C o m m i t t e d  U P P A A L  m o d e l  

The basis of the UPPAAL model for real-time systems is networks of t imed au- 
t o m a t a  [AD90] with da ta  variables [YPD94]. However, to meet requirements 
arising from various case studies, the UPPAAL model has been extended with 
various new features such as urgent transitions [BLL§ etc. The present case 
s tudy indicates that  we need to further extend the UPPAAL model with com- 
mitted locations to model behaviours such as a tomic broadcast ing in real-t ime 
systems. Our experiences with UPPAAL show that  the notion of commit ted  lo- 
cations introduced in UPPAAL is not only useful in modelling but also yields 
significant improvements  in performance. 

We assume tha t  a real-time system consists of a fixed number  of sequential 
processes communicat ing with each other via channels. We further assume tha t  
each communicat ion synchronizes two processes as in CCS. Broadcast ing com- 
munication can be implemented in such systems by repeatedly sending the same 
message to M1 the receivers. To ensure atomicity of such 'broadcas t '  sequences, 
we mark  the intermediate locations of the sender as so-called commit ted loca- 
tions which are to be left immediately. 

A n  E x a m p l e .  To introduce the notion of commit ted locations in t imed au- 
tomata ,  consider the scenario shown in Figure 1: A sender S is to broadcast  a 
message m to two receivers R1 and R2. As this requires synchronization between 
three processes this can not directly be expressed in UPPAAL where synchroniza- 
tion, as in CCS, is between two processes based on complementar i ty  of actions. 
However, as an initial a t t empt  we may model the broadcast  as a sequence of 
two two-process synchronizations, where first S synchronizes with R1 on ml and 
then with R2 on m2. However, this is not an accurate modelling as the intended 
atomici ty of the broadcast  is not preserved (i.e. other processes may interfere 
during the 'broadcas t '  sequence). To ensure atomicity, we mark  the intermediate 
location $2 of the sender S as a so-called committed location (indicated by the 
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Fig. 1. Broadcasting Communication and Committed Locations. 

c:-prefix). The atomicity of the action sequence ml !m2! is now achieved by insist- 
ing tha t  a commit ted location must be left immediately! This behaviour is quite 
similar to what  has been called "urgent transitions" [ t t t tWT95, DY95, BLL+95] 
which insists that  the next transition taken must be an action (and not a delay). 
The  precise semantics of committed locations will be formalized in the transit ion 
rules for networks of t imed au tomata  with da ta  variables in the following. 

P r e l i m i n a r i e s .  We assume a finite set of clock variables C ranged over by x, y, z 
and a finite set of da ta  variables V ranged over by i, j ,  k. We use G(C, V) to stand 
for the set of formulas ranged over by g, generated by the following syntax: 
g : : =  a ]  g A g ,  where a is a constraint of t h e f o n n : x ~ - . n o r i , - ~ n f o r  x C C, 
i e V, ,-~E { ~ '  >, =} and n being a natural  number. We shall call elements of 
G(C, V) guards. To manipulate  clock and data  variables, we use reset-set of the 
form: ~ := g which is a set of assignment-operations in the form w := e where w 
is a clock or da ta  variable and e is an expression. A reset-set is a proper reset-set 
when the variables are assinged a value at most once, we use R to denote the set 
of all proper reset-sets. A reset-operation on a clock variable should be in the 
form x := n where n is a natural  number and a reset-operation on an integer 
variable should be in the form: i := c * i + c' where c, c' are integer constants. We 
assume tha t  processes synchronize with each other via channels. Let A be a set 
of channel names with a subset U of urgent channels on which processes should 
synchronize whenever possible. We use .4 = {a?]a  e A} U {a! la  e A} U {T} to 
denote the set of actions that processes can perform to synchronize with each 
other, where 7 is a distinct symbol representing internal actions. We use name(a)  
to denote the channel name of a, defined by name(a?)  = name(a!)  = a.  

T h e  UPPAAL M o d e l  w i t h  C o m m i t t e d  L o c a t i o n s .  An au tomaton  A over 
actions A, clock variables C and data  variables V is a tuple (N, 4 ,  E,  Arc} where 
N is a finite set of locations (control-locations) with a subset Nc C_ N being the 
set of commit ted locations, l0 is the initial location, and E c_C_ N x G(C, V) x A x 
R x N corresponds to the set of edges. To model urgency: we require that  .the 
guard of an edge with an urgent action should always be it, i.e. if name(a)  E U 
and (l, g, a, r, I '} E E then g =- It .  
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g a,r i i  In the case, (l, g, a, r, l') E E we shall write, l ' ~ which represents a transi- 
tion from the location 1 to the location I t with guard g (also called the enabling 
condition of the edge), action a to be performed and a set of reset-operations r 
to dpdate  the variables. Also, we shall write C(1) whenever 1 E No.  

To model networks o f  processes, we introduce a CCS-like parallel composit ion 
operator  for au tomata .  Assume that  A1...A,~ are automata .  We use A to denote 
their parallel composition. The intuitive meaning of A is similar to the CCS 
parallel composition of At. . .A~ with all actions being restricted, that  is, A = 
(A1 I.-.IA,~)\-A. Thus only synchronization between the components Ai is possible. 
We shall call A a network of automata .  We simply view A as a vector and use 
Ai to denote its i th component.  

Informally, a process modelled by an au tomaton  starts  at location 10 with all 
its variables initialized to 0. The values of the clocks increase synchronously with 
t ime at location 1. At any time, the process can change location by following an 

edge 1 g'~'[ l ~ provided the current values of the variables satisfy the enabling 
condition g. With this transition, the variables are updated by r. 

A variable assignment is a mapping which maps clock variables C to the non- 
negative reals and da ta  variables V to integers. For a variable assignment v and a 
delay d, v @ d denotes the variable assignment such that  (v @ d)(x) = v(x) + d for 
any clock variable x and (v| = v(i) for any integer variable i. This definition 
of @ reflects that  all clocks operate with the same speed and tha t  da ta  variables 
are time-insensitive. For a reset-operation r (a set of assignment-operations),  we 
use r(v) to denote the variable assignment v '  with v'(w) = val(e ,v)  whenever 
w := e E r and v'(w') = v(w') otherwise, where val(e, v) denotes the value of e 
in v. Given a guard g E G(C, V) and a variable assignment v, g(v) is a boolean 
value describing whether g is satisfied by v or not. 

A control vector 1 of a network A is a vector of locations where li is a location 
of Ai. We shall write l[l~/l~] to denote the vector where the i th element li of I is 
replaced by l~. 

A s ta te  of a network A is a configuration (l, v) where I is a control vector of 
and v is a variable assignment. The initial s tate of A is (10, v0) where l0 is the 
initial control vector whose elements are the initial locations of Ai's and v0 is 
the initial variable assignment that  maps all variables to 0. 

To model progress properties, we use the following notion of maximal  delay: 

0 if C(l) 
MD(/,v)  = max{d [ l l' and g(v | d)} otherwise 

So if I is a commit ted location, there will be no delay at I. We extend the notion 
of maximal  delay to networks of au tomata  such that  synchronization on urgent 
channels happens immediately: 

MD(1, v) = ~ 0 if 3c~ E U, i 5s j, li, lj E l : li ~?'~ & lj c~!,,.___~ 

t min{MD(l ,v)  ] l C i} otherwise 

The semantics of  a network of au tomata  A is given in terms of a transit ion 
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system with the set of states being the set of configurations and the transition 
relation defined as follows: 

- ( i , v ) . , z ( 1 , v @ d ) i f d  

(l ,v}' .z(l[l~/lil ,ri(v)) if there exist li E 7,gi,ri such that  Ii g '" ' r '  l~, gi(v), 
and for all k if C(Ik) then k = i. 
{l, v}..z(i[l~/li, 1}/lj], (rl U rj)(v)) if there exist Ii, l j e  i, gi, gj, ~, ri and rj 

gj,c*?,rj 
such that  i r j,  li g " ~ '  l~, lj ~ lj, gi(v), gj(v),  r~ Ur j  E R and for all 
k if C(/k) then k = i or k = j .  

< MD(1, v) 

Thus, if a state (i, v) contains a committed location no delays can take place. 
Moreover, any component with committed location must participate in the next 
(action-) transition. 

3 T h e  C o m m i t t e d  U P P A A L  I m p l e m e n t a t i o n  

In the following, we present the notion of committed locations in terms of 
the UPPAAL model and its implementation in UPPAAL. In the current version 
[BLL+95], UPPAAL is able to check for invariance properties, Vrnfl, and reacha- 
bility properties, 3()fl, with respect to constraints, fl, on the admissible locations 
of the various components and the values of the clock and data variables. 

The model-checking is performed using backwards reachability analysis to- 
gether with an efficient constraint-solving technique. Also, UPPAAL adopts on- 
the-fly generation of the state space in Order to avoid explicit construction of 
the product automaton and the immediately caused memory problems. 

The model-checking is based on a partitioning of the (otherwise infinite) state- 
space into finitely many symbolic states of the form [i, U], where U is a simple 
constraint system (i.e. a conjunction of atomic clock and data constraints 2). The 
backwards reachability algorithm checks if a symbolic state [1,f, Uf] is reachable 
from the initial state [10, U0], where U0 expresses that  all clocks and data variables 
are initialized to 0. 

The algorithm essentially performs a backwards, breadth-first search of the 
symbolic states. The search is guided and pruned by two buffers: Wait, holding 
the symbolic states waiting to be explored and Passed holding the symbolic states 
under exploration and already explored. Initially Passed is empty and Wait holds 
the single symbolic state [72, Uf]. The algorithm then repeats the following: 

1. Pick a state [~, U s] fl'om the Wait buffer. 
2. Check if ~ = 10 and U0 C Uq If this is the case, return the answer yes. 
3. If m = n and U' C V", for some [~, U'] in the Passed buffer, drop [~, U'] 

and go to step 1. Otherwise save [~, U ~] in the Passed buffer. 
4. Find all symbolic states [5, Z] that  lead to [~, U'] in one step and store them 

in the Wait buffer. 
5. If the Wait buffer is not empty go to step 1, otherwise return the answer no. 

2 Simple constraint systems are ~so know under the term zone. 
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We will not treat  the algorithm in more detail here, but refer the reader to 
to [YPD94, BL96]. 

Despite its on-the-fly examination of the symbolic state space the above algo- 
r i thm is bound to run into space problems for sufficiently large systems witnessed 
by an explosion in the size of the Passed buffer, which is used to record the states 
already visited in order to enable pruning of redundant examinations (in 3) and 
eventually ensure termination. The key question is how to limit the growth of 
this buffer? When using committed locations to ensure atomicity of finite transi- 
tion sequences of one component (as in modelling broadcast) it obviously suffices 
to save the symbolic state at the beginning of the sequence. Hence, our proposed 
solution is simply not to save symbolic states in the Passed buffer which involves 
committed locations. We therefore modify step 3 of the algorithm in the following 
way: 

3'. a. If committed(~) go directly to step 4. 
b. If m = n and V' C_ U t', for some [~, U"] in the Passed buffer, drop [~, U'] 

and go to step 1. 
c. If neither of the above steps are applicable, save [~, U'] in the Passed 

buffer. 

4 The  Audio  Control  Protoco l  wi th  Bus Coll is ion 

In this section an informal introduction to the audio protocol with bus collision 
is given. The audio control protocol is a bus protocol, all messages are received 
by all components on the bus. If a component receives a message not addressed 
to it, the message is just ignored. Philips allows up to 10 components. 

Messages are transmitted using Manchester encoding. Time is divided into 
bit-slots of equal length, a bit "1" is transmitted by an up-going edge halfway 
a bit-slot, a bit "0" by a down-going edge halfway a bit-slot. If the same bit is 
t ransmit ted twice in a row the voltage changes at the end of the first bit-slot. 
Note that  only a single wire is used to connect the components, no extra clock 
wire is needed. This is one of the properties that  makes it a nice (read cheap) 
protocol. 

The protocol has to cope with some problems: (a) The sender and the receiver 
must agree on the beginning of the first bit-slot, (b) the length of the message is 
not known in advance by the receiver, (c) the down-going edges are not detected 
by the receiver. To resolve these problems the following is required: Messages 
must start  with a bit "1" and messages must end with a down-going edge. This 
ensures that  the voltage on the wire is low between messages. Furthermore the 
senders must respect a 'radio silence' between the end of a message and the 
beginning of the next one. This radio silence marks the end of a message and 
the receiver knows that  the next up-going edge is the first edge of a new message. 
It is (almost) possible to decode a Manchester encoded message by only looking 
to the up-going messages (problem c) only the last zero bit of a message can not 
be detected (consider messages "10" and "1"). To resolve this it is required that  
all messages are of odd length. 
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I t  is possible that  two or more components s tar t  t ransmit t ing at the same 
time. The  behavior of the electric circuit is such that  the voltage on the wire 
will be high as long as one of the senders pulls it high. In other words: The 
wire implements the or-function. This makes it possible for a sender to notice 
that  someone else is als0 transmitt ing.  If the wire is high while it is t ransmit t ing 
a low, a sender can detect a bus collision. This collision detection happens at 
certain points in time. Just  before each up-going transition, and at one and 
three quarters of a bit-slot after a down going edge (if it is still t ransmit t ing a 
low). When a sender detects a collision it will stop t ransmit t ing and will t ry  to 
retransmit  its message later. 

If  two messages are t ransmit ted at the same time and one is a prefix of the 
other, the receiver will not notice the prefix message. To ensure collision detection 
it is n o t  allowed that  a message is a prefix of an other message in transit .  In the 
Philips environment this restriction is met by embedding the source address in 
each message (and assigning each component a unique source address). 

In Figure 2 an example is depicted. Two senders s tar t  t ransmit t ing at exactly 
the same time. Because two lines on top of each other is hard to distinguish from 
one line, they are shifted slightly. The thick sender starts  t ransmit t ing "11..." 
and the other "101... ~'. At the end of the first bit-slot the thick sender does a 
down, to prepare for the next up-going edge. But one quarter  after this clown 
it detects a collision and stops transmitt ing. The thin sender did not notice the 
other and continues transmitt ing.  Note that  the receiver will decode the message 
of the thin sender correctly. 

Fig, 2. an example 

The protocol has to cope with one more thing: t iming uncertainty. Because 
perfect clocks do not exist in the physical world and because the protocol is 
implemented on a processor that  also has to execute a number of other t ime 
critical tasks, a quite large timing uncertainty is allowed. A bit-slot is 888 mi- 
croseconds, so the ideal t ime between two edges is 888 or 444 microseconds. On 
the generation of edges a t iming uncertainty of :t=5% is allowed. Tha t  is: between 
844 and 932 for one bit-slot and between 422 and 466 for half a bit-slot. The 
collision detection just before an up-going edge and the actual generation of this 
up-going edge must be at most 20 microseconds. The timing uncertainty on the 
collision detection on one and three quarters after the generation of a down-going 
edge is •  microseconds. Also the receiver has a timing uncertainty of =I=5%. 
And, to complete the timing information, the distance between the end of one 
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(od, Bod, lb,bs) 

Fig. 3. Philips Audio-Control Protocol with Bus Collision. 

message and the beginning of the next must be at least 8000 microseconds (8 
milliseconds). 

5 A F o r m a l  M o d e l  o f  t h e  P r o t o c o l  

To analyze the behavior of the protocol we model the system as a network of 
six timed automata.  The network consists of two parts: a core part and a testing 
environment. The core part  models the components of the protocol to be imple- 
mented: two senders, a wire and a receiver. The testing environment, consisting 
of a message generator and an output  checker, is used to model assumptions 
about  the environment of the protocol and for testing the behavior of the core 
part. Figure 3 shows a flow-graph of the network where nodes represent timed 
automata  and edges represent synchronization channels or shared variables (en- 
closed within parenthesis). 

The general idea of the specification is as follows. The automaton Message 
generates messages for both senders, and also informs the Check automaton on 
the bits it generated for SenderA. The senders transmit the messages via the wire 
to the receiver. The receiver communicates the bits it decoded to the checker. 
Thus the Check automaton is able to compare the bits generated by Message 
and the bits received by Receiver. If this matches the protocol is correct. 

The senders A and B are, modulo renaming (all A's in identifiers to B's), 
exactly the same. Because of this symmetry, it is enough to check that  the 
messages transmitted by sender A are received correctly. We will proceed with 
a short description of each automaton. The definition of these uses a number of 
constants that are declared in Figure 4. 

The Senders. SenderA is depicted in Figure 5. It takes input actions Ahead0. 7, 
Aheadl. 7 and Aempty?. The output actions UP! and DOWN! will be the Manch- 
ester encoding of the message. The clock Ax is used to measure the time between 
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UP! and DOWN! actions. The idea behind the specification (taken from [DY95]) 
is that  the sender changes location each half of a bit-slot. The locations HS 
(wire is high in second half of bit-slot) and HF (high in first half of bit-slot) 
refer to this idea. Ext ra  locations are neededbecause of the collision detection. 

The clock Ad is used to measure the time elapsed between the detection just be- 
fore U P! action and the corresponding UP! action. Furthermore the time elapsed 
since the last DOWN! action is measured. The system is in the locations ar_Qfirst 
and ar_Qiast when the next thing to do is the collision test at one or three quar- 
ters of a bit-slot. When Volt is greater than zero, at that moment, the sender 
detects a collision, stops transmitting and returns to the idle location. The clock 
w is used to ensure the 'radio silence' between messages. This variable is checked 
on the transition from idle to at_first_up. 

T h e  W i r e .  This small automaton keeps track of the voltage on the wire and 
generates VUP! actions when appropriate, that is when a UP? action is received 
when the voltage is low. 

T h e  R e c e i v e r .  Receiver (Figure 6) decodes the bit sequence using the up-going 
(modeled as VUP?) changes of the wire. Decoded bits are signaled to the environ- 
ment using output  actions AddO!, Add1! and 0UT! (OUT! is used for signaling 
the end of a decoded message). The decoding algorithm of the receiver is a direct 
translation of the algorithm in the Philips documentation of the protocol. In the 
automaton each VUP? transition is followed by a transition modeling the decod- 
ing. This decoding happens 'at once' therefore these intermediate locations are 
modeled as committed locations. The automaton has two important  locations, 
L1 and L0. When the last received bit is a bit "1" the receiver is in location kl, 
after receiving a bit "0" it will be in location L0. The error location is entered 
when a VUP? is received much to early. In the complete specification the error 
location is not reachable, see Section 6. The receiver keeps track of the parity of 
the received message using the integer variable odd. When the last received bit 
is a bit "1" and the message is even, a bit "O" is added to make the complete 
message of odd length. 

T h e  M e s s a g e  G e n e r a t o r .  The message generator generates messages of odd 
length for both sender A and B. Furthermore, the messages generated for sender A, 
are communicated to the checker. When a collision is detected by sender A this 
is communicated to the message generator via Acoll?. The message generator will 
communicate this on his turn to the checker via CAcoll!. Generating messages 
of odd length is quite simple. The only problem is that it is not allowed that  
a message for one sender is a prefix of the message for the other sender. To be 
more precise: If only one sender is transmitting there is no prefix restriction. 
Only when the two senders start  transmitting at the same time, it is not allowed 
that  one sender transmits a prefix of the message transmitted by the other. As 
mentioned before the reason for this restriction is the.t the prefix message is not 
received by the receiver and it is possible that  the senders do not notice the 
collision. In other words: The prefix message can be lost. 

T h e  C h e c k e r .  This automaton keeps track of the bits 'in transit ' ,  that  is the 
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bits that  are generated by the message generator but not yet decoded by the 
receiver. Whenever a bit is decoded or the end of the message is detected not 
conform the generated message the checker enters an error location. Furthermore 
when sender A detects a collision the checker returns to its initial location. 

6 Veri f icat ion  in UPPAAL 

In this section we verify correctness of the protocol described in previous sections. 
Recall, that  the system is modelled as a network of the six t imed automata:  
Message SenderA, SenderB, Wire, Receiver and Check, and that  properties are 
specified as logical formulas. 

T h e  C o r r e c t n e s s  C r i t e r i a .  The correct behaviour of the protocol is ensured 
whenever the control of the automaton Check is in location a or start. If an 
incorrect behaviour is detected the Check-automaton enters the error-location, 
consequently property (1) requires that  the Check-automaton is always in loca- 
tion start or a: 

VE] (Check.start V Ch.eck.a) (1) 

For the property to be satisfied it is required that  the bit sequence received by 
the Receiver matches the bit sequence sent by SenderA. Furthermore,  it is also 
required that  the entire bit sequence is received by Receiver (and communicated 
to the Check-automaton). This is ensured since the error-location of the Check- 
automaton is reachable if the end of a bit sequence is signalled by Receiver (i.e. 
OUT!) when unmatched bits exists in the Check-automaton. 

If the Receiver-automaton observes changes of the wire too early in location 
kl or L0 control is changed to location error. It is imaginable that  error recovery 
can be implemented from this location. However, if the other components of the 
protocol conform to the specification this location should not be reachable, thus 
property (2) requires that  the error-location in Receiver is never reachable. 

VE3~ Receiver.error (2) 

I n c o r r e c t n e s s .  Unfortunately the protocol described in this paper is not the 
protocol that  Philips has implemented. The original sender checked less often 
for bus collisions. The 'just before the up going edge' collision detection was 
only performed before the first up. (In our modelling this corresponds to modi- 
fying SenderA and SenderB in the following way: delete the outgoing transitions 
of location ar_Qlast_ok and use the outgoing transitions of location ar_up_ok in- 
stead.) This version is incorrect. In general the problem is that  if both senders 
are transmitt ing and one is slow and the other fast, the distance can cumulate 
to a high value and this can confuse the receiver. UPPAAL generated a counter 
example trace. 

Although this problem was known by Philips is it interesting to see how pow- 
erful the diagnostic traces can be. It enables us not only to find mistakes in the 
model of a protocol, but also to find design mistakes in real life protocols. 
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The Verification Results .  UPPAAL successfully verifies the correctness prop- 
erties (1) and (2) for an error tolerance of 5% on the timing. Recall that  SenderA 
and Sender8 are, modulo renaming, exactly the same, implying that  the verified 
properties for SenderA also applies to the symmetric case for SenderB. Prop- 
erty (1) was verified in 7.5 hrs using 527.4 MB of memory, property (2) in 1.32 
hrs using 227.9 MB of memory. 

The analysis of the incorrect version of the protocol with less collision detection 
(discussed above) uses UPPAAL'S ability to generate diagnostic traces whenever 
a certain property is not satisfied by the system. The trace, consisting of 46 
transitions, was generated in 13.0 min using 290.4 MB of memory. Also, at tempts 
to verify Proper ty  (1) for the full protocol with an error tolerance of 6% on 
the timing failed. The scenario is similar to the one found by Bosscher et al. 
in [BPV94] for the one sender protocol. 

The properties (above) were verified using the verification algorithm for han- 
dling committed locations, described in Section 3, implemented in a new proto- 
type version of UPPAAL, installed on a SGI ONYX. 

7 C o n c l u s i o n  

In this paper it is shown to be possible to verify properties of a realistic case 
study using UPPAAL. The tool is able to verify the correctness properties of 
the Philips Audio Protocol, that  is: the receiver only receives messages that are 
transmitted. Furthermore the ability of UPPAAL to generate diagnostic traces 
proved very useful. When writing tbrmal specifications (some) humans tend to 
make mistakes. These mistakes are much easier to locate using a tool that  can 
generate scenarios. This in contrast with using a tool that only provides Yes/No 
answers to queries. 

We proposed the use of committed locations in UPPAAL specifications. Using 
these provides a significant effici@ncy improvement. Fnrthermore the memory 
consumption decreases when using committed locations. 

Even more important  than the efficiency improvement is that  committed loca- 
tions sometimes allow a more natural specification. H a system does a broadcast 
or multi-way synchronization, this can be modelled much nicer using committed 
locations. Without  committed locations it is not possible in UPPAAL to prohibit 
other components to perform actions dnring the broadcast. With committed 
locations these multi communications can be modelled as a single atomic action. 

Another option to model broadcast synchronization is to use another synchro- 
nization mechanism than handshake as used in UPPAAL. We prefer the use of 
committed locations because it is easier to embed in the model and easier to im- 
plement. We also think that committed locations and handshake synchronization 
provide a flexible and expressive model for specifying protocols. 
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Abstract. In this work we propose a verification methodology consisting of se- 
lective quantitative timing analysis and interval model checking. Our methods can 
aid not only in determining if a system works correctly, but also in understand- 
ing how well the system works. The selective quantitative algorithms compute 
minimum and maximum delays over a selected subset of system executions. A 
linear-time temporal logic (LTL) formula is used to select either infinite paths or 
finite intervals over which the computation is performed. We show how tableaux 
for LTL formulas can be used for selecting either paths or intervals and also for 
model checking formulas interpreted over paths or intervals. 
To demonstrate the usefulness of our methods we have verified a complex and 
realistic distributed real-time system: Our tool has been able to analyze the system 
and to compute the response time of the various components. Moreover, we have 
been able to identify inefficiencies that caused the response time to increase 
significantly (about 50%). After changing the design we not only verified that the 
response time was lower, but were also able to determine the causes for the poor 
performance of the original model using interval model checking. 

1 Introduction 

This work presents a verification methodology that can provide both quantitative and 
qualitative analysis of  systems. The analysis can aid not only in determining system 
correctness, but also in understanding how well the system works. The method consists 
of  selective quantitative timing analysis and interval model checking and is based on 
two concepts: quantitative timing analysis, and tableaux for linear-time temporal logic. 

In [8] we have shown how quantitative symbolic algorithms can be used to analyze 
the behavior of  a system. Our method computes minimum and maximum delays between 
the occurrence of  two events, as well as the number of  times a specified condition 
occurs in such an interval. The timing correctness o f  a system can be evaluated by 
this method. Reaction time to important events can be computed as well as analyzing 
how the system behaves during the interval between event and response. In general, 
performance parameters can be analyzed using this technique. 

* This research was sponsored in part by the National Science Foundation under grant no. 
CCR-8722633, by the Semiconductor Research Corporation under contract 92-DJ-294, and 
by The Defense Advanced Research Projects Agency, Information Science and Technology 
Office, under the title "Research on Parallel Computing", ARPA Order No. 7330, issued by 
DARPA/CMO under Contract MDA972-90-C-0035. 
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Typically, the quantitative analysis investigates all intervals between a set of initial 
states start and a set of final states finaL In many cases, however, it is desirable to restrict 
the consideration to only execution paths that satisfy a certain condition. This can help in 
understanding how the system reacts to different conditions. For example, one common 
technique for achieving good performance is to optimize a design for the most common 
cases, while maintaining correctness for the uncommon ones. The designer can optimize 
response time by restricting system behavior to the most frequent cases. Correctness 
can then be checked by removing the restrictions. 

In this work we use a formula of the linear-time temporal logic LTL to specify a set 
of paths selected to be verified. Quantitative analysis is then applied only to those paths 
along which the formula holds. We also extend the technique for cases in which a more 
precise analysis is needed, by requiring that the selecting formula be true exactly on the 
investigated interval and not just anywhere on the path. 

To strengthen our verification methodology, we combine selective quantitative anal- 
ysis with model checking. Traditionally, LTL model checking procedures [11, 19, 27] 
accept a structure that models the system, a set of initial states, and an LTL formula. The 
procedures determine whether the formula holds on all infinite paths of the structure 
starting on some initial state. In this work we extend the construction of L11] also for 
interval model checking, that is, checking a formuIa with respect to finite intervals. 

Main Characteristics: Both interval model checking and selective quantitative 
analysis can be used to extract information related to specific "parts" of a system without 
changing the model. Similar information sometimes can be obtained by restricting the 
model to disable uninteresting behaviors, or by marking the interesting ones using 
observer modules. However, these techniques frequently modify system behavior, and 
consequently properties are checked on a model different than the original one, possibly 
hiding important errors, or introducing false ones. 

Moreover, the fact that properties are verified over finite intervals, allows very 
different types of properties to be expressed. It is possible to check for "traditional" 
properties such as safety and liveness, but also to investigate system behavior in more 
detail. In the real-world not all possible execution sequences are equally interesting. 
Nor are all possible time intervals within a path. Understanding how the system reacts 
in different situations allows for a detailed analysis that can aid not only in determining 
if the system works, but also in understanding how well the system works. 

Related Methods: There are several other approaches to the verification of timed 
systems. For example, dense time is modeled by [1, 2, 17, 23, 28]. Those methods 
model time very accurately~ However, the state space of dense time models is infinite, 
and these tools rely on the construction of a finite quotient structure called region graph. 
This construction is extremely expensive, limiting the size of problems that can be 
handled. Dense time models seem to be better suited for smaller problems in which time 
accuracy must be very high. On the other hand, models such as the one proposed are 
well suited to model large complex systems in which the accuracy can be easily handled 
by choosing an appropriate time quantum, as can be seen by the example in this paper. 

Discrete time is used by other tools such as [16, 29]. These tools, however, do not 
allow the quantitative analysis of systems as the proposed method. In [14] quantitative 
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analysis is implemented, but with a more limited scope. Dense time models allowing 
restricted quantitative analysis can be found in [17, 28]. 

Linear-time temporal logics interpreted over both infinite paths and finite intervals 
have been introduced in [20, 21]. However, they use tableau only for satisfiability and 
do not handle either quantitative analysis or interval model checking. Interval logics are 
also used in [25], but in a theorem proving context. 

More important when comparing these methods, however, is the fact that these tools 
do not allow a selective verification of properties as the proposed method. They provide 
no natural way in which a subset of behaviors can be analyzed in isolation, not allowing 
as rich an analysis as the proposed method. The closest method to our selection of paths 
or intervals is the use of fairness constraints in model checking [13, 15, 22]. However, 
there a fairly restricted types of properties were used for selection, while we can handle 
any LTL formula. Moreover, only infinite paths can be selected in these works. 

A Distributed Real-Time System: To demonstrate the usefulness of our method, 
we have applied it to a distributed real-time system of realistic complexity, derived from 
the example described in [26]. Real-time systems are used in many critical applications 
such as aircraft control or medical monitoring systems. Because of the consequences of 
failures in such systems, determining their correctness is a vital task. 

Several features of this example make it an interesting target for our techniques. It 
is a system of realistic complexity, its components are existing systems and protocols 
executing a mixture of multimedia, traditional real-time and non-real time tasks. Also, 
the distributed nature of the system makes the interaction among its various components 
much richer. This also makes its analysis more difficult. 

Our tools have been able to analyze the system and verify that the deadlines are 
met by the design. Moreover, we have been able to identify inefficiencies that caused 
the response time to increase significantly (about 50%). After changing the design we 
not only verified that the response time was lower, but were also able to determine the 
causes for the poor performance of the original model using interval model checking. 

2 A tableau for LTL 

Our specification language is a linear-time temporal logic called LTL [24]. The logic is 
used for two different purposes. One is to specify a property of the system that needs to 
be verified. The other is to specify a set of selected paths that will be verified. In both 
cases we use a tableau [19, 27, 11] for the formula. 

We first give the syntax of LTL. Given a set of atomic propositions AP,  LTL is 
defined inductively as follows. Every atomic proposition is an LTL formula. I f  f and 9 
are LTL formulas then -~f, f V #, X f and f U g are also LTL formulas. 

The semantics of LTL is defined with respect to a labeled state transition graph 
called Kripke Structure. A Kripke structure M = (S, R, L) has a finite set of states S, 
a transition relation R C_ S x S, and a labeling function L : S --+ 79(AP), associating 
with each state the set of atomic propositions true in that state. 

An infinite sequence so, sl, �9 �9 �9 of states in S is a path in the structure M from a 
state s i f f s  = s0 and for every j >_ O, (sj, 8j+l) E R. A finite sequence [ so , . . . ,  Sn] 
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is an interval in a structure M from a state s iff s = so and for every 0 < j < n, 
(sj, sj+l) E R. An interval may be a prefix of either a finite or an infinite path. Thus, 
s,~ may or may not have successors in M. The size of interval ~r = [so , . . . ,  s,~], denoted 
1~1, is n. ~ is defined iff 0 < j _< n and it denotes the suffix of cr, starting at sj. 

For a formula f ,  a path rr, and an interval ~, M, 7r ~path f means that f holds 
along path rr in the Kripke structure M. M, ~ ~i~t f means that f holds along interval 

in M. Given a set of initial states So, we say that M, So ~path f iff for every path 7r 
from every state in So, M, 7r ~p~th f .  Given two sets of states start and final, we say 
that M, [start, final] ~int f i fffor every interval ~r from some state in start to some 
state in final, M, c~ ~int f .  In this work whenever we refer to a path (an interval) that 
satisfies a formula, satisfaction is with respect to ~path (~i,~t). The relation ~path is 
the standard satisfaction relation for LTL (see, for example, [11]). The relation ~i,~t 
is identical to ~path for atomic propositions and boolean connectives. For temporal 
operators it is defined by (M is omitted if clear from the context): 

4. cr ~int Xgl  r ]~r I > 0 and ~r 1 ~ n t  gl. 
5. cr ~i,~t gl U g2 r 3k[0 < k < n Acr k ~i , t  g2 A Vj[0 < j < k --~ o'3" ~i,~t gl]]. 

When writing LTL formulas, we use the abbreviations F f = true U f and G f = 
-', F -',f. Note that, in the definition of [so, . . .  sn] "~ f we do not consider successors 
of sn (whether exist or not). This definition is meant to capture the notion of an 
interval satisfying a formula independently of its suffix (satisfaction is always defined 
independently of the prefix). 

Let f be an LTL formula. We construct a Kripke structure T(f) ,  called the tableau 
for f ,  that contains all paths and intervals satisfying f .  To identify paths in the tableau 
that satisfy f we will use fairness constraints. A fairness constraint for a structure M 
can be an arbitrary set of states in M, usually described by a formula of the logic. A 
path in M is said to be fair with respect to a set of fairness constraints if each constraint 
holds infinitely often along the path. 

Let APf be the set of atomic propositions in f .  T( f )  = (ST, RT, LT) has ANy as 
its set of atomic propositions. The set of tableau states is ST = P (el (f)), where el (f)  
is the set of elementary formulas defined by: 

- el(p) = {p} i fp  e APy - el(g V h) = el(g) U el(h) 
- e l ( - ,g )  = ~l(g)  - et(g U h) = { X ( g  U h)}  U e~(g) V d ( h )  
- e l ( X g )  = { X g }  U el(g)  

Let sat(f) be the set of states in the tableau that should satisfy f .  It is defined by: 

- sa t (g )  = { s  I g ~ s} ,  g e e l ( f )  - sat(-~g) = { s  I s ~ ~ a t (g ) }  
- sat(g V h) = sat(e) U sat(h) 
- sat(g U h) = sat(h) U (sat(g) ,~ sat(X(g U h))) 

The transition relation RT is RT(S, J )  = Axge~t(])(s  E sat(Xg) r s' E sat(g)). 
Finally, the labeling function, LT (s) = s N APf and the set of fairness constraints for 
f ,  Fair(f)  = {sat(-~(g U h) V h) I g U h occurs in f} .  

The constructed tableau T(f)  includes every path and every interval which satisfies 
f .  The following theorem characterizes those paths and intervals. 
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Theorem 2.1 For every path 7r in T(f),  if rr starts from a state s E sat(f) and 7r is 
fair for Fair( f )  then T(f) ,  7r ~pa~h f. Moreover, For every interval tr = [ to, . . . ,  tn] 
in T(f) ,  ifto E sat(f) andtn E 79(AP]) then T(f) ,  tr ~int f. 

In the algorithms presented later we will use the product P = (Sp, Rp, Lp) of 
T(f) = (ST, RT, LT) with the verified structure M = (SM, RM, LM). We restrict the 
atomic propositions of f ,  APy to be a subset of AP: 

- Sp = {(s,t) ls E SM,t  E ST and LM(S)tqAPy = LT(t)}. 
- Rp((s, t), (s', t')) iff RM(S, s') and R~(t, t'). 
- Lp((s,t))  = LT(S). 

3 CTL Model Checking 

CTL [4, 12] is a branching-time temporal logic that is similar to LTL except that each 
temporal operator is preceded by a path quantifier- either E standing for "there exists 
a path" or A standing for "for all paths". CTL is interpreted over a state in a Kripke 
structure. The path quantifiers are interpreted over the infinite paths starting at that state. 

CTL model checking is the problem of finding the set of states in a Kripke structure 
where a given CTL formula is true. One approach for solving this problem is symbolic 
model checking using a representation called binary decision diagram (BDD) [5] for 
the transition relation of the structure. This representation is often very concise. We 
use the SMV model checking system [22] that takes a CTL formula f ,  and the BDD 
that represents the transition relation. SMV computes exactly those states of the system 
that satisfy the formula f .  SMV can also handle model checking of a CTL formula 
with respect to a structure with fairness constraints. The path quantifiers in the CTL 
formula are then restricted to fair paths. The CTL model checking under given fairness 
constraints can also be performed using BDDs. 

4 Quantitative Timing Analysis 

Several methods have been proposed to verify timed systems, as has been discussed in 
the introduction. Typically, verifiers assume that timing constraints are given explicitly 
in some notation like temporal logic and determine if the system satisfes the constraint. 
In [8] we have described how to verify timing properties using algorithms that explicitly 
compute timing information as opposed to simply checking a formula. This section 
briefly describes that approach, which is later used in this work. 

A Kripke structure is the model of the system in our method. Currently the system 
is specified in the SMV language [22]. The structure is represented symbolically using 
BDDs. It is then traversed using algorithms based on symbolic model checking tech- 
niques [6]. All computations are performed on states reachable from a predefined set of 
initial states. We also assume that the transition relation is total. 

We consider first the algorithm that computes the minimum delay between ~wo 
given events (figure 1). Let start and final be two nonempty sets of states, often given as 
formulas in the logic. The minimum algorithm returns the length of (i.e. number of edges 
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in) a shortest interval from a state in start to a state infinaI. I f  no such interval exists, the 
algorithm returns infinity. The function T(S )  gives the set of  states that are successors of  
some state in S. The function T, the state sets I and I ' ,  and the operations of  intersection 
and'union can all be easily implemented using BDDs [6, 22]. The minimum algorithm 
is relatively straightforward. Intuitively, the loop in the algorithm computes the set of  
states that are reachable from start. I f  at any point, we encounter a state satisfyingfinal , 
we return the number of  steps taken to reach that state. 

proc minimum (start, final) 
i = 0 ;  
R =start; 
R' = T( R) U R; 
while (R' r R A R n final = O) do 

i = i + I ;  
R =R' ;  
R' = T(R')  U R'; 

if ( R N finaI • O) 
then return i; 
else return co; 

proc maximum (start, final, not_final) 
if (start N (final tO not_final) = 0) 

then return co; 
i = 0 ;  
1~ =TRUE; 
R' =not-final; 
while (R p ~ R A R' N start r O) do 

i = i + 1 ;  
R =  R'; 
R' = T - l  ( R ') N not_final; 

if (n  = n') 
then return ~ ;  
else return i; 

Fig. 1. Minimum and Maximum Delay Algorithms 

The second algorithm returns the length of a longest interval from a state in start 
to a state infinal. I f  there exists an infinite path beginning in a state in start that never 
reaches a state infinal, the algorithm returns infinity. The function T - 1  (S) gives tile set 
of  states that are predecessors of  some state in S. nat.final represents the states that do 
not satisfy final (except in the interval selective case, see below). 

The initial conditional is only used when computing properties over intervals. As 
will be seen later, in this case not_final correspond to states not in final, but which 
eventually lead to final. Therefore, if no starting state is in final, or leads to final, the 
algorithm returns infinity. 

Informally, the algorithm computes at stage i the set R t of  all states at the beginning 
of  an interval of  size i, all contained in not_final. The algorithm stops in one of two 
cases. E i the r /T  does not contain states from start at stage i. Since it contained states 
from start at stage i - 1, the size of  the longest interval in not_final from a state in start 
is i - 1. Since the transition relation is total, this interval has a continuation to a state 
outside not4~nal, i.e. to a state infinal. Thus, there is an interval of  length i f rom start 
tofinal and the algorithm returns i. In the other case, a fixpoint is reached meaning that 
there is an infinite path within not.final from a state in start. The algorithm in this case 
returns infinity. Both minimum and maximum algorithms are proven colxect in [8]. 

5 The Proposed Method 

5.1 Selective Quantitative A n a l y s i s - -  Over Paths 

Given two sets of  states start  and f i na l  in M and an LTL formula f0 we compute the 
lengths of  a shortest interval and a longest interval from a state in start  to a state in 
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f i na l  along paths from start that satisfy f .  The formula f is interpreted over infinite 
paths and is used to select the paths over which the computation is performed. The 
minimum and maximum algorithms with path selection are: 

1. Construct the tableau for f ,  T(f). 
2. Construct the product P of T ( f )  and M.  
3. Use the model checking system SMV on P to identify the set of states fair in P,  

where a state (s, t) E Sp (s E M, t E T( f ) )  is in fair iff t is the beginning of a 
path which is fair with respect to Fair(f). 

4. Construct P ' ,  the restriction of P to the state set fair. P'  = (S~, R~p, L~p) is defined 
by: S~ = fair, Rip = Rp  f3 (S~ x SIp) and for every s E fair, L~o(s) = Lp (s). 

5. Apply minimum(st, fn )  and maximum(st, f n ,  not_fn) to P ' ,  with st = (start x 
sat( f ))  M fair, f n  = (final • ST) M fair, and not_fn = fair - fn. 

The algorithms work correctly because P contains all paths of M that are also paths 
of T ( f )  (proof in the full paper). P~ is restricted to the fair paths of T( f ) .  Thus, every 
path in P '  from (start • sat (f))M S~ satisfies f .  Consequently, applying the algorithms 
to P '  from (start • sat( f ))  M S~p to ( f inal  x ST) f3 S~p over states in f a i r  gives the 
desired results. 

As mentioned before, in order to work correctly, the algorithm maximum must 
work on a structure with a total transition relation. The transition relation of P is not 
necessarily total. However, the transition relation of P~ is total since every state in f a i r  
is the beginning of some infinite (fair) path. 

We have applied the method in the analysis of the PCI Local Bus [10], where it has 
been used to limit the number of transaction aborts being considered. 

5.2 Selective Quantitative Analysis - -  Over Intervals 

Given two sets of states start and f ina l  and an LTL formula f ,  we compute the lengths 
of a shortest and a longest intervals from a state in start to a state in f ina l  such that f 
holds along the interval. Here the formula f is interpreted over intervals and we consider 
only the intervals between start  and f ina l  that satisfy f .  We will use a special formula 
prop to identify the set of tableau states that contain only atomic propositions. 

prop = {s E STIS E P ( A P f  ) }. 

The formula prop is a set of states in T( f ) .  We extend prop to prop;, which is the 
corresponding set of states in P.  The formula f inalp is the similar extension of f inal:  
-prop;  = {(s,t) c Is c s ,t cprop} 
- f i n a l  v = {(s,t)  E Sp Is C f inal ,  t E ST} 
We will also use a CTL formula C to identify the set of states over which the maximum 
algorithm is computed. 

C = - f i n a l ;  A g[-~final; U (prop; A E F  f ina l  v)]. 

States in C lead to states that are endpoints of intervals satisfying f (states in prop;,, see 
theorem 2.1), and then lead to states in f inalp.  The requirement that f ina l  v does not 
hold until prop; is needed because an interval ending in f ina l  v without going through 
prop; does not satisfy f .  
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The minimum and maximum algorithms with interval selection are: 

1. Construct the tableau for f ,  T( f) .  
2. Construct the product P of T(f )  and M. 
3. Use the model checking system SMV on P to identify the set of states that satisfy 

the CTL formula C. 
4. Let st = (start • sat(f)) N Sp and let f n = (final • prop) ASp.  The algorithms 

minimum(st, fn)  and maximum(st, fn ,  C) when applied to P will return the length 
of the shortest and longest intervals, respectively, between start and f inal  that 
satisfy f .  

The correctness of the algorithm relies on the fact that P contains all intervals that are 
both in T( f )  and M. Moreover, intervals of T( f )  from sat(f) to prop satisfy f .  Thus, 
the algorithms compute shortest and longest lengths over intervals from start to f inal  
that satisfy f .  The proof can be found in the full paper. 

When the maximum algorithm is computed over the set notfinal of states not in 
final, it is necessary to require that the transition relation of the structure is total in 
order to guarantee that the computed intervals terminate at a state in final. Here the 
maximum algorithm is computed over the set of states satisfying the formula C. This 
guarantees that the computed intervals terminate at final without the need to require that 
the transition relation is total. 

5.3 Interval Model Checking 

Given a structure M and two set of states start and final,  we say that an interval 
cr = [so , . . . ,  sn] from a state in start to a state in f inal ispure ifffor all 0 < i < n, si 
is neither in start nor in f inal.  

Given a structure M, two sets of states start and final,  and an LTL formula f ,  the 
interval model checking is the problem of checking whether the formula f ,  interpreted 
over intervals, is true of all pure intervals between start and f inal  in M. 

Interval model checking is useful in verifying periodic behavior of a system. A 
typical example is a behavior occurs in a transaction on a bus. If  we want to verify that 
a certain sequence of events, described by an LTL formula f ,  occurs in a transaction 
we can define start to be the event that starts the transaction and f inal  to be the event 
that terminates the transaction. Interval model checking will verify that f holds on all 

intervals between start and f inal.  
Let M, start, f inal,  and f be as above. The algorithm given below determines the 

interval model checking problem using the algorithm minimum of figure 1. 

1. Construct the tableau for -~f, T(-~f). 
2. Compute the product P of T(-~f) and M. 
3. Apply the algorithmminimum(st, fn) to P with st = (start • sat(-,f)) n Sp and 

f n  = (final • prop) N Sp. 
4. If  the minimum is c~ then there is no pure interval from start to f inal that satisfies 

~ f .  Thus, every such interval satisfies f .  If  minimum returns some value k, then the 
interval found by minimum can serve as a counterexample to the checked property. 
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6 A Distributed Real-Time System 

In this section we analyze a distributed real-time system using the techniques presented 
in this paper. This is a complex and realistic application, its components are existing 
systems and protocols that are actually used in many real situations. The example 
consists of three main components, a FDDI network, a multiprocessor connected to this 
network and one of the processors in the multiprocessor, the control processor [26]. 

Sensors Audio Video ... 

~DDI n e t w o r ~ k ~  

,~, 

F i==l I 
J r 

~ Sensor 
processor [ [ 

Fig. 2. System Architecture 

Tracking [ 
processor 

I Futurebus ~ip 

Control I 
processor 

The FDDI network is a 100Mb/s local/metropolitan area network that uses a token 
ring topology [3]. There are several stations connected to the network in the system. 
They generate multimedia and sensor data sent to the control processor, as well as 
additional traffic inside the network. The traffic in the network has been modeled as 
proposed in [26]. At every 16 timeunits the stations utilize the network as follows: 
video station, 6 units; audio station, 1 unit; and remainder network traffic, 8 units. 

In the multiprocessor, four active processors are connected through a Future- 
bus+ [18]. The first is the network interface, it receives data from the network and 
sends it to the control processor. The network interface uses the bus for 7ms at each 
time. A sensor processor reads data from sensors every 40ms. It buffers this data and 
sends it once every four readings to the tracking processor. The tracking processor pro- 
cesses this data and sends it to the control processor. Both sensor and tracking data use 
the bus for 3ms each. The deadline for sensor data to be processed is 785ms. Access 
to the bus is granted using priority scheduling. Priorities are assigned according to the 
rule: processors with shorter periods have higher priority. 

In the control processor there are several periodic tasks. The timing requirements 
for these tasks can be seen in figure 3. Priority scheduling is also used in the control 
processor, using the same priority a~ssignment rule. Two tasks in the control processor 
have special functions, 7-3 processes sensor data, and r5 processes multimedia data. 

Each of the components of the system (FDDI, network and control processor) has 
been implemented separately. No data is actually exchanged between the components in 
the model. Data has been abstracted out of the model, because data dependencies would 
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Process Vl 1"2 v3 ~'4 7-5 
Period 100 150 160 300 100 
Exec. time 5 78 30 10 3 

Fig. 3. Timing requirements for tasks in the control processor (times in ms) 

significantly increase the size of the model and the complexity of verification. However, 
while simplifying verification, abstractions can also introduce invalid execution se- 
quences. The constraints imposed by data dependencies significantly reduce the number 
of reachable execution sequences. In an abstract model such dependencies do not exist. 
We have used selective quantitative analysis to ensure that only execution sequences 
that are valid (and all such sequences) have been considered during verification. 

Using this model we have checked the deadline between a sensor reading in 
the sensor processor and the processing of this data by 7-3 in the control processor. 
This deadline is 785ms. Ideally, we would like to compute these time bounds using 
MIN{MAX} [ sensor_obs ervat ion, t3. finish ]. However, since in our model 

there is no synchronization between tasks, this would consider intervals in which t3  
finishes executing just after s e n s o r ,  without going through t r a c k .  To identify the 
valid intervals in the model, we must consider only intervals that satisfy the constraint: 

F(sensor.finish & F(track.start & F(track.finish & F t3.start))) 

This formula guarantees that the correct ordering of events is maintained during verifi- 
cation. We have computed the time between sensor observation and 7"3 processing to be 
in the interval [197, 563], well within the deadline. However, by looking into the design 
we noticed a potential source for inefficiencies in the Futurebus. Using standard model 
checking techniques we then printed a counterexmnple for the longest response time. It 
confirmed our speculations. 

In this system both sensor and tracking processors access the bus periodically, 
sending data every 160ms. In the counterexample, however, data required two periods 
of 160ms to reach the control processor. It was sent by the sensor processor to the 
tracking processor, but this processor would only send it to the control processor in 
the next period. Further investigation of the model showed that this was caused by the 
priority order in which processors accessed the bus. The tracking processor had a higher 
priority than the sensor processor. This means that when the sensor processor sends data 
to the tracking processor, it had already used the bus for this period, and would only 
request access again in 160ms. We modified the design by changing the priorities, and 
the response time became [37, 403], an improvement of almost 50%. 

We have been also able to compare the performance of both designs using interval 
model checking. We have analyzed the behavior of the system between the time the 
sensor produces data until the time the tracking processor processes it. Bus utilization 
is inefficient in this interval if the bus is idle or a lower priority process is executing. 

Using interval model checking we have been able to check the LTL formula 
G ! (bus_idle I bus_granted = lower_priority) on the intervals between 
sensor finishing sending data and tracking sending its data to the control processor. The 
original design showed the existence of priority inversion, as expected. In the modified 
design, on the other hand, the formula above is true in all intervals under considera~ 
tion. Notice that the formula is clearly false outside these intervals. This shows that the 
modified design is optimal with respect to the prioritized utilization of the bus. 
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The modified design has a better response time, and is clearly preferred in this 
application. But in other applications this might not be true. There might be cases, 
for example, in which the tracking processor sends data to the sensor processor. In 
those cases the modified design is worse than the original one. This again shows how 
selective quantitative analysis and interval model checking can be used to analyze the 
different facets of a system. The designer can choose to optimize the behavior of a 
critical application, even if at the expense of a less critical one. 

7 Conclusion 

In this paper we have described a method that can produce both quantitative and qual- 
itative information about the behavior of a system. Quantitative analysis and model 
checking can be performed on state-transition graphs representing the system to be ver- 
ified. Moreover, the user can specify a subset of execution sequences satisfying a given 
property using an LTL formula, and verification is performed only on those paths (or in- 
tervals) that satisfy that property. The results produced can be used not only to determine 
the correctness of the system, but also to analyze (and optimize) its performance. 

We have used this method to analyze a real-time distributed system. This example 
shows how the proposed method can assist in understanding the behavior of complex 
systems. We have been able not only to check properties of the whole system, but also to 
analyze specific execution sequences of interest. This allowed us to uncover subtleties 
about the application that might have been very difficult to discover otherwise. We 
believe that this method can be of great use in analyzing and understanding other 
complex systems, as it has been in analyzing this one. 
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Abs t rac t .  We present a logical formalism for expressing properties of 
continuous time Markov chains. The semantics for such properties arise 
as a natural extension of previous work on discrete time Markov chains 
to continuous time. The major result is that the verification problem 
is decidable; this is shown using results in algebraic and transcendental 
number gheory. 

Introduct ion 

Recent work on formal verification has addressed systems with stochastic dy- 
namics. Certain models for discrete time Markov chains have been investigated 
in [6, 3]. However, a large class of stochastic systems operate in continuous time. 
In a generalized decision and control framework, continuous time Markov chains 
form a useful extension [9]. In this paper we propose a logic for specifying prop- 
erties of such systems, and describe a decision procedure for the model checking 
problem. Our result differs from past work in this area [2] in that  quantitative 
bounds on the probability of events can be expressed in the logic. 

1 Continuous Markov Chains 

We will consider models of the form M = (S, A, A, 0), where S = {sl, s2, �9 �9 s~) 
is a finite set of states, A is the transition rate matrix, A is a finite set of outputs, 
and 0 : S --4 A is the output function. A path through M is a map from lR+to S 

(here lR+denotes the set of non-negative reals); SIR+ is the set of all paths. 
The transition rate matr ix  A is an I S  [ x I S  I matrix.  The off diagonal 

entries are non-negative rationals; the diagonal element ajj is constrained to be 

At state sj,  the probability of making a transition to state sk (where k r j )  in 
time dt is given by ajk dr. This is the basis for formulating a stochastic differential 
equation for the evolution of the probability distribution whose solution is 

D(t) = e At -Do 

Here Do is a column vector of dimension IS[, with the constraint that  )-~i[D0]i = 1. 
Technically, with any state s in M we associate a natural probability space 

P ~  = (US,CS,ps), where the set of all paths starting at s is the universe U s, 
and the Borel sigma field on U s gives the associated space of events C s, i.e. 
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the class of subsets of U s to which probabilities can be assigned. The transition 
rate matrix A yields the probability measure #s : g~ ._4 [0, 1]; by the measure 
extension theorem [10], tts is well defined. Given a set fl of functions from IR+to 
A, we will abuse notation and refer to the probability of fl when we mean the 
probability of the set of all state sequences starting at s which map under 0 to 
elements in ft. 

We will not dwell on the technicalities of measure theory; all the sets of paths 
defined later in this paper will be readily seen to be events, i.e. elements of g 8 . 

L7 12 b 

13 ~ ) c  

Fig. 1. A continuous time Markov chain: S = {so, st, s2, s3}; only edges with positive 
weights are shown. 

2 CSL syntax and semantics  

Let M = (S, A, A, 0) be a continuous Markov chain. In this section, we develop 
formal syntax and semantics for CSL (Continuous Stochastic Logic). This logic 
is inspired by the logic CTL [4], and its extensions to discrete time stochastic 
systems (pCTL [6]), and continuous time non-stochastic systems (tCTL [1]). 

There are two types of formulae in CSL: state formulae (which are true or 
false in a specific state), and path formulae (which are true or false along a 
specific path). A state formula is given by the following syntax: 

1. a for a E A  
2. If f l  and f2 are state formula,, then so are -~fl~ f l  V f2 
3. Ifg is a path formula, then Pr>r is a state formula. (c is a rational between 

0 and 1 expressed as the ratio of two binary coded integers). 

Path formulas are formulas of the form 

- f lU[~,bdf2U[~,b:] '" fn, where f l ,  f 2 , . . ,  fn are state formulas, and al,  bl,. �9 
a~-l,br,-1 are non-negative rationals expressed as the ratio of two binary 
coded integers. 

CSL is the set of state formulae that  are generated by the above rules. 
Let f be a state formula, and g be a path formula. We now define the satis- 

faction relation (~M) using induction on the length of the formula. For a state 
formula f we u s e  [f]M to denote the set of states satisfying f .  
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1. f is of the form a: s ~M f iff ~(s) = a. 
2. f is of the form (-~fl): s ~M f iff s ~=M f.  
3. f is of the form (fl V f2): s ~M f iff s ~ M  fl or s ~ M  f2- 

4. "f is of the form Pr~c(g): s ~M f iff #~({ ~r E S IR+ I ~r ~ M  g}) > c. 
5. g is a path formula of the form fl U[al,bl]f2 U[~,b2]"' ' fn: ~r ~ M  g if~ there ex- 

i s t t l , . . . , t ~ - i  such that (Vi) [(a~ < ti _< hi) A (Vt 'E [ti-l , t))(~r(t) E [fi~M)] 
(where t-1 is defined to be 0 for convenience). 

Example 1. The formula r = Pr>o.o3(aU[o.o,4.o]b) is a state formula for the ex- 
ample in figure 1. It formally expresses that with probability greater that 0.03, 
the system will remain in a state where the output  is a before making a transition 
before 4.0 seconds have elapsed to a state where the  output  is b. 

The probability of the set of paths starting at so on which the output is a 
before becoming b before time tl is given by the following integral: 

f0  e �9 e �9 + (r /Ir  + 

Setting tl equal to 4.0, and taking the rates rl = 1.0, r~ = 2.0, r3 = 3.0, and r4 = 
3.0, this simplifies to (1/45) - (e-~2/18) + (e-2~ Observe that e-12118 > 
e-2~ hence the probability is bounded above by (1/45) which is less than 
0.03, and so r is false at so. 

3 C S L  m o d e l  c h e c k i n g  

The CSL model checking problem is as follows: given a continuous Markov chain 
M, a state s in the chain, and a CSL formula f ,  does s ~M f? In this section 
we establish that the model checking problem for CSL is decidable. 

T h e o r e m  1. CSL model checking is decidable. 

Proof. The non-trivial step in model checking is to model check formula of the 
form Pr>c(g). In order to do this we need to be able to effectively reason about 

the measure of the set {~r e S IR+ I 7r(0) = so A ~r ~M g} under #80. 
First, we review some elementary algebra. An algebraic complex number is 

any complex number which is the root of a polynomial with rational coefficients. 
Properties of the algebraic numbers are derived in [8]; of particular interest to 
us is the fact that they constitute a field, and that the real and imaginary parts 
of an algebraic number are also algebraic. 

We will denote the set of complex numbers which are of the form )--]j r/j e~J 
where the r/j and gj are algebraic by EA. This set is a ring, and is referred to as 
the transcendental extension of A by e [8]. 

Tarksi [11] proved that the theory of the field of complex numbers (i.e. the 
theory of the structure < r  +, • 0, 1>) was decidable; an effective (in the recur- 
sion theoretic sense) procedure for converting formulas to a logically equivalent 
quantifier free form was given. Consequences of this result include.the existence 
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of effective procedures for determining the number of distinct roots of a polyno- 
mial, and testing the equality of algebraic numbers defined by formulas. 

We now demonstrate how to measure the set of paths which start at a desig- 
nated state and satisfy a specified path formula. Consider a path formula of the 
form r 1,bl]r U[a2,b2]r " " �9 

First, consider the case where the time intervals [al, bl], [a2, b2],.., are non 
overlapping. 

We define the following matrices. 

- a transition matrix Qi , i  obtained from A, that  treats [ r  as an absorbing 
set of states. This is obtained by using 

q ( j ,  k )  = Aj ,k  i f  j E ~)ilM 
= 0  if j E [ r  

this enables us to model the transitions where the Markov chain remains in 

[r 
- a transition matrix Q~-l,i obtained from A, that  treats [ r  N ~r as 

an absorbing set of states. For this we use 

q ( j ,  k )  = )~j,k if j e [r U [r 

this allows us to model the transitions from [r to [[r 
- -  An indicator ma t r ix / i  for [r such that 

I ~ ( j , k ) = l  if j = k e [ r  

= 0 otherwise 

Hence, the probability of a formula of the form 

k = U[oo,bo]r (t) 

is given by 

f f ( f ~ )  = 7r, �9 P o , o ( a , )  �9 Io �9 Po ,~ (b ,  - a , )  �9 t t  �9 P t , ~ ( a 2  - b , )  �9 

I1 �9 P1,2(b2 - a~) . f2  " '"  P n - l , n ( b ,  - a n )  �9 In  �9 1 (2) 

where Pl,,~(t), t > 0 is the one step transition matrix for time t corresponding 
to the rate matrix Qz,,~, 7rs is the starting probability distribution, which in our 
case has unity for state s and zeros otherwise, and 1 is the column vector whose 
elements are all 1. For a finite state Markov chain with a transition rate matrix 
Q, this matrix is given by 

Note that Q is composed of rational entries, and the arguments of Pi=-l,i 
are rationals (since ai, bi are rational). This observation leads to the following 
lemma: 
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L e m m a  2. Each element of the Pl,m (t) matrices may be expressed as )-~j yjeSJ 

where r]j and 5j are algebraic complex numbers. 

Proo f .  Any square matrix B can always be expressed in Jordan canonical form [7], 
i.e. in the form C- J .  C -1. Here J is an upper block diagonal matrix as shown 
below: 

01 J2 o . . . o  
�9 . . J 3  0 

J .  

The diagonal entries of each Ji are the eigenvalues of B, and the remaining 
entries of J~ are unity, as shown below: 

The size of Ji is equal to the multiplicity of X~. Since the eigenvalues are the 
solutions of the characteristic equation of B and the entries of B are rationals, the 
eigenvalues are, by definition, algebraic complex numbers. Similarly, the entries 
of C, C-1 are also algebraic complex numbers. 

The matrix e s t  is equal to C .  e J t  �9 C - 1  and e J t  is of the following form: [e!0 01 e J2t 0 . . .  0 

�9 " e J 3 t . ' '  0 

�9 . . e J ~ t  

The sub-matrix e J i t  is of the %rm 

o' e ;' 't t~ ~'~ ( t '~ ' -~d"~)/(m~ - 1)! 

e ) ~ i t  

By i n s p e c t i o n ,  the elements of e y~t are members of E~t. Since EA is a ring, 
it is closed under products and sums. Hence the lemma follows. I t  also follows 
that t d ( f l )  is a member of E,4 i.e. equal to an expression of the form ~ k  r]k e~k 
where the qk, 8k are algebraic. [] 
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Consider again the expression for #~ (fl)  = ~ a  ~?ke *k �9 The (fk's are algebraic; 
since are effective procedures for checking the equality of algebraic numbers, 
#S(fl)  can be effectively simplified to an expression of the form ~ k '  ~/k 'e*k' 
where the qa,'s are non zero, and the (~k,'s are distinct. 

In order to decide i f #  ~ (f l)  > c, we exploit a celebrated theorem of transcen- 
dental number theory [8]. 

T h e o r e m  3 ( L i n d e m a n n - W e i r s t r a s s : ) .  Let e l , . . ,  cn be pairwise distinct al- 
gebraic numbers belonging to ~. Then there exists no equation ale cl + . . .  + 
ane c~ --= 0 in which a l , . . . ,  am are algebraic numbers and are not all zero. 
Historical note:This result implies the transcendence of ~r (take n = 2, cl = 
2, c2 = i~r); it was the first proof of the non-algebraic nature of 7r. For a highly 
readable account of the development of this theorem, refer to [5]. 

Suppose the expression ~ k '  ~ 'ezk' is degenerate, i.e. it consists of a single 
term of the form ~0. Then the expression denotes an algebraic number~ and it 
can be effectively checked ff it is greater than c. 

If it is not degenerate, invoking the Lindemaan-Weirstrass theorem and 
noting that  c is rational, we see that #8(f l)  can not be equal to c and so 
I c I>  0. 

Decidability of model checking follows from the following lemma. 

L e m m a  4. Given a transcendental real r of the form ~ j  ~lje 5j where the r/j and 
5j are algebraic complex numbers, and the 5j's are pairwise distinct, there is an 
effective procedure to test if r > c for rational c. 

Proof. Suppose a sequence of algebraic numbers S1, $2 , . . .  such that  I r - Sk I < 
2 -k can be effectively constructed. Let I r - c I = a > 0. By the triangle inequal- 
ity, I r - c l  < I r - R e ( S k ) [  + l R e ( S k ) - c  I. Hence I r - R e ( S k ) l  + IRe(Sk) - -c  I 
is bounded away from 0 by a. Since r is real, I r - Re(Sk) i -< I r - (Sk) ! < 2-k,  
and I r -  Re(Sk) + IRe(&)  - c I is bounded away from 0 by a, for sufficiently 
large k, it must be that I R e ( ~ )  - e I > 2-k. The sign of of Re(Sk) - c is the 
sign of r - c. 

In order to construct the sequence $1 ,32 , . . . ,  we use the fact that e ~ can 
be approximated with an error of less than e (when e < 1) by taking the first 
[(3. ] z 12/e)] + 1 terms of the Maclaurin expansion for e ~ . This can be extended 
to obtain an upper bound on the number of terms to sum for an expression of 
the form ~ j  Oje ~j (which being the finite sum of algebraic numbers is algebraic) 
in order to achieve an error of less than c. m 

Now consider the case where the successive intervals where the transitions 
are desired ([ai, bi], i = 1, 2 , . . .  are allowed to overlap. Since a formula is finite, 
we can have a finite number of overlapping intervals. A key observation is that  
the finite number of overlaps allows us to partition the time in a finite number 
of non-overlapping intervals and write the probability of the specification (set of 
acceptable paths) as a sum of the probabilities of disjoint events. This enables 
us to write #~(fl)  as the sum of exponentials of algebraic complex numbers, 
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weighted by algebraic coefficients. To illustrate this, consider the formula 

f2 = •OU[al,bi]et U[a2,b2]r 

where 0 < al < a2 < bl < b2. In this case, we may realize f2 as one of four 
disjoint cases and hence we can write 

. s  = us (r 1 ,o2] r VEo ,bl]r + U s (r UEbl,b ]r 

+ UEo2,b ]r (3) 

The first three terms are equivalent to the case with non-overlapping inter- 
vals. The last term involves having both the [r -'+ [[r and [[r -'+ 
[[r transitions in the same interval [a2, bl] in the correct order. This may be 
evaluated by integrating the probabilities over the time of the first transition. 

U~(r162162 = r ,  Po,o(a2)Io Po,o(t - a2)IoQo,lI1P1,2(bl - t ) hd t  
2 

It is clear that since the integrand involved algebraic terms and and exponentials 
in algebraic complex numbers and t, the definit.e integral with rational limits can 
be written in the form of a sum of exponentials of algebraic numbers with alge- 
braic coefficients. Hence, this term is in EA. The other three terms in equation 3 
correspond to forms equivalent to the non-overlapping intervals case, and hence 
already satisfy the decidability criteria. ., 

4 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We have defined a logic for specifying properties of finite state continuous time 
Markov chains. The model checking problem for this logic was shown to be de- 
cidable through a combination of results in algebraic and transcendental number 
theory. In practise we believe that a model checker can be built using conven- 
tional numerical methods for computing probabilities of events in continuous 
Markov chains. 

In the future, we intend to study synthesis of specifications in the logic. We 
are planning to use some of the techniques used in this paper to derive decid- 
ability results for analyzing dynamical systems which evolve using exponential 
laws. 
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Abs t r ac t  

This paper presents an approach to verifying that a circuit as described by a 
continuous, differential equation model is a correct implementation of a discrete 
specification. The abstraction from continuous trajectories to discrete traces is 
based on topological features of the continuous model rather than quantizing 
the continuous phase space. An practical verification method based on numerical 
integration is presented. The method is demonstrated by the verification that a 
toggle circuit satisfies a discrete specification. 

1 I n t r o d u c t i o n  

Most research in hardware verification has been based on discrete models for 
circuit behavior [Gup92]. In many high performance designs, discrete models 
are inadequate. Details of transition times, slew rates, capacitive coupling, etc. 
can be crucial for the correct operation of such designs. Accurate models for 
these phenomena are typically expressed as systems of non-linear differential 
equations. Thus, it becomes important to verify that a circuit modeled by non- 
linear differential equations is a valid implementation of a discrete specification. 

This paper presents an approach to this problem based on methods from 
dynamical systems theory. Safety properties of the continuous model are verified 
by demonstrating the existence of suitable invariant manifolds in the continuous 
phase space. Interface specifications are expressed as constraints on the relation- 
ship between signals and their time derivatives, and continuous trajectories are 
mapped to discrete traces rather than attempting to discretize the continuous 
phase space to define discrete states. This topological approach to describing 
behavior is described in section 3. 

Section 5 describes the verification method. The continuous system is veri- 
fied by computing a conservative bound on the reachable region of the system 
throughout a continuous integration. The reachable region is represented by its 
projection onto planes defined by pairs of the continuous variables. This approach 
allows standard computational geometry algorithms to be used to maintain the 
data structure for the reachable region, and it avoids the exponential complexity 
of explicitly representing a high-dimensional object. A numerical integrator is 
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used to determine the evolution of the reachable region. This approach is demon- 
strated by verifying that a toggle circuit implements its discrete specification. 
The circuit is described in section 4, and section 6 presents its verification. 

Recently, there has been a large interest in the verification of continuous sys- 
tems. Much of this is based on linear automata models [OSY94] which cannot 
be applied directly to the non-linear models of VLSI circuits. Henzinger and 
Ho [HH95] showed how these methods could be applied to non-linear systems 
by constructing asymptotically equivalent linear descriptions. The approach pre- 
sented here differs from theirs in that the verification is performed directly on 
the system on non-linear differential equations. This facilitates using ideas from 
dynamical systems theory both for the specification and the verification of the 
design. Kurshan and MeMillan [KM91] presented the verification of an arbiter 
circuit using a circuit model similar to the one used this paper. They partitioned 
the phase space into fixed boxes and computed a next-state relation between 
these boxes by integrating the non-linear circuit model for fixed time steps. This 
leads to an interaction of the time step size and the box size that is avoided by 
the methods presented here. 

2 A D i s c r e t e  T o g g l e  

In this paper, discrete behaviors are described using finite state automata. A 
finite state automaton is described by a quadruple (I, O, A Q0), where I is a 
set of binary valued inputs and O is a set of of binary valued outputs. The state 
space, S, is 2 IU~ For s E S, v(s) denotes the value of input or output v in 
state s. The set of initial states is given by Q0, with Q0 c_ S, and A is the state 
transition relation with A_C_ S • S. A t race  is a sequence of states, s0, s l , . . . ,  
such that so E Q0 and Vi. (i > 0) ~ (si, si+l) e z~. The state transition relation 
is partitioned into circuit actions and environment actions. A circuit action only 
changes the values of Outputs and an environment action only changes the values 
of inputs. More formally, 

V(s~, s~) e a .  (V,~ e I .  v(s~) = '~(s2)) V ('r O. v(s~) = v(s~)) 

A simple toggle element has a clock input ~5 and two outputs a and b. the 
singleton initial state set {(F, F, F)}, where F denotes the logical value false and 
state triples are written (4~, a, b). The state transition relation is 

{ ((F, F, F), (T, F, F)), ((T, F, F), (T, T, F)), ((T, T, F), (Y, T, F)), 
((F,T,F), (F,T,T)), ((F,T,T), (T,T,T)), ((T,T,T), (T,F,T)), 
((T, F, T), (F, F, T)), ((F, .F, T), (F, F, F)) } 

Figure 1 depicts the state space and state transition relation of this toggle 
embedded in a binary 3-cube. The salient features of this circuit description 
include: 

Environment assumption: The clock input # only changes in states where no 
circuit actions are enabled. 
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(i) 

A 
~ s  . . . . . . . . . . . . . . .  ( I ' ,F,T) 

~,T,F) -~---t.... (!:,T,T~ 

(F,r,F)-- ~ (F,r,T) 

Fig. 1. A Discrete Toggle Element 

Toggling: The period of the cycle of states for the toggle is twice the period of 
the clock input. 

Compositional elements: The a output makes exactly one low-to-high and one 
high-to-low transition during each cycle of states. Likewise for the b output.  
This allows, for example, a counter to be constructed by connecting the out- 
put of one toggle element to the input of another as long as the environment 
assumption can be shown to be satisfied. 

Continuous behaviors can be described using ordinary differential equations 
(ODEs). By analogy with a finite state automaton, we describe ODEs with a 
tuple, ( I ,  Pz,  O, 5, Q0). 2: is a set of real-valued inputs, and Pz  is a condition 
that  must be satisfied by the inputs. For example, we assume that  inputs are 
a continuous, bounded functions of time; additional conditions for inputs are 
described in section 3. O is a set or real-valued outputs. If the model has di 
inputs and do outputs, then the state space is R d where d = di + do. The 
derivative function, 5 : R ~ --+ R d~ gives the time derivative of each output  as a 
function of the current state. The initial point is any point in Q0 where Q0 c R d. 
We assume that  5 is Lipschitz, and that  the inputs are continuous functions of 
time. These conditions guarantee that  the outputs are uniquely defined for any 
inputs and initial state. We call a tuple, (E, Pz,  O, 5, Q0) a c o n t i n u o u s  m o d e l .  

A continuous model defines a set of trajectories. A trajectory, ~ is a differ- 
entiable function from time to R d where 

?(o) e e0 
A 

d 
A = 0( ,7 ) )  

Given a continuous model ~2 and a finite state automaton F,  an abstraction 
function maps trajectories o f /2  to traces of F.  We say that  12 is an implemen- 
tat ion of F with abstraction function A iff for every trajectory ~ of I2, A(~) is a 
valid trace of F .  Note that  abstractions map continuous trajectories to discrete 
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traces rather than states to states. In this approach, discrete behaviors can be 
understood as topological properties of families of trajectories which allows con- 
cepts from dynamical systems theory to be applied to the problem of verifying 
that  a continuous model of a circuit satisfies a discrete specification. 

3 C o n t i n u o u s  R e a l i z a t i o n s  o f  D i s c r e t e  B e h a v i o r s  

v0, 5 ,  " ~ "  v~, v~, 

T h e  Annulus 

~ i ', 2 ', 3 : 4 ', 
. . . . . . . . .  r . . . . . . . . .  r . . . . . . . . .  r . . . . . . . . .  ~ - ' %  ......... �9 . . . . . . . . . . . . . . . . . .  ,,...% 

A " t y p i c a l "  t r a j e c t o r y  

I 

A " r i c o c h e t "  t r a j e c t o r y  

Fig. 2. Brockett's Annulus 

Figure 2 depicts an annulus proposed by Brockett [Bro89] that  provides a 
topological basis for mapping continuous trajectories to discrete behaviors. When 
a variable is in region 1, its value is constrained but its derivative may be either 
positive or negative. When the variable leaves region 1, it must enter region 
2. Because the derivative of  the variable is positive in this region, it makes a 
monotonic transition leading to region 3. Regions 3 and 4 are analogous to re- 
gions 1 and 2 corresponding to logically high and monotonically falling signals 
respectively. Because transitions through regions 2 and 4 are monotonic, traver- 
sals of these regions are distinct events. This provides a topological basis for 
discrete behaviors. Furthermore, the horizontal radii of the annulus define the 
maximum and minimum high and low levels of the signal (i.e. Vow, Voh, Vu, and 
Vlh in figure 2). The maximum and minimum rise time for the signal correspond 
to trajectories along the upper-inner and upper-outer boundaries of the annulus 
respectively. Likewise, the lower-inner and lower-outer boundaries of the annulus 
specify the maximum and minimum fall times. 

If the annulus is given by two ellipses, then the trajectories corresponding to 
the inner and outer boundaries of the annulus are sine waves, and it is tempting 
to think of these as giving upper and lower bounds for the period of the signal. 
This is not the case. First, note that  a signal may remain in regions 1 or 3 
arbitrarily long. This is essential when verifying the toggle where we must show 
that  the output satisfies the constraints assumed of the input, even though the 
period of the output is twice that of the input. Furthermore, the signal is not 
required to spend any time in regions 1 and 3. The minimum period signal 
corresponds to a "ricochet" trajectory as depicted by the solid curve in the right 
most plot of figure 2. The period of this signal can be much less than that  of the 
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sine wave corresponding to the outer boundary of the annulus (the dashed curve). 
It is desirable to independently specify constraints on signal levels, transition 
times, and period. We achieve this by imposing minimum times that a signal 
must remain in regions 1 and 3. This construction allows a large class of input 
signals to be described in a simple and natural manner. 

To verify safety properties of a continuous model, we establish the existence 
of an invariant manifold in R d. ~u then show that all trajectories starting from 
points in the initial region are contained in this manifold, and that all trajectories 
in this manifold satisfy the specification. This technique is the continuous analog 
of using discrete invariants to verify properties of state transition systems [LS84]. 

For the toggle element, all trajectories in the invariant manifold should have 
a period twice that of the clock signal. This notion can be formalized using a 
Poincard section [PC89]. Let r be the continuous signal corresponding to ~5 and 
let c be some constant with Voh < C < Yll. Consider the intersection of the 
manifold with the r = c hyperplane. These intersections form a Poincard map. 
This intersection must consist of four disjoint regions (two for rising r crossing 
c, and two falling crossings) and all trajectories must visit these four regions in 
the same order. Continuous trajectories can be mapped to discrete sequences of 
the discrete toggle described in section 2 by mapping regions of the manifold to 
states of the discrete toggle. The toggle element is compositional if it there is 
an output variable such that for all trajectories in the manifold, the value and 
derivative of this variable satisfy the constraints of the input ring. It must also 
be shown that this output satisfies the minimum high and low time constraints. 

4 A toggle circuit 

Schematic 

I j ".. i " of ~,go~ o,~,,,,, 

r of ~gglr elcme~l 

Q 

x 

State Transition Diagram 

Fig. 3. Yuan and Svensson's Toggle 

Figure 3 shows a toggle circuit that was originally published by Yuan and 
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Svensson [YS89]. The operation of this circuit can be understood by using a 
simple switch model starting from a state where the r input is low. In this case, 
y will eventually become high, z is floating, and x is the logical negation of z. 
If We assume that the value stored on node z is a well-defined logical value, 
then the circuit has two possible states when r is low: (x,y, z) = (L, H, H), 
and (x,y,z) = (H, H, L). Starting from these two states, we can derive the 
corresponding stable successor states for when r is high. If the circuit is allowed 
to reach a stable state before each transition of the r input, then it implements 
a toggle as illustrated by the state transition diagram shown on the right half of 
figure 3. 

The analysis presented in this paper is based on a simple circuit model using 
a standard, first-order transistor model [GD85] with three regions of operation: 
cut-off, saturation, and "linear." Capacitors are of fixed value, and all capaci- 
tances are to ground. Using basic circuit analysis techniques, we obtain a system 
of non-linear differential equations that is our continuous model for the circuit. 
A more detailed description of this model is given in [GC94]. 

5 V e r i f i c a t i o n  

Let s be a continuous model. Properties of s can be verified by finding a man- 
ifold that contains all trajectories of s This can be done by starting with the 
initial region of the model and integrating the system of differential equations 
to compute a bounding region at each step. In the present work, variations in 
the input signal and initial state are considered, but the model parameters are 
fixed. Because the non-linear equations that arise from circuit models cannot be 
integrated analytically, this integration is performed numerically. Thus, this ver- 
ification requires an assumption of the validity of the numerical integrator. The 
verification described in this paper uses a fourth-order Runge-Kutta integrator 
adapted from [PF+88]. 

The Brockett annulus provides a convenient way to perform this integration. 
When the input signal r is in the first or third region of figure 2, either the 
N-channel or the P-channel transistors controlled by ~ are in cut-off. For typical 
CMOS circuits including the toggle this ensures that each node is either floating 
in which case the time derivative of its voltage is zero~ or that it there is a 
conducting path to either Vdd or ground, but not both. tn this case the voltage 
of the node asymptotically approaches the corresponding power supply value. 
Given a bounding region for trajectories upon entry to the first or third region 
of the annulus, 'we integrate for the minimum low or high time respectively and 
then determine the bounding box for the reachable region. For nodes that are 
asymPtotically approaching a power supply value, the box is expanded to include 
that value. The expanded box is nsed as the starting region for the next phase 
of integration. When r is in the second or fourth region, its value is changing 
monotonically. This allows the integration to be performed with respect to r 
which reduces the dimension of the phase space by one and reflects the natural 
dependence of the circuit on its input. 
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At each integration step, the reachable region is implicitly represented by a 
set of two types of constraints: simple and polygonal. Simple constraints give 
upper and lower bounds for the value of a single variable. Polygonal constraints 
give bounds on the values of pairs of variables: the polygon is a projection of the 
reachable region onto the plane corresponding to the two variables. In the cur- 
rent implementation, polygonal constraints are represented by simple, rectilinear 
polygons without convexity restrictions. Each polygon corresponds to a prism in 
the complete phase space, and the reachable region is represented by the intersec- 
tion of these prisms clipped by the simple constraints. This approach avoids the 
exponential growth in complexity that would occur if the reachable region were 
explicitly constructed and it allows efficient algorithms from two-dimensional 
computational geometry to be utilized. The representation is conservative; ac. 
cordingly, our verification method is sound but not complete. 

At each integration step, a conservative estimate of the bounding region is 
computed. For each face of the reachable region, a maximum outward translation 
is determined. This translation is an upper bound on the outward normal com- 
ponent of any trajectory starting from some point on the face. Since the entire 
face is translated outward by this amount, this bounds all trajectories starting 
from that face. By performing ibis computation for each face, a conservative 
estimate is obtained for the bounding region at the end of the integration step. 

Focusing on the non-degenerate cases 1, each face of the reachable region 
corresponds to a bound of a simple constraint or an edge from a polygonal 
constraint. If the constraint corresponds to a polygon edge, it gives an exact 
value for one variable and a bounding interval for the other. If the constraint is 
an upper or lower bound of a simple constraint, it gives a value for that variable. 
Given these explicit constraints~ bounds on other variables can be derived from 
the polygonal constraints, tn this way, we compute bounding intervals for each 
variable for each face. From this, maximum and minimum values are computed 
for the outward component of the derivative vector for points on the face. For 
models arising from CMOS circuit models, this requires calculating upper and 
lower bounds for the drain current of each transistor, and the monotonicity of the 
transistor model simplifies this calculation. Because a fourth-order integration 
algorithm is used, four of these derivative calculations are performed at each 
step, and an error estimate is calculated to adjust the step size. 

There are several details that must be considered. First, as the integration 
is performed, some polygon edges will grow. To avoid excessively conservative 
estimates of the reachable region~ edges are split into smaller edges when they 
exceed a pre-specified length. Conversely, when adjacent edges become suffi- 
ciently short, they are conservatively merged into a single edge for efficiency. If 
two polygonal constraints involve the same variable, then they each have edges 
corresponding to the maximum and minimum values of this variable. When one 
of these extremal edges is split, then it may be possible to compute a tighter 
bound for its outward derivative than for the corresponding edge of the other 

1 Zero_length polygon edges and coincident constraints can occur as a consequence of 
constraint splitting described shortly. 
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polygon. In this case, the unsplit edge may acquire an infeasible value at the 
end of an integration step. When this occurs, the algorithm solves the system 
of constrains and moves the infeasible edge to its maximally outward feasible 
position. 

In addition to the change of variables to integrate with respect to r it is 
sometimes convenient to perform additional changes of the variable of integra- 
tion. Once it is shown that some variable, u, changes monotonically with respect 
to r then u can be used as the variable of integration. This can provide tighter 
estimates of the reachable region, but it requires a relation to bound r given u. 
This relation can be represented by another polygon, and the polygon manipu- 
lation routines for the integrator can be used to perform this change of variables 
as well. 

6 V e r i f y i n g  t h e  T o g g l e  C i r c u i t  

The toggle element of section 4 can be verified by chosing an initial region and 
integrating that region through two periods of the clock input as described in 
section 5. An invariant manifold is identified by showing that the reachable re- 
gion at the end of this integration is contained in the initial region. By computing 
the intersection of this manifold with the r = 2.hvolts hyperplane, it is shown 
that the manifold has a period that is twice that of r as required. We use z 
as the output of the toggle, and by computing bounds on z and d z / d t  at each 
integration step, we show that z satisfies the same ring constraints as the input. 
Details of this process are described in the remainder of this section. 

The specification for the r input is an annulus whose inner-boundary corre- 
sponds to a I00 MHz., 4.5 volt peak-to-peak sine wave centered at 2.5 volts. The 
outer boundary corresponds to a 700 MHz. 5.5 volt peak-to-peak sine wave also 
centered at 2.5 volts. The large difference between these frequencies demonstrates 
the robustness of the toggle to variations in the input signal. The minimum high 
and low times for r are each 1 nano-second. This yields a minimum period of r 
of ,~ 2.87 nano-seconds which corresponds to a maximum frequency of 348 MHz. 

The circuit model is simplified by assuming that the capacitances at nodes 
xx ,  yy, and zz  are negligible, and a four-terminal device model is used for pairs 
of transistors of the same type in series. A 160 femtofarad load is added to the 
z node to simulate the effect of driving the r input of another toggle element. 
"Typical" values for the MOSIS 2# n-well CMOS process were used for the 
analysis. All transistors have a 2# gate length and shape factors are shown in 
figure 3. Diffusion and gate capacitances are included in the model; for simplicity, 
interconnect capacitance is ignored. 

The initial region is given by the constraints: r = 0.25; -0.1 ~ x _< 0.1; 
4.9 < y ___ 5.1; and 4.8 < z < 5.1. The integration starts with r entering the 
second region of Brockett's annulus. The integration is performed in four phases: 
(1) r rising and high, (2) r falling and low, (3) r rising and high, (4) r falling 
and low. Each phase is started with a new bounding box, and at the end of each 
phase, we verify that the reachable region is contained in the initial bounding box 
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Z 

Z 

Fig. 4. Reachable region for z and dz/dt 

for the next phase. This allows the four phases to be verified separately. After 
integration for two periods of r the reachable region satisfies the constraints: 
r = 0.25; - 1 . 5 7 . 1 0  -13 < x < 1.61.10-13; 4.99 < y_< 5.00; and 4.83 < z < 5.05. 
This demonstrates the existence of an invariant manifold as required. 

In most of the phases, only a single variable has any large change in its 
value, and it is sufficient to approximate the reachable region by a bounding 
box. However, in the phase where r and z make low-to-high transitions, x and 
y also make high-to-low transitions (see figure 3). The correct operation of the 
toggle requires that  y complete its transition before x goes too far low. In this 
phase, coupling of each pair of variables with polygonal constraints was required 
along with an additional change of variable of integration from r to y. 

At each step of the integration, bounds on z and dz/dt are computed. These 
are shown in figure 4 with the annulus used to specify the input. It can be seen 
that  z satisfies the specification for an input to the toggle. Furthermore, the 
integration shows that  the minimum low-time for z is at least 2.74 nanoseconds 
and the minimum high time is at least 2.16 nanoseconds. Thus, z satisfies the 
requirements for an input signal to the toggle. 
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The current implementation of the verification algorithm is only for proof of 
concept and no effort has been for optimization. The run-time is dominatedby 
the time for integration when z makes its low-to-high transition. When regions 
are'estimated using polygons with a 0.25 volt nominal edge length, this step 
takes about forty mint~tes on a 50 MHz SPARC 10. When the nominal edge 
length is increased to 0.5 volts, the verification can be performed in just over 
five minutes. Further work will be required to optimize the implementation and 
characterize its performance on a larger set of examples. 

7 Conclusions 

This paper has presented a method for verifying that a circuit modeled by a 
system of non-linear differential equations satisfies a discrete specification. The 
approach is based on topological properties of the continuous model. Verification 
of the continuous model is performed by numerical integration to determine a 
manifold containing all feasible trajectories. Properties of the trajectories can 
be derived from the manifold by using methods from dynamical systems theory 
such as Poinca% sections. 

The method has been applied to a toggle element. It was shown that the 
toggle operates correctly for a large class of input signals, and that its output 
satisfies the constraints required of its input. This means that these toggle ele- 
ments can be connected in a chain to form a verified ripple counter. Although 
the toggle is a relatively simple circuit, its complexity is comparable to that of 
many cells in a typical standard-cell library. A potential application of these 
methods would be to verify that such a library ,has been properly designed and 
characterized. 
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Abst rac t .  This paper presents a methodology ~br the verification of 
temporal properties of systems based on the gradual construction and 
algorithmic checking of fairness diagrams. Fairness diagrams correspond 
to abstractions of the system and its progress properties, and have a 
simple graphical representation. 
In the proposed methodology, a proof of a temporal property consists of 
a chain of diagram transformations, starting from a diagram representing 
the original system and ending with a diagram that either corresponds 
directly to the specification, or that can be shown to satisfy it by purely 
algorithmic methods. Each diagram transformation captures a natural 
step of the gradual process of system analysis and proof discovery. The 
structure of fairness diagrams simplifies reasoning about progress proper- 
ties, and the graphical representation provided by the diagrams enables 
the user to direct the construction of the proof. The resulting method- 
ology is complete for proving specifications written in first-order linear- 
time temporal logic, provided no temporal operator appears in the scope 
of a quantifier. 

1 Introduction 

This paper presents a methodology for the verification of temporal properties 
of fair transition systems based on the gradual construction and algorithmic 
checking of fairness diagrams. Fairness diagrams represent abstractions of the 
system, and provide a graphical formalism for the study of its temporal prop- 
erties. Fairness diagrams are graphs whose vertices are labeled by first-order 
assertions and whose edges are labeled by first-order transition relations. Their  
progress properties are represented by fairness constraints, which generalize the 
classical concepts of fairness [8]. 

In the proposed methodology, a proof of a temporal specification consists of a 
chain of diagram transformations, starting with a fairness diagram representing 
the original system and ending with a fairness diagram that  either corresponds 

* This research was supported in part by the National Science Foundation under grant 
CCR-92-23226, the Advanced Research Projects Agency under NASA grant NAG2- 
892, the United States Air Force Office of Scientific Research under grant F49620- 
93-1-0139, and the Department of the Army under grant DAAH04-95-1-0317. 
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directly to the specification, or that can be shown to satisfy it by purely al- 
gorithmic methods. Since the transformations preserve containment of system 
behaviors, the existence of this chain of transformations implies that the set of 
behaviors of the original system is a subset of the set of behaviors that satisfy 
the specification. 

Fairness diagram transformations are intended to capture the step-by-step 
nature of the process of system analysis and proof constructiom We introduce 
two types of transformations. The first type relies on the construction of sim- 
ulation relations between diagrams, and provides a flexible way to analyze the 
safety properties of the system. The second type relies on the proof of new 
progress properties of a fairness diagram. Once proved, these properties can be 
represented as fairness constraints and added to the diagram. The form of the 
fairness constraints has been chosen to make it possible to use simple but com- 
plete rules to reason about progress properties. The resulting methodology is 
complete for proving specifications written in first-order linear-time temporal 
logic, provided no temporal operator appears in the scope of a quantifier. 

Related work. Methods based on stepwise system transformations for the study 
of branching-time temporal properties of finite-state systems have been proposed 
in [3], and the use of simulation relations to study the temporal behavior of fair 
transition systems has been discussed in [4]. A related approach to the proof of 
temporal properties of systems is based on the use of verification diagrams [10, 1]. 
Like fairness diagrams, verification diagrams are graphs labeled with first-order 
assertions, and enable the proof of general temporal properties. Unlike fairness 
diagrams, verification diagrams represent a completed proof, and trade the ad- 
vantage of gradual proof construction for conciseness of proof representation. 

2 Fairness Diagrams 

A fairness diagram (diagram, for short) A = ('P, Z, V, p, T, 6~, iT) consists of the 
following components: 

1. A set Y of typed variables, called state variables. 
2. A state space Z: each state s E Z is a type-consistent value assignment of 

all the variables in ]2. For x E ]2, we denote by s(x) the value of x at state s. 
3. A set V of vertices. 
4. A mapping p : V ~ 2 E, that labels each vertex v E V with a subset 

p(v) C Z.  The set p(v) represents the possible states of the system when the 
diagram is at vertex v, and is specified by a first-order formula ~(v) over ~2, 
such that p(v) = {s e E i s ~ ~(v)}. 

5. A mapping r : V 2 ~-~ 2 E• that labels each edge (u,v) E V 2 with a relation 
T(u, v) C_ Z 2. The relation is specified by a formula ~(u, v) over )2, )3 I, such 
that T(U,V) = {(S,S') ] (S,S') ~ ?(U,V)}, where (s,s') interprets x E Y as 
s(x) and x' e ~' as s'(x). 

6. An initial region 8.  Regions are defined below. 
7. A ]airness set iT, defined below. 
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Locations and runs. A location of a diagram is a pair (v, s) : v C V, s E p(v) 
composed of a vertex and of a corresponding state. We denote by Ioc(A) = 
{(v, s) I v E V, s E p(v)} the set of all the locations of a diagram A. A location 
represents an instantaneous configuration of the diagram, similarly to a state of 
an FTS. A run of a diagram is an infinite sequence of locations (v0, so), (vl, sl), 
(v2,s2), . . . ,  such that  So E O(Vo), and (si, s~+l) C r(v~,v~+l) for all i > 0 

Regions. A region q~ is a set of locations. We denote by ~(v) the set of states 
{s E Z ] (v, s) E ~} that  are part of �9 at vertex v. A region �9 is represented 
by the set of formulas {~(v)}vey, where for each v C V the formula ~(v) over 
1; defines the set ~(v). We say that  �9 is an integral region if ~(v) is equal to 
either ~ or p(v) for every v C V. We can specify an integral region ~ by the set 
of vertices {v E V ~(v) ~ ~}. 

Modes. A mode ~ V 2 ~ 2 ~• labels each edge (u,v) E V 2 with a transition 
relation A(u,v) C_ ~-(u,v). For u,v C V, X(u,v) is represented by a formula 
~(u, v) over 12, 1; ~. A mode represents a subset of the possible transitions between 
locations of the diagram. An integral mode is a mode ~ such that  )~(u, v) is either 
O or T(u, v), for all u, v E V. We can specify an integral mode )~ by listing the 
set of edges {(u,v) [ A(u,v) r ~}. 

Fairness constraints. A fairness constraint (constraint, for short) is a triple (J, C, 
G), where J, C are regions s.t. C _ J and G is a mode. Constraints are used to 
specify the fairness properties of the diagram, and the fairness set J: is a set of 
constraints. 

A diagram must satisfy the eonsecution condition, which states that  if a 
transition is taken from a location, it will lead to another location: formally, for 
all u, v E V and for all s, t E E, 

s E A (s, t) e v) - ,  t e p (v ) .  

In the following, we denote by Cs the formula obtained from a first-order logic 
formula r by replacing each free x C F with x ~ E]Y. With this convention, the 
consecution condition holds iff the logical implication ~(u) A ?(u, v) -+ ~(v)  is 
valid for all u, v E V. 

The computations of a diagram are defined in terms of its accepting runs. 

D e f i n i t i o n l .  A run a : (v0,s0), (Vl,Sl), (v2,s2), . . .  of a diagram A is an ac- 
cepting run if the following condition holds. 

For each constraint (J, C, G) E jz, if there is n > 0 such that (vi, s~) E J 
for all ~ > n and (v~, si) E C for infinitely many i > O, then there are 
in.finitely many j > 0 s.t. (8 j , s j+l)  E G(vd,vd+I ). 

If ~r : (vo, so), (vl, Sl), (v2, s2) , . . ,  is an accepting run of A, the sequence of states 
so, sl, s2 , . . ,  is a computation of A. We denote by Runs(A), s  the sets of 
accepting runs and computations of A, respectively. | 
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According to the above definition, the informal reading of a constraint (J, C, G) 
is that  every accepting run that  stays in J forever and visits C infinitely often 
must follow a transition in G infinitely often. The chosen names J,  C and G re- 
flect the notions of Justice set, Compassion set and Gratify action that  describe 
fairness of transition systems in [8]. 

A fair transition system (FTS), defined as in [9], can be represented by a 
diagram having only one vertex. 

Construction 2 (from FTS to d i a g r a m ) .  Let S = (12, Z,  8, T, ,7 ,  C) be an 
FTS, where 12 is the set of state variables, Z is the state space, t9 c_ Z is 
the initial condition, T = {71,.-. ,Tin} is the set of transitions, and i7 C_ T, 
C c_ T are the just and compassionate transitions, respectively. The FTS can be 
represented by a diagram fd(S) = (~, Z,  V, p, T, O, jr), where ]2, Z are as in the 
FTS, V = {v0}, p(vo) = Z, O(Vo) = 8, and T and jr  are defined as follows. 

"~ t Z 2 1.  (v0,v0)= {(s ,s)I  s e ) e  I t e 
2. For 1 <  i < m, let Ei(vo) = Dom (7i), Gi(vo) = {(s,t) e i7 2 I t  �9 7{(s)}. If 

"y~ �9 `7 (resp. "y~ �9 C) we add (E{, El, G~) (resp. (loc(A), E{, Gi)) to $-. | 

We assume that  an FTS S includes among its transitions the idling transition, 
that  does not change the state. Given an FTS S, we will indicate with s  the 
computations admitted by S. Comparing the definitions of FTSs and diagrams, 
we have the following theorem. 

T h e o r e m 3 .  For an FTS S, s = LOrd(S)). 

3 F a i r n e s s  D i a g r a m  T r a n s f o r m a t i o n s  

The temporal behavior of a diagram is studied by means of diagram transfor- 
mations. These transformations preserve containment of behaviors, and they 
are reminiscent of the preorders of [3]. If a diagram A can be transformed into a 
diagram B by using one of the transformations, we write A =~ B. Since the trans- 
formations preserve containment of behaviors, A =~ B implies s C_ s  We 
will denote by =~ the reflexive transitive closure of =~. 

3.1 Simulation Transformations 

Simulation transformations transform a diagram into a new one, such that  the 
second diagram is capable of simulating the first one. These transformations 
modify the set of vertices of a diagram, rearranging the grouping of states in the 
vertices, and are used to study the safety properties of the diagram. 

A simulation relation between two diagrams A1 and A2 is a function V1 ~ 2 72 
from the vertices of A1 to those of A2, which induces a simulation relation that  
maps each location (u, s) of A1 into the subset [.Jvet,(~)(v, s) of locations of A2. 
The following rule determines whether there is a simulation relation between 
two diagrams. 
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A 1 

t~ t  

O: t=2Ax=O @: r t--1 x'=x+l A 2 t'=l x'=x+lA x'<lO 

t:'=t 

u3 x x+l^x<lO " ~  
x'=x + l V 3 

x'>=lO h O<t'<4 

Fig. 1. Fairness diagram A1 and A2, related by the simulation~ relation arising from 
#(m) = {vl,v4}, #(u2) = {v2,v4}, #(ua) = {v3,v4}. Variables not mentioned in the 
transition relations are left unchanged. 

R u l e  4 ( s imu la t ion ) .  Let A1 --= (12, Z,  V1, Pl, ~-1, O1, ~l ) ,  A2 = (]2, Z,  V2, P2, T2, 
02, J:2) be two diagrams sharing the same variables and state space. We say that 
A2 simulates A1, written A1 _~ A~, if there is a mapping # : V1 ~+ 2 y~ such that 
the following logical assertions are valid. 

1. For all u E V1, ~)l(u) --+ W e , ( , )  6)2(v). 

2. For allu, u' e 171 andv  e it(u), ( ' f i l(u)A'~(v)A~l(u,u')) ~ Vv, e~(~,) ?2(v,v'). 
3. For each (J2, C2, G2) e ~c2 there is (Jt ,  C1, G1) E Z1 such that the following 

conditions are satisfied, for all u e V1 and v E #(u): 

(a) (J2(v)A ~l(u)) -+ ~ ( u ) ,  and (C2(v)A ~l(U)) ~ Cl(u); 

(b) for all u' e~Vl, ( p ' l (U)A~(v )AGl (U ,  ut)) --+ Vv, e ,{u,)G2(v,v ' ) ,  ii 

T h e o r e m 5 .  I f  A~, A2 are two diagrams s.t. A1 ~ A2, then s _C s 

Proof. Conditions 1 and 2 insure that for each run al of At there is a related 
run a2 of A2. Condition 3 insures additionally that  if al is accepting, there is a 
related a2 of A2 which is also accepting. The result then follows from the fact 
that  the simulation relation is an identity with respect to the state space E. | 

T r a n s f o r m a t i o n  6 ( s i m u l a t i o n  t r a n s f o r m a t i o n ) .  Given two diagrams At, 
A2, if A1 ~ A2 we can transform A1 into A2. R 

E x a m p l e  7. Consider the diagrams A1 and A2 of Figure 1. With A1 are asso- 
ciated the fairness constraints 
C~ 1) = ({~1,1/,2, I/,3}, {t/,1}, {(t/,1, 'u,1)}), C~ 1) = ({'u,1, t/,2, u3} , {1/,3}, {(u3, I/,3)}) , 
c~ 1) = ({,~}, {~ } ,  {(~,,~1), (~,  u~)}), 
represented with the convention for integral regions and modes. With A2 are 
associated the constraints 

c~ ~) = ({v,, v~,,,~}, {,,1}, {(,~,, vl), (vl, v,,)}), 
c~ ~ = ({vt, ~ ,  v~}, {,~}, { (~,  ~),  (v~, v.,)}), 
c~ ~ = ({v~}, {v~}, {(,~,vl), (v~, v~)}). 

Since the function # of Figure 1 satisfies the conditions of Rule 4, A~ can be 
transformed into A2 using a simulation transformation. | 
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The proof of A1 ~ A2 using Rule 4 fails if there is a constraint (J2, C2, G2) E 
jr2 for which there is no constraint (J1,C1,G1) E jr1 that  satisfies conditions 
(3a) and (3b). In this case, to construct the simulation relation we must first add 
a suitable constraint to A1. This can be done using fairness transformations. 

3.2 Fa i rness  T r a n s f o r m a t i o n s  

Fairness transformations analyze the structure of a diagram to derive new con- 
straints that  can be added to the set j r  without restricting the set of accepting 
runs of the diagram. These constraints are said to be compatible, and they rep- 
resent progress properties of the diagram. 

De f in i t i on  8. Given a diagram A = (~2, Z,  V, p, T, O, jr) and a constraint (J, C, 
G), let A' = (37, Z,  V, p, ~-, 8 ,  jrU {(J, C, G)}) be the diagram obtained from A by 
adding (J, C, G) to the set jr. We say that  the constraint (J, C, G) is compatible 
with A if Runs(A) = Runs(A'). | 

T r a n s f o r m a t i o n  9 ( fa i rness  t r a n s f o r m a t i o n ) .  If diagram A' is obtained from 
diagram A by adding a compatible constraint, we can transform A into A t. | 

To prove that  a constraint is compatible with a diagram, we present veri- 
fication rules. These rules are related to the rules for response and reactivity 
properties presented in [7]. The structure of the constraints enables two sim- 
plifications. First, separate rules for response and reactivity properties are not 
needed, since constraints can represent both types of properties. Second, it is 
possible to decompose the rules of [7] into simpler ones while retaining com- 
pleteness. 

We present three rules for proving the compatibility of constraints. The 
first rule shows the compatibility of a constraint independently from other con- 
straints. The second rule uses one or two constraints in j r  to show that  a third 
one is compatible, and can be thought as a rule to concatenate constraints. The 
third rule can be used to show that  the union of constraints in j r  is compatible. 
Before presenting the rules, we introduce the notion of ranking functions. 

De f in i t i on  10. A well-founded domain is a set D together with an order rela- 
tion >, such that  there is no infinite descending chain do > dl > d2 > . . .  of 
elements of D. A ranking function ~ : loc(A) ~-~ D for a diagram A is a func- 
tion mapping pairs (v, s) E loc(A) into elements of a well-founded domain D. A 
ranking function 5 is represented by the family of terms {~(u)}~e7 on )2, where 
term ~(u) denotes a function p(u) ~-~ D. | 

R u l e  11 (single c o n s t r a i n t ) .  A constraint (J,C,G) is compatible with the 
given diagram if there is a ranking function ~ such that  the assertions 

J(u) ^ ~(u, v) -~ G(~, v) V ~(~) > ~'(~) V ~ 2 ( v )  

~ ( ~ ) ^ ~ ( ~ , v )  -* 0 (u ,v )  V~(~) > ~ ' ( ~ ) V ~ 2 ( ~ )  

are valid for all u, v E V. I 
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Jus t i f i ca t i on .  Assume that  the conditions of the rule are satisfied and assume, 
towards the contradiction, that  there is an accepting run a that  beyond position 
k > 0 stays forever in J and visits C infinitely often, without taking any transi- 
tiofi in G. Beyond k, the value of 5 along a will not increase, and wilt decrease 
each time a is in C. Since C is visited infinitely often, this contradicts the fact 
that  the domain of 5 is well-founded. | 

R u l e  12 ( c o n c a t e n a t i o n  of  cons t r a in t s ) .  A constraint (Y, C, G) is compat- 
ible with the given diagram if there is a constraint (Yo, Co,Go) E .~ with 
J(u) --+ ~ ( u )  for all u E Y and a ranking function ~ such that  the following 
logical assertions are valid. 

1. For all u, v E V, 

#(u) ^ ~(,~,v) ~ O(u,v) v-~2(v) v~g(,~) >'g'(v) 

J(~)^Oo(u,v) ---+ O(,~,,~)v-~2(~)v~(~) >~"(v). 

2. Either C(u) -+ Co(u) for all u C V, or there is ( J l , C l , a l )  E .~ such that  
for all u,v E V, .~(u) --+ [~(u)  v Co(u)], C(u) --+ [Cl(u) v Co(u)], and 

J(u)a~(,.,,,~) -~ d(u ,v)va; (v )vW'(v) ,  m 

Jus t i f i ca t i on .  Assume that  the conditions of the rule are satisfied and assume, 
towards the contradiction, that  beyond a certain position k > 0 an accepting 
run ~ stays forever in J and visits C infinitely often without taking transitions 
in G. Prom the first condition of the rule, beyond position k the value of ~ will 
not increase, and it will decrease whenever a transition in Go is taken. Thus, 
if we can prove that  infinitely many transitions in Go are taken we reach the 
desired contradiction. 

If C C_ Co, this follows from Y c_ J0 and (Jo, Co, Go) E ~ .  If C q2 Co, the 
region C - Co is non-empty, and'there are two cases. If c~ visits infinitely often 
Co, the result follows as before. If a beyond position j > 0 visits infinitely often 
C - Co without entering Co, then. a after j will be confined to J1 and will visit 
C1 infinitely often, and the result follows from (J1,C1,G1) E .T" and from the 
condition on G1 in the rule. | 

R u l e  13 (un ion  of  cons t r a in t s ) .  Given n constraints (J1, C1, G1), . . . ,  (Jn, C,~, 
G~) E .1 c and a region Jo, the constraint (J, C, G) defined by 

J = J o U O J ,  C = 0 C ,  Vu, v E V :  G(u ,v )=OG,(u ,v  ) 
i = 1  i = 1  i = l  

is compatible with the given diagram if there is a ranking function g such that  
the following assertions are valid, for 1 < i < n: 

~(~) A ~(~, ~) A 2~(~) -+ ~(~, v) v ~(~) > ~'(~) 

~(~)^~(~,~)A~2~(v) -~ ff(~,v)v~(~) >~ ' (v)v~2(~)  

~(u)^~(~,v)  -~ ~(~,~)v~(~) >~ ' (~ )v~2(v ) .  t 



295 

Justification. Assume that the conditions of the rule are satisfied and, towards 
the contradiction, that  beyond a certain position k > 0 an accepting run a stays 
forever in J visiting C infinitely often without taking transitions in G. As beyond 
k the value of 5 never increases, and decreases every time a leaves a region Ji, 
1 < i < n, a can leave only finitely many times every J~. Since Ci _C Ji for all 

n 1 < i < n and a visits infinitely often [.Ji=l Ci, there must be m C [1..n] s.t. 
eventually a is confined to J,~ and visits C,~ infinitely often. The contradiction 
then follows from the fact that (Jm,C,~,G,~) E Jr. | 

From the justifications of the rules, we have the following theorem. 

T h e o r e m  14 ( s o u n d n e s s ) .  If the conditions of each of the rules 11, 12 or 13 
are satisfied, the constraint ( J, C, G) is compatible with the diagram under con- 
sideration. 

Example 15. Consider diagram A2 of Example 7. Using Rule 13, it is possible 
to add to it the compatible constraint 

C# 2) = ({Vl,V2,V3},{Vl,V3},{(Vl,Vl),(Vl,V4),(v3,v3),(v3,?24)}) 
resulting from the union of C} 2) and C~ 2) . By Rule 12, with C# 2) for ( J  o, Co, Go) 

C~ 2) for (J1,C1,G1), and ranking function ~:(Vl) : 5(v2) : 5"(v3) : 1 0 -  x, 
5(v4) = 0, it is possible to add the constraint 

C~ 2) _~ ({Vl,V2,V3} , {vl ,v2,v3},  { (v l ,v4) , (v3,v4)}) .  
Let A~ be the diagram obtained by adding C (2) and C~ 2) to A2. Intuitively, C~ 2) 
represent the temporal progress property O(x >_ 10), satisfied by A~. | 

3.3 Completeness and Complexity Results 

The transformations introduced in the previous sections are complete for proving 
the compatibility of fairness constraints, as the following theorem states. 

T h e o r e m  16 ( c o m p l e t e n e s s  for  c o n s t r a i n t s ) .  Given a diagram A and a con- 
straint ( J, C, G), if ( J, C, G) is compatible there is a sequence of transformations 
A ~ B, where the diagram B is obtained from A by adding (J, C, G) to jr. 

The proof of this theorem is rather lengthy, and follows the general line of 
the completeness proof for reactivity and response rules presented in [7]. The 
complete proof is given in [2]. To state the completeness theorem for transition 
systems we need an additional definition. 

De f in i t i on  17. A diagram A = (]2, Z,  V, p, % (9, 5 ~) is state-deterministic if for 
all u, v, w E Y with v ~ w it is (9(v) N ~9(w) = l0 and z(u, v) A "r(u, w) = O. | 

T h e o r e m  18 ( c o m p l e t e n e s s  for transition systems). Let A = fd(S) for an 
FTS S, and B be a state-deterministic diagram. If s C_ s there is a chain 
of transformations A ~ B. 

The proof of this theorem relies on Theorem 16 for the fairness part, and 
follows otherwise from the existence of chains of simulation relations between 
diagrams derived from FTSs and deterministic diagrams. 
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Complexity of transformations. To establish a simulation transformation A1 
A2 using Rule 4, the number of logical formulas to be considered is O(]V112. IV2 I), 
where V1, V2 are the set of vertices of A1, A2 respectively. 

To a d d  a constraint to a diagram A, the number of logical formulas to be 
considered is O(IVI 2) using Rules 11, 12, and O(nlVI 2) using Rule 13, where n 
is the number of constraints whose union is taken. These bounds, however, refer 
to the worst-case complexity. If these transformations are used to do a local 
analysis of a diagram that  involves only few vertices, the number of non-trivial 
logical formulas to be proved does not necessarily ~ncrease when the size of the 
diagram increases. 

4 P r o v i n g  L i n e a r  T e m p o r a l  L o g i c  P r o p e r t i e s  

Let TL~ be the class of temporal formulas obtained by combining first-order 
logic formulas using propositional connectives, the future temporal operators O 
(next), [] (always), O (eventually), L/ (until), and of the corresponding past 
ones @, [3, ~ and S [8]. Note that  in a formula r E TL~, no temporal operator 
occurs in the scope of a quantifier. 

Given an FTS S and r E TLs, in this section we present two methods 
for proving that  all computations of S satisfy r written S ~ r According to 
the first method, we construct from r a deterministic Streett automaton Me, we 

translate it into a diagram fd(Mr and we show that  fd(S) :~ fd(Mr According 
to the second method, we construct a nondeterministic Streett automaton N~r 

representing -~r and we show that  fd(S) =~ B, where B is a diagram s.t. s  ,'l 
s162 = 0 can be shown using algorithmic methods. The Streett automata 
used in the above methods are a first-order version of the classical ones [11]. 

Def in i t i on  19 ( S t r e e t t  a u t o m a t o n ) .  A (first-order) Streett automaton A con- 
sists of the components (12, S,  (V, .E), p, Q, A), where Y, Z,  p are as in a diagram; 
(V, E) is a directed graph with set of vertices V and set of edges E _C V 2 ; Q c_ V 
is the set of initial vertices, and A, called the acceptance list, is a set of pairs 
(P ,R)  : P, R C v .  

A run a of A is an infinite sequence of locations (Vo, so), (Vl, sl), (v2, s2),. .  �9 
such that  Vo E Q and s~ E p(v~), (v~,v~+l) E E for all i >_ 0. Run a is an 
accepting run of A if the following condition holds: 

For each pair (P, R) E A, either vi E R for infinitely many i E IN, or 
t, here is k E IN such that v~ E P for all i > k. 

The set of accepting runs (resp. computations) of a Streett automaton A is 
denoted by Runs(A) (resp. s | 

Given a Streett automaton M, we can construct a fairness diagram fd(M) 
such that  t:(fd(M)) = E(/P!). 

C o n s t r u c t i o n  20 ( f rom S t r e e t t  A u t o m a t o n  to  d i a g r a m ) .  Given a Streett 
automaton M = (12, E', (V, E), p, Q, .A) we can construct a fairness diagram 
fd(M) = (!,', S,  V, p, r, 69, Y0 as follows. 
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1. For all u, v �9 V, T(U, V) = p(u) X p(v) if (U, V) �9 E, and T(U, V) = 0 otherwise. 
2. o = I �9 q ^ s  �9 
3. 5 r consists of all constraints (J, C, G) such that there is (P,R) �9 A for 

"which i f =  C = {(u,s) ! u �9 Y -  P A s  �9 p(u)}, and for all u,v �9 V, 
G(u, v) -= T(U, V) if V �9 R, and G(u, v) = r otherwise. | 

4.1 The  Trans fo rma t ion  M e t h o d  

For a temporal logic formula r �9 TLs, let /:(r be the set of computations 
that satisfy r Let Me be a deterministic Streett automaton such that / : (Me) = 
/:(r This automaton can be constructed from r with the methods explained 
in [6, 11, 12]. We can thus formulate the first proof strategy. 

Proof Strategy 1. To prove S ~ r for FTS S and a formula r �9 TL~, construct 
a chain of transformations fd(S) ~ fd(Mr | 

T h e o r e m  21. Proof Strategy 1 is sound and complete for proving S ~ r for an 
FTS S and r E TLs.  

Proof. The soundness result follows from s = E(fd( S) ) C s Mr ) ) = ~1(r 
Since Me is deterministic, fd(Mr is state-deterministic, and the completeness 
result follows from Theorem 18. | 

The drawback of Strategy 1 is that, in the worst case, the number of vertices 
of Me is doubly exponential in the size [r of the specification r 

4.2 The  P r o d u c t  M e t h o d  

Given a temporal formula r E TLs, it is possible to construct a nondeterministic 
Streett automaton N~r s.t. s162 = s162 The automaton N~r has number 
of vertices that is singly exponential in Ir To prove Z:(S) _C_ ~1(r for an FTS 

S, it suffices to construct a chain of transformations fd(S) ~ B ending with a 
diagram B s.t. Z:(B) A f~(fd(N~r = 0 can be shown with algorithmic methods. 
The emptiness problem of ~:(A)N/:(B) for diagrams A, B is undecidable: in the 
following, we give a computable sufficient condition for s N Z:(B) = 9. 

Let F L  be the first-order logic language with interpreted function and pred- 
icate symbols in which the assertions labeling the diagrams and the first-order 
part of the temporal specifications are written. Assume that we have a proof pro- 
cedure F for F L  that always terminates, and that is able to prove a subset of the 
valid sentences that includes all substitution instances of propositional tautolo- 
gies. Given r E FL, if F terminates with a proof of r we write F r otherwise we 
write ~/r To obtain a sufficient condition for the emptiness of the intersection 
of diagram languages, we construct the graph product of the diagrams. 

Cons t ruc t ion  22 (graph p roduc t  of  d iagrams) .  Given two diagrams A1 = 
(Y, Z,  VI, pl, TI , O1,.~I), A2 = (Y, Z ,  V2, p2, T2, 02, ~2) their graph product A1 | 
A2 -- ((V, E), V~,~, G) consists of a graph ( V, E), of a subset Vi,~ _C V of initial 
vertices, and of a set G of triples of the form (P, Q, R) : P, Q c V, R c_ V 2. These 
components are defined in terms of the components of A1 and A2 as follows. 
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i .  17 = { (V l ,V2)  e I/1 x V~I F/'-~(~(Vl) A ~(V2))}.  

2. v~, = { (v~ ,~)  e v l u  A ~ (v~ ) ) } .  
~. E = {((~l,~2),(vl,v2)) e v~ [ v~(~l(~l ,v l )A~2(~2,~))} .  
4. For i = 1, 2, to each constraint (J, C, G) E jr~ corresponds the triple 

(~(J, i), ~(C, i), ?r(G, i)), where ~ and 7r are defined by: 

~(~,i) = { ( ~ , ~ )  c v I ~ (~(~)  ~ ~(~))} 

~(~,~) = {((~,~2), (~,,~)) c E] V ~ ( ~ , ~ ) } ,  
for all regions ~ and modes A of A~. The set G is then 

6={(a(J,i),a(C,i),z~(G,i)) ] I < i < 2 A ( J , C , G )  eF~} .  | 

Th eo rem 23. Given two diagrams A, B, let A | B = ((17, E), V~, G). A suffi- 
cient condition for s163 = O is that for each strongly connected component 
U C V of(V,E) reachablefromV~ there is (p,Q, n) ~ g s.t. u c_ p ,  u n Q  r 0, 
and (u, v) r R for all u, v E U. 

Proof Strategy 2. To prove S ~ r for an FTS S and a formula r E TL~, construct 
a chain of transformations fd(S) ~ B to a diagram B s.t. E(B) ns162 = 0 
can be proved using the condition of Theorem 23. | 

Example  24. If r : �9 _> 10), the Streett automaton N-~r will consist of only 
one vertex, labeled with x < 10. Using Theorem 23, it is easy to check that the 
graph product of N~e and diagram A~ of Example 15 has empty language. I 

T h e o r e m  25. Proof Strategy 2 is sound and complete for proving S ~ r for an 
FTS S and r E TL~. 

Proof. The soundness part is a consequence of the previous definitions. Let 
fd(Mr be the deterministic diagram corresponding to r as in the previous strat- 

egy. If S ~ r there is a chain of transformations fd(S) ~ fd(Mr and from the 
construction of fd(Mr it can be seen that the graph product fd(Mr | fd(N~r 
satisfies the condition for emptiness of Theorem 23. I 

Note that we still need a complete deductive system for the interpreted first- 
order language FL to perform the diagram transformations, in order to retain 
the completeness results expressed by Theorems 16~ 18 and 25. 

From the above proof, we see that there is a final diagram B for strategy 2 
with number of vertices at most doubly exponential in [r In fact, if the state 
Space Z of the FTS if finite, it is possible to show that there is a diagram B with 
number of vertices bound by ]ZI, so that the number of vertices of B | fd(N~r 
is at most singly exponential in ]r similarly to the case of finite-state model 
checking. 

For systems with an infinite number of reachable states, the worst-case com- 
plexity of strategy 2 is not better than the one of Proof Strategy 1. However, in 
most cases an FTS S will satisfy a specification r by exhibiting a set of com- 
putations s significantly smaller than E(r Thus, the diagram B of Proof 
Strategy 2 in general is smaller than fd(Mr so that Proof Strategy 2 is often 
more convenient than Proof Strategy 1. 
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5 Conclusions  

Fairness diagrams provide a methodology for the proof of temporal  specifications 
of systems. They can also be used as a graphical specification language. Since 
both vertices and edges .are labeled with first-order assertions, fairness diagrams 
have the advantage over traditional temporal  logic (and similarly to TLA [5]) of 
providing a simpler representation for specifications that  involve coflditions on 
both system states and actions. 

While we have given completeness results on the existence of chains of trans- 
formations, we have not discussed how to obtain guidance for their construction. 
When the specification has a simple temporal  form, the graphical representation 
of the diagrams often captures enough intuition about the system to guide the 
construction of the chain of transformations. We intend to address the question 
of guidance and heuristics for chain constructions in future work. 

Acknowledgements. We would like to thank Anca Browne, Henny Sipma and 
Toms Uribe for helpful comments and suggestions. 
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Abstract. We present a new approach for using a theorem-prover to verify the 
correctness of protocols and distributed algorithms~ The method compares a state 
graph of the implementation with a specification which is a state graph repre- 
senting the desired abstract behavior. The steps in the specification correspond to 
atomic transactions, which are not atomic in the implementation. 
The method relies on an aggregation function, which is a type of an abstraction 
function that aggregates the steps of each transaction in the implementation into 
a single atomic transaction in the specification. The key idea in defining the 
aggregation function is that it must complete atomic transactions which have 
committed but are not finished. 
We illustrate the method on a simple but nontnvial example. We have successfully 
used it for other examples, including the cache coherence protocol for the Stanford 
FLASH multiprocessor. 

1 Introduction 

Protocols for distributed systems often simulate atomic transactions in environments 
where atomic implementations are impossible. We believe that this observation can 
be exploited to make formal verification of protocols and distributed algorithms using 
a theorem-prover much easier than it would otherwise be. Indeed, we have used the 
techniques described below to verify safety properties of two significant examples: the 
cache coherence protocol for the FLASH multiprocessor (currently being designed at 
Stanford), and for a majority consensus algorithm for multiple copy databases: 

The method proves that an implementation state graph is consistent with a speci- 
fication state graph that captures the abstract behavior of the protocol, in which each 
transaction appears to be atomic. The method involves constructing an abstraction func- 
tion which maps the distributed steps of each transaction to the atomic transaction in 
the specification. We call this aggregation, because the abstraction function reassembles 
the distributed transactions into atomic transactions. 

This method addresses the primary difficulty with using theorem proving for ver- 
ification of real systems, which is the amount of human effort required to complete 
a proof, by making it easier to create appropriate abstraction functions. Although.our 

* This research was supported by the Advanced Research Projects Agency through NASA grant 
NAG-2-891. 



301 

work is based on using the PVS theorem-prover from SRI International [ORSvH95], 
the method is useful with other theorem-provers, or manual proofs. 

Although finite-state methods (e.g. [McM93, DDHY92]) can solve many of the 
same problems with even less effort, they are basically limited to finite-state protocols. 
Finite-state methods have been applied to non-finite-state systems in various ways, 
but these techniques typically require substantial pencil-and-paper reasoning to justify. 
Theorem-provers make sure that such manual reasoning is indeed correct, in addition to 
making available the full power of formal mathematics for proof, so they can routinely 
deal with problems that cannot yet be solved by any finite-state methods. 

For our method to be applicable, the description must have an identifiable set 
of transactions. Each transaction must have a unique commit point, at which a state 
change first becomes visible to the specification. The most important idea in the method 
is that the aggregation function can be defined by completing transactions that have 
committed but not yet completed. In general, the steps to complete separate transactions 
are independent, which simplifies the definition of this function. In our experience, this 
guideline greatly simplifies the definition of an appropriate aggregation function. 

The same idea of aggregating transactions can be applied to reverse-engineer a 
specification where none exists, because the specification with atomic transactions is 
usually consistent with the intuition of the system designer. 

If the extracted specification is not considered as a complete specification, or is 
not obviously correct, it can instead be regarded as a model of the protocol having an 
enormously reduced number of states. The amount of reduction is much more than other 
reduction methods used in model checking, such as partial order reduction, mainly be- 
cause the reduced system is based on the only state variables relevant to the specification, 
without variables such as local states and communications buffers. 

The method described here has been successfully applied to the verification of 
several protocols for distributed systems including the FLASH cache coherence proto- 
col [KOH+94, Hei93]. The FLASH cache coherence protocol, consisting of more than 
a hundred different kinds of implement steps, can be reduced to a specification with six 
kinds of atomic transactions [PD96]. It is then simple to prove interesting properties of 
the (much smaller) specification, such as the consistency of data at the user level. 

Related work  

The idea of using abstraction functions to relate implementation and specification 
state graphs is very widely used, especially when manual or automatic theorem- 
proving is used [Lyn88, LS84] (indeed, whole volumes have been written on the 
subject [dBdRR90]). The idea has also been used with finite-state techniques [Kur94, 
DHWT91 ]. 

Ladkin, et al. [LLOR96] have used a refinement mapping [AL91] to verify a simple 
caching algorithm. Their refinement mapping hides some implementation variables, 
which may have the effect of aggregating steps if the specification-visible variables do 
not change. Our aggregation functions generalize on this idea by merging steps even 
when specification-visible variables change more than once. 

A more limited notion of aggregation is found in [Lain82, Lam83], where a state 
function undoes or completes an unfinished process. The method only aggregates se- 
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quentin steps within a local process, while our method aggregates steps across dis- 
tributed components. The idea of an aggregated transaction has been used to prove a 
protocol for data base systems [PKP91], where aggregation is obtained in a local process 
by showing the commutativity of actions from simple syntactic analysis. 

Cohen used an idea similar to aggregation to prove global progress properties by 
combining progress properties of local processes [Coh93]. The idea of how to construct 
our aggregation function was inspired by a method of Burch and Dill for defining 
abstraction functions when verifying microprocessors [BD94]. 

In the next section, the basic verification procedure is presented. To illustrate it, 
we use a distributed list protocol which is a fragment of a distributed cache coherence 
protocol. In section 3, the protocol is described and we explain how to construct an 
aggregation function and prove that it has the necessary properties. 

2 The verification method 

The verification method begins with a description in higher-order logic of the state 
graph of the implementation of a distributed computation, and a logical description of 
the state graph of the specification. The impleme.ntation description contains a set of 
state variables, which are partitioned into specification variables and implementation 
variables. The set Q of states of the implementation is the set of assignments of 
values to state variables. The description of the implementation also includes a logical 
formula defining the relation between a state and its possible successors. The relation is 
represented by a set of functions, 5 v : 2Q-~ Q, each of which maps a given implementation 
state to its next state. The implementation is nondeterministic if this set has more than 
one function. 

The description of the specification state graph is similar. A specification state is an 
assignment of values to the specification variables of the implementation (implementa- 
tion variables do not appear in the specification). Also, every state in the specification 
has a transition to itself. We call these idle transitions. The idle transitions are necessary 
for following implementation steps that do not change specification variables. We adopt 
the convention that components of the specification are primed, so the set of states of 
the specification is Qr, the set of functions is Ur  etc. 

The verification method is based on the usual notion of an abstraction function. The 
function, which we call abs, maps implementation states to specification states and must 
satisfy a commutativity property 

Vq e Q VN C U 3N" C jz, : abs(N(q)) = N'(abs(q)). (1) 

The most interesting part of the method is how the aggregation idea is used to define 
this function. 

The method relies on the notion that there is a set of transactions which the computa- 
tion is supposed to implement, which are atomic at the specification level (meaning that 
a transaction occurs during a single state transition in the specification), bu t non-atomic 
at the implementation level. Indeed, the transactions in the implementation may involve 
many steps that are executed in several different components of the implementation. 
Formally, the transactions in the specification are the specification transition functions. 
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The method requires that each transaction in the implementation have an identifiable 
commit point. Intuitively, when tracing through the steps of a transaction, the commit 
point is the implementation step that first causes a change in the specification variables. 
Implementation states that occur before the transaction or during the transaction but 
before the commit point are called pre-commit states for that transaction. The transaction 
is complete when the last specification variable change occurs as part of the transaction. 
The states after the commit point but before the completion of the transaction are called 
post-commit states for the transaction. A state where every committed transaction has 
completed is called a clean state. 

Formally, all of the above concepts can be derived once the pre-commit states are 
known for each transaction. The post-commit states for the transaction are the states 
that are not pre-commit; the commit point for an transaction is the transition from a 
pre-commit state to a post-commit state for that transaction; and the completion point 
is the transition from a post-commit state to a pre-commit state. A state is clean if it is 
a pre-commit state for every transaction. 

An aggregation function consists of two parts: a completion function which changes 
the state as though the transaction had completed, and a projection which hides the 
implementation variables, leaving only the specification variables. 

Once a purported aggregation function has been defined, the user must prove that it 
meets the commutativity requirement (1). The proof consists of a sequence of standard 
steps, many of which are or could be automated 2. The initial Vq and VN can be eliminated 
automatically by Skolemization, which is substituting a new symbolic constant for q 
throughout (when we Skolemize in this presentation, we will not change the name of 
the quantified variable). This yields a subgoal of the form 

(N C .T) :r 3N' e .T" : abs(N(q)) = N'(abs(q)). (2) 

The set of implementation steps 5 r will often be defined with a logical formula of 
the general form 3p : N - N1 (p) V fit = Ne(p) V .. . .  where p is a tuple of parameters 
(perhaps ranging over an unknown number of components), and each Nj is a different 
kind of implementation step. Since the 3p is in the antecedent of an implication, it can 
be Skolemized automatically, and the resulting disjunction can be proved by proving a 
collection of subgoals 

(N = Nj(p))  ~ 3N'  E Y :  abs(N(q)) = g'(abs(q)). (3) 

The existential quantifier 3N / can be eliminated by the user by manually substituting 
the definition of the appropriate function for N ~. Given j and p, the user must supply 
proper instantiation j l  and p~ such that the resulting subgoals 

abs(Nj (p)(q)) = N~,(p')(abs(q)) (4) 

are provable. 
The number of subgoals is equal to the number of transition functions in the imple- 

mentation. In most cases, the required specification step N~, (p~) is the idle step; indeed, 

z We base this comment on our use of the PVS theorem prover, but we believe the same basic 
method would be used with others. 
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the only non-idle step is that corresponds to the commit step in the implementation. We 
have no global strategy for proving these theorems, although most are very simple. 

The above discussion omits an important point, which is that not all states are 
worthy of consideration. Theorem (1) will generally not hold for some absurd states 
that cannot actually occur during a computation. Hence, it is usually necessary to provide 
an invariant predicate, which characterizes a superset of all the reachable states. If  the 
invariant is Inv, Theorem (1) can then be weakened to 

Vq C Q VN C :1: 9 N  ~ E Y :  Inv(q) =~ abs(N(q)) = N'(abs(q)) .  (5) 

In other words, abs only needs to commute when q satisfies the Inv. 
Use of an invariant incurs some additional proof obligations. First, we must prove 

that the initial states of  the protocol satisfy Inv, and second, that the implementation 
transition functions all preserve Inv. 

3 The Distributed List Protocol 

We illustrate the concepts of the previous section, on a small but somewhat nontrivial 
example, which we call the "distributed list protocol." The protocol is an abstraction of 
part of a mulfiprocessor cache coherence protocol, which maintains a singly-linked list 
of processors which share a cache line. 

The finite-state techniques we have applied do not scale especially well for this 
protocol. We have tried explicit state methods (specifically our Mur~ verifier) with 
techniques such as symmetry reduction, reversible rule reduction [ID96], and special 
verification methods for parameterized families of protocols, as well as BDD-based 
techniques. None of these methods has allowed us to verify systems with more than 
about 5 list cells, because we do not have a good way of compressing or abstracting states 
containing linked lists. However, using the method described here, we have verified the 
protocol for arbitrary or even infinite numbers of list cells. 

3.1 The transactions of the protocol 

The protocol maintains a circular, singly-linked list of list cell processes, called cells. 
There is a special process called the headcell which is always in the list. Cells not in the 
list may request to be added to the list, and cells in the list may request to be removed. 
The cells communicate by sending messages over a network that is reliable, but does 
not preserve the sending order of messages. 

Every message used in the protocol has a field sre that contains the index of the 
sending cell, and a field dst that contains the address of the cell to which it was sent. 
Additional fields, old and new, are used in some message types to hold the indices of 
other cells. 

Every cell has state variables for its control state, state, and the index of the next cell 
in the list next. When a cell is not in the list, its next variable contains the index of the cell 
itself. The next variable of each cell is a specification variable, because the list structure 
is important for the correctness of the protocol. The variable state is an implementation 
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variable. There are also variables associated with the cells to hold messages that are in 
transmission. 

A cell, other than the head cell, can perform two types of transactions: add and 
delete. There is an addi transaction and a deletei transaction for each cell i in the 
protocol (i.e., if there are n cells, there are 2n transactions, not 2 transactions). In the 
following, let i be the index of the cell initiating the transaction. 

An add transaction can occur when cell i is not in the list, and when the state of ceil 
i is normal. The cell i will be added at the head of the list. The transaction consists of 
three steps: 

1. Cell i sends an add message to the head cell; cell i changes its state to w_head 
("wait for head message"). 

2. The head cell sends a head message containing the next value of the head cell to 
cell i. Then the head cell stores i in its next variable. 

3. When cell i receives the head message, it stores the value in the message into its 
next variable. Cell i then changes its state back to normal. 

The specification state variables consist of the collection of next pointers of the cells. 
The add transaction in the specification inserts cell i at the front of the list, updating the 
next variables of the head cell and cell i in a single atomic step. 

The commit step for the addi transaction occurs in step 2, which is the first point 
where a specification variable is modified (next of the head cell). Step 1 only modifies 
implementation variables state and network, so it begins and ends in pre-commit states 
for addi. The state between step 2 and 3 is a post-commit state. Step 3 completes the 
transaction; it is the point where a specification variable changes for the last time in the 
transaction. Hence, the state following step 3 is again a pre-commit state for addi. 

The delelei transaction can occur when a cell's next points to a cell other than i 
(meaning i is in the list) and its state is normal. The problem with deleting in a distributed 
singly-linked list is that there is no easy way for cell i to determine its predecessor in 
the list, which is unfortunate since next of the predecessor must be changed to point to 
the next of cell i. 

The solution to this problem is to have another message prod which circulates 
around the list at all times 3. When cell i receives the pred message, it can determine 
its predecessor by examining the src field of the message. So, the steps of the delelei 
transaction are: 

1. Cell i changes its state to w_pred ("wait forpred message"). 
2. When cell i receives a pred message, it sends a chnext message ("change next") to 

the source ofthepred message which is usually the predecessor of i in the list. The 
chnext message has i in its old field and the next of cell i in its new field. Cell i 
changes state to w_delack ("wait for delete-acknowledgment"). 

3. When a cell j receives the chnext message there are several possible cases. The 
subtleties of these rules handle difficult scenarios, such as the predecessor deleting 
itself and then being in the midst of adding itself again between cell i's receipt of 
thepred message and the receipt of the chnext message. 

3 There is another version of distributed list protocol, in which pred message is generated only 
when necessary. 
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(a) If the state of cell j is not normal or w_pred, the chnext message remains in the 
network (progress occurs when some other message arrives at cell j). 

(b) Otherwise, if the old field of the message matches the next variable of cell j ,  
the cell changes its next to be the new of the chnext message (next of i). 
Then cell j sendsa delack message to cell i (src of the chnext message). Cell j 
then sends a pred message to its next cell. 

(c) Otherwise, cell j forwards the chnext message to its next cell. In this case, the 
cell receiving the chnext message is the head cell and one or more new cells were 
inserted at the head of the list while cell i was being deleted, so the predecessor 
of cell i is now somewhere further down the list. The true predecessor will 
eventually receive the ehnext, causing the case (b) to occur. 

4. When cell i receives a delack, it changes its next variable to i, and changes state to 
normal. 

The commit step of the detetei transaction is in case (b) of step 3 above. Step 3 
may be repeated several times because of case (c) before a commit occurs, so a state 
immediately following step 3(c) is a pre-commit state. Step 4 completes the transaction. 

The specification handles the delete transaction atomically by removing cell i from 
the list in the obvious way: it sets the next of the predecessor of i to the next of i, then 
sets next of i to i. 

The pred message circulates around the list constantly except when it temporarily 
disappears during processing of a chnext during a delete transaction, so each cell has 
rules for propagating it. However, processing apred message never affects a specification 
variable, so there are no transactions associated with it. It is necessary to reason about 
the processing ofpred messages during the proof of invariants (discussed below), and 
also for liveness properties (which are not discussed here). 

The above description of the protocol traces through individual transactions. It is 
easier to make sure that a description is complete if the behavior is described for each 
component, not each transaction (arid, indeed, the above description is not complete). 
Table 1 gives the rules of cell behavior in pseudo-code on per-cell basis. 

3.2 The aggregation function 

Here, we define the aggregation function abs for the distributed list example. The key 
question is how to complete all committed transactions in the current state, especially 
since the number of cells, and hence the number of committed transactions, is unknown. 
The general strategy, which has worked for our larger examples as well, is to define a 
per-component completion function, which is then generalized to a completion function 
for all of the cells in the system. This is possible because the post-commit steps of 
different nodes are generally independent. 

It is quite simple to complete a committed transaction for a particular cell. If a head 
message destined for cell i exists, an addi transaction must be completed by simulating 
the effect of cell i processing the head message it receives at the end of the transaction. 
This processing changes next to point to the value new field in the message. Changes to 
implementation variables, such as removing messages from the network, can be omitted 
from the completion function, as they do not affect the corresponding specification state. 
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Step Condition Action 

Initiate Add iCheadptr A next[i]=/ Send add(src=i) to headptr 
/x state[/]=normal state[i] := w_head 

Process add add sent to headptr Send head(new=next[headptr]} to add.src 
next[headptr] := add.src 

Process head head sent to i next[i] := head.new 
state[i] := normal 

Initiate Delete iT~headptr A next[i]~ii state[i] := w_pred 
A state[i]=normal 

Process pred ~red sent to i if state[/]=normal: 
Send pred(src=i} to next[i] 

if state[i]=w_pred: 
state[i] := w_delack, 
Send chnext(old=i, new=next[i]) 

to pred.src 
Process chnext chnext sent to i Send chnext to next[i] 

A chnext.old~next[i] 
A state[i] E {normal,w_pred} 

Process chnext chnext sent to i next[i] := chnext.new 
A chnext.old=next[i] Send delack to chnext.old 
A state[i]E {normal,w_pred} Send pred(src=i) to chnext.new 

Process delack delack sent to i next[i] := i, state[i] := normal 

Table 1. Formal Description of Distributed List Protocol: The action of a step is executed if 
its condition holds. Each process consumes the message that triggers it. A message consists of 
a record with fields src, new, old. When a message is created, we use m(f=a ~) to denote that 
message m has value a '  for its record fieldf We use m.fto refer to the value of field f i n  message 
m. State variables for cells are kept in arrays, state and next. 

Al l  of  this computation i s done solely in cell i, without the involvement or interference 
of  other cells. I f  there is a delack message for cell i, a delelei transaction must be 

completed by setting next to i. Otherwise, the complet ion function does nothing. 

It is easy to generalize the completion function for one cell to a complet ion function 
for all of  the cells because the completions do not interact. The global implementation 

state is an array of  cell state records, indexed by the cell indices. Let cc(q[i]) be a 
complet ion function for cell i, which modifies the state variables for i in the record q[i], 
and returns a new record of  the state variables as modified by the complet ion of  the 
transaction. 

I f  cc(q[i]) completes committed transactions on cell i, the complet ion function for 
all cells is Aq.Ai.cc(q[i]). When this function is supplied a state q, it returns Ai.cc(q[i]), 4 
which is an array of  the completed cell states, i.e., the desired clean global state. The 
aggregation function is s imply the completion function, fol lowed by a projection which 

eliminates all implementation variables. 

4 The notation may be a bit confusing. Ai..cc(q[i]) is a function, which when applied to a particular 
value of i, say io, returns cc(q[io]), which is the completed state for cell io. This is effectively 
the same as indexing into an array of completed cell states. 
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3.3 Extracting specification 

Reverse engineering of a specification can be illustrated on the distributed list protocol 
(indeed, we had to do this). Given only an implementation description, the first step is 
to identify the specification variables. In the distributed list protocol, we decided that 
they were the next variables for the cells. The next step is to trace through a transaction, 
concatenating the implementation steps, simplifying by substituting values forward 
through intermediate assignments, and then eliminating statements that only change 
implementation variables. 

For an addi transaction in the protocol, the sequence of steps is "initiate add," 
"process add," and "process head?' The result obtained by the procedure is 

Atomic_Add(i): if i ~ headptr A next[i] = i then 
next[i] := next[headptr]; next[headptr] := i. 

Similarly, dele~ei transaction corresponds to the sequence of steps, "initiate delete," 
"process pred," "process chnext," and "process delack." The atomic transaction obtained 
by aggregation is 

AtomicA)elete(c, i): i f / ~  headptr A next[i] :/: i A next[c] = i then 
next[e] := next[i]; next[i] := i. 

With the two atomic transactions and idle steps in the specification, we instantiate 
the subgoals (4) for each implementation steps. The proper instantiation for the proof is 
shown in table 2. 

[Implementation step at node ~ Specification transactions 

Initiate Add e 
add Atomic_Add( add.src ) 
head e 

initiate Delete e 
Process pred s 
Process chnext (Forward) e 
Process chnext (Commit) Atomic.Delete(i, chnext.oM 
Process delack 

Table 2. Corresponding specification steps for implementation steps in the distributed list protocol 

3.4 The invariant 

The proofs of the subgoals (4) corresponding to each row' in table 2 are simple. PVS can 
handle them almost automatically. Among the eight subgoals, four have been proved 
automatically for any state q. However, the rest of the subgoals need some assertions on 
the state in the system to satisfy the commutativity property. The invariant consisting of 
several assertions that we need to prove the subgoals is listed below. 
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�9 The head cell is always normal. 
�9 If  a cell is in normal or w_pred state, there is no add message from the cell, delack 

message to the cell, or chnext message with old field equal to the cell. 
�9 "If there is an add message from or head message to a cell i, then the next of the cell 

is i. 
�9 In a chnext message, the next of the cell contained in the old field of the message 

must be the same as the new field of the message. 

�9 There is at most one message in the network for each transaction currently in 
progress, and there must be no more than one pred message in the network. 

The only manual step occurs when proving subgoals of the form (Vj : Inv(j)) 
Q(i), where i is a cell index, which requires eliminating the Vj by substituting i for j to 
obtain Inv(i) ~ Q(i), which can be handled automatically. 

Part of the reason that the proof is simple is that we have chosen to represent the 
network in a non-obvious way. We observe that there is at most one message pertaining 
to any particular transaction at any time. So the network can be represented with one 
variable per cell (sometimes associated with the source, sometimes with the destination), 
plus a single variable for the pred message. Hence, instead of proving that there is only 
one message of a certain type in the network for cell i at any time, we register an 
error whenever a message in a variable for the network is about to be overwritten, and 
verify that no error occurs. The description can read a message by accessing the variable 
instead of choosing one and removing it from a set of messages, which is a bit more 
difficult to deal with in PVS. It is possible to use similar tricks in the other examples we 
have done, including the large FLASH protocol. 

4 Concluding Remarks 

Although, aggregation as described can be applied to many protocols, we have only 
tried a few. It may need to be generalized (and many generalizations are conceivable). 

We have not considered the important problem of proving liveness properties here. 
We do not expect that it will prove to be particularly difficult, however. 

From this and many other efforts, it has become clear that finding invariants the 
most time consuming part of many verification problems. More computer assistance is 
needed, especially for large problems. 
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Abstract .  Assertional methods tend to be useable for abstract, coarse~grained 
versions of concurrent algorithms~ but quickly become intractable for more real- 
istic, finer-grained implementations. Various trace-reduction methods have been 
proposed to transfer properties of coarse-grained versions to finer-grained versions. 
We show that a more direct approach, involving the explicit construction of an 
(inductive) invariant for the finer-grained version, is theoretically more powerful, 
and also more appropriate for computer-aided verification. 

1 Introduction 

Recents improvements in methods and tools for testing the validity of proposi- 
tional and predicate logic formulas have revived the interest in assertional methods 
for concurrent system verification. Indeed, at least as far as safety properties are 
concerned, Hoare's logic and Dijkstra's predicate transformer calculus reduce the 
correctness problem for programs to the validity problem for logical formulas. 

However, as soon as loops occur in programs, creativity is needed to discover 
appropriate invariants. This task is reasonably feasible for coarse-grained, abstract 
concurrent systems, but often becomes intractable for fine-grained, reasonably effi- 
cient implementations. 

A standard technique is to deal first with a coarse-grained version of the system 
to be verified, and then to attempt (in a more or less formal way) to adapt the 
conclusion to a finer-grained implementation of the system. This is called atomicity 
refinement. In this paper, we compare two frequently used techniques for atomicity 
refinement, from both theoretical and practical point of view. 

The problem solved by these techniques is as follows. Some concurrent system 
has been proved correct with respect to some safety property. Some statement is 
replaced by an equivalent sequence of more elementary statements. Due to possible 
interference between processes, this atomicity refinement is not always correct. How 
can such a refinement be validated (or disproved)? Let us consider a two-process 
system S, where the (cyclic) concurrent processes are 

Loop(S1;S2) and Loop(T1;T2) 
There is some initial condition A and some safety property J, validated with some 
invariant I.  Otherwise stated, there is an assertion I such that A =~ I ,  I ~ J,  
and, for each state a satisfying I,  if any of the transitions $1, $2, T1 and T: can be 
executed from state a, then the resulting state p also satisfies I.  As a consequence, 
any S-computation whose initial state satisfies A reaches only states satisfying J. 

Now we replace a transition, say T2, by an equivalent sequence, say T'; T" (tran: 
sition T2 can lead from state ~1 to state a2 if and only if sequence T'; T"  can lead 
from ~h to a2)- The question is, is the new system S' still correct w.r.t, the safety 
property J ? 

There is clearly no problem with primary S'-computations, such that any execu- 
tion of T '  is immediately followed by an execution of T", without interference from 
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$1 or $2. Let us call B the assertion which holds in all states but those "between" 
some execution of T I and the corresponding execution of T".  It  is clear that  J still 
holds in relevant states (those satisfying B), that is, that  B =~ J remains true 
throughout the computation. 

Now, let us consider the general case where some execution(s) of $1 and $2 
take(s) place between an execution of T I and an execution of T ' ,  for instance 

$1; T1; T '  ; $2; Tll; TI ; S1; T1; $2; S~ ; T'I ; . . . 
It  is not always the case that B =~ J remains true throughout the computation. 

The trace reduction method guarantees that B =~ J remains a safety property, 
provided that  T ~ is a right-mover, i.e., the following holds: if (T~; $1) can lead from 
some state cr to some state p, then (S1;T t) can also lead from a to p, and the same 
with $1 replaced by S~. (Instead of requiring T I to be a right-mover, we can require 
T"  to be a left-mover.) This method is of easy application and has led to successful 
non-trivial designs; it is especially useful to convert centralized concurrent systems 
into distributed ones. The drawback is that the method is not complete; some 
correct atomicity refinements cannot be validated that way. 

The invariant adaptation method consists in finding some invariant I r of 8 I 
which reduces to I in every relevant state. This method is complete in the fol- 
lowing sense : if J is a safety property of S that  remains true in all relevant states 
of S ~, then adequate invariants 1" and I ~ exist. T'he knowledge of I is a big help for 
the construction of the adapted invariant 1 I, but this construction often turns to be 
a complicated task nevertheless. 

A usual policy for validating atomicity refinements is therefore to t ry the trace 
reduction method first, and, only in case of failure, to try the invariant adaptation 
method. The purpose of this paper is to show that  success cases for the reduction 
method always are elementary cases for the invariant adaptation method, whereas 
some elementary cases for the invariant adaptation method are still failure cases 
for the reduction method. As a result, it might be better to use only the invariant 
adaptation method, especially for computer-aided design/verification. 

The paper goes on as follows. An abstract framework for atomicity refinement is 
introduced in Section 2, where the trace reduction method is presented as a special 
case of the invariant adaptation method. Both methods are compared in a more 
general way in Section 3, where success cases for the trace reduction method are 
proved to correspond to cases of easy invariant adaptation. Section 4 shows that  a 
failure case for the reduction method can turn to be an easy case for the invariant 
adaptation method. Section 5 is a conclusion and mentions related works. 

2 T h e o r e m s  a b o u t  a t o m i c i t y  r e f i n e m e n t  

We introduce an abstract framework for atomicity refinement and show that,  from 
the theoretical point of view, the trace reduction method is a particular case of the 
invariant adaptation method. More specifically, we recall the main theorem about 
trace reduction and give a theorem connecting the invariant of a system before and 
after the atomicity refinement. The former appears as a mere corollary of the latter. 
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2.1 R e l a t i o n a l  n o t a t i o n  

Let  7~ and ,9 be b inary  relations on a non-empty set F ,  and let ~/E F and A C_/~. 
The  following nota t ion  is used in the sequel. 

l r  =def {(~ ,  ~/) : "/ ~ /~} ,  (identical re la t ion) ,  

~;,9 =a~f {('r, ~f) : ~p [(% p) e T~ A (p, ~f) e S]} ,  (sequential composi t ion) ,  

7~ ~ = ~ /  l r ,  7~ ~+~ = ~ 1  (7~ ;7~) ,  7~* =d~f U~_>0T~ ~ , ( i teration, closure) ,  

~/~ =a~I {~ : (% ~) ~ T~}, AT~ =a~f U~eA P~, (set of successors, pos t se t ) .  

Comments. A binary relation on F is simply a subset of F x F. The notation ~/~6 usuMly 
stands for (% ~) ~ T~. The sequenti~ composition 7~; ~q is also noted ,.q o 7~. Note that 
AT2.~ = A(7~;,9). An element 7 is an 7~-predecessor of 6 if ~ is an "R-successor of % that  
is, if (% 6) ~ T~. 

2.2 Abstract transition systems 

An abstract transition system [18, 28] is a couple A t s  = (F, {7~1,.. .  , T ~ } )  where 
F is a non -empty  state space and where { T r  is a finite non-empty  set of 
actions, i.e., b inary  relations on F.  A state is an element ~ E F.  A predicate is a 
subset  A C_ F .  
Comment. Predicates axe usually represented as assertions, so we will write q, ~ A 
("q, satisfies A", "A is true at "y") instead of-), E A. Similaxly, we write -~A, AAB and AVB 
instead o f / ~ A ,  A N B and A U B, respectively. An assertion C is valid if the corresponding 
set is F; we write ~ C instead of (VV E F) (7 ~ C); the inclusion A C_ B therefore becomes 

(A =r B). Last, the successor set ATs and the reachabflity set ATe* are modelled by 
the assertions sp[A;T~] ("strongest postcondition") and sin[A; Ts ("strongest invaxiant") 
respectively. 

An (A t s ,  A)-traced computation, or simply a traced computation, is a sequence 
C = ('y0, r l , ' n , r 2 , . . .  ,r,~, % ~ , . . . ) ,  

where "Y0 ~ A and, for all i > 0, ri is an Ats -ac t ion  (a member  of {7~1,. . .  , 7 ~ } )  
such tha t  ~i_l r~/ i .  The  underlying sequence of s tates Cs is a computation, and the 
sequence of act ions Ca is a trace. Assertion A is the initial condition. 
Comments. The union of a set of actions is an action, so the abstract transition system 
(F, {Ts T~}) can be replaced by (F, {T~}), where T~ =de] U~=I 7~,, without changing 
the set of computations; a sequence C, --- (-y~) is a computation if ~ is an T~-successor 
of ~/i-1, for all i > 0. A computation can be finite if it reaches a state without successor. 

An Ats-invariant, or simply an invariant, is a predicate I such tha t  every 
successor of  every s ta te  satisfying I also satisfies I ;  this is denoted {I} 7~{I},  or 
{I} A t s  {I} ,  or  ~ (sp[I; 7~] ~ I ) .  An (Ats ,  A)-safety property, or simply a safety 
property, is a predicate  J such that ,  for every computa t ion  Cs = (~0,~/1,.. .),  if 
~/0 ~ A, then  ~/,~ ~ J for all n J  

1 In our framework, the connection between Hoaxe's logic and Dijkstra's calculus is simple : 
expressions {A}S{B}, ~ (sp[A;S] ~ B) and ~ (A ~ wlp[8;B]) axeequivalent. A 
useful property of sp (and wlp) is monotonicity. If 7~1 C_ ~2 and ~ (A1 =~ A2), then 

(sp[A~;T~] ~ sp[A2;T~2]). Similarly, if ~ (A2 =~ A~), 7~2 C 7~ and ~ (B~ =~ B2), 
then {A1}T~I{B1} implies {A:}T~2{B2}. 
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If  ~ (A ~ I )  and if I is an invariant, then I is necessarily a safety property,  but  
it should be emphasized tha t  the converse is not t rue:  safety propert ies  usually 
are not invariants. For instance, if A t s  is a correct mutual  exclusion algori thm, 
the "assertion J which expresses mutual  exclusion is a safety proper ty  but  is not an 
invariant.  
Comment. With the restrictive definition given above, a computation C can be checked 
for some safety property by considering only isolated states, and a safety property is 
simply (modelled by) a subset of F. Safety properties can be defined in a more general 
way [1] and modelled by subsets of/"* (F* denotes the set of finite sequences of states). 
However, it is always possible, at least theoretically, to include all the preceding states in 
any state of the computation, so the restriction is not essential: any information about 
a computation prefix (T0,. .. ,'Y,) can be retrieved from the state 7,~. In practice, special 
auxiliary variables, called history variables, are used for that  purpose. 

The  following classical result (an early reference is [9]) asserts the completeness 
of the invariant method and states the connection between invariants and safety 
properties.  
Theorem. The  system (N, {7~}) satisfies the safety proper ty  3" for the initial condi- 
tion A if and only if an invariant I exists such tha t  ~ [(A =~ I )  A ( I  ~ J)].  
Sketch of proof. The strongest possible choice for I is sin[A; 7r i.e., the set of  s ta tes  
tha t  can be accessed from A (in finitely many  computa t ion  steps). This predicate  
represents the set of 7r of all s tates satisfying A; it is an invariant,  so J 
is a safety proper ty  if and only if ~ (sin[A; Tr =~ J). [] 
Comment. Inva~iant are inductive safety properties, which can be proved by an induction 
argument. The standard technique for proving a (non-inductive) safety property is to con- 
struct a stronger, inductive one (i.e., an invariant). A similar situation frequently occurs in 
number theory. If some property P(n) of natural numbers cannot be proved by induction, 
it is sometimes possible to discover a stronger property Q(n) that  can be proved by induc- 
tion. Invariants are also named stable properties, e.g. in [6], where the word "invariant" 
refers to a stable property satisfied in some specified set of initial states. 

2.3 A t o m J c i t y  r e f i n e m e n t : t h e  a b s t r a c t  f r a m e w o r k  

Let A, B be predicates on F ,  and let O l d  = (N,{S,7~}), N e w  = (F,{$1,82,7~})  
be two abs t rac t  transit ion systems. Condition A is the initial condition, and B is 
the refinement condition. States satisfying B axe called relevant states; those not 
satisfying B are transient states. We assume the following conditions : 

1. ~ (A ~ B)~ 
2. Sl-successors of relevant states are transient states; 

3. relevant s tates have no S2-successor; 

4. $2-successors of transient states are relevant states; 

5. t ransient  s ta tes  have no Sl-successor; 

6. 7~-successors of relevant s tates are relevant states; 

7. 7C-successors of t ransient  states are transient states; 

8. S = 81; 82 (sequential consistency). 
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These conditions 2 guarantee that, in any New-trace, actions ,Sl and S~ appear 
strictly in turn, and that S1 appears first. Predicate A is the initial condition of 
both Old  and N e w  (only computations whose initial state satisfies A are of inter- 
est). Predicate B is the refinement condition, which is true in relevant states and 
false in transient states. Let g = (~0 , r l , '~ l , r2 , . . . , rm,~m, . . . )  be a New-traced 
Computation (so r~ E {$1,$2, ~},  for all i). A state "yk is relevant if $1 and $2 occur 
equally many times in the trace prefix ~ = (r l , . . .  ,rk); otherwise, ~k is transient 
(and S1 occurs one more time than $2 in ~).  
Cornmen~s. We assume the existence of an atomicity refinement condition B. The simplest 
and most frequent case of atomicity refinement is the replacement of a transition (s S, s ) 
by (~o, $1, m) and (m, $2,ll), where $1; $2 is "sequentially equivalent" to S and where rn 
is a new label. The natural choice for the refinement condition is B =de/ ~a~ m (the 
control does not lie at control point m, between $1 and $2). However, we also require that 
Old and New share the same state space F, and therefore the same assertion language. 
To ensure this, we assume that the new location predicate at m already existed in the 
old assertion language, even if no state satisfying it could be reached. Any assertion J 
about Old, in particular the initial condition and the invariant, will be (maybe implicitly) 
rewritten as J A "~at m. 

A New-trace is primary if every occurrence of 81 is immediately followed by an 
occurrence of ,~2- For most practical purposes, primary New-traces can be assimi- 
lated to Old-traces. The idea underlying trace reduction theorems is that,  provided 
some hypotheses are satisfied, every New-trace has an equivalent New-primary 
trace, so N e w  itself is equivalent to Old. The problem is, the stronger the equiv- 
alence notion, the stronger the required hypotheses. As a result, several trace re- 
duction theorems have been proposed, with more or less restrictive hypotheses and 
equivalence notions. 

2.4 T h e o r e m s  

The trace reduction method allows to assert that some properties of Old-computa- 
tions are preserved in New-computations. Even with restricting to safety properties, 
one cannot hope that all of them are preserved. For instance, with the notation 
of w 2.3, the refinement condition B is an (Old,A)-safety property (and also an 
Old-invariant) but cannot be a (New,A)-safety property since B is false in any 
transient state. However, if some hypothesis is satisfied, any Old-safety property J 
gives rise to the New-safety property B =~ J. Otherwise stated, safety properties 
are preserved in relevant states, but nothing is known about transient states. Such 
a result is useful when J is trivially true in transient states, i.e., when -~B ~ J 
is valid. This is a very frequent case; for instance, 2-process mutual exclusion and 
partial correctness are expressed by assertions that trivially hold in transient states, 
since critical states and final states (if any) always are relevant states. 

The preservation theorem for safety property is an old result, originating from 
the ideas of [18] and [26]. The first formal presentation is probably [12]; [19] and [23] 
contain more results about atomicity refinement and the trace reduction method. 

2 Conditions 2 to 8 can be expressed as {B}81 {-~B}, {B}82 {false}, {'~B}S2 {'B}, 
{'~B}81{false}, {B} 7"s {-~B}~{~B}, and sp[X;8] -- sp[sp[Z;81];82] for 
all X, respectively. Two useful corollaries are {true} $1 {-~B} and {true} ,~2 {B}. 
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A definition is introduced first : 
Def in i t ion .  A relation 7s right-commutes with a relation Ts (and relation T~2 
le~-corarautes with relation 7s if 7~z; 7~2 C_ 7~2; 7~. 

T h e o r e m  1. If Old, New,  A and B are as introduced in w 2.3, if J is a predicate 
on F and if 81 right-commutes with 7~, then B ~ J is a (New, A)-safety property 
if and only if J is an (Old, A)-safety property. 
P r o o f  o f  t h e o r e m  1. The "only if" part is trivial. A direct proof of the "if" part 
is given in [12] and [23]; it is also a corollary of theorem 2 given below. [] 

Comment. Theorem 1 has a dual version, where requirement Sl right-commutes with T~ 
is replaced by ~q~ left-commutes with 7~. 

In order to compare the trace reduction technique and the invariant adaptation 
technique, we specify the connection between Old-invariants and New-invariants, 
when the reduction hypothesis holds. 
T h e o r e m  2. If Old, New and B are as introduced in w 2.3, if I is a predicate on F 
such that ~ (I  =v B), and if 81; 7~ C_ ~;  $1 (that is, $1 right-commutes with T/), 
then predicate I v 8p[I; $1] is a New-invariant if and only if I is an Old-invariant. 
P r o o f  o f  t h e o r e m  2. Let �9 be the predicate I v spII; $1]. We first assume that 
is a New-invariant, and observe that �9 A B is I .  (Indeed, formula �9 A B re- 
duces to (I  v sp[I;S1]) A B, i .e, to (I  A B) v (sp[I;S1] A B), and the second 
disjunct is identically false.) From {~} 7~ (r  and {B} ~ {B}, we therefore deduce 
{I} 7~ (I};  from {4~} 81 (~}, {~} 82 {~} and (true]. $2 {B} we deduce {~} 81; $2 (~} 
and {B}S1;S2 (B},  and then {I}$1;$2 ( I} ,  therefore ( I } $  (I}. As ( I } ~ ( I }  and 
{I} S {I} both hold, I is an Old-invariant. 

We now assume that I is an Old-invariant. In order to prove that 4~ is a New- 
invariant, we check separately the triples (~} Sz (~}, (~} $2 {~} and {~} 7~ (~}. 

1. From the triples {I} St {sp[I; $1]} and {sp[I; $1]} $1 (false}, we deduce 
( I  V sp[I;S1]}St (sp[I;S1] v false} 

2. (B} (/aUe} and (sv[I; $1]} (Z} lead to (B v sPF; S1]} {I v false} 

3. Since sp is monotonic, we get from the reduction hypothesis St;7~ _C. 7~; St 
sp[I; ($1; n) ]  =~ sp[I; (7~; St)], i.e., {sp[I; St] } n {sp[sp[I; 7~]; $1] }. 
We have also { I } n { I } ,  hence {1 V sp[I;S1]}7~{I V sp[sp[I;T~];S1]} 

In every case the precondition is weaker than ~ and the postcondition is stronger, 
so the three required triples follow by monotonicity. (For the third postcondition, 
observe that sp[I; ~] =v 1, hence sp[sp[I; 7~]; $1] =~ sp[1; St].) 
Comment. Let ~P be the strongest New-invaxia~at which is implied by I~ that is, the predi- 
cate sin[I; (T~U$1U82)]. A state ~ satisfies ~P if emd only if there exists a New-computation 
(7,~ : n --- 0, 1,. . .)  such that 3'o ~ I and V~ = "r for some k > 0. As r is a New-invariant 
implied by I, we have ~ (~P =~ ~5)~ besides, ~ (r :=~ k~) also holds, since any state 
satisfying r can be chosen as an initial state of computation (if ~/ ~ I) or reached in a 
single step (if ~ ~ sp[I;Sz]). This gives an interesting operational interpretation to the 
reduction hypothesis: every reachable transient state can be reached from some relevm~t 
state in exactly one step. 

Comment. Here is the dual version of theorem 2. If Old, New azad B are as introduced 
above, if I is a predicate on F such that ~ (I ~ B), and if $2 left-commutes with 7~, 
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then predicate I V wlp[S2; I] is a New-invariant if and only if I is an Old-invariant. The 
operator wlp (weakest liberal precondition) is defined as follows: ~/ ~ wlp[Ts J] if and 
only if every 7~-successor of 7 satisfies J. Although the computation of wlp[,.~; I] can 
be easier than the computation of sp[I; 31], we prefer to use the latter, which leads 
to a stronger New-invariant; as a program invariant is a formal description of its 
behaviour, the stronger is usually the better. 

We can now show that, when the reduction hypothesis holds, the connection be- 
tween the safety properties of Old and New is a mere consequence of the connection 
between the invariants of Old  and New. 
Proposi t ion.  The "if" part of theorem 1 is a corollary of theorem 2. 3 
P roo f .  If J is an (Old, A)-safety property, then, due to the completeness of the 
invariant method, there exists an Old-invariant I such that ~ (A =~ I) and ~ (I 
(B A j)).4 If `91 right-commutes with Ts then (theorem 2), 4~ =d~/ (I v sp[I;$1]) 
is a New-invariant. Besides, it is easy to check 5 ~ (I  =~ ~), ~ (A =~ ~), and 

(~ ~ (B =~ J));  as a result B =~ J is a logical consequence of an (initially true) 
invariant, and therefore a (New, A)-safety property. [] 
CommenL The fact ~ (~ =~ (B =~ J)) will be useful later. 

3 T r a c e  r e d u c t i o n  t e c h n i q u e  vs .  i n v a r i a n t  a d a p t a t i o n  

In paragraph 2.4, the invariant adaptation method has been used to justify the 
trace reduction method. In this section, we would like to show that the invariant 
adaptation method can replace the trace reduction method. We will first show that, 
when an atomicity refinement can be validated by the trace reduction method, it 
can as easily be validated by the invariant adaptation method. Afterwards, we show 
that validation by invariant adaptation may happen to be tractable even when the 
reduction hypothesis is not satisfied. 

3.1 T h e  easy  case of  atomicity refinement 

The data of the atomicity refinement problem are F,  S, $1, `92, 7~, Old, New,  A 
and B, satisfying the 8 conditions stated in paragraph 2.3. Furthermore, we suppose 
that J is an (Old, A)-safety property, validated by an Old-invariant I.  The question 
is to determine whether B :~ J is a (New, A)-safety property. 

If we use the trace reduction technique, we have to verify that the reduction 
hypothesis `91;~ C_ 7~;,91 holds. Theorem 2 asserts that a byproduct of this verifi- 
cation is the fact that �9 =d~f (I  V 8p[I; ̀ 91]) iS a New-invariant. This fact alone is 
sufficient to validate the refinement (last comment of w 2.3). So, instead of checking 
whether the reduction hypothesis holds, we can check whether ~5 is a New-invariant. 
In fact, we can do a bit less, as indicated by the next theorem. 
Theorem 3. The assertion ~ is a New-invariant if and only if the assertion sp[I; `91] 
is T~-invariant, i.e., if the triple (sp[I; 81]} T~ {sp[I; $I]} holds. 

s Recall that the "only if" part of theorem 1 is trivial. 
4 Recall that B characterizes relevant states , and therefore is a safety property of Old; 

transient states appear only in New-computations. 
5 Just consider separately the cases where 13 is true and where/3 is false; indeed, 4 i can 

also be written as (B =~ I) A (-~/3 =~ sp[I;S1]). 



318 

P r o o f .  Let us recall first that the assertion �9 reduces to I when B holds (relevant 
states) and to sp[I;,91] when -,B holds (transient states). As a result, # is a New- 
invariant if and only if the following triples hold : 

1. {)'}T~{/}, 2. {I}Sl{Sp[I; r 3. {sp[I; Sl]}S2{I}, 4. {sp[I; S1]}R{sp[I; 81]}. 

Triple 2 is a tautology and triples 1 and 3 express that I is an Old-invariant, so 
with this hypothesis triple 4 holds if and only # is a New-invariant. [] 
Comment. Validity of triple 4 is a weaker condition than the reduction hypothesis (theo- 
rem 2); furthermore, its verification can be easier. Indeed, the reduction hypothesis holds 
if amd only if the implication 

sviP; (&;T~)] ~ ~p[P; (n;&)] 
holds for each assertion P, whereas triple 4 can be rewritten in 

sp[z; (&;n)] ~ sp[z; &], 
i.e., an implication that  must be true only for one specific assertion. 
The conclusion is, when the trace reduction technique applies, the invariant adap- 
tation technique also applies, with no more verification work. 

3.2 T h e  gene ra l  case of  a tomic i t y  r e f i nemen t  

The trace reduction technique might fail to validate a correct atomicity refinement, 
since this technique takes all states into account, even unreachable ones. (A notion 
of context has been introduced in [2] to deal with this problem.) 

However, the invariant method might be useful even when theorem 2 does not 
apply. To investigate this, we have the following general theorem, which can be 
seen as a completeness theorem for atomicity refinement. It states that an atomicity 
refinement is correct if and only if some formula is an invariant. 
T h e o r e m  4. If Old, New and B are as introduced above, and if I is an Old- 
invariant such that ~ (I  =v B), then B ~ f is a (New, I)-safety property if and 
only if formula #* "-~'def (I Y sp[I; ($1; 7~*)]) is a New-invariant. 
Comment. Even when B => I is a (New,/)-safety property, it is usually not inductive; it 
is therefore not a New-invariant, but only the logical consequence of some New-invariant. 
Comment. If ,91; 7~ C_ T~;,91, then formula ~* reduces to �9 =def (I V sp[I;,91]). 
P r o o f  o f  t h e o r e m  4. If B ~ I is a (New,/)-safety property, then any reachable 
relevant state satisfies I. Let 7 be a reachable transient state; there exist n > 0 and 
a traced computation prefix 

C =d4 (~/0,S1,~/1,7~,.. . , 'm7~,..-,7~,%+t) 
such that  70 ~ I and 7n+1 = 7. As a result, 7 ~ sP[I;(S1;T~n)] and therefore 
7 ~ r Any reachable state satisfies ~* and, clearly, any state satisfying ~* is 
reachable; so #* is the set of reachable states, and therefore an invariant. 
Conversely, if #* is an invariant, it is also the set of reachable states, so all relevant 
reachable states satisfy #* A B, that reduces to I.  C] 
Theorem 4 can be the basis of a complete technique for validating atomicity refine- 
ments, but the problem is, computing sp[I; ($1; 7~*)1 is not easy in general. 

We can now outline a more general compaxison between trace reduction and 
invariant adaptation. Some notation is introduced first. 

T. =~4 sp[l; (&;T~)t, 
Cq =g~r V~_<~ r~. 
U* =dcf VizoTi" 
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The sequence (Un) is monotonic (Un =~ Un+l holds for all n). An atomicity refine- 
ment is correct (theorem 4) if and only if I v U* is a New-invariant. A (correct) 
refinement is stationary if U* reduces to Un for some n. The preceding theorems 
imply that the trace reduction method works only if U0 -- U*; even then, the no- 
tion of context introduced in [2] may be needed. The invariant-based technique is 
complete but, in practice, the computation of U* is likely to be intractable, except 
when U* reduces to Un for a small value of n. Three cases are of special interest : 

1. U* reduces to U0 and the trace reduction method does work. 
2. U* reduces to U0 and the trace reduction method does not work (except when 

contexts are used). 
3. U1 is weaker (i.e., greater) than U0, and U* reduces to [/1; the trace reduction 

method does not work, but the invariant method remains tractable. 

Case 2 is briefly illustrated in paragraph 4, where an example of case 3 is also men- 
tioned. 

3.3 Computer-aided verif icat ion 

CAVEAT [16] is a tool for invariant validation. It also supports atomicity refinement, 
in so far only sp-calculus is used to produce in~ariant candidates U0 and [/1. The 
practical bottleneck is that atomicity refinement induces quick size growing of the 
invariant, and therefore of the verification conditions. The general form of these 
conditions in C A V E A T  iS ( h i  . . .  hn) =~ C, and the validation module becomes very 
slow when n is big. A possible solution is to rank the hypotheses h i , . . . ,  hn according 
to their relevance to the conclusion c. Typically, very few hypotheses are really 
relevant, and even an elementary ranking program can speed up the validation 
process. Preliminary results are reported in [17]. 

4 A p p l i c a t i o n s  

When some requirements are satisfied, it is possible to solve (approximately) a 
fixpoint system of equations (e.g., on the domain of real numbers) like 

{x  = / (x ,  
y = g(x, (1) 

in a concurrent way, using two processes X and Y and two boolean variables h= 
and h~, initialized to true [5, 11]. The processes are : 

Process X 

while (h= V h~) do 
if x _ / ( z ,  y) 
then h= : -  false 
else x := f ( x , y ) ;  

( h= , h~ ) := (true, true) 

The system terminates when both h= 
termination, both conditions e= =g~f 
satisfied. 

Process Y 

while (h= v h~) do 

y g(x, y) (2) 
then h~ :----false 
else y := g(x,  y); 

( h= , h~ ) := (true, true) 

and h~ are false; we would like that," on 
(x ~- f ( x ,  y)) and ey =def (Y ~- g(x,  y))  are 
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In the coarser-gained version, there are only two transitions (and a single lo- 
cation for each process, say X0 and Y0 respectively). The transitions executed by 
process X are 

(Xo, (h~ v h~) A e~ ----, h~ := false, Xo), 
(X0, (hx Vh~) A -~ex ~ (x, hx,h~):= (f(x,y),true, true), Xo). 

Comment. The relevant effect of the statement x := f(x, y) is to assign unknown boolean 
values to both conditions e~ and e~. 

An appropriate invariant of this coarse-grained version is (hx vex) A (h~ V ey). 
This formula is true initially (since h~ and h~ are both true) and respected by all 
transitions (h~ and h~ become false only when e~ and ey are true, respectively, 
and every time x or y is touched, both variables h~ and h~ become true again). On 
termination, the invariaat reduces to e~ A e~. 

As a first atomicity refinement, we split the "else" part of process X, i.e., we 
replace 

(X0, (hx Vh~) A -~ex - ~  (x,h~,h~):= (f(x,y),true, true), Xo). 
by 

(X0, (h~vhy)  A-~e~ ~ x : = f ( x , y ) ,  X1), 
(X1, (h~, hv) := (true, true), Xo). 

It is not possible to apply the reduction principle, since x := f(x,y); y := g(x,y) 
and y := g(x, y); x := f(x ,  y) may lead to distinct states; similarly, (h~, hv) := 
(true, true), in process X,  and h~ := false (in process Y) do not commute either. 
Nevertheless, the refinement is correct. To see this, we compute the first terms of 
the sequence (Tn) introduced in paragraph 3.2. 

The data are : 

I o : a t X o  A atYo A (hx Vex) A (hu Vey) 
31 : (X0,  (hxVhy) A-~e~ ~ x : = f ( x , y ) ,  X1), 
/~: T~ U 7~ I, where 

~ t  =~eI (Y0, (hx V hu) A ey ---. hy := false, Yo), 
n ]  =d~f (Yo, (h~ Vh~) A -~e~ ~ (y, hx,hy):= (g(x,y),true, true), Yo). 

For n = 0, the disjunctive term Tn =def sp[I; (81; ~")] reduces to To = sp[Io; 81], 
i.e. 

at Xt  A at Yo A h~. 
For n = 1, the disjunctive term sp[Io;(S1;T~)] reduces to Tt = sp[Io; (S1;T~)], and 
further to sp[sp[Io; St]; 7~] v sp[sp[Io; St];/~f], that is 

at X1 A at Yo A h~ A [(ey A-~h~) V hy], 
which further results in 

at X1 A at Yo A hz A (e v V hy). 
As 2"1 is stronger then To, there is no need to compute further terms; V T,~ reduces 
to To. An acceptable invariant is now I1 =~I (Io V To), which can be simplified 
into 

[(h~ Ve~) A (h~ Ve~)] V (at Xt  A h~). 
This is an instance of case 2, since U* reduces to U0 

Symmetrically, if the "else" part of of process Y is split, then the invariant is 
adapted into 
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[(h= ve=) A (h~ V ey)] V (at X1 A h=) v (at Y1 A h~). 

A generalized version of algorithm (2) exists, which involves n processes and 
allows the distributed solution of n-equation systems. However, the validation of 
atomicity refinements becomes more complicated, and involves several instances of 
case 3 (see [14] for details). 

Comment. It should be emphasized that, for specific concurrent systems, easier validity 
proofs can be found for atomicity refinements. This paper is concerned only with the 
systematic techniques, applying to a broad class of concurrent systems. 

5 C o n c l u s i o n  a n d  r e l a t e d  w o r k  

Two widely used methods for the validation of atomicity refinements have been 
compared. It is known for a long time that the invariant adaptation method is com- 
plete whereas the trace reduction method is not, but also assumed that, in some 
cases, the trace reduction method is easier to use. This assumption turns to be false 
and, as far as safety properties are concerned, the invariant-based method has defi- 
nite advantages. Especially, many refinements encountered in classical examples are 
correct but outside the scope of the trace reduction techniques. Note, however, that 
the trace reduction method might still be useful to prove properties like termination 
and freeness of individual starvation; besides, other reduction methods (relying not 
only on traces) have been proposed. 

The trace reduction technique has been successfully used especially in the area 
of (deterministic) parallel programming [2, 4]. The invariant adaptation technique 
is used e.g. in [10, 20]; a systematic presentation is [15]. Incremental construction 
of invariants, using approximation sequences like (U,~), originates from [8, 7, 29]. 
Systematic approaches are [21] and [14]. 

Our main goal in this paper was. to validate the decision made in CAVEAT, where 
the trace reduction method is not implemented (we plan to rely on invariant adap- 
tation only). The program notation used in CAVEAT and in this paper is classical 
and allows for a convenient version of the reduction theorem and related results. 
From the theoretical point of view, however, these problems are better investigated 
at a more abstract, purely semantical level. An adequate framework for doing this 
is Lamport's TLA (Temporal Logic of Actions). In this formalism, both statements 
and assertions are represented as logical formulas; this leads to elegant and general 
formulations of results which, like the reduction theorem and other refinement theo- 
rems, involve more than one version of a program [22]. (TLA is also appropriate for 
more practical problems, especially in program specification; see [22, 25] for more 
details.) As pointed out by reviewers, the construction of the invariant of the refined 
version of a concurrent system in terms of the invariant of the reduced version can 
also be achieved in TLA, at a purely semantic level, as reported in an unpublished 
working paper [24]. The form given in the present paper (theorem 2) relies only 
on the elementary predicate transformer sp, and not on the higher-level predicate 
transformers win and sin used in I24], which cannot be implemented easily as such. 

Acknowledgmen t .  It is a pleasure to thank Yih-Kuen Tsay for improving the 
demonstration of theorem 2, and for a careful and critical reading of the manuscript. 
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Abs t r ac t .  When proving invariance properties of programs one is faced 
with two problems. The first problem is related to the necessity of prov- 
ing tautologies of the considered assertion language, whereas the second 
manifests in the need of finding sufficiently strong invariants. This paper 
focuses on the second problem and describes techniques for the automatic 
generation of invariants. The first set of these techniques is applicable on 
sequential transition systems and allows to derive so-called local invari- 
ants, i.e. predicates which are invariant at some control location. The sec- 
ond is applicable on networks of transition systems and allows to combine 
local invariants of the sequential components to obtain local invariants 
of the global systems. Furthermore, a refined strengthening technique is 
presented that allows to avoid the problem of size-increase of the consid- 
ered predicates which is the main drawback of the usual strengthening 
technique. The proposed techniques are illustrated by examples. 

1 Introduct ion 

Model checking [17, 4, 13, 20] is by now a well-known method for proving prop- 
erties of reactive programs.  The main reason for its success is tha t  it works fully 
automatically,  i.e. without any intervention of the user. The price to pay for this 
feature is that  it can only be applied on finite-state, or restricted classes of infinite 
state, programs.  

On the other hand, there exist deductive methods to prove safety properties 
of reactive programs.  These methods are based on a proof rule which can be 
formulated as follows. To prove that  some given predicate P is an invariant of a 
given program S, i.e. tha t  every reachable state of S satisfies P,  it is necessary 
and sufficient to find a predicate Q with the following properties: 1.) Q is stronger 
than P,  2.) Q is preserved by every transition of S, i.e. for every states s and s', 
if s satisfies Q and s ~ is reachable from s by a transition, then also s ~ satisfies 
Q, and 3.) Q is satisfied by every initial s tate of S. The  predicate Q is called 
auxiliary predicate. 
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** yl@inform atik.uni-kiel.de 
*** Saidi~imag.fr 



324 

Although, this rule is sound and (relatively) complete, it provides only a 
partial answer to the verification problem of safety properties. For it leaves open 
(i) how to find the auxiliary predicate Q and (ii) how to prove that Q is preserved 
by every transition of S and satisfied by the initial states. Problem (ii) is related 
to the problem of proving tautologies of the underlying assertion language. 

In this work, we describe techniques for automatically generating auxiliary 
predicates. We present the following strategies: 

- Generalized reaffirmed invariance: This applies to transitions for which the 
value of the guard and of the expressions occurring on the right hand side 
of its assignment are not changed by the transition itself, i.e. they have the 
same value before and after the transition. This is more general than the one 
called reaffirmed invariants in [15, 14]. 

- Propagation o f  invariants:  This technique allows to propagate an assertion 
that holds whenever control is at some fixed control location to other control 
locations. We consider two instances of this technique. The most general one 
allows to propagate even in the presence of loops. Again our technique is 
applicable in cases not covered by the propagation techniques presented in 
e.g. [15, 14]. 

- Refined strengthening: One of the most used techniques for strengthening 
invariants is by calculating the weakest (liberal) precondition [6] w.r.t, the 
considered invariant and taking it as a conjunct. A drawback of this method 
is that it increases the complexity of the considered predicate, and hence, after 
few steps its application leads in many cases to unmanageable predicates. We 
present a refined version of this method that allows to attenuate the blow up 
caused by applying this useful strengthening method. 

- Combining Invariants:  This method allows to combine invariants developed 
separately for the components of a given network $1 I[ "'" [[ S,  of transition 
systems to an invariant of the global system. 

All predicates that can be generated by these strategies are proved to be invari- 
ant by construction. The use of these techniques for various mutual exclusion 
algorithms shows that they are promising. For instance, in case of the Bakery 
algorithm [12, 15], which is an infinite-state program, we generate an invariant 
that is sufficiently strong to prove the required property. 

It is also important to note that these techniques are local in the sense that, in 
order to apply them, they do not require the full transition system to satisfy some 
restrictions, but rather subsets of control locations and variables are required to 
satisfy some condition. 

The problem of automatically constructing invariants from program descrip- 
tion has been intensively investigated in the seventieth leading to results reported 
in e.g. [11, 9, 3, 7] 3. Here, we present results which are to our knowledge new or 
extensions of existing ones. Other interesting recent results are reported in [2]. 

These techniques represent a n  important component of a tool which is be- 
ing developed to support the computer-aided verification of safety properties of 

3 This list of references is far from being exhaustive. See [15] for other references. 
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reactive programs. Here, we give a brief description of this tool (See [10] for a 
detailed discussion). It consists of the following components: 

- P r o n t - e n d :  The front-end takes as input a description of a transition sys- 
tem written as a program in a simple programming language and a predicate 
to be proved as invariant of the described transition system. Then, it pro- 
duces a PVS-theory [16] that  mainly contains the verification conditions to 
be proved. The front-end analyses also the program and generates a file con- 
taining information needed to decide, for each control location, whether some 
invariant generation procedure can be applied. 

- A u t o m a t i c  I n v a r i a n t  G e n e r a t i o n :  This is a module that  contains pro- 
cedures implementing several invariant generation techniques. In this paper, 
we present some of these techniques. 

- P r o o f  M a n a g e r :  The user can try to prove that  P is an invariant fully 
automatically. In this case, the system tries to prove that  P is inductive, that  
is, P is preserved by each transition of the program. In case of success, this 
is reported to the user. Otherwise, the system tries to prove the invariance of 
P using predicates which are obtained by calling some invariant generating 
procedures. These predicates are guaranteed to be invariant by construction. 
In case the system is unable to prove the invariance of P,  it may either do 
some strengthening or enter the interactive modus and requires the user's 
guidance. This choice is made by the user. 

- P V S  is the theorem prover developed at SRI [16]. It is used during the 
automatic- as well as interactive proof procedure to discharge the verification 
conditions. 

2 T r a n s i t i o n  S y s t e m s  a n d  I n v a r i a n c e  P r o p e r t i e s  

We assume an underlying assertion language .4 that  includes first-order predicate 
logic and interpreted symbols for expressing the standard operations and relations 
over some concrete domains. We assume to have the set of integers among these 
domains. Assertions (we also say predicates) in .4 are interpreted in states that  
assign values to the variables of .4. Let 27 denote the set of states. Given a state 
s and a predicate P,  we use the notation s ~ P to denote that  s satisfies P,  and 
use [[P] to denote the set of states that  satisfy P.  Henceforth, we identify P and 
its characteristic set [P] .  

D e f i n i t i o n  1. A transition system is a structure S = (X, pc : DC, T, Init), where 

- X is a finite set {z l  : D 1 , . . . ,  x,~ :Dn}  of typed data variables. Each variable 
xi ranges over data domain Di. We assume that  the variables in X form a 
subset of those in .4. 

- pc is a control variable (or program instruction counter). It ranges over the 
finite domain DC. We assume that  pc q~ X .  

- T is a finite set of transitions. A transition t is characterized by a quadruple 
(pc = d, g(Y),  Z' = e(U) ,  pc' = d') 4, where Y, Z, U _ X. The  variables in 

4 Z' can be empty; this is the case when no variable is affected 
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Z are called the variables affected by transition t, and we denote by sour(t) 
(resp. tar(t)) the value d (resp. d'). These definitions are easily generalized to 
sets of transitions. Given a transition t = (pc = d, g(Y), Z' = e(U) ,  pc' = d'), 
and states s and s', s ~ is called t-successor of s, denoted by s --*t s', if the 
following conditions are satisfied: 1.) s satisfies the enabledness condition 
pc = d A g(Y) of transition t and 2.) s' satisfies s'(zi) = ei(s(V)),  for each 

c z ,  = each with r Z, and s'(pc) = d'. 
- Init is of the form I ( X )  A pc = do. The conjunct I (X )  specifies the initial 

condition on data  variables, whereas pc = do specifies the initial value of the 
control variable. We call I the initial predicate of S and do its initial control 
location. 

A transition system generates a set of sequences of states. Since we are only 
interested in invariance properties, we only consider finite sequences. A finite 
sequence o ~ = so , . . . ,  sn of states is called computation of S, if so satisfies Init 
and, for every i E {0 , . . . ,  n - 1}, there exists a transition t in T with si ---~t si+l. 

To define the semantics of the parallel construct, we define the product of two 
transition systems. Let Si = (Xi,pc~ : DCi, Ti, Initi), for i = 1, 2, be transition 
systems. The product of $1 and S~, denoted $1 ~ )$2 ,  is a transition system 
{X, pc : DC, T, Init), where 

- X = X1 U X2 is the set of program variables. 
- pc ranges over DC = DC1 • DC2. 

[d j d ~ ~ is in T i f f  either - A transition (pc = (dl, d2), g(Y), Z' = e (U) ,pc  = ~ I, 2J~ 
* (pc1 = d l ,g (Y) ,  Z' = e(U),pc~ = d~) E T1 3~d d~ = d2 or 
| (pc2 = d2,g(Y)~ Z' = e(U),pe~ = d~) E T2 and d~ = dl. 

- Init = I1 A I2 Apc = (dl,e, d2,0), where Initi = Ii Apci = dl,o, for i = 1, 2. 

Then, the set of computations of $1 II $2 is defined to be that  of $1 (~ $2. 

Invariance Properties We consider a class of properties, named invariance prop- 
erties (cf. [15]). Intuitively, a property P is an invariant of a transition system S, 
if in each state of the system S this property holds. In other words, each state 
that  is reached during a computation of S satisfies P.  

D e f i n i t i o n 2 .  A state s is called reachable (accessible) in the transition system 
S, if there exists a computation s o , . . . ,  s~ of S such that  s~ = s. We denote the 
set of reachable states by Reach(S). A predicate P is called invariance property 
of S (or invariant of S) if[ Reach(S) C_ IP]. For d E DC, we say that  P is an 
invariant of S at d, if P V -.(pc = d) is an invariant of S. 

Next, we briefly recall the basic idea for proving invariance properties of pro- 
grams. This idea underlies many proof rules formulated in different settings 
(e.g. [8~ 1, 15]). To do so, we recall the definition of some predicate transformers'. 

D e f i n i t i o n 3 .  Given p C" ~ • ZT, the predicate transformers pre[p], ~-e[p], and 
post[p] are defined by pre[p](P) = {s e Z ] 3 s '  E P .  (s, s') E p}, p"~[p](P) = 
-~pre[p](-~P), and post[p](P) = {s' E 57 ] 3s C P .  (s, s') Efl}  
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Thus, pre[p] (P) is the set of predecessors of P by p, post[pl(P) is the set of succes- 
sors of P,  and ~r"~[p](P) is the set of states which either do not have successors by 
p or all their successors are in P.  Note that  the ~-F/[p] and post[p] are the weakest 
liberal precondition and strongest postcondition predicate transformers [6]. 

The main principle used in the literature for proving that  a predicate P is an 
i;nvariant of a system S, consists on finding an auxiliary predicate Q such that  1.) 
Q is stronger than P, 2.) every initial state satisfies Q, and 3.) Q is inductive, 
i.e. for all transitions t E T, we have [Q] _ ~[--+t](Q),  or equivalently, post[---~t 
](Q) c [Q]. 

This proof rule is unsatisfactory because it does not tell us how to find the 
auxiliary predicate Q. Finding Q is often the hard part in the proof of invariance 
properties. 

In the next section, we present a set of techniques that,  given a transition 
system S and a predicate P,  automatically generate an auxiliary predicate that  
is by construction an invariant. In some cases, the generated predicate is strong 
enough to prove that  P is an invariant. 

3 Automatic Generation of Auxiliary Predicates 
In this section we present some o f  the strategies for deriving auxiliary predi- 
cates we implemented in our tool. We concentrate on strategies which are to our 
knowledge new or extensions of strategies presented in other works (e.g. [9, 11, 
15, 14, 2]). The auxiliary predicates derived using our strategies are proved to be 
invariant by construction. 

Generalized Reaffirmed Invariance without Cycles We begin with a strategy that  
can be applied to a control location d to derive an invariant under the assumption 
that  all transitions that  lead to d satisfy some restrictions we define below. This 
is a generalization of the reaffirmed invariance strategy presented in [15, 14]. 

Let S = (X, pc : DC, T, IApc = do) be given. For ~ C_ DC, let L(c~) denote the 
set of transitions t with tar(t) E ~. Thus, L(c~) is the set of transitions changing 
the value of the control variable to a value in ~. We write L(d) instead of L({d}). 

Consider a transition t = (pc = dl, g(Y), Z' = e(V),pc '  = d), with Zr3U = 0. 
Then, for every states s and s', if s ---~t s', then s'(Z) = e(s ' (U)) and s '(U) = 
s(U). This suggests to take the predicate Z = e as invariant at d. 

To formulate the general case, given a transition t as above, we denote by 
aftt) the predicate Z = e(C) and by gu(t), the guard g(Y). Let, for d E DC, 
Asss(d) = V (gu(t) A aftt)), if d r do; and IV  V (gu(t) A aft(t)), if d = do, 

tEL(d) tEL(d) 
where I is the initial predicate of S and do its initial control location. 

L e m m a 4 .  Let S be a given transition system with Init = I A pc = do and 
let D C_ DC be such that for each d C D and transition (pc = dl ,g(Y) ,  Z* = 
e(U),pc '  =' d) in L(d) we have Z M (Y U U) = ~. Then, for each d C D, the 
predicate .Asss(d) is an invariant o r s  at d. 

We can actually formulate a strategy that  generalizes the one above by relaxing 
the condition Z Cl (Y U U) = 0. Let .AssJs(d) be defined as in Figure 1. Then, for 
each d E DC, Asses(d) is an invariant of S at d. Henceforth, let a f f - indep  denote 
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Ass' ( d) = 

V (g,,(t) ^ az(t)) 
teL(a) 
z v V (g.(t) ^ aZ(t)) 

teL(d) 
V  Z(t) 

teL(a) 
I v  V 

teL(d) 

V 
t~ L( a) 
z v V gu( t ) 

teL(d) 
true 

; i f d # d o  a n d Z N ( Y U U ) = O  

; i f d = d o  a n d Z r h ( Y U U ) =  

; i f d # d o , Z N U = g a n d Z N Y # O  

;if  d = do, Z n U = O a n d  Z r h Y # r  

;if d # do, Z N Y = r  and Z r 3 U # O  

;if  d = do, Z n Y  = r and Z r h U  #l~ 

; otherwise 

Fig. t .  Definition of Ass~(d) 

the function that  for a given transition system S returns as result the predicate 

ndeD pc -~ d ~ .Assls (d). 
Generalized Rea]firmed Invariance with Cycles Consider the si tuation described 
in Figure 2. Then, function a f f - i n d e p  yields the predicate x = 2 V y = 1 as 
invariant at d. It  is easy to see, however, that  the stronger predicate x = 2 is also 
invariant at d. We develop a technique that  extends the previous one and covers 
situations similar to that  of Figure 2. 

~ y : = l  

Fig. 2. Generalized Reaffirmed Invariance 

A path from d to d I in S is a sequence d l , t l , ' " , t n - l , d n  with n _> 2, dl = d, 
and dn = d. We say that  a pa th  d l , t l , . .  ", tn- l ,dr ,  from d to d ~ goes through d tl, 
if di = d ' ,  for some i E {1, .~ , n}. 

D e f i n i t i o n 5 .  Given a transition system S, a control location d of S, and a set 
a of control locations of S with d E a .  We say that  a is guarded by d, if the 
following conditions are satisfied: 

- The initial control location of S is not in a or it is d. 
- For every transition t E L(a)  \ {d}, sour(t) e a. 
- Each path  from d to d ~ E a goes only through control locations in a.  

Let Tr(S, a, d) denote the set L(a) \ {t t t e L(d), sour(t) • a}. 

Example 1. Consider the system S given in Figure 3, where do is the initial con- 
trol location. Then, al  = {dl, d2, d3, d4, d~} and a2 = {dl, d4, ds} are guarded by 
dl, while as  = { d l ,  d2, d4, ds} and a4 --" {dl, d2, d3} are not because the second re- 
spectively third condition are violated. We have Tr(S, C~l, dl) = {tl ,  t2, t3, t4, ts, t6} 
and Tr(S, a2, d l ) =  {t4, ts, t6). 

D e f i n i t i o n 6 .  Given a transition system S and d E DC.  We say that  d is safe 
with respect to a set V of variables and a set o~ of control locations, if a is guarded 
by d and for every t E Tr(S, c~, d), t does not affect any variable in, V. 
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Fig. 3. 

Then we have the following lemn'la. 

L e m m a  7. Consider a transition system S, a control location d, a set ~ of control 
locations, and a set V of variables such that d is safe w.r.t. V and ~. Let S ~ denote 
the transition system obtained from S by removing the transitions in Tr( S, ~, d). 
For every predicate Q with free variables V, if Q is an invariant of S I at d, then 
Q is an invariant of S at every d ~ E c~. 
The lemma above suggests a procedure to derive an invariant a t f -cyc(S)  from the 
description of the transition system S: For each d E DC,  determine a maximal  set 

of control locations for which d is safe with respect to the variables affected by 
transitions in {t I t E n(d),  sour(t) ~ a}; in case d is the initial control location, 
we have to check also w.r.t, the free variables of I. If this is the case, record 
Ass~s,(d), where S' is as above, as an invariant of S at d ~ for each d' E ~, 
otherwise, record .Asses (d) as an invariant of S at d. 

Remark. 1. A possible variant of the algorithm af f -cyc  concerns the case where 
the initial control location is considered. Instead of requiring that  d is safe 
w.r.t, the free variables of I,  we hide those which could be affected by some 
transition in Tr(S, ~, d) by existential quantification. 

2. Clearly, determining the maximal set a which is guarded by d and then check- 
ing whether d is safe w.r.t, this set and the variables affected by transitions 
in {t I t  E n(d),  sour(t) ~ c~} .does not always allow to derive the strongest 
possible predicate. One can, however, have a procedure which depends on 
some given set V of variables and which computes the maximal set c~ such 
that  d is safe w.r.t. V and a. 

3. Until now we considered a single transition system S and a t f -cyc  has been 
formulated for this case. When n transition systems S1 II "'" II S,~ in parallel 
are considered, we have to strengthen the notion of d being safe w.r.t, a set V 
of variables and a set a of control locations; and require that  all variables in V 
are only written by the system Si to which d belongs. Henceforth, whenever 
we refer to a t f -cyc  when a parallel program is considered, we mean the 
algorithm obtained by strengthening this notion and taking into account the 
variation suggested in 1. 

Next, we present a technique that  allows to propagate predicates that  have been 
proved to be invariant at some control points of the system, i.e. for some value 
of pc. We first start  with the basic idea. 

Propagation without cycles Given a transition system S, a predicate Q with V 
as free variables and a transition t of S, we say that  transition t does not affect 
Q, if Z A V = 0, where Z are the variables affected by t. 
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Consider a transition system S and a control location d E DC which is not 
the initial one. Let { d l , - . . , d , }  -= sour(L(d)) and assume that,  for each i E 
{1 , . . . ,  n}, Qi(Vi) is an invariant of S at di. If for each t E L(d) and i E {1 , . . . ,  n),  

'~ V with sour(t) = di, t does not affect Vi, then V~=I Q ( i )  is an invariant at d. 
For the case where d is the initial control location, Vin__l Q(Vl) v I, where I is 
~-he initial predicate, is an invariant at d. The correctness of this observation is 
guaranteed by the following lemma. 

L e m m a  8. Consider a transition system S and a predicate P that is an invariant 
orS.  Let d E DC be a control location o r s  with L(d) = { t l , . .  ",tin} and di = 
sour(ti). Let also Q I , . . . , Q m  be predicates such that P A pc = d i  implies Qi, 
with i = 1 , . . . , m .  If  d is not the initial control location of S, then the predicate 

m P A (l = d ~ Vi=l post[--+~,](Qi)) is an invariant of S, otherwise P A (l = d 
(Vi~=l post[~,,](Qi) V I)) is an invariant orS.  

Note that  in case that transition t does not affect Q, we have post[--*t](Q) ~ Q, 
and therefore, the correctness of our technique is implied by the lemma above 
and the fact that  if P '  is an invariant of S and pr implies Q/, then Q' is also an 
invariant of So 

The implementation of this technique is a function, denoted propg,  that takes 
as input a transition system S and a predicate P of the form AdEDC pc ----  d 
Qd(V~). Then, computes for each control location d, the set of variables affected 
by any transition in L(d). Let Va denote the intersection of this set with V~. As 
result, this function yields, for each control location d, as a local invariant at d 
the predicate Qd(V~) A 3Yd.  V ~4d ~, d') �9 

a'eL(a) 
Propagation with cycles Consider now the situation described in Figure 4. An 
application of the simple propagation technique does not allow to strengthen the 
predicate m A~=I pc = di ~ x = i. For, we would add as a conjunct the predicate 
pc = d ~ true v V m i-1 x = i, which is equivalent to true. Yet, it is clear that  
Vim=l x = i is an invariant at d. We develop the next technique which captures 
similar situations. 

?'/2 

" ~ ~  y := e 

x 1 ( ~  y :=e l  

Fig. 4. Propagation with cycles 

Consider a control location d and a set a of control locations which is guarded 
by d. Let {d l , . . . , d ,~}  = sour(L(d)) \ a. Then, if for each i = 1 , . . . , m ,  Q,(Vi) 

r ~  is an invariant of S at di and if d is safe w.r.t. ~Ji=l Vi and a,  we can conclude 
by Lemma 7 and Lemma 8 that  Vi~l Qi(Vi) is an invariant at each d' E a.  

Mixing generalized reaffirmed invariance and propagation Until now we consid- 
ered propagation and reaffirmed invariance separately. Whereas propagation as- 
sumes a given invariant P and propagates local invariants from control locations 
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to others, reaffirmed invariance does not assume such a predicate. We now present 
a technique that  combines propagation and reaffirmed invariance. 

Consider a transition system S and an invariant P of S. Let d be a control 
location of S such that  { t l , . . . t ,~}  = n(d) and d~ = sour(ti), for i = 1 , . . . , m .  
Suppose that  for each i = 1 , . . . ,  m, P A pc = di implies Q~(VI). If, for each 
transition ti and each j with dj = sour(ti), Q~(Vi) implies e(Vl)~ = Ci and 
Zi N Vj = 0, where Zi' = e(Ui) is aff(ti) and (3 is a list of constants, then we 
can conclude that  Vi~=I(Q~(Vi)A Zl = Ci) is invariant at d. Correctness of this 
observation is again a consequence of Lemma 8 and Lemma 8. 

Refined Strengthening Suppose we are given a proposed invariant P for transition 
system S with transitions T. Suppose also that  the proof of P ~ pF~[--*t](P) 
fails for t l , . . . , t , ~ .  The method of strengthening invariants (e.g. [15]) proposes 
to try as next invariant P1 = P A/~=1 ~F~[--+tj(P). Thus, one has to try to 
prove for each transition t the implication P A Q ::~ p~-e[--*t](P A Q), where 
Q = A~=I ~-Fe[--*t,](P). The main drawback of this method is that,  in general, 
each strengthening step increases the size of the considered invariant which in 
some cases leads to unreadable predicates. 

We propose a variant of this method that  is theoretically equivalent, i.e. it 
leads to logically equivalent verification conditions, but which allows to reduce 
the number of applications of ~-~ and to save redoing proofs. 

Suppose that  the at tempt of proving Vt E T .  (P  ~ P-r-~[---*t](P)) fails for the 
transitions t l , . . . ,  tin, and that  one gets subgoals Q1," �9 ", Qm, which are logically 
equivalent to P ~ P~-~[--~t,](P), i = 1 , . . . ,  m. We propose to take in the next step 
the predicate P~ = P AAim__t Qi instead of P1. The next lemma implies soundness 
of our method but also proves that  if P1 is inductive, then also P~. 

L e m m a  9. Let P1 = PAA~=I pTe[--~j(P),  Qi be equivalent to P ==> pr-e[--+t,](P), 
and let P~ = P A Ai~=~ Qi. Then, "P1 and P~ ace equivalent. 

It is worth to note that  soundness of our method does not depend on the fact 
that  Q~ is equivalent to P ~ ~-~[-, , , ](P) but it suffices, if it is stronger. 

To see that  our method indeed avoids the blow-up of the considered pred- 
icates which is due to the repeated application of the predicate transformer 
pr~-~, let us look at the predicates to be considered at step i when each of the 
strengthening and refined strengthening methods are applied in turn. In case 
of the strengthening method one has to consider at step i the predicate Pi = 
P0 A pFe(P0) A...pr~--~'(Pi_l) and to prove P~ ==~ P-~(Pi). In case of the refined 
strengthening method, however, one has to consider the predicate Oi which is 
obtained as a subgoal in step i, and then, to prove Q0 A . . .  A Qi ~ ~-e(Qi). 
Thus, in the refined strengthening method, at each step ~F~ has to be applied 
only once. Another advantage of this method is that  Q~ is usually of the form 
pc = d =~ Q which can be explained by the fact that  Qi is the predicate that  is 
obtained when the proof of Q0 A. . .A  Qi-1 ~ p-r-e(Qi-1) for some fixed transition 
with pc -= d as part of the enabling condition has been attempted. Now, when a 
predicate Q of the form pc = d ==~ Q' is considered in order to prove that  Q is 
preserved by all transitions, it suffices to consider only those in L(d). 
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Combining Invariants Consider a network S = St II "'" II S,, of transition sys- 
tems. Given a predicate P, in order to prove that P is an invariant of S, one can 
calculate the product S1 ( ~ . .  �9 ~ Sn and then prove that P is an invariant of the 
resulting sequential transition system. This method is, however, not applicable 
for large transition systems because of the big size of the obtained system. In- 
deed, the resulting transition system mainly codes all possible interleaving of the 
transition steps in the network S. In this section, we present techniques we use to 
prove invariance properties of networks without calculating the product. These 
techniques have been successfully applied to many mutual exclusion algorithms, 
e.g. the Bakery mutual exclusion algorithm [12, 15] in three different versions and 
Szymanski's mutual exclusion algorithm I18, 19] both parameterized and for two 
processes. 

Def in i t i on l0 .  Given a transition system S, a predicate P is called history- 
independent assertion at d E D e ,  if post[t](true) C ~P] holds for each t E L(d), 
and moreover, if d is the initial control location of S, then Ini t  implies P. 

An history-independent assertion at d is true whenever computation reaches d 
independently on how this happens, in particular it does not dependent on the 
state in which the transition is taken. 

Consider transition systems S1 and $2 with Si = (Xi, pci : DCI, Ti, Ii A pci = 
di,0), for i = 1, 2. Moreover, consider predicates Qi, for i = 1, 2, and (dr, d2) G 
DC1 • DC2. Assume we know that Qi is an history-independent assertion at di. 
Then, we can conclude that QI v Q2 is an invariant of S1 I] $2 at (dr, d2). This 
leads to the following heuristic formulated in the next lemma. 

L e m m a  11. Let Si = (Xi,pci : DCi, Ti, Ii Apci = di,o), for i = I, 2, be transition 
systems and let Qi be predicates. Then, for each (dr, d2) E DCt • DC2 such that 
Qi is an hisfory-independent assertion of St at di, for i = 1,2, the predicate 
Qt vQ2 is an invariant of $1 ]] $2 at (dl,d2). 

If the predicates Qt and Q2 constraint only variables which are affected only 
in St, respectively, $2, then we can even conclude that the stronger predicate 
Qt A Q2 is an invariant at (dr, d2). 

The implementation of both observations above is realized by a single function 
comp which takes as arguments the transition systems 5'1 andS2 as well as 
two predicates P1 and P2 for St and $2, respectively, which are of the form 

A pc = dj =~ P~(dj), i = 1~ 2. The result of the application of this function 
djEDC~ 
is a predicate of the form ]~ pc = d ~ Q(d), where DC = DCt • DC2 and for 

dEDC 
d = (dl, d2), Q(d) is defined in Figure 3. 

Remark. It is worth to note that each invariant Q obtained by applying the 
function aff- indep is history-independent. 

In a concrete implementation, the predicate obtained by an application of the 
function comp,  can be encoded byadding to each local invariant Pi(di) at di .two 
bits. The first one encodes whether Pi(di) is history-independent and the second 
whether it refers to a variable affected in Sj with j # i. 
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[ P~(dl) v P2(d2) ; if for i -- 1, 2, Pi is an history-independent assertion atdi 
and one of the predicates P1 or P2 refers to a variable 
affected in $2 respectively $1 

and predicate P1 respec. Pe does not refer to any variable 
affected in $2 respee. $1 

; otherwise 

Fig. 5. Definition of eomp 

The next lemma shows how given d~ E DCi and a predicate Q that  is history- 
independent at d~, we can deduce a predicate QI which is also history-independent 
at d~ and which does not refer to variables affected in Sj with j ~ i. 

L e m m a 1 2 .  Let $1 and $2 be transition systems and let dl E DC1 (resp. d2 E 
De2)  be a control location of $1 (resp. $2). I f  Q is a history-independent assertion 
at d and Y are the variables occurring in Q which are affected in $2 (resp, $1), 
then 3 Y  �9 Q is a history-independent assertion at d. 

Clearly, the predicate 3Y : D �9 Q does not refer to variables affected in Sj. Let 
abs t  be a function that  takes as arguments two transition systems $1 and $2 and 
a predicate P for $1, and returns a predicate Q for $1 such that  Q is obtained 
from P by applying the observation above. 

Next we present the  tactic we apply to synthesize an invariant from a given 
network $1 II $2. This is presented by an algorithm written in pseudo-code and 
which uses the heuristics presented above. 

Input: $1 [[ $2 
Output: An invariant 

1. Pi := aff-indep(Si); for i = 1,2 
2. P := comp(S1, $2, P1, P2) 
3. Q1 :=abst(S1,S~,P1), Q2 :=abst(S2,S1,P2) 
4. Qi := Qi A propg(Si, Qi), for i = 1,2 
5. return P A Q1 A Q2 

4 E x a m p l e  

The example we consider is the Bakery mutual  exclusion algorithm [12, 15]. Two 
processes are competing to enter their respective critical sections represented by 
location 4. Thus, the invariant we are going to prove is given by the predicate 
I N V  = -~(pcl = 4 A pc2 = 4). 

It can easily be checked that  this invariant is not inductive. Moreover, cal- 
culating the set of reachable states using the post operator does not terminate 
(no fix-point can be reached in a finite number of steps). Calculating the weak- 
est invariance property that  is contained in I N V  does terminate after 8 steps 
(cf. [14]). We can automatically generate by our techniques an invariant that  is 
inductive and that  allows to prove that  I N V  is indeed an invariant. 
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Transition system S~ 
pcl  = l - - ~  pc~ = 2 

pcl  = 2 ~ y~ = y~ + l ,  pc~ = 3 

pc~ -~ 3 A (y2 = O V yl  ~ Y2) --~ PC~ = 4  

pcl  = 4 ~ pc~ = 5 

pc1 = 5 - - -*  y~ =-- O, pc~ = 1  

Transition system $2 
pc2 = 1 ---* pc~ = 2 

pc2 = 2 ~ y~ = yl  + l , pc~  = 3 

pc2 = - 3 A ( y ~  = O V y 2  < Y l ) - - * P C ~ - - - - 4  

pc2 -~- 4 ~ pc~ : 5  

pc2 = 5 ~ y~ -= O, pc~ = 1 

I n i t =  (Yl = Y2 = 0 A p c l  = p c 2  = 1) 

Applying generalized reaffirmed invariance without cycles for $1 (resp. $2) yields 
the predicate P1 (resp. P~) with: 
P1 = (pc1 = 1 ~ yl = 0 v yl = 0 A y~ = 0) ^ (pc1 = 3 m yl = y2 + 1) A 

(pcl  = 4 ~ Y2 = 0 V Yl ~_ Y2) 
P2 = ( p c 2  = 1 =~ Y2 = 0 V y~ = 0 A Y2 = O) A ( p c 2  = 3 =~ Y2 = Yl + 1)A 

(pc2 = 4 ~ yl  = 0 V y2 < yl  ) 

Combining the predicates P1 and P2 according to function comp results in a 
predicate equivalent to 

P = ( p c = ( 1 , 1 ) = ~ y l - - O V y 2 = O )  A(pc=(1,3): :~yl = 0 V y ~ - - Y l + I )  A 
(p~ = (1,4)  -~ yl = 0 v y~ < y l )  ^ (pc(3,1)  ~ yl = y2 + 1 v y2 = 0) A 
(pc = (3, 3) ~ yl = y2 + 1 v y2 = y~ + 1) A (pc = (3, 4) ~ y~ = 0 v y~ < y l )  ^ 
(pc = (4,1)  ~ y~ = 0 v y~ <_ y2) ^ (p~ = ( < 3 )  ~ y~ = 0 v y2 < y~) 

In the sequel, we write p c l  = d l  A p c ~  = d~ for pc  = (dl, d2). 
Next, we apply the abstraction function abs t  on .P1 and P2 to obtain: 

Then, we apply our propagation technique without cycles. It can easily be 
checked that we can propagate from control location 1 to 2, from 3 to 4, and 
from 4 to 5, which yields the following predicates: 
Q~ = (pc~ = l V pcz  = 2 ~ y~ = 0 )  A (pc~ = 3 V pc~ = 4 V pCl = 5 ~ yz > 1) 
Q~ = (pc2 = l V pc~ = l =~z y~ = O ) A (pc~ = 3 V p c 2 =  4 V pe~ = 5 =~ y~ >_ 1) 

Then, we can show P A Q~ A Q~ A I g Y  ~ pr~-~[-*~.](INV),  for each transition 
t o f  S~ I I s ~ .  

5 D i s c u s s i o n  a n d  F u t u r e  W o r k  

This paper provides a set of techniques for the automatic generation of auxiliary 
predicates to prove invariants of programs. The use of these heuristics for the ver- 
ification of various mutual exclusion algorithms shows that they are promising. 
They have been applied to different versions of the Bakery, Dekker, Peterson, and 
Szymanski algorithms (see [15] for a recent presentation of many of these algo: 
rithms and for references). Concerning Szymanski's mutual exclusion algorithm, 
we verified the parameterized as well as the unparameterized case. We intend to 
combine our techniques with others as abstract interpretation [5] to discover re- 
lationships between program variables that can be used to derive invariants and 
to investigate heuristics arid strategies for the decomposition of large programs. 
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Saving Space by Fully Exploiting Invisible 
Transitions 
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Abst rac t .  Checking that a given finite state program satisfies a linear 
temporal logic property suffers from a severe space and time explosion. 
One way to cope with this is to reduce the state graph used for model 
checking. We present an algorithm for constructing a state graph that is 
a projection of the program's state graph. The algorithm maintains the 
transitions and states that affect the truth of the property to be checked. 
The algorithm works in conjunction with a" partial order reduction algo- 
rithm. We show a substantial reduction in memory over current partial 
order reduction methods, both in the precomputation stage, and in the 
result presented to a model checker, with a price of a single additional 
traversal of the graph obtained with partial order reduction. As part of 
our space-saving methods, we present a new way to exploit Holzmann's 
Bit Hash Table, which assists us in solving the revisiting problem. 

1 I n t r o d u c t i o n  

In order to reduce the space needed for model checking of linear temporal logic 
properties, several pre-processing techniques have been suggested to construct 
smaller graphs such that a property to be checked is true of the original state 
graph iff it is true of the reduced graph. 

In particular, partial order methods such as [GW91],[Val90], and [pe194] ex- 
ploit the fact that  certain operations are independent of other operations, and 
that not all  interleavings of independent operations need to be explicitly exam- 
ined. Here, we exploit the fact that the specification - the  property to be proven- 
is independent of certain operations to obtain a further reduction. Invisible op- 
erations are those that do not affect the truth of any of the atomic propositions 
of the specification, while visible operations do affect them. A node is considered 
visible if some edge corresponding to a visible operation enters it, and invisible 
otherwise. We also exploit the fact that an operation can be invisible or visible, 
depending on the state from which it is executed. In this paper, a program's 
projected visible state space relative to a specification is constructed through a 

* Presently with Motorola Semiconductors-Israel, Herzlia, Israel 
*~ Supported by the Technion V.P.R. Fund-Promotion of Sponsored Research 



337 

DFS traversa!, and the invisible states are eliminated. Thus we present to the 
model checker a much smaller structure that  represents the program. 

The construction of the visible state space requires a linear traversal of a 
state graph that  is somewhat reduced from the original, but can still be large 
in some cases. This is still worthwhile because a standard temporal  logic model 
checker requires space and time complexity which is the multiplication of the size 
of the state space by a term exponential in the length of the formula. Thus for a 
formula of length 20, the time and memory complexity for the model checker are 
multiplied by 106 . We are therefore motivated to reduce the state graph given 
to the model checker. 

Moreover, we will show that  the reduced structure can be produced with a 
low space overhead. During any such pre-processing, and also during a traversal 
of the state-space for purposes of reachability analysis and deadlock detection, 
the question arises of whether to record for future reference that  a particular 
state was already visited. Not indicating that  a state was visited saves space, 
but may be costly in time: if the state is later reached again along another path, 
its descendants must be recomputed unnecessarily. We can define the revisiting 
degree of a state as the number of incoming edges not including those that  close 
loops~ (Those that  close loops are on the stack used for a depth-first traversal, 
and thus are easily identified with no additional space needed). The question is 
whether a state should be identifiable as having already been visited even after 
backtracking from that  state, in the DFS traversal. For graphs with many states 
having a large revisiting degree, the time can increase exponentially if states 
are reexpanded each time they are reached. Identifying such states avoids this 
problem, but can lead to memory overflow. This trade-off can be called the state 
revisiting problem. 

In [GHP92], the state revisiting problem is considered, for teachability anal- 
ysis, in the context of a partial order reduction method. Their conclusion is that  
in that  context, the state revisiting problem can be ignored, states should not be 
saved after visiting, and that  the price to be paid in recomputation is tolerable 
(3 to 4 times a single traversal, for their examples). In general model checking, 
however, the number of recompntations can be unacceptably large. 

It is clear that  partial order reductions as in [GHP92] lessen the state revis- 
iting problem because one cause of reaching the same state by different paths 
is that  independent operations are executed in a different order. Nevertheless, 
recomputation is still sometimes necessary both because such methods only elim- 
inate some of the redundancy of various orderings of independent operations, and 
because sometimes the same state is reached through truly different sequences 
of operations. Partial order methods consider operations dependent and/or  in- 
fluencing the specification, if they might have such an influence. Here we check 
more carefully whether an occurrence of an operation actually affects atomic 
clauses in the specification, as in [KP92], and thus can have greater savings. 

Another approach to the state revisiting problem was proposed in [Ho188] by 
using a hash table where the keys are the states themselves, to indicate whet-her 
a state has already been visited, without saving the full states. The difficulty 
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with this approach is that there may be a hash conflict, and then a state can 
map to a hash entry indicating that it has been visited, even if it has not beem 
and thus some parts of the graph may never be explored. Here we both achieve 
a greater reduction in the graph to be used for model checking, and overcome 
the state revisiting problem while exploring all of the state space, at a cost of a 
single additional traversal of the graph obtained by the partial order expansion, 
beyond the one needed by the partial order method itself. 

In order to overcome the state recomputation problem, a preliminary DFS 
traversal is used to compute the revisiting degree of each state, so that  it is clear, 
on the second traversal, when a state should be retained, and when it can be 
eliminated. Thus, we can manage a caching method that does not randomly free 
memory. During this preliminary traversal, a hashing method similar to that  in 
[Ho188] can be used. A significant difference is that when conflicts do occur in 
the hash table, the worst effect will be some additional recomputation, but the 
entire graph will ult imately be examined. 

In the following section some preliminary definitions are given, the visible 
state graph is defined and theorems with its properties are given. In Section 
3 the basic traversal algorithm to eliminate invisible states is first described, 
then related to a partial order method, and finally combined with a preliminary 
traversal to determine revisiting degrees. In Section 4 we summarize the memory 
and time complexity both of the pre-computation, and of the graph presented 
to the model checker, and present some simulation results. 

In Figures 1 to 3, an example program, and several of its state-space graphs 
are shown. The specification is of mutual exclusion and of liveness. Y1 and Y2 
represent flags that  are true when processes P1 and Pu respectively are in crucial 
sections. The assertion is that  Y1 and Y2 are never both true at the same time, 
and that if one flag is true, the other will eventually become true. The program is 
represented as a labeled set of guarded commands, for each of the two processes. 
Each process has its own program" counter (denoted PCi), to control the internal 
flow of the process. A command is enabled if its guard is true and if the program 
counter of the process containing it is equal to the command's  number. Figure 
2 shows the full state-space graph, while the graph without the grey nodes and 
the dotted lines is the reduced graph after the partial order method of [Pe194] is 
applied. In Figure 3 the graph is shown in an intermediate stage, after some of 
the invisible states have been removed, with the candidates for elimination in the 
rest of the algorithm indicated in gray. The graph without the grey nodes, and 
with edges connected to their successors is the fully reduced graph relative to 
the given specification. Note that  the original graph has 30 states, the one after 
partial order reduction has 26, and the graph that fully exploits the elimination 
of invisible states has only 14. The stages in this reduction will be explained 
later in the paper. 

In this toy example, the specification includes both of the program variables~ 
and only operations involving the control counters are invisible. When the pro- 
gram is more realistic, and the property to be proven only involves part of the 
variables, much greater savings can be expected, as is shown in the simulations 

summarized in Section 4. 
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This paper  demonstrates  that  a careful combination of a partial  order reduc- 
tion method with an algorithm to eliminate states not relevant for the specifi- 
cation, along with a hashing technique to save only relevant information about  
which states have already been considered, can yield a result tha t  makes previ- 
ously infeasible problems treatable.  

- Global State Representation = (PC1, PC2, !11, Y2) 
- Initial State = (0, 0, F, F) 
- Specification Checked = D-,((Y~ = T) A (Y~ = T)), [:]((Y~ = T) =~ O(Y~ = T)) 

PROCESS 1 
PC1 
0:PC1:=1 {al} 
1: PC1:=2; Y2:=T {a2} 
2: (Y~=T) =~ P61:=3; Y~:=F {a3} 
3: PCI:=O { a 4 }  

PROCESS 2 
PC2 
0: PC2:=I  {bl} 
1: PC2:=2; Y~:=T {b2} 
2: (Y~=T) =~ PC2:=3;Y2:=F {bS} 
3:PC2:=0 {b4} 

Fig. 1. Example of a program P. 

2 P r e l i m i n a r i e s  

A finite state program P is a triple < T, Q, I > where T is a finite set of oper- 
ations, Q is a finite set of states, and I 6 Q is the initial state. The enabling 
condition en~ C Q of an operation a E T is the set of states from which a can 
be executed. Each operation a E T is a partial  t ransformation a : Q ~-+ Q which 
needs to be defined at least for each q E enc~ . For simplicity we assume tha t  for 
each q E Q there exists an operation a E T such that  q E en,~. 

An interleaving sequence of a program is an infinite sequence of operations 
v = a 0 a l . . ,  that  generates the sequence of states ( = qoqlq2..,  from Q such 
that  (1) q0 = I ,  (2) for each 0 <_ i, qi C end, and q i + l  = ai(qi). 

A nexttime-free LTL formula (denoted LTL-X) is composed of a tomic propo- 
sitions from a set A P ,  boolean operators (A, -% V) and the usual temporal  modals  
[] ( 'always') ,  ~ ( 'eventually ')  and U ( 'Until ' )  but not the modal  O ( 'next ' ) .  

D e f i n i t i o n l .  A state graph, Gp = (g ,S ,E) ,  for a program P is a directed, 
rooted graph, such that  : 

1. S is a finite set of nodes, a E S is the graph 's  root and E is a finite set of 
edges (we denote an edge from node s to node t as s --~ t). 

2. The graph is total, i.e. from every node there is an exiting edge. 
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3. There  is an injective h o m o m o r p h i s m  st : S --+ Q tha t  maps  nodes to p rogram 
states such that :  st(g) = I and if s --* t E E then there exists an opera t ion 
a such tha t  st(s) E en~ and st(t) = or(st(s)). 

4. "The graph  is maximal ,  i.e, for each state s in a sequence of  states generated 
f rom some sequence of operat ions  f rom P ,  and for each opera t ion c~ enabled 
at s such tha t  a ( s )  = t, we have tha t  s t -~(s)  ~ s t - l ( t )  E E. 

We will identify a state and a node with this mapping .  

D e f i n i t i o n 2 .  M = (Gp,  V) is a model for a program P and a specification 
iff G p  is a state graph  of  P and V is a funct ion V : S --* 2 AP (where A P  are 
the a tomic  proposi t ions of  ~) such tha t  for all nodes s E S, V(s)  = {a I a E A P  
and a is t rue in s tate  st(s)} .  

Fig.  2. P~s full and partial ordered state graph. 

D e f i n i t i o n 3 .  Let M(Gp(g ,  S, E),  V) be a model  of  a p rogram P and specifica- 
t ion ~, s --+ s'  E E is a visible edge iff V(s)  7s V(s ' ) .  A node t is a visible node 
iff 1) t = g (i.e. the initial node) or, 2) there is a visible edge entering t. 
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Fig. 3. An intermediate stage in the reduction algorithm. 

The visible state graph Gv is the state graph of an abstraction of a program 
P.  Its set of nodes is exactly the.visible nodes of the state graph Gp (denoted 
V I S ( G p ) ) .  Its edges satisfy the following two properties: 

P 1  For any 2 nodes s, s ~ E VIS(Gp) ,  there is a sub-path ssl  . . .  sns ~ of a 
pa th  of Gp such that  V(s) = V(s l )  = . . .  = V(sn)  and V(s) r V(sl)  iff 
there is subpath s t l t 2 . . ,  t,~s' of a path  of G v  such that  V(s)  = V(t~) = 
. . . =  v(tm) and V(s) # V(s') 

P 2  For any node s E V I S ( G p ) ,  there is a suffix ssls~ . . .  of a pa th  of 
Gp such that  V(s) = V(Sl) = V(s2) = . . .  iff there is a suffix s t l t 2 . . ,  of 
a pa th  of G v  such that  Y(s)  = V(t l )  = Y(t2) = . . . .  

These properties guarantee that  paths in the two graphs have the same prop- 
erties when repetitions of the relevant t ruth  values are ignored, i.e., they are 
stuttering equivalent [LAMB3] (denoted by ~" -,~ ~"). 

T h e o r e m  4. Let Gp and G v  be the state graph and a visible state graph respec- 
tively of a program P.  For each path 7c in Gp there exists a path 7d in G v  such 
that 7c ,,~ ~r~.For each path 7c in Gv  there exists a path 7c in Gp such that ~r ,,~ 7d. 



342 

The proof  is done by building a linear s tut ter ing equivalent relation based on 
properties P1 and P2, and using the fact tha t  LTL-X is insensitive to stut tering.  

3 V i s i b l e  s t a t e  g r a p h  g e n e r a t i o n  

In this section we first show the basic a lgor i thm (Figure 4) which generates 
the visible state graph~ In the a lgor i thm we do not  keep an indicator  whether  
invisible nodes have been visited (after backtracking f rom it). Therefore the t ime 
may  increase exponential ly for graphs tha t  have m a n y  invisible nodes with high 
revisiting degrees. Later  we show how to solve this problem. 

In the a lgor i thm we abstract  f rom implementa t ion  details. We create a visible 
state graph G, which is represented by a set of  nodes S and a set of  edges E.  
We operate  on the sets with the s tandard  set operat ions  (U, N, \ )  and operands  
(E, C). The  search pa th  is kept on a stack~ In intermediate  stages, S will con- 
tain bo th  the visible nodes already examined and all nodes on the stack. The  
a lgor i thm uses the following functions and indicators:  

- s E S - Either s is a visible node already examined or is on the search stack. 
- s --+ s / E E - An edge f rom node s to visible node s t was created. 
- e n ( s )  - The  set of  operat ions  enabled at state s t ( s ) .  
- a(s )  - The  node obta ined after executing an opera t ion a on state s t ( s ) .  
- v i s i b l e ( s )  - The  node s is visible (only for nodes in S). 
- R C L ( s  --+ s t) - The  edge s --* s t mus t  be reconnected when backtracking 

from s t . 

- o p e n ( s )  - Node s is on the search stack. 

The a lgor i thm is based on a s tandard  DFS traversal, implemented in a re- 
cursive procedure:  At each node s we calculate its set of  successors. We then 
recursively examine all successors tha t  are not  indicated as having already been 
examined ( remember  we sometimes reexamine a node more  than  once). The  
reduct ion comes when backtracking f rom a successor s t of  the node s. If  s t is 
invisible we replace each edge exiting s ~ with an edge tha t  exits s and tha t  enters 
the same target .  We then remove the set of edges exiting s ~, which is followed by 
the removal of  the invisible node s ~ (lines 10 - 16). In lines 13-14 before removing 
an edge tha t  is marked RCL (see explanat ion below) and exiting s ~ we mark  the 
respective replacing edge tha t  exits s as RCL. In line 11 if s t has a self loop 
we give s a self loop. This  mainta ins  diverging sequences. Note tha t  even if the 
state later proves  to be visible when approached along a different path,  and is 
theretbre reintroduced,  the edges we remove are invisible. When  s t is visible we 
add the edge s -+ s ~ to E (line 18). 

If  a successor s ~ of  s is in S then this indicates tha t  either s '  is visible and has 
been examined or s t is open (i.e. s * closes a loop), thus we add the edge s --+ s ~ 
to Eo If s '  closes a loop and. s --~ s * is invisible (i.e V ( s )  = V ( s ' )  ) we mark  tha t  
edge RCL, s tanding for reconnec t  later.  In the DFS traversal  when we  arrive at 
an invisible open node s '  f rom s, there m a y  be successors of  s '  t ha t  have not  yet 
be%n examined.  We therefore do not know all the visible successors of  s'  and we 
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cannot  know which are s 's  successors ( that  go th rough  s '  in the original graph) 
in the Visible graph.  Hence, we indicate (i.e. RCL(s  --* s ')  :=  T R U E  in line 24) 
t ha t  we still have to upda te  the set of edges exiting s. Final ly when we backtrack 
froth s I, the sub- t ree  f rom s ~ has been examined.  Thus  we know which are J ' s  
visible successors. We then replace the set of  edges which enter s / and tha t  are 
marked  RCL (lines 25-28) by edges tha t  enter s/ 's visible successors. Note tha t  
any edge entering s ~ tha t  is marked RCL when we backtrack f rom s I is f rom a 
visible node or a self loop f rom s ~ (because an edge marked  RCL closed a loop, 
the node it came f rom has already been backtracked from, and was removed if 
it was invisible). 

1 procedure .expand(s) 
2 open(s) := TRUE 
3 foreach a E en(s) do 
4 s ' :=a ( s )  
5 if not (s'  E S) then 
6 visible(s' ) :=FALSE 
7 S : = S u { s ' }  
8 expand(s') 
9 if (trot visible(s')) and ( V ( s ) =  V(s ' ) )  then 
10 foreach u such that (s' ~ u) E E 
11 i f s ' = u t h e n  u : = s  
12 E := E U {s --~ u} 
13 if RCL(s '  ~ u)and(s'  ~- u) then 
14 RCL(s --* u) := TRUE ;RCL(s'  --* u) := FALSE ; 
15 E := E \ {s' ---* u} 
16 s :=  s \ { s ' }  
17 else 
18 E := E u {s - .  s ' }  
19 visible(s') := TRUE 
20 else 
21 if V(s)  # V(s')  then visible(s') := T R U E  
22 E := E U {s ~ s'} 
23 if open(s') and (V(s) = V(s'))  then 
24 RCL(s ---, s ') := TRUE 
25 foreach u such that RCL(u --* s) 
26 foreach v such that (s --* v) E E 
27 E := E U {u --* v} 
28 if RCL(s ---* v) then RCL(u --* v) := TRUE 
29 RCL(u ~ s) := FALSE 
30 open(s) := FALSE 
31 end 

Fig.  4. Algorithm for generating the visible state graph. 
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We demonstrate the backtracking in Figure 2 where nodes are represented 
by a 4-tuple of values (PC1,PC2,Y1,Y2). In Figure 2 the algorithm first starts 
backtracking when it does a step from (2,1,F,F) and arrives a second time at 
node (2,2,T,F) (on the lower right). This node is visible because it has a vis- 
ible operation (b2) entering it (e.g., the truth value of the atomic proposition 
"YI=T"  is changed). Therefore it is not deleted when backtracking from it. On 
the other hand, node (2,1,F,F) has only an invisible operation (bl) entering it 
(because only the program counter, irrelevant to the specification, is changed). 
Therefore it is deleted when backtracking. Its successors are now added to the 
successor set of its predecessor (state (2,0,F,F)). Next, node (2,0,F,F) is also 
deleted because it is an invisible node. Its successor (i.e. node (2,2,T~F)) will 
now become a successor of the visible node (2,3,F,F). The result of the above 
can be seen in Figure 3. 

The use of RCL can be seen in Figure 3 where invisible node (1,1,F,F) (the 
second from the top center) has an edge marked RCL entering it. When back- 
tracking from node (1,1,F,F), before removing it we reconnect node (3,1,F,F) to 
the nodes (2~I,F,T), and (1,2,T,F). 

To show the algorithm correct we must prove that  properties P1 and P2 
hold with respect to the full state graph and the graph constructed (i.e, it is a 
visible state graph). This is done by induction on the set of backtracking steps 
executed by the algorithm. For each step of the induction we look at: (1) the 
(intermediate) full state graph obtained from the edges backtracked from, (2) 
the (intermediate) graph obtained from edges in the set E (see algorithm). We 
then show that an intermediate version of P1 and P2 hold for these two graphs. 
When the algorithm terminates, the "full" version of P]  and P2 hold. 

We can combine our algorithm with any algorithm for partial order reduction, 
e.g., A1 from [Pel94]. In that algorithm we execute a DFS traversal of a program's 
state space. At each state only a subset of the enabled transitions (called the 
ample set) are expanded. This is due to the fact that expanding all enabled 
transitions will lead to a graph with more than one interleaving per partial 
order. The only change to our algorithm is that  instead of expanding all the 
enabled operations from a particular state s, we expand only those operations 
that  belong to the ample set of state s. Therefore, we replace line 3 in Figure 4 
with: fo reach  o~ E amp le ( s )  do. Other algorithms differ in the way that  a 
subset of enabled transitions are selected, but can be used in the same way. 

To solve the revisiting problem, we present an algorithm that pre-processes 
the state space. The algorithm calculates the revisiting degree of each state. This 
information is passed on to the algorithm that  generates the visible state graph, 
which then can more selectively delete states. The preliminary DFS algorithm 
traverses the state space in a partial order manner, which is the exact same order 
used in the later reduction algorithm (both are deterministic). 

We use a Hash Table [Ho188] (called the revisited hash table), as a revisiting 
degree counter for each node. The hash table is accessed with a hash function 
whose argument is a state. When visiting a node in the DFS traversal, we cheek if 
its revisiting degree is zero. If this is the case we set its revisiting degree counter 
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to 1, and then we recursively calculate the revisiting degree of all its successors 
(from the ample set of the underlying partial order traversal). Otherwise, we 
increase the counter of the node by 1, and backtrack from that  node. Note that  
all this only relates to revisits that  do not close a loop, for reasons explained 
already in the Introduction. 

Here we use Holzmann's hash table to assist us in calculating the revisiting 
degree of each node. This is a novelty in itself: until now the use of this technique 
was problematic, because of the small probability of a hash collision when model 
checking (resulting in not checking part of the state space). Here in the worst 
case, a hash collision will cause us to calculate an incorrect revisiting degree, 
resulting in additional state reeomputation in the latter DFS. 

Now, in the latter DFS that  generates the visible state graph, when back- 
tracking from a state, we check if the node will be revisited (according to the 
revisited hash table). If an invisible node will not be revisited we remove it and 
all its pointers to its successors from internal memory, otherwise we maintain it 
and pointers to its successors in memory. (If we were in error because of hash 
conflicts, we might have to regenerate the node and its pointers later on, when 
we reach that  state along another path.) If a visible node will not be revisited we 
remove it from the internal memory and store'it  on external memory, otherwise 
we maintain it in memory. The pointers of a visible node to its successors are 
always stored in external memory, because they are not needed for later revisits 
in the traversal. When we revisit such a node we decrement its counter in the 
revisited hash table. 

When we run out of memory, we can do a form of garbage collection: For 
each node s in memory (stored in a balanced tree) we check if s's counter is zero. 
If this is the case, we delete that  state from the internal memory, and store it 
on the external memory (if it is visible). Note that  some nodes may have the 
same entry in the revisited hash table. This means that  they can only be deleted 
together (i.e. when they all will not be revisited anymore). Thus we must execute 
a garbage collection to dispose of these kinds of nodes. This is a better  caching 
method for memory management because states are not deleted randomly. 

Note that  this method of an initial traversal of the state space can be applied 
to all current state space generation algorithms. For example [Pel94] presented 
an on-line model checker, by traversing the product of the state space and spec- 
ification graphs. We also can initially traverse the product and calculate the 
revisiting degree of all nodes, saving space as shown in the following section. 

4 M e m o r y  a n d  T i m e  C o m p l e x i t y  

For analysis of memory and time complexity we distinguish between two stages: 
1) The memory and time complexity of the algorithm that  constructs the vis- 
ible state graph (denoted VSG), and 2) The memory and time complexity of 
the algorithm for the model checking. In both cases the analysis is relative to 
the complexity of the algorithms that  construct and model check the graph ob- 
tained by applying a partial order method (denoted POG).  When we refer to 
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memory complexity, our intention is internal memory. We assume that  we have 
an unrestricted amount of external memory (used for the caching method). For 
the model checking itself, the savings is in checking a smaller model. Standard 
model checking of linear time temporal logic specifications has time and space 
complexity O(IVSG]. 21~'l), whereas previously we had the same formula over 
the original state graph or the POG. 

As for the preprocessing stage to compute the revisiting degree and then 
generate the visible state graph, the time complexity is the same as for existing 
methods for partial order reductions, namely O (pc. Iog(ps)), where pe is the num- 
ber of edges in the partial order graph that would be produced by that method 
alone, and ps is the number of nodes in that graph. As explained previously, our 
algorithm makes one additional traversal. 

The partial order method we considered uses O(m .ps + log(m), pc) space 
in its original form, where m is the space needed for a single state. 

For our algorithm, the memory complexity of the first DFS is O(rn. ss + ps) 
(where ss is the size of the stack). The data structures used are the search stack 
and the revisited hash table (using O(ps) for the size of the hash table). The 
memory complexity for the subsequent reduction traversal is also O(m. ss + ps). 
Here the data  structures used are the search stack, the revisited hash table and 
the intermediate stages of the visible state graph construction. We use a caching 
method, therefore we bound by a constant the memory needed for the full states 
retained in intermediate stages. Our simulations show that the number of states 
needed at any one time is actually small, and the cache will not cause extraneous 
recomputation. The simulation was constructed using the high level language 
ICON. We implemented the algorithms that calculate the revisiting degree of a 
program's state graph and that  generate the visible state graph. The ample set 
for the partial order method is calculated according to [HP94]. 

In one test, we simulated a leader election protocol in a unidirectional ring 
from [DKR82] and several alterna'tive specification formulas. The algorithm uses 
a local variable maxi in each process to show its version of the maximal value. 

We executed our algorithm on the state space of the protocol for 5 processes 
for 5 different specification formulas. In Figure 6, we compare for each formula 
the original size of the state graph (first states, and then edges), the state graph 
that was obtained only with the partial method, and the state graph that  was 
obtained with our method (which. includes the partial order method). The last 
column of the table presents the number of full nodes that were in memory at 
any time, in addition to the hash table. 

The fifth formula was especially complex, namely: ~>(((maxl = 5)A'~((rnax2 = 
5) V . . .  (max5 = 5))) U (((max1 = 5) A (rnax2 = 5)) A~((rnax3 = 5) V (rnax4 = 
5) V (max5 = 5))) U . . .  ((max1 = 5) A (rnax~ = 5) A (max3 = 5) A (max4 = 
5) A (maxs = 5)))), i.e., the processes obtain the correct maximum in the fixed 
order 1,2,3,4,5. This formula's tableau state graph has on the order of 1000 
states. In the model checking stage, multiplying this by the program's partial 
order state graph will result in a quarter of a million states, while multiplying 
this by the visible state graph will result in about 5,000 states. This formula is 
not satisfied by the protocol, because the order is actually random. 



347 

FORM,LA oRiG-s ORIG-E P6G-SIPOG-EIVSG-SlVSG-EF,LL ] 
1 11099 68717 7030 121548 ]75 ]163 ]222] 
2 11099 68717 203 ]352 ]10 ]19 ]61 ] 
3 11099 68717 630 ]1373 ]42 198 ]81 I 
4 11099 68717 723 1329 56 137 97 
,5 . 11099 68717 263 351 5 9 57 

Fig. 5. Simulation results for leader election protocol. 

In the table, for formula 1 our algorithm has reduced a state space of 11,099 
states and 68,717 transitions to a state space of 75 states and 163 transitions, 
where the partial  order method succeeded in reducing by less than one order of 
magni tude relative to the original. In addition to the hash table, only 222 full 
nodes were needed at any one t ime in the generation of the reduced graph. The 
reader can observe tha t  the rest of the results are similarly impressive. 
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Abs t r ac t .  In this paper we attempt to demonstrate that on-the-fly tech- 
niques, developed in the context of verification, can help in deriving test 
suites. Test purposes are used in practice to select test cases accord- 
ing to some properties of the specification. We define a consistency pre- 
order linking test purposes and specifications. We give a set of rules to 
check this consistency and to derive a complete test case with preamble, 
postamble, verdicts and timers. The algorithm, which implements the 
construction rules, is based on a depth first traversM of a synchronous 
product between the test purpose and the specification. We shortly relate 
our experience on an industrial protocol with TGV, a first prototype of 
the algorithm implemented as a component of the CADP toolbox. 

1 Introduct ion 

It  is widely recognized that  testing is an essential component  of the full life- 
cycle of communicat ing systems. However, the process of generating test suites 
is complicated, error-prone and expensive. The intrinsic difficulty comes from 
the black-box nature of the implementation: its behaviour is only observable 
and controlable at the interfaces. In that  context, a formal framework is a pre- 
requisite for giving precise and consistent meanings of test verdicts. The usual 
theoretical approach [Bri88] is to consider a formal specification of the intended 
behaviour of the Implementa t ion  Under Test (IUT). It permits to define the no- 
tion of conformance relation linking an implementat ion to the specification and 
the notion of verdict associated to the application of a test case (set of interaction 
sequences) to an implementat ion,  w.r.t, the conformance relation. The problem 
is to automatical ly  generate correct test cases from a formal specification of 
the IUT. A correct test case, applied to an IUT, will declare "fail" only imple- 
mentat ions which do not conform to the specification (soundness property).  We 
also require that  an implementat ion which does not conform to the specification 
might  be detected by repeating the application of a test case, under a fairness 
assumption on the implementat ion (property of exhaustivity). 

* This work has been partially supported by an industrial contract with Verilog in a 
study for the french DGA (Direction G@n@rale pour l'Armement) 
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During the last decade, testing theory and algorithms for the generation of 
tests have been developed from Labelled Transition System specifications (LTS). 
Test generation involves sub-problems of traversal, comparison or reduction of 
LTS, already addressed by verification. Consequently, we think, among others 
[CGPT95], that time is ripe for linking test and verification. The experience of 
practitioners tells them that it is not reasonable to try to validate all possible 
behaviours of their protocol. It is why they use informal test purposes. Basi- 
cally, we traverse in a depth-first manner, the synchronous product of the IUT 
specification and of the test purpose. During the traversal, we check their mu- 
tual consistency. If so, an acyclic test graph is generated and decorated with 
verdicts and timers. The algorithm is an original extension of the on-the-fly ver- 
ification kernel we developed a few years ago [JJ89, JJ91, FM91, FMJJ92]. It 
provides a complete treatment of the problem of test cases, including pream- 
bles and postambles, verdicts and timers management. It is now well known 
that depth-first traversals are the heart of some good verification algorithms, 
for behavioural comparison and reduction [FM91], as well as for model-checking 
[JJ89, CVWY90, JJ91]. We show that it is also true for test generation, which 
constitutes a good example of transfer from verification to testing. 

The test generator, based on verification technology, has been prototyped in 
the context of an industrial consortium, linking V6rilog, Cap-Sesa, Cnet, Inria 
and the French Army. An experiment was performed on a real ISDN protocol 
specification. The results were very encouraging, confirming the interest of us- 
ing this kind of algorithmic, which is now mature enough to be transfered in 
the industrial world, to deal with real formal specifications. Our approach is 
compatible with symbolic (or structural) ones like TVEDA [Pha94b] which may 
compute test purposes using teachability analysis. 

The presentation is organized as follows. We start by defining the different 
models used for describing test purposes, test cases, the specification and the 
IUT. We define a consistency preorder between test purposes and specifications, 
and a test conformance relation linking implementations to specifications. We 
give the formal rules allowing the construction of a test case from a test purpose 
and a specification. We give some results concerning soundness and exhaustivity 
of our generated test cases. Finally, we give the main results gained during an 
experiment on an ISDN protocol. 

2 M o d e l s  

In this section we first describe the models used for the description of the different 
objects involved in the generation of test cases. They are used to define the 
notion of consistency relating a test purpose with a specification and the notion 
of conformance relating an implementation with a specification. These models 
are then used to define formal rules for the construction of test cases. 
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2.1 Input-Outputs  l abe l l ed  t r a n s i t i o n  systems 

The models used are all based on Input-Output Labelled Transition Systems 
(IOLTS) in which input and output actions are differentiated because of the 
asymmetrical nature of the testing activity. 

We consider a finite alphabet of actions A, partitioned into two sets: input 
actions AI and output actions Ao.  We shall let a,/3 range over A, i, i r range 

M M over AI and o, o / range over Ao. We consider finite IOLTS M=(Q M, A, T , q in i t )  
where Q• is the set of states, q M is the initial state, T M C QM • A • QM is the m l t  

transition relation. 
We adopt the following notations and conventions: Let a E A*, p, q E QM. 

We write p ---~M q iff (p,a,q)  E T M and write p :=:~M q iff 3 a l , a 2 . .  "an E A, 
c~i+l 

P0,'" ",Pn E QM. O" = a l .a2  . . . a n  and Po = P, Pi -+ M Pi+I with i < n, Pn = q. 
A(q) = {a I 3q r and q -%M q'} is the set of immediate actions after q, Z(q) = 
A(q) MAx is the set of inputs after q, and O(q) = A(q) M Ao is the set of 
outputs after q. Suec~(q) = {q' [ q ~M q~} is the set of states reachable from 
q by means of a transition labelled by a. We write ~(p --%M) if there is no 
transition starting from p and labelled by a, -~(p -%M) = (Succ~(p) = 0). We 
note p a f t e r  c~ = {q E QM ] p ~ M  q} the set of states reachable from p by the 
sequence of transitions cr and traces(p) = {cr E A*[p a f t e r  a r 0} the set of 
sequences starting from p and reaching a state in QM In the sequel, we will not 
distinguish between a transition system and its initial state. 

An IOLTS satisfies the controlability condition if and only if for each state, 
if an output is enabled, then there is exactly one outgoing transition. More 
formally, if IX[ denotes the cardinality of the set X,  Pp. ]O(p)t = 0 V (tO(p)l = 
1 A O(p) = X ( p ) ) .  

An IOLTS is deterministic if and only if Vp, V~r. IP a f t e r  cr] _< 1. 
We consider four kinds of !OLTS: the specification, the implementation, the 

test purpose behaviour and the test cases which meanings are described below. 

2.2 Spec i f i ca t ion  a n d  i m p l e m e n t a t i o n  

An IUT is placed in a test environment in which the tester can only interact with 
inputs and outputs. Thus the tester has an external view of the implementation. 
In contrast, a specification generally models the interna~ view of the system, i.e. 
the behaviour of the system with its internal actions, without considering the 
way it interacts with the environment. But this interaction should be taken into 
account in the test generation. As an example, if the implementation commu- 
nicates asynchronously with its environment through several points of control 
and observation (PCOs), two subsequent and causally ordered outputs may be 
observed by the environment as two concurrent inputs if they occur on two dif- 
ferent PC0s.  In the following, we will consider the environmental point of view: 
outputs are controlable actions initiated by the environment (which may be the 
tester) and sent to the IUT whereas inputs are observable actions~ initiated by 
the IUT and received by the environment. 
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While testing an IUT, we check for the conformance of the IUT in its envi- 
ronment with the specification in the same environment. Thus we first have to 
transform the specification into its external view. Internal actions which are not 
observable by the environment have to be hidden and replaced by a v transition. 
Inputs are replaced by outputs and vice versa, taking care of concurrency which 
may be produced by asynchronous interaction. This is called the mirror image 
operation. After that,  we have to apply a v-reduction which suppresses v transi- 
tions. The transition system of the resulting specification is then an IOLTS. This 
has been implemented on-the-fly in our prototype but, due to space limitations, 
we will not give more details of how this can be done effectively. Deadlocks are 
often supposed to be observable by a tester. In practice the tester uses timers to 
achieve this (see 3.2) and we have to suppose that  a t imeout occurs if and only if 
the implementation is deadlocked. This is why timeouts are considered as inputs 
of the tester. If the specification is allowed to deadlock in a particular state, this 
is modelled by a special transition ~ considered as an input of the environment 
initiated by the system. This treatment of deadlocks is quite similar with what 
is done in [Tre95, Pha94a]. Finally, the last operation is determinization. 

S The resulting specification is a deterministic IOLTS S = (QS, A, T s, qinit) 
with A = AI  U Ao  and ~ C AI  a distinguished'input. Without loss of generality, 
we will suppose that  S starts with outputs of the environment i.e. A(qSnit) c Ao .  
In the following, specification will always correspond to the external view S 
of the specification. Though the implementation is not necessarily a transition 
system (it may be a physical system), as in all testing theories, we have to 
reason formally about it and model its behaviour. As it is only considered by 
its interactions with the environment, it is also modelled as an IOLTS I = 
(QI  A I, T' ,  q~,it), with A ~ = A~ U A~), Ax C A~. 

2.3 Tes t  P u r p o s e  

A test purpose defines a property on some particular interactions between the 
IUT and the tester. It consists in two parts : a behavioural part and a constraint 
part. The constraint part gives some property on the state of the implementation. 
It can be seen as computable by the environment and will be modelled by an 
input for the tester. Thus it is integrated in the behavioural part: 

D e f i n i t i o n  2.1 (Test Purpose behaviour) A test purpose behaviour is a deter- 
ministic acyclic IOLTS  T P  = (QTe, A, TTP, qiTni~) satisfying the controlability 
condition and with a set of distinguished states AcceptC QTP with no successor. 

2.4 Test  Cases  

A test case is a set of sequences of actions describing all the interactions occuring 
between an IUT and a tester which wants to verify that  an implementation 
conforms with the specification according to a test purpose. In an industrial 
context, test cases are often described using the Tree and Tabular Combined 
Notation (TTCN [ISO92]). Some transitions are decorated with verdicts with 
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the following informal meaning : 
(PASS): means that  the test purpose is satisfied by the current sequence. But 
a sequence leading to the initial state (Postamble) must be applied in order to 
carry on another test case. It is a temporary verdict as the application of the 
postamble may produce Fail verdicts. 
PASS: this is a definitive verdict meaning that the initial state has been reached 
after a (PASS) verdict. The sequence between (PASS) and PASS is a Postamble. 
FAIL: means non-conformance of the IUT. 
INCONCLUSIVE: this verdict is used in practice when a reception is allowed in 
the specification but cannot lead to a (PASS) or leads to a behaviour that  is not 
considered in the test case because testing cannot be exhaustive in practice. 

De f in i t i on  2.2 (Test Case) A test case is a deterministic acyclic IOLTS T C  = 
(QTC, A, TIc,  qiTiCt) satisfying the controlability condit{on. A test suite is a set of 
test cases. 

2.5 C o n s i s t e n c y  a n d  t e s t  c o n f o r m a n c e  r e l a t i o n  

In this section, we define what we mean by consistency of a test purpose w.r.t 
a specification and which conformance relation linking the implementation with 
its specification is considered. 

A test purpose T P  is said to be consistent w.r.t a specification S, denoted 
by TP s qinit "~ qinit, if the two following conditions are satisfied: the set of behaviours 
described by the test purpose is included (see the definition below) in the set 
of behaviours of the specification, and from each state of S corresponding to an 
Accept state of TP, there is a path in S to s qinit' 
D e f i n i t i o n  2.3 (Consistency preorder). A relation [" C_ QTr, • QS is a consis- 
tency relation i f  and only if R C .T(R) where, 

:r(R) = P )I 
(Va, VqTr, . pTr" ~TP qTP = 

pVP E Accep~ 

TP S if and only if there qinit "~ qinit 

3q s, q~, 3cr E (A \ {a})* �9 ps : :~s  q~ a--%s qS A 
(qTp, qS) E n A (pTP, q~) E R) A 

30"EA* - pS ~ s  qiSnit} 

is a relation R C_ . r (R) ,  containing (qi ni , qi i ) 

If the test purpose and the specification are consistent, we can derive sound 
test cases. A test case is sound if it gives a negative verdict only if thc imple- 
mentation is not correct w.r.t, the specification. 

We consider a conformance relation quite similar to those in [Tre95, Pha94a]. 
Informally, the conformance relation states that outputs of the environment 
which are not accepted by the specification may be accepted by the implemen- 
tation but inputs produced by the implementation must be also produced by the 
specification. 

D e f i n i t i o n  2.4 (Test conformance relation) Let S and I be two IOLTS describ- 
ing the external view of a specification and an implementation, 

I i o c o n f S / f  and only if V~ E t races (S ) ,Z ( I  a f t e r  0-) C 77(S a f t e r  0-) 
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3 C o n s t r u c t i o n  rules  

The essence of the on-the-fly method is to traverse a kind of synchronous product 
between two graphs, one for the specification and the other for the property to 
be checked. We first define this synchronous product. Then we give the rules for 
the test case construction, including decoration with verdicts and timers. Finally 
we give some properties of the generated test cases. 

3.1 S y n c h r o n o u s  p r o d u c t  

A transition is firable in the product if either it is firable in the two components 
or it is firable only in the specification. 

D e f i n i t i o n  3.1 (synchronous product) We define the product 
s Qp QTP QS OP T ~ P = (QP, A, T P, (qiWiPt, qinit)), with C_ • where and are the 

smallest sets obtained by application of the following rules: 
- [Sync 1] TP S (qinit, qinit) E QP, 
- [Sync2] (pTP, pS) E QP pTP ~TP qTr' pS ~S qS 

(qTP, qS) EQP (pTP pS)~r,(qTP,qS) 

-- [Sync3] (pTP, pS) E QP ..~(pTP ~TP) pS ~S qS (pTP, pS) ~ Accept  x {qiSnit } 
(p~P,q~) ~ Q~ (p~,p~) ~ (p~P, qS) 

3.2 T h e  t e s t  case  c o n s t r u c t i o n  

The algorithm is based on a depth first traversal of the synchronous product, def- 
inition 3.1. Two mains actions are performed : the consistency relation between 
the test purpose and the specification is checked while a direct acyclic graph 
DAG is synthesized, definition 3.2. More precisely, a stack stores the states of 
the current execution sequence. The algorithm proceeds as follows, starting from 
the initial state, (qi~iPt, qiSnit). Let (pTP, pS) be the current state, i.e. the top of the 
stack, and (pTp,pS) ..%p (qTP, qS) a transition not yet analyzed. If qTP is an ac- 
cepting state, then a postamble is computed by searching a shortest path from 
qS to s . qinit, else if (qTr,, qS) belongs to the DAG then the transition is added to 
the DAG; otherwise, if (qrP, qS) does not belong to the stack nor to the visited 
states, then the state (prP pS) is pushed on the stack. When all the transitions 
starting from the state (prP pS) are analyzed, then (pry, pS) is popped in the set 
of visited states. The operator Comb is used in order to ensure the controlability 
condition. The algorithm terminates when the stack is empty and succeeds if 
(qiTniet, qiSnit) belongs to the preamble and if Accept x {qSinit } is a subset of the vis- 
ited states. The algorithm requires a time complexity linear with respect to the 
size of the transition relation of the synchronous product and a space complexity 
linear with respect to its state space. 

D e f i n i t i o n  3.2 We define DAGs syntactically as n :: 0 I 1 I a ; n  tn  + n  
We also define a predicate ~_v for v = 1,2,3. by (pTp,pS) : n means '~he 

node associated with (pTP,pS) is n and belongs to the preamble, test case body 
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and postamble if  v is respectively 1, 2 or 3". We use Node((p vp,ps)) to denote 
the node currently associated to (pTP,pS). Initially Node((pTe,pS)) = O. An oper- 
ator Comb is used to accumulate the nodes in order to ensure the controlability 
condition: 

{ ~  n if a E Ao, m = Zai; ni a.nd Vi, c~i 6 AI 
Comb(m, 4; n) := if m = a ' ;  n' and 4' 6 Ao 

+ 4; n otherwise 
P r e a m b l e  

v e {1, 2} 11~ ~qTP TP S TP S \ init,qs) : n  (qinit,P) --%P (qinit ,q) 
T P  S Test  Case  B o d y  111 (qinit,P) : C~176 

112 (qTP, qS) :n  qTP~ TP TP S qinit (qinit,P) ~ P  (qTP qS) 
T P  S T P  S . ~.2 (q in i t ,P) :  C~176 )), 4, n) 

~_2 (qTP, qS) :n  pTP:# WP qinit (pTP ps) ~ p  (qWP qS) 

I-2 (pTP,pS): Comb(Node((pTP pS)), (~; n) 

P o s t a m b l e  

t.2 (pTP,pS): Comb(Node((pTP,pS)), o*; n) 

~ (p~,q~) :u (p~',p~) &~ ( f L q  ~) p ~  e Accept 
113 (pWP,pS) : Comb(Node((pTP,pS)), 4; n) 

T h e  t e s t  c a s e  v e r d i c t s  We define the par t ia l  funct ion v e r d i c t  which assigns 
verdicts  to some t ransi t ions  in the D A G  which construct ion is defined above. 
This  funct ion is defined by means  of the rules below. 

We comple te  the definition of the predicate  t -v for v = 4, 5. ~_4 ( p r P  pS) : 1 
means  t ha t  " the node associated with (pTP,ps) is 1 and is the ending s ta te  of a 
t rans i t ion  labelled by an Inconclusive. We need a new s ta te  Fail .State  in the 
synchronous  p roduc t  and the ax iom ~-'~ Fail_State : 1. 

In the sequel, u, v range over 1,2, 3,4, 5. 

Pass  : assigned to a transition in the DAG if the ending state is in the Postamble and 
the specification is in state q~nit 

~ p T , , p S ) : n  V~ {2,3} e ~ ( C L  s qini~;) : 1 (pTP,ps) .~p (qTP, qinitS ) 
verdict(n~ c~, 1) = Pass 

(Pass)  : assigned to a transition linking a state of the Test Case Body to a state in 
the Postamble. 

e2 (pT~,ps): m e~ (CLqs) :  ~ ( fLp~)  &.  (qT.,qs) 
v e r d i c t ( m ,  4, ~) = (Pa~,~) 

I n c o n c l u s i v e  : add a new transition with verdict Inconclusive from a state in the 
DAG which allows an input reaching a state not in the DAG 

t_,(pWP,pS): n y.~(qWP, qS) U, V6{1 ,2 ,3}  (pTP, pS) 2+p(qTP,q s) i . 6 A I  

p4 (qTP, qS): 1 (n,i,  1) 6 DAG ve rd i c t (n , i ,  1) = Inconclusive 
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F a i l  : in each state of the DAG, an input of the implementation which is not allowed in 
the specification should produce a Fail verdict. A new transition with verdict Fail 
is .(virtually) added. In practice this corresponds to an Otherwise Fail in TTCN.  

~_, (pWP,pS): n v e {1,2,3} ((i e A~,"((pTP, p s) -~P)) or i E A} \ A I )  

F 5 Fail_State : 1 (n,i,  1) E DAG ve rd i c t (n , i ,  1) = Fail 

T i m e r s  T imer s  are useful in practice in order to insure against  imp lemen ta t ion  
deadlocks.  T h e  m a n a g e m e n t  of  t imers  is made  on the DAG generated by the 
test  genera t ion  rules 3.2. As t imers  depend on inputs,  we associate a t imer  t~ to 
each input  i labell ing a t rans i t ion in the test  case. Three  opera t ions  on a t imer  
are available:  S t a r t ( t l )  which initializes the t imer  and mus t  be done as soon as 
input  i is expected,  Caacel( t~)  which is done when i is received or when, due to a 
choice, i is no m o r e  expected,  and T imeout ( t i )  which represents the observat ion 
of a deadlock when wait ing for i. 

Let (pTP,ps) ~-~T (qTP, qS) be a t rans i t ion of the synchronous produc t  and 
t : ( n , a ,  m)  the corresponding t rans i t ion in the DAG.  Let IrLd((prP,p~)) be 
the  independency  relat ion which represents the concurrency. The  independency 
re la t ion is a b inary  symmet r i ca ]  relat ion defined on the inputs  of a state:  two 
inputs  are independan t  if they m a y  be received in any order.  We denote by 
Running(n)  the set of t imers  tha t  have been s ta r ted  in the sequences leading to 
n and have not  yet  been cancelled, C1 and St are sets of t imers  t ha t  have to be 
respect ively  cancelled or s ta r ted  after act ion o~. Finally, d i s c a r d ( t )  means  t ha t  t 
is discarded f rom the DAG.  The  following rules specify the t imers  m a n a g e m e n t :  

In l t  As specifications, test cases start  with an output, thus if r is the root of the DAG, 
Running(r) = 0 

C a n c e l  a n d  S t a r t  

t :  (n ,~ ,m)  e DAG Running(n) = R 
t ' :  (n, a; Cancel(C/); S ta r t (S t ) ,  m) E DAG Running(m) = (R \ Cl) U St 

discard( t )  

where c l  = {t~li ~ z((pTP,ps)) ^ (~,i) r Ind((pT~,ps))} 
s t  = {t,l~ e z((pT~,p~))} \ ( R \  CI) 

i.e. all timers corresponding to inputs not concurrent with a must be cancelled and 
a timer must be started for each input available in m if it is not ~lready running 
in n, except if it has just been cancelled. 

T i m e o u t s  We suppose that  5 E Az. By the construction and verdict rules, in each 
node of the DAG, there is a transition labelled 5 and its verdict may be (PASS) if 
5 is in the test purpose, Inconclusive if it is in the specification or Fail otherwise. 
If an input i (i may be 5) is possible in a state of the synchronous product, a 
transition labelled by Timeout(t  0 is added. The verdict assigned to this timeout 
must be the same as the verdict assigned to 5. 

t : ( n , i , m )  E DAG l e A r  v e r d i c t ( t ) # F a i l  t ' : (n ,  5,1) E DAG 
t " :  (n, Timeout(ti), 1) e DAG ve rd i c t ( t " )  = ve rd i c t ( t ' )  

D i s c a r d  5 For each transition t : (n, 5, 1) E DAG, apply d i scard( t )  
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Another depth first search is performed on the DAG to generate the timers 
operations. Unlike the DAG construction, which works by synthesis (just around 
the pop operation) the operations on timers are generated before the exploration 
of the state successors (around the push operation). The running set associated 
with each state is initialized to empty set at the initial state. It is inherited from 
a state to its successor. During this step, on one hand, each transition of the 
DAG is decorated with cance l  and s t a r t  operations on timers, on the other 
hand some transitions labelled by t i m e o u t  are added, following the previous 
rules. 

3.3 R e s u l t s  

P r o p o s i t i o n  3.1 Let P be the synchronous product between S and T P  (defi- 
nition 3.1) and 7.(TP, S) be the DAG synthesized by applying the rules of def- 
inition 3.1. TP S If (qinit,qinit) is the root of the dag, then TP s qinit -~ qinit else the test 
purpose and the specification are not consistent. 

Let OT(E) = {TP G IO.LTS ] qTP s init "~ qinit } be the set of test purposes which 
are consistent with respect to the specification S. Let TS(S)  = {7"(TP, S) I 
T P  G OT(S)}  i.e. the set of test cases (test suite) that can be constructed for a 
specification S. For 7" E TS(S) ,  we denote Max_traces(7.) = {a ]A(7" a f t e r  c~) = 
0} the set of maximal traces of 7-. For ~ = cr~.a E Max.Traces(7.), and for an 
implementation I, we define verd• I) = vez'd• a f t e r  ~r', a, 1). Notice 
that  7" is deterministic, thus 7" a f t e r  ~r' is unique. We have the two following 
results: 

P r o p o s i t i o n  3.2 (Soundness) Assuming that timeouts are produced if and only 
if the implementation is deadlocked, for every implementation I, if the applica- 
tion of a test case 7- E TS(S )  produces a Fail verdict then I does not conform 
with S: 
(37- e TS(S) ,  3a ~ Max_Traces(7.), , , e rd ic t (~ ,  Z) = Fail) ~ - ( I  ioconfS) .  

This second proposition is not exactly the converse. Implementations can be non 
deterministic. Thus the application of the same sequence of actions of the tester 
may produce different verdicts. Thus, like other authors [Pha94a], we assume a 
bounded fairness hypothesis on implementations. This informally means that  a 
bounded number of executions of a non deterministic implementation will show 
all its behaviours. For n 6 IN, we define ve rd i c t* (n ,  a, I) to be Fail if one of the 
n applications of a on I produces a Fail verdict, Pass otherwise. 

P r o p o s i t i o n  3.3 (Exhaustivity) For every implementation I, if I does not con- 
form with S, there exists a test case 7. E TS(  S) which can produce a Fail verdict: 

io r  s)  (37- z Ts(s ) ,  Max_Traces(7.), 3n e verdict(n,  Z) = 
Fail). 
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4 E x p e r i m e n t a t i o n  

The algorithms and transforma'cions described in previous sections have been 
developed in the CADP toolbox [FGM+92] as a software component named 
TGV (for Test Generation using Verification techniques). In order to prove the 
feasibility of the approach, we have applied TGV to an industrial protocol, the 
DREX protocol. 

4.1 T G V  

As we were primary interested by demonstrating the feasibility of our approach 
before a real implementation, all algorithms are not yet combined into a unique 
on the fly algorithm. We have used the Geode simulator [ALHH93] from Ver- 
ilog as an SDL [CCI88] front-end which produces state graphs representing the 
behaviour of a specification, constrained by the test purpose constraints. 

Thus the inputs of TGV are a state graph produced by Geode (from a SDL 
specification of the protocol) and an automaton formalizing the behavioural 
part of a test purpose. The output is the behaviour description and constraints 
definitions of a test case in the standard TTCN format [IS092]. 

Different steps bring out this output. The first step takes as input the state 
graph produced by Geode and transforms it into a graph representing the observ- 
able behaviour of the protocol specification in the testing environment (external 
view graph). Several transformations are performed in this step: abstraction of 
unobservable internal actions, determinization, mirror image which transforms 
inputs into outputs and vice versa and construction of diamonds modelling con- 
currency introduced by the asynchronous interaction between the tester and the 
IUT. The next step is the kerneI of TGV. The output is the DAG which con- 
tains all informations needed in TTCN test cases. The last step takes as input 
the DAG. The algorithm extracts from the transition labels the message pa- 
rameters and produces the constraint part in TTCN GR format. The remaining 
graph is unfolded into a tree describing the behavioural part of the test case in 
TTCN GR format. Finally the constraint and behavioural parts of the test case 
are translated into the graphical format TTCN GR. 

4.2 Expe r imen t  wi th  the  D R E X  protocol  

TGV has been used during an industrial contract for the Direction Gdndrale pour 
l'Armement. The protocol used for the experiment was a military protocol called 
the DREX protocol which allows the access to the transit network Socrate of the 
French Army, defined in the framework of Integrated Service Military Network. 
This protocol has been chosen for three main reasons: firstly, we wanted to prove 
the feasibility of automatic test generation methods on realistic specifications; 
secondly, an SDL specification of a similar protocol was already available, and 
finally, hand written test suites had already been produced. This last point is 
important as hand written test cases have served as a basis for comparison with 
automatically generated test suites. 
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The SDL specification models the behaviour of the DREX protocol on the 
network, communicating asynchronously with two users by two PCOs. The size 
of the' SDL specification was about 2000 lines. 54 test purposes have been con- 
sidered and 54 corresponding test cases have been generated. The time needed 
for the generation of a test case has to be separated into two parts: the time 
needed for the graph generation with Geode which took between 3.5s and 400s 
and the test case generation with TGV which took between ls and 2s. 

We have compared automatic test suites generated by TGV with hand writ- 
ten test suites in a qualitative way. Even though TGV is just a prototype, all 
hand written test suites or similar ones have been generated. The differences 
that were observed were principally due to the fact that TGV treats system- 
atically concurrency and timers. For example, in some hand written test cases, 
concurrency between events were forgotten and risked an incorrect verdict. Some 
differences were also due to the formal interpretation of test purposes. More de- 
tails and other quantitative results of this study can be read in [FJJV96]. 

5 C o n c l u s i o n  

In this paper, we have shown how on-the-fly verification techniques could be used 
in the generation of test suites. Starting from an already known conformance re- 
lation and from the experiment gained with the analysis of hand written test 
cases, we have formally defined the rules allowing a construction of complete test 
cases, with preambles, postambles, verdicts and timers. These rules allowed us 
to prove that generated test cases are sound (correct implementations are not 
rejected) and exhaustive (if we assume a fairness hypothesis on implementations 
under test, incorrect implementation can be detected) with respect to the con- 
formance relation. A depth first search algorithm implementing these rules has 
been described. A first version of.this algorithm has been implemented in a pro- 
totype named TGV which produces TTCN test suites from SDL specifications. 
TGV has been experimented on an industrial protocol, proving the efficiency 
and maturity of the algorithm. 

The next step in this study will be the development of a new prototype which 
will incorporate the algorithm described in this paper in a unique on-the-fly 
algorithm and its integration in a complete validation toot. Another continnation 
of the work is to deal with concurrent testing and links with interoperability 
testing. 
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Abst rac t .  This paper presents a method for automatically translating 
natural language specifications into temporal logic. Using this method, 
users may express complex specifications in relatively free natural lan- 
guage, allowing multi-sentence specifications, the use of pronouns instead 
of repeating the description of previously mentioned objects and com- 
plex temporal relations. These specifications are translated into tempo- 
ral logic, while ensuring the correctness of the translation. This approach 
overcomes a well-known obstacle of applying model-checking industrially. 
In contrast to prior attempts, the translation is linguistically based on 
a modern formalism for discourse representation. An implementation of 
this translation method is presented in one of the modern computational 
linguistics systems. 

1 I n t r o d u c t i o n  

Temporal logic based verification using model-checking has proved to be a use- 
ful and effective method for verifying finite-state concurrent systems. A recog- 
nized problem in industrially applying this verification technique is making the 
specification formalism more intuitive and easy to use. In practice, designers of 
computerized systems either lack sufficient training in formal methods, or find 
the specification formalism un-intuitive and inconvenient. Thus, the formulation 
of specifications often becomes a two stage process: 

1. Specifications are written in natural language (NL). 
2. These specifications are manually translated into temporal logic (TL). This 

is done according to the intuitive understanding of the translator, who has 
to contend with the imprecision and ambiguity of NL and with the subtle 
interpretation of TL formulae. 

The frequent occurrence of imprecision in this translation is discussed in 
[4], who propose an automatic translation tool, based on a direct mapping be- 
tween TL formulae and NL constructs. This method allows designers to express 
specifications in NL, but severely restricts the source language according to the 
structure of TL. Thus, the full power attainable by computational linguistic 
methods is not attained. It is not clear whether their system is grounded on any 
sound linguistic theory. 
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In [5], the translation of NL specifications of logic programs into Prolog is 
discussed. Input specifications in 'controlled' NL are automatically translated 
into Prolog clauses through an intermediary representation in a linguistic theory 
called Discourse Representation Theory (DRT) [8]. These clauses serve as a Pro- 
log knowledge base, which may be executed and queried, and also paraphrased 
back in NL. 

In this paper, we describe a novel translation method, which also uses DRT 
as an intermediate representation level. We largely enhance the NL constructs 
which may be translated, abstracting away from the target TL, and allowing 
the use of much freer, more natural language. Instead of isolated formula-like 
sentences as in [4], we deal with sequences of inter-connected specifications, 
which we term specification discourses (SDs). Our method allows a t reatment  of 
complex NL constructs such as: 

- NP anaph0ra-  the use of pronouns instead of repeating a full description of 
an object. 

- Complex temporal  expressions~ which are crucial for TL verification. Ex- 
pressing such properties is one of the major  difficulties, which hinders de- 
signers from using TL directly~ This is a major  advancement over the treat- 
ment of temporal  expressions in [5], who use the temporal  capabilities of 
DRT in a very limited way. They distinguish between events and states and 
relate them with the utterance time, but do not explore temporal  relations 
between events or states in discourse. 

We further introduce a correctness criterion for the (second stage of the) 
translation, and formally prove that the translation method fulfills this criterion. 
Such a criterion and proof were lacking. 

An implementation of this method~ in the form of an interactive program is 
described. It accepts SDs, parses them~ constructing a representation in DRT, 
called a Discourse Representation'Structure (DRS), and then translates the DRS 
into a TL formula. The generated formulae can subsequently serve as input to 
a model-checker. 

1.1 A Running Example 

To illustrate the translation method, consider an allocator A that allocates a 
single resource to m different customer processes C1, C 2 , . . . ,  Cm 3. The commu- 
nication between each Ci and A is done by a pair of shared boolean variables r~ 
(request) and g~ (grant). Following are statements of properties, that  a designer 
may wish to formally specify and verify about the operation of this system. 
Each specification is given in both NL and our target temporal logic, ACTL 4,5 
[6], a subset of Computat ional  Tree Logic (CTL) [2]. These specifications will 
illustrate the problems encountered in NL translation as described in Sec. 1.2. 

3 This example is based on one in [14]. 
4 The target formalism of [4] is called ACTL too. Nevertheless, it is a different 

formalism. 
5 We allow the use of the following additional operators: 
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(1) a. One cycle After r i  is activated, gi should be asserted, r l  is deactivated one to 
six cycles later. Afterwards, it should be deasserted. (Response to requests) 
A G  [r ise(r i ) -~  A X  [gi&ABF1 6 ( f a l l ( r l ) ~ A  [-~fall(gi)U fall(gi)])]] 

b. If r l  is active and gi is asserted one cycle later, then eventually r i  will be 
inactive. (Conformance with the protocol) 
A G  [ri--* AX (gi ~ A F  -~ri)] 

c. Whenever ri and gi are inactive, they remain inactive, until ri is activated 
and gi remains inactive. (Conformance with the protocol) 
A G  [',ri&-~gi--+ A [-~ri&-~giU (rise(ri)&~gi)]] 

d. Once r i  is activated, if gj is asserted, then gl will be activated before it is 
asserted again. (1-Bounded overtaking) 
A G  [rise(ri) --+ A G  [gj ---+ A [-~rise(gj)U rise(gi)]]] 

1.2 P r o b l e m s  in t h e  Ana lys i s  of  NL Spec i f ica t ions  

Following are characteristics of SDs, which should be taken into account when 
translating NL. They stem from NL in general, the specific structure of SDs and 
the gap between the source and target languages. 

A m b i g u i t y  a n d  i m p r e c i s i o n  are exhibited by SDs and must be resolved in 
the translation into TL. 
E x a m p l e :  in sentence (lc) it is unclear which two clauses are conjoined by 
the conjunction 'and'. The second conjunct is 'g~ remains inactive', but the 
first is either: 'ri is activated' or ' they remain inactive until ri is activated'. 

I n t e r - s e n t e n t i a l  l inks The natural way of expressing specifications involves 
multi-sentence discourses. These are not just lists of isolated sentences but 
rather coherent objects. 
E x a m p l e :  the second sentence of example (la) is crucially dependent on its 
predecessor, i.e. the phrase 'one to six cycles later' can be interpreted only 
by reference to tile first sentence. 

T h e  t e m p o r a l  s t r u c t u r e  of  spec i f ica t ions  Specifications exhibit a unique 
temporal structure, causing SDs to often be expressed in a generic present 
or future tense: 

- Disconnection from the present: SDs are often expressed, in a timeless 
language. 
Example"  Even though the tense of the verbs in sentence (lb) is simple 
present, it does not refer to the present moment per se (e.g. the time of 
writing the sentence). 

- rise(p) and fall(p) for p E AP,  where A P  is the set of atomic propositions - to 
represent a change from -~p to p and vice versa. 

- A X ,  f _= A X  ( A X  ( . . .  ( A X  I))) 
•  

- ABFi.4 f - -  hXi  (f  v AX (f v . . . A X  (f v AX f))) 

x(j-~) 
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- Quantification over events: Specifications are usually concerned with re- 
curring events in the course of a system's operation. Consequently, SDs 
contain either explicit or implicit quantification over events and time 
periods. 
E x a m p l e :  Sentence (lb) is understood as referring to each t ime ri is 
active. 

N o n  d e t e r m i n i s m  Our target formalism is ACTL, a branching-time TL. In 
practice, designers tend to specify the behavior of systems in linear-time 
terms. When translating SDs into a branching-time TL, this linearity has to 
be introduced into the formalism. A simpler solution to this problem would 
be choosing a linear time TL, e.g. LTL, as our target formalism. The choice 
of ACTL in this paper is motivated by its widespread and successful use 
(e.g. [15, 1]). 
E x a m p l e :  the meaning of sentence ( ld)  is clear in a linear-time model. 
However, it may have several branching-time TL interpretations, e.g. assume 
a branching structure at the root of which ri is asserted, but where gj is 
asserted along only one path from the root. Along which paths should gi be 
activated ? 

We solve these problems through the use of DRT, presented in Sec. 2, and a 
restriction on the generated formulae, explained in Sec. 4.2. 

2 D i s c o u r s e  R e p r e s e n t a t i o n  T h e o r y  

DRT [8, 9, 10] is a linguistic theory of the semantic content of general NL, which 
studies discourses. It combines a static logical view of meaning with a dynamic 
cognitive view. DRSs are defined as formulae of a formal language s consisting 
of: 

1. an infinite set R of typed markers: x y z for signals, s, sl,  s2, . .  �9 sn for states. 
e, el, e2 , . . . e~  for events and i , j  for integers. 

2. for each n E IN an infinite set P~ of n-place predicates. V = (.J~ P~ 
3. identity 

D e f i n i t i o n l .  1. A DRS K = (UK, CortK}, where UK C R is finite and ConK 
is a finite set of DRS-conditions. 

2. Let K, K1 ,K2  be DRSs, r l , r 2 , . . . r n  E R and P E P~. A DRS-condition 
may be one of: rl = r2, P ( r l , r 2 , . . . , r n ) , - ~ K ,  K1 ~ [s K1 V K2 V . . .  V I(~ 

DRSs are interpreted as partial models. A DRS is verified by a model s M, 
iff it may be embedded in it as follows: 

D e f i n i t i o n 2 .  A model for s is M = (UM, gY, IN, PredM) where: 

1. UM is a non-empty set. 

In Sec. 4.2, we make some changes in the following definition of a model. 
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2. EY is an event structure (see [10]). 
3. IN is the Set of natural numbers. 
4. PredM maps each n-place predicate of s onto an n-place relation over UM. 

D e f i n i t i o n  3. Let K be a DRS, 7 a DRS-condition, and let f be an e m b e d d i n g  
from some subset of V into M, i.e. f : R ~ ~ UM, where R' C_ R. 

1. f verifies the DRS K in M (M ~ /  K)  iff f verifies each 7 6 ConK in M. 
2. f verifies the condition 7 in M (M ~ / 7 )  iff 

(a) 7 is of the form rl = r2, rl, r~ E Dora(f) and f ( r l )  = f(r2). 
(b) 7 is of the form P(rl ,r~, .o . ,r~) ,  

rl, C Dora(f) and (f(rl), f(r2), . . . ,  C Pr dM(P) 
(c) 7 is of the form -~K t and there is no embedding g : R --+ UM~ which 

extends f ,  s.t. Dora(g) = Dora(f) U UK, and M ~-g K '  
(d) 7 is of the form IQ => K2 and for every embedding g s.t. Dora(g) = 

Dora(f) tJ UK, and M ~g tQ,  there is an extension h of g s.t. Dora(h) = 
Dora(g) U UK= and M ~h K2. 

(e) 7 is of the form/<1 VK2 V . . . V  I<~ and for some i 1 < i < n M ~2 K~. 

Dl~Ss are constructed from NL discourses by the DRS-construction algorithm 
(Fig. 1), which processes sentences one by one, incrementally updating a DRS 
according to a set of DRS-construciion rules 7. The algorithm models the way in 
which a human listener processes a discourse, understanding sentences one at a 
time. DRT provides an analysis of the 'glue' that  holds a discourse together, most 
prominently, it is able to resolve the meaning of anaphoric pronouns in discourse. 
Full DRT also provides a thorough analysis of temporal  relations within discourse 
[7, 17~ 10, 16]. While this analysis is not described in this paper, it is illustrated 
through the DRS-construction for example (la).  

Input: Specification Discourse D= {SI~S2~...,Sn) 
ContextDRS *- EmptyDRS 

i~-O 
repea t  

DRSi ~-- parse(Si)  

ContextDRS *-- UpdateContext (ContextDRS,DRSi) 

i * - - i + l  

unti l  i = n 
Output : ContextDRS 

Fig. 1. DRS-construction algorithm 

7 These rules, i.e. the details of UpdateContext are given in [10] and are not presented 
here for lack of space. 
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3 DRS-Construct ion  for NL Specifications 

We illustrate the construction of DRSs for SDs through the stepwise construction 
of d DRS for example (la),  repeated here as (2). 

(2) a. One cycle after ri is activated, gi should be asserted. 
b. r i  is deactivated one to six cycles later. 
c. Afterwards, it should be deasserted. 

DRSs are depicted using a graphical box-notation. The top of the box cor- 
responds to the universe of the DRS~ and the rest to the DRS-conditions. The 
DRS-construction algorithm constructs the DRS s shown in Fig. 2. 

x y  

r~(x) g~(Y) 

el 

el: activated(x) 

K1 

=:~ 

sl is2 e2je3 e4 z 

value(i, 1) 
a fret'(el,  sl, i) 

sl:[ asserted(y) l 

between(j, 1, 6) 
after'(8:, e~, j) 

82 -~- 81 

e2: deac t iva ted( r / )  

z = y  
first_after(e3, e4) 

e4: deasserted(z) 

/(2 

Kmai 

Fig. 2. Example DRS 

a. Processing sentence (2a) introduces the discourse markers x, y into UKm~i,, 
the first two DRS-conditions naming x and y ri and gi and the implica- 
tion condition K1 ~ K2, excluding the part of K2 following the condition: 
sl :~-:':---]. The embedding conditions of an implication K] =:> K2 determine 
that it induces universal quantification over the discourse referents of UK1 
and existential over those of UK~, giving an interpretation that  for each 
event el,  in which x is activated, there is a state Sl, in which y is asserted, 

s For reference purposes DRSs are labeled. The labeling is part of the meta-language 
used to discuss DRSs. 
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which follows the occurrence of el by one time cycle. The introduction of the 
implication condition is due to the implicit quantification inherent in (2a). 

b. Parsing sentence (2b) produces a new DRS. This DI~S is combined with 
the DRS for the previous sentence, adding into K2 the discourse markers 
s2,e~,j  and the DRS-conditions between(.. .),  af ter '(s2,e2, j) ,  e2:l .-.---]. 
When combining the DRSs, the 'anonymous'  eventuality marker s2 is iden- 
tiffed with sl,  thus determining that ' later '  here means 'after the assertion 
of gi '. 

e. Parsing sentence (2c) generates an additional DRS, which is combined with 
the compound DRS of sentences (2a) and (2b) to form the completed DRS 
of Fig. 2. The treatment of 'afterwards' is identical to that of 'later'. This 
sentence also contains the pronoun St', which causes the introduction of the 
marker z, which is later identified with y by a similar technique. 

We introduce a set of restrictions on the structure of DRSs generated for 
SDs, not described here for lack of space. A DRS thus restricted is called a 
Specification DRS (SPDRS), and the set of SPDRSs, SPDRT. These restrictions 
are a result of the subset of NL accepted by the translation method and the 
DRS-construction rules. 

4 T r a n s l a t i n g  D R S s  i n t o  A C T L  

4.1 T h e  T r a n s l a t i o n  M e t h o d  

We sketch the translation procedure trans : S P D R T  ~ A C T L .  We illustrate 
its operation on the DRS of Fig. 2: 

T r a n s l a t i n g  /s /-s :=~ K2 generates a formula starting in A G  . This re- 
fleets the universal quantification on the elements of U/( 1 conferred by the 
embedding 9. 

T r a n s l a t i n g  K1 ::~ K2: The temporal relation 1~ after~(el, sl, i) generates an 
operator AXi  . Let ftc~ be the translation of the remaining conditions of 
K2. The translation is A G  [rise(ri) --+ A X  (gi&fK~)], where rise(ri) is the 
translation of the event el, and gi that  of the state Sl. 

T r a n s l a t i n g  t h e  r e m a i n i n g  c o n d i t i o n s  o f  K2: The translation is driven by 
the after  ~ and f i rs t_af ter  conditions. The translation of the f i rs t_af ter  
generates the formula f2 = fa l l (r i )&A [-~fall(gi)U fall(gi)]. The transla- 
tion of the first one generates the formula gi&ABF1..6 (fall(r~)&f2). 

The resulting translation is therefore the following, which is equivalent to 
(la): 

A G  [rise(ri) --+ A X  (gi&ABFI..6 (fall(ri)&fall(rl)& A [-,fall(gi)U fall(gi)]))] 

9 In general, the main DRS may con~in several implications, in which Case its trans- 
lation is the conjunction of slich formulae. 

~0 Different temporal relations generate different operators. 
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4.2 C o r r e c t n e s s  

The translation method consists of two major transitions: from NL to DRT, and 
from DRT to TL. We define and prove a correctness criterion only for the sec- 
ond stage of the translation. No correctness criterion can be defined for the first 
stage of the translation. Given a NL SD and DRS, such a criterion would deter- 
mine whether the DRS correctly represents the meaning of the NL specification. 
This criterion would require an alternative formal interpretation of the NL SD, 
the validity of which should also be somehow defined and proved. Therefore, we 
cannot hope for a mathematical  correctness criterion for the DRS-construction 
algorithm. We can only check whether the constructed DRSs conform to our 
linguistic knowledge about the meaning of the NL SDs they are meant to rep- 
resent. Thus, we benefit from the wealth of linguistic research dedicated for the 
purpose of providing a semantic analysis of NL. 

K r i p k e  S t r u c t u r e  I n d u c e d  D R T  M o d e l s  In order to ensure the correctness 
of the translation from DRT to TL, we link the models used for the interpretation 
of both theories. Through this linking, we solve the dichotomy between the linear- 
t ime interpretation of SDs and DRSs, and the branching-time interpretation of 
ACTL formulae. 

D e f i n l t i o n 4 .  Given a path ~r = so, s l , . . ,  in a Kripke structure P,  a single path 
structure P(Tr) is a tuple (S~, s~, R~, L~) such that  

- S~ = {s~, s l , . . . }  is an infinite set of (pairwise distinct) states. 
- R,~ = {(s~,  S~+l)l i  _> O} 
- Vi >_ 0 L~(s}) = L(si) 

We expand the definition of satisfaction of CTL* formulae (defined only for 
structures having a finite set of states) to also include satisfaction of formulae 
by single path structures. 

D e f i n i t i o n 5 .  For any Kripke structure P,  its induced DRT model Mp is con- 
structed as follows: 

- For each p C AP,a binary signal of MR 
- For each each path zr C /]p, the set of paths of P,  a DRT path-model M~ as 

follows: for each state of P(rr), a state of M~, and for each pair of consecutive 
states, an event. 

Verification for DRT path models is as in Definition 3. We define MR ~ K 
iff each of the induced path-models Mr ~ K. 

Based on this construction, we present the following correctness criterion: 

D e f i n i t i o n 6 .  An ACTL formula f is a correct translation of a DRS K iff for 
every Kripke structure P and its induced DRT model Mp: Mp ~ K ~ P ~ f 
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Theorem 7 shows that the translation method conforms to this correctness 
criterion. The proof of this theorem is based on the reduction of correctness to 
single paths. 

Theo rem 7. Let K be an SPDRS, and f = trans(K),  f is a correct translation 
of K into A CTL. 

R e d u c t i o n  of Correc tness  to Single Pa ths  In [6] three linearity properties 
for branching time temporal logics are defined: strong linearity, sub-linearity and 
equi-linearity. We take advantage of the strongest of these properties, strong- 
linearity, by restricting the formulae generated by the translation to the subset 
of strong-linear formulae. 

Defini t ion 8. [6] A formula f E ACTL is strong-linear, iff there is an w-regular 
language L;y, such that for every Kripke structure P, P ~ f ~ s  C s 

L e m m a 9 .  I l K  is an SPDRS, then trans(K)  is a strong-linear ACTL formula. 

Lemma 10 asserts that for a strong-linear.formulae f ,  the satisfaction of f 
by a Kripke structure P depends only on the satisfaction of f by each individual 
path of P, regardless of the way they are interleaved~ 

L e m m a l 0 .  I f  f E ACTL is strong-linear, then for every Kripke structure P, 
c f] P f 

Strong-linearity allows us to reduce the correctness of the translation of an 
SPDRS by a Kripke structure to its correctness relative to single path structures, 
as in the following lemma illustrated by Fig. 3. 

L e m m a l l .  Lel f be a strong-linear ACTL formula and K an SPDRS. If  for 
every Kripke structure P and its induced DRT model MR: V~r G FIR[Mr 
K ~ P(~r) ~ f] where Mr is the path model associated with the single path 
structure PQr)~ then f is a correct translation of K. 

? 

M p ~ K  ~ P ~  

l I 

V~ C llpMr ~ K Vr ~ UpP(r) ~ 

Fig. 3. Reduction of the correctness to correctness for paths 
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5 T h e  I m p l e m e n t a t i o n  

The translation method described above has been implemented as an interactive 
program S p e c T r a n  1.0, which receives as input SDs, parses them, constructs 
DRSs and generates an ACTL ~ormula from the DRS. The parser is written 
using the LexGram system [11, 12], which is based on a synthesis of ideas from 
Lambek Categorial Grammar [13] and Head Driven Phrase structure Grammar 
(HPSG) [18]. LexGram is written in a unification-based grammar formalism, 
CUF [3], and in Prolog. 

In [11] a German grammar is implemented. The system parses sentences, 
constructing syntactic tree representations and semantic representations in the 
form of DRSs for them. In S p e c T r a n  the German grammar was replaced by 
an English one. The syntax part of this grammar was written by Esther KSnig. 
SpecTran ,  parses input SDs sentence after sentence, processing each new sen- 
tence and updating a single DRS. In cases of ambiguity, the parser produces all 
the alternative parses of a sentence and their related DRSs. 

S p e c T r a n  consults the user with respect to the resolution of the meaning 
of pronouns (e.g. 'it ', ' they'),  allowing a choice between a set of appropriate 
alternatives. A similar consultation is done with respect to the resolution of the 
meaning of words such as 'later'. 

The completed DRS after the parsing of the full discourse, is passed in the 
form of a CUF data structure into the DRT to TL translation module. This 
module, written in CUF as well, implements the translation procedure described 
above. It accepts SPDRSs and translates them into strong-linear ACTL formu- 
lae. 

6 C o n c l u s i o n  

In this paper, we have presented a translation method from NL specifications 
into TL, for the purpose of verification. Through the use of computational lin- 
guistic methods, we allow the expression of complex specifications in NL. While 
completely unrestricted NL is beyond the reach of current technology, and is ar- 
guably an undesirable medium for expressing specifications, we allow the use of 
relatively convenient language within certain restrictions. It is still necessary for 
designers to write specifications in precise and concrete language, but some toler- 
ance is allowed in the use of flexible syntactic structure, multi-sentence discourse, 
pronominal anaphora and complex inner-sentential and inter-sentential tempo- 
ral relations. By drawing on current linguistic research in the analysis of NL 
discourses, we enhance the applicability of an NL interface to a model-checker. 
It is our belief that  the use of such an interface may facilitate the verification 
process in industrial practice, without harming the correctness of the verifica- 
tion. By introducing and proving a correctness criterion for the (second stage) 
of the translation and drawing on linguistic research for the first part of .the 
translation, we are able to guarantee that  the transformation from NL into TL 
does not introduce errors. Such a guarantee is lacking for the manual translation 
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process often exercised in practice, and from previous a t tempts  of automat ic  
translation. 
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Abstract. In program verification, we check that an implementation meets its specification. Both 
the specification and the implementation describe the possible behaviors of the program, though at 
different levels of abstraction. We distinguish between two approaches to implementation of spec- 
ifications. The first approach is trace-based implementation, where we require every computation 
of the implementation to correlate to some computation of the specification. The second approach 
is tree-based implementation, where we require every computation tree embodied in the implemen- 
ration to correlate to some computation tree embodied in the specification. The two approaches to 
implementation are strongly related to the linear-time versus branching-time dichotomy in temporal 
logic. 
In this work we examine the trace-based and the tree-based approaches from a complexity-theoretic 
point of view. We consider and compare the complexity of verification of fair transition systems, 
modeling both the implementation and the specification, in the two approaches. We consider un- 
conditional, weak, and strong fairness. For the trace-based approach, the corresponding problem is 
language containment. For the tree-based approach, the corresponding problem is fair simulation. 
We show that while both problems are PSPACE-eomplete, their complexities in terms of the size of 
the implementation do not coincide and the trace-based approach is more efficient. As the implemen- 
tation is normally much bigger than the specification, we see this as an advantage of the trace-based 
approach. Our results are at variance with the known results for the case of transition systems with 
no fairness, where the tree-based approach is more efficient 

1 Introduction 

In program verification, we check that an implementation meets its specification. Both the specification 
and the implementation describe the possible behaviors of the program, but the implementation is more 
concrete than the specification, or, equivalently, the specification is more abstract than the implementa- 
tion (el. [AL91]). This basic notion of  verification suggests a top-down method for design development. 
Starting with a highly abstract specification, we can construct a sequence of "behavior descriptions". 
Each description refers to its predecessor as a specification, so it is less abstract than its predecessor. The 
last description contains no abstractions, and constitutes the implementation. Hence the name hierarchi- 
cal refinement for this methodology (of. {LS84, LT87, Kur94]). 

We distinguish between two approaches to implementation of specifications. The first approach is 
trace-based implementation, where we require every computation of the implementation to correlate to 
some computation of the specification. The second approach is tree-based implementation, where we re- 
quire every computation tree embodied in the implementation to correlate to some computation tree em- 
bodied in the specification. The exact notion of  correct implementation then depends on how we interpret 
correlation. We can, for example, interpret correlation as identity. Then, correct trace-based implementa- 
tion is one in which every computation is also a computation of the specification, and correct tree-based 
implementation is one in which every embodied computation tree is also embodied in the specification. 
Numerous interpretations of  correlation are suggested and studied in the literature [Hen85, Mi189, AL91 ]. 
Here, we consider a very simple definition of  correlation and interpret it as equivalence with respect to 
the variables joint to the implementation and the specification, as the implementation is typically defined 
over a wider set of  variables, reflecting the fact that it is more concrete than the specification. 

The tree-based approach is stronger in the following sense. I f /"  is a correct tree-based implementa- 
tion of the specification S,  then Z is also a correct trace-based implementation of S.  As shown by Miiner 
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[Mil80], the opposite direction is not mac. The two approaches to implementation are strongly related 
to the linear-time versus branching-time dichotomy in temporal logic [Pnu85]. The temporal-logic anal- 
ogy to the strength of the tree-based approach is the expressiveness superiority of VCTL*, the universal 
fragment of CTL*, over LTL [CD88]. Indeed, while a correct trace-based implementation is guaranteed 
to satisfy all the LTL formulas satisfied in the specification, a correct tree-based implementation is guar- 
anteed to satisfy all the VCTL* formulas satisfied in the specification [GL94]. 

In this work we examine the traced-based and the tree-based approaches from a complexity-theoretic 
point of view. More precisely, we consider and compare the complexity of the problem of determining 
whether 2" is a correct trace-based implementation of S, and the problem of determining whether 2" is 
a correct tree-based implementation of S. The different levels of abstraction in the implementation and 
the specification are reflected in their sizes. The implementation is typically much larger than the speci- 
fication and it is its size that is the computational bottleneck. Therefore, of particular interest to us is the 
implementation complexity of these problems; i,e., their complexity in terms of 2", assuming S is fixed. 

We model specifications and implementations by transition systems [Ke176]. The systems are de- 
fined over the sets APz and APs of atomic propositions used in the implementation and specification, 
respectively. Thus, the alphabets of the systems are 2 A~z and 2 APs. Recall that usually the implementa- 
tion has more variables than the specification. Hence, APz D_ APs. We therefore interpret correlation as 
equivalence with respect to APs. In other words, associating computations and computation trees of the 
implementation with these of the specification, we first projet them on APs. Within this framework, cor- 
rect trace-based implementation corresponds to trace containment and correct tree-based implementation 
corresponds to simulation [Mil71 ]. Since simulation can be checked in polynomial time [Mi180, BGS92], 
whereas the trace containment problem is PSPACE-complete [MS72] s, it seems that the tree-based ap- 
proach is more efficient than the trace-based approach. This is reminiscent of the computational advan- 
tage of branching-time model checking over linear-time model checking [CES86, LP85, QS81, VW86]. 

Once, however, we want our implementations and specifications to describe behaviors that satisfy 
both liveness and safety properties, transition systems are too weak. Then, we need the framework of 
fair transition systems. We consider unconditional, weak, and strong fairness (also known as impartial- 
ity,justice, and compassion, respectively) [LPS81, Eme90, MP92]. Within this framework, correct trace- 
based implementation corresponds to language containment and correct tree-based implementation cor- 
responds to fair simulation [BBLS92, ASB+94, GL94]. Hence, it is the complexity of these problems 
that should be examined when we compare the trace-based and the tree-based approaches. 

We present a uniform method and a simple algorithm for solving the language-containment problem 
for all the three types of fairness conditions. Unlike [CDK93], we consider the case where both the speci- 
fication and the implementation are nondeterministie, as is appropriate in a hierarchical refinement frame- 
work. We prove that the problem is PSPACE-complete for all the three types. For the ease the implemen- 
tation uses the unconditional or weak fairness conditions, our nondeterministic algorithm requires space 
logarithmic in the size of the implementation (regardless the type of fairness condition used in the spec- 
ification). For the case the implementation uses the strong fairness condition, we suggest an alternative 
algorithm that runs in time polynomial in the size of the implementation. We show that these algorithms 
are optimal; thus the implementation complexity of language containment is NLOGSPACE-COmplete 
for implementations that use the unconditional or weak fairness conditions and is PTIME-complete for 
implementations that use the strong fairness condition. To prove the latter, we show that the nonempti- 
hess problem for fair transition systems with a strong fairness condition is FrlME-hard, which is most 
likely harder than the NLOGSPACE bounds known for the unconditional and weak fairness conditions 
[VW94]. 

We also present a uniform method and a simple algorithm for solving the fair-simulation problem 
for all the three types of fairness conditions. Our algorithm uses the language-containment algorithm 
as a subroutine. We prove that the problem is PSPACE-complete for all the three types. Like Milner's 
algorithm for checking simulation [Mil90], our algorithm can be implemented as a calculation of a fixed- 
point expression, significantly improving its practicality. The running time of our algorithm is polynomial 
in the size of the implementation. We show that this is optimal; thus, the implementation complexity of 

a The reduction in [MS72] considers containment of languages defined by regular expressions and can be extended 
to consider trace containment. 



374 

fair simulation is PTIME-complete for all types of fairness conditions. Proving the latter we prove that 
the implementation complexity of simulation (without fairness conditions) is PTIME-eomplete too. 

Our results show that when we model the specification and the implementation by fair transition sys- 
tems, the advantage of the tree-based approach disappears. Furthermore, when we consider the imple- 
mentation complexity, then checking implementations that use unconditional or weak fairness conditions 
is easier in the trace-based approach. 

2 Prel iminaries  

2.1 Fair Transition Systems 

A fair transition system (transition system, for short) S = (Z, IV, R, W0, L, ~) consists of an alpha- 
bet S,  a set W of states, a total transition relation R C W x W (i.e., for every w E W there exists 
w' E W such that R(w, w')), a set Wo of initial states, a labeling function L : W ~ S,  and a fairness 
condition c~. We will define three types of fairness conditions shortly. A computation of S is a sequence 
rr = w0, wl, w~,. . ,  of states such that for every i E 0 we have R(wi, w~+1). In order to determine 
whether a computation is fair, we refer to the set Inf(Ir) of states that Ir visits infinitely often. Formally, 

lnf(~r) = {w E W : for infinitely many i > O, we have wi = w}. 

The way we refer to Inf(Tr) depends in the fairness condition of S. Several types of fairness conditions 
are studied in the literature. We consider here three: 

- Unconditional fairness (or impartiality), where a C W, and r is fair iff lnf(~r) A a ~ 0. 
- Weak fairness (or justice), where c~ C 2 w x 2 w, and 7r is fair ifffor every pair (L, R) ~ a,  we have 

that Inf(~r) A (W \ L) = 0 implies lnf(~r) O R ~ 0. 
- Strong fairness (or fairness), where a C 2 w • 2 w, and 7r is fair iff for every pair (L, R) E a, we 

have that Inf(Tr) A L ~ 0 implies Inf(r) f3 R ~ 0. 

It is easy to see is that fair transition systems are essentially a notational variant of automata on infinite 
words [Tho90]. Thus, we will be able to use freely results from the theory of such automata. In particu- 
lar, the unconditional and the strong fairness conditions correspond to the Bachi and Streen acceptance 
conditions. 

For a state w, a w-computation is a computation wo,w, ,w: , . . ,  with wo = w. We use s  ~) to 
denote the set of all words cro �9 or1 - . .  E S'~ for which there exists a fair w-computation w0, wl . . . .  in 
S with L(w~) = ai for all i > 0. The language s  of $ is then defined as U,~ew0 E(S~) �9 Thus, each 
transition system defines a subset of S ~'. We say that a transition system S is empty iff s  = 0; i.e., 
S has no fair computation. We sometimes say that S accepts w, meaning that w E L(S). 

The size of a transition system and its fairness condition, determine the complexity of solving ques- 
tions about it. We define classes of transition systems according to these two characteristics. We write 
H, ~42, and S to denote the unconditional, weak, and strong fairness conditions, respectively. We measure 

the size of a transition system by its number of states (the number of edges is at most quadratic in the 
number of states) and, in the case of weak and strong fairness, also by the number of pairs in its fairness 
condition. For example, an unconditionally fair transition system with rz states is denoted ?2(n). We also 
use a line over the transition system to denote the complementary transition system (one that accepts the 
complementary language). For example, the transition system complementing a strongly fair transition 
system with rz states and m pairs is denoted S(r~, m). 

2.2 The Language-Containment and the Fair-Simulation Problems 

In this section we formalize correct trace-based and tree-based implementations in terms of language 
containment and fair simulation between an implementation �9 and a specification S. Recall that �9 and S 
are given as fair transition systems over the alphabets 2 A ~  and 2 Aps respectively, with AP:r D A.Ps. 
For technical convenience, we assume that APz = APs; thus, the implementation and the specification 
are defined over the same alphabet. By taking, for each tr E 2 A~z, the letter ~r A APS instead the letter 
~, all our algorithms and results are valid also for the case AP7. D APs. 
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Given two transition systems S and S'  over the same alphabet, the language containment problem 
of S and S '  is to determine whether E(S) C_ E(S'). That is, whether every word accepted by S is also 
accel~ed by S'.  While language containment refers to each word in s independently, fair simulation 
refers also to the branching structure of the transition system. 

Let S and S '  be two transition systems over the same alphabet and let H C W x W'  be a relation 
over their states. It is convenient to extend H to relate also infinite computations of S and S'. For two 
computations Ir = wo, wl . . . .  in S, and 7r ~ = w~, w~ . . . .  in S', we say that H(rr, 7r') holds iff H(wi, w~) 
holds for all i > 0. For a pair (w, w') 6 W x W', we say that (w, w') is good in H iff for every fair 
w-computation lr in S, there exists a fair w'-eomputation lr' in S',  such that H(Tr, # ) .  

Let w and w' be states in W and W ~, respectively. A relation H C W x W'  is a simulation relation 
from (S, w) to (S', w') iff the following conditions hold: 

(1) H(w,w'). 
(2) For all t and t '  with H(t, t'), we have L(t) = L(t'). 
(3) For all t and t' with H(t, t'), the poJr (t, t') is good in H. 

A simulation relation H is a simulation from S to S' iff for every w 6 Wo there exists w' 6 W~ such 
that H(w, w'). If there exists a simulation from S to S', we say that S simulates S' and we write S < S'. 
Intuitively, it means that the transition system S'  has more behaviors than the transition system S. In fact, 
every computation tree embodied in S is embodied in S'. The fair-simulation problem is, given S and 
S',  to determine whether S < S'.  

It is easy to see that fair simulation implies language containment. That is, if S < S '  then s C_ 
s The opposite, however, is not true. In the figure below we present two transition systems S and 
S'  such that the language of both transition systems is (a + b) '~. As such, s  C_ f.(S'), but still, S does 
not simulate S' .  Indeed, no initial state of S'  can be paired, by any H, to the initial state labeled a of S. 

$:  

3 T h e  C o m p l e x i t y  of the L a n g u a g e - C o n t a i n m e n t  P r o b l e m  

Theorem l.  Thelanguage-containmentpmblemE(S) C_ s E {H, W,S}  andS' 6 {/2, W, S} 
is PSPA CE-complete. 

Proof: As there are three possible types for the transition system S and three possible types for the 
transition system S', we have nine containment problems to solve in order to prove a PSPACE upper 
bound. We solve them all using the same method: 

(1) Translate the transition system S to an unconditionally fair transition system Sv. 
(2) Construct an unconditionally fair transition system S~ that complements the transition system S'. 
(3) Check s A s for nonemptiness. 

This is how we perform step (1) for the three possible types of S. 

1. u ( n )  --, u ( ~ ) .  
2. W(n, m) -.-* H(nm) [easy, and will be proven in the full version]. 
3. S(n,  m) ~ H(n2 ~ [not hard, and will be proven in the full version]. 
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This is how we perform step (2) for the three possible types of S'. 

1. U ( n )  ~ U(2~176 [SafS8]. 
2. W(n, m) --* bl(nm) ~ Ll(20(nml~ [Saf88]. 
3. S(n, ra) ~ b/(20('~ml~ [Saf92]. 

For all the three types of S,__going to Str involves an at most exponential blow up. Similarly, for all 
the three types of S ~, going to S b involves an at most exponential blow up. Thus, the size of the product 
of St: and S b is exponential in the sizes of S and S ~ [Cho74] and checking it for nonemptiness can be 
done in space polynomial in their sizes [VW94]. 

Hardness in PSPACE follows from the known PSPACE lower bound for the case where both S and 
S' are unconditionally fair [Wo1821. Since L/(n) ~ IV(n, 1) and L/(n) --* S(n, 1), we can not do better 
with weak or strong fairness. 13 

Recall that our main concern is the complexity in terms of the (much larger) implementation. We now 
turn to consider the implementation complexity of language containment. 

Theorem2. The implementation complexity of checking s C_ s for S E {H, W} and S' E 
{ H , W, S} is NLOGSPA CE-complete. 

Proof: In the case where S E {b/, )IV}, the translation of S to Sv involves only a polynomial blow 
up. Thus, in this case, fixing the size of S ~, the nondeterministic algorithm described in the proof of 
Theorem 1 requires space logarithmic in the size of S. Since we can solve the nonemptiness problem 
of a transition system by checking its containment in a fixed-size empty transition system, hardness in 
NLOGSPACE follows from the NLOGSPACE lower bound for the nonemptiness problem of uncondi- 
tionally fair transition systems [VW94]. rn 

So, for the case where the implementation does not use the strong fairness condition, our language- 
containment algorithm requires space that is only logarithmic in the size of the implementation. Clearly, 
this is not the case when the implementation does use the strong fairness condition. Then, our algorithm 
requires space that is polynomial in the size of the implementation and time that is exponential in the size 
of the implementation. We can, however, do better. 

Theorem 3. The implementation complexity of checking s ( S ) C_ s ( S' )for S E ( S } and S' E ( H , IV, S} 
is in PTIME. 

Proof: We are going to use the following known results. 

1. For $1 6 S(nl ,  m) and $2 6 b/(n2), there exists S 6 S(nln2, m + 1) such that s = s A 
s [easy, and will be proven in the full version]. 

2. The nonemptiness problem for strongly fair transition systems can be solved in polynomial time 
[EL85], 

Given S and S', we construct, as in the proof of Theorem 1, the unconditionally fair transition system 
S b. Unlike the algorithm there, we do not translate the transition system S to an unconditionally fair 
system. Rather, we check the nonemptiness of s M s By 1 and 2 above, this can be done in 
time polynomial in the size of S. 13 

Note that the algorithm presented in the proof of Theorem 3 uses time and space exponential in the 
size of the specification, in contrast to the algorithm in the proof of Theorem 1 that uses space polynomial 
in the size of the specification. Nevertheless, as S'  is usually much smaller than S, the algorithm in the 
proof of Theorem 3 may work better in practice. Can we do be~er and get the NLOGSPACE complexity 
we have for implementations that use the unconditional or weak fairness conditions? As we now show, 
the answer to this question is negative. To see this, we first need the following theorem. 

Theorem4. The nonemptiness problem for strongly fair transition systems is PTIME-hard. 
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Proof: We do areduction from Propositional Anti-Horn Satisfiability (PAHS). Propositional Anti-Horn 
clauses are obtained from Propositional Horn clauses by replacing each proposition p with -~p. Thus, a 
propositional anti-Horn clause is either of  the form p ~ ql V . . .  V q~ (an empty disjunction is equivalent 
to false) or of the form ql V . . -  v q~. As Propositional-Horn Satisfiability is PTIME-complete [Pla84], 
then clearly, so is PAHS. 

Given an instance I of PAHS we construct the transition system SI = (W, W, W • W, {w0}, L, a), 
where W is the set of all the propositions in I ,  the initial state wo is an arbitrary state in W, L(w) = w 
for w 6 W,  and c~ is the strong fairness condition defined as follows. 

- For a clause p ~ ql v . . .  V q,~ in 1, we have/{P},  {ql," "", q,~}) in a .  
- For a clause ql V . . .  v q,, in I, we have (W, {ql , '  �9 ' ,  q,~}) in a .  

We can view each computation of Sx as an assignment to the propositions in I .  A proposition is as- 
signed t r u e  iff the computation visits it infinitely often. The definition of a thus guarantees that I is 
satisfiable iff $I  is nonempty. [] 

So, unlike unconditionally or weakly fair transition systems, for which the nonemptiness problem is 
NLOGSPACE-complete, testing strongly fair transition systems for nonemptiness is PTIME-complete. 
Theorems 3 and 4 imply the following theorem. 

Theorem 5. The implementation complexity of checking s C_ s S E {,5} and  S '  E {H, W, S} 
is PTIME-complete. 

4 T h e  C o m p l e x i t y  o f  t h e  F a i r - S i m u l a t i o n  P r o b l e m  

4.1 Upper Bound 

Theorem 6. Thefair-simulaffonprobtem S < S' for S 6 {LI, W, S} and S' 6 {Lt, W, S} is in PSPACE. 

Proof(sketch) :  Given S = (E,W,R, Wo, L,a) and S '  = (,U,W',R',W~,L',cd), we show how 
to check in polynomial space that a candidate relation H is a simulation from S to S' .  The claim then 
follows, since we can enumerate using polynomial space all candidate relations. First, we check, easily, 
that for every w E Wo there exists w'  e W~ such that H(w, w'). We then check, also easily, that for all 
(w, w') E H,  we have L(w) = L(w'). It is left to check that for aU (w, w') 6 H,  the pair (w,w') is good 
in H.  To do this, we define, for every (w, w'} E H,  two transition systems. The alphabet of both systems 
is W. The first transition system, A~,  accepts all the fair w-computations in S. The second transition 
system, Uw,, accepts all the sequences 7r in W ~' for which there exists a fair w'-computation r ~ in S ~ 
such that H(~r, r ' ) .  Clearly, the pair (w, w' 1 is good in H i f f s  C_ s 

We define A~ and U~, as follows. The system A~ does nothing but lracing the w-computations of 
S, accepting these that satisfy S ' s  acceptance condition. Formally, Aw = (W, W, R, {w}, L ' ,  a) ,  where 
for all w E W, we have L"(w) = w. 

The transition system U~, has members of H as its set of states. Thus, each state has two elements. 
The second element of each state in U~, is a state in W t and it induces, according to R ~, the transitions. 
The first element in each state of U~, is a state in W and it induces the labeling. This combination guar- 
antees that a computation ~r" E H '~ whose Wt-elements form the computation 7r j E W '~ and whose 
states are labeled with 7r E W ~, satisfies H ( r ,  7d). Formally, U,~, = (W, H, R", W~', L' ,  a"), where 
W~ ' = (W x {w'}) n H,  for every (t,t ~) E H, we have L"((t,t')) = t, the fairness condition cd' 
is adjusted to the new state space (Le., each set L _C W ~ in a '  is replaced by the set (W x L) n H 
in cd'), and the transition relation R "  is also adjusted to the new state space (i.e., R" ( ( t ,  t'), (q, q')) iff 
R'(t', q~)). Note that R "  is not necessarily total. For that, we restrict U~,, to states that have at least one 
R"-successor. Clearly, this does not effect the language of U~,,. 

According to Theorem 1, checking that I : (A~) C_ /:(U~o,) can be done in space polynomial in the 
sizes of A,~ and U,,,,, thus polynomial in S and S '. [] 

We note that our algorithm can be easily adjusted to check S and S '  for fair bisimulation. 
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4.2 Lower Bound 

For a Fansition system S = (27, IV, R, W0, L, ~),  we say that S is universal iff s = 22% The uni- 
versality problem is to determine whether a given transition system is universal. Meyer and Stockmeyer 
proved that the problem of determining whether the language of an automaton over finite words is 27* is 
PSPACE-complete lMS72]. We give here the details of the proof, easily adjusted to infinite words. 

Theorem7.  The universality problem is PSPACE-hard. 

Proof  (sketch): We do a reduction from polynomial-space "luring machines. Given a Turing machine 
T of space complexity s(n),  we construct a transition system ST of size linear in T and s(n) such that 
ST is universal iff T does not accept the empty tape. We assume, without loss of generality, that once T 
reaches a final state it loops there forever. The system ST accepts a word w iff w is not an encoding of 
a legal computation of T over the empty tape or if w is an encoding of a legal yet rejecting computation 
of T over the empty tape. Thus, ST rejects a word w iff i t  encodes a legal and accepting computation of 
T over the empty tape. Hence, ST is universal iff T does not accept the empty tape. 

Below we give the details of the construction of ST. Let T = (F, Q, - , ,  qo, F ) ,  where F is the alpha- 
bet, Q is the set of  states, - . C  Q • F x Q x F x (L,  R} is the transition relation (we use (q, a) -+ (q', b, Zt) 
to indicate that when T is in state q and it reads the input a in the current tape cell, it moves to state q', 
writes b in the current tape cell, and its reading head moves one cell to the left/rlght, according to A), 
qo is the initial state, and F C_ Q is the set of accepting states. We encode a configuration of T by a 
word # 7 I  72 . . .  (q, 7i ) .  �9 %(,~)#. That is, a configuration starts and ends with 4/=, all its other letters are 
in F,  except for one letter in Q x F.  The meaning of such a configuration is that the j ' s  cell in T, for 
1 < j < s(n),  is labeled %., the reading head points on cell i, and T is in state q. For example, the 
initial configuration of T is #(qo,b)b. . .b# where b stands for an empty cell. We can now encode a 
computation of T by a sequence of configurations (with only one 4/= between two configurations). 

Let 27 = {4/=} UFU (Q x F)  and let 4#at �9 �9 �9 at(,~) # a ~ . . .  ~r's(,q 4/= be  two successive configurations of 
T. For each triple (a i -1 ,  ai ,  ~q+l) with 1 < i < s(n), we know, by the transition relation of T, what cr~ 
should be. Let next ( (a~ _ t, a~, a~+ t )) denote our expectation for ~r~. For example, next ( (7 i -  1, "Yi, 7i+ 1)) 
is 7~, and nezt(((q, 7~-1), 7~, 7i+t))  is 7i, in the case (q, 7 i -1)  -~ (q', 7~-1, L), and is (q', 7i), in the 
case (q, 71-i)  ~ (q', 7~-1, R)o In addition, since we want the letter 4/= to repeat exactly every s(n) + 1 
letters, we define next((a,(,,i, # ,  a~)) as # .  Consistency with next now gives us a necessary condi- 
tion for a word to encode a legal computation. In addition, the computation should start with the initial 
configuration. 

tn order to check consistency with next, ST can use its nondeterminism and guess when there is 
a violation of next. Thus, ST guesses (cri_~, tri, a i+ t )  E 22s, guesses a position in the word, checks 
whether the three letters to be read starting this position are a i -1 ,  ai ,  and a i+ l ,  and checks whether 
r~ext((o'i-1, o'i, o'i+1)) is not the letter to come s(n)  + 1 letters later. Once S r  sees such a violation, 
it goes to an accepting sink. In order to check that the first configuration is the initial configuration, ST 
simply compares the first s (n) + 2 letters with # (qo, b) b . . .  b# .  Finally, checking whether a legal compu- 
tation is accepting is also easy; the computation has to reach an accepting configuration (one with q E F).  

[] 

We would like to do a similar reduction in order to prove that the fair-simulation problem is PSPACE- 
hard. For every alphabet ~ ,  let S,~ be the transition system (22, 27, ~" • 22, 22, L,~, c~), where L;~ (tz) = o" 
and c~ is such that all the computations of S~  are fair. That is, S ~  is a universal transition system in which 
each state is associated with a letter a E s and s = a .  22~. For example, S{~,b} is the transition 
system S in Figure 2.2. It is easy to see that a transition system S over 27 is universal i f f s  C_ s  
It is not true, however, that S is universal iff S ~  _< S. For example, the transition system S '  in Figure 2.2 
is universal yet Sis,b } "g S t. Our reduction overcomes this difficulty by defining ST in such a way that 
if ST is universal, then for each of its states w, we have L(S.~) = L(w).  27,o. For such ST, we do have 
that S r  is universal iff SE <_ ST. Indeed, a relation that maps a state a of S ~  to all the states of ST that 
are labeled with a is a fair simulation. 
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Theorem 8. The fair-simulation problem S < S' for S E {/2, ~'V, S} and S '  E {H, )42, S } / s  PSPACE- 
hard. 

Proof (sketch): As in the previous proof, we do a reduction from polynomial space Turing machines. 
Given the Turing machine T, let T'  be as follows. Whenever T reaches an accepting configuration, T'  
cleans the tape and starts from the beginning (i.e., empty tape and initial state at the left end of the tape). 
Thus, T accepts the empty tape iff T '  has an infinite computation, in which case it visits the initial con- 
figuration infinitely often. We now define a transition system ST with the following behavior. Reading 
a word w, the transition system ST checks for a violation of the transition relation o f T '  in w (by guess- 
ing a violation of next). If it sees a violation, it goes to an accepting sink. If it does not see a violation, 
it continues to wace the computation of T'  forever. We define the fairness condition of ST such that it 
accepts w iff it reaches the accepting sink or it never sees the initial configuration in w. This acceptance 
condition can be specified by a pair (9, b} of states where g is simply the accepting sink and b is a state 
that ST passes in whenever it traces the initial configuration in w (note that since the initial configuration 
starts with # and has no other # in it, it is very easy to being traced). A computation of ST is fair with 
respect to (g, b) iffit eventually visits g and never visits b. This fairness condition can be easily translated 
to unconditional, weak, and strong fairness; e.g., by making g an accepting sink and b a rejecting sink. 

It follows that ST does not accept a word W iff w has a finite prefix, not violating next, followed by an 
infinite computation of T '  that passes in the initial configuration of T. Therefore, ST is universal iff T 
does not accept the empty tape. 

We, however, want more than universality test. We want to define ST in such a way that if it is indeed 
universal, then for each of its states w, we have s  = L.(w) �9 ~7 '~. Let ST = {S, W~ R, Wo, L, a). 
We define the transition system S~ by adding to ST transitions from all states to all the initial states, 
i.e., S~ = (S,  IV, R O (W x Do), W0, a). We claim that the extension of ST to S~. preserves "non- 
universality". That is, ifS~. is universal, then so is ST. Note that this is not the case for arbitrary transition 
systems. In S t ,  however, if a word w is not accepted, then w is of the form yx where y is a prefix not 
violating next and x is an infinite computation of T'. As such, all the suffixes of w are of that special 
form! Therefore, i fw is not accepted by ST, all its suffixes are also not accepted by ST. Hence, w is not 
accepted by S~. too. 

We claim that S~- is universal ifffor each state w of S~., we have s ~) = L(w). S ~. The direction 
from right to left follows from the fact that the extension of ST to S~. preserves non-universality and the 
fact that for every r E 22, there exists w~ E Wo with L(wo) = #. The second direction follows from 
the fact that each state w in S~ has a transition to Wo. 

We now have that S~: _< S~. iffST is universal, thus Sz: < S~. l i fT  does not accept the empty tape. 
Since the fairness conditions of both S~: and S~. can be specified in terms of either unconditional, weak, 
or strong fairness, we are done. 

[3 

Theorems 6 and 8 together imply the following. 

Theorem 10. The implementation complexity of checking S < S'for S E {b/, W, S} andS '  E {H, W, S} 
complete. 

4.3 The Implementation Complexity of the Fair-Simulation Problem 

So, fair simulation has the same complexity as language containment. In Theorem 10 below we show 
that when we consider the implementation complexity of fair simulation, the picture is different. Here, 
checking implementations that use the unconditional or weak fairness conditions is not easier than check- 
ing implementations that use the strong fairness condition. Hence, fair simulation is harder than language 
containment and the trace-based approach is more efficient. 

Theorem 10. The implementation complexityof checking S <_ S' for S E {Lt, W, S} andS' E {H, W, S} 
is PTIME-complete. 
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Proof: We start with the upper bound. Consider the algorithm presented in the proof of  Theorem 6. 
It checks whether a candidate relation H is a simulation. Once we fix S ' ,  then, by Theorems 2 and 5, 
the complexity of  checking each pair in the candidate relation is NLOGSPACE for S E {H, W} and 
is P TIME for S E {$}. Once we fix S' ,  the number of  pairs in each candidate relation is polynomial 
in the size of  S. Thus, fixing S, the problem of  checking a candidate relation H is in FHME.  Instead 
of  guessing a relation H and checking it, we do a fixed-point computation as follows (cf. [Mil90]). Let 
Ho = ((w, w')  : w E W, w' E W' ,  and L(w) = L(w')}. Thus, Ho is the maximal relation that satisfies 
condition (1) of  fair simulation. Consider the monotonic function f : 2 w x w'  ~ 2w • w ' ,  where 

f ( H )  = H N { (w, w') : (w, w e) is good in H}. 

Thus, f ( H )  contains all the pairs in H that are good with respect to the relation H.  Let H be the greatest 
fixed-point of  f when restricted to pairs in H0. That is, H = ~'z.Ho N f ( z ) .  It can be shown that S < S'  

iff for evexy w e Wo, we have ({w} • Wg) n H r 0. Since W • W '  is finite, we can calculate 
H iteratively, starting with H0 until we reach a fixed-point. Now, as f is monotonic, we have to iterate 
it at most polynomiaily many times. Hence, out of  the 21 w • w'l candidate relations for simulation, we 
actually check at most [W x Wt[ relations. Recall that if S ~ is fixed, the problem of  checking a candidate 
relation is in PTIME. Also, if S t is fixed, we have only linearly many candidate relations m check. Hence, 
the problem is in FrIME. 

"We prove hardness in PTIME by reducing the NAND Circuit Value Problem (NANDCV), proved 
to be P22ME-complete in [Go177, GHR95~, to the problem of determining whether a transition system 
S simulates a fixed transition system S' .  In the NANDCV problem, we are given a Boolean circuit a 
constructed solely of  NAND gates of  fanout 2, and a vector ( x l , . . . ,  x,~) of  Boolean input values. The 
problem is to determine whether the output of  a on (x l , . .  o, xn) is 1. The idea of the reduction is as 
follows. We define a fixed transition system S r that embodies all the NAND circuits c~ and input vectors 
x for which the value of  a on x is 1. Then, given a circuit a and an input vector x, we translate them to 
a transition system S such that S _< S t iff the value of a on x is 1. 

The transition system S t has 12 states. Eight states correspond to internal gates. Each of  these states 
is an entry in the Truth Table of  the operator NAND, attributed with a direction, either L or R. Thus, the 
"internal states" of  St are (001L), (011L), (101L), ( l l0L) ,  (001R), (011R>, (101R), and ( l l0R) .  Four 
more states correspond to the input gates of the circuit. Each of these states is a Boolean value, attributed 
with a direction. Thus, the"input states" are/0L),  (1L), (OR), and (1R). The intuition is that an internal 
state If, r, val, el) corresponds to a NAND gate that has the value 1 in its left input, has the value r in its 
right input, and whose output val can be only a d-input of other gates. Similarly, an input state (val, d) 
corresponds to an input gate with output val that can only be a d input of  other gates. 

Accordingly, the transitions from an internal state (l, r, val, d) correspond to the possible ways of 
having I and r as right and left inputs, respectively. Thus, we have transitions from this state to all (internal 
or input) states with either val = I and d = L or val = r and d = R. For example, the internal state 
(100L) has transitions to the states (001L), (011L), <101L), (110R), (1L), and <0R). It has transitions 
from all states (l, r, val, d) with 1 = 0. In addition, the input states have self loops. 

We label an internal state by either L or R according to its direction element. We label an input state 
by both its value and direction. We define the initial states of S t to be these with val = 1, and we impose 
no fairness condition. Clearly, the size of  S' is fixed. 

Now, S is simply a with attributions of directions. That is, we duplicate all gates and inputs of  a so 
that the output of  each gate is either always a left input of other gates, in which case we label it with L, 
or always a right input of  other gates, in which case we label it with R. In addition, we add self loops to 
the input gates and label them with their values. 

It is not hard to prove that for a simulation relation H from S to S '  and for every pair (s, (l, r, val, d)) 
or <s, (val, d)) in H,  the output of  the gate s on the vector x is val. Hence, the output of  a on x is 1 iff 
S simulates S t. O 

We note that our lower bound is different from the PTlME-hardness established for the bisimulation 
problem in [BGS92]. We consider simulation between two systems, one of  them is fixed. Balcazar et 
al. consider bisimulation between the states of  a single system, whose size is not fixed. 
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5 Discussion 

We have examined the trace-based and the tree-based approaches to implementation from a complexity- 
theoretic point of view. Our results show that when we model the specification and the implementation 
by fair transition systems, the complexity of checking the correctness of a trace-based implementation 
coincides with that of checking the correctness a tree-based implementation. Furthermore, when we con- 
sider the implementation complexity, then checking implementations that use the unconditional or weak 
fairness condition is easier in the trace-based approach. 

It is interesting to compare our results with the known complexities of LTL and VCTL* model check- 
ing. Trace-based implementations are pan of the linear-time paradigm and correspond to LTL model 
checking. Tree-based implementations are pan of the branching-time paradigm and correspond to VCTL* 
model checking. All the four problems are PSPACE-complete [SC85, EL85]. The model-checking algo- 
rithm of VCTL* uses as a subroutine the model-checking algorithm of LTL [EL85]. In a similar manner, 
our fair-simulation algorithm uses as a subroutine the language-containment algorithm. So, the imple- 
mentation dichotomy and the temporal-logic dichotomy have a lot in common. When we turn to consider 
the program complexity of model checking, which is the analogue to our implementation complexity, this 
is no longer true. The program complexity of model checking for both LTL and VCTL* is NLOGSPACE- 
complete [VW86, BVW94]. In contrast, we saw here that implementation is easier in the lrace-based 
approach. 
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Abst rac t .  The number of installations of the SPIN model checking tool 
is steadily increasing. There are well over two thousand installations 
today, divided roughly evenly over academic and industrial sites. The 
tool itself also continues to evolve; it has more than doubled in size, and 
hopefully at least equally so in functionality, since it was first distributed 
in early 1991. The tool runs on most standard workstations, and starting 
with version 2.8 also on standard PCs. 

In this overview, we summarize the design principles of the tool, and 
review its current state. 

1 Background 

SPIN is a general state-based model-checking tool designed for the efficient ver- 
ification of logically distributed process systems. Processes in SPIN are always 
asynchronous. Synchronization, where desired, must be specified explicitly. 

The native specification language of SPIN is called PROMELA. PROMELA is 
a non-deterministic guarded command language, in the tradition of [3] and [5] 
with a small influence from the language C [11]. The language was designed to 
encourage abstraction. The purpose of model checking in SPIN is to perform 
design verification well before the coding stage of a design is reached. A basic 
notion in the language is that  of executabitity: every PROMELA statement can 
enforce synchronization constraints through the rules of executability. Whenever 
a statement is unexecutable, for instance, it blocks the execution of the corre- 
sponding process, unless alternative executions for that  process were specified. 
The most recent version of the language supports data structures, interrupts, and 
a rich variety of both synchronous and asynchronous message passing primitives. 

The semantics of a PROMELA model are based on the interleaving model of 
execution, where concurrently executed atomic operations from different pro- 
cesses are considered to be executable in any arbitrary time-order. The model is 
appropriate for modeling distributed software. For synchronous hardware a dif- 
ferent semantics interpretation is usually chosen, e.g. [12]. Most model checkers 
today have adopted those alternative semantics. These systems can still simu- 
late interleaving semantics at the language level, but the price to pay for this in 
efficiency can be substantial. The optimizations builtin to SPIN fully exploit the 
asynchronous process model. 
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1.1 Sta te-based  model-checking 

SPIN'S verification procedure is based on the teachability analysis of a model, us- 
ing an optimized depth-first-search graph traversal method. A number of special- 
purpose algorithms are used to avoid a purely exhaustive search procedure (e.g., 
partial order reduction, state compression, and sequential bitstate hashing). We 
summarize some of the newer algorithms in the sequel. 

1.2 Correctness  proper t ies  

SPIN can verify both safety and liveness properties on-the-fly. By default, SPIN 
will check a set of basic properties such as absence of deadlock and unreachable 
code. It will also check that any user-defined process assertions or invarian~s 
cannot be violated, and that the system can only terminate in user-defined valid 
end-states. 

The specification language includes two types of labels that can he used to 
define two complementary types of liveness properties: acceptance and progress. 
In the syntax of Linear Temporal Logic (LTL) [15], an acceptance property cor- 
responds to formulae of the type DOp~ where p is a user-defined accepting state. 
The violation of a progress property corresponds to formulae of the type OD~p 
with p a user-defined progress state. 

Correctness requirements can also be expressed directly in LTL syntax. For 
example, the formula [](request --+ Ogranted) asserts that at any point in the 
execution, if a request was made, it is eventually granted. SPIN versions 2.7 and 
later include a translation algorithm that converts LTL formulae like these into 
PROMELA never-claims. Never-claims formalize the potential violations of a cor- 
rectness requirement, i.e., behavior that should never happen. More specifically, 
a never-claim can be used to represent a Biichi automaton (an automaton over 
infinite words), and it is this capability that is exploited by the LTL translator. 

Although the expressive power of LTL is smaller than that of never-claims [17], 
the use of LTL can be simpler and more direct. 

2 Basic Algorithms 

2.1 A u t o m a t a  In te r sec t ion  

SPIN uses finite automata based model-checking. Each process of the checked 
model is translated into a finite automaton. The checked property, representing 
the violations of correctness properties, is translated into a property automaton 
(i.e., the never-claim). 

SPIN checks the given model against the given ProPerty by calculating the 
intersection of the corresponding automata. This is done on-the-fly, namely, the 
state space of the model intersected with the property automaton need only be 
built up to the point where the non-emptiness of the resulting automaton can be 
proven. A non-empty intersection means the possibility of violating a correctness 
requirement. An execution sequence that illustrates this is produced, which the 
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user can use to retrace tne error, for instance, as a message sequence chart in 
XSPIN (an independent graphical user interface for SPIN, written in Tcl/Tk).  

The computation of the intersection can either be done in a conventional 
exhaustive manner, or, when this proves to be impossible because of state space 
explosion, with an efficient proof approximation method based on bitstate hash- 
ing [6]. With a careful choice of hashing functions [9], the probability of an ex- 
haustive proof remains very high. Both the exhaustive and the bistate modes of 
verification are based on a partial order reduction theory that  limits the work 
to a small subset of states that  suffices to render the proof (see also Section 2.3 
below). 

2.2 Cyc le  D e t e c t i o n  

The model-checking is performed by checking the non-emptiness of the inter- 
section of Biichi automata.  The non-emptiness of the resulting automaton is 
examined by checking for the existence of at least one reachable cycle that  con- 
tains an accepting state. Such a cycle constitutes a counterexample to the claim 
that  no executions can exist that  violate a correctness requirement. 

The classical algorithm for finding a cycle in a graph is Tarjan's depth-first- 
search, which constructs the strongly connected components in linear time. If a 
reachable component contains an accepting state, a reachable acceptance cycle 
must exist. To find such a cycle requires searching the component for the accept- 
ing states, and constructing a path through at least one of them. An efficient 
alternative for this algorithm [7, 2] performs a nested depth-first-search, again 
visiting every state up to two times, but storing every state only once (with just 
two bits of overhead per state). The algorithm starts the search in the normal 
depth-first-order. Whenever it finishes processing an accepting state (i.e., in pos- 
torder), a search for a cycle is started in a logically separate statespace. SPIN 
uses a variant of this search procedure to prove acceptance and non-progress 
properties [10]. 

2.3 P a r t i a l  O r d e r  R e d u c t i o n  

SPIN uses a partial order reduction algorithm [8, 13, 14] to reduce the state 
space explosion. The reduction is based on the observation that  usually the 
checked property is insensitive to the order in which concurrent or independently 
executed events are interleaved. Thus, instead of generating a state-space which 
includes all the execution sequences, one can generate a reduced state space, with 
only representatives for classes of sequences that are undistinguishable from each 
other. 

Reduction is achieved by changing the depth first search algorithm, used in 
the model-checking engine, such that  from each state, only a sufficiently big sub- 
set of the successors are generated. This subset has to obey certain restrictions, 
guaranteeing that  enough representative execution sequences is generated. The 
implementation is based on a careful analysis of the enabled atomic transitions 
from the currently analyzed state. To achieve a small overhead for doing the 
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extra checks, most of the analysis is done at the time of compiling the checked 
model. However, some reduction decisions are necessarily deferred to run time. 
The reduction algorithm as implemted was proven to preserve all safety and 
liveness properties [8, 1]. 

2.4 Linear Temporal Logic to Automata Translation 

The translation of an LTL formula into an automaton is inherently exponen- 
tial [16]. SPIN uses an algorithm [4] that in practice tends to produce small 
automata. The translation algorithm computes the states of an automaton by 
compiling the set of subformulas that need to hold in each state, and in each 
of its successors. The algorithm starts by converting the formula into a normal 
form, in which negations are pushed inward~ to appear adjacent to only atomic 
propositions. An initial state is created, containing the formula to be translated 
and a dummy incoming edge. The automaton is then computed recursively, At 
each stage, a subformula that remains to be satisfied is taken and, according to 
the main logical operator, the current state may be split into two, with the two 
copies inheriting different parts of the subformula. In the last phase of the trans- 
lation, some of the states are identified as accepting according to the presence 
or absence of subformulas of the type pUr 

3 U s e r  S u p p o r t  

All the sources to the SPIN system and its graphical interface XSPIN are avail- 
able for general educational use, free of charge, and for industrial applications 
for a small licensing fee. The latest version of the tool is always available via 
anonymous ftp from n e t l i b ,  a t t .  corn from the directory / n e t l i b / s p i n .  Much 
of the documentation for SPIN is distributed together with the tool. The main 
reference on the implementation of the tool itself is the book [7]. The recent 
extensions, including the partial order reduction, and the LTL translation al- 
gorithm are reported in research papers [4, 8, 9]. A new book describing the 
automata theoretic background of SPIN is in preparation. 

An informal SPIN Users Group was formed early in 1995. Anyone interested 
in the background of the tool, major applications, and extensions that are being 
planned, can subsribe to the raMling list of the group by sending a one line 
message Subscribe to spin_list~research, bell-labs, com. 

A first SPIN Workshop was held in Montreal on 16 October 1995. The pro- 
ceedings are available via: h t t p  : / / n e t i i b .  a r t .  com/net l ib /spin/news,  html. 
A second workshop is held 5 August 1996, at Rutgers University. 
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Abstract. '/'his is a brief overview of the Mul~p verification system. 

The Mur~ description language 

Mur~ is both a description language and a verifier for finite state concurrent sys- 
tems [DDHY92]. It is appropriate for protocols and finite-state systems which can 
reasonably be modelled as a collection of processes that run at arbitrary speeds, where 
the steps of the processes interleave (only one process takes a step at any time), and 
where the processes interact by reading and writing shared variables. The Murp ver- 
ifier works by explicitly generating states and storing them in a hash table. We have 
put some effort into developing state reduction techniques, including symmett2t re- 
duction [ID93a, ID93b] , exploitation of reversible rules [ID96a], and verification of 
systems with varying numbers of replicated components [ID96b]. We have also inves- 
tigated probabilistic verification techniques in Mur~ [SD95c]. 

The Mur~ description language was inspired by Misra and Chandy's Unity formal- 
ism [CM88]. A Mur~ description consists of a collection of declarations of constants, 
data types such as subranges, records, and arrays, global variables, transition rules 
(which are guarded commands), start rules, and invariants. 

The rules are similar to compound statements Pascal or Modula. Indeed, a rule 
can be arbitrarily complex, yet it is still executed atomically, meaning that the other 
rules cannot interfere. A state consists of the current values of the global variables. 
An execution of a Murqa program is any sequence of states that can be generated by 
starting in one of the states generated by a start rule, then repeatedly selecting a rule and 
executing it. Executing a rule generally changes the state, because the rule assigns to 
the global variables. Mur~ is nondeterministic: there can be many executions, varying 
according to which rule was selected at each step of the execution. 

A user can encode one of several concurrent processes by declaring variables for 
the process state and providing rules to capture its behavior. The behavior of several 
processes can be simulated by forming the union of the state variables and rules into 
a single Mur~ program. Rule selection then simulates scheduling choices (the process 
whose rule is chosen runs next) as well as nondeterministic choice within a process. 

Verification 
The basic Mur~ verifier generates all of the reachable states systematically, using 
a standard search algorithm such as breadth-first search. The search uses two data 
structures: a set of states whose descendants must be explored, and a table of states 
which have been previously encountered. When the search generates a state that is 
already in the table, the search is cut off. The invariant, which is a predicate which 
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reads the state variables, is evaluated in each newly generated state. If the result is false, 
verification halts and an error message is generated. The same effect can be achieved by 
an execution of an error  statement in a rule. Similarly, if a state has no successors other 
than itself, the verifier halts and reports an error. In either event, the verifier also prints 
an execution from a start state to the offending state, to help with debugging. 

We believe that explicit state verifiers are still useful, even when there are highly 
efficient B DD-based verifiers. One reason is that they are more predictable- performance 
is more closely related to the number of states, so the behavior of the verifier is more 
stable than with clever symbolic representations. The other reason is that some protocols, 
notably the ones we were most interested in verifying, require great cleverness to attack 
with successfully with BDDs. A naive approach performs much worse than Murk. 
It is necessary to use non-obvious representations of state, identify variables that are 
functions of other variables, and/or decompose BDDs in various ways [HD93b, HD93a, 
HYD94]. Thus, verifying a such protocol with BDDs requires more expert users than 
attacking the same protocol with Murk. 

The basic Mur~ verifier has been applied very successfully to several problems. 
It is especially suitable for multiprocessor cache coherence problems, because those 
were the problems we were working on most intensively when we were designing 
and redesigning the verifier. However, it has also been used for link-level protocols, 
a hybrid byzantine agreement algorithm, mutual exclusion algorithms, memory model 
specifications, and probably numerous other examigles. 

Symmetry reduction 
In the last few years, we have found several ways of improving the performance of 
Murk. The first was to exploit symmetry [ID93a, ID93b]. In some cases (particularly 
high-level descriptions of multiprocessor cache coherence protocols), components or 
values of a type can be exchanged arbitrarily without affecting the future behavior of the 
protocol. We have exploited this in Mur~ by adding a new data type, called a ScalarSet, 
which is a subrange type with the additional restriction that it cannot be used in any 
way that "breaks the symmetry" between elements of the type (for example, there are 
no literal constants of the type, and one value cannot be compared with another using 
<). The Mur~ semantic analyzer enforces these constraints, so that symmetry cannot 
be broken in the description. 

Symmetry is exploited in the verifier by doing symmetry reduction. A canonicaliza- 
tionfunction is constructed by the verifier, which maps all states which are equivalent 
up to rearrangement of the elements of a scalarset to a particular representative state 
(a simple example of normalization would be sorting an array whose index set is a 
scalarset, if there are no scalarsets in the array itself). States are canonicalized before 
they are looked up or stored in the state table, so a state is not inspected if it is equiv- 
alent to a state in the state table, even if the states are not identical. This optimization 
has resulted in 100-fold reductions in the numbers of states generated in some cache 
coherence protocols. In certain cases (when a scalarset is not used as an array index), 
systems with unbounded scalarsets can be verified. For example, this property can be 
used to verify cache coherence regardless of the number of data values, and, hence, the 
number of bits in each data value. 

Recent improvements 
More recently, we have found an optimization which avoids storing transient st/~tes in 
the state table. The optimization works by identifying rules that do not lose information 
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when they are executed. The verifier can execute the "backwards" to map normalize 
transient states by finding a unique non-transient progenitor state from which they 
evolved [ID96a], 

Most recently, we have developed a way of verifying certain systems with arbitrary 
numbers of replicated components in Mur~ [ID96b]. The replicated components are 
flagged by using a datatype RepetitivelD, which is similar to a scalarset type but even 
more restricted. The verifier exploits this by working in an abstract space, where every 
global state is mapped to an abstract state which keeps track of whether there are zero, 
one, or more than zero of the replicated components in each component state. This 
method can be used to show that cache coherence protocols work properly for any 
number of processors. The method can be combined with symmetry reduction and the 
method of the previous paragraph to yield truly massive reductions in the state explosion 
problem. 

We have also been exploring probabilistic verification algorithms, originally based 
on ideas from Gerard Holzmann, Pierre Wolper, and Denis Leroy [Ho187, WL, WL93], 
in which a small signature for each state is entered into the hash table instead of the state 
itself, saving a great deal of space at the expensive of some probability of producing 
a false positive result. The key is to find a bound on this probability, as Leroy and 
Wolper did. We have found several ways to reduce this bound, by changing the search 
and hashing algorithms and doing a more refined analysis of the probability [SD95a, 
SD95b, SD96]. This work has culminated in a factor-of-four reduction in the number 
of bits required per state, compared with Wolper and Leroy's original result, while 
guaranteeing the same or lower probability of missing an error, 

Liveness 

A few years ago, we implemented a version of Mur~ which could verify common forms 
of liveness properties, expressed in a subset of linear temporal logic, using quite efficient 
state exploration algorithms. However, we have not updated the liveness verifier to use 
symmetry reduction and subsequent optimizations. 

The Mur~ verifier is available free by anonymous ftp from 
s n o o  z e .  s t a n f o r d ,  edu  (directory/pub/murphi), under very liberal licensing terms. 
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Abstract .  The NCSU Concurrency Workbench is a tool for verifying 
finite-state systems. A key feature is its flexibility; its modular design 
e a s e s  t h e  task of adding new analyses and changing the language u s e r s  

employ for describing systems. This note gives art overview of the sys- 
tem's features, including its capacity for generating diagnostic informa- 
tion for incorrect systems, and discusses some of its applications. 

1 I n t r o d u c t i o n  

The NCSU Concurrency Workbench (NCSU-CWB) [1] supports the automatic 
verification of finite-state concurrent systems. The main goal of the system is 
to provide users with a tool that is flexible and easy to use and yet whose per- 
formance is competitive with that of existing special-purpose tools. In support 
of the former, and like its predecessor, the (Edinburgh) Concurrency Work- 
bench [9, 15], the NCSU-CWB includes implementations of decision procedures 
for calculating a number of different behavioral equivalences and preorders be- 
tween systems and for determining whether systems satisfy formulas written in 
an expressive temporal logic, the modal mu-calculus. In contrast with the Edin- 
burgh CWB, and with other tools, however, the NCSU-CWB also supports the 
following. 

- Diagnos t ic  informat ion.  The NCSU-CWB provides appropriate diagnos- 
tic information for explaining why two systems fail to be related by a given 
semantic equivalence or preorder. 

- Language  flexibility. The design of the system exploits the language- 
independence of its analysis routines by localizing language-specific proce- 
dures (syntactic analyzers, semantic functions) in one module. This enables 
users to change the system description language of the CWB using the Pro- 
cess Algebra Compiler tool [8]. 

In order to enable the tool to handle large "real-world" systems we have also 
paid great attention to issues of time- and space-efficiency. 

The remainder of this note provides an overview of the features of the NCSU- 
CWB and reviews some case studies to which the tool has been applied. 

* Research supported by NSF grants CCR-9120995 and CCR-9402807, ONR Young'In- 
vestigator Award N00014-92-J-1582, NSF Young Investigator Award CCR-9257963, 
and AFOSR grant F49620-95-1-0508. 



395 

2 System Overview 

User Inter/ace. The NCSU-CWB supports two user interfaces: one text-based, 
and hence capable of running on a variety of different platforms, and the other 
graphical, and hence easier to use. Each consists of a "command loop"; users en- 
ter commands either textually or by pushing buttons, and the system calculates 
and displays the result. To analyze a system, a user first creates a file containing 
the definition of the system in the language supported by the version of the 
NCSU-CWB at hand, invokes the tool, loads the file into the NCSU-CWB, and 
executes appropriate commands. 

Commands. In addition to providing a system simulation facility, the NCSU- 
CWB can compute a number of behavioral equivalences and preorders and cal- 
culate whether or not systems satisfy mu-calculus formulas. The textual inter- 
face of the NCSU-CWB uses a shell-like syntax for commands corresponding to 
these procedures. For example, the command to check whether systems Spec 
and ABP are must equivalent is the following: eq -Smust Spec ABP. Here the 
qualifier for the -S flag indicates which semantic equivalence should be checked; 
other possible qualifiers include sire (simulation equivalence), obseq (observa- 
tional equivalence), t r a ce  (trace equivalence), and several others. The general 
command for preorder checking, le,  uses the same scheme for specifying which 
ordering to check. In any case, appropriate diagnostic information is returned 
to the user when the given systems are found to be unrelated. For example, 
two systems are must equivalent iff they must pass exactly the same tests (in 
a precisely defined sense). Thus if Spec and ABP are not must equivalent, there 
must be a test that distinguishes them; when this is the case the NCSU-CWB 
computes such a test and displays it to the user. 

The NCSU-CWB includes two model checkers, each of which allow users to 
specify formulas in a particular Subset of the modal mu-calculus; one accepts 
formulas in the alternation free fragment [10] while the other accepts formulas 
in the L2 fragment [2]. 

The system also supports commands for minimizing systems with respect to 
certain equivalences; this proves to be very useful in fighting state explosion. 

Implementation. The NCSU-CWB is implemented in SML of New Jersey and 
consists of approximately 18,000 lines of code. 

3 System Design 

As stated in the introduction, one of the main features of the NCSU-CWB is 
its flexibility; in particular, users should be able to 1) add new equivalences and 
preorders, and 2) alter the language used for defining systems. In support of 
the first goal, the design of the NCSU-CWB uses generic preorder/equivalencr 
checking algorithms in conjunction with system and formula transformations 
in order to compute equivalences and preorders. To illustrate the approach, we 
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explain how the tool calculates its response to the command eq - S m u s t  S p e c  

ABP mentioned in the previous section. 

1. Spee and ABP are "compiled" into automata. 
2. These automata are transformed into a type of deterministic automata [6]. 
3. The transformed automata are fed into a generic equivalence checker, which 

calculates whether or not the two automata are bisimulation equivalent [14, 
16]. If they are not equivalent, the checker produces a formula in a special 
logic that distinguishes the two automata [5]. 

4. If a formula is produced, a formula transformer converts it into a test, which 
is then returned to the user [4]. 

This general scheme is robust: numerous equivalences may be computed, and 
relevant diagnostic information generated, using appropriate transformations in 
tandem with bisimulation equivalence. Consequently, to add an equivalence re- 
lation to the NCSU-CWB, one need only define an appropriate process trans- 
formation and, if diagnostic information is desired~ a formula transformation. A 
similar scheme is used for preorders. 

In support of the second goal, all language-specific information has been lo- 
calized within one module inside the NCSU-CWBo This module may be thought 
of as encapsulating the parse trees resulting from processing a user-supplied 
system description; it exports parsing and unparsing functions, and semantic 
routines (such as those for calculating single-step transitions), for these trees to 
the rest of the tool. To change the system description language, then, one need 
only alter routines in this module. The Process Algebra Compiler [8] greatly 
eases this task by providing users with a high-level notation in which to define 
the syntax and (operational) semantics of their languages. Using this tool, front 
ends for CCS, CSP [12], Basic Lotos [8], a version of CCS with priorities [7], and 
other languages have been generated for the NCSU-CWB. 

4 A p p l i c a t i o n s  a n d  F u t u r e  W o r k  

To date the NCSU-CWB has been applied to the analysis of several different 
systems, including the following. 

- The connection phase of the UNI (Version 3.0) protocol used in ATM net,- 
works was formalized in CCS in [3] and verified. The largest finite-state ma- 
chine handled in the course of the analysis contained about 60,000 reachable 
states. 

- The timing behavior of an active-structure control system was analyzed 
in [11]. The system was formalized in a real-time variant of CCS and con- 
tained in excess of 1019 states. By minimizing the system in a component- 
wise manner, however, the analysis was carried to completion. 

- The functional behavior of different variations of a railway signaling sys- 
tem was analyzed in [7]. The language used to define the system borrowed 
constructs from several different process algebras, while the system's require- 
ments were specified using mu-ealculus formulas. 
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As future work, we plan to investigate techniques for computing and display- 
ing diagnostic information when systems fail to satisfy temporal  formulas. We 
have also partially implemented on-the-fly versions of the preorder/equivalence- 
checking routines with a view to comparing the performance of global and on- 
the-fly algorithms. 
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Abstract .  The Concurrency Factory supports the specification, simu- 
lation, verification, and implementation of real-time concurrent systems 
such as communication protocols and process control systems. While the 
system uses process algebra as its underlying design formalism, the prl- 
mary focus of the project is practical utility: the tools should be usable 
by engineers who are not fvaniliar with formal models of concu~ency~ 
and it should be capable of handling large-scale systems such as those 
found in the telecommunications industry. 
This paper serves as a status report for the Factory project and briefly 
describes a case-study involving the GNU UUCP i-protocol. 

1 Introduction 

The Concurrency Factory is an integrated too]set for specification, simulation, 
verification, and implementation of real-time concurrent systems such as com- 
munication protocols and pzocess control systems, Two themes underpin the 
work done on the project: the use of process algebra {Mi189, BK84, Hoa85] as a 
formal design notation, and the provision of practical support for formal design 
analysis. Our goal is to make the Factory usable by system engineers who may 
not be familiar with formal verification as well as applicable to problems of the 
size found in industrial applications. 

In order to achieve these aSms, the Factory includes the following major 
components. 

- A graphical editor, VTView ITre92], and a simulator, VTSim [:Iai93], for for 
hierarchically structured networks of flnlte-state processes. The graphical 
language, GCCS, resembles informal design diagrams drawn by engineers 
but possesses a formal, process-algebra-based semantics. We are currently 
extending the GUI to allow processes to be embedded in states of other 
processes, thereby permitting compact specifications such as those found in 
statecharts [Har87]. 

* Research supported in part by NSF Grants CC1%-9120995~ CC1%-9208585, CCR- 
9257963, and CC1%-9402807, AFOSlq. Grants F49620-93-1-0250 and F49620-95-1- 
0508, and ONR Grant NO0014-92-J-1582. 
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- Support for system designs expressed in a progrsmmlng-language-inspired 
design notation, VPL [Sok96]. VPL is a simple language for concurrent pro- 
eesses that communicate values from a finite data domain; as is the case 
with GCCS, however, the language features an underlying process-algebraic 
semantics. A compiler translates VPL programs into networks of finite-state 
processes. 

- A collection of analysis routines that currently includes linear-time local 
and global model checker for the alternation-free fragment of the modal mu- 
calculus [CS93, Sok96], a local model checker for a real-time extension of this 
logic [SS95], and strong and weak bisimulation checkers. 
Care is being taken to ensure that these algorithms are efficient enough to 
be used on real-life systems. For example, we are investigating how these 
algorithms can be parallelized [ZS92, Iic94], and made to perform incremen- 
t Uy [ss94] 

- A c o m p i l e r  for transforming VTView and VPL specifications into executable 
code. The current Factory prototype produces Facile [GMP89] code, a con- 
current language that symmetrically integrates many of the features of Stan- 
dard ML [Mil84] and CCS [MUg9]. We are considering adding a concur- 
rent extension of C++ as another target language. The compiler relieves the 
user of the burden of manuMly zecoding their designs in the target language 
of their final system. 

The Concurrency Factory is written in C++ and executes under X-Windows, 
using Motif as the graphics engine, so that it is efficient, easily extendible, and 
highly portable. It is currently running on SUN SPARCstations under SunOS 
Release 4.1. 

The remainder of this note describes VTView and VTSim and briefly dis- 
cusses the i-protocol study. A fuller account of the system may be found in 
[CGL + 94] and at URL http://~'ww, cs. sunysb, edu/~oncuxr/. 

2 V T V i e w ,  G C C S  a n d  V T S i m  

The graphical user interface of the Concurrency Factory consists of the graphical 
editor, VTView [Tre92], and the graphical simulator, VTSim [Jai93]. VTView 
[Tre92] supports the design of hierarchically structured systems of communicat- 
ing tasks expressed in GCCS, a graphical specification language. GCCS provides 
system builders with intuitive constructs (buses, ports, links, a subsystem facil- 
ity, etc.) for concurrent systems, and it allows for both top-down and bottom-up 
development methodologies. The tool maintains an internal representation of 
systems as they are being crcated; this internal representation may then be ma- 
nipulated by other tools in the system. 

In contrast with other graphical languages [Hat87, Mar89], GCCS is designed 
to model systems in which processes execute asynchronously (although commu- 
nication between processes is synchronous). The language is equipped with two 
semantics: one involving a translation into Milner's CCS [Mi189], and another in 
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the form of a structural operational semantics, g la Plotkin [Pio81]. The latter 
semantics has been "implemented" in the Factory as a collection of methods that 
compute the set of transitions that are possible for a system in a given state. 
encapsulating the semantics of VTView objects, all tools within the Factory, 
including the simulator and model checkers, a~e guaranteed to interpret GCCS 
systems. 

VTSIm [Jai93] permits users to simulate graphically the execution of GCCS 
systems built using VTView. The tool provides both interactive and automatic 
modes of operation, and it also includes features such as breakpoints and reverse 
execution. The user may view the simulated execution of a system at different 
levels in the structure; one can either choose to observe the simulation at the 
interprocess level and watch the flow of messages, or one can look at individual 
processes in order to see why messages are sent when they are. 

3 A Case Study: The i-protocol 

The most sophisticated case study undertaken to date involved the use of the 
Concurrency Factory's local model checker to uncover and correct a subtle live- 
lock in the i-protocol, a bidirectional sliding-window protocol implemented in the 
GNU UUCP file transfer utility. We analyzed a version of the protocol whose 
window size was 2; in the course of the analysis, the model checker explored 
1.079 x 10 s states out of a total estimated global state space of 1,473 x 1012. 

One key to the successful outcome of the case study was the use of an ab- 
straction to reduce the message sequence number space horn 32 D the constant 
defined in the protocol's C-code - -  to 2W, where W is the window size. This 
insight underscores a central feature of practical use of formal verification: user 
understanding of the system being analyzed is crucial. 

4 Fu tu r e  Work  

We plan to extend the Factory in several directions, including the generation 
of simulator-based diagnostic information for verification routines, the develop- 
ment of improved state-space management techniques based on the underlying 
process-algebraic model, the support of languages besides Facile by the design 
compiler, and broader support for real-time systemso 
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Abstract. We present XVERSA, a set of tools for the specification and analysis of resource-bound 
real-time systems. XVERSA facilitates the use of the Algebra of Communicating Shared Resources 
(ACSR), a real-time process algebra with explicit notions of resources and priority. A text based user 
interface supports syntax checking, analysis based on equivalence checking, state space exploration, 
and algebraic rewriting. A graphical user interface allows systems to be described and analyzed using 
intuitive pictorial representations of ACSR language elements. 

1 I n t r o d u c t i o n  

There has been significant progre~ in the development of formal methods for the design of real-time systems 
in an effort to increase safety and reliability. Formal approaches to the specification and analysis of real- 
time systems have taken many forms, including state machines, logics, and process algebras. We focus here 
on tools to support the algebraic paradigm. The algebra we use is the Algebra of Communicating Shared 
Resources (ACSR)[LBGG94]. 

ACSR is a timed process algebra thatfacilitates the description of concurrent real-time systems with seri- 
ally reusable resources. Most concurrent real-tlme process algebras adequately capture delays due to process 
synchronization, e.g., timed extensions of the classic untimed process algebras CSP and CCS[BB91, MT90, 
NS94]. However, these algebras abstract out resource-specific delays and priority arbitration mechanisms. In 
contrast, the computation model of ACSR is based on the view that the notions of resource and priority are 
central to real-time systems. The use of shared resources is modeled by timed actions whose executions are 
subject to the availability of resources. Contention for synchronization and resources is arbitrated according 
to the priorities of the competing actions. 

To facilitate the use of ACSR in the design and analysis of real-time systems we have created GCSR 
[BALC95], a graphical language that captures the semantics of ACSR in an intuitive pictorial representation, 
and XVERSA, a toolset that automates the analysis of ACSR and GCSR system models. 

The remainder of this paper is organized as follows. Section 2 introduces the ACSR and GCSR languages. 
Section 3 describes the XVERSA toolset. Section 4 presents some concluding remarks and information on 
how to obtain further information and an executable copy of the toolset. 

2 The ACSR and GCSR Formalisms 

ACSR is a timed process algebra based on the synchronization model of CCS that includes features for repre- 
senting synchronization, time, temporal seopes[LG85], resource requirements, and priorities. The semantics 
of ACSH has been developed for both dense time and discrete time models. However, the tools presented in 
this paper use the discrete time model exclusively. 

The semantics of an ACSR process is defined in terms of a prioritized labeled transition system. Edges are 
labeled with prioritized events of the form (e,p), or actions that represent sets of prioritized resources to be 

T This research was supported in part by NSF CCR-9415346, AFOSR F49620-95~1-0508, and ARO DAAH04-95-1- 
0092. 
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consumed for one time unit, e.g., { ( r l , p l ) , . . ,  (rn,pn)}. Events model synchronization between concurrent 
process terms in a manner similar to that used in CCS. Actions represent resource allocation during the syn- 
chronous passage of one unit of discrete time. When several events and/or actions are offered simultaneously, 
a preemption relation determines which events or actio~as are allowed by pruning low priority edges. 

ACSR offers two basic notions of behavior equivalence that are defined over the prioritized labeled 
trausition system. The first equivalence relation is based on strong bisimulation, ~ r ,  which insures that 
eqni~,alem processes match one another's labeled transitions; it is a congruence relation. The second is based 
on weak bisimulation, ~ ,  which insures that equivalent processes match one another's non-v events but 
allows one process to make transitions on r that an equivalent process does not match. 

A sound and complete set of approximately 30 ~-preserving algebraic laws has been developed for 
ACSR. These laws can be used to derive proofs of properties of ACSR process expressions. 

The Graphical Communicating Shared Resources (GCSR) language addresses a shortcoming of ACSR 
(al~d process algebras in general): textual, mathematical notations often produce obtuse descriptions. GCSR 
was developed to support the modular, hierarchical, and thus scalable, specification of real-time systems. In 
GCSR. tl~e visibility scope of communication events, which reflect potential dependencies between system 
components, can be limited. Furthermore, GCSPJs notion of hierarchy is s~ruc~.ured in the sense that no edge 
can cross node boundaries and there is a graphical distinction between control transfer due to an interrupt 
versus an exception, i.e., involuntary versus voluntary release of control. These two syntactic features, in 
addition to the explicit representation of resources and priorities, distinguishes GCSR from other graphical 
languages for real-time systems, e.g., Statecharts[Har87], Modechart[JM94] and Communicating Real-time 
State M achines[Sha92]. 

The GCSR and ACSR languages are wetl integrated as there is a sound translation both from GCSR 
de.~criptions to ACSR processes and vice versa[BA96]. Thus, the theory of ACSR (including its semantic 
model, notions of equivalence, and set of algebraic laws) is directly applicable to GCSR. For instance~ the 
algebraic laws of ACSR can be used to restructure a GCSR description to a graphically more succinct, 
e.g., fewer edges and nodes, yet, equivalent GCSR description: In addition, the sound integration between 
GCSR and ACSR makes it is possible to mix the graphical and textual notations; for example, to specify 
Ihe high-level view of a system graphically and then fill the details of components textually. 

3 T h e  X V E R S A  T o o l s e t  

We have implemented a toolset with a graphical user interface to facilitate the use of ACSR and GCSR for 
modeling and analysis of real-time systems. Figure 1 shows the overall structure of the XVERSA system. 
The user's view of the tool is provided by the GCSR GUI and an X-Windows interface. The analysis of 
ACSI~ specifications is carried out by the VERSA system[CLX95b] that is accessed through these interfaces. 

The user interfaces are responsible for management of input/output streams. They allow processes to be 
,'ntered as graphical GCSR process descriptions or as ACSR processes using a text-based notation. Graphical 
input of GCSR specifications is managed with drawing support functions, syntax-checking functions, and 
automated translation from GCSR to ACSR. The text-based notation accepted by the X-Windows interface 
~.nhances the ACSR process algebra with the facility to define macros (e.g., to define manifest constants) 
and indexing which can be used to emulate value-passing. 

Within VERSA there are four major functional areas for analyzing processes: term rewriting, state space 
exploration, equivalence testing, and interactive execution. 

GCSR GUI I X-Windows Interface 
GCSR-to-ACSR I 

Text-Based Interface 

. . . . . . . . .  r . . . . . . . . .  r . . . . . . . . .  r . . . . . . . . .  

Term Slate Space Equivalence Interactive 
Testing Execution Rewriting Exploralion 

Fig. 1. The XVERSA Toolset 



404 

The rewrite system facilitates the rewriting of ACSR process expressions according to sound algebraic laws 
that preserve prioritized strong equivalence, a bisimulation relation that respects priority. At the direction 
of lhe user, the rewrite system applies pre-defined algebraic laws to one or more processes, producing a new 
process that may be bound to a new, or pre-existing process variable. In this way, algebraic proofs of the 
equivalence of process expressions may be developed. The tool aids this process by automatically determining 
and applying laws applicable to a highlighted ACSR term. 

State space exploration, equivalence testing and interactive execution operate on a labeled transition 
system (LT$) representation of the system being analyzed. The LTS for one or more processes is produced 
by an algorithm that expands the process to produce a labeled transition system representing all possible 
executions. The LTS construction algorithm Mso prunes edges made unreachable by the semantics of the 
prioritized transition system, in most cases reducing the size of the resulting LTS. 

State space exploration analysis can be used to determine key properties of a system's LTS. These include 
(l) number of states and transitions; (2) presence of deadlocked states; (3) states capable of Zeno behaviors 
(i. e., infinite sequences of instantaneous events); (4) states that require synchronization to take place before 
time can progress; and (5) reachability of specific externally observable events. 

Process equivalence can be tested using a number of different notions of equivalence including syntactic 
equivalence, a weaker syntactic equivalence which allows renaming of process variables and simple changes in 
structure, prioritize d strong equivalence, and prioritized weak equivalence. In the order listed, these notions 
of equivalence increase in computational complexity and decrease in "strength" (i.e., equate more terms). 

The interactive execution feature allows user-dlrected execution of process specifications. The user may 
interactively step through the LTS one action at a time, produce traces from random executions of the LTS, 
save process configurations to a stack for later analysis while an Mterna~e path is explored, and analyze the 
size and deadlock characteristics of the LTS resulting from their process. 

The XVERSA toolset has been used successfully to model and analyze railroad crossing systems[LBAC96], 
airport t.axiways[BALC95], real-time schedulability analysis problems[CLX95a], the Philips audio control 
protocol[BPV94], the production cell case study[LL95, BA96], and to verify the correctness of a Sunshine 
ATM switching network[CL95]. 

4 Sumnaary  

We have presented XVERSA, a toolset that supports the formal analysis of resource-bound real-time sys- 
tems. XVEtLSA offers a graphical process description language and X-Windows based tools ~.hat automate 
time consuming and error-prone anMysis tasks. Our research into the theory of ACSR/GCSR and support- 
ilag tools is ongoing. Current goals include (1) the enhancement of ACSR/GCSR with vMue-passing; (2) 
the development of a refinement theory for ACSFt/GCSR processes; and (3) implementation of alternative 
senaantic representations. 

Further information on ACSR and GCSR is available on the World Wide Web at 

ht~;p : / /~v~.  c i s .  "apem~. edu/'r~;g/home, html. 

The XVERSA tools and descriptions of several case studies using XVER.SA are available from 

h~p ://~w~. ci$. upenn, edu/" lee/duncan/versa, html. 

Quest.ions about downloading and installing the tools should be addressed to ve r sa~$au l ,  ci$.upe~--l, edu. 
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Abstract 
EVP is an integrated tool-set for specification and the analysis of communication protocols 
and distributed systems. Specifications in standard Formal De-~Tiption Techniques (FDTs) 
like SDL or LOTOS are translated into a common language, and then analysed with tools for 
this internal representation. The common language is a concmztnt logic language Slx~ially 
designed for distributed programming. The analysis consists in interactive simulation and 
automatic verification. 

1 Introduction 

It appears to be accepted that none of the current FDTs fulfils all the needs of the 
communication software cycle, although most of the desired properties are available 
in some of these languages. The search for a unique kernel language to be used for 
the integration of several standard FDTs seems to be one of the trends in the protocol 
engineering field. This approach allows the integration of different languages in a 
multi-paradigm environment, by translating user specifications into a common 
language, giving the user the chance to use the formal description technique to fit the 
protocol complexity, his experience and the available tools. New tools have to be 
developed for this single language, and all the effort can be oriented to process this 
common language. Projects like SEDOS[4] and SPECS[9] follow this apprmch. 

Logic languages have been shown to be useful as formal description techniques 
in modelling and analysing concurrent systems, especia~ communication protocols 
[11, 5], and could be suitable as common languages. In the Spanish project TEMA 
[6, 7], the new concurrent logic language DRL [2, 3] is designed to be the kernel 
language of a distributed multi-paradigm environment (EVP) for specifying and 
analysing communication protocols. The concurrent and distributed programming 
oriented nature of DRL allows translation from SDL and LOTOS specifications. Its 

* This work was supported by Spanish projects PLANBAfl~MA and CICYT TIC-1301-PB 

S ~  
Other members of the research group GISUM who have contributed to the tool are: 

C. Canal, M. Diaz, L. Fuentes, M.M. Gallardo, A.J. Nebro, E. PimeateL M. Roldan, B. 
Rubio 
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distributed implementa~on is also suitable for prototyping and for constructing a 
distributed verification tool to check errors in DRL specifications. The topic of this 
paper is the current status and applications of the EVP environment 

+ 

DR1. C01~ 

2 TO ERRORS 

TI~I~LATOR 

q E R I ~  

Pigure 1. The EVP architecture 

2 O v e r v i e w  o f  E V P  

Figure 1 shows the intended complete EVP architecture. The formal specification of 
the protocol behaviour can be described by using stmuiard FDTs ~nd the new 
language DRL. Correctness requirements (properties) are expressed .~ng different 
formaiL~ls (temporal logic form-In% observers or MSCs ). Data types are described 
with ASN.I and ACT-ONE. The set of specifications are linked using a coordination 
language, and different translators produce a unique DRL description involving data, 
behaviour ~nd requirements. A verifier is also produced to check both general and 
partic~jl~_r correctness requirements. Following this, simulabon and verification tools 
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analyse the common DRL code and report the errors related to the ori~nai FDT. 
Problematic execution sequences produced by simulation and/or verification are 
registered, and can be used to find the origin of the error by interactive simulation. 

The kernel language DRL is based on Parlog[ 1]. Like other concurrent logic 
languages, it naturally supports syachronisation through matching commlmication 
via shared variables, fine granularity concurrence and non-determinism due to the 

don't care selection of clauses. R enhances Parlog with modularity, real time, process 
control facilities, explicit channels and effective distribution mechanisms. 

3 Analysis and Verificatiou 

The analysis of the internal DRL specification can detect errors in the source FDT 
specification. Two tools have been developed for this purpose. The simulator is an 
interactive debugging system used to run some execution sequences in the protocol 
and to check errors in these sequences. The verifier automatically makes an on-the- 
fly checking of general and particular properties by teachability analysis. General 
properties include deadlocL undefined code, unspecLfied receptions and unreachable 
code. Particular properties refers to general temporal properties and assert violations~ 
Since particular requirements for a protocol can be specified, a specialised verifier is 
automatically produced in order to obtain more efficiency. 

To deal with the problem of the state space explosion, special annotations of 
DRL code have been introduced to allow different grain sizes in order to obtain the 
teachability graph. This kind of annotation gives the user the chance to mark piece 
of code to be executed both sequentially and in an atomic fashion, removing several 
interleavings with equivalent behaviours. Annotations are also automatically 
produced in the translation phase, by taking into account the source FDT semantics. 

4 C u r r e n t  Status 

A first version of the whole environment has been implemented and tested with 
several application level protocols specified in SDL and DRL. Current 
implementation runs on a network of workstations, and is composed of a distributed 
implementation of the kernel language, a translator of SDL-88 into DRL, a DRL 
oriented simulator, and a distributed verifier to check general errors in DIlL 
specifications. The tool-set is integrated with an X-Window user-interface. 

Simulation and verification tools have been constructed with DRL, using the 
meta-interpreter technique. This approach makes the development of a prototype 
environment easier, and also exploits the distributed implementation of DRL to 
produce a distributed verifier. This tool is useful for concurrently exploring different 
sequences in the protocol graph, and also for nsing the memory of several computers. 
Verification is carried out with a depth-first algorithm and state compactation ~ m g  
Holz~tann's supertrace method. Errors currently detected include deadlocL 
undefined behaviour, assert violation and unreachable code. 
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The environment has been applied using standard FDTs and also the kernel 
language as the specification language. The most representative work using SDL is 
the specification, translating, simulation and verification of the AVP protocol [10], 
designed within the framework of the TEMA project. 

DRL, as a user level FDT, is being employed in the specification and 
verification of AVP and also with the Multipuint Communication Service (MCS) [8]. 
In both cases, the specification is a validation oriented model, where only the 
relevant aspects of the behaviour of the protocols is considered. 

5 Conclusions and Further Work 

The GISUM group has designed and constructed an environment for the analysis of 
protocol specifications using different FDTs. User level specifications are translated 
into a common language, and then analysed with simulation and verification tools 
oriented to this common language. Instead of using classical internal representations 
like Petri nets or CFSM, we use, a logic based language designed to represent 
distributed systems. 

These experiences with real-life protocols show that these kinds of common 
languages are well suited for this purpose, but more improvements have to be made. 
Current work is mainly focused on the verification of temporal properties by 
extending the kernel language in order to express partiodar requirements of the 
protocols. However, other tasks are being carried out in the GISUM group, such as 
the design of a coordination language to rink user level specifications and the 
integration of LOTOS and languages for data specification. 
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PVS (Prototype Verification System) is an environment for constructing clear 
and precise specifications and for developing readable proofs that have been 
mechanically verified. It is designed to exploit the synergies between language 
and deduction, automation and interaction, and theorem proving and model 
checking. For example, the type system of PVS requires the use of theorem 
proving to establish type correctness, and conversely, type information is used 
extensively during a proof. Similarly, decision procedures are heavily used in 
order to simplify the tedious and obvious steps in a proof leaving the user to 
interactively supply the high-level steps in a verification. Model checking is one 
such decision procedure that is used to discharge temporal properties of specific 
finite-state systems. 

A variety of examples from functional programming, fault tolerance, and real 
time computing have been verified using PVS [7]. The most substantial use of 
PVS has been in the verification of the microcode for selected instructions of 
a commercial-scale microprocessor called AAMP5 designed by Rockwell-Collins 
and containing about 500,000 transistors [5]. Most recently, PVS has been ap- 
plied to the verification of the design of an SRT divider [9]. The key elements 
of the PVS design are described below in greater detail below. 

1 Combining Theorem Proving and Typechecking 

The PVS specification language is based on classical, simply typed higher-order 
logic, but the type system has been augmented with subtypes and dependent 
types. Though typechecking is undecidable for the PVS type system, the PVS 
typechecker automatically checks for simple type correctness and generates proof 
obligations corresponding to predicate subtypes. These proof obligations can be 
discharged through the use of the PVS proof checker. PVS also has parametric 
theories so that it is possible to capture, say, the notion of sorting with respect to 
arbitrary sizes, types, and ordering relations. By exploiting subtyping, dependent 
typing, and parametric theories, researchers at NASA Langley Research Center 
and SRI have developed a very general bit-vector library. Paul Miner at NASA 

* The development of PVS was funded by SRI International through IR&D funds. 
Various applications and customizations have been funded by NSF Grant "CCR- 
930044, NASA, ARPA contract A721, and NRL contract N00015-92-C-2177. 
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has developed a specification of portions of the IEEE 854 floating-point standard 
in PVS [6]. 

In PVS, the injective function space i n j e c t i o n  can be defined as a higher- 
order predicate subtype using the higher-order predicate i n j e c t i v e ?  as shown 
below. The notation (injective?) is an abbreviation for {f I injective?(f)} 
which is the subtype of functions from D to R for which the predicate in] ect ire? 
holds. 

functions [D, R: TYPE]: THEORY 
BEGIN 
f, g: VAR [D -> R] 
x ,  x l ,  x2: VAR D 

injective?(f): bool = (FORALL xl, x2: (f(xl) = f(x2) => (xl = x2))) 

injection: TYPE = (injective?) 

END functions 

We can also define the subtype e v e n  of even numbers and declare a function 
double as an injective function from the type of natural numbers nat  to the 
subtype e v e n .  

e v e n :  TYPE = { i  : n a t  ] EXISTS ( j  : n a t ) :  i = 2 * j }  

double : injection[nat, even] = (LAMBDA (i : nat): 2 * i) 

When the declaration of double is typechecked, the typechecker generates 
two proof obligations or type correctness conditions (TCCS). The first TCC 
checks that the result computed by double is an even number. The second TCC 
checks that the definition of doul~le is injective. Both TCCs are proved quickly 
and automatically using the default TCC strategy employed by the PVS proof 
checker. Proofs of more complicated TCCs can be constructed interactively. 

The PVS specification language has a number of other features that exploit 
the interaction between theorem proving and typechecking. Conversely, type 
information is used heavily within a PVS proof so that predicate subtype con- 
straints are automatically asserted to the decision procedures, and quantifier 
instantiations are typechecked and can generate TCC subgoals during a proof 
attempt. The practical experience with PVS has been that the type system does 
rapidly detect a lot of common specification errors. 

2 C o m b i n i n g  D e c i s i o n  P r o c e d u r e s  w i t h  I n t e r a c t i v e  P r o o f  

Decision Procedures. PVS employs decision procedures include the congruence 
closure algorithm for equality reasoning along with various decision procedures 
for various theories such as linear arithmetic, arrays, and tuples, in the presence 
of uninterpreted function symbols [10]. PVS does not merely make use of de- 
cision procedures to prove theorems but also to record type constraints and to 
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simplify subterms in a formula using any assumptions that govern the occur- 
rence of the subterm. These governing assumptions can either be the test parts 
of surrounding conditional (IF-THEN-ELSE) expressions or type constraints on 
governing bound variables. Such simplifications typically ensure that formulas 
do not become too large in the course of a proof. Also important, is the fact that 
automatic rewriting is closely coupled with the use of decision procedures, since 
many of the conditions and type correctness conditions that must be discharged 
in applying a rewrite rule succumb rather easily to the decision procedures. 

Strategies. The PVS proof checker provides powerful primitive inference steps 
that make heavy use of decision procedures, but proof construction solely in 
terms of even these inference steps can be quite tedious. PVS therefore pro- 
vides a language for defining high-level inference strategies (which are similar 
to tactics in LCF [3]). This language includes recursion, a l e t  binding con- 
struct, a backtracking t r y  strategy construction, and a conditional i f  strategy 
construction. Typical strategies include those for heuristic instantiation of 
quantifiers, repeated skolemization, simplification, rewriting, and quantifer in- 
stantiation, and induction followed by simplification and rewriting. There are 
about a hundred strategies currently in PVS but only about thirty of these are 
commonly used. The others are used as intermediate steps in defining more pow- 
erful strategies. The use of powerful primitive inference steps makes it possible 
to define a small number of robust and flexible strategies that usually suffice for 
productive proof construction. 

3 I n t e g r a t i n g  M o d e l  C h e c k i n g  a n d  T h e o r e m  Proving 

In the theorem proving approach to program verification, one verifies a property 
P of a program M by proving M D P. The model checking approach verifies the 
same program by showing that the state machine for M is a satisfying model 
of P, namely M ~ P. For control-intensive approaches over small finite states, 
model checking is very effective since a more traditional Hoare logic style proof 
involves discovering a sufficiently strong invariant. These two approaches have 
traditionally been seen as incompatible ways of viewing the verification problem. 
In recent work [8], we were able to unify the two views and incorporate a model 
checker as decision procedure for a well-defined fragment of PVS. 

This integration uses the mu-calculus as a medium for communicating be- 
tween PVS and a model checker for the propositional mu-calculus. We have 
used this integration to verify a complicated communication protocol by means 
of abstraction and model checking [?], and also to prove the correctness of an 
N-process mutual exclusion protocol in such a way that the induction step used 
the correctness of the 2-process version of the protocol as verified by the model 
checker. 

The general mu-calculus over a given state type essentially provides operators 
for defining least and greatest fixpoints of monotone predicate transformers. In 
Park's mu-calculus, the state type is restricted to n-tuple of booleans and extends 
quantified boolean formulas (i.e., propositional logic with boolean quantification) 
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to include the application of n-ary boolean predicates to n argument formulas. 
The relational terms can constructed by means of lambda-abstraction, or by 
taking the least fixpoint #Q.F[Q] where Q is an n-ary predicate variable and 
F is a monotone predicate transformer. The greatest fixpoint operation can 
be written as uQ.F[Q] and defined as -~#Q.-~F[-~Q]. The mu-calculus can be 
easily defined in PVS. The temporal operators of the branching time temporal  
logic CTL can be defined using the mu-calculus [1]. An efficient model checking 
algorithm for the propositional mu-calculus was presented by Emerson and Lei 
[2], and the symbolic variant employing BDDs was presented by Burch, et al [11. 
PVS employs a BDD-based mu-calculus validity checker due to Janssen [4]. 

When the state type is finite, i.e., constructed inductively from the booleans 
and scalar types using records, tuples, or arrays over subranges, the mu-calculus 
over such finite types (and the corresponding CTL) can be translated into the 
Boolean mu-calculus and model checking can be used as a decision procedure 
for this fragment. We do not discuss the details of this encoding here (see [8]). 
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Abstract. The Stanford Temporal Prover, STEP, combines deductive 
methods with algorithmic techniques to verify linear-time temporal logic 
specifications of reactive and real-time systems. STeP uses verification 
rules, verification diagrams, automatically generated invariants, model 
checking, and a collection of decision procedures to verify finite- and 
infinite-state systems. 

Sys tem Descript ion:  The Stanford Temporal Prover, STEP, supports the 
computer-aided formal verification of reactive, real-time (and, in particular, con- 
current) systems based on temporal specifications. Reactive systems maintain 
an ongoing interaction with their environment; their specifications are typically 
expressed as constraints on their behavior over time. STeP is not restricted 
to finite-state systems, but combines algorithmic and deductive methods to al- 
low the verification of a broad class of systems, including parameterized (N- 
component) circuit designs, parameterized (N-process) programs, and programs 
with infinite data domains. 

The deductive methods of STeP verify temporal properties of systems by 
means of verification rules and verification diagrams. Verification rules are used 
to reduce temporal properties of systems to first-order verification conditions [8]. 
Verification diagrams [7, 3] provide a visual language for guiding, organizing, 
and displaying proofs. Verification diagrams allow the user to construct proofs 
hierarchically, starting from a high-level, intuitive proof sketch and proceeding 
incrementally, as necessary, through layers of greater detail. 

Deductive verification almost always relies on finding, for a given program 
and specification, suitably strong auxiliary invariants and intermediate asser- 
tions. STeP implements a variety of techniques for automatic invariant gener- 
ation. These methods include local, linear and polyhedral invariant generation, 
which perform an approximate, abstract propagation through the system [2]. 
Verification conditions can then be established using the automatically gener- 
ated auxiliary invariants as background properties. 

* This research was supported in part by the National Science Foundation under grant 
CCR-92-23226, the Advanced Research Projects Agency under NASA grant NAG2- 
892, the United States Air Force Office of Scientific Research under grant F49620- 
93-1-0139, the Department of the Army under grant DAAH04-95-1-0317, and a gift 
from Intel Corporation. 
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S T e P  also provides an integrated suite of simplification and decision proce- 
dures for automatically checking the validity of a large class of first-order and 
temporal  formulas. This degree of automated deduction is intended to efficiently 
har/dle mostverification conditions that  arise in deductive verification. An inter- 
active Gentzen-style theorem prover and a resolution-based prover are available 
to establish the verification conditions that are not proved automatically. 
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Fig. 1. An overview of the STeP system 

S y s t e m  S t r u c t u r e :  Fig. 1 presents an overview of STEP. Dotted lines indicate 
work in progress. The basic inputs are a reactive system (which can be a hard- 
ware or software description), expressed as a transition system, and a system 
property to be proved~ represented by a temporal  logic formula. Verification can 
be performed by the model checker or by deductive means. User guidance can 
be provided as intermediate assertions or verification diagrams. In either case, 
the system is responsible for generating and proving all of the required verifica- 
tion conditions. Tactics are available to automate parts of the high-level proof 
search by encoding long or repetitive sequences of proof commands. For a more 
extensive description of S T e P  and examples of verified programs,see [1, 6]. 
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Interacting wi th  STEP: STeP has three main interface components: the Top- 
level Prover, from which verification sessions are managed and verification rules 
are invoked; the Interactive Prover, used to prove the validity of first-order and 
terriporal-logic formulas that are not proved automatically; and the Verification 
Diagram Editor, for the creation of Verification Diagrams. Fig. 2 shows these 
three interfaces, with a version of the Bakery algorithm loaded, together with a 
tree representing the ongoing proof process. 
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Fig. 2. Overview of STeP's interfaces 

Real - t ime systems: STeP was recently extended to support the verification 
of safety properties of real-time systems, based on the computational model of 
clocked transition systems [9]. Systems described by timed transition systems or 
timed automata can be readily translated into this formalism. The specification 
language of linear-time temporal logic was extended, in turn, with real-valued 
clocks measuring progress of time. 
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Appl i ca t ions :  STeP has been used to analyze a diverse number of systems, 
including: an infinite-state demarcation protocol used in distributed databases, 
a pipelined four-stage multiplication circuit, Ricart and Agrawala's mutual ex- 
clusion protocol, several (N-component) ring arbiters, Szymanski's N-process 
mutual-exclusion algorithm, and an industrial split-transaction bus protocol to 
coordinate access for six processors. Real-time systems analyzed include Fisher's 
mutual-exclusion protocol and a (parameterized) railroad gate controller [5]. 

STeP is being extended to support deductive model checking as described in 
[10], as well as modular verification diagrams [4]. 

E d u c a t i o n a l  Version:  An educational version of the system, which accompa- 
nies the textbook [8], is available. The distribution includes a comprehensive user 
manual [1] and a tutorial, as well as 40 example programs and their specifica- 
tions, from the textbook, ready to be loaded. For many programs, ready-to-load 
verification diagrams are included as well. 

STeP is implemented in Standard ML of New Jersey, using CML and eXene 
for its X-windows user interface. For information on obtaining the system, send 
e-mail to step-request�9 stanford, eduo 
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1 Introduction 

Extensive simulation is currently the most widely used verification technique. However, 
simulation does not check all possible behaviors of a computing system. Exhaustive 
simulation is too expensive, and non-exhaustive simulation can miss important events, 
especially if the number of states in the system being verified is large. Other approaches 
for Verification include theorem provers, term rewriting systems and proof checkers. 
These techniques, however, are usually very time consuming and require significant 
user intervention. Such characteristics limit the size of the systems they can verify in 
practice. 

Temporal logic model checking [6, 7] is an alternative approach that has achieved 
significant results recently. Efficient algorithms are able to verify properties of realistic 
complex systems. In this technique, specifications are written as formulas in a proposi- 
tional temporal logic and computer systems are represented by state-transition graphs. 
Verification is accomplished by an efficient breadth first search procedure that views 
the transition system as a model for the logic, and determines if the specifications are 
satisfied by that model. 

Recent model checkers use symbolic algorithms, which allow the verification of 
extremely large state-spaces. In this approach the transition relation is represented 
implicitly by boolean formulas, and implemented by binary decision diagrams [ 1]. This 
usually results in a much smaller representation for the transition relation [ 16], allowing 
the size of the models being verified to increase up to more than 1020 states [2]. 

There are several other advantages to this approach. An important one is that the 
procedure is completely automatic. The model checker accepts a model description, 
specifications to be verified and determines, without user intervention, if the formulas 
are true or not for that model. Another advantage is that, if the formula is not true, the 
model checker will provide a counterexample. The counterexample is an execution trace 
that shows why the formula is not true. This is an extremely useful feature because it 
can help locate the source of the error and speed up the debugging process. Another 
advantage is the ability to verify partially specified systems. If a component hasn't been 
fully specified, some of its outputs can be assigned nondeterministic values. The set of 

* This research was sponsored in part by the National Science Foundation under grant no. 
CCR-8722633, by the Semiconductor Research Corporation under contract 92-DJ-294, and 
by The Defense Advanced Research Projects Agency, Information Science and Technology 
Office, under the title "Research on Parallel Computing", ARPA Order No. 7330, issued by 
DARPA/CMO under Contract MDA972-90-C-0035. 
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behaviors modeled this way is a superset of the actual behaviors of the component. Useful 
information about the correctness of the system can be gathered before all the details 
have been determined. The abstracted model is then refined when more information 
about the component becomes available. This allows the verification of a system to 
proceed concurrently with its design. Consequently verification can provide valuable 
hints that will help designers eliminate errors earlier and define better systems. 

The model checker used in this work is Symbolic Model Verifier (SMV) [16]. It has 
been applied successfully in the verification of several industrial systems. Examples 
include the Futurebus+ cache coherence protocol [9], the PCI Local Bus [3], a railway 
signalling system [14], an aircraft controller [5], a manufacturing system [13], and a 
medical monitoring system [4]. A survey about the technique can be found in [11]. 

2 Describing the System 

The system being verified is described in the SMV language. We can specify syn- 
chronous or asynchronous, detailed deterministic or abstract nondeterrrfinistic finite 
state machines. The language provides modular hierarchical descriptions, reuse of com- 
ponents, and parameterization so that multiple instances of a module can use different 
data values. Within every module, local variables may be declared. The type of a variable 
may be boolean, an enumeration type or an integer subrange. For example: 

VAR stateO: {noncritical, trying, critical}; 

The value of the variables in each state are defined using i n i t  and n e x t :  

init(stateO) := noncritical; 

next(stateO) := 

case 

stateO 

stateO 

stateO 

stateO= 

i: stateO; 

esac; 

= noncritical) : {trying,noncritical}; 

= trying) & (statel = noncritical): critical; 

= trying) & (statel = trying) & (turn =turnO) : 

critical; 

critical) : {critical,noncritical}; 

An SMV program can be viewed as a system of simultaneous equations whose 
solution determines the next state. When describing communication protocols, asy- 
chronous circuits, or other systems whose actions are not sychronized, we can define a 
set of parallel processes whose actions are interleaved arbitrarily in the execution of the 
program. 

Fairness constraints can also be specified in SMV. A fairness constraint is an arbitrary 
set of states in the model, described by a temporal logic formula. A path in the model 
is considered fair with respect to a set of fairness constraints if  each constraint is true 
infinitely often along the path (i.e. some state in the fair set of states is visited infinitely 
often). In SMV verification can be restricted to fair paths. 
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3 V e r i f y i n g  t h e  S y s t e m  

Computation tree logic, CTL, is the logic used by SMV to express properties that will be 
verified. Formulas in CTL are built from atomic propositions, where each proposition 
corresponds to a variable in the model, boolean conectives ~ and A, and temporal 
operators. Each operator consists of two parts: a path quantifier followed by a temporal 
operator. Path quantifiers indicate that the property should be true of all paths from a 
given state (A), or some path from a given state (E). The temporal modality describes 
how events should be ordered with respect to time for a path specified by the path 
quantifier. They have the following informal meanings: 

- F p u p holds sometime in the future. 
- G p - -  p holds globally on the path. 
- X p - -  p holds in the next state. 
- p U q - -  q holds in the future, and p holds in all states until the state in which 

qholds. 

The most common CTL operators are: AG p - -  p is globally true in all paths from the 
current state, i.e., p is invariant; A F  p - -  p holds sometime in the future in all paths, i.e., 
p is inevitable; EF p - -  p holds sometime in the future for some path, i.e., p is reachable. 
Some examples of CTL formulas are given below to illustrate the expressiveness of the 
logic. 

- A G ( r e q  -+ A F  ack): It is always the case that if the signal req is high, then 
eventually ack will also be high. 

- E F ( s t a r t e d  A -~ready): It is possible to get to a state where s tar ted  holds but 
ready  does not hold. 

- A G  E F  restart :  From any state it is possible to get to the res tar t  state. 
- A G ( s e n d  -+ A [ s e n d  U recv]): It is always the case that if send  occurs, then 

eventually recv is true, and until that time, send  must remain true. 

4 C o n c l u s i o n s  

Symbolic model checking is a powerful formal specification and verification method 
that has been applied successfully in several industrial designs. Using symbolic model 
checking techniques it is possible to verify industrial-size finite state systems. State 
spaces with up to 1030 states can be exhaustively searched in minutes. Models with 
more than 10120 states have been verified using special techniques. 

Several extensions to the original technique have been developed, making it even 
more powerful. Timing properties can be verified by performing a quantitative timing 
analysis [3, 5]. The designer can then analyze the performance of a system and gain 
insight in how well a system works early in the design process. Word-level model 
checking allows the verification of datapaths in addition to control [12]. Symmetry [8], 
abstraction [10, 15] and compositional reasoning [15] techniques significantly extend 
the power of model checking by exploiting the hierarchical structure of complex circuit 
designs and protocols. 

More information about SMV, as well as the source code for the model checker can 
be found at: http : //www. cs. cmu. edu/~modelcheck 
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Abs t r ac t .  COSPAN (Coordination Specification Analizer [AKS83])is 
an algorithmic computer-aided verification system. It 's semantic model 
[Ku94] is founded on w-automata: for a process P (modelling a system 
to be verified) and a task T which P is intended to perform, verification 
consists of the automata language containment test 

s  C s  

If the test fails, COSPAN presents an error track which illustrates the 
error. Typically, P is not monolithic, but is represented as a ("syn- 
chronous") parallel composition P = P1 | ".'| of component processes 
(all modelled as w-automata). Asynchronous coordination of component 
processes may be modelled through nondeterminism in the components. 
The process model can be set either to Mealy or Moore machines. 
COSPAN has been used on commercial applications for over a decade, 
both for software and hardware design verification [HK90]. Recently, it 
has been implemented as the :'verification engine" in the commercial 
hardware verification tool FormalCheck TM, which is supported -for hard- 
ware verification by the Bell Labs Design Automation center. 
The COSPAN application domains and utilities are enumerated. 

1 Methodology 

r supports  top-down design development through successive refinements, 
in which one may star t  by verifying an abstract  prototype design, and then suc- 
cessively refine the prototype,  verifying new properties in each respective refine- 
ment,  in such a way that  each successive refinement inherits all the properties 
verified in all previous steps. This is possible because w-au tomata  define linear- 
time behaviors (in contrast with branching-time behaviors as defined by logics 
such as CTL [CE82]). From the final design model, COSPAN will generate C 
code as well as input to the Lucent Technologies synthesis tool B E S T M A P  T M  

in order to implement  automatical ly  its models as software or hardware. 
Its analysis algorithms include au tomated  localization reduction, symmetry 

reduction and the more general user-defined homomorphic reduction [Ku94], 
used to limit the computat ional  complexity of verification (which in general 
is intractable in the number of coordinating components  k). Localization is" an 
(automatical ly)  generated homomorphic  reduction, which reduces the model P 
relative to the property T which is to be verified. This reduction conservatively 
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discards parts of the design irrelevant to T, and resizes retained portions rela- 
tive to the other retained parts. If the design changes, already-verified properties 
need not be re-verified if the changes lie outside of their respective localizations. 
W1/ether this is the case can be checked through a computationally simple CRC 
map of the localized parse trees before and after the change, for each respective 
property ("regression verification" [tIKRS96]). In homomorphic verification, the 
user produces two models (possibly with completely different sets of events and 
system variables) and a language map which relates the two; COSPAN checks 
that the map in fact defines a (behavior-preserving) homomorphism between 
the two models. This check may be done component-wise, which is important 
for circumventing the possibly intractable complexity of performing the check 
on the entire system at once. 

COSPAN supports real-time verification, implemented with Rajeev Alur in 
terms of successive approximations [AIKY93] in order to limit its computational 
complexity. 

In its core routines, COSPAN can use either symbolic- (BDD-based) or explicit- 
state enumeration algorithms. Both algorithms are "on the fly" in the sense that 
errors may be detected before exploring the entire state space. The error track 
that COSPAN produces optionally contains line-number/source-file information 
for each variable to support back-referencing, indicating where in the source the 
given variable was assigned the value indicated in the error track (at the point 
where the other variables were assigned their designated respective values). The 
BDD-based algorithms (based on a new BDD package implemented by David 
Long) use partitioning, dynamic reordering and a version of the Emerson-Lei al- 
gorithm [EL86] for the language-containment test. The explicit-state algorithms 
optionally invoke several caching and hashing options, a generalized Hopcroft 
state minimization algorithm [GrT3], and use the Tarjan strongly connected 
components algorithm [Ta72] for the language-containment test. 

2 L a n g u a g e  

The state of a computer program at an instant of time is the simultaneous 
value of all its respective variables (assuming that is well-defined). As space 
complexity is a principal bottleneck in algorithmic verification, the dimension 
of this state vector is an important factor in the over-all complexity of the 
verification [Ku94]. If the values of some variables are functions (or relations) of 
the values of other variables, then the effective dimension of the state vector, as 
a factor in computing space complexity, is the actual dimension less the number 
of dependent variables. 

If a programming language syntactically draws a distinction between such 
state variables, and the remaining combinational variables whose [possible] val- 
ues at each instant are a function [relation] of the values of the state variables, 
then this distinction can be exploited in algorithmic verification. Programming 
languages designed to describe integrated circuits ("hardware description lan- 
guages" or HDL's) often distinguish between such state variables, used to desig- 
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hate latches or computer memory and combinational variables, used to designate 
logic, for the reason that the performance and fabrication cost of hardware are 
governed by the same factors as algorithmic verification. For hardware synthe- 
sized automatically from HDL code, the syntactic distinction between state and 
logic in the HDL is reflected in a corresponding physical distinction in the hard- 
ware. 

An even more fundamental distinction between hardware and software, as 
it pertains to algorithmic verification, is the use of recursion and pointers, less 
common in HDL's and more problematic for algorithmic verification. 

All of these issues have been significant factors in the generally greater ac- 
ceptance of algorithmic verification in the commercial hardware design process 
than in the commercial software design process, and are reflected in the commer- 
cial languages for which interfaces to COSPAN have been built. Notwithstand- 
ing this, the principles of algorithmic verification and their implementation in 
COSPAN are applicable equally to hardware and software. 

To date, interfaces to COSPAN have been written for the commercial HDL's 
Verilog and VHDL, the CCITT-standard protocol specification language SDL, 
and the non-commercial languages I-ISIS [HSIS94] from UC Berkeley, Holzmann's 
Promela [Ho91] and Lamport's TLA [La94]. However, it would be feasible to 
make interfaces to any other languages for which the above language issues 
pertaining to verification can be adequately addressed. 

Conversely, the COSPAN parser can translate i ts  native S/R language into 
input to the verification tools SMV [Mc93] and SPIN [Ho91] and the automated 
theorem-provers HOL [Go88] and Larch [GGgl] (via TLA). 

COSPAN's native language S/R distinguishes between state variables and 
combinational variables. The language supports nondeterministic, conditional 
(i.e., if-then-else) variable assignments; variables of type bounded integer, enu- 
merated, Boolean and pointer (to structures); arrays and records; and integer and 
bit-vector arithmetic. Modular hierarchy, scoping, parallel and sequential execu- 
tion, homomorphism declaration and general w-automaton fairness (acceptance) 
are supported as well. Property specification also is supported through a library 
of parameterized automata designed to facilitate the definition of any w-regular 
property. Thus, the user need not deal with automata acceptance conditions 
directly, but may confine coding to conventional programming plus the defini- 
tion of the properties to be verified and system constraints (if any) specified by 
assigning propositional expressions to parameters of the library automata. The 
commercial FormalCheck version of COSPAN provides a graphical interface for 
this purpose. 

3 U t i l i t i e s  

As already described above, the principal COSPAN algorithms include: 

- explicit- and symbolic-state enumeration language containment tests 
- localization reduction 
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- homomorphic verification 
- timing verification 
- state space minimization 
- symmetry reduction 

- regression verification 
- C code generation (model implementation) 
- back-referencing from an error track t o  the source 

Additionally, COSPAN supports the following options: 

- data-path profiling; manual variable ordering (for BDD~s) 
- Wolper's [WL93] k-bit generalization of Holzmann's state-vector bit-hashing 
- over-writing of states outside of the search path (explicit enumeration) 
- randomized property checking 
- automated sub-model extraction 
- stability checking (for asynchronous models) 
- deadlock detection; CTL AGEFp (NOT preserved by refinement) 
- embedding of C code into S /R  (for implementation and test generation) 

- listing of the transition graph 
- suspension, termination, polling and restarting verification runs 
- interactive "cheek-pointing" (single path exploration) 

4 To O b t a i n  

A version of COSPAN is available to universities for research and educational 
purposes, at no charge: inquire to k@research.bell-labs.com . 
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1 Introduction 
VIS (Verification Interacting with Synthesis) is a tool that integrates the verification, 
simulation, and synthesis of finite-state hardware systems. It uses a Verilog front end and 
supports fair CTL model checking, language emptiness checking, combinational and 
sequential equivalence checking, cycle-based simulation, and hierarchical synthesis. 

We designed VIS to maximize performance by using state-of-the-art algorithms, 
and to provide a solid platform for future research in formal verification. VIS improves 
upon existing verification tools by: 

1. providing a better programming environment, 
2. providing new capabilities, mad 
3. ~mproving performance. 

We have incorporated software engineering methods into the design of VIS. In particular, 
we provide extensive documentation that is automatically extracted from the source files 
for browsing on the World Wide Web. 

We describe the major capabilities of VIS in Section 2, and give a brief description of 
the underlying algorithms inSection 3. We discuss the VIS programming environment 
in Section 4, and conclude with future work in Section 5. 

2 Capabilities of VIS 
We briefly describe the salient features of VIS. VIS has both an interactive command 
interface and a batch mode. For a detailed description of the full functionality of VIS, 
with examples of usage, refer to the VIS Manual [2]. 

Verilog front end VIS operates on an intermediate format called BLIF-MV, which is 
an extension of BLIE the intermediate format for logic synthesis accepted by SIS [8]. 
VIS includes a stand-alone compiler from Verilog to BLIF-MV, called VL2MV [3], which 
supports a synthesizable subset of Verilog. VL2MV extracts a set of interacting finite state 
machines that preserves the behavior of the source Verilog program defined in terms of 
simulated results. Two new features have been added to Verilog: 

1. Nondeterminism. A nondeterministic construct, SND, has been added to specify 
nondeterminism on wire variables; this is the only legal way to introduce nondeter- 
minism in VIS. 
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** Department of Electrical and Computer Engineering, University of Colorado, Boulder,'CO 
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2. Symbolic variables. We allow the symbolic specification of multi-valued variables, 
rather than insisting on explicit binary encodings for each value. VL2MV extends 
Verilog to allow symbolic variables using an enumerated type mechanism similar 
to the one available in the C programming language. 

It would be easy to provide a translator from another HDL language, like VHDL or 
Esterel, to BLIF-MV. 

Hierarchy and initialization When a BLIF-MV description is read into VIS, it is 
stored hierarchically as a tree of modules, which in turn consist of sub-modules. The 
variables of these modules may be related using a symbolic "table". This hierarchy can 
be traversed in a manner similar to traversing directories in UNIX. The hierarchy, or 
portions of it, may be flattenned to a netlist of (symbolic) logic gates (network). The 
network is the starting point for the verification and simulation algorithms; simulation 
and verification operations can be performed at any subtree of the hierarchy. It is possible 
to replace the subhierarchy rooted at the current node with a new hierarchy specified by 
a new BLIF-MV file, which might be a synthesized module or a manually abstracted 
module. VIS can also output the hierarchy below the current node to a BLIF-MV file. 

Interaction with synthesis VIS can interact with SIS to optimize the existing logic by 
reading and writing the BLIF format, which SIS recognizes. Synthesis can be performed 
on any node of the hierarchy. 

Abstraction Manual abstraction can be performed by giving a file containing the names 
of variables to abstract. For each variable appearing in the file, a new primary input node 
is created to drive all the nodes that were previously driven by the variable. Abstracting 
a net effectively allows it to take any value in its range, at every clock cycle. 

Fair CTL model checking and language emptiness check VIS performs fair CTL 
model checking under Biichi fairness constraints. In addition, VIS can perform language 
emptiness checking by model checking the formula EG true. The language of a design 
is given by sequences over the set of reachable states that do not violate the fairness 
constraint. The language emptiness check can be used to perform language containment 
by expressing the set of bad behaviors as another component of the system. If model 
checking or language emptiness fall, VIS reports the failure with a counterexample, (i.e., 
behavior seen in the system that does not satisfy the property - for model checking, or 
valid behavior seen in the system - for language emptiness). This is called the "debug" 
trace. 

Equivalence checking VIS provides the capability to check the combinational equiv- 
alence of two designs. An important usage of combinational equivalence is to provide 
a sanity check when re-synthesizing portions of a network. VIS also provides the capa- 
bility to test the sequential equivalence of two designs. Sequential verification is done 
by building the product finite state machine, and checking whether a state where the 
values of two corresponding outputs differ, can be reached from the set of initial states 
of the product machine. If this happens, a debug trace is provided. Both combinational 
and sequential verification are implemented using BDD-based routines. 
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Simulation VIS also provides traditional design verification in the form of a cycle- 
based simulator that uses BDD techniques. Since VIS performs both formal verification 
and simulation using the same data structures, consistency between them is ensured. 
VIS can generate random input patterns or accept user-specified input patterns. Any 
subtree of the specified hierarchy may be simulated. 

3 Algori thms 
This section briefly discusses the significant algorithms of VIS. The fundamental data 
structure for these algorithms is a multi-level network of latches and combinational 
gates that is created by flattening the hierarchy. It is assumed that there are no com- 
binational cycles in the network. The primary inputs and latch outputs are referred to 
as combinational inputs and the primary outputs and latch inputs are referred to as 
combinationaloutputs. The variables of a network are multi-valued, and logic functions 
over these variables are represented by multi-valued decision diagrams (MDDs) which 
are an extension of BDDs. 

MDD variable ordering In order to construct the MDD's, the combinational input and 
next state variables must be ordered. The combinational input variables are ordered by 
doing a depth-first traversal of the logic that generates the combinational outputs. The 
order in which the output logic cones are visited is determined using the algorithm of Aziz 
et al. [1]. This algorithm orders the latches to decrease a communication complexity 
bound (where backward edges are more expensive than forward edges) on the latch 
communication graph. The traversal of an output logic cone is done in such a way 
that the combinational inputs farthest from the outputs appear earlier in the ordering. 
We use the merging technique of Fujii et al. to handle those variables that appear in 
multiple cones of logic [6]. Next state variables are inserted into the variable ordering 
immediately after the corresponding present state variables. We have found that forcing 
corresponding present state and next state variables to remain adjacent to each other is 
usually beneficial. 

If the user has some knowledge of a good ordering, then a partial or total ordering 
on the variables can be read in. In addition, dynamic variable ordering is supported. 

Partitioning the network Once the description of a system has been read in and 
the ordering of the variables assigned, al~ abstracted view of the system is created 
in which the functions of the network are stored as MDDs. This abstracted view, called 
a "partition", is the input to model checking and reachability. It can be created in several 
ways. At one extreme, combinational output functions are defined directly in terms of 
combinational inputs (monolithic transition functions). On the other extreme, there is 
an MDD corresponding to each node in the network representing the functionality of 
the node in terms of its fanins, i.e., a variable is introduced for each node in the network. 
In general, intermediate variables can be introduced to represent the functionality of a 
cluster of nodes in the original network. This flexibility allows very large designs to be 
represented and manipulated. 

Image/Pre,image computation Our image/pre-image computation technique is based 
on an early variable quantification heuristic [7]. The initialization process consists of 
creating a bit-level relation for the next state function of each latch in the network.These 
bit-level relations are then ordered to optimally exploit early quantification. Next, the 
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relations of several bits are grouped together, making a cluster whenever the MDD size 
of the group reaches a threshold. Next, each cluster is simplified by quantifying out 
the primary inputs local to that cluster. Finally, the orders of the clusters for image and 
pre=image are calculated and stored. Also storedis the schedule of variables for early 
quantification. 

Reaehability analysis Reachability analysis uses image computation. In addition to 
the improved image computation described, the performance of reachability analysis is 
also improved by exploiting three sets of don't cares (in the following/~ (x) represents 
the set of states reached from the initial states in k or fewer steps): 

1. Selection of the frontier set for computing/~k+l (x), given Rk(x). The frontier set 
F(x) can be any set satisfying the following inequality:/~k (x)/~k-l(x) C F (x) C_ 

2. Simplification of the transition relation T(x, u, y), by taking the generalized cofactor 
with respect to F (x) (we care only about the transitions originating from the frontier 
states). 

3. Simplification of the transition relation T(x, u, y), by taking the generalized cofactor 
with respect to Rk (y) (we care only about the transitions to the set of states not 
reached thus far). 

Model checking and debugging We use the algorithms presented in [4] as the basis 
for fair CTL model checking and debugging. In addition, a special algorithm has been 
implemented to improve the efficiency of checking invariants. Also, a structural pruning 
technique is used to eliminate those parts of the network that cannot affect the formula 
being checked. This is particularly useful in conjunction with the abstraction mechanism 
mentioned in Section 2. Finally, don't cares arising from the unreachable states, and 
from the fixed point computations, are used to simplify intermediate MDDs. 

4 Programming Environment 
One of the key goals of VIS is to serve as a platform for developing new verification 
algorithms. We have used object-oriented programming style of SIS as our paradigm. 
VIS is composed of 18 packages; each exports a set of routines for manipulating a 
particular data structure, or for performing a set of related functions (e.g., there are 
packages for model checking, variable ordering, and manipulating the network data 
structure). New packages can be added easily. This wealth of exported functions can be 
used by future programmers to quickly assemble new algorithms. All functions adhere 
to a common naming convention so that it is easy to find functions in the documentation. 

Particular attention was paid to the design of the interfaces to packages that are still 
the subject of ongoing research (e.g., MDD variable ordering, image computation, and 
partitioning). This makes it easy for other researchers to plug in their algorithms for 
performing a particular task, and then evaluate their algorithm within the context of VIS. 

Extensive user and programmer documentation exists for VIS. The creation of this 
documentation was aided by the tool e •  [5], which extracts documentation embedded 
in the source code. For each function, the programmer provides a synopsis and a complete 
description, and e x t  automatically extracts this information, along with the function 
name and argument types, into an HTML file that can be viewed on the World Wide 
Web. Documentation for user commands is extracted in a similar fashion. 
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5 Conclusions and Future Work 
We have described the verification and synthesis tool VIS, which offers a better pro- 
gramming environment, new capabilities, and improved performance over existing ver- 
ification tools. We have implemented VIS using the C programming language, and it 
has been ported to many different operating systems and architectures. The capabilities 
of VIS have been tested on the sequential circuits from the ISCAS benchmark set and 
some industrial designs. 

As part of future work, we intend to explore and support explicit methods for state 
enumeration, verification of asynchronous systems, hierarchical synthesis, partitioning 
schemes, language containment, and incremental techniques for synthesis and verifica- 
tion. In particular, we want to explore the synergy between verification and synthesis. 

For more information about VIS, to demo VIS, or to get a copy, visit the VIS home 
page [9]. 
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1 Introduction 

Although ROBDDs [1, 2] have proved to be a powerful tool for automated hard- 
ware verification, they require a Boolean representation of the circuit. Since the 
size of an ROBDD grows, sometimes exponentially, with the number of Boolean 
variables, ROBDD-based verification cannot be directly applied to circuits with 
complex datapaths. 

We have recently proposed a new class of decision graphs, called Multiway 
Decision Graphs (MDGs) [3], that comprises, 1)ut is much broader than, the class 
of ROBDDs. The underlying logic of MDGs is a subset of many-sorted first-order 
logic with a distinction between concrete and abstract sorts. A concrete sort has 
an enumeration while an abstract sort does not. Hence a data value can be rep- 
resented by a single variable of abstract sort, rather than by a vector of Boolean 
variables, and a data operation can be viewed as a black box and represented 
by an uninterpreted function symbol. MDGs are thus much more compact than 
ROBDDs for designs containing a datapath, and this greatly increases the range 
of applications. 

We have developed a collection of MDG tools that include implementations 
of the basic MDG operators and verification procedures for RTL designs. 

2 The Structure of M D G  Tools 

The current MDG tools (V1.0) are logically organized into five modules in three 
layers as shown in Figure 1. 

[ Combinational Verification ] / [  

I Pretty- 

] MDG Package 

Sequential Verification ] 

[ ReachabilityAnalysis [ 

I 
Fig. 1. The structure of MDG tools 
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The lowest layer is the MDG package module. It provides a set of MDG 
operators and a number of utilities, which are the basic building blocks for 
MDG-'based applications. 

In the middle layer, there are two modules: (i) the printing module provides 
various pretty-printing procedures; (ii) the teachability analysis module imple- 
ments the teachability analysis algorithm for abstract state machines (ASMs) 
[4]. It also contains a counterexample facility which generates explanations when 
the invariant being verified is violated. 

Currently, there are two modules in the application layer. The combinational 
verification module provides the equivalence checking of combinational circuits. 
The sequential verification module have two applications: (i) invariant checking 
and (ii) equivalence checking of two state machines. 

As a prototype, the MDG tools have been implemented in Prolog and cur- 
rently run under Quintus Prolog Version 3.2. 

3 T h e  M D G  P a c k a g e  

Like an ROBDD package, the MDG package contains the basic procedures for 
developing MDG-based applications. Here we briefly review the MDG operators 
and the utilities. For more details see [3, 6]. 

- Disjunction (Disj): performs disjunction for a set of MDGs. 
- Relational product (RelP): performs conjunction, abstraction by existential 

quantification and renaming operations in one traversal of graphs for a set 
of MDGs. It is used for image computation. 

- Pruning-by-subsumption (PbyS): takes as input two MDGs P and Q, and 
produces an MDG that approximates P A -~Q by removing zero or more 
paths in MDG P which are subsumed by MDG Q. When P and Q represents 
sets of states, if all paths in P are removed, then P C Q. PbyS is used for 
subsumption checking and frontier-set simplification. 

- Rewriting (Rew): rewrites the first-order terms appearing in an MDG as 
edges and node labels according to a conditional term rewriting system. 

Computed-tables, implemented as hash tables, are used to reduce the complexity 
of the algorithms by exploiting the structure sharing of MDGs. 

The major utilities provided with the package are term assembly and graph 
assembly, which construct terms and graphs using reduction tables, also imple- 
mented as hash tables. 

4 A p p l i c a t i o n s  t o  H a r d w a r e  V e r i f i c a t i o n  

A b s t r a c t  S ta t e  Machines .  The MDG tools are intended for Abstract State 
Machines (ASM) verification [4, 3] rather than Finite State Machine (FSM) 
verification. They can be used for FSMs as well, but they are less efficient than 
ROBDDs for this purpose, due in part to the space requirements of our current 
Prolog implementation. 
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An abstract description of a state machine, called abstract state machine 
(ASM) [4], is obtained by letting some data input, state or output variables 
be of an abstract sort, and the datapath operations be uninterpreted function 
symbols. Just as ROBDDs for encoding FSMs, MDGs are used to compactly 
represent sets of (abstract) states and transition/output relations for ASMs. 

The MDG tools accept as hardware description a Prolog-style HDL, MDG- 
HDL, which Mlows the use of abstract variables for representing data signals. 
The MDG-HDL description is then compiled into the ASM model in internal 
MDG data structures. 

MDG-HDL supports structural descriptions, behavioral ASM descriptions, 
or a mixture of structural and behavioral descriptions. A structural description 
is usually a netlist of components (predefined in MDG-HDL) connected by sig- 
nals. A behavioral description is given by a tabular representation of the transi- 
tion/output relation or truth table. Currently, we are implementing a translator 
for a subset of VHDL to MDG-HDL. 

Like ROBDDS~ MDGs require a fixed order of node labels along all paths. 
This order is supplied by the user. Unlike ROBDDs where all variables are 
Boolean, in MDGs every variable/signal must be assigned an appropriate sort, 
and a type definition must be provided for all functions. If needed, rewrite rules 
may be used to partially interpret the otherwise uninterpreted function symbols. 

Reachab i l i t y  Analysis .  The teachability analysis for an ASM is based on a 
technique called abstract implicit enumeration [3] which is analogous to the im- 
plicit enumeration [2] used for FSMs. It verifies whether an invariant holds in 
all reachable states of the ASM. 

The image computation is based on the ReIP operator. It uses transition rela- 
tion partitioning and early quantification heuristics. The special operator PbyS 
is used for multiple purposes: frontier-set simplification, detection of termination 
and invariant checking. 

When the invariant is violated at some stage of the reachability analysis, a 
counterexample facility gives a sequence of input-state pairs leading from the 
initial state to the faulty behavior. This is very helpful for identifying design 
errors. 

Appl ica t ions .  Invariant checking is the direct application of reachability anal- 
ysis. A variation is the equivalence checking of two ASMs. We make a product 
machine for two ASMs by putting them together and feeding them the same 
inputs, then perform reachability analysis for the product machine and check an 
invariant stating the equivalence of the corresponding outputs. 

In addition, we have a procedure for checking the combinational equivalence 
of circuits having the same input, output and state variables (if any). For each 
circuit, we derive MDGs relating each output and state variable to the inputs 
and state variables. These MDGs collectively represent the output and transition 
relations. Then, using the canonicity property of MDGs, we simply check that 
corresponding MDGs for the two circuits have the same MDG identifier. 
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Due to the use of many-sorted logic and uninterpreted function symbols, 
the specification and the implementation to be compared must be couched in 
terms of the same set of uninterpreted function symbols and sort assignments. 
This restriction, however, does not rule out using rewrite rules to exploit partial 
meaning of the uninterpreted function symbols. 

The reachability analysis procedure may not terminate in general. However, 
for a class of interesting problems, the non-termination problem can be avoided 
by state generalization [3] and/or  by using the term rewriting facility. 

5 Conclusions and Future Work 

We presented MDG tools which can reason at the abstract level and are thus 
suitable for  RTL design verification. The contribution of MDGs as a representa- 
tion and computat ion tool, beyond the use of abstract types, is that  they open 
the way to the development of new techniques for the verification of circuit and 
system designs at higher levels of abstraction, making it possible to lift some of 
the ROBDD techniques that  have been successful at the Boolean level. 

We are currently in the course of developing a model checking algorithm for 
a restricted first-order temporal  logic. This additional feature would allow us to 
perform the verification for temporal  properties. 

The MDG home page [6] contains a complete list of MDG references, includ- 
ing algorithms, case studies and the most recent work on the verification of an 
ATM switch fabric [51. 
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1 Introduction 

CADP(C/ESAR/ALDEBARAN Development Package) is a toolbox for protocol en- 
gineering. It offers a wide range of functionalities, ranging from interactive sim- 
ulation to the most recent formal verification techniques. A first presentation 
of CADP can be found in [FGM+92]. Work on CADP started in 1985 and the 
first version of the toolbox (version A) was released in 1990. The latest official 
version (version Y) was released in May 1994." An improved version (version Z) 
is in preparation, for which beta-releases are available. 

The CADP toolbox contains several closely interconnected components: 
ALDI~BARAN, BCG, CIt~SAR, CYESAR.ADT, OPEN/C~SAR and XTL. All these 
components are accessible through a unified graphical user-interface developed 
in the EUCALYPTUS project. We first present the overall functionalities of the 
toolbox, followed by individual presentations of each component. 

More recently, a prototype, named TGV (Test Generation using Verification 
techniques) [FJJV96], for the automatic generation of test suites has been de- 
veloped within the CADP toolbox. 

The CADP toolbox has been installed in 130 sites 2 and used for a number of 
case studies, e.g. [KB95, GM96], including several industrial applications, such 
as the verification of the bus arbiter of Bull's POWERSCALE T M  architecture. 

2 Description languages and compilers 

The CADP toolbox accepts three different input formalisms: 

- It accepts high-level protocol descriptions written in the Iso language LOTOS 
[International Standard 8807]. The toolbox contains two compilers Cs 
and C/ESAR.ADT. They translate LOTOS descriptions into C code which can 
be used for simulation, verification and testing purpose. 

* This work has been supported in part by the European Commission, under project 
ISC-CAN-65 "EUCALYPTUS-2: A European/Canadian LOTOS Protocol Tool Set". 

2 The toolbox is distributed free of charge to universities and academic research centers 
(under a license agreement). E-mail: caesar@imag.fr 
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- It accepts low-level protocol descriptions specified as Labelled Transition 
Systems (LTs, for short), i.e., finite state machines with transitions labelled 
by action names. 

- A s  an intermediate step, the CADP toolbox accepts networks of communi- 
cating automata, i.e:, finite state machines running in parallel and connected 
together using LOTOS parallel composition and hiding operators~ 

The latest releases of the CADP toolbox devote a growing importance to 
the concept of intermediate formats and programming interfaces, which allow 
the CADP tools to be applied to protocol description written in other languages 
than LOTOS (e.g., SDL with the GEODE compiler, etc.). 

3 Validation and verification functionalit ies  

The CADP toolbox allows to cover most of the development cycle of a protocol 
by offering an integrated set of functionalities. These functionalities (and tools) 
are interactive or random simulation (OPEN/C~sAR), partial and exhaustive 
deadlock detection (OPEN/C~sAR and ALD~BARAN), test sequences generation 
(TGV), verification of behavioural specifications with respect to a bisimulation 
relation (ALDI~BARAN), verification of branching-time temporal logic specifica- 
tions (EVALUATOR and XTL). 

All the validation and verification tools are based on a same principle con- 
sisting in the exploration of an LTS describing the exhaustive behaviour of the 
protocol under analysis. This LTS can be accessed through several representa- 
tions: The explicit representation consists in the exhaustive list of the states and 
transitions of the LTS. A compact format (BEG) is available to encode explicit 
representations efficiently. The implicit representation consists in a C library 
providing a set of functions allowing a dynamic exploration of the LTS. It is 
well adapted to perform "on the fly" verification, avoiding the generation of the 
whole LTS. The symbolic representation consists in a set of Binary Decision Di- 
agrams (BDD) encoding the transition relation of the LTS. It can be built from 
program's description of higher level than the LTS level, thus allowing to take 
advantage of the BDD structure sharing capabilities. 

4 Presentat ions  of the toolbox components  

1. ALDI~BARAN [FKM93] allows the comparison and the reduction of LTSs 
modulo various equivalence relations (such as strong bisimulation, observa- 
tional equivalence, delay bisimulation, ~-*a bisimulation, branching bisimula- 
tion, and safety equivalence) and preorder relations (such as simulation pre- 
order and safety preorder). The verification algorithms used in ALDEBARAN 
are based either on the Paige-Tarjan algorithm for computing the relational 
coarsest partition, or on the "on-the-fly" techniques proposed by Fernandez- 
Mounter, or on symbolic LTS representation using Binary Decision Diagrams 
(BDDs). ALDI~BARAN has diagnosis capabilities that provide the user with 
explanations when two LTss are found not to be related. 
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2. BCG (Binary-Coded Graphs) is both a format for the representation of ex- 
plicit LTSs and a collection of libraries and programs dealing with this for- 
mat. Compared to Ascii-based formats for LTSs, the BeG format uses a 
binary representation with compression techniques resulting in much smaller 
(up to 20 times) files. BeG is independent from any source language but keeps 
track of the objects (types, functions, variables) defined in the source pro- 
grams. The following tools are currently available for this format: BCGAO 
performs conversions between the BCG format and a dozen of other for- 
mats; BCG_OPEN establishes a gateway between the BCG format and the 
OPEN/C~sAR environment; BCG_DRAw provides a 2-dimension graphical 
representation of BCG graphs with an automatic layout of states and tran- 
sitions; BCG_EDIT is an interactive editor which allows to modify manually 
the display generated by Bc~_DRAw. 

3. C~SAR [GS90] is a compiler which translates LOTOS descriptions into LTSs. 
CAESAR proceeds in several steps, first translating the LOTOS description to 
compile into an intermediate Petri Net model, which provides a compact 
representation of the control and data flows. Then, the LTS is produced 
by performing reachability analysis on this Petri net. C~ShR only handles 
LOTOS specifications with static control features, which is usually sufficient 
for most applications. The current version of C~SAR allows the generation of 
large LTSs (some million states) within a reasonable lapse of time. The effi- 
cient compiling algorithms of C~saR can also be exploited in the framework 
of the OPEN/C~sAR environment. 

4. C~SAR.ADT [Gar89] is a compiler that translates the data part of LOTOS 
descriptions into libraries of C types and functions. Each LOTOS sort or 
operation is translated into an equivalent C type or function. One must 
indicate to CYtgSAR.ADT which LOTOS operations are "constructors" and 
which are not (fairly obvious, in practice). C~SAR.ADT does not allow non- 
free constructors ("equations between constructors"). Translation of large 
programs (several hundreds of lines) is usually achieved in a few seconds. 
C~SAR.ADT can be used in conjunction with C~SAR, but it can also be 
used separately to compile and execute efficiently large abstract data types 
descriptions. 

5. OPEN/C~sAR is an extensible programming environment for the design of 
applications working with the implicit representation of LTSs. Currently, 
several languages/compilers are connected to the OPEN/C/ESAR environ- 
ment, including: the CyESAR and CYESAR.ADT compilers, the BcG_OPEN 
gateway for explicit graphs, the ExP.OPEN gateway for networks of com- 
municating automata, etc. Various application programs have already been 
written in the OPEN/C/ESAR framework, including two interactive simula- 
tors (with shell-like and X-window interfaces), a random execution tool, a 
deadlock detection tool based on G. Holzmann's technique, a reachability 
analysis tool (with r*a on-the-fly reduction), a sequence-searching tool,.an 
on-the-fly evaluator for branching-time #-calculus, etc. 
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6. XTL (eXecutable Temporal Language) is a functional-like programming lan- 
guage designed to allow an easy, compact implementation of various temporal 
logic operators. These operators are evaluated over an LTS encoded in the 
Be G format. Besides the usual predefined types (booleans, integers, etc.) 
The XTL language defines special types, such as sets of states, transitions, 
and labels of the LTS. It offers primitives to access the informations con- 
tained in states and labels, to obtain the initial state, and to compute the 
successors and predecessors of states and transitions. The temporal  opera- 
tors can be easily implemented using these functions together with recursive 
user-defined functions working with sets of states and/or  transitions of the 
LTs. A prototype compiler for XTL has been developed, and several tempo- 
ral logics like HML, CTL, ACTL and LTAC have been easily implemented in 
NTL. 
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1 P r e s e n t a t i o n  

The AUTO/GRAPH toolset [4] developed in our group was one of the pioneering 
softwares in the field of analysis and verification of networks of communicating 
processes. We describe here the next-generation AUTO/GRAPH, consisting of a 
modular tool suite interfaced around a common file description format named 
Fc2 .  The format allows representation of single reactive automata  as well as 
combining networks. This format was developed in the scope of Esprit BRA 
project 7166:CONCUR2 [2]. 

Of uttermost interest in the new implementation is that  most analysis func- 
tions are implemented with redundancy using both explicit classical represen- 
tation of automata,  and also implicit state space symbolic representation using 
Binary Decision Diagrams. The two alternative techniques are shown to offer 
drastically different performances in different cases, with low predictibility. Then 
offering both kinds of implementation in a unified framework is a valuable thing 
in our view. 

Both FC2EXPLICIT and FC2IMPLICIT commands perform synchronised prod- 
uct and reachable state space search. They can minimize results w.r.t, strong, 
weak, branching bisimulation notions, and produce the result as an Fc2  automa- 
ton. They can also abstract the system with a notion of "abstract actions", each 
synthesizing a set of sequences of concrete behaviours (in this sense behavioural 
abstraction can be seen as reverse from refinement). In addition FC2IMPLICIT 
has a fast checker for deadlocks, IiveIock or divergent states, for which it produces 
counterexample paths in case of existence, while FC2EXPLICIT allows composi- 
tional reduction techniques, mostly in case of "observational" bisimulation min- 
imisations. 

We are currently extending these features of FC2IMPLICIT SO that  labeled 
predicates on states, hiding of behaviours irrelevant to specific analysis, and 
use of side observer automata  would allow to check in practice for much wider 
types of properties, while keeping with the same algorithmic kernel, and with 
the renewed aim of not introducing an heterogeneous formalism for expression 
of correctness properties, like temporal logics or #-calculus. 

The tool suite is completed by the graphical editor AUTOGRAPH, which allows 
for graphical depiction of automata  and networks as well as source recollection 
of counterexample paths back up to the original graphical network; the FC2LINK 
preprocessor, which merge multifile descriptions of hierarchical networks into 
a single file for later analysis and verification; the FC2VIEW postprocessor for 
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source recollection and display of counterexample paths, this time back up to 
the distributed F c 2  files. 

Further information on the toolset and its availability can be obtained from 
the WWW page http://cma, cma. fr/Verification/verif-eng, html. 

2 T h e  T o o l  S e t  

2.1 AUTOGRAPH 

Renamed ATG for its new C + +  implementation, AUTOGRAPH is a graphical 
display system for both labeled transition graphs and networks of communicat- 
ing systems, in the tradition of process algebra graphical depiction. Objects in 
AUTOGRAPH can also be extensively annotated as allowed by the FC2 format 
standards. Figure 1 provides a (trivial) example of 3 dining philosophers drawn 
in AUTOGRAPH. 

AUTOGRAPH can be used for edition, but also to visualise au tomata  that  were 
produced elsewhere, typically as an output  of verification. Human guidance is 
then required for lay-out. 

2.2 FC2EXPLICIT 

This tool performs the following functions, on explicit representations of au- 
tomata: 

G l o b a l  A u t o m a t o n  G e n e r a t i o n .  Straightforward. 
C o m p o s i t i o n a l  R e d u c t i o n s .  FC2EXPLICIT can perform automata  minimi- 

sation with respect to strong, weak or branching bisimulation. When invoked on a 
network, the hierarchical model construction can be alternated with such reduc- 
tion steps at intermediate stages. Traditional Relational Coarsest Partitioning 
Algorithm [3] is used to refine a state partition until fix-point. 

C o m p a r i s o n  w i t h  a u t o m a t a  spec i f i ca t ions .  The equivalence checking 
problem is solved on the disjoint union of the two state spaces, by partitioning 
them as a whole. The main algorithmic improvement is that  negative answer is 
produced as soon as a class contains no further state from one of the automata,  
which happens usually quite soon (if ever), long before reaching actual fix-point. 
Then a path leading to an arbi t rary state without match from the other net- 
Work is provided as eounterexample. It can be visualised using AUTOGRAPH Or 
Fc2vmw.  

M o d e l  A b s t r a c t i o n .  Abstract Actions allow us to define the atomicity level 
at which we want to observe an automaton.  The idea is to consider terminated 
sequences of concrete behaviours as atomic and to call such a set abstract action. 
Reducing a globM system w.r.t, a set of abstract actions results in a system con- 
ceptually simpler, where meaningful activities have been extracted. As a simple 
subcase, a single abstract  action indicating improper (rational) behaviour can 
be presented for refutation; this implements language inclusion (in the comple- 
ment language of the abstract action), and is noticed in FC2EXPLICIT by the 
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absence of transition in the resulting automaton.Example: Abstract_Wrong = 
tau*.  e n t e r l  . tau* .enter2 can specify lack of mutual exclusion property be- 
tween two processes. 

Fig. 1. The 3 dining philosophers specification 

2.3 FC2IMPLICIT 

performs the following functions, on BDD/implicit representation of states, using 
the TIGER BDD library: 

Global  A u t o m a t a  Genera t ion .  The reachable state space is of course eval- 
uated in a breadth-first search strategy, applying event synchronisation vectors 
iteratively until fix-point, staring from initial state. Computation of reachable 
state computation can be refined to allow for on-line deadlock detection, and 
followed by livelock or divergent states detection on the result (a divergent state 
may perform infinite sequences of hidden "tau" actions, a livelock state can 
exhibit only such behaviour). When such an undesirable state is found, a coun- 
terexample path can be produced, and mapped by AUTOGRAPH or FC2VIEW 
back to the original network description. Figure 1 displays a deadlock path for 
the 3 philosophers (but not its distributed mapping). 
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Bisimulat ion Minimisat ion.  Symbolic computation of bisimulation classes 
can also be applied from this BDD description of reachable states, following 
results from [1]. The (explicit) resulting minimal automaton can be produced in 
FC2 format on demand. 

Bis imulat ion Checking. First a synchronised product of the two distinct 
networks is built. Then the same bisimulation partition as before is used, with 
the algorithmic improvement that it is aborted whenever a class contains no 
state from one side. Then a counterexample path can be produced, and mapped 
by AUTOGRAPH or Fc2vmw back to the original network description. 

Observers and A n n o t a t e d  Global States. .  A great deal of practical ver- 
ification is usually conducted by compiling the property to establish into an 
automaton-like structure to act on the side of the observed process, with pos- 
sibly additional annotations on states and transitions of various sorts (success, 
failure or recur states, don't care transitions,...). Verification then starts by con- 
structing a synchronised product of the (usually large) network state space with 
the (usually smaller) state space of the observer structure. Such observers can 
actually be represented without additional theory in the same FC2 format as 
processes, and particular sets of states and transitions are just used to restrict 
(or introduce new) relations in a]gorithms. We are still working on "easy" de- 
scription of such sets, so as to "hide' as much as possible intricate temporal logic 
formulation from the non-expert user. 

3 E x a m p l e  

We just illustrate the basic verification features on our simple dining philosophers 
problem from figure 1. 

We now suppose these three parts (the fork, halfbrain automata and the 
network) have been independently translated (by ATG) into distinct FC2 files, 
and then linked together by FC2LINK into file phi lo3,  fc2. 

We use symbolic methods based on BDDs for an easy evaluation of global 
state spaces and deadlock checking. 

O-duick$ fc2implicit -dead -fc2 philo3.fc2 > deadpath.fc2 

--- fc2implicit: Making reachable state space 

--- fc2implicit: State space depth: 13 

--- fc2implicit: First deadlock(s) detected at depth 7 

--- fc2implicit: Reachable states: <<214>> -- BDD nodes: <<85>> 

--- fc2implicit: Global automaton has 2 DEADLOCKS state(s) -- BDD nodes: <<27>> 

O-duick$ 

The first detected deadlocks were found at depth 7. With the option -fc2, a 
diagnostic path was extracted into deadpath, fc2. It is displayed in :AUTOGRAPH 
on the left of figure i. Now clicking appropriately on states or transitions there 
would highlight contributing locations on the original graphical network. 
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T h e  following session shows time figures for larger state spaces These were 
computed on a Sparcl0 Workstation with 64 Mb memory. Timing include syn- 
thesis of diagnostic paths or production of au tomata  onto files. The full-size 
automaton for 6 philosophers would be 46654 states, while compositional reduc- 
tions deals with intermediate constructs of at most 1512 states. 

philo$ time fc2implicit -dead -fc2 philo8 > deadpath8.fc2 

--- fc2implicit: Reachable states: <<1679614>> -- BDD nodes: <<245>> 

--- fc2implicit: Global automaton has 2 DEADLOCKS state(s) -- BDD nodes: <<77>> 

--- fc2implicit: First deadlock detected at depth 16 

real im52.21s user Im39.08s sys OmO.46s 

philo$ time fc2explicit -comp -w obs_philo6_rec > opr6_eW.fc2 

--- fc2min: Automaton has 728 states 

real 3m4.85s user 2m2.30s sys Omll.55s 

Larger experiments were conducted, showing the possibilities of the tools. For the 
next future we are concentrating in replacing sequential automata  components 
by synchronous reactive processes (such as produced by the ESTEREL language 
for instance), to be able to deal with asynchronous networks of synchronous 
processes. We have promising initial results in this direction, mainly from the 
fact that  both domains allow partition of the transition relation for simpler 
symbolic application on implicit state spaces. 
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1 Introduction 
The tools that we have developed for Real-Time Graphical Interval Logic (RTGIL) are 
intended for specifying and reasoning about time-bounded safety and liveness proper- 
ties of concurrent real-time systems. These tools include a syntax-directed editor that  
enables the user to construct graphical formulas on a workstation display, a theorem 
prover based on a decision procedure that checks the validity of attempted proofs and 
produces a counterexample if an attempted proof is invalid, and a proof management 
and database system that tracks proof dependencies and allows graphical formulas to 
be stored and retrieved. 

2 Real-Time Graphical Interval Logic 
RTGIL is a linear-time temporal logic in which formulas are interpreted on traces 
of states indexed by the non-negative rea] numbers. To exclude the occurrence of 
instantaneous states and Zeno runs, these traces are required to be right continuous 
and finitely variable. Right continuity requires that each primitive proposition holds 
its value for a non-zero duration, while finite variability ensures that there are only a 
finite number of state changes in any finite duration. 

The key construct of RTGIL is the interval, which provides a context within which 
properties are asserted to hold. An interval is defined by two search patterns, which 
locate its left and right endpoints. A search pattern is a sequence of one or more 
searches. Each search locates the first state at which its target formula holds. The 
state located by one search is the state at which the next search begins. An interval 
is half-open in that it begins with the state located by the first of its two search 
patterns and extends up to but does not include the state located by the second 
search pattern. Once an interval is defined, properties can be asserted to hold on the 
interval, including initial, henceforth, and eventuality properties. Most importantly, 
real-time bounds on the duration of an interval can be specified. 

For example, in the following RTGIL formula, 

~. ............................. .~[  
t 

fen (d, D] J 

the interval begins with the first state at which the formula f holds and ends just 
prior to the next state at which the formula g holds. The duration of that  interval is 
asserted to be greater than d time units and less than or equal to D time units. 

This research was supported in part by NSF/ARPA grant CCR-9014382. 
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Fig.  1. The graphical user inter- 
face with a validated proof. The 
premises P1 and P2 a~e conjoined, 
represented by vertical composi- 
tion, and imply the theorem T. 
Premise P1 requires that if the air- 
craft is in the glide path for more 
than 3.0 secs, then it will land 
within 3.0 secs of entering the glide 
path. Premise P2 requires that ff 
the aircraft does not land before 
leaving the glide path, then it will 
abort within 2.0 secs of leaving the 
glide path. Theorem T states that 
within 5.0 secs of entering the glide 
path, the aircraft will either land or 
abort. 

Formulas in I:LTGIL are read from top to bottom and from left to right, starting 
with the topmost interval. Formulas can be combined using standard logical infix 
operators laid out vertically. In vertical layout, a conjunction is indicated by stacking 
the formulas one below the other without the conjunction operator. Braces are used 
to disambiguate formulas. 

3 T h e  G r a p h i c a l  E d i t o r  

The graphical user interface t o  the RTGIL editor is shown in Fig. 1. The editor 
provides high-level editing operations and supplies templates containing boxes for 
formulas that enable the user to construct graphical formulas incrementally. The 
mouse enables the user to select a box or formula on the display and to highlight it. 

The pull-down menus (File, Edit, Misc) at the top of the display contain commands 
for storing and retrieving formulas, for overriding the default layout of formulas, and 
for invoking the theorem prover. The buttons on the upper left (New, Del, Cut, Paste, 
etc) provide editing operations that enable the user to create a new formula, delete 
a selected formula, store a selected formula in a buffer, and subsequently insert that 
formula in a selected box. The buttons on the lower left (Text, [--), len, etc) enable the 
user to select an appropriate RTGIL construct to apply to the currently highlighted 
subformula. Scroll bars allow the user to view large formulas. 

The editor provides capabilities for automatically replacing formulas with other 
formulas, resizing formulas to suit the context length, etc. If a formula does not fit 
into the allotted space, an error is indicated by highlighting the formula. The user can 
then resize the context length or the search arrows to allow the formula to be drawn 
correctly. All subformulas of the formula are automatically resized to scale. 

The editor also enables the user to align corresponding points in the formulas that 
comprise a proof. The user can thus see how states in different formulas are ordered 
relative to one another, how intervals are aligned relative to each other, and how 
durations of intervals are related to satisfy real-time constraints. Alignment is helpful 
in. constructing proofs and in debugging attempted proofs that are invalid. 



448 

4 T h e  T h e o r e m  P r o v e r  

The RTGIL theorem prover is a satisfiability checker based on a decision procedure, 
rather than a Gentzen-style theorem prover based on inference rules. The decision 
procedure for RTGIL is given as an automata-theoretic method in [4]. The implemen- 
tation, however, is a tableau-theoretic method that achieves better time and space 
efficiency, on average, than the automata-theoretic method. It employs the notion of 
timed tableau, the analogue of the timed automaton of Alur and Dill [1]. 

The user, working in the theory defined by his specifications and the underlying 
logic, creates theorems and proofs and submits the proofs to the decision procedure 
for validation. To prove a theorem T, the user selects a subset of the axioms and 
previously proved lemmas and theorems as the premises P 1 , . . . ,  P N  of the proof. 
The editor displays the proof represented by the formula P1 A . . .  A P N  =~ T in its 
graphical form. The graphical representation is converted into a Lisp S-expression, is 
negated, and is then submitted to the decision procedure. 

The decision procedure checks the satisfiability of the negated implication by build- 
ing a tableau for that formula and checking the emptiness of the tableau. The proce- 
dure first constructs an untimed tableau for the formula and performs the standard 
eventuality-based pruning of the tableau. Using the duration formulas in the nodes 
of the remaining tableau, it then constructs a timed tableau by adding timing con- 
straints to the edges of the untimed tableau. Timing consistency of the timed tableau 
is checked using Dill's algorithm [2]. This step may eliminate some possible traces 
from the original tableau because of timing restrictions and, consequently, a further 
round of eventuality-based pruning is required. If, at any stage, the tableau becomes 
empty or the initial node is eliminated, the negated implication is unsatisfiable and 
the attempted proof is valid. Otherwise, there exists a timing consistent trace through 
the final tableau that constitutes a counterexample to the attempted proof. 

If the decision procedure determines that an attempted proof is invalid, the user 
can invoke the theorem prover to produce a counterexample by extracting a satisfying 
model for the negated implication from the tableau. The counterexample is displayed 
in an accompanying window, shown in Fig. 2, as a sequence of states and, additionally, 
as a timing diagram if the user selects that option. By associating the targets of the 
searches in the formulas of the proof with the states in the sequence at which the 
predicates become true or false, or the points in the timing diagram at which the 
signals rise and fall, the user can more readily discover the fallacy in the attempted 
proof and correct it. 

The worst-case time complexity of the decision procedure is 2~176176 
where n is the number of logical connectives, k is the depth of interval nesting, and t 
is the size of the binary encoding of the largest duration constant in the formula. 

5 T h e  P r o o f  M a n a g e m e n t  a n d  D a t a b a s e  S y s t e m  

RTGIL formulas saved to disk are stored in a simple database consisting of Unix files. 
Several formulas can be stored in the same file by associating a unique name with 
each of them. The user can invoke the editor to display the names of the formulas in 
a file and also to load, add or delete a formula to or from a file. For each formula in 
a file, the user can invoke the proofmanager to determine if a proof already exists, 
and to list the premises of an existing proof. 
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Fig. 2. The graphical user inter- 
face with a counterexample model. 
The proof in Fig. 1 is modified so 
that the upper bound of 2.0 secs in 
premise P2 is replaced by 3.0 secs. 
The attempted proof is invalid, and 
this counterexample is generated. 
Note that the interval from glide to 
-~glide without an intervening land 
is at most 3.0 secs and the interval 
from -~glide to abort is at most 3.0 
secs. Thus, the interval from glide 
to land v abort is at most 6.0 secs, 
which is greater than the 5.0 secs in 
theorem T. 

If  an at tempted proof of a theorem is valid, the proof dependency file is updated 
with information about the premises of the proof and the time at which the proof 
was performed. To confirm that a proof is up-to-date, the proof manager checks that  
neither the theorem nor any of the premises has been modified since the time of the 
proof. It  also detects circularities in a proof and.ensures that  the proof dependency 
graph is acyclic. 

6 Conclusion 

Our experience in using the RTGIL tools has shown that  these tools and the graphical 
representation of the logic are very helpful for specifying and verifying properties of 
concurrent real-time systems. In addition to the aircraft example, we have used these 
tools to specify and verify properties of a railroad crossing system, a robot, an alarm 
system, and a four-phase handshaking protocol. 

The RTGIL tools are implemented in Lucid Common Lisp and also in Franz 
Allegro Common Lisp, and require at least 32 MBytes of  main memory and 64 Mbytes 
of swap space. The graphical editor was implemented using the Garnet graphics toolkit 
[3], which runs within the X window system. The RTGIL tools and related papers are 
publicly available, and can be obtained by anonymous ftp from alpha.ece.ucsb.edu in 
d i r ec to ry /pub /RTGIL .  
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1 T h e  M E T A F r a r n e E n v i r o n m e n t  

METAFrame is a meta-level framework designed to offer a sophisticated support 
for the systematic and structured computer aided generation of application- 
specific complex objects from collections of reusable components. Figure 1 shows 
its overall organization. Special care has been taken in the design of an adequate, 
almost natural-language specification language, of a userJriendly graphical in- 
terface, of a hypertext based navigation tool, and a of semi-automatic synthesis 
process and repository management. This application-independent core is com- 
plemented by application-specific libraries of components, which constitute the 
objects of the synthesis. The principle of separating the component implementa- 
tion from its description is systematically enforced: for each application we have 
a distinct Meta-Data repository containing a logic view of the components. The 
tools themselves and their documentation are available in a different repository. 
This organization offers a maximum of flexibility since the synthesis core is inde- 
pendent of the direct physical availability of the tools (except for the execution, 
which is a different matter). 

METAFrame constitutes a sophisticated programming environment for large 
to huge grain programs whose in~plementation is supported by the automatic, 
library-based synthesis of linear compositions of modules. More complex con- 
trol structures glueing the linear portions together must be programmed by 
hand. Still, being able to synthesize linear program fragments drastically im- 
proves over other methods where only single components can be retrieved from 
the underlying repository. This is already true in cases where one is only inter- 
ested in the functionality of single components, because our synthesis algorithm 
will automatically determine the required interfacing modules. Thus METAFrarne 
supports the rapid and reliable realization of efficient application specific com- 
plex systems without sophisticated user interaction, making it an ideal means 
for a systematic investigation and construction of adequate implementations in 
a problem specific scenario. 

The METAFrame approach abstracts from implementational details by allow- 
ing designers a high-level-development of the tools. Specifications express con- 
straints in a temporal logic that uniformly and elegantly captures-an abstract 
view of the repository. Implementations are in a high-level language tailored 
to express the combination of reusable analysis, verification and transformation 
components stored in the repository, which are considered as atomic on this level. 
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Synthesized systems are hierarchically structured. Since only the meta-structure, 
combining such components, is automatically generated from the specifications, 
the efficiency of the resulting system depends on the efficiency of the single com- 
ponents. In particular, different components may be written in different applica- 
tion languages (C, ML, C++)  of different programming paradigms (imperative, 
functional, object-oriented). 

METAFrame is currently available for UNIX systems, e.g. the Siemens Nixdorf 
RM line, and for PCs under LINUX. Its graphical interface as well as the hyper- 
text browser are built on top of the Tcl/Tk graphics library [5]. Target language 
is the HLL, whose interpreter is implemented in C++.  

2 A p p l i c a t i o n s  

The current experience has shown the practicability and flexibility of the 
METAFrame approach in several areas of application, which we briefly sketched 
in the following. 

CATS. This application concerns the Computer-Aided Tool Synthesis via au- 
tomatic composition of heterogeneous verification algorithms for hardware and 
software systems from basic transformation and analysis components [4, 10]. It 
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supports the automatic generation of complex tools from a repository of com- 
ponents including equivalence checkers, model checkers, theorem provers, and a 
variety of decision procedures for application-specific problems. The number of 
basic components and infrastructure modulesis steadily growing, as e.g. most of 
the tools come in many variants coping with infinite state-systems, values, time 
(discrete or dense), priorities, probabilities and combinations thereof, which all 
require their specific extensions of the 'basic' data structures. 

IN-METAFrame. This project concerns the semi-automatic programming of 
Intelligent Network Services in cooperation with Siemens Nixdorf, Munich [7, 8]. 
IN-METAFrame is a development (creation) environment for reliable custom con- 
figurations of telephone services from a library of existing service-independent 
modules. The creation process is structured as follows: Initially, an existing ser- 
vice of similar application profile is loaded from the service library, or a com- 
pletely new design from scratch is done (under model checking control). Al- 
ternatively, initial prototypes could automatically be generated from the set of 
underlying consistency conditions and constraints, a feature, which is not part of 
the current version of our service creation environment. These prototypes serve 
as a starting point for modifications that eventually lead to the intended service. 
Modification is guided by abstract views, and controlled by on-line verification 
of certain consistency constraints, guaranteeing the executability and testability 
of the current prototype. 

C o m p G e n .  One of the major problems in data flow analysis or program opti- 
mization is the determination of the correct ordering of the individual analyses 
and optimizing transformations. Using METAFrame we can automatically syn- 
tesize complex heterogeneous optimization tools that respect certain important 
ordering constraints, guaranteeing correctness and often optimality of the overall 
algorithms [2, 3]. Moreover, in cages where there is not yet consensus about sen- 
sible orderings, METAFrame supports the corresponding investigation through its 
rapid prototyping facility. One should note here that the number of individual 
algorithms, many of which can be automatically generated (see[9]), may, like in 
the CATS-case, grow very large. 

3 Evaluation and Perspectives 

Our approach exactly meets the demands recently expressed by Goguen and 
Luqi in [1] for the emerging paradigm of Domain Specific Formal Methods: the 
essence of their proposal is to use formal methods on a large or huge grain 
level rather than on elementary statements, thus to support the programming 
with whole subroutines and modules as the elementary building blocks. This is 
precisely what METAFrame is designed for (see [6]). 

Moreover, the possibility of natural language-like specification, the hypertext 
support of repository navigation, the specific profiles of the stored tools, and the 
user friendly graphical interface encourage successful experimentation without 
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requiring much expertise. In fact, one can use METAFrame also as an educational 
tool to train newcomers in an application field 1. 

In the meantime, applications of METAFrame have been presented at various 
international fairs, like the CeBit '96 in Hannover,  and, more interestingly, by 
Siemens Nixdorf with success at the T E L E C O M ' 9 5  in Geneva. G A I N  (Global 
Advanced Intelligent Network), the IN solution jointly developed by Siemens 
and Siemens Nixdorf which includes IN-METAFrame, reached the market  early 
this year and it has already been delivered to a number  of customers, like e.g. 
Deutsche Telekom. 
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Abs t rac t .  Formal methods are recognized as the most promising way 
to produce high assurance software systems. In reality this fact is not 
enough to convince industry to use them. Formal methods must be ap- 
plicable and usable in several areas (security, safety), engineers have to 
accept a change in software development work but should not be asked 
to give up the environment they are used to and bosses must realize that 
higher effort during the design phase can save money and time later. 
This paper describes the recently completed formal specification and ve- 
rification tool Verification Support Environment (VSE). An advantage of 
the design of the VSE tool is the possibility of using formal and semifor- 
mal development methods combined in a unique working environment. 
After official release of the VSE-system March 1995 several pilot pro- 
jects were carried out with industry. The paper gives an overview of the 
VSE-system and describes the results of the pilot applications. 

1 G e n e r a l  

This paper briefly describes the functionality of the Verification Support  En- 
vironmet System (VSE), its integration into the high assurance development 
process and an outline of the result of an industrial pilot project recently carried 
out. 

In 1991, the Bundesamt fuer Sicherheit in der Informationstechnik (German 
Information Security Agency) initiated a CASE tool project with emphasis on 
formal specification and verification. Now, after four years of work, the Veri- 
fication Support  Environment (VSE) Tool has attained a status that  permits  
industrial application. This tool combines the two traditions of semiformal and 
formal methods within a unique framework. Therefore the benefit 'of the VSE 
tool is both  to support  migrat ion to formal methods where needed and, where 
it is sufficient, to rely on semiformal methods ([1]). 
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2 Components  of VSE 

1. specification language VSE-SL 

* formal language describing abstract data types and abstract state transi- 
ton machines, using terms of First-Order Predicate Logic with Equality 
and Dynamic Logic 

| syntax controlled editor, consistency and type checking 
2. graphical interactive development presentation 
3. import/export functions 
4. dual interactive verifier subsystems 

| Dynamic Logic: KIV (Karlsruhe Interactive Verifier) 
. Predicate Logic: INKA (INduction prover KArlsruhe) 
| predifined proof strategies, tactics, heuristics 

5. verification management system and database (multi-use capability) 
6. standard design interface (ODS) to conventional CASE-tools 

3 Functionality 

The VSE-system supports the software development process from analysis to 
code generation. During analysis it has to be determined which parts of the fu- 
ture system are security (safety) critical. The non-critical parts can be developed 
conventionally within the regular production environment. For the critical parts 
VSE provides a specification language (VSE-SL) to structure them in a way to 
support later proof activities. The top level specification formally describes the 
functionality on an abstract level. The security (safety) model defines characte- 
ristics of the objects that have to be fulfilled. With means of refinement the top 
level specification is modified stepwise to abstract programs and, using the code 
generator, ADA sourcecode. 

The VSE prover (verifier) subsystem automatically generates proof obligati- 
ons out of the specification and the refinement process. 

* The top level specification fulfills the security (safety) model. 
* The entire refinement process guarantees that the generated code has the 

same functionality as the top level specification. 

All proof obligations have to be verified in order to be able to call the source 
code correct in accordance to specification and security (safety) model. The 
functionality of the deduction subsystems includes the following features ([2] 
and [3]): 

�9 semi-automatic switch between Dynamic Logic (KIV) and Predicate Logic 
(INKA) 
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�9 provision of proof tactics and empirically predifined heuristics running au- 
tomatically 

�9 provision of pre-selected deduction rules applicable to the current proof goal 
in an interactive mode 

�9 proof protocol (text and graphics), replay mode, restart at any proof step 

4 A p p l i c a t i o n s  

Two major case studies (disposition control and system and nuclear power plant 
access control system) were carried out within the VSE-project to show that 
VSE is applicable even on large projects (4100 verified lines of code, 20000 proof 
steps, average automation rate 80 was used by eight industry companies and 
government institutions from Germany and Italy for pilot applications dealing 
with traffic control (railway), space flight, smart cards, hospital administration 
and secure message handling. The pilot application presented is a drug admini- 
stration component as a part of a hospital administration system. This part is 
based on SEMA. 

The product Health System 2000 (HS2000) was developed by SEMA Group 
Ismaning, Germany. It is a hospital information system to administrate patient 
files, medical means and accounting of a hospital. The subject of the pilot project 
was an additional part to the existing HS2000 to control and check access to 
and applicability of drugs in a hospital pharmacy. The security-critical kernel 
was to be developed with the VSE-system. From April 20, 1995 until June 1, 
1995 one expert from the University of Ulm and one company representative 
worked on the project. The task of the VSE-expert was to give a basic training 
in the VSE development method and the VSE-tool and to support the company 
representative only as much as needed. 

5 C o n c l u s i o n  

The pilot projects reached almost all the goals that had been defned before 
the start. Concerning the size of the problems and time/personal constraints 
the results were surprising. This pilot project showed that formal methods are 
applicable in industrial environments and they significantly improve the qua- 
lity of software systems. Facts like less misinterpretations and incompatibilities 
in the requirements and the reusability of verified components strengthen the 
trustworthiness of the systems developed with the formal VSE method. Besides 
that re-specifications helped to detect errors in existing systems and showed the 
limitations of conventional software development. 

Nevertheless six weeks of work with formal methods and the VSE-tool are 
not enough to be prepared for independent formal development. There is still 
a need for intensive training and support of experts to handle the specification 
language and the verifier subsystems. But the cooperation of software engineers 
and VSE-specialists turned out to be a very promising way to introduce formal 



457 

methods to industry and to transfer the new technology. New fields of industrial 
services like formal design or proof engineering do not belong to science fiction. 

All partners realized that formal methods solve a lot of problems in the area 
of critical software development. A mathematically based engineering including 
verification, all supported by a tool that minimizes the practical work showes 
the way to a new dimension of software quality. But especially non-governmental 
partners cannot ignore the rules of the market. Formal development, even using 
VSE, takes considerably more effort. The result might be the better product but 
it also might be too late and significantly more expensive than conventionally 
developed products. The solution to this problem still has to be worked out. Soft- 
ware applications that have to fulfill high security/safety standards (e.g. avionic 
systems with the safety level 'catastrophe') already need an enormous amount 
of quality assurance measures like tests, code inspections and simulation). Both 
additional efforts for formal methods and conventional QA-activities should be 
evaluated and compared. There was no time to do that during the pilot projects 
but the results might be interesting. Not only the producers of high assurance 
software have to be convinced that formal methods are applicable, improve the 
quality and save money on testing and warranty acticities; potential clients have 
to realize that it is worth to spend more money on a product developed with 
means that guarantee high reliability. 

VSE Version 1 is the first successful step to open the market for formal 
methods in software development. Nevertheless the pilot projects showed that 
VSE has to be modified and improved: better means of structurizing, batch mode 
for proofs, better integration of the verifiers, applicability on embedded, reactive 
systems, code generation C(++),  interfaces to Z and model checkers, extension 
of the interface to the CASE-tool TEAMWORK, etc. Major modifications and 
improvements will be realized in a follow-on project VSE-II starting summer 
1996. The Bundesamt fuer Sicherheit in der Informationstechnik will continue 
to keep the public informed about changes, experiences and new developments. 

References  

1. Koob, F., Ullmalm, M., Wittmann, S.: The Formal VSE Development Method ~ A 
Way to Engineer High-Assurance Software Systems. Eleventh Annum of the COM- 
PUTER SECURITY APPLICATIONS Conference (1995) 196-204 

2. Reif, W., Schellhorn, G., Stenzel, K.: Interactive Correctness Proofs for Software 
Modules Using KIV. Proceedings of the Tenth Annual Conference on Computer 
Assurance (1995) 151-162 

3. Hutter, D. et al: Deduction in the Verification Support Environment (VSE). Springer 
LNCS 1051 (1996) 268-286 



Marrella: A Tool for Simulation and Verification 

Dominique AMBROISE Brigitte ROZOY 
Universitd de Caen et URA 1526 CNRS Universit~ de Paris XI et URA 410 CNRS l 

G.R.E.Y.C. ~.Esplanade de la Paix, 14 032 Caen cedex L.R.I., B~lt. 490, 91 405 Orsay ee.dex, France 
e_mail Dominique.Ambroise@info.unicaen.fr Tel (33 1) 69 41 66 09, e_mail rozoy@lri.fr 

Abstract  : This paper presents the structure of our tool Marrella the construction of which 
has been motivated by practical problems in the context of simulation and parallel program 
debugging, where the correct evaluation of global properties requires a careful analysis of 
the causal structure of the execution. The underlying model is based on prime event 
structures that are considered as exhibiting all the behaviors of distributed programs : the 
tool gives the possibilities of generating one, some or all of their executions. On one hand, 
a careful implementation spares memory ; on the other hand, precise and neat algorithms 
benefit from the trace properties of prime event structures and thus gain in avoiding the 
enumerations of equivalent interleavings. 

1 - In t roduc t i on  

It is now well known and recognized that one execution of a distributed program may be 
symbolized by a partial order. In the same spirit, we claim that prime event structures can 
be used to exhibit in a single object all possible executions. Thus their use may become of 
a great help for both formal specifications, simulations and verifications of such programs. 
Inherently, our method is based on prime event stnictures and exploits technics that unfold 
the behaviors of programs into acyclic nets. In fact and although not formulated in that 
terms, this idea has already been used for verification purposes in [MaeM. 92] where 
unfoldings of occurrence Petri Nets are constructed. In case of distributed programs and as 
it partially avoids the famous state explosion problem, we think that this model is well 
adapted for efficient simulations, even exhaustive, thus for verifications. Substantial 
efficiencies are obtained as the enumeration of all possible interleaving are avoided. 
Therefore our tool Marrella has heavily been based on these prime event structures. 

2 - The Levels in  M a r r e l l a  

The description of the system is made at three distinct levels. Starting with a concrete 
distributed asynchronous algorithm, the tool Marrella implements an object ~ that 
describes both the network and the algorithm~ It allows to construct [9(~), the graph of 
states of the system, actually implemented either totally or piece by piece in case it is too 
big ; this graph is shown to be isomorphic to the graph of configurations of some prime 
event structure b ~ : Y(~) -- P.,onf(&). This prime event structure g_~'constitutes our abstract 
level, not implemented but used to derive properties of ~(Sq), therefore to build efficient 

algorithms. 
This is to put side by side to the partial order associated with any distributed computation 
that is used to verify the associated lattice of ideals. 

The real implemented object : a distributed program 
First of all, the really implemented object ~ is some kind of network the nodes of which 
are automaton equipped with buffers and communicating by channels ; this specification is 
very closed to an implementation using an Estelle like language [Amb. 96]. 

I This work has partially been supported by the inter PRC project "ModUles et Preuvez du 
Paralltlisme" of the french MESR. 
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The static description involves a network of communicating asynchronous processes 
together with a collection of in-coming and out-coming buffers : a set of processes and for 
any process p a set Act(p) of firable actions, a set State(p) of (local) states, at last sets 
Mes(p) of messages and Buff(p) of buffers. 
The dynamic part expresses the ability for any process to fire actions, to change states and 
to send messages. As a basic hypothesis is that the system is asynchronous and without 
shared memory, the resulting functions are locally testable. For every process p, rifts the 
boolean function gp : State(p) • Buff(p) • Act(p) --- Boolean allows to compute the 
enable actions. Second, if an action "a" is possible at state "s" by process "p" with buffers 
"b", then fp(s,b,a) and hp(s,b,a) express the resulting modifications where fp and hp are 
local functions, fp : State(p) x Buff(p) x Act(p) --, State(p) x Buff(p) and hp : State(p) 
• Buff(p) • Act(p) - Buff(q1) x ... x Buff(qv). 

s 0 a  

s~ab 

sob 

Independent computations of the modifications due to independent actions 

A global state of such a system is a collection of local states sk together with the contents 
of in-coming and out-coming buffers B k. Given an initial (global) state, the labeled graph 
of states of the system is classically defined as the graph whose nodes are the reachable 
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states (s], o.:, Sn, B1 . . . . .  Bn), expressing the fact that every process Pk has reach a state sk 
and buffers Bk ; the arrows are labeled by the (individual) actions used to perform the step. 
We use another graph ~ ( ~ ) ,  which is called the unfolded labeled graph of states of the 
system : if at the current stage every process Pk has executed a sequence w k of actions, 
reaching state s k and buffers B k, then the associated global unfolded state is (s] . . . . .  Sn, B1, 
.... Bn, [wl] . . . . .  [Wn] ), where [Wk]. is the trace equivalence class of the sequence of actions 
w n. It is clear that any construction and exploration of the unfolded graph ~ ( ~ )  allows a 
similar approach on the graph of states. 

The abstract level : a prime event structure gP 
At an abstract level, the description uses a labeled prime event structure that will no tbe  
constructed but is useful both to understand the properties of the graph and to derive an 
algorithm for constructing it. Whereas a partial order representation stands for one 
execution of a distributed program, an event structure exhibits in a single object all its 
possible executions. In that sense event structures are closed to Petri Nets with which they 
have strong connections [Nie. Plo. Win. 81], [Wins. Niel. 95], while prime event structures 
are a special case related to traces [Maz. 87]. 
The semantic naive interpretation of a labeled prime event structure ~' = (E, <, #, Z., A, 7r, 
P) describes A as the set of actions possible by processes p in P and elements of E as 
occurrences of actions performed by these processes during the executions : e e E, ~(e) = p 
and ~(e) = a may be understood as : an event e will .be performed by the process p that fires 
the action a. The relation < is the classical happened before Lamport relation [Lam. 78] 
whereas the conflict # may be viewed as the impossibility for two events to belong to the 
same behavior : at some point of the execution a choice has been made between two events 
and in consequence events that causally follow one of them will never follow the other. 
Similarly to PoSets for which the graph is a lattice of ideals 1, event structures theory gives 
a great place to the notion of configurations which are there an account of global states : a 
configuration is any past closed and conflict free subset of events. The graph of 
configurations is classically defined as the transition system ~onf(b ~ = (~f(b~ E, ~,  ~ ) 
where ~f(O')  is the set of finite configurations and (C, e, C)  e --* iff e ~ C and C' = C u 

{e}. 
It is well known that the set of configurations of an event structure satisfies certain 
important domains properties and that the original structure may be recovered from its set 
of configurations using prime elements [Nie. Plo. Win. 81]. These properties are not far 
from those of lattices : these latter are prime event structures with an empty conflict 
relation. Here the set of finite configurations is no longer a lattice but admits however a 
formal characterization : it may be called a budding lattice. 

The symbolic level : a budding lattice ~r 
The last description of the system consists in 9 (N) ,  the unfolded labeled graph of 
reachable states which arises to be isomorphic to the graph of configurations of a prime 
event structure. 

Theorem 

~ ( N ) ,  the unfo lded  graph of  states associated to the start ing real object  N above,  

is i somorphic  to ~onf(b~  the PoSer of  finite configurat ions  of  some labeled event  

structure. 

1 Ideals being also called global sates or consistent cuts. 
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Therefore, using this result, efficient constructions and traversals of this graph are 
implemented in our tool Marrella [Arab. Roz. 96]. 

3 - Conclusion 

The first interest of such a construction is that Marrella uses algorithms that benefit by this 
structure of budding lattice : applied to prime event structures, we combine techniques that 
are well known on partial orders as on-the-fly model checking [Fer. Mou. Jar. Jrr. 92], 
traces [Kat. Pel. 92], [Pel. 94] and partial order reductions [God. Wol. 91], [Val. 93], [Esp. 
93]. This lead to optimal algorithms that construct either a tree ~ that covers the graph or 
the graph Y itself ; note that, depending on the size, they may either be totally constructed 
or investigated piece by piece. Similarly, these properties are used to derive adequate 
simulation strategies [Amb. Roz. 96]. 
The second interest lies in the implementation : as event structures clearly exhibit the 
notion of event, the construction and the simulation identify events without ambiguity, thus 
the action of a given event is computed, executed and stored only once, what is a notable 
profit both in time and space. Moreover, independent actions may be executed 
independently on distinct parts of the memory, thus distributed simulations are 
conceivable. 
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A b s t r a c t .  We describe our experience in the mechanical verification of 
the safety invariants of an asynchronous garbage-collection algorithm [1], 
using the TLP system [2]. We only give a cursory overview of the algo- 
rithm and its formalisation. Our main focus is on the lessons learned from 
carrying a sizeable (22,000+ lines) formal proof through an off-the-shelf 
prover. In particular, we found the TLP style of structured proofs to be 
particularly effective for organising, writing, and managing proof scripts. 

1 Motivation 

If there is one kind of algorithm that  warrants a mechanical proof, it proba- 
bly is concurrent garbage collection. One of the main motivations for automatic 
garbage collection is safety from devastating, hard-to-detect memory manage- 
ment errors. This requires a very high degree of safety of the collection algorithm; 
however, such a degree is unattainable by simple testing for a concurrent collec- 
tor, where errors are hard to trigger. 

Therefore the prudent practice in concurrent garbage collection has been to 
use an array of interlocks to limit the asynchrony, thus enforcing a tamer model 
of concurrency in which a simple, robust algorithm has been proven (e.g., a 
sequential one). This caution has a price, though: the extra synchronisation is 
costly in terms of performance and/or  of portability. 

In [1] we showed that  another tradeoff was possible: using rigourous for- 
mal methods, one can design a concurrent garbage collection algorithm that  
will perform efficiently under realistic concurrency assumptions. However, this 
demonstration was somewhat incomplete, since it rested only on a manuM proof 
involving 2898 cases.. .  Mechanical verification thus seemed the only way of mak- 
ing the tradeoff of algorithmic versus engineering safety worthwhile. 

Furthermore, it appeared that  this example could be used to exercise the- 
orem provers in a particular manner. Mechanised proofs tend to fall in two 
categories: "mathematical proofs" and "certifications". In the former the object 
is a fragment of mathematics or an abstract algorithm (e.g., [4, 7]), the defini- 
tions are dense and layered, the proofs are heavily guided, and the main output  
is a better understanding of the theory at hand. ][11 the latter, the object is a 
hardware/software system (e.g, [5, 8])7 the definitions are very long and "fiat", 
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the proofs are highly repetitive, hence automated, and the main output is certifi- 
cation of the system. Of course both kinds of proofs occur in a large verification, 
and recently "hybrid" provers have received considerable attention. 

Our collector example, however, is by itself a "hybrid" proof. It is "mathemat- 
ical" in that it pertains to a short (100-line) algorithm, that it seeks to establish 
a simple result (for garbage collector safety, simple type correctness is convinc- 
ing enough), that it involves abstract mathematics (reachability in graphs), and 
that a better understanding of the algorithm and its invariants was an expected 
output. On the other hand, our collector proof is also a "certification", because 
the combinatorics of concurrency blow up the proof size, and because validation 
of the algorithm was also an important output. 

In section 2 we present the development cycle that lead us to the TLP proof. 
In section 3 we summarise the lessons learned during the proof itself. Section 4 
discusses the directions in which this effort could be pursued. 

2 T h e  d e v e l o p m e n t  c y c l e  

The precise description of our algorithm and its formalisation can be found in [1]. 
Here we will only describe how these were developed. 

The development of our algorithm can be cast in the standard "waterfall" 
model: requirements and architecture, then algorithm design and coding, then  
abstract formalisation, then formal proof, and finally mechanical verification. 
Note that formal methods appear here as an expansion of the "testing" stage; 
we did indeed use them as a debugging tool. 

The best evidence that this development plan was sound is provided by the 
error trace. Each stage caused several major revisions of its immediate predeces- 
sor, and a few minor revisions of its grandfather, but changes never propagated 
more than two levels up: 

- Writing down a formal model of the algorithm revealed a major synchroni- 
sation error in the algorithm design, and helped to clarify and strengthen 
the requirements. 

- Writing down and manually checking the safety invariants revealed many 
errors in the model, as well a few secondary synchronisation errors in the 
algorithm. 

- The mechanical verification uncovered a serious omission in the main col- 
lector invariant, and a few minor errors in the formal model, none of which 
reflected errors in the actual implementation (the model being more general). 

In addition, there were some simple pragmatic facts supporting our plan: 

- Since the whole point was to trade simplicity for performance, it would have 
been ludicrous to do a full formal analysis before implementing to check the 
efficiency. 

- Since the invariants are about as long (100 lines), but much harder to-un- 
derstand than the program itself, it would have been needlessly hard 'to try 
to develop the program from the invariants. 
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- The invariants themselves are based on 33 definitions which in effect create 
an abstract view of the algorithm. These definitions involve sets, relations, 
and transitive closures. It is highly unlikely that they would have emerged 
naturally from the blind interaction wi tha  prover. 

The most crucial step was selecting the level of formalisation. The first attempt 
was too abstract and did not detect the error in the initial algorithm [1]; on the 
other hand, it was necessary to abstract from control flow and list management 
details to have a manageable proof. The transition-predicate approach of TLA [6] 
provided a convenient framework for making these tradeoffs. 

3 T h e  v e r i f i c a t i o n  

Engberg's TLP [2] is a front-end for the LP prover [3]. It provides support for 
the TLA logic, for Lamport's formula list syntax, and his structured proofs, as 
well as a modest macro facility. The TLA support was largely irrelevant for us: 
the safety proof did not involve any significant temporal reasoning, so we only 
used the "prime" notation for next state variables. 

On the other hand, the apparently trivial support for Lamport's structured 
proofs turned out to be crucial for the success of our effort. A TLP proof script 
is a sequence of prover commands and steps; a step is simply a formula together 
with its proof script, which may recursively contain substeps. A step may also 
introduce hypotheses which will be discharged upon exit; TLP also keeps track of 
any needed skolemisation. Each (sub)step is proved in its context; in particular, 
all previous steps and hypotheses, as well as any fact derived from them by 
forward inference prover commands, are available for the proof. A simple depth- 
based indexing scheme makes references to these local facts short and convenient. 

This structure makes TLP proof scripts especially readable and robust, be- 
cause they consist of a sequence of true statements, interspersed with forward 
inference commands (the few TLP backward inference commands turned out to 
be impractical). This is very close to a hand proof, so much so that we were able 
to write most of our 22,000 line script off-line, using the proof-checker only as a 
(sluggish) debugger! 

The robustness stems from the fact that the validity of the substeps is gener- 
ally independent from the prover deduction strategy and from superficial changes 
of the problem definition. Hence it is very easy to cut and paste pieces of 
scripts, or to adapt a script to a new context (a similar case has been made 
for Nqthm [5]). This feature turned out to be a lifesaver when we discovered a 
serious omission in the main collector invaria.nt, during the proof of the last of 
64 main lemmas, four months into the proof. The invariant and several defini- 
tions had to be reworked, but hardly any of the script needed any change; most 
substeps were still valid (albeit sometimes for different reasons!). 

Many advocate the decomposition of a proof in a succession of small lemmas; 
however very few proof systems provide features for organising the resulting 
lemmata army. Our proof involves over 3,500 substeps (some of which would 
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not have been needed with a more powerful prover than TLP, with support  for 
typechecking, arithmetic,  etc). It would have been next to impossible to spell 
out each of these as a separately named lemma with an explicit context. The 
very simple T L P  indexing scheme was invaluable here. 

Not everything in T L P  was great, though. We had to develop some ingenuity 
to compensate for TLP ' s  limitations in typechecking, higher-order rewriting, and 
quantifications. However, ultimately, it was the control provided by the proof 
s t ructure that  was decisive and that  enabled us to go through with the proof. 

4 Going further 

Proving the termination of the collector cycle would appear  to be our next logical 
step. However, this would give us fairly little return - livelock is rarely a problem 
for a concurrent garbage collector - for a proof that  would be just  as complex, 
and probably more given the weakness of LP in arithmetic. 

A more ambitious project would be to layer the specification, using the in- 
variant definitions as a refinement mapping from program (concrete) to invariant 
(abstract) variables. Currently the safety proof for each action consists of three 
parts: a proof that  the action maintains some representation invariants, a proof 
the the program action (on concrete variables) implements a certain abstract 
action (on abstract  variables), and finally a proof that  the abstract  action sat- 
isfies the algorithm's invariants. Layering the specification would yield a clean 
separation between the three parts, and would open the way for proving the 
correctness of an even more detailed version of the algorithm. This may become 
practical if a TLP-like interface is built on more powerful prover. 
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1 I n t r o d u c t i o n  

Modern telephone systems (Intelligent Networks; IN) allow to flexibly introduce 
new services in the network. There, one is increasingly confronted with unde- 
sired interactions of services and service features. The problem of finding service 
interactions is referred to as service inte~uction detection (or: feature interaction 
detection). The aim of the project presented in this abstract is the detection of 
service interactions on the specification level. The core of such a specification 
is the so called Basic Call State Model (BCSM) [Q.1], where the services are 
coupled to. 

We specify services and the BCSM using Product Nets [OP95] (high level 
Petri Nets). By a complete reachability analysis we obtain an automata rep- 
resentation of the complete behaviour of the services. To avoid state-space ex- 
plosion, a compositional analysis technique can be used [Och95]. To check ~br 
service interactions we check temporal properties of the behaviour. In general, 
the behaviour of the specified services, including the BCSM, is too complex to 
efficiently check temporal logic formulae on the automata representation of the 
behaviour (the teachability graph) [CMR93]. Therefore, we first compute an ab- 
straction of the behaviour that has a sufficiently small automata representation 
to check temporal properties efficiently. When calculating the abstract behaviour 
we have to be careful not to hide important behaviour with respect to possible 
interactions of the specified services. As abstraction technique, we use language 
homomorphisms applied to the language accepted by the automaton represent- 
ing the behaviour of the combined services. Because it is very important for a 
telephone system to be able to make progress (we always want to be able to 
make a call eventually), an important class of properties we have to check in 
regard to service interaction detection is the class of liveness properties. It is 
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especially this class of properties that is very delicate to handle with respect to 
abstractions. 

In ' the following section we present two example services, Call Forwarding 
Unconditional (CFU) and Selective Call Rejection (SCR). By discussing these 
two services we give a brief introduction to the methods we use to detect service 
interactions. Finally we summarize the current state of our project and give an 
outlook on the topics we address next. 

2 C F U  a n d  S C R  

As a small example to illustrate the basic idea of our approach towards interac- 
tion detection, we have selected two simple services, Call Forwarding Uncondi- 
tional (CFU) and Selective Call Rejection (SCR). CFU is a service that, when 
active, forwards an incoming call to a selected recepient. Selective Call Rejection 
(SCR) prohibits an incoming call to be signalled; i.e. an incoming call is rejected 
without notifying the intended receiver. 

To keep a first model of CFU and SCR simple, we describe both services on 
a high abstraction level, assuming a very simplified basic call process where the 
activation of a service simply depends on its parameters: The parameter that 
activates CFU is the telephone number to which an incoming call has to be 
forwarded. SCR's parameter is a list of telephone numbers such that calls by a 
caller whose number is in the list are rejected. 

3 I n t e r a c t i o n  o f  C F U  a n d  S C R  

As already mentioned, we have specified CFU and SCR logically as a Product 
Net. Here, "logically" means that we did not involve the underlying model of 
the telephone system, the Basic Call State Model (BCSM) as defined in [Q.1]. 
This first step was intended to show that the methods we propose for service 
interaction detection are indeed suitable for this task. 

We analyzed our model of CFU and SCR for all combinations of CFU and 
SCR being active and being not active involving 3 subscribers (users). The com- 
plete reachability analysis of each active/not active combination of CFU and 
SCR led to automata representations having at most 780 states. All the automata 
were deadlock free. This is an important property for the specified services; for- 
mally this is a safety property. As said in the introduction, the properties that 
guarantee progress are the liveness properties. The liveness property we want 
to check is whether it is always possible to eventually get a connection to an 
intended receiver. If connect is the event that describes the establishment of 
a desired connection, then in temporal logic we want to check if the formulae 
~Oconnec t  ("always eventually connect") is a liveness property with respect to 
the behaviour of the specified services. We can check this property on an abstrac- 
tion of the behaviour that keeps the connect event visible and hides all other 
events. Formally, such an abstraction is defined by a language homomorphism. 
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To be able to check liveness properties on the abstraction[Nit94a, Nit94b, NO95], 
the homomorphisms have to satisfy a special condition called simplicity of lan- 
guage homomorphisms [Och94]. 

Applying a suitable simple homomorphism to the automata representation 
of the behaviour of the specification of CFU and SCR leads to an empty au- 
tomaton, if CFU and SCR are active such that the number of the caller is in the 
rejection list of the subscriber to whom the call is forwarded. That means, for 
this constellation, []Oconnect is not a property of the specification, even if the 
originally called subscriber did not want to reject that call. Therefore, CFU and 
SCR interact by SCR interfering CFU. 

4 Verification of the B C S M  

So far, we only have checked the interaction of services on a logical level. Nev- 
ertheless~ for detecting service interactions in a more realistic specification, the 
underlying telephone system (BCSM) has to be specified as well, to embed the 
services in it. So we have already specified the BCSM as a Product Net and 
have verified its correctness. More precisely, using simple homomorphisms, we 
were able to prove that our specification shows exactly the behaviour as it is 
described by the automata in [Q.1]. 

5 Conclus ion 

As shown above, verification of temporal properties on behaviour abstractions 
is suitable for detecting service interactions. In the example that we briefly ex- 
plained the abstraction step was not really necessary, for the example itself is 
small enough to check temporal properties directly on the behaviour. 

A complete analysis of the BCSM model already leads to a behaviour repre- 
sentation having several thousand states. Including services, we expect several 
tenthousand states. This reaches an order of magnitude of the number of states 
that makes abstraction techniques absolutely necessary. Here, even the analy- 
sis of the specification can become difficult with respect to complexity. Hence, 
a compositional analysis technique of specifications that allows to compute a 
representation of an abstract behaviour without exhaustive construction of the 
complete state space is currently developed [Och95]. We expect that our ap- 
proach will allow us to check several combinations of services for undesired in- 
teractions where any direct verification approach without abstractions would be 
intractable. 
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