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Introduction

The concept of uncertainty has much evolved since F. Knight wrote his semi-
nal book on Risk, Uncertainty and Profit. Economists have generally reduced
the concept to the idea that no probability was available, as opposed to the
case of risk. What Knight meant might have been sensibly different: Was not
uncertainty the case where probability could not be defined with precision,
where there was no consensus measure? In the 1920s, such an imprecision was
often sufficient to make any corresponding amounts at stake uninsurable.

Insurance companies, fortunately for us, have since then widely changed
their minds as to what can be insured and what cannot be. It would have
been amazing and detrimental if researchers had not changed their minds.
Already in the 1930s, J. M. Keynes felt the need to deal with another sort of
uncertainty. In chapter XII of The General Theory, uncertainty is defined in
a more radical way: it is the situation where we just don’t know.

The literature about uncertainty deals with different levels of investiga-
tion: the neuronal level, giving an account of brain activity; the cognitive
level, assessing the role of mental procedures; and finally the choice represen-
tation level. At each level uncertainty is modelled in its own way, and that
defines rationality in specific ways.

The neuronal level, considering the system of neurons in the brain, as in
the newly emerging field of neuroeconomics – which has come to be called
neuronomics – though promising, has not yet generated enough formal output
to be considered in this volume. The reader of this book will rather explore,
in virtually each part of the book, the cognitive level, where sources and
examinations of mental procedures, conjectures and solutions are dealt with,
much like in traditional cognitive psychology. Other authors of this book
have selected the level of choices, as is more traditional in economics and
management science. This last level is the most widely dealt with here. Of
the three known levels of study – neuronal, mental and choice pragmatic –
this book focuses on the last two.

At each level of analysis, a researcher has several tools at his or her dis-
posal. It is legitimate to rely on previously accepted logical schemes and



2 Introduction

to develop their consequences formally or to explore the possibilities that
they open to rational behavior. At a less general level, decision theoretic and
game theoretic tools offer similar ways to proceed. Both types of tools are
here characterized as formal. A more and more frequent way to proceed,
both in psychology and more recently in economics, consists in designing and
performing various types of experiments. Such approaches also appear in the
present book.

As a result of the newer approaches, today we recognize that uncertainty
can be either deeper than the situation described by F. Knight or, in the
opposite direction, less radically ignorant of what might happen. Between
complete ignorance of the possible futures and mere ambiguity about the
probabilities, there is a wide array of different types of uncertainty.

What form do these types take, under which type of conditions, and
how can we manage to reach decisions in each type of such really difficult
situations? This is the very the topic of the present book.

The papers assembled were given some at the FUR XI conference, orga-
nized at GRID (Cachan and Paris, France) in the second half of 2004. They
have been selected from some 175 papers, refereed once again, further revised
and selected again to form the present set of contributions.

The book is organized in four parts: foundational, representational tools,
alternative decision rules, and risk attitude modelling.

Part One: Foundations

S. Grant and J. Quiggin propose to explore uncertainty using the language
of logic and decision trees, as is often done in artificial intelligence. Needless
to say, such an approach opens new avenues of impressive research: The
link between their representation and the seminal Max-Min utility model
of I. Gilboa and D. Schmeidler (section 9 of the paper) is one of the most
fascinating ones.

M. Amarante and F. Maccheroni, in a formal mathematical development,
show that a connection to the same seminal model can be found in the very
idea that several probability measures have to be considered simultaneously.

J.V. Howard connects the mental and the choice pragmatic levels through
the formal representation of finite event trees, thus yielding a new foundation
to Bayesian statistics, which assumes, as is well known, the less realistic
assumption of countable additivity over a σ-field of events.

Finally, E. Borgonovo and L. Peccati show that, under some relatively
modest hypotheses about the structure of the set of the possible states of the
world, one can use Sobol’s theorem to determine the impact of what they
call “parameter uncertainty” on the level of performance of the decision, as
evaluated through the relevant utility functional. They have in mind the epis-
temic notion of uncertainty. They recommend using simulation as a way to
let the decision maker concentrate on the quest for information that appears
the most important to acquire as a result of this procedure.
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Part Two: The Importance of Representational Tools in Understanding
Behavior Under Uncertainty and Risk.

A. Guerdjikova argues, on the basis of an experiment, that when diversifying
portfolios, the issue is less about whether or not EU or non-EU type of
rational behavior obtains than about the use of similarity considerations. The
paper offers a generic connection to another tradition derived from artificial
intelligence, namely case-based reasoning, specifically linking to the model
derived by I. Gilboa and D. Schmeidler within this tradition.

H. Haller and Sh. Mousavi, in a formal development, show that uncer-
tainty can, under given hypotheses, improve the welfare reached in a Second
Best situation such as generated by adverse selection market equilibrium. In
the insurance market, the Rothschild and Stiglitz model with adverse selec-
tion is used to establish the claim of the authors.

E. Camacho-Cuena and Ch. Seidl investigate experimentally the violation
of Lorenz relations in the treatment of an income distribution or of an indi-
vidual multiple outcome lottery. They show that the nature of responses that
are requested from the subjects is the key variable. Merely invoking a framing
effect either provides an insufficient explanation, or a quite imprecise one.

B. Sopher and A. Sheth also investigate experimentally inter-temporal
choice rationality. By using their design in a variety of cases that have dif-
ferent initial periods, levels of discounting, types of discounting, number of
periods, etc. they show that exponential discounting is the clear modal choice
pattern of behavior in virtually all cases, even though the tendency toward
hyperbolic discounting increases when the compounding rate increases. Their
investigation thus confirms the latter point, which has already been found in
other samples with other protocols, and seems therefore a rather robust re-
sult.

Part Three: The Assessment of Several Alternative Decision Rules

The first alternative rule, the focus of R.M. Hogarth and N. Karelaia, concerns
‘simple heuristics that make us smart’, paraphrasing the title of the book by
Berlin psychologists G. Gigerenzer and P.M. Todd. They examine rules of
choice between binary cues (which they emphasize as a limitation of their
work). They argue that decision rules succeed according to two factors –
aside from error – which they identify as characteristics of choice sets: one is
the number of binary cues in the set and the presence or not of a dominance
situation; and the other is the way that cues are weighted. The structure of
choice sets (also called ‘the environment’ by the authors) may be separable or
compensatory: the more separable, the more effective the simplest heuristics
(like “take the best”), the more compensatory the environment, the better
performing are the more complex models, like hybrids of different simple
cues. But error in the environment makes the predictive ability of any model
less and less satisfactory.
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J.N. Bearden and R.O. Murphy examine rather sophisticated decision
rules that may govern search behavior in the well-known “secretary prob-
lem”, which they generalize under the name of GSP (“Generalized Secretary
Problem”). They show that the existence of suboptimal search behavior (too
few rounds of investigation) can be accounted for by a stochastic component
in the search policy. To this bias, they oppose the optimal search induced
by a dynamic programming procedure which they define and present. They
manage to give tentative psychological explanations for the possible biased
stopping rules, although they admit that working on what has been called
here the – observable – choice pragmatic level of investigation is not easy to
interpret in terms of the – unobservable – mental level.

N.P. Thomas offers an interesting contribution to the literature on collec-
tive choice. Using Monte-Carlo simulations he tests two alternative MCDM
procedures:

(a) Either each individual evaluates the alternatives at hand; some voting
procedure being then started, based on the global scoring of each individ-
ual,

(b) Or a voting procedure is organized first on the relevance of each attribute
and one can then design a group preference ordering using the attributes
selected by the vote.

The paper shows that the second type of procedure can be superior to the
first type in cases where value conflicts have emerged in the group of decision
makers, whereas, in the other cases, the first procedure leads to a higher
welfare.

Part Four: Models of Risk Attitudes Modelling and Methodological Issues

E. Paté-Cornell examines the relationships between the methods of proba-
bilistic risk analysis (PRA), derived from engineering, and those of decision
analysis (DA), mainly the expected utility tradition derived from economics
and the social sciences. The interest of this paper lies in the experience the
author has in both domains, especially PRA. Two PRA cases, taken as bench-
marks, make the comparison possible. One is the case of the shuttle’s PRA,
the other is the case of terrorism prevention. The frequentist and Bayesian
concepts of probability are examined. The main conclusions she draws from
her analysis are that the risk analyst has to be less specific than the ana-
lyst helping the decision maker to actually make a decision, because PRA
is, in general, developed before the final decision maker, who will be relying
on the PRA model, has been precisely determined. This discussion is quite
fascinating and might be echoed in various environments.

H. Grossmann, M. Brocke and H. Holling design a procedure to in-
duce preferences for multi-attribute options. The paper relates finite con-
joint measurement and multi-attribute utility analysis. The idea is to set
up a computer-based procedure leading the participants gradually to order
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a given finite set of (multiattribute) alternatives using a single (weak) order.
The paper does two things: it shows first that the qualitative information rep-
resented by the weak order is sufficient to determine a unique set of numerical
utilities; it shows then that the procedure, described in the paper is effective,
i.e. that preferences are effectively changed w.r.t. their previous state by the
computer interactive program. Two experiments lead to that conclusion.

Odilo W. Huber builds on a line of thought to which he has contributed
since the mid-Nineties. The idea is that probabilities are not always actively
searched for by corporate executives. Z. Shapira already pointed out some
time ago that managers tend to believe that they can change the odds and
“get around” issues of risk, although that statement needs some qualifica-
tion. Precisely, Huber reports some experiments on the topic. They lead to
the conclusion that mental representations differ among subjects and among
tasks, on one hand; and on another hand, that probabilities which have been
actively searched for are better recalled than is pre-existing information.

J. Sounderpandian gives first a quite original survey of the literature on
the evolution of risk attitudes and on the diverse approaches which have been
taken by researchers on this topic. He then introduces the idea of studying
such evolution using simulations, provided that the society under investiga-
tion is not too “large” and provided, of course, that individual risk attitudes in
that society are interrelated. The paper goes on to derive some understanding
of the profile and the fate of a society from this perspective.

Oswald Huber completes part four, as well as the volume, by focusing on
the concept of risk-defusing operators (RDOs). He asks whether the practical
existence of such RDO’s can impact on the decision process and in particu-
lar on the search for information. The paper summarizes several experiments
indicating that there is, indeed, such an impact. Although extreme interpre-
tations given to the phenomenon are to be questioned (based on the fact
that RDO does not get rid of all risk), there are in these findings some un-
doubtedly important and interesting topics to be further studied by future
research.

In summary, this set of papers finds sources of ideas in quite a few disci-
plines contributing to decision theory. We hope that the reader will also agree
that these ideas exhibit a rather unusual degree of originality. May readers
enjoy reading this volume.
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Conjectures, Refutations and Discoveries:
Incorporating New Knowledge in Models
of Belief and Choice under Uncertainty

Simon Grant1 and John Quiggin2
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Abstract. The purpose of this paper is to develop a model of choice under un-
certainty in which individuals do not possess a complete description of the space
of states of the world, and in which this description evolves over time. The crucial
analytical tool is the description of knowledge in terms of a finite set of propositions.

Keywords: unforeseen contingencies, incomplete state-space, propostions

1 Conjectures, Refutations and Discoveries:
Incorporating New Knowledge in Models of Belief
and Decision under Uncertainty

In any complex decision problem, the usefulness of formal decision procedures
is limited by the knowledge that, decisions commonly proved unsatisfactory
because of the occurrence of contingencies that were unforeseen, and perhaps
unforeseeable, at the time the decisions were taken. This problem is partic-
ularly severe in relation to complex environmental problems such as global
warming and the sustainable management of large ecosystems.

One popular answer to the question of sustainable design is the ‘pre-
cautionary principle’, namely, that where there is a serious, but unproven,
possibility of environmental damage arising from some action or inaction,
policy should be designed on the assumption that the risk is in fact real. The
opposite position, which may be described as the ‘permissive principle’, is one
which suggests that, in the absence of conclusive proof of danger, the proposed
activities of firms and individuals should be given the benefit of any doubt.

Under standard approaches to decision theory, both of these alternatives
are rejected in favour of a model in which all possible events (or ‘states of
nature’) are described in advance and assigned a subjective probability. The
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preferred course of action is the one that maximises the expected return,
which may be expressed in monetary terms, or, more generally, in terms of
expected utility.

From the decision-theoretic perspective, a strong interpretation of the pre-
cautionary principle leads to adoption of a maximin rule, which is excessively
conservative and leads to poor average outcomes. Weak interpretations do no
more than assert that action should not require full scientific proof of dan-
gers, which is the same as the standard decision-theoretic view. Hence, from
the usual decision-theoretic viewpoint, the precautionary principle is either
wrong or a restatement of the obvious.

Although highly effective in many contexts, the standard decision-theoretic
model has long been criticised for its inability to deal with events for which
well-defined probabilities are not available and, even more, for problems
where not all possible outcomes can be foreseen. The difficulties associated
with the first of these problems were described by Ellsberg (1961) and re-
mained unresolved for many years. Recent work, including that of Epstein
(1999), Ghirardato and Marinacci (1999) and Grant and Quiggin (2002d)
has resulted in the development of improved characterisations and analytical
tools.

The purpose of this paper is to develop a model of choice under uncer-
tainty in which individuals do not possess a complete description of the space
of states of the world, and in which this description evolves over time. The
crucial analytical tool is the description of knowledge in terms of a finite set
of propositions.

2 Epistemology
The problem posed for theories of choice under uncertain by the existence
of unforeseen contingencies has been widely recognised. The term ‘unknown
unknowns’, recently used in (widely-derided) remarks by US Defense Sec-
retary Donald Rumsfeld, is commonly used to describe such contingencies.
Since all formal theories of decision under uncertainty in widespread use at
present rely, implicitly or explicitly, on the availability of a complete descrip-
tion of the state-contingent consequences of actions under consideration, the
existence of unforeseen contingencies represents a serious difficulty.

Two main approaches have been adopted. The first has been to choose
some form of maximin rule. Such rules have been proposed in a wide range of
contexts and arise as a polar case in many different models. In expected utility
theory, for example, maximin arises as the polar case for the class of concave
utility functions (normally referred to, in this context, as risk-aversion). In
rank-dependent models, it is the polar case for a convex probability weighting
function (pessimism). Since maximin also arises as a polar case for other
models of choice under uncertainty, it is, therefore, not always clear whether
a maximin rule is being proposed as a response to lack of knowledge or
reflecting an extreme aversion to risk.
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The second approach, more directly related to the problem of unforeseen
contingency, has been to augment the state space with some form of residual
event, aimed at capturing the existence of radically incomplete knowledge.
However, it turns out to be quite difficult to implement this approach in such
a way that uncertainty about the residual event is non-trivially different from
uncertainty about the known set of states of nature.

Both approaches share with expected utility the fact that normative and
positive models of choice are derived simultaneously. In the most common
approach, the functional form of the model are derived from a set of axioms
that are held to be both normatively compelling and descriptively realistic.

It is not strictly necessary, in this approaches, to combine normative and
positive models. Some modellers are interested only in description, or only in
prescription. Others hold that while some particular set of axioms, typically
those of expected utility, is normatively compelling, other axioms yield a more
realistic model of observed behavior. Nevertheless, descriptive models are
typically constructed in such a way that they can, if desired, be treated
as normative models for use by decision-makers. In particular, such models
typically refer only to information that is available to decision-makers.

The feature of the state-act model that yields the close fit between nor-
mative and positive models is, in the terminology of the rational expectations
literature, model-consistency. The information on which individuals are as-
sumed to base decisions is, broadly speaking, the same as that used to model
those decisions.

The model-consistent act-state approach has yielded important insights.
However, it is inherently unsatisfactory for the case of incomplete knowl-
edge. An adequate external description of the behavior of an individual with
radically incomplete knowledge must employ some notion of complete (or at
least more extensive) knowledge than that possessed by the individual being
described.

Closely related to this is the problem of learning. The concept of learning
that has been analyzed most extensively in the literature on decision theory
is that of Bayesian updating which is, in a crucial sense, a negative form of
learning. The Bayesian decision-maker begins with a prior probability dis-
tribution over all states of the world. The occurrence of a particular event
amounts to news that a particular subset of states, those making up the
complementary event, are no longer possible. Hence the probabilities of these
states must be set to zero, while the probabilities of the states that make up
the observed event are replaced by their event-conditional probabilities.

If learning in the ordinary sense of the term is to be modelled, it must
be possible to represent additions to, as well as subtractions from, the set of
possibilities considered by the individual. A natural way of doing this, once
the postulate of model-consistency is dropped, is to suppose that, at any
given time, the individual has access to a proper subset of some global set of
possibilities.



12 S. Grant, J. Quiggin

Fig. 1. Decision tree with full information

In this paper, we will argue that, rather then seeking to work directly
with a generalized concept of the state space, it is preferable to consider
a specification of knowledge in terms of propositions, and to postulate that,
at any given time, individuals are equipped to consider only a finite subset
of a potentially infinite set of such propositions. The propositional approach
may be related back to the state space approach, since any state of nature is
characterised by the set of propositions that are true in that state.

3 Example

Consider a standard decision tree with two decision nodes and two chance
nodes, as illustrated in Fig. 1. As illustrated there are chance nodes (decisions
by Nature) at t = 1 and t = 3, and decision nodes at t = 2 and t = 4. Thus
there are a total of 24 = 16 possible terminal nodes. We will assume that
payoffs are received at times t = 2 and t = 4 after decisions are made. At
each node, we will denote a move to the left by 0 (−) and a move to the right
by 1 (+).

This representation is natural for a fully informed decision-makers or out-
side observers. In decision theory, however, we are normally concerned with
decision-makers who are not fully informed. In Fig. 2 we illustrate the case
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Fig. 2. Decision tree with state contingent uncertainty

where the decision at t = 2 must be taken without knowledge of the act of
Nature at t = 1 . . .

We now consider a more radical form of uncertainty, in which the decision
at t = 4 is taken without the decision-maker even being aware of the chance
node at t = 3. Thus, the decision-maker cannot distinguish between the nodes
000 and 001, 010 and 011.

In these circumstances, the decision-maker not only does not know what
outcome will arise if, say, decision 1 is taken at t = 4, but also does not
possess a complete state-contingent description of the possible outcomes.

In considering problems of this general kind, the main focus of attention
has been on the question of whether, given sufficient information on pref-
erences over decisions, it may be possible to infer a state-contingent model
consistent with those preferences. The most promising approach begins with
the work of Kreps (1992) and has been developed by Dekel, Lipman and
Rusticchini (2001) and Epstein and Marinacci (2006). For these purposes it
is more convenient to adopt the logically equivalent representation in Fig. 3
in which the choice node at t = 3 is eliminated, and attention is focused on
the coarsely specified consequences of the decision at t = 4.

The focus of this paper is very different. We are primarily concerned with
describing the structure of beliefs like those illustrated in Fig. 4 and the
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Fig. 3. Decision tree with unreconised contingencies

way in which such beliefs may evolve over time, in the light of both acts of
nature and decisions taken by individuals. The natural way to represent both
decisions and beliefs, we claim, is in terms of binary propositions. That is, in
terms of Figs. 1–4 we impose the (previously implicit) restriction that both
chance and decision nodes should have exactly two branches.

4 Propositions

Let the set of states of the world be Ω. We focus on the representation

Ω = 2N ,

where N = {1, 2, . . . n, . . .} is supposed to be a finite or countably infinite
set, indexing a family of ‘elementary’ propositions p1, p2 . . . pn . . . about the
world. Each proposition is a statement such as ‘The winner of the 2008 US
Presidential election is Hillary Clinton’. An exhaustive description of the state
of the world therefore consists of an evaluation of each of the propositions
pn, n ∈ N. As will be shown in more detail below, the elementary propositions
may be used to generate a larger set of propositions P.
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Fig. 4. Decision tree with coarse contingencies

With each proposition and each possible state of the world, a fully in-
formed observer can associate a truth value tn, which will be denoted 1 (True)
or −1 (False). From the viewpoint of a fully informed observer, any state of
the world can therefore be described by a real number ω ∈ Ω ⊆ [0, 1] 1,
given by

ω =
∑
n∈N

2−(n+1) (tn + 1) .

An elementary proposition pn is true in state ω if and only if ωn = 1, where
ωn ∈ {0, 1} is the nth element in the binary expansion of ω. Note that, since
the mapping pn (ω) = ωn is defined from the viewpoint of a fully informed
observer, the truth value pn (ω) does not vary over time.

From this external viewpoint of the model any proposition pn corresponds
to a event En ⊆ Ω. More precisely we have

1 If some propositions may be true in all states of the world, Ω may be a proper
subset of [0, 1]. Alternatively, Ω may be set equal to [0, 1] with some states having
zero probability in all evaluations.
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En = {ω ∈ [0, 1] : ωn = 1} ⊂ Ω .

4.1 Decision-Makers and Decisions

Decision-makers are finitely rational individuals who are not, in general, able
to formulate all the propositions in P, or even the elementary propositions
pn, n ∈ N and therefore not able to give an exhaustive specification of the
state space. We will assume more concretely that, at time t, each individ-
ual i is able to conceive a finite set of propositions Pi

t, all of which are
generated by a set of elementary propositions pn, n ∈ Ni

t which will be de-
rived below. Note that the elements of the set En are not in general, ac-
cessible to a decision-maker, even if the proposition pn is accessible. More
generally, proper subsets of En are not in general, accessible to a decision-
maker.

Example 1. Suppose that the elements of N are two statements about possible
winners of the Melbourne Cup which is a horse race that is run in Melbourne,
Australia on the first Tuesday after the first of November. [The winner in 1861
was Archer. The defeated favourite in 1931 was Phar Lap.]

p1: The winner of the 1861 Melbourne Cup is Archer
p2: The winner of the 1931 Melbourne Cup is Phar Lap

A decision-maker in October 1861 might be expected to have beliefs about
p1 but not about p2. However, from the external viewpoint, we have

E1 = {10, 11}
so that any state of the world consistent with p1 gives a truth value to p2.

Decisions are modelled by allowing the decision-maker to control (at time
t) the truth value of some proposition. A decision is, therefore, the act of
determining the truth value of a proposition. In the example above, we might
consider elementary propositions such as p3: Decision-maker i bets on Archer,
and p4 : Decision-maker i bets against Archer. We will denote by ∆i

t ⊆ Ni
t

the set of elementary propositions decidable by decision-maker i at time t.
Note: We need to consider whether a decision-maker can fail to decide on

an element of ∆i
t at time t and if so how to represent this.

4.2 Compound Propositions

The individual can also consider compound propositions p. A compound
proposition is derived by assigning truth values of 1 or −1 to all pn where
n is a member of some (possibly empty) subset N (p) ⊆ N, leaving all pn,
n ⊆ N (p) unconsidered. The set N (p) is referred to as the scope of p, and is
the disjoint union of N− (p), the set of elementary propositions false under
p, and N+ (p), the set of elementary propositions true under p. The simple
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proposition pn has scope N (pn) = {n}. We define the null proposition p∅

such that p∅n = 0, ∀n and do not assign a truth value to p∅.
Any (non-null) compound proposition p corresponds, from the external

viewpoint, to an event

Ep = {ω ∈ [0, 1] : ωn = 0, ∀n ∈ N− (p) ; ωn = 1, ∀n ∈ N+ (p)} ⊂ Ω .

We set

Ep∅ = ∅ .

A compound proposition p is true in state ω if ω ∈ Ep (that is, if ωn = 0, ∀n ∈
N− (p); ωn = 1, ∀n ∈ N+ (p)) and false otherwise. We denote the truth value
of proposition p in state ω by t (p; ω). That is,

t (p; ω) =

{
1 if ωn = 0, ∀n ∈ N− (p) ; ωn = 1, ∀n ∈ N+ (p)
0 otherwise

}
.

A numerical representation of compound propositions is possible using ternary
numbers, where the value 0 denotes ‘not considered’. Denote the truth value
of proposition pn under p by pn ∈ {−1, 0, 1}.

As already noted, certain propositions are under the control of decision-
makers. The set of all decisions available to decision-maker i at time t is
denoted Di

t. Without loss of generality, we will assume that all elements
of Di

t are compound propositions derived from elementary decisions, that
is,Di

t ⊆ {−1, 0, 1}∆i
t . Since some combinations of elementary decisions may

be inconsistent or unconsidered, we do not assume that Di
t = {−1, 0, 1}∆i

t .
A given decision/action may jointly determine the value of a number of

propositions - most obviously if the value of a compound proposition p is
set to 1, this determines the truth value of all the elementary propositions
in N (p), and of any compound propositions derived from these elementary
propositions. Not all of these compound propositions are necessarily accessible
to the decision-maker. So we want a category of ‘conscious action’, roughly,
a decision-maker i consciously acts to determine proposition p at time t if
p ∈ Pit and the action of decision-maker i at time t determines the truth
value of p.

4.3 Classes of Propositions

The class of all propositions in the model is denoted by P = {−1, 0, 1}|N|. It
is useful to consider more general classes of propositions P ⊆ P. To any class
of propositions P , given state ω, we assign the truth value

t (P ; ω) = sup
p∈P

{t (p; ω)} .

That is, P is true if any p ∈ P is true and false if all p ∈ P are false. In terms
of the logical operations defined below, the set P has the truth value derived
by applying the OR operation to its members.
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5 Logical Operations from the External Viewpoint

From the external viewpoint, the usual logical operations are available with
the standard set-theoretic interpretation. It is usual in decision theory to
focus on the set theoretic interpretation and, from the external viewpoint the
two are isomorphic. But the propositional interpretation is more satisfactory
when describing a decision-maker with only partial awareness.

5.1 Implication

The implication relationship p → p′ holds if and only if

p′n ∈ {−1, 1} ⇐

p′n = pn .

That is, p → p′ if and only if any elementary proposition pn that is true
(false) under p′ is also true (false) under p.

The implication relationship is

(i) reflexive p → p,
(ii) transitive p → p′ & p′ → p′′ ⇐p → p′′,
(iii) anti-symmetric p → p′ & p′ → p

⇐

p = p′.

Observe that p → p∅, ∀p and that p → p′ if and only if Ep ⊆ Ep′ .
With each proposition p, we can associate the class of propositions

[p] = {p′ : p′ → p} .

That is, [p] is the class of propositions stronger than p. For an elementary
proposition pn,

E[pn] = Epn .

More generally, for any class P of propositions we define [P ],

[P ] = {p′ : ∃p ∈ P, p′ → p} .

Observe that

EP = E[P ] .

We refer to [P ] as the completion of P and say that P is complete if P = [P ].

5.2 Consistency and Logical Independence

Two propositions p and p′ are consistent, denoted p ∼ p′ if there exists p′′,
p′′ → p and p′′ → p′. The consistency relationship is reflexive and symmet-
ric, but not transitive. To illustrate the latter point informally, note that
the proposition ‘Hillary Clinton is the winner of the US Presidential election
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in 2008’ is consistent with ‘George Bush is the winner of the US Presiden-
tial election in 2004’ which in turn is consistent with ‘Hillary Clinton is not
the winner of the US Presidential election in 2008’, but the first and third
propositions are inconsistent.

The following lemma (proof left to the reader) characterises consistency
in terms of the ternary representation used above:

Lemma 1. For any p, p′, p ∼ p′ if and only if for all n, such that pn ∈ {−1, 1}
either p′n = pn or p′n = 0.

With each proposition p, we can associate the class of propositions

〈p〉 = {p′ : p′ ∼ p} .

More generally, for any class P of propositions, we define

〈P 〉 = {p′ : ∃p ∈ P, p ∼ p′} .

Observing that [P ] ⊆ 〈P 〉, we define the set of propositions logically inde-
pendent of p as

〉P 〈 = 〈P 〉 − [P ] .

Conjecture 〈〈P 〉〉 = 〈P 〉 , 〉〉P 〈〈 = [P ].

5.3 OR and AND

For any two classes of propositions, P and P ′, define

P ∨ P ′ = [P ] ∪ [P ′] ,

P ∧ P ′ = [P ] ∩ [P ′] .

Observe that

EP∨P ′ = EP ∪ EP ′ ,

EP∧P ′ = EP ∩ EP ′ .

The distributive laws apply to ∨ and ∧. Moreover, for the set of complete
classes of propositions ∨ and ∧ define a lattice structure.

5.4 Negation

The final logical operation to be considered is that of negation. Define:

¬P = P − 〈P 〉 .

That is, the negation of P is the set of propositions inconsistent with all
elements of P .
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Conjecture [¬P ] = ¬P .
For any elementary proposition pn,

¬ [pn] = [¬pn] ,

where ¬pn is true if and only if pn is false. More formally, ¬pn is a proposition
having the value ¬pn

m = −1, m = n,¬pn
m = 0 otherwise.

We can see this by observing that

[pn] = {p : pn = 1} ,

〈[pn]〉 = {p : pn = 1} ∪ {p : pn = 0} ,

[¬pn] = {p : pn = −1}
= P − 〈[pn]〉
= ¬ [pn] .

More generally, for any p

¬ [p] = [¬p] ,

where

¬p = {p′ : ∃n, s.t. pnp′n = −1} .

The following lemma (proof left to the reader) characterises consistency.

Lemma 2. The negation operation has the following properties

E[pn] ∪ E[¬pn] = Ω ,

[P ] = ¬ [¬P ] ,

〉P 〈 = 〈P 〉 ∩ 〈¬P 〉 ,

〉P 〈 = 〉¬P 〈 ,

P = [P ] ∪ [¬P ] ∪ 〉P 〈 .

Note that the sets making up the union in the last line are mutually disjoint.

6 The Decision-Maker’s Viewpoint

The class of all propositions considered by individual i at time t is denoted
P i

t . The scope of the individual’s proposition set is given by

Ni
t = ∪p∈P i

t
N (p) .

For a given set P i
t , the definitely false set is given by

Ni−
t = ∩p∈P i

t
N− (p)
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and the definitely true set by

Ni+
t = ∩p∈P i

t
N+ (p) .

These sets characterise the elementary propositions that are true (false) for
every element p ∈ P i

t . Combining these yields the characterising proposition
p

it

pi
tn

=

⎧⎪⎪⎨
⎪⎪⎩
−1 n ∈ N i−

t

1 n ∈ N i+
t

0 otherwise

.

We assume that pi
tn

∈ P i
t .

The set of active possibilities is given by

N i∗
t = N i

t −
(
N i−

t ∪ N i+
t

)
.

Thus, n ∈ N i∗
t if and only if there exist p, p′ ∈ N i

t with pn �= p′n. Recall that
pn can take the three values 0, 1,−1.

6.1 Logical Operations for the Decision-Maker

Logical operations for the decision-maker are applied with respect to the set
P i

t and may be derived with reference only to propositions p ∈ P i
t

2. Thus,
for any P, P ′ ⊆ P i

t

[P ]it =
{
p′ ∈ P i

t : ∃p ∈ P i
t , p′ → p

}
,

P ∨i
t P ′ = [P ]it ∪ [P ′]it ,

P ∧i
t P ′ = [P ]it ∩ [P ′]it ,

〈P 〉it = 〈P 〉 ∩ P i
t ,

¬P i
t = P i

t − 〈P 〉it .

7 Changes in Knowledge

In the model set out above, there are four possible states of knowledge for
individual i at time t about an elementary proposition pn

2 Spelling out the definition of 〈P 〉it given blow in terms of the definition of 〈P 〉
would require references to propositions that are not in Pit which seems un-
satisfactory. However, using the direct characterisation of consistency in terms
of the ternary truth values, it is possible to derive 〈P 〉it without reference to
unconsidered propositions.
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(i) (believed to be) impossible, n ∈ Ni−
t ,

(ii) (believed to be) certain, n ∈ Ni+
t ,

(iii) active possibility, n ∈ Ni∗
t ,

(iv) not under consideration n ∈ Ni0
t = N− Ni

t.

A crucial feature of the model proposed here is that knowledge can change
over time, say from period t to t + 1 in several different ways. First, some
elementary proposition pn, under consideration at time t, may be verified
or falsified by experience at time t + 1. For the case when pn is an active
possibility at time t, this is analogous to the observation of data in a Bayesian
model. However, we allow for the possibility that a proposition treated by
the decision-maker as impossible may be verified in period t+1 or vice versa.

Next, the state of knowledge may change as a result of inference. For ex-
ample, the truth value of compound propositions may change as a result of
information about elementary propositions. In addition, as will be discussed
below, beliefs about active possibilities may be updated in the light of changes
in knowledge. The canonical example of such updating is the Bayesian in-
ference procedure in which a posterior distribution is derived from a prior
distribution following the observation of data.

The most important, and novel, case treated in the model proposed here
is that when a proposition that was previously not under consideration is
either verified by experience or becomes an active possibility as a result of
inference. Informally, at least, we may distinguish several processes by which
this may take place. Surprises arise when an unanticipated event occurs, in-
dependently of the actions of the decision-maker, so that some previously un-
considered proposition is verified or falsified. Discoveries are similar, but arise
from events that are not fully anticipated, but result from purposive thought
and experiment on the part of the decision-maker3. Conjectures arise when
a previously unconsidered proposition becomes active, typically as a result of
formal or intuitive inference.

Symmetrical with the process by which new propositions come under con-
sideration are processes of forgetting, by which propositions previously under
consideration cease to be so. Given the finite capacity of human minds, it is
reasonable to suppose that, on some appropriate measure of information con-
tent, the size of the set of propositions under consideration by any individual
remains roughly constant over time. If this measure is approximately equal to
the number of elementary propositions under consideration, then the number
of propositions forgotten should be equal, on average to the number acquired
through discovery and related processes.

3 At this stage in the project, actions have not been modelled explicitly, and there-
fore the distinction between surprises and discoveries must remain informal.
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8 Inference, Conjecture and Refutation

8.1 Inference

One standard form of discovering new propositions, first considered in formal
terms by the ancient Greeks, is that of logical inference. If p, p′ ∈ P i

t it is
natural, in a normative framework, to postulate that p∨ p′ and p∧ p′ should
be available for inclusion in P i

(t+1) and, further that, if p and p′ both have
belief values 1 or 0, standard truth-table techniques should apply to deter-
mine the belief values of derived propositions such as p ∨ p′. In a descriptive
framework, we must be more cautious. It is well-known that individuals com-
monly fail to derive all the logical consequences of their beliefs. Furthermore,
as the ancient Greek logicians observed when they created lists of common
fallacies, individuals frequently attribute incorrect or unjustified beliefs to
derived propositions. Nevertheless, the formulation of Πi

t should give a high
probability to the derivation of logical inferences, at least for intelligent indi-
viduals with some formal or informal training in logical reasoning.

8.2 Popper and Lakatos on Conjectures and Refutations

Until the early 20th century, most discussion of new knowledge, particularly
scientific knowledge, relied either on observation (induction) or inference. The
work of Karl Popper, along with the reports of Poincare and others on the
process of mathematical and scientific discovery, drew attention to the im-
portance of processes such as conjecture and refutation. Popper drew a sharp
distinction between the context of discovery (conjectures) and the context of
justification (potential refutation). Whereas previous philosophers of science,
and particularly the Vienna school of logical positivism, with which Popper
was associated, had focused their attention on evidence that confirmed scien-
tific hypotheses, Popper made the point that the crucial property of a scien-
tific hypothesis was potential refutation. In our terms, the simplest statement
of the Popperian model may be stated as one in which no hypothesis can ever
be definitely proved (so that no positive proposition can ever be an element
of N i+

t ) but any non-trivial hypothesis p can be refuted by the observation
of some element of ¬p, with the result that p ∈ N i−

t
4. Subsequent work in

the Popperian, such as that of Lakatos has presented a more complex and
nuanced view, but has retained a central focus on potential refutation.

Popper’s most important contributions to the understanding of conjec-
tures were negative. In the pre-Popperian picture, scientific hypotheses were
derived from observed regularities derived from the patient accumulation of
observations. This leads naturally to the confirmationist view of justification
rejected by Popper. The most useful work on the generation of conjectures
4 Popper’s main point was to deny scientific status to theories like Marxism and

Freudian psychology for which, he claimed, there was no possible refutation by
evidence.
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from previous knowledge is that of Lakatos who shows how a concern with
deriving testable implications from a model under challenge leads naturally
to the generation of new conjectures.

9 Research Agenda

Thus far, the discussion has been concerned solely with beliefs, to the exclu-
sion of preferences and actions. This is in sharp contrast with the expected-
utility approach, where probability beliefs are derived from preferences over
actions, considered as mappings from the state space to some outcome space.
Other models of choice under uncertainty provide more of a separate role for
beliefs, without wholly separating beliefs, preferences and actions. It is clear
that a satisfactory account of problems involving uncertainty must encompass
preferences and actions.

It is not, as yet clear, how this should best be undertaken within the frame-
work set out. Given the absence of a state-space accessible to the decision-
maker, it is not clear that maintaining the separation between the state space
and the outcome space, crucial in standard Bayesian decision theory, is ap-
propriate here. It may be more desirable to consider partly or completely
probablized subsets of P i

t as ‘possible worlds’, each with their own associated
outcome space.

As far as preferences are concerned, the most promising approach appears
to involve adaptation of ideas developed by Gilboa and Schmeidler. Within
possible worlds, preferences may be described by some version of the ‘multiple
priors’ model. When considering actions that have consequences that appear
to depend importantly on unforeseeable events, some version of the ‘case-
based decision theory’ model, also proposed by Gilboa and Schmeidler, may
be appropriate.

10 Concluding Comments

The problem of unforeseeable events is critical in decision theory. This paper
has set out a framework within which this problem can be addressed.
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Abstract. For (S,Σ) a measurable space, let C1 and C2 be convex, weak* closed
sets of probability measures on Σ. We show that if C1 ∪ C2 satisfies the Lya-
punov property, then there exists a set A ∈ Σ such that minµ1∈C1 µ1(A) >
maxµ2∈C2 µ2(A). We give applications to maxmin expected utility and to the core
of a lower probability.
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1 Introduction

In the theory of decision making under uncertainty as well as in the theory
of cooperative games several questions can be reduced to the problem of
whether or not two distinct sets of measures disagree on a set. For instance,
if two maxmin expected utility preferences have the same utility on the prize
space and the same willingness to bet, are they necessarily the same? Under
which conditions, does the core of a lower probability coincide with the weak*
closed and convex hull of any set of measures defining it? Both questions
are answered in the affirmative if and only if one knows that there exists
a set A such that minµ1∈C1 µ1(A) > maxµ2∈C2 µ2(A), whenever C1 and C2

are two (convex, weak* closed) disjoint sets of measures. This is our main
result, which we prove in the next section under the conditions stated therein.
In Sect. 3, we provide a quick sample of the usefulness of Theorem 1, by
answering the two questions stated above. We do not discuss, however, the full
range of applications of Theorem 1. For another less immediate application,
we refer the reader to [2], where our Theorem 1 turns out to be a key tool to
characterize those events which are unambiguous either in the sense of [14]
or of [5]. In general, we expect Theorem 1 to be widely applicable in areas
different from the ones we consider such as in Quasi-Bayesian Statistics (due
to the central role played by upper probabilities; see, for instance [13]) or in
social choice theory.
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2 Main Result

If µ1 and µ2 are two probability measures on a σ-algebra Σ, then (by defini-
tion) µ1 �= µ2 means that there exists a set A ∈ Σ such that µ1(A) > µ2(A).
Equivalently, the two disjoint sets {µ1} and {µ2} can be separated by means
of a linear functional having an especially simple form, namely one that is
defined by an indicator function. Here, we are concerned with extending this
property to sets of measures which are not singletons.

Let (S, Σ) be a measurable space and let ∆(Σ) denote the set of all
(countably additive) probability measures on Σ. ∆(Σ) is a subset of the
norm dual of the Banach space of bounded, Σ-measurable functions.

Definition 1. Let C = {µi}i∈I ⊂ ∆(Σ). We say that C has the Lyapunov
property if the range of the vector measure (µi)i∈I on E is a convex and
compact subset of R

I (equipped with the product topology), for all E ∈ Σ.

Notice that if C has the Lyapunov property and all of its elements are ab-
solutely continuous with respect to a given probability measure, then any
subset of C has the Lyapunov property, and that finite dimensional sets of
nonatomic measures have this property (see [10]). Sets of measures with the
Lyapunov property have special importance in the theory of decision making
under uncertainty. For a decision maker described by a set of priors like in [8]
or in [7], the Lyapunov property corresponds to the demand that the class of
unambiguous events in the sense of [12] or [7] be “rich” (see Sect. 2).

Theorem 1. Let C1 and C2 be convex, weak* closed subsets of ∆(Σ) such
that C1 ∪C2 has the Lyapunov property. Then C1 ∩C2 = ∅ if and only if there
exists A in Σ such that

min
µ1∈C1

µ1(A) > max
µ2∈C2

µ2(A) .

Proof. Since each Ci is weak* compact, then it is weak compact, and convexity
of Ci implies that there exist a measure λi ∈ Ci such that µi � λi for all
µi ∈ Ci, i = 1, 2 (see, for instance [3]). Hence, all the measures in C1 ∪ C2 are
absolutely continuous with respect to λ = 1

2λ1 + 1
2λ2, and the sets C′

1 and
C′
2 of all Radon–Nikodym derivatives of elements of C1 and C2 are disjoint,

weakly compact, and convex subsets of L1(λ). The Separating Hyperplane
Theorem (see, [4], V.2.10) guarantees that there exist g0 ∈ L∞ (λ)−{0} such
that

min
f1∈C′

1

∫
g0f1 dλ > max

f2∈C′
2

∫
g0f2 dλ . (1)

W.l.o.g. 0 ≤ g0 (s) ≤ 1 for λ-almost all s ∈ S (otherwise take g0−essinfg0
‖g0−essinfg0‖∞

).
By assumption, C1 ∪C2 has the Lyapunov property. Hence, C′

1 ∪C′
2 is thin

in the sense of [10]. By Lemma 1 in [10], g0 = χA + h where A ∈ Σ and
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h ∈ L∞(λ) is such that
∫

hf dλ = 0 for all f ∈ C′
1 ∪ C′

2. For all µ ∈ C1 ∪ C2,
setting f = dµ/dλ we have

µ (A) =
∫

A

f dλ =
∫

χAf dλ =
∫

(χA + h)f dλ =
∫

g0f dλ

and Eq. (1) becomes

min
µ1∈C1

µ1(A) > max
µ2∈C2

µ2(A) .

The converse is obvious. ��
Corollary 1. Under the assumptions of Theorem 1, C1 ⊆ C2 if and only if
minµ1∈C1 µ1 (A) ≥ minµ2∈C2 µ2 (A) for all A ∈ Σ.

Proof. Let minµ1∈C1 µ1 (A) ≥ minµ2∈C2 µ2 (A) for all A ∈ Σ. Assume that
C1 is not contained in C2. Then there exists µ̄ ∈ C1 − C2. Since C2 ∪ {µ̄} is
thin, Theorem 1 yields that there exists B ∈ Σ such that µ̄ (B) < µ2 (B) for
all µ2 ∈ C2. Therefore minµ1∈C1 µ1 (B) ≤ µ̄ (B) < minµ2∈C2 µ2 (B), which is
absurd. The converse is trivial. ��
We conclude this section, by proving another separation result. This extends
an obvious property of two nonatomic measures: if µ1 �= µ2, there exist A, B ∈
Σ, A∩B = ∅ such that µ1(A) > µ1(B) and µ2(A) < µ2(B). Notice that this
is no longer true if the nonatomicity assumption is removed. In this form, the
separation theorem turns out to be a basic tool in study unambiguous events
in the sense of [14] and [5] (see [2]).

Corollary 2. Under the assumptions in Theorem 1, there exist A, B ∈ Σ,
A ∩ B = ∅, such that µ1(A) − µ1(B) > 0 > µ2(A) − µ2(B) for any µ1 ∈ C1

and any µ2 ∈ C2.

Proof. Let A ∈ Σ be such that µ1(A) > µ2(A) for any µi ∈ Ci, i = 1, 2. Since
C1 ∪ C2 has the Lyapunov property, the range on S of the vector measure
defined by C1 ∪ C2 is compact and convex. Hence, for any α ∈ [0, 1] there
exists B ∈ Σ such that µ1(B) = µ2(B) = α for all µi ∈ Ci, i = 1, 2. Pick one
such a B so that 2µ(B) = minµ1∈C1 µ1(A)+maxµ2∈C2 µ2(A) for all µ ∈ C1∪C2.
Then, µ1(A) − µ1(B) > 0 and µ2(A) − µ2(B) < 0 for all µi ∈ Ci, i = 1, 2.

If A ∩ B �= ∅, write B = (A ∩ B) ∪ B′ and A = (A ∩ B) ∪ A′. Then, for
any µi ∈ Ci, i = 1, 2,

µ1(A) − µ1(B) = µ1(A ∩ B) + µ1(A′) − µ1(A ∩ B) − µ1(B′)
= µ1(A′) − µ1(B′) ,

µ2(A) − µ2(B) = µ2(A′) − µ2(B′) ,

and A′ and B′ do the job. ��
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3 Application: MEU Preferences and Lower
Probabilities

In the theory of decision making under uncertainty, one is concerned with
a decision maker ranking the elements of a set A of mappings a : S → X ,
where S is the state space and X the prize space. For the sake of simplicity,
let X be a convex subset of a vector space and A be the set of all simple
and measurable functions from S to X . The decision maker’s ranking �, is
said to satisfy the maxmin expected utility (MEU) criterion if and only if for
a, b ∈ A

a � b ⇔ min
µ∈C

∫
(u ◦ a) dµ ≥ min

µ∈C

∫
(u ◦ b) dµ ,

where u : X → R is a nonconstant and affine utility function on the prize
space, and C is a weak* closed and convex set of finitely additive probability
measures on (S, Σ). The willingness to bet of a MEU decision maker is the
lower probability

ρ(A) = min
µ∈C

µ(A), ∀A ∈ Σ .

The core of a lower probability ρ is the set core(ρ) of all finitely additive
probability measures ν on (S, Σ) such that ν ≥ ρ.

Preferences satisfying the MEU criterion have been axiomatized in [8].
In [11] and [3] necessary and sufficient conditions on � are given that guar-
antee that all the measures in C be countably additive. An event A ∈ Σ
is unambiguous in the sense of Nehring [12] or Ghirardato, Maccheroni and
Marinacci [7] if µ(A) = µ′(A) for all µ, µ′ ∈ C. In [1] (Proposition 4), it
was shown that (i) the class of unambiguous events is “rich”, that is there
exist unambiguous events of measure α for every α ∈ [0, 1], and (ii) there
exists a countably additive, nonatomic probability measure on the class of
unambiguous events if and only if C has the Lyapunov property.

In the context of maxmin expected utility, a natural question is whether
or not two MEU preferences with the same utility on the prize space and
the same willingness to bet are necessarily the same preference. A related
question in the theory of lower probabilities is whether or not the weak*
closed and convex set C defining a lower probability ρ coincides with its core.
The following example, due to Huber and Strassen [9], answers negatively to
both questions.

Example 1. Let S = {1, 2, 3}, X = R, µ = (1
2 , 1

2 , 0), ν = (4
6 , 1

6 , 1
6 ). Consider

two MEU preferences, �1 and �2, with u1(x) = u2(x) = x for any x ∈ R and
sets of priors

C1 = co{µ, ν} and C2 =
{(

3 + t

6
,
3 − t − s

6
,
s

6

)
: 0 ≤ s, t ≤ 1

}
.

It is readily checked that:
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• ρ1(A) = minµ1∈C1 µ1(A) = minµ2∈C2 µ2(A) = ρ2(A) for all A ⊂ S, but
�1 is different from �2;

• C1 is a weak* closed and convex set defining the lower probability ρ1, and
it is strictly included in core (ρ1) (which coincides with C2).

Both conclusions are reverted under the assumptions of Theorem 1 as the next
two corollaries show. In reading Corollary 3, notice that point 1. amounts to
say that �1 is more ambiguity averse than �2 (see Ghirardato and Mari-
nacci [6]), and remember that xAy is the mapping from S to X taking value
x on A and y on Ac.

Corollary 3. Let �1 and �2 be two MEU preferences with (weak* closed and
convex) sets of priors C1 and C2 contained in ∆(Σ) and such that C1∪C2 has
the Lyapunov property. Then the following conditions are equivalent:

1. For all a ∈ A and z ∈ X,

a �1 z

⇐

a �2 z . (2)

2. For all x, y, z ∈ X such that x �i y for i = 1, 2, and all A ∈ Σ,

xAy �1 z

⇐

xAy �2 z .

3. u1 is a positive affine transformation of u2 and ρ1 ≤ ρ2.

In particular, if u1 = u2 and ρ1 = ρ2, then �1 coincides with �2.

Corollary 4. Let ρ be a lower probability such that core(ρ) ⊂ ∆(Σ) and
core(ρ) has the Lyapunov property. Then core(ρ) is the weak* closed and
convex hull of any subset K of ∆(Σ) such that

ρ(A) = inf
ν∈K

ν(A), ∀A ∈ Σ .

The easy proofs are omitted.
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Abstract. At a very fundamental level an individual (or a computer) can process
only a finite amount of information in a finite time. We can therefore model the
possibilities facing such an observer by a tree with only finitely many arcs leaving
each node. There is a natural field of events associated with this tree, and we show
that any finitely additive probability measure on this field will also be countably
additive. Hence when considering the foundations of Bayesian statistics we may as
well assume countable additivity over a σ-field of events.

Keywords: Bayesian statistics, foundations, countable additivity, finite ad-
ditivity

1 Introduction

When laying the foundations for Bayesian statistics we obviously seek nei-
ther to rule out possibilities in an arbitrary way nor to make unnecessary
restrictive assumptions. These considerations have led some of the pioneers
of Bayesianism to avoid the assumption of countable additivity, and instead
to assume only finite additivity of the probability measure. Good, for exam-
ple, in [6] wished to make as few assumptions as possible, so he declined to
strengthen his axiom system by adding countable additivity. This approach
we will term minimalism. It deliberately leaves open the question whether
finitely but not countably additive probability measures exist.

However, the standard assumption nowadays is to strengthen the axiom
to insist on countable additivity. This immediately allows all the theorems
of mathematical probability theory to be used in Bayesian statistics. But
alternative strengthenings of the axiom system are possible. de Finetti [4],
for example, wished to retain the possibility that one might choose a natural
number at random, each number being equally likely to be selected. Let us call
this the requirement of uniform choice. Such probability measures cannot be
countably additive, so to assume they exist means we must forego countable



34 J.V. Howard

additivity as an axiom. We can have minimalism plus countable additivity
or minimalism plus uniform choice, but not both. However, we shall try to
show that there is a third alternative. If minimalism is combined with a new
requirement, realism, it leads to the conclusion that countable additivity is
in fact an innocuous addition to our axiom system. (Realism will basically
be the requirement that we can observe only a finite amount of information
in a finite time.)

The tension between the three desiderata showed clearly in Hill’s discus-
sion of the Fraser–Monette–Ng example in [1] (an interesting modification of
this example is given in [5]). Hill supports the usefulness of allowing finitely
additive uniform distributions over the natural numbers (i.e. uniform choice),
which in this example would lead him into incoherency. However, adding the
realistic assumption that only numbers less than some bound N could be
reported to the participants in the game allows him to escape from the trap.
So realism immediately rules out the paradoxes that uniform choice allows
in. (Another example often cited as showing problems with uniform choice
is the “two envelope paradox”. However, Brams and Kilgour [3] show that
this paradox can also occur with proper probability measures. They suggest
resolving it as a St. Petersburg type paradox.)

Berger and Wolpert, commenting on Hill’s argument, say “Do examples
of the type we are discussing exist for finite sample spaces? If so, such would
seem to provide a counter-example to Professor Hill’s argument. If not, one
could indeed not object, philosophically, to the use of finitely additive mea-
sures.” We shall in fact work with a restricted sample space: although infinite,
the range of possibilities observable in a finite time is always finite. Within
this framework we will assume only finite additivity, but we will show that
essentially this gives no extra generality over assuming countable additivity
(in terms of making probability forecasts over events which can be observed
in a finite time). Hence any paradoxes which might arise (and which can be
observed) would also occur with a countably additive probability measure.
Consequently, we will argue that one may as well always assume countable
additivity, in a sense “without loss of generality”.

2 A Simple Model of a Bayesian Statistician

We assume, firstly, that all data can be digitized without losing any essential
information, provided that enough digits are allowed. Secondly, we assume
that only a finite amount of information can be absorbed per unit time.
Clearly there is no loss of generality in restricting the digits to 0’s and 1’s.
Then our model of any observer (whether human or computer) is that he,
she, or it has a sample space consisting of the set of all binary sequences (we
used this idea in [7]). This is our interpretation of “realism”. Note that our
observers may have infinite lives, so the sample space can be (uncountably)
infinite. The restriction is simply to the amount they can observe in a finite
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Fig. 1. Binary tree of possible observations

time. Effectively Nature chooses a path for them through the binary tree
shown in Fig. 1 below.

In particular cases some or all of the branches of the tree may be finite.
This framework also harmonises well with a decision theory approach to
Statistics, which would allow some of the nodes in the tree to be choice
nodes. For our purposes it suffices to consider trees with chance nodes only.

Sometimes we are almost constrained to think of information as arriving in
a stream of bits. Whenever we do not make direct measurements ourselves,
but instead use a robotic observer (for example, on a space probe to the
moon or Mars, or inside a nuclear reactor), the information will come to us
as a datastream of this form. In general, we do not feel that any significant
information is necessarily lost when we do this: if the probe has sufficiently
good cameras, environmental monitors, and other sensing devices, we think
that we are gathering as much information as if we were there ourselves (even
though without the excitement of walking on another world).

The assumption of realism imposes a strong constraint. It means that
sometimes observation must be thought of fundamentally as a sequential
process rather than as a simple act. We shall show that the assumption leads
naturally to the adoption of countable additivity and the rejection of uniform
choice. However, it is likely that some will prefer to regard observation as an
act rather than a process. This allows them to build models using improper
priors, and to try to develop objective Bayesianism. Unfortunately, it is also
liable to generate paradoxes and contradictions. The realism assumption au-
tomatically stops the paradoxes.

After a finite time has elapsed the observer will have observed some finite
sequence s of 0’s and 1’s. We can define a natural field F of events on the
sample (sequence) space consisting of finite unions of sets of the form
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Ss = {ω :ω an infinite sequence of 0’s and 1’s having
s as an initial finite subsequence} .

This conforms to the requirement that we restrict ourselves to events that
could be observed. We assume our (Bayesian) statistician has a finitely addi-
tive probability measure P on sets in F defined by the numbers P (Ss) (which
we will write as P (s)), for all finite s. So the probability that the sequence
starts with a “0” is P (0), with a “1” followed by a “0” is P (10), etc. P must
satisfy

P (s) = P (s0) + P (s1) for all s .

(s0 is the sequence consisting of the digits in s followed by 0: similarly s1.)
We also require P (s) ≥ 0 for all s and P (0) + P (1) = 1. However, in keeping
with “minimalism”, we do not require that P be countably additive.

But although we do not require it, we still get it, albeit in a vacuous sense.
Suppose an event Ss is a union of countably many disjoint sets of the form
Ssi . Then the union is in fact finite. Hence P (Ss) =

∑
i P (Ssi) and countable

additivity is established.
To show the union is finite we could appeal to Tychonoff’s theorem (the

compactness of the product of compact spaces). A direct argument would be
as follows. If the union is infinite, at least one of Ss0 and Ss1 has an infinite
cover. Say it is Ss0. Then we can extend to s00 or s01, and so on. Continuing
in this way we define an infinite sequence extending s which cannot lie in any
of the Ssi . This contradiction establishes the result. (Note that although in
general Tychonoff’s theorem requires the Axiom of Choice, we do not need it
for this particular case. If at some stage both t0 and t1 are possible extensions
of t we stipulate that t0 will be chosen.)

Hence we can by the extension theorem (see, for example, [2] Theorem 3.1)
extend P to a unique countably additive measure on the σ-field S generated
by F . There is no reason why we should not do this, even if we believe that
ultimately only events in F and their probabilities are basic. We have in no
way restricted the finitely additive measures we allowed on F . It is true that
there may be other extensions of P to S which are only finitely additive, but
why should we ever prefer these. On any observable event the two extensions
agree, so it is a matter of convenience which we choose – and for convenience
σ-additivity always wins. In any case, whenever we have two extensions of
P (say Q and R) no operational test will ever be able to distinguish them.
Whatever is observed in a finite time will be assigned the same probability
by Q and R. Hence nothing fundamental can depend on the choice: we are
not restricting ourselves by always working with the countably additive Q
and ignoring the finitely additive R.

Of course the mathematical results are well known (see [2] or [7]). What
we are claiming is that their significance for the foundations of Bayesian
inference has not been fully appreciated.
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Fig. 2. Uniform sampling of a natural number

3 An Example

Suppose we try, within our structure of a binary tree, to choose a natural
number n at random, all numbers being equally likely. We can imagine the
number is to be given to us as a sequence of n 1’s followed by a 0. (The zero
serves as an end marker.) The tree of possibilities is given in Fig. 2.

We will imagine a machine which prints out a digit every second, and
which has printed nothing but 1’s since it was started a long time ago. We
can see that if the machine ever does print a “0” it must then stop. The
machine is being watched by Ursula (who believes in uniform choice) and
Charles (who favours countable additivity).

At each node the probability of observing another 1 is one, and we have
a finitely (and countably) additive probability measure P on events in F .
The unique countably additive extension Q of P to S gives probability one
to the infinite sequence 111. . . and zero to all other sequences.

There are other extensions (say R) which give weight zero to 111. . . and
which are finitely additive on S. (To prove they exist we need the Axiom of
Choice, which hardly seems in the spirit of making minimal assumptions.)
But why bother with R? Q assigns exactly the same probabilities to anything
that can actually be observed.

Ursula views the sample space as N = {0, 1, 2, . . .}, each element hav-
ing probability zero. Charles thinks the sample space is N ∪ {∞} with
Q ({∞}) = 1. Ursula is certain that the machine will eventually stop. Charles
believes (with probability 1) that it will continue to print 1’s for ever. In one
sense, their views could hardly be more different. (However, they are in to-
tal agreement that the machine will not stop within any particular stated
time T .) If in fact at some point the machine does print a 0 and stop, Ursula
will feel vindicated, but Charles will now think his model of the situation was
wrong. (He is very unlikely to be converted to a belief in uniform choice.) How-
ever Charles can cover himself against this eventuality by making a Dutch
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book against Ursula (see Williamson [8]). She should be prepared to offer
odds of 2n+2 : 1 against n occurring for every n. Hence if Charles stakes 1

2n+1

on n for every n, he will make a profit of at least 1 unit if the machine ever
stops. If the machine does go on for ever, Ursula is wrong (this possibility was
not even in her sample space), but she cannot make a Dutch book against
Charles, who would not accept any bets on {∞}.

The above problem might be compared to a situation where Ursula thinks
a real number will be sampled uniformly in [0, 1], whilst Charles believes it
will be a specific real number outside this range (say π) with certainty. We
have a similar complete disagreement, but neither can now make a Dutch
book against the other. Ursula could offer odds of 1 : 1 against the number
being in [0, 0.5], of 3 : 1 against the number being in [0.5, 0.75], and so on,
but this does not give rise to a Dutch book.

Often problems which start “a number n is chosen at random . . . ” continue
by instructing us to sample another number, x say, depending on the value
of n. (See, for example, the Fraser–Monette–Ng paradox.) But in practice
would we continue to accept Q or R after an event of probability zero had
been observed? The alternative hypothesis (say) that Pn = 1

2n+1 has now got
a likelihood ratio of ∞ in its favour. And similar arguments could be made
against the use of uniform priors for (say) the mean of a Normal distribution.

We can still within our framework choose a real number uniformly be-
tween 0 and 1 to any given level of precision. (Take the finite sequence s to
represent all reals whose binary expansion starts with the digits of s.) How-
ever, if we try to construct a tree corresponding to any of the finitely but
not countably additive probability measures on [0,1] which give probability
zero to all singletons, it will be equivalent (for all sets in F) to the standard
uniform σ-additive measure on [0, 1].

4 Conclusions

We have worked within a framework which allows an infinite sample space,
permits the sampling of real numbers to arbitrary accuracy, and is consis-
tent with a Decision Theory approach to statistics. Within this framework it
appears that there is no loss in generality involved in assuming countable ad-
ditivity as a universal axiom. Moving outside the framework implies a loss of
realism, because we are then assuming that an infinite amount of information
can be observed in a finite time.

It is therefore suggested that the choice of finite or countable additivity
cannot be regarded as a fundamental philosophical problem for Bayesian
statistics. It should rather be regarded as a matter of making a convenient
assumption. Many statisticians will find countable additivity both simpler
and more convenient.
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Abstract. In this work we deal with the quantitative assessment and decomposi-
tion of uncertainty. The decision making process is often accompanied by an un-
certainty propagation exercise in the practice. We first analyze the meaning of
uncertainty propagation from a subjective decision-making point of view. We show
that, in order to quantify uncertainty, one has to resort to the distribution of the
expected utility (U) originated from parameter uncertainty. We undertake the ana-
lytical determination of the moments U . We show that, if one considers the uncer-
tain parameter space as subdivided in alternative preference regions delimited by
indifference hypersurfaces, the moments of U are the sum of the moments of the
expected utility of alternatives in the regions alternatives are preferred. As a con-
sequence, if an alternative is never preferable, it does not contribute to uncertainty.
In order to decompose uncertainty, we focus on the variance of U . By stating of
Sobol’ variance decomposition theorem in the Decision-Theory framework, we show
that the variance of U can be expressed as sum of the variances brought by uncer-
tain parameters individually and/or in groups. We then determine and discuss the
meaning of global importance of parameters. Since parameters associated with the
highest value of the global importance are the most effective in reducing uncertainty,
gathering information on these parameters would reduce uncertainty in the most
effective way. We illustrate the moment calculation and variance decomposition
procedures by means of an analytical example. The application to the uncertainty
analysis of an industrial investment decision-making problem concludes the paper.

Keywords: variance decomposition, global sensitivity analysis, industrial
decision making

1 Introduction

This paper presents a method for the quantification and decomposition of
uncertainty in decision-making (DM). The problem of uncertainty is and
has been widely debated in the literature, with authors proposing a formal
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distinction between risk and uncertainty, other ones rejecting it and com-
ing to a unifying theoretical framework [1, 3, 4, 8–10, 12–16, 20–22, 25, 27–29,
31–33].

The general settings of this paper is that of subjective uncertainty as
dealt with in [12, 16, 22, 30]. de Finetti’s theorem paves the way to the use
of Bayesian inference as a normative tool for DM under uncertainty [22, 30].
Bayesian inference allows to include in the subjective framework uncertainty
generated by lack of knowledge in technical aspects of the problem – an
uncertain failure probability of a piece of equipment or an uncertain pro-
portion of goods that customers will buy [1, 22] – and subjective/expert
judgment [11, 19]. The term “Epistemic” uncertainty [1], and [16] is used
(for a discussion on model uncertainty we refer to [1]). In the remainder of
the paper, the symbol π is used to denote an uncertain quantity (param-
eter); the uncertainty regarding π will be deemed as parametric or epis-
temic (see also [1, 16]). If there is more than one uncertain quantity in the
DM problem, π = {π1, π2, . . . , πn} will be the vector of parameters, and
F = {F1(π1), F2(π2), . . . , Fn(πn} the corresponding vector of epistemic distri-
butions. The symbol π∗ denotes a realization of π. This work has the purpose
of dealing with the quantitative structure of uncertainty, determining how and
how much the uncertainty in alternatives and parameters contributes to the
decision-maker (DMr) uncertainty. In order to state the problem in a quanti-
tative fashion, we start with the analysis of the DM process as usually imple-
mented in the industry [11,30]. The process begins with the identification of
the random events and consequences [11,30]. A decision-support model in the
form of an influence diagram or a decision tree is usually built to represent
the problem [11,30]. The utility assessment for each consequence is performed
next. Subjective probability elicitation is the next step [11,30]. Assuming ex-
changeability [5, 12, 22], and that the DMr does not apply a loss function to
the parameters [5]1, then the subjective probability pi for event i, is:

pi =
∫

πi dF (πi) , (1)

where πi is one of the possible values pi can be assigned and F (·) is the subjec-
tive probability measure for πi. The preferred alternative is the one that max-
imizes expected utility with Eq. (1) determining the DMr subjective prob-
abilities [22, 30]. A numerical uncertainty propagation exercise (uncertainty
analysis2) concludes the process, with the purpose of displaying the DMr un-
certainty in the problem [11,19]. A vector of parameters (π∗′) is sampled from
F. The expected utility (U) of the alternatives is evaluated in correspondence
of the sampled values. Thus, let us say that in this first sampling, the DMr
would choose alternative I corresponding to an expected utility of U ′. In
1 The issue of uncertainty aversion is part of future work of the authors.
2 Most of the standard Decision-Making Software (DATAPRO by the Treeage

Corporation, or Precision Tree by Palisade) are equipped with Monte Carlo based
subroutines for Uncertainty Analysis [41].
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a next sampling, the probabilities would assume a different value (π∗′′) and
the DMr preferred act would be, say, II with an expected utility of U ′′. Now,
if the process is repeated a M times, with M a suitably large sample size for
inspecting the uncertainty space, one gets the distribution of U provoked by
the uncertain parameters. Sometimes also the frequency with which alterna-
tives are selected is registered and called strategy selection frequency [11]. In
a subjective DM framework, epistemic uncertainty propagation is equivalent
to the DMr assigning values π∗ to the parameters according to his subjective
distribution F, and inspecting how he/she would act consequently.

From the above discussion, it is clear that in order to quantify uncertainty
one has to consider the dependence of U on parameters. U becomes a function
of random variable characterized by what we call an epistemic distribution.
As a first task of the paper, we undertake the analytical calculation of the
moments of U . To do so, we use the fact that the uncertain parameter space
(Ω) can be thought of as divided into preferred alternative regions delimited
by indifference hypersurfaces. We show that any lth order epistemic moment
of U is the sum of the moments of the expected utility of alternatives over
the uncertainty space regions where alternatives are preferred. As a conse-
quence, if an alternative is never preferred, it does not contribute to any of
the moments of U , i.e. it does not contribute to uncertainty. The extension
of these results to the central moments of U concludes our analysis on the
quantification of U . We then focus on the analysis of variance of U (VF[U ]),
to determine the contributions of the parameters to uncertainty. We first
state Sobol’ variance decomposition in the DM framework. This enables us
to: 1) state that the alternative contributions to VF[U ] equals the sum of the
contributions of the uncertain parameters taken individually and in groups;

Table 1. List of the symbols used in this work

Symbol Meaning

Ω Parameter uncertainty space
π Vector of the uncertain parameters
π∗ One of the possible values of π

n Number of uncertain parameters
N Number of alternatives
F(·) Epistemic uncertainty distribution of π

aj Alternative j

a∗(π) Preferred alternative at π

uj(π) Utility of alternative j at π

u∗(π) Preferred alternative utility at π

U Expected utility
Ωs Region in which as is preferred
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2) Introduce and compute the global importance of parameters [38,40]. This
last step can have a direct application to uncertainty management. In fact,
global importance was defined so that the parameters associated with the
highest value of their global importance turn out to be the most effective
ones in reducing uncertainty [2,6,7,17,18,23,24,26,34–39]. The knowledge of
which parameter reduces uncertainty in the most effective way is of help to
the DM process, especially in presence of limited resources – time or money –,
since gathering information on the most important parameters would mean
to reduce uncertainty in the most effective way. In Sect. 2, we present an
analytical approach to the uncertainty analysis of U and investigate how the
moments of U can be expressed as functions of the moments of preferred al-
ternatives. In Sect. 3 we propose a variance decomposition method to connect
the uncertainty contributions of alternatives to the uncertainty contributions
of probabilities. In Sect. 4 we illustrate the method by means of a simple
example. In Sect. 5 we present the application of the method to the uncer-
tainty analysis of an industrial decision-making problem. Sect. 6 offers some
conclusions and future work perspectives.

2 Uncertainty Quantification

The purpose of this Section is the computation of the epistemic moments of
U . Table 1 illustrates the notation and symbols used throughout the work.

Let Ω ⊆n, where n is the number of uncertain parameters and π ∈ Ω.
In general, one can write the expected utility as a function of the uncertain
parameters as:

U = u(π) . (2)

We note that U is defined ∀π ∈ Ω, i.e. U : Ω ⊂ R
n → R. We illustrate this

with an example that should also help in clarifying the notation.

Example 1. Suppose that a decision maker faces the choice among two lotter-
ies, I and II, that depend on the outcome of random events 1 and 2 respec-
tively, each of which has two possible outcomes. Let epistemic uncertainty on
the probabilities of the two events be present, and let

F1(π1) =

⎧⎨
⎩1 if 0 ≤ π1 ≤ 1

0 otherwise
and F2(π2) =

⎧⎨
⎩1 if 0 ≤ π2 ≤ 1

0 otherwise

be the respective subjective density functions3. Let ui, i = 1 . . . 4 , the DMr
utility on each of the consequences. Then, the utility of alternatives I and II
are, respectively:
3 A structure of this type emerges in a DM problem of the type discussed in [16].

Suppose the DMr is undecided to bet on team A or B in the following lottery.
He suffers a consequence of u1 or u2 respectively, if team A of a certain sport
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UI = uI (π) = π1u1 + (1 − π1)u2 ,

UII = uII (π) = π2u3 + (1 − π2)u4 .
(3)

At any π, U is equal to the value of the utility of the preferred alternative.
Thus, U as a function of the parameters is written as:

U = u∗ (π) = max [π1u1 + (1 − π1)u2, π2u3 + (1 − π2)u4] . (4)

In order to quantify the effect of the propagation of the uncertainty in the
parameters, one needs to compute the epistemic moments of U . To do so, let
us introduce the following definitions:

Definition 1. We call preference region (Ωs ⊆ Ω) the region of the uncer-
tainty space where alternative s is preferred. We call indifference epistemic
hypersurface, an hypersurface delimiting an uncertainty region.

Let us illustrate the two above definitions by means of example 1. In this
case, the indifference hypersurface is the straight line given by:

π1 = π2(
u3 − u4

u1 − u2
) +

u4 − u2

u1 − u2
(5)

and Ω is subdivided into two regions, ΩI =
{
π1, π2 : π1 ≥ π2(u3−u4

u1−u2
) + u4−u2

u1−u2

}
and ΩII = Ω \ ΩI . For the following values for the utilities: u1 = 1, u2 = 0,
u3 = 2/3, and u4 = 1/3 the indifference line is represented in Fig. 1.

We note that the number of regions is 1 < s < N . In fact, let us say that
there are N alternatives. Suppose that one of the alternatives, namely ak

is preferred ∀π ∈ Ω. Then U = max
[
u1(π), u2(π), . . . , uk(π), . . . , uN(π)

]
=

uk(π) and there is only one region, i.e. Ωs = Ω. If there are two alternatives
that dominate the others, there will be two regions, and so on so forth.

Before coming to an expression for the moments of U , we need the fol-
lowing definitions.

Definition 2. We call the quantity

µs
l,F[U ] =

∫
Ωs

[us(π)]l dF (6)

alternative s contribution to the lth order moment of U .

Definition 3. We call the quantity

M s
l,F[U ] =

∫
Ωs

(us(π) − EF [U ])l dF (7)

contribution of alternative s to the lth order central moment of U .

wins or looses the next game. Similarly, a consequence of u3 or u4 is experienced
if team B of the same or of another sport wins or looses the next game. A is not
playing against B, obviously. If the DMr is not an expert of the sports, he can
be uncertain on the victory probability of the two teams.
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Fig. 1. ΩI and ΩII for the example

We are now ready to show that:

Theorem 1.

µl,F[U ] =
N∑

i=1

µi
l,F[U ] , (8)

Ml,F[U ] =
N∑

i=1

M i
l,F[U ] (9)

i.e. any lth order moment (central or non-central) of U equals the sum of the
contributions to that moment of all the alternatives.

Proof. We carry on first the proof for non-central moments [Eq. (7)]. We note
that at every point π:

U = u∗(π) = max
j

[uj (π)] j = 1, . . . , N , (10)

that is

u∗(π) = uj(π) if uj(π) > uk(π) ∀k = 1, . . . , N, k �= j . (11)

Thus, at every point π, u∗(π) = uj(π), where aj(π) is the preferred alterna-
tive. Let Ωs the region in which alternative s is preferred. Clearly if alternative
s is never preferred Ωs = ∅. Then, utilizing the fact that, by construction,
Ω = Ω1 ∪ Ω2 ∪ . . . ∪ ΩN and the linearity of the integration operator, one
gets:
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µl,F[U ] =
∫

Ω

[u∗(π)]l dF =
∫

Ω1∪Ω2∪...∪ΩN

[u∗(π)]l dF =
N∑

s=1

∫
Ωs

[
uj(π)

]l
dF .

(12)

The extension of the proof to central moments is obtained just noticing that
EF [U ] is a constant with respect to integration. ��
Let us then express VF[U ] as a function of the alternative contributions.

Corollary 1.

EF [U ] =
N∑

s=1

∫
Ωs

us(π)dF =
N∑

i=1

M i
1,F[U ] (13)

and

VF[U ] =
N∑

s=1

∫
Ωs

[us(π)]2 dF −
[

N∑
s=1

∫
Ωs

us(π)dF

]2

=
N∑

i=1

M i
2,F[U ] , (14)

where N is the number of alternatives.

Proof. Equation (13) is immediately proven by Eq. (7), setting l = 1. Equa-
tion (14) is a consequence of the properties of variance and of Eqs. (7)
and (13). ��

Equation (13) states that EF[U ] is the sum of the expected value (accord-
ing to F) of the utility of alternatives in the regions they are preferred.

Equation (14) states that the epistemic variance of U is the sum of the
variance of the utility of alternatives in the regions they are preferred.

3 Variance Decomposition and Global Importance

In order to introduce the notion of parameter global importance [2,17,18,23,
24,34–36], we need focus on the variance of U as a function of the uncertain
parameter, VF[U ]. In particular, we make use of the following.

Theorem 2 (Sobol’, 1990). Let x ∈ [0, 1]n be a set of random independent
variables uniformly distributed in the unitary hypercube 4, and Y = f(x) an
4 We are reporting Sobol’ theorem following the notation originally utilized by

the author in Sobol’ (1993). The choice of proving the theorem is the [0, 1]
space is classical in the numerical integration and Monte Carlo literature. It is
a consequence of the following theorem at the basis of the Monte Carlo method:

Theorem 3. Let FX(x) the distribution function of X and consider the random
variable y = g(x) with g(x) = FX(x). Then y is uniformly distributed in [0, 1].
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integrable function. Then the variance of Y can be uniquely decomposed in
the following sum:

Vx[Y ] =
n∑

i=1

Vi +
∑
i<j

Vi,j +
∑

i<j<m

Vi,j,m . . . + V1,2,...n , (16)

where

Vi,j,...,m =
∫

· · ·
∫

[fi,j...,m(xi,xj , . . . , xm)]2
∏

k=i,j,...,m

dxk , (17)

with

f(x) = f0 +
n∑

i=1

fi(xi) +
∑
i<j

fi,j(xi, xj) + . . . + f(xi, xj , . . . , xn) , (18)

with the fi,j(xi, xj) calculated as follows:

f0 = Ex[Y ] =
∫ · · · ∫ f(x)

∏
k dxk

5

f0 + fi(xi) =
∫ · · · ∫ f(x)

∏
k 
=i dxk ,

f0 + fi(xi) + fi,j(xi,xj) =
∫ · · · ∫ f(x)

∏
k 
=i,j dxk

. . .

(19)

Vi,j,...,m are deemed as interaction terms of order r, where r is the number
of parameters they involve.

∑n
i=1 Vi represents the portion of the variance of

Y explained by the individual parameter uncertainty. Similarly,
∑

i<j Vi,j is
the portion of V explained by terms containing parameter pairs and so on.

Then, one defines the parameter global importance as [6, 7, 36–38,40]:

Φi =
Vi +

∑
j 
=i Vi,j + . . . + V1,2,...n

Vx[Y ]
, (20)

There follows that the random numbers X:

x = F−1
X (u) (15)

have distribution FX(x) if and only if random variable U is uniformly distributed
in the [0, 1] interval.

The above theorem states that any distribution of random variables can be ob-
tained by a deterministic transformation (F−1

X (u)) from numbers uniformly gen-
erated in the [0, 1] space. The fact that once specified FX(u), the operation
x = F−1

X (u) is deterministic explains the reason why Sobol’ theorem, proven in
the [0, 1]n space holds for generic distributions.

5 The notation follows the one of Sobol’ (1993).
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i.e. the ratio of all individual and interaction terms involving xi and Vx[Y ].
Φi is the fraction of Vx[Y ] associated with xi . Φi is used in the practice
to provide guidance in data and information collection [2, 23, 24, 26]. In the
literature, Φi were introduced as uncertainty importance measures, and built
in such a way that the parameter with the highest Φi are the most effective
in reducing Vx[Y ]. One says that they are the most effective in reducing
uncertainty [2, 6, 7, 17, 18, 23, 24, 26, 34–39]. This is related to the traditional
choice of Vx[Y ], in the practice, as the privileged indicator of uncertainty,
and is due to the fact that if Vx[Y ] was reduced to 0, then all the higher
order moment would collapse to 0. In the realm of Decision-Theory we recall
that standard deviation was utilized by Fishburn as a measure of epistemic
uncertainty aversion [16].

In the previous section, we have stated the decomposition of VF[U ] in
terms of alternative contributions to uncertainty. We now want to state the
relationship between alternative contributions and uncertain parameter con-
tributions. Making use of Sobol’ theorem, we are ready to relate the al-
ternative contributions to uncertainty and the parameter contributions to
uncertainty. We can, in fact, prove the following:

Theorem 4. Let Ωi ⊂ Ω denote the subspace obtained fixing πi at a certain
value, Ωi,j the subspace obtained fixing πi and πj and so on so forth, and let
the symbol dF/i mean the integration all the parameters but πi, dF/i, j mean
the integration on all the parameters but i and j, etc. Then it is true that:

N∑
s=1

∫
Ωs

[us(π)]2 dF −
[

N∑
s=1

∫
Ωs

us(π)dF

]2

=

n∑
i=1

∫
dFi

[
N∑

s=1

∫
Ωi∩Ωs

us(π)dF/i

]2

+
∑
i<j

∫
dFi dFj

[
N∑

s=1

∫
Ωi,j∩Ωs

us(π)dF/i, j

−
∫

Ωi∩Ωs

us(π)dF/i −
∫

Ωj∩Ωs

us(π)dF/j + EF[U ]

]2

+ . . . (21)

Proof. It is enough to combine Corollary 1 [Eq. (14)] and Sobol’ Theorem
[Eqs. (16)–(19)]. In fact, both sides of Eq. (21) equal VF[U ]. The right hand
side of Eq. (21) is Sobol’ theorem applied to U , where each of the terms inside
the square is one of the terms in Eq. (19), and the same logic as in Theorem
1 proof has been applied to identify the integration regions. ��
The meaning of Eq. (21) is as follows. The sum of the contributions to un-
certainty of the preferred alternatives equals the sum of the contributions to
uncertainty of the uncertain parameters.



50 E. Borgonovo, L. Peccati

4 An Illustrative Example

In this section we apply the results discussed in Sect. 1, 2 and 3 for the
computation of the moments of U and for its variance decomposition to
Example 1 discussed in Sect. 2.

U as a function of the parameters becomes [Eq. (4)]:

U =

⎧⎨
⎩uI(π) if π ∈ ΩI

uII(π) if π ∈ ΩII

. (22)

Let us then start applying Theorem 1 and Corollary 1 (Sect. 2). We have
[Eq. (13)]:

EF [U ] =
∫

ΩI

(π1u1 + (1 − π1)u2)dπ1 dπ2 +
∫

ΩII

(π2u3 + (1 − π2)u4)dπ1 dπ2

(23)

=
∫ 1

0

∫ 1

π2(
u3−u4
u1−u2

)+
u4−u2
u1−u2

(π1u1 + (1 − π1)u2)dπ1 dπ2

+
∫ 1

0

∫ π2(
u3−u4
u1−u2

)+
u4−u2
u1−u2

0

(π2u3 + (1 − π2)u4)dπ1 dπ2 (24)

Thus:

EF[U ] =
1
6

u2
3 − 3u2u4 + u3u4 + u2

4 − 3u2u3 + 3u2
1

u1 − u2
. (25)

Substituting for the numbers, one gets: EF[U ] = 17
27 . For the calculation of

VF[U ], Eq. (14) becomes:

VF[U ] =
∫

ΩI

{
uI(π) − EF[U ]

}2
dπ1 dπ2 +

∫
ΩII

{
uII(π) − EF[U ]

}2
dπ1 dπ2

= 2.95 ×10−2 . (26)

The contributions to the variance of alternatives I and II are:∫ 1

0

∫ 1

π2(
u3−u4
u1−u2

)+
u4−u2
u1−u2

{(π1u1 + (1 − π1)u2) − EF[U ]}2 dπ1 dπ2

= 1.89 ×10−2 (27)∫ 1

0

∫ π2(
u3−u4
u1−u2

)+
u4−u2
u1−u2

0

{
(π2u3 + (1 − π2)u4)2 − EF[U ]

}2
dπ1 dπ2

= 1.06 ×10−2 . (28)

Theorem 1 allows to compute the remaining central moments of U through
a similar approach. The moments up to order six and their alternative con-
tributions are displayed in Table 2.
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Table 2 shows that I is the alternative that provides the highest contri-
bution to the central moments of even order of U . The odd-order central
moments of U see a positive contribution from I and a negative one from II,
with the contributions of I having a higher absolute value.

Let us now turn to the assessment of variance contribution of the pa-
rameters – the probabilities in this case – [Eq. (21)]. The left hand side, in
accordance with Sobol’ variance decomposition method, will contain three
terms: V1, V2, the two individual terms, and V1,2, the interaction term. We
have:

V1 =
∫ 1

0

(
∫ 1

0

u(π)dπ2 − EF [U ])2 dπ1 = 2.52 ×10−2 (29)

V2 =
∫ 1

0

(
∫ 1

0

u(π)dπ1 − EF [U ])2 dπ2 = 2.3 ×10−3 (30)

and

V1,2 =
∫ 1

0

∫ 1

0

{
u(π) −

∫ 1

0

u(π)dπ1 −
∫ 1

0

u(π)dπ2 + EF [U ]
}2

dπ1 dπ2

= 2.0 ×10−3 .

The global importance of π1 and π2 is, then, respectively:

Φ1 =
V1 + V12

V
= 0.92 , (31)

Φ2 =
V2 + V12

V
= 0.14 . (32)

The results in Eqs. (31) and (32) indicate that π1 is the most important
parameter, while π2 and the interaction term play a less relevant role. We
recall that both π1 and π2 were assigned uniformly in [0, 1]. Thus, although
the DMr is, in principle, “equally uncertain” on the parameters, the above
indication means that the most effective way for the DMr to reduce His/Her
uncertainty would be to reduce uncertainty in π1.

Table 2. Expected value and central moments of U

l Ml,F [U ] MI
l,F [U ] MII

l,F [U ]

2 2.95 ×10−2 1.89 ×10−2 1.06 ×10−2

3 2.10 ×10−3 4.36 ×10−3 − 2.27 ×10−3

4 1.98 ×10−3 1.14 ×10−3 5.24 ×10−4

5 0.290 ×10−3 0.42 ×10−3 − 1.27 ×10−3

6 0.17 ×10−3 0.14 ×10−3 0.031 ×10−3
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Let us now compare this result to the contribution of the probabilities to
the uncertainty of each of the alternatives. The probability global importance
on I, ΦI , is immediately computed as:

ΦI
1 = 1, ΦI

2 = 0 . (33)

That is, π1 has global importance equal to unity on alternative I. In fact,
uncertainty in π2 is non-influential on the uncertainty in I since π2 is non-
influential on uI(π). As a consequence, there are also no interaction terms.
For alternative II, symmetrically:

ΦII
1 = 0, ΦII

2 = 1 . (34)

These results reflect the fact that uncertainty in lottery I is provoked by π1

alone and uncertainty in lottery II is provoked by π2 alone. However, when
one turns to the uncertainty of the expected utility U of the optimal act,
both probabilities play a role (Sect. 1). Mathematically, the coupling effect
is attributable to the presence of the max function [Eq. (10)]. Based on the
above numbers, it is easy to see that VF[uI ] > VF[uII ]. Utilizing VF[uI ] as
a measure of dispersion or uncertainty, one would say that I is the alterna-
tive characterized by the highest uncertainty. I is also the alternative that
contributes to uncertainty the most (Table 2). This effect is also consistent
with the fact uI(π) depends on π1, which is the most influential uncertain
parameter. However, while this can provide some insights on the structure
of uncertainty, and particularly in the structure of the uncertainty space, it
may not be a generalizable result, i.e. the most uncertain alternative is not
necessarily the most influential one on the overall uncertainty. This happens
if, for example, an uncertain alternative is dominated by a certain one. Then
no uncertainty in the decision would even be present.

5 Case Study Application: Conflict-of-Interest
Uncertainty Analysis

We apply the previous framework to the uncertainty analysis of the following
industrial investment decision problem. The contractual structure is displayed

Fig. 2. The contractual structure evidences the conflict of interest generating the
DM problem
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in Fig. 2. A company is constructor of a production facility. At the same time,
the company has won the sale concession bid, and in order to operate the
facility and exploit the concession a special purpose company (SPC) has been
founded, owned at 95% by the company. The remaining 5% is in the hands
of a partner that, at the moment of the decision, has the option of stepping
in at 50% of the project.

The partner option lasts one year. After the start of construction, a change
in some conditions allows a reduction in the construction price. Management
has to make a decision on whether to allocate the benefit to the company as
a constructor or leave it to the SPC in the form of an investment cost discount.
Leaving the benefit to SPC gives the highest benefit from a financial point
of view. However, the company would be exposed to the partner option,
i.e., the possibility of the partner stepping back into the project and thus
reducing the benefit by 45%. Besides, there is a regulatory risk related to the
possibility of the Regulator reducing the sale price, in view of the reduced
construction cost. In this case, the financial benefit would decrease to zero.
Furthermore, since leaving the benefit to the SPC would mean to recover
it along the installation life, the company assesses the probability that an
unfavorable event stopped the life of the project (Operation Risk).

The problem can be represented by the decision tree illustrated in Fig. 3.
Figure 3 also shows the utilities assessed for each consequence. The un-

certain events and the corresponding probabilities are illustrated in Table 3.
The parameters are the probabilities of the three events (π = π1, π2, π3)

which the DMr assigned uniformly in [0, 1]. Hence: Ω = [0, 1]× [0, 1]× [0, 1].
Let us now discuss the uncertainty quantification and decomposition in

the framework of Eqs. (12), (13) and (14). As a first task, we have to determine

Fig. 3. The DM model for the case study
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Table 3. Uncertain events and probabilities for the case study

Event Outcomes Probabilities

Regulatory intervention Price reduced\Price Not Reduced π1\(1 − π1)

Partner option Option exercised\Option not exercised π2\(1 − π2)

Unfavorable event Project interrupted\ π3\(1 − π3)

Project not interrupted

the indifference hypersurface. The condition uA(π) = uB(π) leads to the
surface:

π3 > 1 − 2
3

1
(1 − π1)(2 − π2)

(35)

The two preference regions are, then:

ΩA =
{

π : π3 > 1 − 2
3

1
(1 − π1)(2 − π2)

}
and ΩB = Ω − ΩA .

The indifference surface is plotted in Fig. 4.
The value of VF[U ] is 2.13 ×10−3. The first 6 central moments of the

epistemic distribution of U are shown in Table 4, which also illustrates the
alternative contributions.

Table 4 shows that uncertainty is driven by alternative B, whose contri-
butions to the moments are constantly much higher than the contributions
of A.

Fig. 4. Indifference surface and alternative preference regions for the case study
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We now turn to the analysis of the contributions of the parameters (the
three event probabilities in this case) to VF[U ]. The left hand side of Theo-
rem 3 [Eq. (21)], leads to the results for the variance decomposition on the
probabilities shown in Table 5.

The corresponding parameter importance is reported in Table 6.
The results shows that π1 and π3 are the most influential parameters on

the DMr uncertainty, with a less relevant role played by π2.
Figure 5 compares the global importance of the parameters to their indi-

vidual term contributions.

Table 4. Alternative contributions to uncertainty: central moments up to l = 6

l Ml,F [U ] MA
l,F [U ] MB

l,F [U ]

2 2.13 ×10−3 2.23 ×10−4 1.91 ×10−3

3 3.39 ×10−4 − 3.70 ×10−6 3.42 ×10−4

4 7.16 ×10−05 6.14 ×10−8 7.16 ×10−5

5 1.66 ×10−05 − 1.02 ×10−9 1.66 ×10−5

6 4.12 ×10−06 1.69 ×10−11 4.12 ×10−6

Table 5. Results of the uncertainty decomposition for the case study

Term Value

V1 4.62 ×10−4

V2 1.05 ×10−4

V3 4.62 ×10−4

V1,2 1.33 ×10−4

V1,3 6.79 ×10−4

V2,3 1.33 ×10−4

V1,2,3 1.6 ×10−4

Table 6. Global Importance of the uncertain probabilities in the case study

π Φ

π1 0.67

π2 0.25

π3 0.67
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Fig. 5. Individual (left of each pair of rectangles) parameter contribution to Φi

Figure 5 shows that π1 and π3 are more relevant than π2 also when taken
individually. However, it is immediate to note that interaction terms play
a relevant role. In particular, it is significant the interaction between π1 and
π3, with V1,3/VF[U ] = 0.32. π1 and π3 individually, and through their inter-
action, explain more than 80% of the DM uncertainty. The practical impli-
cation of this result is as follows (see our discussion in Sect. 3): collecting
information on the probability of a regulatory intervention (π1) and of an
unfavorable event during operation (π3) would be the most effective way for
reducing uncertainty in the decision.

A numerical propagation of uncertainty was also performed, with 10000
Monte Carlo trials. The results obtained numerically confirmed the ones uti-
lizing the methodology proposed above.

6 Conclusions

In this work, we have dealt with a framework for the quantification and
decomposition of uncertainty in DM problems. We have seen that, in order
to quantify uncertainty, the decision expected utility (U) must be considered
a function of the uncertain parameters [Eq. (2)]. The epistemic distribution
of U by propagation of the uncertainty in π has then been the target of our
analysis.

We have shown that an analytical calculation of the central and non-
central moments of U is feasible and that, furthermore, all the moments can
be decomposed in the sum of the contributions to uncertainty of the alter-
natives. Instrumental to this result have been the definitions of alternative
preference region and of indifference hypersurface.

We have then focused on VF[U ]. We have restated Sobol’ variance de-
composition theorem in the DM framework and utilized it to find the de-
composition of VF[U ] as a function of the parameters. The concept of global
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importance of the parameters probabilities has then be straightforwardly in-
troduced. This has enabled us to provide an equality relating alternative
contributions to VF[U ] and the variance contributions of the parameters.

To illustrate the previous results, we have first made use of an analyti-
cal example, highlighting the procedure for the calculation of the moments
(central and non central) of U as sum of the contributions to uncertainty of
the alternatives. We have computed the first 6 moments of U and analyzed
the contribution to such moments of the two alternatives of the example. We
have seen that, although the DMr was, in principle, equally uncertain on the
probabilities, the first alternative contributed to uncertainty the most. We
have then computed the probability global importance and determined the
influence of the uncertain parameters on the DMr uncertainty. We have seen
that although the probabilities were characterized by the same uncertainty
distribution, the probability related to the first random event (π1) influenced
the uncertainty in the decision the most. We have then compared the influ-
ence of the uncertain parameters on each alternative to their influence on
the overall decision. We have noted that, although π1 influenced the sole un-
certainty in I and π2 influenced only the uncertainty in II, both π1 and π2

resulted influential on the overall uncertainty in the decision.
We have then applied the method to an industrial case study, and have

been able to identify the alternative contributions to uncertainty, as well as
the probability contributions. In particular, we have seen that the probabil-
ity of regulatory intervention and of an unfavorable event during operation
resulted as the most influential ones. This would mean that reducing the
uncertainty on these probabilities would provide the most efficient way of
reducing the uncertainty in the problem.

It is part of the future work of the authors the study of the influence
of additional information on the importance of uncertain parameter, and
the analysis of the relationship between parameter global importance and
expected value of perfect and sample information.
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Abstract. The paper studies the connection between the form of the similarity
function of a decision-maker and his willingness to diversify. It is shown that pref-
erence for diversification obtain for both high and low aspiration levels if the simi-
larity function is convex in the Euclidean distance. However, a decision-maker with
a concave similarity function and relatively high aspiration level will fail to choose
diversified acts, even if his utility function is concave.

Keywords: case-based decision theory, similarity, preference for diversifica-
tion

1 Introduction

The expected utility theory predicts that a decision-maker with a concave
von-Neumann–Morgenstern utility function should exhibit preference for di-
versification. In other words,whenever he is indifferent between two acts, he
should weakly prefer any linear combination of these two acts to each of them,
see Dekel (1989) and Chateauneuf and Tallon (2002). Since the expected
utility theory does not allow to distinguish between risk-aversion (which is
equivalent to preferences for diversification) and decreasing marginal utility,
both of which are implied by the concavity of the von-Neumann–Morgenstern
utility, risk-aversion is commonly assumed in applications. Empirical and ex-
perimental data, however contradict this assumption, the home-bias, i.e. the
unwillingness of investors to hold diversified portfolios, see Kang and Stulz
(1997) and Coval and Moskowitz (1999) being the most popular example.

Chateauneuf and Tallon (2002) address the issue of preferences for diversi-
fication in the context of Choquet expected utility. They show that concavity
of the utility function is neither necessary nor sufficient for preferences for
diversification to obtain. They demonstrate that convexity of the capacity is
necessary for preferences for diversification to obtain.
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In this paper I propose a different way to separate marginal utility from
risk-preferences by using the case-based decision theory. Whereas the form
of the utility function determines whether the decision-maker experiences
increasing or decreasing marginal utility, his preferences for diversification
are determined by his aspiration level and by his similarity perceptions.

The case-based decision theory proposed by Gilboa and Schmeidler (1995,
1997, 2001) models decisions in situations of structural ignorance, in which
neither states of the world, nor their probabilities can be naturally derived
from the description of the problem. It is assumed that a decision-maker
can only learn from experience, by evaluating an act based on its own past
performance and on the performance of acts similar to it. Similarity between
two acts a and a′ can be interpreted as the likelihood that the choice of act
a′ leads to a utility realization identical to the one derived from the choice
of a.

In this paper, I use a modified version of the model of Gilboa and Schmeid-
ler (1996) in which a case-based decision-maker is facing an identical decision
in each period of time. Whereas in Gilboa and Schmeidler (1996) two acts
are similar only if they are identical, in the current paper the set of acts is
assumed to be a multidimensional simplex and the similarity is a decreasing
function of the Euclidean distance between acts.

Since a case-based decision-maker has very little information about the
decision problem he is facing, his initial decisions might be due to chance.
Hence, his preferences if elicited in the initial periods might vary significantly.
To avoid this initial randomness, I use the limit evaluation of acts after the
same decision has been repeated for a long period of time to define the pref-
erences of the decision-maker. It is with respect to these limit preferences
that preference for diversification is defined.

The findings of the paper show that the willingness to diversify depends
on two factors: the height of the aspiration level and the curvature of the
similarity function, but not on the curvature of the utility function. Espe-
cially, a decision-maker with a relatively low aspiration level will express
preference for diversification independently of the form of his similarity func-
tion. However, if the aspiration level is chosen sufficiently high, preference for
diversification obtains only if the similarity function is convex.

A convex similarity function implies that the greater the distance of two
acts from the referential act, the less is the decision-maker able to distinguish
between these two acts with respect to their similarity to the referential one.
If we are ready to assume this property, then preference for diversification
will obtain independently of the aspiration level of the decision-maker. Bil-
lot, Gilboa and Schmeidler (2004) have recently provided an axiomatization
of a case-based rule that uses an exponential similarity function to model
similarity between acts situated on the real line. However, their model does
not provide an intuition of why the exponential relation might be a sensible
one. This paper provides a support for the usage of an exponential simi-
larity function. Indeed, if willingness to diversify seems to be an appealing
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behavioral property, then a convex similarity function would insure that this
property holds in a model with case-based decision-makers. On the other
hand, concave similarity functions might explain why investors fail to choose
a diversified portfolio and thus provide an alternative justification of the
home-bias.

The rest of the paper is structured as follows: in Sect. 2, I present the
model, which is similar to the model of Gilboa and Schmeidler (1996). In
Sect. 3, I discuss preference for diversification when the similarity function is
convex, whereas Sect. 3 deals with the case of a concave similarity function.
Sect. 5 discusses some related results from the literature and concludes. The
proofs of all results are stated in the appendix.

2 The Model

I use a version of the model of Gilboa and Schmeidler (1996). A decision-
maker faces an identical decision problem p in each period t = 1, 2 . . ..
A ≡ [0; 1]K with K ∈ N denoting the set of available acts. One can think
about the corner acts (the unit vectors of the K-dimensional simplex) as
of projects with unknown probability distribution of returns, into which
a decision-maker would like to invest his initial endowment of one unit. The
set A then represents all possible allocations of his endowment among the
projects available. Let δ1 . . . δK denote the random payoffs of the corner acts
and suppose that for all i = 1 . . .K, the distribution of δi is continuous and
i.i.d. over time (although δi and δj might be correlated) with finite expecta-
tion, finite variance and bounded support. Obviously, the payoff of any act
in the simplex can be expressed as a linear combination of δ1 . . . δK .

If the utility function of the decision-maker is bounded and continuous,
then the utility resulting from the choice of a ∈ A is an i.i.d. random vari-
able Ua with a continuous distribution function (Πa)a∈A. The distributions
(Πa)a∈A have finite expectations µa, finite variance σa and bounded and
convex supports ∆a. µa is continuous with respect to a.

The decision-maker’s perception of similarity is described by a function
s : A × A → [0; 1]:

s(a; a) = 1 ,

s(a; a′) = s(a′; a) ,

s(ei; ej) = 0

for all distinct i and j ∈ {1 . . .K}, where ei denotes the ith unit vector. s
depends only on the Euclidean distance between a and a′.

The memory of the decision-maker is represented by a set of cases. A case
is a triple of a problem encountered, an act chosen and a utility realization
achieved. Since the problem is identical in each period of time, a case is
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characterized by an act and a utility realization. As in Gilboa and Schmeid-
ler (1996), the memory Mt contains only cases actually encountered by the
decision-maker until period t:

Mt = ((aτ ; uτ ))τ=1,2...t .

The aspiration level of the decision-maker in period t is ūt. In the present
paper, I will assume that ūt = ū = const and concentrate only on the influ-
ence of ū and s on the willingness to diversify, thus neglecting the effect of
aspiration adaptation.

The case-based decision-rule prescribes choosing the act with maximal
cumulative utility in each period of time. The cumulative utility of an act a
at time t is given by:

Ut(a) =
t∑

τ=1

s(a; aτ )(uτ − ū) .

The set of all possible decisions paths that can be observed can be written as

S0 = {ω = (at; ut; ū)t=1,2... | at ∈ A, ut ∈ ∆} ,

where ∆ = ∪a∈A∆a denotes the set of possible utility realizations. Let S1 be
the set of those paths on which the decision-maker chooses arg maxa∈A Ut (a)
in each period:

S1 =
{

ω ∈ S0 | at = argmax
a∈A

Ut(a) for all t = 1, 2 . . .

}
.

As well as at and ut all variables introduced below depend on the path ω.
I neglect this dependence in the notation for simplicity of exposition.

Ct (a) denotes the set of periods preceding t in which a has been chosen:

Ct(a) = {τ < t | aτ = a}

Let P be a probability measure on S1 consistent with (Πa)a∈A, as in Gilboa
and Schmeidler (1996, p. 11).

Denote by

π (a) = lim
t→∞

|Ct (a)|
t

the frequency with which a is chosen, if the limit on the right hand side exists.
In general, this frequency will be path-dependent.

Willingness to diversify is defined as in Dekel (1989) and Chateauneuf
and Tallon (2002). Assume that

a1 ∼ a2 ∼ . . . ∼ an .
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Then a decision maker exhibits preferences for diversification if for any
β1 . . . βn ≥ 0 such that

∑n
i=1 βi = 1

n∑
i=1

βiai � ak for any k = 1 . . . n .

The preferences of a case-based decision-maker are captured by the cumu-
lative utility he assigns to different acts. Clearly, these preferences will in
general vary over time. Hence, to derive meaningful statements about the
willingness to diversify, it seems reasonable to consider the preferences of
a decision-maker in the limit as t → ∞. Then, a1 ∼ a2 will correspond to

lim
t→∞

Ut(a1)
Ut(a2)

= 1 .

Preference for diversification will obtain if for all a1 . . . an such that

lim
t→∞

Ut(ak)
Ut(al)

= 1 for all k and l ∈ {1 . . . n}
limt→∞ Ut (

∑n
i=1 βiai)

limt→∞ Ut(ak)
≥ 1 ,

if both the numerator and the denominator converge to +∞ and

limt→∞ Ut (
∑n

i=1 βiai)
limt→∞ Ut(ak)

≤ 1 ,

if the numerator and the denominator converge to −∞. Note that the def-
inition of preference for diversification depends (through Ut) on the chosen
decision path. However, it will be shown that the emergence of preferences
for diversification will depend only on the aspiration level and on the form of
the similarity function and not on the specific path ω.

3 Preference for Diversification
with a Convex Similarity Function

Consider a decision-maker whose perception of similarity is described by

s(a; a′) = f (‖a − a′‖) ,

with f ′ < 0. The matrix

f ′′dE · (dE)T + d2Ef ′

is assumed to be positive definite for a �= a′, where E denotes the Euclidean
distance functional. Note that this assumption implies that for a given a
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Fig. 1. Convex similarity function

s (a; a′) is convex on any set Â ⊂ A such that a /∈ Â. This follows from the
fact that for a �= a′ s (a; a′) is differentiable with:

d2s = f ′′dE · (dE)T + d2Ef ′ .

The similarity function s (·; ·) is illustrated in Fig. 1 for the case K = 2.
Note that the similarity function itself cannot be convex over the whole

set [0; 1]K since it must assume a maximum at s(a; a). However, I will refer
to similarity functions described above as convex.

Let a1 = ā denote the act chosen in the first period and assume that
ā ∈ int(A). Ω describes the set of possible paths:

Ω =

{
ω ∈ S1

∣∣∣ ūt = ū for all t = 1, 2, . . .

a1 = ā

}
.

Let P denote a probability measure on Ω consistent with (Πa)a∈A as in
Gilboa and Schmeidler (1996, p. 11).

Proposition 1. Suppose that the similarity function is convex. If the aspi-
ration level satisfies µa < ū for all a ∈ A then for all a and a′ ∈ A

lim
t→∞

Ut(a)
Ut(a′)

= 1

holds P -almost surely.

Proposition 2. Suppose that the similarity function is convex. If the aspi-
ration level satisfies µa > ū for some a ∈ A, then P -almost surely an act

a∗ ∈ Ã = {a ∈ A | µa > ū}

is chosen with frequency 1 in the limit.
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Proposition 2 says that if the aspiration level of the decision-maker is rel-
atively low, he will choose a single act a∗ with frequency one in the limit.
Moreover, µa∗ > ū holds. In this case,

lim
t→∞Ut(a) = +∞

holds for all a ∈ A and

lim
t→∞

Ut (a∗)
Ut (al)

=
1

s (a∗; al)
≥ 1

lim
t→∞

Ut (ak)
Ut (al)

=
s (a∗; ak)
s (a∗; al)

.

If a∗ = ei for some i ∈ {1 . . .K}, there will be no distinct ak and al such that

lim
t→∞

Ut(ak)
Ut(al)

= 1

holds. Hence, the condition of preference for diversification is trivially satis-
fied. If, however a∗ ∈ int(A), then

s(a∗; aj) = s(a∗; ai) ,

iff

‖a∗ − aj‖ = ‖a − ai‖ . (1)

Obviously, then for any a1 . . . an satisfying (1) for any i, j ∈ {1 . . . n},

‖a∗ − ak‖ ≥
∥∥∥∥∥a∗ −

n∑
i=1

βiai

∥∥∥∥∥
for every βi ∈ [0; 1],

∑n
i=1 βi = 1. Hence,

s

(
n∑

i=1

βiai; a∗
)

≥ s (a∗; ai) = s (a∗; aj)

for all i and j ∈ {1 . . . n} and, therefore
∑n

i=1 βiai is (weakly) preferred to ai

in the limit for all i = 1 . . . n:

lim
t→∞

Ut (
∑n

i=1 βiai)
Ut (ai)

=
s (a∗;

∑n
i=1 βiai)

s (a∗; ai)
≥ 1 .

In the case of high aspiration level (Proposition 1), since all acts fulfill

lim
t→∞

Ut(a)
Ut (a′)

= 1 ,

preference for diversification trivially obtains.
The following corollary obtains:

Corollary 1. If the similarity function is convex, preference for diversifica-
tion obtains independently of the aspiration level of the decision-maker.
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4 The Case of Concave Similarity Function

Assumption 1.
s(a; a′) = f (‖a − a′‖) ,

where f ′ < 0 and the matrix

f ′′dE · (dE)T + d2Ef ′ ,

is negative definite.

Note that this assumption implies that s is concave.
s is illustrated in Fig. 2 for K = 2.
The concavity of s implies that the greater the distance of two acts a′

and a′′ from the reference act a, the more the decision-maker distinguishes
between a′ and a′′ with respect to their similarity to a.

The next proposition shows how a decision-maker will behave if his aspi-
ration level is higher than the mean utility of the initially chosen act.

Proposition 3. Let the similarity function s(a; a′) of a decision-maker be
concave. If ū > µā and

• ū > max {µe1 ; . . . ; µeK}, then

P

{
ω ∈ Ω | ∃π(a) : [0; 1]K → [0; 1] and

π
(
ei
)

π (ej)
=

µej − ū

µei − ū
, π(a) = 0 for a ∈ int(A)

}
= 1 ;

• ū < µei for all i ∈ K ′ ⊂ {1 . . .K}, then

P
{
ω ∈ Ω | ∃π(a) : [0; 1] → [0; 1] and ∃ i ∈ K ′ such that π

(
ei
)

= 1
}

= 1 .

Fig. 2. Concave similarity
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If the aspiration level of a decision-maker is relatively low, then the result of
Corollary 1 holds and preference for diversification obtains.

However, this is not the case for relatively high aspiration levels. The
following corollary obtains:

Corollary 2. If the similarity function is concave, a decision-maker exhibits
preference for diversification if and only if his aspiration level satisfies ū < µa

for some a ∈ A.

To see that the result of the corollary indeed holds, consider the case of
ū > maxi∈{1...K} {µei}. An examination of the proof of Proposition 3 shows
that in this case:

lim
t→∞

Ut

(
ei
)

Ut (ej)
= 1

for all i and j ∈ {1 . . .K} and

lim
t→∞Ut(a) = −∞

for all a ∈ A, whereas

lim
t→∞

Ut(a)
Ut (ei)

= lim
t→∞

Ut(a)
Ut (ei)

> 1

for all i ∈ {1 . . . K} and all a ∈ int(A). Note, however that any interior act
can be expressed as

a =
K∑

i=1

βie
i

for some non-negative βi with
∑K

i=1 βi = 1 and still the corner acts ei are
strictly preferred to a ∈ int (A) in the limit. Hence, the decision-maker does
not exhibit preference for diversification in this case. Note further that this
result does not depend on the form of the utility function u.

5 Conclusion

The paper has shown that in the context of the case-based decision theory
preferences for risk can be separated from marginal utility by means of the
similarity function. A convex similarity function implies preference for di-
versification in the limit, independently of the form of the utility function.
A concave similarity function is consistent with preference for diversification
only if the aspiration level is sufficiently low.

The findings of the paper are consistent with the model of preferences
for diversity proposed by Nehring and Puppe (2002, 2003). Differently from
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the approach of Gilboa and Schmeidler (1997), Nehring and Puppe derive
a similarity function indirectly by first imposing conditions guaranteeing pref-
erence for diversity and then concluding what the similarity perceptions of
a decision-maker with such a utility function might be. The similarity relation
obtained is symmetric and transitive, but not necessarily complete. Nehring
and Puppe (1999) compute the similarity function corresponding to prefer-
ences for diversity over acts situated on a one-dimensional simplex. They
conclude that preference for diversity implies a similarity function which is
convex in the Euclidean distance. Hence, despite the differences in the struc-
ture of the models, the implications of the curvature of the similarity function
seem to be similar in both settings.

Up to now, few works have used the concept of similarity in case-based
decisions. Gilboa and Schmeidler (2001, Chap. 19) show that positive (nega-
tive) similarity between goods can be interpreted in terms of complementarity
(substitutability). Blonski (1999) proposes to model social structures using
similarity functions. The similarity describes how relevant the experience of
other members of the society is for the decision-maker at hand. He shows
that different equilibria emerge depending on the structure of the society.
However, both papers use similarity functions on finite set of acts, whereas
similarity functions defined on uncountable sets are still largely unstudied,
except for Gayer (2003).

Empirical evidence about similarity perceptions in economic situations is
by large missing, the few exceptions being Buschena and Zilberman (1995,
1999) and Zizzo (2002). Their findings show that similarity between acts is
related to the Euclidean distance between payoffs and influences decisions
under risk. The present paper stresses that the exact form of the depen-
dence on the Euclidean distance might matter at least in certain applica-
tions.

Given the difference in results obtained depending on the form of the
similarity function, the question of deriving the ”correct” similarity function
arises. Shepard (1987) addresses the question of deriving the probability that
an act a′ would deliver the same outcome u as an act a actually observed
to give an outcome u. This probability obviously can be interpreted as the
similarity function in the model of Gilboa and Schmeidler (1997). The deriva-
tion follows the Bayesian updating rule for a given prior distribution over the
set of a having identical realizations u. It can be shown, see Shepard (1987)
that for an isotropic prior, e.g. a uniform prior, the resulting similarity func-
tion is convex in the Euclidean distance between the acts, see figure1 in
Tenebaum and Griffiths (2001). Hence, Bayesian updating of a uniform prior
can be used to rationalize a convex similarity function. A convex similarity
function would on its turn imply preference for diversification in the present
context. Non-isotropic priors, however, can lead to concavities in the simi-
larity function and help explain empirically observed paradoxes such as the
home-bias.
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A Appendix

I start with two lemmas which will be useful in proving the results.

Lemma 1. If ū < µā, then the expected time, during which the decision-
maker will hold ā is infinite. If ū > µā, then the decision-maker will almost
surely switch in finite time to a corner act ei such that

a = max
i∈{1...K}

∥∥ei − ā
∥∥ .

Proof (of Lemma 1). Suppose first that ū < µā. The cumulative utility of ā,
as long as the investor holds it, is then a random walk with differences

µā − ū .

Since the expected value of the difference is µā− ū > 0 and the process starts
at 0, the expected time until the first period in which the process reaches
0 is ∞. But, as long as Ut (ā) > 0, Ut(a) = s (a; ā)Ut (ā) ≥ Ut (ā), since
s (a; ā) ∈ [0; 1] and, therefore, ā is chosen.

Now suppose that ū > µā. Then, the expected increments of U (ā) are
negative. Therefore, when the process starts at 0, it will cross any finite
barrier below 0 in finite time. Let t be the first period, at which Ut (ā) < 0.
Then Ut(a) = s (a; ā)Ut (ā) < 0. Since s = (a; a′) is strictly decreasing in the
distance between the acts, Ut(a) has a maximum either at one of the corner
acts. It follows that

at+1 = max
i∈{1...K}

∥∥ei − ā
∥∥ .

��
Lemma 2. Define Vt(a) as:

Vt(a) =
∑

τ∈Ct(a)

[uτ (a) − ūt] .

An act a is only abandoned in periods t̃ such that Vt̃(a) < 0.

Proof (of Lemma 2). In Lemma 1, it has already been shown that the state-
ment of the lemma is true up to time t̄ such that

t̄ = min {t | Ut (ā) < 0} .

To argue by induction, suppose that the statement holds up to a period
t−1 and consider period t. Denote by a1 . . . al the acts that have been chosen
up to period t in this order, al = at. Suppose that Vt(a) ≥ 0. Then the
cumulative utility of al at t can be written as:
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Ut (al) =
l∑

i=1
i�=l

Vt(ai)s(ai; al) + Vt(al)

≥
l∑

i=1
i�=l

Vt̄′′ (ai)s(ai; al) + Vt̄′′ (al) ,

where t̄′′ + 1 denotes the last period prior to t in which the decision-maker
has switched to al from a different act. The inequality follows from the fact
that Vt̄′′ (al) ≤ 0, since either act al has been chosen for the first time at t′′

and therefore Vt̄′′ (al) = 0 or al has been abandoned for the last time at some
time t′′ + 1 < t̄′′ + 1 and then

Vt̄′′(al) = Vt′′(al) < 0

must hold. Since the acts different from al have not been chosen after period
t̄′′,

Vt̄′′(ai) = Vt(ai)

holds for i ∈ {1 . . . l − 1}.
Furthermore, since at̄′′+1 = al, it must be that for all a ∈ A:

Ut̄′′(al) =
l∑

i=1
i�=l

Vt̄′′ (ai)s(ai; al) + Vt̄′′ (al) ≥ Ut̄′′(a)

holds. But then

Ut(al) − Ut(a) =
l∑

i=1
i�=l

Vt(ai) [s(ai; al) − s(ai; a)] + Vt(al)(1 − s(al; a))

≥
l∑

i=1
i�=l

Vt̄′′ (ai) [s(ai; al) − s(ai; a)] + Vt̄′′(al)(1 − s(al; a))

= Ut̄′′(al) − Ut̄′′(a) ≥ 0 .

Hence, at+1 = al if Vt (al) ≥ 0 and hence, an act al can be only abandoned
in a period t̃ such that Vt (al) < 0 holds. ��
Proof (of Proposition 1). The proof of the proposition proceeds in two steps.
First, I show that each open subset of A is chosen by the decision-maker for
an infinite number of periods. This is an implication of the convexity of the
similarity function and the negativity of net expected payoffs. Second, the
negativity of net expected payoffs and the i.i.d. process of payoffs are used to
demonstrate that the difference between the cumulative utilities of any two
acts remains bounded in the limit. This implies the result of the proposition.
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Lemma 3. There is no x ∈ int(A) such that for all acts a ∈ Bx (ε) (where
Bx (ε) is an open ball with radius ε around x ∈ (0; 1)), |Ct(a)| < ∞ holds.

Proof (of Lemma 3). First note that no single act a can be chosen with
frequency one, since then for any act a′ �= a, the µa − ū < 0 would imply:

lim
t→∞ [Ut(a) − Ut (a′)] = lim

t→∞Vt(a) [1 − s (a′; a)] → −∞ a.s.

Hence, choosing a in each period of time would contradict the case-based
rule.

Suppose, therefore that only two acts a′ and a′′ are chosen infinitely often.
Hence, there is a time T such that at ∈ {a′; a′′} for all t > T . Denote the
distinct acts chosen in periods 1 . . . T by a1 . . . al. The cumulative utility of
act a at t > T is given by:

Ut(a) = Vt (a′) s (a; a′) + Vt (a′′) s (a; a′′) +
l∑

i=1

Vt (ai) s (a; ai) .

By Lemma 2, a decision-maker will only switch away from an act a if Vt(a) <
0. Hence, Vt (ai) < 0 holds for all i = 1 . . . l. Whereas Vt (ai) are finite for
all i = 1 . . . l , Vt (a′) and Vt (a′′) a.s. tend to −∞, i.e. for almost each ω
there exists some time t (ω) such that Vt (a′) and Vt (a′′) are negative for all
t ≥ t (ω).

Since the similarity function is convex, it follows that Ut (a) is strictly
concave on the intervals:(

a′; min
{

min
i∈{1...l}

{ai | ai > a′} ; a′′
})

(
max

{
0; max

i∈{1...l}
{ai | ai < a′}

}
; a′

)
,

as well as on (
a′′; min

{
min

i∈{1...T}
{ai | ai > a′′} ; 1

})
(

max
{

a′; max
i∈{1...T}

{ai | ai < a′′}
}

; a′′
)

.

Hence, on almost each path, there exists a period of time T ′ (ω) such that
there exist acts a′′′ and a′v such that

Ut (a′′′) > Ut (a′) ,

Ut (a′v) > Ut (a′′)

for all t ≥ T ′ (ω) and still at ∈ {a′; a′′} is chosen. This obviously contradicts
the case-based rule. Clearly, the argument does not depend on the number of
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acts which are chosen infinitely often, as long as this number remains finite.
Hence, an infinite (but countable) set of acts A′ must be chosen infinitely
often.

Suppose now that A′ does not contain an act out of Bx (ε) for some
x ∈ int(A). By an argument similar to the above, we could find an element
of Bx (ε), ã which has been chosen only for a finite number of times and show
that from some point of time T ′′ (ω), the cumulative utility of the acts in the
interval

(supA′\ [x + ε; 1] ; ã)

is a concave function for all t ≥ T ′′ (ω). Hence, for all

a ∈ (sup A′\ [x + ε; 1] ; ã)

Ut(a) > Ut (sup A′\ [x + ε; 1]) .

By the continuity of the cumulative utility function, there exists an act a′ ∈ A′

which is chosen infinitely often and the cumulative utility of which lies below
the cumulative utility of a in each period t ≥ T ′′ (ω), a contradiction. ��
Remark 1. A similar argument can be used to show that every corner act in
the simplex will be chosen infinitely often.

To complete the proof of the proposition, I now show that the difference
between the cumulative utilities of any two acts:

Ut(a) − Ut (a′) =: εt (a; a′) (2)

a.s. remains bounded over time. Since the expected mean payoffs of all acts
are negative,

lim
t→∞ Ut(a) = −∞

a.s. for all acts a ∈ A. This implies that

lim
t→∞

Ut(a)
Ut (a′)

= lim
t→∞

Ut(a)
Ut(a) + εt (a; a′)

= 1

holds on all paths on which εt (a; a′) remains bounded.
Hence, the proof of the following lemma would complete the proof of

Proposition 1:

Lemma 4. Define εt (a; a′) as in (2). On almost each path ω, εt (a; a′) is
bounded.

Proof (of Lemma 4). Consider first the acts in A′ as defined in the proof of
Lemma 3. Consider a period t in which the decision-maker switches to an act
a ∈ A′ from a different act a′ ∈ A′. Obviously, to satisfy the case-based rule:
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Ut−1 (a′) ≥ Ut−1(a)

and

Ut(a) ≥ Ut (a′)

must hold. Hence,

Ut(a) − Ut (a′) ∈
[
0;
(

ū − min
u∈∆a′

u

)
(1 − s (a; a′))

]
.

Now note, that starting from the interval[
0;
(

ū − min
u∈∆a′

u

)
(1 − s (a; a′))

]
,

the difference between the cumulative utilities of a and a′ behaves as a random
walk on a half-line with negative expected increments:

[1 − s (a; a′)] (µa − ū) < 0 ,

as long as a is chosen. Define ε̃t (a; a′) as

ε̃t (a; a′) = εt (a; a′) if εt (a; a′) ≥ 0
ε̃t (a; a′) = 0 , else .

Such a random walk has an accessible atom at 0 (Meyn and Tweedie (1996,
p. 105) give a definition of an accessible atom). Moreover, each set of the type
[0; c] is regular, see Meyn and Tweedie (1996, p. 278). This means that the
state 0 is reached in finite expected time, starting from each set of the type
[0; c] and especially, starting from the set[

0;
(

ū − min
u∈∆a′

u

)
(1 − s (a; a′))

]
.

Denote the supremum of these expected times by N and observe that it is
finite according to the definition of regular sets. Note that

ū1 − min
u∈∆a′

u

equals the supremum of εt (a; a′) in a period, in which the decision-maker
switches from an arbitrary ã to a. Observe as well that since the probabil-
ity that εt (a; a′) = 0 is 0 (for atomless distributions Πa), it follows that
ε̃t (a; a′) = 0 a.s. coincides with εt (a; a′) < 0. Hence, the decision-maker
switches away from a when ε̃t (a; a′) = 0 is reached or in an earlier period. It
follows that the expected time for which an arbitrary act a is held in a row
is finite and uniformly bounded from above.
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It remains to show that εt (a; a′) is bounded on almost each path of divi-
dend realizations. At times at which a is chosen εt (a; a′) never falls below
0, since this would contradict choosing the act with highest cumulative util-
ity in each period. Suppose, therefore that there is a sequence of periods
t′, t′′. . . , such that εt′ (a; a′), εt′′ (a; a′). . . grows to infinity. In other words,
suppose that for each M > 0 there is a k, such that εtn (a; a′) > M for all
n > k. It has been shown above that each other act in A′ and especially
a′ is chosen infinitely many times on almost each path of dividend realiza-
tions. But each time that the act a′ is chosen, the difference εt (a; a′) falls
below 0. If εtn (a; a′) > M, the time needed to return to the origin is at
least

M
(1 − s (a; a′)) [ū1 − minu∈∆a u]

,

which grows to infinity, as εtn and, hence, M becomes very large. However,
as has been explained above, the expected time for return to the origin 0
of ε̃t (a; a′) is finite and uniformly bounded above by N . The Law of Large
Numbers then implies that for each κ > 0 on almost each path of dividend
realizations there is a period K (ω), such that∑n

i=1 τi

n
≤ N + κ

for all n ≥ K (ω), where τi denotes the time needed for ε̃t (a; a′) to reach
the origin, once a has been chosen. On the other hand, the assumption
that εtn (a; a′) → ∞ implies that the stopping times τi become infinitely
large as the time grows – a contradiction. Hence, almost each sequence
εt′ (a; a′), εt′′ (a; a′). . . (where t′, t′′. . . denote periods at which a is cho-
sen) is bounded from above. A symmetric argument for a′ shows that
εt (a; a′) is bounded from below. It follows that on almost each path ω ∈
Ω

lim
t→∞

Ut(a)
Ut (a′)

= lim
t→∞

Ut(a)
Ut(a) + εt (a; a′)

= 1

holds for all acts a, a′ ∈ A′.
By Lemma 3, there is no open subset of A such that A′ does not contain

an act out of this interval, hence for each ε > 0, and x ∈ int(A), there is an
a ∈ A′ ∩ Bx (ε). Moreover, for all ε > 0,

lim
t→∞

Ut (ã)
Ut (a)

= 1 ,

where ã ∈ A′ ∩ Bx (ε) and a ∈ A′, a �= ã. Since

lim
ε→0

A′ ∩ Bx (ε) = x
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and Ut (ã) is continuous in ã, it follows that

lim
t→∞

Ut (x)
Ut(a)

= 1 ,

even if x /∈ A′. This completes the proof of the proposition. ��
Proof (of Proposition 2). The proof of Proposition 1 has shown that if there
is an open subset Ã ⊂ [0; 1]K such that

µa − ū > 0

for all a ∈ Ã, then the decision-maker will eventually choose an act out of
this set. By continuity of µa with respect to a, if Ã is not an open set, it must
consist of a single corner act. By Remark 1, every corner act is also eventually
chosen by the decision-maker. Moreover, by the proof of proposition 2, it
cannot be that only acts outside Ã are chosen infinitely often. This means
that at least one act a ∈ Ã will be chosen infinitely often. Suppose to the
contrary of the statement of the proposition that there are two acts from Ã,
a and a′, which are chosen with positive frequency. It is easy to show that
this leads to a contradiction.

Indeed, consider the periods z1a, z2a,. . .∈ N at which the decision-maker
switches to act a and denote by z1a′ , z2a′ ,. . .∈ N the times, at which the
decision-maker switches to a′. Then the proof of Lemma 2 shows that:

Vz1a(a) > Vz1a′ (a) = Vz2α(a) > Vz2a′ (a) = Vz3a(a) > . . .

But these inequalities imply that Vt(a), which is a random walk with positive
expected increment µa − ū > 0, crosses each of the infinitely many bound-
aries Vzka

(a) from above. Since, however, there is a positive probability that
a random walk with positive expected increment starting from a given point,
never crosses a boundary lying below this point, see Grimmet and Stirzaker
(1994, p. 144), and since the stopping times are independently distributed,
it follows that the probability of infinitely many switches between a and a′

is 0. Hence, only one of these two acts can be chosen with positive frequency
in the limit.

Alternatively, suppose that an act a′ from the set A\Ã is chosen infinitely
often with an act from Ã. Then, with probability 1, the cumulative utility of
a will become infinitely high, whereas the cumulative utility of a′ will become
infinitely low, as the number of periods grows to infinity. Hence, choosing act
a′ infinitely often will contradict the case-based decision rule, as well. ��
Proof (of Proposition 3). It has already been shown, see Lemma 1 that for
µā − ū < 0, the investor switches in finite time to a corner act. Let ei be
the first corner act chosen at some time t̄, such that t̄ = min {t | Ut (ā) < 0}.
Two cases are possible: either µei − ū < 0 or µei − ū > 0. Then at time t > t̄
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such that aτ = ei for all t̄ < τ ≤ t, the cumulative utility of an act a can be
written as:

Ut(a) = Vt̄ (ā) s (a; ā) + Vt

(
ei
)
s
(
a; ei

)
.

As long as Vt

(
ei
) ≥ 0, ei is chosen, according to Lemma 2. If µei−ū > 0 holds,

then Vt

(
ei
)

> 0 holds infinitely long in expectation. If, however, µei − ū < 0,
then

Vt

(
ei
)

<
Vt̄ (ā)

(
s
(
ej ; ā

)− s
(
ei; ā

))
1 − s (ei; 1)

< 0

obtains in finite time for some j ∈ {1 . . .K}. Let now t̄′ denote

t̄′ = min

{
t | Vt (0) <

Vt̄ (ā)
(
s
(
ej; ā

)− s
(
ei; ā

))
1 − s (0; 1)

for some j ∈ {1 . . .K}
}

.

Note that at t̄′ the cumulative utility of a = ej is:

Ut̄′
(
ej
)

= Vt̄ (ā) s
(
ej ; ā

)
.

Moreover, since now Vt̄ (ā) < 0, Vt̄′ (0) < 0 and s is concave, it follows that
at t̄′ Ut̄′(a) is convex for every a ∈ A. Therefore, the optimal act is a corner
one. Now restrain ej to belong to the set:

K̃ = arg max
k∈{1...K}\i

{
Ut̄′

(
ek
)}

.

Hence,

Ut̄′
(
ej
)

= Vt̄ (ā) s
(
ej; ā

)
> Vt̄ (ā) s

(
ei; ā

)
+ Vt̄′

(
ei
)

= Ut̄′
(
ei
)

,

so that one of the acts ej in set K̃ is chosen.
Again, if µej−ū > 0, then a = ej will be held infinitely long in expectation,

whereas if µej − ū < 0, then the cumulative utility of ej becomes lower than
the cumulative utility of any other corner act in finite time. ��
Lemma 5. at ∈

{
ek
}K

k=1
for all t > t̄.

Proof (of Lemma 5). It has already been shown that the statement holds
until period t̄′. To argue by induction, suppose that only corner acts have
been chosen up to some time t. At time t, the cumulative utility of an act a
is given by:

Ut(a) = Vt (ā) s (a; ā) +
K∑

k=1

Vt

(
ek
)
s
(
ek; a

)
.

Let at = el. As shown in Lemma 2, if Vt

(
el
) ≥ 0, then at+1 = el. If, however

Vt

(
el
)

< 0, then, by Lemma 2, Vt

(
ek
) ≤ 0 holds for all k = 1 . . .K with strict

inequality for all corner acts selected at least once in the past. Since s (·; ·) is
a concave function, Ut(a) becomes convex and has a corner maximum. Hence,
at+1 ∈ {

ek
}K

k=1
. ��
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Consider first the case of µek < ū for all k ∈ {1 . . .K}.
Lemma 6. Each of the corner acts ek, k ∈ {1 . . .K} satisfies lim

t→∞
∣∣Ct

(
ek
)∣∣

= ∞.

Proof (of Lemma 6). Suppose that one of the corner acts is not chosen in-
finitely often. Let this be act ek Obviously, since the number of corner acts
is finite, at least one of them must be chosen infinitely often. Let this be act
ej . Then, it follows that

lim
t→∞ Ut

(
ej
)

= lim
t→∞Vt̄ (ā) s

(
ej; ā

)
+ Vt

(
ej
)

= −∞ ,

since Vt̄ (ā) is finite and µej − ū < 0, whereas Ut

(
ek
)

remains finite. Hence,
a.s. there is a time T (ω) such that

Ut

(
ej
)

< Ut

(
ek
)

for all t > T (ω) and still at = ej in some of the periods in contradiction to
the case-based rule. ��
Now, consider the following process: let k, l ∈ {1 . . .K}, k �= l and

εt̄

(
ek; el

)
= Vt̄ (ā)

[
s
(
ek; ā

)− s
(
el; ā

)]
εt+1 (1; 0) =

⎧⎨
⎩εt + ut

(
δk
t

)− ū , if εt ≥ 0

εt + ut

(
δl
t

)− ū , if εt < 0
.

εt

(
ek; el

)
represents the difference between the cumulative utilities of the

acts ek and el after period t̄. To see this note that for t ≥ t̄,

Ut

(
ek
)− Ut

(
el
)

=
[
Vt

(
ek
)

+ Vt̄ (ā) s
(
ek; ā

)]− [
Vt

(
el
)

+ Vt̄ (ā) s
(
el; ā

)]
,

=
[
Vt

(
ek
)− Vt

(
el
)]

+ Vt̄ (ā)
[
s
(
ek; ā

)− s
(
el; ā

)]
= εt

(
ek; el

)
.

An argument analogous to the one used to prove lemma 4 shows that
εt

(
ek; el

)
is bounded on almost each path ω and therefore:

lim
t→∞

Ut

(
ek
)

Ut (el)
= lim

t→∞
Ut

(
el
)

+ εt

(
ek; el

)
Ut (el)

= 1

with probability 1. Hence,

lim
t→∞

[
Vt

(
ek
)

+ Vt̄ (ā) s
(
ek; ā

)]
[Vt (el) + Vt̄ (ā) s (el; ā)]

= 1 ,

lim
t→∞

[∣∣Ct

(
ek
)∣∣∑

τ∈Ct(ek)
[uτ −ū]
|Ct(ek)| + Vt̄ (ā) s

(
ek; ā

)]
[
|Ct (el)|∑τ∈Ct(el)

[uτ−ū]
|Ct(el)| + Vt̄ (ā) s (el; ā)

] = 1 .
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Since
∣∣Ct

(
ek
)∣∣ → ∞ and

∣∣Ct

(
el
)∣∣ → ∞ on almost each path, it follows

according to the Law of Large Numbers that

lim
t→∞

∑
τ∈Ct(ek) [uτ − ū]

|Ct (ek)| = µek − ū ,

lim
t→∞

∑
τ∈Ct(el) [uτ − ū]

|Ct (el)| = µel − ū

obtain almost surely in the limit. Hence,

lim
t→∞

[∣∣Ct

(
ek
)∣∣ (µek − ū) + Vt̄ (ā) s

(
ek; ā

)]
[|Ct (el)| (µel − ū) + Vt̄ (ā) s (el; ā)]

= 1 .

lim
t→∞

[∣∣Ct

(
ek
)∣∣ (µek − ū) + Vt̄ (ā) s

(
ek; ā

)]
[|Ct (el)| (µel − ū) + Vt̄ (ā) s (el; ā)]

= lim
t→∞

[ |Ct(ek)|
|Ct(el)| (µek − ū) +

Vt̄(ā)s(ek;ā)
|Ct(el)|

]
[
(µel − ū) + Vt̄(ā)s(el;ā)

|Ct(el)|
]

= lim
t→∞

|Ct(ek)|
|Ct(el)| (µek − ū)

(µel − ū)
= 1

almost surely holds (since Vt̄ (ā) is finite on almost all paths, it does not in-
fluence the limit behavior). Therefore, the limit frequencies π

(
ek
)

and π
(
el
)

satisfy

π
(
ek
)

π (el)
= lim

t→∞

∣∣Ct

(
ek
)∣∣

|Ct (el)| =
µel − ū

µek − ū
.

If at least one of the mean utilities µek exceeds ū, then applying the argument
of the proof of Proposition 2 shows that one of the acts with µek > ū is chosen
with frequency 1 in the limit. ��
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Abstract. Uncertainty, pessimism or greater risk aversion on the part of high risk
consumers benefit the low risk consumers who are not fully insured in the separating
equilibrium of the Rothschild–Stiglitz insurance market model.
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1 Introduction

Economists distinguish two kinds of asymmetric information: Moral hazard
means that the action taken by an agent is not or not perfectly observable
by others. The term adverse selection signifies that the type (characteristics)
of an agent is not perfectly observable ex ante by others. The term first-best
refers to the hypothetical case where everything is observable by everybody.
In an adverse selection model, the first-best implies that each type can be
dealt with separately.

Here we are concerned with a situation of adverse selection. The typical
market solution in such models is second-best in the following sense: Whereas
the “worst” types achieve their first-best outcome, the “better” types end up
with less utility than in the first-best case. We shall focus on the model of
a competitive insurance market introduced by Rothschild and Stiglitz (1976)
which is particularly transparent and easy to analyze. Every consumer re-
ceives fair and full insurance in the first-best case of their model. In the sep-
arating equilibrium under asymmetric information, the high risk consumers
still achieve their first-best outcome, that is, fair and full insurance. The low
risk consumers, however, end up with a contract that offers fair but less than
full insurance to them which, while preferable to their alternative choices
∗ Comments of a referee are much appreciated.
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(full insurance at unfair odds or no insurance), is inferior to their first-best
outcome. The reason is simply this: If the low risk consumers where offered
fair and full insurance (at the low risk odds), then this contract would strictly
dominate the contract that offers fair and full insurance at the high risk odds.
Consequently, it would attract all of the consumers. Hence “self-selection” or
“incentive-compatibility” can only be satisfied, if the low risk consumers are
prevented from achieving their first-best outcome. Thus they suffer from the
presence of the high risk consumers from whom they cannot be distinguished
ex ante.

Now suppose that prior to insurance, the world looks grimmer to high
risk consumers than it actually is. Would this do further harm to low risk
consumers? We shall argue that low risk consumers can benefit from the fact
that the subjective perception of the world by high risk consumers is more
negative than the situation presents itself to an objective outside observer.
One such instance occurs when a high risk consumer’s subjective probability
of an accident is higher than the objective probability. Another instance is
when high risk consumers perceive some uncertainty rather than merely risk.
Finally, it turns out that an increase in risk aversion on the part of high risk
consumers can have a similar beneficial effect on low risk consumers.

The Rothschild–Stiglitz model assumes that all consumers are identical
prior to insurance, except for the probability of an accident. It implicitly
assumes that probabilities (risks) are objective or can be treated as such:
Consumers and insurance providers base their decisions on the same odds.
But its central findings are robust with respect to small deviations from these
assumptions. Therefore, we can easily study local variations of the model. We
are going to treat the original model as a benchmark case and consider its
underlying probabilities as the objective ones. The local variations can be sub-
jective in nature: uncertainty, pessimism, or change in risk aversion. Clearly,
in a purely decision-theoretic context, such subjective variations would have
an effect on the choices made by the individual experiencing them. They
would also affect the alternatives offered to that individual by a monop-
olist. In a competitive insurance market environment, however, subjective
perceptions become irrelevant (or of secondary importance) for the market
opportunities of the high risk consumers: They still get fair and full insur-
ance (at their objective odds) or, possibly, overinsurance. All that insurance
providers care about are the objective probabilities. Market forces (free entry
and exit) then assure that at the separating equilibrium only objectively fair
(actuarially fair) contracts will be offered.

Since individuals often have difficulties to correctly assess small probabil-
ities such as the probability of an accident, an investigation of the influence
of subjective characteristics, especially subjective accident probabilities, on
equilibrium outcomes is warranted.1 The low risk consumers will be better

1 We hasten to add that we assume the distortions between objective and subjec-
tive probabilities to be limited to the extent that the distinction between low
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off under each of the proposed variations. The reason is that in each of these
cases, the relevant part of a high risk consumer’s indifference curve through
his point of fair and full insurance becomes flatter and, consequently, inter-
sects the low risk fair odds line at a higher level. Therefore, the self-selection
constraint becomes binding at a point that represents more, but still not full
insurance to low risk consumers. Interestingly enough, similar small subjec-
tive variations with regard to the characteristics of low risk consumers do not
affect the second-best outcome at all.

Demands and attempts for more transparency in the financial services sec-
tor, in particular in commercial and central banking have intensified in recent
years.2 Charges of improper behavior against major US insurance companies
could easily lead to a campaign for enhanced transparency in the insurance
industry. Our findings imply that attempts to educate consumers about the
objective accident probabilities, in order to reduce subjective deviations in
perceptions, may prove detrimental to the welfare of some consumers without
improving the welfare of others. Therefore, suggestions for more transparency
in the insurance market – specifically aimed at educating consumers about
accident probabilities – could be questionable and controversial.

We also study briefly the consequences of a change of objective accident
probabilities and find that certain effects are strikingly different from those
caused by comparable changes in subjective accident probabilities. We con-
clude that the distinction between objective model parameters and subjective
characteristics gives rise to very insightful comparative statics.

The next section analyzes the underlying individual decision model. The
third section examines equilibrium effects. The fourth section concludes.

2 The Individual Insurance Problem

Our analysis rests on the simple model of a competitive insurance market
developed by Rothschild and Stiglitz. We first deal with individual demand
for insurance.

There are two states of nature, s = 1, 2. With probability 1 − p, where
0 < p < 1, the good state 1 occurs in which the individual does not have
an accident and has income or wealth W > 0. With probability p, the bad
state 2 occurs where the individual does have an accident, incurs damage D,
0 < D < W , and has reduced income W − D. Insurance alters the income
pattern across the two states. Let Ws denote income in state s, s = 1, 2.

risk and high risk consumers persists under the subjective point of view. Let
us further emphasize that insurance companies are assumed to have sufficient
experience and expertise to accurately assess the objective accident probabilities
of existing risk classes, notwithstanding the fact that they cannot observe the
risk type of the next person walking through the door.

2 Geraats (2002) summarizes the debate on central bank transparency.
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The consumer’s preferences for income patterns (W1, W2) are represented
by the expected utility functional

EU(p, W1, W2) = (1 − p)U(W1) + pU(W2) , (1)

where U(·) represents the utility of money income and p is the probability
of an accident. We assume U(0) = 0 and that U is twice differentiable with
U ′ > 0 and U ′′ < 0.

The uninsured individual has income pattern E = (E1, E2) = (W, W−D).
We assume that a person can hold at most one insurance policy. If the individ-
ual insures himself, he pays a premium α1 to an insurance company and in re-
turn will be compensated by the amount α̂2 in case of an accident. The result-
ing income pattern is (W1, W2) = (W −α1, W −D+α2) = (E1−α1, E2 +α2)
where α1 is the premium and α2 ≡ α̂2−α1 is the net compensation. The pair
of net trades α = (−α1, α2) completely describes an insurance contract. In
the following diagrams, we use α as a label for the resulting income pattern,
E + α. Let ρ = ρ(α) = α2/α1 denote the individual return on insurance so
that 1/ρ is the relative price of insurance.

Full insurance obtains, if W1 = W2. Denote τ ≡ (1 − p)/p which is the
marginal rate of substitution at each point along the full insurance (45 ◦)
line. Fair insurance or fair odds means that ex ante the insurance company
breaks even on the contract, that is, its expected profit is zero:

Π(p, α) = (1 − p)α1 − pα2 = 0 . (2)

This amounts to ρ(α) = τ . The company makes a positive expected profit, if
the odds are unfair for the insured, i.e., ρ(α) < τ . It makes an expected loss,
if the odds are favorable for the insured, i.e., ρ(α) > τ .

In the remainder of this section, we determine the individual’s optimal
insurance contract when he is given a choice amongst all contracts with a fixed
return, ρ̄. From now on, p is interpreted as the objective probability of an
accident and is the basis for the calculation of expected profits. Thus the
assumption is that insurance companies use objective probabilities whereas
an individual seeking insurance may assess the odds differently.

2.1 Benchmark Case: Objective Beliefs

The benchmark case is the classical situation of Rothschild and Stiglitz where
both insured and insurers base their decisions on the same (objective) acci-
dent probabilities. In this case, the individual’s optimal insurance purchase
is as depicted in Fig. 1.

If the odds are fair, ρ̄ = τ , the individual purchases fair and full insur-
ance, corresponding to the contract α. If the odds are favorable, ρ̄ > τ , the
individual overinsures himself, as in contract β. If the odds are unfair, ρ̄ < τ ,
then two possibilities arise. As long as ρ̄ exceeds the marginal rate of substi-
tution at E, the individual under-insures himself. He purchases some, but less
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Fig. 1. Individual choices

than full insurance as in contract γ. For smaller ρ̄, the individual does not
purchase any insurance. In fact, if ρ̄ happened to be less than the marginal
rate of substitution at E and short sales were feasible, the individual would
short sell insurance.

2.2 Pessimistic Beliefs

Here we assume that the individual holds subjective beliefs regarding the
probability of an accident and that these beliefs are pessimistic.

The subjective probability of an accident is q > p. If offered objectively
fair odds, the individual perceives subjectively favorable odds and chooses the
over-insurance contract δ over the full insurance contract α in Fig. 2 where Ū

and
=

U are indifference curves of an individual with objective and pessimistic
subjective beliefs, respectively. More importantly, we observe

Fact 1. At any income pair (W1, W2), the indifference curve based on pes-
simistic beliefs is flatter than the indifference curve associated with the ob-
jective probabilities.
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Fig. 2. Pessimism

2.3 Uncertainty

We maintain the assumption of an objective probability p of an accident.
However, the individual now faces subjective uncertainty rather than risk.
Subjective uncertainty (Knightian uncertainty, ambiguity) refers to situations
where an individual has difficulties to assign any precise probabilities which
is different from assigning the wrong probabilities. This sort of uncertainty
is described by means of a capacity (non-additive probability measure, fuzzy
probability measure) µ which assigns a number µ(T ) ∈ [0, 1] to every subset
T of the state space S = {1, 2} with the properties

(i) µ(∅) = 0 and µ(S) = 1;
(ii) 0 ≤ µ({1}) ≤ 1 and 0 ≤ µ({2}) ≤ 1.

In addition, it is assumed that the individual is uncertainty averse which in
the current situation is tantamount to convexity of µ:

(iii) µ({1}) + µ({2}) < 1.

An ordinary (additive) probability measure π on S satisfies π({1})+π({2}) =
1. If µ({1}) = µ({2}) = 0, we have the case of total ignorance, described
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by the capacity ω with ω(S) = 1 and ω(T ) = 0 for T �= S. Since we are
interested in small subjective deviations from the objective beliefs, we shall
further assume

(iv) µ({1}) + µ({2}) > 0,

which rules out total ignorance. It turns out that with two states, a capacity
µ satisfies (iii) and (iv) if and only if it is a simple capacity different from
total ignorance. µ is called simple, if there exist λ ∈ [0, 1] and an additive
probability measure π such that µ(S) = 1 and µ(T ) = λ · π(T ) for T �= S.
A simple capacity as a set function can also be written in the form

µ = (1 − λ) · ω + λ · π . (3)

The individual evaluates insurance contracts according to his Choquet Ex-
pected Utility (CEU) based on the given von-Neumann-Morgenstern utility
function U3. For our purposes it suffices to observe that for a simple capacity
of the form (3) and an income pair (W1, W2), CEU assumes the form

CEU(λ; π; W1, W2) = λ · [π({1})U(W1) + π({2})U(W2)]
+ (1 − λ) · min

s
U(Ws) .

To isolate the effect of uncertainty, we restrict ourselves to the case

(v) π({1}) = 1 − p, π({2}) = p, 0 < λ < 1.

Assuming π({2}) > p would reinforce the effect – which follows from the
combined arguments of the current and the previous subsection. In view of
(v), the expression (4) can be rewritten

CEU(λ; p; W1, W2) =λ · [(1 − p)U(W1) + pU(W2)]
+ (1 − λ) · min

s
U(Ws) .

Next define p∗ = λ · p < p and p∗ = λ · p + 1 − λ > p. Further denote
τ∗ = (1 − p∗)/p∗ and τ∗ = (1 − p∗)/p∗. Then (5) amounts to

CEU(λ; p; W1, W2) =

⎧⎪⎪⎨
⎪⎪⎩

EU(p∗, W1, W2) if W1 < W2 ;

EU(p, W1, W2) if W1 = W2 ;

EU(p∗, W1, W2) if W1 > W2 .

Since p∗ < p < p∗, this shows the following

Fact 2. In the presence of uncertainty,

3 Gilboa (1987), Schmeidler (1989), and Sarin and Wakker (1992) provide a system
of axioms for the representation of beliefs by capacities and of preferences by
a Choquet integral of utilities with respect to these capacities.
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1. at points below the full insurance line, the indifference curve is flatter
than without uncertainty;

2. at points above the full insurance line, the indifference curve is steeper
than without uncertainty;

3. at points on the full insurance line, the indifference curve has a kink.

This fact is illustrated in Fig. 3 where the kinked indifference curve
=

U reflects
subjective uncertainty whereas Ū corresponds to objective beliefs. If the in-
dividual can choose between all contracts with fair odds, ρ̄ = τ , then he will
choose the full insurance contract α. Incidentally, a full insurance contract
will be chosen not only when ρ̄ = τ , but whenever the odds are fixed at some
ρ̄ ∈ [τ∗, τ∗]. Since τ∗ < τ < τ∗, this result differs from the benchmark case.
The result is the counterpart of the main theorem of Dow and Werlang (1992)
regarding portfolio choice, as already mentioned by them; ibid., p. 198. The
result also fits into the framework of Segal and Spivak (1990) who distin-
guish between first and second order risk aversion. The uncertainty aversion

Fig. 3. Increased risk aversion
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associated with simple capacities implies “first order risk aversion” in their
terminology.

2.4 Increased Risk Aversion

Here we assume that the individual holds objective beliefs and consider the
effect of a change in risk attitude. To be specific, let rA(U, x) = −U ′′(x)/U ′(x)
denote the Arrow-Pratt measure of absolute risk aversion at x ≥ 0. For
example, the utility function U(x) = −e−ax with constant a > 0 yields
constant absolute risk aversion a. Now suppose that the individual becomes
more risk averse in the sense that U is replaced by a twice differentiable von-
Neumann-Morgenstern utility function V with V (0) = 0, V ′ > 0, V ′′ < 0,
and such that

rA(V, x) > rA(U, x) for all x ≥ 0 . (4)

The situation of Fig. 4 obtains, that is

Fact 3. Suppose (4). Then:

1. At points on the full insurance line, U -indifference curves and V -indiffer-
ence curves have the same absolute slope, τ .

2. At strictly positive points below the full insurance line, the V -indifference
curve is flatter than the U -indifference curve.

The first assertion is obvious. To establish the second one, consider an income
pair (W1, W2) with W1 > W2 > 0 and set W0 = (W1 + W2)/2 > 0. Then
W1 > W0 > W2 > 0. (W0, W0) is a point on the full insurance line at which
both indifference curves have absolute slope τ . The absolute slope of the U -
indifference curve at (W1, W2) is τ · U ′(W1)/U ′(W2). The absolute slope of
the V -indifference curve at (W1, W2) is τ · V ′(W1)/V ′(W2). Now

lnU ′(W1) = lnU ′(W0) +
∫ W1

W0

[U ′′(x)/U ′(x)]dx .

lnV ′(W1) = lnV ′(W0) +
∫ W1

W0

[V ′′(x)/V ′(x)]dx .

By (6), U ′′/U ′ > V ′′/V ′. Hence U ′(W1) = U ′(W0)·Û1 and V ′(W1) = V ′(W0)·
V̂1 with Û1 > V̂1. In an analogous way, we find that U ′(W2) = U ′(W0) · Û2

and V ′(W2) = V ′(W0) · V̂2 with Û2 < V̂2. Consequently, U ′(W1)/U ′(W2) =
Û1/Û2 > V̂1/V̂2 = V ′(W1)/V ′(W2) from where the assertion follows.

Notice that in (4), we can replace, for x > 0, the absolute risk aver-
sion measures, rA(U, x) and rA(V, x), by the relative risk aversion measures,
rR(U, x) = xrA(U, x) and rR(V, x) = xrA(V, x), respectively.
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Fig. 4. Separating equilibrium

3 Equilibrium in Competitive Insurance Markets

In what follows, the Rothschild–Stiglitz model of a competitive insurance
market serves as the benchmark case. There exist two classes (types) of con-
sumers (individuals): low risk and high risk types, with respective objective
accident probabilities pL and pH and 0 < pL < pH < 1. In the first-best situ-
ation where consumer types can be observed by an insurance company, each
type would receive actuarially fair and full insurance. However, an adverse
selection problem exists. Under asymmetric information, only the individuals
know their types while an insurance company cannot determine the type of
an individual ex ante. The company knows, however, that there are these two
types of consumers. It also knows the objective accident probability and the
fraction of each consumer class.
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3.1 Benchmark Case: Objective Beliefs

The benchmark case is the classical situation of Rothschild and Stiglitz
where all agents base their decisions on the same (objective) probabilities
and all individuals have the same von-Neumann-Morgenstern utility func-
tion U .

Rothschild and Stiglitz consider an equilibrium in contracts. They show
that either there is no equilibrium or there exists a separating equilibrium.
A separating equilibrium exists if there are sufficiently many high risk people.
In that case, the equilibrium or second-best outcome consists of two contracts,
αL and αH . At αH , the high risk consumers obtain objectively (actuarially)
fair and full insurance. At αL, the low risk consumers obtain objectively
(actuarially) fair, but not full insurance. Low risk types strictly prefer αL to
αH . High risk types are indifferent between the two contracts, but they all
choose αH . This market outcome is portrayed in Fig. 5 where the respective
indifference curves are denoted ŪL and ŪH .

Fig. 5. Uncertainty
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3.2 Subjective Variations

Now let the endowment point E, the objective accident probabilities pL < pH ,
and the income utility function U be given. In this and the next subsection,
we assume that there are enough individuals of the high risk type so that the
separating equilibrium exists for every contemplated model variation. We first
consider subjective variations of the high risk consumer characteristics.

Notice that because of free entry and exit, in a separating equilibrium
each contract breaks even (is objectively or actuarially fair) with respect to
the corresponding consumer class. With uncertainty faced by high risk con-
sumers, as in Sect. 2.3, αH is still the equilibrium contract selected by high
risk individuals. However, by Fact 2, preservation of incentive compatibility
requires that αL be moved further up on the fair odds line for low risk indi-
viduals – whose equilibrium contract is thus improved, but still falls short of
full insurance. With increased risk aversion exhibited by high risk consumers
as in Sect. 2.4, a similar effect occurs due to Fact 3.

When pessimism prevails among high risk consumers as in Sect. 2.2, two
cases ought to be distinguished, depending on the criterion for entry. First,
suppose that similar but not identical to a suggestion by Wilson (1977),
a new contract only enters the market, if it remains profitable even after fur-
ther profitable entry or consequential exit. Then αH remains the equilibrium
contract picked by high risk consumers. By Fact 2, αL moves further up on
the fair odds line for low risk individuals like in the previous cases. Second,
suppose that like in the Rothschild–Stiglitz model, a new contract enters, if it
can make a hit-and-run profit, that is, it is profitable in the absence of further
entry or exit. Then αH is no longer the equilibrium contract aimed at high
risk individuals. It is replaced by the subjectively optimal contract along the
objectively (actuarially) fair odds line for high risk individuals, analogous to
the replacement of α by δ in Fig. 2. But this additional change moves αL still
further up, to the benefit of low risk consumers.

In all three instances considered (uncertainty, pessimism, increased risk
aversion), we have found that a bleaker subjective perspective of high risk
individuals is beneficial to low risk individuals. In contrast, minor variations
of the subjective perceptions and risk attitudes of low risk individuals do not
alter the separating equilibrium, since the objectively or actuarially fair odds
line for low risk individuals remains unaffected by these variations.

3.3 Objective Variations

Whereas the focus of our investigation lies on the impact of variations in
subjective perceptions and risk attitudes on the separating equilibrium con-
tracts in the Rothschild–Stiglitz model of a competitive insurance market,
variations of the model parameters are not necessarily subjective. Variations
of objective probabilities are conceivable and potentially important. For in-
stance, factors exogenous to the model such as added safety features may
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reduce the probability of a certain kind of accident over time. Conversely, the
probability of specific accidents, say car accidents, could increase over time
because of changing exogenous conditions, for example traffic density. In ac-
cordance with the rest of the paper, the following comparative statics deals
with an increase of the objective probability of an accident for one of the
consumer types. Most of the findings differ significantly from those obtained
for subjective variations.

The main conclusions of this subsection are unambiguous: If ceteris
paribus the probability of an accident increases for a consumer type, then
this consumer class experiences a direct negative effect on its equilibrium con-
tract. This finding is in stark contrast to the results obtained with respect to
subjective variations. Recall that in equilibrium, both consumer types obtain
objectively fair insurance, regardless of subjective variations. After a change
of objective probabilities, they still obtain objectively fair insurance, but now
based on the new probabilities. Let us consider first the case where pH , the
accident probability of the high risk type increases. Then at the new actuar-
ially fair and full insurance contract, a high risk individual has less income
in both states, clearly a worse outcome. Consider next the case where pL,
the accident probability of the low risk type increases to a level qL such that
pH > qL > pL. Then this type’s fair odds line becomes flatter. The new equi-
librium contract is located at the intersection of the new fair odds line and the
unchanged indifference curve of the high risk type. At the original contract
αL, the original indifference curve for low risk consumers is steeper than the
indifference curve for high risk consumers, since pH > pL. Hence the new con-
tract lies below the original indifference curve for low risk consumers. More-
over, the probability of an accident has increased, qL > pL, which reduces
the expected utility associated with any given underinsurance contract. The
cumulative equilibrium effect for low risk consumers is definitely negative.

Regarding cross-type effects, a change of pL, the objective accident proba-
bility for low risk individuals does not affect high risk individuals, a conclusion
we had also reached when considering subjective variations of the low risk
consumer characteristics. The possible cross-type effects are more intriguing
when pH , the objective accident probability for high risk individuals varies.
First of all, the effect of an increase of pH on the equilibrium welfare of low
risk individuals is typically non-zero, albeit hard to sign. Secondly, it can be
negative which is the opposite of what happens when the high risk individ-
uals merely become more pessimistic. The following example illustrates this
possibility: An increase of pH can reduce the equilibrium welfare of low risk
consumers.

Example 1. Consider E = (2, 1) and U(x) =
√

x for x ≥ 0. Let pH = 1/2 and
pL = 1/4. An increased accident probability for high risk individuals assumes
the form pH

ε = 1/2 + ε/2, for some ε ∈ (0, 1). For convenience, we denote
pH
0 = pH = 1/2. For a given ε ≥ 0, the high risk individual’s fair odds line has

absolute slope τH
ε = (1− ε)/(1+ ε). Fair and full insurance amounts to W1 =
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W2 = (3 − ε)/2. We claim that for sufficiently small ε > 0, the indifference
curve through ((3− ε)/2, (3− ε)/2) based on accident probability pH

ε and the
indifference curve through (3/2, 3/2) based on accident probability pH do not
intersect in the relevant range. Since the underlying probabilities are different,
the single crossing property holds, that is, the two indifference curves intersect
at most once. The respective equations for the indifference curves are:

(a) (1 − ε)U(W1) + (1 + ε)U(W2) = 2U((3 − ε)/2).
(b) U(W1) + U(W2) = 2U(3/2).

A crossing or intersection point (W1, W2) satisfies both equations. Set u1 =
U(W1) and u2 = U(W2). Then from (b), u2 = 2

√
3/2 − u1. Substitution for

u2 in (a) yields

2
√

(3 − ε)/2 = (1 − ε)u1 + (1 + ε) · [2
√

3/2 − u1]

= (1 + ε) · 2
√

3/2 − 2εu1 or

2εu1 = (1 + ε) · 2
√

3/2 − 2
√

(3 − ε)/2 or

u1 = [(1 + ε) ·
√

3/2 −
√

(3 − ε)/2]/ε .

Both the numerator and denominator of this fraction converge to zero as ε
goes to zero. The rule of de l’Hospital applies:

lim
ε→0

u1 = lim
ε→0

[√
3/2 +

1
4
· 1√

(3 − ε)/2

]

=
√

3/2 +
1
4
· 1√

3/2

= 1.4288 .

Hence for sufficiently small ε > 0, u1 > 1.4287 and W1 = U−1(u1) = (u1)2 >
(1.4287)2 = 2.041 > 2. This shows the claim that for sufficiently small ε > 0,
the two indifference curves do not intersect in the relevant range, that is
when or before they hit the fair odds line of the low risk type. But this
implies that the low risk consumers get less insurance and, hence, are worse
off if the objective accident probability of the high risk type increases by
a small amount.

4 Conclusion

In the separating equilibrium of the Rothschild–Stiglitz model of a compet-
itive insurance market, low risk individuals suffer from the presence of high
risk consumers when insurance companies are unable to distinguish among
their customers. In the words of Rothschild and Stiglitz (1976, p. 638), “the
presence of the high-risk individuals exerts a negative externality on the low-
risk individuals. The externality is completely dissipative; there are losses to
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the low-risk individuals, but the high-risk individuals are no better off than
they would be in isolation.”

We address the question whether a more negative perspective on the part
of high risk consumers accentuates or mitigates the negative externality they
are exerting on low risk individuals. The distinction between changes of ob-
jective model parameters and changes of subjective consumer characteristics
proves extremely powerful when dealing with this question. It allows us to
consider a pessimistic deviation of subjective probability assessments from
objectively given accident probabilities. We find that pessimistic subjective
beliefs held by high risk consumers mitigate rather than accentuate the nega-
tive externality imposed on low risk consumers. In contrast, objectively higher
accident probabilities of high risk consumers, can ceteris paribus accentuate
the negative externality. We further find that variations of subjective be-
liefs held by low risk consumers do not affect the equilibrium outcome at all
whereas a change of the objective accident probability of low risk consumers
has a negative impact on their equilibrium contract.

In view of recent advances in decision theory, we have been curious to
see what happens when high risk consumers perceive some uncertainty or
ambiguity rather than pure risk. We find that uncertainty mitigates the neg-
ative externality exerted on low risk consumers. The idea that uncertainty
might help improve equilibrium outcomes has been explored independently
in a completely different context by Eichberger and Kelsey (2002). They re-
consider the problem of voluntary provision of (contributions to) a public
good. Because of free riding, the standard model tends to predict substantial
under-provision in contradiction to empirical and experimental evidence. But
as Eichberger and Kelsey show, individuals might contribute more if they are
uncertain about the contributions of others.

Instead of having a different perception of risk, consumers may differ in
their attitudes towards risk. We show that increased risk aversion of high risk
consumers benefits low risk consumers. The idea that increased risk aversion
can cause positive spill-overs has surfaced before. Safra, Zhou and Zilcha
(1990) present a Nash bargaining model where a player becomes better off
when the other player becomes “sufficiently” more risk averse.
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Abstract. Using an experiment with material incentives, this paper investigates
the violation of Lorenz relations in the case of dominant and single-crossing Lorenz
curves. Our experimental design consists of two treatments: an income distribu-
tion treatment and a lottery treatment. Both treatments were conducted in Italy
and Spain. In each treatment, subjects were asked to judge ten multiple-outcome
lotteries or ten n-dimensional income distributions, respectively, in terms of both
ratings and valuations. This 2 × 2 × 2 experimental design allows us to investigate
the response-mode (rating versus valuation) and framing (lotteries versus income
distributions) effects in subjects’ perceptions concerning the two types of Lorenz
relations. We found the existence of a marked response-mode effect, as only the rat-
ings of the lotteries and income distributions confirm both Lorenz relations, whereas
the valuations violate them. The framing effect is significant only for the Spanish
data. For this data the sign of the framing effect depends on the type of the Lorenz
relation considered. For crossing Lorenz curves, a higher conformity corresponds
to the lottery frame, for Lorenz dominance a higher conformity corresponds to the
income distribution frame.

Keywords: income distributions, lotteries, Lorenz curves, inequality and
risk aversion, response-mode effects

1 Introduction

Consider two distributions of payoffs, say x and y, with the same mean, µ,
where the probability mass of x is concentrated on the higher payoffs, while
the probability mass of y is concentrated on the lower payoffs. Therefore, x
provides a relatively high payoff with a high probability, and a relatively low
payoff with a low probability, whereas y provides a low payoff with a high
probability and a high payoff with a low probability. In this case, the Lorenz
curve of x, L(x), will, in most cases, either dominate or cut the Lorenz curve
of y, L(y), from below.



102 E. Camacho-Cuena, C. Seidl

There are several methods to elicit preferences between two different dis-
tributions of payoffs: choices, ratings and valuations. The choice method refers
to the observation of subjects’ choices when they are asked to choose the
more preferred one from a pair of distributions of payoffs. Under the rat-
ing method, subjects are asked to rate distributions on a point scale. Under
the valuation method, subjects are asked for their monetary values assigned
to distributions.1 Traditional economic reasoning rules out response-mode
effects, that is, subjects are assumed to express the same preferences irre-
spective of the mode of preference elicitation.

Moreover, when studying subjects’ perception of Lorenz dominance, there
are different frames to present them different distributions of payoffs. We will
consider two: lotteries2 and income distributions. In case a distribution of
payoffs is presented as a lottery the payoffs represent the different prizes,
whereas, when presented as an income distribution the payoffs represent the
different income levels. Both frames are of outstanding economic significance.
Traditional economic considerations would assume that, in case of the lotter-
ies, risk averse subjects would prefer x to y, and, in case of income distribu-
tions, inequality averse subjects would prefer to be a member in a society in
which income distribution x obtains rather than in a society in which income
distribution y obtains (provided that the subjects have to make their choices
under a veil of ignorance regarding their income level in a particular society).

In this paper, we investigate the response-mode effects in subjects’ per-
ceptions with respect to Lorenz dominance and single-crossing Lorenz curves.
The experimental design consisted of two treatments. In the first treatment
we presented subjects ten multiple-outcome lotteries, and in the second treat-
ment ten n-dimensional income distributions whose entries corresponded ex-
actly to the entries in the lotteries. In order to test whether response-mode
effects affect the perception of the Lorenz relationships, subjects were asked
in each treatment to judge each particular lottery or income distribution in
terms of ratings and in terms of valuations. Material incentives were used
in both treatments. This paper is a follow-up work of a study on preference
reversals between lotteries and income distributions (Camacho et al. 2005).
We use the data collected in this experimental study to investigate subjects’
perceptions with respect to Lorenz dominance and single-crossing Lorenz
curves.

In Sect. 2 we describe the experimental design. In Sect. 3 we report our
results, and in Sect. 4 we summarize the main findings.

2 The Experiment

The experiment was conducted at the ESSE laboratory at the University of
Bari, Italy, as well as at the LEE laboratory at the University Jaume I in
Castellón, Spain. Subjects were volunteers recruited from students in different
departments of these universities.
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The experimental design consisted of two treatments, one concerning ten
lotteries, and the other concerning ten income distributions. Each treat-
ment encompassed two parts, a rating part, and a valuation part, and in
every experimental session only one treatment was applied. We conducted
a total of 21 sessions each of which lasted about one hour. Because of
obviously absurd statements, we had to eliminate the data of 3 subjects.
This left us with the Italian data of 52 subjects for the lottery treat-
ment and of 56 subjects for the income distribution treatment. The Span-
ish data came from 51 subjects for the lottery treatment and from 50 sub-
jects for the income distribution treatment. In order to prevent anchor ef-
fects, each subject was admitted to only one treatment and one experimental
session.

We conducted the experiments before the introduction of the euro at the
end of the year 2001. In this way we avoid possible money illusion effects and
transitory effects due to the subjects’ being poorly acquainted with a new
currency. For the sake of comparability, however, in this paper we present all
figures and tables in terms of euros.

For the presentation of lotteries and income distributions we checked sev-
eral formats, and found the format based on the design used by Lopes (1984,
1987) and Schneider and Lopes (1986) to convey best the messages contained
in the multiple-dimensional lotteries and income distributions of our exper-
iment. The format used for the sessions conducted in Italy is displayed in
Figs. 1–3. Each lottery and income distribution had the same expected value
of approximately ¤ 1800, save for differences in rates of exchange and round-
ing errors in order to secure decent numbers in terms of the local currencies.3
The distributions in Fig. 1 are negatively skewed, the distributions in Fig. 2
are positively skewed, and the distributions in Fig. 3 are unimodal, rectangu-
lar, and bimodal. The ordering of the distributions in Figs. 1 to 3 was adopted
for the presentation of the results in this paper. The ordering of their pre-
sentation for the Italian subjects is shown in square brackets. The ordering
for the Spanish subjects was exactly opposite to the ordering for the Italian
subjects.4 The exact parameters of the distributions (mean, standard devia-
tion, skewness, kurtosis,5 minimum, maximum, range, and Gini coefficient)
are shown in Table 1.

The lotteries and income distributions can be arranged as Lorenz curves.
Two Lorenz curves either intersect or one dominates the other. We show the
types of Lorenz relations of our experimental design in Fig. 4: An increas-
ing arrow means that the Lorenz curve of the lottery or income distribution
in a row cuts the Lorenz curve of the lottery or income distribution in the
corresponding column from below, where intersections within two percent-
age points from the lower and the upper bounds were ignored. A horizontal
arrow means that the Lorenz curve of the lottery or income distribution in
a row dominates the Lorenz curve of the lottery or income distribution in the
corresponding column. A tilde means that parts of the corresponding Lorenz
curves coincide.
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Fig. 1. Negatively skewed distributions

Fig. 2. Positively skewed distributions

In each session, the subjects were arranged in groups of about ten. At
the beginning of the session, the subjects were asked to read carefully the
instructions and the payment regulations. To make sure that they had prop-
erly understood the instructions,6 we required subjects to pass a test before
starting with the experiment. The test consisted of ten multiple-choice ques-
tions, which could be easily answered by any subject who had carefully read
the instructions.7 Subjects were informed that for each incorrectly answered
question they had to face a 10% cut of their final payoff from the experiment.
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Fig. 3. Unimodal, rectangular and bimodal distributions

If they answered five or more questions incorrectly, they were excluded from
any payoff.8

Recall that we applied two treatments: a lottery treatment and an income
distribution treatment. Within each treatment, the subjects were given two
booklets, both depicting either ten lotteries or ten income distributions, as
shown in Figs. 1 to 3.

Let us first consider the lottery treatment. The lottery prizes were ar-
ranged in terms of 100 tally marks. Subjects were told that each tally mark,
depicted in the lottery figures in the booklets, represented exactly one ticket
equal in value to the amount listed on the left hand side of the lottery figure.
For instance, in Lottery 1 there were 31 tickets bearing the prize “¤ 2582.28”,
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Fig. 4. Lorenz relations of stimulus distributions

22 tickets bearing the prize “¤ 2065.83”, etc. These prizes were paid in tokens.
The subjects had an equal chance to draw one of the 100 tickets in a partic-
ular lottery. In the first booklet, subjects were asked to state on a 20-point
rating scale their degree of happiness (1 means very unhappy, 20 means very
happy) to play a particular lottery. In the second booklet, they were asked
to state their certainty equivalents (CEs for short) of the ten lotteries as sell-
ing prices. The CEs were elicited by way of the Becker–DeGroot–Marschak
(BDM) incentive scheme.9

The payment to subjects ran as follows: Concerning the first booklet,
exactly two out of the ten lotteries were randomly selected for each subject,
and the higher rated lottery10 was played out and constituted one source
of tokens. Concerning the second booklet, one out of the ten lotteries was
randomly selected and constituted the second source of tokens stemming
from the application of the BDM incentive scheme. A subject’s total tokens
were the sum of the two token sources. Thus, although a subject’s total tokens
came only, in effect, from two lotteries, each subject had an incentive to reveal
his or her true preferences and CEs because each lottery had an equal chance
of being selected and becoming the source of a subject’s payoff.

The income distribution treatment differed only in minor points from
the lottery treatment. The subjects were told that each income distribution
represented a population of 100 million income earners, and that each tally
mark in a distribution represented exactly 1 million income earners.11 Each
of these 1 million income earners had a monthly income as stated on the
left side of the respective income distribution figure. The figures represented
monthly disposable incomes because the subjects were more accustomed to
monthly salaries in Italy and Spain. The subjects were asked to imagine
that they had an equal chance to become one of the 100 million income
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earners in this population, but they would not know ex ante what their precise
income will be in this population. All they would know was the distribution
of monthly incomes. They were then asked to state on a 20-point rating
scale their degree of happiness from becoming a member of a population
characterized by a particular income distribution. The rating scale ranged
from 1 (very unhappy) to 20 (very happy).

Thereafter, subjects were asked to imagine that they could alternatively
become a member of a population in which all income earners had the same
monthly income. This income has been termed the equally distributed equal
income (EDE for short) by the profession. They were invited to indicate the
level of income at which they would be indifferent between the respective
income distribution and the alternative in which each income earner received
the same income, viz. the EDE. The EDEs were also elicited by way of the
BDM incentive scheme.

In contrast to the lottery treatment, the subjects were informed in the
income distribution treatment that income distributions had to obtain for the
group as a whole. Therefore, one participant in the group would be randomly
selected, and, for this particular person, two income distributions would then
be randomly selected. The higher rated income distribution would become
the group’s income distribution, and all the subjects in this group would be
given tokens from independent draws according to this income distribution.
Thereby, every subject had to assume responsibility for the income distri-
bution of the whole group.12 This constituted the first source of a subject’s
tokens. The second source of a subject’s tokens stemmed from the application
of the BDM incentive scheme to each subject’s statement about the EDE for
the selected income distribution. For this income distribution, a number was
drawn from a uniform distribution defined on the support of the group’s in-
come distribution; if the number drawn was less than the stated EDE, then
a draw of a new income level according to the group’s income distribution was
made; if the number drawn was greater than or equal to the stated EDE, then
the subject was given tokens amounting to the number drawn. A subject’s
total tokens were then the sum of the two token sources. Notice that every
subject had the same chance to become a random dictator. Thus, each sub-
ject had an incentive to reveal his or her true preferences and EDEs because
he or she had a one-in-ten chance to decide for the whole group.

In both treatments, final payoffs (in lire or pesetas) were computed by
dividing the total number of a subject’s tokens by 500. The subjects received
a mean payoff of about ¤ 6.50.

3 Results

When screening the data, we noticed that subjects made different use of
the 20-point rating scale. Some dwelled more on the lower end, some on the
upper end, and some on the extremes. To avoid assigning different weights
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to the subjects, we calibrated the rating scales, assigning a 1 to the lowest
rated lottery or income distribution, and a 10 to the highest rated lottery or
income distribution according to the formula:

ri = 1 +
[
Ri − min

j
{Rj}

]
9

maxj{Rj} − minj{Rj} ,

where the Ri’s denote the noncalibrated and the ri’s the calibrated ratings.
Recall that all our experimental lotteries and income distributions have

the same mean. Then, for nonintersecting Lorenz curves, risk averse (inequal-
ity averse) subjects should prefer the lottery (income distribution) whose
Lorenz curve is closer to the diagonal.13 Risk loving (inequality loving) sub-
jects, should prefer the lottery (income distribution) whose Lorenz curve is
farther away from the diagonal (see Lopes (1984), p. 475).

What about intersecting Lorenz curves of two lotteries or income distri-
butions with the same mean? Suppose that the Lorenz curve associated with
x, L(x), cuts the Lorenz curve associated with y, L(y), from below. Then risk
averse or inequality averse subjects, who want to avoid the risk of a relatively
low prize or income level, should prefer the lottery or income distribution x,
whose associated Lorenz curve is farther away from to the diagonal at the
lower end, whereas risk loving or inequality loving subjects, who appreciate
the chance of a relatively high prize or income level, should prefer the lottery
or income distribution y, whose associated Lorenz curve is farther away from
the diagonal at the upper end (see Lopes (1987), p. 270).

If response-mode effects were absent, then subjects should state their
preferences according to their risk and inequality attitudes, irrespective of
the mode used to elicit their preferences: ratings or valuations. This does
not deny that subjects’ responses may be affected by a framing effect, in
that they exhibit different preferences for particular distributional shapes
when they are framed one time as a lottery and the other time as an income
distribution. For instance, a particular subject may, at the same time, be risk
loving when dealing with lotteries and inequality averse when dealing with
income distributions. Within a particular frame, however, subjects should
state the same preferences, irrespective of the elicitation mode applied, if
response-mode effects were absent.

Our experimental design allows us to study both sides of the medal: the
framing effect and the response-mode effect. The former is related to sys-
tematic differences between the perception of lotteries and identically shaped
income distributions. The later is related to the fact that the elicitation mode
of subjects’ preferences matters within a given frame. When response-mode
effects matter, Lorenz-dominance or single-crossing Lorenz curves would be
bad proxies for subjects’ preferences because their articulation depends on
the elicitation mode applied.14

Table 2 provides a summary statistics of subjects’ responses. These data
provide the basis for studying the mean conformity with the Lorenz relations.
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3.1 Mean Conformity with the Lorenz Relations

Based on the data shown in Table 2, Table 3 shows the conformity rates of
subjects’ mean responses with the Lorenz relations as shown in Fig. 4.

The entries in Table 3 represent the rates of conformity with the differ-
ent Lorenz relations that result from the comparison of the ten lotteries or
income distributions used as stimulus material in our experimental design as
displayed in Fig. 4.

In Table 3, the rate of conformity is provided for the two types of Lorenz
relations: Lorenz dominance and Lorenz cutting from below, and for the two
elicitation modes used: ratings and valuations. The entries in Table 3 show the
percentages of Lorenz relations confirmed according to Table 2. The number
of Lorenz relations confirmed refers to the total number of Lorenz relations
according to Fig. 4: 32 Lorenz dominance relations and 13 crossing Lorenz
curves relations, which amounts to a total of 45 Lorenz relations. For instance,
the entry 92.3% in the cell “Lotteries/Cutting Lorenz Curves/Ratings/Italy”
means that 12 out of the 13 crossing Lorenz curves relations displayed in Fig. 4
are confirmed according to the mean responses in Table 2 for the Italian data
on lottery ratings. The entries under “All cases” refer to the confirmation rate
regarding all 45 Lorenz relations included in Fig. 4.

The inverse mirror-image of the first two and the second two columns
in Table 3 constitutes a strong evidence of a response-mode effect regard-
ing average responses. Note that, for the rating elicitation mode, subjects’
stated preferences confirm the large majority of Lorenz relations, whereas,
for the valuation elicitation mode, we find widespread violation of the Lorenz
relations as displayed in Fig. 4.

Concerning lottery ratings, the conformity rates of the mean lottery rat-
ings are higher in the case of crossing Lorenz curves than in the case of
Lorenz dominance. This means that subjects prefer those lotteries in which
the probability of the higher prizes is higher. For dominating Lorenz curves,
a conformity rate of 62.5% and 68.7% for the Italian and Spanish data, re-
spectively, again confirms risk aversion, but to a lower degree. Regarding the

Table 3. Conformity of mean responses with Lorenz relations in percentages

Ratings Valuations
Mode Italy Spain Italy Spain

Lotteries ↑ 92.3 100.0 0.0 23.1
→ 62.5 68.7 15.6 12.5
All cases 71.1 77.8 11.1 15.6

Income ↑ 76.9 100.0 7.7 15.4
Distributions → 81.3 87.5 9.4 15.6

All cases 80.0 91.1 8.9 15.6
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income distribution ratings, the conformity rates for crossing Lorenz curves
are again 100% for the Spanish data but only 76.9% for the Italian data,
which means less mean inequality aversion of the Italian subjects. The avail-
ability of very high incomes seems to outweigh their small probability in
about a quarter of cases for the Italian subjects. For dominating Lorenz
curves, inequality aversion considerably exceeds risk aversion for the lottery
domain.

Concerning lottery valuations, the conformity rates for lotteries (income
distributions) are at rather low levels: 11.1% and 15.6% (8.9% and 15.6%) for
the Italian and Spanish data, respectively. Inspecting Figs. 1 to 3 allows us to
conclude that subjects are captured by the top prizes or income levels when
valuating a particular lottery or income distribution. This shows that risk
attitudes and inequality preferences are largely affected by response-mode
effects: In the rating mode, subjects’ preferences are more affected by risk
and inequality aversion, whereas, in the valuation mode, subjects’ prefer-
ences seem to be more affected by risk and inequality sympathy. This reflects
a greater influence of the top prizes or income levels due to the compatibility
hypothesis.15 It predicts that subjects would pay more attention to the most
spectacular (i.e., top) prizes or incomes in the valuation of lotteries or income
distributions as compared to the rating mode, for which the probability is
more compatible.

3.2 Individual Conformity with the Lorenz Relations

Conformity with the Lorenz relations can also be analyzed in terms of indi-
vidual ratings and valuations. In this sub-section we look at each subject’s
45 pairwise comparisons of lotteries and income distributions.

In Table 4 we present a summary statistics of the conformity rate with
Lorenz relations. This conformity rate is computed, for each one of the 45
pairwise comparisons, as the mean percentage of subjects whose responses
conform to the Lorenz relations. Although the results are less pronounced
than for the mean ratings and valuations, the main results are confirmed.
For more detailed data see the Appendix.

As far as response-mode effects are concerned, the majority of ratings
conform to the Lorenz relations, whereas the majority of valuations violate
them.16 A Wilcoxon signed ranks test shows that the differences in the con-
formity rates between the rating and valuation modes are statistically signif-
icant.

Concerning ratings, Lorenz dominance is again more frequently confirmed
for income distributions17 than for lotteries. This demonstrates greater in-
equality aversion than risk aversion for Lorenz dominance. In contrast to
that, the ratings of Lorenz curves, which cut others from below, conform less
frequently to income distributions than to lotteries. This shows that, in this
case, fewer subjects exhibit inequality aversion as compared to those who
exhibit risk aversion.
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Table 4. Conformity of individual responses with Lorenz relations in percentages

Lotteries Income distributions
↑ → All ↑ → All

cases cases

Spain Wilcoxon P 0.002 0.000 0.000 0.001 0.000 0.000
test Z −3.115 −3.526 −4.703 −3.184 −4.548 −5.459

Valuation S.D. 0.062 0.061 0.067 0.090 0.091 0.093
Mean 48.4 42.0 43.9 41.1 36.1 37.6

Rating S.D. 0.093 0.149 0.147 0.065 0.160 0.139
Mean 66.8 54.1 57.8 62.2 64.9 64.1

Italy Wilcoxon P 0.001 0.005 0.000 0.021 0.000 0.000
test Z −3.181 −2.778 −4.191 −2.312 −4.038 −4.777

Valuation S.D. 0.048 0.077 0.071 0.124 0.113 0.116
Mean 38.2 41.0 40.2 34.9 38.8 37.7

Rating S.D. 0.104 0.148 0.147 0.091 0.140 0.149
Mean 63.6 51.3 54.9 48.9 65.7 60.8

Concerning valuations, the mirror image of the results for the ratings
is also reflected in the individual data: the valuation rates of lotteries and
income distributions which conform to the Lorenz relations are down by one
fifth to one fourth of the conformity rates of the ratings.

To analyze the framing effect, we compare the conformity rates within
a particular elicitation mode, but between frames, that is, lotteries versus
income distributions. In Table 5 we present the results of a Mann–Whitney
test. We find that, in the Italian data, the framing effect is only significant
for the ratings. In the Spanish data, this effect is found significant in all cases
except for the ratings of crossing Lorenz curves. However, this test is based
on the differences between means when only the framing effect is considered.
Therefore, this test does not allow differentiating between both effects. Later
on, a more detailed joint analysis of the response-mode and framing effects
will be provided.

Table 5. Mann–Whitney test: Lotteries vs. income distributions

Italy Spain
Ratings Valuations Ratings Valuations

↑ Z −3.473 −0.026 −1.517 −2.287

p 0.001 0.979 0.129 0.022

→ Z −3.796 −1.284 −2.889 −3.096

p 0.000 0.199 0.004 0.002
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Concerning the joint analysis of the response-mode and the framing ef-
fects, Table 6 shows the results of the estimation using a logit panel data
model with random effects for the Italian and Spanish data. The depen-
dent variable is the conformity with Lorenz relations that should assume, for
a particular rating or valuation, the value 1 for perfect conformity with the
Lorenz relation, and 0 for perfect nonconformity. The explanatory variables
are two dummies. The first, denoted as Mode, refers to the response mode,
and assumes the value 0 for valuation and 1 for rating. The second, denoted
as Frame, refers to the framing used and assumes the value 0 for a lottery
and 1 for an income distribution.

The results shown in this table18 reinforce our previous findings. Regard-
ing the response-mode effect, the coefficient for the explanatory variable Mode
confirms that a strong response-mode effect exists. In fact, the sign of this
coefficient indicates that the probability of conformity with the Lorenz rela-
tions increases as we use rating as an elicitation mode instead of valuation.
Moreover, we find no differences between the Italian and the Spanish data for
this effect, since the coefficients for both countries do not differ significantly.19

Regarding the framing effect, the coefficient for the explanatory variable
Frame is nonsignificant for both countries. However, we know from Table 5
that framing effects can be more easily observed when we differentiate be-
tween crossing and dominant Lorenz curves. Hence, we apply logit panel
regressions separately to crossing and dominating Lorenz curves. The results
are shown in Tables 7 and 8.

These tables show that, although the response-mode effect does not vary
between countries, it is higher20 in the case of crossing Lorenz curves than
for the Lorenz dominance cases. In any case, the probability of conformity of
the Lorenz relations is higher for the ratings than for the evaluations. How-
ever, concerning the framing effect, differences do exist between the Italian
and Spanish data. While this effect is not statistically significant both for
crossing and dominant Lorenz curves for the Italian data, it is significant

Table 6. Logit panel data model with random effects for Italy and Spain: Response-
mode and frame effects

Explanatory Italy Spain
Variables Coefficient p−value Coefficient p−value

Constant −0.4344 0.005 −0.4326 0.000
Mode 0.8840 0.000 0.8497 0.000
Frame −0.0289 0.854 −0.0806 0.449
Observations 9090 9720
Number of groups 101 108
σu 0.5839 0.7003
ρ 0.2542 0.3291
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Table 7. Logit panel data model with random effects for Italy and Spain: Crossing
Lorenz curves

Explanatory Italy Spain
Variables Coefficient p−value Coefficient p−value

Constant −0.0970 0.014 −0.4455 0.011
Mode 1.003 0.000 1.056 0.000
Frame −0.2321 0.284 −0.5092 0.049
Observations 2626 2808
Number of Groups 101 108
σu 1.1181 1.2831
ρ 0.5556 0.6221

Table 8. Logit panel data model with random effects for Italy and Spain: Dominant
Lorenz curves

Explanatory Italy Spain
Variables Coefficient p−value Coefficient p−value

Constant −0.5607 0.000 −0.6254 0.000
Mode 0.8944 0.000 0.8484 0.000
Frame 0.1012 0.450 0.3496 0.005
Observations 6464 6912
Number of Groups 101 108
σu 0.5941 0.6881
ρ 0.2609 0.3213

for the Spanish data. Note, in this case, that the framing effect has an op-
posite sign for crossing and dominant Lorenz curves. Moreover, for crossing
Lorenz curves, the probability of conformity with Lorenz relations is higher
for lotteries than for income distributions. The contrary obtains for dominant
Lorenz curves, that is, the probability of conformity is higher in the case of
income distributions.

4 Conclusion

Although there is a close relationship between income distributions and lot-
teries, their joint analysis is much in its infancy. Moreover, multiple-outcome
payoff distributions have hardly ever been employed systematically and ma-
terial incentives were only rarely used.
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In this paper we investigate experimentally the violation of Lorenz rela-
tions in the case dominant and single-crossing Lorenz curves using multiple-
outcome payoffs distributions. We use as stimulus material different types
of payoff distributions: three negatively skewed, four positively skewed, one
rectangular, one unimodal, and one bimodal.

Our experimental design consists of two treatments. In the first treatment,
the ten distributions of payoffs were presented to the subjects as lotteries,
whereas in the second treatment, they were presented as income distributions.
In each treatment, subjects were asked to judge the ten multiple-outcome
lotteries or n-dimensional income distributions in terms of both ratings and
valuations (in terms of their CEs or EDEs using a BDM incentive scheme).

The experiment was administered to more than 200 subjects in Italy and
Spain. Subjects’ comprehension of the experimental setting was examined
before the experiment started. In each session only one treatment was applied
and each subject was allowed to participate only in one experimental session.

If no response-mode effect existed, subjects should state their prefer-
ences according to their risk attitude and inequality preference, irrespective
of whether their preferences are elicited through ratings or valuations. This
does not deny that subjects’ responses may be affected by a framing effect.
In fact, they may exhibit different preferences for particular distributional
shapes when they are framed one time as a lottery and the other time as
an income distribution. For instance, a particular subject may, at the same
time, be risk loving when dealing with lotteries and inequality averse when
dealing with income distributions.

Our results constitute strong evidence of the existence of response-mode
effects. For average responses subjects’ stated preferences conform largely to
Lorenz relations when elicited as ratings, but widely violate Lorenz relations
when elicited as valuations. This shows that risk and inequality attitudes
are largely affected the response-mode effects: In the rating mode, subjects’
preferences are more affected by risk and inequality aversion, while, in the
valuation mode, subjects’ preferences seem to be more affected by risk and
inequality sympathy.

Regarding individual data, the main results continue to hold, although
the effects are less pronounced than with the mean ratings and valuations.

Concerning framing effects, a Mann–Whitney test shows that for the Ital-
ian data the framing effect is only significant for the ratings, independently of
the type of Lorenz relation. In the Spanish data, this effect is found significant
in all cases except for the ratings of crossing Lorenz curves.

Finally, a joint analysis of the response-mode and framing effects based
the use of panel logit regressions reinforces our previous findings. Regarding
the response-mode effect, we find that the probability of conformity with the
Lorenz relations increases as we use rating as the elicitation mode instead of
valuation. Moreover, we find no differences between the countries. Regarding
the framing effect, it is only significant for the Spanish data: for crossing
Lorenz curves, the probability of conformity with Lorenz relations is higher
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for lotteries than for income distributions. The contrary obtains for dominant
Lorenz curves, that is, the probability of conformity is higher in the case of
income distributions.
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A Appendix: Individual Conformity
with Lorenz Relations

In Tables 9 to 12 we present the fractions of subjects whose responses con-
cerning ratings and valuations conform to each one of the Lorenz relations
illustrated in Fig. 4. We organized our results for Italy and Spain and for the
two frames here considered: lotteries and income distributions. These table
provide more detailed information than Tables. 3 and 4.

We used the entries in these tables to compute the entries in Table 4 and
run the nonparametric tests used in Sect. 3.2. Note that the shaded cells refer
to the case in which the Lorenz curve of the lottery or income distribution
in a row dominates the Lorenz curve of the lottery or income distribution in
the corresponding column, to differentiate this case from the case where the
Lorenz curve of the lottery or income distribution in a row cuts the Lorenz
curve of the lottery or income distribution in the corresponding column from
below.

B Notes

1. Note that, whereas the rating and the valuation methods can be applied
to larger sets of distributions, the choice method requires the arrange-
ment of the distributions in terms of pairs, which requires subjects to
make m(m−1)

2 instead of m comparisons for m distributions. Thus, the
choice method of preference elicitation is more appropriate for simple
experiments, whereas the rating method is more appropriate for more
complicated experimental designs. Note that both methods are equiva-
lent. Having applied both methods, Tversky et al. (1990, p. 213) report:
“The data reveal no discrepancy between choice and rating.”

2. For an analysis of lotteries by means of Lorenz curves see Lopes (1984,
1987) and Schneider and Lopes (1986).

3. Due to such influences the average level of entries in terms of euros was
some 3.4% lower in Spain than in Italy. The actual figures for the means
were about ¤ 1807 in Italy and ¤ 1745 in Spain.

4. This approach was adopted to control for ordering effects of presentation.
Had we presented the lotteries at random to the subjects, ordering effects
would have evened out if they were present. The comparison of two or-
derings of presentation allows, however, ordering effects of presentation to
be identified, or to be ruled out. As shown in our earlier paper (Camacho
et al. (2005), Sect. 3.3), we can rule out ordering effects of presentation.
Only for the distribution ratings did we observe cultural effects for the
Italian and Spanish subjects.

5. Kurtosis is defined as the fourth central moment of the distribution less
3 (i.e., the value of the fourth central moment of a normal distribution
with parameters µ = 0 and σ = 1).
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Table 9. Conformity of lotteries (Italy)

1 2 3 4 5 6 7 8 9 10

1 Rating
Valuation

0.750 0.731 0.731 0.615 0.788 0.788 0.788

0.385 0.385 0.346 0.346 0.346 0.385 0.462
2 Rating

Valuation
0.135 0.596 0.558 0.654 0.692 0.558 0.654 0.654 0.692

0.519 0.423 0.481 0.423 0.365 0.385 0.423 0.346 0.423
3 Rating

Valuation
0.192 0.519 0.558 0.558 0.519 0.481 0.654 0.538

0.500 0.451 0.308 0.327 0.327 0.365 0.288 0.404
4 Rating

Valuation
0.558 0.500 0.423 0.519 0.442

0.577 0.442 0.385 0.519 0.500
5 Rating

Valuation
0.404 0.423 0.442 0.346

0.346 0.365 0.442 0.442
6 Rating

Valuation
0.365

0.308
7 Rating

Valuation

8 Rating
Valuation

0.596 0.654 0.615 0.558 0.654 0.577

0.423 0.385 0.577 0.365 0.385 0.442
9 Rating

Valuation
0.481 0.423

0.404 0.308
10 Rating

Valuation
0.538 0.462

0.327 0.308

6. More complicated experiments often suffer from the subjects’ being in-
sufficiently acquainted with the experimental design, the experimental
procedure, and the incentive schemes. In this case, they become sources
of data distortions which cannot easily be controlled.

7. The instructions and the test are available from Eva Camacho, email:
eva.camacho@uam.es upon request.
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Table 10. Conformity of income distributions (Italy)

1 2 3 4 5 6 7 8 9 10

1 Rating
Valuation

0.500 0.500 0.714 0.804 0.464 0.768 0.857

0.268 0.214 0.268 0.268 0.143 0.179 0.179
2 Rating

Valuation
0.304 0.464 0.500 0.482 0.768 0.750 0.429 0.607 0.732

0.643 0.304 0.393 0.357 0.411 0.339 0.250 0.214 0.304
3 Rating

Valuation
0.321 0.446 0.464 0.768 0.768 0.375 0.625 0.768

0.768 0.446 0.446 0.393 0.339 0.411 0.339 0.321
4 Rating

Valuation
0.500 0.679 0.661 0.643 0.732

0.464 0.339 0.357 0.357 0.411
5 Rating

Valuation
0.661 0.696 0.625 0.768

0.357 0.393 0.375 0.429
6 Rating

Valuation
0.464

0.464
7 Rating

Valuation

8 Rating
Valuation

0.482 0.500 0.804 0.768 0.696 0.857

0.482 0.518 0.411 0.411 0.339 0.357
9 Rating

Valuation
0.571 0.571 0.554

0.518 0.500 0.411
10 Rating

Valuation
0.446 0.518

0.429 0.446

8. Note that this test only served the purpose of inducing subjects to ac-
quaint themselves properly with the setup of the experiment. Indeed, this
precaution worked well: Out of 110 subjects in Italy, only five answered
only 3 or 4 questions incorrectly for the test in each treatment. In Spain
only 11 out of 102 subjects answered 3 questions incorrectly in the test in
each treatment. All others scored better. This meant that we could rely
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Table 11. Conformity of lotteries (Spain)

1 2 3 4 5 6 7 8 9 10

1 Rating
Valuation

0.745 0.784 0.706 0.627 0.784 0.765 0.804

0.510 0.529 0.353 0.314 0.490 0.373 0.451
2 Rating

Valuation
0.275 0.627 0.686 0.706 0.686 0.627 0.667 0.784 0.725

0.392 0.412 0.431 0.549 0.431 0.412 0.412 0.451 0.451
3 Rating

Valuation
0.176 0.647 0.647 0.647 0.569 0.667 0.765 0.647

0.392 0.451 0.569 0.490 0.431 0.510 0.412 0.451
4 Rating

Valuation
0.510 0.490 0.353 0.588 0.392

0.647 0.451 0.490 0.392 0.451
5 Rating

Valuation
0.490 0.392 0.510 0.412

0.392 0.373 0.333 0.314
6 Rating

Valuation
0.373

0.392
7 Rating

Valuation

8 Rating
Valuation

0.510 0.569 0.608 0.588 0.588 0.471

0.529 0.529 0.451 0.451 0.392 0.412
9 Rating

Valuation
0.490 0.490 0.373

0.451 0.431 0.431
10 Rating

Valuation
0.510 0.529

0.412 0.353

that the subjects were being sufficiently acquainted with the rules of the
experiment.

9. This means that for any lottery a number was drawn from a uniform
distribution defined on the support of this lottery. If the number drawn
was less than the CE stated for this particular lottery, the respective
lottery was played out and the subject was given tokens amounting to
the value of the respective prize. If the number drawn was greater than
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Table 12. Conformity of income distributions (Spain)

1 2 3 4 5 6 7 8 9 10

1 Rating
Valuation

0.680 0.720 0.800 0.780 0.700 0.680 0.780

0.380 0.400 0.360 0.260 0.380 0.280 0.360
2 Rating

Valuation
0.260 0.660 0.580 0.640 0.800 0.820 0.580 0.680 0.800

0.440 0.360 0.340 0.440 0.320 0.240 0.340 0.340 0.320
3 Rating

Valuation
0.260 0.480 0.580 0.760 0.820 0.600 0.620 0.760

0.480 0.360 0.520 0.300 0.260 0.440 0.380 0.500
4 Rating

Valuation
0.560 0.680 0.680 0.360 0.580

0.500 0.380 0.220 0.380 0.520
5 Rating

Valuation
0.560 0.640 0.360 0.520

0.280 0.220 0.360 0.380
6 Rating

Valuation
0.540

0.300
7 Rating

Valuation

8 Rating
Valuation

0.580 0.620 0.804 0.820 0.580 0.680

0.520 0.600 0.411 0.260 0.420 0.440
9 Rating

Valuation
0.740 0.800 0.640

0.420 0.300 0.580
10 Rating

Valuation
0.640 0.660

0.340 0.300

or equal to the stated CE, then the subject was given tokens amounting
to the number drawn. For a more detailed explanation see Becker et al.
(1964).

10. Ties were resolved by flipping a coin.
11. This design was adopted to minimize computational errors. We tried to

avoid using different dimensions such as having 10 million income earners,
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and associated tally marks each of which represented 100,000 income
earners. Indeed, no subject found this design unrealistic.

12. Beckman et al. (1994, p. 8) used a similar assumption to “create a group
identity,” but they employed majority voting instead of a random dic-
tator. This was possible in their experimental setting because they had
only two distributions to choose from for any decision.

13. For lotteries with the same mean, a dominating Lorenz curve is associated
with a lottery derived from another lottery by way of a sequence of mean-
preserving contractions. In the case of income distributions, these mean-
preserving contractions are nothing else but progressive transfers.

14. Another cause may be due to order effects of stimulus presentation. Recall
that they were ruled out for our experiment.

15. The compatibility hypothesis was originally developed by Fitts and
Seeger (1953) and rediscovered by Slovic and MacPhillamy (1974). It
states that attributes which are more compatible with the dimension of
the response mode are assigned greater weight.

16. Except for the income distribution ratings of the Italian subjects in the
case of cutting Lorenz curves, where the conformation rate is only 48.9%.
However, it is still markedly higher than the conformity rate for valua-
tions.

17. In a related paper, Traub et al. (2006) observed Lorenz dominance con-
formity rates for income distributions between 61.3% and 64.4% for three
treatments. Their experimental design was based on asking subjects di-
rectly for their preference orderings of twelve income distributions. This
method is equivalent to the rating method of eliciting preferences as used
in the present paper.

18. Notice that conformity with the Lorenz relations is either 0 or 1. We
model the probability of conformity as the logistic distribution:
P(conformity = 1) = ex

1+ex ;
P(conformity = 0) = 1

1+ex .
The value of z is estimated from:
z = β0 + β1Mode + β2Format,
using the logit panel data method with random effects. Note that
∂P (Conformity=1)

∂z > 0, so that P (Conformity = 1) increases as z increases.
19. A χ2-test shows that the null hypothesis that the values of the two

coefficients do not differ significantly cannot be rejected (χ2
1 = 0.68

(p-value = 0.409)).
20. A χ2-test shows that the null hypothesis that the values of the coefficients

for cutting and dominant Lorenz curves within each country are not sta-
tistically different can be rejected. (The values of the statistic for Italy and
Spain are χ2

1 = 4.16 (p-value = 0.041) and χ2
1 = 15.95 (p-value = 0.000),

respectively.)
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Abstract. We conduct an experiment to investigate the degree to which deviations
from exponential discounting can be accounted for by the hypothesis of hyperbolic
discounting. Subjects are asked to choose between an earlier or later payoff in series
of forty choice questions. Each question consists of a pair of monetary amounts
determined by compounding a given base amount at a constant rate per period.
Two bases (8 and 20 dollars), three compounding rates (low, medium and high)
and three delays (two, four, and six weeks) are each used. There are also two
initial periods (today and two weeks) and there are two separate questionnaires, one
with lower “realistic” compounding rates and the other with higher compounding
rates, typical of those used in previous studies. We analyze the detailed patterns of
choice in 6 groups of 6 related questions each (in which the base and rate is fixed
but the initial period and delay varies), documenting the frequency of patterns
consistent with exponential discounting and with hyperbolic discounting. We find
that exponential discounting is the clear modal choice pattern in virtually all cases.
Hyperbolic discounting is never the modal pattern (except in the sense that constant
discounting is a special case of hyperbolic discounting). We also estimate a linear
probability model that takes account of individual heterogeneity. The estimates
show substantial increases in the probability of choosing the later option when
the compounding rate increases, as one would expect. There are small, sometimes
significant, increases in this probability when the delay is increased or the initial
period is in the future. Such behavior is consistent with hyperbolic discounting,
but can account for only a small proportion of choices. Overall, deviations from
exponential discounting appear to be due to error, or to other effects not accounted
for by hyperbolic discounting. Principal among these is an increase in later choices
when the base is larger.

Keywords: intertemporal choice, hyperbolic discounting

1 Introduction

Since the late 1930s, when Samuelson introduced discounted utility, the con-
cept of discounting has been used by economists in analyses of intertemporal
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choice. Although the descriptive accuracy of this model has been called into
question by many, the analytic convenience and the normative logic of the
model have kept it alive. In other words, it is easy to use, and it seems, for
many purposes quite sensible. It is a workhorse in dynamic models in la-
bor economics and macroeconomics, and it is, indeed, hard to imagine what
model one would use in its place.

Loewenstein and Thaler (1989) summarize and review the literature illus-
trating many shortcomings in the model, and Loewenstein and Prelec (1992)
have proposed an alternative formulation with a structure similar that pro-
posed by Kahneman and Tversky’s prospect theory for risky choice. Indeed,
on closer consideration, it is often only functional form restrictions that are
being questioned by these authors, rather than the fundamental notion that
future utility is somehow discounted. For example, Loewenstein and Prelec
(1993) pointed out that an individual might well value different sequences
of restaurant meals differently, and thus they questioned the simple adding-
up (with appropriate discount factors) of sequences of utility. The intuition
that one might prefer to vary the cuisine of one’s meals out rather than have
the same thing week after week is attractive, of course, and perhaps a util-
ity function that explicitly accounts for complementarities between adjacent
periods would be more appropriate in this case.

The time period of analysis and the consumption basket that Samuelson
envisioned, though, was something more like total consumption year by year.
More to the point, in a dynamic model of, say, lifetime labor supply, consid-
erations of the particulars of week by week consumption patterns is too fine
a level of detail, and such models were never intended to capture such fac-
tors with perfect accuracy. The key element of the discounted utility model
is, after all, not the utility function but the discounting function. We could
assume risk-neutral income-maximizing behavior as the baseline behavioral
model and not affect the predictions of the theory in any substantial way.

The specifics of the discounting function have, in fact, been the focus of
many writers in recent years, and here there is perhaps a bit more room for
improvement, even for the big-picture uses to which the discounted utility
model has been put. The logical inconsistencies associated with non-constant
discounting were first explored by Strotz (1955), and the tendency of some
people (and rats, too) to discount in a non-constant manner have been docu-
mented in many experimental studies since then. Here, as in the criticisms of
the utility function in discounted utility, a little intuition seems to go a long
ways. The story, told by Thaler (1981), that I might prefer an apple today
over two apples tomorrow, but that I would more likely prefer two apples in
two weeks and a day to one apple in two weeks has, again, a certain appeal.
Coupled with the observation that this would violate discounted utility, this
is persuasion enough for some. But again, on closer examination, is it so per-
suasive? Will $ 100 today be chosen over $ 100 compounded at a constant
daily rate tomorrow? (Surely $ 100 compounded at some constant rate for 15
days will be chosen over $ 100 compounded at the same rate for 14 days.) We



A Deeper Look at Hyperbolic Discounting 127

suggest, provisionally, that some might violate stationarity in this way, but
that most people would not.

We would suggest, further, that it is not enough that significantly fewer
individuals choose the later option in the (today, tomorrow) case than in
the (two weeks, two weeks and a day) case to prove that the apple story is
descriptively accurate. Such a result would certainly falsify the predictions
of the constant discounting assumption embodied in the discounted utility
model, but it does not clearly support some other clear alternative model,
such as hyperbolic discounting, as some studies seem to conclude, if only
implicitly. Thaler (1981), Benzion et al. (1989), Mischel (1966, 1974) Mischel
and Ebbenson (1970) and Ainslie and Haendel (1983) all fall in this class. It
should be pointed out as well that all of these studies made use of hypothetical
payoffs only.

More specifically, most studies have focused on the two main implications
of the constant discounting. The first implication is stationarity. Stationarity
means that in a choice between two consequences, it matters only how far
apart in time the consequences are delivered, and not their absolute position
in time. The apple story above is meant to show how stationarity will be
routinely violated. The second implication we will refer to as linearity. This
means that if one prefers $ 100 compounded at a constant rate for two weeks
over $ 100 today, then one ought to also prefer $ 100 compounded at the same
constant rate for 4 weeks over $ 100 today.

The studies cited above typically find that a significant proportion of
subjects will violate stationarity, and a significant proportion will violate
linearity as well. There is a tendency for immediate consequences to be chosen
over delayed consequences, leading to the stationarity violation. There is also
a tendency for later outcomes to be chosen more often, the more delayed they
are. That is, later consequences seem to be discounted at a lower rate than
early consequences.

Holcomb and Nelson (1992) have conducted one of the few studies that
carefully tried to induce monetary incentives in the manner that experimental
economists do. They found support for stationary but not linearity in their
study. This analysis is a significant improvement, statistically, over previous
studies, but not enough detail is provided in the analysis reported in the pa-
per to answer the question posed above, whether the violations of constant
discounting can be interpreted as, equally, support of hyperbolic discounting.
In this paper, we use a design much like that of the Holcomb–Nelson ex-
periment, but expand the design to include a larger variety of compounding
rate. After making the obvious aggregate comparisons of choice frequencies
between appropriate sets of questions, we then conduct two further types
of analysis to more deeply probe into this question. First, we consider pat-
terns of choices over large sets of questions and investigate to what degree
the frequencies with which individuals choose different patterns help us to
differentiate between alternative discounting schemes. Second, we treat the
data as a panel of observations and conduct regression analysis, controlling
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for individual heterogeneity, to quantify more precisely the magnitudes of the
various departures from constant discounting that we observe.

2 The Experiment

2.1 The Discounting Function

For purposes of generating testable predictions, we will focus on the spe-
cial case of discounted utility in which the utility is linear. In other words,
we will focus on the present value maximization as the baseline model. In
this model, we suppose that individuals choose between alternative income
streams in a way that maximizes present discounted value. For example, if
one has a choice between $ x today and $ y = $ x(1 + r) in two weeks, then
one compares the present value of each alternative and chooses appropriately.
That is, x > or < yδ, where δ is the appropriate 2-week discount factor. The
stationarity property of discounted utility is seen as follows. If, without loss of
generality, x today is preferred to y in 2 weeks, then this means that x ≥ yδ.
Note that the choice between x in two weeks and y in four weeks is evaluated
by comparing xδ to yδ2, and, since xδ ≥ yδ2, one continues to prefer the ear-
lier to the later option in this case. Note also that we could compound both
alternatives at the same rate over the additional 2 weeks with out changing
the choice pattern. That is, x(1 + r)δ ≥ y(1 + r)δ2 = x(1 + r)2δ2. Similarly,
the linearity property of discounted utility can be seen by asking how our
individual would choose between x today and z = x(1 + r)2 in four weeks.
Since we know now that (1 + r)δ ≤ 1, we also can say that x ≥ x(1 + r)2δ2

so, again, the earlier option continues to be chosen.
The hyperbolic discount function is an alternative to constant discount-

ing that has been proposed to accommodate the types of violations of con-
stant discounting commonly observed in experimental studies. Although it
is usually presented as a generalized hyperbola, a certain limit of which is
equivalent to constant (exponential) discounting, we follow Holcomb and Nel-
son (1992) and use a discretized version of this discounting function, as it
has a more natural and intuitive look. The general form of the function is
1/(1 + k1)(1 + k2)(1 + k3) . . . (1 + kt) for a payment to be received t periods
into the future. Moreover, we have k1 ≥ k2 ≥ k3 ≥ . . . ≥ kt. Obviously, this is
equivalent to constant discounting if the k’s are all equal, and 1/(1 + k) = δ,
the discount factor. With this hyperbolic discounting function, both linear-
ity and stationarity can be violated. We return to investigate this function
in more detail in Sect. 4, when we analyze in detail the individual choice
patterns in the data.

2.2 Design

The experiment was a survey consisting of forty choice questions. Each ques-
tion offered a choice between an earlier and a later monetary payment. The
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payments were arrived at by applying a constant compounding rate to a given
base amount. Subjects chose either the earlier or the later payment for each
question. It was explained that one of the forty questions would be chosen at
random at the end of the experiment, and the subject’s choice on that ques-
tion would be his or her payment for the experiment. If the choice involved
a delay, the subject was required to return to the same room where the exper-
iment was held on the appointed day to collect the payment. Payments varied
from $ 8 to more than $ 40. A total of 86 subjects participated in the experi-
ment. The latest payment was 8 weeks from the date of the experiment, which
always fell with the semester in which the experiment was conducted, so that
student subjects were still on campus at the time the payment was due.

Four factors were varied between questions in the questionnaires: the base
amount (8000 or 20,000 francs1), the compounding rate (low, medium or
high), the initial time (today or in two weeks) and the time delay between
choices (two, four or six weeks). There were two distinct questionnaires, and
subjects were randomly assigned to answer one or the other, not both. The
low-rate questionnaire used lower compounding rates of 0.1, 0.5 and 1 per-
cent per week. These translate into implied annual rates of approximately 5.2,
26 and 52.26 percent, respectively. The high-rate questionnaire used higher
compounding rates of 1, 5 and 10 percent per week. These translate into im-
plied annual rates of approximately 52.26, 266.5 and 546 percent, respectively.
A total of 44 subjects answered the lower-rates questionnaire and 42 subjects
answered the higher-rates questionnaire. The questionnaires are contained in
the Appendix.

This 2(base) × 2(initial period) × 3(delays) × 3(rates) = 36 accounts for
only 36 of the 40 questions. The other four questions on each questionnaire
were designed to test for simple monotonicity by asking if the subject wanted
the same amount of money earlier or later, with no compounding of the
initial base amount. Finally, it should be noted that order of the questions
was randomized for each subject, so that no subject saw the questions in the
orderly fashion shown in the appendix, where all questions for a given base
amount and compounding are shown in order.

The subjects were students at Rutgers University and at New York Uni-
versity. The experiment was conducted in computer labs at the two insti-
tutions in the fall of 2002 and the spring of 2003. Subjects were recruited
through email notification and electronic sign-up procedures. The subjects
were seated at individual computer and completed the online questionnaire
individually. Subjects were paid at the end of the session or given a reminder
notice telling them how much they were scheduled to receive at some specified
future date, and where they should come to collect their payments. All but
three subjects collected their payments on schedule. Of these, two collected
their payments late, and one never collected a payment.

1 The dollar to franc exchange rate was 1 to 1000. The large franc values were
used so that all amounts to be accurately expressed as whole numbers.
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3 Aggregate Results

For the basic monotonicity issue (questions 37 through 40 on both question-
naires) subjects were quite consistent. In all, 92 percent of the subjects (81
out of 86) chose to take the money earlier rather than later in all four ques-
tions. None of the subjects chose the later choice in all four questions. The
worst violator of monotonicity chose to take the money later in three of the
four questions.

We now focus on the 36 main questions that comprise the actual ex-
periment. Table 1 shows the percentage of subjects choosing the delayed
alternative for each question in which the initial time is today, while Table 2
shows the percentage choosing the delayed option when the initial period
is two weeks from today. There is a clear increase in the number of people
choosing the delayed option as the interest rate increases, as one would ex-
pect. There is also some evidence, though not so obvious and uniform, that
more individuals choose the delayed option as the delay grows bigger. If this
is a systematic result, then this is a violation of the linearity property of
constant discounting.

The rates at which subjects choose the more delayed alternative in Table 2
are broadly consistent with those in Table 1, though in many cases the rates
are higher in Table 2 than the corresponding entries in Table 1, suggesting
that the stationarity property of constant discounting is often violated.

Figures 1 and 2 help us to visualize the data in Tables 1 and 2. The fig-
ures show essentially the same information as in the tables, except that the
high and low-base questions are aggregated for each interest rate/initial pe-

Table 1. Percentage choosing more delayed alternative for initial time = today

Lower-rates questionnaire Higher-rates questionnaire
High base Low base High base Low base

Today versus two weeks from today
Low rate 9.09 11.36 21.43 16.67
Medium rate 43.18 20.45 40.48 33.33
High rate 50.00 45.45 52.38 57.14
Today versus four weeks from today
Low rate 15.91 15.91 16.67 19.05
Medium rate 40.91 34.09 54.76 50.0
High rate 54.55 50.00 80.95 64.29
Today versus six weeks from today
Low rate 18.18 18.18 21.43 16.67
Medium rate 38.64 40.91 59.52 54.76
High rate 56.82 56.82 88.10 66.67
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Table 2. Percentage choosing more delayed alternative for initial time = 2 weeks
from today

Lower-rates questionnaire Higher-rates questionnaire
High base Low base High base Low base

2 weeks from today versus six weeks from today
Low rate 25.00 29.55 23.81 28.57
Medium rate 43.18 43.18 45.24 50.00
High rate 54.55 54.55 66.67 64.29
2 weeks from today versus six weeks from today
Low rate 36.36 22.73 26.19 11.90
Medium rate 47.73 52.27 42.86 47.62
High rate 65.91 50.00 90.48 71.43
Two weeks from today versus eight weeks from today
Low rate 25.00 22.73 33.33 14.29
Medium rate 47.73 40.91 61.90 30.95
High rate 56.82 50.00 85.71 71.43

Fig. 1. Increasing the delay in the lower-rates questionnaire for the average of both
the bases
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Fig. 2. Increasing the delay in the higher-rates questionnaire for the average of
both the bases

riod/delay combination. The figures show the percentage choosing the later
option on the vertical axis, and the delay from today of the later option
in each pair. The three averages for a given interest rate and initial period
are connected by straight line segments. As a point of reference, if the sub-
jects used constant discounting unfailingly and without error, the two sets of
line segments corresponding to each interest rate should coincide and form
a perfectly horizontal line. Instead, there is a tendency for the line segments
associated with the choice questions where the earliest period was also de-
layed tend to lie above the segments associated with the choice questions
where the earliest period was today. This illustrates the extent to which sta-
tionarity is violated. Also, there is some tendency for the line segments to
slope upwards, especially when the initial period is today. This illustrates the
extent to which linearity is violated.

The conventional wisdom that both stationarity and linearity are violated
receive some support from the aggregate averages, but it not clear if the de-
partures from constant discounting are limited to a distinct set of individuals,
or if it is a general phenomenon. We now turn to analysis of the data in which
we take careful account of individual patterns of choice behavior.

4 Choice Patterns

Each questionnaire has thirty-six questions with varying bases and rates (the
last four questions are to test for monotonicity and so are ignored in this ana-
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lysis). There are three rates (high, medium and low) and two bases (high and
low). We form six sets of six questions. Each set of six questions corresponds
to a given base and compounding rate.

There are 26 = 64 possible choice patterns for each set of six questions.
Patterns 1 and 64 correspond to constant discounting and are, in fact, the
only “legal” choice patterns one should see if individuals discount at a constant
rate. We have enumerated all of the possible patterns2 and computed the
distribution of choice patterns for each of the six sets of six questions. The
numbering of the patterns corresponds roughly to the number of late choices:
the larger the number, the greater the number of late choices in the pattern.

Table 3 illustrates the eight choice patterns that are consistent with hy-
perbolic discounting. A choice pattern may be represented by six indicator
variables, specifying whether the earlier (0) or later (1) choice was made
on each question. The columns in the matrices have a common initial time:
Each indicator in column 1 corresponds to a question where the initial time
is today (zero weeks) and each member of column 2 has an initial time of
two weeks. The rows in the matrices have a common delay: Each indicator
in row 1 has a delay of two weeks, each indicator in row 2 has a delay of
four weeks and each indicator in row 3 has a delay of six weeks. Thus, for
example, Pattern 1 is the pattern in which all choices are early choices, and
Pattern 64 is the pattern in which all choices are late choices. The other six
patterns shown have various combinations of early and late choices, but each
can be rationalized as a possible “strictly hyperbolic” pattern for some set of
ki’s. Note that any pattern in which there is a 1 above a 0 in a column, or
any row with a 1 to the left of a 0, cannot be a hyperbolic pattern. No other
patterns can be rationalized as consistent with either constant discounting or
strict hyperbolic discounting.3

Table 3. Hyperbolic choice pattern definitions

0 ≡ early and 1 ≡ late

Pattern 1:

2
64
0 0

0 0

0 0

3
75Pattern 7:

2
64
0 0

0 0

0 1

3
75Pattern 22:

2
64

0 0

0 1

0 1

3
75Pattern 41:

2
64
0 0

0 1

1 1

3
75

Pattern 42:

2
64
0 1

0 1

0 1

3
75Pattern 56:

2
64
0 1

0 1

1 1

3
75Pattern 63:

2
64

0 1

1 1

1 1

3
75Pattern 64:

2
64
1 1

1 1

1 1

3
75

2 See Appendix B for the detailed definitions of all 64 possible patterns.

3 One might also think that Pattern 19:

2
64

0 0

0 0

1 1

3
75 and Pattern 55:

2
64

0 0

1 1

1 1

3
75 should also

be included, as they seem intuitively to fit the criteria for hyperbolic patterns,
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The logic of the experimental design was to observe the change in behavior
of the subject as the delay or the initial time increases. In each of the patterns,
as one goes down a particular column, the delay is increasing. Furthermore,
as one switches from the left column to the right column in any row, the
initial time period is being pushed out. An individual falling into Pattern 7,
for example, chooses the delayed alternative in the sixth question – the one
which has the longest delay (six weeks) and an initial time of two weeks. This
individual shows characteristics we would expect in a hyperbolic type; that
is, if the initial time and delay are pushed out enough, then the subject’s
effective discount rate (which is determined by the kis) falls to a point below
the compounding rate in the six questions. As a consequence, he or she will
choose the later option. An individual of Pattern 22 would choose the later
option in the fifth and sixth questions, for an initial time of two weeks for
a delay of either four or six weeks.

In general, each hyperbolic pattern implies a particular configuration for
the way that the kis decline, and it is difficult (and perhaps pointless) to try
to isolate or infer the precise pattern. The generalized hyperbola (a special
case being the exponential) was shown by Loewenstein and Prelec (1992)
to be the only possible form for the discounting function that will permit
both violations of stationarity and linearity. Such a discounting function is
“smooth” convex function in discount rate-time space. For the discretized ver-
sion of the discounting function that we have adopted, we determined which
patterns were consistent with hyperbolic discounting simply by showing that
there is some non-increasing sequence of ki, i = 1, 2, 3, 4, that allows one
to rationalize the pattern. It is worth considering in more detail whether any
such sequence is necessarily consistent with a generalized hyperbola.

In this way, as one progressively goes from Pattern 7 to Pattern 63, the
ki’s are progressively getting smaller. For example, for pattern 7, we can
infer that k1 > r, that k2 > r, that (redundantly, and roughly speaking) the
average of k1 and k2 is greater than r, that the average of k1, k2 and k3, and
the average of k2 and k3 are each bigger than r, but that the average of k1,
k2, k3, and k4 is less than r. In other words, k4 is sufficiently small to bring
the average discount factor down far enough so that the later choice is made
for a sufficiently delayed payment. At the other extreme, in pattern 63, all
but the first of the conditions have been reversed. That is, we still infer that
k1 > r, but k2, k3 and k4 are sufficiently small, on average and independently,
so that all but one choice is the later choice. For patterns in between, Table 7
maps out the inequalities that must hold.

i.e., there is no 1 above a 0 in a column, and no 1 the left of a 0 in a column.
But these patterns can be rationalized only if k1 = k2 = k3 = k4 = r, the
compounding rate, that is, only if the discount factor is constant and exactly
equal to the compounding rate. Since any of the 64 patterns can be rationalized
in this way, there is little point in singling these out for consideration either.
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5 Distributions of Choice Patterns

How should one interpret the observed choice patterns? One possibility is to
take the observed choice pattern as a genuine and perfectly accurate reflection
of the subject’s preferences. In this case, one naturally would want to look at
what happens to the observed distribution of patterns as the compounding
rate is increased. The hypothesis of constant discounting leads one to posit
that there is some threshold of the compounding rate at which individuals
switch from all early to all late choices. The hypothesis of hyperbolic discount-
ing is a little tricky (since there is not a single threshold), but still relatively
straightforward. As the compounding rate is increased one would expect to
see plenty of “all early” patterns at low rates and plenty of “all late” patterns
with, one would hope, some strict hyperbolic patterns in between. One might
also find strict hyperbolic patterns at low rates (presumably followed by “all
late” patterns at medium and higher rates), or “all early” patterns for low
and medium rates, with strict hyperbolic patterns at higher rates.

More realistically, one has to allow for the possibilities that there is
a stochastic element in the choices subjects make. Indeed, we have given
the subjects plenty of rope to hang themselves, so to speak. There are only
2 patterns out of 64 consistent with constant discounting, and 6 others con-
sistent with strict hyperbolic discounting (though, as noted above, a strictly
hyperbolic type may choose constant discounting patterns for sufficiently high
or low compounding rates). This leaves 56 of 64 patterns as clear mistakes
or errors, even under the rather generous allowances that the hyperbolic dis-
counting hypothesis provides. In order to begin to get a feel for the data,
Tables 5 and 6 show the set of possible patterns that one might observe,
and the distributions of the actual choices made, for each base level and
compounding rate. We have combined the results from the low-rate and high-
rate questionnaires for these tables, as the same point could be made for each
questionnaire separately or together, even though the distributions are not
identical. In later regression analysis we will treat these results separately.

As Table 5 shows, for each set of 6 related choice questions, there are
(
6
n

)
patterns involving n late choices, adding up to 64 possible patterns in all. Ta-
ble 5 also indicates which numbered patterns correspond to patterns with the
various number of late choices. The most notable feature of Table 6, keeping
in mind the information contained in Table 5, is the wide divergence between
the expected frequency of patterns of each sort and the actual. Table 7 sum-
marizes this information. What is striking is that the frequency (proportion)
of patterns with 1, 2, 3, 4 or 5 late choices is approximately equal, at about
0.09, on average. A second thing to note in Table 6 is that the frequency
of observed hyperbolic patterns for a given number of late choices (1 to 5)
is generally higher than one would expect if the patterns were purely ran-
dom error. This is not so unreasonable, as the hyperbolic patterns, unlike the
other patterns, do in fact satisfy some basic dominance properties. This is
also summarized in Table 7.
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Table 5. Distribution of possible choice patterns

# Late choices # of patterns Pattern #s Hyperbolic-
discounting?

No late choices 1 Pattern 1 1
1 Late Choice 6 Patterns 2–7 7
2 Late Choices 15 Patterns 8–22 22
3 Late Choices 20 Patterns 23–42 41, 42
4 late Choices 15 Patterns 43–57 56
5 Late Choices 6 Patterns 58–63 63
6 Late Choices 1 Pattern 64 64

A provisional interpretation of all of this is that, while the absolute
frequency of non-constant discounting patterns is non-trivial (44% of all
choices), the proportion of these patterns that are hyperbolic is only about
a third (34%), implying that only about 15% of all choices are hyperbolic
patterns, which is not such strong evidence for hyperbolic discounting as an
overall account for intertemporal choice behavior. On the other hand, the last
column of Table 7 suggests that deviations from constant discounting are not
purely random errors, and are somewhat inclined to be driven by the sorts
of factors that hyperbolic discounting is meant to account for: stationarity
violations and linearity violations.

Up to now the analysis has been descriptive and has dealt in aggregate
behavior. We now proceed to conduct regression analysis that will allow us
to formally account for individual-specific factors, and to formally quantify
the effects of extending the time horizon and of shifting all payment periods.

6 Regression Analysis of the Probability of Choosing
Later Options

In order separate the effects of differences in individual propensities to choose
later choices from the effects of such things as the length of time between
payments and the placement in time of the payment, we organize the data as
a panel of observations and take specific account of individual heterogeneity.
Individuals may have different propensities to choose later choices due to
higher or lower average subjective4 discount rates. A linear probability model
(LPM) for a binary response y may be specified as

P (y = 1|x) = β0 + β1 ×1 + · · ·+ βK×K , (1)

4 We use the phrase “average discount rate” to cover the possibility that individuals
may have non-constant discount rates, as in hyperbolic discounting.
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Table 6. Distributions of actual choice patterns

Low compound rate Medium compound rate High compound rate
Low base High base Low base High base Low base High base
Pattern #/ Pattern #/ Pattern #/ Pattern #/ Pattern #/ Pattern #/
Frequency Frequency Frequency Frequency Frequency Frequency

1 56 1 45 1 29 1 22 1 17 1 16
4 1 2 1 4 1 2 1 2 1 8 1
5 6 3 1 5 3 3 1 3 1 13 1
7 1 4 3 6 2 4 2 4 1 22 1
8 1 5 3 7 1 5 1 5 2 32 1
10 1 6 2 8 1 7 3 6 2 33 1
13 1 7 3 9 2 8 1 7 1 38 1
17 2 8 1 13 2 9 1 8 1 39 2
20 1 15 1 17 2 10 1 9 1 41 4
21 1 20 2 18 1 12 1 10 1 42 1
22 2 22 5 20 3 13 2 17 1 44 1
23 1 26 1 22 1 15 1 20 1 46 1
24 2 28 1 32 1 19 2 21 1 49 1
35 1 40 1 33 1 20 2 22 2 55 5
42 3 41 1 34 2 21 1 23 1 56 1
48 1 42 4 42 2 22 2 34 1 57 2
53 1 53 1 44 1 24 1 41 2 58 1
58 1 56 1 46 1 35 2 42 1 59 1
59 1 64 9 47 1 42 3 43 2 60 2
62 1 53 2 43 1 46 1 62 1
63 2 55 1 44 2 48 1 63 7
64 3 56 2 45 1 55 3 64 34

58 2 47 1 56 3
60 1 55 2 59 3
63 8 56 2 63 3
64 13 59 2 64 32

60 2
61 2
62 1
63 2
64 18
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Table 7. Summary information about actual proportions of patterns according to
number of later choices

Number of
late choices

Expected
proportion

Actual
proportion
(average over
all cases)
(516 cases in all)

Expected
proportion
of hyperbolic
patterns within
category

Actual
proportion
of hyperbolic
patterns in
each category

0 1/64 = .02 185/516 = .36 1.0 185/185 = 1.0

1 6/64 = .09 44/516 = .09 .17 9/44 = .20

2 15/64 = .23 47/516 = .11 .07 13/47 = .28

3 20/64 = .31 42/516 = .08 .10 21/42 = .50

4 15/64 = .23 42/516 = .08 .07 9/42 = .21

5 6/64 = .09 43/516 = .08 .17 22/43 = .51

6 1/64 = .02 109/516 = .21 1.0 109/109 = 1.0

where P (y = 1|x) is the probability that the later of the two choices in
a question is chosen. That is, the event that the later choice is chosen is
coded as y = 1, and otherwise y = 0. Assuming that xi is not functionally
related to the other explanatory variables, βi = ∂P (y = 1|x)/∂xi. Therefore,
βi is the change in the probability of success given a one-unit increase in xi.
If xi is a binary explanatory variable (as it always will be in our analysis),
then βi is just the difference in the probability of success when xi = 0 and
xi = 1, holding the other xj fixed. Since all of the regressors are 0-1 variables,
our analysis is not vulnerable to one of the usual criticisms made of the linear
probability model, that the fitted values for P may be larger than 1 or less
than 0.

Another advantage of using the linear probability model, instead of some
nonlinear transformation function, such as the logit or probit, is that it is
straightforward to allow for individual heterogeneity in choice behavior. We
estimate the model by specifying the error term as uim = eim+ci. That is, the
error is modeled as being the sum of an individual specific component ci and
an idiosyncratic component eim that varies from observation to observation
on an individual. We use a random effects specification in the estimation.

P (y = 1|x, ci) = β0 + β1x1 + · · · + βKxK + ci + eim . (2)

The regressors are:

ratem = 1 if compounding rate is the medium rate, 0 otherwise,
rateh = 1 if compounding rate is the high rate, 0 otherwise,
delay4 = 1 if the delay between the earlier and later payment is 4 weeks, 0

otherwise,
delay6 = 1 if the delay between the earlier and later payment is 6 weeks, 0

otherwise,
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initial2 = 1 if the initial period (when the earlier payment is made) is 2
weeks, 0 otherwise,

baseh = 1 if the base amount is the higher level ($ 20), 0 otherwise (if it is
$ 8).

To summarize, the estimated coefficients on these variables in the linear prob-
ability model indicate the marginal increase or decrease in the probability of
choosing the later option relative to the probability of choosing earlier when
the initial period is today, the compounding rate is low, the delay between
payments is two weeks, and the base amount is $ 8. We estimate these effects
separately for the lower-rate and the higher-rate questionnaires. We estimate
the linear probability model using generalized least squares with random ef-
fects. The estimation results are reported in Tables 8 and 9.

The results in Table 8 for the lower-rates questionnaire may be interpreted
as follows. The “baseline” probability of choosing the later option in the first
choice question with the low compounding rate, the low base amount, the
early payment today and the later payment in two weeks, is .09 (the constant
term). The medium rate raises this probability by .20, the high rate by .33, as
one would expect (i.e., the change should be positive and non-trivial). A delay
of either four or six weeks (compared to two weeks) raises this probability
by about the same amount, roughly .05. Shifting the initial payment time to
two weeks raises this probability by .08. These last two effects are the effects
that the hyperbolic hypothesis is meant to accommodate. Raising the base
amount also has a significant effect, although it is quite small in magnitude
(less than .005). The results in Table 9 for the higher-rates questionnaire are
qualitatively similar.

Table 8. Random effects LPM analysis of the lower-rates questionnaire

R2 within = .14 Wald X2(6) = 259.11 Number of obs. = 1584

R2 between = .00 Prob. > X2 = .00 Number of groups = 44

Overall R-sq. = .09 Obs. Per group = 36

Variable Coefficient z-statistic P > |z|

Ratem .20 9.21 .00
Rateh .33 14.98 .00
Delay4 .05 2.15 .03
Delay6 .04 1.64 .10
Initial2 .08 4.57 .00
Baseh .00 2.18 .03
constant .09 1.72 .09
σc = .30

σe = .36 ρ = .42 (fraction of var. due to ci)
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Table 9. Random effects LPM analysis of the higher-rates questionnaire

R2 within = .27 Wald X2(6) = 552.31 Number of obs. = 1512

R2 between = .00 Prob. > X2 = .00 Number of groups = 42

Overall R-sq. = .19 Obs. per group = 36

Variable Coefficient z-statistic P > |z|

Ratem .27 11.96 .00
Rateh .51 22.68 .00
Delay4 .06 2.83 .01
Delay6 .09 3.90 .00
Initial2 .03 1.59 .11
Baseh .01 4.34 .00
constant .05 .96 .34
σc = .28

σe = .36 ρ = .38 (fraction of var. due to ci)

The violations of stationarity and linearity implied by the coefficients on
Initial2 and the Delay variables here are significant, but not huge. The lin-
earity effect does not seem to be too strong after the initial increase from
a two week delay to a four week delay, as shown by the similarity of the
coefficients on the two delay variables (especially in Table 8). The station-
arity effect ranges from .03 to .08, implying an increase in later choices
of 3 to 8% when the initial payment period is shifted out in time. Over-
all, the results are consistent with what we have already observed: vio-
lations of constant discounting are widespread, but the degree to which
they can be accounted for by the hypothesis of hyperbolic discounting is
modest.

One further bit of regression analysis that we think helps to organize the
data is motivated by the discussion in Sect. 5 about the frequency of choice
patterns with various numbers of late choices. If we organize the data so that
the unit of observation is a set of six related choice questions, and the “choice”
observed is the number of later choices made in those six questions, rather
than the simple binary choice of earlier or later on each question individually,
then we can estimate the probability that the number of late choices per set
of questions will occur. We divide the 36 choice questions into six sets of
six questions each. The only variation over these sets is in the base amount
and the compounding rate. That is, for each group of six questions the base
amount and compounding rate is the same. The initial period and delays are
subsumed within each set, so no effect of these variables can be estimated in
this instance. This analysis, then, can be thought of as quantifying the pure
effect of the compounding rate and the base amount, once individual-specific
effects are accounted for.
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There are seven possible “responses” for each such set of six questions. We
simply record the number of late choices in each set, regardless of whether the
patterns are hyperbolic or not, and without regard to which specific questions
had an early or late response. Responses with n late choices, n = 0, . . . , 6, are
coded as n. We then estimate a random effects ordered probit model5. “Cut-
points” (essentially separate constant terms for each instance of n) as well
as coefficient estimates for the base amount and indicator variables for the
different compounding rates are the output of the estimation. Random effects
are assumed, meaning, as in the LPM estimation, that we are allowing for
an individual-specific error component that is fixed over all six observations
on an individual.

Tables 10 and 11 contain estimates from the ordered probit procedure,
and Table 12 contains the fitted (predicted) values for the probabilities of
each category (0 through 6 late choices in a six-choice set). The probabilities,
for a given base value and compounding rate, are calculated as follows:

Probability of 0 Late Choices = Φ(c0 − b − r).
Probability of 1 Late Choice = Φ(c1 − b − r) − Φ(c0 − b − r).
Probability of 2 Late Choice = Φ(c2 − b − r) − Φ(c1 − b − r).
Probability of 3 Late Choice = Φ(c3 − b − r) − Φ(c2 − b − r).
Probability of 4 Late Choice = Φ(c4 − b − r) − Φ(c3 − b − r).
Probability of 5 Late Choice = Φ(c5 − b − r) − Φ(c4 − b − r).
Probability of 6 Late Choices = 1 − Φ(c5 − b − r).

In these calculations, Φ is the standard normal cumulative distribution
function, ci i = 0, . . . , 5 are the estimated cut-points, and b and r stand for
the estimated coefficients on dummy variables for the specific base amount
and compounding rate in question6. In the estimates reported in Tables 10
and 11, Ratem and Rateh are the dummies for the medium and high rates,
respectively, and Baseh is the dummy for the high base amount.

The estimated coefficients in Table 10 and 11 are difficult to interpret; the
fitted values in Table 12 provide a more intuitive picture of the experiment.
Several things are notable. First, we see now (unlike in Table 7, where all
of the treatments were pooled), how there is a movement towards patterns
with a larger number of late choice as the base amount increases and as the
compounding rate increases (both within a questionnaire, and between the
two questionnaires). Second, there is a remarkable amount of inertia in the
choices: large increases in the compounding rate lead to smaller shifts towards
late choices than one would expect if people were doing constant discounting.
We already know from our earlier analysis that most of these “in between”

5 We used the REOPROB procedure, an “Ado” procedure in Stata authored by
Guillaume Frechette.

6 There are indicator (dummy) variables for the high base and for the medium
and high compounding rates only. So, effectively, the coefficients are b=0 and
r=0 for the low base and low compounding rate.
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Table 10. Ordered probit estimates, lower-rates questionnaire

Likelihood. Prob > X2 = .00 N = 264 Log
Ratio X2(3) = 96.80 Likelihood = −335.39

Variable Coefficient z-statistic P > |z´

Baseh .28 1.75 .08
Ratem 1.35 6.34 .00
Rateh 2.13 9.13 .00
Cut1 .87 3.92 .00
Cut2 1.31 5.83 .00
Cut3 2.07 8.58 .00
Cut4 2.56 10.10 .00
Cut5 3.00 11.24 .00
Cut6 3.53 12.29 .00
Rho .85 30.52 .00

Table 11. Ordered probit estimates, higher-rates questionnaire

Likelihood. Prob > X2 = .00 N = 252 Log
Ratio X2(3) = 183.89 Likelihood = −326.05

Variable Coefficient z-statistic P > |z´

Baseh .50 3.10 .00
Ratem 1.84 8.19 .00
Rateh 3.26 11.84 .00
Cut1 .94 4.23 .00
Cut2 1.67 7.24 .00
Cut3 2.21 9.13 .00
Cut4 2.70 10.28 .00
Cut5 3.36 11.25 .00
Cut6 4.11 12.17 .00
Rho .81 22.84 .00

choices (neither all early or all late within a set) are not, in fact, hyperbolic
choices.

These estimation results should not be taken too seriously (say, as a fore-
casting model), but they are suggestive. There is a strong assumption implicit
in the ordered formulation that the categories coded as “larger” and “smaller”
lie in some natural ordering. If the categories between 0 and 6 later choices
are, in fact, truly errors, then the ordered formulation may well overstate
the degree to which those categories are likely to be chosen, especially in
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Table 12. Estimated probabilities of choosing n late choices out of six

Lower-rates questionnaire
N Base = $8, Base = $ 8, Base = $8, Base = $20, Base = $20, Base = $20,

Rate = .001 Rate = .005 Rate = .01 Rate = .001 Rate = .005 Rate = .01

0 .81 .32 .10 .72 .22 .06
1 .10 .17 .10 .13 .15 .07
2 .08 .28 .27 .11 .30 .23
3 .01 .12 .19 .03 .15 .19
4 .00 .06 .14 .01 .09 .16
5 .00 .04 .11 .00 .06 .15
6 .00 .01 .08 .00 .03 .13

Higher-rates questionnaire
N Base = $ 8, Base = $8, Base = $8, Base = $20, Base = $20, Base = $ 20,

Rate = .01 Rate = .05 Rate = .1 Rate = .01 Rate = .05 Rate = .1

0 .86 .18 .01 .67 .08 .00
1 .13 .25 .05 .21 .17 .02
2 .03 .23 .09 .08 .20 .04
3 .01 .16 .14 .03 .19 .08
4 .00 .13 .25 .01 .20 .20
5 .00 .05 .27 .00 .12 .30
6 .00 .01 .20 .00 .04 .36

making predictions via the fitted values of the choice probabilities. The fitted
values tend to be “smeared” over more categories than, in fact, were seen
to be chosen in the raw data. This is particularly evident in the high-rates
questionnaire results for the high compounding rate.

Something we have not yet remarked upon but which is quite clear, even
in the summary statistics in Tables 1 and 2, is that subjects make choices
largely based upon the relative magnitudes of the compounding rates that
they (implicitly) face. Although the highest compounding rate in the lower-
rate questionnaire is the same as the lowest rate in the higher-rate question-
naire, the patterns of choice are only very slightly skewed towards more late
choices in the higher rates questionnaire. It is not clear that this presents
a major problem for the theory of intertemporal choice, though it surely does
cast doubt upon the notion that the discount rate is a hard-wired part of an
individual’s preference structure. In particular, one cannot with confidence
forecast choices for a given compounding rate when choice behavior is ev-
idently so context-dependent. A better account may be that intertemporal
preferences are constructed from the context in which one is choosing. In
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“real life,” one is, however vaguely, aware of the options available, and tries
to choose the best option, with a variety of constraints in place. In an arti-
ficial experimental setting, though the money is quite real, the options vary
more widely than in the natural setting, and there is, perhaps, a tendency to
try to establish what is “usual” or “normal” in the context of the experiment.
Nonetheless, to the extent that subjects settle upon a notion of what is more
and less preferred, even if it is context-dependent, the results may be per-
fectly reliable as an indicator of what people do in other naturally-occurring
environments.

7 Conclusions

Our initial motivation for conducting this experiment was to try to quan-
tify more precisely the degree to which violations of constant discounting,
which we accept to be common and pervasive, can be accounted for by the
hypothesis that individuals use hyperbolic discounting. We have approached
this question in a number of ways: comparisons of the raw averages of choice
frequencies, detailed examination of the choice patterns, a linear probability
model, accounting for individual-specific effects, and an exploratory estima-
tion of an ordered-probit formulation, also accounting for individual-specific
effects. To summarize the results, without restating them, we can say that
the absolute magnitude of the evidence supporting the hyperbolic discounting
hypothesis is rather small. We suggest, provisionally, that a better account
of the data may lie in thinking more generally of propensities to choose ear-
lier or later that are stochastic, and that result in choice patterns that are
nearer to constant discounting, the stronger are the factors that influence
these propensities. Put differently, it may be better to try to come up with
a plausible statistical account of the observed behavior than to enshrine what
may be, after all, just a collection of biases, into a formal theoretical account
of intertemporal choice behavior.
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A Appendix I: Questionnaires

A.1 Higher-Rates Questionnaire

1 Which do you prefer, 8000 francs in 0 weeks, or 8161 francs in 2 weeks?
2 Which do you prefer, 8000 francs in 0 weeks, or 8325 francs in 4 weeks?
3 Which do you prefer, 8000 francs in 0 weeks, or 8492 francs in 6 weeks?
4 Which do you prefer, 8161 francs in 2 weeks, or 8325 francs in 4 weeks?
5 Which do you prefer, 8161 francs in 2 weeks, or 8492 francs in 6 weeks?
6 Which do you prefer, 8161 francs in 2 weeks, or 8663 francs in 8 weeks?
7 Which do you prefer, 20000 francs in 0 weeks, or 20402 francs in 2 weeks?
8 Which do you prefer, 20000 francs in 0 weeks, or 20812 francs in 4 weeks?
9 Which do you prefer, 20000 francs in 0 weeks, or 21230 francs in 6 weeks?

10 Which do you prefer, 20402 francs in 2 weeks, or 20812 francs in 4 weeks?
11 Which do you prefer, 20402 francs in 2 weeks, or 21230 francs in 6 weeks?
12 Which do you prefer, 20402 francs in 2 weeks, or 21657 francs in 8 weeks?
13 Which do you prefer, 8000 francs in 0 weeks, or 8820 francs in 2 weeks?
14 Which do you prefer, 8000 francs in 0 weeks, or 9724 francs in 4 weeks?
15 Which do you prefer, 8000 francs in 0 weeks, or 10721 francs in 6 weeks?
16 Which do you prefer, 8820 francs in 2 weeks, or 9724 francs in 4 weeks?
17 Which do you prefer, 8820 francs in 2 weeks, or 10721 francs in 6 weeks?
18 Which do you prefer, 8820 francs in 2 weeks, or 11820 francs in 8 weeks?
19 Which do you prefer, 20000 francs in 0 weeks, or 22050 francs in 2 weeks?
20 Which do you prefer, 20000 francs in 0 weeks, or 24310 francs in 4 weeks?
21 Which do you prefer, 20000 francs in 0 weeks, or 26802 francs in 6 weeks?
22 Which do you prefer, 22050 francs in 2 weeks, or 24310 francs in 4 weeks?
23 Which do you prefer, 22050 francs in 2 weeks, or 26802 francs in 6 weeks?
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24 Which do you prefer, 22050 francs in 2 weeks, or 29549 francs in 8 weeks?
25 Which do you prefer, 8000 francs in 0 weeks, or 9680 francs in 2 weeks?
26 Which do you prefer, 8000 francs in 0 weeks, or 11713 francs in 4 weeks?
27 Which do you prefer, 8000 francs in 0 weeks, or 14172 francs in 6 weeks?
28 Which do you prefer, 9680 francs in 2 weeks, or 11713 francs in 4 weeks?
29 Which do you prefer, 9680 francs in 2 weeks, or 14172 francs in 6 weeks?
30 Which do you prefer, 9680 francs in 2 weeks, or 17149 francs in 8 weeks?
31 Which do you prefer, 20000 francs in 0 weeks, or 24200 francs in 2 weeks?
32 Which do you prefer, 20000 francs in 0 weeks, or 29282 francs in 4 weeks?
33 Which do you prefer, 20000 francs in 0 weeks, or 35431 francs in 6 weeks?
34 Which do you prefer, 24200 francs in 2 weeks, or 29282 francs in 4 weeks?
35 Which do you prefer, 24200 francs in 2 weeks, or 35431 francs in 6 weeks?
36 Which do you prefer, 24200 francs in 2 weeks, or 42872 francs in 8 weeks?
37 Which do you prefer, 8000 francs in 0 weeks, or 8000 francs in 2 weeks?
38 Which do you prefer, 8000 francs in 0 weeks, or 8000 francs in 4 weeks?
39 Which do you prefer, 20000 francs in 0 weeks, or 20000 francs in 2 weeks?
40 Which do you prefer, 20000 francs in 0 weeks, or 20000 francs in 4 weeks?

A.2 Lower-Rates Questionnaire

1 Which do you prefer, 8000 francs in 0 weeks, or 8016 francs in 2 weeks?
2 Which do you prefer, 8000 francs in 0 weeks, or 8032 francs in 4 weeks?
3 Which do you prefer, 8000 francs in 0 weeks, or 8048 francs in 6 weeks?
4 Which do you prefer, 8016 francs in 2 weeks, or 8032 francs in 4 weeks?
5 Which do you prefer, 8016 francs in 2 weeks, or 8048 francs in 6 weeks?
6 Which do you prefer, 8016 francs in 2 weeks, or 8064 francs in 8 weeks?
7 Which do you prefer, 20000 francs in 0 weeks, or 20040 francs in 2 weeks?
8 Which do you prefer, 20000 francs in 0 weeks, or 20080 francs in 4 weeks?
9 Which do you prefer, 20000 francs in 0 weeks, or 20120 francs in 6 weeks?

10 Which do you prefer, 20040 francs in 2 weeks, or 20080 francs in 4 weeks?
11 Which do you prefer, 20040 francs in 2 weeks, or 20120 francs in 6 weeks?
12 Which do you prefer, 20040 francs in 2 weeks, or 20161 francs in 8 weeks?
13 Which do you prefer, 8000 francs in 0 weeks, or 8080 francs in 2 weeks?
14 Which do you prefer, 8000 francs in 0 weeks, or 8161 francs in 4 weeks?
15 Which do you prefer, 8000 francs in 0 weeks, or 8243 francs in 6 weeks?
16 Which do you prefer, 8080 francs in 2 weeks, or 8161 francs in 4 weeks?
17 Which do you prefer, 8080 francs in 2 weeks, or 8243 francs in 6 weeks?
18 Which do you prefer, 8080 francs in 2 weeks, or 8326 francs in 8 weeks?
19 Which do you prefer, 20000 francs in 0 weeks, or 20201 francs in 2 weeks?
20 Which do you prefer, 20000 francs in 0 weeks, or 20403 francs in 4 weeks?
21 Which do you prefer, 20000 francs in 0 weeks, or 20608 francs in 6 weeks?
22 Which do you prefer, 20201 francs in 2 weeks, or 20403 francs in 4 weeks?
23 Which do you prefer, 20201 francs in 2 weeks, or 20608 francs in 6 weeks?
24 Which do you prefer, 20201 francs in 2 weeks, or 20814 francs in 8 weeks?
25 Which do you prefer, 8000 francs in 0 weeks, or 8161 francs in 2 weeks?
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26 Which do you prefer, 8000 francs in 0 weeks, or 8325 francs in 4 weeks?
27 Which do you prefer, 8000 francs in 0 weeks, or 8492 francs in 6 weeks?
28 Which do you prefer, 8161 francs in 2 weeks, or 8325 francs in 4 weeks?
29 Which do you prefer, 8161 francs in 2 weeks, or 8492 francs in 6 weeks?
30 Which do you prefer, 8161 francs in 2 weeks, or 8663 francs in 8 weeks?
31 Which do you prefer, 20000 francs in 0 weeks, or 20402 francs in 2 weeks?
32 Which do you prefer, 20000 francs in 0 weeks, or 20812 francs in 4 weeks?
33 Which do you prefer, 20000 francs in 0 weeks, or 21230 francs in 6 weeks?
34 Which do you prefer, 20402 francs in 2 weeks, or 20812 francs in 4 weeks?
35 Which do you prefer, 20402 francs in 2 weeks, or 21230 francs in 6 weeks?
36 Which do you prefer, 20402 francs in 2 weeks, or 21657 francs in 8 weeks?
37 Which do you prefer, 8000 francs in 0 weeks, or 8000 francs in 2 weeks?
38 Which do you prefer, 8000 francs in 0 weeks, or 8000 francs in 4 weeks?
39 Which do you prefer, 20000 francs in 0 weeks, or 20000 francs in 2 weeks?
40 Which do you prefer, 20000 francs in 0 weeks, or 20000 francs in 4 weeks?

B Appendix II: Definitions of Choice Patterns

Table 13. Definitions of choice patterns

Pattern X today X today X today X(1 + r) X(1 + r) X(1 + r)

# vs vs vs in n 2 weeks in 2 weeks in 2 weeks
X(1 + r) X(1 + r)2 X(1 + r)3 vs vs vs
in 2 weeks in 4 weeks in 6 weeks X(1 + r)2 X(1 + r)3 X(1 + r)4

in 4 weeks in 6 weeks in 8 weeks
0 → earlier choice, 1 → later choice

1 0 0 0 0 0 0
2 1 0 0 0 0 0
3 0 1 0 0 0 0
4 0 0 1 0 0 0
5 0 0 0 1 0 0
6 0 0 0 0 1 0
7 0 0 0 0 0 1
8 1 1 0 0 0 0
9 1 0 1 0 0 0
10 1 0 0 1 0 0
11 1 0 0 0 1 0
12 1 0 0 0 0 1
13 0 1 1 0 0 0
14 0 1 0 1 0 0
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Table 13. (continued)

Pattern X today X today X today X(1 + r) X(1 + r) X(1 + r)

# vs vs vs in n 2 weeks in 2 weeks in 2 weeks
X(1 + r) X(1 + r)2 X(1 + r)3 vs vs vs
in 2 weeks in 4 weeks in 6 weeks X(1 + r)2 X(1 + r)3 X(1 + r)4

in 4 weeks in 6 weeks in 8 weeks
0 → earlier choice, 1 → later choice

15 0 1 0 0 1 0
16 0 1 0 0 0 1
17 0 0 1 1 0 0
18 0 0 1 0 1 0
19 0 0 1 0 0 1
20 0 0 0 1 1 0
21 0 0 0 1 0 1
22 0 0 0 0 1 1
23 1 1 1 0 0 0
24 1 1 0 1 0 0
25 1 1 0 0 1 0
26 1 1 0 0 0 1
27 1 0 1 1 0 0
28 1 0 1 0 1 0
29 1 0 1 0 0 1
30 1 0 0 1 1 0
31 1 0 0 1 0 1
32 1 0 0 0 0 1
33 0 1 1 1 0 0
34 0 1 1 0 1 0
35 0 1 1 0 0 1
36 0 1 0 1 1 0
37 0 1 0 1 0 1
38 0 1 0 0 1 1
39 0 0 1 1 1 0
40 0 0 1 1 0 1
41 0 0 1 0 1 1
42 0 0 0 1 1 1
43 1 1 1 1 0 0
44 1 1 1 0 1 0
45 1 1 1 0 0 1
46 1 1 0 1 1 0
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Table 13. (continued)

Pattern X today X today X today X(1 + r) X(1 + r) X(1 + r)

# vs vs vs in n 2 weeks in 2 weeks in 2 weeks
X(1 + r) X(1 + r)2 X(1 + r)3 vs vs vs
in 2 weeks in 4 weeks in 6 weeks X(1 + r)2 X(1 + r)3 X(1 + r)4

in 4 weeks in 6 weeks in 8 weeks
0 → earlier choice, 1 → later choice

47 1 1 0 1 0 1
48 1 1 0 0 1 1
49 1 0 1 1 1 0
50 1 0 1 1 0 1
51 1 0 1 0 1 1
52 1 0 0 1 1 1
53 0 1 1 1 1 0
54 0 1 1 1 0 1
55 0 1 1 0 1 1
56 0 0 1 1 1 1
57 0 1 0 1 1 1
58 1 1 1 1 1 0
59 1 1 1 1 0 1
60 1 1 1 0 1 1
61 1 1 0 1 1 1
62 1 0 1 1 1 1
63 0 1 1 1 1 1
64 1 1 1 1 1 1
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Abstract. The effectiveness of decision rules depends on characteristics of both
rules and environments. A theoretical analysis of environments specifies the rela-
tive predictive accuracies of the “take-the-best” heuristic (TTB) and other simple
strategies for choices between two outcomes based on binary cues. We identify
three factors: how cues are weighted; characteristics of choice sets; and error. In
the absence of error and for cases involving from three to five binary cues, TTB is
effective across many environments. However, hybrids of equal weights (EW) and
TTB models are more effective as environments become more compensatory. As
error in the environment increases, the predictive ability of all models is systemat-
ically degraded. Indeed, using the datasets of Gigerenzer, Todd et al. (1999), TTB
and similar models do not predict much better than a naïve model that exploits
dominance. Finally, we emphasize that the results reported here are conditional on
binary cues.

Keywords: decision making, bounded rationality, lexicographic rules, Take-
the-Best, equal weighting

1 “Take-the-Best” and Other Simple Strategies:
Why and When They Work “Well” with Binary Cues

Imagine that you are facing a binary choice. You must decide which of two
alternatives, A or B, is “better” in the sense of having more of a specific
criterion. Examples could include choosing between two job candidates, two
stocks, two restaurants, which route to take on a trip, and so on. Imagine
further that the information on which you make your judgment is limited
to several (k) binary cues, i.e., cues that indicate presence or absence of an
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attribute relevant to the task. Thus, if the number of cues (k) is, say, three,
option A can be characterized by the vector or cue profile

A = {xa1, xa2, xa3} , (1)

where the xaj can only take the values of 0 or 1 (j = 1, . . . , 3).
Similarly, option B can be characterized by the vector or cue profile

B = {xb1, xb2, xb3} , (2)

where the xbj can only take the values of 0 or 1 (j = 1, . . . , 3).
In many studies, simple lexicographic rules have demonstrated remarkably

accurate performance for choices of this type when compared to statistical
benchmarks (Gigerenzer and Goldstein, 1996; Gigerenzer et al., 1999). Of
particular interest is the rule known as “take-the-best” (henceforth TTB)
which works as follows. First, the model assumes knowledge of the differential
ability of the cues to predict the criterion, i.e., the cue validities (in this case,
assume that the order is x.1, x.2, x.3). Second, choice between A and B is
made if the first cue (x.1) can discriminate between the options; if the first cue
cannot, the second cue is used to make the choice; and so on. Finally, if none
of the cues can discriminate, choice is made at random. From a cognitive
viewpoint, this rule can be easily implemented. It does not require many
mental operations nor, in many cases, examining much information (often just
the first cue). However, it does require ordering the cues by their validities.

TTB has been presented as an example of a “fast and frugal” heuristic,
an element of the “adaptive toolbox” of bounded rationality (Gigerenzer and
Goldstein, 1996; Gigerenzer and Selten, 2001). In addition to demonstrations
of its predictive ability, several experimental studies have addressed whether
and when people actually use TTB-like mental strategies (see, e.g., Rieskamp
and Hoffrage, 1999, 2002; Bröder, 2000, 2003; Bröder and Schiffer, 2003;
Newell and Shanks, 2003; Newell et al., 2003). Overall, there is some evidence
that people do use TTB-like processes but, not to the exclusion of other
strategies.

In this paper, we emphasize that the performance of response strate-
gies or decision rules depends on characteristics of both the rules and of the
environments in which they operate (Brunswik, 1952; Simon, 1956). A com-
plete theory needs to specify both. However, whereas investigators have had
little difficulty in identifying rules, the specification of task environments
has proven more problematic. Our goal is to illuminate this issue and our
approach is theoretical. It involves specifying abstract characterizations of
tasks and noting how different models would be expected to perform in these
environments (cf., Payne et al., 1993).

In conceptualizing environments for binary choice, we emphasize three
dimensions. One is the class of functions that determines which alternative
is correct. The second is the type of distribution of cue profiles in the choice
set. The third is the role of error. This can be located in the application of
the model, the environment, or both.
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The paper is organized as follows. We first define the different models we
consider. Second, we examine their theoretical performance under both non-
compensatory and compensatory linear weighting functions in environments
characterized by lack of error. This is done separately for models involving
three, four and five cues (details of the latter are presented in the Appendix)1.
Third, we investigate one aspect of error in models: namely, inappropriate
application, i.e., failure to respect the ecological ordering of cues in TTB.
Fourth, we identify ways of characterizing populations of data according to
distributions of cue profiles and weighting functions and illustrate these us-
ing the 20 datasets of Czerlinski et al. (1999). We also subject the models
to predictive tests on these data. Fifth, small differences between the actual
predictive abilities of the models highlight the importance of error in the en-
vironment. We therefore provide a means of characterizing levels of error and
show how this degrades model performance. Finally, we discuss our results.

In brief, we show that at a theoretical level TTB does work “well” as
a model of binary choice. But to understand how “well” requires specifying
appropriate benchmarks. The normative standard involves models such as
Bayesian networks, multiple regression or exemplar-based approaches (cf.,
Chater et al., 2003). Whereas such comparisons are interesting from a nor-
mative viewpoint, we do not believe they are the most illuminating from
a descriptive perspective. There are two reasons.

First, the advantage of simple models in the tradition of the “adaptive
toolbox” (Gigerenzer and Selten, 2001) is that they can be used in many
situations where people lack the experience necessary to develop more so-
phisticated processes2. Second, when dealing with small samples, it is well-
known that regression analysis (and other optimizing techniques) produces
parameter estimates with large standard deviations such that predictions to
further samples are subject to much error. In these cases, regression analysis
and similar tools become “straw men” that lack meaning (see, e.g., Einhorn
and Hogarth, 1975).

Instead, we compare TTB to other simple models, some of which incor-
porate features of TTB. For example, we explore one previously unidentified
model that combines features of both TTB and equal weighting – called
EW/TTB. Moreover, we show that this model improves the predictive abil-

1 We limit our analysis to three, four, and five cues for two reasons. One is to
reduce analytical complexity. The second is that three, four, and five cues seem
sufficient to understand what people can actually do within limited information
processing constraints.

2 As argued by Chater et al. (2003), it is clear that many basic physical and
psychological processes can be well modeled by what most would classify as
complex normative models. However, note that most of these processes (as an
example, consider perception) have evolved over many years of evolution thereby
implying much data in their “development.” Paradoxically, many “higher order”
mental processes are used in situations involving scarce data which effectively
preclude using complex normative models (see also Todd and Gigerenzer, 2000).
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ity of TTB in certain environments and yet, when the number of variables is
small, does not require much additional information processing.

To establish a yardstick for simple models, we propose that all reasonable
models of binary choice should exploit dominance. This leads to the following
benchmark. Choose according to dominance. If there is no dominance, choose
at random. As we show, this strategy – that we call DOMRAN – actually
predicts quite well in the kinds of environments studied by Gigerenzer and his
colleagues. In particular, when data are “noisy” its performance does not fall
far behind that of TTB. Thus in interpreting the performance of TTB and
similar models, it is important to investigate how they predict in cases that
cannot be decided by dominance. What is the marginal predictive significance
compared to the standard set by DOMRAN?

2 The Different Models

In comparing the different models, it is of interest to note: (1) what knowledge
they require about the variables (i.e., the cues) such as relative importance
and, if so, how accurate this needs to be; (2) how many cues must be examined
to make a decision; (3) whether explicit calculations are required; (4) the
number of comparisons to be made; and (5) whether random choice is used
to break ties. Table 1 provides an overview of such characteristics. As will be
seen, some of the models are combinations of different models.

2.1 DOMRAN

This exploits dominance. If one alternative dominates another, it is chosen; if
not, choice is made at random. The psychological inspiration is provided by
the work of Montgomery (1983) who has documented how people seek to find
and exploit dominance and may even distort information so that dominance
can be “justified.” In general, we suspect that screening for dominance occurs
frequently and thus this model provides a useful lower bound in terms of
a “reasonable” simple strategy. On the other hand, we have found no explicit
mention of this model in the literature to date.

2.2 EW

In the equal weighting or “tallying” model (Gigerenzer et al., 1999), each
variable is given the same weight and the alternative chosen has the larger
weighted sum. In practice, since variables take the values of 0 or 1, this is
equivalent to summing the variables of each alternative and choosing the
larger sum. When the sums are equal, choice is made at random. This model
involves examining all data, making two sums, and one comparison. It has
proven useful in predicting many phenomena when people do not know the
relative weights to give to variables (Dawes and Corrigan, 1974; Dawes, 1979;
Einhorn and Hogarth, 1975).
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Table 1. Prior information and cognitive operations required by different models
for binary choice

Prior Amount of Number of Random
information* information CalculationsComparisons choice if tie

to consult

DOMRAN None All None Equal to Yes
number
of variables

EW None All Yes, two One Yes
sums

TTB Rank-order Variable None Variable – Yes
of importance from one to
of variables number of

variables

EW/TTB Rank-order All Yes, two One, if Yes
hybrids of importance sums choice by EW.

of variables Otherwise,
more.

*For all models, the decision maker is assumed to know the sign of the zero order
correlation between cues and the criterion

2.3 TTB

See description above.

2.4 EW/TTB hybrids

It is not unreasonable to imagine that people might use combinations of mod-
els that depend on the characteristics of the choices they face. For example,
in many cases the use of EW results in ties. However, rather than resolving
such ties at random, an alternative mechanism to resolve ties is to switch
to another model that allows differential weighting, e.g., TTB. We postulate
that the hybrid models operate in two phases. In the first, EW is used – on all
or a subset of the variables (to be specified). If EW favors one alternative, it
is chosen. Otherwise, choice is made by TTB. To the best of our knowledge,
this is the first formal investigation of this class of models with binary cues.

It is important to note that in all of the models, the signs of the correla-
tions between cues and criterion are assumed to be known, i.e., the variables
are scaled such that a cue value of “1” implies a greater value on the crite-
rion than a cue value of “0.” In addition, we do not deal with cases involving
missing values of cues.



158 R.M. Hogarth, N. Karelaia

3 A Starting Point: Error-Free Linear Environments

To choose between any pair of alternatives, A and B, we assume that their
accompanying cue profiles have been evaluated according to some function
that allows one to determine which is “better.” We start by assuming an
additive function where the sum of all the weights βj (j = 1, . . . , k) given to
the k cues is equal to 1 and there is no error. We make four arguments to
justify the use of this simple error-free linear environment.

First, as noted by Dawes and Corrigan (1974), many nonlinear functions
can be well approximated by linear functions and particularly when the for-
mer are conditionally monotonic with respect to the criterion. Second, the
fact that the weights are constrained to sum to one is not important so long
as they can be measured (conceptually) on an interval scale. Third, we be-
lieve it is appropriate to start our investigation with a simple model that can
serve as a baseline. Fourth, later in the paper we relax the assumption of “no
error” and investigate how error affects results.

4 Non-Compensatory and Compensatory Functions

We first characterize these linear environments by the types of functions
used to classify choices. In doing this, we follow the lead of Martignon and
Hoffrage (1999, 2002) who have distinguished between non-compensatory and
compensatory functions for binary cues. Specifically, Martignon and Hoffrage
define by non-compensatory any weighting scheme or function that has the
property that, when weights are ordered from largest to smallest, each weight
is larger than the sum of all weights that are smaller than it, i.e.,

βj >
∑

i

βi, for any i > j, j = 1, . . . , k − 1. (3)

Martignon and Hoffrage define all other functions as compensatory. Thus, for
three cues, β1 > (β2+β3) is the non-compensatory case whereas β1 ≤ (β2+β3)
is the compensatory case (assuming that β1 > β2 > β3). An important theo-
retical result proven by Martignon and Hoffrage (1999, 2002) is that, in these
simple error-free linear environments, TTB is the optimal model for choice
when weighting functions comply with their definition of non-compensatory3.
Thus, the bulk of our attention will be focused on what happens when weight-
ing functions are compensatory. For expository purposes, we provide separate
analyses for the cases involving three and four cues. Details concerning the
5-cue case are provided in the Appendix.

3 Another way of interpreting this result is to note that TTB makes identical
predictions to a linear model with non-compensatory weights. Thus, if the latter
is optimal in the environment, so is the former. (It is important to emphasize
that this is a theoretical result, i.e., the βj ’s are environmental parameters.)
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5 Different Cue Environments

5.1 The 3-Cue Environment

In empirical tests of TTB the basic task involves seeing how models predict
between all possible pairs of a set of choice alternatives. Thus, given n al-
ternatives, each characterized by binary vectors of length k, predictions are
made for the n(n− 1)/2 possible pairs of alternatives. Thus, with 30 alterna-
tives there are 435 pairs to predict, with 40 alternatives, 780 pairs, and so on.
However, even though there may be many pairs to predict, it should be clear
that the distinct cue profiles that characterize alternatives are limited by the
number of k binary cues. Specifically, the number of distinct cue profiles is
2k. This means that, in large samples of alternatives, many predictions must
involve cases involving identical cue profiles (so-called “repeats”) and that the
distribution of cue profiles among the alternatives affects results. This, as we
shall show below, is an important insight.

To illustrate the effects of different cue profiles, consider the case of three
cues and the eight different profiles that can result from these cues. These
are shown in the top left section of Table 2 where the distinct cue profiles
are given the labels A, B, C, D, E, F, G, and H. (Profile A is (1, 1, 1); profile
B is (1, 1, 0); and so on.) Furthermore, assume that the variables have been
ordered in importance, that is β1 > β2 > β3.

Now consider the vectors of the arithmetical differences between the two
vectors representing the attributes of the alternatives. In the case of A and
B, above, this is

A − B = {xa1 − xb1, xa2 − xb2, xa3 − xb3} (4)

where each element of the vector can take values of 1, 0, or −1 depending
on the characteristics of the alternatives. These are shown to the right of the
eight distinct profiles. Thus, the first set of difference vectors under the letter
A shows the differences between A and the seven other profiles (B to H);
those under B the differences between B and its successors (C to H); those
under C the differences between C and its successors (D to H); and so on.

The difference vectors provide a simple way of assessing the predictions
of different models for each combination of cue profile types. First, if all the
elements of a difference vector are non-negative and at least one is positive,
the first cue profile dominates the second. Thus, as can be seen, cue profile
A dominates all the other profiles – B through H. Similarly, B dominates D
but not E, and so on. Cases involving dominance are indicated by a “d” in
the matrix on the right hand side of Table 2.

Second, consider cases where the difference vectors contain negative el-
ements such as the B-C pairing that takes the values 0, 1, −1 and restrict
attention to weighting functions that are strictly compensatory, i.e., where
β1 > β2 > β3 and β1 < (β2 + β3). Indeed, in this paper, we only consider
strict inequalities. TTB chooses B over C based on the first difference that
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appears here between values of the second variable. Moreover, this prediction
is consistent with any model where β2 > β3. Thus, TTB also predicts this
case correctly when the weighting function is strictly compensatory. Contin-
uing to examine all cases that do not involve dominance, we use the fact that
β1 > β2 > β3 to determine consistency between the choices of TTB and any
strictly compensatory weighting function. These consistent cases are marked
by a “c” in the appropriate places on the right hand side of Table 2.

Third, by the same logic, it is clear that TTB does not predict the D-E
pairing correctly in the compensatory case where β1 < (β2 + β3). This is
indicated by marking a “w” in the appropriate cell on the right of Table 2.

Fourth, we also indicate the letter “t” in cases where the EW model pre-
dicts ties, as in B-E and C-E.

Finally, Table 2 summarizes TTB’s predictions between all cue profile
types for strictly compensatory weighting functions. There are 19 cases in-
volving dominance. Thus, all models considered in this paper would make the
same predictions for these cases. Of the remaining nine cases, TTB predicts
eight correctly and makes one error4.

The left hand side of Table 3 shows the accuracy of the various models for
three cues when the population of cue profiles consists of just one of each type
(i.e., A through H), for both non-compensatory and compensatory weighting
functions. First, TTB is 100% accurate for non-compensatory functions –
as proven by Martignon and Hoffrage (1999, 2002). (To simplify reading of
tables, we adopt the practice of highlighting the largest figures in relevant
comparisons in bold.)

Second, TTB makes one error for compensatory functions where it
achieves an overall accuracy rate of 96%.

Third, EW makes one error for non-compensatory functions and no errors
for compensatory functions. However, as can be seen from Table 2, there are
six cases where EW predicts ties for compensatory functions where decisions
have to be made at random – hence its expected predictive accuracy of 89%.
Thus the trade-off between the performances of TTB and EW is one certain
error versus six cases that are decided by chance.

Fourth, EW/TTB makes one error with non-compensatory functions but
no errors with compensatory functions. More specifically, it makes the same
error as EW with the non-compensatory function but all ties are correctly
resolved by the TTB mechanism. For the compensatory functions, EW/TTB
has perfect performance because, first, it correctly predicts the D-E case for
which TTB makes an error and, second, all of the EW ties are again correctly
resolved by the TTB mechanism.

4 It is clear from examining the experimental literature (e.g., Newell & Shanks,
2003) that some investigators are aware of the cue profile pairings for which TTB
does and does not make appropriate predictions. However, we believe our work
is unique in drawing more complete implications of this analysis.
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Table 3. Expected predictive accuracy (%’s) for 3- and 4-cue cases

3-cue cases 4- cue cases
Models NonCFCF NonCFCF1 CF2 CF3 CF4* CF5*

DOMRAN 84 84 77 77 77 77 77 77

EW 86 89 81 83 82 84 85 87
No of errors** 1 0 9 7 8 6 4 0

TTB 100 96 100 98 99 98 96 94
No of errors** 0 1 0 2 1 3 3 5

EW/TTB 96 100 93 94 93 95 95 98
No of errors** 1 0 9 7 8 6 4 0

EW-3/TTB x x 97 95 98 96 99 96
No of errors** 4 6 3 5 0 2

Notes:
NonCF = non-compensatory functions
CF = compensatory functions
* Functions contain some ambiguous cases (3 for CF4 and 5 for CF5). Thus, even
though a model may make no errors, its expected predicted accuracy is less than
100% due to the presence of these ambiguous cases
** Errors involve misclassifications by the models (from totals of 28 and 120
choices for the 3- and 4-cue cases, respectively)

To summarize, in the 3-cue case TTB is optimal for non-compensatory
functions and EW/TTB is optimal for compensatory functions. Moreover,
these optimality statements can be made about TTB and EW/TTB irre-
spective of distributions of cue profiles precisely because they never make
mistakes.5

5.2 The 4-Cue Environment

The operational definitions of compensatory and non-compensatory functions
are quite straightforward in the 3-cue case. However, defining compensatory
functions by violations of the condition for non-compensatory functions leads
to several distinct classes of the former in the 4-cue case. Specifically, if – for
four cues – we define non-compensatory by the conditions that, first, βj >∑

i βi, for any i > j, j = 1, . . . , k − 1, and second, that β1 > β2 > β3 > β4,

5 The expected predicted performances of these optimal models will not necessarily
always be 100%. This can occur when the distribution of cue profiles contains
one or more “repeats” of the same profile. We consider this issue in more detail
below.
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Fig. 1. Classification of compensatory (CF) and non-compensatory functions (non-
CF) for the 4-cue case

there are several compensatory functions that violate the first condition to
different extents.

For instance, if we specify that β1 < β2 + β3 (which in turn implies that
β1 < β2 + β3 + β4), this can be accompanied by either β2 < β3 + β4 or
β2 > β3 + β4. In fact, there are five different classes of weighting functions
that span the parameter space of compensatory environments – see Fig. 1.
As in the 3-cue case, we only consider strict inequalities in dividing up the
parameter space.

To illustrate differences between the weighting functions, Table 4 provides
numerical examples. As can be seen, CF1, CF2, and CF3 are close to “non-
compensatory” and CF5 can accommodate distributions of weights that vary
from the first being much larger than the others to a set of almost equal
weights.

With four cues, there are 120 distinctive profile pairings. The right hand
side of Table 3 characterizes the performance of the different models. Com-
pared to the 3-cue case, we have an additional hybrid model labeled EW-
3/TTB. This is a modification of EW/TTB that works as follows. In the first
stage, the decision maker uses an equal weighting model on the three most
important variables (i.e., omitting the fourth). If this points to a decision, it
is taken. If there is a tie, it is resolved by TTB6.

Table 4. Exemplar weights of different weighting functions for 4-cue models

β1 β2 β3 β4

NonCF 0.53 0.24 0.13 0.10
CF1 0.57 0.19 0.14 0.10
CF2 0.48 0.28 0.14 0.10
CF3 0.48 0.22 0.17 0.13
CF4 0.42 0.31 0.15 0.12
CF5a 0.40 0.25 0.20 0.15
CF5b 0.29 0.26 0.24 0.21

6 Why, the reader may ask, do we not also define a EW-2/TTB model? The reason
is that this latter model makes predictions that are identical to those of TTB.
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In this 4-cue world, 54% of the distinctive pairings involve dominance such
that the expected performance of DOMRAN is 77%, i.e., 54% + 0.5(100%−
54%). TTB makes, of course, no errors in the non-compensatory case and
is unique in this respect. CF4 and CF5 are unable to provide unambiguous
choices for three and five cue profile pairings respectively7. Operationally,
these cases have been treated as ties which all models are assumed to predict
correctly with probability of 0.5.

Overall, with populations of unique cue profile pairings, the pattern of re-
sults for the 4-cue case matches that of three cues. For non-compensatory
(CF1) and close to non-compensatory functions (CF1, CF2, CF3), TTB
makes the least numbers of errors. As the functions become more compen-
satory (CF4, CF5), it is the EW/TTB models that perform relatively better.
In particular, under CF5, EW makes no errors such that the TTB contribu-
tion to EW/TTB is the correct allocation of all EW ties.

The 5-cue environment exhibits the same general trends. However, be-
cause it is more complex, we provide details in the Appendix.

5.3 Summary

As shown by Martignon and Hoffrage (1999, 2002), TTB is optimal when
environments are non-compensatory (by their definition). In addition, for the
3-, 4-, and 5-cue cases, TTB is one of the best strategies when environments
consist of unique cue profile pairings. Moreover, even in fairly compensatory
environments, TTB does well. However, as the environments become more
compensatory, hybrid strategies such as EW/TTB become more effective
in a relative sense. In these strategies, TTB intervenes when EW predicts
ties. The EW/TTB hybrid is 100% accurate with 3-cues and the strategy of
preference for the most compensatory weighting functions in the 4- and 5-cue
cases.

Finally, we note that although the DOMRAN strategy has the lowest
expected performance in all cases, in absolute terms its expected performance
is quite high, i.e., 84% in the 3-cue case, 77% in the 4 cue-case, and 71% in the
5-cue case. As we shall demonstrate below, the fact that DOMRAN provides
such a high “lower benchmark” is important for understanding the relative
success of simple models for binary choice.

6 Error in the Application of Models

All the simple models we investigate assume correct knowledge and use of
the signs of the zero-order correlations between cues and criterion. In addi-
tion, TTB is assumed to know and use the relative sizes of the β-parameters

7 For details, see Table A1 of the Appendix of Hogarth and Karelaia (2003).
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associated with the cues8. What happens, therefore, when the cues used in
the TTB process are not considered in the appropriate order, i.e., there is
error in knowledge and/or application of the TTB model?

We begin by examining the 3-cue case where there are 3! (= 6) possi-
ble orderings of the cues. These are shown in Table 5 together with results
of different models. (Once again, characters in bold indicate the best ex-
pected correct percentages within classes of parameters, non-compensatory
and compensatory.) In the non-compensatory case, TTB remains the best
strategy but only provided the most important variable is correctly identi-
fied as such. For all other orderings, EW/TTB has the best expected correct
predictions. In the compensatory case, EW/TTB is better than the other
strategies no matter the order in which variables enter the models. (However,
note comments about EW below.)

At the foot of Table 5, we have also indicated the means of the different
columns as well as the expected performance of models that are not affected
by the order in which cues are examined. As noted previously, DOMRAN
has expected performance of 84%. Indeed, this outperforms the last three cue
orderings of all models with the exception of EW/TTB. EW achieves 86%
and 89% for the non-compensatory and compensatory weighting functions,
respectively. The means of the TTB columns equal the performance of what
Gigerenzer et al. (1999) refer to as the MINIMALIST strategy. This is the
performance that would be expected of a TTB model where the order of the
variables entering the model is decided at random9. However, MINIMALIST
fails to reach the expected performance level of EW which actually matches
the mean of EW/TTB. Thus EW matches or exceeds EW/TTB in roughly
half of the possible orderings (i.e., the lower orderings).

Parenthetically, one way to interpret the expected performance level of
MINIMALIST is to consider situations where people cannot control the order
in which cues are examined or, indeed, which cues will eventually become
available. In these situations, decisions are made by using cues in the order
in which they are accessed. Thus, if the environment essentially randomizes
the ordering of cues, a TTB-like strategy will have the expected performance
of MINIMALIST. However, if the more (less) important cues happen to be
accessed first, the strategy will be more (less) effective than MINIMALIST.

As shown in Table 6, in the 4-cue case there are 24 different possible
orderings of the variables. For clarity, we only present the results of three of
the six possible weighting functions – NonCF, CF2, and CF5. Once again, we

8 Recall, however, that it does not require precise knowledge of the sizes of the
β-parameters and, in this sense, the prior knowledge requirements are not nec-
essarily that onerous.

9 In the MINIMALIST strategy, variables enter the model in a random order
for each binary choice. The assumption being made here is that the expected
performance level of MINIMALIST is equal to that of the mean of TTB across all
possible orderings, i.e., the expected performance of MINIMALIST is equivalent
to that obtained by sampling different cue orderings at random.
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Table 5. Sensitivity to different cue orderings for 3-cue case (populations of dis-
tinctive pairings)

Expected correct - %
Cue orderings Non-compensatory Compensatory
1st 2nd 3rd TTB EW/TTB TTB EW/TTB

1 x1 x2 x3 100 96 96 100
2 x1 x3 x2 93 89 89 93
3 x2 x1 x3 86 89 89 93
4 x2 x3 x1 79 82 82 86
5 x3 x1 x2 79 82 82 86
6 x3 x2 x1 71 75 75 79

Means 85 86 86 89

Notes:
(1) Bold entries indicate best predictions within orderings
(2) Expected performance (%) of models not affected by ordering:

NonCF CF
DOMRAN 84 84
EW 86 89

emphasize the best predictions within an order in bold characters. Overall,
results mirror the 3-cue case. When the functions are non-compensatory or
least compensatory, TTB performs best provided the most important variable
enters the model first. Otherwise, EW/TTB performs best and is best across
the range of orderings as the parameters become more compensatory (see
CF5). DOMRAN achieves 77% in this population and this is clearly a better
score than achieved by different models that fail to identify the appropriate
ordering of the variables. Interestingly, DOMRAN only exceeds EW/TTB in
the most compensatory case (CF5) in the last (and most incorrect) ordering
(77% vs. 76%). Finally, EW matches the mean of EW/TTB across orderings.
(Analogous results for the 5-cue case are presented in the Appendix).

Overall, differences between the models across the different combinations
of weighting functions are small. Moreover, provided the first two most impor-
tant variables enter the models in the appropriate order, TTB and EW/TTB
do quite well in an absolute sense, i.e., approximate expected success rates
of 90% and above. However, the major result for populations of distinctive
cue pairings is that TTB is best provided the most important cue or vari-
able does enter the model first and the weighting functions are not the most
compensatory. Otherwise, EW/TTB should be preferred.

It is perhaps surprising that all models seem to have quite high expected
correct predictions even when cue orderings are inappropriate. However, once
again the DOMRAN model provides a good naïve benchmark with which to
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Table 6. Sensitivity to different cue orderings for some 4-cue models (populations
of distinctive pairings)

Expected correct - %
Cue orderings Non-compensatory Compensatory

CF2 CF5
1st 2nd 3rd 4th TTB EW/ TTB EW/ TTB EW/

TTB TTB TTB

1 x1 x2 x3 x4 100 93 99 93 94 98
2 x1 x2 x4 x3 97 89 96 90 90 95
3 x1 x3 x2 x4 93 89 93 90 90 95
4 x1 x3 x4 x2 90 86 89 87 87 91
5 x1 x4 x2 x3 90 86 89 87 87 91
6 x1 x4 x3 x2 87 83 86 83 84 88
7 x2 x1 x3 x4 87 88 88 88 88 94
8 x2 x1 x4 x3 83 84 84 85 85 90
9 x2 x3 x1 x4 80 84 81 85 83 90
10 x2 x3 x4 x1 77 81 78 82 80 87
11 x2 x4 x1 x3 77 81 78 82 80 87
12 x2 x4 x3 x1 73 78 74 78 76 84
13 x3 x1 x2 x4 80 84 81 85 85 90
14 x3 x1 x4 x2 77 81 78 82 81 87
15 x3 x2 x1 x4 73 81 74 82 80 87
16 x3 x2 x4 x1 70 78 71 78 76 84
17 x3 x4 x1 x2 70 78 71 78 76 84
18 x3 x4 x2 x1 67 74 68 75 73 80
19 x4 x1 x2 x3 77 81 78 82 79 86
20 x4 x1 x3 x2 73 78 74 78 75 83
21 x4 x2 x1 x3 70 78 71 78 75 83
22 x4 x2 x3 x1 67 74 68 75 72 80
23 x4 x3 x1 x2 67 74 68 75 72 80
24 x4 x3 x2 x1 63 71 64 72 69 76

Means 79 81 79 82 81 87

Notes:
(1) Bold entries indicate best predictions within orderings
(2) Expected performance (%) of models not affected by ordering:

NonCF CF2 CF5
DOMRAN 77 77 77
EW 81 82 87
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calibrate this impression. It is consistently superior to many results achieved
with incorrect cue orderings.

7 Different Distributions of Cue Profiles

The above results are conditioned on populations consisting of unique cue
profiles. However, characteristics of choice sets are an important dimension
of environmental variability. In particular, we would expect both the gen-
eral level of predictive ability as well as relative differences between mod-
els to depend on characteristics of the distributions of cue profiles in given
populations. We consider three main factors that we illustrate by the three
distributions shown in Table 7.

First, distributions can differ in the number of dominating cue profiles.
In general, the greater the proportion of dominating cue profiles, the greater
is the expected performance of all models. In Table 7, Distribution III has
a lower proportion of dominating profiles than the other distributions. Hence,
DOMRAN (as well as the other models) performs less well here than in the
other distributions.

Second, when there are repeats of the same cue profile, all models would
only be expected to discriminate correctly between such cases at a rate of
50%10. Thus, the general level of predictability between two populations de-
pends, in part, on the number of repeated profiles in each. Specifically, repeats
lower overall expected performance. In Table 7, Distribution III contains sev-
eral repeats.

Third, the conflict implicit in the difference vectors has more impact on
the relative success of some models than of others. For instance, when the
weighting function is compensatory, TTB always makes mistakes for the D-
E choice in the 3-cue case (see Table 2), but EW – and thus EW/TTB –
does not. Hence, the presence or absence of D-E choices in a population can
affect the relative success of these decision rules. As a case in point, D-E
conflict is present in Distributions I and III but absent from Distribution II.
Note, in particular, that TTB has predicted performance of 100% correct in
Distribution II but 96% and 80% in Distributions I and III, respectively.

More generally, distributions or “choice environments” can be described
as being “TTB-friendly” or “TTB-unfriendly” for compensatory functions de-
pending on the absence or presence of cue profile pairings that TTB classifies

10 In a world without error, repeat profiles must have identical values on the de-
pendent variable. Thus, it could be argued, it does not matter which profile is
selected because each must be “correct.” In this work, however, we take a more
conservative approach and assume that one of the two alternatives is indeed cor-
rect. Thus, models can only discriminate the correct alternative by chance, i.e.,
with probability of 0.50.
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incorrectly (cf. Shanteau & Thomas, 2000)11. Thus, Distribution II in Ta-
ble 7 can be described as TTB-friendly (there are no D-E pairings) whereas
Distribution III is TTB-unfriendly.

Whether a distribution is TTB-friendly or TTB-unfriendly can be charac-
terized by asking how it varies from a uniform distribution (e.g., Distribution
I in Table 7) in terms of the number of errors made by TTB. Specifically,
we describe choice environments with uniform distributions of cue profiles as
“TTB-neutral.” Thus, if the expected number of TTB errors in a distribu-

Table 7. Some distributions of cue profiles for the 3-cue case

Distributions
Cue profile (entries: number of profiles)
type x1 x2 x3 I II III

A 1 1 1 1 1 0
B 1 1 0 1 1 2
C 1 0 1 1 1 0
D 1 0 0 1 1 2
E 0 1 1 1 0 6
F 0 1 0 1 1 0
G 0 0 1 1 1 3
H 0 0 0 1 1 3

Characteristics of distributions
a) Total number of binary choices 28 21 120
b) Percentages of choices involving dominance 68 71 51
c) Presence of repeats? No No Yes
d) TTB-error cases DE, as percentage of total 4 0 10
e) Overall characterization TTB- TTB- TTB-

neutral friendly unfriendly
Predicted correct (%’s) assuming
compensatory weighting function:

TTB 96 100 80
EW 89 91 83
EW/TTB 100 100 90
DOMRAN 84 86 75

Note: Bold entries indicate best predictions within distributions

11 Environments can be classified as “friendly” or “unfriendly” to models as well
as people. In this paper, we only consider the former. The latter depends on
a decision maker’s experience/knowledge.
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tion is less (more) than that expected on the basis of a uniform distribution,
it will be described as TTB-friendly (TTB-unfriendly). As an example, con-
sider Distribution III in Table 7. This has 16 observations such that a uniform
“equivalent” would have two observations of each cue profile type. This uni-
form distribution would have two D observations and two E observations
and, consequently, make four TTB errors (i.e., there are 2× 2 D-E pairings).
In Distribution III, note that TTB makes 12 errors (i.e., there are 2 × 6 D-
E pairings). Because 12 is greater than four, we describe Distribution III
as TTB-unfriendly. Distribution II, on the other hand, is TTB-friendly be-
cause 0 < 1. In short, when the number of predicted TTB errors is smaller
(greater) than expected on the basis of a uniform distribution, we describe
the distribution as TTB-friendly (TTB-unfriendly).

Parenthetically, we note that the predictive success of lexicographic mod-
els such as TTB has sometimes been attributed to correlation between the
cues. However, this is not a complete explanation. As indicated above, TTB is
quite successful in TTB-neutral environments in which the intercorrelations
between cues are zero, i.e., uniform distributions of distinctive cue profiles.
What is critical to the performance of TTB is the presence or absence of the
specific cue pairings that it predicts incorrectly, i.e., whether the distributions
are TTB-unfriendly or TTB-friendly.

7.1 Some Empirical Distributions

The data in Table 7 were constructed for illustrative purposes. What can
be said about empirical data? To examine the characteristics of different
distributions, we use 20 datasets created by Czerlinski et. al (1999)12. First,
we ignore the empirical criterion variables and examine the characteristics of
the datasets by cue profiles. What proportions of the choices in each dataset
involve dominance and repeats? To what extent are these datasets TTB-
friendly or TTB-unfriendly? Second, we test the different simple models by
seeing how well they predict these data.

Table 8 reports characteristics of the 20 datasets that we have split into
three groups according to numbers of cues (three, four, and five). The 5-cue
set actually includes datasets that had more than five cues. However, in each
of these we have only considered the five most important cues (determined
by examining cue validities across all data). First, in addition to numbers of
observations, we report the number of cases where all models make identical
choices, i.e., for cases involving dominance and repeated cue profiles (in the
second and third columns of the table). The total number of common choices
(i.e., the sum of dominant pairs and repeats) is large, varying from 39% to
96% with an average of 67%. In other words, the predictions of models can

12 We are very grateful to these researchers for making their data avail-
able on their website. See http://www-abc.mpib-berlin.mpg.de/sim/Heuristica/
environments/
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Table 8. Characterization of empirical datasets

n Choices Ratio of
(%) involving: expected TTB Overall

Datasets Dominant errors: characterized
Pairs Repeats Uniform/actual as

3-cues: CF
Ozone 11 53 18 Infinite F
Attractiveness 30 51 17 Infinite F
of women
Attractiveness 32 57 21 2.67 F
of men
Fish fertility 395 72 21 Infinite F

4-cues: CF2 CF5 CF2 CF5
Oxidant 17 45 6 Infinite 2.50 F F
Land rent 58 42 9 0.29 0.39 U U

5-cues: CF9 CF23 CF9 CF23
Homelessness 50 47 6 Infinite 1.24

to 4.94
F F

Body fat 218 66 8 7.62 4.88 F F
City populations 83 67 25 28/1

to 63/1
84/1
to 189/1

F F

High school 57 70 26 4.67 8.40 F F
dropout rates
Cows’ manure 14 13 33 Infinite Infinite F F
Mortality 20 71 8 1.17 1.62 N F
House prices 22 75 13 1.75 3.00 N F
Car accidents 37 35 4 Infinite 1.11 F N
Rainfall 24 49 4 1.75 1.24 N N
Obesity at 18 46 72 10 0.41

to 1.65
0.55
to 2.21

N N

Fuel consumption 48 47 6 0.13
to 0.52

0.38
to 1.50

U N

Professors’ salaries 51 48 9 0.47 0.89 U N
Mammals’ sleep 35 49 14 0.35 1.00 U N
Biodiversity 26 42 7 0.35 0.68 U U

Means 54 13

Legend:
F stands for TTB-friendly; U stands for TTB-unfriendly; N stands for TTB-neutral
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only be distinguished on about one-third of these data. In addition, given
that overall dominant pairings account for some 54% of the data, we would
expect DOMRAN to perform quite well. (Specifically, if there was no error,
we would expect DOMRAN to have an overall predictive ability of 77%, i.e.,
0.54 + 0.50(1− 0.54)).

Second, Table 8 illustrates the extent to which the datasets are TTB-
friendly or TTB-unfriendly. That is, for each dataset we calculate the ratio
of the number of TTB errors that would be expected in a uniform distribution
of cue profiles (of size equal to the actual distribution) with the theoretical
number of TTB errors implied by the actual distribution.

We begin by considering the 3-cue sets. The four 3-cue datasets are all
TTB-friendly. Indeed, for three of the distributions, the ratios of expected
errors are infinite because there are no expected TTB errors in the actual
distributions. For these distributions, therefore, TTB would be expected to
perform as well as EW/TTB for compensatory functions.

There are two 4-cue distributions. However, to assess whether a distri-
bution is TTB-friendly or TTB-unfriendly, specific compensatory weighting
function must be used. Here we use CF2 and CF5 to illustrate the range of
cases. As can be seen, one distribution (“Oxidant”) is TTB-friendly, whereas
the other (“Land rent”) is not.

The 5-cue datasets have a mix of TTB-friendly, TTB-unfriendly, and
TTB-neutral distributions. Once again, classification of TTB-friendly or
TTB-unfriendly depends on specifying particular weighting functions. In this
case, we illustrate CF9 and CF23 (for details of weighting functions, see Ap-
pendix).

If the weighting functions applicable to each dataset were known, the
characteristics of the datasets in Table 8 could be used to calculate the ex-
pected predictive performances of all the models in the absence of error.
Indeed, using both non-compensatory and compensatory functions and aver-
aging across datasets, the expected predictive abilities of the models in the
absence of error was estimated to vary between 81% and 94% (Hogarth and
Karelaia, 2003).

How well therefore do the various simple models actually predict the
data? Figure 2 reports mean predictive accuracies of the models across all
20 datasets on holdout samples using 1,000 replications. Specifically, for each
dataset we randomly sampled a proportion of the possible choices, fit pa-
rameters as appropriate (e.g., calculating cue validities in TTB), and then
used these parameters to predict the remaining choices in the dataset (i.e.,
the holdout sample)13. We replicated this process 1,000 times and used
different proportions of fitting and holdout samples – a 50/50 split and
a 20/80 split.

13 Once again, we limited the number of cues in any dataset to five. For the TTB
and EW models, our cross-validated results for the 50/50 split are quite similar
to those reported by Gigerenzer et al. (1999). Specifically, they reported 71%
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Fig. 2. Predictions in holdout samples with 1000 trials

Figure 2 reveals three major trends. First, the differences between TTB,
EW/TTB and EW are small (this is also true of the results of all the datasets
that have been averaged). Second, and as might be expected, predictability
is somewhat greater in the 50/50 split than in the 20/80 split. Third, DOM-
RAN is the least successful of the models. However, the difference between
DOMRAN and the other models is small (at most between 4% and 5% in
predictive accuracy). Perhaps the surprising story of these data is not that
TTB is the best of the simple models (an important finding), but that the
naïve DOMRAN benchmark does so well.

8 Approximating the Effects of Error in the Data

Our theoretical analyses were conducted assuming no error in the data and,
yet, when we look at model performance (Fig. 2), error clearly degrades
overall performance. We now therefore consider the role of error in the data.

Recall, first, that – in the absence or error – TTB’s expected perfor-
mance in a specific dataset would, in percentage terms, be 100 less both
(a) the percentage of incorrects among the pair-wise choices (conditional on
the appropriate weighting function), and (b) 50% of the percentage of repeats.
Denote this level of error-free performance p∗. Second, imagine the other ex-

for TTB and 69% for EW. In addition, their results for multiple regression were
68% and 74% for Bayesian networks.
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treme where the data are totally unreliable. In this case, TTB’s expected
performance would be 50.

These two estimates represent, respectively, expected maximum and min-
imum performance levels where variations (between p* and 50) reflect error
or inconsistency in the data. More formally, if we define the level of reliability
or consistency by c (0 ≤ c ≤ 1), expected performance – denoted E(s) – can
be expressed in percentage terms by

E(s) = 50 + c(p ∗ −50) . (5)

We now demonstrate the use of Eq. (5) with the four 3-cue datasets of Czer-
linski et al. (1999)14. But first, we need to estimate c. Lacking independent
assessments, we suggest using the R2 that results from regressing the depen-
dent variables of each dataset onto their corresponding cue-profiles on the
grounds that this captures the maximum linear predictability of the data.
Thus, replacing c in Eq. (5) by R2, we estimate E(s) by

s = 50 + R2(p ∗ −50) (6)

As can be seen in Table 9, we have applied the reasoning behind Eq. (6) to
make predictions for the EW/TTB, EW, and DOMRAN models as well as

Table 9. Predicted accuracy of models incorporating error for 3-cue models (%
correct)

Predicted accuracy for datasets Models
TTB EW/TTB EW DOMRAN

Ozone 85 85 82 72
Fish fertility 71 71 70 70
Attractiveness of men 68 68 64 63
Attractiveness of women 67 67 63 60
Averages 73 73 70 66
Realizations for datasets
(based on 50/50 splits, Fig. 2)
Ozone 82 78 78 78
Fish fertility 73 73 70 70
Attractiveness of men 71 71 70 70
Attractiveness of women 67 67 65 64
Averages 73 72 71 71

14 We limit our attention to these four datasets because, in order to estimate p∗, one
needs to know the appropriate weighting function. With 3-cue models there are
only two alternatives and, as pointed out in Table 8, three of the four 3-cue mod-
els are entirely “TTB friendly” such that predictions for the non-compensatory
and compensatory cases are identical.
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TTB. Overall, correspondence between empirical realizations and predicted
accuracy is quite good for TTB (the largest deviation is 3%). Error is some-
what larger for the other models (the DOMRAN predictions, in particular,
are too modest). However, the qualitative ordering by datasets is almost per-
fectly respected.

9 Discussion

We have investigated why and when simple decision rules such as TTB are
effective in binary choice when informational cues are binary in nature. Our
discussion is organized as follows. We first summarize our results. Second, we
consider how characteristics of models and environments interact in affecting
performance. Finally, we discuss the use of TTB as a prescriptive model.

9.1 Principal Findings

Our main results can be summarized as follows. We first analyzed linear
environments characterized by populations of distinctive pairings of alterna-
tives, no error, and known relative sizes of cue validities. Whereas analytical
work had already shown that TTB is optimal in this world when weight-
ing functions are non-compensatory (Martignon and Hoffrage, 1999, 2002),
we showed that TTB is also an effective strategy when weighting functions
are compensatory. Moreover, we demonstrated that a previously unidentified
hybrid strategy, EW/TTB, is optimal for the more compensatory functions.
In particular, in the 3-cue case, EW/TTB is optimal for all compensatory
functions.

Second, when errors are made in the relative sizes of cue validities, TTB
typically remains the most effective strategy provided the most important
cue is identified as such. When this is not the case, EW/TTB should be
preferred even though TTB is still quite effective. This finding is important
because it addresses the extent to which precise knowledge of cue validities
is essential to the effectiveness of TTB (for an empirical example, see also
Martignon and Hoffrage, 2002). That precise knowledge is not necessary sug-
gests that the cognitive demands of calculating and storing cue validities may
not be as daunting as suggested by critics of TTB (e.g., Juslin and Persson,
2002). However, to place these results in context, recall that both EW and
DOMRAN frequently perform better than TTB when this uses incorrect cue
orderings.

Third, both the absolute and relative expected performances of models
are affected by characteristics of sets of choice alternatives. Specifically, the
numbers of dominance pairs and repeats in a distribution of cue profiles affect
overall levels of expected predictive accuracy – increasing in the former and
decreasing in the latter. In addition, all simple models considered here make
the same predictions for all dominance pairs and have the same expected
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performance with respect to repeats. Thus, differences between the models
only occur in subsets of data. Within these subsets, performance of the mod-
els is differentially sensitive to the presence or absence of specific pairings of
cue profiles (such as the D-E pairing in the 3-cue case). It is always possi-
ble to “engineer” environments that are more or less “friendly” to different
models.

Fourth, in cross-validated predictive tests, TTB, EW/TTB, and EW all
had similar performance and were only superior to DOMRAN by 3% or
4% (across datasets, DOMRAN averaged 68%). These analyses highlighted
the importance of error in data that clearly degrades the performance of all
models.

Fifth, we developed a method to approximate the effects of error in data
which we demonstrated using some of Czerlinski et al.’s (1999) datasets.

9.2 Environments and Models

To illuminate how model performance varies according to environments, it is
instructive to focus on the comparison of TTB with EW. Whereas TTB al-
ways makes choices by treating some variables as being more important than
others, EW predicts ties between certain pairs of alternatives and is forced to
choose between these pairs at random. However, to perform better than EW
on these cases, TTB does not always need to be correct; its success rate only
needs to exceed 50%. (A little knowledge is better than none.) On the other
hand, on occasions when TTB is mistaken, EW sometimes makes correct
decisions. In creating the EW/TTB composites, therefore, the advantages of
both models can be achieved in the more compensatory environments.

TTB differs from the other models in two major respects: it imposes an
order in which cues are examined, and it can exit the process before consult-
ing all information (i.e., the models differ in their “stopping” rules). When
the environmental weighting function is non-compensatory, stopping the pro-
cess “early” is sensible precisely because subsequent cues cannot change the
decision. However, as the environment becomes more compensatory, more
information should be examined.

In a series of intriguing simulation analyses, Payne et al. (1993) showed
the relative effectiveness of different heuristics for choosing between gam-
bles – in an analysis based on continuous as opposed to binary variables.
They too considered whether dominance was possible and, although they did
not talk of non-compensatory and compensatory weighting functions per se,
they varied the dispersion of distributions of weights. Their analyses showed
how the environment affects the relative performance of different heuristics in
a manner consistent with our results. For example, their lexicographic strat-
egy outperformed equal weights in high dispersion environments (similar to
our non-compensatory functions) and equal weights outperformed the lexico-
graphic strategy in the low dispersion environments (similar to compensatory
functions). Thus, as also noted above, environments can be created that are
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more or less “friendly” toward different models in terms of how they affect
relative predictive performance (see also Shanteau and Thomas, 2000).

However, even if one holds weighting functions constant, an important
feature of binary-cue environments is how the distribution of cue-profiles
affects the relative “friendliness” of the environment to particular models.
For example, an environment where EW faced many (few) ties would be
“unfriendly” (“friendly”) to EW. Similarly, we defined environments that were
“TTB-friendly” or “TTB-unfriendly” by the extent to which they contained
pairs leading to less or more errors made by TTB compared to the number
of TTB errors that would be made in a uniform distribution of all possible
pairings of alternatives with the same number of observations (cf. Table 8).
An important question, therefore, is to understand the types of environments
that people encounter in their decision making activities. For example, to
what extent do the datasets compiled by Czerlinski et al. (1999) characterize
the kinds of situations people face in their natural ecologies? We simply do
not know.

A key characteristic of the environments considered in this work is that
the cues are binary variables. In a related paper (Hogarth and Karelaia, 2005),
we have analyzed the performance of simple models for binary choice based
on continuous cues. As with binary cues, environmental conditions can be
defined that are more or less friendly to the different models. However, care
should be exercised in extrapolating conclusions from one case to the other.
With continuous cues, for example, EW is not so disadvantaged compared to
lexicographic models. DOMRAN, on the other hand, is far less effective. More
research is clearly needed to examine generalizations of TTB-like models to
more complex environments, e.g., involving choice from multiple alternatives,
different types of non-linear weighting functions, continuous cues, the effects
of error, and so on. Although it would be illuminating to explore the effects
of many cues on relative model performance, given limitations on human
information processing, we have limited the number of cues to five in the
present work.

9.3 Prescriptive Considerations

In most of the environments examined in this work, TTB has been shown to
be an effective, simple model of choice. To what extent, therefore, should it
be prescribed as a way to choose?

Assume first that underlying assumptions are met, i.e., that the zero-order
correlations between cues and criterion are known as well as the relative
importance of the binary variables. In this case, key issues center on the
extent to which the environmental weighting function is compensatory and
characteristics of the cue profiles.

Given sufficient resources, e.g., time, we first recommend checking for
dominance. Indeed, with few cues this may be a simpler strategy than ac-
cessing relative cue validities from memory. Moreover, exploiting dominance



178 R.M. Hogarth, N. Karelaia

can imbue the decision maker with appropriate confidence. Failing this, our
recommendation is to use TTB or EW/TTB (and certainly in the 3-cue
case). Briefly, if the decision maker feels uncomfortable about relying on
TTB alone (e.g., she senses that the environment is compensatory), then
the choice should also be examined using EW/TTB. If there is uncertainty
about which variable is most important, then EW/TTB is the model to
follow.

At the outset of this paper, we noted that there is now a growing ex-
perimental literature that tests if and when people actually use TTB-like
mental strategies (Bröder, 2000, 2003; Bröder and Schiffer, 2003; Newell and
Shanks, 2003; Newell et al., 2003; Rieskamp and Hoffrage, 1999, 2002). The
major descriptive violation is that people do not respect the TTB stopping
rule and tend to use more information than needed. Indeed, participants in
some experiments would have earned more money had they used strict TTB
strategies (Newell and Shanks, 2003; Newell et al., 2003).

As a general point, however, it should be noted that all TTB errors occur
because the decision process stops too soon. In the 4-cue case, for exam-
ple, no errors ever occur if the process is decided by the third or fourth most
important variable. Thus, the reluctance people express to base important de-
cisions on one or two cues may be a consequence of having experienced errors
when all available information was not consulted. Interestingly, an analysis
by Karelaia (2005) shows that, in 3-cue environments, the performance of
a TTB-like strategy that requires confirming evidence before deciding does
not lag far behind that of TTB. The cost of seeking confirming evidence may
not be that high.

For decisions taken under time pressure, people should exploit the fact
that TTB has a high success rate. (In particular, in using this strategy they
will automatically exploit dominance even though they may never know this.)
Two further issues concern feedback and the relative importance of decisions.
With good feedback, people can learn to make appropriate responses. Fail-
ing accurate feedback or being faced with important decisions under time
pressure, however, they are not powerless. Specifically, they can “rehearse”
similar decisions (e.g., through simulations) and then use this knowledge to
know what to do in real situations, e.g., what would happen if TTB or another
heuristic were used in similar circumstances?

Finally, we are puzzled by a definitional conundrum within the paradigm
of “bounded rationality.” Gigerenzer and his colleagues have argued against
so-called “optimizing” models on the grounds that these require unrealistic
computational powers (Gigerenzer et al., 1999). However, if the tools in the
“adaptive toolbox” are so effective, would the superior rational powers of
the “demons” not have already allowed them to determine this? If yes, then
surely they would have never suggested using, for example, multiple regression
instead of TTB in making predictions for the Czerlinski et al. (1999) datasets.
Do the demons know about other “simple” models of which we mere mortals
are ignorant?
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Appendix – The 5-Cue Case

The 5-cue case involves 496 distinctive profile pairings; 23 different types
of compensatory functions (defined in the same manner as the 4-cue case);
and many more cases where functions imply ambiguous predictions. (For full
details, see the Appendix of Hogarth and Karelaia, 2003). Functions CF1
through CF17 are close to “non-compensatory” and, even with CF23 it is
possible to have the weight of the first variable much larger than the others
(cf. the 4-cue case).
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Table A1 presents the expected predictive accuracies of the different mod-
els for the 5-cue case for non-compensatory functions and 12 of the 23 com-
pensatory functions. The models are the same as in the 4-cue case except that
the EW/TTB hybrids include a version based on the first four most impor-
tant cues. At the foot of Table A1 we also indicate the number of ambiguous
choices for each set of weighting functions. These become much larger as the
parameters indicate more compensatory environments.

TTB is 100% correct with the non-compensatory function (as must be
the case) but its performance drops off in relative terms as the functions be-
come more compensatory. It makes the smallest number of errors, as defined
above, through CF16. EW-3/TTB has the best performance for CF18, CF19,
and CF20, and the EW/TTB hybrids perform relatively well for the most
compensatory functions: see EW-4/TTB for CF22 and EW/TTB for CF23.

Table A2 shows what happens when cues do not enter the TTB model
in the appropriate order. Given that there are 120 different such ways and
24 different weighting functions, we neither show the results of all cue or-
derings nor of all weighting functions. Instead, we illustrate the trends by
showing significant subsets of combinations of functions and cue orderings.
Overall, these are similar to the results of the 3- and 4-cue cases. First, for
non-compensatory functions (NonCF) as well as lower levels of compensatory
functions (CF1 to CF17), TTB performs best provided the most important
cue enters the model first. When this does not occur, EW/TTB performs
better. Second, EW/TTB is dominant across all cue orderings for the most
compensatory set of weighting functions (CF23). Third, DOMRAN is supe-
rior to many of the combinations of cue orders and models where the cue
orderings are inappropriate (with the exception of EW/TTB). And fourth,
MINIMALIST (the mean of TTB across cue orderings) is inferior to EW
which is equal to the mean of EW/TTB.
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Abstract. This paper is composed of two related parts. In the first, we present
a dynamic programming procedure for finding optimal policies for a class of se-
quential search problems that includes the well-known “secretary problem”. In the
second, we propose a stochastic model of choice behavior for this class of problems
and test the model with two extant data sets. We conclude that the previously
reported bias for decision makers to terminate their search too early can, in part,
be accounted for by a stochastic component of their search policies.
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1 Introduction and Overview

The secretary problem has received considerable attention by applied mathe-
maticians and statisticians (e.g., Ferguson, 1989; Freeman, 1983). Their work
has been primarily concerned with methods for determining optimal search
policies, the properties and implications of those policies, and the effects of in-
troducing constraints on the search process (e.g., by adding interview costs).
More recently, psychologists and experimental economists have studied how
actual decision makers (DMs) perform in these sorts of sequential search tasks
(e.g., Bearden, Rapoport and Murphy, 2004; Corbin, et al. 1975; Seale and
Rapoport, 1997, 2000; Zwick, et al. 2003).

The current paper is composed of two main parts. First, we present a pro-
cedure for computing optimal policies for a large class of sequential search
problems that includes the secretary problem. It is hoped that the accessibil-
ity of this procedure will encourage additional experimental work with this
class of search problems. Second, we present a descriptive model of choice for
the search problems, describe some of its properties, and test the model with
two extant data sets. We conclude with a cautionary note on the difficulties
researchers may face in drawing theoretical conclusions about the cognitive
processes underlying search behavior in sequential search tasks.
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2 Secretary Problems

2.1 The Problems

The Classical Secretary Problem (CSP) can be stated as follows:
1. There is a fixed and known number n of applicants for a single position

who can be ranked in terms of quality with no ties.
2. The applicants are interviewed sequentially in a random order (with all

n! orderings occurring with equal probability).
3. For each applicant j the DM can only ascertain the relative rank of the

applicant, that is, how valuable the applicant is relative to the j − 1
previously viewed applicants.

4. Once rejected, an applicant cannot be recalled. If reached, the nth appli-
cant must be accepted.

5. The DM earns a payoff of 1 for selecting the applicant with absolute rank
1 (i.e., the overall best applicant in the population of n applicants) and 0
otherwise.

The payoff maximizing strategy for the CSP, which simply maximizes the
probability of selecting the best applicant, is to interview and reject the first
t− 1 applicants and then accept the first applicant thereafter with a relative
rank of 1 (Gilbert and Mosteller, 1966). Further, they proved that t converges
to n/e as n goes to infinity. In the limit, as n → ∞, the optimal policy selects
the best applicant with probability 1/e. The value of t and the selection
probability converge from above.

Consider a variant of the secretary problem in which the DM earns a pos-
itive payoff π(a) for selecting an applicant with absolute rank a, and assume
that π(1) ≥ . . . ≥ π(n). Mucci (1973) proved that the optimal search policy
for this problem has the same threshold form as that of the CSP. Specifically,
the DM should interview and reject the first t1 − 1 applicants, then between
applicant t1 and applicant t2 − 1 she should only accept applicants with rel-
ative rank 1; between applicant t2 and applicant t3 − 1 she should accept
applicants with relative ranks 1 or 2; and so on. As she gets deeper into the
applicant pool her standards relax and she is more likely to accept applicants
of lower quality.

We obtain what we call the Generalized Secretary Problem (GSP) by
replacing 5 in the CSP, which is quite restrictive, with the more general
objective function:

5’. The DM earns a payoff of π(a) for selecting an applicant with absolute
rank a where π(1) ≥ . . . ≥ π(n).

Clearly, the CSP is a special case of the GSP in which π(1) = 1 and π(a) = 0
for all a > 1. Results for other special cases of the GSP have appeared in
the literature. For example, Moriguti (1993) examined a problem in which
a DM’s objective is to minimize the expected rank of the selected applicant.
This problem is equivalent to maximizing earnings in a GSP in which π(a)
increases linearly as (n − a) increases.
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2.2 Finding Optimal Policies for the GSP

We will begin by introducing some notation. The orderings of the n appli-
cants’ absolute ranks is represented by a vector a =

(
a1, . . . , an

)
, which is just

a random permutation of the integers 1, . . . , n. The relative rank of the jth
applicant, denoted rj , is the number of applicants from 1, . . . , j whose abso-
lute rank is smaller than or equal to aj . A policy is a vector s =

(
s1, . . . , sn

)
of nonnegative integers in which sj ≤ sj+1 for all 1 ≤ j < n. The policy
dictates that the DM stop on the first applicant for which rj ≤ sj . There-
fore, the probability that the DM stops on the jth applicant, conditional on
reaching this applicant, is sj/j; we will denote this probability by Qj. A DM’s
cutoff for selecting an applicant with a relative rank of r, denoted tr, is the
smallest value j for which r ≤ sj . Hence, a policy s can also be represented by
a vector t = (t1, . . . , tn). Sometimes, the cutoff representation will be more
convenient. Again, a DM’s payoff for selecting an applicant with absolute
rank a is given by π(a).

Given the constraint on the nature of the optimal policy for the GSP
proved by Mucci (1973), optimal thresholds can be computed straightfor-
wardly by combining numerical search methods with those of dynamic pro-
gramming. We will describe below a procedure for doing so. A similar method
was outlined in Lindley (1961) and briefly described by Yeo and Yeo (1994).

The probability that the jth applicant out of n whose relative rank is rj

has an absolute (overall) rank of a is given by (Lindely, 1961):

Pr
(
A = a|R = rj

)
=

(
a−1
r−1

)(
n−a
j−r

)
(
n
j

) , (1)

when rj ≤ a ≤ rj + (n − j); otherwise Pr(A = a|R = rj) = 0. Thus, the
expected payoff for selecting an applicant with relative rank rj is:

E
(
πj |rj

)
=

n∑
a=rj

Pr
(
A = a|R = rj

)
π(a) . (2)

The expected payoff for making a selection at stage j for some stage j policy
sj > 0 is:

E
(
πj |sj

)
=

(
sj
)−1

sj∑
i=1

E
(
πj |rj = i

)
; (3)

otherwise, when sj = 0, E
(
πj |sj

)
= 0. Now, denoting the expected pay-

off for starting at stage j + 1 and then following a fixed threshold policy
(sj+1, . . . , sn) thereafter by vj+1, the value of vj for any sj ≤ j is simply:

vj = QjE
(
πj |sj

)
+
(
1 − Qj

)
vj+1 . (4)
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Since the expected earnings of the optimal policy at stage n are vn =
n−1

∑n
a=1 π(a), we can easily find an sj for each j (j = n − 1, . . . , 1) that

maximizes vj by searching through the feasible sj ; the expected earnings
of the optimal threshold sj∗ we denote by vj∗. These computations can be
performed rapidly, and the complexity of the problem is just linear in n1.
From the monotonicity constraint on the sj, the search can be limited to
0 ≤ sj ≤ sj+1. Thus, given vn∗, starting at stage n − 1 and working back-
ward, the dynamic programming procedure for finding optimal policies for
the GSP can be summarized by:

sj∗ = arg max
s∈{0,...,sj+1∗}

vj . (5)

The expected payoff for following a policy s, then, is:

E (π|s) =
n∑

j=1

[
j−1∏
i=0

(
1 − Qi

)]
QjE

(
πj |sj

)
= v1, (6)

where Q0 = 0. The optimal policy s∗ is the policy s that maximizes Eq. 6.
Denoting the applicant position at which the search is terminated by m, the
probability that the DM stops on the (j < n)th applicant is:

Pr (m = j) =

[
j−1∏
i=0

(
1 − Qi

)]
Qj , (7)

and the expected stopping position is (Moriguti, 1993):

E (m) = 1 +
n−1∑
j=1

[
j∏

i=1

(
1 − Qi

)]
. (8)

Optimal cutoffs for several GSPs are presented in Table 1. In the first column,
we provide a shorthand for referring to these problems. The first one, GSP1,
corresponds to the CSP with n = 40. The optimal policy dictates that the DM
should search through the first 15 applicants without accepting any and then
accept the first one thereafter with a relative rank of 1. GSP2 corresponds to
another CSP with n = 80. In both, the DM should search through roughly the
first 37% and then take the first encountered applicant with a relative rank
of 1. These two special cases of the CSP have been studied experimentally
by Seale and Rapoport (1997). GSPs 3 and 4 were discussed in Gilbert and
Mosteller (1966), who presented numerical solutions for a number of problems
in which the DM earns a payoff of 1 for selecting either the best or second
best applicant and nothing otherwise. GSPs 5 and 6 correspond to those
studied by Bearden, Papoport and Murphy (2004) in Experiments 1 and 2,
1 More elegant solutions can be used for special cases of the GSP. The method

described here can be easily implemented for all special cases of the GSP.



On Generalized Secretary Problems 191

respectively. In the first, the DM searches through the first 13 applicants
without accepting any; then between 14 and 28 she stops on applicants with
relative rank of 1; between 29 and 36, she takes applicants with relative rank
1 or 2; etc. Finally, GSP7 corresponds to the rank-minimization problem
studied by Moriguti (1993). The results of our method are in agreement with
all of those derived by other methods.

When inexperienced and financially motivated decision makers are asked
to play the GSP in the laboratory, they have no notion of how to compute the
optimal policy. Why then should one attempt to test the descriptive power
of the optimal policy? One major reason is that tests of the optimal policies
for different variants of the GSP (e.g. Bearden, Rapoport and Murphy, 2004;
Seale and Rapoport, 1997, 2000; Zwick, et al. 2003) may provide informa-
tion on the question of whether DMs search too little, just enough, or too
much. This question has motivated most of the research in sequential search
in economics (e.g., Hey, 1981, 1982, 1987) and marketing (e.g., Ratchford
and Srinivasan, 1993; Zwick, et al.). However, tests of the optimal policy
do not tell us what alternative decision policies subjects may be using in
the GSP. And because they prescribe the same fixed threshold values for all
subjects, they cannot account for within-subject variability across iterations
of the sequential search task or between-subject variability in the stopping
behavior.

Seale and Rapoport (1997, 2000) have proposed and tested three alterna-
tive decision policies in their study of two variants of the CSP. These decision
policies (descriptive models) are not generalizable in their present form to the
GSP. Moreover, because all of them are deterministic, they cannot account
for within subject variability in stopping times across trials. Rather than at-
tempting to construct more complicated deterministic choice models for the
GSP, with a considerable increase in the number of free parameters, we pro-
pose an alternative stochastic model of choice for the GSP. Next, we describe
the model and discusses its main properties. Then we summarize empirical
results from some previous studies of the GSP and use them to test the model.
Finally, we conclude by discussing some problems that arise in drawing the-
oretical conclusions about choice behavior in the GSP and related sequential
search tasks.

3 A Stochastic Model of Choice in Secretary Problems

3.1 Background

Stochastic models have a long history in psychological theories. As early as
1927, L.L. Thurstone posited that observed responses are a function of an un-
derlying (unobservable) component together with random error (Thurstone,
1927a, 1927b). For reviews of the consequences of Thurstone’s ideas, see Bock
and Jones (1968) and Luce (1977, 1994).
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More recently, theorists have shown that unbiased random error in judg-
ment processes can produce seemingly biased judgments. For example, Erev,
et al. (1994) have shown that symmetrically distributed random error can pro-
duce confidence judgments consistent with overconfidence even when the un-
derlying (unperturbed) judgments are well-calibrated (see also, Juslin, et al.
1997; Pfeifer, 1994; Soll, 1996).

In related work, Bearden, Wallsten and Fox (2004) have shown that un-
biased random error in the judgment process is sufficient to produce sub-
additive judgments. Suppose we have an event X that can be partitioned
into k mutually exclusive and exhaustive subevents X =

⋃k
i=1 Xi. Denote

a judge’s underlying (or true) probability estimate for X by C(X) and her
overt expression of the probability of X by R(X). Bearden et al. assumed
that R(X) = f(C(X), e), where e is a random error component that is just as
likely to be above as below C(X). They proved that under a range of condi-
tions R(X) is regressive, i.e., it will be closer than C(X) to .50. As a result, the
overt judgment for X can be smaller than the sum of the judgments for the
Xi, even when C(X) =

∑
i C(Xi). Put differently, the overt judgments can

be subadditive even when the underlying judgments are themselves additive.
A considerable body of research has focused on finding high-level explanations
such as availability for subadditive judgments (e.g., Rottenstreich and Tver-
sky, 1997; Tversky and Koehler, 1994). Bearden et al. simply demonstrated
that unbiased random error in the response process is sufficient to account
for the seemingly biased observed judgments. One need not posit higher-level
explanations. We follow this line of research and look at the effects of random
error in the GSP.

Empirical research on the GSP has consistently shown that DMs exhibit
a bias to terminate their search too soon (Bearden, Rapoport and Murphy,
2004; Seale and Rapoport, 1997, 2000). At the level of description, this obser-
vation is undeniable. However, researchers have gone beyond this observation
by offering psychological explanations to account for the bias. In a paper on
the CSP, Seale and Rapoport (1997) suggested that the bias results from
an endogenous search cost: Because search is inherently costly (see, Stigler,
1961), the DM’s payoff increases in the payoff she receives for selecting the
best applicant but decreases in the amount of time spent searching. There-
fore, early stopping may be the result of a (net) payoff maximizing strategy.
Bearden, Papoport and Murphy (2004) offered a different explanation. They
had DMs estimate the probability of obtaining various payoffs for selecting
applicants of different relative ranks in different applicant positions. Based
on their findings, they argued that the bias to terminate the search too soon
in a GSP results from DMs overestimating the payoffs that would result from
doing so.

In Sect. 3.2 we present a simple stochastic model of search in the secretary
problem and show that it produces early stopping behavior even when DMs
use decision thresholds that are symmetrically distributed about the optimal
thresholds.
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3.2 The Model

Recall that under the optimal policy for the GSP, the DM stops on some ap-
plicant j if and only if the applicant’s relative rank does not exceed the DM’s
threshold for that stage (i.e., when rj ≤ sj∗). Experimental results, however,
conclusively show that DMs do not strictly adhere to a deterministic policy of
this sort. Rather, we posit that DMs’ thresholds can be modelled as random
variables. Each time the DM experiences an applicant with a relative rank
r, she is assumed to sample a threshold from her distribution of thresholds
for applicants with relative rank r; then, using the sampled threshold, she
makes a stopping decision2. Denoting the sampled threshold σr, she stops on
an applicant with relative rank rj if and only if rj ≤ σr. (Note that at each
stage j, the DM samples from a distribution that depends on the relative rank
of the applicant observed at that stage. The distribution is not conditional
only on the stage; it is only conditional on the relative rank of the observed
applicant at that stage.) We assume that the probability density function for
the sampled threshold is given by:

f (σr) =
e−(σr−µr)/βr

βr

[
1 + e−(σr−µr)/βr

]2 . (9)

Consequently, conditional on being reached, the probability that an applicant
with relative rank rj is selected is:

Pr
(
rj ≤ σr

)
=

1
1 + e−(j−µr)/βr

. (10)

We assume that µ1 ≤ . . . ≤ µn and β1 ≥ . . . ≥ βn. This is based on
the constraint of the GSP that payoffs are nonincreasing in the absolute
rank of the selected applicant. Hence, it seems reasonable to assume that
Pr

(
rj ≤ σr

) ≥ Pr
(
r′j ≤ σr′

)
whenever r ≤ r′. That is, the DM should be

more likely to stop on any given j whenever the relative rank of the ob-
served applicant decreases. The constraints on the ordering of µ and β do
not guarantee this property but do encourage it3.

Note that the model approaches a deterministic model as βr → 0 for each
r. Further, the optimal policy for an instance of a GSP obtains when βr is
small (near 0) and t∗r − 1 < µr < t∗r for each r.

Examples of the distributions of thresholds and resulting stopping prob-
abilities for a possible DM are exhibited in Fig. 1 for the GSP2 (i.e., for
2 The thresholds are, of course, unobservable. The model specified here as an as-if

one: We are merely suggesting that the DM’s observed behavior is in accord with
her acting as if she is randomly sampling thresholds subject to the constraints
of the model we propose.

3 Adding the strong constraint that Pr
`
rj ≤ σr

´ ≥ Pr
`
r′j ≤ σr′

´
for all r ≤ r′

makes dealing with the model too difficult. The numerical procedures used below
to derive maximum likelihood estimates of the model’s parameters from data
would be infeasible under the strong constraint.
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Fig. 1. Hypothetical threshold distributions and resulting stopping probabilities
(conditional and cumulative) for one of the GSPs (GSP2) studied by Seale and
Rapoport (1997) for various values of β. These results are based on µ1 = t∗1. The
cumulative stopping probabilities under the optimal policy are also shown in the
bottom panel

a CSP with n = 80). In all cases shown in the figure, µ1 = t∗1; that is, all
of the threshold distributions are centered at the optimal cutoff point for
the problem. The top panel shows the pdf of the threshold distribution. The
center panel shows that for j < µ1 the probability of selecting a candidate
(i.e., an applicant with a relative rank of 1) increases as β increases; however,
for j > µ1, the trend is reversed. The bottom panel shows the probability
of stopping on applicant j or sooner for the model and also for the optimal
policy. Most importantly, in this example we find that the propensity to stop
too early increases as the variance of the threshold distribution (β) increases,
and in none of the model instances do we observe late stopping.

Under the model, the probability that the DM stops on the (j < n)th
applicant, given that she has reached him, is:

Q̂j =
j∑

rj=1

1
j
Pr

(
rj ≤ σr

)
. (11)

Replacing Qj in Eq. 8 with Q̂j , we can easily compute the model expected stop-
ping position. Some examples of model expected stopping positions for various
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values of µ1 and β1 for the GSP2 are presented in Table 2. Several features of
the E(m) are important. First, whenever µ1 < t∗1, the expected stopping posi-
tion under the model is smaller than the expectation under the optimal policy.
Second, even when µ1 ≥ t∗1 and β1 is non-negligible, we find that the model
tends to stop sooner than the optimal policy. Also, when t∗1 − 1 < µ1 < t∗1
(that is, when the mean of the model threshold distribution is just below the
optimal cutoff), the expected stopping position under the model is always
less than under the optimal. Finally, as β increases, the expected stopping
position decreases. In other words, as the variance of the threshold distribu-
tion increases, the model predicts that stopping position move toward earlier
applicants. This general pattern of results obtains for the other GSPs as well.

The optimal policies for the GSP are represented by integers, but we are
proposing a model in which the thresholds are real valued (and can even
be negative); hence, some justification is in order. Using Eq. 10 to model
choice probabilities has a number of desirable features. First, we can allow
for shifts in both the underlying thresholds (or the means of the threshold
distributions) by varying µr, and we can control the steepness of the response
function about a given µr by βr. As stated above, this can (in the limit)
allow us to model both deterministic policies and noisy policies. The logistic
distribution was chosen for its computational convenience (its CDF can be
written in closed form); we have tried other symmetric distributions (e.g., the
normal) and reached roughly the same conclusions that we report here for the
logistic. (Actually, the tails of the normal distribution tend to be insufficiently
fat to well-account for the empirical data.) Again, we desire a distribution
with a symmetric PDF to model the thresholds in order for the thresholds
to be unbiased. Empirical data show that DMs in secretary search tasks tend
to terminate their search too early. We wish to demonstrate that this may
result from an essentially unbiased stochastic process.

Table 2. Expected stopping times under the model for the GSP2 for different
values of β1 and µ1. Keep in mind that E (m) = 58.75 under the optimal policy
and t∗1 = 30. The average value of m for this problem in Seale and Rapoport (1997)
is 43.61

β1 E (m|µ1 = 25) E (m|µ1 = 29.5) E (m|µ1 = 30) E (m|µ1 = 35)

.01 53.83 58.74 59.24 63.80
1 53.72 58.65 59.15 63.73
2 53.29 58.32 58.83 63.48
4 51.08 56.72 57.29 62.33
8 41.46 48.54 49.27 55.94
10 36.63 43.55 44.29 51.27
12 32.62 39.03 39.74 46.59
16 26.86 32.04 32.63 38.57
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Fig. 2. Cumulative stopping probabilities for the GSP2 for the optimal and stochas-
tic model policies and also for the empirical data reported by Seale and Rapoport
(1997). The model probabilities are based on µ1 = t∗1 = 30 and β1 = 10

Fig. 2 portrays optimal, empirical, and model cumulative stopping prob-
abilities for the instance of the GSP that was studied empirically by Seale
and Rapoport (1997). First, note that the empirical curve is shifted to the
left of the optimal one. This indicates that DMs tended to stop earlier than
dictated by the optimal policy. The model stopping probabilities are based on
µ1 = t∗1 = 30, that is, the mean of the distribution from which the thresholds
were sampled is set equal to the value of the optimal threshold. However, the
model stopping probabilities are also shifted in the direction of stopping early.
This is an important observation: In this example, the stochastic thresholds
are distributed symmetrically about the optimal threshold and stopping be-
havior is biased toward early stopping. For example, it is just as likely that
a DM’s threshold will be 4 units above as below the optimal threshold, cor-
responding to too early and a too late thresholds, respectively; yet stopping
behavior is biased toward early stopping.

The reason for early stopping under the stochastic model can be stated
quite simply. First, there is a nonzero probability that a DM will stop some-
time before it is optimal to do so; as a consequence, she will not have the
opportunity to stop on time or stop too late. Secondly, though the threshold
distribution itself is symmetric, the unconditional stopping probabilities are
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not. The probability of observing a given relative rank rj ≤ j decreases in j.
Consider rj = 1. When j = 1, the probability of observing a relative rank of
1 is 1; when j = 2, the probability is 1/2; and in general it is 1/j. Thus, for
a given σr, the probability of stopping on applicant j is strictly decreasing
in j. Therefore, properties of the problem itself can entail early stopping un-
der the model. Researchers should, therefore, be cautious in attributing early
stopping to general psychological biases.

Thus far we have only discussed the theoretical consequences of the
stochastic model. Next, we evaluate the model using some of the empiri-
cal data reported in Seale and Rapoport (1997) and in Bearden, Papoport
and Murphy (2004). We ask: Can the observed early stopping in these exper-
iments be explained by unbiased stochastic thresholds?

3.3 Parameter Estimation

We estimated the model parameters for the stochastic choice model for in-
dividual subjects from two previous empirical studies of the GSP. Seale and
Rapoport (1997) had 25 subjects play the GSP2 for 100 trials under incentive-
compatible payoffs. They reported that their subjects exhibited a tendency to
terminate their searches too early, and explained this by a deterministic cut-
off rule of the same form as the optimal policy but whose cutoff was shifted
to the left of the optimal cutoff. They evaluated alternative deterministic
decision policies and concluded that the alternatively parameterized cutoff
rule best accounted for the data. To determine a subject’s cutoff – t1, in our
notation – they found the value of 1 ≤ t1 ≤ 80 that maximized the number of
selection decisions compatible with the cutoff. For the GSP2, t∗1 = 30; Seale
and Rapoport estimated that the modal cutoff for their subjects was 21.

Bearden, Rapoport and Murphy (2004) had 61 subjects perform the GSP6
for 60 trials under incentive-compatible payoffs. They, too, concluded that
their subjects terminated search too early, and that the stopping behavior
was most compatible with a threshold stopping rule. For the GSP6, t∗1 = 21,
t∗2 = 43, t∗3 = 53, t∗4 = 57, t∗5 = 58, and t∗6 = 59; for their subjects, they
estimated that the mean thresholds were t1 = 12, t2 = 22, t3 = 28, t4 = 35,
t5 = 40, and t6 = 44. In both Seale and Rapoport and Bearden et al., the
authors (implicitly) assumed that the subjects used deterministic or fixed
thresholds. Hence, for a given subject, they could not account for stopping
decisions inconsistent with that subject’s estimated threshold.

In the current paper, we assume that the subjects’ thresholds are ran-
dom variables (whose pdf is given by Eq. 9) and use maximum likelihood
procedures to estimate the parameters of the distribution from which the
thresholds are sampled. For each set of data that we examine, the researchers
reported learning across early trials of play, but in both, the choice behavior
seems to have stabilized by the 20th trial. Hence, for the tests below, we shall
eliminate the first 20 trials from each data set from the analyses, and we will
assume that the choice probabilities are i.i.d.
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For a given trial of a GSP problem, the DM observes a sequence of ap-
plicants and their relative ranks, and for each applicant she decides to either
accept or continue searching. Denoting a decision function for applicant j by
δ
(
rj
)
, we let δ

(
rj
)

= 0 if the DM does not stop on applicant j and δ
(
rj
)

= 1
if she does stop. Hence, decisions for a particular trial k can be represented
by a vector ∆k =

(
δ
(
r1
)
, . . . , δ (rm)

)
= (0, 0, . . . , 1), where m denotes the

position of the selected applicant. Under the stochastic model, if m < n, the
likelihood of ∆k can be written as:

L
(
∆k|µ, β

)
=

[
m−1∏
i=1

Pr
(
ri > σr

)]
Pr (rm ≤ σr) . (12)

When m = n (i.e., when the DM reaches the last applicant, which she must
accept), we simply omit the final term in Eq. 12 since the DM’s choice is de-
termined. Assuming independence, the likelihood of a DM’s choice responses
over K trials of the GSP is just:

L
[(

∆1, . . . ,∆K
) |µ, β

]
=

K∏
k=1

L
(
∆k|µ, β

)
. (13)

Due to the small numbers involved, it is convenient to work with the log of
the likelihood, rather than the likelihood itself. Taking the log of Eq. 13, we
get:

�
[(

∆1, . . . ,∆K
) |µ, β

]
=

K∑
k=1

ln
[
L
(
∆k|µ, β

)]
. (14)

For each subject we computed the parameters µ and β that maximized Eq. 14
under different constraints. We only estimated the parameters for relative
ranks that can entail positive payoffs. For the GSP2, we restrict estimates to
r = 1, and for the GSP6 to 1 ≤ r ≤ 6. Therefore, we omit from the analyses
trials on which the DM chose to stop on the applicants whose relative rank
could not entail a positive payoff. Very likely these were errors. Fewer than
2% of the trials were omitted.

We are primarily interested in testing the following:
Optimal but stochastic threshold hypothesis: µr = t∗r for all r.

If this hypothesis is supported, the bias toward early stopping behavior
could be the result of the stochastic nature of the thresholds. We evaluate
the optimal but stochastic threshold hypothesis (OBSTH) using standard
likelihood ratio tests. Under the constrained model, we impose that µr = t∗r
for all r and allow the βr to freely vary; under the unconstrained model we
allow both the µr and βr to freely vary. Denoting the maximum log-likelihood
of the constrained model �c (based on Eq. 15) and of the unconstrained model
�u, the likelihood ratio is:

LR = (�c − �u) . (15)
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The statistic −2LR is χ2 distributed with degrees of freedom (df) equal to
the number of additional free parameters in the unconstrained model. Hence,
for the Seale and Rapoport (1997), df = 1; and for Bearden, Rapoport and
Murphy (2004), df = 6.

A few words about estimating the model parameters are in order. To es-
timate the model parameters we used a constrained optimization procedure
(fmincon) in Matlab. We imposed the constraint that µr ≤ µr′ whenever
r ≤ r′, and imposed the corresponding constraint on the β parameters. For
each subject, we used a large number of initial starting values. We are confi-
dent that the estimated parameters provide globally optimal results for each
subject.

Seale and Rapoport Data

Based on the likelihood ratio test with df = 1, the OBSTH could not be
rejected for 12 of the 25 experimental subjects at the α = .01 level. Seale
and Rapoport concluded that 21 of their 25 subjects had thresholds below
the optimal cutoff. Our analyses suggest that they overestimated the number
of subjects with biased thresholds. Fig. 3 shows a distribution of thresholds

Fig. 3. Estimated threshold distribution and resulting stopping probabilities for
the n = 80 CSP studied by Seale and Rapoport (1997) based on median estimated
µ1 and σ1. The horizontal line is located at the optimal cutoff point (t∗1 = 30. The
vertical line in the bottom panel corresponds to a probability of .50
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(σ1) that is based on the median estimated values of µ1 and β1 from the
25 experimental subjects. We find that the distribution of thresholds (based
on the aggregate data) is, indeed, shifted to the left of the optimal cutoff,
consistent with the observed early stopping behavior. Further, we find that
the variance of the threshold distribution is considerably greater than 0. Thus,
early stopping in Seale and Rapoport may be due both to thresholds that
tend to be biased toward early stopping and also to stochastic variability in
placement of the thresholds. Summary statistics from the MLE procedures
are displayed in Table 3.

Bearden, Rapoport, and Murphy Data

The corresponding thresholds from Bearden, Rapoport and Murphy (2004)
are displayed in Fig. 4. For these data, the OBSTH could not be rejected
for 23 of the 61 subjects (i.e., for 37%). We find that the distribution of
thresholds for r = 1 tends to be centered rather close to the optimal cutoff.
Likewise for the r = 6 threshold. For r = 2, . . . , 5, the thresholds tend to be
shifted toward early stopping. The variances of the threshold distributions
tend to decrease quite rapidly in r, but are all away from 0. Thus, as with
the Seale and Rapoport (1997) data, the early stopping in the GSP6 seems
to be driven by biased thresholds as well as the stochastic nature of those
thresholds. Summary results are presented in Table 3.

Table 3. Summary of MLE results for Seale and Rapoport (n=80) condition and
Bearden, Rapoport, and Murphy Experiment 1 data. Note: OBSTH compatible
tests are based on α = .01

Seale & Rapoport (1997) Data
Number of subjects 25
Median µ (24.08)

Median β (5.97)

Median LR 4.19
Test df 1
OBSTH compatible 48%

Bearden, Rapoport, & Murphy (2004) Data
Number of subjects 62
Median µ (23.16, 34.71, 43.96, 48.70, 54.49, 58.53)

Median β (4.13, 3.56, 2.49, 1.24, 0.69, 0.43)

Median LR 18.38
Test df 6
OBSTH compatible 37%
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Fig. 4. Estimated threshold distribution and resulting stopping probabilities for
the GSP6 studied by Bearden, Rapoport, and Murphy (2004). The curves are based
on median estimated µr and σr (r = 1, . . . , 6), and are ordered from left (r = 1)
to right (r = 6). Note that the variances of the Pr (σr = x) distributions for r =
1, 2, 3 relative to the variance of the r = 6 distribution are quite small, making the
resulting distributions rather flat and difficult to see

The estimation results suggest that researchers should be cautious in
drawing conclusions about the underlying causes of early stopping in GSPs
without taking random error into account. A straightforward question must
be addressed before any claims are made: What does it mean for subjects
to be biased to stop early? Is the statement merely an empirical one that
describes that observed stopping behavior or does it have some theoretical
import? Does the “bias” refer to a property of the choice process? Seale and
Rapoport (1997) suggested that the subjects in their task seemed to follow
cutoff policies that were of the same form as the optimal policy but were pa-
rameterized differently. Specifically, the cutoffs for the experimental subjects
tended to be positioned earlier than the optimal cutoff. They suggested that
the shift might be a compensation for endogenous search costs. Our results
suggest, however, that the threshold may not have been biased toward early
stopping for nearly 50% of the subjects in their n = 80 condition. For these
subjects, stochastic thresholds centered at the optimal cutoff can account for
the early stopping. Likewise, for roughly 37% of the subjects in Experiment 1
of Bearden, Rapoport and Murphy (2004), we can account for early stopping
by the OBSTH.
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We do not argue that early stopping is not driven by some genuine choice
or judgment bias (e.g., by overestimating the probability of obtaining good
payoffs for selecting early applicants). Rather, we simply wish to demon-
strate that the effects of random error should be taken into consideration
before drawing sharp conclusions about the magnitude of the effects of these
potential biases on the stopping behavior.

4 Conclusions

We began this paper by presenting a simple dynamic programming procedure
for computing optimal policies for a large class of sequential search problems
with rank-dependent payoffs. The generality of the permissible payoff schemes
allows a number of realistic (especially in contrast to the CSP, which has an
only-the-best payoff scheme) search problems to be modelled.

Next, we described a simple stochastic model of choice behavior for the
GSP and described some previous experimental results. The empirical results
show that DMs tend to terminate their search too early relative to the stop-
ping positions dictated by the optimal policy. Previous explanations for this
finding have invoked endogenous search costs (Seale and Rapoport, 1997) and
probability overestimation (Bearden, Rapoport and Murphy, 2004) as expla-
nations. Our results suggest that at least part of the observed early stopping
can be explained by unbiased stochastic variability in stopping thresholds.

Future research should contrast the endogenous search cost and proba-
bility overestimation explanations of early stopping in generalized secretary
problems. Importantly, in such tests, researchers should be cautious of the
contribution of random error to the apparently biased search behavior.
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Abstract. For many decision problems the literature provides several types of so-
lutions. By this, however, a preliminary meta-decision problem is created on the
choice of the suitable decision procedure. This paper explores the meta-decision
in the context of multicriterion group decisions, considering two alternative proce-
dures: the group members may build individual preference orderings by solving the
multicriterion problem on their own and then vote on the alternatives, or they may
vote on the relative relevance of each criterion and then compose a group preference
ordering with the results. Within a Monte Carlo simulation both procedures are
confronted with an appropriate group welfare measure introduced by John Rawls.
This paper demonstrates that voting on the alternatives in general results in higher
group welfare, but voting on criteria may be superior, if the group faces fundamen-
tal value conflicts. The results are applied on the meta-decision of industrial and
political decision committees.

Keywords: mcda, group decisions, meta-decisions, negotiations, simulation

1 Introduction

To an increasing degree, theoretical concepts of multicriterion decision mak-
ing are being applied to complex real-life problems. A rich variety of different
methods and procedures has emerged during the last decades, so that the
decision maker or facilitator can typically choose between several types of
solutions for each decision problem. Though, generally speaking, this me-
thodical diversity is to be appreciated, an additional preliminary decision
problem is created on the choice of the suitable decision procedure.

The issue of comparing different decision procedures is approximately as
old as the scientific treatment of decision theory itself (de Borda, 1784, Con-
dorcet, 1785), whereas comparisons between multicriterion decision method-
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ologies can be found increasingly since the mid-1980s. Three different ap-
proaches have proven advantageous for this task:
• A predominantly descriptive comparison of different decision procedures,

which puts emphasis on the relative strengths and weaknesses of them.
“This will enable a decision analyst to perceive more clearly the choice
she would be making between the two approaches and the implications of
such a choice” (Belton, 1986: 8).

• A more theoretical and axiomatic comparison of the ‘input’ of the decision
problem: the nature of available data and preferences. This approach ex-
amines the relation between the decision method and scaling of the data,
degree of uncertainty, measurability etc. and addresses their theoretical
problems (e.g. Arrow and Raynaud, 1986).

• A comparison of the ‘output’ of the decision problem by confronting the
results of decision procedures with each other. These results are either
attained from simulated decision settings (for single-criterion decisions,
see Lindstädt, 1998) or from real cases. Typically, one of the decision
procedures is declared the reference standard, and the others are described
in terms of deviations from it (e.g. Karni et al., 1990, Zanakis et al., 1998).

In order to not only compare decision procedures, but also to make a sub-
stantial recommendation about a particular procedure, the third of these
approaches can be enhanced in the following way1. The entire decision prob-
lem is taken as a sequence of two partial decision problems, first the choice of
the decision procedure (hereinafter referred to as the meta-decision) and then
the subsequent original decision (herein after called the principal decision).
In this model, the meta-decision problem can be solved by means of back-
ward induction: Those decision procedures are to be chosen, which provide
the highest welfare to the decision maker(s), when applied to the principle
decision problem. The structure of the entire decision problem is shown in
Fig. 1.

This paper explores the above specified approach to the solution of the
meta-decision problem within the context of multicriterion group decisions.
Two potential decision procedures as alternatives of the meta-decision are
being considered:

Typically, a small group confronted with a multicriterion decision prob-
lem proceeds a two stage process: first the group members build individual
preference orderings by solving the multicriterion problem on their own, then
they vote on the alternatives. It is known that different voting schemes may
lead to different results (Nurmi, 1983) and yet no existing voting scheme
guarantees collective rational and democratic results (Arrow, 1951). Never-
theless, the described decision procedure is widely used and accepted, and
presumably leads to acceptable results in most cases.

However, the group members may as well vote on the relative relevance of
each criterion and then compose a group preference ordering with help of the

1 Parts of this paper are outlined in German in Thomas (2005).
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Fig. 1. Exemplary relationship between meta-decision and principal decision

results2. This decision procedure would replace one ballot on the alternatives
by several ballots depending on the number of criteria which are considered
by the group members. It is characterized by a much higher complexity in
terms of transaction costs as well as cognitive effort.

In order to identify if voting on alternatives or voting on criteria is more
beneficial to the decision committee in a certain situation, the following con-
siderations have to be made: In the second section a simple multi-attribute
value model is set up, from which is derived the result of voting on alter-
natives and voting on criteria subject to given alternatives and individual
preferences. Within a Monte Carlo simulation of randomly generated deci-
sion situations, the election results of both decision procedures will be con-
fronted with an appropriate group welfare measure, which will be introduced
in Sect. 3. The results from the simulation will be presented in Sect. 4, and
finally in Sect. 5 some conclusions are drawn in respect to the meta-decision
problem.

2 The Principal Decision Setting

2.1 A simple multi-attribute value model

Let us consider a group of at least three persons

N = {1, 2, . . . , n} with n = |N | ≥ 3 , (1)

2 There are certainly several more possibilities to approach this decision problem,
which will not to be examined here. See, for example, Keeney and Raiffa (1976)
and Baucells and Sarin (2003).
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voting on the set A of m alternatives:3

A = {a1, a2, . . . , am} with m = |A| ≥ 2 . (2)

For assessment of the alternatives, c ≥ 2 criteria or attributes are considered.
We will associate a level of attribute achievement q as an evaluator of each of
these attributes for each of the alternatives. This permits us to characterize
every alternative aj (1 ≤ j ≤ m) by the attribute vector

aj =

⎛
⎜⎜⎜⎝

qj1

qj2

. . .

qjc

⎞
⎟⎟⎟⎠ with 0 ≤ qjk ≤ 1 . (3)

These levels of attribute achievement q are normalized, so that the worst
possible achievement of the k-th attribute results in qjk = 0, and the best
possible achievement results in qjk = 1. We assume that there exists a consen-
sus about the attribute achievements, and that the attribute vectors are valid
and accepted for every individual. Below we will only account for alternatives
at the efficient frontier, so only non-dominated alternatives are considered.

An alternative aj dominates aj′ , if aj′ does not perform better in any
attribute, but performs worse in at least one of them:

∀aj , aj′ ∈ A : ajDaj′ ↔ [∀k : qjk ≥ qj′k & ∃k : qjk > qj′k] . (4)

Dominated alternatives are excluded, because they are strictly Pareto inferior
and therefore will not be evaluated as the best alternative by any individual
regardless of her individual preferences.

Every individual i may then be specified by her criteria weights, which
indicate the subjective relative appreciation or relevance of the k-th attribute.
The row vector of all criteria weights is called the profile ei of an individual:

ei = (pi1 pi2 . . . pik) with 0 ≤ pik ≤ 1 and
c∑

k=1

pik = 1 . (5)

Further on we presume that an additive value function corresponds well with
the preferences of each individual. To simplify matters, we presume as well
a linear single value function for every attribute k, normalized on the interval
[0; 1]. The complete value function vij then adds up to the scalar product
of the attribute vector and the profile vector, the latter serving as scaling
constants:

vij = ei × aj =
c∑

k=1

pik · qjk . (6)

3 On the mathematical notation see Tarski (1946) and Sen (1970).
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By means of this value function every individual is able to generate her own
complete, irreflexive and transitive preference ordering by sorting the set of
alternatives by the corresponding value vij . Again, for reasons of simplicity,
we do not take account of indifference to alternatives, but consider only those
alternatives that can be put into strict preference. Of two alternatives aj and
aj′ the one with the higher corresponding value is preferred:

∀i ∈ N, aj , aj′ ∈ A : ajPiaj′ ↔ [vij > vij′ ] . (7)

The alternative with the highest achievable value for an individual is denoted
alternative j∗i . According to individual preferences, j∗i may vary between
individuals.

2.2 Voting on Alternatives

To solve the principal decision problem by voting on alternatives, the group
members first build individual preference orderings according to the above
presented considerations, then these are either aggregated to a complete
group preference ordering, or at least the collectively most preferred alter-
native is extracted. Numerous voting systems or aggregation rules for this
task are known and widely discussed. All of them have some strengths and
weaknesses, while none satisfies all demands (Nurmi, 1983). We will focus
here on the simple majority rule, which qualifies as the standard aggregation
rule because of its wide recognition and intuitive accuracy.

The simple majority rule requires all alternatives to undergo a successive
pairwise comparison. The first two alternatives a1 and a2 compete with each
other, and of these two the alternative which is preferred by the majority of
individuals, is compared to the next alternative a3. After m− 1 comparisons
the winner of the last comparison is declared the overall winner.

We assume that the individuals do not vote strategically, but according
to their actual preferences. Further on, no individual may have the possibility
to obtain an advantage by setting the voting agenda – e.g., by changing the
sequence of comparisons.

2.3 Voting on Criteria

To solve the principal decision problem by voting on criteria, one ballot is
necessary for each criterion, which adds up to a total of c elections. Within
these elections, the set of alternatives under consideration consists of possi-
ble criteria weights of a collective preference profile. According to this, the
number of potential alternatives is unlimited, because arbitrarily narrow dif-
ferences between the alternative criteria weights may be shortlisted. Yet it is
plausible to assume that, in a discussion about collectively determined cri-
teria weights, only some exclusive focal points will be under consideration.
Group members will probably express suggestions like “These criteria should
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determine the decision by one half each” or “The decision should depend on
this attribute by ten percent only”.

The assumption of a small number of d potential collective criteria
weights, which are uniformly distributed, allows us to model a set of al-
ternatives Ȧ, all identical for each of the c criteria votings:

Ȧ =
{

ȧ1 =
1
2d

, ȧ2 =
3
2d

, ȧ3 =
5
2d

, . . . , ȧd =
2d − 1

2d

}
with d ≥ 2 . (8)

With d = 5 potential values the individuals may chose between criteria
weights of 10%, 30%, 50%, 70% and 90%. Arrow calls this kind of synthetic
alternatives ‘equivalence classes’, of which in general five to seven will be suf-
ficient to adequately describe the individual’s preferences (Arrow and Ray-
naud, 1986:10). The parameter d may be referred to as a measure of density
or accuracy of the alternatives. The more alternatives are being considered,
the better the individual preferences may be represented. However, each in-
dividual’s effort increases too, when it is necessary to compare many similar
alternative criteria weights.

For individual i regarding the k-th criteria election, the individual criteria
weight pik is her ideal alternative, which may not always be contained in
the set of alternatives Ȧ. If not, her first preference will be the one that
comes next to her ideal. The preference relation Ṗik shows in general how an
individual may chose between any two alternatives:

∀i ∈ N, ȧx, ȧx′ ∈ Ȧ : ȧxṖik ȧx′ ↔ [|ȧx − pik| < |ȧx′ − pik|] . (9)

Similar to the considerations in the previous chapters, the individuals may
now construct a complete preference ordering on Ȧ. Further on, simple ma-
jority voting results in c different collective criteria weights, which will be
called Ȧk. Once the collective criteria weights are figured out, the collective
value v̇j may be determined for every alternative aj from the set of principle
alternatives:

v̇j =
c∑

k=1

Ȧk · qjk . (10)

Though we have no reason to expect v̇j being normalized to the interval
[0; 1], we can regard that alternative aj , which maximizes v̇j , as the collective
preferred alternative by voting on criteria.

3 A Group Welfare Measure

One of the first works in which different voting schemes are compared was
published 1785 by Marquis de Condorcet. He established the idea of an “ob-
jectively best alternative” as a welfare measure, which is not chosen by every
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individual due to their limited power of judgement or incomplete informa-
tion (Young, 1995). However, in a decision situation of complete information
and rationality, as it is described above, every group member has an indi-
vidually correct perception of the best alternative. From this point of view,
no “objectively best alternative” exists, and all alternatives have to be re-
garded as equivalent. A different approach to obtain an appropriate welfare
measure has to be explored. One possibility is to focus on the voting process
as a method to make a decision by consensus, as Arrow (1951) points out
explicitly. From that we can conclude that a good decision must always be
a good consensus, which can be identified by a common consent and approval
of all group members. Let us therefore derive the individual level of approval
from the previous considerations.

As stated above, individual i prefers the alternative j∗i most. The maxi-
mum achievable value vij and therefore complete satisfaction for individual i
is thus obtained, if the group decides in favor of this alternative. Consider-
ing other alternatives than the individual optimum, it is plausible to define
a relative level of approval zij as the ratio of the value of a certain alternative
and the maximum achievable value:

zij =
vij

vij∗i
. (11)

This approval level, which can take a value between 0 and 1, may be con-
sidered as an indicator for individual satisfaction by an alternative. A group
member facing a low approval level feels great regret about an alternative
and is confronted with high opportunity costs, because changing to a dif-
ferent alternative may result in a much higher value of her individual value
function. z is only known from an omniscient observer’s perspective within
the model. It is self-evident that an individual may not state the exact value
of her zij in reality. Though it represents her actual approval about a certain
alternative and may therefore contribute to a decision evaluation.

Let us therefore consider the average approval level z̄j of an alternative
aj as the group welfare measure:

z̄j =
1
n
·

n∑
i=1

zij . (12)

The average approval level may well be an indicator for the aggregated ap-
proval to a certain alternative, whereas it does not reflect the allocation of
individual welfare within the group. To include this allocation, the minimum
approval level zj min of an alternative aj may be considered. Obviously, the
higher zj min, the lesser is the greatest opposition to the group decision, which
can be seen as an indicator for decisions by consensus as well:

zj min = min {zij |i ∈ N} . (13)

Both indicators are reasonable, but on its own insufficient. We will therefore
combine both to a group welfare measure first proposed by Rawls (1971),
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which is based upon the benefit of the least well-off individual. Rawls com-
mences from a status quo and argues that from the viewpoint of social welfare
an increase of individual well-being is only acceptable, if the situation of the
least well-off individual is thereby improved as well. Transferring this idea to
collective decision making, the choice of aj instead of aj′ improves group wel-
fare, if and only if the average approval level as well as the minimum approval
level increases. An increase in the average approval level is always connected
with the increase of at least one individual’s increase of value, whereas an
increase in the minimum approval level can be interpreted as an improvement
of the previous worst-off. Considering this, we can now define the following
group welfare measure:

Definition. The alternative aj∗ is Rawls optimal if and only if:

¬ [∃j : z̄j > z̄j∗ ∨ ∃j′ : zj′ min > zj∗ min] . (14)

According to this definition, an alternative maximizes group welfare if it
combines the maximum of the average approval level as well as the maximum
of the minimum approval level. If these maxima are not associated with the
same alternative, Rawls optimality does not state which of these alternatives
is to be preferred.

4 Analysis of Simulation Results

To solve the meta decision problem by backward induction, both voting pro-
cedures have to be applied to the principal decision situation. If voting on
alternatives leads to higher group welfare than voting on criteria, then the
first procedure is the better choice for the meta-decision – and vice versa.
It is advisable to exercise this comparison on many principal decision situa-
tions, in order to identify their crucial characteristics. This is accomplished by
a Monte Carlo simulation, where decision situations are generated randomly.
A decision situation consists of alternatives (characterized by its attribute
vector) and the group members’ preferences (characterized by their criteria
weight judgements). Five parameters can be chosen for the simulation: the
group size n ≥ 3, the number of alternatives m ≥ 2, the number of criteria
c ≥ 2, the number of potential criteria weights d ≥ 2 for voting on criteria
and the number of iterations of the simulation. For reasons of clarity, only
n, m and c will be varied, whereas d will be held constant at d = 5. All test
runs described below consist of 1000 iterations.

A typical committee decision setting may consist of 1 = 5 individuals, vot-
ing on 1 = 5 alternatives, considering 1 = 5 different criteria. The computer
simulation leads to some interesting preliminary results. 88.6% of the decision
situations feature a distinct welfare maximizing alternative in respect to the
group welfare measure stated in formula 14. In 65.3% of all simulated deci-
sions, both voting procedures obtain this best alternative. In 13% only voting
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on alternatives, and in 4.9% only voting on criteria is accurate. In all remain-
ing decision situations (5.4%), both voting procedures chose an alternative
that was inferior to the optimum. One could jump to the conclusion, that
in most cases (82.1%), the choice of decision procedure is irrelevant, because
either we do not know which alternative is best (11.4%), or both procedures
lead to identical results (70.7%). However, this conclusion has to be doubted,
since we have no reason to assume that alternatives or even preferences are
distributed randomly in real-life decision situations. We should rather focus
on the changes of the performance of voting procedures subject to changes
in simulation parameters, instead of focusing on exact numerical values.

To illustrate this, let us define the superiority rate S of a decision proce-
dure as the percentage of decision situations in which this decision procedure
outperforms the other. For instance, a superiority rate Salt = 13% states that
in 13% of all simulated decision situations voting on alternatives is the only
decision procedure choosing the optimal alternative. In Fig. 2, 3 and 4, the
superiority rates Salt and Scrit are shown under variation of group size n,
number of alternatives m, and number of criteria c respectively.

With appropriate caution, three conclusions can be drawn from the figures
above. First, the superiority rate of voting on alternatives Salt always exceeds
the superiority rate of voting on criteria Scrit. This may be interpreted as an
indicator, that voting on alternatives typically leads to better results. Second,
the superiority rate of voting on criteria is nevertheless always different from
zero. We may therefore assume that real decision situations exist, in which
voting on criteria leads to better results. Third, considering the shape of the
graphs, the likelihood that voting on criteria outperforms voting on alterna-
tives seems to increase if group size decreases and the number of alternatives
increases. From Fig. 4 no correlation between the number of criteria and the
performance of voting on criteria can be derived.

Fig. 2. Superiority rate of decision procedures – subject to group size
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Fig. 3. Superiority rate of decision procedures – subject to the number of alterna-
tives

Fig. 4. Superiority rate of decision procedures – subject to the number of criteria

The previous results state that both decision procedures are essential, even
though not in the same degree. It is then necessary to know in what types of
decision situations one procedure outperforms the other, in order to chose the
group welfare maximizing decision procedure in advance. One way of identi-
fying the crucial similarities is to survey the degree of homogeneity of group
member’s preferences. The standard deviation of individual criteria weights
may serve as an indicator for this unity. Similar criteria weights always result
in standard deviations close to zero, while wide differences naturally result
in higher standard deviations. Indeed, consideration of the criteria weights’
standard deviation in the simulation leads to an interesting additional con-
clusion. With the exemplary simulation parameters 1 = 3, 1 = 3 and 1 = 2,



Voting on Alternatives or on Criteria? 217

in decision situations in which voting on alternatives is superior to voting on
criteria, the mean standard deviation of criteria weights is significantly lower
as in situations in which voting on criteria is superior (SDalt>crit = 0.145
compared to SDcrit>alt = 0.195). The highest deviation is registered in de-
cision situations, in which neither procedure chooses the welfare maximizing
alternative (SD = 0.209), and a middle deviation when both procedures
choose this theoretical optimum (SD = 0.164). Though this coherence has
to be further investigated, it can be assessed as an indication, that voting on
criteria is rather superior to voting on alternatives in cases where the group
faces highly unequal criteria weights.

5 Conclusion and Recommendations

The simulation demonstrated that different decision situations require dif-
ferent decision procedures. Both considered procedures apparently feature
strengths and weaknesses. In principle, voting on alternatives is character-
ized by lower transaction costs in terms of time, organizational and cognitive
effort. In most decision situations, a good result may be expected, and the
complete preference ordering is composed directly of the individual prefer-
ence orderings of the decision committee. Voting on criteria certainly involves
higher transaction costs, but may still be superior in some decision situations.
The following recommendation in respect to the meta-decision problem can
be summarized.

According to the simulation results and the lower transaction costs vot-
ing on alternatives should always be considered the standard procedure. In
particular, there is no reason to deviate from this standard, if

• the group faces a high consensus in its preferences, or if
• a relatively large group votes on few alternatives.

Voting on criteria is to be preferred only if

• the group faces fundamental value conflicts, and if
• relatively few people vote on a large set of alternatives.
• Above all, voting on criteria is more adequate if special expertise is nec-

essary for the decision and not every group member has this expertise
in regard to every criterion. This conclusion cannot be drawn from the
simulation, but is easily justified. With voting on criteria, an individual
may participate in the decisions on some selected criteria and not others,
which is obviously not possible with voting on alternatives.

In their framework for multicriterion group decisions, Belton and Pictet
(1997) reach a similar conclusion. They discuss three different elementary ap-
proaches, which they call ‘sharing’, ‘aggregating’ and ‘comparing’. ‘Sharing’
aims to obtain consensus through discussion of the views and reducing differ-
ences by explicitly addressing their cause. ‘Aggregating’ reaches compromise



218 N.P. Thomas

through a vote or calculation of representative value, and ‘comparing’ tries to
obtain individual views without necessarily reducing its differences. Accord-
ing to Belton and Pictet, the “costs of sharing is high in terms of the time
which needs to be committed to the process and the demand for facilitator
expertise, but the expectation of a consensual outcome is also higher” (1997:
299). Since in terms of their notation voting on alternatives is a method of ag-
gregating preferences, and voting on criteria is a form of sharing preferences,
this conclusion endorses the results of our simulation.

It is interesting to consider why voting on criteria has this notable op-
portunity to effect a compromise, which is recognized by Belton and Pictet
(1997) as well as by the approach in this paper. If one individual regards one
criteria as exceptionally important and another group member regards it as
only minor, they may agree on a medium criteria weight, which neither of
them initially preferred. This ‘creation’ of a compromise is only possible by
voting on criteria. By voting on alternatives this fundamental value conflict
will neither be revealed nor reduced, and appropriate compromise alterna-
tives may eventually remain unrecognized. In this aspect, voting on criteria
resembles a negotiation, because of its high demand of explicitly communi-
cating and discussing values as the basis of making individual choices.

To summarize the results of the simulation and the characteristics of both
decision procedures, voting on alternatives seems to be appropriate in most
standard decision situations. Nevertheless, voting on criteria may increase
group welfare if a small expert group is facing fundamental conflicts. This
seems to be the case for some strategically important, trend-setting decision
problems, which frequently emerge in political and industrial decision com-
mittees. We may therefore draw the conclusion that it may indeed be rea-
sonable to be concerned about the meta-decision – although it still remains
a decision under serious uncertainties. To reduce this uncertainty, the exami-
nation of the simulation has to be extended, and more tests have to be made
especially regarding the characteristics of the different decision situations, in
order to validate the preliminary findings of this paper.
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Abstract. The methods of engineering probabilistic risk analysis and expected-
utility decision analysis share a common core: a probabilistic model of occurrences
of uncertain events. This model is based on systems analysis and on the identifi-
cation of an exhaustive and mutually exclusive set of scenarios, their probabilities
and their consequences. Both methods rely on an assumption of rationality and the
use of Bayesian probability, and both assume separation of probability assessments
and of preferences among scenarios’ outcomes. The major differences are rooted
in the nature and the framing of the problems that they address. A risk analysis
is often performed before decisions have been fully defined, and one of its objec-
tives is then to identify and characterize risk mitigation options. Furthermore, at
the time of the analysis, the decision maker who will eventually use the results
is often unknown. Therefore, the definition of Bayesian probability as a degree of
belief has to be adapted, for instance, by assuming implicit delegation of the user’s
judgment to the analyst and the experts, which requires special care in the pre-
sentation of the results. Also, a risk analysis is often performed for a single system
(e.g., one aircraft) for one unit of time or operation (e.g., one takeoff and landing
cycle) when in reality, the analysis may be intended to support risk management
decisions that will eventually concern an unknown number of similar systems for an
unspecified number of time units. This multiplicity has implications for the treat-
ment of second-level uncertainties (about failure probabilities) and for the need to
display these uncertainties in the results. In this paper, the two classical definitions
of probability (Bayesian and frequentist) are discussed, focusing on their relevance
to both probabilistic risk analysis and decision analysis, when facing aleatory uncer-
tainties (randomness) as well as epistemic uncertainties (limited knowledge about
a fundamental phenomenon of interest). The risk and decision analysis methods
are then briefly described, along with their similarities and differences. Two illus-
trations are presented: an analysis, performed in 1990, of the risk of losing a NASA
orbiter and its crew due to a failure of the tiles of the thermal protection system,
and a method of assessment of the risk of a terrorist attack on the United States in
a given time frame, based on available intelligence information (a 2002 study). The
latter involves the use of a simple analysis of a game involving alternating decisions
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and moves by terrorists and the US using a rational model in the descriptive mode.
The main conclusion is that whereas the role of the decision analyst is to represent
faithfully the beliefs and preferences of a known decision maker in order to iden-
tify the preferred alternative, the risk analyst needs to be scrupulous in presenting
the model assumptions, as well as the sources and the methods of data processing
to allow future decision makers to exercise their own judgments when using the
results.

Keywords: risk analysis, decision analysis, utility, probability, Bayesian
probability, space shuttle, terrorist attacks

1 Risk Analysis Versus Decision Analysis:
Basic Problem And Implications

Probabilistic risk analysis (PRA) is a method widely used in engineering and
in other fields to assess the probabilities and consequences of failures of a given
system1. Developed in large part in nuclear engineering (e.g., Starr, 1969;
USNRC, 1975; Kaplan and Garrick, 1981; Henley and Kumamoto, 1992; Bier
and Cox, 2006), it has been applied to many other fields e.g., in the medical
domain, (e.g., Paté-Cornell, 1999b; Pietzsch and Paté-Cornell, 2004). PRA
is based on systems analysis, and it is particularly useful in cases where the
evidence available does not include sufficient failure statistics at the system’s
level, but useful data can be gathered regarding the performance of different
components or a hazard in different phases of accident scenarios2. Expected-
utility decision analysis, by contrast, provides a systematic support to an
identified decision maker for consistent, rational decisions under uncertainty3

(see for example, Raiffa, 1968; Howard and Matheson, 1984). It includes
both description of the various scenarios and the preferences among their
outcomes.

1 Risk analysis focuses in general on the downside of a situation because the costs of
risk mitigation are often known. The focus of the analysis is thus generally on the
probability and the effects of hazardous events, even though if appropriate, the
upside can be integrated in the outcome distribution without any fundamental
change.

2 Other areas of risk analysis, e.g., environmental/health risk assessments, are
often based on “plausible upper bounds” and on several conservative hypotheses
(Paté-Cornell, 1996). Developed mostly for regulatory purposes, they allow only
ranking of these upper bounds, but do not provide the costs and benefits of risk
mitigation measures

3 The emphasis, in this paper, is on normative (or prescriptive) methods of risk
and decision analysis. There exists a large body of descriptive studies that seek
to understand how people actually perceive and accept risks (e.g., Slovic, 1987),
or make decisions intuitively without the support of analysis decisions (e.g.,
Kahneman and Tversky, 1979).
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The two methods are normative and share a common core: a probabilistic
model of occurrences of uncertain events based on systems analysis, identifi-
cation of an exhaustive and mutually exclusive set of scenarios, and compu-
tation of their probabilities and consequences. In the use of that information,
both rely on an assumption of rationality, as defined for decision analysis,
by the von Neumann axioms or their equivalents (von Neumann and Mor-
genstern, 1947) and for risk analysis, by Savage (1954) among others. Both
methods generally require the use of Bayesian probability defined as a degree
of belief, when a decision needs to be made or a risk estimated in the ab-
sence of perfect information (e.g., de Finetti, 1974)4. Both methods assume
separation of probabilistic assessments on the one hand, and of preferences
among scenarios’ outcomes on the other hands.

The two methods, however, present major differences rooted in the nature
and the framing of the problems that they address. Probabilistic risk anal-
ysis is often performed before the decisions to be made and/or the decision
makers are known. Indeed, one of the objectives is sometimes to identify and
characterize (probabilistically) the effectiveness of possible risk management
options. If at that stage, one wants to rank these options, it is sometimes
done, by default, based on a simple assessment of their expected costs and
benefits, which assumes risk-neutrality (Paté-Cornell, 2000, 2002). Obviously,
these rankings can change with different risk attitudes, and the results need
to be presented so that they can be used in conjunction with other utility
functions involving different risk attitudes or even attributes. For example,
the failure risks of a chemical facility that can release a toxic substance in
the atmosphere may not be valued in the same way by the plant managers,
the workers, the neighbors, and the regulators. In that case, the relevant
attributes of outcome descriptions and of the utility functions (costs, envi-
ronmental consequences, effects on human health, etc.) may not even be the
same for the different parties involved. The risk analysis should thus be per-
formed so that the results can support decisions that reflect the values and
preferences of each of these groups. This implies presenting full joint dis-
tributions of outcomes and their possible attributes (including, if relevant,
redistribution effects), which can be converted later into probability distribu-
tions of multi-attribute utility functions (Keeney and Raiffa, 1976) that can
support the decisions of each of the parties involved.

Also, the definition of Bayesian probability as a degree of belief has to
be adapted when the user of the results is unknown, for instance, by assum-
ing implicit delegation of probabilistic judgments to the analyst and to the
experts involved in the analysis. The decision maker(s), however, may want
4 Von Neumann and Morgenstern (1947) state clearly that they “The simplest pro-

cedure is, therefore, to insist upon the alternative [to probability as a subjective
concept], perfectly well founded interpretation of probability as frequency in the
long run”. In a footnote, however, they concede that “If one objects to the fre-
quency interpretation of probability then the two concepts (probability and pref-
erences) can be axiomatized together.” This is what Savage did (Savage, 1954).
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to know how the results were obtained in order to use his or her own value
judgments in the decision phase. The computation of the risk independently
from a specified decision maker thus raises the question of “objective” ver-
sus “subjective” probabilistic estimates. Classical statisticians consider that
probability cannot be assessed in the absence of an appropriate sample of
independent, identically distributed data points. Therefore, in that perspec-
tive, the notion of probability is restricted to the description of randomness
(aleatory uncertainty) and does not directly apply, for instance, to whether
or not a property of interest is true (epistemic uncertainty). Both epistemic
and aleatory uncertainties can be measured and combined by Bayesian prob-
ability, whereas classical statistics cannot, in principle, address epistemic un-
certainties that are at the core of many probabilistic risk analyses.

Furthermore, a risk analysis is often performed for one single system (e.g.,
one aircraft) for one unit of time or operation (e.g., takeoff-and-landing) when
in reality, the analysis is meant to support risk management decisions that will
eventually concern an unknown number of similar systems for an unspecified
number of time units. This multiplicity has implications for the treatment of
second-level uncertainties about failure probabilities and, as shown further,
requires the display of these uncertainties in the analytical results.

In this paper, the two classical definitions of probability (Bayesian and
frequentist) are discussed, focusing on their relevance – and usefulness – when
facing aleatory uncertainties (randomness) as well as epistemic uncertainties
(lack of knowledge about a fundamental phenomenon of interest). The risk
and decision analysis processes are then briefly described, with their simi-
larities and differences, and illustrated by two past studies performed in the
Stanford Engineering Risk Research Group. The first one (performed in 1990)
concerns the risk of losing a NASA orbiter and its crew due to a failure of
the tiles of the thermal protection system. The second (performed in 2002) is
a high-level analytical model of the risks of different types of terrorist attacks
on the United States in a given future period, based on available intelligence
information at the time of the analysis. That example involves a conflict
analysis that relies on an assumption of alternating rational decisions on
both sides. It includes probabilities and utilities as assessed by US decision
makers and analysts, of their own beliefs and preferences as well as those of
various terrorist organizations. The conclusion emphasizes the difference of
objectives –as well as the commonality of methods – of decision analysts and
risk analysts, who want to provide high-quality results, useful to a known or
unknown decision maker.

2 Fundamental Concepts of Probability
and Uncertainty

In the course of the analysis of classes of scenarios – whether following a deci-
sion option, or leading to the occurrence of an adverse event –, one generally
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encounters both epistemic and aleatory uncertainties5. They characterize re-
spectively the lack of fundamental knowledge e.g., about a still-unknown
physical phenomenon, and the simple randomness that is encountered, for
example, when throwing a fair dice (e.g., Apostolakis, 1990; Morgan and
Henrion, 1990).

Two definitions of probability provide an assessment of aleatory uncer-
tainties: the Bayesian, and the classical frequentist. Bayesian probability, de-
fined as a degree of belief, is fundamentally anchored in the notion of rational
choices under uncertainty (e.g., Ramsey, 1926; de Finetti, 1974; Savage, 1954;
Press, 1989). It is obtained by combining a prior probability before a new
piece of evidence becomes available, the likelihood of these data, and the
probability of observing them, which requires considering all possible alter-
natives to the hypothesis of interest. The priors and the likelihoods all reflect
the degrees of belief of the decision maker or the analyst. The likelihood func-
tion may represent, for instance, the level of confidence in a particular sensor
or a particular source of information.

Classical statisticians, by contrast, define probability as a frequency in
a sufficiently large sample of independent and identically distributed trials
(e.g., Neyman 1937). It can thus capture aleatory uncertainty, but not epis-
temic uncertainty, to which they believe the notion of probability simply does
not apply. This leaves the decision maker – or the risk analyst who needs to
provide information before full knowledge has been obtained – with only one
option: the use of Bayesian probability. The question of “subjectivity” versus
“objectivity” is often raised in that context. Bayesian probability is by defi-
nition subjective. Frequentist probability, however, also includes an element
of subjectivity, not only in the choice of the confidence level attached to it,
but also in the assumption that past data are relevant to future events. This
assumption of a steady state often limits severely the relevance of existing
statistics.

The problem – and the tensions – caused by this disagreement about the
definition of probability has sometimes been an obstacle to the acceptance of
probabilistic methods6. Attempts to reconcile the two approaches have been
particularly critical in the field of risk analysis where a decision maker, able
to provide degrees of belief, has seldom been identified as a unique person.
One such attempt to unify the two approaches to probability is based on
the consideration of the future frequency of an event as a Bayesian random
variable (e.g., Apostolakis, 1990), whose expected value constitutes the prob-
ability of that event7. The absence of a known decision maker in probabilistic
risk analysis requires adapting the notion of degree of belief, and carefully
5 The literature sometimes simply refers to them as “risk” and “uncertainty” but

that terminology can be confusing because both involve uncertainties.
6 In reality, the results of Bayesian and frequentist analyses of the same data sets

often converge when the sample size is sufficiently large, as shown for example, in
a study of the probability of failure of launch vehicles for space systems (Guikema
and Paté-Cornell, 2004).
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presenting hypotheses and results to permit the eventual decision maker to
adopt – and if needed adapt – the analytical results to represent his or her
own degrees of belief.

3 Probabilistic Risk Analysis and Decision Analysis:
The Methods and the Processes

Expected-utility decision analysis provides an unambiguous approach to de-
cision making under uncertainty. A known decision maker is generally faced
with a set of options among which he or she must choose an optimum. The
assumption is that this decision maker follows the axioms of rational choices
in one of several equivalent forms (e.g., orderability, continuity, monotonic-
ity, substitutability and decomposability as defined by Howard, 1984). Under
each option, the analyst identifies the possible scenarios, structured as a set of
collectively exhaustive and mutually exclusive elements. Their probabilities
are characterized by a joint probability based on the marginal and condi-
tional probabilities of their components. For each scenario, the analyst then
assesses its consequences in terms of magnitudes along various dimensions
(“attributes”) and the corresponding utility – single- or multi-attribute – of
the decision maker. Finally, the expected utility attached to each option is
computed; the optimal option is that which maximizes this expected value.
The tools of decision analysis involve, for example, decision trees, influence di-
agrams, and stochastic processes. Problems arise, however, when the decision
involves several potential or actual decision makers8.

This is precisely the issue that the (engineering) risk analyst often faces.
His or her task generally starts with a system whose components and func-
tions are often known – although some internal mechanisms may still be
uncertain –, that may be subjected to external events (e.g., earthquakes),
and that may constitute a hazard for example, because it may release a dan-
gerous substance. The corresponding risk can be defined, for example, by the
probability of system failure per time unit if it is a binary situation, or more
accurately, by the probability distribution of damage per time unit due to
failures of various levels of severity (e.g., losses per year)9. When the out-

7 This definition assumes first that the time unit and the frequency per time unit
are sufficiently small to be compatible with the notion of probability, and second,
that the concept of repetition applies.

8 As shown by Arrow (1963) expected-utility decision analysis does not apply in
that case. Another problem is that of “collective probabilities”, which as dis-
cussed further, do not fit directly the Bayesian definition as degree of belief. One
can, however, adapt the decision analysis method by assessing what amounts to
collective degrees of beliefs and by constructing a valuation function similar to
utility for a group of decision makers.

9 Note that the often-cited definition of risk as “probability times consequence” is
generally insufficient to capture the loss distribution and to allow, for instance,
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comes involve several attributes (e.g., human casualties and financial losses)
the consequences of different scenarios need to be described by a joint distri-
bution of these attributes.

The classic steps of probabilistic risk analysis as used for example, in
the nuclear power industry, involve first a functional analysis of the physical
system: what functions are needed for operations and what configuration of
components – in parallel or in series – fulfill these functions? The second step
is to identify the failure modes, i.e., the min-cut sets or minimal sets of events
that cause system failure, using a combination of fault trees and Boolean al-
gebra. The third step is the computation of failure probabilities. It involves
gathering the data required from all available sources10 and computing the
probabilities of different levels of system failures, accounting for possible de-
pendencies among component failures, in particular those caused by common
causes such as external events. The next step is to compute the losses asso-
ciated to different failure scenarios and the probability distribution of these
losses per time unit. The final step is to display and communicate the results,
for instance as a risk curve, which represents the probabilities of exceeding
each possible level of loss per time unit (i.e., the complementary cumulative
distribution function11). The description of some of these scenarios and the
computations of their probabilities may involve a dynamic analysis and the
use of stochastic processes, for example, when the problem involves system
deterioration or the evolution of accident sequences as in the case of patient
risk in anesthesia (Paté-Cornell, 2000).

Risk analysis, contrary to decision analysis, is not supposed to include
preferences for scenario outcomes (in the sense of utility), neither explicitly
nor implicitly. As discussed further, this neutrality is not always easy to
achieve in practice.

In addition, the risk analyst may want to display in the results the ef-
fects of epistemic uncertainties, so that the decision maker can form a bet-
ter assessment of his or her beliefs regarding the risk. This requires keeping
epistemic and aleatory uncertainties separated throughout the analysis, and
propagating the uncertainty through simulation (e.g., Monte Carlo or one of
its variations, such a the Latin Hypercube method). The results can then
be displayed, for example as a family of risk curves, each corresponding to
a percentile of the discrete distribution of the future frequency of exceeding
any given level of loss in a specified time unit (Paté-Cornell, 1999a, 1996; see
Fig. 1). The problem is that the numbers of systems or time units may be
unknown at the time of the analysis. As shown further, this propagation and

rational risk-averse decision making. It represents an expected value of the con-
sequences, which fits only the preferences of a “risk-neutral” decision maker.

10 Different types of information can be used to provide data, including statistics
of actual system or component performance, surrogate data (performance in
a different environment), test data, engineering models, and expert opinions.

11 Again, if several attributes are involved in the description of the outcomes, the
results may include their joint distribution.
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Fig. 1. Risk analysis results as a family of risk curves (second-order uncertainty
analysis) (Source: Paté-Cornell M.E. 1999a)

representation of uncertainties allows computing the probabilities of failures
of multiple systems and multiple independent failures in future time periods.

At the end of this exercise, the risk analyst is often in a position to identify
the system’s weakest points, different reinforcement options, and their costs
and benefits. As mentioned earlier, recommending a course of action presumes
knowing the risk attitude of the decision maker, but by default, can be based
at first, on simple expected values of costs and benefits. Yet, as shown further
in the NASA example, these recommendations may not be those that the
actual decision makers will want to implement, for various reasons that can
involve different risk attitudes.

4 Risk Analysis and Decision Analysis:
Difference and Similarities

The two methods are complementary and address problems of uncertainty in
decision, one focusing on information, the other also involving preferences.
Therefore, they show both similarities and differences. By definition, decision
analysis, in addition to a preference model, generally includes a risk analysis
describing both upsides and downsides, embedded in its structure. This im-
plies that the structure of the “factual” part of both analyses is the same; it
is based on the same construction of scenarios representing conjunctions of
events and random variables. Whether these variables are discrete or contin-
uous, the computation of scenario probabilities is based on two laws of logic:
Bayes theorem and the total probability theorem12.

12 Note that these two theorems of logics hold regardless of the definition of prob-
ability adopted.
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Both decision analysis and engineering risk analysis are based on an ax-
iomatic foundation of logics and rationality13. They involve full distributions
of the consequences of a set of possible scenarios that must be structured
as collectively exhaustive and mutually exclusive to be amenable to proba-
bility computations. In both methods, one encounters similar questions such
as: to what depth should the analysis be performed in different parts of the
problem? In other words, when does one have enough information about
a phenomenon or the performance of a subsystem, so that further decompo-
sition is not necessary? As it will become clear further through examples, the
optimal decomposition level varies across the different parts of the problem.
It has a critical effect on the results, and it depends on the choice of the data
that constitute the best evidence base. It is that choice of variables, among
other factors, that makes decision and risk analyses both an art and a science
and does not make them amenable to cookie-cutter procedures that could be
automatically implemented by untrained operators or entirely performed by
a computer.

The fundamental premise of rationality also implies that both methods
of analysis rely on Bayesian probability, at least when facing epistemic un-
certainties, which cannot be captured through classical statistics14. Classical
statistics, of course, are useful in risk analysis in the context of a steady state,
and they provide estimates that are close to those that are obtained through
Bayesian statistics, which are often more complex.

The definition of Bayesian probability as a degree of belief makes its use
relatively simple in decision analysis where one can “encode” the assessments
of the decision makers or of the experts that he or she has explicitly chosen.
By contrast and as mentioned above, even though risk analyses are explic-
itly performed to support risk management decisions, the actual decision
maker (user, customer) is generally unknown at the time of the exercise. Fur-
thermore, one performs such an analysis because sufficient statistical data
are generally not available at the system level at the time when a decision
has to be made, thus precluding the use of classical statistics and dissipat-
ing the illusion of objectivity that they are assumed to provide. The use of
Bayesian probability, however, prompts the question: whose degree of be-
lief? There may be several users of the analysis, at different times, under
different circumstances, or in different parts of an organization. Therefore,
one has to rely on an assumption of implicit delegation of the degree of
belief of decision makers to the analyst and to the experts with whom he
or she has chosen to work. The degrees of belief of the analyst and of ex-
perts in different fields then become the basis of the probabilities used in
13 The rational foundation of Bayesian probability can be found in the works of

Ramsey (1926) and Savage (1954) among others.
14 This is true unless one stretches the notion of frequencies to include the propor-

tion of times when experts have been right in a particular field. This approach,
however, is seldom specific enough to be useful, especially when one can instead,
analyze in greater details the potential causes of different types of failures.
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different parts of the problem. For decision makers to adopt the same views,
the analyst must thus be scrupulous in his or her description of assump-
tions, of the sources of data, and of the methods by which they were pro-
cessed.

In both risk and decision analyses, the structure of the “factual” model –
as opposed to the representation of preferences – and the choice of its compo-
nents (random events and variables) reflect the skills of the analyst, but also
the constraints of the resources allocated to that task. Another issue is the
choice of models. In decision analysis, it is sometimes stated that there is no
such thing as uncertainty about a model, presumably because it constitutes
the best representation of the decision maker’s view of a phenomenon of inter-
est15. By contrast, in risk analysis, different experts may rely upon different
representations of the world. Different models may thus have to be consid-
ered and included so that decision makers who have not participated in the
analysis get the full spectrum of information. In addition, uncertainties about
the parameters of each model have to be included in the computations. To
the extent that the “experiment” will be repeated (multiple similar systems
and time periods), these uncertainties have to be propagated throughout the
computations and represented in the results.

Indeed, uncertainties about probabilities are at the heart of Bayesian com-
putations. A classic computation involves a random variable and assumes
a particular form for its probability distribution. The uncertainties about the
value of one or several parameters can in turn, be represented by a proba-
bility distribution (e.g., Normal), and this distribution updated with every
new piece of evidence. Similarly, Howard (1970) showed, on a specific exam-
ple, how one can start from an uninformative distribution (i.e., uniform on
the [0, 1] interval) about the probability of an event and proceed to sequen-
tial updatings of that distribution with every new piece of information. That
computation can be simplified greatly by using “conjugate priors”, involving
for example, binomial and Beta distributions.

At any given time, if one wishes to use expected-utility decision analysis
to choose among options involving an event whose probability has been up-
dated in that way, it is the mean of that distribution that is to be used in
the computations as the probability of that event. In risk analysis, if even-
tual decisions involve several similar systems and several time periods, the
full distribution of that probability (per time unit) cannot be reduced to its
expected value and used as if there was no uncertainty about it. This is true
because if p(F ) is the probability of one failure in a given time period, and if
there is no uncertainty about it, the probability of n independent failures in
the same time period is simply [p(F )]n. But if there are uncertainties about

15 Note, however, that for a rational decision maker, uncertainty about the nature
of a fundamental phenomenon may well result in model uncertainty, for example,
whether or not there is “memory” in the occurrence of earthquake, therefore if
a Poisson model of occurrence is appropriate or not.
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p(F ) (e.g., because of uncertainties about different parameter values), one can
represent this probability as a random variable as described above. Although
the Bayesian probability of one event is the expected value of that random
variable (EV [p(F )]), the probability of several such independent events is
generally not [EV (p(F ))]n – i.e., the value that one would obtain by simply
raising to the nth power the probability of a single event – but EV [p(F )n]16.
Therefore, in that case, one cannot simply compute the probability of an
event (or of a known number of events) as a single number (a mean) and
raise it to the power n, even if one knew that number at the time of the
analysis. In a well-defined decision analysis, by contrast, one can compute
directly the probability of the scenarios of interest (for a known number
of “experiments”), given each of the identified options. The multiplicity of
identical systems and time periods, thus has implications for the display of
uncertainties about probabilities in risk analysis, but not in decision analysis
with known time frames, options, systems, etc.

Another key difference concerns preferences. Decision analysis includes
preferences in a utility function. Risk analysis does not, even though some
recommendations that come out of it may be based by default on implicit
risk neutrality with respect to costs and benefits, or sometimes on worst-
case scenarios17. These are only assumptions regarding preferences, which
have to be presented as such. In reality, as mentioned earlier, the analysis
must be performed so that the probability distribution of outcomes can be
further transformed into a probability distribution of utilities, which may not
be a linear function. It is on the basis of that utility distribution that the
decision will be made. This requires full display of the risk analysis results as
opposed to a simple expected value of the outcomes18.

The separation of preferences and probability assessment can be trickier
than it appears at first. First, the choice of the attributes that describe the
scenario outcomes in a risk analysis may limit the inclusion of some pref-
erences in the decision phase. Second, it is often tempting for experts with
strong preferences about the decision that the analysis will support to in-
ject these preferences in their probabilistic assessments. As an illustration,

16 For example, if one represents the absence of information about the probability
of an event in a given time period by an uninformative uniform distribution on
the [0, 1] interval, the probability of that event is the expected value of that
distribution, i.e, 1/2. The probability of two such independent events, however,
is not (1/2)2 = 1/4, but 1/3 because EV (p2(F )) = [1/3x3] between 0 and 1.

17 The only common ground for firm recommendations is the case of dominance in
which the analyst has identified an option under which one is better off under
all possible scenarios that may unfold.

18 This is particularly critical when computing the risk of severe events with extreme
consequences (e.g., large natural catastrophes or large-scale terrorist attacks).
Whereas the expected value of the outcomes is indeed influenced by these extreme
values, a risk-averse utility function will allocate even greater weight to the tail
of the outcome distribution.
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consider the case of a seismologist whose first question, when asked for the
probabilities of earthquakes of different characteristics in the Eastern US,
was: what are they going to be used for? The local seismicity, of course, is
the same whether the site is that of a nuclear reactor or a chicken coop.
What varies with the criticality of the facility is the value of information,
thus the amount of resources that should be allocated to the seismic risk
analysis. Keeping preferences and probability separated and persuading ex-
perts that conservatism should be put in the decision criteria and not in the
probabilistic estimates is one of the features of a credible analysis of either
type.

In decision analysis, the preference criteria are squarely represented by
utility functions, which can be encoded by presenting the decision maker
with hypothetical lotteries and asking him or her to identify (for instance)
their certain equivalents. If he or she is risk-neutral, the utility of an out-
come is simply proportional to the measure of its consequences. In addition,
in the classical definition of rationality, the decision maker is by definition
ambiguity-neutral, i.e., he/she is assumed to be indifferent between two iden-
tical lotteries (same probabilities, same consequences) regardless of differ-
ences in the information bases that support the probabilities in the two lot-
teries. In reality, people often are and want to be (e.g.,) ambiguity-averse (the
Ellsberg “paradox”; Ellsberg, 1988), and the definition of rationality itself can
be revisited to allow for other attitudes towards ambiguity (e.g., Paté-Cornell
and Davis, 1994).

The results of a risk analysis, when used in a decision analysis context, can
be coupled with an explicit utility function applied to the distribution of the
outcomes, reflecting the relevant risk attitude (and in general, its variations
along the outcome axis). More often, however, the risk analysis can be used
to check that the probability of a system’s failure is below a given threshold
of risk tolerance, or to rank threats and risk mitigation options, for example,
on the basis of expected costs and benefits, or of worst-case assumptions.
Note that the use of a threshold of risk tolerance does not satisfy the von
Neuman’s axioms of rationality, but is another expression of objectives and
preferences. Since in addition, the decision maker(s) may not be indifferent to
uncertainties about failure probabilities, it is often required that risk analysis
results include a display of these uncertainties, not only in a single risk curve
but in a family of risk curves as shown in Fig. 1.

Similarities between risk and decision analyses thus come from a common
assumption of rationality, and the same framework for the factual and prob-
abilistic part of the analysis. The differences stem mainly from the fact that
in a decision analysis, the options and the decision maker are known, whereas
risk analysis must provide more detailed information to decision makers who
are often unknown at the time of the computations. What follows is a limited
illustration of these concepts.
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5 Illustrations: The Tiles of the NASA Shuttle
and the Risks of a Terrorist Attack on the US

5.1 The Risk of Losing an Orbiter Due to a Failure of the Tiles
of the Space Shuttle

In that study, which was performed in the late 1980’s based on the first 33
shuttle flights, one objective was to assess the probability of losing an orbiter
and its crew due to a loss of tiles of the thermal protection system (Paté-
Cornell and Fischbeck, 1993a and 1993b). It was also to allocate this risk
among the tiles in different locations on the orbiter’s surface to set main-
tenance priorities based on risk-criticality. Another objective was to make
some recommendations to NASA, including organizational adjustments, to
improve the maintenance of the tiles. The study was performed on a very
low budget, which did not permit a second-level analysis of uncertainties,
only a discussion of their potential effects on the recommendations. However,
the first-level analysis (based on single values of failure probabilities) was
sufficient to yield specific conclusions. The risk analysis model was based on
a partition of the orbiter’s surface into min-zones, each defined by a range
of values of four parameters: the heat load, the aerodynamic forces, the den-
sity of debris hits, and the criticality of the subsystems under the aluminum
skin. Two main failure modes of the tiles were identified: loss of tiles un-
der regular loads of vibration and aerodynamic forces, and debonding under
a hit, especially by a piece of insulation detached at takeoff from the surface
of the external tank. This second failure mode was the cause of the loss of
the orbiter Columbia in February 2003, when such a piece of debris hit the
panels that protected the edge of the left wing. The possibility of that failure
mode became clear when the authors superposed maps of debris hits, show-
ing a higher density of tile damage under the right wing of the orbiter. That
“cloud” of hits corresponded to the attachment of a fuel line on the exter-
nal tank, which in turn appeared to weaken the bond of the insulation on
the tank’s surface. The risk computation was based on the influence diagram
shown in Fig. 2.

The total probability of a shuttle accident due to tile failure was shown to
be in the order of 1/1000 per flight, or about 10% of the overall probability
of an accident. It was also shown that about 15% of the tiles contributed
about 85% of the probability of failure, therefore, that all tiles were not
equally critical. In the process of gathering data, it had become clear that
a small number of tiles had not been properly bonded, either because of poor
maintenance, or because they had been poorly installed in the first place.
About twelve such tiles had been found after processing of about half of
all tiles. Therefore, one could reasonably suspect that approximately twelve
others remained with a weak bond. The study thus emphasized the possibility
of a combination of high loads (from a poor bonding of the insulation of the
external tank) and low capacity (from weak bonds on some tiles).
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Fig. 2. Influence diagram for the PRA of the tiles of the space shuttle (Source:
Paté-Cornell and Fischbeck, 1993a);
Legend: Oval nodes: Uncertainties about events and random variables. White nodes:
Uncertainties about terrorist groups and their activities, including (striped) the el-
ements of an attack scenario. Grey nodes: U.S. side. Square node: decision node.
Hexagonal node: Consequences to the U.S. of an attack scenario given countermea-
sures. Arrows: Probabilistic dependencies

Several recommendations were communicated to NASA orally or in writ-
ing: that a more elaborate risk analysis with an adequate budget be per-
formed, that special attention be given to the bonds of the most risk-critical
tiles, that the time constraints on the tile maintenance be relaxed, that an
in-flight repair kit be provided to the astronauts, and that the bonding of
the insulation of the external tank be improved. Interestingly, only the rec-
ommendations that concerned Kennedy Space Center – which had funded
the study – were seriously considered. They involved mainly increasing the
attention given to the bonding of the most risk-critical tiles. The recommen-
dations that had to be implemented by Johnson Space Center, where tile
maintenance procedures were set, were apparently ignored. For example, the
in-flight repair kit was called too expensive, unfeasible, or a potential cause
of additional problems. Yet, after the death of seven astronauts, such a kit
became available. Also, the bonding of the insulation of the external tank was
modified, but apparently, only to make its application more environmentally
friendly. In any case, the debonding of a large chunk of it during the launch
of the doomed Columbia flight showed that it has not received sufficient at-
tention, which may be attributable to the dispersion of space centers that
seemed to care mostly to the subsystem for which they were responsible.

One of the features of the analysis was the choice of its depth to permit
the best use of available information. At a first level of statistical observation,
one could simply have relied on the number of shuttles lost thus far due to
the tiles (none). At a second level, one could have relied on the number of
tiles that had debonded in flight: two at the time of the 1990 analysis, which
was too small a sample (given that there are in the order of 25,000 tiles per
orbiter) to permit a relevant estimation of the probability of an accident.
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This is why we chose a deeper level of analysis based on loads and capacities,
which lead us to the analysis of the number of poorly bonded tiles and of the
density of debris hits (we assumed that the density of poor bonds was uniform
across the surface). This information base provided us with a larger and more
stable database than the very small sample of lost tiles. Interestingly, one of
the contractors, charged with the task of reducing the failure probability that
we had found, did choose to rely on the number of tiles lost in flight. After
a total of about 60 flights without additional loss of tiles since our study, the
probability had been reduced to 1/3000 per flight (instead of 1/1000 as we had
found). When a few flights later, several tiles were lost, their probability had
to be raised and the contractor found a figure that was again in the order
of 1/1000 and consistent with our findings a decade or so earlier. Finally,
Columbia was destroyed by one of the failure modes that we had identified,
and our original recommendations may now have a greater chance of being
implemented in the remaining life of the Shuttle program.

This story illustrates one of the fundamental caveats to risk and decision
analysts, which is to not perform an analysis for an organization or an in-
dividual who is not willing to use the results for decision support (or wants
to influence them), but only to justify decisions already made. In the case
of Columbia, the failure could have been anticipated and prevented; but the
“proof” of its vulnerability (the accident itself) came too late. The same can
be said of the 9/11 attack on the United States in 2001 which had several
precursors such as the 1993 attack on the World Trade Center. More at-
tack attempts have occurred, and more are to be expected – and they might
well succeed. The US Department of Homeland Security needs to allocate
its resources according to risk-reduction priorities (as opposed to political
pressures). The following illustration shows how a risk analysis model can be
constructed to allow assessing the risk of different attack scenarios.

5.2 A Risk Analysis Framework for Terrorist Threats
on the United States

The risk of a terrorist attack on the US involves two main factors: the threats
of different types of attack scenarios, and the vulnerabilities of the potential
targets of such attacks19. Reinforcing all potential targets or addressing all
potential threats is unfeasible and it is imperative to allocate resources effi-
ciently. To structure large quantities of data of very different nature, and to
set priorities among risk reduction measures, a risk analysis model was devel-
oped at a very high level of aggregation (Paté-Cornell and Guikema, 2002b).
It is designed to be dynamically implemented and continuously updated on
the basis of new intelligence information.

19 Threats and vulnerabilities, in this case, are the equivalents of the classic
loads and capacities used to compute the risk of failure of engineered systems
(p(Failure) = p(Loads > Capacity)).
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The overarching model is based on two interrelated decision analyses that
can be viewed as a sequential game of alternate moves. The first one con-
cerns the decisions of the different terrorist groups based on their preferences,
as revealed through intelligence sources or through their own statements,
and on the resources available to them20. The second is that of the United
States authorities, based on information that has been gathered regarding
terrorist intents. The latter is described in the influence diagram shown in
Fig. 3. A key element of that model is an assessment of the terrorists’ “sup-
ply chain”, which involves people and skills, communications, weapons and
materiel, transportation, and cash. Each of these components can provide
clues to terrorist activities, especially air transportation. An attack scenario
is characterized by a terrorists’ choice of weapon, target and means of deliv-
ery. The two models are run based on probabilities and utilities assessed by
the US for both sides. A hypothetical application of the model was published

Fig. 3. Influence diagram representation of an overarching model for the prioriti-
zation of the risks of a terrorist attack on the United States (Source: Paté-Cornell
and Guikema, 2002)

20 Note that in this case, we used the rational decision analysis model in the de-
scriptive mode because, in our judgment, it was an acceptable approximation of
what we could anticipate given what we had observed.
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in the unclassified literature (ibid.). For illustrative purposes, two terrorist
groups were considered (extremist Islamists and disgruntled Americans), as
well as four broad classes of attack scenarios: the detonation of a nuclear
warhead, a “dirty bomb” made of nuclear spent fuel and conventional ex-
plosives, a biological attack such as small pox, and repeated conventional
attacks on urban centers e.g., with improvised explosive devices (IED’s). The
probability of a successful attack involves a sequence of events: planning of
the attack, acquisition of the weapon, introduction of that weapon on the US
soil (if needed), successful implementation steps, and non-detection by the
US, or US failure to act in time to stop the attack. Unsurprisingly given the
potential consequences, the detonation of a nuclear warhead tops the prior-
ity list of this illustrative example; dirty bombs that can cause a real scare
but much less damage, are considerably lower on the threat scale. The point
however, is that such an analysis needs to be run in real time to guide the
search for additional information and timely counter-terrorism measures, and
that Bayesian updating is the best way to capture the evolution of the state
of information21.

This is a case where a default expected value of the losses (e.g., average
number of human casualties in an attack on a specific target) is not a sufficient
representation of the risk. Repeated conventional urban attacks, for example,
are more likely and easier to execute than some other types of attacks, even
though each of them may not cause as much damage. Therefore, the expected
value of the associated losses may exceed, for instance, that of an improbable
but much more destructive detonation of a nuclear warhead. A full probability
distribution of the damage must be part of the risk results if the decision
makers who wish to use them are risk-averse and want this risk aversion to
be reflected in a non-linear utility function.

6 Conclusions

The two fields of probabilistic risk analysis and expected-utility decision anal-
ysis are tightly linked. Both rely on an assumption of rationality and in gen-
eral, on Bayesian probability. A model of the risk analysis type is often at the
core of a decision analysis. But whereas risk analysis focuses exclusively on
event scenarios, their probabilities and their consequences, decision analysis
involves, in addition, the alternatives that are considered and the preferences
of a decision maker. The main differences thus lie in the problems’ struc-
tures. In a decision analysis, the decision to be made, the decision maker,
21 The probabilities used in the assessment of the risks of different types of terror-

ist attacks are clearly unstable. Intelligence information is collected every day.
Surprises (small and large) occur all the time. Some of the factors of the model,
however, are more stable than others for example, the existing vulnerabilities
in our systems, the stated preferences of the various groups, or the existence of
some known terrorist supply networks.
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and the options considered are known a priori. By contrast, risk analysis
is often performed without knowledge of who are the ultimate users of the
results, or which options will be considered in the risk management phase. In-
deed, the objectives of such an analysis often include finding the weak points
of a system, identifying risk reduction options, and presenting information
that allows setting priorities among them if the risk is found to be intoler-
able. A default option is to do so on the basis of expected values of cost
and benefits. In all cases, one of the analytical requirements is to keep the
probabilities and preferences separated. In decision analysis, risk attitudes
must be captured by utility functions; in risk analysis, the probabilities rep-
resent the degrees of belief of analysts and experts, and presumably, will be
adopted by the decision maker(s). One of the challenges is to keep these risk
estimates free of attempts to influence the results and the decisions that they
will support. It is essential in that context to represent scrupulously the un-
derlying assumptions, the sources of data and the processing methods, and
to present the results at the level of detail that the problem requires. This
may involve representation of second-degree uncertainties (about event prob-
abilities themselves), especially if the analysis is applied to several systems
over several time units.

The role of the decision analyst is clear: to represent faithfully the beliefs
and preferences of the decision maker in order to identify the preferred alter-
native. That of the risk analyst is more complex. It is to present as exactly
as possible the state of knowledge, i.e., the assumptions of the model, the
sources of information and the processing of the data, in order for future
decision makers to be able to exercise their own judgments when using the
results.

In all cases, a probabilistic analysis, of a risk or a decision, should not
be performed for people who do not want to know the results, who try to
influence them to serve their own purposes, or who have already made up
their mind and simply seek justification. Probabilistic analyses are generally
performed before complete knowledge is available and as such involve a degree
of subjectivity. They are only tools and not something that one “believes in”
as one would in religious dogmas. If potential users – and the people who are
subjected to their decisions – prefer to rely on their instincts, so be it. The
complexity of many systems, however, does not permit that luxury, when the
stakes are high and human intuition insufficient to capture the intricacies of
the problem at hand.
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Abstract. For additive models of preferences or choices among multi-attribute
options an approach to inducing preferences is presented which offers new oppor-
tunities for empirical investigations of choice behavior as well as the validation of
preference elicitation techniques. The approach is founded in measurement theory
and draws on finite conjoint measurement and random utility theory. Preferences
are induced by teaching respondents to choose among multi-attribute options in
accordance with a weak order that can be represented by a unique set of utility
values. It is shown that the utility values can be recovered with estimation proce-
dures for probabilistic choice models. As the utility values are known a priori, they
can serve as a standard of comparison for estimates in empirical investigations.
The measurement theoretic background and a procedure for teaching preferences
are described in detail. Data from two experiments provide evidence that accurate
numerical utility values can be induced with tasks that require only qualitative
judgments but do not reveal any numerical information.

Keywords: preference inducement, finite conjoint measurement, random
utility theory, discrete choice analysis

1 Introduction

The concept of utility is a cornerstone of most theories of decisions among
multi-attribute options. Standard conceptions of multi-attribute decision
making, such as multi-attribute utility theory (Keeney and Raiffa, 1976),
conjoint measurement (Luce and Tukey, 1964), or multi-attribute extensions
of random utility theory (Luce and Suppes, 1965), presume that the utility of
options determines preferences and choices. Widely used techniques for elic-
iting preferences in multi-attribute settings, like conjoint analysis (Green &
Srinivasan, 1978, 1990), policy capturing (Karren and Barringer, 2002), and
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discrete choice analysis (Louviere et at., 2000), also rest on the concept of
utility and yield utility values as a crucial part of their results. However,
there seems to be no adequate criterion available for making direct evalu-
ations at the level of utility values when assessing the validity of such meth-
ods is of interest or when the question of how preferences are affected by the
experimental manipulation of variables of the decision context is an issue.
Researchers have therefore usually employed indirect measures like holdout
choices or preference reversals. In the present paper we offer an alternative
criterion that represents a theoretically-founded standard of comparison at
the level of utility values.

The endeavor to establish a direct standard of comparison at the level
of utility values confronts a number of impediments. First, utilities reside at
the construct level and are not directly observable. Hence, the utility values
of a person are unknown. How then should one be able to compare differ-
ent preference elicitation techniques or appraise the effect of experimental
manipulations at this level of analysis? Second, preferences are usually het-
erogeneous. That is, different individuals have different sets of utilities and
this exacerbates the problem of establishing some common ground on which
utilities can be compared.

A potential solution to the first problem would be to elicit preferences with
some technique and use the resulting utilities as the standard of comparison.
However, any conclusions reached by using this approach would critically
depend on the specific method used for eliciting the reference values. For
instance, if one was interested in assessing the validity of different elicitation
techniques the problem would become circular since the results would de-
pend on the validity of the method that has been singled out to obtain the
benchmark values.

The issue of preference heterogeneity might be dealt with by actively re-
ducing heterogeneity to at least alleviate the problem. For example, a sample
of respondents could be investigated which can be assumed a priori to have
comparatively homogeneous preferences. Of course, this method requires at
least partial knowledge about the utilities in the sample. A more systematic
approach to reduce heterogeneity in experimental settings would be to ask
participants to adopt the preferences of a fictitious person and to perform
some task vicariously on behalf of that person. This approach, known as the
principal-agent paradigm, has been applied in several recent studies (Ariely,
2000; Huber et al., 2002).

In order to overcome the difficulties implied by the nature of preferences
and utilities we propose to generate samples of respondents with homoge-
neous preferences which can be represented by a known set of utility values.
These utility values then constitute the proposed standard of comparison.
A sample with homogeneous preferences is established by means of an in-
ducement procedure. In short, this procedure takes the form of a computer
administered training during which respondents are gradually led to evaluate
multi-attribute options in accordance with a certain preference structure. In
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this training, the options are described by several attributes with a finite
number of levels each. The preference structure is defined by a weak order
that can be represented additively by a unique set of utility values. Weak
orders with this property are characterized by a uniqueness theorem in finite
conjoint measurement (Fishburn and Roberts, 1988) which will be explained
shortly. We demonstrate that even though the inducement of preferences is
based on the deterministic theory of conjoint measurement, the choices are
consistent with a certain class of probabilistic choice models. Consequently,
statistical estimation procedures for these models can be used to recover the
induced utility values.

The following features of the approach are worth noting. First, partic-
ipants have to internalize only the qualitative information represented by
the weak order. That is, for every pair of options they have to learn which
option is preferred or whether the options are equivalent. Second, the quali-
tative information is sufficient to determine a unique set of numerical utilities
and, hence, to establish an unambiguous standard of comparison. Third, no
numerical information regarding the utility values of the attribute levels is
revealed at any stage of the training. Moreover, participants receive no infor-
mation as to the additive rule relating overall and marginal utilities. Fourth,
the approach offers the opportunity to systematically vary utility structures
because (within certain constraints) the experimenter is free to choose a set
of utilities for constructing the weak order which has to be internalized. Fi-
nally, since all participants are taught the same weak order, and hence the
same set of utilities, the heterogeneity problem is eliminated provided that
participants successfully master the learning task.

The application of the method requires that participants are first trained
to evaluate a set of multi-attribute options according to a specified weak
order. After a test of learning success an experimental manipulation can be
introduced that is hypothesized to alter the utility structure. The effectiveness
of the manipulation can then be evaluated, for instance, by comparing utility
values elicited after the manipulation with the utilities underlying the weak
order.

In what follows we describe the measurement theoretic underpinnings of
the proposed approach in more detail. Subsequently, a training procedure is
presented which implements the approach. Finally, we report the test results
for the training procedure’s effectiveness in two studies.

2 Measurement Theoretic Background

The approach briefly described in the previous section posits an additive
relationship between the overall utility of an option and the utility values
of its levels. Since we want to employ the utility values associated with the
attribute levels as the standard of comparison in empirical investigations,
our goal is to teach participants to apply an additive rule using a given set
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of level utilities when evaluating options. However, as we do not want our
respondents to actually compute their responses, numerical values are not
presented and it is not explained how these values add up to yield the overall
utility of an option. Instead, participants have to interiorize or implicitly learn
a preference relation defined by a weak order which uniquely determines the
set of utility values. We now address the question how weak orders with this
property can be constructed.

2.1 Conjoint Measurement

The question when a weak order (complete and transitive relation) � on
a product set A = A1 × . . .×AK can be additively represented is the subject
of conjoint measurement. In other words, conjoint measurement is concerned
with the problem under which conditions there do exist real-valued utility
functions uk defined on the set of attribute levels Ak,k = 1, . . . , K, such that
for any two options a = (a1, . . . , aK) and b = (b1, . . . , bK) in A we have

a � b ⇔
K∑

k=1

uk(ak) ≥
K∑

k=1

uk(bk) . (1)

For preferences among options that are characterized by two attributes, Luce
and Tukey (1964) were the first to state a set of purely algebraic conditions,
so-called axioms, for a weak order which are sufficient to prove the existence
of an additive representation as in (1). Their results were generalized by
Luce (1966) who presented a corresponding representation theorem for three
or more attributes. Alternative formulations of this theorem can be found
in Krantz et al. (1971, p. 302) and Fishburn (1970). As a particular feature,
the representation theorem not only states conditions under which a weak
order can be additively represented but at the same time characterizes the
degree to which such a representation is unique. In particular, under the
conditions of the theorem, if there is another set of functions ũk defined on
Ak, k = 1, . . . , K, for which (1) holds, then there exist numbers α > 0 and
βk such that

ũk = αuk + βk (2)

for all k = 1, . . . , K. Equation (2) means that the function uk that assigns
utility values to the levels of attribute k is unique up to a positive similar
transformation, that is, a linear transformation with an attribute specific
intercept term βk and a slope parameter α which is the same for all attributes.
The important consequence of this uniqueness property is that any difference
(or contrast) of utility values within attribute i can be compared with any
difference of utility values within attribute j. In other words, within-attribute
differences are measured on a common ratio scale.

The representation theorem of conjoint measurement provides the moti-
vation for our idea to teach respondents a preference structure in order to
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induce utility values that are unique up to the degree specified in (2). How-
ever, it is well-known that the representation theorem referred to here applies
only when every attribute possesses an infinite number of levels. This fact is
a consequence of the solvability axiom (Krantz et al., 1971, p. 301) used in
its proof. Consequently, when only attributes with a finite number of levels
are considered and an additive representation as in (1) exists, it cannot be
claimed on grounds of the representation theorem that the utility functions
are unique. In fact, in the case of finite conjoint measurement – that is, when
all attributes have a finite number of levels – the utility functions possess only
rather weak uniqueness properties if additional restrictions on the preference
relation are not imposed (Krantz et al., 1971, p. 431).

Additional conditions that are necessary and sufficient to proof the
uniqueness of utility functions for finite conjoint measurement were presented
by Fishburn and Roberts (1988). It is worth noting that any attempt to use
conjoint measurement in an empirical study deals with a finite number of
levels for each attribute. In a strict sense, all empirical studies therefore rep-
resent instances of finite conjoint measurement. It is surprising then, that
Fishburn and Roberts’s paper did not receive much attention.

As weak orders with a unique additive representation as defined by (1)
and (2) are central to our approach, we briefly describe how they can be
constructed following Fishburn and Roberts (1988, Corollary 1).

To this end, consider K attributes with nk + 1 levels each. Denote
the set of levels for attribute k by Ak = {ak,1, . . . , ak,nk+1}. Let d =
(d1,1, . . . , d1,n1 , . . . , dK,1, . . . , d1,nK ) be a vector of size

∑K
k=1 nk. Further-

more, consider homogeneous linear equations of the form

K∑
k=1

nk∑
j=1

εi,k,jdk,j = 0 , (3)

with coefficients εi,k,j in {−1, 0, 1}. The existence of a weak order � on A =
A1 × . . . × AK with a unique additive representation according to (1) and
(2) then depends on finding a strictly positive solution d (i.e., a vector d

with exclusively positive components) to a system of
∑K

k=1 nk − 1 linearly
independent equations as in (3) for which the coefficients εi,k,j in the i-th
equation satisfy the following three additional conditions:

P1: For fixed i and every k all εi,k,1, . . . , εi,k,nk
are either in {0, 1} or {0,−1}.

P2: For fixed i and every k all nonzero εi,k,j , j = 1, . . . , nk, are contiguous
or form an interval of consecutive j values.

P3: For fixed i both +1 and −1 appear among the coefficients εi,k,j .

Now starting from a strictly positive solution d = (d1,1, . . . , d1,n1 , . . . ,
dK,1, . . . , d1,nK ) a utility function uk for attribute k, k = 1, . . . , K, can be
defined by fixing uk(ak,1) at some arbitrary value and letting uk(ak,j) =
uk(ak,1) +

∑j−1
i=1 dk,i for j = 2, . . . , nk + 1. Finally, the weak order � on A is

defined by (1).
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In practice, one begins with a tentative set dk,j , j = 1, . . . , nk, k =
1, . . . , K, of positive integers that correspond to differences between adja-
cent attribute levels in the utility structure one intends to induce in the
participants. That is, for every k and j = 1, . . . , nk the number dk,j can be
interpreted as the difference u(ak,j+1) − u(ak,j). If a system of

∑K
k=1 nk − 1

linearly independent equations as in (3) that satisfy P1, P2, and P3 can be
established and if this system can be solved by the dk,j values, then the de-
sired weak order can be constructed as outlined above. Otherwise, the dk,j

have to be modified until a respective system of equations exists.
It should be noted that the above construction implies indifference (i.e.,

a � b and b � a) for at least
∑K

k=1 nk − 1 pairs of options a and b in
A. Conversely, it can be shown, that any weak order with a unique addi-
tive representation as in (1) and (2) necessarily yields at least

∑K
k=1 nk − 1

equivalent pairs (Fishburn and Roberts, 1988). Thus, indifference is crucial
in finite conjoint measurement for establishing the uniqueness of an additive
representation. Consequently, special attention has to be paid to indifference
when respondents are trained to evaluate options according to a weak order
satisfying (1) and (2).

In principle, a test of learning success can be performed by asking the
respondents to produce a ranking of all options in which ties are explicitly
permitted. Yet, within the theoretical framework of conjoint measurement
a single error in such a ranking would mean that the training procedure
has not perfectly induced the desired utilities. The reason is that conjoint
measurement is a deterministic theory without a concept of response errors.
From our point of view it is conceivable, however, that by and large a re-
spondent has internalized the preference structure in spite of ordering some
options incorrectly on occasion. Hence, we suggest that the evaluation of
learning success should be based on a model that is compatible with conjoint
measurement, but can tolerate response errors. In the following, we estab-
lish a connection between conjoint measurement and random utility theory.
In this context, specific predictions will be derived as to what results are
to be expected when the inducement of preferences has been successful and
respondents are tested with choice tasks.

2.2 Connection with Random Utility Models

As a deterministic theory, conjoint measurement would require an individual
to always select the same option when repeatedly presented with a fixed set of
choice options. Clearly, observed choices violate this strong requirement. To
account for random fluctuations, which at different times may yield different
choices from the same set, choices are usually treated within a probabilistic
framework. In general, deterministic and probabilistic theories cannot be rec-
onciled easily. In the following we show, however, that within a certain class
of probabilistic choice models observed choices of a person, who has been
successfully trained to evaluate multi-attribute options according to a weak
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order with a unique additive representation, can be fully explained by the
utility values underlying that order.

In particular, we are interested in a special type of independent ran-
dom utility models known as Thurstone models (Yellott, 1977). Given a set
Cn = {o1, . . . , on} of n (not necessarily multi-attribute) options, a Thurstone
model posits the existence of scale values v(o1), . . . , v(on) and n indepen-
dent, identically distributed continuous random variables X1, . . . , Xn with
a known cumulative distribution function F such that the probability pS(oi)
of choosing option oi from a subset S ⊆ Cn is given by

pS(oi) = P [v(oi) + Xi = max{v(oj) + Xj |oj ∈ S}] (4)

for every oi ∈ S and all S ⊆ Cn.
It is well-known (Yellott, 1977) that if F is the cumulative distribution

function of the (standard) double exponential distribution defined by F (x) =
exp(− exp(−x)) for all real x, Equation (4) is equivalent to

pS(oi) =
exp(v(oi))∑

oj∈S exp(v(oj))
. (5)

In other words, the Thurstone model corresponding to the double exponen-
tial distribution is the multinomial logit model, which represents the most
prominent model of discrete choice analysis (Louviere et al., 2000). More-
over, if F is the cumulative distribution function of some other member
from the location-scale family of double exponential distributions, that is,
F (x) = exp(− exp(−(ax+b))) for some constants a > 0, b and all x, it follows
that the corresponding Thurstone model (4) is equivalent to a multinomial
logit model (5) with scale values v′(o1), . . . , v′(on) in place of v(o1), . . . , v(on)
which are related by v′(oi) = av(oi) for all i = 1, . . . , n.

As an aside, we note that in using the name double exponential distribu-
tion we follow Yellott (1977). This distribution is usually referred to as the
Gumbel distribution or extreme value distribution of Type 1 in the statis-
tical literature, and the members of the corresponding location-scale family
are known as Fisher–Tippett distributions.

We now turn to the case of multi-attribute options and establish the
connection between conjoint measurement and the multinomial logit model.
To this end, we assume that every option o ∈ Cn is characterized by K
attributes with a finite number of levels each. More precisely, we consider the
set Cn = A1 × . . . × AK , where as before Ak = {ak,1, . . . , ak,nk+1} denotes
the set of levels of attribute k. Suppose that based on utility values uk(ak,j),
j = 1, . . . , nk + 1, k = 1, . . . , K, a weak order on Cn that possesses a unique
additive representation has been constructed as described in the previous
section. If a respondent has internalized this order, then the overall utility
ũ(oi) of option oi = (oi,1, . . . , oi,K) with oi,k ∈ Ak can be expressed as

ũ(oi) = ũ1(oi,1) + . . . + ũK(oi,K) , (6)
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where according to (2) ũk(oi,k) = αuk(oi,k) + βk for every i and k. Conse-
quently, for every i we have ũ(oi) = αu(oi)+β where u(oi) = u1(oi,1)+ . . .+
uK(oi,K) and β = β1 + . . . + βK .

If the respondent is now asked to choose among options from subsets S ⊆
Cn, and if in addition it is assumed that the corresponding choice probabilities
pS(oi) can be described by a Thurstone model, where the scale value for every
option oi ∈ Cn is given by ũ(oi) according to (6) and if the random variables
X1, . . . , Xn are distributed according to some double exponential distribution
with cumulative distribution function F (x) = exp(− exp(−(ax + b))), then
the choice probabilities can be represented by

pS(oi) = P [αu(oi) + β + Xi = max{αu(oj) + β + Xj |oj ∈ S}] . (7)

Since for any random variable X in (7) the shifted variable β + X is again
distributed according to some member of the family of double exponential
distributions, it follows that for every S the choice probabilities pS(oi) in (7)
can be equivalently expressed by (5) with the scale values v(o1), . . . , v(on)
replaced by cu(o1), . . . , cu(on), where c = αa. More explicitly, the choice
probabilities are given by

pS(oi) =
exp(cu1(oi,1) + . . . + cuK(oi,K))∑

oj∈S exp(cu1(oj,1) + . . . + cuK(oj,K))
. (8)

Notice that generally the components α and a of c cannot be disentangled.
Thus far we have only considered a single respondent. When we turn to

the entire sample, Equation (8) holds for every individual who has acquired
the preference structure, but possibly with a different value of c for each
person. In the following, we nevertheless assume to the contrary that c is the
same for all respondents. That is to say that the ratio of α to the standard
deviation of the random variables in (7) is constant throughout the sample,
whereas the value of α does not have to be.

Under the assumption that c does not depend on the individual respon-
dents, model (8) is appropriate for the whole sample. The model parameters
are the values cuk(ak,j), j = 1, . . . , nk + 1, k = 1, . . . , K, which can be es-
timated by maximum-likelihood procedures for the multinomial logit model
using a suitable coding of the attribute levels or, equivalently, suitable identi-
fiability constraints. The constraints imply that for every attribute k only nk

parameters can be estimated. Moreover, each of those estimates corresponds
to a difference in the parameters cuk(ak,j).

Consequently, when respondents have acquired a unique weak order based
on the conjoint measurement approach, we expect every parameter estimate
obtained from the multinomial logit model (8) to be a multiple of a cor-
responding difference in the original utility values uk(ak,j) that have been
used for constructing the weak order. This prediction will be tested in the
empirical studies reported later. If it can be substantiated, we conclude that
the attribute-level utilities underlying the weak order fully account for the
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choice probabilities even though they have been induced according to the
deterministic conjoint measurement model.

In concluding this section we want to mention that instead of the Thur-
stone model based on the double exponential distribution we could also have
used the respective model for the normal distribution to establish a simi-
lar connection with conjoint measurement. We concentrated on the double
exponential distribution since the corresponding multinomial logit model is
most widely used in applications. The discussion in this section was predi-
cated on the assumption that respondents have been trained successfully to
apply a weak order with a unique additive representation. We now address
the question how this goal can be achieved.

3 Training Procedure

The goal of the training procedure is to teach respondents to evaluate multi-
attribute options according to a weak order with a unique additive represen-
tation. To construct such an order, we apply the method described in the
section on conjoint measurement. As was already noted, the weak order then
necessarily contains a certain number of equivalent objects for which no order
of preference exists. In the following such objects will be referred to as tied
objects. Since tied objects are crucial for the uniqueness of the representation,
special attention has to be paid to teaching indifference relations.

We adopt the so-called principal-agent paradigm (e.g., Huber et al., 2002).
In this paradigm, respondents represent agents who have to perform tasks
vicariously on behalf of a fictitious person, called the principal. At the be-
ginning of the training respondents receive a written cover story that ex-
plains the attributes and levels used for characterizing the options. The story
also presents a rough sketch of the principal’s preferences in narrative form.
The purpose of this description is to provide some ordinal information con-
cerning the attributes and levels that can serve as a starting point when
working on the subsequent tasks. However, since we only want to teach
relations among options, the description does not contain any numerical
values.

The tasks are grouped into several modules to be described below with one
module per type of task. Preceding each task, respondents receive a written
instruction in which it is explained and an example is provided. The mod-
ules are administered computerized. Every module comprises a certain task
in several trials. After each trial respondents automatically receive textual
feedback as to whether their response was right or wrong. Additionally, the
correct response is indicated in case a wrong answer is given. Furthermore,
the feedback is enhanced by highlighting correct responses in green and errors
in red color. We assume that by using the feedback respondents can gradually
revise their initial beliefs about the principal’s preferences and finally arrive
at evaluating the options in accordance with the weak order.
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The construction of the tasks was guided by several principles. First, no
numerical information was presented. This was motivated by the goal to teach
respondents preferences in an ecologically valid manner instead of just having
them carry out simple arithmetic with the numbers presented. We assume
that the use of numbers in the training would have resulted in much faster
and easier learning, but at the same time it would have seriously undermined
generalizability of the procedure and results to real-world settings. Second,
the training had to employ multiple tasks. One reason for this was that multi-
ple tasks allowed us to focus the respondent’s attention on certain aspects of
the weak order as tied objects or relations among only two or several options.
Another reason was to keep the participants’ task engagement at a high level.
Third, task complexity was intended to increase during the training. That
is, whereas early modules only asked comparatively simple questions, later
modules required the integration of a larger amount of information and also
a more complex kind of response. These principles gave rise to a total of five
modules shown in Table 1.

The first two modules represent paired comparison tasks. List descrip-
tions of two options in terms of attribute levels are simultaneously presented
on the computer screen. In Module I respondents have to indicate which of
the two options would be chosen by the principal or whether she would be
indifferent. Since this kind of task might cause respondents to focus on pos-
itive features of the alternatives (Meloy and Russo, 2004), Module II was
designed to counteract this potential bias. Here, respondents are asked to
indicate which option would be rejected by the principal or, again, whether
she would be indifferent.

While Modules I and II offer indifference as a response category, in con-
sideration of the importance of tied objects, Module III is targeted at sys-
tematically training indifference relations. To this end, descriptions of four
options are simultaneously presented on the screen. These options are chosen
in such a way that every set contains two pairs of equivalent options. The
task is to mark two options between which the principal would be indifferent,
thereby identifying both pairs.

Table 1. Training modules

Module Options per trial Task

I 2 Choose preferred option
II 2 Reject less preferred option
III 4 Identify equivalent options
IV 5 Order first two options, then pick intermediate option

from remaining three options
V 3 Order first two options, then decide position

of third option
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The most demanding tasks are presented in Modules IV and V. In Mod-
ule IV every trial displays a set of five options. Two of these options are
shown at the top of the screen whereas the remaining options are displayed
at the bottom. The response requires two judgments. First, respondents have
to indicate which of the two options at the top would be preferred by the
principal. Subsequently, the option that lies (strictly) between those at the
top has to be identified among the options at the bottom. The five options
in a trial are chosen in such a way that each subtask has a unique solution.
Fig. 1 presents an example of this kind of task in which the first subtask is
already completed.

Finally, Module V presents a set of three options and also employs two
subtasks. The first subtask is the same as in Module IV. That is, among
two options displayed at the top of the screen the most preferred option has
to be identified. The second subtask then asks how a third object shown at
the bottom of the screen relates to the options at the top. Here respondents
have to choose among five response categories represented by arrows: a) less
preferred than both options, b) equivalent to top left option, c) situated
between both options d) equivalent to top right option, and e) more preferred
than both options. The three options for every trial are again chosen in such
a way that both subtasks have a unique solution. An example is shown in
Fig. 2.

We now turn to empirical studies in which the practicability of our ap-
proach to inducing preferences was investigated.

Fig. 1. Sample task for Module IV with first subtask already completed
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Fig. 2. Sample task for Module V with first subtask already completed

4 Empirical Test

In the following we describe a study in which the proposed approach was used
to teach preferences for apartments. Subsequently, we present the results of
a replication study with a different sample of respondents. In both studies,
apartments were described by three attributes with three levels each yielding
a total of 27 options. The attributes and levels are shown in Table 2. Utility
values were worked out and used to construct a weak order with a unique
additive representation as described in the section on conjoint measurement.
The resulting values are also shown in Table 2. Since within each attribute
the utility of one level can be chosen arbitrarily, we fixed the value for the
lowest level of each attribute at zero.

In the first study, seventeen undergraduate students volunteered to par-
ticipate in the study. Every respondent was paid 10 Euros. The schedule of
the study was as follows: First, respondents were asked to rank order the 27
apartments according to their own preferences. To this end, each respondent
received a pile of 27 cards representing the apartments and a large sheet of
cardboard. The ranking task including the option to produce ties was ex-
plained in detail. Respondents were then given 25 minutes to generate the
ranking that was fixated on the cardboard. Following the ranking task, the
computerized training procedure was administered as described in the pre-
vious section. Between Modules III and IV a one hour interval was inserted.
Subsequently, Modules IV and V were administered. Altogether the training
procedure took 2.5 hours. Following a short break of 15 minutes the respon-
dents were asked next to rank order the apartments again, but this time
according to the preferences of the principal. As this task was deemed to
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be rather demanding, 40 minutes were allocated for this purpose. Finally,
each respondent had to perform 27 computerized choice tasks in 20 minutes,
where they had to choose from among three apartments in accordance with
the preferences of the principal. In the following, we only present the analysis
of the choice data.

The choice data were analyzed within the multinomial logit model. Pa-
rameter estimates were computed by maximum-likelihood using the SAS soft-
ware. The attribute levels were dummy coded using for each attribute the
level with the highest utility value in Table 2 as the reference category. Thus,
the parameter estimates represent contrasts between levels and are expected
to be negative. Table 3 presents the results. The table also shows the true
values for the contrasts derived from Table 2. Based on the theoretical deriva-
tions presented in the previous sections we expect the estimates to coincide
with the true contrasts (i.e., differences) up to a positive factor. Fig. 3 shows
a scatterplot of the estimated against the true contrasts. The points fall al-
most perfectly on a straight line.

Table 2. Attributes, levels, and utilities of apartments

Attribute Levels Utility values

Rent 350¤ 0
270¤ 4
250¤ 5

Location Outside 0
Periphery 2
City centre 4

Size 18 m2 0
23 m2 1
30 m2 2

Table 3. True contrasts and parameter estimates

Parameter estimates
Attribute Contrast True value Original study Replication

Rent 350¤–250¤ −5 −16.36 −9.64

270¤–250¤ −1 −2.58 −1.20

Location Outside – city centre −4 −12.43 −7.98

Periphery – city centre −2 −5.77 −3.57

Size 18 m2–30 m2 −2 −5.74 −2.96

23 m2–30 m2 −1 −3.15 −1.21
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Fig. 3. Estimated and true contrasts in original study

A linear regression of the estimated on the true parameters yields a highly
significant slope parameter of β1 = 3.35 (p < .001) whereas the intercept of
β0 = 0.70 does not reach statistical significance (p = .08). An analysis of the
residuals reveals some deviations from normality, however, so that the latter
test should not be overemphasized. The same analysis without the intercept
term results in a slope parameter of β1 = 3.14. Moreover, the coefficient of
determination for that model is equal to R2 = .991 indicating that over 99%
of the variation in the parameter estimates can be explained by a simple
multiplication of the true contrasts. Based on these findings we conclude
that respondents have successfully learned the weak order and hence the
underlying utility values.

The replication study took place one year after the original study. The
sample consisted of forty-six undergraduate students none of which had par-
ticipated in the original study. Every participant was paid 10 Euros. The
design of the replication study was identical to the one of the original study
except that the order of the second ranking task and the task requiring choices
among three apartments was reversed. Moreover, each respondent had to
make choices from 54 sets whereas the original study used only 27 sets.
Maximum-likelihood estimates of the parameters in the multinomial logit
model were estimated using the SAS software. The results are also shown
in Table 3. A scatterplot of the estimated and true contrasts is exhibited in
Fig. 4. A linear regression of the estimated on the true parameters yields
a highly significant slope parameter of β1 = 2.16 (p < .001) and a significant
intercept of β0 = 0.98 (p = .01). As in the original study, not too much em-
phasis should be placed on the test for the intercept because an analysis of
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Fig. 4. Estimated and true contrasts in replication study

the residuals again indicates some deviations from normality. The regression
without an intercept term yields a slope parameter of β1 = 1.87 and a coef-
ficient of determination of R2 = .971. In terms of goodness of fit the results
of the replication are thus similar to those of the original study.

5 Discussion

The main goal of the present work has been to establish a coherent framework
for inducing preferences among multi-attribute options. By tying together
results from finite conjoint measurement and random utility theory we have
elaborated the basis of a method for teaching accurate numerical utility val-
ues without disclosing any numerical information. A training procedure that
implements the method was presented and evaluated in two empirical stud-
ies. The results of these studies provide unequivocal evidence that preferences
can be successfully and very accurately induced with our approach. The hy-
pothesis that preferences are indeed acquired is further corroborated by the
fact that the task for testing learning success differed from the ones used
during the training phase. Consequently, respondents had to generalize their
learning experience, a goal they achieved remarkably well with our training.

The inducement of preferences is an important step for empirical research
on preference assessment methods. The significance of a corresponding pro-
cedure derives from its manifold prospects for empirical research. As was
mentioned previously, accurately induced utility values can serve as a stan-
dard of comparison for appraising the effects of experimental manipulations
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on preferences as well as for evaluating preference elicitation techniques. The
usefulness of being able to perform comparisons at the level of utilities has
been recognized recently (Ariely, 2000; Huber et al., 2002). For example, in
their study of preference assessment methods Huber et al. (2002) acknowl-
edged that using an agent task “can tell us not only how the methods differ
from each other but also how they differ from the true preference structure
which the agent seeks to emulate” (p. 67). However, the cited works differ
from our usage of the principal-agent paradigm in that they do not strive to
induce preferences. Instead, information regarding the utility values is pre-
sented overtly in the form of bar graphs that the respondents have at their
disposal during the entire experiment. We consider it a virtue of our approach
that we do not use the more or less overt numerical information contained in
such displays but rely on qualitative information only. Nevertheless, we are
able to make accurate numerical predictions as to what results have to be
expected when learning success is tested with choice tasks.

We emphasized earlier that an inducement procedure eliminates the prob-
lem of preference heterogeneity. It should be noted, however, that our pro-
cedure can also be used to introduce heterogeneity in a perfectly controlled
manner. In the simplest case, this can be achieved by applying our training
procedure in two groups but using a different weak order for each group. It is
thus possible, for example, to generate experimental conditions with a linear
or nonlinear preference structure (Huber et al., 2002). Another application
would be the manipulation of choice difficulty by varying the range of utility
levels (Stone and Kadous, 1997).

As exemplified by the preceding discussion, our procedure has a number
of benefits to offer and a broad range of potential applications. Nonethe-
less, there are also some challenges and limitations. First, additive models
have been criticized for not isomorphically representing judgment and deci-
sion processes. Previous research has shown that the assumption of additiv-
ity is not tenable under all circumstances (e.g., Payne et al., 1993) and it
has also been claimed that simple heuristics can account for evaluations of
multi-attribute options almost as well or even better than additive models
(Gigerenzer and Goldstein, 1996). Studies of experienced decision makers in
the field of naturalistic decision making (Zsambok and Klein, 1997) also indi-
cate that additive models are not always appropriate. Notwithstanding these
findings, there seems to be a consensus that additive models are often good
paramorphic representations of judgment and decision making processes (Do-
herty and Brehmer, 1997). To the best of our knowledge, almost all applied
approaches to preference measurement rely on the principle of additivity in
one form or another.

Second, another stream of research has demonstrated that utility func-
tions and preferences are not stable, but are rather evoked or constructed
in a given context (Fischhoff, 1991; Slovic, 1995). At first glance, the goal
to induce preferences may seem to be at odds with this position. Yet, we
consider our approach to be perfectly compatible with a constructive prefer-
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ences perspective. Even though the inducement procedure aims at conveying
a stable preference structure, insomuch that respondents can reliably apply
the learned preferences after completion of the training, this structure is in-
tended to serve primarily as a baseline against which effects of experimental
manipulations can be judged. For example, in a test of the compatibility hy-
pothesis (e.g., Meloy and Russo, 2004) – which states that under instructions
to select positive attributes receive higher weight, whereas under reject in-
structions more weight is placed on negative attributes – we would expect
that respondents modify the acquired utility values accordingly.

Third, we believe that our approach is most suitable for group-level inves-
tigations. In our empirical studies the inducement procedure worked well at
the level of groups. By contrast, additional analyses of individual respondents
show that those data contain more noise. This is not surprising, however, since
it cannot be expected that all people master the learning task equally well.

In conclusion, although more applications of the method to substantial re-
search questions are certainly needed before firmer conclusions can be drawn,
the approach presented here offers many advantages. It is an innovative ap-
proach for the inducement of preferences that has an underlying theoretical
rationale and empirical support from the evaluation studies.
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Abstract. Recall performance of (1) actively searched information vs. information
prestructured by the experimenter and (2) actively searched probability information
vs. non-probability information in quasi-realistic risky decisions was investigated.
42 subjects decided in 2 scenarios each. Information presentation was varied within
subjects by means of the Active Information Search method (O.Huber, Wider &
O.W.Huber, 1997). After a frugal basic description of the scenario (prestructured
information) subjects ask questions and receive answers until they subjectively have
enough information to decide (active search). In only 55% of the tasks probability
was searched. Recall was measured 48 hours afterwards as surprise task, showing
(1) actively searched probability being on average better recalled than other actively
searched information and (2) actively searched information being better recalled
than prestructured information. It is argued that (1) actively searched information
in general is of greater importance, because it matches the specific information needs
of the decision maker during the construction of the mental representation and
(2) the role of probability information in the mental representation differs between
subjects and tasks. Actively searched risk control information is proposed as one
reason for this difference. If risk control is expected to be successful, probability
information is of limited value.

Keywords: recall-performance, probability information, quasi-realistic risky
decision, active information search, mental representation

1 Introduction

Research on risky decisions is dominated by models specificating concepts
originating from SEU-Theory (Edwards, 1961). Research in this tradition
has been extremely fruitful. Only to mention one of the most influential
models, Kahneman and Tversy (1979) proposed the prospect theory which
solves a number of problems for the original SEU model, e.g. preference rever-
sals. These models share a set of basic assumptions, of which for the present
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paper one is most relevant: The knowledge of the probability of possible con-
sequences is necessary in all cases to compute the expected utility of the
alternatives.

However, experimental research on risky decisions has shown that deci-
sion makers not in all or even in only a minority of risky decisions are actively
interested in probabilities, but instead are trying to control possible future
risks: O. Huber, Wider and O.W. Huber, 1997; O. Huber, Beutter, Montoya
and O.W. Huber, 2001; O. Huber and O.W. Huber, 2004; O. Huber and Ma-
cho, 2001a; Ranyard, Williamson and Cuthbert, 1999; Ranyard et al., 2001;
Schulte-Mecklenbeck and O. Huber, 2003; Williamson et al., 2000a, b. These
papers investigate quasi-realistic risky decision scenarios and use the Active
Information Search (AIS) method as basic experimental paradigm (O. Huber
et al., 1997) which allows the decision maker actively to inspect only the infor-
mation he subjectively needs for his decision (see method section for details).
The fact that not all decision makers are interested actively in probabilities
questions the role of probability information as a general component of the
subjective representation of every risky decision problem. O. Huber (2004, in
press) suggests the concept of Risk Defusing Operators (RDOs) to explain
these results. RDOs are actions intended additionally to a specific alterna-
tive with the aim to control negative outcomes. He proposes a model of the
decision process specificating a classification of RDOs and the conditions for
their application. For decision makers deciding without probability informa-
tion, the model proposes, that if decision makers are able to control a risk,
probability information is of very limited value. Research on real decisions
yield similar results regarding the role of probabilities and risk control (see,
e.g. Lipshitz and Strauss, 1997; Shapira, 1994, for managerial decisions, or
Shiloh et al., 2004, who investigate decisions in genetic counseling).

However, regarding that decision makers are not interested in probabili-
ties in many risky decisions, decision makers who actively ask for probabil-
ities in a specific risky decision situation should consequently attach special
importance to this information. That does not mean that actively searched
probabilities must influence decisions, because risk defusing may play a role
simultaneously. Probability may e.g. affect the intensity of search for RDOs
or the maximal cost for an RDO that will be accepted.

These results point in two directions, on the one hand questioning the
importance of probability information for all risky decisions, and on the other
hand letting the role of actively searched probability information unclear. In
the vast majority of experiments that present probability information to the
decision maker without active search it is processed (see, e.g., O. Huber and
O.W. Huber, 2003). However, the role and importance of actively searched
probability information in the mental representation of the decision problem
has not been investigated directly. The main objective of this paper therefore
is to investigate the importance of actively searched probability information
for the subjective representation. This is not possible with research paradigms
using complete information presentation. I suppose this to be one reason that
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research on that problem to my knowledge has not been done. However, the
AIS method gives at hand a possibility to address this question.

It is expected (1) that probability information is not searched in many de-
cisions, which would replicate the findings cited above, and (2) that because
the search of probability information is a nonstandard and willful process
decision of the decision maker, actively searched probability information is of
especially high importance for the construction of the subjective representa-
tion. This should result in higher importance of actively searched probability
information in comparison to the importance of other actively searched non-
probability information.

A second objective of the paper is the evaluation of the subjective impor-
tance of actively searched information vs. information that is prestructured
by the experimenter. Paradigms that use complete information presentation
expose decision makers to information that is chosen and structured by the
experimenter. It can be presumed that the presented information is chosen
according to a decision theory of the experimenter and does not correspond
to information needs of the decision maker spontaneously emerging during
the construction of the subjective representation of the decision problem (for
a discussion, see O. Huber, 2004, in press). If information can actively be
chosen, it can be expected that information subjectively needed will be in-
spected. It therefore can be expected that actively searched information is
of higher importance for the construction of the mental representation than
prestructured information.

Weber, Weber, Goldstein & Busemeyer (1991; see also Weber, Goldstein
and Barlas, 1995) propose a non-reactive way to investigate decision pro-
cesses. They emphasize the possibilities that emerge if different cognitive
processes are analyzed that contribute to the decision process. They propose
the investigation of memory processes to analyze the decision process and
discuss relevant results.

This paper will follow this suggestion and assess the subjective impor-
tance of (1) actively searched information vs. information prestructured by
the experimenter and (2) actively searched probability information vs. ac-
tively searched non-probability information by measuring memory perfor-
mance. The AIS method will be used to operationalize both dichotomies.
Because there is no knowledge concerning the investigation of memory pro-
cesses in combination with the AIS method, recall performance will be used
as a simple operationalization of the proposition of Weber et al. (1991).

2 Method

42 undergraduate students of psychology participated in the experiment
(mean age 25.15 years). None of them had participated in a similar experi-
ment before. Two independent variables were varied, scenario and information
mode.
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2.1 Scenario

Two quasi-realistic risky decision scenarios were used, railway fanclub and
turtles. Both are slightly modified versions of scenarios used in O. Huber
and O.W. Huber (2004). These were designed as to ensure that decision
makers were lays in the respective domains and thus to minimize background
knowledge. In both tasks one safe and one risky alternative was presented in
order to investigate the role of probabilities for their choice or rejection.

2.2 Railway Fanclub

The subject takes the role of the president of a railway fanclub. The club
owns some passenger railway cars and of late a matching steamer. The club
wants to operate the train on public rails. The public railway company offers
two possible packages:

Operations Three Days Per Year (Safe Alternative)

The club may operate the train three days per year on a light railway. The
days can be chosen by the club and the club bears all operation expenses.

Operations at Regular Intervals (Risky Alternative)

The club may operate the train on the light railway each weekend as a substi-
tute for modern trains of the regular schedule . The club would get consider-
able profit and the regular operation would fulfill a dream of many members.
However, in case of breakdown of the steamer the club had to pay high penal-
ties to the railway company.

2.3 Turtles

The subject takes the role of a executive of an environmental program with
the aim to safe a species of sea turtles from extinction. There are only a few
individuals left, which are placed in a lab. However, they do not breed in
the lab. An investigation for natural habitats where the turtles could breed
resulted in two possible options:

Beach (Safe Alternative)

A suitable beach is located close to the lab. There are no predators but the
water quality is not optimal. This will result in a low breeding frequency of
the turtles.

Island (Risky Alternative)

An island provides optimal conditions for the breeding of the turtles. There
are no predators for adult turtles. However, in the sea beneath the island
sometimes a very small plankton species (saltwater mites) may occur. If the
mites occur, they invade the brood of the turtles and kill it.
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Mode of Information Acquisition and Actively Searched Information Content

The main objectives of this study are (1) to investigate differences between
actively searched information and information prestructured by the experi-
menter (factor mode of information acquisition) and (2) to investigate the
difference between actively searched probability information and actively
searched non-probability information (factor actively searched information
content).

Information presentation was operationalized by means of the AIS method
(O. Huber et al., 1997). Here, the subject initially gets only a scarce descrip-
tion of the decision scenario and the alternatives like the ones presented
above. Then, the subject may ask questions. After each question, the ex-
perimenter presents the answer on a printed card. Printed presentation was
chosen in order to minimize non-verbal effects. When the subject feels to have
enough information to decide, he decides by marking the chosen alternative.
In order to find possible questions and to construct standardized answers,
extensive pre-experiments are necessary. The AIS method allows the decision
maker to inspect only the information which is subjectively needed. Thus,
information search allows inferences on the subjective representation of the
decision problem by measuring the elements the representation is constructed
of. Additionally, the AIS method increases the validity of the results for most
real complex decisions, in which information search is a standard element of
the decision process. It has to be noted that the task descriptions given above
are not identical to the subjective representations of the decision problems,
because most decision makers search for additional information and there-
fore the representation is in general based on more complex and detailed
information.

In summary, there are two basic modes of information presentation, the
basic description that is prestructured by the experimenter and actively
searched information, which depends of the specific information needs of
a decision maker. Within the latter, there is probability information and
non-probability information.

Of special relevance for this investigation is the probability of the negative
event. Subjects who asked in the railway fanclub scenario were presented
a probability of 32% for steamer failure or in the turtles task of 36% for the
occurrence of the mites.

2.4 Design and Procedure

Each subject decided in both scenarios. The two possible orders of scenar-
ios were counterbalanced between subjects. The independent variable mode
of information acquisition was varied within each task by means of the AIS
method. Actively searched information content was a random variable de-
pending on the search behavior in each specific task.

The procedure consisted of two sessions, a decision session and a recall
session two days later.
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Decision Session

After an instruction explaining the AIS procedure, a training task (travel
scenario, O. Huber and O.W. Huber, 2003) was performed. Then the basic
description of one of the tasks described above was given, followed by ques-
tions of the subject and the corresponding answers of the experimenter. E.g.,
the subject would ask: ‘How many turtles are in the lab?’ The experimenter
would place the corresponding answer card in front of the subject: ‘There are
20 turtles in the lab.’ After the decision, the basic description of the second
task was given to the subject, followed by questions and answers. In this task,
the subject additionally made a preliminary decision after each answer. This
did not result in any differences in the dependent variables and will therefore
not be discussed any further. As in the preceding tasks, the subject stopped
information search and decided definitively, when she felt to have subjectively
enough information for a decision. Finally, the subject was instructed that in
the second session, she would be given new decision scenarios.

Recall Session

As subjects expected new scenarios in the recall session, the instruction to
recall all information they had got concerning their first task (the task was
named) two days before was surprising for the subjects. After recalling the
first task, the procedure was repeated for the second task. The recall session
was audiotaped.

In the decision session two provisions ensured that intentional memory
processes play no role:

(1) During the whole decision process, the subject kept the description of
the scenario and all given answers in front of her. So, memorization was
not necessary.

(2) The final instruction prevented memorization, because subjects did not
expect any memory task in the recall session.

Therefore it can be expected that the memory traces of the decision process
measured in the recall session are due to the decision task itself and not due
to an interfering memory task.

All subjects were run individually. The decision session lasted about
40 minutes, the recall session about 15 minutes.

3 Results

The material of one subject was incomplete and a second subject missed the
appointment for the recall session, so 40 subjects with two tasks each were
available for analysis. Former experience with the AIS method showed that
decision tasks of one decision maker were independent of each other (e.g.
O. Huber et al., 2001; O. Huber and O.W. Huber, 2003). This paper again
will treat the decision tasks of each decision maker as independent.
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3.1 Decision Session

The reliability of the assignment of the answers to the questions regarding
the independent variable of interest actively searched information content
was very high (two trained coders, Cohens κ > .98). Descriptive results for
this section can be found in Table 1.

General Information Search and Decisions

The mean number of questions was 4.31. Table 1 shows the mean questions
regarding the safe alternative, the risky alternative and the decision situa-
tion. Two subjects did not ask any questions in the railway fanclub scenario.
There were no differences in the mean number of questions between the two
scenarios (F (1, 78) = .10).

In 66.3% of the tasks the risky alternative was chosen. This was indepen-
dent of the scenarios (χ2(1) = 2.74, p > .05).

Active Search for Probability Information

In 55% of the tasks subjects asked for the probability of the negative outcome
of the risky alternative. This was independent of scenarios (χ2(1) = .81, p >
.05). It has to be noted, that a question did not have to contain the term prob-
ability to be coded as probability question. Questions were coded as probabil-
ity questions regardless if they were in frequentistic or probabilitistic format
(see, e.g. Cosmides and Tooby, 1996; Gigerenzer and Hoffrage, 1995). E.g. if
a subject asked ‘How often do the mites occur?’, she go the answer: ‘The mites
occur in 36% of the breeding periods.’ This coding is conservative as it favors
the alternative hypothesis that probability information is always searched.

Table 1. Number of questions for the safe alternative, for the risky alternative and
for the decision situation by scenario. Furthermore, choices of the risky alternative
and search for probability information are reported

Turtles Railway fanclub Total
n 40 40 80

Number of questions concerning the
safe alternative 1.20 .38 .79
Risky alternative 2.42 2.28 2.35
Decision situation .78 1.88 1.32
Total 4.40 4.22 4.31
Rate of tasks with decision
for the risky alternative

.58 .75 .66

Rate of tasks with a question
for the probability of the negative outcome

.50 .60 .55
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A logit analysis (see, e.g. Agresti, 1990; DeMaris, 1992) showed that de-
cisions were independent of the questions for the probability of the negative
outcome of the risky alternative and the scenario. Logit analyses fit a hierar-
chy of logit models to the data. They use the G2 statistic, which is approxi-
mately χ2 distributed. The independence of decisions of the factors mentioned
above was evidenced by the fitting of the null model which assumes that no
predictor has an effect (G2(3) = 5.88; p > .1). The inclusion of the predic-
tors scenario (G2(2) = 3.11; p > .1; ∆G(1) = 2.77; p > .05) or probability
questions (G2(2) = 2.53; p > .1; ∆G(1) = 3.35; p > .05) did not result in
a significantly better fit.

3.2 Recall Session

The audiotapes of the recall session were coded according to the following
procedure:
1. The basic descriptions of the scenario were separated into information

items (for details, see Mayring, 2003). One information item contained one
single fact given in the basic description. The reliability of this coding was
very high (two trained coders, Cohens κ > .97). For the turtles scenario,
a total of 21 information items resulted vs. 19 information items for the
railway fanclub scenario.

2. The item pool for a specific task of a specific subject consisted of the infor-
mation items of the respective scenario and the answers to the questions
the subject was given in the decision session.

3. All information in the audiotapes was separated into distinctive informa-
tion items. The individual information items were assigned to the cor-
responding items of the respective item pool. For the factor contents of
active search (probability / non-probability) coding reliability was very
high (two trained coders, Cohens κ > .97).

4. Repetitions of the same information item in recall were coded only once.
5. Information concerning the procedure or the communication between sub-

ject and experimenter was ignored (e.g. ‘. . . and then I asked. . . ’).
6. Information concerning the decision problem that was not listed in the spe-

cific item pool was coded as false memories (M=.02). In most cases false
memories consisted in general background knowledge that was introduced
into the representation.

To analyze recall performance, the rate of remembered information was com-
puted by dividing the number of remembered items by the number of infor-
mation items available in the specific item pool for each category of interest.
Due to the division two tasks without information search in the decision
session had to be eliminated from the analysis.

Mode of Information Acquisition

Mode of information acquisition had a strong effect. 32.2% of the information
from the basic description prestructured by the experimenter was remem-
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bered compared to 48.8% of the actively searched information. Analyzed
with a MANOVA with these variables as dependent variables, scenario as
fixed factor and decision as random factor confirmed this result: The re-
peated measures factor was highly significant (F (1, 74) = 14.38, p < .001,
partial ε2 = .163), whereas all other factors or interactions had no influence
(all other F values were smaller than 1). Descriptive values for the scenarios
can be found in Table 2.

Actively Searched Probabilities

Of the actively searched probabilities 65.9% were remembered. A logit analy-
sis investigating the 44 tasks with probability searched in the decision session
revealed an effect of the predictor scenario. The null model fitted the data
(G2(3) = 4.44; p > .2). The model containing the predictor scenario fitted
significantly better (G2(2) = .27; p > .8; ∆G(1) = 4.17; p < .05). The effect
size of scenario was w = .31. A significant increase of the fit of this model by
inclusion of the factor choice is not possible (safe alternative chosen 63.6% vs.
66.7% risky alternative chosen). In the turtles scenario more probability in-
formation was remembered than in the railway fanclub scenario. Descriptive
values can be found in Table 2.

Actively Searched Probabilities vs. Non-probabilities

Recall performance was tested by means of an ANOVA including all 78 tasks
with questions in the decision session. The dependent variable was computed
in the following way: because the factor scenario had a significant effect in
the analysis reported above, recall rate for actively searched probabilities and
non-probabilities was computed for each scenario separately. Subsequently,

Table 2. Percentage of recalled actively searched information, prestructured in-
formation, actively searched probability information and actively searched non-
probability information by scenario

Rate of recall of Turtles Railway fanclub Total

Prestructured information
of the basic description

.34 .31 .33

Actively searched information .52 .47 .50
Actively searched non-probability information .47 .50 .4.48
– of n tasks with questions
in the decision session

40 36 78

Probability information (of tasks with
probability questions in the decision session)

.79 .50 .66

– of n tasks with probability questions
in the decision session

24 20 44
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the average recall rate for probability information was subtracted from the
recall rate of non-probability information. The resulting value is the difference
in actual recall of non-probability information from the expected value of
probability recall. The expected value had to be used instead of the actual,
because probability recall was nominal scaled an therefore could not be used
directly in an ANOVA. Between subjects factor was scenario.

The results show a strong difference of the recall rates (the constant is
different from zero: F (1, 76) = 12.73, p < .001, partial ε2 = .1) and an effect
of scenario (F (1, 76) = 17.85, p < .001, partial ε2 = .190). This result was
confirmed by a second ANOVA analyzing only the 44 tasks with probability
search in the decision session. Both factors remained significant. These results
indicate (1) the scenarios differ, in the turtles scenario recall being better
than in the railway club scenario, where recall rate for probabilities is not
superior to non-probabilities and (2) that the overall recall rate for probability
information is higher than for non probability information. Table 2 shows
descriptive values.

4 Discussion

The results confirmed the hypotheses:

1. Actively searched information is recalled better than information given to
the subject that is prestructured by the experimenter.

2. Search for probability information occurs only in about half of the tasks.
3. Actively searched probability information is on average recalled better

than actively searched non-probability information. However, only in the
turtle scenario probability recall is much better, in the railway fanlub
scenario it is only slightly higher.

The first result shows the importance of actively searched information for
the construction of the mental representation of the decision problem. It
justifies the concerns of O. Huber et al. (1997) that decision research based on
information completely prestructured by the experimenter is of only limited
value for the explanation of decision processes in complex real decisions where
information search in most cases is part of the decision process.

The result that not in all tasks probability information is searched repli-
cates the findings of other investigations with the AIS method referred to in
the introduction and confirms the assumption that probability information
is not relevant for all risky decisions. However, because in this experiment
a safe and a risky alternative is presented, it could be argued that proba-
bility information is not necessary if a subject rejects any risky alternative
and chooses the safe one. This can be ruled out because search for proba-
bility information is independent of choice. Second, in the railway fanclub
scenario in 87.5% and in the turtles scenario in 90% of the tasks informa-
tion regarding the risky alternative was searched, indicating that the risky
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alternative had been taken into consideration in most decisions. Therefore it
can be concluded that information search for probabilities is not a standard
element of the decision process for all risky decisions. This could be due to
the representation of probabilities itself or the importance of probabilities in
the mental representation of the specific decision problem.

Probability representation could be the cause for the non-search if rep-
resentation is not assumed to be interval scaled but ordinal scaled of the
type safe–risky–impossible. Kunreuther et al., (2001) presented subjects low
probabilities and found that subjects did not evaluate them differently even
if they differed extremely. However, this explanation is not very probable for
the data of this experiment, if the pattern of probability search over subjects
is analyzed: 30% of the subjects never searched, 30% searched in one task and
40% in both. This pattern does not differ from a pattern that would result
from a random process (χ2(2) = 3.37, p > .05)1. This result strengthens the
alternative explanation, that probability search depends on the specific men-
tal representation of the decision problem and not of general strategies of the
decision maker, because in the latter case it would be expected that subjects
do or do not search in all tasks but do not show both types of behavior.

The finding that actively searched probability information overall is bet-
ter recalled than actively searched non-probability information indicates the
special role of probability information in the mental representation of some
scenarios if it is actively searched. This can be explained in two ways: As result
of the structure of information or because probability information is in some
cases of special importance for the construction of the mental representation.
Most approaches to risky decision making suppose that utilities are computed
on the basis of probabilities and values of the consequences (e.g. Kahneman
and Tversky, 1979). Probabilities and consequences are of equal importance.
Then, the better memory performance for actively searched probability in-
formation in quasi-realistic risky tasks could be explained by its structure.
Probability information here consists of one item of numerical information
but consequence information consists of different dimensions which must be
integrated in one value. Due to this consideration, the memory performance
could be better because probabilities are directly accessible and do not need
further processing. However, the recall performance differs in the two tasks.
In the turtles task performance is clearly better than in the railway fanclub
task. This contradicts the consideration above, because the type of proba-
bility information and non-probability information given to the subjects did
not differ between the scenarios. If the structure of the information would
have caused recall differences, the performance in both tasks should be the
1 This result was obtained by the comparison of the distribution of the number

of tasks in which subjects searched for probability (0 to 2) with the distribution
that would be produced by a Bayesisan random process with two levels, where
at each level the probability for a search is .55 (overall probability of search for
probability). The expected distribution is 20.25% search in no task, 49.5% search
in one task, and 30.25% search in two tasks.
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same. Probability information search therefore strengthens the considerations
based upon probability information search: The search and recall of proba-
bility information seems to be dependent of the specific representation of the
decision problem.

For descriptive approaches to risky decision making the mental represen-
tation of risky decisions not containing probability information poses a chal-
lenge. That must not mean that these decisions are to be classified as nonra-
tional, e.g. because probabilities were just ignored due to unpleasant feelings
connected with the perception of risk (for the discussion of the transformation
of probabilities into feelings, see Loewenstein, Weber, Hsee and Welch, 2001).
Alternative concepts as O. Hubers RDO concept (2004a, b) can provide a so-
lution to this problem. Many decision makers do not bear risk just passively
but try to control the risk actively by integrating an additional action into
the mental representation. If a decision maker finds or constructs a possible
action to control the risk contained in the alternative, probability information
is of minor importance, because a negative event does not lead to an negative
outcome. E.g., the railway fanclub could find an insurance against the finan-
cial consequences of the breakdown of the steamer or ask other railway clubs
if they could provide a substitute steamer. In this case, the breakdown of the
steamer leads to no (insurance) or only minor (transport of the substitute)
negative consequences. O. Huber and O.W. Huber (2003) propose a model to
explain the search for probabilities and RDOs. They suppose, that the search
for these categories is dependent on expectations of the decision maker. These
are supposed to be dependent on background knowledge and local cues. E.g.,
most people expect based on background knowledge, that in general if a newly
constructed car is invented, there are no good probability information avail-
able for malfunctions of the engine and therefore will not search. If, however,
in a specific situation a local cue is available, that an information source is
accessible, search would be initiated. E.g., if people would know that research
has been done on the occurrence of plankton close to the island of the turtles
task, they would ask the biologist in charge if he has collected probability
information about the occurrence of the mites.

In this paper the investigation of decision processes by investigating in-
formation needs has proven to be able to provide fruitful contributions to
research on risky decision making. This approach allows to address research
questions that cannot be targeted at with paradigms that expose the decision
maker to what is defined by the experimenter as relevant information. Incom-
plete information presentation opens a way to investigate the construction of
mental representation. The capabilities of that method are further enhanced
by the measurement of memory performance as proposed by Weber et al.
(1991), yielding results that could not be accomplished with the investiga-
tion of information search alone. The results of this paper indicate that there
is more research to be done on the problem of probability processing in com-
plex decisions and the role of probability information in the construction of
the mental model of the decision situation, especially concerning the factors
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that initiate probability search and control the integration of probabilities
into the mental representation. This paper does not address the topic of de-
cision domains (e.g. Blais and Weber, 2001) which could play a role here,
especially in interaction with the expectations the model of O. Huber and
O.W. Huber (2004) suggests. This model could be used as a starting point to
investigate the questions emerging from the results of this paper, especially
why and when subjects do or do not search for probability information in
a specific decision and why probability is integrated more or less deep into
the mental representation.
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Abstract. Exactly how risk-averse a person should be is an elusive question that
may be answerable only through evolutionary analysis. The literature on the evo-
lution of risk attitudes is quite diffuse. Researchers have taken widely varying ap-
proaches. A survey of these approaches is presented. One approach to study the
evolution is to simulate a small society of individuals whose risk taking behaviors
are interrelated according to simple rules. The aim of this paper is to introduce
a few different ways to conduct such simulations and visualize the results. These
approaches can be extended in diverse ways. While this type of simulation is unlikely
to produce normative or prescriptive results for an individual, it may reveal some
facts about the collective fate of a society. Simulation codes written in Mathematica
are included.

Keywords: risk aversion, competitive bidding, evolutionary game theory,
memetic analysis, simulating a society

1 Introduction

Normative and prescriptive theories of decision making assume that the risk
attitude of a decision maker (DM) is exogenous, and derive or compute the
DM’s optimal choice among risky alternatives based on that assumption.
Questions regarding how the DM came to possess a particular risk attitude
were largely ignored until the 1990s. But the questions are quite tantalizing
and have therefore attracted a lot of attention in recent years. Some questions
to ponder are: Is the risk attitude of a person controlled by genes, and if
so, is a person born with and destined to die with the same risk attitude?
Contrarily, if a person makes a conscious choice of one particular risk attitude,
how should that person make that choice? If a person wants to change his/her
risk attitude based on life experiences to date, is there an optimal way to do
it? Does the risk taking behavior of an individual depend on environmental
parameters such as how the neighbors behave, and if so, how?
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Such questions point to a biological and evolutionary process of individual
behavior rather than a formal optimization process. Unfortunately, biological
or evolutionary approaches are unlikely to give rise to normative or prescrip-
tive theories of decision making, despite the fact that Cooper (1987) has
shown how the Savage axioms can be derived from biological principles. Such
derivations still cannot prescribe an optimal level of risk aversion for a given
situation, because Savage axioms only prove the existence of a utility function
or risk attitude and not the optimality of a risk attitude. A more recent and
more impressive research along this line is that of Robson (1996). In this line
of research, assumptions are made about the number of offsprings produced
by an individual being a function of the commodity bundle the individual
consumes. But this function need not be constant over time, and will depend
heavily on what the other competing individuals consume. Allowing for such
dependencies make the problem intractable. Similar problems apply to the
results presented in Sinn (2003). It is no wonder, therefore, that economists
took risk attitudes as exogenous and proceeded from there. But differing
views of rationality have prompted a second look at evolutionary processes.

Herbert Spencer (Spencer 1890, 1892) was probably the first to propose bi-
ological origins for economic behavior, and he did influence several economists
of his time and in later years. Alfred Marshall wrote a “biological” chapter in
his Principles (Marshall 1961). An analysis of this chapter can be found in
Hodgson (1993a,b). But Marshall did not go any further than mentioning the
biological nature of certain branches of economics. Only recently have many
researchers paid some attention to evolutionary analysis of decision making
behavior in competitive environments. A milestone is the work by Maynard
Smith (1982) who wrote about evolutionary aspects of repeated games. His
idea of evolutionarily stable strategies in non-cooperative game theory led to
better characterizations of Nash equilibria than other approaches.

Since evolution involves the interaction of numerous individuals who
might alter their rules of behavior based on their experience, formal analysis
of evolution becomes quite complex and intractable. Savage (1972, p. 16),
for instance, envisaged that a person has to make just one decision, namely,
how to live the rest of one’s life. Citing the intractability of that decision, he
calls the approach “ridiculous.” The complexity of decision analysis is deter-
mined by

• the numerosity of the individuals involved
• the degree of interaction among the individuals
• diversity of individual behaviors
• complexities of how individuals change their behavior

Simplifications that make the analysis tractable inevitably entail correspond-
ing degrees of limitations in the applicability of the results. But one has to
make a start somewhere, and hope that advances in large scale simulation
technology will lead to more impressive results. This paper lists a few in-
teresting environments that are worthy of simulation. These environments
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involve a combination of players taking risks in a competitive environment.
One can extend the approach in many diverse ways, some of which might
even yield prescriptive results for particular scenarios.

An interesting application of simulation is to conduct contests, such as stu-
dent teams managing virtual businesses competing with one another. Similar
contests can be conducted using the simulation approaches mentioned here.
A virtual, risky environment is specified and the contestants submit behav-
ior rules for their virtual players in that environment. The evolution of the
virtual players can then be simulated for several periods. According to some
criteria, such as final wealth, winners may be determined. It is indeed the
intention of the author to conduct such contests in the near future.

In the next section, we review the literature on evolutionary aspects of risk
taking based on game theory, utility functions and game playing automata.
After that, a few simulation approaches are described in a competitive bid-
ding environment. Mathematica codes for these approaches are given in the
appendix.

2 Evolution and Game Theory

The evolutionary game theory approach was given a boost by Maynard Smith
(1982). A compilations of results along this line can be found in Weibull
(1997). Given an underlying game and continuous mixed strategies for its
players, among many of its Nash equilibria, only a subset might be evolu-
tionarily stable. It is instructive to see how, starting from one combination
of strategies, the players move along an orbit toward a stable equilibrium.
While an orbit describes one particular path starting at a given point, a vec-
tor field plot describes the direction of movement from any given point. Some
plots are illustrated in Weibull (1997). This line of research gave rise to con-
cepts such as stability and basins of attraction. Stability concerns the effect of
a small perturbation in the current position. If the evolutionary forces bring
the system back to the starting position, then that position is stable. A basin
of attraction of a stable position is the set of positions from where evolu-
tionary forces lead to that stable position. Besides Weibull’s book, Ellison
(2000) and Binmore and Samuelson (1999) contain many results along this
line. Such results are possible when the underlying game is crisply defined in
normal form, because the orbits then follow well-defined first-order differen-
tial equations that satisfy Lipschitz continuity condition. Plots of orbits and
vector fields for these cases are possible when the dimension of the strategy
space is two or three.

An offshoot of this approach is the analysis of the distribution of dif-
ferent types of individuals in the population being analyzed, and how the
distribution varies with time. Taylor and Jonker (1978) put forth the idea
of replicator dynamics which determines, in a sense, the orbit of the distri-
bution. While this idea was put forth in biological context, it adapts well to
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game theoretic situations. Weibull (1997) contains an extensive analysis of
replicator dynamics in game theoretic contexts. Oechssler and Riedel (2002)
show how evolutionary robustness, which is a stronger condition than evo-
lutionary stability, imply the stability of many additional types of replicator
dynamics.

The idea of repeated games gave rise to a wealth of literature. Among
the papers written, many focused on evolutionary concepts. Kandori et al.
(1993) analyze, among other things, how risk taking behavior affects evolu-
tion. Dekel and Scotchmer (1999) analyze the case where a particular risk
taking behavior can be modeled as adopting a particular lottery. They then
derive the implications of first and second order stochastic dominance of lot-
teries on the evolution. In addition, they define and analyze a “tail dominance”
criterion.

During the course of a multiperson repeated game, some players may
form a coalition. Coalition is very well studied in the mainstream literature
in game theory. In addition, the evolution of coalitions has also been studied.
Keenan and O’Brien (1993) report some results on coalition formation using
simulation.

3 Evolution and Utility Functions

Bernoulli (1738) proposed that a person should have a logarithmic utility
function for wealth because the pleasure derived from an additional dollar
should be inversely proportional to current wealth. This helped explain such
phenomena as the St. Petersburg paradox. Kelly (1956) showed that in a re-
peated betting environment based on a faulty information source will attain
maximum expected final wealth only if a logarithmic utility function is fol-
lowed. Sinn’s (2003) argument in favor of logarithmic utility is no surprise
because it uses the same underlying mathematics. As already pointed out,
neither Kelly nor Sinn consider competition from others and assume a stable
process. Even if we are granted a stable process the troubles of logarithmic
utility do not go away. Using the appealing single-switch property, Bell (1988)
argued that logarithmic utility functions are not reasonable. A single-switch
property can be explained as follows: In a choice between two gambles A and
B, suppose a DM prefers A at the current wealth level. As the wealth of the
DM increases, the DM switches from A to B at some point due to decreas-
ing risk aversion. Single switch property requires that the DM never switch
back to A as the wealth continues to increase. With a logarithmic utility
function, the DM can switch back to A. Bell (1995) introduces a contextual
uncertainty condition which can be explained as follows: Suppose a DM is
facing currently two uncertainties A and B in his wealth, where A is a larger
(riskier) uncertainty than B. Against this contextual uncertainty, the DM has
to choose between two gambles X and Y . Bell proposes that the resolution of
the riskier uncertainty A should have a greater bearing on the choice between
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X and Y than the resolution of the less risky uncertainty B. Bell then shows
that the only type of utility function that satisfies both the single-switch and
contextual uncertainty conditions is

u(w) = aw − be−cw

where w is the wealth, and a, b and c are constants satisfying a ≥ 0, b, c > 0.
Indeed, Bell and Fishburn (2000) compile a list of utility functions for wealth
that satisfy four appealing rationality conditions.

Certain types of utility functions can make an unattractive gamble at-
tractive when taken along with other gambles. This has some troubling con-
sequences because a DM does not know what gambles the future might bring
in. The DM might reject a gamble which looks like the correct decision today.
But it could turn out to be a wrong decision tomorrow when further gam-
bles become available. Pratt and Zeckhauser (1987) called the type of risk
aversion that avoid this problem, proper risk aversion. They proved that the
utility functions that are either linear or are sums of exponential functions
are the only ones that have proper risk aversion.

But utility functions for wealth can lose their rationality in evolutionary
contexts because wealth may not necessarily be the relevant criterion. Often
the rank of the wealth of a person in a society, for example, could be the
relevant criterion. Pollock and Lewis (1993) show how wealth utility functions
can fail in some simple game theoretic evolution. They claim that their results
can explain phenomena such as the Allais paradox. McCardle and Winkler
(1992) show how the implied utility functions of optimal strategies in repeated
gambles are discontinuous, implying the failure of utility function approach in
such circumstances. Levy (2003) argues with supporting empirical evidence
that in the long term, it is chance rather than utility functions that make
people rich. Degeorge et al. (2004) also use empirical evidence to show that
in evolutionary contexts an individual will at times take risks, which are
disallowed by utility functions.

The idea of defining the utility function itself as a probability or sur-
vival has been proposed by some researchers. Borch (1968) suggests that the
evaluation of risky cash flows over time seems to follow a “utility function”

u(w) = the probability that the DM loses not more than w in the near future

so that u(w) is the probability of survival through the near future. The same
idea is implicit in Bordley and Li Calzi (2000). Defining the utility function as
probability of survival, Karni and Schmeidler (1986) derive that in sequential
decision making situations, the independence axiom must be satisfied in order
to maximize expected utility. This meant that the Allais paradox cannot be
justified in evolutionary contexts. Hagen (1992) pointed out some situations
in which one has to violate the independence axiom, giving legitimacy to the
Allais paradox. In any case, the idea that utility can be conceived as the
probability of survival hints at an evolutionary basis for risk attitudes.
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4 Evolution and Memory

Harsanyi (1967) explains how a DM may base his decisions on Bayesian
revision of probabilities in repeated incomplete information games. Needless
to say, memory is needed to store and recall the prior probabilities and thus
memory can improve a player’s chances of survival. To analyze the role of
memory, some researchers have used the theory of game-playing automata.
Abreu and Rubinstein (1988) take this line of inquiry and trace the behavior
of the automata. Ben-Porath (1993) proves that when two automata A and
B play a zero sum game with a saddle point, A can do better than the saddle
point payoff if and only if its memory is exponentially larger than that of B.

Memory can also help to signal one’s intention to other players. The role
of signaling in repeated games has been extensively studied both in theoret-
ical and empirical contexts. Kreps (1990) contains a good summary of the
findings.

In sum, memory plays an important role in decision making behavior.
Unfortunately, the inclusion of memory increases the complexity of evolu-
tionary analysis. In the simulation approaches mentioned in the remaining
half of this paper, memory has been ignored.

5 Evolution and Simulation

When a system’s behavior depends on many interacting random variables,
simulation has been the common approach to study the behavior of that
system. In what follows, three simple approaches to simulation are presented.

To bring about interaction among the players, a competitive bidding en-
vironment is used in the simulation. Competitive bidding environments do
not have simple solutions and thus it is unlikely that anything better than
simulation can be done to analyze them. Rothkopf and Harstad (1994) con-
firm that “elegance and powerful theorems are insufficient to obtain practical
advice” in competitive bidding environments.

6 The Scenario

A society of n players competitively bid for m (m < n) identical lottery
tickets. Each lottery has probability p of winning a prize of $ X and (1 − p)
probability of winning nothing. The top m bidders are awarded one lottery
each and their wealth is reduced by their respective bid amounts. These
awardees play out the lottery and winnings are added to their respective
wealths. The only source of income for any individual is the income from
winning the bid and winning the lottery. Each player is endowed with an
initial wealth of W0 and incurs a living expense of $ 1 per period. It is therefore
necessary to win the bid and the lottery to survive beyond W0 number of
periods. The winning bid amounts are not common knowledge.
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Any of the above parameters can be changed in the simulations. For in-
stance, different individuals may be endowed with different amounts initially.
The advantage of equal endowment is that it validates the comparison of
different behaviors.

6.1 Behavioral Analysis

Each player is assigned a random positive value d which is the amount by
which the player will increase or decrease the bid amount next period. The
player will increase the bid amount if he does not win the bid or after winning
the bid wins the lottery as well; he will decrease the bid amount if he wins the
bid and the lottery. In the results presented here, n = 12 players and m = 10
lotteries. The code will admit other values for these parameters. We track
and plot the wealth, bid amount and the quantity d of each player at each
period. The Mathematica code used for this simulation is in Appendix A.
The graphics output from this analysis are grayscale drawings of wealths,
bid amounts and ds. A sample output for 100 simulated periods is shown in
Figs. 1, 2 and 3 below. A nonlinear grayscale has been used to enhance the
visibility of the changes.

6.2 Genetic Analysis

In many environments, the consequences of a given level risk aversion may
become apparent only over a long period of time, over many generations. Ac-
cordingly, in this approach we simulate the society over an extended number
of periods. Over time, many individuals will be ruined as their wealths be-
come zero, and they “die” and exit the system. When an individual exits the
system he is replaced by an “offspring.” There are many schemes for creating

Fig. 1. The wealths of 12 interacting individuals. Lighter shade indicates greater
wealth
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Fig. 2. The bid amounts of the 12 interacting individuals. Lighter shade indicates
larger bids. When an individual is about to be ruined, he becomes desperate and
bids very high

Fig. 3. The amounts by which the 12 individuals change their bids. Lighter shades
indicate larger values

and introducing offsprings into the system. For example, an offspring may
be endowed with the average characteristics of the society, or with those of
the most successful individual in the society. In the results presented here,
the offspring is created with the characteristics of the wealthiest individual.
A justification for this scheme is that it most likely that the wealthiest per-
son has the best survival strategy and is worth replicating. Other schemes, if
desired, can be easily coded into the simulation.

In the simulation presented here, the behavior of an individual is charac-
terized by three values d1, d2 and d3, defined as follows:

d1 = increase in bid amount if the individual loses the bid
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d2 = increase in the bid amount if the individual wins the bid and wins the
lottery

d3 = increase in the bid amount if the individual wins the bid but loses the
lottery.

All three values have been restricted to {0, +1,−1} for simplicity. Once again,
it is not difficult to remove this restriction in the code.

A Mathematica program that simulates 20 individuals over 200 periods
is in Appendix B. Its output is reproduced below. It first shows the initial
status of the 20 individuals. These are, for the most part, randomly generated.
This table is iteratively updated at the end of each period, and the iteration
continues for 200 periods. After 200 periods, the status of each individual is
once again tabulated as output.

At the end of the simulation, the program outputs the following tabula-
tion.

We note from the ID column that only the offsprings of original individ-
uals with IDs 7, 15, 17 and 20 have survived. We also see that among the
survivors, d1 is predominantly negative, d2 is predominantly positive and
d3 is predominantly negative indicating that this pattern is more likely to
survive.

6.3 Memetic or Spatial Analysis

How a person should change his degree of risk aversion after an experience
is almost the same as asking what is the optimal degree of risk aversion in
a given situation, and therefore just as difficult to answer. In the previous ap-
proaches the adjustment behavior is random (or an inherited random behav-
ior that was successful). Another approach is to assume that every individual
adjusts his risk attitude depending on the actions of all of his neighbors in
the last period. This approach has some appeal because most people have
only their neighbors’ actions as a guide in this type of situations. We then
need to define who the neighbors are and assume some rules for adjusting
the risk attitude based on the actions of those neighbors. To be able to define
neighbors, we assume that each individual is a lattice point in a 2-dimensional
grid. We assume each person has eight neighbors who are at the lattice points
immediately to the north, northeast, east, . . . . northwest from his own place.
In the cellular automata literature, such a neighborhood is called a Moore
neighborhood.

In sociological simulations a behavior pattern is called a meme and
a meme may spread form one player to another through proximity. Morris
(2000) calls the meme that spreads from one player to another a contagion.
Gaylord and D’Andria (1998) present detailed guidelines for simulating a so-
ciety for memetic analyses.

As another simplification that makes the simulation quick, the degree of
risk aversion of any individual is assumed to be a number from 0 to 4, 0
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Fig. 4. Spatial Analysis of Risk Taking Behavior, shown after 99 periods (left)
and 100 periods (right). Each dot is an individual, and there are 40,000 of them.
A lighter shade indicates smaller risk aversion

denoting low risk aversion and 4 high. The behavior modification rule is as-
sumed to be totalistic, meaning the new risk aversion level is a function of
the total of the eight neighbors and one’s own. The total can be a maxi-
mum of 9 × 4 = 36 and a minimum of 9 × 0 = 0. Thus, we use a function
f : {0, 1, 2, . . . , 36} → {0, 1, 2, 3, 4} which specifies the risk aversion level of
the individual under consideration for the next period.

Mathematica has a built-in command called CellularAutomaton[]which
is well suited for this type of simulation. The code used for this simulation is
in Appendix C. The output of this code is shown in Figure 4. The instance of
the code can be explained as follows: Initially, all individuals are assumed to
have an average level of risk aversion, namely, 2. The individual at the center
of the figure is assumed to increase his level to 3. According to a behavior
modification function f,the details of which can be seen in the code [the code
shows f(36) = 3, f(35) = 1, . . . , f(0) = 2], the program simulates the risk
taking behavior of his neighbors, and then their neighbors, and so on. . . After
100 periods, a total of 40,000 individuals would have changed their behavior
as seen in the figure. Each dot in the figure is an individual. A lighter shade of
gray for the dot indicates a smaller risk aversion (0 = white and 4 = black).
The figure shows the risk aversion levels of the individuals after 99 periods on
the left and after100 periods on the right. The four corners of the left figure
display individuals with a risk aversion level (gray level) of 3. In the right,
they have a level of f(27) = 4.

7 Conclusion

The first half of this paper presents a literature survey that brings to light the
usefulness of evolutionary analysis of risk attitudes. Unfortunately, evolution-
ary analyses can easily become too complex and intractable. An approach to
analyze complex cases is simulation. The second half of this paper presents
three simulation approaches. The presented simulations are too simple to
yield normative or prescriptive results. But by extending these simulations in
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different ways, and perhaps with further advances in simulation technology
and computer power, larger projects that yield useful results can be under-
taken. Even some prescriptive results might then be obtained.

Simulation can also be used to conduct evolution contests. It is the inten-
tion of the author to design and conduct such contests in the near future.

The appendices contain simulation codes written in Mathematica version
5.0. The codes may not run properly in earlier versions of the software. Read-
ers may write to the author for details regarding the codes.

A Appendix

(All codes are in Mathematica 5.0. They may not run properly in earlier
versions)
<<Graphics‘Graphics‘
nPlayers = 12;
Endowment = 100;
Prize = 10;
nPrizes = 3;
Pwin = 0.8;
nPeriods = 100;
EV = Prize*PWin;
Players = Table[{Endowment,(EV-1)*Sqrt[Random[]],

(EV-1)/nPeriods},{nPlayers}];
FindWinningBid[Players_]:=

Max[1, Min[Take[Sort[Players /. {_, B, _}fB], -nPrizes]]];
Rules ={{0,_,_}f{0,0,0},{W_,B_,d_}/;

(B<WinningBid)f{Max[0,W-1], B+d,d}, {W_, B_, _} /;
(B>=WinningBid) f Won = (Random[] < PWin);
{Max[0, W – 1 – B + If[Won, Prize, 0]],
Max[0, B + If[Won, -d, d]], If[Won, d*(1 + Random[]),
d*Random[]]})};

History = Players;
Do[(WinningBid = FindWinningBid[Players];
Players = Players /. Rules;
History = Join[History, Players]), {nPeriods}];
Whistory = History /. {W_, _, _}fg;
Bhistory = History /. {_, B_, _}fg;
dHistory = History /. {_, _, d_}fg;
Btable = Table[BHistory[[i + (Range[nPeriods]-1)*nPlayers]],

{i, 1, nPlayers}];
Wtable = Table[WHistory[[i + (Range[nPeriods] - 1)*nPlayers]],

{i, 1, nPlayers}];
dTable = Table[dHistory[[i + (Range[nPeriods] - 1)*nPlayers]],
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{i, 1, nPlayers}];
R[i_,t_]:= Rectangle[{i –1, t -1}, {i, t}];
MW:= Max[WHistory];
MB:= Max[BHistory];
Md:= Max[dHistory];
Show[Table[Graphics[{Text["Wealths", {nPlayers/2,nPeriods*1.1}],

GrayLevel[Sqrt[WTable[[i,t]]/MW]], R[i,t]}], {i,1,nPlayers},
{t,1,nPeriods}], Axes→True];

Show[Table[Graphics[{Text["Bids",{nPlayers/2, nPeriods*1.1}],
GrayLevel[(BTable[[i, t]]/MB)ˆ0.3], R[i, t]}],{i, 1,
nPlayers},{t, 1, nPeriods}], Axes→True];

Show[Table[Graphics[{Text["ds",{nPlayers/2,nPeriods*1.1}],
GrayLevel[(dTable[[i,t]]/Md)ˆ0.2], R[i,t]}], {i,1,nPlayers},
{t, 1, nPeriods}], Axes→True]

B Appendix

(* Memetic Analysis *)
<<Statistics‘DescriptiveStatistics‘
(* Initialize *)
nPlayers=20;
Endowment=1300.;
Prize=20;
nPrizes=4;
pWin=0.7;
nPeriods=200;
(* MIntense = Mutation Intensity *)
MIntense = 0.2;
RandomSeed[3];
(* Create Players *)
Players = Table[{Endowment, Prize/2, Round[3 Random[]-1.5],

Round[3Random[]-1.5], Round[3 Random[] - 1.5], i},
{i, 1, nPlayers}];

(* Print initial values *)
Print["Initial Values"]
Print[TableForm[N[Players], TableHeadings→{Automatic,

{"Wealth","Bid","d1","d2","d3","ID"}}]]
Rules ={
(* Dead Players *)
{W_, _, d1_, d2_, d3_, i_}/; (W <= 0):>{0.,

0., d1, d2, d3, i},
(* Bid losers *)
{W_,B_,d1_,d2_,d3_,i_} /;
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(B<WinningBid):>{Max[0., W-1.],
Max[1.,B+d1],
d1, d2, d3, i},
(* Bid Winners *)
{W_, B_, d1_, d2_, d3_, i_} /; (B >= WinningBid)

:> (Won = (Random[] < pWin);
{Max[0., W -1 - B + If[Won, Prize, 0]],
Max[1, B + If[Won, d2, d3]],
d1, d2, d3, i}
)};
(* Iterate *)
nRep = 0;
Clock = 0;
Do[(Clock++; WinningBid = Max[1, Min[Take[Sort[Players /.

{_, B_, _, _, _, _}:> B], -nPrizes]]];
Players = Players /. Rules;
Players = Sort[Players];
(* Reproduce *)
While[Players[[1,1]]==0,
(nRep++;
Players[[1]] = Players[[nPlayers]];
(* Endow the newborn *)
Players[[1,1]] = Endowment;
Do[Players[[i,1]] -= Max[0,Players[[i,1]]-Endowment/nPlayers],
{i, 2, nPlayers}];
(* Mutate *)
Players = Sort[Players])
]),
{nPeriods}];
(* Print output *)
Print["Clock = ", Clock]
Print[TableForm[N[Players], TableHeadings →{Automatic,

{"Wealth","Bid","d1","d2","d3", "ID"}}]]
Print["Expected Value = ", Prize*PWin]
Print["Sustainable bid = ", (Prize*nPrizes*Pwin – nPlayers) /

nPrizes]
Print["Average Bid = ", Mean[Players/.

{_, B_, _, _, _, _}:> B]]
Print["Standard Deviation of Bids = ",

StandardDeviation[Players /.{_, B_, _, _, _, _}:> B]]
Print["Last WinningBid = ", WinningBid]
Print["Lottery Won? ", Won]
Print["nRep = ", nRep]



288 J. Sounderpandian

C Appendix

RasterGraphics5[x__]:=Graphics[Raster[1-Reverse[x/4]]];
Show[GraphicsArray[Map[RasterGraphics5,CellularAutomaton[
{FromDigits[{
(* Totalistic Transition Rule ordered f(36) to f(0) *)
3,1,4,0,3,4,
3,4,1,4,0,2,0,2,3,2,
4,2,1,3,1,0,1,1,0,4,
1,4,3,2,2,1,4,3,4,1,
2
},5],
{5,1},{1,1}},
(* Disturbance and Background *)
{{{3}},2},
(* Number of periods *)
100,
-2]]],AspectRatio→Automatic]
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Abstract. In experiments on risky decisions with gambles as alternatives the cen-
tral factors determining decision behaviour are: The subjective values of the out-
comes, and their subjective probability. The present paper first reports results of
a number of experiments indicating that this central result cannot be generalized.
In quasi-realistic risky scenarios, many decision makers are not interested in prob-
ability information and many search actively for risk-defusing operators (RDOs).
An RDO is an action intended by the decision maker to be performed addition-
ally to a specific alternative in order to decrease the risk. The paper also gives
an overview about experimental research with RDOs. Topics include the factors
that determine the search for RDOs and the factors affecting the acceptance of an
RDO. Finding an acceptable RDO has a distinct effect on choice: If for a specific
risky alternative an RDO is available, this alternative is chosen most often. The
consequences of the concept of RDOs on theories about decision behaviour and on
aiding decision making are discussed. Expectations to find usable probability infor-
mation and to find information about the existence of an RDO are also discussed
as factors explaining differences between different types of decision situations and
gambles.
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1 Introduction

Decision theory has experimentally investigated risky decisions since its early
days, about 50 years ago. An impressive number of empirical results have
been gathered, and important theories have been developed, see, for exam-
ple, Lopes (1995). The most prominent among these theories are subjectively
expected utility (SEU) theory (Edwards, 1961) and prospect theory (Kahne-
man and Tversky, 1979; Tversky and Kahneman, 1992).
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According to the experimental results of decision theory and the prevailing
theories, the central factors determining decision behaviour are:

(1) the subjective values of the outcomes, and
(2) their subjective probability.

One has to take into account, however, that most of these experiments use
(simple) gambles as alternatives or alternatives that are prestructured by
the experimenter like gambles. Therefore, it is not clear whether this result
can be generalized to all decision situations. The central role of gambles in
psychological decision research is emphasized by Lopes’ (1983) statement that
gambles are as indispensable to research on risk as the fruitfly is to genetics.

Despite the advantages of using gambles there is a nagging suspicion that
the essence of what naive decision makers often do when making a risky de-
cision often is missed by models based on gambles. Everyday decision tasks
differ in a variety of aspects from gambles, for example, in the topics of con-
trol, background knowledge, and the construction of a subjective represen-
tation of the task. Discussions of such differences can be found, for example,
in Crozier and Ranyard (1997), Dörner and Wearing (1995), Goldstein and
Weber (1995), Hogarth and Kuenreuther (1995), Huber (1997), Huber and
Kühberger (1996), Lipshitz and Strauss (1997), Ranyard and Craig (1995)
or Wagenaar (1988). Because of these differences, the hypothesis that the
results from experiments with gambles can be generalized to other decision
situations cannot be taken for granted, but has to be tested. Furthermore,
there are methodological characteristics of experiments with gambles that
may hamper generalizability.

2 Peculiarities of Experiments with Gambles
or Similarly Structured Tasks

Two main problems may limit the generalizability of results obtained from
experiments with gambles: task characteristics of gambles and specific prop-
erties of the experimental procedure.

2.1 Task Characteristics of Gambles

In contrast to many everyday risky decisions, in a decision task involving
gambles (or tasks that are prestructured like a gamble by an experimenter) it
is clear what consequences an alternative has, on which events the occurrence
of the consequences depends and what the probabilities are.

Another central difference is control, which is usually excluded deliber-
ately in experiments with gambles. In choices among gambles, besides choos-
ing one alternative, the decision maker cannot exert any control at all. Con-
sider in contrast the situation of a person who has to decide whether or not to
travel into a country where an epidemic infectious disease rages. This person
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may not only contemplate on the probability to become infected, but may
look actively for ways to prevent an infection (e.g., by cooking water before
drinking it, wearing protective gear, etc.) or inquire whether a vaccination
exists.

This neglect of the topic of control is probably the most serious deficiency
of traditional risky decision theory1.

2.2 Characteristics of the Experimental Procedure

With very rare exceptions in experiments on risky decision behaviour the
following procedure is adopted:

An experimenter explains to the subject (orally or in writing) which al-
ternatives exist, what events are relevant (for example, drawing a green ball
from an urn), which consequences may occur with which probabilities. Thus,
all the information considered to be relevant by the experimenter is presented
whereas all information considered as irrelevant is not presented. In experi-
ments with alternatives other than gambles (for example, in a framing task)
the situation is prestructured like a gamble by the experimenter.

This experimental procedure has two potential reactive effects:

(1) The situation is prestructured as a gamble by the experimenter. There-
fore, there is the danger of forcing the structure on the subject. Fur-
thermore, the experimenter has no opportunity to learn how a decision
maker would have spontaneously structured a situation, without the ex-
perimenter’s prestructuring.

(2) Because all informations are presented, the experimenter cannot find out
in which information the subject is genuinely interested. If a presented
item of information is used by the decision maker, the experimenter does
not know whether the subject would have searched for this item and used
it if it had not been presented.

3 Are Subjective Probabilities and Subjective Values
Central in all Risky Decision Situations?

Our first series of experiments aimed to answer the question whether the
main result from risky decision theory (subjective probability and subjective
value as the central components) can be generalized to situations that are
not prestructured as a gamble. These experiments differ in the type of tasks
and in the method of information presentation from standard experiments.

1 Cohen and Hansel (1959) introduced the element of control already at the be-
ginning of risky decision research by using gambles with a skill component. This
approach, however, was not followed up systematically in decision research.
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3.1 Quasi-Realistic Risky Tasks

In a quasi-realistic task, a scenario with at least two alternatives is described
to the decision maker. Such a description leaves to the decision maker the task
to construct a subjective representation of the scenario. This construction is
considered as an essential part of the decision process.

An example of a quasi-realistic task is the post office task:
The subject is in the role of the head of the post office in the village

H. The post office has very cramped conditions, and has faced the following
problem for several years: In November and December, it has to deal with
many parcels. If the number of parcels to be handled is too large, conditions
may become unbearable.

The village administration offers the manager now (in spring/summer) the
opportunity to rent the local meeting hall for CHF 12,000 (about $ 10,000,
¤ 8000). This hall is located besides the post office and would solve the
problem.

Whether it pays off to rent the hall depends on the amount of parcels
to be handled before Christmas. If the amount of parcels to be handled is
high, then renting the hall is necessary, because otherwise the delivery of
the parcels would be delayed, and complaints of customers would have to be
expected. Furthermore, working conditions for the employees would become
very bad. If, however, the amount of parcels to be handled were low, then it
would not be necessary to rent the hall. The CHF 12,000 would have been
wasted.

The subject has to decide whether to rent the hall or not.

3.2 A Non-reactive Method of Information Search:
Method of Active Information Search

If we want to find out which information the decision maker is genuinely
interested in, a methodology has to be employed that forces the decision-
maker to actively search for information. The method of active information
search (AIS) has been developed in order to attain this objective (Huber
et al., 1997).

In the basic version of this method, the procedure of information acqui-
sition is as follows:

(1) The subject is given a short description of the decision situation. This
description is the same for all subjects and explicitly mentions the pos-
sibility of a negative consequence.

(2) Then, he or she can ask questions in order to obtain more information
from the experimenter. Note that the subject asks the questions, not the
experimenter.

(3) For each question, the experimenter presents a prepared answer, printed
on a card or shown on a computer monitor. The reason for presenting
printed answers is to avoid non-verbal influences.
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(4) The participant may ask any and as many questions as wanted. If he or
she thinks to have sufficient information he or she can make the choice.

Elaborate pre-experiments are necessary to optimize the short description
and to find out the questions people ask in order to prepare the answers.

Different variations of the AIS-method have been developed. In the list-
version (Huber et al., 2001), the participant can select one at a time from
a list of questions. This version is especially useful to present the task on the
computer or in the Internet (Schulte-Mecklenbeck and Huber, 2003). In the
conversation-based version (Raynard, Williamson and Cuthbert, 1999) AIS
is combined with think-aloud instructions and spoken answers are given. The
different versions evoke a different number of questions (more questions in
the list-version than in the basic version), but the distribution of types of
questions (e.g., questions requesting information about the probability of the
negative outcome, questions about the availability of risk defusing actions,
see next section) is not affected.

3.3 Summary of Experimental Results

Several experiments have been performed which enable a test of the hypothe-
sis that in quasi-realistic risky tasks the same factors are central as in gambles,
namely, subjective values and subjective probabilities: Huber et al. (1997),
Huber et al. (2001), Huber and Huber (2003), Huber and Huber (2004), Hu-
ber and Macho (2001), Ranyard et al. (1999), Ranyard et al (2001), Schulte-
Mecklenbeck and Huber (2003), Williamson et al. (2000a,b).

In all these experiments, the subjective values of the outcomes are a cen-
tral factor in the decision process. This finding is in agreement with results
from experimental research on gambles.

However, there are important behavioural differences between choices in
quasi-realistic tasks and choices among gambles:

(1) Most decision-makers in most quasi-realistic decision tasks are not inter-
ested actively in probability information. It seems sufficient for them to
know that a negative consequence may happen.

(2) Often, risk-defusing behaviour plays a central role in the decision process.
If decision-makers realize that an otherwise positive alternative may lead
to a negative outcome, they search for an additional action (risk-defusing
operator, see below) that reduces the involved risk.

These two main results are discussed in the following sections.

Low Interest in Probability Information

This general result contradicts one of the fundamental assumptions of tra-
ditional decision theory. Therefore, it is necessary to rule out alternative
explanations.
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(1) Could it be that people do not search for probability information because
they choose a non-risky alternative anyway? This alternative explanation
can be ruled out because the non-interest for probability information is
independent from whether a decision maker chooses a risky alternative
or a non-risky one. Furthermore, in several of the tasks all alternatives
were risky.

(2) Could it be that people do not search for probability information because
they generally introduce or infer probabilities from their background
knowledge? Huber and Macho (2001) showed that in four quasi-realistic
decision tasks subjects did not introduce or infer usable probability in-
formation. Therefore, this alternative explanation can be discarded. It
is nevertheless possible that in specific decision situations the decision
maker can introduce or infer probability information from background
knowledge. For example, if the negative event is the loss of one’s job, the
decision maker may have a feeling how certain or uncertain her or his job
is.

(3) In experiments using the basic AIS version, questions have to be coded.
Could it be that in the coding process, questions searching for probability
information were not coded as such because, for example, the participant
did not use the word “probability”? In the experiments investigating in-
formation search (e.g., Huber et al., 1997; Huber et al., 2001; Huber and
Huber, 2003) a question needed not necessarily contain the word “proba-
bility” or “uncertainty” in order to be classified as a probability question.
All questions indicating a search for information about probability or un-
certainty were coded as probability questions. In cases of doubt the item
was coded as question for probability information, so that an error of
assignment worked against our hypothesis. Thus one can rule out the al-
ternative explanation that probability questions were overlooked. In the
list-version of the AIS (e.g., Huber et al., 2001; Schulte-Mecklenbeck and
Huber, 2003), the term “probability” was used explicitly and no coding
was necessary.

In concluding this short discussion it should be noted that in the search
for probability information there is a large difference between tasks. The
difference ranges from 6% to nearly 60%. Furthermore, even if decision makers
search for probability information, most are satisfied with imprecise answers
(e.g., “the probability is small”) and only few search for precise probability
values (Huber et al., 1997).

Risk Defusing Operators

A risk-defusing operator (RDO) is an action intended by the decision-maker
to be performed additionally to a specific alternative and is expected to de-
crease the risk. In the post office task, for example, many decision makers
inquired whether it was possible at short notice to lease bureau containers or
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similar devices. For the risky alternative not to rent the hall leasing bureau
containers is an RDO. It is intended for the case that the number of parcels
turns out to be large.

RDOs are common in everyday risky decision situations. Typical examples
are: taking out insurance, getting a vaccination, making a backup copy of
computer files, or wearing protective gear in order to avoid contact with
a toxic substance. In Sect. 5, some basic types of RDOs are defined.

In many quasi-realistic scenarios the majority of decision-makers actively
searches for RDOs. Finding an RDO has a distinct effect on choices: if
a decision-maker finds an RDO or an RDO is available, he or she chooses
the risky alternative in question much more often than without finding an
RDO. Also in a multistage investment task, people were willing to buy control
with the help of an RDO, when they had the opportunity to do so (Huber,
1996). It should be noted that also in the search for information concerning
RDOs there are large differences between tasks.

Conclusion

To sum up the answer to the question posed at the beginning of this chapter:
The available studies clearly reveal that the results from experiments with
gambles cannot be generalized to all risky choice situations. It should be noted
that this conclusion concerns decision making behavior only. On a formal
level, RDOs can well be incorporated into a gambling framework (see the
discussion section).

4 Risk Defusing in the Decision Process

In experiments with quasi-realistic scenarios – as usually in real decision
situations – the decision task is not prestructured as a gamble. It is rather
an important part of the task for the decision maker to find a structure by
constructing a subjective representation. Some theories explicitly take into
account structuring (e.g., prospect theory). Most often, however, this aspect
is ignored. The search for RDOs shows that the mental representation is not
static but dynamic and may be altered in the course of the decision process.

For those decision makers who search for an RDO, the decision process
can be sketched as follows:

(1) The decision maker detects that an otherwise attractive alternative x
may also lead to a negative consequence.

(2) Search decision: The decision maker has to decide whether to search for
an RDO or not (local process decision).

(3) Acceptance decision: If the decision maker decides to search for an RDO
and the search is successful, a decision has to be made whether or not to
accept the detected RDO (local process decision). The introduction of an
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RDO changes the mental representation. If a promising RDO is found,
the causal path leading to the negative outcome can be eliminated.

(4) If the RDO is acceptable, the decision maker chooses alternative x.

In the next sections, the available experimental results concerning search,
acceptance and choice are summarized.

4.1 Search for RDOs

For the search decision, the attractiveness of the alternative and the expec-
tation to find an RDO have been identified as relevant factors. Moreover,
control beliefs as a personality variable has an effect. Persons with internal
control belief search more often for RDOs than those with external control
belief (Huber and Bartels, 2005).

The search for an RDO often gives rise to cost (money, time, effort. . . )
and at the beginning of the search it is not clear whether the search will be
successful or not. A decision maker should be willing to bear these cost more
likely when the alternative is attractive. A first indication for this effect of
attractiveness is the finding that RDOs are searched more often for the alter-
native that later is chosen (Huber et al., 2001). However, further experiments
are necessary where the attractiveness of an alternative is varied deliberately.

Decision makers should search for an RDO more likely if their expectation
to find an RDO is higher. This hypothesis was confirmed, for example, in
Huber and Huber (2004). M. Bär (2002) measured participants’ expectations
to find an RDO and found an attractiveness bias. If an alternative was more
attractive (and everything else was equal) the expectation to find an RDO
was higher than when the alternative was less attractive.

4.2 Acceptance of RDOs

Once an RDO is found it is not necessarily acceptable. There are desirable
effects of the RDO (prevention or compensation of the negative outcome),
but there may be costs of the application of an RDO (e.g., the premium
of an insurance, time). The decision maker has to weigh up the positive
effect against the costs. The effect of both factors, costs and effect, has been
investigated experimentally.

The higher the cost of an RDO the less likely it is accepted (Williamson
et al., 2000a). Huber and Huber (2003) varied whether the cost of the RDO
had to borne with certainty or probabilistic. The majority of subjects chose
the alternative with an RDO with probabilistic cost.

The goal of applying an RDO is to prevent the negative outcome or to
compensate for the negative outcome. The effect of an RDO indicates to what
degree the goal is attained. For example, a vaccination against an infectious
disease may prevent the outbreak of the disease completely or it may alleviate
the disease, but not prevent it. As might be expected, RDOs having more
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effect are preferred to those having less (provided everything else is equal).
An alternative with an RDO with partial effect is chosen more often than
one without RDO. The latter was also observed in Huber (1995).

It should be noted that the effect of an RDO must be distinguished from
the probability of its success (e.g., the probability that the vaccination is
successful). The success (i.e., the intended effect) of an RDO may be only
probabilistic, not certain. For example, a vaccination may not be successful
for a minority of people who have been vaccinated. If success probability is
higher, the RDO is accepted more often. Huber and Macho (2001b) found
that an alternative with an RDO with probabilistic success was chosen more
often than an alternative with no RDO, and that an alternative with an RDO
with certain success was chosen more often than an alternative with an RDO
with probabilistic success. Huber and Huber (2003) varied success probability
via the probability to detect the occurrence of a negative event in good time
to initiate an RDO. The higher the success probability was the more often
the alternative with the RDO in question was chosen.

4.3 RDOs and Choice

Finding an acceptable RDO has a distinct effect on choice: If for a specific
risky alternative an RDO is available, this alternative is chosen more of-
ten than if no RDO is available: Huber (1995), Huber et al. (2001), Huber
and Huber (2003), Huber and Macho (2001 b), Ranyard et al. (2001) and
Williamson et al. (2000a).

Huber and A. Bär (2005) varied the success of the search for an RDO.
In most cases, decision makers searched an RDO only for one alternative. If
the search was not successful, the choices were on chance level. If the RDO
search was successful, in 98% of the cases the alternative with the RDO was
chosen.

5 Types of RDOs

In the following sections three criteria are introduced that enable a useful
classification of RDOs: (i) the target of the RDO, (ii) whether the RDO
has to be applied before or after a negative event has taken place, and (iii)
whether the RDO prevents the negative event or interrupts the causal chain
between negative event and negative outcome. Thus, criteria (ii) and (iii) are
applicable in situations where one can identify a specific negative event (e.g.,
an infection with a germ) that leads to a negative outcome (e.g., a dangerous
disease).

5.1 Target of RDOs

The criterion target classifies an RDO according to the global component it
attempts to change. There are two possibilities that are both spontaneously
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used by subjects: (1) the RDO prevents the occurrence of the negative out-
come, or at least makes it less likely (outcome prevention), or (2) the RDO
does not prevent the occurrence of the negative outcome, but introduces
a compensation instead (outcome compensation). Thus, outcome prevention
influences the probability, Outcome Compensation the utility of the outcome.
A typical example of an outcome prevention RDO is a vaccination against
an infectious disease. A typical outcome compensation RDO is taking out
insurance or making a backup copy of one’s computer files.

In the theory of individual choice under risk, Ehrlich and Becker (1972) in-
troduced a similar distinction: self-protection and self-insurance. Self-protec-
tion2 concerns the decrease of probability and self-insurance the decrease of
the severity of risk. Even if relatively low attention is given to the empirical
investigation of these concepts, there are some studies. For example, Shogren
(1990) tests the reaction of subjects to risks that are reduced either through
private or collective self-protection or self-insurance.

5.2 RDO Application Before or After the Negative Event

Dependence classifies RDOs according to the occurrence of a negative event,
which leads to the negative outcome. For example, an infection with a specific
germ may be the negative event, which leads to the disease. It should be noted
that often there is no objective way to determine which event is the negative
event.

Pre-event RDOs (e.g., vaccination against an infectious disease) have to
be applied before a negative event (e.g. infection) occurs. Post-event RDOs
(worst-case plans) need not to be initiated before and unless the event hap-
pens (e.g., a medical treatment against the infectious disease).

These two types of RDOs differ in expected cost: the cost of a pre-event
RDO has to be borne in any case, even if the negative event does not occur,
whereas that of a post-event RDO must be borne solely if the negative event
occurs. Thus, the subjectively expected utility of an alternative with a post-
event RDO is larger than that of the same alternative with a pre-event RDO.
Therefore, if both types of RDOs are available, decision-makers should prefer
a post-event RDO, provided the occurrence of the negative event can be
detected with certainty and everything else is equal. Huber and Huber (2003)
confirmed this hypothesis.

5.3 Event-Prevention vs. Intervention RDOs

An event-prevention RDO prevents the negative event from happening. In the
example with the infectious disease, wearing protective clothing that inhibits

2 In psychological decision theory, the term “self-protection” has another connota-
tion. It refers to a desire to escape unpleasant psychological consequences (e.g.,
regret) that result from a decision turning out poorly (Larrick, 1993).
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any contact with a germ is an event-prevention RDO. An intervention RDO
does not prevent the negative event from happening but interrupts the causal
chain between the negative event and the negative outcome. Examples are
a vaccination or a medical treatment after an infection.

Huber and Wicki (2004) confirmed the expectation that decision makers
prefer an event-prevention RDO to an intervention RDO (provided everything
else is equal). Note that in this experiment, the event-prevention RDOs as
well as the intervention RDOs were both constructed as pre-event RDOs in
all tasks.

6 Discussion

The experimental results reported in this paper contradict one traditional
assumption of descriptive decision theory, that risky decisions generally can
be modelled as gambles. The main behavioural differences between decision
making in quasi-realistic tasks and choices among gambles are:

(1) In most quasi-realistic decision tasks the decision-makers are not inter-
ested actively in probability information. In gambles, on the other hand,
the probability of the negative outcome is a central factor.

(2) RDOs, their search and intended application, play a central role in the
decision process. In theories about decision behavior in choices among
gambles, RDOs are literally nonexistent.

From the behavioral point of view, these results oppose not only the SEU
model, but also all other models that have their conceptual roots in the
SEU model, for example, prospect theory (Kahneman and Tversky, 1979)
and cumulative prospect theory (Tversky and Kahneman, 1992), security-
potential/aspiration theory (Lopes, 1995), but also regret theory (e.g., Loomes
and Sugden, 1982).

From a formal point of view, however, the concept of RDOs can well
be incorporated into the framework of normative SEU theory. Formally, the
introduction of an RDO into an alternative creates a new alternative (a new
gamble) consisting of the original action and the RDO. By using standard
methods of decision analysis (e.g., a decision tree), the utility of the cost of
RDO application, of the effect of an RDO and its success probability can be
incorporated into the computation of the overall utility of the new alternative.

Our stable finding of most people not searching for information about
the probability of the negative consequences does not mean that subjec-
tive uncertainty does not play any role in the decision process. As already
mentioned, in our experiments subjects were informed explicitly about the
possibility of a negative outcome. Obviously for most decision makers this
coarse information is sufficient, for example, to initiate an RDO search. As
discussed in the sections concerning search for and acceptance of RDOs, here
too uncertainty may become relevant, namely uncertainty about the result
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of the search and about the effect of the RDO. One can expect that people
use a coarse subjective scale also in this context.

An interesting topic for further research on RDOs is the multiperson
context. For example, decision makers who have to choose independently
between gambles could plan to pool their wins and losses and thus – with
specific constellations of alternatives – defuse the risk for all decision makers.

Behaviour in experiments using quasi-realistic tasks is in congruence with
that revealed in non-experimental research (Lipshitz and Strauss, 1997) or
analyses of managerial decisions (e.g., Shapira, 1994). The findings about risk
defusing behaviour fit neatly into the results of research on risk perception
and risk taking. An RDO gives the decision maker at least some control over
the risk. Perceived controllability has been shown to be a relevant factor in
risk perception: controllable risks are evaluated as less grave than uncontrol-
lable ones (Weinstein, 1984; Vlek and Stallen, 1981). In a study investigating
information-seeking behaviour, Lion (2001) found that the more dangerous
a risky situation is the more people are interested in information about con-
trollability. Shiloh et al. (in press) investigated the information needs and
decision-making strategies of genetic counselees in real-life decision making.
Patients were interested mostly in information about the outcomes and con-
sequences of the alternative options, and about measures to defuse the risks.
They were less interested in probability information.

The concept of RDOs also fits neatly into recent normative treatments of
causality. In his theory of causality, Pearl (2000) explicitly includes interven-
tions in a causal system. An RDO is such an intervention.

The concept of RDOs has consequences also for decision analysis and
decision aiding tools. Because RDOs are important for decision makers, they
should be incorporated into techniques of decision analysis explicitly and in
a controlled manner. It should be emphasized that the search for potential
actions to defuse the risk connected with an otherwise attractive alternative
is rational also from the point of view of normative decision theory. It would
be rather irrational not to search for an RDO if there exists a genuine chance
to find an effective one. If a formal structure is used for the representation of
an alternative, (e.g., a decision tree), RDOs should be incorporated explicitly
into that representation structure. In the process of evaluating the alternative,
the decision maker has to evaluate also the RDOs, for example, in respect
to their effectiveness. Decision analysis should guide the decision-maker in
the incorporation of RDOs into the decision structure, in the evaluation of
RDOs, and in avoiding potential evaluation biases.

In the description of the decision process in Sect. 3, two local process deci-
sions were mentioned: the decision to search or not to search for an RDO for
a specific alternative, and – if an RDO has been found – the decision to accept
the RDO or not. These decisions are necessary also in the process of struc-
turing the decision situation in the course of a decision analysis. The decision
aiding procedure should guide the decision maker to avoid biased evaluations
in these two decisions, like the attractiveness bias mentioned above.
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A further topic, where the results of experiments with quasi-realistic tasks
may be relevant for Decision analysis is probability. As reported, most deci-
sion makers do not spontaneously search for probability information. There-
fore, decision makers should be alerted when and in what respect probabilities
are relevant in making a decision.

As our experiments have shown, decision behaviour in quasi-realistic sce-
narios is quite different from choices between gambles. Furthermore, there
are large differences between quasi-realistic scenarios in the search for RDOs
as well as in the search for probability information. One solution would be to
conclude that we need different decision theories for different types of risky
tasks. This solution would, however, be quite unsatisfactory. In the long run,
we need a unifying theory that enables us to understand decision behaviour in
choices between gambles as well as in quasi-realistic decision situations, and
that explains in which cases and why different types of decision behaviour
occur.

As a first step towards such a unifying theory, Huber and Huber (2004)
have investigated two types of decision maker’s expectations: the expecta-
tion of finding usable probability information and the expectation to find
information about the existence or non-existence of an RDO. Note that the
expectation of finding information about whether an RDO exists or not is not
the same as the expectation to find an RDO, and the expectation of finding
usable probability information is not the same as the expectation that the
probability is, say, high.

In their experiment, these expectations were varied independently by in-
cluding cues in the basic description of the quasi-realistic scenarios. In addi-
tion to the scenarios, subjects had to make decisions between gambles. With
the gambles also, the AIS-method was used, but no cues were included. In
the quasi-realistic scenarios, cues increasing the finding expectation led to
a more frequent search for probability information and RDO information,
respectively, in comparison to cues that decreased finding expectation. In the
gamble tasks without additional cues, the great majority of subjects searched
for probability information, but not one single subject searched for RDO in-
formation.

If only high and low finding expectations for probability information and
RDO information are distinguished, four types of risky decision tasks can be
distinguished:

1. High Finding Expectation for Probability Information – High for RDO In-
formation An example is the decision whether or not to travel into a country
where an infectious disease rages. A decision maker may expect to get from
doctors usable information about the probability of an infection as well as
about the existence of a vaccination.

2. High Finding Expectation for Probability Information – Low for RDO In-
formation An example is the situation of a patient who has to decide whether
to undergo a surgery. This patient may expect to get reliable information
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about the chances of success of the operation, but at the same time be of
the opinion the he or she could not contribute anything for the success. The
classical example for this type of decisions are gambles.
3. Low Finding Expectation for Probability Information – High for RDO
Information An example is the situation of a manager who has to decide
whether to place a large investment into a developmental country with an
unclear political and economical state of affairs. This manager may expect
not being able to get usable probability information. However, he or she may
presume that there are governmental guarantees for such investments, and
therefore search for such information.
4. Low Finding Expectation for Probability Information – Low for RDO In-
formation A typical example is the stock market, at least from the point of
view of a small share-holder. This person may have low expectation to get
reliable probability information about the value of a specific stock five years
from now, and at the same time be convinced of having no influence on the
stock market.

Decision behaviour in the different types of tasks should be different. For
example, in situations with high expectation for finding RDO information,
search for RDOs should play a prominent role. Decisions in situations of the
type high finding expectation for probability information – low for RDO infor-
mation should be most similar to decisions between gambles. This hypothesis,
however, has yet to be tested.

As already mentioned, the different finding expectations can explain
a substantial part of the variance in the search for probability information
and RDO information, respectively. Thus, finding expectations may consti-
tute one component of a future unifying theory for risky decisions that can
also explain why behaviour in various situations is different.
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