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PREFACE

Thc interdisciplinary field of molecular systems biology aims to

understand the behavior and mechanisms of biological processes

composed of individual molecular components. As we gain more
qualitative and quantitative information of complex intracellular processes,
biochemical modeling and simulation become indispensable not only to
uncover the molecular mechanisms of the processes, but to perform useful
predictions. To this end, the E-Cell System, a multi-algorithm, multi-timescale
object-oriented simulation platform, can be used to construct predictive
virtual biological systems. Gene regulatory and biochemical networks that
constitute a sub- or a whole cellular system can be constructed using the
E-Cell System to perform qualitative and quantitative analyses.

The first version of the E-Cell System was developed by Koichi Takahashi
in 1997, as part of the E-Cell Project in the laboratory of Masaru Tomita
at Keio University. Currently at its third version, the E-Cell System consists
of the following three major parts: (i) E-Cell Simulation Environment, (ii)
E-Cell Modeling Environment, and (iii) E-Cell Analysis Toolkit. The core
of the E-Cell System, the E-Cell Simulation Environment allows multiple
simulation algorithms with different timescales to coexist. To represent
models, the E-Cell System supports the Systems Biology Markup Language
(SBML), a standard modeling language adopted by leading publications and
scientific grant issuing agencies. The E-Cell System is distributed under the
GNU General Public License (GPL) and runs on both Microsoft Windows
and Linux operating systems.

The purpose of E-Cell System: Basic Concepts and Applications is to
provide a comprehensive guide for the E-Cell System version 3 in terms of the
software features and its usage. While the publicly available E-Cell Simulation
Environment version 3 User's Manual provides the technical details of model
building and scripting, it does not describe some of the underlying concepts of
the E-Cell System. The first part of the book addresses this issue by providing
the basic concepts of modeling and simulation with the E-Cell System. An
overview of whole cell modeling and its fundamental concepts are described
in the first chapter. In the second chapter, the details of the E-Cell Simulation
Environment is provided. This chapter can be used as a reference for both
developers and users interested in the algorithm and software architecture of the
E-Cell Simulation Environment. Modelers attempting to run multiple instances
of their models and utilize distributed computing resources would be interested
in the third chapter. The author provides an overview of the E-Cell Session
Manager with sample scripts that concurrently distribute multiple E-Cell
Sessions to the available processors and cores. The fourth chapter describes
the Spatiocyte lattice-based simulation method which is developed as a set of
E-Cell System plug in modules. Several reaction-diffusion model examples
are also given to familiarize the reader with spatially resolved model building.



The second part of the book provides examples of actual modeling
applications that use the E-Cell System. The fifth chapter presents three
well-known models of the Escherichia coli chemotaxis system that are
reimplemented as E-Cell models. In the sixth chapter, changes that take place
in the action potential during rodent ventricular cell development are shown
using E-Cell electrophysiological model simulations. Different aspects of
human red blood cell metabolism under both physiological and pathological
conditions are presented using E-Cell model simulation and analysis in the
seventh chapter. The eighth chapter gives the simulation results obtained from
kinetic models of mitochondrial energy metabolism. Some parameters of
the models were estimated using the genetic algorithm module of the E-Cell
System. With the aid of a kinetic model of liver ammonia metabolism and
E-Cell simulations, the ninth chapter suggests that the enzyme gradients
in the lobule model are regulated by gene expressions to reduce energy
consumption. In the tenth chapter, the interactions between two toll-like
receptor 4 signaling pathways in the innate immune system are investigated
using E-Cell System modeling and simulations. The final chapter provides
analysis of the kinetic properties and robustness of a heat shock protein
chaperone system during folding of an unfolded protein.

The chapters in this book have been critically read and reviewed by
experts in the field. We thank the reviewers for their constructive comments
and suggestions to improve the quality of the chapters.

Satya Nanda Vel Arjunan, PhD
Pawan K. Dhar, PhD
Masaru Tomita, PhD



PART 1

Basic Concepts



CHAPTER 1

Introduction to Whole Cell Modeling

Pawan K. Dhar*

Introduction
n offshoot of classical bioinformatics, whole cell modeling integrates information from
metabolic pathways, gene regulation and expression. This new area of in-silico biology
converges disciplines as varied as mathematics, computers, physics and chemistry. Scientific
advancements have reached a position where it is possible to create virtual replicas of games that
genes play to keep the organism alive. The traditional reductionistic science is slowly but surely
giving way to integrative science.
The main purpose of this chapter is to examine the nuts and bolts of whole cell modeling,
especially for the non-initiates.

Modeling Fundamentals
Three elements are necessary to make a good model:
1. Precise knowledge of the phenomenon
2. An accurate mathematical representation
3. A good simulation tool.
Let us discuss each step in detail.

1. The Phenomenon

A cell represents a dynamic environment of interaction among nucleic acids, proteins,
carbohydrates, ions, pH, temperature, pressure and electrical signals. Many cells with similar
functionality form tissue. Each type of tissue uses a subset of this cellular inventory to accomplish
a particular function. For example, in neurons electro-chemical phenomena take precedence
over cell division, which itself is the domain of skin, lymphocytes and bone marrow cells. Thus,
an ideal virtual cell not only represents all the information but also exhibits the potential to
differentiate into mission-oriented tissues. The first step in creating a whole cell model is to
divide the entire network into pathways and pathways into individual reactions. Any two reac-
tions belong to a pathway if they share a common intermediate. The job of a modeler is not
only to decompose events into manageable units but also to assemble these units into a unified
framework. As is evident, one needs both reductionist and integrative strategies. Let us discuss
the reductionist approach first.

1.1 Map

(a) General Introduction

A map uses arrows to represent interactions between substances in a static way. While substances
may participate in the primary pathway or activate a side branch, arrows represent the flow of mate-
rial and are more complex to portray. Arrows must accommodate the flow of matter for forward

*Pawan K. Dhar—Centre for Systems and Synthetic Biology, University of Kerala, Kerala, India.
Email: pawan@cssb.res.in
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4 E-Cell System: Basic Concepts and Applications

and reversible reactions, divergence, convergence, inhibition and activation reactions. Mapping
cellular networks is a particularly challenging job, especially in the presence of a large number of
crosstalking pathways. To avoid confusion, standard terminologies and graphic representations are
followed (Voet 2000). In metabolism there is a tendency to form chains consisting of a minority
of forward reactions and majority of reversible reactions. A cell uses a combination of forward/
reverse reaction logic to create four basic patterns of linkages (Fig. 1).
L. Linear chains: represent a unidirectional flow of flux.
I1. Branched chains: two enzymes metabolize one substance, resulting in different products.
III. Loops: two branches unite, giving rise to inherent dependencies between them.
IV. Cycles: larger loops composed of many intermediates, having one overall entry and one
exit point (minimum requirement).

(b) Tools for Construction and Visualization of Pathways

A number of tools are available for drawing cellular pathways. The basic strategy is to devise
a specific algorithm for a specific portion of the pathway instead of creating an all-purpose algo-
rithm, as pathways comprise a mixture of cyclic, linear and hierarchical information. Some of the
currently available prominent pathway drawing tools are:

(i) PathFinder
This tool is no longer available online.
Contact: Dr. Alexander Goesmann
Email: agoesman@cebitec.uni-bielefeld.de

| A—>» B

}C
Il A—}B\D

o
n A —> B<D>E—>F

vV A—>» B—>»

Figure 1. Fundamental structure of linkages in a network.
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(ii) BioJ AKE

Rescarchers at the National University of Singapore created the BioJAKE program for
the visualization, creation and manipulation of metabolic pathways. It has been designed to
provide a familiar and easy-to-use interface while allowing for the input and manipulation of
metabolic data. It also provides a mechanism by which remote database queries can be stored
and performed with respect to individual molecules within a pathway. This remote database
access functionality is offered in addition to the local database creation, management and que-
rying capability. The program has been developed in Java to provide platform independence
and maximum extendibility.

(iii) Electric Arc

ElectricArc is a Perl and Tk-based diagram drawing tool. It is intended to be a general-purpose
graph editor and as such, it pushes the application of graphs to the limits of generality. With vary-
ing degrees of convenience, ElectricArc can be used to design everything from abstract graphs to
electronic circuits, database schema, computer networks and metabolic pathways. ElectricArc
borrows most generally useful ideas from electronic CAD technology. It is based on two abstract
graph objects, Node and Arc. The code consists of the two tools named symbol and net, the former
being used to create the data and symbols for Nodes, while the latter serves the task of laying out
the networks of Nodes by connecting them with Arcs.

(iv) BioPath

BioPath is a system for the exploration and automatic visualization of biochemical path-
ways. It was developed to obtain an electronic version of the Boehringer Biochemical Pathways.
BioPath is linked to a database that contains reactions and a hierarchical clustering of reactions
and reaction networks. It provides automatic generation of pathways from the database and
their visualization.

(v) Pathway Browser

URL: http://www-pr.informatik.uni-tuebingen.de/?site=forschung/metabolic_paths/
metabolic_paths

Pathway Browser is an application for the visualization of Metabolic Pathways. In order to run
Pathway Browser, a JAVA Runtime Environment for JAVA 2 must be installed. It has following
features: XML Input/Export Filters, automatic layout of diagram, advanced navigation features
like zooming, overview, etc., printing capabilities, displaying the data at several levels of detail and
showing user-defined data.

1.2 Metabolic Pathways

The term pathway describes all biochemical transactions of a cell. Pathways may come in many
flavours e.g., metabolic pathways, signaling and genetic networks and drug metabolism pathways.
Essentially all of them represent a continuous flow of information. Some of the prominent maps,
pathways and databases used for modeling purposes are:

1.2.1 IUBMB-Nicholson Minimaps

URL: http://www.iubmb-nicholson.org/

Donald Nicholson of the Department of Biochemistry and Molecular Biology, The
University, Leeds, England has created the IUBMB-Nicholson minimaps. It supplements the
21 edition old Metabolic Pathway Charts produced over the past 40 years. A special feature
of these maps is the incorporation of information on compartmentation, enzymes and regula-
tion aspects by using coloured backgrounds. The pathways flow from a highlighted starting
point to a highlighted ultimate product. The maps are available online in three versions: GIF,
SVG and PDE
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1.2.2 Bochringer Mannheim Biochemical Pathways

URL: http://www.expasy.ch/cgi-bin/search-biochem-index

Boehringer Mannheim Biochemical Pathways are a standard wall chart on any laboratory
workbench. It was created by Bochringer Mannheim researcher Dr. Gerhard Michal (now retired).
It is comprehensive, updated and spans many organisms and pathways. Currently it is available on
the ExPASy Molecular Biology server in both online and paper format.

1.2.3 Kyoto Encyclopedia of Genes and Genomes (KEGG)

URL: http://www.genome.ad.jp/kegg/

The KEGG (Kyoto Encyclopedia of Genes and Genomes) project was initiated in May 1995
under the Japanese Human Genome Program. The primary objective of KEGG is to computerize
metabolic pathways, regulatory pathways and molecular assemblies. Additionally, KEGG main-
tains gene catalogs for all the organisms that have been sequenced and links each gene product
to a component on the pathway. KEGG also organizes a database of all chemical compounds in
living cells and links each compound to a pathway component.

KEGG consists of the following five types of data:

1. Pathway maps—represented by graphical diagrams

2. Ortholog group tables—represented by HTML tables

3. Molecular catalogs—represented by HTML tables or hierarchical texts
4. Genome maps—represented by Java graphics

5. Gene catalogs—represented by hierarchical texts

These dataare linked with each other and with the existing databases through DBGET/LinkDB,
an integrated database retrieval system that has been developed in-house.

1.2.4 What Is There (WIT)
After several years in service, the tool has been retired and superceded by Seed and PUMA2.

1.2.5 Enzyme and Metabolic Pathway (EMP)
This tool is no longer avilable online.
Contact: Evgeni (Zhenya) Selkov
Email: selkovsr@mcs.anl.gov

1.2.6 Biopathways Consortium

URL: http://www.biopathways.org/

The Mission of BioPathways Consortium, an open forum, is to develop technologies and
open standards for representing, handling, accessing, analyzing and adding value to pathways and
protein interaction information.

Some of its goals are: (1) Specify biochemical pathways and protein interactions. Apply this
knowledge to genomics, functional genomics, comparative genomics and proteomics. (2) Bring
together leaders in these areas from academia, pharmaceutical/biotech industry and database
institutions. (3) Develop an online platform for exchange information regarding current and
potential technologies.

1.2.7 EcoCyc

URL: http://ecocyc.org/

EcoCyc is an encyclopedia of E. coli genes and metabolism.

The EcoCyc database describes the genome, metabolic pathways and signal transduction path-
ways of E. coli. It describes each metabolic enzyme of E. coli, including its cofactors, activators,
inhibitors and subunit structure. EcoCyc is a literature-derived database housing annotations of
all E. coli genes, as well as the DNA sequence of each E. coli gene. EcoCyc describes all known
pathways of E. coli metabolism. Each pathway is described in rich detail with external links to
databases and biomedical literature. The Pathway Tools software provides query and visualization
services for EcoCyc. The long-term goal of the project is to create a functional catalog of E. coli to
facilitate its system-level understanding.
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1.2.8 PathDB
This tool is no longer available online.
Contact: Jeffrey L. Blanchard
Email: blanchard@microbio.umass.edu

1.2.9 The University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD)
URL: http://umbbd.ahc.umn.edu/
UM-BBD is a database storing microbial biocatalytic reactions and biodegradation pathways.
The goal of the UM-BBD is to provide information on microbial enzyme-catalyzed reactions that
are important for biotechnology. Additionally, UM-BBD is being used to teach enzymology online.

1.2.10 Metavista

URL: http://www.metabolic-explorer.com

METAVISTA supports three types of data input: proteomic profiling by 2D gel electrophore-
sis, metabolic profiling by NMR and/or mass spectroscopy, metabolic flux analysis by 13C stable
isotope labeling and NMR and/or mass spectroscopy. METabolic EXplorer’s bioinformatic tool,
METAVISTA', is dedicated to the storage, management and analysis of metabolic data result-
ing from METabolic EXplorer’s platform and links it with genetic information of key reference
organisms: E. coli, S. cerevisiac and A. thaliana. Its potential applications are: (a) identification and
quantitation of metabolic pathway activities in vivo, (b) evaluation of the relative contributions
of alternative pathways to product synthesis, (c) determination of the loss of carbon in competing
pathways, (d) identification of limiting pathway stochiometries by metabolic network analysis,
(e) establishment of a cause-effect relationship between genetic changes and metabolic response,
(f) definition of new targets for metabolic engineering and (g) monitoring of pathway activity
changes during the transition from growth to the production phase.

1.2.11 Metabolic Pathways in Biochemistry

URL: http://www.gwu.edu/%7Empb/index.html

The Metabolic Pathways of Biochemistry is an online reference of metabolism for students
and scientists. This site is a teaching aid to represent graphically all major metabolic pathways,
primarily those important to human biochemistry.

1.2.12 THCME Medical Biochemistry

URL: http://themedicalbiochemistrypage.org/

This site contains description of various metabolic and regulation pathways and serves as an
excellent teach aid.

1.3 Regulatory Pathways

1.3.1 KEGG Regulatory Pathways

URL: http://www.genome.jp/kegg/

Minoru Kanchisa and his group at Kyoto University (Japan) developed the KEGG database
with government funding (see 1.2.3). It is free for academic and non-academic use.

1.3.2 BioCarta

URL: http://www.biocarta.com/

BioCarta (founded in April 2000) serves as an interactive web-based resource for life scientists,
especially in the areas of gene function and proteomics. The site provides information on path-
ways involved in developmental biology, hematopoeisis, immunology, metabolism, neuroscience,
adhesion, apoptosis, cell activation, cell cycle regulation, signaling and cytokines/chemokines.
Biocarta is free to use.

1.3.3 Biomolecular Interaction Network Database (BIND)
This project has evolved into Bondplus database.
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1.3.4 Signal Pathway Database, SPAD

URL: http://www.grt.kyushu-u.ac.jp/spad/

Researchers at Kyushu University (Japan) have developed the SPAD (Signaling PAthway
Database) on a Sun workstation. The objective is to understand the overview of signaling trans-
duction (ST) pathways. SPAD classifies ST into four categories based on extracellular signal
molecules (growth factor, cytokine, hormone and stress) that initiate the intracellular signaling
pathway. SPAD houses information on protein-protein interaction, protein-DNA interaction,
DNA sequence information and also provides external links.

1.3.5 Cell Signaling Networks Database, CSNDB

URL: http://www.chem.ac.ru/Chemistry/Databases/ CSNDB.en.html

The Cell Signaling Networks Database (CSNDB) is a data- and knowledge- base for signaling
pathways of human cells. It compiles the information on biological molecules, sequences, structures,
functions and biological reactions which transfer the cellular signals. Signaling pathways are com-
piled as binary relationships of biomolecules and represented by graphs drawn automatically.

1.3.6 Munich Information Centre for Protein Sequences, MIPS

URL: http://mips.gsf.de/proj/yeast/ CYGD/db/index.html

The MIPS Comprehensive Yeast Genome Database (CYGD) aims to present information on
the molecular structure and functional network of the entirely sequenced, well-studied model
eukaryote, the budding yeast Saccharomyces cerevisiae. In addition the data of various projects
on related yeasts are used for comparative analysis.

1.3.7 Wnt Signaling Pathway

URL: http://www.stanford.edu/group/nusselab/cgi-bin/wnt/

Whnt, an amalgam of the two founding members (int-1 in the mouse (now called Wnt-1) and
wingless in Drosophila), is a family of highly conserved proteins that regulate cell-to-cell develop-
mental interactions in Drosophila. This is an excellent site on Wnt signaling pathways developed
by Stanford University researchers.

1.3.8 Transpath

Transpath is essentially a signal transduction browser. It is an information system on gene-regu-
latory pathways. It focuses on pathways involved in the regulation of transcription factors. Elements
of the relevant signal transduction pathways like hormones, enzymes, complexes and transcription
factors are stored together with information about their interaction. The TRANSPATH database
is free for users from nonprofit organizations.

1.4 Transcription Factors

1.4.1 TRANSFAC—Transcription Factor Database

URL: http://www.biobase-international.com/product/transcription-factor-binding-sites

TRANSFAC isa database on eukaryortic cis-acting regulatory DNA elements and trans-acting
factors. It covers the whole range from yeast to human.

TRANSFAC started 1988 with a printed compilation (Nucleic Acids Res. 16: 1879-1902,
1988) and was transferred into computer-readable format in 1990 (BiclechForum—Advances in

Molecular Genetics (J. Collins, A.J. Driesel, eds.) 4:95-108, 1991).

1.4.2 RegulonDB

URL: http://regulondb.ccg.unam.mx/

RegulonDB is a database on transcription regulation and operon organization for different
organisms, especially E.coli. It describes regulatory signals of transcription initiation, promoters,
regulatory binding sites of specific regulators, ribosome binding sites and terminators, as well as
information on genes clustered in operons.
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1.4.3 DBTBS
URL: http://dbtbs.hge.jp/

DBTBS is a database of B. subtilis promoters and transcription factors.

1.4.4 SCPD

URL: http://rulai.cshl.edu/SCPD

SCPD is the promoter database of Saccharomyces cerevisiae. It contains information on the
promoter regions of about 6000 genes and ORFs in yeast genome. It also provides information
on genes with mapped regulatory regions.

1.5 Gene Expression

1.5.1 GEO: Gene Expression Omnibus

URL: http://www.ncbi.nlm.nih.gov/geo

GEO is agene expression/molecular abundance repository supporting MIAME compliant data
submissions and a curated, online resource for gene expression data browsing, queries and retrieval.

15.2 NEXTDB

URL: http://nematode.lab.nig.ac.jp/

NEXTDB is the database to integrate all information from the Caenorhabditis elegans expres-
sion pattern project.

15.3 MAGEST
MAGEST supplies data of DNA sequences and expression patterns of ESTs from maternal
mRNAs of the ascidian egg.

1.6 Enzyme Databases

1.6.1 Brenda

URL: http://www.brenda-enzymes.info/

BRENDA is the main collection of enzyme functional data available to the scientific community. It
is available free of charge for academic, nonprofit users. Currently there are 3500 enzymes in the data-
base; the projected aim is to house information on 40,000 different enzymes from various organisms.

1.6.2 ExPASy

URL: http://www.expasy.ch/

ExPASy is an acronym for the Expert Protein Analysis System that analyses protein sequences and
structures by browsing through SWISS-PROT, PROSITE, SWISS-2DPAGE, SWISS-3DIMAGE,
ENZYME, CD40Lbase and SeqAnalRef as well as other cross-referenced databases (such as
EMBL/GenBank/DDB]J, OMIM, Medline, FlyBase, ProDom, SGD, SubtiList, etc).

1.6.3 NC-IUBMB

URL: http://www.chem.qmw.ac.uk/iubmb/enzyme/

C-IUBMB stands for Nomenclature Committee of the International Union of Biochemistry
and Molecular Biology and contains comprehensive information on enzyme nomenclature.

1.6.4 Ligand Chemical Database

URL: http://www.genome.jp/kegg/ligand.heml

KEGG LIGAND consists of COMPOUND, DRUG, GLYCAN, REACTION, RPAIR
and ENZYME databases.
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1.7 Scientific Literature Search

1.7.1 PubMed

URL: http://www.ncbi.nlm.nih.gov/sites/entrez

PubMed, available via the NCBI Entrez retrieval system, was developed by the National Center
for Biotechnology Information (NCBI) at the National Library of Medicine (NLM) located at
the National Institutes of Health (NIH). Entrez is the text-based search and retrieval system used
at NCBI for all major databases including PubMed, Nucleotide, Protein, Structures, Genome,
Taxonomy, OMIM and many others. PubMed was designed to provide access to citations from bio-
medical literature. Subsequently, a linking feature, LinkOut, was added to provide access to full-text
articles at journal web sites and other related web resources. PubMed also provides access and links
to the other Entrez molecular biology databases. It is free to use and no membership is required.

1.7.2 Medline

URL: http://www.nlm.nih.gov/bsd/pmresources.html

Medline is a very comprehensive database of publications, conference reports and publications
from 1966 onwards. The literature can be seamlessly integrated into reference managing tools like
EndNote, ReferenceManager, ProCite, Papyrus and Bookends. BioMedNet also offers the scope
for creating virtual journals hosted by Medline.

1.7.3 Scirus

URL: http://www.scirus.com

Scirus is a meta-search tool of Elsevier Science that enables users to locate data, university sites for
reports, homepages and articles. It currently covers the web, ScienceDirect, BioMedNet, Beilstein on
ChemWeb, Neuroscion, BioMed Central and patents from the USPTO. Scirus reads nontext files
such as PDF, postscript and other formats. It currently covers more than 69 million science-related
Web pages, abstracts and full-text publications from databases externally connected to it.

1.7.4 ScienceDirect

URL: http://www.sciencedirect.com

ScienceDirect offers an advanced web delivery system for biological information. It was first
launched commercially in 1997 and presently stores two million full-text scientific papers and
1200 titles. Browsing is free, but downloading publications comes at a price.

1.7.5 CrossRef

URL: http://www.crossref.org

CrossRefisa nonprofitindependent organization that provides seamless integration of different
literature databases. To date, CrossRef has more than 6,127 journals with more than 4.6 million
article records in the database. CrossRef plans to incorporate encyclopedias, textbooks, conference
proceedings and other relevant literature in future. It is free to use.

2. Mathematical Representation

Introduction

Experimental biology has reached a stage where it is safe to take off to the next level i.e., virtual
biology. This new field requires a strong coupling of computational approaches with biological
data. Though static representation of data through maps helps develop an overall perspective,
dynamic modeling is what actually provides us with an environment to understand and maneuver
cellular machinery in-silico.

Basic Concepts

Mathematical modeling is an art of converting biology into numbers. At the root of math-
ematical representation lies the need for a clear operational description of a model. By definition, a
model is an optimal mix of hypotheses, evidence and abstraction to explain a phenomenon. When
constructing a model we also use terms like abstraction and mathematical equations.
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Hypothesis is a tentative explanation for an observation, phenomenon or scientific problem
that can be tested by further investigation. In order to explain an observation something needs to
be taken as true for the purpose of argument or investigation.

Evidence describes information that helps in forminga conclusion or judgment. In the present
context it refers to experimental data.

Abstraction is an act of filtering out the required information to focus on a specific property
only. For example, categorizing cars based on the year of manufacture irrespective of the model
would be an example of abstraction. In this process, we lose some detail and gain some. Since we
somewhat incompletely understand biology now, we often end up describing the available part of
the system instead of the whole. Furthermore, researchers from different areas of specialization may
view the same cellular transactions differently. For example, metabolic engineers would focus more
on control elements that regulate flux, physicist would look for atomic interactions that govern
biology, neurobiologists would pay more attention to the electro-chemical signal processing than
metabolic event modeling and biotechnologists would view it more as a serial assembly-line process
than a parallel processing system. The bottom line is that in abstraction we gain some and lose some.

Before setting out on a modeling journey, a checklist of biological phenomena that call for
mathematical representation is in order. Broadly speaking, the whole cell metabolism may be
classified into enzymatic and non-enzymatic processes. Enzymatic processes cover most of the
metabolic events while non-enzymatic processes include gene expression and regulation, signal
transduction and diffusion. However, knowing the cell inventory is not enough. The point is how
to improve its overall performance or to alter selective output of a given product.

The following events would be important to model a complete virtual cell:

. DNA replication and repair

. Transcription and its regulation

. Translation

. Energy metabolism

Cell division

. Chromatin modeling

. Signaling pathways

. Membrane transport (ion channels, pump, nutrients)

. Intracellular molecular trafficking
10. Cell membrane dynamics
11. Metabolic pathways

To achieve this objective, we not only require precise qualitative and quantitative data but also
an appropriate mathematical representation of each event. For metabolic modeling the data input
consists of kinetics of individual reactions and also effects of cofactors, pH and ions on the model.
The key step in modeling is to choose an appropriate assumption. During metabolic pathway
modeling, we come across a number of situations that demand individual attention. For example,
a metabolic pathway may be a mix of forward and reverse reactions (uni, bi, ter) of ordered/ran-
dom types. Furthermore, inhibitors that are part of the pathway (or maybe separate entities) may
influence some reactions. At every step, therefore, we must carefully choose enzymatic equations
that best describe the process. The mathematical basis of these equations can range from simple
algebra and calculus to Laplace transforms. Kinetic modeling is greatly dependent on the accuracy
of the data. It may be noteworthy to mention that good data is more of an exception than the rule!

Briefly, mathematical model building calls for skills in mathematics (calculus and linear algebra),
numerical methods (scientific computing, etc.), modelling techniques (dimensionless groups, model
reduction, etc.), systems science (dynamic simulation, control theory, system identification, etc.) and
biophysics (biomechanics, transport phenomena, etc.). Differential equations have been widely used
to represent biology numerically due to their ability to incorporate time-based variations. The main
advantage is evaluation of the reaction rate with respect to time and the concentration of metabolites.
However, differential equations may be less-than-ideal tools in modeling complex and nonlinear
systems with feedback loops. Mathematical techniques e.g., linear regression, nonlinear regression
and maximum likelihood estimation, are used to fit models to data (in a process called optimization).

NI N N NIV RN OO S
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Another situation arises when the model itself generates data. In this case the simulator
is fed with partial data and asked to find missing pieces. Though computer simulations have
enormous advantages, problems arise mostly due to numerical reasons—stiffness and param-
eter sensitivity. The main difference between model-to-data and data-to-model approaches is
that in the former we start from substrate concentration, enzyme concentration and modifier
concentrations to get a particular velocity curve, while in the latter, we fix kinetic constants
and velocity of reaction values in the beginning. However, the difference between these two
approaches sometimes blurs. Due to the paucity of good data, real life modeling often calls for
manual data fitting approaches. It is common to assume values in order to match an expected
output or hypothesis. The litmus-test” of course, is the degree of similarity between computer
output and experimental data. Simulation not only represents a given phenomenon but also
extrapolates behavior of a system, even in presence of a hypothetical condition such as a cell
having multiple knockouts of vital genes!

3. Computer Simulation

Cell simulation engines are dynamic representations of entities. The essential job of a simulator
is to depict behavior of a system over time and allow pulse analysis of entities. Whole cell simulation
calls for discrete event and continuous-time simulations. The former simulation usually includes
random number generators and are useful in simulating stochastic processes like signal transduction
and gene regulation. In contrast, continuous-time simulations are based on differential equations.

3.1 Software Tools
A number of promising tools are available for studying metabolic pathways. A cross section of
some of the popular ones are:

3.1.1 DBSolve

URL: http://en.bio-soft.net/other/DBsolve.html

DBSolve is an integrated development environment for metabolic, enzymatic and recep-
tor-ligand binding simulation. DBSolve derives an ordinary differential equation (ODE)
model from a stoichiometric matrix defining the complex enzymatic reaction or metabolic
pathway and calculates the steady state solution along a parameter range using the original
parameter continuation algorithm. The main part of DBSolve is a general-purpose fitting and
optimisation procedure. For storingall the information about a dynamic model it uses a special
platform-independent SLV format and contains information about the mathematical model;
including the stoichiometric matrix of the process, enzyme/reaction and compound attributes
and parameters for numerical methods.

3.1.2 Gepasi

URL: http://www.gepasi.org/

Gepasi is a Microsoft Windows program that simulates the steady-state and time-course be-
haviour of reactions in several compartments of different volumes. The user supplies the program
with information about the stoichiometric structure of the pathway, kinetics of each reaction,
volumes of the compartments and initial concentration of all chemical species. The program then
builds the differential equations that govern the behaviour of the system and solves them. Results
can be imported into spreadsheets and also plotted in 2D and 3D graphs. Gepasi characterises the
steady states that it finds using Metabolic Control Analysis and linear kinetic stability analysis.

3.1.3 Jarnac

URL: http://sbw.kgi.edu/software/jarnac.htm

Jarnac is a language for describing and manipulating cellular system models and can be used
to describe metabolic, signal transduction and gene networks, or any physical system which can
be described in terms of a network and associated flows. Eventually Jarnac will replace SCAMP
and may be considered Scamp II.
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Dr. Herbert M Sauro’s (author of Jarnac) other products include JDesigner and Linear Pathway
Modeller.

3.1.4 Dynafit

URL: http://www.biokin.com/

BioKin, Ltd. manages and markets DynaFit for simulation of chemical and biochemical
reactions. In addition it also provides ViraFit for statistical analysis of Hepatitis-C viral dynamic
data, BatchK (client-server application) for determination of tight-binding enzyme inhibition
constants and PlateKi which is equivalent to BatchK but runs as a standalone Microsoft Windows
application.

3.1.5 ModelMaker

URL: http://www.modelkinetix.com/

ModelMaker allows you to model continuous and discontinuous functions, stiff systems and
stochastic systems. It also provides you optimization, minimization, Monte Carlo and sensitivity
analysis.

3.1.6 Metamodel

URL: htep://bip.cnrs-mrs.fr/bip10/modeling.hem

MetaModel 3.0 is a DOS-based program that allows you to build simple models that contain
up to 20 reactions (enzymes) and up to 30 metabolites and to define conservation constraints on
the metabolite concentrations . It is a good teaching aid for simulating biochemical reactions.

3.1.7 DMSS

Discrete Metabolic Simulation System (DMSS) is a recent entrant that does not employ kinetic
parameters, stoichometry matrices or flux coefficients. Instead, the rate of a reaction is modeled
based on competing metabolite concentrations or metabolite affinities to enzymes including
metabolite and enzyme concentrations.

3.1.8 E-Cell

URL: http://www.e-cell.org/ecell/

E-Cell System is a modeling and simulation environment. E-Cell with 127 genes was the first
virtual cell created in 1995. The basic concepts and applications of E-Cell Technology are detailed

in sections that follow.

3.1.9 Virtual Cell

URL: http://www.nrcam.uchc.edu/

Virtual Cell is a modeling tool for cell biological processes. It associates biochemical and elec-
trophysiological data describing individual reactions with experimental microscopic image data
describing their subcellular locations. An underlying mathematics framework develops numerical
simulations and results can be analyzed as images. Access to the Virtual Cell modeling sofctware
is available via the internet using a Java-based interface. Distinct biological and mathematical
frameworks are encompassed within a single graphical interface.

3.1.10 Cellware

URL: http://www.bii.a-star.edu.sg/achievements/applications/cellware/

The first grid-based modeling and simulation tool for the systems biology community. See the
website for details.

General Concepts on Whole Cell Modeling
Modeling Fundamentals

A model is a closet replica of the phenomena under investigation. The reason why we build
models is that they are easy to understand, controllable and can store and analyze large amounts
of information. A well-built model has diagnostic and predictive abilities.
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Why Model Cells?

A cell by itselfis a complete biochemical reactor that contains all the information one needs to
understand life. It offers an ideal middle path between the extreme ends of atomic interactions and
whole organs. By creatinga whole cell model it is possible to travel in cither direction. In addition, it
can be engaged for jobs like cell cycle, physiology, spatial organization and cell-cell communication.

Strategy for Whole Cell Modeling
Whole cell modeling is a data-driven science that uses two types of data: qualitative and quan-
titative. Qualitative modeling analyzes logical relationships among components, while quantitative
modeling provides a snapshot of an actual amount of matter that flows from one step to the next,
from one pathway to the next or from one network to the next. For productive modeling, both
qualitative and quantitative modeling approaches are required.
1. Catalogall the substances that make up a cell.
2. Make a list of all the reactions, enzymes and effectors.
3. Map the entire cellular pathways: gene regulation, expression, metabolism etc.
4. Build a stoichometric matrix of all the reactions v/s substances (for qualitative
modeling).
5. Add rate constants, concentration of substances, strength of inhibition (if any) (for kinetic
modeling).
. Assume appropriate mathematical representations for individual reactions.
. Simulate reactions with suitable simulation software.
. Diagnose the system with system-analysis software.
. Perturb the system and correlate its behavior to an underlying genetic and/or biochemical
phenomenon using a hypothesis generator.

Challenges

1. To identify global gene regulatory switches and crosstalking metabolic pathways.

2. Currently, it is not possible to depict fluxes among pathways over a wide range of physi-
ological conditions like pH or temperature. In addition to the computational constraints,
the main bottleneck is lack of experimental data. Thus, in the absence of a demonstrated
ability to overcome this barrier, the virtual cell will continue to remain “stiff”.

3. True steady states never occur in real life. The best we can hope is to bring an experimentally
observed steady state to a quasi-steady state of a cell.

4. Ignorance of complete cellular networks, poor choice of assumptions and mathematical
errors.
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Conclusion

Whole Cell modeling is an emerging branch of biological research that aims at a systems level
understanding of genetic or metabolic pathways by investigating structure and behavior of genes,
proteins and metabolites. The principal aim of systems biology is to provide both a conceptual basis
and working methodologies for the scientific explanation of biological phenomena. Frequently, it
is the process of formal modeling rather than the mathematical model obtained that is the valu-
able outcome. The purpose of a conceptual framework is, therefore, to help explain unknown
relationships, to make predictions and to help design experiments, suggesting which variables
to measure and why. The field itself is new and many challenges need to be overcome before the
research community can use it in parallel with wet-bench research tools.



CHAPTER 2

Foundations of E-Cell Simulation

Environment Architecture
Nathan Addy and Koichi Takahashi*

Introduction

he thorough overview of the E-Cell Simulation Environment in this chapter provides a

foundation for understanding the systems biology research that uses the E-Cell Simulation

Environment presented within this book. To begin this inquiry, we open with the most
general question possible: what is the E-Cell Simulation Environment? The answer is that the E-Cell
Simulation Environment (commonly abbreviated E-Cell SE, or even SE) is a simulator of cellular
systems models. It is the primary component of a three-program software platform, collectively
called the E-Cell System, for creating, simulating and analyzing biological models. As the simulator
in this larger environment, the E-Cell Simulation Environment takes user-defined abstract model
descriptions, translates them into its own internal model format and calculates trajectories of those
models through time, either by recording the results in a file for future analysis, or in real time where
the model state can be viewed or modified by the user at any point during execution.

For any simulator, two of the most relevant questions are about the type of system the pro-
gram models and the algorithms the program can use in performing the modeling. As stated
above, the E-Cell System was created to model and simulate cellular systems, but this is not the
complete story. The E-Cell System generally and the E-Cell Simulation Environment specifically
are fundamentally generic modeling platforms. While they come specialized “out of the box” for
cellular modeling, they can simulate any mathematical model. What does this mean? It means that
whenever a system can be described formally as a set of variables interacting through mathematical
relationships such as equations, relations and constraints, that model can be expressed (and then
simulated) in a natural way as an E-Cell Simulation Environment model. E-Cell SE can simulate
any mathematical model, no matter what types of mathematical relationships that model describes,
or the combinations in which those relationships occur.

The following simple example illustrates how the E-Cell Simulation Environment is more
generic than the average biochemical simulator. To model a biochemical system containing three
chemical species—A, B and C, such that A and B react to form C with some observed rate—there
are two (many more than two, actually) ways to proceed, depending upon the interpretation of
the verb “react”. You can define it using a differential equation that states the quantities involved
convert from one to another at a rate proportional to the product of the concentrations of the
reactants: a mass-action reaction. A second way to describing a “reaction” would be as a Gillespie
Process, which states that A and B react to form C in atomic jumps corresponding to individual
reaction events, where the times of those events are calculated by sampling exponential distribu-
tions that depend on the population numbers of A and B and whose action is to decrease the value
of each of A and B by one and increase the value of C by one. These two models are distinct and
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equally valid mathematical descriptions of the described physical system. While most biological
simulators use either mass-action equations or Gillespie equations for describing systems (that is,
they typically are built around a single type of algorithm), the E-Cell Simulation Environment
can use either. Furthermore, what really makes the E-Cell Simulation Environment generic is its
extensibility: any mathematical description of what the word “reacts” might mean can be translated
into computer instructions and then used within E-Cell model files.*

To understand how E-Cell Simulation Environment works, this chapter examines how the
E-Cell SE allows for any mathematical model to be expressed as an E-Cell model capable of being
simulated and also the architecture used to make this possible.

Although the E-Cell Simulation Environment is a generic simulator, the E-Cell Simulation
Environment comes packaged with many features, including a toolkit of algorithms commonly
used in the field, that put the focus of the E-Cell Simulation Environment on cellular modeling
and simulation.

The key to understanding how the generic core of the E-Cell Simulation Environment works
is in the intersection between model syntax, model semantics and algorithm implementation. The
basicidea is that within the E-Cell Simulation Environment, all processes that update variable values
(these correspond to mathematical relationships within the model, for example, a single mass-action
equation) are defined in terms of the same internal interface, called the Process interface. (An
object possessing such an interface in the SE environment is called a Process. Whenever the word
is capitalized, it refers to an algorithm that has this interface in E-Cell SE.) This interface supports
reading variable values within the simulation environment followed by instantaneously updating
either some variable values or some variable derivatives. Because any algorithm used for systems
modeling can be described as a process that updates certain variable values and velocities given the
state of other variables and variable velocities, the E-Cell Simulation Environment is able to treat
all conceivable simulation algorithms uniformly, without a priori needing information as to their
implementation. The result is that internally to the E-Cell Simulation Environment, models are
represented as combinations of variables lists and abstract Processes lists that supply the relation-
ships between those variables. While the E-Cell Simulation Environment treats all algorithms
both abstractly and uniformly, when called upon to act (to “fire” in E-Cell SE terminology), each
Process has its own individual implementation, which defines the exact behavior of that algorithm.
By using different combinations of variables and Processes connecting those variables, users can
construct E-Cell models that represent any physical system (or any mathematical model, depending
on one’s point of view), which can then be simulated in the Simulation Environment. The Process
interface defined by E-Cell is the foundation for the entire E-Cell Simulation Environment and
makes E-Cell SE both generic and extendible.

To illustrate how E-Cell SE uses the universal Process interface to simulate generic models, let
us revisit the above example, with two species that combine into a third, represented using either
mass-action equations or Gillespic equations. Because E-Cell SE views models through the lens of
the Process interface, the models have an identical structure according to this view. Both possess a
list of three variables, A, B and C, and both have one Process that reads and then updates the vari-
able values. The difference in model behavior comes from the implementation of the two different
Processes. In the mass-action based model, the Process reads the value of A and B, along with the
always-defined E-Cell SE variable called volume. The Process uses this information to calculate
the concentrations of A and B and then uses the product to calculate a velocity delta, which it
adds to the variable C (recall that a mass-action equation representing the reaction A+B -> Cisa
differential equation of the form d[C]/dt = k[A] [B]). In the Gillespie system model, the Process
uses the volume, the values of A and B, along with a random number, to determine the time at
which the values of A and B should decrement by one and the value of C increment by one.

While these two models have different simulation trajectories, the difference is entirely encap-
sulated within the algorithms’ implementation, hidden from the E-Cell Simulation Environment
behind identical interfaces. With this system, E-Cell SE only has to be concerned with defining
variables, defining the universal Process interface and driving the two. Model builders can implement
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any algorithms, as long as they follow the rules of the E-Cell Process interface. Then, as they build
models, they can do so using any combination of algorithms, simply by invoking them within model
files using the names defined concomitant to their implementations. The way the E-Cell Simulation
Environment treats algorithms uniformly allows all the semantics of models simulated by the E-Cell
Simulation Environment to be defined by the model builders themselves.

The goal is that by combining model building with algorithm implementation, the modeling
of any system within the E-Cell Simulation Environment will be as easy and as open ended as
directly mathematically modeling the same system. The resultant model structure will ultimately
be custom built to the user’s needs and not according to the software capabilities.

Hopefully the reader is by now convinced of the veracity of E-Cell SE ability as a generic simu-
lator. And now, with that perspective of the program covered, we move in the other direction and
emphasize that the E-Cell Simulation Environment, as well as the E-Cell System, comes structured
and organized as a biological simulator of cellular systems. In fact, virtually all literature discussing
the E-Cell System discusses it almost exclusively as this type of simulator only. How can this be
understood, given the effort just spent discussing how the core E-Cell Simulation Environment
is a generic simulator? Although E-Cell SE is a fundametally generic platform, it was created as
one part of an ongoing biological project to simulate whole-cell models on computers. Because of
this, E-Cell is set up out of the box to support cellular modeling. Common algorithms used within
this field are supplied already implemented for use within E-Cell models and need only be called
within model files in order to be used within a model. Additionally, the organization of the E-Cell
Simulation Environment application—which includes but is not limited to its generic kernel, the
component that actually drives the simulation of models—has been developed with the needs of
biologists in mind. Its default workflow is applicable to many nonbiological fields and can also be
extended or modified as needed for those projects where it is inadequate, but the default configura-
tion of the E-Cell System has been created with the needs of systems biologists and other cellular
modelers in mind. This explains the dual generic/specialized nature of the E-Cell System: while the
core engine of the E-Cell Simulation Environment is a completely generic and extendible system
for simulating arbitrary models, it comes “pre-extended” for cellular and sub-cellular modeling.

Background

At this point, we understand that the E-Cell Simulation Environment is a unique blend of ge-
neric and cellular simulation systems. We also have a basic understanding that this blend is possible
because of the way the E-Cell Simulation Environment uniformly treats algorithms, which allows
users to extend the Simulation Environment with any new algorithm they need to include in their
models. Before we cover the architectural details used by the Simulation Environment to make this
possible, knowing the background of the E-Cell project will help provide a better understanding
of the forces that have forged the E-Cell System and the E-Cell Simulation Environment into the
unique form they take today.

The origins of these programs began at Keio University in 1996, with the launch of a biological
program called the E-Cell Project that aimed to reconstruct a whole cell in silico. For this project
the organism ]\/Iymplasma gem'm[z'um, which possesses the smallest known genome, was chosen as the
target. One branch of the project consisted of initial work on a simulator that could simulate the
whole cell models the project would produce. ('This simulator would come to eventually develop
into the current version of the E-Cell Simulation Environment, over a period of many years and
several major software releases.) The initial work in engineering this program was to perform a
meta-study of the field of biological modeling in order to establish a requirements analysis that
would determine what features a simulator capable of running whole-cell models would have
to possess. This investigation uncovered that, while the simulation of biological cells is similar in
many respects to the simulation of many other types of complex systems, cellular systems typically
have features that pose unique challenges to their simulation. The specific discovery was that in
categorizing systems based on modeling requirements, there are at least three axes of complexity
and cellular systems rank particularly high on two of them.
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The first type of complexity the E-Cell Project observed was that cellular systems typically have
high copy numbers of components, implying that the total number of interactions taking place
within a cell during any given time interval is large. This type of complexity is common in the
world of simulation. However, the second type of complexity observed within cellular systems by
the E-Cell group was less often found in the world of complex systems. This type of complexity is
ontological, which means that within most cellular systems the number of distinct interaction types
that can be observed is large. Cellular processes including metabolism, signal transduction, gene
expression, cytoskeletal dynamics and cytoplasmic streamingare all processes that cause interactions
between intracellular components but otherwise differ fundamentally from one another in their
behaviors, possessing different properties such as time scales, number of intracellular components
affected, global effects on the cell, dynamics, etc.

Ontological complexity poses a challenge to programs that wish to simulate these systems.
Because of the variety of intra- and extracellular behaviors, the current state of the art in cellular
simulation is a rich ecosystem of algorithms, each representing some aspect of the processes that
occur within cellular systems. Note that the alternative to this approach would be to attempt to
produce a monolithic “universal” algorithm that would be able to model all these different pro-
cesses by itself. However at the present time, no algorithm known to the field of cellular modeling
can claim to be universal, in the sense that that it could be used to produce accurate simulations
of all cellular systems in a timely fashion. For example, it is possible to build whole cell models
consisting entirely of systems of mass action equations. While such a model potentially could be
efficiently simulated, it probably would not be particularly accurate, because it likely would rep-
resent a gross oversimplification of the system. At the other extreme, it would also be possible to
build whole cell models by modeling all cellular contents and interactions in terms of Brownian
motion, collisions between three-dimensional objects and geometry. But while such a simulation
might be Very accurate, it would also be simply too [argc to simulate on any conceivable computer.
Given the range of intracellular behaviors, it seems unlikely that a universal algorithm will ever
be found; at minimum, such an algorithm does not currently exist. Therefore, to produce serious
whole-cell models, the only realistic course is to focus on how to use large sets of algorithms in
various combinations to create and simulate our models in order to allow different algorithms to
be used where they are best suited.

Given the necessity of using many different algorithms to model whole-cell systems, the E-Cell
group made yet another finding. It was observed that the behavior of cellular systems, on both the
sub-system and whole-system levels, have highly nonlinear dynamics in all but the most trivial
cases. The implication is that no matter which sub-systems of the cell are studied and no matter
how well sub-system behaviors are individually understood, that knowledge will form an incom-
plete framework for understanding the whole system. Such investigations can be very useful in
understanding the behavior of whole cells, but in the end cannot be completely explanatory. Some
understanding of whole cell behavior can only come through considering the system as a whole.
This property made it clear to the E-Cell Project that a strategy of using many different simulators
to independently investigate different cellular subsystems would be doomed from the start to be
incomplete. The ultimate conclusion reached was that to model and simulate cellular systems, a
new type of generic simulator that could use arbitrary algorithms within the same model must be
built. With that understanding, the concept of the E-Cell System was conceived.

With the bold goal of building a generic simulator set out during the first phase, work turned to
implementation. How could arbitrary algorithms be used within the same simulation framework?
This problem was solved by Koichi Takahashi' with the development of a computational scheme
he called the meta-algorithm. The meta-algorithm provides the theoretical solution as to how a
model using multiple algorithms can be simulated as a single unit to produce a trajectory of the
whole system. The true importance of the meta-algorithm to the success of the E-Cell System can
be expressed by noting that the entire core of the E-Cell Simulation Environment is hardly more
than an implementation of the meta-algorithm.
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The meta-algorithm works by classifying each potential simulation algorithm that can be math-
ematically defined into two types based on whether they are continuous (equations that represent
continually changing quantities) or discrete (equations representing quantities that change at
specific moments). For each algorithm in each of these groups, the meta-algorithm records which
variables the algorithm reads as input and which it modifies as its output and uses this to calculate
adependency relation amongst the algorithms used within the model: one algorithm is dependent
onanother if it reads variables that the other modifies. The meta-algorithm then specifies the exact
order in which the different algorithms should be used (these are called events) on an initial state
aswell as how much time should be advanced for each event in order to simulate the whole model.

The meta-algorithm framework provides the platform that resolves both concerns raised above:
the need to use many different algorithms and in a combined form. Thus, this platform allows
the building of cellular models using appropriate representations at each level of modeling. Put
simply, the meta-algorithm makes a platform for generic modeling possible. Although a generic
system like this is more difficult to implement and requires a more complicated architecture than
a simple simulator that implements only one algorithm, it has many advantages that easily allow
it to surpass any such concrete system. For instance, any model that can be run in any specific
simulator can be run within E-Cell, because a model using only one formalism is a special case
of a multi-algorithm model. A second advantage is that being able to use multiple algorithms en-
courages modelers to perform their craft in a very natural way: by mentally decomposing systems
into sub-systems, modeling the sub-systems individually using appropriate algorithms and then
specifying the coupling between the sub-systems to create a whole cell model. Not only is this a
very natural and straightforward way to model large systems, but it also allows the sub-systems to
be simulated individually with no additional work. This was the first major set of results produced
by the E-Cell Project in the direction of whole cell modeling.

Other design considerations made by the E-Cell Project leading up to the construction of the
E-Cell Simulation Environment came from the experience of E-Cell Project members as to how
biological simulators are ultimately used by systems biology researchers in labs. “In silico” research
is usually only one part of a complicated process of biological knowledge creation, involving wet
lab experimentation, modeling, simulation and analysis. In these laboratory settings, biological
models are built from experimental results and their purpose is to explain and extend those results.
In these dynamic environments, each new piece of data and each limitation in the explanatory power
of a model, is likely to propagate changes in the model. At the frontiers of biological rescarch, a
model representing “best understanding” could be under near constant revision. In addition, the
simulation of models must be configurable to accommodate the range of approaches scientists
might wish to use as a part of their research. These approaches might include scripting multiple
simulation runs with varying inputs, running simulations on parallel or grid-based hardware and
investigating models through a graphical user interface where each variable in the model can be
looked at and modified at any moment in time. Another aspect of this configurability is that within
labs simulators are often used as one link in a chain of software programs; any generic biological
simulator must be configurable enough so that it can collect data from and send results to arbitrary
data sources. This high level of configurability is critical for a simulator to be useful to acommunity
of researchers, each with different needs.

The E-Cell System

With an initial requirements analysis completed and a theoretical foundation for development
laid out in the meta-algorithm, work began on building a specific software system for modeling
whole-cell systems. As we now know, the result of this work was a suite of software, called the
E-Cell System, which is a complete environment for the modeling, simulation and analysis of
complex biological systems. (Fig. 1) The E-Cell System consists of three components: the E-Cell
Modeling Environment, which allows for collaborative and distributed modeling of cellular systems,
the E-Cell Simulation Environment, which runs simulations of models and the E-Cell Analysis
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Figure 1. Overview of the E-Cell System. The E-Cell System consists of three components, the
Modeling Environment, the Simulation Environment and the Analysis Toolkit.

Toolkit, which is composed of a set of scripts for mathematically analyzing the results of E-Cell
Simulation Environment simulations.

The E-Cell Modeling Environment (also called E-Cell ME) is a computer environment for
the modeling of cellular systems. As computer processing speeds increase, along with the quanti-
ties of available genomic and proteomic data for any given system, the average size of biological
models is constantly increasing. Preparing models by hand is becoming increasingly difficult and
will likely become impossible on average in the near future. In order to take advantage of faster
computers and additional data, new automated methods of model production must be created, so
that computers can be “taught” how to build models by humans, instead of humans doing all the
work manually. The E-Cell Modeling Environment is an attempt to meet this need. The E-Cell
Modeling Environment is built around the idea that model building occurs in several stages: data
collection, data integration and initial editing of the model, which results in an initial approxima-
tion of a model of the system. This model is simulated and analysis of the results leads to additional
model refinement. The E-Cell Modeling Environment provides tools that address each of these
stages and has been created as a generic modeling environment, analogous to the way the E-Cell
Simulation Environment is a generic simulation environment.

Once a model has been created using the Modeling Environment and simulated in the
Simulation Environment, it must be analyzed either to refine the model, or to learn new facts
about the behavior of the system being modeled. For this, the E-Cell System provides the E-Cell
Analysis Toolkit, which consists of a series of mathematical scripts that analyze the behavior
of a model. For tasks such as model refinement, the E-Cell Analysis Toolkit provides scripts
for parameter tuning that help fit a model to some observed system output. For the analysis of
already-tuned models, the E-Cell Analysis Toolkit provides scripts for bifurcation analysis, which
analyze a model that might have several different behaviors depending on the initial conditions
in order to provide boundary conditions on the state space such that different regions lead to
one outcome versus the other.

These two programs, along with the E-Cell Simulation Environment, combine to form a
complete platform for “in silico” biological research and provide a useful tool for biological
researchers in the field.
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The Meta-Algorithm

The E-Cell Simulation Environment enables the simulation of models constructed using virtually
any combination of continuous and discrete algorithms using a formalism called “the meta-algorithm’,
which is a framework in which various simulation algorithms can be run in concert. The impor-
tance of the meta-algorithm to E-Cell cannot be overstated. Because the implementation of the
kernel of the Simulation Environment is primarily an implementation of the meta-algorithm, the
architecture of the meta-algorithm forms a substantial subset of the architecture of the E-Cell
Simulation Environment and thus bears our initial attention.The meta-algorithm originated
in the field of discrete event simulation. One important insight obtained by this field is that all
time-driven simulation algorithms can be classified into one of three categories based on how they
update variable values: differential equations (equations that modify variables by changing their
velocities), discrete time equations (equations that update variables by instantaneously and directly
modifying their values) and discrete event equations (equations that represent quantities changed
as the result of another event within the model occurring). Using this classification, discrete event
simulation provides another result, given by Ziegler,” which states these three types of algorithms
can be integrated in what is called a discrete-event world view (DEVS). In this formalism, a model
state consists of a set of variables that is updated at discrete times along with a global event queue
listing the state-changing events that are scheduled to occur and their times of occurrence.

Time advances in a discrete event system by taking the first event in the event queue, advanc-
ing global time to the moment of that event’s occurrence and executing the event, which causes
state changes to the model. The type of event, either discrete or continuous, results in either
the model variable values being modified directly or in changes to variables within the model.
Next, time advances from the occurrence of the first event to the next scheduled event by using
the recorded variable velocities to integrate all model variables to the time of the next event. By
alternately executing events and integrating state, a DEVS simulator can calculate the trajectory
of the model through time by calculating a sequence of states, one for each time an event occurs.
If the model state is needed between the occurrences of two events, the model state can always be
integrated from the time of the previously occurring event to the time the state is needed. Thus
the discrete-event world view describes one way to create a generic simulator.

The meta-algorithm, developed by Koichi Takahashi, is a concrete specification of a dis-
crete-event world view system that has been implemented with efficiency in mind. The discussion
of the meta-algorithm we present here will only be general, as a more detailed account is outside
the scope of this text. See Takahashi, 2003, for the definitive treatment.

The meta-algorithm describes in detail how a model using multiple algorithms can be uni-
fied in a discrete-event world view framework. It is called a “meta”-algorithm because it is only a
template for a simulator and only becomes a concrete algorithm when a particular model using
a particular combination of algorithms is interpreted. The specification of the meta-algorithm
begins by specifying the data structures used to represent a multi-algorithm model. The most
fundamental data structure defined is an object called Model, which is defined as a set of Variable
objects and a set of Stepper objects. A Variable is defined as a single named real value, such that
the Model object has the property that its state at any given time is completely described by the
state of its set of Variables.

A Stepper can be explained by describing it as a computational subunit of the Model object,
representing some subset of the total set of interactions that occur within the Model. Each Stepper
object consists of a set of Processes, which are objects encapsulating specific algorithms, an inter-
ruption method, a local Stepper time and a time step interval. Each event in the meta-algorithm
framework consists of a single Stepper “stepping’, a term that describes the process by which a
Stepper uses its Processes to update the Model, notify other Steppers in the Model of the changes
made and prepare itself for stepping again by rescheduling itself as an event.

Within these computational subunits, a Process is defined as an object that uses some subset
of the current Model state as well as a time interval to update Variables in the Model to a new
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state. Processes are organized by the way in which they use Model’s current state to modify that
state by noting that for any Process in a Model, two sets of variables can be identified. The first
is that Process’ set of accessor variables, which are the variables used by that Process to read the
environment in order to calculate the future state. The second are the mutator variables, which are
the variables actually updated by this Process (note that a particular Variable might appear within
both sets). Using the theorem from Discrete Simulation presented above, the meta-algorithm
characterizes any Process as either continuous or discrete; it further states that individual Steppers
can only drive a set consisting of one type of Process and calls these types Continuous Steppers,
Discrete Time Steppers or Discrete Event Steppers.

At this point, the Model specified by the meta-algorithm globally looks like a set of real val-
ues, as well as a set of computational subunits, each of which represents continuous or discrete
sets of behaviors that causes change within the model. Two more pieces of data are required. The
first is a global time value (which is always equal to the minimum of the set of local times of the
Steppers). The second is a binary relation on the Steppers, called the Stepper Dependency. This
relation is defined in the following way: A pair of non-equal Steppers (S;, S,) is in the Stepper
Dependency if Stepper S; contains a Process P; and Stepper S, contains a Process P; such that the
intersection of the mutator variables of P; with the acccessor set of P; is nonnull, which means that
two Steppers are related if the first modifies a value that the second needs to read. This is the data
the meta-algorithm works on and with that covered, we can now move on to explaining how the
meta-algorithm advances time and drives simulation.

For any system represented asa Model, the meta-algorithm specifies how time can be advanced.
Like any system built usinga discrete-event world view, time is advanced within the meta-algorithm
as a series of discrete events, where events consist of individual Steppers “firing”. Therefore, each
iteration of the meta-algorithm consists of several parts: choosing the next Stepper to execute by
comparing their local times, preparing the Model to run that event, “firing” that Stepper and then
resolving the Model so that everything is ready to iterate again.

Each iteration begins with choosing the next Stepper to execute. Because each Stepper keeps
arecord of when it ought to step next, finding the next executing Stepper is quite simple: it is the
Stepper with the smallest time of next firing.

The next step is to advance time in the Model to the time of the scheduled event. Because each
event occurs at a discrete time, the interval between any two consecutive events is, in general,
nonzero. And because each round of iteration can end leaving Variables with nonzero velocity,
this means that the Model state at the time of the previously occurring event must be integrated
to the present time, using some kind of extrapolation based on previously recorded variable veloc-
ity changes.

Next comes Stepper stepping, a process consisting of several parts: modifying global time,
updating variable values within the model, preparing to run again in the future and notifying
other Steppers of the changes made.

The first portion consists of the executing Stepper’s step function being called. The step function
may call one or more of the Processes owned by that Stepper, which, depending on whether the
Stepper is of the continuous or the discrete variety, results in either discrete changes to the values of
the Variables or changes to the Variable value velocities. This function also causes the time variables
of the executing Stepper to be modified. First, the Stepper’s local time is updated by adding the
current step interval to the current local time; second, based on the Model state after Processes
have been fired, a new time-step interval is chosen, preparing the Stepper for its next firing.

The second portion of the firing process consists of notifying all Steppers whose Processes access
variables are modified by the firing Stepper to inform them of relevant changes to the model and
update their future behavior accordingly, such as the next time they are scheduled to step. For this,
the global Stepper Dependency is used. For an executing Stepper S, all pairs (S, D) are found and
the interruption method for each such Stepper D is called. This allows Steppers that depend on
the data modified by the executing event to examine those changes and update their next time of
execution if needed. Once this is completed, Stepper firing is finished, leaving only the “in-between
steps” of recording the model state and checking to see if simulation-end conditions have been met.
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This is the meta-algorithm. It specifies how a generic simulator simulating any model can be
efficiently implemented usinga particular implementation of a discrete-event world view simulator.
Conceptually, this meta-algorithm forms the foundation for the E-Cell Simulation Environment.
In fact, the E-Cell Simulation Environment kernel is practically a direct implementation of the
formalism specified above. Everything else is largely a product of software design, wrapping this
generic simulator in clothing that makes it configurable and ecasy to use.

The E-Cell SE Kernel

Now that we have an overview of the theoretical foundations of the E-Cell Simulation
Environment, we can move on to its implementation, called Libecs, which is the name of the
simulator kernel of the E-Cell Simulation Environment. This kernel is written entirely in standard
ISO C++, and not only implements the meta-algorithm, but also provides the fundamental API
to all the essential features of the core system, such as data logging and model object creation.

With regards to calculation, Libecs does three things. It defines the data structures which
represent the state of the model, the data structures which represent the forces on the model and
the functions that advance time by manipulating these two sets of data.

Data definition in the Libecs implementation begins with the definitions of four basic object
classes, which form the parent classes for the different types of model components. Three of these
types, called Variable, Process and Stepper, conceptually correspond to the identically named
objects in the meta-algorithm (Fig. 2). The fourth, called System is new and acts as a type of set
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Figure 2. Overview of the fundamental classes of E-Cell.
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that contains Variables as well as other Systems and serves the role of organizing all the state data
within the model. To quickly discuss the roles of these objects, Variables represent the basic quan-
tities of model state (the number of some specific chemical species, for example). Process objects
represent individual mathematical relationships within the model (such as an equation that relates
the values of two model Variables). Stepper objects define computational subunits of a model and
control entire sets of Processes by activating the set as a group. That activation, which is called a
“step” and is initiated by calling a Steppers’s “step()” method, constitutes the atomic action in the
discrete event system which Libecs implements. As mentioned above, Systems organize the Variables
that make up the model state. In fact, the set of all Variables, as defined in the meta-algorithm, is
represented in Libecs by a single System object, called the root system, that acts as the one and
only container for state data by containing all other model Systems and Variables inside itself. By
creating different combinations of these objects, Libecs can represent any model.

One more common feature of these types must be discussed. In this framework, which hopes
to construct a representation of any generic model by creating combinations of arbitrarily defined
Process, Variable and Stepper object types, an important requirement is a way of assigning to those
different objects arbitrary properties of various types. For example, any Process that describes some
type of reaction between different chemical species requires additional rate information beyond
simply specifying reactants and products. Because we wish to be able to build arbitrary models us-
ingarbitrary components, Libecs defines a property AP, so that arbitrary property names, paired
with a mutable data value of a polymorphic type, can be added to an arbitrary object in the Model.
Some properties come predefined for all objects. For instance, each Variable object has a “Value”
property of cither Real type or of Integer type, where it might represent population count. Each
System has a “Size” property that is a real value that represents the volume of that compartment;
every object has a “Name” property that takes a string. Furthermore, by using this interface, models
simulated in the E-Cell Simulation Environment have the property that the collection of all object
properties is equivalent to the model state (many classes defined by Libecs do have nonproperty,
member data, but this all corresponds to data about the state of the simulator itself and not the
state of the simulated model.)

In order to implement this kind of universal property interface within Libecs, each model
object in the kernel derives from a class of type PropertiedClass, which acts as a generic interface
to properties of model objects by containing a static map listing all the PropertySlots owned by
objects in the Model. A PropertySlot (Fig. 3.) is the association of a PropertyName (a string)
with a PropertyValue, which is a polymorphic object that can be of type Real, Integer, String or a
List (which itselfis a list of other polymorphic types, including other Lists). Because each specific
property of each individual Model object is associated with a single PropertySlot object, the static
map of all these PropertySlots, owned by PropertiedClass, is universal in E-Cell—each Model
object can directly access any property of any other Model object as easily as any other.

The Libecs implcmentation of Propertics, whose software architecture is shown in Figurc 3,
has several advantages. First, it allows the basic model objects defined in Libecs to represent any
generic type of model object. Any arbitrary set of properties a specific model object might have
can be stored as a set of PropertySlots within this interface, which is uniquely associated with that
object. Second, this scheme allows for multiple types of different property values to be assigned
(this is called polymorphic behavior) without sacrificing efficiency. Commonly, a client directly
accesses a polymorphic property value, finding the desired PropertySlot using the PropertiedClass
interface and then using the generic getProperty() and setProperty() methods of that PropertySlot
to access the value. This type of access assumes nothing about the underlying data type and is on the
order of performance of standard C++ polymorphism. However, when a particular property must
be accessed repeatedly, as is the case where the logging components of the software have to repeat-
edly access the same PropertySlots in order to record their values through time, the PropertySlot
interface can also be used to get a concrete interface, called a PropertySlotProxy, that knows the
underlying type of the PropertySlot object and accesses it directly, bypassing polymorphic behav-
ior. When a PropertySlotProxy is created and cached between multiple accesses of a particular
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Figure 3. Object properties in E-Cell SE.

PropertySlot, it can be used to increase the speed to access that Property. Thus, this organization
of all state data into different PropertySlots means that all that data is accessible at any time, even
without knowing the type of data in advance. This organization also has the added advantage that
when the client does know the type of data, this knowledge can be used to increase performance.
With these advantages, the Property Interface is a very convenient organizational tool for all the
data within an E-Cell Model.

If we understand the role of a Process object is to represent a specific algorithm within a model,
then we can understand the role of the Stepper object is to a act as a computational subunit of the
model because they contain and manage sets of Model Processes and act as an interface to coordi-
natethe execution of subsets of Processes within its set. Because of the distinction made in the field
of discrete event simulation, Libecs divides Processes into two types: Continuous and Discrete. As
you might expect, Continuous Processes represent differential equations, which describe how to
simulate continuously changing quantities; Discrete Processes represent equations that describe
discrete changes to the model state at specific times. Using these definitions as a foundation, Libecs
defines four varieties of Steppers, which correspond to the four allowed ways that Processes can be
grouped together within Libecs. These four types are DifferentialStepper, DiscretéTimeStepper,
DiscreteEventStepper and PassiveStepper (Fig. 4).

A DifferentialStepper maintains a set of continuous Processes and acts as a unit for solving
those differential equations: the individual Processes are the individual equations in the system
and the DifferentialStepper is a program that actually solves that set of equations. The specific job
of a DifferentialStepper is to act as the differential equation solver for its Processes by determin-
ing optimal times for recalculating trajectories so that recalculation of equations is performed as
infrequently as possible while maintainingaccuracy. A computational challenge in simulating tra-
jectories of systems of differential equations comes when the set of differential equations contained
by a DifferentialStepper is “stiff . A system of equations is said to be stiff when explicit numerical
methods for that system become very inaccurate unless step sizes are small, oftentimes unacceptably
so. In this case, implicit methods, which use past information as well as current state, become much
more efficient (although under nonstiff conditions implicit methods are less effective). The Libecs
implementation of the DifferentialStepper type performs adaptive switching between implicitand
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Figure 4. Stepper classes of E-Cell SE.

explicit methods between nonstiff and stiff regions, using an explicit Dormand-Prince algorithm
(corresponding to a fourth-order Runge-Kutta with adaptive stepsizing) and an implicit Radau
ITA algorithm (the best implicit Runge-Kutta equation currently known) in order to overcome
these problems.

For driving discrete modeling, E-Cell provides three Steppers: DiscretéTime, DiscreteEvent
and Passive. Discret¢TimeSteppers are used for algorithms that represent changes to the system
that occur at discrete moments but where the actual time of “stepping” depends on the state of
the system (an algorithm that calculates population changes by executing one reaction event after
another, such as the Gillespie algorithm, is an example of this type of algorithm). DiscreteEvent
Steppers are used for DiscreteProcesses where the Processes fire at intervals independent of Model
state. Finally, PassiveSteppers control Processes that never spontaneously fire, where events hap-
pen only as a result of specific cues within the environment. These are the four types of Steppers
that exist in the Libecs environment and correspondingly, these are the four types of events that
can occur in E-Cell SE.

Last but not least, there is one other major component integral to the operation of the Libecs
kernel, the LoggerBroker, which acts as an interface to all features of the kernel involving data log-
ging. Using the LoggerBroker, Libecs can record the values of any or all of the PropertySlots in the
Model during the course of simulation. The LoggerBroker object works by creating and managing
collections of Logger objects, each of which is associated with a specific PropertySlot in the model
(aPropertySlot, as you recall, is the combination of a PropertyName and PropertyValue belonging
to a object in the Model). Immediately following the execution of each event during simulation
runtime, the LoggerBroker executes its log() method, which records each of the PropcrtyValucs
associated with each of its Logger objects. The LoggerBroker interface provides several advantages
to the E-Cell Simulation Environment. First, it provides a unified logging API that enables client
access to logging capabilities either at the low Libecs level, or at the higher architectural levels that
users use (we will later see how the E-Cell SE architecture wraps low level Libecs capabilities to
higher level functions that can be easily used by human users). Having a single object in charge of
this API also allows the logging process to be optimized in two ways. First, logged data is more ef-
ficiently stored in memory than might otherwise be possible, by internally having the LoggerBroker
periodically move stored data between memory and the hard disc in order to optimize the han-
dling of large data sets. Logger objects are also optimized for speed of access to PropertyValues
by obtaining and caching a PropertyCacheProxy for that class, which allows for faster amortized
accesses to the PropertyValue than through normal, polymorphic accesses.

Now that we are familiar with the individual objects contained within the kernel and under-
stand how the fundamental simulation types can be combined to represent mathematical models,
we can proceed to the process of how models are instantiated and simulated through time. When
the kernel initializes, it begins by creating an object called a Model. The Model object contains,
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Figure 5. An overview of the class structure of the E-Cell SE kernel.

organizes and coordinates all the data and software components needed to represent a model and
provides an interface to all the functionality of the E-Cell kernel: creating and setting up models
in preparation for the running of a simulation, stepping the model and logging data through
iterations of the meta-algorithm. The Model has three objects which help it to implement these
tasks: a root System object, a Scheduler object and a LoggerBroker object. The root System object
contains all Variables in the model as well as other Systems. The Scheduler object contains all the
Steppers within the model and organizes the execution of Stepper events, which when called in
order using their individual step() methods advances the state of the root System object through
time. The LoggerBroker object logs object PropertyValues after each cycle of the meta-algorithm.
This structure is shown in Figure 5. Please note that the Steppers are contained within the Scheduler
and all the Processes in the model are contained within the different Steppers.

Once the Model class has been initialized, a model is instantiated within it by calling different
factory methods for creating Variable, Process and Stepper objects within the Model, one at a
time. These factory methods create the new objects either in the root System, in the Scheduler (if
itis a Stepper) or in a Stepper (if it is a Process). Once each object has been individually added by
Libecs to the Model class,a Model member function called initialize() is called, which prepares all
additional data structures needed by the Model class. Most notably, both the Stepper Dependency
and global time are set up during this stage, according to the specifications of the meta-algorithm.
Likewise, one Event is created for each Stepper (each Event represents the simulation event consist-
ing of the next stepping of its associated Stepper). These events are stored and maintained in an
event queue owned by the Scheduler object and sorted by time of next planned stepping. Once
the setup of all data structures is completed, advancement of time is ready to begin.

Implementation of the meta-algorithm (Fig. 6) is spread throughout the kernel. The entry
point to the meta-algorithm is in Model’s step() function, which executes one iteration of the
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Figure 6. The time-advancement process in the E-Cell SE kernel.

meta-algorithm. Generally, this process consists of determining the time of the next occurring
event and setting global time accordingly, integrating the model state to the new current time,
stepping the scheduled Stepper by calling its step() method, which causes some Processes to be
fired, logging the changes and using the StepperDependency to notify any dependent Steppers so
they can reschedule themselves as well as modify any internal parameters as needed.

As mentioned, the first activity performed during a simulation cycle is a determination of the
time of the next scheduled event. The Scheduler’s event queue begins each step() cycle containing
alist of executing events in order. Therefore, finding the time consists of inspecting the value of the
scheduled execution time contained by the Event at the very top of the Event Queue.

The next step is to advance time by integrating all reference variables (the combined list of the
variables each Process within that Stepper must read) associated with the about-to-be-executing
Stepper. This is done by calling the integrate() method for each Variable in the executing Stepper’s
variable reference list, which uses recorded interpolants of that variable to extrapolate the fu-
ture value at any specified time. The way this integration procedure works is related to the way
in which velocity changes are recorded by Variables. Each Variable that is to be continuously
modified is by definition a mutator reference for some Continuous Stepper registered with the
kernel; each such Continuous Stepper contains an Interpolant class and during initialization
each such Stepper registers an instance of the Interpolant class with each of its mutator reference
Variables. When a Continuous Process needs to add a velocity change to a Variable, it does so by
passing the changes through the Variable’s Interpolant class, which translates velocity changes
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into interpolant values. When a Variable is called upon to integrate itself to a current time, it
uses these intcrpolant values to calculate interpolant differences, summing over these differences
to approximate the value of the Variable at the specified time. Thus, using its interpolant coef-
ficients that are guaranteed to be up-to-date at each point of simulation, a Variable can give its
value for any moment in time.

Once integration is completed, the scheduler executes the action of the Stepper, by calling its
step() method, which fires some subset of the Processes associated with this Stepper. This step is
general (it is implemented as a virtual method) and its exact behavior depends heavily on the type
of Stepper. For example, in a DifferentialStepper, which contains Processes corresponding to dif-
ferential equations, this method consists of calculating and updating velocities of variables through
Interpolant classes, along with calculating approximate time steps for the next execution of the
Stepper. However, in a DiscretéTimeStepper, this method consists simply of discretely updating
the values of variables by firing the Processes within the Stepper.

Next comes logging, as the Stepper being stepped executes its log() method, which indicates to
cach logger associated with a PropertySlot of some Variable that Stepper references that it should
record the value in that PropertySlot at the given time. This procedure is shown in Figure 7. The
result is that each logger accesses its associated PropertySlot value through its PropertySlotProxy
and inserts it into its PhysicalLogger object for recording.

Finally, using the time of next stepping calculated during its step() method, the Stepper is
rescheduled in the Scheduler’s event queue.

At this point, all state changes have been propagated into the model and time has been up-
dated. The final activities of the meta-algorithm consist of resolving the model to incorporate
the state changes during the current iteration by interrupting and rescheduling each Stepper
that is dependent to the current one. This interruption process may change any implementation
variables owned by the Stepper, most notably the next time of stepping. PassiveSteppers also
fire their Processes here because they only execute after being interrupted by some occurrence.
After being interrupted, each Stepper that updates its next firing time reschedules itself so that
the Event Queue remains ordered by time as a post condition of Model’s step method. At this
point, an iteration of the meta-algorithm has been completed and the kernel is ready to advance
time once again, choose the next Stepper to execute and so forth.

The major advantage to this architecture is due to the generic interfaces belonging to its funda-
mental classes. Specifically, because a Process class is only required to define initialize() and fire()
methods, new Processes can be programmed and dynamically loaded by the Libecs kernel during
runtime. As long as a modeling formalism can be encoded into an algorithm, it can be compiled
as an E-Cell plug-in module and loaded into the E-Cell Simulation Environment.

Interfaces to the Kernel

From a scientific programming perspective, Libecs is a complete implementation of a generic
simulation platform. From the perspective of software engineering, it is not enough. Although
the framework is extensible through the common algorithm interface provided by Libecs, it is
cumbersome to invoke the core system library directly. Therefore, the kernel is wrapped in a Python
interface layer to aid in programming, scripting and providing front ends to the kernel.

The Python interface layer API provides a thin interface to the kernel and is structured around a
Session object. The Session object provides an interface for setting up models, running simulations
and scripting sets of simulation runs. Methods provided by the Session API can be divided into
five types. Entity and Stepper methods allow for individually creating or accessing these objects
within a model. Logger methods allow for adding Loggers to a model, as well as saving the data
recorded by those Loggers. Simulator methods allow for advancing time within a model, either by
some fixed amount of time or by some number of steps. Finally, Session methods provide high-level
functions for running the E-Cell Simulation Environment, most notably, methods for loading
and saving models from E-Cell Model Language files (EML files). This Python API is covered in
detail in the E-Cell Manual.?
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Figure 8. The architecture of the E-Cell Simulation Environment.

For E-Cell development, it is important to note that the Python interface layer does not directly
wrap the kernel. Instead, a micro-core layer, called libemc, is built in C++ on top of the kernel,
which contains many of the functions found in the Python interface. This layer is then wrapped
in a Python interface and combined with other Python code known as PyEcell to produce the
complete Python interface API upon which the front-ends to E-Cell are built. This layered ar-
chitecture is presented in Figure 8.

Built on top of the Python API are three front ends provided by E-Cell: ecell3-session-mon-
itor, ecell3-session and ecell3-session-manager.® Ecell3-session-monitor is a graphical user
interface that is well suited for interactive model editing and running individual simulations.
This is especially useful to researchers initially investigating the behavior of models as it provides
numerous capabilities for investigating and analyzing the behavior of the model at any level.
The behavior of individual components can be investigated individually or as a whole using a
graphical interface. The second major front end component is the ecell3-session command,
which provides a command line interface suitable for scripting and automating the processing
of large models. This command line mode is an extension of a Python shell that directly reflects
the Python session APIL. The final front-end is the ecell3-session-manager, which is designed for
running multiple parallel sessions in either a grid or cluster environment. Ecell3-session-manager
provides three classes, SessionManager, SessionProxy and SystemProxy.4 Used in tandem, these
provide a way for the E-Cell SE to be associated with a computing environment, whether that
be a single computer, a grid or a cluster and then to automate the running of large numbers of
similar models by creating jobs and farming them out to the execution environments registered
with the system While these tools have been designed to match common tasks users are faced
with as they attempt to elucidate biological understanding from models, they are also an illustra-
tion of the extensible environment that the E-Cell Simulation Environment provides. E-Cell
SE has been designed so that as much as possible users can modify or extend it according to
their own needs. By wrapping the core simulation code in a programming API of an easily used
programming language like Python, this goal is realized, providing nearly unlimited forms in
which this software can be used.
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Future Directions

While our tour of the E-Cell SE architecture is nearly complete, it is informative to look at what
the future holds in developments for E-Cell. Two major developments currently being prepared
for the next major release of E-Cell are spatial modeling and the introduction of a dynamic model
structure. Currently, there is no direct support for representing spatial location within E-Cell. One
goal of the project is to encourage the perspective that models can be most effectively made by using
the tools of reductionism and using the most appropriate algorithm for any sub-system. Because
biologists can present examples of systems, such as diffusion, active transport, molecular crowding
and cytoskeletal movement, where spatial views are important for understanding, it is clear that
prepackaged, “out-of-the-box” spatial algorithms and representations are necessary in a biological
modeling and simulation platform such as the E-Cell Simulation Environment. This will be added
to E-Cell in the form of multiple spatial representations that objects can exist in and interact, such
as either continuous three-dimensional space or lattices of discretised regions in space.

The second major development will be support for a dynamic model structure, including the
creation and deletion of objects. Fundamentally this is important because biological systems are
dynamic themselves. Within these systems, objects are created and destroyed constantly and in
order to appropriately model these systems, dynamic abilities must be added. One specific example
of how such a feature might be useful can be found in the study of multi-protein complexes. In the
study of many intra-cellular processes, such as signal transduction, a feature known as combinatorial
explosion is often present. This situation is caused when a relatively few numbers of proteins can
combine in regular ways, producing situations where the number of complexes that can potentially
be created is enormous, far greater than that which can ever be sensibly enumerated. Because of
this, dynamic model structure must be provided so that these species no longer need to be a priori
enumerated and can simply be dynamically created and added to adynamic model during runtime,
along with procedures for informing the rest of the model of the new changes.

An E-Cell System incorporating these features is currently under development. These processes
will be critical to the biological modeling and simulation that must take place in order to make
the most accurate models of complex systems possible.

Conclusion

Development of the E-Cell Simulation Environment has been motivated by the belief that
large-scale complex models can best be created and understood by composing models written
with arbitrary algorithms. E-Cell supports this with a meta-algorithm incorporating a unique
plug-in architecture that allows new algorithms to be written and seamlessly integrated into the
E-Cell Simulation Environment. Secondary considerations for the design of E-Cell include a belief
that this software should be extensible and customizable for users. While the E-Cell Simulation
Environment provides in its default distribution several programs users should find quite useful,
it will always be possible to write new interfaces that allow for simulation using the E-Cell SE. In
this way, E-Cell SE can be a simulator that is relevant far into the future. As new algorithms are
developed, they can casily be incorporated into E-Cell SE. As new workflows become needed,
E-Cell SE can be molded to fit the required niche. In this way, we expect this generic platform to
prove increasingly relevant, providing all the power and flexibility needed to users even as their
ambitions only grow.
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CHAPTER 3

Distributed Cell Biology Simulations
with the E-Cell System

Masahiro Sugimoto*

Abstract
nalytical techniques in computational cell biology such as kinetic parameter estimation,
AMetabolic Control Analysis (MCA) and bifurcation analysis require large numbers of
repetitive simulation runs with different input parameters. The requirements for significant
computational resources imposed by those analytical methods have led to an increasing interest
in the use of parallel and distributed computing technologies.

We developed a Python-scripting environment that can execute the above mathematical analyses.
Also, where possible, it automatically and transparently parallelizes them on either (1) stand-alone
PCs, (2) shared-memory multiprocessor (SMP) servers, (3) cluster systems, or (4) a computa-
tional grid infrastructure. We named this environment E-Cell Session Manager (ESM). It involves
user-friendly flac application program interfaces (APIs) for scripting and a pure object-oriented
programming environment for sophisticated implementation of a user’s analysis.

In this chapter, fundamental concepts related to the design and the ESM architecture are
introduced. We also describe an estimation of the parameters with some script examples executed

on ESM.

Introduction

Computer simulations are often used to understand complex biological mechanisms, repro-
ducing dynamic behavior in cells, organs and individuals. Simulation models are important for
simultaneously understanding the complex processing of biological phenomena and for revealing
their mechanisms in vivo. To establish an in silico model to capture biological behavior, qualitative
structural information concerning cellular elements including gene networks, metabolic pathways
and cascades of signal transductions, along with parameters of reaction rates characterizing the
dynamics of the model must be provided precisely and in sufficient detail. Quantitative parameters
available from literature or public databases deteriorate the credibility of such constructed models
because they often show noise and are measured under different conditions. Recently, a number
of high-throughput measurement devices to perform time-course quantitative studies have been
developed; these have been aimed at accumulating sufficient and accurate data that can be used for
cell simulations.! Thus, development of sophisticated parameter estimation methods to determine
parameters unavailable from observable data and to build quantitative models are required.

Estimation of parameters for large-scale models requires high-performance computing facili-
ties because a number of simulation runs must be repeated using different parameters to produce
models that represent specific time-courses. Generic parameter estimation approaches based on
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global optimizations such as genetic algorithm iterate independent simulations, which can be ex-
ecuted on coarse-grained parallel environments, e.g., cluster machines and grid infrastructures. A
number of cell simulators implementing parameter estimation functions with parallel computing
have been developed. Systems Biology Workbench (SBW) is an extensible and general framework
that includes a biological simulation engine and parameter optimization modules.? Grid Cellware
isan integrated simulation environment implementing the adaptive Swarm algorithm for parameter
estimation.’ OBIYagns is a parameter estimation system based on an epigone genetic algorithm
called distance independent diversity control (DIDC) and has a Web-based graphical interface.*
These systems exploit clusters or grid infrastructures to distribute simulation runs to reduce the
total calculation time.

After constructing the structure and parameters needed in a simulation model, they need to be
evaluated by comparing them with known biological data. At this stage, the validity of the model is
investigated; this includes the ability to reproduce inter/intra cellular behaviors or its quantitative
properties including sensitivity or stability of parameters and analyses using Metabolic Control
Analysis (MCA), bifurcation analysis. These analyses can be parallelized at a coarse-grained level
because they also repeat independent simulations with different parameters. Typical in silico ex-
periments can also be parallelized in the same way such as over/under-activate a/some intercellular
substrate(s) to virtually simulate gene knockout or overexpression and the cultivation of cells with
different intracellular conditions such as pH or temperature to maximize/minimize concentrations
of cellular products. Since many simulation applications in computational cell biology require
repetitive runs of simulation sessions with different models and boundary parameters, distributed
computation schemes are highly suitable for such applications.

Here, we discuss a scheme for job-level parallelism, or distributed computing. There is already
some middleware software available for the assignment of jobs to distributed environments, e.g.
Portable Batch System (PBS, http://www.pbs.org/), Load Sharing Facility (LSF, http://www.
platform.com/), Sun Grid Engine (SGE, http://wwws.sun.com/software/gridware/) at the clus-
ter level and Globus toolkit® at the grid level. While these low-level infrastructures are extremely
powerful, they are not compatible with each other, nor are they readily accessible to an average
computational biologist. On the other hand, higher-level parallelization systems with a Web-based
user interface such as OBIYagns may help computer neophytes. Though these systems provide
editable workflow functions such as myGrid6 and ProGenGrid’, they lack programming flexibility
to implement a user’s analysis algorithm for various research purposes.

In this chapter, we describe the architecture and the design of a distributed computing module
of E-Cell3, called E-Cell Session Manager (ESM).* ESM was developed to produce higher-level
APIs to provide users with a scripting environment and to transparently distribute multiple E-Cell
sessions on stand-alone PC, SMP, cluster and grid environments. We also introduce parameter
estimation scripts built on ESM as an example.

Design of ESM
Architecture of ESM

Figurel shows the architecture of ESM. It is composed of three layers: (1) a class library for cell
simulation (libecs) and its C++ API (libemc), (2) a Python language wrapper of libemc, PyEcs
and pyecell which is the interface connecting the bottom and top layers and (3) a library of various
front-end and utility modules written in Python. The pyecell library defines an object class called
Session representing a single run of the simulator. ESM provides APIs for Python scripting and
instantiates many Session objects.

The Class diagram of ESM is depicted in Figure 2. The Session Manager class provides the user
with a flat API to create and run simulation sessions. The Session Manager class holds a System
Proxy object as its attribute. System Proxy conceals the difference of distributed environments and
communicates to the computer operating system or to the low-level middleware of the computing
environment on which ESM is running (Fig. 3). Session Proxy executes a task in PC and SMP
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Figure 3. Distributed and stand-alone environment infrastructures communicating with ESM.
PC, WS and cluster represent a stand-alone PC, a workstation and a cluster machine, respec-
tively. The user’s script received by ESM and related files, such as ESS or EML, are distributed
to a grid or a cluster environment through a lower-level middleware. In a stand-alone or SMP
machine, jobs are directly generated by ESM. The job dispatch and collection of the results
are actually done by the subclass of System Proxy with Session Proxy.

environments or processes a job on cluster and grid environments and holds the status of the process
or job (waiting, running, recoverable error, unrecoverable error or finished). Unrecoverable data
are unrepeatable errors including job submission failures such as end of file (EOF) error due to
instantaneous breakdown of the network.

To accommodate a distributed environment, subclasses of the Session Proxy and System
Proxy objects are exemplified as follows. When a user uses a cluster machine on which the Sun
Grid Engine (SGE) parallel batch middleware is installed, the Session Manager class generates
instances of SGE Session Proxy and instances of SGE System Proxy that are subclasses of Session
Proxy and System Proxy, respectively. On an SMP or a PC computer, they spawn processes in the
local computer and use system calls to manage tasks. With other environments, these subclasses
contact with the lower-level middleware that manages the computing environment to control
jobs and so obtain job status.

Scripting ESM

This section introduces how to use ESM and an ESM script to run multiple E-Cell tasks with
different parameters. To run ESM, three types of files are required: (1) a model file (EML or
E-Cell model description language file), (2) a session script file (ESS or E-Cell session script file
which corresponds with a run of E-Cell simulation) and (3) an ESM script file (E-Cell session
manager script file). Examples of command lines to spawn ESM are shown in Figure 4. Examples

% ecell3-session-manager --environment=Local ems.py (1)
% ecellli-session-manager --environment=SGE --concurrency=30 ems.py (2)
% ecelll-session-manager --environment=Globus2 --concurrency=100 ems.py (3)

Figure 4. Command line examples for running ESM. The ‘—environment=" and ‘—concur-
rency="command-line arguments specify the computing environment and the concurrency
of the distributed jobs, respectively. The last argument, ‘ems.py’, is an ESM script file for de-
scribing the ESM procedure, see Figure 5 for details of ‘ems.py’. Reproduced from reference
8 with kind permission of Springer Science+Business Media.
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MODEL_FILE='model .eml’

ESS_FILE='runsession.py’

# (2) Register jobs.

aJobIDList = []

for VALUE_OF S in range(0,100):
aParameterDict={'MODEL_FILE':MODEL_FILE, 'VALUE_OF_S':VALUE OF_ S}
# registerEcellSession(the gcript, parameters, files that the ESS uses)
aJobID = registerEcellSession (ESS_FILE, aParameterDict, [MODEL_FILE,])
aJobIDList.append (aJobID) # Memorize the job IDs in aJobIDList

# (3) Run the registered jobs.

run()

# (4) Examine the results.

for adobID in aJobIDList: # Print the output of each job.

print getStdout (aJobID}

Figure 5. A sample ESM script. This script runs the session script ‘runsession.py’ 100 times
by changing the parameter ‘VALUE_OF_S’ from 0 to 100. In the resister step (2), an ESS file
‘runsession.py’ is registered with the parameters ESS_FILE and VALUE_OF_S. The characters
of MODEL_FILE and VALUE_OF_S in ESS are replaced for the values of MODEL_FILE and
VALUE_OF_S, respectively. In step (3), all registered ESS files are executed. Step (4) simply
prints out the standard output of all executed jobs. Reproduced from reference 8 with kind
permission of Springer Science+Business Media.

loadModel ( MODEL_FILE ) # Load the model.

S = createEntityStub( 'Variable:/:5' ) # Create a stub object of
the simulator variable ‘Variable:/:S'

S['Value'] = VALUE OF_S Set the value VALUE OF_5 given by the

= o 2%

ESM script in Fig.5 to the variable.

run{ 200 ) # Run the simulation for 200 seconds.

message( S['Value'] ) # Print the value of 'Variable:/:8'.

Figure 6. A sample E-Cell session script (ESS). This script runs a simulation model for 200
seconds and outputs the value of the variable ‘Variable:/:S" in the model after the simula-
tion. The initial value of the variable is changed to the value of "VALUE_OF_S’ given by
the ESM script in Figure 5. Reproduced from reference 8 with kind permission of Springer
Science+Business Media.

of an ESM script file and an ESS file used in the script are shown in Figures 5 and 6, respectively.
Details of an example ESM script are below.

Setting System Parameters
The computing environment and concurrency needs to be set when running ESM. The comput-
ing parameters spccify what types of facilities are to be used. The concurrency parameter spcciﬁes
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the maximum number of CPUs that ESM uses simultaneously. When no concurrency parameter is
specified, a default value is used, e.g., 1 CPU is used on a stand-alone PC or numbers of all available
queues on a cluster machine are used. These parameters are given as command-line arguments to
the ‘ecell3-session-manager’ command, which runs an ESM indicated by the user. Alternatively, the
user can specify the computing environment, named setEnvironment (environment) and setCon-
currency (concurrency) in an ESM script. Other execution environmental conditions should be
specified here, on top of the ESM scripts. For example, ESM generates intermediate files under a
working directory, specified by setTmpRootDir(directory), during its calculation. These files are
removed when the procedure reaches the end of the ESM scripts. Saving the setTmpDirRemoval
(deleteflag) method with false arguments avoids deletion of these files and is useful for debugging
ESM or ESS scripts.

Registering Jobs

The registerEcellSession method in an ESM script registers an E-Cell job. It accepts three argu-
ments: (1) the E-Cell session script (ESS) to be executed, (2) the optional parameters given to the
joband (3) the input files to the script (at least a model file) that must be available to the ESS upon
execution. In the example in Figure 5, 100 copies of the session script ‘runsession.py” have been
registered with the model file ‘model.eml’ An optional parameter to the script, VALUE_OF_S’
is also given to each session in the range 0, 1, ..., 100. When a job is registered, a Session Proxy is
instantiated and the registerEcellSession method returns a unique ID.

Running the Application

When the run method is called, registered jobs start to execute or are submitted to the
lower-level middleware. During this step, System Proxy transfers the ESS file and all other related
files to the execution environment. System Proxy communicates with the computer operating
system or lower-level middleware at regular intervals to track the process and job status and to
update the status of Session Proxy itself. Until all jobs and processes are either “finished’ normally
or are stopped in ‘unrecoverable error’ states, the run method is repeated. Job execution in this

method is parallelized, if possible.

Examining the Results
After running ESS, scripts such as that shown in Figure 5 print the results of the executed ESS
to the screen; getStdout (aJobID) returns the standard output of the job specified by a job ID.

Parameter Estimation on ESM

This section introduces parameter estimation for an example application scripting program
built on ESM architecture. This program incorporates a genetic algorithm—an evolutionary
algorithm—to identify a global minimum of given fitness functions, avoiding local minima.
A brief overview of a genetic algorithm is as follows. First, individuals in arbitrary numbers
are generated with searching parameter sets whose values are randomly distributed within the
search space. Second, each individual is independently evaluated with the user-defined fitness
function. A square-error function between given and simulation-predicted trajectories is often
used as the fitness function. Third, individuals are proliferated or wiped-out from the group
of individuals according to their fitness values. Fourth, individuals are crossed over. Fifth, each
individual is mutated. These procedures are repeated unless individuals with a sufficient fitness
value are found.

A detailed implementation of the genetic algorithm on ESM is described here. The first step of
initialization includes parsing a file specifying the parameter estimation process (e.g., Fig. 7) and
setting up working conditions, e.g., preparing a temporary working directory with setTmpRootDir
(directory) and setting concurrency with setConcurrency (concurrency). Moreover, individual
instances need to be tested with random parameters. The genetic algorithm itself is also initial-
ized according to the specified values in the [GA] section of the setting file. In addition, the other
parameters are parsed here for the following procedures.
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Fundamental]

[Seed]

RANDCOM SEED =0
[GA]

MAX GENERATICON =4
POPULATION = 10

]

FINISH CONDITION 0.005

[Input file or directory]

ESS FILE = runsession.py
EML KEY = EML_
EML FILES = simple.eml

Figure 7. An example of part of a setup file for a step in a process of parameter estimation
built on ESS. The format of this file simply follows ‘items = value’. The value of ‘'RANDOM
SEED’ represents the initializing value for a random function used in a genetic algorithm.
‘MAX GENERATION’ and ‘POPULATION’ mean the maximum number of generations and
the number population, respectively. The genetic algorithm stops when the best fitness value
becomes less than or equal to the threshold by ‘FINISH CONDITION'. The value of ‘ESS FILE’
is the ESS file in which the procedure to evaluate an individual and to calculate fitness value
is written. The value of ‘EML KEY” is used to specify an EML file in the ESS file. The value of
‘EML KEY” in the ESS file will be replaced to the value of ‘EML FILES” when the procedure
is executed.

In the second step of the evaluation, E-Cell sessions with different searching parameters are
registered using registerEcellSession (essfile, argument, extrafiles) methods; ‘essfile’ and ‘extrafiles’
represent an ESS file which includes search parameters and a list of training-time course data
files to be used by the fitness function, respectively. Next, the call run method is simply applied
to execute the registered ESS files (Fig. 8). Procedures described in an ESS run a simulation with
given parameters and evaluate fitness values defined in the ESS. When all spawned sessions finish
in success, all calculated fitness values are converged. Furthermore, the third step of selection, the
fourth step of crossover and the fifth step of mutation follow and then go back to the second step
of the evaluation.

On a stand-alone PC, the parameter estimation works as a simple genetic algorithm that
executes all ESS scripts in sequence. In grid or cluster environments, it behaves as a master-slave
parallel GA, where the master process works on a master node and the calculation of fitness values
(procedures written in ESS) is evaluated concurrently in a slave process distributed in parallel
computational resources.

Discussion

We have evaluated ESM by implementing simple iterations of E-Cell sessions and a genetic
algorithm on ESM. The procedure we described works transparently in both stand-alone and
distributed computational environments. An ESM script is helpful for users who might not be
familiar with programming parallel environments. It enables these users to implement analysis of
algorithms and to easily parallelize them. All scripts can be written in the Python language utiliz-
ing ESM’s user-friendly API methods. Indeed, the architecture of ESM is so generic that it can
execute ordinary scripts, such as Python, Perl and Shell by the registerJobSession method rather
than registerEcellSession.

In homogeneous parallel computing environments such as shared-memory machines or PC
clusters, it is relatively easy to schedule jobs to minimize the total amount of processing time.
On the other hand, heterogeneous environments such as PC grids require more sophisticated
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from ecell ECDDataFile import *
import os

= gimulation
DURATION = 1000
START TIME =0
INTERVAL = 10

= parameters to be logged.
VARIABLE_LIST FOR_LOGGER = [ '"Variable:/:S:Value', "Variable:/:P:Value' ]

Z (1) load an eml file
loadModel( _ENML_)

= (2) set parameters

anEntity = createEntityStub( Process:-E' )
anEntity.setProperty( ‘KmS", _KmS_ )
anEntity.sefProperty( 'KcF', _KcF )

# (3) create logger stubs

aLoggerList =[]

for iin range( len(VARIABLE LIST FOR_LOGGER) ):
aLogger = createLoggerStub( VARIABLE LIST FOR_LOGGER][i] )
aLogger. create()
aLoggerList. append( aLogger )

# (4) un gimulation
nn( DURATION )
# (5) reading of training time-course (omitted)

# (6) saving predicted tiume-course (omitted)

# (7) calculation of the difference between training and prediction

# simulated time-courses (omittec)

# (8) writing of the value of finess function to 'result. dat'
open(result.dat’'w').write(str(aDifferenceBetweenTheTimeC ourses))

Figure 8. An example ESS (E-Cell session script file) for parameter estimation. Step 1) a model
file is loaded; Step 2) KmS and KcF are set to values given by ESM to the model; Step 3) log-
ger stubs are prepared for the model’s time-courses; Step 4) simulation is executed; Step 5)
given time-course data is read; Step 6) the simulated time-courses are saved to files; Step 7)
simulated and given time-courses are compared to evaluate the model; and Step 8) the fitness
value is placed into a file as a result.

scheduling because the topology of remote computation nodes and the network speed between
them is generally unpredictably. Such environments deteriorate the parallelization performance
of programs requiring synchronous timing of parallelized sessions such as the master-slave genetic
algorithm. Asan example to resolve this problem, Island-type genetic algorithms may reduce these
adverse affects by reducing synchronous transactions among remote calculation nodes and are suit-
able for heterogencous and coarse parallel environments. The implementation of such algorithms
accommodating a heterogeneous environment is something we have set down for future work.
Medium scaled infrastructures including coarse-distributed computational resources where
multiple PC-clusters are connected by grid technology are common network architectures. The
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current run method in an ESM script simply distributes all registered jobs, which means that
job scheduling depends on lower layer middleware. Although submission in the grid version of
ESS with cluster options is one solution to efficiently utilize such middleware, users must have
detailed knowledge of the features of distributed environments to utilize them. In the future, we
will investigate implementation of alternative methods with a sophisticated scheduling scheme.

We have also developed various kinds of other analytical scripts that run on ESM: a sensitivity
analysis toolkit based on MCA and a bifurcation analysis toolkit that is used to estimate the stabil-
ity of nonlinear models. We still need to design a scheduling scheme suitable for the algorithms
commonly used in biological systems.

Conclusion

We developed a distributed computing module for the E-Cell System that we named the E-Cell
Session Manager (ESM). This software is a higher-level job distribution middleware providing a
Python-scripting environment to transparently run simulation runs on any type of stand-alone,
cluster or grid computing environments. An EMS script, a script language of ESM and parameter
estimation built on ESM is included in the E-Cell Simulation Environment Version 3 package.
This package can be downloaded from http://www.e-cell.org/.
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CHAPTER 4

A Guide to Modeling
Reaction-Diffusion of Molecules

with the E-Cell System

Satya Nanda Vel Arjunan*

Abstract

he E-Cell System is an advanced platform intended for mathematical modeling and simu-

lation of well-stirred biochemical systems. We have recently implemented the Spatiocyte

method as a set of plug in modules to the E-Cell System, allowing simulations of com-
plicated multicompartment dynamical processes with inhomogeneous molecular distributions.
With Spatiocyte, the diffusion and reaction of each molecule can be handled individually at the
microscopic scale. Here we describe the basic theory of the method and provide the installation
and usage guides of the Spatiocyte modules. Where possible, model examples are also given to
quickly familiarize the reader with spatiotemporal model building and simulation.

Introduction

The E-Cell System version 3 can model and simulate both deterministic and stochastic biochemical
processes.! Simulated molecules are assumed to be dimensionless and homogeneously distributed in
a compartment. Some processes such as cell signaling and cytokinesis, however, depend on cellular
geometry and spatially localized molecules to carry out their functions. To reproduce such processes
using spatially resolved models in silico, we have developed a lattice-based stochastic reaction-diffuson
(RD) simulation method, called Spatiocyte,* and implemented it as a set of plug in modules to the
E-Cell System.? Spatiocyte allows molecular diffusion and reaction to take place between different
compartments: for example, a volume molecule in the cytoplasm can diffuse and react with a surface
molecule on the plasma membrane. Since molecules are represented as spheres with dimensions, it
can also reproduce anomalous diffusion of molecules in a crowded compartment.** Using Spatiocyte
simulated microscopy visualization feature, simulation results of spatiotemporal localization of
molecules can be evaluated by directly comparing them with experimentally obtained fluorescent
microscopy images.

The theory and algorithm of the Spatiocyte method are provided in Arjunan and Tomita
(2010)*while the implementation details are described in Arjunan and Tomita (2009).% In this
chapter, we provide a guide on how to build spatiotemporal RD models using Spatiocyte modules.
We begin with the basic theory of the method and proceed with the installation procedures.
The properties of each module are outlined in the subsequent section. Some example models are
given to familiarize the reader with the common model structures while describing the modules.
We conclude this chapter by outlining the planned future directions of Spatiocyte development.

*RIKEN Quantitative Biology Center, Furuedai, Suita, Osaka, Japan.
Email: satya@riken.jp

E-Cell System: Basic Concepts and Applications, edited by Satya Nanda Vel Arjunan,
Pawan K. Dhar and Masaru Tomita. ©2013 Landes Bioscience and Springer Science+Business Media.
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Spatiocyte Method

In this section, we summarize the underlying features of the Spatiocyte method that are
necessary to build an RD model. For a more detailed description of the method we direct the
reader to a previous article.?

The Spatiocyte method discretizes the space into a hexagonal close-packed (HCP)
lattice of regular sphere voxels with radius 7,. Each voxel has 12 adjoining neighbors. To
represent a surface compartment such as a cell or a nuclear membrane, all empty voxels of the
compartment are occupied with immobile lipid molecules. The method also allows molecules
to be simulated at microscopic and compartmental spatial scales simultaneously. In the former,
each molecule is discrete and treated individually. For example, each diffusing molecule at the
microscopic scale is moved indcpcndendy by aDiﬁ[mionProcess from a source voxel to a target
neighbor voxel after a given diffusion step interval. Immobile molecules are also simulated at
the microscopic scale. Conversely at the compartmental scale, molecules are assumed to be
homogenecously distributed (HD) and thus, the concentration information of each HD species
is sufficient without explicit diffusion movements. Depending on the simulated spatial scale
and the mobility of the reacting species, molecules can undergo either diffusion-influenced
or diffusion-decoupled reactions.

All second-order reactions comprising two diffusing reactants, or a diffusing and
an immobile reactant are diffusion-influenced, and are therefore, executed by the
DiffusionInfluencedReactionProcess. The remaining reactions, which include all zeroth- and
first-order reactions, and second-order reactions that involve two adjoining immobile reactants or
atleast one HD reactant, can be decoupled from diffusion. These diffusion-decoupled reactions
are performed by the SpatiocyreNextReactionProcess.

We proceed with the execution of DiffusionInfluencedReactionProcess for a reaction j. Following
our discretized scheme? of the Collins and Kimball RD approach,® when a diffusing molecule
collides with a reactant pair of j at the target voxel, they react with probability

( W Ayt g e, product(s),
ﬁ' A, + Ay iy product(s),
5= ﬁﬁ?’ As+ Bs — ::1: product(s),
Da As + Ay =22 product(s),
%’"‘fﬁ A, + B, £42, product(s),
(G+35%f2’;/"ﬁ)p,\ . Au(+Ls) = product(s),
where the constant y = (2\7/21(:\1/\%?-:‘\5/\5_:%)2, L is the lipid species, £ is the intrinsic reaction

rate of j, D is the diffusion coeflicient, while the species subscripts v and s denote volume and
surface species respectively.

The DiffusionProcess handles the voxel-to-voxel random walk of diffusing molecules and the
collisions that take place between each walk. The latter is necessary when a diffusing species
participates in a strongly diffusion-limited reaction and the time slice between each walk is
too large for an accurate value of p,. Given ¢ is the current simulation time, the next time a
molecule of a diffusing species 7 with a diffusion coefficient D, can be moved to a randomly
selected neighbor voxel is

. T2
.f - + D,‘

wherein the HCP lattice, the constant ;= % ifitisavolume speciesor o= (

2v/2+4+4v34+3vV6++/22 )2
6v2+4v34+3v6
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if it belongs to a surface compartment. However, if 7 participates in a diffusion-limited reaction, a
P
. o . . . . vr,” .
reactive collision may take place at time slices smaller than the walk interval 5> causing p;> 1.
T

To ensure p; < 1, we reduce the DiffusionProcess interval such that its next execution time becomes
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Here P;is an arbitrarily set reaction probability limit (default value is unity) such that 0 < P, < 1,
and p,= max{p,, ..., p;} where J is the total number of diffusion-influenced reactions participated
by the species i. At each process interval, the molecule can collide as usual with a neighbor reactant
pair and react with a scaled probability of p,P,/0;. In the diffusion-limited case, p,> P;and because
of the reduced interval, the walk probability becomes less than unity to P,/p,

Reactions that can be decouplcd from diffusion such as zeroth- first-order reactions, and
second-order reactions that involve two adjoining immobile reactants or at least one HD reactant,
are event-driven by the SpatiocyteNextReactionProcess. The reaction product can be made up of one
or two molecules, which can be either HD or nonHD molecules. The SpatiocyteNextReactionProcess
is an adapted implementation of the Next Reaction (NR) method,” which itself is a variation of
the Gillespie algorithm.®’

In the process, the reaction propensity (units™) is calculated from the rate coeflicient according to

koA, A Fa, product(s),
ks A#g, ABsy product(s),
a, = _ ’
* kap A# B#, A4 asy product(s),

Baa p#(A% -1), A+ A kasy oroduct(s).

Here, S and 7 are area and volume of the reaction compartment respectively, while £ (unit ms™)
is the surface-average adsorption rate of an HD volume species 4. In the second-order reactions,
Vis replaced with S if both reactants are in a surface compartment. The next reaction time of
a randomly selected molecule in a first order reaction or a pair of molecules in a second-order
reaction is given by
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with #, a uniformly distributed random number in the range (0,1).

If a reaction has a nonHD product, the new molecule will replace a nonHD reactant in the
product compartment. Otherwise if the reaction only involves HD reactants or if the product
belongs to a different compartment, the new nonHD molecule will be placed in a random vacant
voxel of the product compartment. The placement of a second nonHD product also follows the
same procedure. For intercompartmental reactions, a nonHD product will occupy a vacant voxel
adjoining both compartments.

Dynamic localization patterns of simulated molecules can be directly compared with experi-
mentally obtained fluorescence microscopy images and videos using the MicroscopyTrackingProcess
and the SpatiocyteVisnalizer. Together, these modules simulate the microphotography process by
recording the trajectory of simulated molecules over the camera exposure time and displaying
their spatially localized densities. The MicroscopylrackingProcess records the number of times
the molecules of a species occupy each voxel at diffusion step intervals over the exposure time.
The SpatiocyteVisualizer then displays the species color at each voxel with intensity and opac-
ity levels that are directly proportional the voxel occupancy frequency. Colors from different
species occupying the same voxel are blended to mimic colocalization patterns observed in
multiple-labeling experiments.
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Installing and Running Spatiocyte

The Spatiocyte source code is distributed as open source software under the GNU General
Public License and is available at GitHub. At the time of writing, the Spatiocyte modules of the
E-Cell System have been tested to run on Linux systems. Spatiocyte does not yet support other
operating systems. Here we describe the installation procedures on a Ubuntu Linux system.

On a freshly installed Ubuntu Linux, E-Cell System version 3 and Spatiocyte require several
additional packages:

$ sudo apt-get install automake libtool g++ libgslO-dev python-numpy python-ply
libboost-python-dev libgtkmm-2.4-dev libgtkglextmm-x11-1.2-dev libhdf5-serial-dev
git valgrind

The general installation procedure of the E-Cell System version 3 is as follows:

cd

mkdir wrk

cd wrk

git clone https://github.com/ecell/ecell3.git

cd ecell3

./autogen.sh

. /configure --prefix=$HOME/root

make -33 (orjust make, if there is only one CPU core available)

make install (files will be installed in the $SHOME/root directory)
gedit ~/.bashrc (other editors such as emacs or vim can also be used here)

B2 IR IR RE RO ORI (IR (OB (Y

The followinglines, which specify the environment variables of the E-Cell System should be appended
to the .bashrc file:

export PATH=$HOME/root/bin:S$PATH

export LDiLIBRARYiPATH:$HOME/rOOt/lib:$LD7LIBRARY7PATH:.

export PYTHONPATH=$HOME/root/lib/python:$HOME/root/lib/python2.7/site-
packages: SPYTHONPATH

export ECELL3_ DM PATH=$HOME

In the line 3 above, the Python version number 2.7” should be updated if it is different in the
installed system. Next, we load the new environment variables:

$ source -/.bashrc

$ ecell3-session-monitor (tryopeningit, the window shown in Figure 1 should appear, and then close it)
We can now attempt to run a simple model in the E-Cell Model (EM) language,
simple.em:

$ cd $HOME/wrk/ecell3/doc/samples/simple/

$ ecell3-em2eml simple.em

$ ecell3-session-monitor

Using ece113-em2eml, the model file simple.emwas converted into simple.eml in Extensible
Markup Language (XML) format. The simple.ent file can now be loaded from the File menu of
the E-Cell Session Monitor or the File open button (see Fig. 1). Try running the simulation by
clicking on the Start button.

The steps to install E-Cell3-Spatiocyte are as follows:

cd $HOME/wrk

git clone git://github.com/ecell/ecell3-spatiocyte.git
cd ecell3-spatiocyte

make -33 (orjust make, if there is only one CPU core available)

v N v

The E-Cell3-Spatiocyte package includes the MinDE model (see Fig. 2) reported in Arjunan
and Tomita (2010).> We can now attempt to run the model with the following steps:
$ cd S$HOME/wrk/ecell3-spatiocyte/

$ ecell3-em2eml 2010.arjunan.syst.synth.biol.wt.em
$ ecell3-session-monitor
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E-Cell Session Monitor

File Tools View Preferences Help

- E 8 4298 3 2
:“3 P 1 Simulation Time
Starl Step @ step  interval 0.0
All systems : ID contains = Find
System (1 /1) EulliD:
/ Summary Properties
Name:
ClassName:

Variable (0 /4) Process(0/1)
ID Value Cl ID Activity
E 1000 Vi E 6241.36
P 0 Vi
S 1e+06 V.
SIZE 1e-18 Vi

TracerWindow : View Selected
Message

Loading Model file /home/satya/src/ecell3/doc/samples/simple/simple.eml

Figure 1. The E-Cell session monitor.

Load the model 2010.arjunan. syst . synth.biol.wt.eml and try running the simulation for
90 seconds.
We can also run Spatioctye models using command line interface of the E-Cell System:

$ ecelll3-session -f 2010.arjunan.syst.synth.biol.wt.em
<2010.arjunan.syst.synth.biol.wt.eml, t = 0>>> run(90)
<2010.arjunan.syst.synth.biol.wt.eml, t = 90>>> exit()

Models that are created using the Python script can be run as,
$ ecell3-session 2012.arjunan.chapter.neuron.py

When running a Spatiocyte model with the VisualizationLogProcess module enabled, the
three-dimensional positional information of a logged molecule species will be stored in visual-
Log0.dat (default file name). The molecules can be viewed in a separate visualizer window even
while the simulation is still running. To view them, we can run SpatiocyteVisualizer by issuing

$ ./spatiocyte

The visualizer will load the visualLogo.dat file by default and display the molecules at every
log interval (see Fig. 3). The keyboard shortcuts that are available for the visualizer are listed in
the SpatiocyteVisualizer module section.
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1 Stepper SpaticcyteStepper(55) { VoxelRadius le-8; } & m

2 System System{/) {

3  StepperlD S55;

4 vVariable Variable(GEOMETRY) { Value 3; } # rod shaped compartment
5 Variable Variable(LENGTHX) { Value 4.5e-6; } & m

6 Variable Variable(LENGTHY) { Value le-6; } # m

7 Variable Variable(VACANT) { Value 0; }

& Variable Varisble(MinDatp) { Value 0; } # molecule number

9 Variable Variable(MinDadp) { Value 1300; } # molecule number
10 Variable Variable(MinEE) { Value 0; } # molecule number

11  Process DiffusionProcess (diffuseMinD) {

12 VariableReferencelist [_ Variable:/:MinCatp] [_ Variable:/:MinDadp];

13 D lée-12; } & m"2/s

14 Process DiffusionProcess(diffuseMinE) {

15 VariableReferencelist [_ Variable:/:MinEE];

16 D 10e-12; } & m"2/s

17 Process VisualizationlogProcess(visualize) {

18 variableReferenceList [_ variable:/Surface:MinEE] [_ Variable:/Surface:MinDEE] [_ Variable:/Surface:MinDEED]

19 [_ Variable:/Surface:MinD];

20 LogInterval 0.5; } # 5

21 pPr s Mi pyTrackingProcess|track) {

22 VariableReferenceList [_ Variable:/Surface:NinEE 2| [_ Variable:/Surface:MinDEE 3] [_ Variable:/Surface:MinDEED 4)
23 [_ Variable:/Surface:MinD 1] [_ Variable:/Surface:MinEE -2] [_ Variable:/Surface:MinDEED -2]
24 [_ Variable:/Surface:MinEE -1] [_ Variable:/Surface:MinDEED -4] [_ Variable:/Surface:MinD -1];

25 FileName "microscopylogd.dat®; }
26 Process MoleculePopulateProcess(populate) |

27 VariableReferenceList [_ Variable:/:MinDatp] [_ Variable:/:MinDadp] [_ Variable:/:MinEE] [_ Variable:/Surface:MinD)
28 [_ variable:/Surface:MinDEE) [_ Varieble:/Surface:MinDEED] |_ Variable:/Surface:MinEE); }

29 }

30

31 system System{/Surface) {

32  StepperID $8;

331  Variable Variable(DIMENSION) { Value 2; } & surface compartment
34 Variable Variable(VACANT) { Value 0; }

35 Variable Variable(MinD} { Value 0; } # molecule number

36 Variable Variable(MinEE) { Value 0; } # molecule number

37 variable Variable(MinDEE) { Value 700; } # molecule number
3§ variable Varisble(MinDEED) { Value 0; } ¥ molecule number
39 Process DiffusionProcess(diffuseMinD) {

40 VariableReferenceList [_ Variable:/Surface:MinD];

41 D 0.02e-12; } # m"2/s

42 rrocess DiffusionProcess(diffuseMinEE) {

43 VariableReferenceList [_ Variable:/Surface:MinEE);

44 D 0.02e-12; } # m2/s

45 Process DiffusionProcess(diffuseMinDEE) {

46 VariableReferenceList [_ Variable:/Surface:MinDEE];

47 D 0.02e-12; } ¥ m*2/s

48  Process DiffusionProcess(diffuseMinDEED) {

49 VariableReferenceList [_ Variable:/Surface:MinDEED];

50 D 0.02e-12; } # m°2/s

51 Process DiffusionInfluencedReactionProcess(reactionl) {

52 variableReferenceList [_ Variable:/Surface:VACANT -1] [_ variable:/:MinDatp -1} [_ variable:/Surface:MinD 1];
53 k 2.2e-8; } # als

54  Process DiffusionInfluencedReactionProcess(reaction) {

55 VariableReferencelist [_ Variable:/Surface:MinD -1] [_ Variable:/:MinDatp -1] [_ Variable:/Surface:MinD 1]
56 [_ Variable:/Surface:MinD 1];

57 k 3e-20; } ¢ m*i/s

58 piffusienInfl d i (reactiond) {

59 VariableReferenceList [_ Variable:/Surface:MinD -1] [_ Variable:/:MinEE -1] [_ Variable:/Surface:MinDEE 1];

41} k Se=19; } & m*i/fs

Bl Process SpatiocyteNextReactionProcess|reactiond) {

62 VariableReferenceList [_ Variable:/Surface:MinDEE -1] [_ Variable:/Surface:MinEE 1] [_ Variable:/:MinDadp 1];
63 k1; } # s7{-1}

64 Process Spatiocy i (reaction5) {

65 VariableReferencelist [_ Variable:/:MinDadp -1] [_ Variable:/:MinDatp 1];

66 kS; ) # 8 (-1}
67 Process DiffusionInfl d ionProcess(reaction6) {

68 variableReferenceList [_ Variable:/Surface:MinDEE -1] [_ variable:/Surface:MinD -1} [_ variable:/Surface:MinDEED 1];
69 k Se-15; } # m*i/s

70  Process SpatiocyteNextReactionProcess|reaction7) {

b variableReferenceList [_ Variable:/Surface:MinDEED -1] [_ Variable:/Surface:MinDEE 1] [_ Variable:/:MinDadp 1];

72 k1; } # s~{-1}
73 Process SpatiocyteNextReactionProcess|reactionB) {

74 variableReferenceList [_ Variable:/Surface:MinEE -1] [_ Variable:/:MinEE 1];
75 k 0.83; } § s°{-1}
76}

Figure 2. E-Cell Model (EM) description file for the MinDE model. The file is available in the
Spatiocyte source package as 2010.arjunan.syst.synth.biol.wt.em.

If the program fails and crashes when loading or running a model, we can get some debugging
information using the Valgrind tool:

$ valgrind —tool = memcheck —num-callers = 40 —leak-check = full python $HOME/
root/bin/ecell3-session -f modelFileName.eml



A Guide to Modeling Reaction-Diffusion of Molecules with the E-Cell System 49

o Spatiocyte Visualizer

Step:|7 Rotation

Time: 3.000000 . Lol -
= PR —
@ /Surface:MinDEE T ) L
# /Surface:MinDEED Fix rotation | Reset
et e

Bounding

0 B
X 0 =
Y —) 62 -
Y o
7 — | 54 .
z o =
Fix bounding Reset
Zoom
Diep m— [
Reset
& Show Time
& Show 3D Molecules
Reset Time

Record Frames

Figure 3. The SpatiocyteVisualizer displaying simulated membrane-bound proteins of the
MinDE model.

Spatiocyte Modules

In Spatiocyte modules, the unit of numeric values is given in meters, seconds, radians and mol-
ecule numbers. A Spatiocyte model file created using the E-Cell Model (EM) language is shown
in Figure 2. The file contains the wildtype Escherichia coli MinDE cytokinesis regulation model
that was reported in Arjunan and Tomita (2010).* A schematic representation of the model is
given in Figure 4. Python script examples to build models with more complex compartments are
provided in Figures 5 and 6. Figures 7 and 8 illustrate 3D visualizations of the resulting models.

Compartment

Compartments are defined hierarchically and follow the format used by the E-Cell System version
3 (see the E-Cell Simulation Environment Version 3 User’s Manual for details). Each sub-compartment
within a parent compartment is created according to the alphabetical order of the compartment names.
Predefined Variables that specify the Compartment properties include DIMENSION, GEOMETRY,
LENGTHX, LENGTHY, LENGTHZ, ORIGINX, ORIGINY, ORIGINZ, ROTATEX,
ROTATEY, ROTATEZ, XYPLANE, XZPLANE, YZPLANE, VACANT, DIFFUSIVE and
REACTIVE. Examples of these variable definitions can be seen in Figures 2 (lines 4-7 and 33-34), 5
(lines 5-8, 17-24, 31-32, 41-49 and 52-54) and 6 (lines 46-49, 59-60, 63-69 and 71-72).

Molecule species within a Compartment are also defined as a Variable. The Value property of
cach species stipulates the molecule number during initialization. All species by default are nonHD.
Examples of nonHD species definitions can be seen in Figures 2 (lines 8-10 and 35-38), 5 (line
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Figure 4. A schematic representation of the MinDE model.
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# Example of python scripting to create a neuron with 5 minor processes
theSimulator.createStepper('SpatiocyteStepper', '55').VoxelRadius = 10e-8
# Create the root container compartment using the default Cuboid geometry:
theSimulator.rootSystem.StepperID = 55"
theSimulator.createEntity('Variable', 'Variable:/:LENGTHX').Value = §le-6
theSimulator.createEntity('Variable', 'Variable:/:LENGTHY').Value = 25e-6
theSimulator.createEntity('Variable', 'Variable:/:LENGTHZ').Value = 5.5e-6
theSimulator.createEntity('Variable', 'Variable:/:VACANT')

logger = theSimulator.createBntity('VisualizationLogProcess', 'Process:/:logger’)

10 logger.LogInterval = 1

11 logger.VariableReferencelist = [['_', 'Variable:/Soma/Membrane:VACANT'], ['_', 'Variable:/Soma:K']]

12 logger.VariableReferencelist = [['_', 'Variable:/Dendrite%d/Membrane:VACANT' %i] for i in range(5)]

13 populator = theSimulator.createEntity('MoleculePopulateProcess’, 'Process:/:populate’)

14 populator.VariableReferencelist = [['_', 'Variable:/Scma:K']]

15 & Create the Soma compartment of the Neuron:

16 theSimulator.createEntity('System', 'System:/:Socma’).StepperID = 'S5°

17 theSimulator.createEntity('Variable', 'Variable:/Soma:GEOMETRY').Value = 1

18 theSimulator.createEntity('Variable', 'Variable:/Soma:LENGTHX').Value = l0e-6€

19 theSimulator.createEntity('Variable', 'Variable:/Soma:LENGTHY').Value = l0e-€

20 theSimulator.createEntity('Variable', 'Variable:/Soma:LENGTEZ').Value = 6.5e-6

21 theSimulator.createEntity('Variable', 'Variable:/Soma:0ORIGINX').Value = -0.48

22 theSimulator.createEntity(’Variable', 'Variable:/Soma:0RIGINY').Value = -0.2

23 theSimulator.createEntity('Variable', 'Variable:/Soma:ORIGINZ').Value = =0.4

24 theSimulator.createEntity('Variable', 'Variable:/Soma:VACANT')

25 theSimulator.createEntity('Variable', 'Variable:/Soma:K').Value = 1000

26 diffuser = theSimulator.createEntity('DiffusionProcess’, 'Process:/Soma:diffusek')

27 diffuser.VariableReferencelist = [['_', 'Variable:.:K']]

28 diffuser.D = 0.2e-12

29 # Create the Soma membrane:

30 theSimulator.createEntity('System', 'System:/Soma:Membrane').StepperID = 'S5

31 theSimulator.createEntity(’'Variable', 'Variable:/Soma/Membrane:DIMENSION').Value = 2

32 theSimulator.createEntity('Variable', 'Variable:/Soma/Membrane:VACANT')

33 # Parameters of Dendrites/Minor Processes:

34 dendritesLengthX = [40e-6, 10e-6, 10e-6, 10e-6, 10e-6]

35 dendritesOriginX = [0.32, -0.78, -0.48, -0.3, -0.66]

36 dendritesOrigin¥ = [-0.2, -0.2, 0.52, -0.65, -0.65]

37 dendritesRotateZ = [0, 0, 1.57, 0.78, -0.78]

38 for i in range(5):

39  # Create the Dendrite:

40 theSimulator.createEntity('System', 'System:/:Dendrite%d' %i).StepperID = 'S5’

41  theSimulator.createEntity('Variable', ‘'Variable:/Dendriteid:GEOMETRY' %i).Value = 3

42  theSimulator.createEntity('Variable', *Variable:/Dendriteid:LENGTHX' %i).Value = dendritesLengthX[i]

43  theSimulator.createEntity('Variable’, ‘*Variable:/Dendrite%d:LENGTHY' %i).Value = 1.5e-6

44  theSimulator.createEntity('Variable', *Variable:/Dendriteid:QRIGINX' %i).Value = dendritesOriginX[i]

45 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d:0RIGINY' %i).Value = dendritesOrigin¥[i]

45 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d:0RIGINZ' %i).value = -0.6

47 theSimulater.createEntity('Variable', 'Variable:/Dendrite%d:ROTATEZ' %i).Value = dendritesRotateZ[i]

48 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d:VACANT' %i)

49  theSimulator.createEntity('Variable', 'Variable:/Dendrite%d:DIFFUSIVE' %i).Name = '/:Soma'

50 # Create the Dendrite membrane:

51 theSimulator.createBntity('System', 'System:/Dendriteid:Membrane' %i).StepperID = 'S§5*

52 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d/Membrane:DIMENSION' %i).Value = 2

53 theSimulator.createBntity('Variable', 'Variable:/Dendrite%d/Membrane:VACANT' %i)

54 theSimulator.createEntity('Variable', 'Variable:/Dendrite%d/Membrane:DIFFUSIVE' %i).Name = '/Soma:Membrane
55 run(100)

LR T R

o

Figure 5. A Python scriptto create a neuron-shaped model. Thefile is available in the Spatiocyte
source package as 2012.arjunan.chapter.neuron.py.

25) and 6 (line 50). To define a HD species, the Name property of the Variable should be set to
“HD” as shown in the EM and Python examples below:

Variable Variable (a) {
Value 100;
Name “HD”; }

A = theSimulator.createEntity(‘'Variable’, ‘Variable:.:A’)
A.Value = 100
A.Name = “HD”

DIMENSION
The DIMENSION variable defines the spatial dimension of the compartment, whether itisaline
(‘1’), surface (2’) or a volume (3’) type. At the time of writing, the line compartment type is still in
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import math

import random

minDist = 75e-%

dendriteRadius = 0.75e-6
dendritelength = 10e-§

lengths = [8.4e-6, 6.3e-6, 4.2e-6, 2.le-6, le-6)
lengthFreqs = [7, 10, 11, 21, 108]
mtOrigink = []

9 mtOriging = []

10 mtOrigin¥ = [)

11 expandedLengths = []

00— AN e B e

13 def isSpacedOut(x, ¥, 2, lengthj:
14 for i in range(len(expandedLengths)-1):

15 maxOriX = mtOriginX[i]*dendritelength/2 + expandedLengths[i]/2

16 minOriX = mtOriginX[i]*dendriteLength/2 - expandedLengths[i]/2

17 maxX = x*dendriteLength/2 + length/2

18 minX = x*dendritelength/2 - length/2

19 ¥2 = math.pow((y-mtOrigin¥[i])*dendriteRadius, 2)

20 22 = math.pow(|{z-mtOriginZ[i])*dendriteRadius, 2)

21 if((minX <= maxOriX or maxX >= minOriX) and math.sqrt(y2+z2) < minDist):

22 return False

23 elif (minX > maxOriX and math.sqrt|y2+z2+math.pow(minX-maxOriX, 2)) < minDist):
24 return False

25 elif (maxX < minOriX and math.sqrt|y2+zi+math.pow(maxX-minOriX, 2)) < minDist):
26 return False

27 return True

28

29 for i in range(len|lengthFregs)):
30 maxX = (dendritelLength-lengths[i])/dendriteLength
31 for j in range(int(lengthFregs[i])):

3z expandedLengths.append(lengths[i])
a3 % = random.oniform(-maxX, maxX)
34 y = random.oniform(-0.95, 0.95)
35 z = random.uniform(-0.95, 0.95)
35 while(y*y+z*z > 0.9 or not isSpacedOut(x, ¥, z, lengths[i])):
3 % = random.uniform(-maxX, maxX)
38 ¥ = random.uniform({-0.95, 0.95)
39 z = random.uniform(-0.95, 0.95)
40 mtOriginX.append(x)

41 mtoriginY.append(y)

42 mtOrigink.append(z)

43

44 theSimulater.cr pper (' Spatiocy epper’, 'S5°).VoxelRadius = 0.Be-B

45 theSimulator.rootSystem.StepperlD = '58°

46 theSimulater.createEntity('vVariable', 'Variable:/:GEOMETRY').Value = 3

47 theSimulator.createEntity(‘Variable', 'Variable:/:LENGTHX').Value = dendritelength
48 theSimulator.createBntity('vVariable', 'Variable:/:LENGTHY').Value = dendriteRadius*2
49 theSimulater.createBEntity('Variable', 'Variable:/:VACANT')

50 theSimulater.createEntity('variable', 'Variable:/:K').Value = 100

51 diffuser = theSimulator.createBEntity('DiffusionProcess', ‘Process:/:diffusek')

52 diffuser.variableReferenceList = [['_', 'Variable:/:X']]

53 diffuser.D = 0.2e-12

54 visualLogger = theSimulator
55 visualLogger.LogInterval = 1

56 visualLogger.VariableReferencelist = [['_', 'Variable:/Membrane:VACANT'], ["_', 'Variable:/:K']]

ity('VisualizationLogProcess', 'Process:/ivisuallogger')

58 theSimulator.createEntity('System', 'System:/:Menmbrane').StepperID = "S8'

59 theSimulater.createEntity('vVariable', 'Variable:/Membrane:DIMENSION').Value = 2

60 theSimulator.createEntity('Variable', 'Variable:/Membrane:VACANT®)

61 for i in range|len|expandedLengths)):

62 theSimulator.createEntity('System’', 'System:/:Microtubuledd® %i).StepperID = 'S5*

63 theSimulator.createEntity('Variable', 'Variable:/Microtubuletd:GEOMETRY' %i).Value = 2

64 theSimulator.createEntity('Variable®, *Variable:/Microtubule®d:LENGTEX® %i).Value = expandedLengths|i]
65 theSimulator.createEntity('Variable®, "Variable:/Microtubule%d:LENGTEY' %i).Value = Ge-9

66  theSimulator.createEntity('Variable®, *Variable:/Microtubule¥d:0RIGINX® %i).Value = mtOriginX[i]

67 theSimulator.createEntity('Variable', 'Variable:/Microtubule$d:0RIGINY' %i).Value = mtOrigin¥[i]
68 theSimulator.createEntity('Variable', *Variable:/Microtubule%d:0RIGINE' %i).Value = mtOriginZ[i]
6% theSimulator.createEntity('Variable', 'Variable:/Microtubuledd:VACANT' %i)

70 theSimulator.createEntity('System’, 'System:/Microtubuleid:Membrane® %i).StepperID = 'S5'

71 theSimulator.createEntity('Variable®, 'Variable:/Microtubuledd/Membrane:DIMENSION' %i).Value = 2
72  theSimulator.createEntity('Variable', 'Variable:/Microtubuletd/Menbrane:VACANT® #i)

73 visuallogger.VariableReferenceList = [['_', 'Variable:/Microtubule%d/Mesbrane:VACANT' %i]]

74 run{100)

57 thesimlntor,createﬁntit}’['HoleculePopulEtercess', ‘Process:/:populate’ ) VariableReferencelist = [['_'s 'Variable:/:K']]

Figure 6. A Python script to create a compartment with randomly distributed microtubules.

Thefile is available in the Spatiocyte source package as 2012.arjunan.chapter.microtubules.py.

development. A surface compartment encloses its parent volume compartment, and as a result, it cannot
be defined independently without a volume compartment to enclose with. A surface compartment does
not have any child volume or surface compartment. The root compartment should always be defined
as a volume compartment. Since the default DIMENSION value is 3} a volume compartment can
be defined without the DIMENSION variable. A volume compartment can also use the predefined
variables GEOMETRY, LENGTHX, LENGTHY,LENGTHZ, ORIGINX, ORIGINY,ORIGINZ,
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Figure 7. A neuron-shaped compartment created from a combination of rod and ellipsoid
compartment geometries. The model is created from the Python script shown in Figure 5.

Figure 8. Arod compartment containing randomly distributed microtubules built from cylinder
compartments. The model is created from the Python script shown in Figure 6. The steps
to create each of the displayed panels in SpatiocyteVisualizer are as follows: (A) (i) select all
species (i.e., the default configuration), (ii) decrease the +x range to the desired level, (iii)
deselect the membrane.VACANT species, (iv) increase the +x range to the maximum level,
and (v) select the membrane. VACANT species; (B) the same steps as in (A) and increase -y
range to the desired level; and (C) the same steps as in (A) and rotate to the desired angle.
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ROTATEX, ROTATEY, ROTATEZ, XYPLANE, XZPLANE, YZPLANE, DIFFUSIVE and
VACANT, whereas a surface compartment only requires the DIMENSION and VACANT variables
and inherits the remaining relevant properties from its parent compartment. In addition, surface
compartments can also define the DIFFUSIVE and REACTIVE variables. See Figures 2 (line 33),
5 (lines 31 and 52) and 6 (lines 59 and 71) for examples of the DIMENSION variable definition.

GEOMETRY

The GEOMETRY variable of a volume compartment specifies one of the six supported
geometric primitives: cuboid (‘0°), ellipsoid (‘1’), cylinder (2’), rod (‘3’), torus (‘4’) and pyramid
(°S’). More complex forms can be constructed usinga combination of these primitives. Figures 4
and 6 illustrate the construction of a neuron-shaped model using a combination of ellipsoid and
rod compartments. Compartments without the GEOMETRY definition is set to the cuboid
form since the default value is ‘0’ For examples of GEOMETRY definition see Figures 2 (line 4),
S (lines 17 and 41) and 6 (lines 46 and 63).

LENGTH[X, Y, Z]

The three variables LENGTH[X, Y, Z] can specify the compartment lengths in the directions of
[x,v, z]-axes, respectively. The cuboid, ellipsoid and pyramid compartments use all three variables.
If all three lengths are equal, a cube or a sphere compartment can be created with a cuboid or an
ellipsoid geometry, respectively. For the pyramid compartment, LENGTHIX, Y, Z] stipulate its
base length, height and base width, respectively. For a cylinder compartment, LENGTHX defines
the cylinder length, while its diameter is given by LENGTHY. In the case of a rod compartment,
LENGTHZX indicates the length from the tip of one pole to the other while LENGTHY defines its
diameter. Fora torus, its larger diameter (from the torus center to the edge) is given by LENGTHX,
whereas LENGTHY determines the tube diameter. LENGTH[X, Y, Z] definitions examples
are given in Figures 2 (lines 5-6), 5 (lines 5-7, 18-20, and 42-43) and 6 (lines 47-48 and 64-65).

XY, XZ,YZ]PLANE

When a volume compartment has the cuboid geometry, the boundary type or the presence of the
[xy, xz, yz]-plane surfaces enclosing the compartment can be specified using [XY, XZ, YZ]PLANE
variables. The boundary type can be reflective (‘0°), periodic (‘1’) or semi-periodic (2"). A semi-periodic
boundary allows nonHD molecules to move unidirectionally from one boundary to the other. When
asurface compartment is defined to enclose the cuboid compartment, we can remove one or both faces
of the cuboid in a given [XY, XZ, YZ]PLANE. To remove the surface on the upper or the lower face
of the cuboid in a plane, we can set the variable to ‘3’ or ‘4; respectively, whereas to remove both faces
we can set it to ‘5’ If the variable is not defined, the boundary type is set to the default reflective (‘0°)
type. Examples in EM and Python to remove both of the cuboid XYPLANE faces are given below:

Variable Variable (XYPLANE) { Value 5; }

theSimulator.createEntity (‘'Variable’, ‘Variable:.:XYPLANE') .Value = 5

ORIGIN[X, Y, Z]

A child volume compartment can be placed at any location within a parent compartment using
the variables ORIGIN([X, Y, Z]. The variables define the origin (center) coordinates of the child
compartment relative to its parent center point. The variable values ‘1" and ‘1’ correspond to the
normalized lowest and the highest points of the parent compartment in a given axis, respectively.
Since the default value of these variables is ‘0], the child compartment will be placed at the center
of its parent if they are not defined. Figures 5 (lines 21-24 and 44-46) and 6 (lines 66-68) give
some examples of the ORIGIN([X, Y, Z] variables definition.

ROTATE[X, Y, Z]
A compartment can be rotated along the [x, y, z]-axis with the origin at the compartment center
using the ROTATE[X, Y, Z] variables respectively. The unit of the variables is in radians. If there

are multiple rotation definitions, they follow the [x, y, z]-axis rotation order. Compartments are not
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rotated if the variables are not defined since their default value is ‘0> An example of compartment
rotation definition is given in Figure 5 (line 47).

VACANT

Every compartment must have a VACANT variable that represents the ‘species’ of empty
voxels within the compartment. The VACANT voxels of a surface compartment are analogous
to the lipid molecules mentioned in the Spatiocyte Method section and in Arjunan and Tomita
(2010).> Examples of the VACANT variable definition are shown in Figures 2 (lines 7 and 34), 5
(lines 8,24, 32,48 and 53) and 6 (lines 49, 60, 69 and 72). The variable can be used to define sink
(e.g, A-> VACANT) and membrane binding reactions (e.g., By + VACANT; -> Bs) of non-HD
species, as shown in the EM and Python examples below:

First-Order Sink Reaction, A - O
Process SpatiocyteNextReactionProcess (sink) {
VariableReferenceList [_ Variable:/:A -1]
[_ Variable:/:VACANT 1];
k 0.3; }

Second-Order Surface-Adsorption Reaction, B, + Surface VACANT - B,
Process DiffusionInfluencedReactionProcess (bind) {
VariableReferenceList [_ Variable:/:B -1]
[_ Variable:/Surface:VACANT -1]
[ Variable:/Surface:B 1];
k 2e-8; }

First-Order Sink Reaction, A > @

sinker = theSimulator.createEntity(‘'SpatiocyteNextReactionProcess’
‘Process:/:sink’)
sinker.VariableReferenceList = [[
sinker.VariableReferenceList = [[
sinker.k = 0.3

Second-Order Surface-Adsorption Reaction, B, + Surface VACANT - B,
binder = theSimulator.createEntity (‘DiffusionInfluencedReactionProcess’,
‘Process:/:bind’)

binder.VariableReferencelList = _ ', ‘Variable:/:B’, ‘-1'1]]
binder.VariableReferenceList = [[' ‘', ‘Variable:/Surface:VACANT’, ‘-1']]
binder.VariableReferencelList = ', ‘Variable:/Surface:B’, ‘'1’]]
binder.k = 2e-8

', ‘Variable:/:A’, ‘-1']]
', ‘Variable:/:VACANT', ‘1’']]

\
\

For avolume compartment, the Va/ue of the VACANT variable determines if the compartment
has a higher occupancy priority when it intersects with a peer compartment. Figure 9 displays

Table 1. Combinations of volume and surface VACANT values and their corresponding
intersected peer compartment forms. In all cases X is an integer and the
DIFFUSIVE variable is not set

Green Sphere Compartment White Sphere Compartment Intersection

Volume Surface Volume Surface Form in
VACANT.Value VACANT.Value VACANT.Value =~ VACANT.Value Figure 9

X 0 X 0 A

X nonzero X nonzero B

X 0 X nonzero C

<X 0 X 0 D

<X 0 X nonzero E

<X nonzero X nonzero F
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cross-sections of various intersection forms of two spherical peer compartments with different volume
and surface VACANT values (listed in Table 1). In the case of a surface compartment, the VACANT
variable determines if it fully encloses a parent compartment that has an intersection. A nonzero
value indicates that the parent will be fully enclosed even at the location of intersection. Otherwise
if the value is ‘0} the surface will be open at the intersecting region. Figure 10 shows four possible

Figure 9. Cross-sections of two intersected peer compartments. Two sphere compartments
in green and white are intersecting in space. Turquoise and purple molecules belong to the
green and white compartments respectively. See text of the VACANT variable and Table 1 for
a detailed description of the intersections. The EM file to create the intersections is available
in the Spatiocyte source package as 2012.arjunan.chapter.peer.em.

Figure 10. Cross-sections of intersected root and child compartments. The VACANT surface
voxels of the cuboid root compartment are shown in green while those of the ellipsoid child
compartment are in white. The blue molecules belong to the child volume compartment.
(A) root surface. VACANT = 0 and child surface. VACANT = 0, (B) root surface. VACANT = 1
and child surface VACANT = 0, (C) root surface VACANT = 0 and child surface VACANT =1,
and (D) root surface VACANT = 1 and child surface VACANT = 1. The EM file to create the
intersections is available in the Spatiocyte source package as 2012.arjunan.chapter.root.em.
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enclosure forms when a compartment intersects with a root compartment. Figure 7 illustrates the
intersection of various compartments to create a unified neuron-shaped compartment.

DIFFUSIVE

To unify intersecting compartments, the DIFFUSIVE variable can be specified. It enables
nonHD molecules to diffuse into and from an intersecting compartment. The Namze property of the
DIFFUSIVE variable defines the path and name of the diffusible intersecting compartment. With the
DIFFUSIVE variable defined, the VACANT species of the unified compartments become identical.
Figure 5 (lines 49 and 54) gives some examples of the DIFFUSIVE variable definition and usage.

REACTIVE

The REACTIVE variable enables nonHD molecules in a surface compartment to collide
and react with the VACANT voxels (i.e., lipids) and nonHD molecules in an adjacent surface
compartment. The Name property of the REACTIVE variable specifies the path and name of the
reactive adjacent surface compartment. Examples of the REACTIVE variable definition in EM
and Python are given below:

Variable Variable (REACTIVE) { Name “/Cell:Surface”; }

theSimulator.createEntity (‘Variable’, ‘Variable:/Surface:REACTIVE’) .Name = “/
Cell:Surface”

SpatiocyteStepper

The SpatiocyteStepper is the only stepper used by Spatiocyte in the E-Cell System and must be
defined to run all simulations. It advances the simulation in an event-driven manner. Initialization
examples of the SpatiocyteStepper are shown in Figures 2 (line 1), 5 (line 2) and 6 (line 44). In each
compartment, the StepperID must be set to the SpatiocyteStepper ID. Examples of SpatiocyteStepper
ID definition in compartments are given in Figures 2 (lines 3 and 32), 5 (lines 4, 16, 30, 40 and
51) and 6 (lines 45, 58, 62 and 70).

VoxelRadius

The radius of the HCP lattice voxels can be set in the SpatiocyteStepper using the VoxelRadius
property. The default radius is 10e-9 m. Figures 2 (line 1), 5 (line 2) and 6 (line 44) show some
examples of the VoxelRadius initialization.

SearchVacant

The SearchVacant property of the SpatiocyteStepper provides an option to direct the simulator
to search for all adjacent voxels for vacancy during dissociation reactions that result in nonHD
product molecules. The reaction can only take place if there is an available target vacant voxel. This
option is useful when evaluating the effects of a crowded compartment. The value of SearchVacant
by default is true (‘1’). To disable it, we can set it to ‘0> When disabled, an adjacent target voxel is
selected randomly and the reaction is only executed if the voxel is vacant. EM and Python examples
of SearchVacant initialization are as follows:

Stepper SpatiocyteStepper (SS) { Searchvacant 0; }

theSimulator.createStepper (‘'SpatiocyteStepper’, ‘'SS’).SearchVacant = 0

MoleculePopulateProcess

The initial positions of all nonHD species with nonzero initial molecule numbers must be speci-
fied with the MoleculePopulateProcess. The molecules can be either uniformly or normally distributed
within the compartment. By default, without any MoleculePopulateProcess parameter definition,
molecules are uniformly distributed over the entire compartment. Otherwise if the GaussianSigma
is set to a nonzero value, the compartment will be populated according to the Gaussian distribution.
MoleculePopulateProcess definitions can be seen in Figures 2 (lines 26-28), 5 (lines 13-14) and 6
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1 # Example of python scripting to populate molecules at the poles of a rod compartment
Z theSimulator.createStepper('SpatiocyteStepper’, '55').VoxelRadius = 8e-8

3 # Create the root container compartment using the rod geometry:

4 theSimulator.rootSystem.StepperID = 'S5

5 theSimulator.createEntity( Variable', 'V f:GEOMETRY ') .Value = 3

6 theSimulator.createEntity( Variable', THX').Value = lle-6

7 theSimulator.createEntity( 'Variable', ENGTHY').Value = 2e-6

8 theSimulator.createEntity( Variable', JACANT ')

9 logger = theSimulator.createEntity('VisualizationLogProcess', 'Process:/:logger')
10 logger.LogInterval = 1

11 logger.VariableReferencelist = [['_', 'Variable:/Surface:A'], ['_', 'Variable:/Surface:B']]
12 populator = theSimulator.createEntity|'Molec ‘Process:/:populateleft’
13 populator.VariableReferenceList = [['_', 'Variable:/Surface:nA']]

14 populator.QriginX = -1

15 populator.UniformRadiusX 0.5

16 populator = theSimulator.createEntity('MoleculePopulateProcess', 'Process:/:populateRight')
17 populator.vVariableReferencelist = [['_', 'Variable:/Surface:B']]

18 populator.OriginX = 1

19 populator.UniformRadiusX = 0.5

20 # Create the surface compartment:

21 theSimulator.createEntity('System’, 'System:/

22 theSimulator.createEntity('variable’, '\ ia

23 theSimulator.createEntity(’'Va ble’, iab
'

surface').StepperID = 'S5°'
/Surface:DIMENSION').Value = 2
SfSurface:VACANT")

24 theSimulator.createEntity( Variable’ riable:/Surface:A').Value
25 theSimulator.createEntity(’'Variable'
26 run(100)

w

'Variable:/Surface:B').Value

Figure 11. A Python script to populate molecules at the poles of a rod surface compartment.
The file is available in the Spatiocyte source package as 2012.arjunan.chapter.populate.py.

(line 57). A Python example showing two different species populated at the poles of a rod surface
compartment is also listed in Figure 11 with the corresponding output in Figure 12.

Origin[X, Y, Z]

Origin[X, Y, Z] is the origin point relative to the compartment center point for a species
population. The molecules may have a uniform or a Gaussian distribution from this point. The
range of the point along each axis covering the entire compartment is [-1, 1]. Therefore, the
origin is at the center of the compartment if Origin[X, Y, Z] is fixed to [0, 0, 0], the default

set ofvalucs.

GaussianSigma[X, Y, Z]
GaussianSigma[X, Y, Z] stipulates the sigma value for a Gaussian distributed population from
the origin in [x, y, z]-axis, respectively.

UniformRadius[X, Y, Z]

The uniformly distributed normalized population radius from the origin pointin [x, y, z]-axis is
given by the UniformRadius[X, Y, Z] parameter. Since the default values of UniformRadius[X, Y,
Z] and Origin[X, Y, Z] are [1, 1, 1] and [0, 0, 0], respectively, the molecules are spread uniformly
within the entire compartment when the parameters are not defined.

Figure 12. Visualization of molecules populated at the poles of a rod surface compartment.
The model is created from the Python script shown in Figure 11.
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ResetTime

To place the molecules at a certain interval after the simulation has started, we can use the
ResetTime parameter. This parameter is useful when the positions of a molecule species need to
be actively altered after a simulation interval.

DiffusionProcess

The DiffusionProcess handles the voxel-to-voxel random walk of diffusing molecules and the
collisions that take place between each walk. Examples of the DiffusionProcess usage are shown in
Figures 2 (lines 11-16 and 39-50), 5 (lines 26-28) and 6 (lines 51-53).

D
In the DiffusionProcess, the diffusion coefficient of the molecule species is set with D, which
has the unit m?s~!. The default value is 0 m?s~".

P

Pis an arbitrarily set reaction probability limit of the diffusing species, within the range [0, 1].
The default value is ‘1, which is sufficient to produce accurate simulations. We can set it to a smaller
value to perform reaction-diffusion processes at smaller intervals.

PeriodicBoundaryDiffusionProcess

We can use the PeriodicBoundaryDiffusionProcess in place of the DiffusionProcess when a
molecule species needs to be diffused across periodic two-dimensional surface edges. The surface
compartment must be enclosing a cuboid parent compartment. The process overcomes the
limitation of setting [XY, XZ, YZ]PLANE of the Compartment variable to periodic, which
only supports periodic volume edges. It inherits the diffusion coefficient, D and the reaction
probability limit, P from the DiffusionProcess. Examples of PeriodicBoundaryDiffusionProcess in
EM and Python are as follows:

Process PeriodicBoundaryDiffusionProcess (diffuse) {
VariableReferenceList [ Variable:/Surface:A];
D 0.2e-12; }

diffuser = theSimulator.createEntity ('PeriodicBoundaryDiffusionProcess’,
‘Process:/:diffuse’)

diffuser.VariableReferenceList = [['_’, ‘Variable:/Surface:A’]]
diffuser.D = 0.2e-12

DiffusionInfluencedReactionProcess

The DiffusionInfluencedReactionProcess is used to execute all second-order reactions
comprising two diffusing reactants, or a diffusing and an immobile reactant that are
diffusion-influenced. Figure 2 (lines 51-60 and lines 67-69) shows several usage examples of
DiffusionInfluencedReactionProcess. A python example of the process definition is provided below:

Second-Order Reaction A + B> C

binder = theSimulator.createEntity (‘DiffusionInfluencedReactionProcess’,
‘Process:/:associate’)

binder.VariableReferenceList = [[' ', ‘Variable:/:A’, ‘-1']]
binder.VariableReferenceList = [* ", ‘Variable:/:B’, ‘-1'1]]
binder.VariableReferenceList = [['_’, ‘Variable:/:C’, ‘1']]

binder.p = 0.5

k

The intrinsic rate constant of the diffusion-influenced reaction is set to 4. The relationship
between the intrinsic rate constant with the macroscopic rate constant ,, is given by 1/£,, =
1/k + 1/k, where k; = 4tDR is the maximally diffusion-limited reaction rate, D is the diffusion
coefficient and R is the contact radius. The units of £ for various reaction types are given in Table 2.
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Table 2. Units of the rate constant, k in DiffusionInfluencedReactionProcess
and SpatiocyteNextReactionProcess

Reactant 1 Reactant 2 k (units)
Volume Molecule Volume Molecule m?s™!
Surface Molecule Surface Molecule m?s™!
Volume Molecule Surface Molecule m’s™
Volume Molecule Surface VACANT ms™

The absolute reactive collision probability of the reaction is given by p. This process requires

cither the value of £ or p.

SpatiocyteNextReactionProcess

The SpatiocyteNextReactionProcess is used to execute all reactions that can be decoupled from
diffusion such as zeroth- and first-order reactions, and second-order reactions that involve two
adjoiningimmobile reactants or at least one HD reactant. Each reaction is performed according to
the Next Reaction method.” Unlike in the DiffusionInfluencedReactionProcess, the membrane-ad-
sorption reaction where a HD species binds to the membrane is represented as a first-order reac-
tion (see example below). EM examples of the SpatiocyteNextReactionProcess are given in Figure 2
(lines 61-66 and 70-75), while Python examples of zeroth- and first-order (surface-adsorption)

reactions are given below:

Zeroth-Order Reaction, @ > A

zero = theSimulator.createEntity ('SpatiocyteNextReactionProcess’,
‘Process:/:create’)

zero.VariableReferencelList = [[' ', ‘Variable:/:A’, ‘-1']]

zero.k = 0.01

First-Order Surface-Adsorption Reaction, A, > A,

uni = theSimulator.createEntity('SpatiocyteNextReactionProcess’,
‘Process:/:dissociate’)
uni.VariableReferencelList
uni.VariableReferencelList
uni.k = 0.01

l

[* *, ‘Variable:/:A’, ‘-1']]
e

', ‘Variable:/Surfact:A’, ‘1']]

k

The rate constant of the event-driven reaction. For second-order reactions, the units are listed
in Table 2. For all first-order reactions, the unit is in s™.

VisualizationLogProcess

We can use the VisualizationLogProcess to log the coordinates of nonHD species at a speci-
fied periodic interval. The SpatiocyteVisualizer can load the log file to display the molecules in
3D. Figures 2 (lines 17-20), 5 (lines 9-12) and 6 (lines 54-56 and 73) show some examples of
VisualizationLogProcess usage.

FileName
FileName is the name of the binary log file. The default name is ‘visualLog0.dat} which is also
the default file name loaded by SpatiocyteVisualizer.

Loglnterval
The interval for logging the coordinates is determined by Loglnterval. The default value is 0}
which means that the interval would be set to the smallest diffusion or collision interval of the
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logged nonHD species. If LogInterval > 0, the log interval will be set to the specified value. The

unit of LogInterval is in seconds.

MicroscopyTrackingProcess

The MicroscopyTrackingProcess mimics the fluorescent microphotography process by logging the
trajectory of nonHD molecules averaged over a specified camera exposure time. It inherits the FileName
and Loglnterval properties from the VisualizationLogProcess. After each Loglnterval, the number of
times a voxel is occupied by a molecule species is counted. At the end of a given ExposureTime, the
frequency is averaged over the total number of intervals and logged. Figure 2 (lines 21-25) shows an
example of the MicroscopyIrackingProcess definition. A Python example is given below:

tracker = theSimulator.createEntity(‘'MicroscopyTrackingProcess’,
‘Process:/:track)

tracker.VariableReferenceList = [['_’, ‘Variable:/Surface:MinEE’, ‘2’]]
tracker.VariableReferenceList = [['_’, ‘Variable:/Surface:MinDEE’, ‘3']]
tracker.VariableReferenceList = [['_’, ‘Variable:/Surface:MinE’, ‘-2']]
tracker.VariableReferenceList = [[' ‘', ‘Variable:/Surface:MinDE’, ‘-2']]
tracker.VariableReferenceList = [[' ', ‘Variable:/Surface:MinE’, ‘-1']]

tracker.FileName = “microscopyLog0.dat”

MicroscopyTrackingProcess enables representation of different fluorescent colored subunits within
acomplex according to the coefficient assigned to each variable. In the Python example above, the
coeflicient of the first variable MinEE is 2, representing two subunits of MinE within the complex
MinEE. Similarly for MinDEE, the three subunits (one MinD and two MinE’s) are represented
by the coefficient 3. Each unique variable with a negative coefficient is assigned a different color
during visualization. The first negative variable, MinE, has a coeflicient of -2, which means that
two subunits from the first positive variable, MinEE, are assigned a unique color of MinE. The
second negative variable MinDE also has a coefficient of -2, specifying that two subunits of the
second positive variable, MinDEE, is assigned the color of MinDE. The third negative variable
MinE has a coefficient of -1, corresponding to the color of the remaining one MinE subunit of

the second positive variable MinDEE.

ExposureTime
The simulated camera exposure time is specified by ExposureTime. The default value is 0.5 s.

MeanCount

MeanCount is the maximum number of voxel occupancy frequency before it is averaged. The
default value is ‘0’ which indicates that the specified Loglnterval or the smallest collision or dif-
fusion interval should be used. In this case, the MeanCount will be ExposureTime/Loglnterval.
Otherwise if MeanCount > 0, the Loglnterval is set to ExposuréTime/MeanCount.

IteratinglogProcess

The IteratingLogProcess executes multiple simulation runs with different random seeds and
logs the averaged physical values of molecules, such as their displacement or survival probability,
over the total runs. The values are logged in a file using the comma-separated values (csv) format.
By default the process logs the number of available molecules of recorded species at the specified
interval periodically.

LogDuration
LogDuration is the total duration of a simulation run (i.c., an iteration).

Loglnterval
Loglnterval is the interval for logging physical values of molecules within an iteration.

Iterations
The number of simulation runs before the logged values are averaged and saved in the log file
is specified by the Iterations parameter.
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FileName
The file name of the log file is given by FileName. The default file name is “Log.csv”.

Savelnterval

When running many iterations, it is useful to save the logged data in a backup file for quick
analysis, or to avoid restarting the runs because of some unexpected failures (e.g., power failure).
To this end, a backup file of the logged values can be saved at the iteration intervals given by
Iterations/Savelnterval. The default value of Savelnterval is ‘0 which indicates that a backup file
will not be saved.

Survival
The Survival parameter can be set to ‘1’ to log the survival probability of a molecule species.
The default value of the parameter is ‘0.

Displacement
Set the Displacement to ‘1’ to log the displacement of a molecule species. The default value
of Displacement is ‘0’

Diffusion
If the Diffusion parameter is set to ‘1, the apparent diffusion coefficient of a molecule species
will be logged. The default Diffusion value is 0’

SpatiocyteVisualizer

The SpatiocyteVisualizer can be started by executing ./spatiocyte in the Spatiocyte directory.
Figurc 3 jllustrates the SpﬂtiocyteVimﬂlizer interface, whereas its features and keyboard shortcuts
are listed in Table 3. To change the color of a species, right mouse click on the species and select a
desired color. The visualizer can display each species within a specified range in each axis using the
bounding feature. Figure 8 displays the output after specifyinga set of ranges for the cell membrane.

Table 3. SpatiocyteVisualizer features and keyboard shortcuts

Feature

Keyboard Shortcut(s)

Play Forward

Play Backward

Step Forward

Step Backward

Pause/Play

Zoom In

Zoom Out

Reset View

Rotate along x-axis clockwise

Rotate along x-axis counter-clockwise
Rotate along y-axis clockwise

Rotate along y-axis counter-clockwise
Rotate along z-axis clockwise

Rotate along z-axis counter-clockwise
Translate Up

Translate Down

Translate Right

Translate Left

Save current frame as a PNG image
Start/Stop recording PNG frames

Right arrow

Left arrow

Up arrow or Enter

Down arrow or Shift+Enter
Space

Ctrl++ or Ctrl+ = or Page Up
Ctrl+- or Page Down
Ctrl+0 or Home

Ctrl+Up Arrow

Ctrl+Down Arrow
Ctrl+Right Arrow

Ctrl+Left Arrow

z

z

Shift+Up Arrow
Shift+Down Arrow
Shift+Right Arrow
Shift+Left Arrow

s

S
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Each displayed frame can be saved into the Portable Network Graphics (PNG) image format.
A quick way to create a movie from the saved images is to use the Empcg program:

$ ffmpeg -i image%07d.png -sameqg out.mp4

Conclusion

Building computational models of biochemical processes is usually a demanding task, especially
for experimental biologists without modeling experience. This chapter aims to provide a guide on
how one can quickly build and simulate spatially resolved biochemical models with the available
Spatiocyte modules. We started with the basic theory of the Spatiocyte method and continued
with the installation and simulation procedures. The various modules available to Spatiocyte users
were also explained with accompanying model examples.

We plan to continuously develop and improve the Spatiocyte software and user experience. The
contents of this guide will also therefore, evolve with the addition of new features and enhance-
ments. The latest version of this guide will be available along with the Spatiocyte source code,
which at the time of writing, is hosted at GitHub. The Spatiocyte website, http://spatiocyte.org
also contains the latest information about the Spatiocyte method and software.

In future, we would like to introduce the ability of subunits to polymerize on the membrane
and in the cytoplasm. A polymerization strategy using the HCP lattice was proposed recently."
Diffusion of compartments, and molecules with different shapes and sizes are also in the future
development plan. Parallel implementation of the Spatiocyte method to run on multi-core ar-
chitectures and graphics processing units is also being considered. We are also currently working
on introducing compartments with complex surface geometries. Spatiocyte users are encouraged
to submit feature requests and bug reports, while independent developers can submit their own
algorithm modules, code improvements and bug fixes.
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CHAPTER S

A Model Library of Bacterial
Chemotaxis on E-Cell System

Yuri Matsuzaki*

Introduction
acterial organisms like Escherichia coli have developed mechanisms to detect and direct
B cell movement toward substrate when starved. Such behavior is known as chemotaxis (15
for recent review).

Some nutrition (amino acids, sugar, etc.) can be sensed by the chemotaxis signal transduction
system (Fig. 1). When the concentration of attractants increases, a signal is transmitted from the
chemoreceptors to flagellar motor which influences the random walk of the bacterium. The frac-
tion of time spent in run gets longer as the signal is transmitted, permitting the cells to be close to
the nutrition rich environment for a longer period of time.

There are two modes of swimming behavior that are controlled by flagellar motor rotation:
counter clockwise rotation, which causes the cell to ‘run’ and clockwise rotation, which makes the
cell ‘tumble’ more frequently. In a nonstimulated environment, cells run four times longer than
tumbling. Arttractants like aspartate (Asp) shorten the tumbling time to increase a smooth run
and lead cells to be in a more favorable environment.

The signal molecule that transmits the chemical signal to the flagellar motor is CheY protein.
The phosphorylated form of CheY can interact with the flagellar motor protein FliM and make
the motor rotate clockwise.' Under a nonstimulated environment, large fraction of CheA, which
forms a complex with CheW and the receptor protein (Tar, for Asp), are in active form and un-
dergo autophosphorylation of this histidine kinase.” CheA then transfers its phosphate to methyl
esterase CheB or response regulator CheY. In exposure to attractants, the receptor complex tends
to be in an inactive form, which in consequence decreases the phosphorylation level of CheY and
then changes the switching of the flagellar motors to make cells tumble less.*

After stimulation, cells gradually adapt to the stimulus. This is a result of feedback by the
receptor methylation caused by methyltransferase CheR and methyl esterase CheB. Methylation
level of the Tar receptor is known to be enhanced by ligand binding and the methylated receptors
recover its activity even in the sustained existence of attractants.

A number of models has been proposed to explain how a chemotaxis system controls this
swimming behavior quantitatively, because this system is qualitatively one of the best understood
signal transduction system in the field of molecular biology. This system shows two remarkable
properties, high gain of signals and precise adaptation. Explanations of how these properties are
achieved should be given using quantitative data and analysis. Most biochemical data needed to
construct models can be retrieved from papers published from 1970s to now, which enables us to
construct and simulate models and analyze this system quantitatively.

However, each modeling study employs different formulisms and simulation algorithms, so
comparisons of their performance is a nontrivial problem. To study the characteristics of each of

*Yuri Matsuzaki—Institute for Advanced Biosciences, Keio University, Japan.
Email: yuri@sfc.keio.ac.jp
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. stimuli

Figure 1. Signaling pathway of chemotaxis. A kinase CheA phosphorylates itself and transfers the
phosphate to CheB or CheY. The state of the chemoreceptor modification controls the efficiency
of CheA phosphorylation and consequently the CheY phosphorylation level. Receptors take active
or inactive form; active receptor complex undergo autophosphorylation of CheA. It can be methyl-
ated by CheR. Inactive receptor complex can be demethylated by phosphorylated form of CheB.

these models and to compare their behavior, it would be helpful to be able to execute simulations
on a single platform. The E-Cell Simulation Environment Version 3 (E-Cell 3) provides a flexible
framework in which both deterministic and stochastic algorithms can be used to simulate models
with either continuous or discrete variables. Our main goal is to test E-Cell’s multi algorithm ca-
pabilities with a well-characterized system. To demonstrate the utility of this framework, we have
constructed a model library of E. coli chemotaxis that allows comparative analysis of previously
published models. It thus would be interesting when we try to analyze and get new insight on
biological problems to compare models which have different assumptions and see which charac-
teristics of each model bring the difference in representations of these models.

In this chapter, we introduce basic assumptions and profiles of the imported models and make
clear the difference between reference models and imported E-Cell models. We have the following
three models on E-Cell 3 thus far: (i) a minimal deterministic model of adaptation, based on Bray
etal’ in which receptors have only a single methylation site, (ii) a more detailed, deterministic
model in which the receptor has four methylation sites, as proposed by Mello and Tu® and (iii) a
stochastic model which explicitly represents the kinetics of all reactions present in (ii), based on
Morton-Firth and Bray."

These models are available at the following URL:

heep://www.e-cell.org/

Models and Methods

Initial amount of substances, kinetic equation and kinetic parameters are taken from the original
models and published papers. All these data are shown in our website.'®

Shared Assumptions

The implemented models share two assumptions; a two-state model of receptor activation'
and a robust adaptation mechanism?® (Fig. 2). Based on two-state model, chemoreceptors are in
equilibrium between two conformations (S: swimming/T: tumbling). S receptors are called inac-
tive receptors, for CheA activity in complex with S receptor is low. On the other hand, T receptors
are called active receptors. Attractants bind to T receptors and shift equilibrium between S/T to
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Figure 2. Two-state model and robust perfect adaptation mechanism. a) Two-state model. The
receptor complex forms either active or inactive conformation. Receptor complex in active
conformation promotes CheA autophosphorylation. b) Robust perfect adaptation mechanism.
Methyltransferase CheR only binds to the inactive form of the receptor complex, while methyl
esterase CheB in phosphorylated form can only bind to the active form.

increase S receptors. Simultaneously, S receptors accept methylation. Methylation causes receptors
to more favorably shift to T form, although kinetic rates of methylation and demethylation are small
compared to the effect induced by attractants. Barkai and Leibler? and Morton-Firth and Bray’
suggested conditions to gain robust perfect adaptation that assume receptor methylation changes
depending on activity of the receptor, thus CheR only bind receptors in inactive conformation
while CheB only bind receptors in active conformation.

Canonical Adaptation Model (Loosely Based on Bray et al, 1993)
Methods

Model (i) employs the simplest mechanism for adaptation, loosely based on the reference.’ The
reference model has the following features: (i) assumes the existence of only Tar receptors and
does not incorporate effects from four other chemoreceptors (Tap, Trg, Tsr, Aer) that the Che
protein can interact with, (ii) simplifies receptor methylation states in only two forms (methylated/
not methylated), which denotes that the chemoreceptor has only two methylation sites (Fig. 3).

As E-Cell 3 was still in early development at the time we developed the model library, we
needed to clarify the accuracy of the numerical integration of E-Cell system. For this purpose,
we implemented the same model to GNU Octave and compared the results brought by the two
software programs.

Asp

Tar

CheW

D CheA

Figure 3. Binding states of the Tar complex in model (i). ‘m’ represents the methyl group,
‘p’ represents the phosphate group. Asp, m, p can bind to the Tar complex with a distinct
binding site for each. The Tar complex can form eight different binding states in this model.
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The model on E-Cell represents all 36 chemical reactions and numerically integrates by the
Stepper class ODE45Stepper, which calculates numerical solution for simultaneous ordinary dif-
ferential equations (ODE) with fourth order of precision and fifth order of error control."® The
model for validation implemented on GNU Octave was written in the form of 12 differential
equations for simulation variables, such as proteins, and ODE was solved by Isode, which is based

on the ODE solver LSODE by Hindmarch.

Results

Simulation outputs of E-Cell 3 and Octave were consistent as shown in Figure 5a. The
results are shown as time-course data of phosphorylated CheYp, the output of the chemotaxis
signal transduction system, which interacts directly to a flagellar motor. Simulation results are
shown in Figure 5b. Attractants were induced at 2000 seconds when the system has reached
steady state and then removed 2000 seconds after the stimulation when the cell adapted to the
stimulation. The model can partially adapt to the stimulus. The Adaptation errors were under
3%, which do not meet perfect adaptation criterion.” The Adaptation error shows a strong cor-
relation with the magnitude of the stimulation (Fig. 6a). It enhances exponentially depending
on the induced Asp concentration.

Though the model didn’t show perfect adaptation, it reproduced the dependence of adaptation
time to the magnitude of induced stimulant (Fig. 6b). Because this model didn’t adapt perfectly,
time spent to recover half of reduced phosphorylated CheY is plotted to show adaptation time.
It shows sigmoid curve to the logarithms of the stimulation magnitudes, which is consistent with
experimental data published in ref. 3, Figure 2.

Perfect Adaptation Model (Based on Mello and Tu, 2003 and Morton-Firth
and Bray, 1999)

Methods

Mello and Tu® proposed a model that introduces six conditions derived in an analytical study
of the perfect adaptation. They also examined another model that is biologically consistent
but moderately violates two of these conditions.'® The two models adapt almost equally exact,
with adaptation error lower than 1%. This is the most detailed deterministic model that can be

{J Asp

CheBp Y

m2
CheR m3
m4

CheW
o) CheA

CheB CheY

Figure 4. Binding states of the Tar complex in model (ii) and (iii). ‘m1’, ‘'m2’, ‘m3’, and ‘m4’
represent the methyl group, ‘p’ represents the phosphate group. CheBp and CheR exclusively
bind to NWETF motif of Tar, while CheB and CheY compete to bind to the P, domain of CheA.
The Tar complex can form 180 different binding states in this model.
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Figure 5. Simulation results of model (i). a) Comparison of simulation results by GNU Octave
and E-Cell 3. The number of phosphorylated CheY molecules in response to the addition
and removal of 0.625*¥10A-5 M Asp are shown. b) The response of CheYp molecules to the
addition and removal of six magnitudes of Asp.
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Figure 6. a) Adaptation error observed in model (i). Difference of CheYp molecules before
and after adaptation. b) Adaptation time in model (i). Half adaptation times are plotted against
the stimulus concentration.

used to analyze adaptation behavior of a chemotaxis system for now and both models have the
following features (i) represented by 12 differential equation, (ii) chemoreceptors with four
methylation sites and shift among five methylation states and active/inactive conformation,
(iii) CheB doesn’t interact with no-methylated receptor species and CheR doesn’t interact with
4-methylated receptors.

The methylation state of each receptor affects its probability to be in active state. A more
methylated receptor can be found in the active state with high probability and interact more
frequently with CheBp than CheR.

We have implemented the biologically realistic model referred to in the reference® on E-Cell.
We deducted the reference model to 375 elementary reactions. The model was simulated using
ODE45Stepper. The Tar receptor complex has different binding states in regards to the methyl
group and phosphate group (Fig. 4). Each state is implemented as a distinct simulation object
on E-Cell 3.
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Figure 7. a) Response of CheYp molecule to the addition and removal of Asp. Stimulants were
added at 50 simulation seconds and then removed after 400 seconds. b) Results of the model
implemented on Mathematica, that perfectly adapts to the stimulation.

Results

Figure 7 shows the simulation results of the model (ii). Phosphorylated CheY protein shows
perfect adaptation for the stimulation by five orders of magnitude. Concentrations of each mo-
lecular species at a steady state was the same as the data shown in reference 6, Table IV.

For a reference, outputs from a mathematically strict model, which was implemented in
Mathematica Version 4.2, is shown in Figure 7b. It shows exact adaptation at any concentration
of 0.1 uM to 1.0 mM stimulant.

Stochastically Represented Perfect Adaptation Model (Based on Morton-Firth
and Bray, 1999)

Methods

The model that reference® referred to as a biologically consistent model is originally a model on
a stochastic simulator, StochSim, developed by Morton-Firth et al.>!® This stochastic model was
also implemented on E-Cell as model (iii). This model can be used to analyze effects of random
fluctuation of the system, which can’t be discussed by deterministic models.

StochSim is a stochastic simulator for biological systems. It treats each molecule as distinct
simulation objects. Simulation objects in StochSim models interact according to reaction rate
constants and stochastic constants calculated by free energy and kinetic rate constants. In one
simulation step, two objects are randomly selected. A generated random number will be compared
with stochastic constants of the reaction. The system will calculate the reaction and update itself
if the random number was larger than the stochastic constant.

Simulation with stochastic algorithm is suitable for analysis of biological systems in which the
quantity of constitutive molecules are small, for example CheR.

The main feature of this reference model is the same as that described in model (ii). The im-
ported model has an alteration from the original model: Tsr effects are not considered. This is for
simplicity and to make comparison with model (ii) easier. Bindings of ligands are implicit in the
rate of reactions. This is because the binding/dissociation reaction between ligand and receptors
is very fast compared to other reactions in this system and can be assumed to be rapid equilibrium.

We imported this model using GillespieStepper, an implementation of Gillespie and Gibson’s
algorithm. Simulation outputs were compared with the results of StochSim calculation."”

Results

The simulation outputs of E-Cell 3 and StochSim were consistent as shown in Figure 8.

This model also achieved perfect adaptation (Fig. 8). Also, the magnitude of the stimulation
and adaptation time shows correlativity as in Model (i). In the stochastic model, response to 0.1
uM induction of the stimulus was concealed by the fluctuation (Fig. 9).
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Figure 8. a) Comparison of simulation results by StochSim and E-Cell, in which TmM Asp was
added at 50 simulation seconds and then removed after 200 seconds. b,c) Results by E-Cell
model, in which five orders of stimulant were added at 50 simulation seconds and removed
after 400 seconds. c) Average and standard deviation of simulated number of CheYp molecules
by 100 simulations, in response to TmM Asp. Stimulants are added at 50 simulation seconds
and removed after 400 seconds. The average number CheYp molecules is shown in the dark
colored line and standard deviation is shown in the light colored line.

Conclusion and Discussion

Model (i) demonstrates that a single methylation site is insufficient for perfect adaptation
when activity-dependent kinetics is assumed. This result is consistent with the recent analysis
by Shimizu et al.'? The logarithmic dependence of adaptation time on stimulus size, however,
can be reproduced even in this simplified model.

Model (ii), derived in an analytical study of the constraints required for exact adaptation,
is presently the most detailed deterministic model for analyzing the adaptive behavior of the
bacterial chemotaxis pathway. Because the model is a faithful reduction of the stochastic model
of Morton-Firth et al,' it can be used to answer questions about perfect adaptation (except those
pertaining to stochastic aspects) and can be solved much more efficiently than stochastic models.

Model (iii) ported to E-Cell 3 faithfully reproduced the behavior of the StochSim imple-
mentation. Interestingly, the time spent to run a 1500 second simulation was nearly the same
between the two simulation systems. One of the reasons that StochSim was developed was to
circumvent the difficulty that the time required for simulations using the Gillespie algorithm is
proportional to the number of possible reactions in the system. The improved Gillespie-Gibson
algorithm implemented in E-Cell 3, however, was expected to be faster than StochSim because
it uses efficient data structures that make the execution time proportional to the logarithm of
the number of reactions. It will be interesting to consider in more detail the conditions under
which each algorithm outperforms the other.

Both deterministic and stochastic models of chemotaxis have been successfully implemented
on E-Cell 3. In future work, it can be interesting to further exploit the flexibility of this system
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Figure 9. Simulation results of the stochastic and the deterministic model. Different amounts
of Asp were added at 50 seconds and removed at 450 seconds. The simulation results by
GillespieStepper are shown in gray lines. Those calculated by ODEStepper are shown in
black (blue) lines.

to combine deterministic and stochastic computations within the same model. For example, we
believe such a framework would be useful for studying the following problems: (i) the response
of a stochastic model to various input signals that take the form of continuous functions, (ii) to
combine dynamic models of the flagellar motor with the pathway models.
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CHAPTER 6

Electrophysiological Simulation
of Developmental Changes in Action
Potentials of Cardiomyocytes

Hitomi Itoh*

Abstract

uring cardiomyocyte development, early embryonic ventricular cells show spontaneous

activity that disappears at a later stage. Dramatic changes in action potential are mediated

by developmental changes in individual ionic currents. Hence, reconstruction of the indi-
vidual ionic currents into an integrated mathematical model would lead to a better understanding
of cardiomyocyte development. To simulate the action potential of the rodent ventricular cell,
anecdotally reported developmental changes in individual ionic systems were integrated into
two different cardiac electrophysiological models: the Kyoto model and the Luo-Rudy model.
Quantitative changes in the ionic currents, pumps, exchangers and sarcoplasmic reticulum Ca**
kinetics were represented as relative activities, which were multiplied by conductance or conver-
sion factors for individual ionic systems. The integrated models can simulate three representative
stagesin rodent dcvclopment: early embryonic, late embryonic and neonatal stages. The simulated
action potential of the early embryonic ventricular cell model exhibited spontaneous activity that
ceased in the simulated action potential of the late embryonic and neonatal ventricular cell mod-
els. The simulations with our models reproduced action potentials consistent with the reported
characteristics of the cells in vitro.

Background
Cardiac Electrophysiological Model for Simulation of Action Potential

The cardiac cell membrane contains various ionic channels, exchangers and pumps that allow
specific ions to travel or be exchanged through the membrane (Fig. 1). Those ionic components
in the cell membrane are utilized to maintain homeostasis of an intracellular and the extracellular
environment; such gradient in ionic concentration causes an electrical voltage between the inside
and outside of the cell, which is called a “membrane potential”

The membrane potential and the gradient in ionic concentration both mediate a passive trans-
port of ions through the cell membrane. In addition to the passive force driven by the membrane
potential and the gradient in ionic concentration, each ionic channel in the cardiomyocyte opens
or closes in response to the shift in the membrane potential, represented as a gating property of
the ionic current. All of the current components on the membrane are formulated on the basis of
a basic mathematical expression of an ionic current that include three parameters: conductance

*Hitomi Itoh— Institute for Advanced Biosciences, Keio University, 5322 Endo, Fujisawa,
Kanagawa, 252-8520, Japan. Email: ducky@sfc.keio.ac.jp

E-Cell System: Basic Concepts and Applz'mtiom, edited by Satya Nanda Vel Arjunan,
Pawan K. Dhar and Masaru Tomita. ©2013 Landes Bioscience and Springer Science+Business Media.
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Figure 1. A schematic diagram describing the components of a cardiac electrophysiological
model. The model contains more than ten ionic currents, pumps and exchangers; this model
is called the Kyoto model.? Specific ions travel through ionic channels or are exchanged via
exchangers or pumps between the intracellular and extracellular environments as well as
between the cytosol and the sarcoplasmic reticulum (SR).

or a conversion factor, passive transport driven by membrane potential and gradient in ionic
concentrations and gating properties.

The traveling of ions through the cell membrane causes either depolarization or hyperpolar-
ization of the cell depending on the transport direction. In adult ventricular cells (Fig. 2), for
example, opening of channels for Iy, (Na* current) causes the membrane potential to rise to
40 mV; depolarization of the membrane then allows opening of channels for /¢, (L-type Ca**
current), which maintains the potential around 10 mV even after closing of the Na* channels;
the membrane repolarizes to the resting potential level by opening various channels for outward
potassium currents. The entire tracing of the transient change in membrane potential is called
“action potential”

Developmental Changes in Electrophysiological Properties
of Ventricular Cells

The action potential properties of the ventricular cell have been broadly studied in various species
at various stages of development. The early embryonic ventricular cells generally have spontancous
action potential in mouse,' rat** and chick®; representative in vitro recording of spontancous action
potential in early embryonic rat ventricular cells is shown as an example in Figure 3A.

The late embryonic and postnatal ventricular cells require external stimulation to fire the
action potential.>¢ Although several action potential parameters change among different stages,
developmental changes in action potential duration (APD) are the most prominent; APD of
guinea pig ventricular cells initially decreased in the neonatal stage and then increased until
the adule period (Fig. 3B). Interestingly, the time courses of the changes are different among
species; APD continues to decrease in postnatal development of mouse ventricular cells. The
developmental changes and the species-specific differences in action potential are mediated by
the ion channels of the cells.

Large amounts of data have been recorded via standard microelectrode techniques to describe
electrophysiological properties of the ionic channels; several selected examples are reproduced
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Figure 2. Simulated action potential of an adult ventricular cell with the Kyoto model and
changes in I, I, and Iy, accompanying the simulated action potential.

from literature and shown in Figure 4. The basic property of an ionic current can be obtained
by shifting the membrane potential from a given holding potential to an arbitrary potential;
tracings of I, and Jy, (inward rectifier K* current) are recorded from ventricular cells at dif-
ferent developmental stages, wherein membrane is depolarized from a holding potential of =50
to 0 mV for recording of I,;. (Fig. 4A) and from a holding potential of 40 to —100, -90, —80
and 60 mV for recording of Iy, (Fig. 4B). Current-voltage (I-}) curves of the currents can be
drawn up by plotting selected points in the tracing that is obtained by shifting the membrane
potential to different potentials (Fig. 4C, D).

Modeling Developmental Changes in Cardiomyocyte

As shown above, developmental changes in cardiomyocyte have been anecdotally reported at vari-
ous levels. This chapter summarizes the basic concept presented in a recently published paper” which
aimed to integrate those anecdotally reported data from experiments in vivo or in vitro on the basis
of comprehensive cardiac electrophysiological models. I-¥ curves of I, and I, (Fig. 4C, D) indicate
that the activity level of the ionic current changes among different stages while voltage dependen-
cies of the current do not change. On the basis of these data, we have assumed that developmental
changes in the ionic currents can be represented quantitatively as the activities of the channels in the
developing rodent relative to those in the adult. Application of the integrated model for simulation
of action potential showed that action potential at different developmental stages can be reproduced
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Figure 3. Action potential at different developmental stages in vitro. A) In vitro action poten-
tial recorded in ventricular myocytes of a 12-day fetal rat. [Reproduced from: Nagashima et
al. ] Mol Cell Cardiol 33(3):533-543; ©2001 with permission of Elsevier.?] B) In vitro action
potential recorded in ventricular myocytes of fetal (1-5 days before birth), neonatal (1-5 days
after birth) and adult (45-60 days after birth) guinea pigs. [Reproduced from: Kato et al. ] Mol
Cell Cardiol 28(7):1515-1522; ©1996 with permission of Elsevier.'?]
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Figure 4. Various ionic currents recorded in different developmental stages. A) Representative
tracing of lc, recorded from ventricular myocytes of the mouse at 9.5-days postcoitum (dpc),
18-dpc and as an adult, wherein the membrane potential was depolarized from a holding
potential of =50 mV to 0 mV. [Reproduced from: Liu et al. Life Sci 71(11):1279-1292;'¢ ©2002
with permission of Elsevier.] B) Representative tracings of /; recorded from ventricular myocytes
of fetal (1-5 days before birth), neonatal (1-5 days after birth) and adult (45-60 days after birth)
guinea-pigs, the membrane potential was polarized from a holding potential of 40 mV to
-100, =90, -80 and —-60 mV. [Reproduced from: Kato et al. ] Mol Cell Cardiol 28(7):1515-1522;
©1996 with permission of Elsevier.”?] C) Current-voltage (I-V) curves of I, for late embryonic
(squares), neonatal (triangles) and adult (circles) ventricular cells. [Reproduced from: Kato et al.
J Mol Cell Cardiol 1996; 28(7):8; with permission of Elsevier.] D) Current-voltage (/-V) curves
of Iy, for early embryonic (open circles), late embryonic (open triangles) and neonatal (close
triangles) ventricular cells. [Reproduced from Masuda H, Sperelakis N. Am J Physiol Heart
Circ Physiol 265(4):1108; " ©1993 with permission from the American Physiological Society.]
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with common sets of mathematical models, wherein quantitative changes in the ionic currents,
pumps, exchangers and sarcoplasmic reticulum (SR) Ca** kinetics are expressed as relative activities.

Methods

Implementation of Cardiac Electrophysiological Models

to E-Cell Simulation Environment

Models for simulating the action potential at different developmental stages were constructed on
the basis of the Kyoto and Luo-Rudy models, electrophysiological models of the guinea pig cardio-
myocyte.® The structures of the Kyoto and Luo-Rudy models are very similar and both models have
been developed for simulation of guinea pig ventricular cells. The latest version of the Luo-Rudy
model’ was implemented in the E-Cell simulation environment version 3.1. All of the models are
constructed on the basis of ElectrophysiologicalBaseProcess.hpp, which had been developed to
facilitate further analysis via rcplacing mathematical equations of ionic currents from one electro-
physiological model to the other and the models are available online at hetp://www.e-cell.org.*

General Approach to Modeling of Different Developmental Stages

All ionic currents, pumps, exchangers and SR Ca®* kinetics are expressed in mathematical
equations; as mentioned above, all of the equations include cither a conversion factor (pA/mM)
or conductance (pA/mV) as one of the parameters. For instance, I,; and I, in the Kyoto model
are expressed as follow:

Ica = Pea +(CFe,+ 0.000365-CFy +0.0000185-CFy,)-p(openc.) m
L = G -(Vo - EQ-( /' + 8/3: [ fo+ 2- [ i)y @)

In Equation (1), CFc,, CFx and CFy, represent constant field equations (mM) for Ca**, K*
and Na”, respectively; the open probability of three gates in the L-type Ca** channel is expressed
as p(openc,). Similarly in Equation (2), 7, represents the membrane potential (mV'); Ey repre-
sents the equilibrium potential of K* (mV); f3 and /o, represent the fractions of blocked state and
those of open state, respectively; y represents the gating variable for a two-state gate. In order to
simulate both ventricular cells and sinoatrial (SA) node cells by common mathematical equations,
either the conversion factor (P, in Eq. 1) or conductance (G, in Eq. 2) was adjusted based on
electrophysiological experiments of each cell.®

Various in vitro experimental data, including -} curves and Western blot analyses, were utilized
to estimate the relative activities of ionic currents, pumps, exchangers and SR Ca** kinetics. Those
in vitro experimental studies that used guinea pigs were preferentially adopted, because both models
were constructed using the adult guinea pig.*” Although the guinea pigwas the preferred experimental
animal, data from the rat and mouse were also utilized, on the basis of the reported observation that
the IV relationships of the ionic channels are well conserved among different rodents.'®!" In addi-
tion, the target stages for simulation of action potentials were set to early embryonic, late embryonic
and neonatal, because plenty of literature was available for these stages. The early embryonic stage
approximately represents the mouse at 9.5 days postcoitum (dpc) and the rat at 11.5 dpc; the late
embryonic and neonatal stages correspond to 1-5 days before and after birth, respectively.

Ionic Currents

It was assumed that developmental changes in ionic currents are determined mainly by their
quantitative changes (Fig. 5), which can be represented as the activities of the current in developing
stages relative to that of those in the adult stage.

The relative activities of ionic currents were either computed from I-/ curves (Table 1) or
estimated on the basis of qualitative observations (‘Table 2). It was confirmed that the I-F relation-
ship did not change among different developmental stages for I¢,1,"* Ic;r (T-type Ca** current),'
L), Iy, (rapid component of delayed rectifier K* current)," I, (slow component of delayed
rectifier K* current) * and I, ©°
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Figure 5. Schematic diagram for modeling rodent ventricular cells at different stages of de-
velopment. The early embryonic stage approximately corresponds to 9.5-dpc mouse and
11.5-dpc rat. The late embryonic stage corresponds to 1-5 days before birth. The neonatal
stage corresponds to 1-5 days after birth. The developmental changes are represented as
relative activities, which are obtained or estimated from various in vitro experimental data.
All of the relative activities are listed in Tables 1 to 3.

The relative activities were multiplied by the conversion factor or the conductance of the
corresponding ionic current. In addition, all currents listed in Table 1 had to be normalized by
the ratio of the cell capacitance (C,) of individual myocytes at the corresponding developmental
stages (Table 4) to that of adult ventricular cells (132 pF), because I-/ relationships are usually
reported as current density (pA/pF) and the Kyoto model presents current in pA. The ratios were
28/132 for the early embryonic ventricular cell model, 35/132 for the late embryonic ventricular
cell model and 40/132 for the neonatal ventricular cell model.

Table 1. Relative activities for ionic currents, as obtained from the literature

Early Embryonic Late Embryonic Neonatal
Current Ventricular Cell Ventricular Cell Ventricular Cell
INa 0.08 (Davies et al)"® 1.00 (Davies et al)"® 1.00 (Davies et al)"®
lca 0.46 (Liu et al)'® 0.78 (Kato et al;"? Liu et al'®) 0.78 (Kato et al)?
lear 4.50 (Ferron et al)® 4.50 (Ferron et al)® 2.90 (Ferron et al)
I 0.11 (Masuda & Sperelakis)' 1.00 (Kato et al)? 1.00 (Kato et al)?
Ixate 0.32 (Xie et al)” 0.88 (Xie et al)"” 1.60 (Xie et al)"”
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Table 2. Estimated relative activities of ionic currents

Early Embryonic Late Embryonic Neonatal
Current Ventricular Cell Ventricular Cell Ventricular Cell
Iha 100.00 (Yasui et al)! 18.00 (Yasui et al)! 0.00 (n/a)
I 10.00 (Chun et al;®® 2.00 (Kato et al;"? 1.50 (Kato et al;*?
Spence et al?) Wang et al®) Wang et al®)
Ixs 0.01 (Davies et al)”® 0.01 (Davies et al;"® 2.00 (Kato et al)?
Kato et al.'?)
lio 0.01 (Davies et al)”® 0.27 (Kilborn & Fedida)?” 0.27 (Kilborn &
Fedida)?”
Ionsc 0.35 (n/a) 0.43 (n/a) 0.49 (n/a)

The Luo-Rudy model includes all ionic currents listed in Figure 5 except Z,, (transient outward
current), Iy yrp (AT P-sensitive K* current) and ;,, (hyperpolarization-activated cation current), all
relative activities except those of 1,,, [y orp and 1y, were thus implemented in the Luo-Rudy model
by the same procedure used in the Kyoto model. Unlike the Kyoto model, all of the currents in the
Luo-Rudy model are presented as current density (pA/pF), so it was not necessary to normalize
the activity of the currents by the ratio of the C,, of individual myocytes at the corresponding
developmental stages.

Background Ionic Currents

Iinsc (background nonselective cation current) is known to have a higher current density in
SA node cells than in ventricular cells.'® Because we found that Jxsc plays an important role in
the spontancous action potential of both SA node cells and early embryonic ventricular myocytes,
we scaled the current amplitudes at different stages according to the cell capacitances of the fetal
and neonatal cells (‘Table 2).

Ixach (ACh-activated K* current) is known to have negligible effects on the action potential
of ventricular cells during the course of development'>'” and is not included in adult ventricular
cell models.® Hence, we excluded g ocy, from the models. Other background currents, including
Iy, (nonspecific, voltage-dependent outward current), Iy, (Ca**-activated background cation
current) and /¢, (background Ca® current) were assumed to have steady current densities;
as such, these currents were normalized to the corresponding cell capacitance by the method
described above.

Exchangers, Pumps and SR Ca’* Kinetics
The relative activities of exchangers, pumps and SR Ca?* kinetics were computed from a
Western blot of SR-related proteins,'®" as listed in Table 3. Here, we assumed that the relative

Table 3. Relative activities of exchangers, pumps and SR Ca** kinetics

Early Embryonic Late Embryonic Neonatal
Current Ventricular Cell Ventricular Cell Ventricular Cell

Na*/Ca®t exchange 4.95 (Liuetal)'®  4.95 (Liu et al;'® Artman?®)  1.00 (Liu et al;'®
Artman et al;>?Artman?®)

SR Ca2+ pump 0.03 (Liu et al)'®  0.21 (Chen etal.; Liuetal'® 0.21 (Chen et al;' Liu et al'®)
RyR channel 0.05 (Liu et al)'®*  0.40 (Liu et al)'® 0.40 (Liu et al)'®
SR transfer 0.04 (Liu etal)®  0.30 (Liu et al)'® 0.30 (Liu et al)'®
SR leak 0.04 (Liu et al)’®  0.30 (Liu et al)*® 0.30 (Liu et al)'®
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Table 4. Cell capacitances and volumes of cell compartments

Early Embryonic Late Embryonic Neonatal
Current  Ventricular Cell Ventricular Cell Ventricular Cell
Cm (pF) 28 (Yasui et al)! 35 (Kato et al;? Yasui et al') 40 (Kato et al)'?

Viul) 1697 x 10 (Huynhetal?® 2121 x 107 (Huynh etal®®  2.424 x 10~ (Huynh et alj®
Vig D) 1357 x 1070 (Liuetal® 1273 x 107 (Liuetal®®  1.454 x 107" (Liu et al)’®
Vip (W) 3.394x 107° (Livetal)® 3182 x 107 (Liuetal)®  3.636 x 107 (Liu etal)"®

expression level of the proteins directly reflected the relative activities of Na*/Ca?* exchange,
SR Ca** pump, ryanodine receptor (RyR) channel and other SR Ca®* kinetics. The average
relative expression values of SR-related proteins in the early embryonic stage (0.04), late em-
bryonic stage (0.30) and neonatal stage (0.30) were adopted for estimating those values for
Lsg, cranster A0 ISR fcake

Cell Capacitance and Volume of Cell Compartments
C (cell capacitance) and volumes (V, Vg, V) were computed on the basis of quantitative data
obtained from the literature (Table 4). No significant differences were observed between the C,,
of mouse ventricular cells (31 + 3.3 pF) and that of guinea pig ventricular cells (34.5 + 2.72 pF)
in the late embryonic stage;"'* as such, the C,, values for mouse early embryonic ventricular cells
(28 pF), guinea pig late embryonic ventricular cells (35 pF) and guinea pig neonatal ventricular
cells (40 pF) were adopted.

The developmental change in 7 (cell volume accessible for ion diffusion) in rabbit ventricular
cells is roughly proportional to that of cell capacitance.”” In addition, a positive linear correlation
has been found between membrane capacitance and cell volume in several species.” Hence, cell
volume was estimated by multiplying the adult /; (8.0 x 10~ uL) by the corresponding C,, (28,
35 or 40 pF) over the adule C,, (132 pF).

In the Kyoto model, the volume fractions of / (volume of SR release site) and V,, (volume
of SR uptake site) were set to 2% and 5% of ¥, respectively.* The SR-mediated Ca®* transient
is modeled by multiplying an estimated value called the “SA factor” by V.., ', and SR-related
currents in the Kyoto model.® The same approach has been adopted for estimating /7, and
V,p in different developmental stages of ventricular cells; on the basis of quantitative changes
in SR-related proteins,'® the average relative expression values of those proteins in the early
embryonic stage (0.04), late embryonic stage (0.30) and neonatal stage (0.30) were utilized
for the estimation.

Simulation of Action Potential at Three Different Developmental Stages

On the basis of the assumption that developmental changes in ionic currents are determined
mainly by their quantitative changes (Fig. 5), the developmental changes in ionic components
were represented as the activities of the components in the developing rodent relative to those in
the adult; the relative activities were multiplied by either the conversion factor or conductance
in corresponding mathematical equations. All of the models were simulated for 200 s to confirm
that the spontancous action potentials were stable or that the membrane potential had reached
a quasi-steady state. Hence, the simulation results presented in this chapter were recorded after
simulating the corresponding models for 200 s. In addition, an external current (I,,,) was applied
in the late embryonic and neonatal ventricular cell models in order to fire the action potential of
the cells. Because the Luo-Rudy model requires “pacing” of the action potential, the model was
simulated for 600 s as instructed in the report.’
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Results

Simulated Action Potential at Three Representative Developmental Stages

The implementation of relative activities of ionic components at early embryonic stage to
both the Kyoto and Luo-Rudy models exhibited a spontancous action potential (Fig. 6A,C). In
the simulated action potential with the Kyoto model, the membrane slowly depolarized from
the maximum diastolic potential (MDP) at ~62.86 mV until it reached approximately —40 mV
when spontaneous action potential was triggered. The membrane then started to repolarize after
overshoot potential at 3.13 mV and completed the repolarization in less than 100 ms. The whole
action potential was completed in a basic cycle length (BCL) of 492 ms. On the other hand, the
membrane overshot to 13.74 mV from MDP at —=71.16 mV in the simulation with the Luo-Rudy
model; the whole action potential was completed in a BCL of 414 ms, which resulted from faster
depolarization and repolarization of the membrane.

The spontancous action potential ceased in the later stages of development in simulation of the
corresponding stages with both the Kyoto model (Fig. 6B) and the Luo-Rudy model (Fig. 6D). In
simulation with the Kyoto model, both late embryonic and neonatal ventricular cells showed resting
membrane potentials that were more negative (-83.60 mV') than the MDP of the carly embryonic
ventricular cell. Repolarization of the membrane occurred more slowly in the late embryonic
ventricular cell than in the neonatal ventricular cell; the APD was 140 ms in the late embryonic
ventricular cell and 117 ms in the neonatal ventricular cell. The qualitative characteristics of the
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Figure 6. Simulated action potentials at different developmental stages with the Luo-Rudy
model (B) in comparison with simulated action potential with the Kyoto model (A). A) Simulated
action potential with the Kyoto model. B) Simulated action potential with the Luo-Rudy model
at early embryonic stage (left), late embryonic stage (dark line in right) and neonatal stage
(light line). Action potentials at adult stage (control) are shown as dashed line.
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cells at those stages were well reproduced in the simulation with the Luo-Rudy model as well; the
late embryonic and neonatal ventricular cells showed more negative resting membrane potentials
than the MDP of the carly embryonic ventricular cell and shorter APD in neonatal ventricular
cells than in late embryonic ventricular cells.

Evaluation of Individual Ionic Currents in Two Different Models

Comparison of the action potential tracings of early embryonic ventricular cell simulated
with the Kyoto (Fig. 6A) and the Luo-Rudy model (Fig. 6C) clearly indicate that the Kyoto
model reproduced the action potential recording in vitro (Fig. 3A) more consistently than did
the Luo-Rudy model; the most prominent differences are the faster repolarization phase (RP)
and diastolic slow depolarization (DSD) phase, both of which cause overall shortening of BCL.
The differences in simulated action potential were determined by differences in mathematical
equations of ionic currents, particularly /, that plays a predominant role in repolarization of the
membrane during action potential. The dynamic behaviors of I, underlying the action potential
were compared between the Kyoto and the Luo-Rudy models along with /¢, and sums of I,y and
Iy, (Fig. 7). Apparently, activation of I, in RP was faster in the Luo—Rudy model (Fig. 7B) than
in the Kyoto model (Fig. 7A); the difference in I¢, in the inactivation phase is canceled out by the
fast activation of Iy, illustrated as sum of I, and Ix,. Hence, we made a working hypothesis that
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Figure 7. Simulated action potential, /i, and /c,;, at early embryonic stage with the Kyoto model
(A) the Luo—Rudy model (B). The simulated action potential can be divided into three phases:
diastolic slow depolarization (DSD), depolarization phase (DP) and repolarization phase (RP).
Sum of I, and /¢, shows that the increase in outward (positive) current is slower in the Kyoto
model than in the Luo—Rudy model.
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the difference in the mathematical equations of /i, in the two models undertakes more consistent
simulated action potentials in the Kyoto model.

In order to assess the working hypothesis, mathematical equations of I, in the Luo-Rudy model
was replaced with those of Ik, in the Kyoto model. Figure 8 illustrates simulated results of adult
ventricular cell with original Luo-Rudy model (A) and the Luo-Rudy model whose I, is replaced
with those of the Kyoto model (B); the conductance amplitude of I, (G,) was adjusted to achieve
approximately the same APD. The replaced model was then utilized for simulation of spontaneous
action potential in early embryonic ventricular cell (Fig. 9A). Apparently, the replacement of the
mathematical equations made all quantitative characteristics of the action potential less consistent
with those of the cells in vitro; such characteristics are more negative MDP (-75.94 mV), more
positive overshoot (21.03 mV) and longer BCL (697 ms).

Another difference between the Kyoto and Luo-Rudy models is that the Kyoto model suc-
cessfully incorporated five known types of background current components. One of the defined
background current is called Jixsc (background nonselective cation current), which shows ion
selectivity of both K* and Na* and is determined by constant field equations of each ions. Because
the balance of Iy, and Jxsc determines the MDP of the simulated spontaneous action potential
of SA node cell with the Kyoto model** and the Luo-Rudy model lacks such nonselective current,
model equations of J,ysc were augmented in addition to replacing /i equations (Fig. 9B). Varying
the amplitude of Jyysc (Pynsc) arbitrarily showed that Ziysc indeed plays an important role in both
determining MDP and rate of DSD phase and all three quantitative characteristics, MDP (-71.15
mV), overshoot (18.20 mV') and BCL (510 ms), were thus improved compared to the /i, -replaced
model without augmentation of Ziysc.
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Figure 8. Simulated action potentials and tracings of I, of adult ventricular cell with the original
Luo-Rudy model (A) and the Luo-Rudy model whose Iy, is replaced with those of the Kyoto
model (B). Model equations of /, in the Luo-Rudy model were replaced with those of /, in
the Kyoto model.
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Figure 9. Simulated action potentials of early embryonic stage with various replacements. A)
Simulated action potential with the Luo-Rudy model wherein the model equations of /i, were
replaced with those of I, in the Kyoto model. B) Simulated action potential with the Luo-Rudy
model wherein the model equations of /,xsc were augmented in addition to replacement of /..

Discussion

Spontaneous Action Potential In Vitro Was Well Simulated
with the Early Embryonic Models

The early embryonic ventricular cell model, which was constructed on the basis of the Kyoto
model (Fig. 6A), reproduced well the spontaneous action potential that is generated by ventricular
cells in 12-dpc rats.? Species-specific differences in spontaneous action potential waveforms have
been observed between ventricular cells in 9.5-dpc mice! and those in 12-dpc rats.* The ventricular
cellsin 9.5-dpc mice generate a more hyperpolarized MDP (~71.2 + 0.4 mV') than those in 12-dpc
rats (—66.7 + 3.6 mV). A spontancous action potential is triggered when the membrane potential
reaches approximately —60 mV in 9.5-dpc mice and approximately ~40 mV in 12-dpc rats."? The
simulated action potential in our early embryonic ventricular cell model constructed on the basis
of the Kyoto model (Fig. 6A) was very similar to the action potential waveforms generated by the
automatically beating cells in 12-dpc rats (Fig. 3A).> In addition, the MDP of the simulated action
potential (-62.86 mV') was approximately consistent with that of the ventricular cells in 12-dpc
rats. Hence, our early embryonic ventricular cell model could reproduce an action potential that
was in reasonable agreement with those of previous studies.

The speed of the spontancous action potential in the early embryonic stage has been a contro-
versial issue. Unfortunately, the action potential of early embryonic guinea pig ventricular cells
has not been reported. Early embryonic hearts have shown a large range of heart rates, from 61 to
219 min™! in 11.5-dpc rats.? The BCL of the simulated action potential of our early embryonic
ventricular cell model (492 ms) was roughly consistent with that of ventricular cells in 9.5-dpc
mice, which is 510.8 + 32.8 ms.! Although the BCL of the action potential of our model was
approximately consistent with those of previous studies, it should be noted that the BCL of the
simulated action potential might not be quantitatively accurate, because early embryonic hearts
have a large range of rates in vivo.

Developmental Changes in APD Were Reproduced Qualitatively
with the Model

APD changes over the course of rodent development. Although the duration and shape of the
action potential in the adult rat are totally different from those in the adult guinea pig because of
differences in the I,,, shortening of the APD between the late embryonic stage and the neonatal
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stage has been observed in both guinea pigs* and rats.® The rapid component (/i,) and slow com-
ponent (Ix,) of the delayed rectifier K* current play important roles in repolarization and thus
control the length of the APD; both /i, and /i, undergo very complex changes in their activities
between the late embryonic and neonatal stages (Fig. 5). As described in the Methods sections,
I estimated the relative activities of both Jy, and I, on the basis of the qualitative characteristics
of these currents, including the changes in APD in response to a selective Iy, blocker. Although
qualitatively consistent, APD may not be quantitatively accurate because several relative activities
were estimated on the basis of qualitative characteristics.

Evaluating the Role of Individual Ionic Currents for Better Simulation

All of the simulated results with the Luo-Rudy model indicate that the Kyoto model repro-
duced the action potential in the early embryonic stage more consistently than the Luo—Rudy
model. The role of individual ionic currents in the better simulation with the Kyoto model was
evaluated by replacing mathematical models of specific ionic currents between the Kyoto model
and the Luo-Rudy model.

Dynamic behavior was improved by replacement of the mathematical models for Iy.. This result
indicated that the fast repolarization in the Luo—Rudy model is determined by fast activation of
I The formulations of I, in the Luo-Rudy and Kyoto models are as follow:

IKrzGKr'(Vm'EK)'Xr'R (3)
IK: = GKr ° C'm * (Vm 'EK) ° (06 ‘N + 04 ‘}’2) Y3 (4)

Whereas Iy, in the Luo—Rudy model (Eq. 3) is described by a time-dependent activation gate
(X) and a time-independent inactivation gate (R),” Iy, in the Kyoto model (Eq. 4) is described by
two activation gates (), J,) and by one inactivation gate (y3)%. In the Kyoto model, the equations
were intentionally developed for two cell types, ventricular cells as well as SA node cells,” because
no obvious difference has been observed in the electrophysiological properties of the currents in
terms of their kinetics. In addition, the original paper* specifically mentioned that the balance of
Iy and [ynsc determines the MDP of the simulated spontancous action potential of SA node cell
with the Kyoto model; as such, the difference in background currents between the Kyoto and the
Luo-Rudy models is one of the important differences contributing to the increased speed of the
DSD phase. The Kyoto model may thus have been suitable for this study, because most currents in
ventricular cells change quantitatively with similar kinetics throughout the stages of development.

Conclusion

In the present chapter, developmental changes of the ion channels were represented quanti-
tatively as the activities of the channels in the developing rodent relative to those in the adult.
Multiplication of the relative activities by the corresponding mathematical equations reproduced
the developmental changes in the action potential of the rodent ventricular cell. Although both
the Kyoto and Luo—Rudy models represented various characteristics, the Kyoto model reproduced
action potentials in the early embryonic stage more consistently than did the Luo—Rudy model,
because of differences in mathematical model of Iy, and background currents.
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CHAPTER 7

Simulation of Human Erythrocyte
Metabolism

Ayako Kinoshita*

Introduction

ince a mature mammalian erythrocyte is enucleated and it is void of mitochondria, gene
S expression does not take place, while glycolysis is the only mechanism to produce ATP. This

simplicity makes its metabolism unique from other cells. Due to its simple structure and the
traceability of the cell, erythrocyte metabolism and enzymology have been well studied over the
last three to four decades. Although vast amounts of erythrocyte component information is avail-
able, the quantitative and physiological role of the metabolism is still an open question because the
nature of the cellular function is the complex dynamics of components. Mathematical models for
biochemical pathways comprising complex networks are of particular interest in order to identify
the features of biological systems that cannot be investigated by the analysis of their individual
components alone. Because of its simplicity, the robustness of the erythrocyte that enables the
cell to circulate in the body for about 120 days and the abundance of knowledge, erythrocytes
have been a good subject for numerous modeling and simulation studies. There is a long history
of detailed metabolic models of erythrocyte metabolism with differential equations. The first
mathematical models of erythrocyte metabolism were developed by Rapoport et al and the model
by Heinrich et al, which only included the glycolytic pathway.' Ataullakhanov et al expanded the
glycolytic model to represent the pentose phosphate pathway. Subsequently, adenine nucleotide
metabolism was first considered by Schauer et al.> The comprehensive biochemical network, which
has been widely accepted as the complete network of the metabolic system in erythrocytes, was
reconstructed by Joshi and Palsson in 1989-1990, involving membrane transports, the Na*/K*
pump and osmotic pressure.”” Mulquiney and Kuchel developed a precise model that describes
magnesium equilibrium, binding metabolites to oxyhemoglobin (oxyHb) considering the most
detailed kinetics of glycolytic enzymes.'™"" Based on these studies, several models focusing on
human erythrocyte metabolism have been developed using E-Cell System, which is one of the
leading simulation platforms for applying various modeling methods, mathematical analyses and
multi-time/multi-size behaviors. The simulation analysis of these models predicted various aspects
of the metabolism under physiological and pathological conditions: the importance of the de novo
synthesis and transport of glutathione in glucose-6-phosphate dehydrogenase (G6PDH)-deficient
cells,” the physiological significance of NADPH-dependent methemoglobin-reducing pathway"
and the effectiveness of intracellular protein bindings in hypoxia-induced alterations of the me-
tabolism through hemoglobin allostery.'*

This chapter presents these applications of the metabolic model of human erythrocytes devel-

oped on E-Cell System in some detail.

*Ayako Kinoshita—Department of Biochemistry and Integrative Medical Biology School of
Medicine, Keio University, 160-8582 Tokyo, Japan; Institute for Advanced Biosciences, Keio
University, 252-8520 Fujisawa, Japan. Email: ayakosan@sfc.keio.ac.jp

E-Cell System: Basic Concepts and Applications, edited by Satya Nanda Vel Arjunan,
Pawan K. Dhar and Masaru Tomita. ©2013 Landes Bioscience and Springer Science+Business Media.
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Simulation Analysis of Glucose-6-Phosphate Dehydrogenase
(G6PDH) Deficiency

Using the metabolic model of human erythrocyte on E-Cell System, which consists of
glycolysis, pentose phosphate pathways, nucleotide metabolism, simple membrane transport
systems and the ATP dependent-Na*/K* pump, we carried out a simulation analysis of GGPDH.
The basic model was based on that developed by Joshi and Palsson.*” G6PDH deficiency is
the most common enzymopathy in human erythrocytes with more than two hundred million
people affected by the disease. In serious cases, this disease causes chronic hemolytic anemia
due to attenuated reducing potential. GGPDH, the initial step of the pentose-phosphate path-
way (PPP), catalyzes the oxidation of glucose-6-phosphate (G6P) to 6-phosphoglucolactone
(6PGL) concomitantly reducing NADP to NADPH (Fig. 1A) and is regulated by ATP and
2,3-BPG. NADPH is needed for conversion of GSH from GSSG, and GSH protects the cell
membrane and any other proteins in a human erythrocyte from oxidative stress both directly and
indirectly. We employed the initial metabolic model of human erythrocytes to reproduce the
pathological condition of GGPDH deficiency. Figure 1B shows the kinetic equation of GGPDH
and the corresponding parameter values of normal and deficient cells used in this study. In our
first simulation of GGPDH deficiency, we substituted normal kinetic parameters with those
obtained from the patients with the deficiency.

As a result, several sequential changes were observed in the simulation of GGPDH
deficiency:reaction rate of GGPDH was very low, a decrease in NADPH occurred and GSH
rapidly decreased (Fig. 2A, panel a-c). ATP kept its initial concentration for several simulation
hours, because consumption and production of ATP in glycolysis was balanced. However,
after approximately 55 hours, ATP began to decrease and glycolytic enzyme activities started
to depress and finally depleted completely (Fig. 2A, panel d-f). It is experimentally known that
in GGPDH-deficient cells, ATP and glycolytic enzyme activities keep their normal levels while
the metabolites or metabolic fluxes in PPP are lowered;" however, the simulation results didn’t
agree with this metabolic feature of GGPDH deficiency.

After a precise survey of the metabolic pathways in erythrocytes, we hypothesized that the
difference between the simulation model and the actual cell was caused by the lack of signifi-
cant pathways in the model: de novo synthesizing GSH and excretion of GSSG. The first step
of synthesis of GSH in human erythrocytes produces gamma-glutamyl cysteine (L_GC) from
cysteine and glutamate using ATP. The reaction is catalyzed by gamma-glutamyl cysteine syn-
thetase (L_GCS), the rate-limiting enzyme of glutathione synthesis. In the second step, GSH
is produced from L_GC and glycine using ATP, which is catalyzed by glutathione synthetase
(GSHsyn). Therefore, the GSH synthetic process involves the three kinds of amino acids which
are transported through cell membrane and two molecules of ATP." Due to the strong feedback
inhibition of L_GCS by GSH, the synthesis of GSH is suppressed in the normal state in which
GSH exists in high concentration. On the other hand, under abnormal conditions, e.g., suffering
from oxidative stress or genetically deficient of steps in generating GSH, the pathway is speculated
to be efficiently activated. In addition, erythrocytes have an ATP-dependent transport system
of GSSG, which was first demonstrated by Srivastava and Beutler'” and kinetically examined
by Kondo and Beutler."® We added these pathways, which are neglected in former models, to
the initial model. The rate equations and kinetic parameters of the expanded pathways were not
shown here but presented in other models.*?

Using the expanded model that contains the above pathways around GSH-GSSG, the
following behaviors were predicted in the simulation of GGPDH deficiency: a lesser decrease
in GSH, lower levels of GSSG and a higher NADP/NADPH ratio than that of the previous
model (Fig. 2B, a-c). Note that the activities of glycolytic enzymes stayed at almost the initial
rate, which was one of the most remarkable difference from the previous model, culminating
in the retention of the ATP level (Fig. 2B, d-f). The lifetime predicted from the ATP level of
the pathway-expanded model was much longer than that of the previous model. These results
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corresponded to the results by Ferretti et al that GGPDH-deficient cells have normal glycolytic
activity and abnormally low activity of the pentose phosphate pathways."

These results suggest that the expanded pathways, which have not so far been considered in
modeling, play a significant role not only in keeping the GSH/GSSG ratio but also in reten-
tion of glycolytic activity, the ATP level in the GEPDH-deficient erythrocyte. Most patients
of G6PDH deficiency are not anemic until the RBCs are exposed to strong oxidant stress. The
compensatory effect of the expanded pathways, de novo GSH synthesis and GSSG transport,
helps explain why many varieties of GGPDH deficiency have no significant phenotype in nor-
mal states. It is also well known that patients of GGPDH deficiency have significant resistance
to severe malaria and due to its ability to protect against malaria, high frequency of GGPDH
deficiency is shown. Under these circumstances, this study could also suggest that the compen-
satory mechanism may help the spread of GGPDH deficiency, thus decreasing its severity and

promoting the propagation of the discase during evolution.

Simulation Study for Methemoglobin Reduction Pathways

In circulating erythrocytes, hemoglobin oxidation to metHb continuously occurrs via
intracellular and extracellular reactive oxygen species and via exogenous and endogenous ni-
trites/nitric oxide. The accumulation of intracellular metHb reduces the supply of oxygen to
tissues. As the cycling of hemoglobin and metHb causes an associated persistent production of
superoxide anions, metHb accumulation potentially results in additional oxidative stress.'”*
In normal erythrocytes, metHb is maintained at a level of less than 1% of total hemoglobin
through two metHb-reducing pathways.?"** One of these systems is the redox cycle consisting
of cytochrome b5 (cytb5) and cytochrome b5-metHb reductase (bSR), which uses NADH
as an electron transfer to cytb5 (“cytb5-NADH system”). The other pathway uses flavin as an
electron carrier for the reduction of metHb coupled with NADPH oxidation, catalyzed by
NADPH-dependent flavin reductase (FR) (“flavin-NADPH system”). The pathway schemes
are shown in Figure 3A.

Cytb5-NADH system is estimated to be responsible for more than 95% of metHb-reducing
capacity under experimental conditions.”?’ In addition, hereditary methemoglobinemia, the
condition where the level of metHb is greater than 1% of the total hemoglobin content of the
cell,® is a congenital deficiency of bSR and/or cytb5.”” Contrary to this, the contribution of
flavin-NADPH system to the reduction of metHb has generally been considered to be negligible,
as the deficiency of the flavin-NADPH system is not associated with a metHb-reduction-defi-
cient phenotype.”® On the other hand, FRis reported to be widely distributed in human tissues,
but is most abundant in erythrocytes.”** This appears to be an inefficient distribution pattern,
given the potentially minor role of FR in metHb reduction.

NADH is produced by the reaction through GAPDH in glycolysis and is converted to NAD
in the last step of glycolysis catalyzed by lactate dehydrogenase (LDH). These reactions are in a
state of equilibrium, fully coupled to each other in human erythrocytes and the NADH/NAD
ratio is kept very low for driving glycolysis. On the contrary, the ratio of NADPH/NADP
is kept high by the metabolic property in the production of NADPH. The excess activity of
G6PDH enables a high NADPH concentration and in an accute NADPH supply in response
to naturally occurring oxidative challenges.>** It has thus been accepted that NADPH is a main
source of intracellular reductive power while NADH is not critical for redox status in the cell.

Under these circumstances, a question arises: what is the physiological role of the fla-
vin-NADPH system and why do erythrocytes primarily use an NADH-dependent reduction
process for the reduction of metHb?

To make predictions about the two pathways, in terms of their metHb-reducing behavior, a
mathematical model was developed including both the above-mentioned two metHb-reducing
systems and the major metabolic pathways (glycolysis, PPP) in human erythrocytes as a sup-
plier of NADH or NADPH. The cytb5-NADH system consists of an enzymatic reduction of
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oxidized cytbS by bSR using NADH as an electron carrier and the subsequent non-enzymatic
reduction of metHb by the reduced cytb5. The kinetic equations used in the model were:

Visk = kcat[bSR] [NADH'] ) ( [550x] )

Km_  +[NADH*]|\ Km,+[b5, ]

NADH*

14

k [b5, [ metHb]-k_[b5, |[oxyHDb]

bS—metHb

where the corresponding parameters are: keat, 418 s7'; Kmyapu, 0.31 uM; Kmys, 14.92 uM;*
[b5R], 0.07 uM;* k;, 6.2 x 10° M~'s7'; and k ;, 0.583 M~'s™.% For the flavin-NADPH system,
the electron transport from NADPH to oxidized flavin catalyzed by FR obeys an ordered BiBi
mechanism.** MetHb is then reduced non-enzymatically by the reduced flavin:

keat[ FR][NADPH|[FMN ]
[NADP']

FR

Ki Km,  +Km

NADPH FMN NADPH

1+ [FMN ]

1 +
NADP

+Km,, [NADPH|+[FMN_ ][NADPH)

FMN [

Y tuin-meats = KLEMN. ;| metHb]

in which the parameter values used are: keat, 0.099 s7'; KmNADPH, 0.97 uM; Kmpyp, 52.76 uM;
Kinappy 0.55 UM Kinapp, 4.89 uM;*¢ [FR], 9.09 uM;® and k, 5.5 x 10° M~'s7.% Total concentra-
tion of cytb5 and flavin was set to 0.812 uM*” and 1.4 uM,* respectively. The hemoglobin oxida-
tion was represented as a first-order reaction with respect to the concentration of oxyhemoglobin:
k [oxyHD]

Y tbox = Kox

where kox is a rate constant. In this model, the direct metHb-reducing effects by small molecules,
such as ascorbic acid and GSH, were not included because the relative contribution of these mol-
ecules to the metHb-reducing rate is very small in comparison to those of the two above-mentioned
metHb-reducing pathways.”

In addition, it was thought that the model should involve central energy metabolism which
would account for NADH and NADPH production. The part of the model for glycolysis and
PPP was taken from the model developed by Mulquiney and Kuchel.!*!! The final model includes
87 reaction processes involving all of the binding processes and 63 metabolites involving all of the
complex forms. It consists of the metHb-reduction pathways, glycolysis, 2,3-BPG metabolism,
PPP and some transport processes of metabolites (e.g., pyruvate, lactate).

The results of the steady-state accumulation of metHb in response to increased hemoglobin
oxidation (kox), are shown in Figure 3B. Each line represents the results from the model involving
the two metHb-reducing systems (black solid line), the cytb5S-NADH system alone (broken line)
and the flavin-NADPH system alone (gray solid line), respectively. The accumulation of metHb
in the flavin-NADPH-only model was significantly lower than that in the cytb5-NADH-only
model when the kox was below 3.5 x 10-¢ s™'; however, when this rate was exceeded, an abrupt
increase in metHb occurred in the flavin-NADPH-only model. The accumulation of metHb in
the two-system model was similar to the flavin-NADPH-only model under the condition of slow
hemoglobin oxidation; however, under conditions of fast hemoglobin oxidation it was similar to the
cytb5-NADH-only model. From this result it was suggested that a switch from the flavin-NADPH
system to the cytb5-NADH system occurs upon an increase in the oxidation rate of hemoglobin.
The switching of the pathways’ significance was also shown in the analysis of flux contribution.
In Figure 3C, the overall flux of metHb reduction (gray solid line) and the flux contributions of
the flavin-NADPH system (black solid line) and the cytbS-NADH system (black broken line) in
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proportion to total metHb-reducing flux are displayed. When kox was below 3.5 x 10-¢ 57!, most
of the metHb-reducing flux was responsible for the flavin-NADPH system and the concentration
of metHb was much lower than 1 uM. When kox was over 3.5 x 10757}, an abrupt switch in flux
contribution from the flavin-NADPH system to the cytb5S-NADH system occurred.

In the model, under conditions where the cytbS-NADH system was responsible for greater than
95% of metHb reduction, the flux through the cytb5-NADH system (NADH consuming process)
could potentially reach almost 1.2 x 10 Ms™, which is much higher than the rate reported for
nonglycolytic NADH consumption in human erythrocytes which is reported to be approximately
2.78 x 10~ Ms™'.** Furthermore, the rate of constitutive methemoglobin formation in normal
erythrocytes is reported to be 3% of the total amount of hemoglobin in the cell per day,* equal
t02.78 x 10~ Ms™" of a spontaneous rate of hemoglobin oxidation. This rate is significantly lower
than 3.5 x 107 s™!, where the flavin-NADPH system exceeds its flux capacity. Under such low
levels of oxidative stress, the flavin-NADPH system would be responsible for most of the metHb
reduction, because the rate constant of the non-enzymatic system which directly reduces metHb
is 1000-fold higher than in the cytbS-NADH system. From these results, it is suggested that either
the two systems are active under distinct conditions of hemoglobin oxidation and make different
contributions to the tolerance of oxidative stress: The flavin-NADPH system works mainly to
provide reduction potential under normal conditions, while the cytb5-NADH system functions
to reduce metHb under conditions of excess oxidation, such as during the intake of oxidant drugs.
In addition, it is speculated that the oxidative rate under physiological conditions is estimated to be
much lower than that of experimental and abnormal conditions. One reason why the contribution
of flavin-NADPH system has not been uncovered may be because of difficulties in measuring the
trace levels of oxidation occurring normally in vivo, whereas it is much easier to observe conditions
of excess oxidative stress in which the cytb5-NADH system may play a major role.

NADPH is supplied from the pentose-phosphate pathway and the primary use of NADPH in
erythrocytes is reducing GSSG into GSH catalyzed by GSSGR. It is known that the high enzyme
activities of GGPDH and GSSGR in human erythrocyte are evolutionarily maintained because
they are necessary to avoid strong NADPH depletion and GSSG accumulation under oxidative
stress.’*? One possible explanation for the use of NADH as a major source of reducing equiva-
lents for metHb in abnormal oxidative stress may be to avoid competition for NADPH among
glutathione and hemoglobin. Interestingly, the expression levels of soluble cytb5 and soluble bSR
are significantly increased just prior to loss of the nucleus at the late stage of erythroid matura-
tion.”” Moreover, in nucleated erythrocytes containing TCA cycles (e.g., avian erythrocytes), the
NADPH-dependent pathway has a dominant role in reducing metHb, even under conditions of
excess oxidation of hemoglobin.® It can be speculated that the preference of nucleated erythrocytes
for the flavin-NADPH system is related to the lower availability of NADH-coupled reducing
equivalents in the cytoplasm, which would result from their preferential transfer to mitochondria
for the respiratory chain and/or for high malate dehydrogenase activity, resulting in a large flux
of NADPH regeneration.

In the simulation model, the increased demand for NADH was met by the reverse reaction of
lactate dehydrogenase (LDH), rather than by the increased glycolytic flux (Fig. 4). In other words,
the vast amount of NADH is supplied by the lactate/pyruvate shuttle: a combination of the reverse
reaction of LDH and the lactate/pyruvate transport process. It can thus be supposed that NADH
production via reverse flux of LDH results in an increase in intracellular pyruvate concentration,
which could then be released into the plasma. In fact, it has been reported that excess oxidative
stress causes an accumulation of pyruvate in plasma, due to its release from erythrocytes coupling
with the increase in metHb.* It has been reported that, in some tissues including neurons, plasma
pyruvate is rapidly transported from plasma into the tissue under excess oxidative stress caused by
H,0,.%%” Furthermore, it has been recently suggested that the lactate/pyruvate shuttle in astro-
cytes plays an important role in preventing oxidative injury in neurons by supplying pyruvate from
plasma.* These circumstances allow us to hypothesize that plasma pyruvate is partially supplied by
erythrocytes via the reduction of metHb under high oxidative stress and these synergistic effects
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Figure 4. Steady state enzyme activities that utilize NAD/NADH Steady state activities of
b5R (solid line in black), LDH (dotted line) and GAPDH (solid line in gray) are plotted as a
function of k.

may be another story of the benefit to the existence and the oxidation level-dependent switching
of this “hybrid system:flavin-NADPH and cytb5-NADH systems”.

Prediction by Mathematical Modeling and Its Verification
by Metabolome Analysis for Oxygen Sensing Mechanism

in Human Erythrocytes

In human erythrocytes, an extremely high concentration of Hb exists in the cell that enables
oxygen (O,) delivery from the lungs to every tissue through the blood stream. The ability of Hb
to carry O, is modulated through allosteric regulation of Hb affected by a variety of metabolites,
such as protons (H*), 2,3-BPG, nitric oxide (NO) and ATP. The behavior of the metabolism in
erythrocytes is thus directly and highly related to the ability to deliver oxygen. Erythrocytes are
known to accelerate glucose consumption in response to hypoxic exposure, which results from
acceleration of glycolysis.”” As the increase in 2,3-BPG stabilizes the T-state of Hb and thereby
facilitates O, dissociation from the cells, the increment of 2,3-BPG should lead to a further T-state
HDb stabilization. Furthermore, as T-state Hb has a higher affinity to 2,3-BPG and ATP than the
R-state Hb, stabilization of hemoglobin into T-state would reduce amounts of free 2,3-BPG and
ATP. A decrease in free ATP reduces the availability of maintenance of cellular homeostasis and
deformability of the cells. From the fact that the initial steps of glycolysis (e.g., used by hexokinase
(HK) and phosphofructokinase (PFK)) require ATP in triggering ATP synthesis itself, researchers
have hypothesized that erythrocytes might have suitable mechanisms for responding quickly to hy-
poxia to up-regulate de novo ATP synthesis and glycolytic flux, leading to the increase in 2,3-BPG.

Meanwhile, evidence of compensatory mechanisms to maintain intracellular ATP levels through
the interaction of Hb with Band IIT (BIII), a major transmembrane protein in erythrocytes,” has
been reported. The cytoplasmic domain of BIII binds to Hb with a greater affinity for T-state-Hb
rather than R-state-Hb*' and also binds to some glycolytic enzymes such as PFK, aldolase (ALD)
and GAPDH.>? The activity of these enzymes disappears while making complex with BIIL, but is
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recovered upon dissociation from BIIL>* This evidence led us to hypothesize that Hb stabilized in
the T-state upon hypoxia serves as a trigger to increase the activity of these glycolytic enzymes and
to accelerate glucose consumption to increase the synthesis of ATP and 2,3-BPG. However, the
dynamics of sequential glycolytic reactions based on the mechanistic features of the coordination
and the alterations in intracellular metabolites resulting from such dynamics are not comprehen-
sively understood. Moreover, the link between the metabolism and the Hb regulation is not fully
understood, nor does mathematical model taking them into consideration simultaneously exist.
Here, we further expanded the mathematical model of metabolism in erythrocytes, involving the
O,-sensing mechanisms of Hb, to predict temporal alterations in intracellular metabolites and
cellular energetics in response to hypoxia and to verify the predictions derived from the model
through metabolome analyses.

The reversible binding of the glycolytic enzymes (PFK, ALD and GAPDH) and two allosteric
forms of Hb (R- and T-states) to BIII on the membrane, also known as anion exchanger Type I, were
modeled on the basis of the individual association constants'* by adding the basal metabolic model.

The metabolic model covers comprehensive metabolic pathways including not only glycolysis,
but also pentose phosphate pathways, adenine nucleotide metabolism, membrane transport of
metabolites, the ion pump, the above-mentioned GSH metabolism since the pathways determine
levels of such as GSH, AMP and Pi, which are known allosteric regulators of HK, PFK and
GAPDH, respectively. In the model we also considered effects of Hbs ( T-state Hb and R-state Hb)
binding to intracellular metabolites (2,3-BPG, MgATP, ATP, ADP and 1,3-BPG) and magnesium
ion (Mg**) binding to ATP, ADP, AMP, 1,3-BPG, 2,3-BPG, F-1,6BP and GDP. BIII accounts
for about 25% of the total erythrocyte membrane protein and its cytoplasmic domain displays
a greater affinity for Hb in the T-state rather than the R-state:> T-state Hb has 100-fold greater
affinity to BIIT and is much more likely to associate with this anion transporter than R-state Hb.
Based on the recent observations,” these three enzymes were modeled to be inactivated upon for-
mation of the complex and activated rcvcrsibly upon dissociation in the model. Consequent[y, the
competitive association of Hb and the glycolytic enzymes with BIII and the subsequent changes
in glycolysis could be calculated in response to alterations in partial O, tension (pO,). In this
mathematical model, we can then manipulate pO, as a parameter to predict glycolytic metabolism
as an outcome. The oxygenation status alters the T-R transition of Hb according to a reversible
Hill-type equation® that is also dictated by pCO,, intracellular pH, concentrations of 2,3-BPG
and ATP and temperature. To adapt the model to hypoxic conditions, pO,, which was initially set
to 100 mm Hg, was reduced to 30 mm Hg, for desired lengths of time. As seen in previous studies,
circulating erythrocytes may be exposed to such a pO, value when they travel through capillaries
under physiological conditions or when they traverse low-flow or static microvessels belonging to
post-ischemic damaged regions in the liver.>**

The simulation results of hypoxia-induced metabolic alterations in human erythrocytes and
the measurement result of metabolomics under a similar condition to the simulation are shown
in Figure SA (see 14 for the details of experimental procedure). The differences in time-courses
between the BIII(+) model, involving interactions between BIII and the intracellular proteins
(Hb and the glycolytic enzymes) and the BIII(~) model, without these interactions, were pre-
dicted (Fig. SA, left two lines). As expected, in the BIII(+) model, the activities of PFK, ALD and
GAPDH were evaluated immediately by their release from BIIT upon alteration of Hb allostery,
while they did not change significantly in the BIII(~) model. Such effects of protein-interactions
with BIII made distinct profiles in metabolite concentrations and the subsequent enzyme ac-
tivities. In the BIII(-)model, G6P and F6P increased slightly while F1,6BP, DHAP, 3PG and
PEP decreased modestly versus the steady-state baseline levels. In contrast, an opposite pattern
to the BIII(~) model was displayed in the BIII(+) model: decreases in G6P and F6P by 50%
and increases in F1,6BP, DHAP, 3PG and PEP by 40% versus the corresponding baseline levels
(Fig. 2B) were shown. The decrease in G6P in the BIII(+) model resulted in further activation
compared to the BIII(-) model through a product inhibition for HK by G6P. This would lead
to help accelerate the first step of glycolysis. Moreover, hypoxia-triggered activation of GAPDH
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Figure 5. Hypoxia-induced alterations in metabolism: predictions using the mathematical model
and measurements by CE-MS. A) 3 min-hypoxia-induced alterations in predicted activities
(left), predicted metabolite concentrations (middle) and metabolite concentrations determined
by CE-MS analysis (right) where closed circles indicate ratios of hypoxic metabolite concentra-
tions to normoxic control concentrations represented with open circles. The boxed graphs
in the left line indicate the hypoxia-induced changes in energy charge and total amount of
2,3-BPG. The simulation results using the Blll(+) model were shown in solid lines and those
using the Blll(-) model in doted lines. B) Hypoxia-induced acceleration of glycolysis assessed
by pulse-chace analysis of the conversion of C-glucose into *C-lactate and its blockade
by CO. Each bar indicates relative amounts of *C-lactate converted per 1 min after loading
with ®C-glucose at 5mM under normoxic (N) and hypoxic (H) conditions. CO(-) and CO(+)
indicate erythrocytes pretreated without and with CO, respectively. C) Prediction of beneficial
effects of enzyme-BIIl interaction in changes in energy charge (upper graph) and total amount
of 2,3-BPG (lower graph). Each line indicates the results under different hypoxic conditions
when the amounts of the following enzymes were increased by 2-fold, PFK, HK, PK and their
combinations, in corresponding line types shown in the upper box. Experimental values are
the mean = S.E. (n = 4). Asterisks, p < 0.05 versus the base-line values.
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drives an activation of LDH as a downstream target by coupling with NAD-NADH and thereby
facilitates the second half of the glycolytic reactions. Consequcntly, the hypoxia—depcndent BIII
interactions contributed to the overall activation of glycolysis and to sustaining the functions of
the cell as judged by two indicators: the energy charge (EC) and the total amount of 2,3-BPG
(the left line in Figure SA, the figures enclosed by bold line). Energy charge is an index of the
content of high-energy phosphate bonds of adenylate nucleotides which is calculated by (ATP
+ 0.5ADP)/(ATP + ADP + AMP). The basal energy charge under normoxic steady-state con-
ditions was predicted to 0.91, which is comparable to that reported in previous studies ranging
from 0.86 to 0.935. Moreover, the amount of 2,3-BPG would contribute to a rapid increase
in the Hb-2,3-BPG complex that could consequently lead to the release of residual Hb-bound
O, from erythrocytes.

The verification of the predicted alteration in glycolytic-metabolite concentrations was carried
out by measuring metabolome using capillary electrophoresis mass spectrometry (CE-MS) along
the procedure described in the literature.” As seen in the right line in Figure SA, G6P and F6P
were significantly lower than those measured as steady-state controls under normoxic conditions
whereas levels of F1,6BP, DHAP, 3PG and PEP were greater than normoxic steady-state controls.
These results are entirely consistent with those predicted by the BIII(+) model.

To demonstrate whether the actual acceleration of glycolysis could occurr in response to
hypoxia as predicted by the BIII(+) model, we determined the rate of glycolysis by measuring
the conversion rate of 13C-glucose into 13C-lactate in human erythrocytes. As shown in the
left graph in Figure 5B, the rate of production of 13C-lactate was accelerated 1.8-fold within 1
min after exposure to hypoxia, which means that a condition of hypoxia triggers an acceleration
of glycolysis. On the other hand, as displayed in the right graph in Figure 5B, CO-treated eryth-
rocytes in which Hb is stabilized in the R-state attenuated the hypoxia-induced acceleration of
glycolysis judged by the lactate production. These results strongly supported the consequence that
the hypoxia-induced stabilization of T-state Hb plays a crucial role in hypoxia-triggered glycolytic
activation in erythrocytes.

To quantitatively assess such metabolic effectiveness through BIII-protein interactions of the
simultancous increase in EC and in 2,3-BPG generation during hypoxia, a model analysis was car-
ried out by determining whether the amount of a particular enzyme can achieve a simultaneous
increase in EC and 2,3-BPG by increasing the amount of each glycolytic enzyme in the pathway
by 2-fold simultaneously with hypoxia. In human erythrocytes, HK, PFK and PK have high and
positive flux control coeflicient on glycolysis and they are known as “rate-determining enzymes” in
glycolysis. As shown in Figure 5C, an activation of HK resulted in a decrease in EC and an increase
in 2,3-BPG, while PK activation increased EC without stimulating 2,3-BPG generation. On the
other hand, activation of PFK or PFK + ALD + GAPDH led to simultaneous elevation of EC
and 2,3-BPG generation in the model. These analyses suggest that PFK activation is a crucial step
for the upregulation of both energy charge and 2,3-BPG generation, while activation of initial
(e.g., HK) or final (e.g., PK) steps of the glycolytic pathway fails to satisfy these requirements.
Furthermore, activation of ALD and GAPDH appears to help PFK-activation-driven acceleration
of glycolysis at the onset of hypoxia. These results allow us to hypothesize that the erythrocyte
metabolism may be evolutionarily and systemically optimized for sustaining cellular energy status
and for efficiently delivering oxygen to tissues.

Conclusion

In the previous sections, practical examples of using mathematical models focusing on human
erythrocyte metabolism on E-Cell System were presented.

In Simulation Analysis of Glucose-6-Phosphate Dehydrogenase (G6PDH) Deficiency, an
expansion was added to the model by introducing a GSH synthesis pathway and a GSSG export
system. With this expansion, the model maintained high ATP concentrations even in the simu-
lated condition of GGPDH deficiency. This suggests that these pathways may play an important
role in alleviating the consequences of GGPDH deficiency and that these sub-pathways that are
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normally not particularly highly activated may play important roles in abnormal conditions.
Models sufficient for representing the normal state can become inadequate for simulating irregular
conditions such as deficiencies, because they lack alternative pathways that may normally not be
particularly active but can compensate for the deficiency to some extent. This study also suggested
that resolving the discrepancies between experimentally validated knowledge and the simulation
results allows us to improve our understanding of the underlying mechanisms making fragility of
the cells under particular conditions.

The next section discussed the rational design of metHb-reducing pathways in human eryth-
rocytes with kinetic modeling. Erythrocytes are continuously subjected to oxidative stress and
exposure to nitrite, which results in spontaneous formation of metHb, which is an oxidized
form of hemoglobin preventing binding and carrying oxygen. To avoid accumulation of metHb,
reductive pathways mediated by two substrates coupled with NADH- and NADPH-dependent
metHb reductases keep the level of metHb in erythrocytes at less than 1% of the total hemoglo-
bin under normal conditions. The results of simulation experiments suggest that NADH- and
NADPH-dependent methemoglobin-reducing pathways have different but important roles: one
has a high-elasticity, small-capacity reducing flux while the other has alow elasticity, high-capacity
flux. This section also showed the necessity and effectiveness of using mathematical models to
predict when and how the particular pathways work as a system in the various physiological condi-
tions where experimental verification is difficult.

In Prediction by Mathematical Modeling and its Verification by Metabolome Analysis for Oxygen
Sensing Mechanism in Human Erythrocytes, the example for the intercommunication between
the simulation and the experiment was shown. Temporal alterations in metabolites predicted in
the mathematical model, including the effects of BIIl interactions with Hb and the glycolytic en-
zymes, are in good agreement with results obtained from the metabolome analyses using CE-MS,
which has recently emerged as a powerful tool for the global analysis of charged metabolites.* In
contrast, the virtcual model lacking the effects of the Hb-BIII interaction was unable to reproduce
actual alterations in the metabolites, suggesting a pivotal role for this molecular interaction in the
maintenance of erythrocyte energetics. Furthermore, a coordinated increase in the energy charge
and 2,3-BPG was predicted when the mid-way glycolytic enzymes, but not up- or down-stream
rate-limiting enzymes, are activated in response to the hypoxia-induced Hb binding to BIIL
Furthermore, the hypoxia-induced activation of glycolysis was not observed when Hb was stabilized
in R-state by treating the cells with CO. Under these circumstances, it can be suggested that Hb
allostery in erythrocytes serves as an oxygen-sensing trigger that drives glycolytic acceleration to
sustain intracellular energetics and to promote the ability to release oxygen from the cells through
the rational design of metabolism.

The above simulation studies enabled us to see the rational design of metabolic pathways in hu-
man erythrocytes as an evolutionarily optimized system. Mathematical models can be applied not
only for straightforward simulations, but also for explanations of the nature of network properties
complying nonlinear dynamics in the cell.

On the other hand, the models do not include certain aspects of red blood cell metabolism,
such as the oxidation of membrane proteins which are rapidly oxidized during elimination of
H,O,, the direct inhibition of GEGPDH by reactive oxygen species. Furthermore, many physical
viewpoints have not yet been considered: the maintenance of cellular status through regulating
intracellular pH, membrane potential, cell volume in connection with ion balances and cell
shapes. They may be significant for considering the in vivo state of the cell.”” Another limita-
tion of the current models is the lack of spatial information and diffusion processes. Because
erythrocytes do not contain any cell organelle in cytoplasm, the intracellular system has been
assumed as homogeneous in space. However, recent observations showed that glycolytic enzymes
form a macromolecular complex and the complex changes its localization in response to oxygen
availability,’* suggesting the importance of considering the spatial effect even when the model
focuses on the metabolic reactions. E-Cell System will be a suitable platform for considering
these features in more precise modeling.
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CHAPTER 8§

Dynamic Kinetic Modeling
of Mitochondrial Energy Metabolism

Katsuyuki Yugi*

Abstract

omputer simulations can be used to predict the dynamic behaviour of metabolic
‘ pathways and to provide evidence in support of clinical treatments for metabolic

disorders. Here, we performed dynamic kinetic simulations of mitochondrial energy
metabolism using the E-Cell Simulation Environment. The simulation model was developed as
a reconstruction of publicly available kinetic studies on the enzymes of the respiratory chain,
the TCA cycle, fatty acid f-oxidation and the inner-membrane metabolite transporters.! Rate
equations for the 58 enzymatic reactions and 286 of the 471 kinetic parameters were taken
from 36 and 45 articles, respectively. Approximately 80% of the articles that contributed to the
kinetic properties of the mitochondrial model have “kinetics” and the enzyme name as their
MeSH terms. The published data were mainly obtained from various tissues in five mammals
(human, bovine, pig, rabbit and rat). The other kinetic parameters were estimated numerically
usinga genetic algorithm module of E-Cell to satisfy the Lineweaver-Burk plot of each enzyme.
The simulations indicated that increasing coenzyme Q and succinate promotes the total activity
of the respiratory chain without affecting other pathways. This result agrees qualitatively with a
clinical case report of treatment with coenzyme Q and succinate.? In another case, oxoglutarate
supplementation also activated the respiratory chain, but mainly through activation by Complex
L. This contrasts with the electron donation through the succinate dehydrogenase complex in
the case of coenzyme Q + succinate. These results support the utility of the mitochondrial
metabolism model in elucidating action mechanism of clinical treatments.

Background

Computer simulations of metabolic pathways have been employed as a method to predict the
dynamic behaviour of metabolic pathways since the 1960s and have recently been revisited in the
context of systems biology. In their pioneering work, Chance et al calculated the time evolution
of carbon metabolism in ascites tumour cells from numerical integration of 22 rate equations.’
While Chance et al employed the law of mass action to approximate the reactions, later metabolic
pathway simulations have often been based on kinetic studies on each enzyme. These attempts
resulted in simulations on the whole-cell scale, such as the human red blood cell model by Joshi
and Palsson.*

Mitochondrial energy metabolism has also been simulated, with a focus on its central
role in eukaryotic energy metabolism and the pathology of mitochondrial dysfunction. For
example, the respiratory chain was modelled by Korzeniewski and Froncisz® to analyze the

*Katsuyuki Yugi—Department of Biophysics and Biochemistry, University of Tokyo,
Tokyo, Japan. Email: yugi@bio.keio.ac.jp

E-Cell System: Basic Concepts and Applz'mtiom, edited by Satya Nanda Vel Arjunan,
Pawan K. Dhar and Masaru Tomita. ©2013 Landes Bioscience and Springer Science+Business Media.
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control of ATP production. Another example, the TCA cycle of Dictyostelium discoideum,
was simulated and analyzed in terms of metabolic control analysis.® However, these previous
mitochondrial models simulated groups of pathways one by one, rather than several path-
ways cooperating in the organelle. We constructed a mitochondrial model that includes the
respiratory chain, the TCA cycle, fatty acid 3-oxidation and the metabolite transport system
at the inner-membrane.! All the rate equations of the model were obtained from published
enzyme kinetics. The model is capable of calculating the time evolution of mitochondrial
energy metabolism on a whole-organelle scale. Here we have applied this model in two
simulation experiments.

Construction of the Model

Our mitochondrial model includes 58 enzymatic reactions and 117 metabolites to represent
the respiratory chain, the TCA cycle, fatty acid -oxidation and the inner-membrane metabolite
transporters. The inner-membrane metabolite transporters were included to allow simulation
of metabolite administration from outside the mitochondrion (Fig. 1). The TCA cycle and
the fatty acid B-oxidation process the metabolites transported by the membrane carriers and
provide NADH for the respiratory chain.

Kinetic properties of the enzymes, such as Km values and reaction mechanisms, were col-
lected through comprehensive searches of literature databases and enzyme databases such as
PubMed (in http://www.ncbi.nlm.nih.gov) and BRENDA (http://www.brenda-enzymes.
info). Rate equations for all 58 of the reactions were obtained from 36 articles. Of the 471
total kinetic parameters, 286 were obtained from 45 articles. The other parameters were es-
timated numerically using the genetic algorithm module to satisfy the Lineweaver-Burk plot
of each enzyme.

Ideally, all of the kinetic properties would be derived from experiments on a single cell line
under similar conditions in order to faithfully reconstruct the reaction network. However, a
homogencous data set is not available at present. Thus, these data were collected in diverse tissues,
mostly obtained from five species of mammal (human, bovine, pig, rabbit and rat).

The data set was implemented as a simulation model of E-Cell, a simulation platform de-
veloped to facilitate mixed-mode calculations.” In the standard way of modelling with E-Cell,
the mathematical description of a chemical reaction, such as a rate equation, is described in
the source file of a small program referred to as “Reactor” (“Process” in version 3), following
the grammar and the semantics of the programming language C++. Kinetic parameters and
initial metabolite concentrations are described in the “Rulefile”, which determines the reaction
network and initial condition of the model. To extend the model, the user has only to add
Reactors and descriptions of initial metabolite concentrations for newly involved reactions
and metabolites, respectively. This feature of E-Cell allows facile integration of independently
constructed models. For example, the mitochondrial model is reusable as a module for the
simulation of cukaryotic cell metabolism. In the mitochondrial model, the metabolites and
enzymes were assigned to one of five compartments: matrix, inner-membrane, outer-membrane,
inter-membrane space and cytosol.

PubMed provides a system of keywords called MeSH (Medical Subject Headings), which are
embedded in all references included in the database. PubMed users are able to find articles by
combining MeSH terms. The search efficiency of comprehensive literature searches is improved
when the pattern of MeSH terms embedded in the “HIT” articles (the articles from which
the kinetic properties of the mitochondrial model were obtained) is clear. Table 3 shows that
“kinetics”, the enzyme name and the substrate name are the MeSH terms involved in “HIT”
articles in most cases. Combining these three keywords made the identification of published
articles on kinetics more efficient. For example, “kinetics AND enzyme name” and “kinetics
AND substrate name” cover 81% and 74% of the useful articles, respectively.
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Table 1. Abbreviations of the compound names (A-N)

Abbreviation

Metabolite Name

Compound/EC Number

AAC

ACD
Acetoacetyl-CoA
Acetyl-CoA
ACO

ADP

AGC

Ala

AlaTA

Asp

AspTA

ATP

CAC

Car

CIC

Cit

CPT-1
CPT-11

CoA
Complex-I
Complex-Ill
Complex-1V
Complex-V
CO,

Cs

cyt-c*
cyt-c**

DIC

ECH

ETFox
ETFred
ETF-QO
FM

Fum

ATP/ADP carrier
Acyl-CoA dehydrogenase

Aconitase

Adenosine diphosphate
Aspartate/glutamate carrier
Alanine

Alanine transaminase

Aspartate

Aspartate transaminase
Adenosine triphosphate
Carnitine carrier

Carnitine

Citrate carrier

Citrate

Carnitine palmitoyl transferase |
Carnitine palmitoyl transferase Il
Coenzyme A

NADH dehydrogenase
Ubiquino:Cytochrome c oxidoreductase
Cytochrome c oxidase

ATP synthetase

Carbon dioxide

Citrate synthase
Ferricytochrome ¢
Ferrocytochrome c
Dicarboxyrate carrier

Enoyl-CoA hydratase

Electron transfer flavoprotein (oxidised form)

Electron transfer flavoprotein (reduced form)

ETF:Q oxidoreductase
Fumarase

Fumarate

EC1.3.99.3
C00332
C00024
EC4.2.1.3
C00008

C00041
EC2.6.1.2
C00049
EC2.6.1.1
C00002

C00318

C00158
EC2.3.1.21
EC2.3.1.21
C00010
EC1.6.5.3
EC1.10.2.2
EC1.9.3.1
EC3.6.1.34
C000T11
EC4.1.3.7
C00125
C00126

EC4.2.1.17

EC4.2.1.2
C00122

continued on next page
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Table 1. Continued

Abbreviation Metabolite Name Compound/EC Number
GDP Guanosine diphosphate C00035
Glu Glutamate C00025
GTP Guanosine triphosphate C00044
HCD Hydroxyacyl-CoA dehydrogenase EC1.1.1.35
H* Hydrogen ion (proton) C00080
IDHa Isocitrate dehydrogenase (NAD*) EC1.1.1.41
IDHb Isocitrate dehydrogenase (NADP*) EC1.1.1.42
IsoCit Isocitrate C00311
Mal Malate C00149
MDH Malate dehydrogenase EC1.1.1.37
NAD* C00003
NADH C00004
NADP* C00006
NADPH C00005
NDK Nucleoside diphosphate kinase EC2.7.4.6

Simulation Results

The dynamic behaviour of the metabolic pathway was calculated by the numerical integration
of the rate equations programmed into the Reactors, employing the fourth-order Runge-Kutta
method implemented in E-Cell. Simulated time courses of enzyme activities and metabolite con-
centrations are observable by means of a graphical interface named “TracerWindow”. Another
interface, “SubstanceWindow”, allows users to increase or decrease metabolite concentrations
while running simulations.

Simulation Experiment 1

Clinically, several metabolites are widely administered to patients with mitochondrial
disorders.*” The rationales for these metabolic treatments, however, are still unclear in many
cases. In our previous study, we showed the example that increasing coenzyme Q and succi-
nate supplies sufficient electrons to the respiratory chain through the succinate dehydrogenase
complex. The evidence supporting this conclusion is presented in Figure 2: increasing coenzyme
Q and succinate results in higher reduction of cytochrome ¢ (Fig. 2A) and activation of the
succinate dehydrogenase complex and subsequent respiratory enzymes (SDH, Complex III,
IV in Fig. 2B).

In this study, we also examined the effect of this metabolic treatment on the peripheral
pathways. Figure 2C,D are time courses of the metabolite concentrations and the enzyme
activities of the pathways around coenzyme Q and succinate. No significant concentration
change was observed in metabolites such as fumarate, malate and citrate (Fum, Mal and Cit in
Fig 2C, respectively), which are within a few enzyme steps of succinate. Similarly, the enzyme
activities of the peripheral pathway were not influenced by coenzyme Q and succinate with the
exception of fumarase (FM in Fig. 2D), which is adjacent to succinate dehydrogenase complex
in the TCA cycle.
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Table 2. Abbreviations of the compound names (O-)

Abbreviation Metabolite Name Compound/EC Number
OCT Oxoacyl-CoA thiolase EC2.3.1.16
OG Oxoglutarate C00026
OGC Oxoglutarate carrier

OGDC Oxoglutarate dehydrogenase complex EC1.2.4.2 etc.
OXA Oxaloacetate C00036
PalCar Palmitoylcarnitine C02990
PC Pyruvate carboxylase EC6.4.1.1
PDC Pyruvate dehydrogenase complex EC1.2.4.1 etc.
Pi Phosphate C00009
PiC Pi carrier

Pyr Pyruvate C00022
PYC Pyruvate carrier

Q Ubiquinone C00399
QH, Ubiquinol C00390
SCoA Succinyl-CoA C00091
SCS Succinyl-CoA synthetase EC6.2.1.4
SDH Succinate dehydrogenase EC1.3.5.1
Suc Succinate C00042
10Acyl-CoA Decanoyl-CoA C05274
10Enoyl-CoA Trans-Dec-2-enoyl-CoA C05275
10Hydroxyacyl-CoA (S)-3-Hydroxydedecanoyl-CoA C05264
100x0acyl-CoA 3-Oxodecanoyl-CoA C05265
12Acyl-CoA Lauroyl-CoA C01832
12Enoyl-CoA Trans-Dodec-2-enoyl-CoA C03221
12Hydroxyacyl-CoA (S)-3-Hydroxydodecanoyl-CoA C05262
120xo0acyl-CoA 3-Oxodo decanoyl-CoA C05263
14Acyl-CoA Myristoyl-CoA C02593
14Enoyl-CoA Trans-Tetradec-2-enoyl-CoA C05273
14Hydroxyacyl-CoA (5)-3-Hydroxytetradecanoyl-CoA C05260
14Oxoacyl-CoA 3-Oxotetradecanoyl-CoA C05261
16Acyl-CoA Palmitoyl-CoA C00154
16Enoyl-CoA Trans-Hexadec-2-enoyl-CoA C05272
16Hydroxyacyl-CoA (S)-3-Hydroxyhexadecanoyl-CoA C05258
160x0acyl-CoA 3-Oxohexadecanoyl-CoA C05259
4Acyl-CoA Butanoyl-CoA C00136
4Enoyl-CoA Crotonyl-CoA C00877

continued on next page
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Table 2. Continued

Abbreviation

Metabolite Name

Compound/EC Number

4Hydroxyacyl-CoA
6Acyi-CoA
6Enoyl-CoA
6Hydroxyacyl-CoA
60xoacyl-CoA
8Acyl-CoA
8Enoyl-CoA
8Hydroxyacyl-CoA
80xoacyl-CoA

(S)-3-Hydroxybutanoyl-CoA
Hexanoyl-CoA
Trans-Hex-2-enoyl-CoA
(S)-3-Hydroxyhexanoyl-CoA
3-Oxohexanoyl-CoA
Octanoyl-CoA
Trans-Oct-2-enoyl-CoA
(S)-3-Hydroxyoctanoyl-CoA
3-Oxooctaanoyl-CoA

C01144
C05270
C05271
C05268
C05269
C01944
C05276
C05266
C05267

Table 3. The pattern of MeSH terms embedded in the “HIT” articles. “Kinetics and
enzyme name” and “kinetics and substrate name” accounted for 81% and

74% of the “HIT” articles, respectively.

Kinetics

Models Mathematics

Enzyme Name

Substrate Name

Ref. 13 +
Ref. 14 +
Ref. 15 +
Ref. 16 +
Ref. 17 -
Ref. 18
Ref. 19
Ref. 20
Ref. 21
Ref. 22
Ref. 23
Ref. 24
Ref. 25
Ref. 26
Ref. 27
Ref. 28
Ref. 29
Ref. 30
Ref. 31
Ref. 32
Ref. 33
Ref. 34
Ref. 35
Ref. 36
Ref. 37
Ref. 38
Ref. 39 +

Hit frequency 24/27

+ o+

+ o+ o+ o+ o+ o+ F o+ o+ o+

+ o+ o+ o+

+, Chemical +
- +
+, Biological -

+, Chemical +

+, Theoretical +
5/27 5/27

R T T T S S S S S S S S A e S

+

+ o+ o+ o+

24/27

o+ o+

+

+ o+ o+ o+ o+ o+ o+ o+ o+ o+

+ o+ o+ o+

21/27
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Figure 2. The time courses calculated by Simulation experiment 1. An increase in coenzyme
Q and succinate promotes the total activity of the respiratory chain through activation of the
succinate dehydrogenase complex (SDH in B). The influence of coenzyme Q and succinate
is limited to the respiratory chain except for the activation of fumarase (FM in D). See Tables
1 and 2 for the other abbreviations. (Panels A and B are from ref. 1 by permission of Oxford
University Press.)

Simulation Experiment 2

In a second simulation, we administered 0.15 mM oxoglutarate to the matrix in a qua-
si-steady-state. Oxoglutarate increased the activity of one of the respiratory enzymes (Complex I
in Fig. 3D) and the concentration of reduced electron transporters (Fig. 3B), ATP (Fig. 3C) and
other metabolites such as succinate and 16Acyl-CoA (Figs. 3A and C, respectively). Of all the
enzymes that catalyze reactions in which oxoglutarate is a substrate or a product, aspartate trans-
aminase showed the highest activity, 40-fold greater than that of the oxoglutarate dehydrogenase
complex, the second largest.

Discussion

Modelling

Our model was based on published kinetic equations. By extracting a pattern of MeSH terms
we were able to construct a more efficient literature-based model and to comprehensively detect
asuitable number of papers for kinetic modelling. However, the kinetic properties of enzymes are
not being characterised as actively now as in the 1960-70s. Thus, literature-based modelling will be
confronted with the practical obstacle that enzymes of interest that have not already been studied
might never be examined. To overcome this bottleneck for the simulation of larger pathways, novel
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Figure 3. The time courses calculated by Simulation experiment 2. Administration of oxoglu-
tarate promotes NADH production (B) which consequently causes activation of Complex |
(D). Oxoglutarate affects a broader pathway (A,C,D) than coenzyme Q + succinate, whose
influence was limited to the respiratory chain (Simulation experiment 1, Fig. 2). See Tables 1
and 2 for the abbreviations.

methods for comprehensive and high-throughput characterisation of kinetic properties of enzymes
will be necessary. A solution to this problem is discussed in reference 10.

Simulation Experiment 1

We found an increase in the total activity of the respiratory chain following an increase in
coenzyme Q + succinate, which is qualitatively in agreement with the report of successful clini-
cal treatment with coenzyme Q + succinate.” The simulated time courses suggest a hypotheti-
cal rationale for this metabolic treatment: the increase of succinate promotes the respiratory
chain by electron donation through the succinate dehydrogenase complex. The activation of
the succinate dehydrogenase complex compensated for a decrease in the Complex I activity.
The influence of the coenzyme Q + succinate supplementation was observed specifically in the
respiratory chain.

Simulation Experiment 2

The activity of the total respiratory chain also increased in Simulation experiment 2; however,
the mechanism of the activation was different from that of Simulation experiment 1. The activation
of Complex I (Fig. 3D) indicates that NADH oxidation by Complex I is the primary electron
donor to the respiratory chain in the condition of Simulation experiment 2, while electrons were
mainly supplied through the succinate dehydrogenase complex in Simulation experiment 1.

Another difference between Simulation experiments 1 and 2 is that the oxoglutarate in
Simulation experiment 2 affected broader pathways than the coenzyme Q + succinate in Simulation



114 E-Cell System: Basic Concepts and Applications

1. The administration of oxoglutarate influenced metabolite concentrations in the TCA cycle
and fatty acid B-oxidation, while the effect of coenzyme Q + succinate was observed specifically
around the respiratory chain.

Conclusion

As shown above, simulation studies of metabolic pathways are capable of deriving hypotheses
about the dynamics of metabolite concentrations and enzyme activities. However, validation by
wet experiments will be required for a more realistic simulation of mitochondria.

At present, there are experimentally observable variables that can be used to check the consis-
tency of the model. Robinson et al reported a method for the quantitative measurement of ATP
production of mitochondria using a luminometer."! With this method, it is possible to compare
mitochondrial ATP production in vivo and in silico. Moreover, recent advancements in me-
tabolome measurement will facilitate not only the quantification of ATP production but also the
comprehensive profiling of intracellular/organellar metabolite concentration.'* In cases where only
qualitative results are necessary, staining of cytochrome c oxidase can be used to provide qualitative
measurements of the enzyme activity. Revision of the mitochondrial model after these experimental
validations will provide a more realistic prediction of mitochondrial energy metabolism.
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Appendix A

Supporting Table 1. Initial concentrations of metabolites and enzymes

Number of

Enzyme Localisation Molecules
Complex-I MT-IM 1000
Complex-Ill MT-IM 3000
Complex-1V MT-IM 7000
Complex-V MT-IM 900
CS MATRIX 100
ACO MATRIX 100
IDHa MATRIX 100
IDHb MATRIX 100
OGDC MATRIX 100
SCS MATRIX 100
SDH MT-IM 100
FM MATRIX 100
MDH MATRIX 100
AlaTA MATRIX 100
AspTA MATRIX 100
NDK MATRIX 100
PDC MATRIX 100
PC MATRIX 100
CPT-I MT-OM 100
CAC MT-IM 100
ACD MT-IM 100
ECH MT-IM 100
HCD MT-IM 100
OCT MT-IM 100
ETF-QO MT-IM 100
AAC MT-IM 1000
AGC MT-IM 1000
PiC MT-IM 1000
PYC MT-IM 1000
OGC MT-IM 1000
DIC MT-IM 1000
CIC MT-IM 1000

continued on next page
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Supporting Table 1. Continued

Compound Localisation Concentration
Q MT-IMS 0.26 mM
QH, MT-IMS 28 uM
cyt-c** MT-IMS 3 uW
cyt-c* MT-IMS 0.11T mM
H* MT-IMS 1T uM

H* MATRIX 10 nM
Cit MT-IMS 0.42 mM
Cit MATRIX 0.42 mM
IsoCit MATRIX 0.42 mM
oG MT-IMS 21 uM
OG MATRIX 21 uM
SCoA MATRIX 0.29 mM
Suc MATRIX 2.95 mM
Fum MATRIX 65.00 uM
Mal MT-IMS 0.50 mM
Mal MATRIX 0.50 mM
OXA MATRIX 4.00 uM
Asp MATRIX 1.14 mM
Asp MT-IMS 1.14 mM
Glu MATRIX 3.03 mM
Glu MT-IMS 3.03 mM
Ala MATRIX 3.44 mM
Pyr MT-IMS 0.10 mM
Pyr MATRIX 0.10 mM
CoA MT-IMS 0.27 mM
CoA MATRIX 0.27 mM
Acetyi-CoA MATRIX 30.00 uM
NADH MATRIX 72.00 uM
NAD* MATRIX 0.17 mM
NADPH MATRIX 72.00 uM
NADP* MATRIX 0.17 mM
CO, MATRIX 1.63 mM
ATP MT-IMS 4.50 mM

continued on next page
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Supporting Table 1. Continued

Compound Localisation Concentration
ATP MATRIX 4.50 mM
ADP MT-IMS 0.45 mM
ADP MATRIX 0.45 mM
GTP MATRIX 4.50 mM
GDP MATRIX 0.45 mM
Pi MT-IMS 4.00 mM
Pi MATRIX 4.00 mM
Car MT-IMS 0.20 mM
Car MATRIX 0.95 mM
PalCar MT-IMS 0.60 mM
PalCar MATRIX 12.00 uM
ETFred MATRIX 0.31 uM
ETFox MATRIX 0.32 uM
16Acyl-CoA MATRIX 39.00 uM
16Enoyl-CoA MATRIX 17.00 uM
16Hydroxyacyl-CoA MATRIX 12.00 uM
160xoacyl-CoA MATRIX 1.10 uM
14Acyl-CoA MATRIX 39.00 uM
14Enoyl-CoA MATRIX 17.00 uM
14 Hydroxyacyl-CoA MATRIX 12.00 uM
140xoacyl-CoA MATRIX 1.10 uM
12Acyl-CoA MATRIX 87.00 uM
12Enoyl-CoA MATRIX 17.00 uM
12Hydroxyacyl-CoA MATRIX 12.00 uM
120xoacyl-CoA MATRIX 1.30 uM
10Acyl-CoA MATRIX 87.00 uM
10Enoyl-CoA MATRIX 17.00 uM
10Hydroxyacyl-CoA MATRIX 12.00 uM
100xo0acyl-CoA MATRIX 2.10 uM
3Acyl-CoA MATRIX 87.00 uM
8Enoyl-CoA MATRIX 17.00 uM
8Hydroxyacyl-CoA MATRIX 12.00 uM
80xoacyl-CoA MATRIX 3.20 uM

continued on next page
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Supporting Table 1. Continued

Compound Localisation Concentration
6Acyl-CoA MATRIX 87.00 uM
6Enoyl-CoA MATRIX 17.00 uM
6Hydroxyacyl-CoA MATRIX 12.00 uM
60xo0acyl-CoA MATRIX 6.70 uM
4Acyl-CoA MATRIX 87.00 uM
4Enoyl-CoA MATRIX 17.00 uM
4Hydroxyacyl-CoA MATRIX 12.00 uM

Aceloacetyl-CoA MATRIX 12.40 uM
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Supporting Table 2. Steady-state amounts of metabolites and enzymes

Number of
Compound Localisation Molecules
Q MT-IMS 77547
QH, MT-IMS 500
cyt-c3 MT-IMS 29624
cyt-c** MT-IMS 999
H* MT-IMS 3
H* MATRIX 3
Cit MT-IMS 1265
Cit MATRIX 583455
IsoCit MATRIX 74758
OG MT-IMS 63
OG MATRIX 424
SCoA MATRIX 32
Suc MATRIX 1133
Fum MATRIX 231567
Mal MT-IMS 1506
Mal MATRIX 1028383
OXA MATRIX 302
Asp MATRIX 244090
Asp MT-IMS 3433
Glu MATRIX 801482
Glu MT-IMS 9124
Ala MATRIX 1016709
Pyr MT-IMS 27777
Pyr MATRIX 309
CoA MT-IMS 700
CoA MATRIX 286
Acetyl-CoA MATRIX 104498
NADH MATRIX 3672
NAD* MATRIX 61909
NADPH MATRIX 7508
NADP+ MATRIX 58073
CO, MATRIX 42631671
ATP MT-IMS 13550
ATP MATRIX 180
ADP MT-IMS 1355
ADP MATRIX 121948
GTP MATRIX 2579

continued on next page
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Supporting Table 2. Continued

Number of
Compound Localisation Molecules
GDP MATRIX 1338852
Pi MT-IMS 12044
Pi MATRIX 2507395
Car MT-IMS 602
Car MATRIX 47418
PalCar MT-MS 1807
PalCar MATRIX 213280
16Acyl-CoA MT-MS 17
ETFred MATRIX 89
ETFox MATRIX 82
16Acyl-CoA MATRIX 331
16Enoyl-CoA MATRIX 698
16Hydroxyacyl-CoA MATRIX 3
160x0acyl-CoA MATRIX 769
14Acyl-CoA MATRIX 331
14Enoyl-CoA MATRIX 699
14Hydroxyacyl-CoA MATRIX 3
140xo0acyl-CoA MATRIX 771
12Acyl-CoA MATRIX 330
12Enoyl-CoA MATRIX 700
12Hydroxyacyl-CoA MATRIX 2
120xo0acyl-CoA MATRIX 763
10Acyl-CoA MATRIX 331
10Enoyl-CoA MATRIX 700
10Hydroxyacyl-CoA MATRIX 2
100xo0acyl-CoA MATRIX 762
BAcyl-CoA MATRIX 332
8Enoyl-CoA MATRIX 701
8Hydroxyacyl-CoA MATRIX 2
80xoacyl-CoA MATRIX 763
6Acyl-CoA MATRIX 332
6Enoyl-CoA MATRIX 701
6Hydroxyacyl-CoA MATRIX 3
60xoacyl-CoA MA 764
4Acyl-CoA MATRIX 331
4Enoyl-CoA MATRIX 702
4Hydroxyacyl-CoA MATRIX 2
Acetoacetyl-CoA MATRIX 239686
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Supporting Table 3. Parameter classification

Class Definition

Example

Class 0 Found in the literature

Class T Estimated around the values in the literature

Km=2.3 mM
Km=2.3mM — Km=2.6 mM

Class 2 Estimated around the values of analogous metabolites KmATP =2.3 mM — 0

Class 3 Estimated arbitrarily

<KmGTP <3.0 mM
?<k<?—=k=12x10sec”

Supporting Table 4. The kinetic properties of AAC

Reaction
Mechanism
Rate equation
Species, organ

ATP(MAT) — ATP(IMS), ADP(MAT) — ADP(IMS)

See ref. 27
Eqn. 1

Rat heart mitochondria

Parameter Class Notice
kfo 09 Class0 Velocity model (mp = 0, kfO = kr0)
krO 09 Class0 Velocity model (mp = 0)
Normalize 221  Class 0 Normalizing factor of kfO and kr0
Kd1 59 x10* Class 3 Kd1 — Kd velocity model, Kd1 = Kd2
Kd2 59x10* Class 3 Kd1 — Kd’
Kd is not effected by the membrane potential
Cf 3.30 Class0 KfO x exp(Cf x A¥) = kf(AW)
Cf -3.34 Class 0 Kr0 x exp(Cr x A¥) = kr(A¥)
T 310.0K - Absolute temperature

Source of parameter estimation: Figure 2(B) V2(A¥ = OmV, 180mV) in reference 27.

Supporting Table 5. The kinetic properties of ACD

Reaction
Mechanism
Rate equation
Species, organ

Acyl-CoA + ETFox < Enoyl-CoA + ETFred
Ordered Bi Bi*

Pig liver mitochondria

Parameter Class Notice
KmS1 39x10° Class 0 Ref. 32 Table 1
KmS2 0.12x10° Class 0

KmP1 1.08 x 10 Class 2

KmP2 2.42 x10°  Class 2

KiS1 76 x 10 Class 0

KiS2 0.24 x10°  Class 0

KiP1 753 x 10  Class 2

KiP2 1.19x 10  Class 2

Keq 8.99 Class 3

KcF 218 Class0

KcR 0.30 Class 2

Source for parameter estimation

: reference 32.
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Supporting Table 6. The kinetic properties of ACO

Reaction
Mechanism
Rate equation
Species, organ

Cit < IsoCit
Uni uni reversible?!

Rat liver mitochondria

Parameter Class  Notice
Ks 0.50 x 10°  Class 0
Kp 0.11 x 10°  Class 0
KcF 20.47  Class 0 Calculated from the graph
KcR 31.44 Class 0 Calculated from the graph

Supporting Table 7. The kinetic properties of AGC

Reaction
Mechanism

Rate equation

Asp(IMS) + Glu (MAT) <
Asp(MAT) + Glu(IMS)
Rapid equilibrium
Random Bi Bi*”

Species Rat heart mitochondria
Parameter Class Notice
KiS1 80 x 10 Class 0 Ref. 18
KiS2 3.2x 102 Class 0 Ref. 18
KiP1 180 x 10°  Class 0 Ref. 18
KiP2 2.8x 102 Class 0 Ref. 18
KcF 10.0 Class 3

KcR 10.0 Class 3

Alpha 1.0 Class0

Beta 1.0 Class0

Gamma 1.0 Class0

Delta 1.0 Class0
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Supporting Table 8. The kinetic properties of AlaTA

Reaction
Mechanism
Rate equation

Ala + OG < Glu + Pyr
Ping-pong Bi Bi"

Species, organ Pig liver
Parameter Class Notice
KmS1 0.002 Class 0
KmS2 0.0004 Class 0
KmP1 0.032  Class 0
KmP2 0.0004 Class 0
KiS1 0.0087  Class 2 KiP2
KiP2 0.012  Class 0
Keq 0.69 Class 2 0.16, AspTA
At MW = 78000
KcF 337 Class0 Activity = 210 micromol/min/mg
KcR 0.15  Class 3

Source for parameter estimation

: Figure 3 with 5 mM glutamate in reference 17.

Supporting Table 9. The kinetic properties of AspTA

Reaction
Mechanism
Rate equation

Asp+OGC < O x A +Glu
Ping-pong Bi Bi***!

Species, organ Pig heart

Parameter Class Notice

KmS1 0.9x10° Class 0 Ref. 40, Table Il
KmS2 0.1 x107° Class 0 Ref. 40, Table Il
KmP1 0.04 x 102 Class 0 Ref. 40, Table Il
KmP2 4 x10°  Class 0 Ref. 40, Table Il
KiS1 2x10° Class 0 Ref. 40, Table Il
KiP2 8.3 x 107 Class 0 Ref. 40, Table Il
Keq 6.2 Class0

KcF 300 Class 0

KcR 1000 Class 0 From k4 and k 10
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Supporting Table 10. The kinetic properties of CAC

Reaction PalCar(IMS) + Car(MAT) <> PalCar(MAT) + Car(IMS)
Mechanism Ping-pong Bi Bi*®

Rate equation

Species Rat liver mitochondria

Parameter Class Notice

KmS1 0.6 x 107  Class 0 Ref. 25

KmS2 9.4 %102 Class0 Ref. 25

KmP1 43.4x10° Class 1 11.6 x 107°, the value of Car/Car reaction
KmP2 0.4x107° Class 1 1.2 x 107, the value of Car/Car reaction
KiS1 8.7x10° Class 1 5.1 x 107, ref. 24

KiP2 250 x 10°  Class 1 510 x 10°°, ref. 24

Keq 243.3  Class 3

KcF 1.22  Class 2

KcR 1.08 Class 1 0.92, ref. 24

Source for parameter estimation: Figure 4 with 13 mM acetylcarnitine in reference 24.

Supporting Table 11. The kinetic properties of CIC

Reaction Cit(IMS) + Mal(MAT) < Cit(MAT) + Mal(IMS)
Mechanism Rapid equilibrium random Bi Bi**

Rate equation

Species Rat liver mitochondria

Parameter Class Notice

Kist 1.3x10*  Class 2

KiS2 4.4x10*  Class 2

KiP1 3.3x10* Class 0

KiP2 418 x10°  Class 0

KcF 56 Class0 11.2 mmol/min/g prot. x 30 kDa
KcR 3.5 Class 1 KcR = 2.1 (ref. 42, Table I1)
Alpha 1.0 Class0

Beta 1.0 Class 0

Gamma 1.0 Class 0

Delta 1.0 Class 0

Source for parameter estimation: Figure 1(A) with 0.05 mM citrate, (C) with 0.05 mM malate in

reference 42.
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Supporting Table 12. The kinetic properties of complex |

Reaction NADH + Q + 5H* (MAT) < NAD* + QH, + 4H* (IMS)
Mechanism Ping-pong Bi Bi"

Rate equation Eqgn. 11

Species, organ Bovine heart mitochondria
Parameter Class Notice

KmS1 9.2 x10° Class 0

KmS2 2.6 x 10" Class0

KmP1 9.9 x 10°®  Class 2

KmP2 59x 10  Class 2

KiS1 2.1 x10% Class 0 KiST = 1/Kmin
KiP2 9.8 x 10 Class 2

Keq 4079  Class 3

KcF 498  Class 0

KcR 229  Class 2

Source of parameter estimation: Figure 1C with 2.4 uM reduced CoQ, in reference 19.

Supporting Table 13. The kinetic properties of complex Il

Reaction QH, + 2cyt 3 + 2H* (MAT) — Q + 2cyt ¢ + 4H* (IMS)
Mechanism See ref. 28 scheme 3

Rate equation Eqn. 3

Species, organ Bovine heart mitochondria
Parameter Class Notice

KmA 2.8x10° Class 0 K5 x KcF

KmB 3.0x10°° Class 0 K6 x KcF

Kb1 54 x10° Class2 k5/k4, K3 = K4 x Kb1
Kb2 5.7x10° Class 2 k10/k9, K1 = K2 x Kb2
Kl 2.8x10° Class2  k7/k6, K4 = Kql/ks

Kq2 1.9 x10° Class 2 k12/k11, K2 = K5 x Kq2
K8 622.1 Class 2

KcF 426.8 Class 0 1/K7

Source for parameter estimation

: Figure 6 with 15 uM Q,H, in reference 28.

Supporting Table 14. The kinetic properties of complex IV

Reaction 4eyt c? + O, + 8H*(MAT) — 4cyt c* + 2H,0 + 4H*(IMS)
Mechanism Michaelis-menten ref. 29

Rate equation Eqn. 6

Species, organ

Parameter Class Notice

Ks 110x 10 Class 0 Value at pH =7

KcF 93.5 Class 0 Value at pH = 7, d[cyt c*]/dt x 1/4
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Supporting Table 15. The kinetic properties of complex V

Reaction ADP + Pi + 3H*(IMS) < ATP + H,O + 3H* (MAT)
Mechanism See ref. 26

Rate equation Eqn. 3

Species, organ

Parameter Class Notice

Kd 2.67 x 107 Class 3

Kp 9.02 x 10°  Class 3

Kt 4.33 x10®°  Class 3

KcF 14.5 Class 0 2340 nmol/min/mg x 371 kDa
Khx 1.3 x10* Class 3

Khy 1.6x10*  Class 3

Klt f 1.35x 108 Class 3

Klt r 0.00018  Class 3

AX 0.1  Class 3

Ay 0.6 Class 3

Beta 0.3 Class 3

T 310 -

Source for parameter estimation: Figure 2 with NADH respiration in reference 43.

Supporting Table 16. The kinetic properties of CPT |

Reaction
Mechanism
Rate equation
Species, organ

16Acyl-CoA + Car <> CoA + PalCar
Rapid equilibrium random Bi Bi*®

Bovine liver mitochondria

Parameter Class Notice
KiS1 182 x 10°  Class 0 Ref. 36
KiS2 0.82x10° Class 0
KiP1 6.7 x 10  Class 0
KiP2 21 x10° Class 0
KcF 61.4 Class0
KcR 32.8 Class 0
Alpha 1.0 Class0
Beta 1.0 Class0
Gamma 1.0 Class0
Delta 1.0 Class0
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Supporting Table 17. The kinetic properties of CPT I

Reaction CoA + PalCar < 16Acyl-CoA + Car
Mechanism Ordered Bi Bi*°

Rate equation Eqn. 8

Species, organ Rat liver mitochondira

Parameter Class Notice

KmS1 6.3 x10*  Class 2

KmS2 3.3x10* Class 2

KmP1 950 x 10°  Class 0

KmP2 34x10° Class0

KiS1 2.4x10* Class 2

KiS2 2.7x10*  Class 2

KiP1 41 x 10 Class 0

KiP2 7x10° Class 0

Keq 23540 Class 3

KcF 8.0 Class2

KcR 2.4  Class 0 1.8 Unit/mg x 80kDa, refs. 30,44

Source for parameter estimation: Figure 1 with 0 uM SDZ in reference 30.

Supporting Table 18. The kinetic properties of CS

Reaction OXA + Acetyl-CoA < Cit + CoA
Mechanism Random Bi Bi?'34#
Rate equation

Species, organ Rat kidney, rat brain
Parameter Class Notice
k1 6.8 x 10"  Class 3

k_1 8.1 x10®  Class 3

k2 3.0x 10"  Class 3

k_2 7.2 x10%  Class 3

k3 6.2 x 10"  Class 3

k_3 5.1 x10% Class 3

k4 1.2 x 10"  Class 3

k_4 4.0x%x10%  Class 3

k5 1.4 x10° Class 3

k_5 2.4 x10% Class 3

k6 41 %10  Class 3

k_6 1.1 x10%  Class 3

k7 5x 10"  Class 3

k_7 9.8 x10% Class 3

k8 5.3x 10" Class 3

k_8 7.7 x10®  Class 3

Source for parameter estimation: reference 31.
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Supporting Table 19. The kinetic properties of DIC

Reaction Mal(IMS) + Pi(MAT) <> Mal(MAT) + Pi(IMS)
Mechanism Rapid equilibrium random Bi Bi*

Rate equation Eqn. 12

Species, organ Rat liver mitochondria

Parameter Class Notice

KiS1 0.20x 102  Class 0 Ref. 46, Fig.5

KiS2 0.72x10°  Class 0 Ref. 46, Fig.5

KiP1 9.0x 10 Class 2

KiP2 7.6 x 10 Class 2

KcF 2.7 Class0 6.7 x 10°° mol/min/mg x 28 kDa
KcR 41  Class 1

Alpha 1.0 Class0

Beta 1.0 Class0

Gamma 1.0 Class0

Delta 1.0 Class 0

Source for parameter estimation: Figure 5A with 0.05 mM phosphate, (C) with 0.10 mM malate in
reference 46.

Supporting Table 20. The kinetic properties of ECH

Reaction Enoyl-CoA + H,O < 3-hydroxyacyl-CoA
Mechanism Uni uni reversible®

Rate equation Eqn. 14

Species, organ Bovine liver

Parameter Class Notice

Ks 16.9 x 10°°  Class 0

Kp 121 x10°  Class 0

KcF 8.9166667  Class 0

KcR 2154.1667  Class O
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Supporting Table 21. The kinetic properties of ETF-QO

Reaction ETFred + Q < ETFox + QH,
Mechanism Ping-pong Bi Bi'*

Rate equation Eqgn. 11

Species, organ Pig liver mitochondria
Parameter Class Notice
KmSt 0.31x10°°  Class 0

KmS2 0.39x10°  Class 2

KmP1 0.32x 10 Class 0

KmP2 4.2x107 class 2

KiS1 0.31x10°°  Class 0

KiP2 0.3 x10°°  Class 2

Keq 0.66 Class 0

KcF 78 Class 0

KcR 101 Class 2

Source for parameter estimation

: Figure 4 with 1.5 uM ETF hydroquinone in reference 14.

Supporting Table 22. The kinetic properties of FM

Reaction Fum < Mal

Mechanism Uni uni reversible

Rate equation Eqn. 14

Species, organ

Parameter Class Notice

Ks 0.5x10° Class 0 Ref. 47, Table V
Kp 2.5x10° Class0

KcF 800 Class 0

KcR 900 Class 0

Supporting Table 23. The kinetic properties of HCD

Reaction 3-hydroxyacyl-CoA + NAD* <> 3-oxoacyl-CoA + NADH
Mechanism Michaelis-menten®

Rate equation Eqn. 6

Species, organ Pig heart

Parameter Class Notice

Ks 1.5x10° Class 0

KcF 41.483333  Class 0
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Supporting Table 24. The kinetic properties of IDHa

Reaction
Mechanism
Rate equation
Species, organ

IsoCit + NAD* — OG + NADH
Ref. 35

Eqn. 5

Bovine heart

Parameter Class Notice

KcF 105 Class 0 28 U/mg x 224000 Da (refs. 35,48)
b 29.6  Class 3

C 0.00023  Class 3

d 7.8x10°  Class 3

E 0.00064  Class 3

F 0.00036  Class 3

Source for parameter estimation: Figure 4 with 1.0 mM ADP in reference 35.

Supporting Table 25. The kinetic properties of IDHb

Reaction
Mechanism
Rate equation
Species, organ

IsoCit + NADP* < OG + NADPH
See ref. 49

Eqn. 5

Bovine heart mitochondria

Parameter Class Notice
PhiO 5.1 x102 Class 0 Ref. 49, Table 1
Phi1 9.5x10®% Class 0

Phi2 0.96 x 10°®  Class 0

Phi12 9x10® Class 0

Phir0 6.6 x 102 Class 0

Phir1 0.37 x10°  Class 0

Phir2 29x10° Class 0

Phir3 2.5x10* Class 0

Phir12 6x 10"  Class 0

Phir13 1.3x 107  Class 0

Phir23 9.4x10®% Class 0

Phir123 4.6 x10™  Class 0
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Supporting Table 26. The kinetic properties of MDH

Reaction
Mechanism
Rate equation
Species, organ

Mal + NAD* < OXA + NADH
Ordered Bi Bi ref. 15

Eqn. 9

Human liver cytosol

Parameter Class Notice

KmS1 72 x10°  Class 0

KmS2 110 x 10 Class 0

KmP1 1600 x 10 Class 0

KmP2 170 x 10 Class 0

KiS1 11 x10° Class 0

KiS2 100 x 10°°  Class 0

KiP1 7100 x 10 Class 0

KiP2 1900 x 10°  Class 0

KcF 0.390 Class0 Specific activity = 0.33 U/mg,
MW = 72000 (ref. 15, Table I)

KcR 0.040 Class 0 Vf/Vr = 9.8 (ref. 15, Table III)

Supporting Table 27. The kinetic properties of NDK

Reaction ATP + GDP < ADP + GTP
Mechanism Ping-pong Bi Bi*%*'

Rate equation Eqn. 11

Species, organ Yeast

Parameter Class Notice

KmS1 0.31x10°  Class 0 Ref. 51

KmS2 0.043 x 10°  Class 0 Ref. 51, UDP

KmP1 0.050 x 10°  Class 0 Ref. 51

KmP2 0.25x 102  Class 0 Ref. 51, UTP

KiS1 0.21 x10°  Class 2 Ref. 51

KiP2 0.35x 102  Class 2 Ref. 51, UTP

Keq 1.28 Class 0 Ref. 51

KcF 6883  Class 0 MW = 70000 Da, ref. 50
KcR 5950 Class 0 MW = 70000 Da, ref. 50

Source for parameter estimation

: Figure 4 with 0.18 mM ATP in reference 50.
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Supporting Table 28. The kinetic properties of OCT

Reaction
Mechanism
Rate equation
Species, organ

3-oxoacyl-CoA + CoA < Acyl-CoA + Acetyl-CoA
Ping-pong Bi Bi**

Eqn. 11

Rat liver mitochondria

Parameter Class Notice
KmS1 1.1 x10° Class 0 OCTa
1.10x 10°  Class 0 OCTDb, value for 160xoacyl-CoA
1.30x 10®  Class 0 OCTc
210x10°  Class 0 OCTd
3.20x 10° Class 0 OCTe
6.70x 10 Class 0 OCTf
1.24 x 10  Class 0 OCTg
KmS2 28.6 x 10°  Class 0
2.86x10° Class 0 OCTDb, value for 160xoacyl-CoA
3.84x10° Class 0 OCTc
3.57x10°° Class 0 OCTd
3.55x10°° Class 0 OCTe
1.89 x 10°  Class 0 OCTf
2.20x10°  Class 0 OCTg
KmP1 7.2 x10°  Class 2
KmP2 8.7 x 107  Class 2
KiS1 1.1 x10° Class 2
KiP2 8.7x10°  Class 2
Keq 160.98  Class 3
KcF 137.86  Class 0 Vma x 178000 Da
137.86  Class 0 OCTDb, value for 160xoacyl-CoA
253.52  Class 0 OCTc
27294  Class 0 OCTd
27738  Class 0 OCTe
264.07 Class 0 OCTf
80.244  Class 0 OCTg
KcR 87.253  Class 2
87.253  Class 2 OCTb, value for 160xo0acyl-CoA
160.46  Class 2 OCTc
172.75  Class 2 OCTd
175.56  Class 2 OCTe
16713  Class 2 OCTf
51.615  Class 2 OCTg

Source for parameter estimation: Figure 5B with 200 uM Acetyl-CoA in reference 33.
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Supporting Table 29. The kinetic properties of OGC

Reaction
Mechanism
Rate equation
Species, organ

OG(IMS) + Mal(MAT) < OG(MAT) + Mal(IMS)
Rapid equilibrium random Bi Bi*

Eqn. 12

Bovine heart mitochondria

Parameter Class Notice
KiS1 0.3x10° Class0
KiS2 0.7 x10°  Class 2
KiP1 1.4x 102 Class 0
KiP2 0.17 x 10°  Class 2
KcF 3.675 Class 0
KcR 4.83  Class 0
Alpha 1.0 Class0
Beta 1.0 Class0
Gamma 1.0 Class0
Delta 1.0 Class0

Source for parameter estimation

: Figure 2 with 20 mM malate in reference 23.

Supporting Table 30. The kinetic properties of OGDC

Reaction
Mechanism
Rate equation
Species, organ

OG + NAD* + CoA — SCoA + NADH + CO,
Multisite ping-pong?***

Eqn. 7

Pig heart mitochondria

Parameter Class Notice

KmA 0.22 x 107 Class 0 Pig heart ref. 22

KmB 0.025 x 107 Class 0 Pig heart ref. 22

KmC 0.050 x 102 Class 0 Pig heart ref. 22

KmP 3x10* Class 2

KmR 6x10*  Class 2

Kia 7.2 x10*  Class 2 0.75 x 107, Dictyostelium,
Kib 7.4 x10*  Class 2

Kic 1x10* Class2

Kip 11 x10°  Class 2

Kiq 81 x10° Class0 Human heart ref. 53

Kir 25x10° Class 0 Human heart ref. 53

KcF 177 Class 2 Estimated, 270 at MW = 2700000 Da

Source for parameter estimation: Figure TA with 0.010 mM CoA, (B) with 0.20 mM NAD*, (C) with
0.10mM oxoglutarate in reference 22.
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Supporting Table 31. The kinetic properties of PC

Reaction Pyr + ATP + CO, <+ OXA + ADP + Pi
Mechanism Ref. 13

Rate equation Eqn. 10

Species, organ Chicken liver

Parameter Class Notice

KmA 0.11 x 107 Class 0 ATP, Table IlI, inhibitor = MgADP
KmB 1.63 x 107  Class 0 HCO; , Table lI, inhibitor = OXA
KmC 0.37 x 102 Class 0 Pyr, Table Ill, inhibitor = OXA
KmP 16 x 10°  Class 0 Pi, Table I, inhibitor = MgATP
KmQ 0.24 x 102 Class 0 ADP, Table 1lI, inhibitor = MgATP
KmR 0.051 x 102 Class O OXA, Table 11, inhibitor = Pyr
Keq 9.0 Class0

Kia 0.15x10°  Class 0 ATP, Table |

Kib 1.6 x 107 Class 0 HCO3 , Table |

Kic 0.13 x 102  Class 0 Pyr, Table Ill, vs OXA

Kip 79 %107  Class 0 Pi, Table |

Kiq 0.19x 10°  Class 0 ADP, Table |

Kir 0.24 x10°  Class 0 OXA, Table llI, vs Pyr

KcF 200 Class 0 Specific activity = 20, MW = 600000
KcR 20 Class 0 V1/V2 =10

Supporting Table 32. The kinetic properties of PDC

Reaction Pyr + NAD* + CoA < Acetyl-CoA + NADH + CO,
Mechanism Multisite ping-pong?>*

Rate equation Eqn. 7

Species, organ Pig heart mitochondria

Parameter Class Notice

KmA 25x10° Class 0 Ref. 53

KmB 13x10° Class0 Ref. 53

KmC 50x 10°  Class 0 Ref. 53

KmP 59x 107 Class 2

KmR 6.9x 107  Class 2

Kia 55x10* Class 2 Dictyostelium, ref. 54

Kib 3.0x10* Class 2

Kic 1.8x10*  Class 2

Kip 6.0x10°  Class 2

Kiq 35x10° Class 0 Human heart, ref. 53

Kir 36 x10°®  Class 0 Human heart, ref. 53

KcF 856  Class 1 Specific activity = 4.8 U/mg protein ref. 53

Source for parameter estimation: Figure 2A with 0.015 mM CoA, (B) with 0.050 mM NAD*, (C) with
0.050 mM pyruvate in reference 22.
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Supporting Table 33. The kinetic properties of PIC

Reaction Pi(IMS) + H*(IMS) < Pi(MAT) + H*(MAT)
Mechanism Rapid equilibrium random Bi Bi*
Rate equation Eqn. 12

Species Rat heart mitochondria
Parameter Class Notice

KiS1 0.87  Class 2

KiS2 1.86 x 10®  Class 2

KiP1 32.84x10° Class 0 Fig. 4, ref. 38

KiP2 1112 x 107 Class 0 Fig. 4, ref. 38

KcF 379 Class0 Fig. 4, ref. 38

KcR 37.0 Class 0 Fig. 4, ref. 38

Alpha 1.0 Class0

Beta 1.0 Class0

Gamma 1.0 Class0

Delta 1.0 Class0

Source for parameter estimation: Figure 4A with pH5.85, (B) with 4 mM phosphate in reference 38.

Supporting Table 34. The kinetic properties of PYC

Reaction Pyr(IMS) + H*(MAT) < Pyr(MAT) + H*(IMS)
Rapid equilibrium random Bi Bi

Mechanism (“Sequential Mechanism” in ref. 55)

Rate equation Eqn. 12

Species, organ Rat liver mitochondria

Parameter Class Notice

KiS1 6.1 x10* Class 2

KiS2 59x10* Class2

Kip1 2.6 x10*  Class 2

Kip2 41 x10* Class 2

KcF 0.84 Class 1 0.67 ref. 56

KcR 0.78 Class 0 0.61 ref. 56

Alpha 1.0 Class0

Beta 1.0 Class0

Gamma 1.0 Class0

Delta 1.0 Class 0

Source for parameter estimation: Figure 3 in reference 56.
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Supporting Table 35. The kinetic properties of SCS

Reaction SCoA + GDP + Pi « Suc + CoA + GTP
Mechanism See ref. 57

Rate equation Eqn. 13

Species, organ Pig heart

Parameter Class Notice

KmA 5x10° ClassO GDP (2-8 x 107

KmB 3.5x10° Class 0  Succinyl-CoA (1-6 x 107)

KmC 45x10* Class0 Pi(2-7 x 10-4)

KmP 6x10* Class0 Succinate (4-8 x 107)

KmQ 7.5x10° ClassO  GTP (5-10 x 107

KmC2 45x10* ClassO Pi(2-7 x 107

KmP 26x10* ClassO  Succinate (4-8 x 107

Keq 8.375 Class0  From haldane relationships

Kia 4%x10* ClassO  GDP (Table II)

Kib 2x10° ClassO  Succinyl-CoA, (vs CoA, Fig. 7)

Kic 3x10° ClassO  Pi(Table )

Kip 7% 102 Class0  Succinate (Table II)

Kiq 5x10° ClassO GTP (Table II)

Kir 6.7 x10° Class0  CoA, from a haldane relationship, Kq x Kir = Kiq x Kr
Kcl 100 Where Kr (CoA) = 10 x 10°* M

Kc2 100 Class 0  Kcat=Kc2 =25 to 287.5 (20 to 230 U/mg x 75000 dalton)
Kia 4x10* Class3  Guess, V1/V2 =0.20, V2//V1' = 30

Supporting Table 36. The kinetic properties of SDH

Reaction
Mechanism
Rate equation
Species, organ

Suc + Q & Fum + QH,
Ping-pong Bi Bi*°

Eqn. 11

Bovine heart mitochondria

Paramenter Class Notice

KmS1 30x10°°  Class 0

KmS2 69 x10°°  Class 0 30-130x 10-°

KmP1 0.3x10° Class 0

KmP2 1.5x10° Class 0

KiS1 4.1 x10° Class 2 Ki for carbo x in =3.0 x 10° M
KiP2 5.6 x 10  Class 2 Ki for carbo x in =3.0 x 10° M
Keq 0.037 Class 0 From Haldane relationship

KcF 69.3 Class 0 MW = 104000 Da

KcR 1.73  Class 0 MW = 104000 Da

Source for parameter estimation: Figure 2B in reference 20.
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CHAPTER 9

A Computational Model
of the Hepatic Lobule

Yasuhiro Naito*

Abstract
‘ J : Y hile many inter-organ and intra-organ gene regulations have been found recently, raison
d#tre of such regulations are hardly explicated. We aimed liver ammonia detoxification
asa prospective target because of its simple histological structure and adopted systems
biology approach to elucidate the question. In the mammalian liver, many metabolic systems includ-
ingammonia metabolism are heterogencously processed among hepatocyte position in the lobule.
Three enzymes that are incorporated in ammonia metabolism are expressed gradually between the
periportal zone (influx side) and the pericentral zone (eflux side) in the lobule.*” To investigate
the cause of the heterogeneous gene expression, a simple eight-compartments model, in which
cach compartment represented hepatocellular ammonia metabolism by largely enzyme kinetics
equations, was developed as a lobule model.* In silico simulation indicated that regulated enzyme
gradient reduced ATP requirement for ammonia detoxification, suggesting that these enzyme
gradients by gene regulations improve the fitness of organism by saving energy (ATP consumption).

Introduction

Gene regulation seems to be an important device for functional specialization among cells,
tissues and organs. Detection of numerous inter/intra-organ differential gene regulations (e.g.,
the expression rate and the alternative splicing, etc.) support this argument. Many technological
innovations (e.g., genome sequencing, microarray, full-length cDNA library, histochemistry, etc.)
accelerate the accumulation of these discoveries, but the raison d’¢tre of such regulations remains
almost unclear. Regulation of gene expression is a highly energy consuming process because many
macromolecules are involved. Therefore, it is thought that the gene regulation improves the fitness
of the host individual as a payment of the energy cost. Various explanations for each regulation
are proposed, but most of them are no better than the thought experiments despite the fact that
many data that back up the explanations are quite solid and accurately quantitative.

At present, the greater part of the biological data and information is limited to the molecular
and cellular (microscopic) level. While the explosive development of molecular and cellular biology
has yielded both copious and precise information at the subcellular level, biology for higher-level
(mesoscopic or macroscopic) structures has lagged far behind. Anatomy and histology illustrate
a multicellular individual in a hierarchical classification scheme, namely of, tissues, organs and
individual, going from the microscopic to macroscopic. The store of knowledge built up at each
level of the hierarchy is at present excessively disproportionate. The knowledge accumulated in the

*Yasuhiro Naito—Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan

and Bioinformatics Program, Graduate School of Media and Governance and Department
of Environment and Information Studies, Keio University, Fujisawa, Japan.

Email: ynaito@sfc.keio.ac.jp

E-Cell System: Basic Concepts and Applications, edited by Satya Nanda Vel Arjunan,
Pawan K. Dhar and Masaru Tomita. ©2013 Landes Bioscience and Springer Science+Business Media.




144 E-Cell System: Basic Concepts and Applications

last decade at higher-levels than the cell is undoubtedly less than that at the cellular and subcellular
levels. A major constraint is the currently limited technology, which for the tissue or organ level
presents greater difficulties in all aspects of sample preparation, cultivation and measurement than
required for the single-cell level.

To overcome this situation, we adopted systems biology approach and focused on the ammonia
detoxification in the liver asa competent model. In the mammalian hepatic lobule, many metabolic
systems including ammonia metabolism are processed heterogeneously. This zonation of function
seems to depend on the gradual existences of metabolic substrates, oxygen and hormones and
the structural factors such as nerves, biomatrix and receptors. Some enzymes are not distributed
uniformly in the lobule. Among ammonia metabolism relating enzymes, carbamoylphosphate
synthetase (CPS), glutamine synthetase (GS) and ornithine aminotransferase (OAT) have steep
gradual expression in the lobule. Its significance is unclear now.

Itis assumed that gradual gene expressions of the three enzymes in the lobule affect the efficiency
of ammonia metabolism in the liver. To elucidate the significance of gradual gene expressions in
the lobule, it should be evaluated that how strong the differential expressions of enzymes affect the
metabolic dynamics in each hepatocyte and what the total effects of heterogeneous hepatocytes
on the liver is. Both of the amount of ATP required and the velocity for ammonia detoxification
are useful as indices to evaluate the metabolic efficiency.

The liver has relatively simple histological structure among mammalian organs. However, it is
still a complex system, since hepatocytes queue along the sinusoidal capillary in the lobule then
metabolic change in sinusoidal upstream perturbs downstream hepatocytes. In vivo and in vitro
investigations have hardly techniques to measure the fraction of ATP consumed for ammonia
detoxification exactly among whole ATP consumption. Moreover, it is almost impossible to grasp
the metabolic states of both of the whole liver and each hepatocyte in it. Meanwhile, approximately
15% of ATP is consumed by urea cycle in rat hepatocyte,” indicating that a stir in urea cycle can
enormously affect the energetics not merely of hepatocyte but also of the liver and the individual.
In silico study using mathematical models suggested that gradual gene regulations of ammonia
metabolism relating enzymes save the energy required for the metabolism.

The Single Hepatocyte Model

We started by construction of a model for ammonia detoxification in single hepatocyte and ask-
ing how well the mathematical model simulates the actual hepatocyte. We then assemble multiple
cell models to a sinusoid model, which is used to address the advantage of the gene regulations in
hepatic ammonia metabolism.

The single hepatocyte model included 67 substances and 29 reactions (Fig. 1A, see Appendix for
details), most reactions are related with urea cycle and largely reproduced the metabolic states de-
scribed in previous reports for mammalian hepatocyte. The liver is a giant bunch of the lobules and
the lobule is a cluster of the sinusoids, which connect in parallel each other. Thus, we assumed that
an appropriate model for sinusoidal metabolism linearly approximates the liver metabolism.

The Sinusoid Model

To construct the sinusoidal metabolism model, no difference amonghepatocytes along sinusoid
without the gradual gene expressions of CPSI, GS and OAT was assumed and single hepatocyte
models were joined up in series alonga model of sinusoidal material flow (Fig. 1B). A simple model
that consists of eight hepatocellular compartments roughly reproduced the metabolic zonation of
ammonia detoxification in the lobule.?

The active pathways were quite different between the periportal and the pericentral zones in
the model (Fig. 2). Urea production, urea exportation and creatine generation were pronouncedly
predominant in the periportal zone (light gray/red arrows in Fig. 2), while glutamine formation
and exportation were predominantly seen in the pericentral zone (dark gray/blue arrows in Fig.
2). Because mitochondrial ornithine aminotransferase is mainly expressed in the pericentral zone,
the concentration of glutamate, which is a reaction product of ornithine aminotransferase, was
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Figure 1. Schematic representation of the model. A) The model describing ammonia metabolism
in single zone model. Filled circles, open round rectangles and open circles represent substances,
enzymes and transporter, respectively. Solid line arrows represent reactions and transportations.
Broken line with a triangular arrowhead and a bar at the end represent positive and negative
feedback, respectively. AGS, N-acetylglutamate synthetase; Argase, arginase; ASL, argininosuc-
cinate lyase; ASS, argininosuccinate synthetase; CPS, carbamoylphosphate synthetase; GAMT,
guanidinoacetate methyltransferase; GAT, arginine:glycine amidinotransferase; GDH, glutamate
dehydrogenase; Glnase, phosphate-dependent glutaminase; GOTc, glutamate:oxaloacetate trans-
aminase in the cytoplasm; GOT,, glutamate:oxaloacetate transaminase in the mitochondria; GS,
glutamine synthetase; OAT, ornithine aminotransferase, OCT, ornithine carbamoyltransferase;
Arg-tp, argininetransporter; GATL, glutamate-aspartate translocase; Gln-tp, glutamine transporter
in mitochondrial membrane; Glu-tp, glutamate transporter; GTL, glutamate translocase; NH;-tp,
ammonia transporter in the cell membrane; NH;-tp,, ammonia transporter in the mitochondrial
membrane; OTL, ornithine-citrulline translocase; SysL, system L; SysN, system N; Urea-tp, urea
transporter; Arg, arginine; Asp, aspartate; CP, carbamoylphosphate; Gln, glutamine; Glu, gluta-
mate; a-KG, a-ketoglutarate. The entity abbreviation may be used with an index variable which
represents the location of the entity. The indices ¢, m and s indicate the cytoplasm, mitochondria
and sinusoid, respectively. B) Schematic of eight cellular compartments model with sinusoidal
compartments. PP and PC represent the periportal end and the pericentral end, respectively.
Ammonia (NH3), urea, glutamate (Glu) and glutamine (GIn) flow from the periportal inflow
compartment to the pericentral outflow compartment interacting with cellular compartments.
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Figure 2. Flux disparities between both ends of the porto-central axis. The width of each ar-
row proportionally reflects the flux ratio at both ends (the first and the eighth compartment).
The thickest line indicates the flux disparity to be ten-fold or more. Light (red) and dark (blue)
arrows indicate fluxes predominant in the periportal and the pericentral zone, respectively.
Fluxes with a disparity of less than 1.5 are indicated by the black arrow. The size of the ar-
rows is proportional to the level of fluxes except for extremely high level fluxes: ornithine
aminotransferase, Mitochondrial GOT and GATL. Pronounced urea production, urea export
and creatine generation were seen in the periportal region while pronounced glutamine
formation and reactions which mediate glutamate in the pericentral. A color version of this
figure is available online at www.landesbioscience.com/curie.

higher in the pericentral than the periportal zone. The glutamate concentration in mitochondria
was increased from 6.97E-3 M to 8.70E-2 M along the porto-central axis. Consequently, the veloc-
ity of glutamate dehydrogenase, which catalyzes glutamate, was larger in the pericentral than the
periportal zone. Glutamate-aspartate translocase and mitochondrial GOT also exhibited higher
activities in the pericentral zone, while cytoplasmic GOT showed an opposite trend of flux between
the periportal and the pericentral zone (Fig. 2).

To address the functional meaning of the gradual gene expressions, we developed a model with-
out the enzyme gradients. In the no-gradient model, the lobule consumed more ATP to detoxify
ammonia than the original model with gradual expressions. Most of the chemical reactions and
transportation exhibited larger fluxes in the periportal zone than the pericentral zone. Due to the
high affinity for ammonia of glutamine synthetase, i.e., 1/10 of Km of carbamoylphosphate syn-
thetase, ammonia predominantly converted to glutamine in the periportal zone. The fluxes gently
changed from the periportal to the pericentral zone while dramatic alterations were seen in the
sixth or seventh compartment in the model with the gradual gene expressions, revealing that the
pericentral hepatocytes played a lesser role in metabolism in the no-gradient model.

GS and OAT are co-expressed in hepatocyte and no co-expression of these genes is seen in
other tissues. This raises a hypothesis that the co-expression of GS and OAT benefits the liver
metabolism. Activities of both enzymes, which are parallel to gene expressions, were variously
perturbed in the mathematical model to enquire whether the co-expression advantages ammonia
detoxification in the lobule. Consequently, cooperative gradient of GS and OAT was suggested
to improve the energy efficiency of ammonia detoxification.
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Four intermediate models were constructed. The first intermediate model included only GS
gradient, the second one included GS and CPS gradients, the third one included only OAT
gradient and the last one included GS and OAT gradients. Our study using mathematical
models suggested that the gene regulation in hepatic ammonia metabolism contributed for
energy conservation. Although regulation of gene expression itself should spend much energy,
the returning energy save is conceivable to overcome the break-even point. Co-expression of GS
and OAT was also suggested to improve the energy efficiency of ammonia metabolism. These
support the aspect that intra-tissue gradual gene expression has evolved in a direction to upgrade
metabolic efficiency. To compare the metabolic aspects in the periportal zone and that in the
pericentral zone, the flux distributions were examined. To evaluate the effects of the enzyme slope
along the lobule metabolic state, the following rates were calculated and used as the indexes.

Rate of ammonia degradation: J it e = Vers + Vs (1)
Rate of ammonia generation: J st gen = Ve T Vobn (2)
Rate of ammonia detoxification: J =] —J (3)
NH] .detax NH] .deg NH} .gen
Rate of ATP consumption: J uip v = 2Vers + Vass (4)
. JNH'. detox
Energy efficiency 1) = ———= (5)

ATP consum

Rate of bicarbonate consumption: —v
p Jm't];.r-..m.m_- Vers

Ruit; derox and vy, are nearly equal under the assumption of steady-state. The model with all
of gene expression gradients ranks higher among six models in the rate and energy efficiency of
ammonia detoxification. The mean rate of elimination of ammonia from the sinusoid was 11.8%
faster in the model with full-gradients than the no-gradient model. Although the rate of degrada-
tion of ammonia in all eight compartments was 20.0% slower in the with full-gradients model than
the no-gradient model, the rate of ammonia generation was also 53.8% slower than the control
model, showing that the full-gradients model was able to remove ammonia more efficiently than
the control. The mean rate of ATP consumption in the full-gradients model was 9.5% less than the
no-gradient model. Energy efficiency 7, which means the number of consumed ATP molecules
required for the elimination of one ammonia molecule, was smaller in the full-gradients model
than the no-gradient model (3.59 + 0.22 vs 4.47 = 0.49). Two intermediate models also demon-
strated smaller 77 while the other intermediate models demonstrated greater 7 than the control.

On the other hand, the urea cycle in the liver also strongly contribute to maintain acid-base
balance, but our model did not considered it this time. Since available quantitative data on acid-base
balance was fewer and less precise than that on ammonia detoxification, we judged that a model
of just ammonia metabolism could be more effective than that including both of ammonia me-
tabolism and acid-base balance. For further discussion about the raison d’¢tre of gene regulations,
the mechanism of acid-base balance should be implemented to the model.

Conclusion

We evaluated that how strong the totality of heterogeneous metabolic changes in each cell influ-
ence the fitness of tissue and organ through systems biology techniques. Such approach can link
molecular processes at subcellular level and macroscopic functions at tissue, organ, or individual
level together, not by statistical correlation but by concrete causal relationship. Coming biosciences
should picce together the huge data (e.g., genome sequence, expression profile, protein structure,
etc.,) to gain integrated comprehension of life. Generally, in vivo and in vitro approaches do not
have integrability but precision and in silico approach has vice versa, thus they surely function
complementally and accelerate the progress of biological sciences.
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Appendix: Details of the Mathematical Model
1. Carbamoylphosphate Synthetase (EC. 6.3.4.16)

The enzyme catalyzes
2ATP + NH; + HCO7; — 2AMP + 2Pi + CP

in mitochondria. The kinetic model was obtained from previous literature.!*!!

_ kcm.(.‘l'&i [CPS]
crs T -
denominator

where

Km.-\T]", PS5 + Kn\!\TP_\ LCPS KmHOOl LPS Km.\'.-\{;.(‘I‘S KmNHE CPS

denominatorcps = 1 + +
o [ATP] [HCO,] ~ [NAG] ~ [NH!]
Kn‘\'ﬂ’ LPS Km'H('l}..(‘E'S + K.-.H(f(). CPS [Kmr\'l'P: ces T Km’-\'ﬂ’; -CPSJ + K .N,\(i.{'PsK mATP, CPS
[ATP] |ATP|[NAG]|
K\_“S-" oPs Km.—\'ﬂ’, LS K.\A'Il’_- \('P:\'Kn,x“: OPs Kﬁf\ii.(il'h' KM‘H(.'I’J-, Ps

[atp][M*] " [ATPNH;] | [NAG][HCO, ]

K g orsK My CPS K mATP, CPS

[ATP][ Mg™ |[NAG]

K, cosKagorsK wHeo;ces T K yagersK SHCO; CPS K mATE, CFS

[ATP][NAG][ HCO; |

. ) K . oK K K +K
Kx-\ﬂ’:L‘PSKNKS‘.c-vsK.n'u(-u,.c-m sATP CPST% sHOO, CPST m HOO, CPS mNH} CPS m'NH] CPS

[ATP][Mg™ ][ HCO: | [ATP][HCO; |[NH; ]

K K K K K\.-\'I'P: ,(']’SK&T\'.-\('-\('PSK

sATP CPSTE anp™ ops ™ sNAGCPS ™ mHeo, CPs sHOO, CPS T m™NHL CPS

[ATP][Me* [[NAG][HCO,| ~ [ATP][NAG][HCO, ][NH |

K

Ko, rmKnm-(,-_‘.{-me'a'rJ«m-s Km'rp._ri-chu.m.('J’SK.m-u-, cps T ATP, CPS

[ATP]'[HCO; | " [ATP]'[NAG][ HCO; |

K K K

SATPCPS TR sATP, CPS T8 o0, OPST mNHE CPS

K

SATP CPS Ks.\{!'_"' £PS KsIIOO'; crs Km'*‘""’: CPS

[ATP] [Mg* |[HCO, ] ' [ATP]'[HCO; |[NH; ]

K\-\'I.'P. £L£Ps K

Me™ CPS K sNAGCPS K.H(‘u , CPS Klﬂ'»\TP: LPs

[ATP] [ Mg |[NAG][ HCO; |

KV\TI‘- £Ps K.\ATT’_- £P5 K\\tg-“ LPS Kuu'n'., £PS K.n'xu; LPS

[ATP]'[ Mg™ ][HCO; ][ NH ]

K K K K

sATP CPS T8 sATP, CPS T sNAGOPS _..[-{(‘ol_cpsKmNH; £LPS

[ATP]'[NAG][ HCO; || NH; |

Ks-m’: LS Ks-\TP: e K\.\uﬂz:' ors K-*'N-'\G-CPS K:.I 100, \('l‘f\'Km‘?\'H; £r5

[ATP]'[ Mg |[NAG][ HCO; |[NH; |




A Computational Model of the Hepatic Lobule 149

2. N-Acetylglutamate Synthetase (EC. 2.3.1.1)
The enzymes catalyze AcCoA + Glu — CoA + NAG.

The reaction mechanism is a nonreversible rapid equilibrium random bi-bi mechanism.'?

Jkul.\(.‘. [ AGS ] [ ACCOA ] [GILI ]

I $£ K:u\lg:.a\GS
[ Arg

Vacs =

denominator,
where
CoA NAG
AGE K:.—\;(‘:\.—\,a\(i.‘iKmﬁlll,a\(i.‘i[ 1+ Klﬁi(-“l_\“\ig ][ 1+ !LN‘GJ‘CL J
K iuacs [ I+ M] [ ACCOA]
INAGAGS

[CoA]
K acconnas| 1+ ——— [Glu] - [ACCOA] [Glu]

iCoA AGS

3. Glutamine Synthetase (EC. 6.3.1.2)
The enzyme catalyzes ATP + Glu + NH; = AMP + Pi + Gln.

k.,.0s| GS][Glu][ ATP ][ NH; |
( Km(ilu.{iN +[G|U])[ Km.-\'l'l’.iiN +[ ATP])(KH.NH; GS +[NH: :|)

Vas =

4. Phosphate-Dependent Glutaminase (EC. 3.5.1.2)

The enzyme catalyzes Gln + Pi — Glu + NH. It is activated by the product: ammonia."?
Cooperativity of glutamine and Pi, which is an essential activator for phosphate-dependent glu-
taminase, were modeled by the Hill equation.'t
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S. Ornithine Carbamoyltransferase (EC. 2.1.3.3)
The enzyme catalyzes CP + Orn <> Pi + Cit. The reaction mechanism is an ordered bi-bi
sequential mechanism."

[kl.OCTk].OCTkﬁ.OCTk?.O{‘T [CP][Om] - kE.ﬂ(‘Tk-l.OCTkﬁ.ﬂCTkﬂ.ﬂ(‘T [Cit][Pi])[OCT]
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6. Argininosuccinate Synthetase (EC. 6.3.4.5)
The enzyme catalyzes ATP + Cit + Asp <> AMP + Pi + ASA. The reaction mechanism is an

ordered ter-ter mechanism."
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7. Argininosuccinate Lyase (EC. 4.3.2.1)
The enzyme catalyzes ASA <> Fum + Arg. The reaction mechanism is an ordered uni-bi
mechanism.

[‘(‘1,,\51.k_\..-\sr.ks..-\st. [ASAJ B k!..-\SI.k-l,.-\.‘il.kh\.-\.‘il. [Fum” Arg])[ASLJ
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8. Arginase (EC. 3.5.3.1)
The enzyme catalyzes Arg — urea + Orn. The reaction is an irreversible process and inhibited
by ornithine.
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9. MetaNet Model
OTL, GTL, GATL, OAT, GOT,, GOT, GDH, GAT and GAMT were modeled using
MetaNet.'® Reaction stoichiometries were defined as follows:

OTL: Cit,, + Orn, <> Cit, + Orn,,

GTL:  Glu, <> Glu,,

GATL: Glu, + Asp,, <> Glu,, + Asp,

OAT:  Orn+AKG <> Pyrroline-5-carboxylate + Glu
GOT,: Glu+OAA <> Asp + AKG

GOT.: Asp+AKG <> Glu+OAA

GDH: Glu+NAD* <> AKG + NH;* + NADH
GAT: Gly + Arg <> Orn + GAA

GAMT: SAM + GAA — Cre

Although MetaNet is not guaranteed to accuratcly rcproduce enzyme kinetics, it was used in
our model with the expectation it would roughly estimated the rates of reactions. Velocities of
reactions were calculated as follows:

r
7 1— vr..\ & KJ.-*

Max.x vj . (‘
e
LK

i i

sl sl ) e el )]
]

K, and n,, is the binding constant and the “cooperativity index” (essentially a Hill exponent)
of substance (or effecter) s of enzyme x (equilibrium constant for dissociation of the enzyme-ligand

where

K:\ = K.\ X
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complex), respectively and K7, is the former’s effective binding constant, which reflects the activi-
ties of the competitive activators £, and the competitive inhibitors 4,. ¢, is the concentration of
substances. £;and /. are noncompetitive activators and noncompetitive inhibitors of the reaction
catalyzed by enzyme x, respectively.”

10. System N
Glutamine is transported into the cytoplasm by a sodium-dependent transport mechanism.

This process is inhibited by histidine."”
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Na™], + K . seen
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11. System L

Glutamine is transported into the cytoplasm by a sodium-independent transport mechanism.
This process is inhibited by tryptophan.!”

[Glu], [Glu],

Vg, = 4 o

max SysL ]
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12. Ammonia Transport between Sinusoid and Cytoplasm
Ammonia transport between the sinusoid and cytoplasm was modeled based on the general
mass action law.

Vit aap = k.\ut; 41p (l NH(], - [NH] |]
13. Transportation of Glutamine, Arginine and Ammonia between Cytoplasm
and Mitochondria

Transports of glutamine, arginine and ammonia across the mitochondrial membrane were
presumed to rapidly attain equilibrium.

Ko IS =v,)=(8S], +v,)

14. Urea Transport to Sinusoid
Excretion of urea in the sinusoidal space was modeled based on the general mass action law.

Vi = Kiasp ([Urea), —[urea],)

15. Glutamate Transport between Sinusoid and Cytoplasm
Glutamate transport between the sinusoid and cytoplasm was modeled as Michacelis-Menten
reversible kinetics.

N [Glu], _v [Glu],
Glu-tp mF Glup [G]U II_+K mR Glu-p [Glu L +K

mCilu Glu-p mGilu Glu-tp
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16. Glutamate Flux from the Outside Pathways
Glutamate flux from the outside pathways of the model was represented by the difference
between zero-order influx and efflux based on the general mass action law.

Vonuspp = J('.luwpp - k(illl-\pp[(]]u ].

17. Degradation of Metabolites
Degradation of N-acetylglutamate, Piand CoA were modeled based on the general mass action
law under the assumption of steady-state.

Prfr_l:- $ krl’rl.’- 5 [ § ]

where s is a substance.

18. Ornithine Inflow from Other Reactions
To hold the steady-state, ornithine inflow from other reactions was presumed to be equal to
the flux of ornithine aminotransferase, vor-

19. Metabolites Flows in Sinusoid
Flows of ammonia, glutamine, glutamate and urea from #th sinusoidal compartment to z + 1th
compartment, v,,,, were modeled based on the general mass action law.

Jo,, =kls,l.
where s, represents a substance in the #th compartment of the sinusoid.

20. Heterogeneous Gene Expression in Hepatic Lobule

To describe the regulated gene expression of three enzymes, carbamoylphosphate synthetase,
glutamine synthetase and ornithine aminotransferase along the porto-central axis, we adopted the
mechanistic model proposed by Christoffel et al.'® The model is based on simple receptor-ligand
kinetics and the parameters are fitted by experimental values. [ £, ] is the concentration of the active
transcription factor F of enzyme x and assumed as follows'®:

Carbamoylphosphate synthetase: [ 5] 0.2 = 0.01X
Glutamine synthetase and ornithine aminotransferase: [ F] = [F) ] 0.1X

X is the radius of the hepatic lobule: X = 0 corresponds to the portal tracts and X = 10 cor-
responds to the central vein. Thus, X was defined as follows in our model:
n

X=10x
the total of sinusoidal compartments
nis the number of compartment out of eight compartments: 7 = 1 corresponds to the compartment
adjacent to the portal tracts and 7 = 8 corresponds to the compartment adjacent the central vein.
The total of sinusoidal compartments is eight in our model. Ry, is the relative rate of transcription,
assumed to correspond to the transcription rate in our model. Ry, is calculated using the fractional
saturation Yy, the discussion constant Ky, and the Hill coefficient 7¢x., as follows:!s

il L
_ [F]
GX.x ¥ TGy« Meix e
[F T 4+ K ™
Rox.. = Riox . Yoxs

Carbamoylphosphate synthetase was ficted with high-affinity (Yexcpss) and low-affinity
(Ygxcpsy) units as follow:'*

R(ix.(_'l’S = Rm:lx.{iX.L'l’N (Y(]X.(']".‘i.h + Y(i.\'.('l'ﬁ.!)
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CHAPTER 10

Decoding the Signaling Mechanism
of Toll-Like Receptor 4 Pathways
in Wild Type and Knockouts

Kumar Selvarajoo*

Guest Editor: Sankar Ghosh

Abstract
r l Yhe Myeloid Differentiation Primary-Response Protein 88 (MyD88)-dependent and—
independent pathways induce proinflammatory cytokines when toll-like receptor 4
(TLR4) is activated through lipopolysaccharide (LPS) stimulus. Recent studies have
implicated a crosstalk mechanism between the two pathways. However, the exact location
and nature of this interaction is poorly understood. Using my previous ordinary differential
equations-based computational model of the TLR4 pathway, I investigated the roles played by
the various proposed crosstalk mechanisms by comparing in silico nuclear factor kB (NF-kB)
and Mitogen-Activated Protein (MAP) kinases dynamic activity profiles with experimental
results under various conditions in macrophages to LPS stimulus (MyD88 deficient, TRAF-6
deficient etc.). The model that best represents the experimental findings suggests that the path-
ways interact at more than one location: (i) TRIF to TRAF-6, (ii) TRIF-RIP1-IKK complex
and (iii) TRIF to cRel via TBK1.

Introduction

The Toll-like receptors (TLRs) are key elements of the innate immune system. These receptors
recognize conserved pathogen-associated molecular patterns related to micro-organisms, such as
lipopolysaccharide (LPS) and double-stranded RNA and trigger both microbial clearance and the
induction of immunoregulatory chemokines and cytokines. There are a total of 13 known TLRs to
date, of which TLR4 has received particular attention."* Upon LPS ligation, TLR4 activates the
MyD88-dependent and MyD88-independent pathways. The MyD88-dependent pathway, which
is common to all TLRs except TLR3, activates NF-kB and activator protein-1 (AP-1) resulting
in the induction of proinflammatory chemokines and cytokines such as Tumour-Necrosis-Factor
o (TNF-a) and interleukin-1f (IL-1f). The MyD88-independent pathway, on the other hand,
activates Interferon (IFN) Regulatory Factor 3 (IRF-3) and induces IFN-p and other chemokines
like CCL5 and CXCL10."?

*Kumar Selvarajoo—Bioinformatics Institute, A*STAR, Biopolis, Singapore 138-671; Institute for
Advanced Biosciences, Keio University, Tsuruoka, 997-0035, Japan. Email: kumar@ttck.keio.ac.jp

E-Cell System: Basic Concepts and Applications, edited by Satya Nanda Vel Arjunan,
Pawan K. Dhar and Masaru Tomita. ©2013 Landes Bioscience and Springer Science+Business Media.
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Studies of signaling cascades mediated through the MyD88-dependent and -independent
pathways have so far been predominantly performed in a nonconstitutive manner. That is, the two
pathways have been studied independently of each other. More recently there have been implica-
tions that the components of the two pathways may indeed interact downstream of TRIF and,
therefore, may be dependent on each other in the activation of transcription factor NF-kB. For
example, the interaction of TRIF with TNF-Receptor-Associated Factor 6 (TRAF6) has been
suggested by Sato etal (2003).% This leads to the question whether TRAF6 binding to TRIF could
lead to the activation of NF-kB in a MyD88-independent manner. However, other studies involv-
ing the LPS-induced activation of TLR4 in TRAF-6 deficient mice have also shown the induction
of NF-kB.** Collectively, these studies indicate a possible link between the MyD88-dependent
and -independent pathways in the activation of NF-kB in both MyD88 and TRAF-6 deficient
mice. However, the suggestion of signaling crosstalk occurring by the binding of TRAF-6 to TRIF
seems controversial. >

I approached this issue in a systemic manner. Previously, I developed a computational model
of the MyD88-dependent and -independent pathways.® The model showed the possible signal-
ing mechanism for the delayed NF-kB kinetics observed in MyD88-deficient mice. Using this
model with careful modifications, I investigated several in silico crosstalk mechanisms between
the MyD88-dependent and -independent pathways and compared the model simulations with
experimental findings for NF-kB and MAP kinases activity in wild type and various knock-out
conditions.

Materials and Methods

The details of the modeling strategy and the original computational model (reference model)
have been previously published.® In short, the development of our model includes selecting ap-
propriate signaling reaction networks and determining associated kinetic parameters. As the TLR
field is relatively new, we do not know the kinetic details of each signaling process. In addition,
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Figure 1. Figure and legend continued on following page.
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Figure 1. A, viewed on previous page) Reference TLR4 model. The MyD88-dependent and
MyD88-independent signaling pathways with hypothetical intermediates, adapted from
Selvarajoo, 2006. B) The addition of a crosstalk mechanism between TRIF and TRAF6 mol-
ecules (Model A); see Appendix A for details. C) The simulated time course of the relative
activity of NF-xB for various reactions rates of TRIF to TRAF6 crosstalk in MyD88 KO condi-
tions using Model A. The x-axis represents the time in minutes and the y-axis represents the
relative activity of NF-kB. WT (line) and MyD88 KO (squares) profiles were generated using
Model A. MyD88 KO- CR1 to CR3 refers to simulation with TRIF/TRAF6 rate constant at 0.1/
min (triangles), 0.5/min (diamonds), and 1.0/min (circles), respectively. Note: For all figures,

the relative activities have been normalized to a maximum unit value.
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although biological networks in general can behave in nonlinear fashion, in my original model I
and also others, showed that downstream Signaling reaction events to receptor activation can be
described by first order mass action kinetics.”® Therefore, in this paper all signaling reactions are
described by ordinary differential equations of first order.

Using existing knowledge of the TLR4 pathway (Fig. 1A, reference pathway) and mass-action
kinetics, I chose the parameter values to fit wild-type (W'T) semi-quantitative profiles of NF-kB
and JNK activity.” I next tested whether the same model parameters also performed well in a
knockout (KO) condition, namely MyD88 KO condition.” This is an iterative process where
parameter values are selected using semi-quantitative NF-kB and JNK activity profiles in both
WT and MyD88 KO conditions.

My model begins with the TLR4 receptor in an active state through the binding of LPS.
The active signal triggers both the MyD88-dependent and -independent pathways. For the
MyD88-dependent pathway (Fig. 1A, reference model), the signaling reactions are (i) MyD88/
MAL associates to the TLR4 receptor (TIRAP can be lumped with MyD88), (ii) IRAK1 and
IRAK4 associate with MyD88 at the receptor, (iii) the IRAK-MyD88 complex activates TRAF6,
(iv) TRAFG stimulates the formation of a TAB1/TAB2/TAKI complex, (v) the TAB1/TAB2/
TAKI1 complex triggers MKK3/6, MKK4/7 and IKK complexes (IKKa, IKKp and IKKY), (vi)
MKK4/7 activates JNK (vii) MKK3/6 activates p38, (vii) IKKs phosphorylate IkBo and release
NF-kB, (viii) p38 and JNK translocate to the nucleus, (ix) NF-kB translocates to the nucleus,
(x) JNK and p38 activate AP-1, and (xi) NF-kB and AP-1 bind to the relevant gene promoters
and induces transcription.

The following constitutes the MyD88-independent pathway: (a) TLR4 stimulates inter-
mediate 1 (I1), 12 and I3, (b) I3 activates TRAM, (c) TRIF is recruited to the TIR domain
of TLR4 together with TRAM, (d) TRIF binds TBK1 and activates IRE-3, (¢) TBK1 also
activates cRel of NF-kB and (f) IRF-3 and NF-kB translocate to the nucleus and induce the
relevant gene transcription.

Although I simulate quantitative results of the various activated proteins and protein
complexes in response to TLR4 activation, I only make semi-quantitative comparisons be-
tween the simulation results and the experimental findings. This is due to the general lack of
quantitative experimental data. In addition, I restricted my model simulations to 60 min after
LPS stimulation, to ignore secondary signaling such as autocrine TNF-a signaling and IxBa
negative feedback regulation. I assume such secondary complexities are negligible within the
time frame of my analysis.>'

The initial conditions in the model are that apart from the signaling step TLR4 to MyD88/
MAL and I1, all other signaling processes begin with null activation (at # = 0). The various
KO conditions were generated from the wild-type model by setting the reaction(s) upstream
of the molecules to be null. I compared the simulation of JNK, p38 and NF-kB activity with
published data and progressed from reference model to Model A to Model B, the latter being
the most representative of the TLR4 signaling pathway.

All models were constructed and solved using E-Cell version 3. The complete computa-
tional wild-type Model B with the kinetic expressions and parameters is available upon request

(kumar@teck.keio.ac.jp).

Results

TRAF-6 Independent NF-KB Activation in MyD88 KO Is Possible

To test the proposed mechanism of crosstalk between TRAF-6 and TRIF that leads to the
NF-kB activation in the MyD88-independent manner,’ Iinserted, in silico, a signaling reaction
between TRIF and TRAF-6 in the original reference model and labeled the updated model as
Model A (Fig. 1B and Appendix A). Using this model, I simulated the NF-kB activity profile
for WT and MyD88 KO conditions, initially setting the TRIF to TRAF-6 reaction null, and
checked whether the model simulation mimics the experimental observation of Kawai et al,

1999 (Fig. 1C, WT & MyD88 KO).
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It is well known that for wild type macrophages the MyD88-dependent pathway is the key
pathway for carly phasc NF-kB activation. Therefore, to investigate the importance of TRIF
and TRAF-6 crosstalk, I performed the NF-kB simulation at various rates of reaction between
TRIF and TRAF-6 in MyD88 KO conditions (Fig. 1C, MyD88 KO- CR1 etc.). Interestingly, we
observed that as the rate constant between TRIF-TRAF-6 is increased, the peak levels of NF-kB
activity approaches the WT profile, even in MyD88 KO conditions, although with a time-delay
response. This implies that TRIF to TRAF-6 crosstalk can result in MyD88-independent activa-
tion of NF-kB; however, it may not be dominant.

MyD88-Independent Pathway also Interacts Downstream

of TRAF-6 but Upstream of TBK1

In TRAF6-deficient mice, delayed activation of MAP kinases has been reported.’ This
observation indicates that in addition to TRIF to TRAF-6 and TRIF to cRel via TBK1 (Fig.
1B) there exists other crosstalk mechanisms, intuitively, upstream of MAP kinases and down-
stream of TRAF-6. I next tested my model in silico by making interactions between TRIF and
signaling molecules/complexes downstream of TRAF-6 but upstream of JNK. This reduced the
possibility of crosstalk of TRIF with either the TAK/TAB complex or MKK3/6 and MKK4/7
(Fig. 1B).

Recently, Transforming-Growth-Factor-B-Activated Kinase (TAK1) has been shown to
play a vital role in multiple signaling pathways."”> TAK1 KO studies revealed that TAK1 is es-
sential for the TLR-induced JNK activity'? and the activation of MAP kinases in response to
IL-1P." To test whether TRIF and the TAK/TAB complex interact, I once again included the
relevant in silico interaction in Model A and performed WT and MyD88 KO simulations to
LPS stimulus. In order to generate the delayed activation of MAP kinases observed in MyD88
KO conditions, I added at least two hypothetical intermediates between TRIF and the TAK/
TAB complex (Fig. 2A, Model B, Appendix A) in the same manner I performed earlier.® Using
the modified model I simulated in silico TAK1 KO for JNK activation in TLR4 activation.
The model simulation showed complete abolition of JNK activation (Fig. 2B). Similar result
for TAK1 KO cells was reported by Shim et al, 2005. Next, I performed in silico TRAF-6 KO
simulations and reproduced p38 and NF-kB activity profile in accordance with Gohda et al,
2004 (Fig. 2C.D).

A computational model is acceptable only if it is able to predict multiple perturbation studies.
The updated Model B is also able to predict the NF-kB activation for various types of available
KO studies (MyD88 KO, TRAF-6-KO and TRIF KO) in macrophages (Fig. 2D).>*!* In all
conditions and also for JNK and p38 relative activity, I observed the simulation profiles yield
consistent result with experimental observations (Fig. 2B-D).

Discussion

Recent studies have shown that the MyD88-dependent and -independent signaling cascades
may interact and thereby possibly coregulate NF-kB and MAP kinases. For instance, blocking
the MyD88 pathway through MyD88 KO in TLR4 stimulus also leads to JNK and NF-kB
activation, albeit with delayed kinetics.*” There have been other reports that TRAF-6 binds to
TRIF and may thus activate NF-kB in a MyD88-independent manner.* However, cells deficient
of TRAF-6 still showed JNK and NF-kB activation.*>

Previously I reported a computational model (MyD88-dependent and -independent path-
ways) that demonstrated the probable reasons for the delayed NF-kB activation observed in
MyD88-deficient mice.® I used this model, with appropriate modifications, to first test the idea
whether TRAF-6 binding to TRIF activates NF-kB (Model A, Fig. 1B). By performing in silico
simulations and comparing the results with reported experimental findings, I showed that this
mechanism is possible. However it may not be sufficient to concur that this is the only other
MyD88-independent activator of NF-kB on top of TRIF to cRel via TBK1 mentioned in my
previous model (Fig. 1A).
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Figure 2. A) Model B. The MyD88-dependent and MyD88-independent signaling pathways
with the crosstalk mechanism between TRIF and TAK/TAB complex via a few hypothetical
intermediates (protein, protein complexes or phosphorylation step). See Appendix A for de-
tails. The simulated time course of the relative activity of (B) JNK, (C) p38 and (D) NF-xB for
the WT (line), MyD88 KO (squares), TRAF-6 KO (triangles), TAK1 KO (crosses) and TRIF KO
(circles) in Model B. The x-axis represents the time in minutes and the y-axis represents the
relative activity of JNK (B), p38 (C) and NF-kB (D).
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Figure 3. The new proposed TLR4 pathway. The MyD88-dependent and MyD88-independent
signaling pathways with various investigated crosstalk mechanisms.

I next show that interactions possibly exist between the MyD88-dependent and -independent
pathways downstream of TRAF-6 and upstream of MAP kinases. The Model B (which include the
interaction between (i) TRIF and the TAK/TAB complex with numerous unclassified intermedi-
ates (protein, protein complexes or phosphorylation state) and the (ii) TRIF/ TBK1 pathway)
recapitulated NF-kB and JNK activities for several KO conditions with reasonable simulations
(Fig. 2B-D). In summary, my model suggests that there is possibly one additional crosstalk pathway,
from TRIF to the TAK/TAB complex, for the activation of NF-kB and MAP kinases. However,
further experimental studies are required to determine the intermediates that participate through
the two suggested pathways.

It is known that TBK1 activates IFN-inducible genes via TRIF-dependent signaling.> TBK1
associate with TANK" and phosphorylate IRF3 in response to viral infection.!®’” TRAF3, which
has a similar structure to TRAF6, has been recently reported to bind with TRIE!® RIP1 has been
implicated in activating the IKK complex' and shown to mediate the recruitment of TAK1 to
the TNF-R1 complex.?’ Also, RIP1 has been shown to mediate TRIF-dependent, TLR4-induced
NF-kB but not IRF-3 activation.?' Collectively, it appears that both TRAF3 and RIP1 might
participate through the TRIF to TAK/TAB pathway (Fig. 3).

Conclusion

The TLR field is rapidly evolving and many time-course experiments are being performed
to understand the regulatory roles of various signaling adaptors and molecules. Without the
use of appropriate analytical tools, like the computational TLR4 pathway models, it is a daunt-
ing challenge for biologists to analyse and interpret the complex information generated by the
various experiments. In this paper, I have shown the utility of in silico models to put together
and test various hypotheses regarding the TLR signaling mechanism. I investigated, through
various simulations, the crosstalk mechanisms between the MyD88-dependent and -indepen-
dent pathways at carly time signaling to LPS stimulus, without assuming too many details of
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the TLR4 signaling pathways from literature. The final Model B is consistent across several
literature observations, showing how computer models can help us understand the mechanistic
process behind the complex signaling dynamics. Such result from systemic work will surely provide
hints to the wet-bench experimentalist to perform more targeted research that will eventually, but
atan increasing pace, lead to the discovery of novel intracellular targets, say, for the TLR signaling
in disease conditions.
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CHAPTER 11

Modeling of Hsp70-Mediated
Protein Refolding

Bin Hu,* Matthias P. Mayer and Masaru Tomita

Abstract

n this work, we used E-Cell, a software package aiming at large-scale modeling with full
Iobject—oriented modeling support, to analyze the 70kDa heat shock protein (Hsp70) chaperone

mediated protein folding. We analyzed the kinetic characteristics of this chaperone system
during folding of an unfolded protein using computer simulations. Our simulation results are
consistent with reported laboratory experiments and support the kinetic partitioning hypothesis.
Our model suggests that although the DnaK chaperone system is robust in assisting protein fold-
ing, this robustness is limited by the availability of ATP. Based on this model, we also discuss why
object-oriented modeling is needed to reduce the complexity of large-scale biochemical models.

Introduction

Although the entire information for the precise three-dimensional structure of a protein is
encoded in its amino acid sequence, in vivo many proteins depend on the assistance of molecular
chaperones such as Hsp70 (DnaK) and Hsp60 (GroEL) heat shock proteins for folding from a na-
scent or denatured state into their correct structure.'? It is known that in Escherichia coli the DnaK,
DnaJ and GrpE chaperone machinery can efficiently repair misfolded Photinus pyralis luciferase
both in vivo and in vitro but cannot protect it from heat induced unfolding.’ Experimental findings
suggest that this refolding process is achieved through ATP-dependent interaction between the
DnaK chaperone and the substrate protein or peptides.* DnaJ and GrpE function as regulators in
this system by stimulating DnaK’s ATP hydrolysis activity and subsequent nucleotide exchange.>*

The kinetics of the DnaK chaperone system has been studied extensively.”'® Different mecha-
nisms have been suggested to explain the steps in chaperone action. The mechanism suggested
by Schréder et al® has been widely accepted. In this proposed mechanism, an unfolded protein
substrate (e.g., Photinus pyralis luciferase) first associates with DnaJ, which will present it to
DnaK.ATP and induce the formation of a trimeric DnaK.ATP.Dna].substrate complex. DnaJ and
substrate synergistically stimulate ATP hydrolysis by DnaK and thereby trigger the transition of
DnaK from the ATP state with low affinities for substrates to the high-affinity ADP state. GrpE
will bind to the latter complex and catalyze the release of ADP. Subsequent ATP binding induces
conformational changes in the ATPase domain and substrate binding domain leading to a rapid
dissociation of GrpE and substrate from the complex. These steps form a cycle of the DnaK-assisted
folding. With enough ATP and all the chaperone molecules, after many cycles, the substrate can
be refolded back to its active state (Fig. 1, see also ref. 3). Here we describe a kinetic model for
DnaK chaperone action in protein refolding based on Figure 1. The rate constants were derived
from literature or completed by our experiments. Our model is shown to simulate correctly the

*Corresponding Author: Bin Hu—Institute for Advanced Biosciences, Keio University. Tsuruoka,
997-035, Japan. Current address: Genome Sciences Group (B-6), Bioscience Division, Los
Alamos National Laboratory, M888, Los Alamos, NM 87544. Email: binhu@lanl.gov

E-Cell System: Basic Concepts and Applications, edited by Satya Nanda Vel Arjunan,
Pawan K. Dhar and Masaru Tomita. ©2013 Landes Bioscience and Springer Science+Business Media.
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DnaJ
s ~A—° Dnal.S
DnaK.ATP.S -—i' Dnak.ATP ;v DnaK.ATP.DnaJ.S
'
Pi Pi
DnaK.ADP.S DnaK.ADP.DnaJ.S
s DnaJ
s " GmpE2 GrpE2
DnaK.ADP DnaK.ADP.GrpE2.S
ADP
DnaK.ATP.GrpE2.S a—j DnaK.GrpE2.S
ATP

Figure 1. Kinetic model of the DnaK chaperone system in protein refolding. Arrows indicate
the reaction direction. S is an abbreviation for substrate. GrpE2 stands for dimer.?* Pi stands
for inorganic phosphate. Dot (.) in between molecules indicates a molecule complex. The
substrate first interacts with DnaJ. The DnaJ-substrate complex binds to DnaK.ATP and substrate
and DnaJ stimulate the ATP hydrolysis by Dnak, leading to a stable DnaK.ADP.substrate.DnaJ
complex. Dna) may leave and the GrpE dimer enters the complex, catalyzing ADP dissociation.
ATP binding to the nucleotide-free DnaK triggers dissociation of substrate and GrpE2, thereby
completing the chaperone cycle.

behavior of E. coli DnaK chaperone action. The kinetic partition hypothesis proposed for protein
refolding, the sensitivity of refolding productivity to alterations in activity and concentration of
the chaperones and ATP consumption are discussed.

Materials and Methods

Reaction and Parameters

The model is based on the rate equations derived from the kinetic model in Figure 1. All the
reactions and parameters used in this computer model were either based on published literatures
or measured in the M.P.M. lab. For cach substrate protein passing through a cycle of refolding
process, a probability is assigned for it to be fully refolded. Protein aggregation is not included
in our model. This is because of: (1) Lack of quantified data on aggregation; (2) The model is
developed to test the property of the DnaK chaperone system at physiologically optimal growing
temperatures, where the probability of protein aggregation is small. Please refer to Tablel for a
reaction list for DnaK chaperone kinetic model.

Simulation and Plotting

The simulation was based on an improved version of Gillespic’s exact stochastic simulation
algorithm? by Gibson and Bruck,* as implemented in E-Cell v3, an open source computer software
package for large scale cellular events simulation,*** developed at Keio University (www.e-cell.
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Table 1. Reaction list for DnaK chaperone kinetic model

Reaction Parameter References
S + DnaJ -> DnaJ.S 3.3-10° Mg [1]
DnaJ.S -> S + DnaJ 6.2:107 s [1]
Dna).S + DnaK.ATP -> DnaK.ATP.DnaJ.S 1.0-10° M-'s™! *
DnaK.ATP.DnaJ.S -> DnaK.ATP + DnaJ.S 25" ok
DnaK.ATP.Dna).S -> DnaK.ADP.Dna).S + Pi ca.1.8s™! [2]
DnaK.ADP.Dna).S + GrpE2 -> DnaK.ADP.GrpE2.S 3.0-10* M-'s™ [3]
DnaK.ADP.GrpE2.S -> DnaK.GrpE2.s + ADP 127 7! [4]
DnaK.GrpE2.S + ATP -> DnaK.ATP.GrpE2.S 1.3:10° M's™ [5]
DnaK.ATP.GrpE2.S -> S+ DnaK.ATP + GrpE2 0.0001-7.9 s [6]

S + DnaK.ATP -> DnaK.ATP.S 4.510° M's™ [7]
DnaK.ATP.S -> DnaK.ATP + S 0.0004-7.2 s [6]
DnaK.ATP.S -> DnaK.ADP.S + Pi 1-6:107 s [8, 9]
DnaK.ADP.S -> DnaK.ADP + S 4.710 [10]

*The rate constant was estimated to be similar as the reaction:

S + DnaK.ATP -> DnaK.ATP.S.

**This rate constant was estimated to be similar as the reaction:

DnaK.ATP.S -=> DnaK.ATP + S.

Abbreviations used here are the same those used in Figure 1. For reaction: DnaK.ATP.GrpE2.S > S +
DnaK.ATP + GrpE2 a probability is given for S to be fully refolded.

org). The simulation results were plotted by using GnuPlot (www.gnuplot.info). The power fitting
in Figure 5 was done with the Microsoft Excel program.

Model Validation

To validate our model, we compared our model results with those published in.* As shown
in Figure 2, with a refolding probability of 1.16% in a single cycle, results from our model are
consistent with laboratory results. A probability value of 1.96% could bring a result with similar
dynamics with faster refolding rate.

Results

Partition of the Substrate Binding

Based on in vitro experiments, it has been proposed that the substrate binding to chaperone
follows a kinetic partitioning.” In the fast phase, which may take seconds to minutes, more than
half of the substrates are bound by chaperones. Later, in the slow phase, the rest, about 50% of the
substrates, slowly associate with the chaperones. Our model accurately reproduced this phenom-
enon when we introduced 1000 molecules of unfolded substrates into the system and simulated
the generation of refolded substrates. After about 30 minutes, more than 99% of the substrates
were fully refolded (Fig. 3). This result shows the kinetic partitioningis an inherent property of this
network with the parameter set we used. It also indicates that the function of DnaK.ATP beingable
to combine with substrate directly may provide a buffer of the subsequent refolding reactions.

Robustness Analysis

Robustness can be defined as the insensitivity to changes in variables. Here we tested the robust-
ness of the DnaK chaperone system by reducing the initial values for the numbers of DnaK, Dna]
and GrpE molecules by half. Figure 4 shows that after a 50% reduction of the amounts of these
chaperone molecules, the system is still able to maintain its behavior for refolding the substrate,
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Figure 2. Model validation. In vitro experiment result as published in reference 3. With a re-
folding probability of 1.16%, our result fits well with their report. Different probability values
can result in different refolding speed, although other parameters are the same.

which indicates that the chaperone system is robustly designed. Among the three chaperone
molecules tested, a 50% reduction of DnaJ and GrpE had the strongest impact on the refolding
process and no significant differences could be found in the results when DnaK and ATP was
varied. This is surprising and contrasts in vitro observations. We will discuss this matter below.

ATP Consumption

The function of the DnaK chaperone system depends on the hydrolysis of ATP.? In each cycle
of the DnaK chaperone action, one molecule of ATP is hydrolyzed to drive the cycle and/or to
provide the energy for the refolding process (Fig. 1). During the heat shock response, many cel-
lular proteins will become unfolded and proteins belonging to different functional and structural
groups will be affected. It is very likely that these proteins, when exposed to the DnaK machinery,
require various chaperone cycles until they reach their native state. To survive heat shock, bacteria
must refold as many proteins to their physiological state and as fast as possible. It is known that to
achieve this, bacteria will accelerate the heat shock gene expression.' The increasing repair activity
concomitantly increases the ATP consumption. However, some of the heat-inactivated proteins
may be components of the energy generating systems. Thus it is an important question whether
the ATP levels are sufficiently high to sustain the repair function. We addressed this question by
using four different refolding probabilities and comparing the ATP consumption. As summarized
in Figure 5, the relationship between the probabilities of refoldingand ATP consumption is non-
linear. A simple power fitting results in the equation: y = 0.9239 x.1

Therefore, the refolding of proteins with a lower refolding probability after release by DnaK
consumes much more ATP than the refolding of proteins with a higher refolding probability, es-
pecially if the refolding probability is less than about 5%, which means about 20 cycles are needed
on average for the unfolded protein to return to its physiological conformation. Under such condi-
tions, cellular ATP levels may soon be exhausted and the functionality of the heat shock proteins
will be limited by the quantity of ATP. ATP generation will most likely decrease with increasing
temperatures above the physiologically range for which the organism adapted. At the same time,
the unfolding probability for native proteins will increase and the refolding probability of proteins
released after chaperoning by Hsp70 will decrease. Therefore, slowing down the ATP-consuming
chaperone cycle by decreasing the activity of GrpE may be an evolutionary strategy to cope with
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Figure 3. Partition of substrate binding. Solid curve is the number of substrate in the free
unfolded state. The dashed curve is the number of refolded substrate.

such situations. Taken together we concluded that although the DnaK chaperone system is robustly
designed, this robustness is limited by the cellular amount of ATP.

Discussion and Conclusion

Based on published literature and our experimental results, we developed a kinetic model for
analyzing the DnaK chaperone system in folding de novo synthesized polypeptides or refolding of
unfolded proteins at ambient temperatures. Using this model, we analyzed the kinetic partitioning
found in DnaK substrate binding reactions and tested the sensitivities of the system’s function with
respect to DnaK, DnaJ and GrpE. Our model accurately represents the laboratory findings, except
the effects of decreased DnaK concentration and activity. The results of the simulations demonstrate
that GrpE is the most sensitive component (data not shown) among the three chaperones, which
explains the potential function of GrpE as a thermosensor."!

The inconsistency of the effect of DnaK concentration and activity between our model and
laboratory reports in'® can have at least two alternative explanations. (1) In our model, we have
notincluded substrate aggregation. If luciferase aggregation is considered, the system will be much
more sensitive to the DnaK concentration. This is because DnaK binding of unfolded luciferase
will compete the self-aggregation of luciferase. Thus, a part of the high sensitivity of DnaK con-
centration found in'® may be due to the aggregation prevention function. (2) In our model we have
not considered the possibility of more than one molecule of DnaK binding simultaneously to a
single substrate, since to our knowledge there is no experimental evidence published on this issue
so far. However, we hypothesize that this is a possible mechanism in vivo to enhance the refold-
ing process. Such a mechanism also would be more sensitive to a reduction of concentration and
activity of DnaK. Further laboratory experiments are needed to validate this hypothesis. Protein
aggregation and synergistic action of several DnaK molecules during the refolding of a single
substrate shall be implemented into future versions of our model when experimental evidence
will allow an estimation of the kinetic parameters involved.

One question of debate concerning the DnaK-chaperone cycle was the dissociation of Dnal.
Based on the fact that Dna] is only 1/10th to 1/30th as abundant as DnaK in vivo'* and can act
substoichiometrically in vitro™* it was assumed that DnaJ leaves the cycle just after the transfer
of the substrate onto DnaK and before GrpE binds to the complex.* This scenario was chosen for
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Figure 4. Robustness with respect to initial values.

our model. The elucidation of the binding sites for GrpE in the cocrystal structure with DnaK'¢
and for Dna]J through genetic and biochemical analyses'”'® indicated that both DnaJ and GrpE
could eventually bind at the same time to DnaK and possibly to the DnaK-substrate complex. We
therefore asked the question whether the refolding efficacy for the substrate would change when
Dna] leaves the cycle together with GrpE upon binding of ATP instead of before the binding of
GrpE. However, the results did not change when only the exit point for DnaJ was varied (data
not shown). Therefore, despite the substoichiometric concentration of Dna], the actual exit point
of Dna] is not critical for the refolding efficacy as long as a quarternary complex of DnaK with
Dna], substrate and GrpE does not change the dissociation kinetics significantly or has any other
additional effect on the refolding probability of the substrate.

Robustness, i.c., buffering relatively large alterations in system parameters, is a natural prop-
erty of many biological systems and should be expected for the Hsp70 chaperone system as well.
Under stress situations, the availability and activity of Hsp70 chaperones may be reduced and it
is important to know how the chaperone function is affected under these conditions. Such ques-
tions are generally difficult to address experimentally (see also 14). In robustness tests of our model
we found that this chaperone system is robustly built to refold proteins. A 50% reduction in the
concentration (Fig. 4) did not affect the behavior of refolding dramatically. In the absence of side
reactions such as aggregation, the unfolded substrates, once they enter this pathway, will complete
their destiny towards refolding. Within the range tested, fluctuations in concentration or activity
of the chaperones only delayed the refolding process and did not change the overall behavior. Only
severe activity reductions caused significantly longer delays. Such a robust design provides the fun-
damentals of the heat shock response,'” where the DnaK chaperone system assists cells to survive
temperature increases by refolding heat denatured proteins. Some of this apparent robustness
may be due to the exclusion of side reactions such as aggregation and will be investigated in future
implementations of the model. Nevertheless, our robustness analysis emphasizes that exclusion
or reversion of side reactions are major issues for the cells under stress conditions since the actual
refolding reaction can cope with relatively large fluctuations in chaperone abundance and activity.

The nonlinear relationship between ATP consumption and the refolding probability (Fig. 5) is
also interesting. It is known that in ArpoH mutants, which lack the heat shock transcription factor
and therefore have low levels of all major cytosolic proteases and chaperones except GroEL, 5-10%
and 20-30% of all total proteins aggregated at 30°C and 42° C, respectively. The aggregates contained
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Figure 5. ATP consumption and the probability of refolding. After more than 95% of the sub-
strate was fully refolded, ratios of ATP consumed were calculated and divided by the number
of transformed substrates. Probability is the probability value of one substrate molecule after
finishing exact one cycle of the chaperone system to be able to fold to natural states.

350-400 protein species.? Since the DnaK system is beside GroEL the only chaperone system in E.
coli that is able to refold proteins to their native state, these protein species must be substrates for
DnaK under normal conditions. These proteins may cover a wide range of probabilities of refold-
ing, which is most likely determined by their sequence and fold. Although ATP has under optimal
growth conditions a relatively high total concentration (3 mM), in stress situations the effective free
concentration of ATP may nevertheless be insufficient to meet the challenge of refolding hundreds
of different molecules simultaneously. Thus, we think the cellular amount of ATP may actually limit
the robustness of the Hsp70 chaperone system in its protein folding function.

Currently, the complexity in the model is limited because we are focusing on the situation where
only one substrate species exists. But if we are going to simulate the refolding of 100 different sub-
strates at the same time, the complexity of model construction easily goes up and becomes hard to
manage. One possible solution is to borrow the idea of object-orientation from computer science.
Consider thatif all the protein species have the inherent property of refolding and aggregation, etc
(which is true in nature) inside the simulation software when we construct a large-scale model, we
can just send the protein a message “fold” and it would find its way towards the folding process. In
this way, we can replace the thousands of reactions with just 100 messages. Thus, object-oriented
modeling is a prominent solution for complex biological models.
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Note Added after Proofs
Goloubinoft and coworkers found that DnaK used five ATPs to refold a specific denatured

model protein, which does not aggregate.”
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